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Preface

Eight months after the publication of an earlier textbook by the author

of the present one, the United States became one of the belligerents in the

most widespread and destructive war of all time. The author’s earlier

effort, like substantially all similar undertakings by other writers, had been

prepared for an educational system designed to serve a world at peace.

Since physics was already indicated as one of the academic subjects most
useful in the war effort, the publisher almost immediately suggested that

another textbook be prepared, adapted to serve the new requirements.

The present work is the result.

In his earlier work, Physics: the Pioneer Science
,
the author tried to show

how to break the vicious spiral initiated by narrow specialization in the

education of physicists for times of peace. With the advent of war we
have all had to turn aside temporarily, though with deep regret, from such

peacetime objectives as do not happen to lie also in the direct line of the

war effort. This war is frequently called “a physicist’s war” and with

much justification. Certainly the physicist is confronted with grave new
responsibilities, the most exacting of which is the training of other and

even better physicists at the maximum possible rate.

Right there lies an unprecedented opportunity which is not as widely

recognized as it should be. We teachers of physics will be wise, with the

deep wisdom of the preservation of a tolerable social order, if we keep

acutely in mind the fact that we are training physicists, not only for the

war, but for the even more exacting era that is to follow. After having

won the war, the United Nations will be able also to “win the peace” only

if our technical men, competent specialists though they must be, are also a

great deal more than mere specialists. Men of science, above all others,

must comprehend the scope and the broad implications of the scientific

habit of thought as well as the limitations on the fields of its applicability.

This comprehension does not automatically accompany the mastery of a

particular field of science, though such mastery is one of the important

elements in that kind of appreciation. But in one way or another the

much-needed combination of technical knowledge with scientific and social

perspective must be provided if the world is not to be herded again onto

the highroad to self-destruction.

The most fertile ground for the growth of an appreciation of the scientific
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habit of thought is a familiarity with the struggles that were involved in

developing it. Physics, in company with astronomy, which is really a

specialized branch of physics, was involved far earlier and more deeply in

this development than any other branch of science. It constituted the

first large body of knowledge that was experimental, sequential, and cumu-

lative. When the scientific millennium comes, it will begin in a widespread

familiarity with the early struggles of physics as the pioneer science. Most
great movements have grown out of similar bodies of tradition. But

physicists must lead the way if general interest in scientific tradition is to

develop.

In this book the strictly historical material has been reduced in extent

and modified to meet the needs of the times. Classroom experience has

demonstrated unmistakably that the historical approach is an exceedingly

effective vehicle for the development of comprehension of subject matter.

The student who experiences an introduction to physics which properly

combines full technical exposition with the leavening of historical tradition

will be a better physicist, and in addition a much more useful and far-

sighted citizen, than the student whose training is confined to either aspect

alone.

The most considerable change in this book, as compared with Physics: the

Pioneer Science
,
is in the section on electricity. In the earlier book the

historical approach dictated the study of static electricity before current

electricity. In the present book the greater directness and practical ad-

vantage of going at once into the study of current electricity suggested a

reorganization and rewriting of the section, with electrostatics reduced in

extent and placed after the more utilitarian aspect of the subject.

The meter-kilogram-second system of units has been used in this as in

the earlier text. Most physicists are aware that it was prescribed in 1935

by the International Committee on Weights and Measures to take effect

January 1, 1940. It has been making steady gains and is coming to be

recognized as a major factor in a long-needed simplification of units, espe-

cially electrical units. For any readers not already familiar with the

system, a brief description is provided in the Appendix, incorporating a

table comparing the M.K.S. system of units with the old C.G.S. system.

It has seemed desirable to provide citations for the many quotations and
direct references to original sources. In place of scattering them out in

footnotes, a serially numbered list of references to books has been included

in the Appendix. Reference is made to these in the text by serial number
followed by a second number to indicate the page. In case of works con-

sisting of more than one volume, the number of the volume is interpolated

in italics between the serial and the page numbers. For example: Fara-

day’s Experimental Researches in Electricity
,
volume 3, page 160, would

appear as 90:3:160. The list includes only books. References to periodi-

cals are in footnotes.

Perhaps a word about the problems which follow most of the chapters
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will not be out of place. A majority of the problems are formulated in

algebraic terms. Algebraic solution, while not necessary, should be en-

couraged from the beginning for the better students, and a certain amount

of it required of all students as their maturity increases. Several sets of

numerical data (usually four) are provided for each example. This gives

material for additional drill, when required on a particular point, and helps

to solve the literally perennial problem of duplication in successive years.

For the convenience of teachers who may desire at least an admixture of

the conventional type ot problem, several of these have been included in

each set. Answers are furnished, though the values are carried to only two

significant figures, whereas three or even four may be required of the stu-

dent. This, in the experience of the author, avoids both horns of an old

dilemma.

The considerable extent to which the substance of Physics: the Pioneer

Science has been carried over, with appropriate modifications, into this

text will be clear to anyone familiar with both. Chapters 48 to 51 inclusive

were written by one of the author’s associates, Dr. F. G. Tucker. Chapter

47 was contributed by another associate, Dr. C. E. Howe. Acknowledg-

ments of permission to use copyrighted material have been made at ap-

propriate points.

Lloyd W. Taylor
Oberlin College
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CHAPTER 1

The Place of Mechanics in the

Intellectual Enterprise

Physics in the World Crisis

Even in times of peace the study of physics as the pioneer science pos-

sessed a significance all out of proportion to the place accorded to it in the

conventional Liberal Arts curriculum. But war, fought with the weapons
of the nineteen-forties, is veritably “ a physicists war.” Physical meteorol-

ogists are in demand by the tens of thousands, radio technicians by the

hundreds of thousands, and automobile and aviation mechanics almost

literally by the million. In addition, men trained in other branches of

applied physics are in demand in corresponding numbers. The present

prospect is that the demand for such men will be scarcely diminished by
the cessation of the war, for there are indications of a post-war technologi-

cal era far surpassing in extent anything imagined heretofore. All this

lays a grave responsibility on the little group of physicists out of whose

profession almost every branch of engineering has directly or indirectly

grown.

Yet there is another reason for the study of physics which is even broader

and more compelling than the foregoing. Physics has, from its very incep-

tion, been the spearhead of the free, untrammeled search for truth. Phys-

ics and astronomy together established the basic scientific axiom that the

problems of the physical world are solvable, and solvable by man. Ever

since then physics has been the color-bearer of the fierce scientific convic-

tion that man can become the master of his fate. And it has given to the

rest of the world, with the aid of the other sciences, the doctrine that this

can come about only at the price of rigorous intellectual integrity.

These two chief components of intellectual morale, man’s confidence in

his supremacy over nature and an utter devotion to intellectual integrity,

have in recent years had to contend against fearful odds. The deepest is-

sues of the present crisis of the world are intellectual. The day when

humanity may really become the master of its intellectual fate has already

been deferred by the totalitarian onslaught, and can still be lost. Total-

itarian philosophy has always been actively anti-intellectual. The total-

itarian do not like to have people use their minds and from the beginning

have been committed to produce a society in which it would be impossible.
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Even in this country it was a huge intellectual backslide that gave the

totalitarians their chance — intellectual sloth, lack of imagination, and

wishful thinking. Nor is the danger yet over. Lurking in the background

of aroused consciousness of danger to the institutions of intellectual liberty

are disturbing remnants of the anti-intellectual movement. Even without

a totalitarian victory there is danger that the Axis powers may have done

a permanent disservice to the race if the present intellectual defeatism, for

which they are largely responsible, persists.

The Sciences Are Pioneers in the War for Intellectual Freedom

Yet this contest with intellectual sloth, defeatism, and appeasement is

nothing new for physics. Physics was born in just such a contest, and has

constituted the shock troops in an unremitting intellectual war ever since.

Just as generals and admirals must know the history of military and naval

strategy if they are to avoid the mistakes of the past, so one can with great

profit study the three-hundred-year campaign which physics has waged to

establish integrity and self-confidence as the main attributes of the scientific

method, a campaign in which it has been ably abetted by the other sciences

as they came into existence.

When science is viewed in this larger aspect, it is not its effects, profound

and far-reaching though they are, that should be the primary interest of

the student, but the nature of the instrument itself. It is utterly unique.

Literature and the arts have been produced principally by special geniuses,

and the rate of such production appears neither to grow nor to improve

with passing time. Current masterpieces of art and literature are of no

greater merit, nor are they being produced any more profusely today in

proportion to the population, than the corresponding products of two thou-

sand years ago. In the sciences, on the other hand, is the first large body
of knowledge that is both sequential and cumulative . As a unified army,

organized for a sustained assault upon the citadel of human ignorance,

there has been nothing to compare with the sciences in the whole recorded

development of human thought. It is possible to question the value of

the material which the sciences discover; much of it seems trivial to the

lay mind. One may also be fearful of the ultimate effect of scientific

philosophy on human welfare; many thoughtful men hold science respon-

sible for some of the major ills of the day. But whether for good or for evil,

the fact that science dominates modern thought cannot be disregarded.

Historians have until recently been curiously blind to the scientific idea

as a force influencing the trend of world affairs. But there are indications

that they are waking from their exclusive preoccupation with imperialistic

rivalries and military campaigns to an awareness of what is really the most
significant factor in the history of the last three centuries. Thus, Preserved

Smith says in his History of Modern Culture (117:1 :606)

:

1

. . . whether as the new salvation or the new superstition, science has molded

1 See the List of References in the Appendix.
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the whole life of the modern world. ... All modern production of wealth, all

contemporary life, depend on the knowledge of nature acquired by science.

But more than that, religion, politics, philosophy, art and literature have
capitulated to science, or at least receded before her. There is no depart-

ment of human activity today untouched with the spirit of experiment and
of mathematics.

Difficulties in Attaining Scientific Appreciation

And yet it is not easy to know where to turn to acquire an appreciation

of the scientific point of view or an informed and discriminating estimate

of its effects. Historians interest themselves but slightly in that field.

Philosophers, to whom one might naturally turn, seldom possess the first-

hand familiarity with scientific subject matter which is a necessary con-

dition for penetrating judgments in this field. Even men of science them-

selves are usually too busily engaged on the scientific battle front to give

serious attention to explaining to visitors the larger aspects and signifi-

cances of the campaign, even in the cases of those unusual men who know
what these are themselves.

There is, moreover, one handicap under which all approaches to this

problem from the historical, philosophical, or general-survey directions

seem inevitably to labor. That is the fact that they are largely limited to

talking about science, whereas one of the inescapable conditions of acquiring

an appreciation of the nature of science is to come closely to grips with a

representative portion of it. This is scarcely surprising, since it is also

true of any other intellectual discipline. It is hard to imagine that one

could arrive at an appreciation of literature or music or art without making
a first-hand study of some of the more representative works in these various

fields. One who felt that he possessed an adequate appreciation of any of

these fields through merely discussing the generalizations made by various

commentators, in the absence of any first-hand acquaintance on his own
part, would simply be self-deceived. For this reason it seems necessary to

return to some one of the specific sciences.

Physics as the Key to All the Sciences

Every science shares, each in its characteristic degree, the heritage called

“the scientific method.” By no means, however, is every science equally

qualified to stand as an example of this heritage. There is, in fact, a wide

range of gradations in the extent to which the various sciences have par-

ticipated in the formation of the world view which lies at the foundation

of the scientific era. Other things being equal, there is every reason for

choosing the science which has been the most prominent in this respect,

and which is today influencing such thought the most profoundly, namely

physics.

Physics is, by common consent, the fundamental science. This is not

merely because it fell to the lot of physics, in company with astronomy, to
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carve the place for science out of the highly resistant intellectual world of

the sixteenth to the nineteenth centuries, but more particularly because

the younger sciences, without exception, consider themselves scientific to

just the extent that their concepts are logically reducible to those of phys-

ics. In addition, the basic technique of laboratory observation and meas-

urement used by all the other sciences consists primarily of adaptations of

the methods of physics. Consider, for example, the astronomical telescope,

the chemical balance, the biological and the petrographic microscopes, the

geological seismograph, the medical electrocardiograph and X-ray, and
almost the entire equipment of the engineer. The basic instruments from

which these were devised were bom in the physics laboratory, and most
of them, except for minor adaptations, were perfected there.

Evolution of the Subject Matter of Physics

Until about a hundred years ago the subject matter of all the physical

sciences, including physics, astronomy, chemistry, and engineering, re-

mained in an undifferentiated mass called natural philosophy. Men in-

terested in that general field worked sometimes in one section of it and at

other times in another. The body of knowledge in all these subjects was
so slight that it was possible for a diligent and capable man to be an au-

thority in all of them.

But early in the nineteenth century all this was changed. The invention

by James Watt, which in 1769 made the steam engine practicable, created

the practical engineers, a group which grew more and more important as

the internal-combustion engine was developed a century later, at about the

time that technical applications of electricity also became of importance.

John Dalton, in 1808, placed the ancient concept of the atom on a firm

experimental basis, whereupon chemistry graduated from the alchemy stage

and became a real science. In the meantime, astronomy, while using more
and more the concepts and tools of physics, was also becoming progres-

sively specialized in its own field. The remainder of what had been the

working material of natural philosophy was thus left to physics.

This remainder was heterogeneous enough. Mechanics, heat, sound,

light, electricity, and magnetism— to the uninitiated these appear to be

almost entirely distinct subjects. Yet as long ago as the first part of the

nineteenth century a fair start had been made in unifying them. Just

before the century opened, Rumford, the Massachusetts Yankee who be-

came a Bavarian count, had performed the first experiments to show that

heat is a mode of molecular motion, and had thereby broken down the

barrier between heat and mechanics. In 1829, the Frenchman Amp&re
(under the stimulus of a suggestive experiment by the Danish physicist

Oersted) showed that magnetism could be reduced “to effects purely

electric” (30248). Thus the way was opened to the dose assodation be-

tween electricity and magnetism which characterizes the modern knowl-

edge of physics. The demonstration that sound, known to be bom in



Fig. 1. Leonardo da Vinci
A portrait drawn by himself. (Courtesy of Fisher Scientific Company.)

motion, consisted of vibrations in the air, and that light was fundamentally
an electromagnetic phenomenon, were discoveries reserved for the last half
of the century. They went far toward knitting into a homogeneous logical
system the mass of phenomena which superficially appear so unrelated
As the nineteenth century rounded into the twentieth, the unification was
carried still further by the positive identification of the electrical structure
of atoms. With that discovery, the previous tendency to interpret electri-
cal phenomena exclusively in terms of mechanics gave way to the attempt
to interpret the properties of matter in terms of electrical concepts.
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Mechanics as the Key to Physics

Permeating this entire course of development is one fact which is of great

significance: the place occupied by mechanics at the logical foundation of

the whole structure. At first sight the reason for this seems somewhat

perplexing. Mechanics, concerned, as Mach puts it, “with the motions

and equilibrium of masses” (74:1 ), seems to have little to do with heat and

sound, and still less with electricity and light. But the experimental dem-

onstration by Rumford that heat is merely the energy of random molecular

motion, and the attribution by Helmholtz of musical tones to periodic mo-

tions of molecules of the air, definitely associated these two groups of

phenomena with “motions and equilibrium of masses,” and hence identified

them as mechanical in nature.

The fundamental units of both electricity and magnetism were defined

in terms of forces between electrical charges, or produced by the magnetic

interaction of adjacent currents, from which these two subjects became

capable of treatment in terms of mechanical concepts.

The subject of light seems to have withheld itself the longest from me-

chanical treatment, though its identification as an electromagnetic radia-

tion suggested its ultimate subjugation. It finally succumbed, however,

toward the close of the first quarter of the twentieth century, to what

might be termed an attack from the rear, in the successful application of

the mechanical concepts of conservation of energy and conservation of

momentum of photons or “light darts,” which were shown to be inescap-

able attributes of what had for a century been considered pure waves.

There is, however, another reason for the prominence which mechanics

possesses in any treatment of physics. An intuitive knowledge of the basic

phenomena of mechanics is part of the equipment of every individual, how-

ever non-technical his education may be. The knowledge is hazy and un-

analyzed, to be sure, but it is intensely practical. It is learned in the hard

school of experience : the bumps of babyhood and all the complex muscular

reactions acquired in early years. Every normal individual senses the

substance of Newton’s laws of motion sufficiently to control movements in

accordance with them, even though he may not comprehend them in suf-

ficient generality to phrase them in words. It is perhaps for this reason,

more than for any other, that mechanics constitutes the alphabet of the

physical sciences. Like all alphabets, it may be found, when scientific

maturity is acquired, to be logically indefensible, but having been learned

at the knee of mother nature, mechanics is irretrievably built into the

structure of scientific thought before we acquire the degree of discrimina-

tion necessary to question its justification. For better or for worse, me-

chanics is basically important in any study of physics.
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Questions for Self-Examination

1. What might be an advantage in approaching physics from the point of view of

its contributions to the non-scientific intellectual world?

2. Tell why a comprehension of the nature of the sciences is at least as important as

the more common study of their subject matter.

3. What are some of the bases for the common statement that physics is “the funda-

mental science”?

4. Trace the development of physics from its old realm, called natural philosophy, to

its present form.

5. Why is mechanics commonly regarded as the foundation of physics?



CHAPTER 2

Measurement

The Establishment of Standards

The science of mechanics is, as has already been pointed out (page 8),

concerned “with the motions and equilibrium of masses.” Any adequate

description of motion requires the measurement of length and of time, and

hence has brought about the establishment of standard units of length and

time. Similarly, a standard unit of mass is required before numerical

values can be specified in that field. The hand-to-mouth necessities of

trade forced the establishment of regional standards of length and mass be-

fore the dawn of history, and formal specification of the day as a unit of

time is without doubt even older.

Little by little over many centuries the numerous regional units of length

and mass have given way to units applicable over wider areas. Finally,

in 1875, international standards of length, mass, and time were agreed upon
in a convention meeting in Paris at which most of the civilized countries of

the world were represented. Today those standards have been made of-

ficial the world around.

The international standards thus adopted are based on what is termed

the metric system . Though use of the metric system is permissive every-

where and has in practice been very generally put into common use, it is

unfortunate that this use is not yet quite universal. There are two nations,

and only two, who have not yet joined the otherwise complete roster.

These are Great Britain and the United States. Even in these countries

the official standard units of length and mass are the meter and the kilo-

gram. Those in common use, however, the foot and the pound, are defined

as .30480 meter and .45359 kilogram respectively, and in all except scientific

practice completely displace the metric units. 1

The Standard of Length

The international standard meter is the distance between two marks on
a certain platinum-iridium bar preserved in the International Bureau of

Weights and Measures at Sevres, near Paris. Originally it was intended

that this standard of length should be exactly one ten millionth of the dis-

1 In this text, English units are used, for the most part, in the early chapters. After Chapter
10 metric units are used almost exclusively.



Fig. 2. One of the Original Standard Meter Bars
This is No. 26. It was made at the same time as No. 6, later chosen as the international standard of

length. No. 6 has, however, never been photographed.

tance between the equator and the pole. But after the meter had been es-

tablished as the world's standard of length, more accurate measurements of

the size of the earth showed that the length of this standard was not quite

the one ten millionth it had been supposed. Hence, its original qualifica-

tion of bearing a simple ratio to the size of the earth had lo be abandoned,

but the standard remains. Since then it has been determined to be 1 ,553,-

164.13 wave lengths of the red spectroscopic line of cadmium (83:85).

Thus, if some catastrophe should destroy the world's primary standard of

length it could be reproduced with an accuracy of one part in 155 million.

Secondary standards, copies of the primary standards, have of course been

made in considerable numbers and distributed to the standardizing agen-

cies of all the countries in the world. In the United States each state is

provided with a tertiary standard copied from our national secondary.

Figure 2 shows one of the international standard meter bars (in the fore-

Fig. 3. Two of the United States Standard Kilograms
The pound is .45359 kilogram.
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The Standard of Mass

The United States made several gestures toward establishing its own
standard of mass, beginning with George Washington’s first annual address

to Congress in 1790. Such standards as were adopted were for the most

part taken over from the English. In 1875, the International Standard

Kilogram became our standard along with the International Meter. When
the French originally established the kilogram in 1792, they had intended it

to represent the mass of one hundred cubic centimeters (one liter) of water

at the temperature of maximum density (about 4° C.). But again, in-

creasing accuracy of measurement showed this standard, like the original

meter, not to be exactly what was intended and this standard, too, had to

be re-established arbitrarily. Figure 3 shows (uncovered, on the right)

the kilogram of the United States. The one on the left (covered) is an-

other standard showing the double bell-jar protection given these standards

when not in use.

The Standard of Time

The basic unit of time is the sidereal day: that is, the time from the pas-

sage of a star across a meridian to the next passage of the same star. Be-

cause of the revolution of the earth around the sun, sidereal time differs

from mean solar time by one part in 365 J. The solar day, instead of the

sidereal, is the unit of time upon which human activities are scheduled.

The length of the solar day is subject to several varieties of fluctuation and

cannot be advantageously used as a basic standard. But for practical

purposes the overall average of these fluctuating solar days is termed the

mean solar day. It is set as 1.00274 sidereal days, the solar day being thus

nearly four minutes longer than the sidereal day. The mean solar second,

the International Standard time interval, is then defined as agioo mean
solar day (^,X^X ***).

•

Derived Units

It is necessary to have units that are both smaller and larger than the

International Standards of length, mass, and time. For length and mass

the derived units are decimal divisions or multiples of the standards.

Thus, the centimeter (cm, one hundredth of a meter, about two fifths of an
inch) and the millimeter (mm) are the most common subdivisions of the

meter. For microscopic lengths the micron (m), 10“6 m,1 and the milli-

micron (mm) are in common use. A still smaller unit of length, the ang-

strom unit
,
(10~10 m), is commonly used to specify the wave lengths of light

1 Powers of 10 are commonly used as shorthand representation of extremely large multiples

and extremely small subdivisions. Thus

108 « 1,000,000

10~® *3

1
,
000

,
000

’
etc '
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and other submicroscopic quantities. The most common multiple of the

meter is the kilometer (km, 1000 meters, about .6 mile).

Common metric units of volume are the cubic meter (m3
), the liter (1, the

volume of a cube 10 cm on an edge, almost exactly a quart), and the cubic

centimeter or milliliter (ml).

For mass, the most common subdivisions are the gram (g,
10~3 kg, about

oz) and the milligram (mg). The most common multiple of the kilo-

gram is the metric ton (1000 kg, about 2205 lbs).

Density

Two of the simplest and most common combinations of the units de-

scribed above are density and velocity

}

Density is a very old and very

common concept. Archimedes (287-212 b.c.) seems to have been the first

to glimpse its real implications. By long tradition they are supposed to

have occurred to him in the famous bathtub episode referred to in Chapter 8.

Density is defined simply as mass per unit volume. In the English

system the density of water is conventionally 62.4 pounds per cubic foot.

In the metric system it may be stated either in grams per milliliter or, as

will be done here, in kilograms per liter. The numerical value is the same
in either case. Its value for water is very nearly unity, fluctuating slightly

with changing temperatures.

Velocity

The second simple combination of basic units, a combination of length

and time, yields the concept of velocity.

A motor car may be said to be traveling at a velocity of fifty miles per

hour. It is thereby implied that if the velocity should remain unchanged,

the car would in the course of an hour travel a distance of fifty miles, in

two hours one hundred miles, and so forth. Such uniformity of velocity

would be almost impossible for a motor car, though it might be approxi-

mated by an airplane. The theoretical possibility of realizing it is, how-

ever, one way of giving intelligibility to the concept of instantaneous

velocity, the logic of which may otherwise appear somewhat troublesome

to the beginner, notwithstanding the fact that the mere intuitive concept

of instantaneous velocity is the common possession of every modern child.

Velocity, the rate of traversing distance, may thus be defined as the ratio

of distance traveled to time elapsed. Not always is the fact that the words

“rate ” and “ratio ” come from the same root so clearly shown. Miles per

hour, feet per second, kilometers per hour, meters per second: these com-

mon expressions, though cumbersome in use, illustrate the basic idea of

velocity as ratio of distance to time. Communication would be made
easier if names were provided for some of the common units of velocity, to

replace, for example, the awkward expression “miles per hour”; but this

1 Strictly speaking, a velocity is not completely specified unless direction is given as well as

magnitude. At this point only the magnitude of velocity is involved.
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has been effected in nautical practice only, in the term knot. The knot,

instead of being a unit of distance, the seagoing brother of the mile, as

many landsmen perhaps think, is a unit of velocity. It means simply one

nautical mile (6080 feet) per hour.

For the case of uniform velocity (non-uniform velocity will be treated in

some of the following chapters), a convenient algebraic relation between

distance, velocity, and time may be deduced from the definition of velocity.

Since

. . distance
velocity = —;

>

time

then distance = velocity X time.

This relation was first formally recorded by the Moslem natural philos-

ophers of the twelfth century (2:105). Also the obvious remaining per-

mutation of this relation

time =
distance

velocity

is occasionally useful, though less frequently so than the previous two. To
express these relations algebraically, where t represents time, v represents

velocity, and s represents distance,

v =)&/t \s - vt t = s/v. (1)

Strictly speaking, a velocity is not completely specified until direction

as well as magnitude has been given. In such a case a velocity of forty

miles per hour north would be considered different from one of forty miles

per hour south. The distinction is a real one, but cannot be advanta-

geously developed until the basic laws of motion have been studied

(Chapter 10). Some writers reserve the word speed to indicate the mere

magnitude of a velocity without reference to its direction.

Questions for Self-Examination

1. Name the world’s standard of length, tell how it evolved, and briefly describe how
it is preserved.

2. Name the world’s standard of mass, tell how it evolved, and briefly describe how it

is preserved.

3. Define density.

4. Define velocity and state some common units of velocity.

5. Discuss the time-velocity-distance relation for uniform motion.



CHAPTER 3

Free Fall

Significance of the Study of Free Fall

Motions characterized by uniform velocity are far less commonly en-

countered than is often supposed. Non-uniform velocities are almost al-

ways in evidence. But, though motions possessing such non-uniformities

of velocity are usually irregular and complicated, some are capable of fairly

simple description. One of the most common of these is the motion ex-

hibited by bodies falling freely, that is, without hindrance of any kind.

There are several considerations that render the motion of freely falling

bodies worthy of serious study. One is, of course, the fact that it is very

frequently encountered, being involved as it is, not merely in cases of falling

Fig. 4. Galileo Galilei (1564-1642)
(Courtesy of Scripta Mathematica.)
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bodies as such, but as the principal factor in the motion of all projectiles.

More important, perhaps, is the fact that the laws of motion of falling

bodies are applicable to many motions in which there is no element of free

fall involved. That is to say, free fall is even more significant as a type of

motion than it is in its own right. But most important is the fact that it

was in the conquest of the laws of falling bodies that physics, in the char-

acter which it bears today, won its spurs. When Galileo (1564-1642) near

the end of the sixteenth century discovered how bodies fell, the significance

of his accomplishment far transcended the content of his discovery, im-

portant though the content was.

The main thread of Galileo's procedure will be followed in the present

approach to the study of falling bodies, though with some deviations. It

is possible now, for example, to make a direct study of a falling body, which

Galileo could not do because of lack of means for observation and measure-

ment, a lack characteristic of his time.

Rate of Fall the Same for All Bodies in a Vacuum

That a freely falling body, dropped from rest, acquires a progressively

greater velocity in the course of its fall is a fact of common observation.

That the behavior of light bodies would be the same as that of heavy bodies

if it were not for the effect of air resistance is a fact which is, even today,

not always clear, and which up to the time of Galileo had proved to be an

almost insurmountable obstacle to clarity of thought on this subject.

With the aid of a vacuum pump it is possible now to remove most of the

resistance presented by air to the free fall of bodies and thus to demon-

strate, for example, that a feather will keep abreast of a coin in the course of

a fall in a vacuum (Fig. 5).

Since the air pump was not devised until 1650,

sixty years after the time of Galileo’s experiments

on falling bodies, he did not have an entirely in-

controvertible basis for his conviction that the

behavior of all falling bodies would be the same
in a vacuum. But the assiduity of his experi-

mentation and the penetrating quality of his

reasoning therefrom are indicated by his follow-

ing remark (46:72):

. . . the variation of velocity in air between

balls of gold, lead, copper, porphyry, and other

heavy materials is so slight that in a fall of

one hundred cubits a ball of gold would surely

not outstrip one of copper by as much as four

fingers. Having observed this, I came to the

Fig. 5. The Famous conclusion that, in a medium totally devoid of

“Guinea and Feather” all resistance, all bodies would fall with the same
Experiment velocity.
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This statement may have originated in some of Galileo's exploits on the

famous leaning tower of Pisa, about which the volume of unsubstantiated

tradition far outstrips authenticated history. It seems to have been dem-
onstrated quite conclusively (28) that Galileo never made the sensational

public demonstration before the students and faculty of the University

of Pisa with which modern writers like to credit him. On the other hand,

his references (46:62, 72, 166) to a height of one hundred cubits, almost the

exact height of the leaning tower, suggest that he may have used the tower

privately in the course of his experiments. Indeed, it is almost inconceiva-

ble that he did not do so, his nature and his interests being what they were.

But it is a curious fact that in the entire extant collection of the works of

Galileo there are only two scant references to the experiments for which

he is perhaps most famous. 1

Notwithstanding the fact that Galileo could not actually observe free fall

in a vacuum, we know now that his experiments, wherever he may have
made them, gave him a basis for his convictions which was perhaps even

better than he realized. In 1917-18, some very careful measurements were

made for the United States War Department on the courses that would be

followed by bombs dropped from airplanes (36:65). This study made it

evident that compact bodies would fall for nearly six hundred feet before

the effect of air resistance became large enough to be at all measurable

even with the accurate instruments which were used for those observations.

Since the leaning tower of Pisa is only 180 feet in height, Galileo had better

justification than he was in a position to adduce for his conviction that

heavy and light bodies would fall at the same rate in a vacuum.

The similarity in the behavior of all freely falling bodies removes what
would otherwise be the necessity for finding how the rate of fall depends on

weight or size and opens up the possibility of finding, once and for all, the

mode of motion of all falling bodies, whether heavy or light, whether large

or small.

The Principal Experimental Difficulty

The hypothesis which Galileo formulated and proposed to test was that

“ velocity goes on increasing, after departure from rest, in simple propor-

tionality to the time" (46:167). This was found, though somewhat in-

directly, to be borne out by experiments, a repetition of which, with im-

provements appropriate to the times, have a place in all laboratory manu-
als of physics. But, though improved apparatus will eliminate some of the

elements of indirection of Galileo's original experiments, one such element

is as insurmountable now as it was then, namely, the impossibility of direct

measurement of the velocity of fall. An experimental verification of the

assertion that “ velocity goes on increasing, after departure from rest, in

simple proportionality to the time ” naturally involves direct observation

of time intervals and velocities, followed by a comparison to test their al-

1 Florian Cajori, Science, 52, 409, 1920.
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leged proportionality. Unfortunately the problem is not quite as simple

as that.

In these days of motor cars and airplanes, each equipped with speedom-

eters, it may be somewhat perplexing to be reminded of the difficulties

inherent in a direct measurement of velocity. This is possibly not the place

to dwell on the fact that velocity is more of an interpretive concept than an

object, and correspondingly difficult to measure. Perhaps it will be more

convincing to observe that even if speedometers gave direct and accurate

measures of velocity, which they do not, to utilize them in the present prob-

lem would pose the difficult task of so attaching them to falling bodies as to

avoid all interference with freedom of fall. That difficulty seems as in-

surmountable today as it was three hundred and fifty years ago, and ne-

cessitates recourse to an indirect approach to the problem in place of the

logically more desirable direct approach.

The Difficulty Surmounted

The difficulty would disappear if, in place of the desired relation between

velocity and time, a corresponding relation between distance and time could

be substituted; for distance, unlike velocity, is a readily measurable quan-

tity. This Galileo did, stating the ratio in the following form and deducing

it from his earlier hypothesis by the geometrical reasoning which was char-

acteristic of his day. Having devised the term “uniformly accelerated

”

(46:162, 169) to describe the motion specified in his hypothesis, he pro-

posed the following as the required substitute:

The spaces described by a body falling from rest with a uniformly acceler-

ated motion are to each other as the squares of the time-intervals employed
in traversing these distances [46:174].

There are two stages in Galileo s deduction of this theorem. The first is

a proof that the distance traveled by a uniformly accelerated body in a

given time is the same as that traveled by a body having a uniform speed,

the value of which is half that possessed by the former body at the con-

clusion of the given time interval. This replacement of a changing quan-

tity by an equivalent steady quantity (the concept of mean value) is an
extremely useful device in scientific thought, and Galileo’s use of it at the

end of the sixteenth century is one of the evidences that he was far ahead

of his time in methods of thought.

Average Velocity in Tree Tall

On page 14, the first of equations (1) gave the definition of velocity in

algebraic terms as v « s/t. This assumes that the velocity is uniform.

When the velocity is not uniform, the mean value, usually termed the

average velocity
,
may be defined by a similar equation, namely,

- s

a)
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in which the bar over the v now indicates the mean value of a changing

quantity. This definition is entirely in line with common practice, as when
we say that a car which has traveled four hundred miles in ten hours has

averaged forty miles an hour, notwithstanding its having had speeds all

the way between zero and perhaps seventy miles an

hour.

Galileo was confronted with the fact that the ve-

locity of a falling body was not constant and set

himself the problem of determining the value of the

average velocity, v. lie used a geometrical method
of deducing that for a body falling from rest the

average velocity was one half of the final velocity.

In his diagram (Fig. 6) vertical distances represent

times of fall, measured downward from A. Hori-

zontal distances, measured to the left of .dBonly as

far as the oblique line AE, represent velocities.

Since velocities were proportional to times of fall by
his main hypothesis (“ velocity goes on increasing,

after departure from rest, in simple proportionality

to the time
,,

), the line AE was straight. The dis-

tance BE represented the final velocity of a freely

falling body, and FB (and hence GA and IC) half its

final velocity. The area of the rectangle GABF
being velocity times time for uniform motion repre-

sented total distance moved by a body having half

the final speed of a freely falling body. (See 5 =• vt,

p. 14.) The area of the triangle AEB similarly

represented the total distance fallen by the freely

falling body. The two areas being equal, the equal-

ity of the distances traveled by the two bodies was demonstrated. Thus,

Galileo demonstrated that the v of equation (1) possessed the value

Fig. 6. Galileo’s
Concept of Aver-
age Speed

(101 :l/3)

V =
2

’
(2)

where v represented the final velocity of a body falling freely from rest.

But Galileo had already given the name acceleration to the rate of change

of velocity and hence his main hypothesis (the proportionality of velocity

to time in free fall) was expressible.

g = j,
or v = gt, (3)

where g represents the acceleration of free fall.
1 Substitution of gt for v in

equation (2) gives

5-T (4)

1 The commonly accepted value of g in the English system of units is a change in speed of 32.2

feet per second each second of fall. The common scientific way of stating this is that the ac-
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The Distance-Time Relation

The second stage in Galileo’s deduction of his hypothesis that distances

of fall from rest would be found proportional to the squares of the times

of fall, consisted in essence of substituting the value gt/2 for 55 from equa-

tion (4) into equation (1) and solving for 5 .

Thus, s = vt ~ / * \gf. (5)

It was this hypothesis which Galileo subjected to test, thus assuring

himself (46:178) “that the acceleration actually experienced by falling

bodies is that above described.” He did not, however, actually utilize

freely falling bodies in the course of this test, but diluted gravity, so to

speak, by substituting balls rolling down inclines, after he had satisfied

himself that this, no less than free fall, was an example of uniformly ac-

celerated motion.

The Velocity-Distance Relation

Thus were established two laws of falling bodies; that of constant ac-

celeration embodied in equation (3) relating terminal velocity to time of

fall and that embodied in equation (5) relating distance to time of fall.

A third law relating terminal velocity to distance is

v « V/
2 gs. (6)

It is not an independent law, being deducible from equations (3) and (5)

by eliminating t between them. Though thus deducible from the first two

laws, the third law does not seem to have occurred to Galileo. It has sub-

sequently proved to be very useful. Christiaan Huygens (1629-95) is

said (74:148) to have been the first to appreciate the significance of this

relation.

Even though Galileo did not recognize the substance of equation (6)

explicitly, it is important to note that he discovered and utilized what

might be termed an important corollary of this relation. In his Two New
Sciences he said (46:184)

:

If a body falls freely along smooth 1 planes inclined at any angle whatso-

ever, but of the same height, the speeds with which it reaches the bottom are

the same.

This is really an amazing discovery for Galileo to have made. Even
today it raises grave doubts in the mind of the thoughtful student when
he first encounters it. But a careful consideration of equation (3) will show
that it at least does not contradict this assertion of Galileo’s. The equa-

celeration of gravity is 32.2 feet per second per second. The corresponding value in the metric

'

system is 9.81 meters per second per second. Naturally the value will vary with latitude, with

altitude, and, to a lesser degree, with other geographic and geological factors.

1 By “smooth” Galileo clearly implied “frictionless.”
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tion states that the final velocity of any body which passes through a

certain vertical distance is proportional to the square root of that distance.

The additional assertion made by Galileo was that the simultaneous

horizontal distance of travel, necessitated by the motion’s being along an

inclined plane, had no efiect on the final speed. This statement is signifi-

cant as a prelude to some major investigations undertaken by Galileo

himself and later by Huygens.

Equations (3), (5), and (6) describe the motion of falling bodies which

start from rest. There is frequent occasion for describing the motion of

falling bodies which are no*, at rest when the observations begin. Using a

zero subscript to specify the initial vertical velocity, a repetition of the line

of reasoning which yielded equations (3), (5), and (6) will give the following:

V - Vo + gt (7)

gt
2

s - Vot + (8)

v = Vvi? + 2gs (9)

In. applying equations (7) to (9) to specific numerical cases, attention

must be given to sign. The directions of v, s
,
and v0 may be either upward

or downward. The acceleration of gravity, g,
will of course always be

downward. The simplest way to deal with these is to adopt a convention,

associating positive signs with the numerical values of downward quanti-

ties, and negative signs with numerical values of upward quantities. The
same convention could have been applied also to numerical values sub-

stituted in equations (3), (5), and (6). It was scarcely worth while to

mention it, however, since for freely falling bodies starting from rest, all

quantities have the same sign, only downward directions being involved.

Principles of Motion of Projectiles

A problem which is obviously associated with free fall is that of the

motion of projectiles, in view of Galileo’s clarification of the problem of

falling bodies, it will not create any surprise to note that he made a similar

contribution toward the solution of that of the motion of projectiles.

Considering the very prevalent impression even today that the high

speed of a projectile somehow exempts it from the downward acceleration

which other objects experience when in midair, one can appreciate the

necessity which must have existed in Galileo’s time for a pioneer study

of the problem.

Fundamentally, what Galileo did was simply to pursue the implications

of his hypothesis on free fall, especially the second form, the proportionality

of distance to the square of the time. Naturally, this applied only to the

vertical portion of the motion of the projectile. To the horizontal motion

he applied a principle which he had formulated in connection with his

experiments in rolling balls down inclines. It was quite revolutionary
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and, indeed, entirely subversive of the doctrine which had theretofore

received unanimous assent.

This principle was that “the horizontal motion remains uniform”

(46:250) except as influenced by friction or air resistance. Galileo had
been led to this conclusion by noting that the retardation of balls rolling

up an inclined trough became less as the slope was rendered less steep until,

when the trough became horizontal, the retardation seemed to him small

enough to be accounted for entirely by friction. Hence, he concluded

that if friction could be eliminated, the horizontal motion of bodies would
continue indefinitely, unabated.

Hitherto the accepted doctrine had been that the most natural state

was one of rest and that the maintenance of any motion whatever required

the continued exercise of force. It was supposed that, entirely aside from
such retarding agents as friction, any motion, whether horizontal or other-

wise, would necessarily cease with the cessation of the force which caused

it. The resulting view of projectile motion was, of course, quite naive.

Perhaps the best summary of it is to be found in a work by Santbeck
written in 1561.1 He represents the course of a projectile as in Figure 7.

The force on the projectile was somehow conceived as continuing during

the first or “violent” part of its flight, resulting in a straight-line course.

When the force ceased— for reasons as obscure as the reasons for its con-

tinuance up to that point— “natural” motion of vertical fall ensued.

Let any modern who is inclined to ridicule this concept inquire honestly

and insistently into his own or his friends’ ideas on bullet flight and then

make comparison! Santbeck was at least consistent in his application of

prevailing scientific doctrine, which is more than can be said of some of his

contemporaries. Figure 8 shows how other writers, uneasy about the

angle at the top of this type of trajectory, modified it. They theorized

that projectile motion was compounded of three parts: (1) modus violentus,

(2) modus mixtus
,
and (3) modus naturalis . But as early as 1537,

Nicholas Tartaglia, “the father of ballistics,” had shown the trajectory

to be curved throughout and that the maximum range in a vacuum ex-

isted for an angle of forty-five degrees.

1 E. N. da C. Andrade, “Science in the Seventeenth Century/’ Proceedings
,
Royal Institution

of Great Britain
, 30, 212 (1938).

Flo. 7. Santbeck

’

s Conception of
the Path of a Projectile (1561)

Fig. 8. A Modification of Santbeck’s
Theory of Projectile Motion
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Galileo and the Trajectory in Vacuo

It was in 1637, exactly a century after Tartaglia’s work, that Galileo

put the theory of the flight of the projectile on a firm foundation, at least

as far as flight in vacuum was concerned. He simply disregarded the ear-

lier incorrect or inadequate treatments, substituting his own doctrine:

that of the continuance of motion unchanged in the absence of a retarding

force. Throughout his entire treatment of the motion of projectiles this

principle appears time after time. It is the essence of what we now know
as Newton’s first law of motion. Unfortunately Galileo failed to envisage

all its implications. It apparently did not occur to him to extend the

principle beyond the particular

case of the motion of projectiles.

That generalization was made by
Newton, who, by a highly sym-

bolic coincidence, was born the

year that Galileo died, 1642.

Hence, Galileo’s principle that the

horizontal portion of the motion of

a projectile remains uniform pos-

sessed an even greater degree of

validity than Galileo realized.

To facilitate the application of his

two principles, one on the vertical

portion of the motion of a projectile and the other on the horizontal por-

tion, Galileo proceeded as follows (46:248-49):

g

n

Fig. 9. Gamlko’s Diagram of tiie

Form of a Trajectory

( 101 :249 )

Let us imagine an elevated horizontal line or plane ah along which a body
moves with uniform speed from a lob. Suppose this plane to end abruptly

at b; then at this point the body will, on account of its weight, acquire also a
natural motion downwards along the perpendicular bn. Draw the line be

along the plane ba to represent the flow or measure of time; divide this line

into a number of segments, be
,
cd

,
de

,
representing equal intervals of time;

from the points b, c
,
d , e ,

let fall lines which are parallel to the perpendicular

bn. On the first of these lay off any distance ci, on the second a distance

four times as long, df; on the third, one nine times as long, eh; and so on in

proportion to the squares of cb
,
db, eb

,
or, we may say, in the squared ratio of

these same lines. Accordingly we see that while the body moves from b to

c with a uniform speed, it also falls perpendicularly through the distance ci,

and at the end of the time-interval be finds itself at the point i. In like man-
ner, at the end of the time-interval bd, which is the double of be, the vertical

fall will be four times the first distance ci
;
for it has been shown in a previous

discussion that the distance traversed by a freely falling body varies as the

square of the time; in like manner the space eh traversed during the time be

will be nine times ci; thus it is evident that the distances eh
, df',

ci will be to

one another as the squares of the lines be
,
bd

,
be.

Having previously shown that points whose vertical and horizontal
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displacements were in a quadratic ratio lay on a curve termed a parabola,

Galileo concluded that the path of a projectile bore the form of a parabola.

This would be true for any initial velocity and also, as later demonstrated,

for any angle of projection. This not only identified the form of the

trajectory described by a projectile, but also, what was more important,

rendered possible the application of the large body of mathematical

knowledge about the parabola, which was available even in Galileo’s time,

to the study of such trajectories. Naturally, this applied only to the ideal

case of motion in a vacuum, but even so, it was of considerable practical

importance.

Elements of the Trajectory

In contemporary practice, a shorter and more informing deduction of the

path of a projectile would be as follows. Take equation (8) as an expres-

sion of the distance-is-as-the-square-of-

the-time theorem on vertical motion

under gravity, and write it in the form

y = Vyl + \ gt- (10)

The term y represents the distance of a

projectile above or below the point from

which it was fired (taken as the origin)

after the lapse of t seconds, and vy is the

vertical component of the initial veloc-

ity. In substituting numerical values

it will be well to adopt the more com-

mon sign convention for equation (10), and those that follow; namely, that

the positive sign indicates upwardly directed quantities and the negative

downwardly. Thus, g will be - 32.2, etc.

Now express Galileo’s constant-speed theorem for the horizontal part of

the motion in the equation

x = vxt, (11)

the notation being analogous to that for equation (10). Solving equation

(11) for t and substituting in equation (10), there results

Fig. 10. Elements of a Trajec-
tory in Vacuo

y = — x + xa. (12)
vx 2vx

2

This equation will be recognized as that of a parabola, as Galileo discovered.

If the angle of inclination of the gun with the horizontal is 0,
1 then

vv/vx has the value tan 0. If the initial velocity of the projectile is V
,
vx

has the value V cos 0 . Substitution in equation (12) gives

y “ * tan d + 2 v2 cos2 0
^

1 Greek letters are very commonly used in physics, especially to designate angles. This

letter is theta (pronounced “ thayta ”) . The entire Greek alphabet, with the names of the letters,

lyill be found in the Appendix.
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Several properties of the trajectory are deducible from equations (10),

(1 1), and (13). It will be at once evident that, given the value of g, V, and

0, the coordinates of the projectile may be established for any given num-
ber of seconds after it starts on its flight, through equations (10) and (11).

The height of the projectile may, through equation (13), be found for any
given horizontal distance of travel. The converse is also true, though the

calculation is not so simple.

The range R (Fig. 10) is

R =
2 V2 sin 6 cos 6

g

IPsin 21
g

(14)

Equation (14) results from substituting y = 0, x - R in equation (13) and

solving for R, taking g as positive in this and the following equations.

The maximum ordinate V is

Y =
V2 sin2 6

2 g
(15)

Equation (15) results from substituting x = R/2 in equation (13), using the

first value of R given by equation (14).

The time of flighty 1\ is

T = (16)V cos d

or r =
2 Esin#

g
(17)

Fig. 11. The Artillery “Director” as a Modern Application of the Theory
of Projectile Motion

(Courtesy of Sperry Gyroscope Company.)
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Equation (16) is deducible from equation (1 1 ) by appropriate substitutions,

and equation (17) follows when the value of R is substituted in (16).

The fact that the maximum range occurs when 0 = 45° follows from the

fact that in equation (14) the maximum R results when the value of sin 2 0

has its greatest value. The largest possible value for the sine of an angle

is unity, which occurs when the angle is 90°. Hence the maximum value

of R occurs when 2 0 = 90°; that is, when 0 = 45°.

In deducing the foregoing and many other properties of the motion of

projectiles in vacuo
,
Galileo used the cumbersome geometrical methods

of his day instead of the more concise and informing algebraic treatment

which was developed later. It was only because he possessed one of

the most penetrating minds of all time that he was able to accomplish

what he did with the crude intellectual tools at his disposal. Since Gali-

leo’s time the mathematical treatment of the flight of a projectile has be-

come an extensive branch of applied mathematics called ballistics. For

the practical purposes of artillery fire it has become an exact science. The
problem having been solved mathematically, the next step (natural in the

machine age) has been taken. Computing machines called
“
directors,”

electrically attached to the guns, automatically keep them trained on the

target and elevated at the necessary angle, making all corrections such as

those for difference in height of gun and target, motion of target, and wind-

age. All that is necessary is for the observer to keep the telescope of the

director trained on the target and to make the settings corresponding to the

corrections. Figure 1 1 illustrates such a director in use.

The requirements of anti-aircraft fire and of bombing from airplanes

are, of course, far more exacting than for ordinary artillery fire. Mechani-

cal directors have been devised for both these purposes. Those made in

the United States are reported to be greatly superior to any others. Their

construction is a closely guarded secret.

Questions for Self-Examination

1. Why was the discovery of the laws of free fall an especially significant episode in the

history of physics?

2. Why did Galileo not subject to experimental test his first hypothesis about falling

bodies, namely, that “velocity goes on increasing in simple proportionality to the

time”?

3. What hypothesis did Galileo adopt for an experimental test of the behavior of fall-

ing bodies and what experiment did he perform to verify it?

4. What two principles guided Galileo in his studies on projectile motion? What form

did he deduce for the path of a projectile?

5. From the measurements on a falling body the speed (v) and the total distance (5)

at the end of successive seconds (t) is found to be:

/ 0 1 2 3

v 0 32 64 96

$ 0 16 64 144
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Calling 32 by the letter g shows that all entries in the v line are describable by the
relation v = gt and all entries in the s line by the relation * = >2

6. What was Galileo’s main contribution to the knowledge of motion of projectiles?

7. Perform the operation leading to equation (12).

8. Perform the operation leading to equations (14), (15), and (16).

Problems on Chapter III

Remarks on Problems
These problems, and thosj pertaining to following chapters, are intended to illustrate

the principles developed in the text and to help clarify them in a way which only a treat-

ment of numerical cases will do. If you handle them thoughtfully, they will make a

real contribution to your grasp of the subject. Though the physical principles upon
which solutions arc to be based will be found in the text, very seldom will a “ formula”
be found that can be used directly. Ability to substitute values in a given formula has

been termed the lowest order of mathematical intelligence. Whatever its mathematical

level may be, it can scarcely be said to constitute physics at all. Look for the basic

principle, not for a formula.

The fact that many of the problems are stated in algebraic terms furnishes you, in-

deed, with an opportunity to develop your own formulas. If you are capable of doing

this (and your instructor will probably prefer that you do it instead of the numerical

part if you can), you will not only get a better grasp of the principles, but will be freed

of a considerable amount of detailed computation. But you can do it only if your grasp

of physics is somewhat better than the average and if your high -school algebra is in well-

oiled working condition. A little trigonometry is involved at some points, but not more
than can be furnished in a single class hour.

Numerical answers are given, but only to two significant figures. Your computa-
tions should be correct to three figures if done by slide rule. The data are presented with

sufficient precision to warrant carrying the computations to four significant figures if

desired. The approximate answers are given to help you to decide whether you are

“on the right track.”

Try to think a problem through before undertaking the actual solution of it.

Unless you can keep a sense of perspective as you go, you will lose most of the value

of the labor that is involved. Give yourself time . Haste is fatal to maintenance of

perspective. When you feel as if you are groping in a fog, not able to see the desired

destination or the path leading to it, you are wasting your time. Put away your

work and return to it when your head is clearer or after you have received sugges-

tions from some competent source.

Problems

Jn problems involving the acceleration of gravity
,
assume the value 32.2 ft/sec2. For

problems with tabular values
,
the table bearing the problem number

,
as 6 and 7 below, ac-

companies the problem correspondingly numbered.

1. An automobile increases its speed from 20 miles an hour to 50 in 15 seconds. What
is the average acceleration in feet per second per second (ft/sec2)? 3 ft/sec2.

2. What distance does the automobile of the preceding problem travel during the given

interval, assuming the acceleration to be constant? 770 ft.

3. An automobile traveling 50 miles an hour runs head-on into a wall. Are the chances

of survival of its passenger greater or less than those of a man who falls from the

top of a five-story building (70 feet)?

4. A test pilot making a vertical power dive at 500 miles an hour stops his descent in
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4.5 seconds. If the (negative) acceleration is uniform, how is it related to that of

a freely falling body, both in direction and in magnitude? 5g.

5. A stone thrown horizontally from the top of the Empire State Building takes 8.64

seconds to reach the street. How high is the building? 1200 ft.

6. A stone thrown down from the edge of an overhanging cliff with an initial speed of

v feet per second, strikes the ground in t seconds. What is the height h of the cliff

in feet?

V / h V t h

30 4 380 7. 30 4 140

40 5 600 40 5 200

50 6 880 50 6 280

60 7 1200 60 7 370

7. Solve the preceding problem on the assumption that the stone is thrown vertically

upward, instead of down.

8. A stone is launched downward at an angle of a degrees with the horizontal and with

an initial speed of v feet per second, from the top of a cliff h feet high. How many
seconds / elapse before it strikes the ground? 1 low many feet d from the foot of the

cliff does it strike?

v a h t d
60 30° 400 4.1 220

60 40° 400 3.9 180

60 50° 400 3.8 150

60 60° 400 3.6 110

Fig. 12

9.

Solve the preceding problem on the assumption that the stone is thrown upward at

an angle a with the horizontal, instead of downward.

v a h t d
60 30° 400 6. 310

60 40° 400 6.3 290

60 50° 400 6.6 260

60 60° 400 6.9 210

Fig. 13
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10. Two bombs are dropped simultaneously from an airplane. One strikes the edge of

an /j-foot cliff. The other, just clearing the edge, strikes at the bottom l seconds
later. How many feet // was the airplane above the top of the cliff?

h l H V a R Y T
10. 1000 1 15050 11. 2250 10° 10.20 2400 24

1000 2 3403 2250 15° 14.91 5300 36
1000 3 1264 2250 20° 19.16 9200 48
1000 4 536.0 2250 25° 22.84 14000 59

11. A bullet having a velocity of v feet per second is discharged at an angle a above the

horizontal. What is its range R in miles, its maximum distance Y in feet above the

point of discharge, and ; ls time of flight T in seconds, neglecting air resistance?

12. What is the maximum range R in miles, in a vacuum, of a howitzer which has a
muzzle velocity of v feet per second?

V R R a h

400 .94 13. 1500 0°11. 1.2

800 3.8 4500 0° 34. 11.

1200 8.5 9000 1° 8. 45.

60000 210. 1 5000 1° 54. 120.

13. The bullet from an army rifle has a muzzle velocity of 2700 feet per second. At
what angle a with the horizontal must the rifle be inclined for a range of R feet in

a vacuum? How many feet h would the bullet rise and fall?

14. Find the angle of departure 0
y
the maximum ordinate Y in feet, and the time of

flight T in seconds for the trajectory in vacuo when the given range is R feet, the

initial velocity being 2250 ft/sec.

R e Y T X y t

15,000 2° 45' 170 6.7 15. 10000 1400 4.5

30,000 5° 30' 720 13. 18000 2100 8.1

45,000 8° 15' 1600 20. 27000 2400 12.

60,000 11° 15' 2900 27. 40000 1800 18.

15.

Find the height y of the projectile in feet, and the lapse of time t in seconds after

firing, for each value of x when the angle of departure is 10° and the initial velocity

is 2250 ft/sec.
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Equilibrium; Resolution of Vectors

The Roots of the Science of Mechanics

Most early machines had for their object a more advantageous applica-

tion of muscular effort than was possible without them. Their operation

called into play complicated combinations of forces, large and small and
in varying directions. Their inventors must have encountered the analy-

sis and combination of such forces in manifold practical form. It seems

almost inconceivable that the general problem of the mathematical treat-

ment of these forces should not have received attention much earlier than

it did. Yet the first recorded efforts in this direction, those of the ancient

Greeks, notably Archimedes (74:510; 25:6), were neglected and lost to the

Western world for more than a millennium and a half. One would sup-

pose that the Romans, an enterprising and intensely practical people,

would have realized the value of such studies. Yet it is probable that in

those days, as in these, the discoveries which were the most valuable,

judged even from a limited utilitarian standpoint, were seldom made by
the “practical” man.
Whatever the reason, the problem of force combinations was not solved

in its full generality until the seventeenth century. It must have been

“in the air,” as were so many other fundamental scientific problems at

that time, for the first solution was announced by three different men in

the same year, 1687, in apparent independence of one another. These
three were Isaac Newton (1642-1726), of whom we shall hear much,
Pierre Varignon (1654-1722), and Bernard Lamy (1645-1716) (74:36).

Fig. 14. Newton's Illustration of
Composition and Resolution

Vectors and Scalars

Figure 14 is the illustration

which accompanied Newton’s intro-

duction of the idea of combinations

of forces. Perhaps the most signifi-

cant point is his use of arrows to

represent the forces. This is such

a common expedient today that

one is likely to miss the full signifi-

cance of its early use. Forces con-
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stitute examples of an important class of physical quantities that have

both direction and magnitude. These are commonly termed vector quan-

tities, a term originated by the Irish mathematician, W. R. Hamilton,

in the middle of the nineteenth century. An arrow is a natural device for

representing vector quantities and when so used, the term vector (as a noun)

is applied to it. It clearly indicates direction and its length may be made
to represent magnitude. Thus, a vector may not only represent a force

but a velocity (which obviously has direction as well as magnitude), dis-

placement, momentum, and, equally useful though less obvious at this

stage, several electrical entities. Vectors are thus tools for the treatment

of some of the principal concepts encountered in physics.

In contrast to vector quantities there are scalar quantities (a term also

due to Hamilton), those which possess magnitude but no direction. An
example which will come to mind immediately is volume. Such entities

require only one number to describe them. Moreover, when two such

entities are combined, the result is merely the arithmetical sum of the two.

Two weights of four and three pounds respectively add to seven pounds.

This is not necessarily true of vectors. A man walking three miles an

hour across the width of a ship which is moving at four miles an hour for-

ward would be moving obliquely with reference to the surface of the earth

at a rate of five miles an hour. Of course, the resultant
,
as it is called, of

two vectors of magnitude four and three is not necessarily five. It is five

only if, as in this case, the two components are at right angles. Its value

would be different from five for any other angle between the two vectors

being compounded. For example, if the man walked toward the bow of

the ship, the resultant — that is, his actual motion with respect to the sur-

face of the earth— would be seven miles an hour, the arithmetical sum of

the components. And if he walked toward the stern, his resultant velocity

would be one mile an hour. Methods of combining vectors and of com-

puting their resultants will be illustrated and used in Chapter 5. For the

present, a grasp of the twofold nature of a vector and of the distinction

between vectors and scalars will suffice.

Resolution of Forces

There are two aspects to the treatment of forces which are applied at

one point. One is the breaking-down or resolution of a given force into two
or more components which, acting jointly, constitute the equivalent of the

given single force. The other is the combination or composition of two or

more forces into a single force called the resultant which is the equivalent

of the given individual forces. The first aspect, resolution, may be il-

lustrated by a Simple example.

When a sled is being drawn along level ground, the rope by means of

which the force is being exerted upon it is usually at an oblique angle. The
consequence is that not all of the force transmitted through it to the sled

is effective in producing horizontal motion. The smaller the angle that the
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rope makes with the ground, the larger is the useful component of the

force until, when the rope is actually horizontal, the maximum effect is

produced. The larger the angle that the rope makes with the ground,

the smaller the useful component until at the vertical none of the force acts

horizontally. All of it acts toward balancing the weight of the sled. Sup-

pose that the magnitude of the force transmitted by the rope were known,

as might easily be effected by means of some such device as a spring bal-

ance. Suppose the balance indicated a force of magnitude of ten units

which, for present convenience, will be called ten pounds. 1 It then appears

natural to ask, since the magnitude of the horizontal component is related

to the obliquity of the rope, what is the relation between the two. Know-
ing the oblique force and the angle with the horizontal, how can the hori-

zontal component be computed?
Representing the ten-pound oblique force by a vector (Fig. 15), which is

the diagonal of a parallelogram (in this instance the parallelogram becomes

a rectangle, since the components arc at right angles with each other), the

horizontal component will be represented simply by either of the horizontal

sides of this rectangle. The problem is solved in principle. All that re-

mains is to make a careful drawing to scale, and by measuring the length

of the horizontal vector to deduce the magnitude of the useful component

of the force. If the angle were 37°, for

example (chosen because it yields the con-

venient 3 -4-5 triangle), the magnitude of

the horizontal component would be found

to be 8 pounds. From the same figure,

the vertical component could be measured

as 6 pounds. Hence, with an oblique force

of 10 pounds applied at the given angle, 8

would be effective in a horizontal direc-

tion. Six pounds would act toward bal-

ancing the weight of the sled; that is, if

the sled should be drawn across a plat-

form balance, its apparent weight would be six pounds less than would’ be

registered if the given force were not acting upon it.

A Better Method of Resolving Forces

But the graphical method of finding the components of a given vector,

though it embodies the principle, is of very little use except in the hands

of a skilled draughtsman. A method which is free from this objection and
which is far more accurate than the graphical method, even at its best, can

be devised by constructing the geometrical equivalent, taking the forego-

ing graphical method as the guide. The procedure would then be as

follows:

1 The potential confusion involved in regarding the pound or the kilogram as a unit of force

will be discussed in Chapter 9. It need create no difficulty at this point.

Fig. 15. Resolution of a Force
into Two Rectangular Compo-
nents by Graphical Method
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Construct on the vector representing the given force as a hypotenuse a

right triangle whose sides are parallel to the two rectangular components
which it is desired to know. Identify the

side corresponding to the desired compo-
nent. The value of the component will

then be the product of the magnitude of

the original force by the ratio of the

length of that side to the length of the

hypotenuse. In the case above, for ex-

ample, the horizontal component is

.t - 10 X f - 8,

and the vertical component is

y - 10 X | = 6 .

This method is perfectly general and applies to all cases by substituting

for the fractions 5
- and $ the corresponding ratios of the sides of whatever

triangles may be involved in any particular case, it is important to ob-

serve that the ratio always involves the same two sides: the hypotenuse

as the denominator of the fraction and the side, which together with the

hypotenuse fixes the angle, as the numerator. This ratio will be recog-

nized as the cosine of the angle between the side and hypotenuse. Com-
plete trigonometric tables including a table of cosines will be found in the

Appendix. The resolution of vectors is greatly facilitated by the use of

such tables.

The General Procedure in Resolving Forces

A rule for resolution may now be stated:

Given a vector
,
to find the component at a desired angle with it

,
multiply the

magnitude of the vector by the cosine of the angle between the vector and the

direction of the desired component.

This method, though apparently so simple, seems to present considerable

difficulty when the beginner encounters it for the first time. The reader can

perhaps best lay a foundation for a ready comprehension of the following

steps if he will carry through several computations similar to the above,

using different values for the forces and angles. To reduce arithmetical

labor, the angle may be chosen in each case so as to give a right triangle with

integral sides and the magnitude of the force taken commensurate with the

hypotenuse. The 3-4-5 case may be utilized further by taking the com-
plementary angle, 53°. Similarly, the approximate angles of 23° or 67° are

associated with a 5-12-13 triangle and of 28° or 62° with an 8-15-17 tri-

angle.

This method of resolution of vectors is of immense utility. Its power will

become especially evident in dealing with the present problem of forces in

equilibrium. The combination of the method of resolution with the prin-

Fio. 16. Resolution of a Force
by Geometrical Method
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ciple of equilibrium is possibly more powerful than any other tool in the

whole of mechanics; certainly than any other in that part of mechanics,

known as statics
,
at present under survey.

The principle of equilibrium requires statement in a form in which it can

be applied to the problems of statics. A body is said to be in static equilib-

rium when its velocity does not change . This is equally true of an automobile

traveling sixty miles an hour on a perfectly smooth and straight road and of

any stationary structure such as a bridge. Since no change is occurring in

the velocity of either, the principle of static equilibrium applies equally to

both. However, in practice, the principle is more readily applicable to

stationary than to moving bodies, partly because it is not easy to measure

the forces, such as friction and air resistance, which act on moving bodies.

For present purposes, the most useful special case will be that of a body at

rest under the mutually neutralizing effects of two or more forces. It

should be kept in mind, however, that this is a very restricted special case,

to which the general principle of equilibrium is by no means limited.

Utilizing the Principle of Equilibrium

Apply this restricted principle to the case of a three-cornered tug-of-war.

Two forces, of magnitude 200 and 100 (Fig. 17), make with each other an

angle of 60°. Required, the magnitude (F) and direction (a) of the single

force which will just balance these

two; that is, which will produce a

state of equilibrium. Sincej by
hypothesis, the junction point is

stationary under the balanced ac-

tion of these forces, one of the direc-

tions in which it is not moving is the

horizontal. Hence, it follows that,

among others, the algebraic sum of

the horizontal components of the three forces must be zero. These three

components have the following values:

Fig. 17. Three Forces in Static
Equilibrium

for the 200 force,

for the 100 force,

for the F force,

200 cos 0° ==+200;
100 cos 60° = + 50;

— F cos a
a)

The signs indicate direction, right or left: + for the right and — for the

left. The assumption of equilibrium requires the algebraic sum of these

quantities to have the value zero. Therefore,

+ 200 + 50 - F cos a = 0. or F cos a = 250. (2)

This does not yield the desired information, however, namely, the values of

F and a. One of the first principles of algebra is that to find two inde-

pendent unknown quantities, two independent equations are required.

Here we have only one equation; another must be sought.
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The first equation was educed by considering the horizontal components.

The second may be similarly educed by considering the vertical compo-
nents. These are:

for the 200 force,

for the 100 force,

for the F force,

200 cos 90° - 0;

100 cos 30° - 86.6;

— F cos (90 — a)
y

(3)

where the signs indicate direction, up or down: + for up, — for down.

Simplifying the Equilibrium Equations

The expression cos (90 — a) requires comment. It represents the ratio

a/c in Figure 18. As related to a
,
it is the side opposite a divided by the

hypotenuse. (The cosine was the

side adjacent to a divided by the

hypotenuse.) This ratio will be

recognized as the sine of a. Hence,

for the term cos (90 — a) the equiv-

alent term sin a may be substi-

tuted. Like cosines, values of the

sines of angles have been tabulated.

A complete table will be found in

the Appendix.

Making this substitution in the statement of the values of the vertical

components

Fig. 18 . Geometrical Relations of
Kquilibrant of Fig. 17

for the 200 force, 200 cos 90° = 0

for the 100 force, 100 cos 30° = 86.6

for the F force, — F cos (90 —a )
= — F sin a

from (3)

The assumption of equilibrium requires the algebraic sum of these quan-

tities to have the value zero.

Therefore, 0 + 86.6 — F sin a = 0 or F sin a = 86.6.

Equations (2) and (4) may now be solved

:

(4)

F cos a - 250 from (2)

F sin a = 86.6 from (4)

From the fact, evident in Figure 18, that

a2 + b2 = c2
,
whence + 1, whence sin2 a + cos2 a i,

it will be evident that these equations can be solved for F by squaring and

adding; whence,

F2 (sin2 a + cos2 a) = 86.62 + 2502
;

whence F2 ~ 70,003~;

whence F = 265~.
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The value of a may now be found by substituting this value of F into either

equation (2) or equation (4), solving for cos a or sin a, and then using the

table to find a, which will be found to be 19° 6' approximately.

Hence, the two given forces will be equilibrated by a single force of mag-
nitude slightly less than 265, directed down and to the left at an angle of

19° 6' with the horizontal. Thus the method of resolution of forces in con-

junction with a special case of the principle of equilibrium has made it pos-

sible to compute the magnitude and direction of the force required to

balance two given forces. It can be applied with equal facility to any num-
ber of forces in one plane meeting in a point. Stated in its full generality,

translational equilibrium of concurrent forces is realized when the vector sum of

all the forces is zero.

Application to a Simple Bridge Truss

is a powerful principle. It will repay

attention, the more so in that it may
somewhat elusive to the beginner.

The same procedure, applied suc-

cessively at different joints, may
lie made to yield information on

the stresses in a bridge truss such

as that shown in Figure 19. Sup-

pose, to simplify the calculations,

that the lengths of the members of

the truss are proportioned in the

ratios 3-4-5. The angles are then

known to be approximately 37°

and 53°. Disregard the weight

of the truss itself and suppose a load of 80 tons to be

resting at the middle. This is, of course, distributed

equally between the two end supports, each end of the

truss, therefore, bearing down on its respective support

with a force of 40 tons. The principle of equilibrium

then requires, if the bridge is not to collapse, that the

supports themselves shall push up on each end of the

truss with a force of 40 tons. It is this aspect of the sit- •

uation, the forces acting from outside on the body under

consideration, which is the working material from which

the equations are to be constructed. Confine attention ^
now to one end of the truss, say the left. The two mem-
bers meeting at that point can exert forces only along

their length (a statement which applies equally to all

other points where bridge members meet). Represent

these forces by vectors and include as a third vector the
analysis ofFohces

upward thrust of the support at that point. The vec- 0n Left Pin of the
tor diagram will then be as in Figure 20. Truss of Fig. 19

is

;r

x

Fig. 19. A “ King-Post” Truss with
Load at Center
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Fig. 21. Portion of Simple Truss Bridge, Showing Different Types
of Member

A word about the directions in which these vectors point may be in order.

The 80-ton load on the bridge produces a stretch or tension in the horizontal

members A and C (Fig. 19). To appreciate this, imagine two sticks, hinged

at the top, to be supported at the bottom on slippery plane surfaces. It

will be evident that a downward force on the hinged joint will cause the two

lower ends to slide outward, away from each other. They could be held

together by a cord, which would then be under a tension. This is pre-

cisely the case of the bridge truss under consideration. The horizontal

member A (Fig. 19), being under tension, is therefore exerting on the left

pin, from outside, a force to the right, and it is this force that is represented

by the vector a in Figure 20. Similarly, the oblique member B will be seen

to be under a push from both ends, is hence under compression, and is hence

acting down and to the left on the left pin, from outside. This is repre-

sented by vector b in Figure 20.

Since the bridge is stationary, the forces acting at all its points must be in

equilibrium, which is true for those acting at the lower left pin as well as

elsewhere. Hence the equilibrium condition (algebraic sum of forces must

equal zero) may be applied to the two components, horizontal and vertical.

For the vectors of Figure 20,

a — b cos 53° = 0,

40 — 6 cos 37° = 0.

Substituting the given values of the sine and cosine for the angles of this

truss (see Fig. 19),

a - b £ = 0,

40 — 6 £ = 0;
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from which the values of a and b will be found to be

a = 30, b — SO.

Hence a load of 80 tons applied at the middle produces a tension of 30 tons

in the left horizontal member and a compression of 50 tons in the left

oblique member. These are also the stresses in the corresponding members
in the right half, by reason of the symmetry of structure and loading. The
stress in the middle vertical member is easily seen to be 80 tons, which

completes the analysis. For more complicated structures and asymmet-

rical loading more labor is involved in carrying out the computations, but

the procedure is exactly the same.

This kind of calculation is involved in the design ofevery bridge, since the

type and strength of the various members must be arranged to support the

maximum load expected. Steel cables or strips will support tensions, but

stiff struts are required to withstand compressions. These two types of

bridge member may be seen in the photograph of Figure 2 1 . The maximum
forces which are assumed at each joint must include the weight of the parts

of the bridge itself, which, in the larger structures, are necessarily heavier

than the loads to be carried. But whether large or small, the stresses in

each member are calculated in advance by applying the principle of static

equilibrium to each joint of the bridge in turn, in the course of which the

chief mathematical tool is the method of resolution of forces.

Questions for Self-Examination

1. Describe the nature of the first solution (at the hands of Isaac Newton) of the

problem of force combinations.

2. Analyze the case of the sled drawn with an oblique rope, as an example of resolution

of forces.

3. State the principle of equilibrium of forces and apply it either to a three-cornered

tug-of-war which you will formulate for the purpose or to a triangular bridge truss.

4. Describe, in a numbered sequence, the steps involved in computing stresses in a

bridge truss.

Problems on Chapter 4

1. Forces of 300 pounds and 400 pounds act at right angles to each other on the same
point. Find the magnitude and the direction of the single force that would replace

these two. 500 lbs at 37° with the 400 force.

2. Three ropes are attached to a freight car standing on a north-south track. Through
one, extending north, a 300-pound force is exerted. Through the second, extending

15 degrees east of north, a 200-pound force is exerted. Through the third, extend-

ing 20 degrees west of north, a 150-pound force is exerted. What northward force

does the car experience? 630 lbs.

3. Three cords are fastened together at a point. Two of them are stretched by
respective forces of 8 and 15 pounds and make a right angle with each other. Find
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the force which, when applied to the third at an angle to be calculated, will put the

three in equilibrium. 17 lbs at 28° with the 15-lb force.

4. A rope is fastened to two hooks 24 feet apart with 26 feet of it suspended between

them. 100 pounds is hung at the middle. What is the tension in the rope and the

angle it makes with the horizontal? 130 lbs, 23°.

5. A boy weighing 50 pounds sits in a swing having ropes 10 feet long. He is pulled

.
back through a horizontal distance of 6 feet. What angle do the swing-ropes make
with the vertical? What horizontal force is required? Under what tension is each

swing-rope? 37°, 38 lbs, 31 lbs.

6. A sled of weight W pounds experiences a force of F pounds through the pull of a

rope which makes an angle of a degrees with the horizontal. What horizontal force

H in pounds is acting, and what would be the apparent weight w in pounds, of the

sled if drawn across a platform balance?

W F a H w
20 10 10° 9.8 18

20 10 20° 9.4 17

20 10 30° 8.7 15

20 10 45° 7.1 13

Fig. 22

v a E N
20 20° 6.8 19.

20 40° 13. 15.

20 60° 17. 10.

20 80° 20. 3.5

8. A picture whose weight is IF pounds is hung from a nail, the cord making an angle

of a degrees with the horizontal. What is the tension T in pounds in the cord?

W a T
20 20° 29

20 30° 20

20 40° 16

20 50° 13

Fig. 23

7. A steamship travels v miles per hour at an angle

of ol degrees east of north. Find the northward

N and the eastward E components of its veloc-

ity in miles per hour.

9. A weight W pounds is hung from the free end of a horizontal, weightless, hinged

boom. To the free end of this boom is also attached a rope which makes an angle
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a degrees with the horizontal. Find the tension T in the rope and the compres-

sion C in the boom, in pounds.

Fig. 24

10.

A horizontal force of F pounds acting on a telephone pole is to be balanced by the

tension G pounds of a guy wire which makes an angle of a degrees with the hori-

zontal. Find G.

Fig. 25

il. The force with which a piston rod bears on its crosshead is F tons. The connecting

rod makes an angle of a degrees with the horizontal. Neglecting friction and the

weight of the parts, what is the compression C in tons in the connecting rod, and
the upward push P in tons of the lower guide on the crosshead.

12.

Air brakes are usually applied through a “toggle joint.” A force of / pounds is

applied through such a joint, each arm making an angle of a degrees with the hori-

zontal. Find the force F in pounds with which each brake bears on its wheel.

Fig. 27
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At a distance a from one end of a loose cord of length (

a

-f b) is attached a weight

W pounds. There is an angle of ninety degrees between the two sections of the

cord. Find the tension A and B in each section, in pounds.

a -f- b a W A B
7 3 100 80. 60.

17 5 100 92. 38.

23 8 100 88. 47.

31 7 100 96. 28.14.

At a distance a feet from one end of a loose cord of length (

a

-f b) feet is attached a

weight W pounds. The ends of the cord arc tied to supports a distance c feet apart.

Find the tension A and B in each section of the cord, in pounds.

a -f b a c W A B
7 3 6 100 100.8 90.63

13 5 12 100 131.3 120.5

13 6 9 100 74.69 63.03

15 5 14 100 137.3 123.0

15.

Find the tension (or compression) in each member of the pinned trusses shown be-

low, when loaded as shown. The sides of every triangle are in the ratio 3-4-5.

The given quantities are the load (80) and the dimensions (3-4-5). Italicized

answers represent compressions. Those not italicized are tensions.

60 60 30 30

Fig. 29 Fig. 30

150 150 120 120



CHAPTER 5

Equilibrium; the Inclined Plane

and Composition of Vectors

The Inclined Plane

Another practical case which may be treated by resolution of forces is

that of the inclined plane. The term inclined plane calls up a vision of a

sloping plank such as is used in loading and unloading freight. This is, of

course, a rudimentary form. In that form its utility is rather limited.

But the broader significance of the inclined plane as a mechanical device

will become evident by recalling that the wedge and the screw both embody
it in principle. Ubaldi, in his Mechanicorum Liber (127), was the first to

point this out. In this work he observed that the screw might be consid-

ered as a wedge wrapped around a cylinder (see Fig. 33), the wedge, in

turn, being a manifestation of an inclined plane (101: 130).

The more obvious properties of an inclined plane are very obvious indeed.

An object resting on such a plane will slide toward the lower end unless its

motion is prevented. The more steeply is the plane inclined, the greater is

the force that is necessary to prevent an object sliding along it. One is led

to inquire what the ratio is between the angle of inclination and the force

necessary to prevent the motion of a given object resting on it or— what is

the same thing if friction may be disregarded— the force necessary to move
the object up the plane.

The problem is recognizable as a simple case of resolution of forces. The

Fig. 33 . The Screw as Fig. 34. Analysis of a Frictionless
an Inclined Plane Inclined Plane
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force necessary to hold the object in place will have the same magnitude as

the component F (along the plane) of the vertical pull W of gravity (Fig.

34). By the principle of resolution, this component has the value

F - W cos (90° - 6) or

F = W sin 0. (1)

Hence, the required force is proportional to the sine of the angle. Equa-
tion (1) may be checked by observing that the required force should become
zero when the plane is horizontal and should become the full weight W
when the plane is raised to the vertical. Since the sine of zero degrees is

zero and the sine of ninety degrees is unity, substitution of these values for

the sine in equation (1) will be seen to give the correct values for these

known cases.

The other aspect of the problem has to do with the force with which the

object bears against the plane. For a horizontal plane this will be simply

the weight of the object. For a vertical plane it clearly has the value zero.

Reference to Figure 34 will show that the component N of the gravitational

pull W, which is perpendicular or normal to the plane, is given by

N « W cos 0. (2)

Since the values of a cosine are unity and zero respectively for the zero and

ninety-degree values of the angle, equation (2) will be seen to satisfy these

conditions as mentioned above.

The Laws of Friction

The first thorough study of the laws of friction was made by Charles-

Augustine Coulomb (1736-1806) (29), who is better known for his pioneer

work in electricity. The results embodied essentially the modern view of

the action of friction. This is that the force which retards the motion of

one surface over another depends entirely upon two factors. These are

(1) the materials and degree of polish of the surfaces involved and (2) the

force pressing the surfaces together. It is independent, within certain

rather wide limits, of the areas in contact, an observation first recorded by
Leonardo da Vinci (68:10), and of the speeds with which they move over

each other. It can, of course, be greatly reduced by lubrication, but this is,

in effect, the substitution of a liquid surface of contact for the former solid

surfaces and hence is included in case (1). It is found that a greater force is

required to initiate the motion of one surface over another than to maintain

it after it has once been started; also that the retarding force is, of course,

greater for the case of sliding than for the case of rolling. Hence, it is com-

mon to distinguish between three types of friction: starting, sliding, and

rolling. Except as otherwise specified, it is sliding friction that is under

consideration herein.

The dependence of frictional retarding force / on the perpendicular or

normal force N pressing the surfaces together is found to be that of direct
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proportion. Stated algebraically, using the conventional sign of propor-

tionality, oc,

fozN.

This may be stated as an equation by introducing a factor of proportional-

ity, k
y
the value of which must then be determined experimentally, the

equation being

/ = kN. (3)

Thus, by measuring the frictional force / between two surfaces pressed to-

gether by a normal force N
,
the value of the factor k will be determined for

that case. For smooth surfaces this value of k is found to depend primarily

on the materials involved and is termed the coefficient of friction. This

coefficient will have one value for steel on steel, another for steel on brass,

and so on.

The Limiting Angle of Repose

That the element of friction plays an important part in the practical the-

ory of the inclined plane will immediately be evident. This is especially

true in the case of the wedge and the screw, the principal mechanical out-

growths of the inclined plane. Not all of the force F of Figure 34, for

example, will be effective in accelerating the block down the slope. From
F must be subtracted the frictional force /. But friction is the normal

force N multiplied by the coefficient of friction k. That is,

/ - kW cos 9. (4)

Unless the plane is tilted sufficiently so that the component F along the

plane is at least equal to the frictional force/, no sliding will occur. Since,

as the plane is sloped more and more, F increases and/ decreases, it will be

evident that for some particular angle they will become equal to each other.

The angle for which this condition exists is known as the limiting angle of

repose. Its value is derivable from a statement of the equality of the two
forces, that is,

F =/ or W sin 0 - kW cos d
}

from which
• A 4

srn e .
= tan 6 = k (5)

cos 0

Hence, when the coefficient of friction between two surfaces is known, the

limiting angle of repose can at once be stated by finding with the aid of a
table of tangents the angle 6 which corresponds to the given value of the

tangent.

Thus no sliding can occur down an incline or along a screw unless the

angle of the incline or pitch of the screw is greater than a certain value de-

pendent on the coefficient of friction between the sliding surfaces. It is

simple to demonstrate that an equivalent statement is that no force, how-
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ever great, can cause an object (Fig. 35) to slide unless the angle 6 which the

force makes with the normal is at least as great as the limiting angle of

repose. It is for this reason that wedges seldom slip out of place and that

screws are seldom designed to be
turned by pushing the nut along

j

their length. The action of the “lock

washer” depends on this principle.

Only by a combination of good lubri-

cation and large angle can wedges and

screws be made thus to reverse their

normal action.

Composition of Forces

The process of composing or com-

bining forces is simply the reverse of Fig. 35. Will It Slide?

the problem of resolving them. In-

stead of having one force given and the task assigned of finding two or

more components which, acting jointly, will be a complete equivalent of

the given single force, the task is now that of finding a single force which

is the complete equivalent of two or more given forces.

The simplest case of composition of forces is clearly that in which the

forces act in the same line, either in the same or in opposite directions. The
magnitude of the resultant is then either

the arithmetical sum or the arithmetical

difference of the two components. While

the case is not trivial, it is too elementary

to require more than passing notice.

Two Forces at Right Angles

The case of two mutually perpendicu-

lar components, while still simple, merits

close attention, for it contains the essence

of the whole problem of composition of

forces. It is illustrated in Figure 36,

which is simply a repetition of Figure 15 except that in this case the two

component vectors, one of magnitude 8
,
directed toward the right, the

other of magnitude 6, directed upward, are given instead of the resultant

being given. The procedure involved in finding the resultant is simply

the reverse of that involved in the process of resolution. Complete the

rectangle, as indicated by the dotted lines. The resultant is then repre-

sented both in magnitude and in direction by the diagonal vector. The
magnitude will, of course, be 10 and the direction 37° with the horizontal,

as is shown by mere comparison with Figure 15.

As in the case of resolution of vectors, the graphical method of composi-

tion may advantageously be replaced by an arithmetical method. It will

Fig. 36. Resultant of Two
Forces at Right Angles
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be clear that for components mutually at right angles the magnitude of the

resultant will be given by the application of the Pythagorean theorem, the

square root of the sum of the squares.

Similarly, the angle that the resultant

makes with the horizontal will have its

tangent specified by the quotient of the

vertical by the horizontal magnitudes.

Expressed algebraically (see Fig. 37),

R = VA* + B\ (6)

tan 0 = (7)

It will be noted that the right side of each of these equations contains only

the data originally given; hence, that the magnitude R and the direction 6

may immediately be computed.

Fig. 37. The General
Rectangular Case

Oblique Forces

The case of the composition of two vectors not at right angles is, natu-

rally, less simple; but the principle is the same. Newton stated it as fol-

lows (91 :16) : “A body acted on by two forces simultaneously will describe

the diagonal of a parallelogram . .

.” whose sides represent the given forces.

The case is represented in Figure 38, in which the given vectors are A and

B
y
making with each other the given angle </>. The resultant may be found

graphically by completing the parallelogram and drawing the diagonal R .

The magnitude of the resultant is.then represented by the length of R and

the direction by the angle d which R makes with one of the given vectors,

say B.

Fig. 38. Composition op Oblique Fig. 39. Theory op Composition op
Forces Oblique Forces

But again, the graphical solution, though furnishing an excellent illustra-

tion of the principle, must be supplemented by a method analogous to that

embodied for the rectangular case in equations (6) and (7). The cor-

responding equations for the oblique case are

R - +W+2 AB cos <t>

A sin ^
B + A cos </>

and tan 0

(8)

(9)
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It will be noted that the right side of each of these equations contains only
the data originally given

;
hence, that the magnitude R and the direction 6 of

the resultant may immediately be computed.

These equations may be derived as follows. Referring to Figure 39
which is the same as Figure 38 with the two construction lines pq and qr

added, it will be evident that

R? - qr2 4- oq2 = qr
2
-f {op + pq)

2

= {A sin <f>)
2 + (B + A cos <p)

2

= A 2 sin2
<t> + B2 + 2AB cos <j> + A 2 cos2 <f>

= A 2
(sin2 + cos2

(f>) + B2 + 2AB cos <f>

= A 2 + B2 + 2AB cos </> (since sin2
<f> + cos2 = 1).

/. R = Va^W+Yab COS <t>

which is equation (8).

qr qr
Similarly, tan 6 - — =—

oq op + pq

which is equation (9).

A sin <j>

B + A cos <f>

Equilibrants

Equations (8) and (9) give respectively the magnitude and direction

of the resultant of two given forces. Often it is the equilihrant which is

desired; that is, the single force which will just balance or equilibrate the

two given forces. As would natur-

ally be surmised, this will possess

the same magnitude as the resultant

and be oppositely directed (Fig. 40).

Hence the same computation that

gives the resultant of two given vec-

tors will also yield the equilibrant,

simply by the addition or subtraction

of 180° in connection with the com-

puted angle 6.

The most commonly used device for the experimental study of combina-

tions of forces in equilibrium is the so-called force table, devised by the

French mathematician, Augustin-Louis Cauchy (1789-1857) (74:47). It

usually consists primarily of a large horizontal graduated circle. Three or

more cords, tied to an otherwise unattached ring at the center, pass over

pulleys and support weight-pans. The pulleys may be clamped to any

portion of the graduated circle. The experiment consists of adjusting the

weights and the angles to secure a balance, whereupon equilibrium is known

to exist and may be tested by the application of equations (8) and (9),

regarding any one of the forces as the equilibrant of the remaining two

or more (see Fig. 41).

Fig. 40. The Equilibrant Balances
the Resultant



48 equilibrium; composition of vectors Chapter 5

Fig. 41. Force Table

Questions for Self-Examination

1. State the principal attributes of friction.

2. What is meant by the term limiting angle of repose? IIow does it apply to the use

of wedges?

3. Formulate a graphical example of composition of forces.

Problems on Chapter 5

1. Find the angle between the two ropes of a hammock when the tension on each rope

is twice the weight of the person in the hammock. 30°.

2. A 260-pound barrel rests on an inclined plane 13 feet long with one end 5 feet higher

than the other. Find the components of the gravitational force on the barrel both
parallel and perpendicular to the plane. 100 lbs.

240 lbs.

3. Find the resultant, both in direction and magnitude, of five forces of magnitude

3, 4, 5, 6, and 7 respectively, having directions represented by the five sides of a
regular pentagon taken in order. 4.3 at 234° with first side.

4. Four forces, A, B, C, and D ,
act at a point. B is twice as great as A and acts at

right angles to it. C is equal to the sum of A and B and acts at right angles to

their resultant. D is equal to the sum of A
,
B> and C and acts at right angles to

their resultant. Show that the resultant of all four is 5A V2 (reckon all right angles
in the same direction).

5. A frictionless car weighing W pounds is on an incline which makes an angle of a
degrees with the horizontal. What force F in pounds, parallel to the incline, is

necessary to hold it in place, and with what force w in pounds does the incline sup-
port the car?
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W a F w
200 10° 35 200

200 20° 68 190

200 30° 100 170

200 45° 140 140

Fig. 42

6. Given two forces of magnitude A and B pounds, differing in direction by an angle

<p degrees, find the magnitude R in pounds of the resultant, and the angle 6 in

degrees that it makes with the force B.

A B
<f> R 6

200 100 45° 280 30°

300 200 30° 480 18°

400 300 120° 360 73°

150 100 20° 130 79°

Fig. 43

7. Given three forces of magnitude A
,
B, and C pounds, making angles a, and y

degrees respectively (measured counterclockwise) with the positive direction of

an #-axis, find the magnitude E in pounds and the angle 0 in degrees, which the

cquilibrant makes with the same line.

A a B P C 7 1 E e

200 0° 300 120° 400 220° 260 — 5°
2

300 0° 250 110° 350 250° 130 + 130‘

535 0° 425 100° 350 200° 330 + 250
(

215 0° 165 130° 200 290° 190 + 160‘

8. A horizontal force of F pounds is found to be necessary to produce uniform velocity

in a sled of weight W pounds. What is the coefficient of friction k?

W F k

20 2 .10

20 5 .25

20 8 .40

20 12 .60

9. What force of F pounds, pulling at an angle of a degrees with the horizontal, is

necessary to move a sled of weight W pounds with uniform velocity over a hori-

zontal surface, the coefficient of friction being k?

W a k F
10 0° .3 3.

10 15° .3 2.9

10 40° .3 3.1

10 60° .3 3.9

Fig. 45

Fig. 44

10.

What force of F pounds, pushing at an angle of a degrees with the horizontal, is
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necessary-to'lnSve a sled weighing W pounds with uniform velocity over a hori-

zontal surface, the coefficient of friction being k? Interpret the negative sign of

the last answer.

W a k F
10 0° .3 3.

10 15° .3 3.4

10 40° .3 5.2

10 75° .3 - 97.

Fig. 46

11.

What force of F pounds, acting parallel to the incline, is necessary to move a sled

of weight W pounds up an incline which makes an angle of a degrees with the

horizontal, the coefficient of friction being k

?

W a k

10 30° .3

10 50° .3

10 70° .3

10 80° .3

Fig. 47

12.

What force is necessary to move the sled of the preceding problem down the in-

cline? Interpret the negative sign of the last answer.

W a k F
10 5° .3 2.1

10 10° .3 1.2

10 15° .3 .31

10 25° .3 - 1.5

Fig. 48

13.

What force of F pounds, acting horizontally, is necessary to move a sled of weight

W pounds up an incline which makes an angle of a degrees with the horizontal, the
coefficient of friction being k?

W a k F
10 5° .3 4.0

10 10° .3 5.0

10 15° .3 6.2

10 20° .3 7.6

F
7.6

9.6

10.4

10.3

Fig. 49
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14. At what angle a in degrees will a sled just slide down an incline without the appli-

cation of a force, the coefficient of friction being k?

k a
.1 5° 45'

.2 11° 15'

.3 16° 45'

.5 26° 30'

15.

* What force F in pounds is necessary to move the sled of problem 13 down the

incline?

W a k F
10 .3 2.1

10 10° .3 1.2

10 15° .3 .30

10 20° .3 - .58

Fig. 50

16.

What force of F pounds, acting at an angle (3 degrees with an incline, is necessary

to pull a sled of weight W pounds up an incline which makes an angle of a degrees

with the horizontal, the coefficient of friction being k ?

W P a k F
10 5° 20° .3 6.1

10 10° 20° .3 6.0

10 15° 20° .3 6.0

10 25° 20° .3 6.3

Fig. 51

17. What force is necessary to push the sled of the preceding problem up the incline?

W (3 a n F jp

10 5° 20° .3 6.4 A
10 10° 20° .3 6.7

10 15° 20° .3 7.0

10 25° 20° .3 8.0

18. What force is necessary to pull the sled of problem 17 down the incline?

W (3 a n F
10 5° 10° .3 1.19

10 10° 10° .3 1.17

10 15° 10° .3 1.17

10 25° 10° .3 1.18

19. What force is necessary to push the sled of problem 18 down the incline?

W p a » F
10 5° 10° .3 1.3

10 10° 10° .3 1.3

10 15° 10° .3 1.4

10 25° 10° .3 1.6

Fig. 53

Fig. 54



CHAPTER 6

Equilibrium; Non-Concurrent Forces

Equilibrium in Rotation

Equilibrium for the case of concurrent forces, which was treated in the

preceding chapters, was seen to exist if the algebraic sums of the respective

vector components assumed the value zero. But if the vectors do not all

meet at a common point, this condition of equilibrium is not sufficient.

For this case the fact that the vector components may add up to zero

does not necessarily imply that the object to which they are applied is in

equilibrium. For example: the stick of Figure 55 is acted upon by two

equal and opposite forces, both perpendicular to the stick, but at opposite

ends. Though the algebraic sum of

the forces is clearly zero, the stick is

obviously not in equilibrium, but will

lAidergo a clockwise rotational ac-

celeration.

It therefore appears that to pro-

duce equilibrium in non-concurrent

forces the condition that the vectors

add to zero is not sufficient. Some
other circumstance in addition is re-

quired. A clue to the nature of this circumstance may be found in the

fact that the lack of equilibrium in the foregoing example made itself evi-

dent in rotational acceleration. Apparently the new condition of equilib-

rium involves the prevention of rotational acceleration. That is to say, it

involves ability to produce an equal and opposite rotational acceleration.

The idea of rotational acceleration, though not introduced heretofore,

should present no difficulty, particularly in view of the merely paren-

thetical use that is to be made of it in this chapter. It will be more fully

treated in Chapter 15. It is to rotational motion what linear acceleration

is to translational motion, this having been described in Chapter 3. With
translational acceleration, as will be seen in Chapter 10, the idea of force

is closely associated. But wherever rotation is involved, an additional

element enters. The opening of a heavy door is much easier when the

knob is as far as possible from the line of the hinges. The force that is

involved for one case is quite different, for the same effect, from that in-

c.:
' 1

::
: T"i

Fig. 55. The Stick Is in Transla-
tional but not in Rotational Equi-
librium
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volved in the other. A very little experimentation will show that the

force required depends on the distance of the point of its application

from the hinged side of the door; the greater the distance, the smaller the

force needed. Hence, the practice of placing the doorknob at the opposite

side of the door from the hinges is a utilitarian measure, a departure from

the consideration of symmetrical appearance which presumably was re-

sponsible for placing the knob at the center of the door in early English

houses.

The relation between the force required to operate a door and the distance

of the point of its application from the line of the hinges is the very simple

one of an inverse ratio. A push in the middle must be twice as strong as

one at the outer edge to produce the same effect. This suggests that with

a given rotational acceleration may be associated a corresponding entity

which consists of the product of a force by the corresponding distance

from the axis of rotation. Jf in a given rotating body a steady rotational

acceleration is to be maintained, any alteration of the magnitude of the

force being exerted must be compensated by a reciprocal alteration of its

distance from the axis of rotation, the product of the two being, for a single

such force, always proportional to the rotational acceleration.

Rotational Equilibrium

The entity thus associated with rotational acceleration, in the same way
that force is associated with translational acceleration, has proven of

sufficient importance to be worthy of a name. The name in most com-

mon use is torque
,
from a Latin verb meaning to twist. 1

Hence it may be said that the rotational acceleration of a given rotating

body is proportional to the applied torque. The equilibrium case of zero

rotational acceleration will then be seen to be associated with zero torque.

This does not imply the absence of all torques, any more than translational

equilibrium implies the absence of all forces. Jt simply means that the

algebraic sum of all the torques acting must be zero. This involves a sign

convention for torque and for rotational motion. The sign is commonly
taken as positive for counterclockwise rotation and negative for clockwise.

With this convention it is possible to state what is termed the condition of

rotational equilibrium. Rotational equilibrium is realized when the algebraic

sum of all torques is zero. This corresponds, for the case of rotation, to

the condition of translational equilibrium, namely, that translational

equilibrium is realized when the vector sum of all the forces is zero (page 36).

This condition of translational equilibrium is sometimes referred to as the

first principle of statics, and the foregoing condition of rotational equi-

librium as the second principle of statics. The two principles taken to-

gether embody the whole science of statics, which until the time of Galileo

was the sole content of mechanics.

1 The term moment offorce ,
long used for this concept, seems to be dropping out.
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Application of Rotational Equilibrium

The condition of rotational equilibrium may be illustrated by using it to

compute the reactions at the supports of a loaded beam. Suppose loads of

200, 500, and 600 pounds respectively to be concentrated as in Figure 56

at distances of 3, 5, and 8 feet from the left end of a 10-foot beam, the

weight of which is negligible in comparison with the load. The problem

is to find the share of the load borne by each end support, A and 5, which

will therefore be the unknowns in the equilibrium equations. As long as

the beam does not break and neither

of the supports gives way, a condition

of equilibrium obtains and hence both

principles of statics apply. Consider

first the second principle.

In constructing a torque equation

it is necessary to fix upon some axis

of rotation. For torque is expressible

as force times lever arm
,
and the lever

arm is the distance from the line of

action of the force to the axis of ro-

tation, real or assumed . Since in this

case there is no rotation at all, an

axis must be assumed, and this assumption can be entirely arbitrary.

Since there is no rotation about any axis whatever, there is bound to be

no rotation about any particular assumed axis that may be selected. Any
indecision that may be felt about where to choose such an axis may be

relieved by the observation that there is some advantage in causing it

to pass through the line of action of one of the unknown forces. The
torque corresponding to that force thereupon becomes zero, since its lever

arm is zero, thus simplifying the equation. In this way, taking the axis

at the right end of the beam, perpendicular to the plane of the diagram,

the following torque equation may be constructed:

-,M0 + 200*7 + 500*5 + 600*2 = 0,

the signs being chosen in accordance with the convention stated on page

53, namely, positive for counterclockwise rotation and negative for

clockwise.

The solution of the above equation may readily be verified as A - 510,

which thus constitutes the value of one of the two unknowns. The second

may be found by constructing another torque equation, this time preferably

(though not at all necessarily) assuming an axis of rotation through the

left end of the beam. This equation is

- 200*3 - 500*5 - 600*8 + B- 10 = 0,

whence B = 790 pounds, thus evaluating the second unknown. The cor-

600

Fig. 56. Reactions at Supports
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redness of the solution may be checked by using the first condition of

equilibrium, which is known to apply because the beam, by hypothesis,

has zero translational acceleration as well as zero rotational acceleration.

This condition yields the force equation

510 + 790 - 200 - 500 - 600 = 0,

which is seen to be true.

500 500

200 200

Meaning of the Term "Lever Arm

”

The identification of the lever arm is not always as simple a matter as

the foregoing illustration would indicate. Suppose, for example, that one

of the forces, say the GOO force, were applied obliquely, making an angle

of 30° with the horizontal, as in (a) of Figure 57. Would its lever arm
about the right end still be two feet? A little consideration will show that

an affirmative answer to this question would lead to serious ambiguities.

To be sure, the point of application is still two feet from the assumed axis

of rotation; but suppose a boss or

extension to have been a part of the

structure, as in (b) of Figure 57, and

the force applied to that. The dis-

tance from the axis of rotation to the

point of application is now different,

yet it will be evident that the situa-

tion has really not been changed at all.

The difficulty disappears by focus-

ing attention on the distance from the

axis of rotation to the line of action of the force; indicated by the dotted line

in Figure 57. This distance is commonly called the lever arm. It was

first recorded in a book by Giovanni Battista Benedetti (1530-90). On
page 143 of his I)e Mechanicis (17), he pointed out that as far as rotation

about the point o is concerned (Fig. 58) the oblique force c applied at a

could be replaced by a vertical force of the same magnitude applied at i

where oi had the same length as ot, the perpendicular distance from the

axis to the line of action of the force. The depth of Benedetti ’s perception lay

jts jt
v B

(a)
f1

(b)
1

Fie. 57. Effect of an Oblique Force

Fig. 58. The First Realization of the Real Significance of Torque
(From the De Mechanicis of Benedetti, 1599.)
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in this divorcement of the idea of the lever arm from the structural details

of the object under consideration, and the identification of it as the per-

pendicular distance from the axis to the line of action of the force. This

he saw to be the case even in the complete absence from that region of

any part of the structure of the object or mechanism associated with the

applied force.

Applying this definition of lever arm to the inclined force of Figure 57,

it will be evident that the lever arm of that force about the right-hand

support is given by the dotted line the length of which may easily be

computed to be one foot. It applies equally to both cases illustrated in

Figure 57, the former ambiguity having disappeared. By applying anew
the conditions of equilibrium it may be found that the vertical reactions

at the supports for the new case will be A = 450 pounds and B = 550

pounds, and that a horizontal force of about 520 pounds toward the right

must be applied somewhere along the length of the beam to produce trans-

lational equilibrium in that direction.

The Idea of Center of Gravity

The condition of rotational equilibrium may be applied in a slightly

different way which will be found to lead to two major mechanical con-

cepts, that of the center of gravity and that of the balance.

Suppose that the loaded beam of Figure 56, instead of being supported

at the ends, were to be balanced on a single support as in Figure 59. In this

case, not merely the magnitude of the reaction at that support is required,

but also the location of the point of application. There are thus two un-

knowns, and these the two torque equations can be made to yield as before.

Let C be the magnitude of the equilibrant and x its unknown distance

from the left end (Fig. 59). Taking each end in turn as the assumed axis

and neglecting the weight of the beam as before, the torque equations are

- 200-3 - 500-5 + Cx - 600-8 = 0

200-7 + 500-5 - C- (10 - x) + 600-2 « 0.

The solution is C = 1300, x = 6T̂ . The condition of translational equi-

librium may be used as a check as before.

It thus appears that a single upward force of 1300 pounds, applied

600

Fig. 60 . Identifying the Center
of Gravity of a Plane Object
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slightly more than six feet from the left end of the beam, will equilibrate

the three downward forces on the beam. But such an upward force

would also equilibrate a single downward force of 1 300 pounds applied

at the same point; whence it follows that the three downward forces dis-

tributed along the beam are in a certain sense the equivalent of a single

downward force concentrated at a point 6^ feet from the left end. The
preceding chapter developed the fact that two or more forces applied at

a single point could be replaced by a single force called the resultant It

is now evident that the same concept can be extended to the case of

non-current forces, by the correct selection of a point of application.

If the three downward forces, 200, 500, and 600, were produced by weights

applied at the given points on the beam, the resultant vector would pass

through a point called the center of gravity of the three weights jointly.

Thus, the center of gravity may be defined as the point at which the gravita-

tional attraction on a system of distributed weights may be considered to be con-

centrated . In identifying it for a given system of such weights, use may be

made of the condition of rotational equilibrium.

Identification of Centers of Gravity

The last sentence may elicit some dissent. Surely we know that the

center of gravity of a uniform rod, for example, is at the mid-point of its

length, or that the center of gravity of a circular plate or a rectangle or a

square is at its respective geometrical center; and we know this without

going through a process of setting up and solving torque equations. The
answer to this objection is simply that the common knowledge that the

center of gravity of a uniform rod is at its midpoint proceeds from the

numerous observations that have been previously made to the effect that

it “ balances ” at that point. This is simply a manual process of solving

torque equations. It is less convenient for plane objects and is so exceed-

ingly inconvenient for solids that for them the process of actual calculation

with the aid of torque equations is almost mandatory. The details of

such calculation involve some mathematical processes not at the command
of the average underclassman, and the calculation will not be attempted

here. The physical concepts are, however, no different from those already

developed. In every case of identification of centers of gravity, the condi-

tion of rotational equilibrium will be seen to be the foundational process.

A common practical way to locate the center of gravity of a plane figure

is to suspend it from two points. The center of gravity will then be the

intersection of the vertical lines through the points of suspension. This

is simply another case of manually solving two equations of rotational

equilibrium. The suspended object can come to rest only when the algebraic

sum of all torques upon it is zero. This, in turn, can only occur for a posi-

tion in which the lever arm has a value zero, for the weight cannot become
zero. The lever arm will have the value zero when the center of gravity

is in a vertical line with the point of support. Hence, the unknown center
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of gravity of a freely suspended plane object will be found somewhere on a

vertical line through the point of support, a fact first deduced by Archi-

medes in the third century b.c. (5:xxxvii). The intersection of two lines

thus determined gives its location.

Stability

This is equally true in principle when the object is so turned that the

center of gravity is above, instead of below, the point of support. But it

is next to impossible to secure a balance for such a position, for the force

called into play by any disturbance accentuates the disturbance. The

equilibrium is said to be unstable for this case of the precariously balanced

object, and stable for the case of the suspended object. In the latter case,

the center of gravity is below, instead of above, the point of support, hence
s any displacement from the position of equilibrium calls into play forces

which restore, instead of destroy, the status quo ante . For this case it is ap-

parent that at stable equilibrium the center of gravity is at the lowest pos-

sible level consistent with the constraints imposed upon the body, whereas

in the precariously balanced case the center of gravity is at the highest

possible point. The altitude of the center of gravity thus becomes a

measure of instability. A piece of lumber balanced on one end is in a

very unstable state of equilibrium, its center of gravity being high above

the supporting level. The equilibrium is most stable when the board lies

flat, the center of gravity then being very close to the supporting level; and
the stability has an intermediate value when the board is “on edge,” with

the center of gravity at some level between the two extremes. The first

study of stability in equilibrium was made by Simon Stevin, the man who
anticipated Galileo in experimentation on falling bodies.

The Principle of the Beam Balance

The influence of the relative positions of center of gravity and point of

support is especially prominent in the design of the beam balances used for

weighing. The beam of a so-called equal-armed balance is so designed that

when its center of gravity is directly below the point of support, the beam,
after oscillation about a horizontal position, ultimately comes to rest

horizontally. Figure 61 shows the working principle of this device, a
representing the center of gravity and
b the point of support. If the center

of gravity is very far below the point of

support, the balance becomes very in-

sensitive. That is, it requires a rela-

tively large unbalancing torque to pro-

duce a given displacement. This is be-

cause the length of the lever arm, which
is greater in proportion as the distance ba

Fig. 61. Model Balance is greater, creates a large restoring torque

cm

CD
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for even small angular displacements from the horizontal. While this in-

sensitivity may be a disadvantage, such a balance is rapid in its action and
likely to be more rugged than more sensitive models. But if sensitivity

is greatly desired, it may be secured by decreasing the distance between
the center of gravity and the point of support. Much smaller unbalanc-

ing torques will now produce the same disturbance of equilibrium as

greater ones did before. More time and greater care will then be re-

quired to operate the balance than before. An infinite sensitivity may
theoretically be obtained by causing the point of suspension to coincide

with the center of gravity. Such a weighing device, in spite of its in-

finite sensitivity, would be quite useless, since, when in balance, it would

remain in any position. Hence, a compromise is necessary between sensi-

tivity and usability. In actual balances there is a wide range of sensi-

tivities to meet the varying requirements of actual practice.

The primary effect of shifting the center of gravity of a balance arm up
and down is thus seen to be the alteration of the sensitivity of the balance.

An additional effect is on the period of oscillation. The further the center

of gravity is removed from the point of suspension, the more rapidly the

balance oscillates. The speed with which the weighing process is per-

formed, therefore, increases as the sensitivity is decreased.

Only the equal-armed balance has been discussed. The possibility of

balances having unequal arms did not seem to meet with general recogni-

tion until the time of the Romans, though the work of Archimedes laid the

foundation for such devices. Their great advantage lies, of course, in

the fact that with them heavy objects can be counterbalanced by small

weights. The element of convenience and portability thereby introduced

is in practice a major consideration. Prior to the day of Archimedes the

unequal-armed balance was not understood, though we learn from Aristotle

(8: Cap. I) that dishonest tradesmen were known to shift the “ center
”

of their balances toward the pan in which the weights lay when selling

their products (48:238). Systematic short weight is evidently not ex-

clusively a modern practice

!

Questions for Self-Examination

1. State and discuss the two principles of statics, showing that one without the other

is insufficient to produce equilibrium.

2. Give an account of Benedettos discovery of the general concept of the lever arm.

3. How are the locations of centers of gravity determined in theory and in practice?

4. What characterizes stable and unstable equilibrium? Give two examples of each.

5. What brings a balance beam to the horizontal position?

6. What determines the sensitivity of a balance and why?

Problems on Chapter 6

A beam is carried .by three men, one at one end and the other two supporting it

between them on a cross-piece so placed that the load is equally divided between
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the three men. Find where the cross-piece is placed.

J of the distance from the free end.

Jt, Upward forces of 50 and 75 pounds are applied to a 12-foot beam weighing 100

pounds at 3 and 10 feet from the left end. Downward forces of 80 and 120 pounds

are concentrated at the left and right ends respectively. Find the magnitude and

the point of application of the single additional force that will support and balance

the loaded beam. 180 lbs, 6.5 ft from the left end.

3.' The foot of a uniform ladder weighing 50 pounds rests at a distance 5 feet from a

vertical frictionless wall. The upper end rests against the wall 12 feet from the

ground. Find the force with which the ground supports the ladder and the angle

which this force makes with the horizontal. Compare this with the angle that

the ladder makes with the horizontal. 51 lbs at 78°.

4. Solve the preceding problem for the case of a 150-pound man two-thirds the way
up the ladder. 210 lbs at 75°.

5. Is the ladder of the preceding problems more likely to slip when the man is at

the bottom or when he is at the top? Why?
A beam of length l feet, whose weight is negligible, is supported at the ends. A
concentrated load of A pounds is placed a feet from one end, B pounds b feet, and
C pounds c feet from the same end. Find the reactions at the supports, in pounds.

l A a B b C c D E
12 100 3 500 7 200 10 320 480
12 300 4 800 8 100 11 480 730

10 200 3 500 5 600 8 510 790

16 500 4 300 9 200 14 530 470

Fig. 62 Fig. 63

7. A beam of length l feet, whose weight is negligible, is to be balanced on a single

support. Concentrated loads of A and C pounds are placed at the ends, and
another of B pounds placed at a distance b from A. Find the distance d from A
in feet at which the support must be placed.

l A B C b d
10 100 200 300 4 6.3

12 300 100 500 5 7.2

7 200 700 300 3 3.5

9 400 300 200 3 3.

Find the horizontal force F in pounds applied at the axle, necessary to raise a
s wheel of radius r inches and weight W pounds over an obstacle of height h inches.

r W h F l B A a a F
8. 5 10 2 13 9. 6 50 50 2 45 59

17 10 9 19 8 60 40 3 30 90
13 10 8 24 10 70 30 4 25 110

25 10 18 34 12 80 20 5 •20 140

A trapdoor of length l feet weighs B pounds, A load of A pounds is concentrated
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at a feet from the hinged end. Find the force F which, acting at an angle a with

the horizontal, is necessary to raise the door.

Fig. 64 Fig. 65

)Jd. A gate of weight W pounds, whose dimensions are a feet horizontally and b feet

vertically, is supported by two hinges. The lower hinge can support only a hori-

zontal thrust. The center of gravity is at the center of the gate. Find the magni-

tudes A and B of the reactions at the hinges, and the angle a which the reaction

at the upper hinge makes with the horizontal.

Fig. 66

11. To the upper edge of a box of weight W pounds, height b feet, and breadth a feet,

a force is applied at an angle a degrees with the horizontal. What must be the

magnitude F in pounds of the force in order to overturn the box?

w a a b F W l a k a P
11. 200 10° 2 3 61 12. 10 36 9 .2 22° 11

200 30° 2 3 56 10 36 9 .3 31° 12

200 50° 2 3 58 10 36 9 .4 39° 13

200 70° 2 3 69 10 36 9 .5 45° 14

Fig. 67 Fig. 68
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A drawer of weight W pounds and width l inches slides upon its edges. It also

experiences friction at the side if pulled obliquely. The coefficient of friction is k.

The knobs are at a distance a inches from each edge. If the drawer is pulled out

by a single knob, at what angle a in degrees with the front of the drawer must the

force be exerted in order that the drawer may not “bind”? What force P in

pounds must be exerted? •

13. The foot of a uniform ladder of weight W pounds rests in a hollow, at a distance

a feet from a vertical frictionless wall. The upper end rests against the wall at

a distance b feet from the ground. Find the force B in pounds with which the

wall supports the upper end, and the magni-

tude A in pounds and angle a in degrees (with

the horizontal) with which the support at the

lower end pushes up on the ladder.

w a b A B a
100 12 5 160 120 40<

100 5 12 100 21 78
(

100 6 8 110 38 69<

100 8 6 120 67 56‘

Fig. 69

14. A ladder of weight W pounds rests against a vertical wall. The foot is pulled

out until the ladder is on the point of sliding. The coefficients of friction are

k\ and kn at the upper and lower ends respectively. What angle /3 docs the ladder

make with the horizontal when it is about to slide. What are the magnitudes F\

and P2 in pounds of the reactions at each end of the ladder?

W ki k2 0 Pi f2

50 .2 .6 30° 27 52

50 .3 .4 48° 21 48
50 .4 .3

!

56° 14 47

50 .6 .2 66° 10 46

15. Forces A, B, C, and D, applied at distances a tom the center, act in the directions

a upon the arms of a windlass as shown in the following diagrams. Find in each
case the magnitude and lever arm of the equilibrant E, and the angle (measured

Fig. 70
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F
a
a

A
60

270°

4

B
80
180°

6

C
40

D
50

90° 143° 8'

7 5

w b nt h < a / a y T c
10 30 2 20 u 5 15 120° 26° 6.8 23

10 30 2 20 ' 5 20 97° 41° 9.1 24
10 30 2 20 t, 5 25 83° 56° 11.0 25

10 30 2 20 ^ 5 30 71° 71° 14.0 24



CHAPTER 7

Equilibrium: The Strength and Elasticity

of Materials

Stress and Strain

When forces are applied to a body in such a way as to produce distor-

tion, they are opposed by forces within the body itself, mainly cohesive

and elastic. If, as distortion increases, the increasing internal forces

ultimately come into equilibrium with the applied forces, the body will not

rupture. To the extent that the internal forces succeed in bringing the

body back to its original size or shape upon removal of the external forces,

the body is said to be elastic. Though no substance is either perfectly

elastic or perfectly inelastic, steel and rubber approximate to the former

and putty to the latter.

If, on the other hand, the internal forces do not come into equilibrium

with external forces effecting distortion of a body, rupture will eventuate.

Until the rupture is on the point of occurring, the internal forces are con-

ventionally taken as being in equilibrium with the external forces.

The internal force per unit of area across which the force is acting is

called the stress. Thus, if a cast-iron column of cross-section 10 square

inches supports a load of five tons, the stress is

force _ 10,000 lbs

area 10 sq in

= 1000 lbs per sq in.

The relative distortion (change of length per unit original length; change

of volume per unit original volume) is called the strain. Thus, if the

foregoing column were 14 feet long and were shortened inc'h by the

load which it supported, the strain would be

change of length _ .01

original length 168
.00006 approximately.

This use of the term strain to describe distortion should be noted. It is

a technical term. Unfortunately, the same word in ordinary parlance

involves the idea of force or exertion. It has no such connotation as

used here. Though distortions or strains are produced by stresses, the
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word strain itself is the relation of two distances (or two volumes) and is

entirely distinct from the forces or stresses that bring about the strains.

Kinds of Stress

At first glance there seems to be a limitless variety of combinations of

forces that can be applied to a body. Almost all of them, however, fall

into one of three classifications. They are (a) tensile and compressive

stresses, (b) shearing stresses, (c) hydrostatic stresses (pressures).

A body is under tensile or compressive stress when the principal result

is a change of length. The column cited in the previous section was, of

course, under a compressive stress. A vertical wire supporting a weight

is under tensile stress. The measure of any stress being force per unit

area, the area in this type of stress is measured in a plane perpendicular

to the line of the stress.

A body is under shearing stress when the principal result is a change of

shape. A simple case is illustrated in Figure 75. The strain is character-

ized by the sliding of the layers of the material over one another. The name
shear to describe this strain produces the imagery of the action of a pair

of shears, which is entirely apprepriate. Indeed, a common way of repre-

senting shear is by a pair of parallel semi-barbed arrows, as in Figure 76,

precisely the action of shears on cloth, paper, or sheet metal.

Fig. 75. A Simple Case of Fig. 76. Conventional
Shear Representation of Shear

The sign of a shearing stress is conventionally determined by the direc-

tion of the left arrow: positive, if the left arrow points up; negative, if it

points down, as in the figure. The area to be measured in computing the

magnitude of a shearing stress is, unlike the case of tensile and compressive

stresses, taken parallel to the line of the stress.

It is principally shearing stresses which rivets have to withstand. The

total force acting on the riveted joint, divided by the total cross-sectional

area of the rivets holding the joint together, gives

a measure of the shearing stress involved. When
such a joint gives way, it may be by shearing of the

rivets or by the tearing of the plates between them, Fig. 77.^Riveted

depending on whether the allowable shearing stress J

of the rivets or the allowable tensile stress of the plates is exceeded first.

A body is under hydrostatic stress when the pressure upon it is the same

from all sides. The accompanying strain is relative change of volume, as
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mentioned above in connection with the definition of strain. As the name
of this type of stress indicates, it is encountered principally in connection

with liquids and gases. Elastic stresses in liquids and gases are indeed

limited to changes of volume. Neither of the preceding types of stress is

at all applicable. Areas involved in computing hydrostatic stress must,

however, be taken perpendicular to the line of the stress, as with tension

and compression.

Combined Stresses

Stresses called into operation in everyday practice are of such manifold

form that difficulty is often encountered in recognizing their simple com-

ponents. Even the “ simple components” are sometimes not exactly

simple. For example, the shear illustrated in Figure 75, simple though the

case is, involves an increase of length in the direction of the long diagonal

of the distorted specimen and a decrease in length along the short diagonal.

So both tension and compression are involved in even a simple case of shear.

Torsion
,
as in the action of a screwdriver, is simply a type of shearing

stress in which successive layers of the

material turn on one another instead of

sliding on one another. When torsion

is effected by means of a crank or a

wrench, it is usually accompanied by a

bending stress.

Bending is so common that it merits

special attention. Rather curiously,

it is really only a special case of tension

and compression. When a beam is bent,

as in Figure 78, the upper surface is

longer and the lower surface shorter

than their lengths when the beam is un-

distorted. There will, however, be a portion of the beam at or near the

center line which possesses its original length. This is termed the neutral

axis characterized by zero stress in bending. The greatest stresses occur

in the upper and lower surfaces of the beam. To meet this circumstance,

steel beams designed to withstand bending are given a cross-section which

may be described by the letter /, and are known, quite naturally, as /-

beams (Fig. 79).

Shear in Bending

Usually bending stresses involve also some shear in addition to the ten-

sion and compression described above. Examination of the three vectors

representing the forces which are in equilibrium in Figure 76 will make this

clear, and Figure 80 will emphasize it still further. Even if there were no
bending of the beam under the indicated load, there would still be in theory

a shearing distortion, consisting of sliding of adjacent cross-sectional layers

Fig. 78 . Tension and Compression
in Bending
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Fig. 79. Cross-
Section of AN
I-Beam

over one another. The total deflection of the beam is the sum of the shear

and the bending. Actually, for beams ordinarily used, the deflection due

to shear is negligibly small in comparison to that due to bending. Only in

the case of extremely short pro-

jections do the two types of de-

flection assume the same order

of magnitude.

Lest the reader assume that

the foregoing remarks apply

only to the type of beam illus-

trated in Figures 78 and 80,

termed a cantilever beam, Fig-

ure 81 shows a beam supported

at both ends and loaded in the

middle. There is clearly shear

in this case too, in addition to the bending

half and negative for the right.

Though shear in beams is seldom of great importance taken by itself, it

is useful as a means of identifying the so-called dangerous sections of loaded

beams; that is, the points where failure of

beams will occur in case of overload andwhere,

in any case, the tensile and compressive

stresses are a maximum.
Rather curiously, it is at these sections of

a beam where the shear has zero value that

the maximum tensions and compressions

occur in bending, and therefore where a

beam fails if loaded beyond the breaking

strength of the material. The method of

Fig. 80. Shear Displace-
ment of a Beam

It is positive for the left

Fig. 81. Weightless Beam
Supported at the Ends

identifying such sections is as follows.

Shear Diagrams

If the magnitude of the shearing stresses be plotted as ordinates against

positions along a beam as abscissas, the re-

sulting curve is called a shear diagram . The

case of Figure 78 is a simple one — almost

too simple to be illustrative. Disregarding

the weight of the beam, the measure of the

shear along the entire exposed length is simply

the load at the end.1 Thus, the shear diagram

for this case is simply a horizontal straight line pIG . 82. Shear Diagram for

up to the point where the beam enters the wall, the Beam of Fig. 78, Assumed

There another force, directed upward, comes Weightless

l Shear being represented by a pair of equal and oppositely directed vectors (see Figure 76),

it is customary to take the left-hand vector as the measure of its magnitude.
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into play. This is greater than the force at the end, since, by the principle

of equilibrium of forces, it must equal the sum of the two downward forces,

one at each end. The resulting shear diagram is shown in Figure 82. Ordi-

nary mechanical experience tells one that the place where such a beam
would break would be at the point where it enters the wall. It is to be

noted that this is the point of zero shear.

Failure of the beam of Figure 81 would clearly occur at the middle.

Figure 83 shows the shear diagram for this case, and again the dangerous

section is seen to be associated with the position of zero shear.

The shear diagram presents a different appearance if a beam is uni-

formly loaded instead of having a concentrated load of such magnitude

that the weight of the beam may be disregarded in comparison with it.

Thus, for the uniformly loaded cantilever, the shear diagram would be as

in Figure 84, and for the uniformly loaded beam supported at the ends, the

shear diagram would be as in Figure 85. The dangerous sections have still

the same location.

Fig. 83. Shear Diagram for Fig. 84. Shear Diagram for
the Beam of Fig. 81 Uniformly Loaded Cantilever

The combination of a concentrated load combined with one uniformly

distributed is illustrated in Figure 86 . This time one’s intuition is not as

reliable as in the two previous cases in indicating where the dangerous sec-

tion is. The point of zero shear, however, gives the desired information.

Fig. 85. Shear Diagram of
Uniformly Loaded Beam,
Supported at the Ends

Fig. 86. Shear Diagram
of Beam Uniformly Loaded
Plus Concentrated Load at
Center, Supported at Ends

The case of distributed but non-uniform loads can be similarly treated.

As before, the shear for each point is given by the total load to the left of

that point. When constructing the shear diagram, downward forces are

negative and upward forces (supports) positive.
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Hooke’s haw

If an elastic specimen is placed under stress, it will, of course, be de-

formed, and in general the greater the stress, the greater the resulting

strain. Nearly three centuries ago Robert Hooke (1635-1703) surmised

that the strain would be found proportional to the stress and verified the

surmise by experiment. He announced his discovery, to quote:

Ut tensio
,
sic vis; that is, the power of any spring is in the same proportion

with the extension thereof
;
that is, if one power stretch or bend it one space,

two will bend it two, and three will bend it three, and so forward. Now, as

the theory is very short, so the way of trying it is very easie. [56.]

Hooke’s law applies to any elastic body. More properly speaking, a

body is said to be elastic only within the limits that it obeys Hooke’s law.

If a specimen is stretched or compressed or twisted or bent beyond the

point where there is a strict proportionality between strain and the stress

producing it, the specimen is said to have been deformed beyond the elastic

limit. A permanent “set” results. The strains produced in most struc-

tural members and mechanical devices are, however, within the elastic

limits of the materials of which they are made. Hence, proportionality

between strain and stress is the rule. That is, Hooke’s law governs most

distortions of materials used in everyday experience.

The Modulus of Elasticity

Whenever a proportion is encountered, the constant of proportionality

is likely to be found of considerable importance. Thus, in the case of uni-

form motion, where distance traveled was proportional to time elapsed, the

constant of proportionality was the velocity. That is,

s oc t or s — vt. (1 )

Similarly, for free fall, where velocity attained was proportional to time

elapsed, the constant of proportionality was the acceleration of gravity.

That is,

v cc t or v - gt. (2 )

Hooke’s law also states a proportionality; namely, stress is proportional to

strain; always, of course, within the elastic limit. That is,

stress oc strain = some constant X strain. (3)

This constant of proportionality is called the modulus of elasticity of the

material involved. Equation (3) is really the defining equation for the

modulus of elasticity of any material. Thus,

. , stress '

/A .

modulus = —;— (4)
strain
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The modulus of elasticity assumes a different aspect in each of the three

types of stress described on page 65. That associated with tensile and

compressive stresses is generally called Young's modulus, after Thomas
Young (134), who coined the term modulus as used in this connection.

That associated with shear is termed the rigidity modulus and that associ-

ated with hydrostatic stress is termed volume modulus.

Young’s modulus for cast iron may be deduced from the data on the

cast-iron column given on page 64:

modulus =
stress

strain

10,000/10

.01/168
1 .68 - 107

lbs

m4

Conversely, given Young’s modulus, one could compute the compression

or extension of a given specimen when the load and the dimensions were

known. Similarly, shearing strains and volume changes could be com-

puted with the aid of tables giving rigidity and volume moduli respectively.

(See Appendix.)

Elasticity of Gases

The most resilient materials known are gases. Between the elastic be-

havior of gases and that of solids and liquids there are points of similarity

as well as points of difference that will repay examination.

One of the central features of the behavior of gases is formulated under

the name Boyle’s law, formulated by Robert Boyle (1627-91), a contempo-

rary of Hooke. In a book published in 1660, which labored under the cum-
bersome title, A Defense of the Doctrine Touching the Spring and Weight of

the Air, Boyle set forth the relation between the pressure and volume of air.

Everyone who has had experience pumping up a tire is well aware that the

application of pressure reduces the volume of air. Boyle’s law states the

relation between pressure and volume of a given mass of air as that of in-

verse proportionality, that is,

t*l (
5)

Introducing a constant of proportionality, c, to substitute an equality for

the proportionality

p = -> whence pv - c. (6)

To verify this hypothesis “that supposes the pressures and expansions

to be in reciprocal proportion,” Boyle made use of a manometer, one end

of which was closed, mercury being poured into the open end. The air

entrapped in the closed side was compressed by the weight of mercury.

Boyle (77:85)

continued this pouring in of quicksilver till the air in the shorter leg was by
condensation reduced to take up by half the space it possessed (I say pos-
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sessed, not filled) before; we cast our eyes upon the longer leg of the glass on

which was likewise pasted a list of paper, carefully divided into inches and
parts, and we observed, not without delight and satisfaction that the quick-

silver in that longer part of the tube was 29 inches higher than the other.

For ... the air was (previously) able to counter-

balance and resist the pressure of a mercurial

cylinder of about 29 inches, as we are taught by
Torricellian experiment; so here the same air being

brought to a degree of density about twice as

great as it had before, obtains a spring (of 29

additional inches) twice as strong as formerly.

A Stricture on Boyle 9
s Law

A quarter of a century after Boyle stated his law,

Edme Mariotte (1620-84) made one qualification

which is important, and which Boyle, though he

must have known and allowed for it in his ex-

perimentation, had not explicitly mentioned.

Mariotte remarked (77:88), rather incidentally,

that

The air also dilates very easily by heat and con- jrIG. 87. Manometer or
denses by cold, as we can notice any day by ex- the Type Used by
periment. Boyle

Thus, the pressure of an enclosed gas will fluctuate with temperature, be-

sides the changes in pressure that may attend any changes of volume that

are brought about. Unless changes of temperature are guarded against,

the inverse proportionality between pressure and volume in a gas discov-

ered by Boyle and by Mariotte will not be accurately registered. In other

words, Boyle’s law obtains only for constant temperatures . The actual study

of the effect of changing temperature on gas was, rather surprisingly, not

made for more than a century.

It is common to represent Boyle’s law graphically. If values of p in

equation (6) be represented as ordinates

p 1 with v as abscissas for a given value of c,

\ a curve similar to Figure 88 results. This

\ curve has the form of an hyperbola. Boyle’s

\ law was first represented in 1686 in this

\ way by Edmund Halley, the friend who
published Newton’s Principia at his own
expense.

Other Limitations on Boyle9
s Law

It is appropriate to inquire into the limits

of the validity of Boyle’s law. Is pressure

inversely proportional to volume for all
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Fig. 89. Robert Boyle

gases, through all ranges of pressure, and at all temperatures? A part of

the answer is to be found in data which Boyle himself took. After his first

manometer had been broken by accident, he made another, the open side of

which was more than eight feet in length. The pressures in this tube were
found to mount more rapidly than the inverse proportion allowed for. Sub-
sequent observers have verified this fact. The discrepancy vindicates

Boyle’s law, however, rather than invalidating it
;
this for two reasons.. First,

the effective, unoccupied volume of a container is not its entire interior, but
is less than the entire interior by the actual volume occupied by the mole-
cules of the gas. The free space which the molecules have for their mo-
tion is thus smaller than the actual volume of the container. Second, the
external pressure is not the only agency holding the gas molecules together.

There is an attraction between the molecules themselves which aids the ex-

ternal pressure in this respect. When allowance is made for these two
effects, as is done when the so-called Van der Waals’ equation is substi-

tuted for Boyle’s law, the discrepancies shown by the data of Boyle and his

successors largely disappear. Boyle’s law is sometimes said to apply
rigorously only to “perfect” gases; that is, gases whose molecules have no
volume and which do not exert any forces on each other except during the
instants of actual impact.

These two disturbing factors become prominent in a gas as the tempera-
ture approaches the point of liquefaction. In fact the liquid state obtains
when the forces of attraction between molecules are great enough so that no
external pressure is required to prevent expansion. Hence, Boyle’s law
applies the most closely to gases whose “boiling points” — that is, tem-
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peratures of transition from the liquid to the gaseous state — are very low,

such as hydrogen, nitrogen, oxygen, and the so-called noble gases, helium,

argon, etc., and applies much less closely to steam, to the gases used in

mechanical refrigerators, or to any gas not at a temperature far above the

point of liquefaction.

Why Are Gases Compressible?

There is no serious attempt on the part of any of the earlier writers to ac-

count for the compressibility peculiar to gases. Aside from some poorly

conceived speculations to the effect that the atoms of gases experienced

mutual repulsions, a view of pressure as a purely static phenomenon, the

first attempt to explain the behavior of gases on a simple mechanical basis

was made by Daniel Bernoulli (1700-82). Bernoulli's approach was along

an entirely new line, in which gas pressure was viewed as the result of

myriads of atomic impacts against the walls of the container. This point

of view regarded pressure as a phenomenon of dynamic equilibrium rather

than of static equilibrium as the repulsion theory had done. The idea was

so novel that it was not taken seriously for more than a century. Ulti-

mately it developed into one of the major chapters of modern physics, the

kinetic theory of gases.

Bernoulli's approach is significant enough to warrant a closer view. In

his Hydrodynamics ,
published in 1738, is

found the following presentation (30:220;

77:248):

Imagine a vertical cylindrical vessel

(Fig. 90) in which fits a movable piston

EF upon which there is placed a weight

P. Let the enclosure contain some very

small particles moving hither and

thither with extreme rapidity. It is

these corpuscles which impinge upon

the piston and which by their continu-

ally repeated impulses sustain it that

constitute the elastic fluid; a fluid

which expands whenever the weight P
is removed or diminished (and) which

is compressed whenever the weight is

increased.
Fig. qq Bernoulli’s Theory of

Bernoulli formulated algebraically the Gas Pressure

relation between the action of these fly-

ing particles and the external steady pressure which would be produced by

them and deduced that

the compressing weights are almost in the inverse ratio of the spaces which

air occupies when compressed by different amounts And the tempera-

ture of the air while it is being compressed must be carefully kept constant
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. . . since it is admitted that heat may be considered as increasing internal

motion of the particles.

This is an almost complete prevision of a .stage of physics which was not

actually reached for one hundred and ten years.

Volume Modulus of a Gas

It will be worth while to compare the elastic properties of gases, as thus

established by Boyle and elaborated by Bernoulli, with those of solids and

liquids. There is a certain similarity which is indeed more than superficial,

as was pointed out on page 66. But there is also an important difference.

Briefly it is that, though elastic moduli of solids and liquids are constant

within the elastic limits of the materials involved, the volume modulus of

a gas, on the contrary, changes with pressure. Indeed, within the limits of

applicability of Boyle’s law, the volume modulus is the pressure.

The foregoing statement requires some elucidation. Suppose, for ex-

ample, that one pound added to the load on a steel wire is found to extend

the wire .01 inch. The next pound will produce the same extension, and so

on indefinitely until the elastic limit is reached. Contrast this with the

behavior of a gas. Increasing the pressure on one cubic foot of air, initially

at 14.7 pounds per square inch (atmospheric pressure), by another 14.7

pounds per square inch will diminish the volume by one half a cubic foot in

accordance with Boyle’s law. Increasing the pressure by another 14.7

pounds per square inch will not produce the same diminution of volume, as

would result if the modulus were a constant, but will instead reduce the

volume to one third the original volume in accordance with Boyle’s law.

In this way, beginning with the first measurement of pressure, the succes-

sive equal pressure increases produce volume diminutions of one half, one.

sixth, onp twelfth, one twentieth, etc., of the original volume. This means
that the volume modulus of the air is steadily increasing. That the succes-

sive values of the modulus are proportional to, and indeed numerically

equal to, the pressure may be shown as follows. Suppose that a change of

pressure Ap 1 produces a change of volume Av. Then the volume modu-
lus is, by equation (4),

modulus
stress

strain

Ap
Av/v

(7)

But from Boyle’s law, equation (6),

pv — c, and also

(

p

+ Ap) (v — Av) = c. (8)

1 Small increments of a quantity are often represented by the Greek capital letter A (delta).

In this case Ap means not the product of the two quantities A and p as ordinary algebraic nota-

tion would require, but is to be interpreted, “a small change of pressure.” The A and the p
together constitute a single symbol and can no more be separated than a script d can be cut into

two parts, one of them being an a, by lopping off the upper projection.
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Expand equation (8)

pv — p Av + v Ap - Ap Av - c.

Subtract pv = c and disregard the product Ap Av as being negligibly

small in comparison with the other terms in the equation. Whence,

or

— p Av + v Ap = 0;

Ap
Avjv

(9)

But by equation (7), the expression
Ap

Av/v
is the expression for the volume

modulus of the gas. Hence the volume modulus of a gas is the pressure of

that gas. It consequently is not a constant as is the case for solids and
liquids, but varies even within the elastic limit. This identity of volume
modulus with pressure for a gas will be of considerable significance when
the velocity of sound in a gas comes under scrutiny.

Questions for Self-Examination

1. Distinguish between stress and strain.

2. Describe three types of stress and give an example of each.

3. What is the “ dangerous section ” of a loaded beam?

4. Set up a loaded beam and draw its shear diagram.

5. State Hooke’s law and its limitations.

6. Classify moduli of elasticity and give the general definition of the term.

7. State Boyle’s law and its limitations.

8. Discuss the volume modulus of gases.

Problems on Chapter 7

1. A rod of circular cross-section, diameter d inches, supports W tons. What is

the tensile stress T in pounds per square inch? Consult the Appendix to determine

cases in which the rod, if of steell, would not hold the load.

d W T a b W 5
L. .50 10 100,000 2. 2 4 4 1000

1.0 20 51,000 4 2 4 1000

2.0 30 20,000 2 10 8 800

3.0 40 11,000 10 2 8 800

2. A rectangular beam, with cross-sectional dimensions a by b inches, rests upon two
supports and carries W tons midway between them. Find the shearing stress S
in pounds per square inch.

3. A wrought-iron bolt d inches in diameter is tested to destruction by applying W
tons as shown. The head is t inches thick. What are the two ways in which

the bolt can fail? Calculate the shearing and tensile loads (

S

and T) which the

bolt can withstand. Which type of failure will occur? Take the tensile strength
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of wrought iron as 60,000 and shearing strength as 40,000 pounds per square inch.

Hdh d W t
\

S Td W / S T
.50 20 .5 31,000 47,000

.75 50 1 . 94,000 110,000

1.00 100 1.75 220,000 190,000

1.25 160 2.25 350,000 290,000

W
Fig. 91

4.

A circular shaft d inches in diameter is twisted. Two sections l feet apart suffer

a relative displacement of 9 degrees. What is the shearing strain S at the surface

of the shaft?

d l 9

2. 10 4° .00055

25 12 3° .00045

3. 14 2° .00031

3.5 16 1° .00016

5.

These struts all have a cross-section A inches square. The inclined members
make 9 degrees with the horizontal. What is the tensile stress T in the horizontal

member when a load W pounds is applied at the top)? If the wood has a maximum
allowable shearing stress of S lbs/in2 parallel to the grain, what is the closest dis-

tance d that the notches may come to the end of the horizontal member?

A 9 W 5 T d

5 60° 1200 400 350 .17

4 o
O 1000 600 420 .18

3 40° 800 800 480 .20

2 30° 600 1000 520 .43

6.

A riveted joint of the type shown in Figure 93 joins two iron plates t inches thick.

The holes and rivets are d inches in diameter. The distance between centers of

rivets is p inches. The allowable tensile stress in the plates is 60,000 lbs/in2

and the allowable shearing stress in the rivets is 40,000 lbs/in2. Will the joint

fail by shearing of the rivets or by tearing the plates between the rivets? What
force per linear inch will produce such failure?

^^0
|

Fig. 93
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t d p F t d p
.250 .500 1.10 7,100 7. .250 .5 1.0

.375 .625 1.20 10,000 .375 .625 1.2

.500 .750 1.30 13,000 .500 .7500 1.3

.625 .875 1.40 14,000 .625 .875 1.5

7. In the riveted joint of problem 6, what must be the spacing of the rivets (between

centers) if the joint is equally likely to fail by shearing of rivets and tearing of

plates between rivets?

8. In problem 6, what is the closest allowable distance b of centers of rivets to edge

of plate if the joint is just not to fail by shearing of the plate? Figure 94 is a draw-

ing of a plate that has failed this way. Take the allowable shearing stress of the

plate as 40,000 lbs/in2
.

P F b

.250 1.10 7,140 .39

.375 1.20 10,225 .41

.500 1.30 12,680 .41

.625 1.40 14,050 .49

9.

In problem 1 what will be the elongation c in inches of the rod if it is initially

l feet long? The material is steel with Young’s modulus 3.2 X 107 pounds per

square inch.

d W l e

.50 10 5 —
1.0 20 10 .20

2.0 30 15 .11

3.0 40 20 .085

10.

A rectangular beam, with cross-sectional dimensions a by & inches, rests upon
two supports at its ends and carries W pounds at the middle. What will be the

deflection ds of the beam due to shear if it is made of oak and is / inches long?

Compare with the deflection db due to bending, computed from the relation

. WP
db ~IYaP’

where Y is Young’s modulus in pounds per square inch and b is the vertical di-

mension in inches. For oak, Young’s modulus is 1.5 X 106 and the rigidity

modulus is .7 X 10®, both in pounds per square inch.

a b W l ds db

2 4 1000 60 .011 .28

2 4 1000 30 .0054 .035

2 4 1000 12 .0021 .0022

4 2 1000 30 .0054 .14

11. The formula of problem 10 is much used in the determination of Young’s modulus.
Calculate Young’s modulus in pounds per square inch for the following materials

from the tabulated observations on rectangular beams made of the respective

materials.

material a b 1 W d Y
Oak 2. 4. 5 1000 .280 1.5 X 10®

Copper .5 .5 1 500 .232 15 X 10®

Cast iron 2. 1 . 2 1000 .102 17 X 10®

Steel 1 . 1 . 3 1000 .389 30 X 10®
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The intake valves of one of the cylinders of a gas compressor working isothermally

are set to open at p pounds per square inch. The exhaust valves open at.P pounds

per square inch. What fraction / of the stroke has been completed when the

exhaust valves open?

p p
\ / d 5 l

12. 14.7 75 .80 13. 100 1.00014 .007

.
75. 350 .79 1,000 1.0014 .720

350. 1200 .71 10,560 1.015 80.

1200. 3000 .60 36,960
j

1.053 980.

13. The volume modulus of water is 3 X 106 pounds per square inch. What is the

specific gravity $ of water at depth d feet under the compression of the weight of

the water above? For a body of water having an average depth d feet, how much
lower l is the surface in feet than it would have been if water had been completely

incompressible? Assume as a first approximation that the density of water does

not change with depth. You can then correct the preliminary values of s for the

error of this assumption. {Note: One may take the average depth of all the oceans

as two miles.)

14. Compute the reactions at the supports, C and D, for each of the beams shown in

Figure 95. Then construct shear diagrams and
determine how many feet x from the left end the

dangerous sections are located. All beams are

12 feet long, weigh 100 pounds per foot, and
have concentrated loads A and B distant a and
b feet respectively from the left end. The sup-

ports are located respectively c and d feet from

the left end.

Fig. 95

A a B b c d C D Xi Xz

400 3 0 12 900 700 5.

1000 0 300 8 1 12 1900 650 1 . 8.5

1500 2 200 5 0 12 2000 930 4.7

1000 0 500 7 3 10 2300 370 3. 8.3

15.

Calculate the value E of the volume modulus of air for p E
each set of data in problem 12, thereby showing that it 14.7 16.

is numerically equal to the pressure. (Assume a one- 75. 76.

pound change in pressure of an arbitrarily chosfen volume 350. 350.

at each given pressure, calculate the corresponding change 1200. 1200.

in volume and apply equation (9) .) Why do the first two 3000. 3000.

pairs of values agree less well than the others?



CHAPTER 8

Equilibrium in Fluids

Archimedes9 Principle

The utility of the concept of equilibrium is not confined to solids. It

applies at least as effectively to fluids, a term which includes both liquids

and gases. In fact it was applied to liquids nearly two thousand years be-

fore it took definite shape in the mechanics of solids. The first formulation

of the principle of equilibrium in liquids was made by Archimedes. The

tradition is that it burst upon him as he was submerging himself in a full

bathtub and that in the ecstasy of his discovery he raced nude to his study,

crying, “Eureka (I have found it).”

What is known as Archimedes' principle is contained in the following

paraphrase of his own statement of it (5 :257—58)

:

A body immersed in a fluid is buoyed up with a force equal to the weight of

fluid displaced.

The principle is sometimes verified by a very elementary experiment, using

a device first attributed to A1 Biruni (973-1048)

(25 :19). A vessel with a spout near the top to

facilitate the catching of overflow, is just filled

with some liquid, and a solid object is lowered

into it. The overflow is then caught and

weighed. If the solid object floats, the weight

of the overflow will equal the weight of the

object. If it sinks, the weight of the overflow

will equal the loss of weight which the object

experiences when lowered into the liquid. In

either case, the^object is buoyed up with a force

equal to the weight of the liquid displaced,

which verifies Archimedes' principle.

The Measurement of Density

One of the modern uses of Archimedes' principle is in measuring the

volumes of irregular solids. When such a solid is immersed in a liquid con-

tained in a graduated vessel, the rise in the level of the surface gives a

measure of the volume of the submerged body. This becomes particularly

Fig. 96 . Al Biruni’s Spe-
cific Gravity Vessel
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Fig. 97. The Death of Archimedes in 212 b.c.

A mosaic found in the ruins of Pompeii, and which must therefore have been constructed before the year 70.

(Courtesy of Scripta Mathematica.)

useful in determinations of densities of such objects as jewels and precious

stones, the volumes of which cannot readily be measured otherwise.

The concept of density is a very simple one. The fundamental nature of

the intuition of density is shown in the ease with which one may be trapped
by the old catch question, ‘‘Which is heavier, a pound of lead or a pound of

feathers?” Like all intuitions, however, it requires careful definition be-

fore it can be used as a scientific concept. The modern definition of density

is mass per unit volume, or, stated algebraically,

The utility of Archimedes’ principle in measurements of density of solids is

thus evident in the very definition. Archimedes’ principle is even more
useful in this connection than is evident at first sight. This is because re-

finements in the balance have made precision measurements of weight 1

more satisfactory than precision measurements of volume. The common
1 For present purposes weight may be taken as a measure of mass. The distinction between

the two will be developed in Chapter 9.
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procedure, therefore, when the density of an irregular solid is in question, is

to find its weight m in air (strictly in a vacuum, but the difference, not ordi-

narily important, can be corrected for if necessary) and then its weight w in

some liquid of known density D. The difference in weights is, by Archi-

medes’ principle, the weight of the liquid displaced by the solid; in other

words, the weight of liquid equal in volume to the solid. The volume of

this liquid, and hence the volume of the solid, is therefore

The density of the solid then becomes calculable by equation (1).

Specific Gravity

The units in which density is specified will depend on circumstances.

It is common to say that the density of water is 62.4 pounds per cubic foot.

It is also 1000 kilograms (one metric ton) per cubic meter, from the original

definition of the gram, as the mass of one cubic centimeter of water. Simi-

larly, the density of iron, for example, is 7860 kgm/m3
,
of ice 916 kgm/m3

,
of

ethyl alcohol 793 kgm/m 3
,
and of air at normal temperature and pressure

1.29 kgm/m3
.

1

It is more common, however, to specify density in terms of

the density of water. Thus, a cubic meter of irQn* weighs 7.86 times the

same volume of water. The cumbersome term specific gravity was coined

in the twelfth century to describe the ratio of the density of any substance

to the density of water, and has persisted. Since it expresses a ratio, no

units are involved. The specific gravity of ice is thus .916; of alcohol, .793

;

and of air, .00129. The utility of Archimedes’ principle in the determina-

tion of specific gravities of solids and liquids should be even more evident

than in the determination of densities, since it involves directly the ratio of

weights in air (or rather in a vacuum) and in water or other liquid.

Pascal*s Principle

Another characteristic of fluids, now known as Pascal’s principle, appar-

ently eluded Archimedes, though it was implied in his principle. It is

commonly stated as follows:

Pressure exerted at any place on a fluid in a closed vessel is transmitted un-

diminished throughout the fluid and acts at right angles to all surfaces.

Though these are not the words in which the principle was first stated, they

constitute a reasonable modern version of the original phraseology. Pascal

1 Strictly speaking, the numerical values of densities in the metric system will be on this scale.

In this book, however, densities will usually be stated in kilograms per liter instead of kilograms

per cubic meter. See, for example, the table of densities in the Appendix. This possesses the

minor advantage that such familiar quantities as the C.G.S. unit of density of water (1 g/ml)

has the same numerical value when stated in kg/1. But for actual calculations requiring ab-

solute values, as in dynamical relations, the strict M.K.S. unit of density (kg/ms
) must, of

course, be used.
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I

Fig. 98. Pascal’s Hydraulic Press

(77:76)

enunciated the principle, in a somewhat verbose way, in connection with

his description of a device which later became an important industrial tool,

the hydraulic press (patented in 1795 by Joseph Bramah).

Pascal’s principle is, as he put it, merely a corollary of the “ continuity

and fluidity of the water.” It is, indeed, the principal distinction between

fluids and solids that solids possess elasticity of both size and shape,

whereas fluids exhibit elasticity of shape, but not of size. Fluids resist

any effort to compress them, but not to change merely their shape. From
this follows the transmission of pressure in all directions; from this follows

also the inability to resist or transmit tangential forces at the boundaries.

Consequently fluid pressure must be perpendicular to the surface.

Pascal purposely disregarded the effect of the weight of the water. It

will be illuminating to consider it, notwithstanding. If bricks were piled

one above the other to a total weight of 100 pounds, a 100-pound vertical

force at the bottom would be all that would be required to support the pile.

This force would normally be distributed over the area of the bottom brick,

requiring an average pressure, say, of about three pounds per square inch.

But if 100 pounds of water were contained in a tank having the same area

at the bottom, the contents would experience other forces besides those

applied at the bottom. The sides of the tank would also have to withstand

horizontal pressures, varying uniformly from three pounds per square inch

at portions adjacent to the bottom to zero at the top. But if the tank,

while still possessing the same area at the bottom, were shaped like an in-

verted T, so that it contained a much smaller weight of water, and the bot-

tom were a movable, watertight piston, the pressure at the bottom, being

three pounds per square inch, would still require a total upward force of

100 pounds to support it, as the hydraulic-press analysis of Pascal makes
dear. The generalization of this apparently anomalous drcumstance is

commonly known as the hydrostatic paradox. If the vessels should be
placed in turn on a balance, the weight of the liquid contents would, of

course, be quite different in the two cases, even though the force exerted

by the liquid on the bottom of each container were the same. Therein lies
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the “ paradox,” which, however, can be resolved by a little thought. The
paradox is sometimes illustrated by a set of so-called Pascal's vases

,
glass

containers of a variety of shapes and sizes, communicating with each other

at the bottom. The equality of the heights of the liquid in all of these

vessels gives evidence of the equality of the pressures at the bottoms.

The Open Manometer

The equality of pressures at the bottoms of communicating vessels of

liquid is sometimes utilized in the determina-

tion of the relative densities of two liquids. Sup-

pose, for example, that a glass U-tube (in effect

a pair of “Pascal's vases”) contained water in

one side and mercury in the other. The two

liquids would not stand at the same height, but,

by virtue of the equality of the pressures at the

bottom, would stand at heights inversely pro-

portional to their densities. Thus, a column of

water would stand 13.6 times as high as a col-

umn of mercury (Fig. 100). In the same way
it is possible to compare the densities of any

two liquids which -do not mix. The method

depends on the pressure equilibrium at the

bottom between the two columns of liquid in

the U-tube, or manometer as such a device is

termed. The manometer is in fact primarily a

pressure-measuring instrument. It is used quite

commonly in comparing pressures of two bodies

of gas, especially when they are at relatively low

pressures, as the name indicates. (The first

syllable, man-, stems from a Greek root meaning rare or thin)

The Mercurial Barometer

Figure 101 shows how a manometer may be used to measure the pressure

exerted by the atmosphere. Mercury is usually used for this purpose.

When the air is removed from one side of the manometer by a vacuum
pump, the pressure of the atmosphere on the other side forces the mercury

up in the evacuated side until it is balanced by the height of this column

of mercury. Such a balance occurs when the difference of the heights of

the mercury on the two sides is between 72 and 76 centimeters under condi-

tions usually obtaining (weather and altitude). When used in this way,

the manometer is termed a barometer
,
meaning pressure gauge.

The first barometer on record was made in 1644 by Evangelista Torri-

celli, who had been a pupil of Galileo. Its importance lies not so much in

the device itself as in the fact that it was an outgrowth of the first correct

Fig. 100. Relative Heights
of Water and Mercury
in Equilibrium
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Fig. 101 . Using a Manomf.- Fig. 102. An Early Illustration of the Con-

fer to Measure Atmos- struction and Use of a J'okricf.lli Tube
PHERIC PRESSURE (Courtesy of Taylor Instrument Companies.)

view of the nature of atmospheric pressure and of a vacuum. This was a

recognition of the fact that

We live immersed at the bottom of a sea of elemental air, which by experi-

ment undoubtedly has weight, and so much weight that the densest air in

the neighborhood of the surface of the earth weighs about one four-hun-

dredth part of the weight of water.

This is a rather badly stated (as well as inaccurate) comparison of the

densities of air and water. But it was nevertheless a new and very produc-

tive idea. The principle of the modern barometer was involved in Torri-

celli’s early devices, two of which are pictured in Figure 103.

Pascal's Study of the Vacuum

In 1647, Pascal took up the investigation where Torricelli had left it.

It had, in the meantime, become a highly controversial subject. The

controversy originated in the insistence of the Scholastics on the Aristote-

lian doctrine of the practical and logical impossibility of a vacuum. The
rallying cry of this school of thought was “Nature abhorret vacuum.”

Even Galileo had been only mildly ironical about this Aristotelian doctrine.

Having observed, prior to the Torricellian experiment, that (46:16)

it was not possible, either by a pump or by any other machine working on
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the principle of attraction to lift water a hair’s breadth above eighteen

cubits,

he is said to have remarked that Nature’s abhorrence of a vacuum seemed
to be limited to eighteen cubits of water, but to have gone little farther

with the problem.

Having become convinced of the correctness of Torricelli’s conclusions,

Pascal leaped into the controversy, invoking a

series of Striking experimental demonstrations to

support his point of view. He was fortunate in liv-

ing in Rouen, the site of one of the best glassworks in

Europe, because he was thus enabled to conduct ex-

periments which would otherwise have been im-

possible. He supplemented these with a number of

other ingenious and sensational demonstrations, in-

cluding the use of a plunger-type syringe as a vac-

uum pump. This was the first time a mechanical

pump had ever been used to produce a vacuum. It

furnished Otto von Guericke with a tool which he

used most effectively a quarter of a century later.

Pascal capped his contributions to the controversy

by his famous experiment on an adjacent mountain.

The project was to carry a barometer to the top of

Puy-de-Dome and observe any attendant fluctua-

tions in the height of the mercury column.

This anticipated a common use made of the ba- Fig ^3 Torricelli’s
rometer today, namely, its use in measuring altitude. Barometers

He foresaw this, and commented on the possibility. (77:7i)

In addition, he observed the correlation between fluctuations of barometer

height and subsequent weather conditions and remarked (20:671):

This knowledge can be very useful to farmers, travelers, etc., to learn

the present state of the weather, and that which is to follow immediately.

Questions for Self-Examination

1. State Archimedes’ principle, define density, and use the two to solve this problem:

A piece of metal weighs 200 pounds in air, 100 pounds in water and 105 pounds

in oil. Find the density of metal and oil in lbs/cu ft. Take for the density of

water the approximate value 60 lbs/cu ft. •

2. Discuss the stability of floating bodies.

3. What is the “ hydrostatic paradox”?

4. Mention some episodes in the evolution of the barometer.

5. What was the main point at issue between Pascal and his detractors?

6. Summarize the contributions to hydrostatics of Torricelli, Pascal, Galileo.

Problems on Chapter 8

1. Ice floats in fresh water with .08 of its volume above water. What is its specific

gravity? If an iceberg floats with .1 of its volume out of water, what is the specific

gravity of the sea water? .92. 1.02.
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2. A piece of metal weighs 1.6 kilograms in air and 1.4 kilograms in water. A piece

of wood weighs .8 kilogram in air and the two fastened together weigh .6 kilogram

in water. Find the specific gravity of each specimen. 8. .5.

3. A diving helmet rests on the shoulders of a diver. It is of the type used by ama-

teurs for a few minutes’ submersion only and has no air supply. If the diver’s

nostrils are one third the distance from the open bottom of the helmet to the top,

what is the greatest depth attainable? 17 ft.

4. Air is forced into a tank by an air pump having a maximum inside volume half

that of the tank. How many strokes will be required to pump it up to a pressure

of three atmospheres, assuming that Boyle’s law applies and that the process

begins with air in the tank at atmospheric pressure? 4.

5. How much lower should the barometer read at an elevation of 500 meters than

at sea level, taking the average density of air as 1.2 kilograms per cubic meter?

4.4 cms.

6. A metal ball weighs M grams in air, M m w D d

m grams when immersed in water, and w 200 100 105 2 .95

grams when immersed in oil. What is 500 400 410 5 .90

the specific gravity D of the ball and d of 800 700 715 8 .85

the oil? 1100 1000 1020 11 .80

7. A U-tube is partly filled with water. Oil is poured h w d

into one side until it stands h centimeters above the 5 47.5 .95

water level on the other side, which has meantime 10 45. .90

risen w centimeters. What is the specific gravity d 15 42.5 .85

of the oil? 20 40. .80

8. What pull Pi in kilograms docs a balloon of v m P\ P2

volume v cubic meters and weight m kilo- 500 250 310 270

grams exert on its guy ropes when inflated 1000 350 770 690

with hydrogen of specific gravity .0695 (re- 1500 450 1200 1100

ferred to air)? What pull P2 does it exert if 2000 550 1700 1500

filled with helium of specific gravity .1370?

Take the density of air as 1.2 kilograms per

cubic meter.

9. What is the error e in grams due to neglecting m d e

the buoyancy of the air in weighing an object 20 .2 — .12

of mass m grams and specific gravity d on a 200 2. — .09

beam balance? (Assume the density of the 800 8. 0

brass weights to be 8 grams per cubic centi- 2000 20. + .18

meter, and that of the air to be .0012.)

10. How many meters h would a liquid of specific d p h

gravity d rise in an evacuated tube, atmos- 1. 1000 10.

pheric pressure being p grams per square centi- 5. 1000 2.

me|pr? 10. 1000 1.

13.6 1000 .74

11. What must be the height h in feet of the level of water in a p h
tank, to produce a pressure of p pounds per square inch on its 40 92

base? (Assume the density of water to be 62.4 pounds per 80 180

cubic foot.) 100 230

150 350



CHAPTER 9

Weight and Mass

Weight is Variable

In the experiments described on page 48 the observers were relieved of

the inconvenience of maintaining the forces under study through their own
muscular exertions by enlisting gravity in their aid. The downward pull

of the; earth on some metal disks termed weights furnished the required

forces. Let us suppose, now, that the force table were set above a very

deep well, far deeper than even the deepest mine shaft, and that into this

well one of the disks were lowered. It would presently be observed, as the

disk was lowered to progressively greater depths, that the former condition

of equilibrium on the force table no longer obtained.1 The effect would be

as though weight were slowly being removed from the descending pan.2

The difference in gravitational attraction on an object as it is raised or

lowered to different altitudes is far more than the hair-splitting matter

that it is sometimes felt to be. The change in the weight of a one-pound

object as it is raised from floor to ceiling of an ordinary room would be

detectable with a good-quality analytical balance such as is in common use

in all physics and chemistry laboratories. Moreover, extensive use is made
of fluctuations in weight with change of location in the process of geo-

physical prospecting for oil and other minerals. For this purpose a Hun-
garian inventor named Eotvos designed a special type of balance which

bears his name; though exceedingly delicate, it is nevertheless capable of

being used in the field by prospecting parties.

The reason that gravitational attraction on an object fluctuates with

changes in altitude is not far to seek. Consider the extreme case of the

imaginary disk under observation being lowered to the center of the earth.

For this purpose the well may be supposed to have been sunk to that depth.

There would now be no downward gravitational pull on it whatever, for

the attraction due to the body of the earth, which now surrounds the disk

on all sides, is uniformly distributed in all directions; hence, there is no

component directed toward the center of the earth as before.

1 An experiment of this kind was actually carried out in 1662 and a report made to the Royal

Society of London in December of that year (19:1:133).

* An effect due to the non-homogeneity of the interior of the earth would produce a slight in-

crease in gravitational attraction for a short distance below the surface. This effect, experi-

mentally demonstrated in 1885 by Sir George Airy, is here disregarded.
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The First Observation of Variability of Weight

Let us return to the disk which had lost its weight in consequence of its

descent to the center of the earth. It may be noted that a similar diminu-

tion of gravitational attraction would have been observed if the disk had

been raised to great heights above the earth. Indeed, small fluctuations

of the sort may be observed without leaving the earth’s surface. On ac-

Fig. 104. How Weight Diminishes Above and Below
the Surface of the Earth

count of the equatorial bulge, with consequent variation in the distance

of various portions of the surface of the earth from the center, there exist

variations similar to the foregoing with mere changes in latitude. The
effect was observed first in 1671, when Jean Richer went from Paris to

Cayenne in French Guiana to make astronomical observations. He found

that his pendulum clock, a new invention by Christiaan Huygens, which in

Paris had been adjusted to keep correct time, ran slow in the new locality

by two and one half minutes a day. He was, of course, entirely at a loss to

account for it until, after his return, Huygens pointed out that the rate of a
pendulum clock would be affected by alterations in the gravitational at-

traction of the earth on the pendulum.

Fig. 10S. Distances or Jump on Different Members
of the Solar System
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The important thing to observe in all this is that weight, which is the

name given to the mutual gravitational force between the earth and any
object under consideration, does not have the fixed, invariable value some-

times ascribed to it by the unthinking. An object weighing one pound
at the surface of the earth will weigh zero at the center and substantially

zero if taken to the far reaches of astronomical space. On the contrary,

at the surface of a dense star, such as the small companion of Sirius, it

would weigh several tons. Any statement that an object weighs so many
pounds always carries the qualification, usually not stated, but present

nevertheless, limiting its validity to the surface of the earth, and even then

is somewhat uncertain until latitude or altitude is specified.

The Concept of Mass

Notwithstanding these unquestionable fluctuations in weight, it is im-

possible for us to disregard a robust intuition that there are, after all, no
corresponding fluctuations in what has been somewhat ineptly termed the

quantity of matter. The hundred-gram metal disk did not lose its sub-

stance when it was at the center of the earth merely because its weight

became zero. It could neither have shrunk into nothingness nor faded into

some kind of incorporeal ghost of its former self. In a way which is at

first hard to formulate, we are confident that something about that disk

besides its volume remains unchanged through all fluctuations of weight.

Such intuitions merit careful study. They are often misconceptions which

require careful revision. But occasionally, as in the present case, they

are fundamental verities which, after clarification, may be made to do good

scientific service. In either case they cannot be accepted at their face

value, but must be painstakingly analyzed.

Galileo struggled with this seeming paradox in a somewhat confused

manner, but never really solved it. Descartes tried his hand at it without

success. Not until Isaac Newton (1642-1726) formulated his famous laws

of motion was the problem clarified. This seems quite amazing in view of

the fact that the solution is one which the majority of individuals with

normal powers of observation carry around vaguely as an intuition from

childhood.

Newton gave the name quantity of matter to the entity which is conceived

of as remaining unchanged through the fluctuations of weight described

above. The name has proven unfortunate and his definition of the concept

still more so, as will presently be seen. Indeed, he himself introduced the

term inertia to replace it in the later portions of his Princzpia. Nowadays
the term mass is most commonly used to express this idea.

The distinction between mass and weight is unquestionably the most

important distinction in the early history of physics. That the terms

should frequently be confused by the layman is not surprising, especially

in view of the common use of the same units, such as ounces, pounds, and

tons, to express the two, an exceedingly unfortunate practice. Moreover,
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clear as the difference now appears to the initiated, there must be an ele-

ment of subtlety in any important physical concept which eluded the minds

of all the great scientific thinkers up to the time of Kepler. Nevertheless,

the distinction between mass and weight is entirely straightforward and

logically simple. It is essentially contained in the statement that, whereas

weight is the force of gravitational attraction upon an object, mass is the

inertia or sluggishness which an object, when frictionlessly mounted, ex-

hibits in response to any effort made to start it or to stop it or to change in

any other way its state of motion.

If, for example, the suspended disk which was used to illustrate fluctua-

tions of weight had been tapped horizontally with a hammer when at the

top of the well where its weight was normal, and again in a direction parallel

to the first blow when at the center of the earth where its weight was zero,

provided that the speed with which the hammer struck was the same in

both cases, what would be the ratio of the second resulting speed of the

disk to the first? The experiment can, of course, never be carried out in

the form described, but the entire accumulation of mechanical knowledge

necessitates the belief that the resulting speed of the disk would be the

same in the two cases, notwithstanding the fact that the weights were dif-

ferent, being what would be termed normal in one case and zero in the

other.

The Measurement of Weight and Mass

Weight is simply the name given to the gravitational force exerted by
the earth on an object in question. Measurements of weight are thus

simply measurements of force. Forces may be compared with the aid of

balances. The spring variety is useful but inaccurate. The beam balance

is more commonly used to compare weights. It has the great advantage

that it automatically corrects itself for fluctuations in gravitational at-

traction, since these act alike on counterbalancing weights and the objects

being weighed.

The real justification for the assumption that comparison of weights will

give accurate measures of comparisons of mass must, of course, be sought

in experiment. The assumption has, in fact, been fully vindicated in that

way, subject to the condition that it is only in the locality where the weight

measurement was actually made that the mass may be assumed propor-

tional thereto.

However convenient the proportionality of weight and mass may be

from the standpoint of practical convenience, from the standpoint of facili-

tating clarity of thought on the principles of mechanics it has been a catas-

trophe. Most of the confusion between the concepts of weight and mass,

concepts which are, in fact, logically entirely disparate, has been occasioned

by the accident of their numerical proportionality. This has been a stumb-
ling block from the time that man first began to give rational consideration

to the physical phenomena of nature. While mass is proportional to
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weight for any given locality, it must be remembered that a mass has the

same value at all places,
1 whereas a weight may vary through wide limits,

depending upon locality.

The real distinction between weight and mass came with the work of

Isaac Newton, culminating in his three famous Laws of Motion. So basic

are these laws that it is commonly considered that one of them, the second,

constitutes the definition of mass, if force be considered the more funda-

mental, or of force, if mass be considered the more fundamental. The usual

choice between these alternatives will be seen (p. 96) to be to regard mass

as the fundamental quantity and to use the relation between mass and

acceleration, which constitutes Newton’s second law of motion, to define

the unit of force.

Questions for Self-Examination

1. State some circumstances, real and imaginary, under which weight changes with-

out any change in mass.

2. Recount the experience of Jean Richer in 1671 with one of the first pendulum

clocks.

3. Distinguish between mass and weight and give examples of your distinction.

1 Implications here and elsewhere of the invariability of mass take no account of the

variability postulated in the theory of relativity. That and the associated concepts are

scarcely appropriate at this stage.



CHAPTER 10.

Mass and Acceleration

A Classical Experiment on Force and Motion

Three concepts, among others, have received attention in the foregoing

chapters; namely, acceleration, force, and mass. Very little has been said

up to this point about possible relations that they might bear to each

other, though it has been noted that Galileo’s work involved an implication

that the force of gravitational attraction was responsible for the observed

uniform acceleration of falling bodies.

Attention may now be given to the general problem of the kinds of mo-
tion produced by forces, the magnitudes of which are varying in certain

ways. The first and simplest of such problems is that of the motion pro-

duced by a constant force. The most direct way to approach this is

through experiment, using a machine first devised by George Atwood, of

Cambridge University, prior to 1780 (7b).

The principle of Atwood’s machine is illustrated in Figure 106. Two
equal masses are hung over a pulley which is as

near massless and frictionless as it is possible to

make it. For the unavoidable small elements of

mass and friction there are simple ways of com-

pensating. As long as the two masses are evenly

balanced, gravitational attraction will be neutral-

ized as far as the production of any motion is con-

cerned. If an initial motion, say upward, is im-

parted to one mass, it will continue to rise in the

absence of friction and the other to descend with

undiminished speed until the end of the course of

travel is reached. This is in accordance with the

Fro. 106. The Principle P™ciple which Galileo applied to the horizontal

of Atwood’s Machine part of the motion of a projectile: namely, that

such motion would remain uniform in the absence

of any force opposing it. If, however, the equilibrium of the two masses

were destroyed by adding or removing weight on one side, the motion

which would, of course, ensue would be of whatever character is to be ex-

pected from the action of a constant force. It is this, type, motion under

constant force, which will now be examined.
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The study of this motion is greatly facilitated by a rapid-fire recording

device indicating the distance traveled by the masses in successive equal

intervals of time. A modern way of effecting this is to cause accurately

timed electric sparks to jump from one of the masses to the frame of the

machine, making perforations in a strip of paper placed there for the pur-

pose. The distances between successive perforations will then be the de-

sired distances of travel.

Motion under Constant Force is Uniformly Accelerated

Suppose, for example, that each of the two masses weighs one kilogram

and that one tenth of a kilogram is removed from one of the masses, and
placed on the other. Suppose also that the time-recorder produces five

sparks per second and that the distances, measured from the beginning,

traveled in the intervals one fifth, two fifths, three fifths, etc., of a second

by the descending mass, are subsequently measured and found to be as

follows:

time (in fifths

of a second) 0 1 2 3 4 5 6

distance (in

centimeters) 0 1.0- 3.9 8.8 15.7 24.5 35.3

distance

(relative) 0 1 4 9 16 25 36

The figures of the bottom row are intended to facilitate comparison of

distances. Inspection of the table shows that distances are in proportion

to the squares of the elapsed time-intervals, which identifies this as the

same type of motion studied by Galileo, namely, uniformly accelerated

motion. Hence, the first deduction to be made from this experiment is

that motion under a constant force is uniformly accelerated motion .

This gives an enormous amount of information. For with the discovery

that this is uniformly accelerated motion goes the knowledge that equa-

tions (1) to (6) of Chapter 3 are applicable, provided only that for g (the ac-

celeration characteristic of free fall under gravity) there be substituted

another term, such as a, which will be free of any implication that it pos-

sesses the value 9.8 m/sec, or that it is necessarily directed downward.

Since y carries an implication of vertical motion, it would perhaps be well

to change that term also to s
,
a common notation for space or distance

traveled, without any commitment as to direction. For although, in the

present experiment, the acceleration happens to be in a vertical direction

(even, indeed, vertically downward as in free fall), this is due to some

purely incidental features of the machine with which the experiment is

performed. A corresponding experiment in which masses move only

horizontally is, in fact, often performed instead of this one. The six equa-
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tions applying to the present case, corresponding to equations (1) to (6) of

Chapter 3, may therefore be written as follows:

v = at a) v = vo + at (4)

s = | at2 (2) s = v0t + \ at* (5)

v = y/2 as (3) v - VV0 4- 2 as (6)

Acceleration is Proportional to Force

But even with this seven-league step, the principal objective of the

present experiment is far from realized. Though equations (1) to (6) de-

scribe thoroughly the motion which is characteristic of uniform accelera-

tion, they give no indication of how this motion is related to the force

which produces it. Some information about this relation is already at

hand, however. Motion characterized by uniform acceleration has been

found to result from the application of a constant force. The next point

on which to inquire is what happens when the experiment is repeated,

again with a constant force, but of different magnitude than before. Sup-

pose that this time two tenths of a kilogram, twice as much weight as be-

fore, is transferred from one mass to the other, both masses having been

originally in equilibrium as in the first experiment. The resulting observa-

tions will now be as follows:

time (in fifths

of a second) 0 1 2 3 4 5

distance (in

centimeters) 0 2.0- 7.8 17.6 31.4 49.0

relative distance 0 2 8 18 32 50

relative distance

(previous expt.) 0 1 4 9 16 25

The bottom row gives the relative distances from the previous experiment

for comparison. Inspection of the table shows that in this case, as before,

the acceleration is uniform, though of different magnitude, and that each

distance in the present experiment is twice the corresponding distance in

the previous experiment. This suggests that the acceleration of the

masses in this experiment has twice the value of that in the former experi-

ment. If this is true, then the following important conclusion may be

formulated: The acceleration is proportional to the applied force.

The establishment of the fact that the response of a movable object to

the application of force is in the form of acceleration possesses an historical

and scientific significance which it would be hard to overrate. Prior to

the scientific era, nobody seems to have imagined such a thing, and its

discovery was symbolic, perhaps more than any other single circumstance,

of the transition in the study of motion from the days of arid qualitative

speculation to those of mathematical and scientific development. In-
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tuitively it often seems more natural to associate force with speed than

with acceleration. Most individuals who are without training in the physi-

cal sciences will identify “ motion ” with force, and if the point be pressed,

will express the opinion that the greater the force, the more rapid the mo-
tion. There is, indeed, much in the accumulation of unanalyzed daily

experience by the average individual to suggest such an impression, but it

is one of the most insidious misapprehensions in the history of science.

The change in emphasis which Newton effected, from speed to acceleration

as a consequence of the application of force, inaugurated an entirely new
and highly productive line of thought. In fact, it was one of the principal

manifestations of the onset of the scientific era.

Acceleration is Inversely Proportional to Mass

But to return to Atwood’s machine. The information which it can be

made to yield is as yet by no means exhausted. In fact, it has still to make
its most important contribution. Thus far it has disclosed that motion

under a constant force is motion with uniform acceleration and that for

a given mass this acceleration is proportional to the force. It remains to

discover the effect of changing the mass. Some prevision of what the result

of the experiment is likely to be may be attained by recalling the characteri-

zation of mass in the previous chapter as “the inertia or sluggishness which

an object exhibits in response to any effort to change its state of motion.”

Hence, if the force remains unchanged, there is reason to suspect that

acceleration will increase as mass diminishes, and vice versa. This suspicion

is promptly verified. If half-kilograms are substituted for the one-kilo-

gram masses and then one tenth of a kilogram is transferred from one side

to the other as in the first experiment, the following measurements result.

time (in fifths

of a second) 0 1 2 3 4 5

distance (in

centimeters) 0 2.0- 7.8 17.6 31.4 49.0

distance

(first expt.) 0 l.o- 3.9 8.8 15.7 24.5

Each of the distances is seen to be double the corresponding one of the first

experiment. Hence the conclusion that the acceleration is inversely propor-

tional to the mass .

The Constant of Proportionality

All of the foregoing conclusions may be summarized in the statement

that motion under a constant force consists of a uniform acceleration which

is directly proportional to the force and inversely proportional to the mass.

Formulated in algebraic terms this is

f /*T\
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Clear of fractions and convert this into an equation instead of a propor-

tionality by introducing a proportionality factor k. Then

/ = kma
, (8)

k being an unknown constant, the value of which is yet to be determined.

The value of k will obviously depend upon the units in which the meas-

urements are made. Usually the units are so chosen as to give k the value

unity; whence equation (8) becomes

/ = ma. (9)

This is effected by selecting for / units which are quite different from the

pound or the kilogram heretofore used. Their values may be deduced by
performing, in imagination, a simple experiment.

Confining attention at first to the metric system, consider a mass of one

kilogram to be accelerating at the rate of 1 meter per second2
. Substitut-

ing the value unity for m in equation (8), (1 kg) and for a (1 m/sec2
) and

setting k = 1 as specified above, the value of / turns out to be unity also.

That is, the unit of force selected in the metric system is that force required

to impart to one kilogram an acceleration of one meter per second per second ,

This is a new unit, which has been named the newton} The corresponding

English unit is that force required to impart to one pound an acceleration of

one foot per second per second . It is called the poundal .

The relation of the newton to the kilogram (regarded as a unit of force

in Chapter 4 and subsequently) may be seen by considering a case of free

fall. A mass of one kilogram falling freely under gravity will have an ac-

celeration of 9.8; whence from equation (9),/ = 1-9.8 = 9.8 newtons, the

force of gravity on it. But the force of gravity on a mass of one kilogram

is commonly said to be one kilogram. Hence, the magnitude of one new-

ton is 1/9.8 times the force of gravity on a one-kilogram mass. Similarly,

in the English system, the magnitude of one poundal is 1/32.2 times the

force of gravity on a one-pound mass.

Newton 9
s Second Law of Motion

Equation (9) is an algebraic formulation of what is commonly known as

Newton’s second law of motion. It formed one of the foundation stones

1 The use of the meter, kilogram, and newton as units of length, mass, and force respectively,

follows a practice which is gaining ground in scientific circles. It is a departure from the older

practice of using the centimeter, gram, and dyne— the dyne being defined as the force required

to impart an acceleration of 1 cm/sec2 to a mass of 1 gram. The two objections to the older

system are (1) that the practical units of length and mass (the centimeter and gram respectively)

are derivatives of the fundamental standards established by international agreement, whereas

it would be better practice to make actual use of the fundamental standards; and (2) that the

older system creates an exceedingly awkward threefold system of electrical units which can be

avoided only by abandoning the mechanical units which give rise to it. The system used here

is free from both of these objections, and its sole disadvantage is that it has not yet come into

common use. The International Committee on Weights and Measures decreed in 1935 that

this system should go into effect in January, 1940, and it is being very generally put into effect

in spite of the second World War.
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of his famous Principia. A free translation of it, expressed in modern
scientific terminology, is:

Rate of change of momentum is proportional to the unbalanced force and
is in the direction of that force.

Momentum (more explicitly presented in Chapter 13) is the product of

mass by velocity. Rate of change of momentum is then the product of

mass by rate of change of velocity. But rate of change of velocity has

already received the name acceleration. Hence “rate of change of mo*
mentum” is simply the product ma appearing in equations (8) and (9).

These equations are, therefore, algebraic statements of Newton’s second

law of motion.

Newton’s First Law of Motion

The foregoing second law of motion of Newton was preceded by his first

law, which, in translation, is as follows:

Law I. Every body continues in its state of rest, or of uniform motion in

a right line, unless it is compelled to change that state by forces impressed

upon it.

It was this law of motion which Galileo anticipated in his treatment of the

horizontal component of the motion of projectiles. As has been noted, it

contravened the mechanical notions of all his predecessors, not to mention

the preconceptions with which all of us, even today, seem to approach the

study of mechanics. Galileo apparently did not realize how basic it really

was, or he would have developed the concept more fully. This, however,

was left for others to do. Newton was not the first to state the principle

explicitly and to sense its importance, but he was the first to incorporate

it into a comprehensive set of laws of motion, the essential validity of

which is amply confirmed by the scientific structure which has been reared

upon them.

Newton’s First Law as a Special Case of the Second

When Newton’s first law is viewed against the background of the second,

it will at once become evident that the first is simply a special case of the

second. That is, if the force is zero, the acceleration is also necessarily

zero, and the speed is therefore constant. It is perhaps not so evident that

the motion will necessarily be in a straight line also. It has, however, al*

ready been observed (p. 14) that a given velocity, as distinct from speed,

is not completely specified unless the direction as well as the magnitude is

named. Development of the idea that change of direction is just as much
a change of velocity as is change of magnitude of speed and that accelera-

tion and force are involved in it will occur in a later chapter (p. 183). In

the meantime, reliance will have to be placed tentatively upon the mere

plausibility of the statement that any alteration of motion whatever,

whether of speed or of direction, requires the application of a force, and
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that, hence, in the absence of any force, neither kind of alteration will occur.

Since Newton’s first law is thus merely a special case of the second, the

question may be raised as to why it is separately stated at all. Is it not

merely a redundancy? The answer to this question is clearly in the affirma-

tive. The second law having once been stated, the first is definitely a re-

dundancy and is not logically required. Nevertheless, it is almost always

retained and explicitly stated as one of the separate laws of motion. Aside

from its being an inescapable historical fact that it was in this form that

Newton stated his laws, an added reason for the retention of the first law

could justifiably be that it possesses some value to the beginner in science.

Though it describes a special case of the second law, the case is so special

and requires so much consideration, and the consideration of it is withal so

profitable, that there is distinct advantage in isolating and studying it in

its own right. However, the first law could have been stated more logically

as a corollary to the second law, which it is, than as an independent law,

which it most certainly is not.

Newton*$ Third Law of Motion

Newton’s statement of his third law reads thus in his Principia (91 :13)

:

Law III. To every action there is always opposed an equal reaction; or

the mutual actions of two bodies upon each other are always equal and

directed to contrary parts.

His use of the new and undefined terms action and reaction need cause no

difficulty. For the present they will be construed as referring to forces,

which demonstrably act always in pairs.

A homely illustration may help to establish some preliminary insight

into Newton’s third law of motion. Almost every child has spent un-

counted hours with what is somewhat whimsically termed an express

wagon. A favorite pursuit with this toy is to imagine that this wagon is

some self-propelled vehicle such as an automobile or a locomotive. The
illusion of self-propulsion is fostered by the fact that the child is actually

in the moving wagon, though the motion is maintained by the contact of a

projecting leg or stick with the ground. Though the motion is forward,

the muscular effort producing it is directed toward the rear. If this be

termed the action, the desired forward force which accompanies it may be

classified as the reaction.

The Oppositeness of the Reaction to the Action

This illustration is chosen, in spite of its apparent triviality, because it

is the prototype of all engines of transportation, without exception. If

anyone doubts that a force to the rear is exerted by the engines of, say,

an ocean liner through the screws, let him consider the motion of the water

in the wake; or let him stand in the blast of air behind an airplane which

is on the point of taking off; or let him observe the shower of mud from the
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spinning wheels of an automobile which is trying to get out of a mud-hole.

Even the act of walking consists of successive backward pushes by the feet

on the ground, the reactions to which produce forward motion of the pedes-

trian. The elementary fact of a rearward aspect to the forces applied in

all such cases is sometimes concealed by the very complication of modern
engines of transportation, but to uncover it does not require profound

powers of discrimination.

The phenomenon of action and reaction in such cases as the foregoing

is sometimes illustrated by mounting the track of a toy electric or spring-

driven locomotive so that the track, as well as the locomotive, is free to

move. It will be seen that the track takes up motion in the direction op-

posite to that taken up by the locomotive. The “kick” of a gun, with its

larger-scale counterpart in the recoil of heavy cannon — to absorb the

effects of which it is necessary to make definite mechanical provision — is

a further illustration of the same phenomenon.

The Equality of the Reaction to the Action

It is to be noted that Newton’s third law states both the oppositeness

and the equality of the two aspects of a force, the action and the reaction.

The only conclusion that it is permissible to draw from the foregoing illus-

trations, however, at least until they have been more carefully analyzed,

is that action and reaction are merely opposite in direction. For evidence

as to their equality in magnitude further search must be made. In a lim-

ited way, the experiments of Chapters 4 and 5 on equilibrium of forces

furnished an illustration of the equality of action and reaction for the case

in which change of motion is not involved; that is, in which acceleration

is zero. It was found in the laboratory that in every case tested the re-

sultant of two or more forces was not only opposite in direction to the

force required to balance the system, but also that its magnitude was

equal to the balancing force within the limits of experimental error.

The important aspect of Newton’s third law is the case in which the

forces are statically unbalanced, the state of unbalance being necessarily

accompanied by an acceleration not present in the case described in the

preceding paragraph. Any assertion of the equality of action and reaction

for this case can be made only on a foundation of experiment. Atwood’s

machine can be made to furnish such a foundation. Consider the tension

in the cord of such a machine (Fig. 107). Unless there is friction at the

wheel, the tension of the cord must be the same on both sides, one to be

regarded as the action, the other as the reaction. At first sight, however,

the action seems to be the weight of the larger mass and the reaction that

of the smaller. How then, it may be objected, is it possible to assert the

equality of the action and the reaction? And yet the tension in the cord

must be the same at the point where it is attached to the large mass as at

the point where it is attached to the small mass.

The dilemma may be resolved by observing that the reaction is not
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merely the weight of the small mass, as erroneously assumed, but that to

this weight, expressed in force units, must be added the product of the

small mass by its acceleration; so the reaction is seen to be somewhat
larger than the mere weight of the small mass. It is the sum of these two
forces which becomes equal to the tension in the cord. Unless this tension

had been greater than the weight of the small

mass, no acceleration would have been pro-

duced. Similarly, on the other side of the

machine, the action is not the weight of the

large mass, but is less than this weight by the

product of the large mass by its acceleration.

Evidence of this lies in the experience of any-

one who has felt the temporary decrease in his

own weight whenever an elevator in which he

was a passenger started its downward trip.

In the case of Atwood’s machine, the tension

in the cord is therefore less than that necessary

to support the weight of the large mass, which

accordingly possesses a downward accelera-

tion. This tension may therefore be com-

puted, either by subtracting the product of

the large mass by the acceleration, which is

the same for both sides, from the weight of

the large mass, or by adding the product of

the small mass by the acceleration to the

weight of the small mass, and in the absence of friction the result will be

the same in either case. That this is true may be verified by computa-

tions from the data of the preceding chapter. In each case the equality of

values of mg + ma with corresponding values of Mg — Ma will be noted,

hence, the equality of action and reaction.

Universal Applicability of Newton*s Laws

In such ways as this the validity of Newton’s laws of motion may always

be brought to the test of experiment. Perhaps the most striking type of

experimental proof, however, is not terrestrial experimentation, such as in

the work with Atwood’s machine, with all the considerable degree of un-

avoidable error and the necessary restriction of conclusions based upon

them to terrestrial affairs, but rather the successive issues of such publica-

tions as the Nautical Almanac. This volume of six hundred pages, pub-

lished four years in advance, contains on every page hundreds of predic-

tions of the positions of the sun, moon, and planets among the “ fixed

stars”; the exact times, durations, places of commencement, path and con-

clusion of eclipses— all worked out to the degree of accuracy required by
modem navigation. Every one of the data is based on Newton’s laws of

motion, assumed to be correct for astronomical bodies, though originally

Fig. 107. The Equality of
Action and Reaction in At-
wood's Machine
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verified only on a terrestrial scale. Their accuracy has been vindicated so

completely that any deviations from them would suggest only that errors

in computation had been made, or, if that explanation were shown untena-

ble, that such phenomena as the disturbance from an undiscovered planet

were involved. Of this nature was the origin of the discovery of Neptune
by Adams and Leverrier independently in 1845-46, and of Pluto in 1930
by Tombaugh. Not until Einstein’s general theory of relativity was pro-

pounded in 1916 was an astronomical observation interpreted as giving

evidence of any deviation from Newton’s laws of motion; and that evidence

of deviation was only to an extent of less than one minute of arc per century

for the course of the planet Mercury in its orbit. To an extent which is

possibly without parallel in the history of science, Newton’s laws of mo-
tion, originating in observations on terrestrial bodies, have been found

applicable throughout the physical universe.

Questions for Self-Examination

1. How can data from Atwood’s machine bo made to support the assertion that

motion under constant force is uniformly accelerated?

2. Similarly, that acceleration is proportional to the applied force?

3. Similarly, that acceleration is inversely proportional to mass?

4. State Newton’s three laws of motion and show how the first is really a special

case of the second, not a separate law.

5. List some examples of opposileness of forces in situations involving Newton’s
third law of motion, stating briefly the way in which each example illustrates

the law.

6. List some examples of equality of action and reaction, stating briefly the way
in which each example illustrates the law.

Problems on Chapter 10

English units have been used up to this point. Metric units are usually pref-

erable. To aid in making the transition from English to metric units, every

problem in this section is stated in duplicate, once using English units, and again

using metric units. The former are the odd-numbered, and the latter the even-

numbered problems. Nearly all the problems in subsequent sections are stated

in metric units.

L If the engine of an w-ton automobile truck which is running m f a

on a level road acts with a constant force 1 of/ pounds above 2 500 2.7

that required to overcome friction, what is the acceleration 3 600 2.2

a in miles per hour per second?

2

4 700 1.9

5 800 1.8

tn f a

2 250 4.4

3 300 3.5

4 350 3.1

5 400 2.8

1 Self-propelled vehicles approximate more nearly to the laws of constant power than to

those of constant force. See problem 12 of Chapter 14.

9 Take g *» 32.2. 9 A metric ton is 1000 kilograms. 4 Take g m 9.80.

2. If the engine of an m metric ton 8 automobile truck which is

running on a level road acts with a constant force 1 of/ kilo-

grams above that required to overcome friction, what is the

acceleration a in kilometers per hour per second? 4
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3. If the truck of problem 1 encounters a hill of slope s degrees, what is its accel-

eration a in miles per hour per second?

m f s a m f s a

2 500 1 2.4 4. 2 250 1 3.8

2 500 3 1.6 2 250 3 2.6

2 500 5 .83 2 250 5 1.3

2 500 7 .07 2 250 7 .11

4. If the truck of problem 2 encounters a hill of slope s degrees, what is its accel-

eration a in kilometers per hour per second?

5. An M-ton train acquires a speed of v miles M V t / F
per hour in t seconds on a level track. The 500 25 100 5 11

drag due to friction is / tons. Find the aver- 500 20 64 5 12

age force F in tons exerted by the engine. 500 15 36 5 15

500 10 16 5 19

6. A train of mass M metric tons acquires a M V t / F
speed of v kilometers per hour in / seconds on 500 50 100 5 12

a level track. The drag due to friction is / 500 40 64 5 14

metric tons. Find the average force F in met- 500 30 36 5 17

ric tons exerted by the engine. 500 20 16 5 23

7. The coefficient of friction between the rails m k M / a
and wheels of an w-ton engine is k. What is 100 .2 200 5 1.1

the maximum acceleration a in miles per 100 .3 200 5 1.8

hour per second which the engine can produce 100 .4 200 5 2.6

on a level track, when coupled to a train of

mass M tons, the frictional drag being / tons?

100 .5 200 5 3.3

8. The coefficient of friction between rails and m k M / a
wheels of an engine of mass m metric tons is 100 .2 200 5 1.8

k . What is the maximum acceleration a in 100 .3 200 5 2.9

kilometers per hour per second which the 100 .4 200 5 4.1

engine can produce on a level track, when 100 .5 200 5 5.3

coupled to a train of mass M metric tons, the

frictional drag being / metric tons?

9. A block of mass M pounds slides without friction along a level tabletop. A cord
from this block passes over a pulley and supports another block of mass m pounds.
What acceleration a in feet per second per second is produced?

M m a
10 1 2.9

8 3 8.8

5 6 18.

1 10 29.

Fig. 108

10. A block of mass M kilograms slides without friction along Mm a
a level tabletop. A cord from this block passes over a 10 1 .89

pulley and supports another block of mass m kilograms. 8 3 ‘2.7

What acceleration a in meters per second per second is 5 6 5.3

produced? 1 10 8.9

11. Solve problem 9, allowing for the existence of M m k a
friction, the coefficient of friction being k. In- 1 10 .3 28.

terpret the negative sign of the last result. 5 6 .3 13.

8 3 .3 1.8

10 1 .3 I
-5.8
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12. Solve problem 10, allowing for the existence of M
friction, the coefficient of friction being k. In- 1

terpret the negative sign of the last result. 5
8

10

13. A weight hung on a spring balance produces a reading of

M pounds. The weight and balance are suspended from

an elevator which starts upward with an acceleration of

a feet per second per second. What is the new reading m?

14. A weight hung on a spring balance produces a reading

of M kilograms. The weight and balance are suspended

from an elevator which starts upward with an accelera-

tion of a meters per second per second. What is the new
reading w?

15. Upon approaching the top floor, the elevator of problem

13 slows down with an acceleration of a feet per second

per second. What is the reading m of the spring balance?

16.

Upon approaching the top floor, the elevator of prob-

lem 14 slows down with an acceleration of a meters per

second per second. What is the reading m of the spring

balance?

m k a
10 .3 8.6

6 .3 4.

3 .3 .53

1 .3
--1.8

M a m
10 4 11

10 6 12

10 8 12

10 10 13

M a m
10 1.20 11

10 1.80 12

10 2.40 12

10 3. 13

M c\ m
10 4 8.8

10 6 8.1

10 8 7.5

10 10 6.9

M a
i
m

10 1.20 8.8

10 1.80 8.2

10 2.40 7.6

10 3.
1

6.9

17.

A force of F pounds acts at an angle of a degrees on a sled of mass W pounds.

What is the acceleration a in feet per second per second, and the velocity v in

feet per second after the lapse of t seconds? Neglect friction.

F a W t a V

5 5° 10 5 16 80

5 10° 10 5 16 79

5 15° 10 5 16 78

5 25° 10 5 15 73
Fig. 109

18. A force of F kilograms acts at an angle F a W t a V

of a degrees on a sled of mass W kilo- 5 5° 10 5 4.9 24
grams. What is the acceleration a in 5 10° 10 5 4.8 24
meters per second per second, and the 5 15° 10 5 4.7 24

velocity v in meters per second after the 5 25° 10 5 4.4 22

lapse of t seconds? Neglect friction.

19. Solve problem 17 allowing for F a W t k a V

friction, the coefficient of fric- 5 5° 10 ‘
.3 6.8 34

tion being L 5 10° 10 «
.3 7. 35

5 15° 10 i .3 7.1 36
5 25° 10 *

.3 7. 35

20. Solve problem 18 allowing for F a W t k a V

friction, the coefficient of fric- 5 5° 10 5 .3 2.1 10.3

tion being k. 5 10° 10 5 .3 2.1 10.7

5 15° 10 5 .3 2.2 10.9

5 25° 10 5 .3 2.1 10.6
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21. An automobile has a mass of m tons. Its center of gravity is h feet above the

ground and midway between the front and rear wheels. The wheel base is l feet.

With how many pounds of force F do the front wheels bear on the ground when
the automobile is accelerating at the rate of a miles per hour per second? Neg-

lect friction and air resistance.

m h a l F
2 2. 5 10 1820

2 2.5 5 10 1770

2 3. 5 10 1730

2 3.5 5 10 1680

Fig. 110

22. An automobile has a mass of m metric tons. m h a l

Its center of gravity is h meters above the 2 .60 10 3

ground and midway between the front and 2 .75 10 3

rear wheels. The wheel base is l meters. 2 .90 10 3

With how many kilograms of force F do the 2 1.05 10 3

front wheels bear on the ground when the

automobile is accelerating at the rate of a kilometers per hour per second?

Neglect friction and air resistance.

23. Two weights of m and M pounds respectively are hung by a weightless cord over

a pulley (Atwood’s machine). Neglecting friction and the inertia of the wheel,

find the acceleration a of the two weights in feet per second per second, the ten-

sion T on the cord in pounds, and the total downward force F in pounds which

the cord exerts on the pulley.

M m a T F
9 1 26 1.8 3.6

8 2 19 3.2 6.4

7 3 13 4.2 8.4

5 5 0 5. 10.

Fig. Ill

24. Two weights of m and M kilograms re- M m a r F
spectively are hung by a weightless cord .900 .100 7.8 .18 .36

over a pulley (Atwood’s machine). .800 .200 5.9 .32 .64

Neglecting friction and the inertia of the .700 .300 4. .42 .84

wheel, find the acceleration a of the two .500 .500 0. .50 1.

weights in meters per second per second,

the tension T on the cord in kilograms, jand the total downward force F in kilo-

grams which the cord exerts on the pulley.

25. Solve problem 23, assuming that the string is retarded at the wheel by a fric-

tional force of/ pounds. Interpret the negative sign of a in the last answer.

M m / a 7\ T% F
9 1 .5 24. 2.3 1.7 4.

8 2 .5 18. 3.6 3.1 6.7

7 3 .5 11. 4.5 4.1 8.6

5 5 .5 -1.6 5.2 4.8 10.

F
890

860

830

800
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26. Solve problem 24, assuming that the string is retarded at the wheel by a frictional

force of/ kilograms. Interpret the negative sign of a in the last answer.

M m / a Zi r2 F
.900 .100 .050 7.4 .23 .17 .40

.800 .200 .050 5.4 .36 .31 .67

.700 .300 .050 3.4 .46 .40 .86

.500 .500 .050 - .5 .53 .47 1.

27. The distance required for a car with good brakes on dry

pavement to come to a stop from a speed of v miles per

hour after a given signal is observed to be s feet. This in-

cludes distance traveled during the three-quarters second

allowed for the driver’s reaction time. Show that the

coefficient of friction, k
,

is just under .5 for each case.

28. The distance required for a car with good brakes on

dry pavement to come to a stop from a speed of v kilo-

meters per hour after a given signal is observed to be

$ meters. This includes distance traveled during the

three-quarters second allowed for the driver’s reaction

time. Show that the coefficient of friction, k, is just

under .5 for each case.

V s k

20 50 .48

30 95 .49

40 153 .49

50 227 ,49

60 314 .49

V s k
32.19 15.24 .48

48.28 28.95 .49

64.37 46.64 .49

80.47 69.20 .49

96.56 95.71 .49

29. A man of weight M pounds stands on a suspended platform of weight m pounds.

The rope holding the platform passes over a frictionless pulley and thence into the

hands of the man. What force F in pounds must he exert to produce an upward
acceleration of a feet per second per second in himself and the platform? With
how many pounds w does he bear on the floor while producing this acceleration?

M m a F w M m a F w
29. 150 75 1 120 40 30. 75 30 30 54 23

150 75 3 120 41 75 30 90 57 25

150 75 6 130 43 75 39 180 I 62 27

150 75 10 150 49 75 3Q 300 69 29

Fig. 112 Fig. 113

30. A man of weight M kilograms stands on a suspended platform of weight m kilo-

grams. The rope holding the platform passes over a frictionless pulley and thence

into the hands of the man. What force F in kilograms must he exert to produce an

upward acceleration of a centimeters per second per second of himself and the

platform? With how many kilograms w does he bear on the floor while producing

this acceleration?



CHAPTER 11

Universal Gravitation

Newton and His Law

Great as was Newton’s accomplishment in formulating the laws of

motion, the discovery for which he is best known is his law of universal

gravitation. Like his laws of motion, this one also grew out of terrestrial

observations (the famous fall-of-the-apple story), and again like them was
extended to cover the entire physical universe. Laplace once remarked

that Newton was doubly fortunate — first, in that he possessed the ability

thus to discover the foundations of the physical universe, and second, in

that he could never have a rival because there was only one universe to be

discovered.

The law of gravitation is usually phrased somewhat as follows

:

Every particle in the universe attracts every other particle with a force

which is directly proportional to the product of the masses of the particles

and inversely proportional to the squares of their distances apart.

Newton states his approach to the problem and a partial formulation of his

solution as follows (14:7)

:

And the same year (1666) I began to think of gravity extending to ye orb

of the Moon. ... I deduced that the forces which keep the planets in their

Orbs must [be] reciprocally as the squares of their distances from the

centers about wch they revolve: and thereby compared the force requisite

to keep the Moon in her Orb with the force of gravity at the surface of

the earth and found them answer pretty nearly.

Newton9
s Line of Reasoning

Newton says in the above quotation that he “ compared the force requi-

site to keep the Moon in her Orb with the force of gravity at the surface

of the earth and found them answer pretty nearly.” It will be instructive

to follow Newton’s train of thought. This can readily be done, for he left

a record of it in detail (91 :408). The force of gravity at the surface of the

earth is such as to cause objects to fall sixteen feet in the first second start-

ing from rest. The corresponding distance of fall would be much less as

far away as the moon’s orbit. It would, in fact, be inversely as the square

of the ratio of the radius of the moon’s orbit to the radius of the earth,

assuming as a fairly close approximation that the moon’s orbit is circular.

Since the ratio of these radii is very close to 60, the inverse square would be



UNIVERSAL GRAVITATION 107Chapter it

gngW* In consequence of the coincidence that there are sixty seconds in a
minute, and recalling Galileo’s observation that distance of fall is propor-

tional to the square of the time elapsed, this means that at the distance of

the moon, objects would require just one minute to fall the same distance

as they fall in one second at the surface of the earth. Hence, the moon it-

self should be pulled away from the tangent to its orbit by a distance of

sixteen feet during any single minute that it is observed. 1

The great question was : is this the way that the moon really moves? With
the size of the earth given and also of the orbit of the moon, along with the

time required for the moon to travel once around its orbit, the test of this

point was a mere matter of elementary geom-

etry. Geodetic measurements had given the

circumference of the earth as 126,720,000

English feet 2
(58:68), and, hence, the circum-

ference of the moon’s orbit was 60 X 126,-

720,000 feet or 7,603,200,000 feet. The lunar

month was 27 days, 7 hours, 43 minutes or

39,343 minutes. Hence, the orbital speed of

the moon was 7,603,200,000 39,343 = 193,-

250 feet per minute. Let MM' (Fig. 114)

represent the distance thus traveled by the

moon in a minute. Now the actual angle Fig. 114. Free Fall in

MEM' subtended at the earth by the distance Earth’s Gravitational
„ 1 i i .1 • • ^ PlKLD AT THE DISTANCE
traveled by the moon m one minute is enor- 0F THE Moon
mously exaggerated in this diagram. On this

scale the actual distance traveled by the moon would scarcely be the width

of one of the lines. NM' is quite evidently the distance that the moon
departs from the tangent to its orbit during the interval.

If the angle MEM

'

had not been so exaggerated, this distance, NM'
would be almost identical with MO, MM' would be almost identical with

OM\ and OP would be almost identical with MP. These approximations

will be found useful in the course of the following reasoning. OM', being a

perpendicular erected on the diameter of a circle, is, by a theorem of plane

geometry, the mean proportional between the two portions of the diameter

thus separated. That is,

MO OMf

OM' OP

or OM'2 = OP>MO.

1 To say, as is frequently done, that the moon falls toward the earth at this rate, though not

incorrect, is somewhat confusing to beginners, since at the end of the minute the moon is no

nearer the earth than it was at the beginning. It falls in the direction of the earth away from

the tangent to its orbit, which itself recedes from the earth 16 feet in that same minute, 48

additional feet in the next minute (or 16 feet referred to a new tangent), and so forth. So

it is by very virtue of this “fall” that the moon remains at the accustomed distance from the

earth.

2 There is much doubt as to the value that Newton actually used for this calculation.
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Using the approximations mentioned above, this may be changed to

MM'* = MP-NM'
or NM' « MM'2

-s- MP.

But MM'
y
the distance traveled by the moon in its orbit in one minute,

has been found to have the value 193,250 feet, and MP is the diameter of

the orbit or 7,603,200,000 7r feet. Hence, NM', the distance by which

the moon departs from the tangent of its orbit in one minute, comes to be

15.43 feet. Comparing this with the value 16.1, which Newton had cal-

culated for this distance if the moon responds to the gravitational pull of

the earth, it is no wonder that he could say that he “found them answer

pretty nearly.”

It would be hard to overstate the significance of this discovery. It was

the first clear evidence that had ever been adduced that the familiar be-

havior of falling bodies and the majestic sweep of the moon in its orbit

were all part of the same great scheme. Nor did Newton forbear from

suggesting the obvious extensions of his conclusion. Hence, we find him
saying (91 :410) :

The force which retains the celestial bodies in their orbits has been hitherto

called centripetal force; but it being now made plain that it can be no other

than a gravitating force, we shall hereafter call it gravity. For the cause of

that centripetal force which retains the moon in its orbit will extend itself

to all planets.

The Inverse-Square Law

But it was not sufficient to demonstrate that the sun was exerting an

attractive force upon the planets. There was every reason to suppose that

such a force would decrease as the planet withdrew from the sun, and the

next question then was how the magnitude of the force was related to the

distance. Newton’s calculations on the moon in 1666, in which he assumed

an inverse-square law for this relation, show that even at that time he

must have felt that he had some foundation for such an assumption, though

it seems certain that he then considered that it was probably only an ap-

proximation (15 :344) . Newton was not alone in contemplating the inverse-

square law. Indeed, twenty years before this, Bullialdus (23:23) had as-

serted that the force by which the sun “prehendit et harpagat” (takes hold

of and grapples) the planets must be as the inverse square of the distance.

By the time that Newton returned to the study of gravitation in 1684 the

inverse-square law was in the air, though it had merely the status of a quite

probable surmise, which still lacked rigorous proof. Newton’s contempo-

raries — Sir Christopher Wren, who later became the famous architect,

Edmund Halley, who was in subsequent years the Astronomer Royal, and

Robert Hooke, now known principally for his association with Hooke’s law,

and who assisted Wren in the architectural designs of the London which
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was rebuilt after the great fire of 1666— all were convinced that the in-

verse square would be found to be the true law of gravitational attraction.

However, though they discussed it much among themselves and felt that

it was implied in Kepler’s second and third laws, they were unable to prove

to their own satisfaction that the elliptical motion called. for by Kepler’s

second law was a necessary consequence of the inverse-square relation,

though they had proved it to hold for circular orbits.

To prove this for the general case of elliptic orbits, instead of merely

circular ones, or to solve the inverse problem of showing that bodies subject

to an inverse-square law of attraction would describe elliptic orbits, was
too much foi* even these very capable men of science. In August, 1684,

Halley went to Cambridge to consult Newton about it, and to Halley’s

inexpressible gratification Newton replied that he had solved the problem

some five years previously and would send the solution to Halley as soon

as he could find the papers. This he did the following November, though,

not being able to find his earlier papers, he had reworked the problem in

the meantime. Stimulated by Halley’s interest, as evidenced by this and
succeeding visits, and under the momentum of this renewal of his attention

to the subject of gravitation, he gathered together the material at hand
and began to put it in shape for publication. Halley urged the Royal
Society to undertake its publication, but was unsuccessful until he offered

to finance the venture himself. The offer was accepted, and the final result

was the publication in 1687 of the first edition of Newton’s Principia

Mathematica (91), the classic of mathematical physics.

Acceleration in Uniform Circular Motion

Acceleration was defined in Chapter 10 as rate of change of velocity. At
that point the only type considered was acceleration along the line of the

velocity, whether positive or negative. That is, acceleration was there con-

sidered only as it affected the magnitude of the velocity. But velocity, being

a vector quantity, can also change in direction leaving the magnitude unaf-

fected. The rate of silch change is another manifestation of acceleration.

When a stone, swung in a sling to get up speed, is released, it moves off

tangentially to the circle which it has been describing. In the absence of

any force, it moves in a straight line with uniform velocity in accordance

with Newton’s first law. But before the stone left the sling, it was subject

to a force applied through the string and acting toward the center of the

circle. In accordance with Newton’s second law, the resulting acceleration

is also directed toward the center of the circle. The force necessary to

hold the stone in its circular path, and hence also the acceleration, will

naturally depend upon the speed of the stone and upon the radius of the

circle that it describes. Christiaan Huygens was the first to state, in 1673

(59:68 ff.), the relation between acceleration, velocity, and radius for the

case of uniform circular motion. It is
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Suppose that the uniform speed in a circular path is v . This is therefore

the velocity at any moment along the tangent to the circle. As described

in the preceding paragraph a force toward the center of the circle is required

to keep the body from flying off at a tangent. This force is unbalanced

except as the resulting acceleration toward the center provides the inertial

reaction. The resulting acceleration acts during the time t that the body

moves from P to Pf
(Fig. 115), and, hence, imparts a velocity toward the

center, of value at. This, superposed

upon the original velocity by com-
position of vectors, produces the ve-

locity at the end of the given in-

terval. But by consideration of the

angles involved,

Hence,

vt at

r v

a = —
r

(2)

(3)

for the cor-

The approximation involved in equa-

tion (2) of equality between the ratios

arc/radius for a sector of a circle and
side opposite the angle

side adjacent to the angle

responding triangle may be readily

justified. Imagine the angle made
progressively smaller until, as it ap-

proaches zero, the approximation approaches an equality. This is entirely

legitimate, since the circular motion is continuous, and we may, therefore,

consider as small an interval of time as we please. Indeed, strictly speak-

ing it would be necessary to consider the limit of the ratio as the time in-

terval approached zero. But since angular velocity a> is v/r by definition,

equation (3) may be written:

Fig. 115. Acceleration in Uniform
Circular Motion

z>
2 (iP\ ,

a = — = |
— r — urr.

r \r2/
(4)

The force toward the center which deflects a moving object from a
straight line into a circular path is termed a centripetal force (“ seeking the

center”)- The inertial reaction of the object has the value ma and is of

course directed away from the center. It is termed the centrifugal force

(“ fleeing from the center ”). It is a measure of the reluctance of the object

to depart from a straight-line course just as the corresponding inertial drag
of an object that is being speeded up is opposite in direction to the force

speeding it up and is a measure of the object’s reluctance to depart from its

state of uniform velocity.
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The Constant of Universal Gravitation

At the beginning of the chapter (page 106) it was stated that gravita-

tional attractions were not only proportional to the inverse squares of the

distance but also to the product of the masses of the attracting bodies.

The relation may be stated algebraically, as follows:

f-G
mM
T7

'

(5 )

Tt will be seen from this that to know the gravitational force between two

attracting masses, it is not sufficient to know their masses, m and M
,
and

distance, r, apart, but in addition the constant of proportionality, G, must
also be known. This can only be determined by experiment, measuring

the gravitational force between two known spherical masses, the distance

between whose centers is known. After the value of G has thus been de-

termined, it becomes possible, thenceforth, given two spherical masses and

their distance apart, to state immediately the value of their gravitational

attraction for each other, whether they be two marbles or two planets.

The constant G is accordingly termed the constant of universal gravitation.

Moreover, with the value of G known, the mass of the earth can at once

be computed and, hence, its mean density, a point of fundamental im-

portance to geologists and astronomers. The computation of the mass of

the earth is performed with the aid of equation (5). The force / of the

earth’s attraction on, say, a one-kilogram mass (

m

= 1) at the surface of

the earth is known to be 9.80 newtons. The radius r of the earth is 6,380,-

000 meters. The value of G
,
from the most recent determination, 1

is such

that two spheres, each weighing one kilogram, with their centers separated

by a distance of one meter, would attract each other with a force of 6.670

X 10~u newtons. It is, therefore, this value which is to be taken for G.

Thus the value of every term in equation (5) is known, with the single

exception ofM
y
the mass of the earth, which may, therefore, be computed.

It comes out to be approximately 6 X 1024 kgms. Hence, experiments

having for their object a determination of the constant G of universal

gravitation are sometimes given the name “ weighing the earth.”

A simple computation will show that the mass of the earth, as thus

determined, is more than times as great as it would be if the earth were

composed entirely of water; that is to say, the mean density of the earth is

over times the density of water. It is partly on account of this high

value of the density of the earth that geologists consider that the earth’s

interior must be composed of the heavier minerals.

Thus a great deal hinges on the experimental determination of the value

of G, the constant of universal gravitation. Newton recognized this, and

though he never undertook such an experiment himself, he described

(91 :569-70) the only two types of experiment which have since yielded

1 P. R. Heyl, Bureau of Standards Journal of Research
,
5, 1243 (1930).
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reliable values of G. It will be worth while to observe the method which

has proven the most fruitful. It was devised in 1768 by the Reverend

John Michell, who constructed apparatus with which to perform the experi-

ment. His death interrupted the work, but it was taken up by Henry
Cavendish (1731-1810), who remodeled the apparatus during the years

1797-98 and carried out what has since come to be called the Cavendish

experiment. The method is briefly as follows:

In Figure 1 16 the reader is supposed to be looking down on the apparatus.

A light rod, carrying a small metal

sphere at each end, was suspended by a

delicate fiber. When two heavy lead

spheres were brought into the posi-

tions shown in the figure, the gravita-

tional forces thereby called into play

rotated the rod slightly out of position.

The torque necessary to twist the fiber

in the opposite direction sufficiently to

bring the small masses back to their

original positions, gave a measure of

the magnitude of this gravitational attraction. The masses and distances

being known, all terms in equation (5) were accounted for except G. Its

value could, therefore, be calculated.

The forces involved in this experiment were almost inconceivably small,

and the errors accordingly very difficult to eliminate. During the next

century and a quarter other observers progressively improved upon the

results which Cavendish secured, the improvements culminating in the

measurements by P. R. Heyl, already quoted (page 111).

It is perhaps worth noting in conclusion that, in spite of all the effort

that has been expended upon it, gravitation remains one of the greatest

riddles of science. We have taken its numerical measure, but that is all.

Gravitation is one of the outstanding examples of the fact that some of the

deepest scientific problems are found in the fields which lie at the center

of daily experience. Familiarity with a phenomenon is one thing; under-

standing seems to be quite another. This is the more tantalizing in the

present instance in that there is reason to think that a knowledge of the

nature of gravitation would prove a rosetta stone which would enable us

to decipher many another of nature’s puzzles. As Heyl says:

It undoubtedly has some intimate connection, not yet understood, with

the ultimate structure of the universe.

Outgrowths of Newton's Gravitational Theory

Newton’s discovery of the law of universal gravitation opened up a

whole new world of scientific adventure. For two hundred years following

the publication of the Principle the principal pursuits in physics and as-

tronomy consisted of developing in detail the implications of that monu-
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mental work. The beautiful way in which many astronomical and terres-

trial problems, before insoluble, yielded to the new mode of approach was a
constant delight to the entire scientific world. Some of the simpler appli-

cations of this law which were made immediately will repay a brief glance.

The mass of any astronomical body having an observable satellite be-

came capable of calculation. This result followed by equating the cen-

tripetal force of gravitation between the satellite and its parent to the

product of its mass and acceleration; for example,

G
niM

(6)

The mass m of the satellite is seen to cancel out. If the speed v of the

satellite in its orbit is observed, the only unknown is GM, a measure of the

mass of the parent. Even before the value of G became known, GM was
sufficient to give the relative masses of planets, but as soon as the important

constant G was determined, the masses in terms of customary units such as

pounds, kilograms, or tons became determinable. Thus, knowledge of the

length of a year and of the distance from the earth to the sun tells the mass
of the sun; knowledge of the length of a lunar month and of the distance

from the moon to the earth tells the mass of the earth. In the same way
the mass of Jupiter becomes known and even the masses of certain stars

which have observable satellites.

Through a somewhat tardy realization that comets were subject to

gravitational forces, Newton identified these theretofore mysterious ap-

paritions as members of the solar system. His friend Halley, from study

of the record of a comet of 1662, predicted its return in 1759. Though he

did not live to see it again, it arrived on schedule and has ever since been

known as Halley’s comet.

The concept of centrifugal force, for which Newton made due acknowl-

edgment to the priority of Huygens, though he had independently de-

veloped it himself, played a large part in applications of the theory of gravi-

tation. Applying this concept to the earth regarded as a rotating body he

accounted for the equatorial bulge and announced what its magnitude

should be, stating also the variations in the acceleration of gravity which

should be found at various portions of the earth in consequence thereof.

He applied the same principle in reverse form to the planets, deducing the

times of their rotation from their observed departure from sphericity.

The earth’s equatorial bulge, being acted upon gravitationally by the

sun and moon, was demonstrated to produce the precession of the equi-

noxes, a phenomenon theretofore unexplained.

The tides were shown to result also from the gravitational action of the

sun and moon, the oceans being pulled toward the sun and moon on one

side and whirled away from them on the other. Newton worked these out

in detail, accounting for spring and neap tides, for the effects of coastline

and of varying depths of the seas. Never before had the origin ofjtides

been understood.
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Such were a few of the many outgrowths, at Newton’s own hands, of his

law of gravitation taken in conjunction with his laws of motion. It is little

wonder that, after the first natural period of incredulity, the scientific

world and even the workaday world should have embraced the new doc-

trine and come to regard its founder almost as a demi-god. Newton is one

of the minority of great men whose accomplishments, in spite of detractors,

have been appreciated within their own times.

Questions for Self-Examination

1. Show that an object at the distance of the moon would fall from rest toward the

earth a distance of 16 feet in one minute, taking the radius of the earth as 4000

miles and the distance to the moon as 240,000.

2. State Newton’s law of universal gravitation and outline the course of reasoning

which led Newton to formulate it.

3. How was the discovery of the inverse-square aspect of the law of gravitation con-

nected with the publication of Newton’s famous Principia?

4. How is the value of G\ the constant of universal gravitation, experimentally de-

termined?

5. List some of the by-products of the discovery of Newton’s law of gravitation.

Problems on Chapter 11

1. Knowing that a one-pound mass experiences 9.802 newtons of force at the surface

of the earth, the radius of the earth being 6380 kilometers, calculate the mass of

the earth in metric tons. 6.0 X 1021 metric tons.

2. From the fact that the period of the moon around the earth is 27.32 days, and
that the distance from earth to moon is 383,000 kilometers, calculate the mass of

the earth in metric tons. 6.0 X 1021 metric tons.

3. From the fact that the period of the earth around the sun is 365.25 days and that

the distance from sun to earth is 149,500,000 kilometers, calculate the mass of

the sun in metric tons. 2.0 X 1027 metric tons.

4. If the sun and the moon (masses 1.990 X 1027 and 7.366 X 1019 metric tons re-

spectively) were directly at the zenith at the same time, how much smaller would
be the value of the acceleration of gravity at that point on the earth than it would
be 12 hours later? .01 2 newton.

5. The radius of the earth is 20.92 kilometers greater at the equator than it is at the

poles. What is the consequent diminution in the acceleration of gravity at the

equator in comparison with that at the poles? Take the average radius as 6380
kilometers. Does the oblateness of the earth’s outline make this answer too large

or too small? .065 newton.

6. What is the further diminution of the acceleration of gravity at the equator due
to the rotation of the earth? .034 newton.

7.

What would be the length of a day if the earth rotated so fast that objects at the
equator had no weight? Take the radius of the earth as 6380 kilometers.

1.4 hours.

8.

Find the tension, T, in kilograms in a cord by which m
kilograms are whirled in a circle of r meters radius,

making n revolutions per second. Neglect gravity.

m r n
1 1 1

1 1 2

1 1 3

1 1 4

T
4
16

36

64
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9. A locomotive of mass M metric tons rounds a M V r F
curve at a speed of v kilometers per hour. The 100 50 50 39
radius of curvature of the track is r meters. Find 100 50 75 26
the centrifugal force F in metric tons. 100 50 100 20

100 50 125 16

10. A cylindrical can d meters in diameter, containing water, d n a
is rotated about its own axis at a rate of n revolutions per .15 1 17°

second. After sufficient time has been given for the water .15 2 50°

to take up the rate of rotation of the can, what angle a with .15 3 70°

the horizontal will its surface make at the circumference? .15 4 78°

11. The curved portion of an automobile race track has a r V a
radius of r meters. If the average speed on the track is 100 75 24°

v kilometers per hour, at what angle a with the hori- 100 100 38°

zontal must the track be banked? 100 325 51°

100 150 61°

12. For each part of problem 9, how many centimeters h d F h

higher must the outer rail be than the inner to cause 120 39.37 44
the resultant force to be perpendicular to the plane of 120 26.25 30

the rail? The rails are d centimeters apart. 120 19.68 23

120 15.75 19

13. A motorcycle weighing (with its rider) M M R V F a
kilograms rounds a curve of radius R meters 120 15 25 39 18°

at v kilometers per hour. What force F in 120 20 30 43 20°

kilograms acts to upset the machine as a con- 120 25 35 46 21°

sequence of centrifugal force, and at what 120 30 40 50 23°

angle a with the vertical must the machine
be inclined to counteract this effect?

14. A pail tied to the end of a rope l meters long is swung in a ver- l 0)

tical circle. What must be its angular velocity o) at the top .64 .62

in revolutions per second in order that the water may not spill 1 . .5
'

out? 1.44 .42

1.96 .36

15. Find the centrifugal force in tons due to the revolution of the moon around the

earth, from the following data:

Mass of moon = 7.366 *1019 metric tons

Earth to moon = 383,000 km
Period of moon = 27.32 days 2.0* 1016 metric tons.

16. What would be the diameter of the smallest steel cable that would hold earth and
moon together if the gravitational attraction between them should cease? Take
the breaking strength of steel as 35,000 metric tons per square meter. 860 km.

17. Find the centrifugal force in tons due to the revolution of the earth about the

sun, from the following data:

Mass of earth = 5.982 - JO21 metric tons

Earth to sun — 149,500,000 km
Period of earth = 365.25 days 3.7* 1018 metric tons.

18. What would be the diameter of the smallest steel cable that would hold earth and

sun together if the gravitational attraction between them should cease? Take
the breaking strength of steel as 35,000 metric tons per square meter. 12,000 km.



CHAPTER 12

Harmonic Motion

Harmonic Motion as the Basic Type of Oscillation

Oscillation is fundamental in the study of physics. Not only are ex-

amples of oscillation encountered in mechanical systems, such as pendu-

lums and all bodies moving under the action of springs and the like, but the

dynamical principles of oscillation are inherently involved in all types of

wave motion. This includes such varied phenomena as surface waves in

liquids, sound waves, alternating current phenomena in electricity, the

production and reception of radio waves, and some of the central concepts

in the theory of light. From early application to the phenomena of sound,

the term harmonic motion came to be commonly used in describing oscilla-

tory phenomena.

While some oscillations are of a simple and easily described nature,

others of them, especially those encountered in the study of sound, are

extremely complicated. It was not possible to make much progress in the

study of the more complicated forms of oscillation until early in the nine-

teenth century. J. B. J. Fourier (1768-1830), in a work on the conduction

of heat, curiously enough, showed how to analyze all such complicated

oscillations into component simple oscillations, which could thereupon be

dealt with singly. The special type of oscillation thus established as funda-

mental is commonly termed simple

Fig. 117 . The Projection or
Circular Motion

harmonic motion . Since the term is

cumbersome, the expression harmonic

motion
,

which still lacks desirable

brevity, will be used in this book
wherever no possible ambiguity would
result.

There are several ways of defining

harmonic motion. The one that will

be most useful for the present purpose
is as follows. Imagine (Fig. 117) a
point traveling on a circle, which will

be termed the circle of reference
,
with

uniform speed. Suppose that a sec-

ond point moves along the horizontal



Chapter 12 HARMONIC MOTION 117

line LR below the circle in such a way as always to lie directly below the

point which is traveling in the circle. The second point will be describing

harmonic motion. To be more succinct, harmonic motion is the projection

of uniform circular motion upon any line in its plane . The line along which

the harmonic motion is made to occur is frequently taken as the diameter

of the circle of reference as in Figure 119 and succeeding figures.

Properties of Harmonic Motion

Some of the properties of harmonic motion are deducible immediately

from this definition. For example, in Figure 118, by considering the posi-

tion of the two points at successive regular intervals, it is evident that the

speed of the harmonic motion is most

rapid at the center, diminishes with dis-

placement in either direction, and be-

comes zero at each extreme of motion.

The actual relation of this periodically

fluctuating speed to the displacement—
as distance of the oscillating particle

from the center is called— will be de-

duced presently. The largest possible

value of the displacement, termed the

amplitude
,
obviously occurs when the os-

cillating point is at either extreme of its

travel, and is equal to the radius of the

circle of reference. The period is the time

required for one complete oscillation (two

successive single oscillations) to and fro

across the diameter. The point traveling the circle of reference goes once

around it during this time, and, hence, describes an angle of 2 w radians.

If the period is T seconds, then the angular speed co, in radians per second,

is

Fig. 118. Speed in Harmonic
Motion

co =
2 7T

T' (i)

The phase (usually expressed in radians) of an harmonic motion is simply

the angle subtended at the center of the circle of reference by the motion

of the point along that circle, measured from an arbitrarily established

reference line. In Figure 1 19 the reference line is ON, the motion of the

point along the circle which brings the oscillating point to a is NP, and,

hence, 6, the angle subtended by this motion, is the phase of the harmonic

motion corresponding to the displacement Oa. It will be clear that in this

figure zero phase corresponds to maximum displacement to the right, a

phase of r radians corresponds to maximum displacement to the left, and

phases of t/2 or 3 tt/2 radians correspond to zero displacement. If the
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point describing the circle moves with an angular speed of 0) radians per

second, then

6 = coty (2)

the time t being usually measured in seconds.

Displacement in Harmonic Motion

The most fundamental of all mathematical relations describing har-

monic motion is that relating the displacement x to the amplitude A and

phase cct (Fig. 120). By applying the definition of a cosine to the right-

angled triangle of the figure, such a relation results, that is,

= cos cot, whence x = A cos c0/, (3 )

a relation which holds for all values of c0 /, and which therefore gives the

value of the displacement for any desired instant in the course of the har-

monic motion.

By substituting the value of a) from equation (1), this may be stated,

x = A cos 2tt (4)

It will be well to pause long enough to sense the significance of this equa-

tion. Given the amplitude A and the period 2" of an harmonic motion, this

equation makes it possible to state immediately the displacement of a

point executing such a motion at any desired instant. Consider, for ex-

ample, an harmonic motion of amplitude 10 centimeters and period 12

seconds. With the aid of a table of cosines, the following values of the

displacement at successive seconds may be verified:

*01 2345 6 7 8 9 10 11 12 etc.

x 10 8.66 5 0 -5 -8.66 -10 -8.66 -5 0 5 8.66 10 etc.

In this way the details of any harmonic motion whose principal character-

istics (that is, amplitude and period) are given may be tabulated.

Fig. 119. Phase Angle in

Harmonic Motion
?ig. 120. Displacement in
Relation to Phase Angle
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The nature of harmonic motion is often represented diagrammatically as

in Figure 121. If a vertically oscillating body, represented at the left,

were at the same time moved steadily toward the right, leaving its trace

behind it, the resulting curve would constitute a graphical representation

of the data of the preceding table. It is also a graph of equation (4), where

A has the value 10 and T the value 12. These three devices— equation,

table, and graph — are but three ways of describing harmonic motion.

Each form of description has its individual merits. All will be used at

various times in the following development of the subject.

Speed in Harmonic Motion

Since the projection of uniform motion in the so-called circle of reference

upon a diameter of that circle is harmonic motion, the speed of a point

moving harmonically may be found by the projection upon the same diam-

eter of the speed of the point moving in the circle of reference. Represent-

ing the speed of this reference point by a tangential vector V, as in Figure

122, the projection of this will be v. It is easy to justify the alleged equality

of the three angles marked cot, and, hence, to show that

v = V sin cot.

It should be noted, however, that when cot is less than 7r, that is, when its

sine is positive, the velocity is to the left (the case illustrated in Figure 122)

and hence is negative; and that when cot has values between 7r and 2tt, that

is, when its sine is negative, the velocity is to the right and, hence, is posi-

tive. In all cases, then, the sign of the velocity is opposite to that of the

sine to which it is proportional, allowance for which may be made by in-

troducing a negative sign into the equation, which thereupon becomes:

v == — V sin cot.

_ . _ . . _ . circumference
But F, the speed in the circle, is 77 7

>

’ ^ 9
tmie of one rev.

Fig. 121. Harmonic Displace-

ment Represented in a Wave
Diagram

Fig. 122. Speed in Relation to
Phase Angle
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and from equation (1),
~

Hence, finally,
27tA . 2nt

v - - ~y~ sin—

•

This, as in the case of equation (4), will repay some attention. It was
observed at the outset that the speed in harmonic motion had its maximum
value at the center and fell steadily to a zero value at each extreme. In-

spection of equation (5) and comparison with equation (4) will verify this

surmise, and in addition will yield information on the actual values of the

speed at any desired instants. Thus, for the same harmonic motion as

before:

t 0 1 2 3 4 5 6 7 8 9 10 11 12 etc.

v 0 -2.6 -4.5 -5.2 -4.5 -2.6 0 2.6 4.5 5.2 4.5 2.6 0
* 10 8.66 5 0 -5 -8.66 -10 - 8.66 -5 0 5 8.66 10

The values of x are simply copied from the tabular values for equation (4).

Comparison of the rows entitled v and x will show that the speed is at its

Fig. 123. Harmonic Speed Re-
presented in a Wave Diagram

maximum when x = 0, and is zero when
x is at its maximum absolute value. In

the same way, the various speeds at de-

sired instants may be computed for any
given harmonic motion.

Equation (5) and the data of the above

table may be represented also, as before,

in graphical form as in the full line of

Figure 123, which therefore represents

the values of the velocity in a represent-

ative harmonic motion. For compari-

son, the corresponding values of the displacement, copied from Figure 121,

are represented by the dotted line.

Acceleration in Harmonic TS/lotion

Equations (4) and (5) formulate the way that displacement and velocity

respectively vary with the progress of time in harmonic motion. It still

remains to formulate in the same way the variations of acceleration. In

some respects this is the most important of the three. In previous chapters

the only motions that have been studied have been those of constant ac-

celeration, either having the value zero, as in the cases of statics and of

uniform velocity, or having some constant value other than zero, as in the

cases of falling bodies and of uniform circular motion. In this chapter a

new circumstance appears: acceleration which is not constant, but varies

periodically. To discover the law of this variation, an appeal will be made
once more to the circle of reference.

The acceleration in the case of uniform circular motion was found by
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Huygens and independently by Newton (page 113) to be directed toward

the center of the circle and to have the value co2A where A was the radius

of the circle and co the angular speed of

the revolving object, measured in radians

per second. So the constant acceleration

of the point revolving in the circle of ref-

erence may be represented, as it is in Fig-

ure 124, by a vector directed toward the

center of the circle and having the length

a)
2A . The acceleration of the point ex-

ecuting harmonic motion will then be the

component of o)
2A parallel to the diameter FlG * * 24, Acceleration in Re-

along which the projections are being

made, the value of which is given by multiplying o)
2A by the cosine of co/,

or

a = u2A cos cot.

But, as in the case of the velocity, the sign must be attended to. In this

7r 7T
instance, when cot has values between — — and ~ > that is, when its cosine

a z

is positive, the velocity to the right is decreasing or to the left is increasing,

which means that the acceleration is directed to the left (the case illustrated

in Figure 124) and, hence, is negative; and when a)t has values between

3tt
— and— > that is, when its cosine is negative, the velocity to the left is de-

creasing or to the right is increasing, which means that the acceleration is

directed to the right and, hence, is positive. In all cases, then, the sign of

the acceleration is opposite that of the cosine to which it is proportional,

allowance for which may be made by introducing a negative sign into the

equation, which thereupon becomes:

a - — uPA cos cot,

or, substituting for co from equation (1) as before,

4r2 - t

a - - A cos 2tc— (6)

A table of values of the acceleration may be constructed as before for

an harmonic motion of amplitude 10 centimeters and period 12 seconds,

in which the previously calculated values of the displacement and velocity

may be included.

0 1 2 3 4 5 6 7 8 9 10 11 12

a —2.78 -2.40 - 1.39 0 1.39 2.40 2.78 2.40 1.39 0 - 1.39 -2.40 -2.78

X 10 8.66 5 0 -5 -8.66 -10 -8.66 -5 0 5 8.66 10

V 0 -2.6 -4.5 -5.2 -4.5 -2.6 0 2.6 4.5 5.2 4.5 2.6 0

Representing graphically the acceleration described in equation (6) and
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t

in the above table, the full line illustrated in Figure 125 results. Corre-

sponding displacements copied from Figure 121 are shown dotted as before.

Equation (6), the corresponding table,

and the graphical portrayal in Figure

125 — all show that the acceleration

fluctuates periodically as both the dis-

placement and the velocity have been

seen to do. By comparison of a with

the corresponding values of x, the ac-

celeration is seen to pass through its

numerical maxima and its zero values

at the same time as the displacement,

and, moreover, that it is at all times

proportional to the displacement, except that it carries the opposite sign.

The oppositeness of sign can mean only that when the displacement is to

the right, the acceleration is directed toward the left, and vice versa.

Fig. 125 . Harmonic Acceleration
Represented in a Wave Diagram

Relation of Acceleration to Displacement

This proportionality between acceleration and displacement is perhaps

the condition which is most characteristic of harmonic motion. Indeed, it

is more commonly used as the defining property of harmonic motion than

is the fact that it is also the projection of uniform circular motion on a

diameter, the definition used above. Of course, both definitions must

come to the same thing in the end. ^t is possible to prove that there is no

other type of motion than the harmonic of which this negative proportion-

... . ,
acceleration .

ality is true. That is to say, whenever the ratio -7.—: is a negative
displacement

constant, then an harmonic motion will always be found to be in process.

The proportionality between acceleration and displacement may be

more neatly deduced from the equations themselves than from any com-

parison of numerical values computed from them. By comparing equa-

tion (4)

x = A cos 27r — (4)

with equation (6) a = cos 2 ir (6)

the proportionality is at once evident. By substituting in equation (6)

t

for the expression A cos 2 ir- its equivalent, x, from equation (4), there

results:

(7)

an explicit statement of the negative proportionality between acceleration

and displacement in harmonic motion. Frequent reference will be made
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to this equation in future connections. It will be found useful in all cases

in which the principles of harmonic motion find application. The equation

is frequently stated in a somewhat different form, thus:

r-2.^, (8)

which results upon solving equation (7) for T.

Since both x and a are variables, equation (8) would not be of much
use were it not for the fact of their negative proportionality to each other.

This proportionality, however, results in the ratio of the two being a posi-

tive constant, and thus the value of the period of a given harmonic motion

is determinable.

Harmonic Motion under Elastic Displace?nent

One of the common applications of equation (8) is to the harmonic

motion that occurs under the action of forces due to elasticity, such as

the extension or compression of a spring. In a spring not stretched

beyond its elastic limit, Hooke’s law applies; that is, the strain is propor-

tional to the stress (page 123). The proportionality between force and
displacement involved in Hooke’s law implies harmonic motion, for by
Newton’s second law force is proportional to acceleration, and it has

just been noted that the principal characteristic of harmonic motion is

the proportionality between acceleration and displacement. Hence,

equation (8) may be made to yield

information on the period of a body
oscillating under an elastic force.

Suppose a mass m to be oscillating

horizontally under the action of

springs as in Figure 126. Let it have

been found previously that the “stiffness” of these springs is such that

the force necessary to hold the body at one side of its central position

was at the rate of k newtons per meter of displacement, k is termed the

elastic constant of the system. The Hooke’s-law proportionality may
then be stated

/--**, (9)

Fig. 126 . Inertia 4- Elasticity -
Harmonic Motion

the negative sign indicating that motion to the right calls into action a

restoring force to the left and vice versa. But since Newton’s second law

of motion also applies, the equation

/ = ma (10)

may be used, as always. From equation (9), x = /
7 > and from equation

(10), a /.
m

When these values are substituted in equation (8),/ cancels,

Twhence (ID
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Thus, the period of any body oscillating under an elastic force is seen to

depend solely on the mass m and the elastic constant k.

It is possible to stretch or compress any substance beyond its elastic

limit
,
whereupon k has no longer a constant value,

and motion under such conditions would therefore

no longer be harmonic. But for devices ordinarily

classed as elastic, such as steel springs, displace-

ments which are a relatively small fraction of the

undistorted lengths of the springs are so nearly

proportional to the forces producing them that

Hooke’s law may be usefully invoked.

Analysis of the Pendulum

Consider a pendulum, consisting of a small heavy

bob 1 B of mass m
9
suspended by a string OB, of

length l and of negligible mass (Fig. 127). Let

it be drawn to one side until it makes an angle 0

with the vertical and then released. It is pro-

posed to show, by an analysis of the conditions

which obtain at that instant, that the subsequent oscillatory motion

of the bob is a very close approximation to harmonic motion. Let mg
represent the weight of the bob, a downward force. This may be replaced

by two components. One, BC, is so chosen as to act along the direction

of the string. It is balanced by an equal and opposite tension in the

string, and the bob is unaffected by tins balanced pair of forces.2 The
other component, BD

,
acts at right angles to the string, and is a force of

magnitude mg sin 0. From Newton’s second law,

mg sin 6 = ma, or a = g sin 0.

Fig. 127. Analysis of
Pendulum

Introduce a negative sign to show that the acceleration is opposite in sign

to the displacement, whence

a - — g sin 0.

The displacement is the distance of the bob from its position when the

string is vertical, measured along the arc of the circle which constitutes

its motion. The value of the displacement is ffl. Hence, the values of

both the acceleration and the displacement at the instant of release of the

bob are known. They are:

a = — gsin0

x = ld.

1 Strictly speaking, such a bob, while possessing mass, should be of zero dimensions; that is,

it should be a “heavy point.” This is, of course, an ideal impossible to realize. By using

dense metals, the distribution of mass may be made small enough, so that for many purposes,

the error involved in measuring the length of the pendulum to the center of the bob may be
neglected.

* If the pendulum is swinging, the tension in the string must be larger than BC to provide

the requisite centripetal force. But the tangential motion of the bob will also be uninfluenced

by these radial forces.
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Now the condition for harmonic motion has already been seen to be that

the acceleration shall be negatively proportional to the displacement.

This condition is evidently not satisfied in equations (12), for an angle

is not proportional to its sine, as may be realized from the fact that the

sine of w/6 radians (30°), for example, is .5, whereas the sine of w/2 radians

(90°) is 1. The sines are in the ratio of 2:1, but the angles are in the

ratio 3:1. These are very large angles, however. In ordinary cases, as

in clocks, pendulums never swing through as great an angle as 90° each

way from the vertical, and seldom through as much as 30°. If attention

be restricted to small angles, the case will be found quite different, the

sines becoming more and more nearly proportional to the angles as smaller

^and smaller values are taken. The following table shows this:

angle (degs) 30° 20°

angle (rads) .52360 .34907

sine .50000 .34202

10° 5° 2°

.17453 .08727 .03491

.17365 .08716 .03490

For 30° the value of the sine differs from that of the angle by about 5 per

cent, for 20° the difference is about 2 per cent, for 10° about \ of 1 per

cent, for 5° of 1 per cent, and for 2° less than ^ of 1 per cent.

It accordingly becomes evident that upon restriction to small angles

it is possible to say that the angle and the sine are proportional to each

other; indeed, that if the angles be measured in radians, the angles are

nearly equal to the corresponding sines, an approximation which comes

indefinitely closer to actual equality as the angles are taken smaller and

smaller. It is customary to say, therefore, that for small angles, the ex-

pression sin 6 may be replaced by 6 to a sufficient degree of approximation

for certain purposes. The degree of approximation thus introduced

obviously depends on the angle involved in a particular case. If this con-

dition is introduced and it is realized that certain limits are thereby placed

on the angle of swing of the pendulum, equations (12) will be replaced by

IZif} <«>

Acceleration and displacement are now seen to be mutually proportional

and by elimination of 6 between the two equations, there results:

x l
S3 — •

-a g
(14)

X
This value for— may be substituted into equation (8), giving for the— a

period of a simple pendulum swinging through a small angle the ex-

pression

l
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Isochronism of the Pendulum

There are several points of interest in equation (15). One of them is

the fact that since the mass m of the pendulum canceled out during the

derivation, the period is independent of the mass, a fact which Galileo

experimentally observed. Also, again in verification of Galileo’s observa-

tion, the period T is seen to be proportional to the square root of the

length l of the pendulum.

It will also be evident that equation (15) contains no term involving the

amplitude or angle of swing. This means that the period is independent

of the amplitude as well as of the mass. It would be hard to exaggerate

the importance of this property of the pendulum. The constancy of th^

rate of pendulum clocks depends upon it. It is termed the isochronism .

Isochronism of the pendulum was first observed by Galileo. In his

Two New Sciences (46:97) he causes one of his characters to say:

Thousands of times I have observed vibrations, especially in churches

where lamps, suspended by long cords, had been inadvertently set into

motion. . , . But I never dreamed of learning that one and the same body,

when suspended from a string a hundred cubits long and pulled aside

through an arc of 90°, or even 1° or \°, would employ the same time in

passing through the least as through the largest of these arcs.

One of the more famous statues of Galileo represents him as engaged

in an experiment on the pendulum (Fig. 128). The possibility of utilizing

the isochronism of the pendulum in the design of clocks apparently did not

occur to Galileo until his old age. In 1641, after blindness had overtaken

him, he dictated to his son and to one of his pupils the specifications for

a pendulum clock and caused a drawing to be made. The original model

constructed from this drawing is still in existence, but the idea did not

become generally known at the time, and fifteen years later Christiaan

Huygens independently invented a pendulum clock which rapidly met
with general appreciation.

It is important to note, however, that the pendulum is isochronous only

for small angles of swing. Galileo failed to comprehend this, but his over-

sight was understandable, since there is only one per cent difference be-

tween the period of a pendulum swinging through 1° and that of one

swinging through 30°. That the dependence of period upon amplitude

does not appear in equation (15) is a consequence of the approximation

made in the transition from equation (12) to equation (13). Without
that approximation the amplitude (indicated by ff) would not have been

canceled out.

Another fact which has had, if possible, even greater significance than

the foregoing, appears from a further inspection of equation (15). It is

evident that any change in the value of g, the acceleration of gravity, will

produce a fluctuation in the period of the pendulum. The origin of the

circumstance that gave so much perplexity to Jean Richer in 1671 (page
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Fig. 128. Galileo Engaged in an Experi-

ment with a Pendulum

88) is thus identified. An important application of equation (15) is to

the experimental determination of g, the acceleration of gravity. If the

period T of a pendulum of known length l is observed and if these values

are substituted in equation (15), the value of g may immediately be com-

puted. This was first done by Huygens, who communicated to the Royal

Society in 1664 his value of g, 9.81 m/sec thereby determined (60:5:84;

6:246), though he appears to have performed the actual experiment

several years earlier. It is the method used today whenever really precise

determinations of g are required, though certain modifications of Huygens’

procedure are involved. The merit of the method is that by swinging

the pendulum a long time, a very accurate value of the period T may be

found. Unfortunately, an equally accurate measurement of the length

l is hard, in fact impossible, to get. This is partly due to the difficulty of

measuring to the center of the bob, and partly due to the fact, as will be

seen later (page 162), that it is not really to the center of the bob that such

measurement should be made anyway. The way in which the difficulty is

surmounted will shortly be described (page 128).
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The Compound Pendulum

In his famous work Horologium Oscillatorium
9
which appeared in 1673,

after the time of Galileo but before the time of Newton’s Principle ,
Huy-

gens published his description of a pendulum clock, including with it the

mathematical foundations for the dynamics of os-

cillating bodies. His “cycloidal pendulum” (Fig.

129) was a device for realizing isochronism even in

pendulums swinging through wide arcs. He also de-

veloped the consequences of the fact that no suspen-

sion is really without mass, and that no pendulum

bob is ever really a point. The effect of the distribu-

tion of mass due to both these factors leads to the

concept of the compound pendulum. Huygens showed

how to deal with this case and how, from measure-

Fig. 129. Cycloidal ments on a given compound pendulum— for example,

Pendulum a pendulum consisting of a straight rod— the length

of the theoretical simple pendulum which would vi-

brate with the same period could be computed.

If such a rod is suspended from one end, the point on it at a distance

equal to the length of a simple pendulum of the same period is termed the

center of oscillation (point 0 of Figure 130). Thus, from the standpoint of

its behavior as a pendulum, the mass of the rod

may be considered concentrated at point O .

This point is considerably below the center of

gravity of the rod. Thus, in a compound pen-

dulum the center of oscillation is not to be iden-

tified with the center of gravity. This is the

basis for the statement in the footnote on page

124 that the length of the ideal simple pendulum

is not equ&l to the distance from the point of

suspension of a real (and therefore necessarily

compound) pendulum to the center of its bob.

This point is dealt with at greater length on

page 161.

One of the outgrowths of this was the use of

the reversible pendulum in 1817 by an English Fl0 130 Smymt0 ^
sea captain, Henry Kater (1777-1835), 1

1

to facili- Displacement Between

tate the precise determination of g. He used it Center of Gravity

in London in a determination which is famous as

the first determination which possessed the de- Suspended at the End S
gree of accuracy characteristic of modern meas-

urements. Rater’s pendulum (Fig. 131) possesses two knife edges, the

position of one of them being adjustable. When the pendulum is so ad-

* Kater, Philosophical Transactions
, p. 33 (1818).
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justed that its period is the same when swinging from one knife edge as

when swinging from the other, the length of the equivalent simple pendu-
lum may be shown to be simply the distance be-

tween these two knife edges. It will be clear that

much greater precision could be secured in making
a measurement of the distance between two knife

edges than between two points, one of which is the

estimated center of a pendulum bob.

Vibrations of Stretched Strings

Elastic strings as well as pendulums constitute

examples of oscillation. In this field also, Galileo

was a pioneer. He had observed (46:100) that the

frequency of vibration n of a stretched string was
inversely proportional to the length Z, directly pro-

portional to the square root of the tension T, and in-

versely proportional to the “size.” Elsewhere he

makes it clear that by size he means mass m per

unit of length. Stated algebraically his observa-

tions were

n oc
1 [t
l \ m

The factor of proportionality may be shown to be

whence the relation becomes

n = L tfr
21

(16)

Fig. 131. Kater’s Re-

This resembles equation (15) for the period of a
~“L

pendulum. The resemblance would be still closer tific Company.)

if (15) were stated in reciprocal, thus giving the

value of the frequency in both cases. Equation (16) is especially useful in

the study of stringed instruments of music. It will be referred to in the

section on sound.

Retrospect

The successful treatment of the pendulum by Galileo and later by Huy-

gens, as well as the treatment of vibrating strings by Galileo, were among

the major accomplishments of early science. They are especially striking

in view of the limited mathematical equipment available at those times.

The identification of the center of oscillation was definitely Huygens’

greatest work in mechanics, which is saying a great deal. He is generally

accorded an equal rank with Galileo and Newton, the three constituting

the triumvirate which laid the foundations of physical science. It has

been said with much reason that the work of the physical sciences fof two
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hundred years after the time of these men was confined to developing the

implications in the principles which they discovered and formulated.

Even if these men had done no more than what has been described thus

far in this account, the foregoing statement would seem pretty well justi-

fied. But, as a matter of fact, all three men made major discoveries in

other fields of physics than mechanics, which are yet to be related. Truly,

the seventeenth century was the mother of giants.

Questions for Self-Examination

1. Define harmonic motion and tell how s
t
v, and a vary.

2. Interpret the expressions

r - 2 V?-
3. What is meant by the term isochronism as applied to pendulums? State the limi-

tation of the principle.

4. How may a simple pendulum be used to determine g? What are its shortcomings?

5. Distinguish between simple and compound pendulums.

6. Describe Kater’s pendulum as an example of the compound pendulum. How is

it used?

7. How does the frequency of a vibrating string depend on the length, tension, and
linear density of the string?

Problems on Chapter 12

1. Each prong of a tuning fork which makes 100 double vibrations a second vibrates

through a distance of 2 millimeters. Find the speed of the prong at the middle of

the swing. 63 cms/sec.

2. How long must a pendulum be to beat seconds (per single swing) at a place where

g = 9.8? If made 1 millimeter too long how much will its clock lose per day?

99 m, 43 secs.

3. One of the first pendulum clocks to be used in scientific work (Jean Richer, 1671)

was found to run slower by 2| minutes a day when taken from Paris to the tropics.

Not until later was it realized that this was caused by change in the value of g.

If g was 9.80 at Paris, what was it at the new location? 9.79.

4. What is the frequency of vibration of a wire 50 centimeters long when stretched by
a weight of 25 kilograms, if 2 meters of the wire are found to weigh 4.79 grams?

320 vib/sec.

5. A string has its length and tension divided by 4 and its mass per unit length mul-
tiplied by 4. What is the effect on its frequency?

6. A wire is L meters long and weighs M grams. What tension F in kilograms must
be applied if the wire is to produce a tone whose frequency is n vibrations per

second?

L M n F L r l

6. 1.00 2 200 33 7. 120 if 7.5

1.00 4 150 38 120 ¥ 12.

1.00 6 100 24 120 f 13.

1.00 8 75 18 120 f 20.

120 i 24.

120 i 30.

120 % 40.
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7. The strings of a ’cello have a length L centimeters. By how many centimeters

l must they be shortened, by fingering, to change the pitch by a frequency ratio r?

8 . A shelf moves up and down with an harmonic motion of am- A T
plitude A meters. What is its smallest period T in seconds for .01 .20

which articles placed upon it will remain steadily in contact .1 .63

with it? 1 . 2 .

10. 6.3

9. The piston of an automobile engine weighs m kil- m n l f
ograms. Its stroke is / centimeters. It executes 2 600 10 40
harmonic motion approximately. What maxi- 2 1200 10 160

mum force / in kilograms is involved in reversing 2 2400 10 640
the motion of the piston (at the end of its travel) 2 3000 10 1000

if the engine is making n revolutions per minute?

10

.

If a mass of m kilograms is loaded onto a spring and thereby ms T
extends it s centimeters, with what period T in seconds will .1 2 .28

it vibrate if set into motion? Neglect the weight of the .2 5 .45

spring. .3 9 .6

.4 14 .75

11. If it were possible to bore a hole through the earth, anything falling through it

from one side of the earth to the other would be subject to a force proportional to

its distance from the center of the earth. Its motion would therefore be harmonic.

How many minutes would an object require to fall from one side of the earth to

the other? What would be the speed in miles per hour when passing the center

of the earth? Disregard air resistance. 43 min.

18,000 mi/hr.

12 . How many miles s has the car of the preceding problem / j v

fallen, and what speed v in miles per hour has it attained \ 12 1 400
after having traveled t minutes? 3 100 3*700

10 1,100 12*,000

20 3,600 18,000

30 7,000 12,000

40 7,900 3,000



CHAPTER 13

Impact

The Principles of Impact

Like many other scientific problems, the problem of impact was in the

air during the time of Newton. The newly founded Royal Society of

London issued a request for contributions on this subject, and this request

evoked in 1668 the first systematic treatment. Three eminent physicists,

John Wallis (1616-1703), Christopher Wren (1632-1723), and Christiaan

Huygens, complied with the invitation of the society. Wallis was a man
of considerable mathematical attainment. Wren had given his principal

energies to scientific pursuits up to this time, but was shortly to turn ex-

clusively to architecture, in which field he became one of the best-known
men of all time. Huygens is already a familiar figure in these pages and is

destined to become still more so. The work of these men was supplemented
in 1673 by that of Edme Mariotte (1630-84) and was rounded out to com-
pletion by Newton (91 :22 ff.), who utilized and acknowledged the contribu-

tions of these four men.
Collisions between two moving bodies may be conveniently divided into

three classes:

1. Inelastic collisions, such as a collision between two balls of clay,

characterized by the fact that there is no rebound, the colliding bodies

remaining together after the impact.

2. Perfectly elastic collisions, very nearly represented by a collision be-

tween two identical ivory or steel balls, characterized by the fact that the
velocity with which the colliding bodies rebound from each other is the

same as the velocity with which they approached.

3. Imperfectly elastic collisions, comprising most actual cases, character-

ized by the fact that the mutual velocity of recession is only a certain frac-

tion of the velocity of approach. It will be evident that this last is the
most general of the three cases, for if the fraction mentioned has the value
zero, inelastic impact is thereby described. If it has the value unity, per-

fectly elastic impact is involved. All possible cases must lie somewhere
between these two extremes.

Wallis' paper was the first to be submitted to the Royal Society. He
dealt exclusively with the case of inelastic impact. His theory was later

amplified and published in 1671 (129:1002 ff.). Wallis pointed out that
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the decisive factor in impact is momentum
,
definable as the product of mass

by velocity. If two inelastic bodies which have equal momenta approach

from opposite directions and strike each other, rest will ensue after the im-

pact. If their initial momenta are unequal, the momentum remaining after

the impact will simply be the arithmetical difference. Similarly, if they are

initially traveling in the same direction but with different velocities, the

momentum after impact will be the arithmetical sum.

Conservation of Momentum

Momentum is a vector quantity. It possesses not only magnitude but

direction, the latter being determined by the direction of the velocity in-

volved. To oppositely directed momenta opposite signs must be attrib-

uted. Accordingly the two preceding cases, of unequal motion either in

opposite directions or in the same direction, may be subsumed under one

law, known as that of the conservation of momentum.1 Limiting it to the

case of direct impact (that is, not including “glancing” impact), the law of

conservation of momentum may be stated thus:

For any collision
,
the algebraic sum of the momenta of the colliding bodies is

the same after the impact as before . This statement is sufficiently general to

cover all the fifteen propositions contained in Wallis' De Percussione. In-

deed it covers much more, for as will be seen by inspection, it is not limited

to the only case which Wallis treated, that of inelastic impact. It has been

found to apply to all types of impact, whether inelastic, perfectly elastic, or

intermediate.

Inelastic Impact

The principle may be formulated algebraically in various ways and

thereby may be made more directly applicable to the respective particular

cases mentioned above. Thus, for inelastic impact, let M be the mass of

one of two colliding bodies, m that of the other, U and u their respective

velocities before impact, and V their common velocity after impact. Then
the principle of conservation of momentum may be stated for the inelastic

case:

MU + mu - (M + m) V. (1)

By the use of this equation the velocity after an inelastic impact may be

computed, given the masses of the colliding bodies and their velocities be-

fore the impact. The usual experimental case is that in which one of the

bodies is initially stationary. In this case, since one of the initial velocities,

say U,
has a zero value, equation (1) becomes

mu = (M -t- m) V. (2)

1 This should not be confused with the law of conservation of energy
,
a completely different

doctrine which will receive attention later.
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Fig. 132 . Christiaan Huygens (1629
-1695)

(Courtesy of Scripta Mathematical

Measurement of Velocity in Impact

The principal difficulty involved in an experimental study of impact lies

in the measurement of the velocities. This is the same difficulty that

Galileo encountered in his experimental study of accelerated motion (page

18). Galileo solved his problem by so modifying his experiments as to

permit the measurement of, not velocities, but distances. Some tactics

which are quite similar are usually resorted to in the study of impact.

Mariotte was the first to point out (80:1 :4) that measurement of the speeds

of colliding bodies would be facilitated by suspending them as pendulums.

The speed of a pendulum at its lowest point is a function solely of the

height through which it has descended in describing its arc; and, conversely,

the height through which it rises along its arc depends solely upon the

speed imparted to it at the lowest point. Thus the speed of either the

striking or the struck body becomes measurable in terms of distance.

Note that this distance is the vertical height through which the pendulum
passes in the course of its motion.

Hence, it becomes necessary to formulate the relation between the maxi-
mum height traversed by a pendulum and the speed at its lowest point.

It will be shown in the following chapter that this relation between speed

and height in the case of a pendulum is none other than the familiar rela-

tion for freely falling bodies (page 20, equation 3),

v - y/2 gh . (3)
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A measurement of h and the knowledge of the value of g yield immediately

the value of the corresponding speed v. This solves in principle the prob-

lem of determination of the velocity of a suspended body at the instant

before or after impact at the lowest point of its arc. A certain further

amount of indirection is usually injected into the situation in practice

through the fact that it is ordinarily more convenient or more accurate to

measure h not directly, but indirectly through calculation from the arc

which the pendulum describes or the horizontal distance which it moves.

The derivation of the relation between h and either of these quantities is a

mere matter of geometry, which is adequately covered in laboratory man-
uals and need not be considered here.

It will be evident that the foregoing method readily lends itself to the

experimental determination of the speeds of bullets. A bullet imparting

its momentum to the wooden or lead bob of a pendulum in which it embeds
itself constitutes a perfect example of inelastic impact. Application of

equations (2) and (3) or their equivalent yields the required speed of the

bullet, a quantity which is harder to determine by other means. A pendu-

lum so used is termed a ballistic pendulum. This method was first de-

scribed in 1742 by Benjamin Robins (101:83).

Perfectly Elastic Impact

Turning now from the case of inelastic impact to that of perfectly elastic

impact, let us recall first that the principle of conservation of momentum
is as applicable to elastic as to inelastic impact. Just as Wallis had con-

fined his attention to the case of inelastic impact, so both Wren and Huy-
gens,1 in their respective responses to the invitation of the Royal Society,

confined attention to the case of perfectly elastic impact. Their findings

agreed at all essential points. Wren's paper was somewhat more complete

than that of Huygens, which came a month later, in that he accompanied

his presentation with experimental demonstrations. It is mainly from

Huygens' work that modern theory of perfectly elastic impact rises, how-

ever, since he continued study in this field and perfected the theory.

Huygens' complete treatment of elastic impact is to be found in his

posthumous treatise De Motu Corporum ex Percussione
,
published in 1703.

In effect, Huygens defines perfectly elastic impact as above (page 132),

namely, impact in which the relative speed of recession after collision is

equal to the relative speed of approach before collision. His point of de-

parture for nearly all his treatise is the assumption that elastic bodies of

equal mass, colliding with equal and opposite velocities, suffer merely a

reversal of their speeds. He extends this to other cases by straightforward

logical processes which, as for elastic impact, can best be replaced by a

simple algebraic formulation.

The same notation will be used as for elastic impact. That is, let M be

the mass of one of the two colliding bodies, m that of the other, U and u

1 Philosophical Transactions of the Royal Society of London , 1, 547, 548 (1668).
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their respective velocities before impact, and V and v their respective

velocities after impact. Then the principle of conservation of momentum
may be thus stated for the elastic case:

MU + mu = MV + mv, (4)

or for the special case of one of the bodies being initially stationary

mu = MV + mv. (5)

These correspond to equations (1) and (2) for the inelastic case. It will

be evident that equation (4) is not sufficient to give the values V and v of

the final velocities for elastic impact in the way that equation (1) was

sufficient for inelastic impact. There are now two velocities to be com-

puted instead of one; hence, two independent relations are required. The

way in which the additional relation may be secured will be presented on

page 139.

Imperfectly Elastic Impact

The third case, that of imperfectly elastic impact, is characterized by the

fact that the relative velocity of recession bears a ratio to that of approach

which is neither zero, as in the inelastic case, nor unity, as in the perfectly

elastic case, but possesses some value between zero and unity which must

be determined experimentally for each pair of colliding bodies. This was

the case which Newton discussed (91 :25) and will be seen to be completely

general, including both inelastic and perfectly elastic impact as special

cases. For this type of impact the ratio of velocity of recession to velocity

of approach is a constant characteristic of each pair of colliding bodies.

This ratio may be stated algebraically as follows:

e =
v - V
U-u (6)

The constant relation e between the relative velocities is usually termed

the coefficient of restitution. For inelastic impact, by the very definition of

the term, v = V and hence e - 0. Similarly, for perfectly elastic impact,

v — V = u — U, and, hence, e *= 1. For all other cases e possesses some

value between these two extremes. If it were possible to determine the

value of e in some other way— than by using values of velocities involved

in impact— equation (6) would constitute the required additional relation

between v and V referred to above. But this is so seldom true that further

search must be made.

Equations (4) and (5) though stated as a formulation of the case of per-

fectly elastic impact, apply also without any change to this third case.

Hence, they are perfectly general, applying to all three cases, for they

assume the form of equations (1) and (2) if v is set equal to V.
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Impact and Newton's Laws of Motion

Thus far the equations expressing conservation of momentum— (1),

(2), (4), and (5) — have been presented merely as statements of experi-

mental fact as, of course, they are. But it is worth while to note that they

are implicit in Newton’s laws of motion and are derivable from them,

though, as a matter of history, they were not so derived in their first incep-

tion. They could not be, because they antedated Newton’s laws of motion

by nearly twenty years. It is possible that the course of development pro-

ceeded in the reverse direction and that Newton’s laws of motion may owe
their form in some measure to his knowledge of the principle of conserva-

tion of momentum, though there is no clear evidence on this point. Today,

at any rate, Newton’s laws are invariably considered the more fundamental

of the two.

Consider, then, two massesM and m (Fig. 133), each moving toward the

right, butM initially moving the faster.1 Let U be the velocity ofM and u
that of m before the collision. Since this is a “rear-end” collision of a

larger with a smaller body, m will be speeded up and M slowed down, but

the direction will not be changed in either case. Let V and v be the veloc-

ity of M and m respectively after the collision. Then the change of veloc-

ity of M is {U — V) and that of mis {y - u).

At some instant during the impact suppose the small body to experience

a force / and in consequence to be under an acceleration a. The force and

the acceleration are related to the mass by Newton’s second law of motion

/ = ma. (7)

At the same instant let the larger body experience the reaction F of the

smaller body on it, and be accelerated (negatively) at the rate A where

F = MA . (8)

1 This choice of directions is made to avoid the minor difficulty that might be involved with

sign in case reversal of the direction of motion of one of the bodies were involved.

Fig. 133. The Collision of Elastic Pendulums
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But by Newton’s third law of motion F and /, constituting action and re-

action, are numerically equal, or

F = /, and, hence, MA = ma. (9)

This relation, assumed for one instant during the impact, applies to all

instants. To be sure, the forces will not remain unchanged during the

interval covered by the impact, but whatever changes occur in MA will

be duplicated in ma, because Newton’s third law of motion requires the

continued equality of these two. Because of this duplication at every in-

stant during the interval, A and a retain a strict proportionality to each

other through all their changes. Hence, the respective changes in velocity

(U — V) and {v — u) bear the same proportionality. It follows that

M(U - V) - m(v - u). (10)

From this by transposition of terms

MU + mu = MV + mo.

This is equation (4). Equations (1) and (5) have already been shown to

be special cases of (4), and (2) is a special case of (1). Hence, the whole

doctrine of conservation of momentum, for elastic and inelastic impacts

alike, is seen to be derivable from Newton’s laws of motion.

Energy Relations in Impact

Over thirty years after his first solution of the problem of elastic impact

Huygens made another contribution to its theory, which in some respects

considerably overshadowed the previous one. In 1699 1 he wrote to two
scientific magazines as follows:

The sum of the products of the masses of every hard [that is, elastic] body
multiplied by the square of its velocity is always the same before and after

the encounter.

Hence, in perfectly elastic impact, in addition to conservation of momen-
tum, there appears to be conservation of another entity involving the

squares of the velocities. The potentialities inherent in this discovery, as

subsequent chapters will show, were almost unparalleled in the history of

science, though they remained undeveloped for a century and a half. The
discovery itself will accordingly repay close inspection.

Let no one say, “Why, of course! If, for example in equation (4),

MU + mu = MV + mv,

then it naturally follows that also

MU2 + mu2 - MV2 +
1 Journal des Savants

,
2 , 534 (1699); Philosophical Transactions of the Royal Society of London

4, 928 (1699).
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Not at all! In fact, the natural conclusion would be exactly the reverse;

namely, that if the first equation were true, then the second would almost

certainly not be true. To take an analogy from arithmetic, if 5 = 2 + 3,

it not only does not follow that 5 2 = 2 2 + 32
,
but the statement is clearly

not true. The presumption against the possibility of the phenomenon
which Huygens described in 1699 was so strong that there is no occasion

for surprise that it did not suggest itself to him until thirty years after his

first work in this field. The mere fact of the second type of conservation,

the type involving the squares of the velocities, would lead one to suspect

the existence of some underlying principle, not theretofore discovered.

The suspicion would be amply justified, as will shortly be seen. But for

the present the new entity which Huygens found to be conserved in elastic

impact will be given the name by which it ultimately came to be known,

and the more complete development of the principle in which it is involved

will be treated later.

The new concept had to wait a long time before receiving the name
kinetic energy

,
by which it is known today. It was Thomas Young who,

in 1807, proposed the name energy and Lord Kelvin who, in 1856, added

the objective kinetic to differentiate energy due to velocity from that em-

bodied in other phenomena.

In the meantime --- 1835 — the French physicist, G. G. Coriolis (1792—

1893), had pointed out that this concept, by whatever name it be called,

could more conveniently be applied to one half the product of mass by
square of velocity. Hence, today kinetic energy is defined by the equation

K.E. = l mv
2

.

Thus for elastic impact, besides equation (4) expressing conservation of

momentum, another, expressing conservation of kinetic energy, may be

stated, namely,

J- MU2 + l mu
2 - l MV2 + i mv2

;

or, multiplying all terms by 2,

MU2 + mu2 = MV2 + mv2
, (11)

which is an algebraic statement of Huygens’ discovery of 1699.

If, now, equations (4) and (11) are solved simultaneously for V and v,

the result is

V _ MU + m(2u-V)
M + m K

J

mu + M (2 U — u)

M + m (13)

Equations (12) and (13) are the two independent relations referred to on

page 136.
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Equation (11) thus expresses for perfectly elastic impact the conserva-

tion of kinetic energy corresponding to the conservation of momentum
expressed by equation (4). It should be pointed out that the conservation

principle does not apply in just this form either to inelastic or imperfectly

elastic impact. For these two cases there are no equations involving

squares of velocities that are mates to equation (1) in the sense that equa-

tion (11) is a mate to equation (4). This does not mean, however, that the

general principle of conservation of energy does not apply to inelastic

impact. That principle, in its full generality, is yet to be stated (Chapter

19) and the solution of the apparent anomaly between the cases of elastic

and inelastic impact must await that statement.

Boyle9
$ Law as an Outgrowth of Molecular Impacts

In Chapter 7 (page 70) Boyle’s law was mentioned as an example of

equilibrium conditions in a gas. The fact was pointed out, however, that

this was not a case of static equilibrium, like that exemplified in the chap-

ters on forces and on torques, but was a case of dynamic equilibrium, in

which the balance existed between the force exerted by the walls of the

container and the changing momenta of the flying molecules which re-

bounded from them. This is, of course, an impact phenomenon on a large

scale, with the emphasis on the statistical resultant of myriads of collisions

rather than on a single collision.

This is a relatively recent point of view. An earlier view attributed gas

pressure to a repulsion between molecules. This was perhaps a natural

way to try to account for the expansive behavior of gases, though it had
nothing more than a remote plausibility to support it. The theory was
entirely ad hoc

,
as there was no other evidence that repulsive forces existed

between molecules. The inadequacy of this repulsion theory became still

more evident when it was appealed to as a means of accounting for Boyle’s

law. In several respects the repulsion theory failed to meet this quantita-

tive, mathematical test, a test which has found the weak points in many
hypotheses which have been otherwise prepossessing.

Daniel Bernoulli (1700-82) was the first to attribute the steady pres-

sure exerted by a gas to the aggregate effect of molecular impacts— in

anything resembling the modern scientific sense (18 .Chap. X). He made a

brave attempt at establishing a mathematical relation between molecular

impacts and gas pressures and, with the benefit of a few doubts, may be
said to have been successful.

This preliminary success paved the way for the gradual establishment

of what has come to be called the kinetic theory of gases. 1 This theory

constitutes one of the most important stages in the development of physics.

One of the earliest and most successful chapters in it was written by Joule

when he actually deduced Boyle’s law by a statistical study of the connec-

1 Waterston, 33:248; Kronig, Poggendorffs Annalen, 99, 315 (1856); Joule, Philosophical

Magazine, Series 4, 14, 211 (1857); Clausius, Poggendorfl’s Annalen
, 100

,

315 (1856).
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tion between gas pressure and the aggregate effects of innumerable molec-

ular collisions with the walls of the container. The line of reasoning will

not be traced here, but the paper is easily available (77 :256).

Joule’s theory suggested that molecules and atoms were traveling at a

surprisingly high speed. He deduced the value 1700 meters per second,

for example, for the speed of hydrogen molecules. He also gave the first

quantitative development to the relation between molecular speed and
temperature and remarked that

273° below the freezing point of water must work an absolute zero of tem-

perature corresponding to a zero value of kinetic energy of the particles.

Joule’s conclusion that molecules of hydrogen were traveling at speeds of

the order of a mile a second must have occasioned much shaking of heads

at the time that it was proposed. The identification of temperature with

molecular kinetic energies, while not a new idea, received at the hands

of Joule its first quantitative development. The same remark applies

to the molecular interpretation which Joule gives to the conditions which

exist at the so-called absolute zero of temperature. At the root of all of

these outgrowths was a basic principle, which has become universally

familiar since that time under the name Conservation of Energy
,
but

about which little was understood when Joule and others made their con-

tributions. Indeed, Joule is better known for his experimental confirma-

tions of the principle of conservation of energy than he is for the foregoing

development of the kinetic theory of gases.

This raises the large and interesting subject of energy and its conserva-

tion. We consequently turn from a field in which the subject of energy

has been introduced as an incidental matter to a direct study of that basic

concept of physics.

Questions for Self-Examination

1. What contribution did each of the following men make to the development of the

theory of impact: Galileo, Wallis, Wren, Huygens, Mariotte, and Newton?

2. Distinguish between elastic and inelastic impact.

3. Describe the ballistic pendulum.

4. Define coefficient of restitution. Within what range do its numerical values lie?

5. Demonstrate that for elastic impact the doctrine of conservation of momentum is

simply a special formulation of Newton’s second law of motion, i.e., from / = ma
derive MU + rnu = MV + mv.

6. What is the kinetic theory of gases?

Problems on Chapter 13

1. The earliest known use of heavy artillery was at the siege of Constantinople in

1453. Brass cannon weighing 19 tons each threw stone spheres weighing 600

pounds. If the projectiles left the cannon at 500 feet per second, what was the

speed of recoil? 7,9 ft/sec.
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2. Which is the least hazardous, to collide with a wail when going 40 miles an hour

or while traveling 20 miles an hour, to collide head on with an approaching car

having the same speed? Why?

3. A bullet having a mass of 30 grams is fired into a wooden block of mass 2 kilograms

and administers to the block a speed of 6 m/sec. What was the speed of the

bullet? 400 m/sec.

4. What was the kinetic energy of the bullet of the preceding problem before the im-

pact? What was the kinetic energy of the block after the impact? What became
of the difference? 2400. 36.

5. A monkey clings to one end of a rqpe passing over a frictionless pulley and is

balanced by an equal weight on the other end of the rope. What will happen if

the monkey starts climbing up the rope? The masses of the rope and pulley are

to be neglected.

6. A bullet of mass m grams strikes a suspended m M h V
wooden block of mass M kilograms, causing 1.9 1.926 .398 280

it to swing through such an arc that it rises 4.61 5.706 .351 320

through a height h centimeters. What was 9.68 5.706 .692 220

the velocity V of the bullet in meters per

second?

14.91 6.11 1.972 250

7. A steel marble falls from a height II meters upon a concrete //h e

surface and rebounds to a height h meters. What is the co- 1 .9 .95

efficient of the restitution el 1 .7 .84

1 .5 .7

1 .3 .55

8. A stream of n bullets per second from a machine n m V /
gun, each of mass m grams and having a velocity 6 10 500 3.1

of v meters per second, strikes and is embedded 8 10 600 4.9

in a target. With what force / in kilograms is the 10 10 700 7.1

target pushed back? 12 10 800 9.8

9. Two steel balls of mass m and M kilograms respectively are launched on level,

frictionless ice with velocities u and U meters per second. They collide head on.

What is the velocity v and V of each after the impact? The coefficient of restitu-

tion is e. Assume all velocities in one direction positive and those in the opposite

direction negative.

m M u u e V V
.4 .6 -2 2 .9 2.6 1 .

.4 .6 - 1 2 .9 2.4 .28

.4 .6 0 2 .9 2.3 .48

.4 .6 1 2 .9 2.1 1.2



CHAPTER 14

The Conservation of Mechanical Energy

A Famous Controversy

Late in the seventeenth century a curious dispute arose in scientific

circles. Newton had taken “ quantity of motion” to be measured by the

product of mass by velocity. Descartes had still earlier adopted this idea

and written extensively in that vein, though his writings were somewhat
confused and lacked the precision of Newton’s treatment of mechanics.

Leibnitz, who has already been introduced as having been the first to

formulate the concept which ultimately developed into that of kinetic

energy, took issue with Descartes. He insisted that a more appropriate

measure of the quantity of motion would be the product of the mass by
the square of the velocity.

It is important to envisage exactly the point at issue in this famous

controversy. In modern terminology Descartes’ argument was as follows

(30:13s): 1
If you wish to compare two forces, / and F

y
allow them to

act for any given time, /, upon two masses, m and M respectively; then the

ratio of these forces will be

/_ mCl _ m(l* _ mV /-V

F~MA~MAt~MV’

that is, as the ratio of the resulting momenta.

Leibnitz, on the other hand, based his opinion upon the common experi-

ence that it requires the same “force” (as he called it) to raise a body
weighing m pounds through a height of 4 h feet as it does to raise a body of

4 m pounds through a height of h feet. Now it is well known, argued

Leibnitz, that a body in falling through 4 h feet acquires a velocity just

twice as great as when it falls through h feet. Hence, if the “force” re-

quired is the same in each of the two cases just mentioned, this “force”

must be measured by the product of the “body” (mass) by the square of

the speed. In symbols, letting s be the given distance through which the

body is moved,

f _ nta _ mas .

F~MA~ MAs W
1 With slight alterations.
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But for uniform acceleration, v « V2 as (see page 20).

Hence, the ratio of the forces becomes

/ \mvL mv2

Thus the issue was squarely joined between the two men. Leibnitz

fired the opening broadside in 1686 by the publication of a two-page

treatise bearing the long title (67:3:180):

A short Demonstration of a Remarkable Error of Descartes & Others, Con-

cerning the Natural Law by which they think the Creator always preserves

the same Quantity of Motion; by which, however, the Science of Mechanics

is totally perverted.

The subsequent dispute raged between these men and their partisans for

more than half a century. It was finally settled by d’Alembert in 1743

(1 :xvii) when he showed that the contest had been a mere battle of words.

Thinking that they were talking about the same thing, the disputants

had actually been thinking about different things. Both were right, each

in a separate field. Descartes’ adoption of momentum as the measure of

quantity of motion was correct for a force acting for a certain time . Leib-

nitz’s adoption of energy as the measure of a quantity of motion was
correct for a force acting through a certain distance . Each had its use,

and once it was clear that momentum and energy were two entirely sepa-

rate entities, no further occasion for disagreement existed.

The fact is— though nobody up to the time of d’Alembert had realized

it— that mechanics had been from the beginning confronted with the

necessity, not of choosing between these alternative points of view, but of

incorporating both of them into its structure. Until it did so, thoroughly

and completely, it was but half a science, limping along on one leg while

its normal logical progress required two.

Unknown, even to the pioneers of science themselves, the energy prin-

ciple had been lurking in the hiding-places of mechanics for a long time.

It had been employed by Huygens in his Horologium Oscillatorium
,
though

with what degree of appreciation of its generality is hard to say. It had
also been used unconsciously by Galileo, and it was even implied in the

work of Archimedes on the balance. Great as was the work of these men,

we now realize that they were in large measure blind to what is possibly

the most fundamental single principle in mechanics.

The Definition of Work

Leibnitz had commented on the equivalence between raising a mass m
through a height of 4 k and raising a mass of 4 m through a height of h.

The significant point in his mind was thus the product of the force exerted

and the distance traversed in the direction that the force acted. This product

of force by distance is now known as work
,
in the technical or scientific

sense; Leibnitz called it “ force.”
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In the literature of physics, work means just one thing, force multiplied

ly the distance traversed in the direction of the force. Algebraically,

W - fs. (4)

Work, being defined as the product of a force by a distance, is expressible

in corresponding units. A common English unit of work is the foot-pound,

which is the work performed in lifting one pound through a distance of

one foot against gravity, or one half-pound through two feet, or any similar

product of distance in feet by force in pounds which gives the value unity.

This is, however, a somewhat unsatisfactory unit, since the gravitational

attraction upon a given mass is measurably different for different localities.

The difficulty is avoided by taking advantage of the so-called absolute

system of units in common scientific use— involving the metric system,

with the meter as the unit of length and the newton as the unit of force

(see page 96). This metric unit of work, which would otherwise have to

go by the awkward name of meter-newton, has been given the name joule,

in honor of James Prescott Joule (1818-69) of Manchester, England, whose
contributions will be encountered in the study of heat.

The Idea of Potential Energy

If we state that a falling body is converting into kinetic energy the work
which was previously done upon it in the process of raising it, we imply

that the body thus raised must somehow possess, before it starts to fall,

the energy which is later to appear in kinetic form. Once the concept of

energy is formed, the possession of energy by a moving body is pretty

obvious. Kinetic energy thus came early into the scientific scheme. But
the possession of additional energy by an object which has been raised

from a lower to a higher level is considerably less obvious. It is, in fact,

a rather subtle concept. It was a concept which eluded both Leibnitz

and Descartes. The concept of potential energy struggled for a place in

the scientific sun through the first half of the nineteenth century under

various names. Finally an engineer 1 coined the term potential energy.

It immediately found favor and has been used ever since. Hence, from

the welter of scientific confusion about the nature of energy two funda-

mental concepts emerge: kinetic energy and potential energy. The
former is energy possessed by reason of motion; the latter is energy pos-

sessed by reason of position or condition, as in a raised weight or a stretched

spring. It will be clear that either kind may come into being in conse-

quence of the performance of work; in the first case, work devoted to

producing speed; in the second case, work involving some reversible

process which subsequently can be made to yield up the energy thus stored.

Some Applications of the Doctrine of Conservation of Energy

If Galileo had possessed the concept of energy, he would not have been

satisfied with merely observing that a pendulum bob rose to the same
1 W. J. M. Rankine (1820-72) (107:203).
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height on each side of its swing. He would have pointed out that at the

extremes of its travel it possessed no kinetic energy, and that for those

positions the potential energy was at its maximum value; also that in the

course of reaching its lowest level, the mid-point of its swing, the potential

energy had diminished and the kinetic energy had increased to its maximum
value, having grown, of course, at the expense of the potential energy

previously possessed by the bob; also that as the pendulum bob traveled

past the center further and further up the arc of its swing, its kinetic

energy once more diminished, being progressively converted again into

potential energy. And finally he would have shown that, barring fric-

tional losses, the entire action of the pendulum consisted in these successive

alternations between potential and kinetic energy and that at all times the

sum of the kinetic and potential energy remained unchanged.

One of the laws of falling bodies developed in Chapter 3 was that the

speed attained by falling through a height h was y/l gh (page 20). Even
limited to free fall this was a useful relation but with the aid of the conser-

vation principle it may now be extended. The important point is not the

mode of fall but merely the difference in height between the initial and the

final positions, regardless even of any simultaneous horizontal travel. Re-

call that in raising a mass m through a height h the amount of work done

upon it is mgh
,
and that in the process a corresponding increase of potential

energy is imparted to the mass. If now the object descends without friction

through the same height A, thereby acquiring a velocity v
,
its kinetic energy

becomes \ mv2
,
acquired at the expanse of the potential energy previously

possessed. Equating the potential and kinetic energies,

mgh = | mv
2

(5)

whence

v - VTgh. (6)

Though this relation has been encountered before, it appears now in

a new light. It is now entirely free of any limitations such as free fall.

No particular path whatever has been assumed; hence, it now appears

that, whatever the path
,
any body which moves without friction under

gravity with zero initial vertical velocity from one level to another, lower

by a distance h
,
will acquire the speed V2 gh. It need not descend ver-

tically; it may travel an indefinite distance horizontally; it may descend

far below the final level and rise to it again; it may do anything, provided

only that it completes its course, without friction or other losses, at the

required distance below its starting point.

The possibility which this opens up of treating mechanical problems by
a general consideration of energy relations, without being concerned with

the purely incidental minutiae, is sometimes very useful. A good example

is the Study of water jets.
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Speed of Efflux

The energy principle is naturally not limited to solids. It applies to

fluids as well. If it is desired to know the speed of efflux of a liquid from

an opening a distance h below the level in a container, the problem might

be rather complicated if it were necessary to consider all the forces and
accelerations involved within the container. The energy principle makes
all that unnecessary and tells immediately that since the kinetic energy of

an emerging drop must equal the potential energy which it possessed before

it started to move, its speed as it issues must be V2 gh. This, as has been

observed, is the speed acquired by any body which falls freely through a

height h.

The first man to associate the speed of efflux of a liquid with the speeds

of falling bodies was Evangelista Torricelli, the same man who constructed

and experimented with the first barometer (page 83). In 1641
,
Torricelli

investigated the motions of projectiles and the flow of liquids (124:£S:185).

In it he said:

Liquids which issue with violence (from an opening in a vessel) have at

the point of issue the same velocity which any heavy body would have,

or any drop of the same liquid, if it were to fall from the upper surface of

the liquid to the orifice from which it issues

There is, of course, no hint here of the energy concept. But it has just

been pointed out that the relation of speed to distance which Torricelli

invokes here is most simply derived in its most general form by using the

energy principle.

There is another point of interest about the efflux problem. It illustrates

a weakness as well as the strength of the energy method. It yields the

value of the speed but gives no information about direction. By using

different shapes of spout, the direction can, in fact, be controlled quite

without limitation as indicated in Figure 134. The energy principle applies

to all cases and is entirely noncommittal on a question which would be

answered immediately if forces and accelerations were considered instead

of merely energies.

The speed of efflux is, indeed, not limited as to direction. In the absence

of a spout to give guidance to the liquid, the various parts of the emerging

Fig. 134, The Energy Principle Applied to Fluids
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jet are not even parallel but converge, producing a 4'waist” or constric-

tion in the jet, known as the vena contracta
,
a short distance from the

point of emergence (point d of Figure 134). This information, also, comes

from other sources than the energy equation. Thus the energy principle,

useful as it will be found, is far from all-inclusive in its generality. While

all physical phenomena proceed in accordance with it, application of the

principle to these phenomena will yield information only about certain

aspects of them, which may not be the aspects which are of greatest interest.

Stream-Line Flow

Another class of phenomena to which the energy principle may usefully

be applied is the stream-line flow of fluids. The term stream-line is used

so widely and so indiscriminately that it will be well to clarify it. When
the velocity at each point of a given body of moving fluid remains un-

changed, both in magnitude and in direction, the flow is clearly occurring

along certain unchanging lines.1 These

lines of steady flow are called stream-

lines. Any narrow, cylindrical or conical

portion of such a fluid is called a tube

of flow. Obviously, by definition of tube

of flow, the fluid constituting such a tube

remains in it during the entire course of

the flow. Figure 135 represents such a

tube. It might be a portion of a larger body of fluid, or it might consist

of as common a thing as the tapered interior of the nozzle of a hose. In

either case, all the fluid entering at the left end leaves by way of the right

end, none of it crossing the boundaries in the interim.

Fig. 135. A Tube of Flow in

Stream-Line Motion

The Bernoulli Effect

If the tube is tapered, as in the illustration, the speed of the fluid will

necessarily be greater at the smaller end than at the larger. Experiment

has shown, contrary to what might be

supposed, that the pressure is less at

the small portion of a constricted

tube than at the larger portion. This

is indicated in Figure 136 by small

manometers placed at the points in

question on a constricted tube. This

association of regions of diminished

pressure with increased fluid velocity

and vice versa is termed Bernoulli’s

Principle. It was first described by the same Daniel Bernoulli who first

Fig. 136. Pressures in a
Constricted Tube

1 When the relative speeds of adjacent fluid surfaces exceed certain values, or when the

boundaries are rough or otherwise discontinuous, no steady lines of flow can exist The irregu-

lar variations thus introduced constitute turbulent flow, which is to be set in contrast with

steady flow, to which the present discussion is confined.
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connected Boyle’s law with molecular impacts. It may be accounted for

by an application of the principle of conservation of energy to stream-line

flow, as follows.

An increase in speed can occur only if work is done on the fluid as it

moves from one end of the tube to the other, this work being converted

into kinetic energy. (Losses by friction, etc., will be disregarded. The
flow will be assumed horizontal so that disturbing effects due to change

in height can also be disregarded.) Work done on a volume V of fluid

as it enters the tube will be given by

force X distance = pressure X area X length

= pressure X volume *= P YV

where Pi is the pressure at the entering end of a tapered tube. The
work done by the same volume of fluid as it emerges will similarly be given

by the expression P2V9
where P2 is the pressure at the emerging end. The

difference is the net work done on the given volume, or (P 1 — P2) V.

The work thus done on the moving volume of fluid will change the speed

from vi to z>2 ,
and the corresponding kinetic energy from | mv 1

2 to \ mv2 .

If the density of the fluid is d
,
then m may be given the value dV. Whence

(Pi- (7)

or Pi + \ dv 1

2 ~ P > + \ dv2
2
. (8)

This equation shows that regions of high pressure are characterized by
low velocity and vice versa, as observation has shown. If the difference

in pressures is known, the difference in the squares of the velocities can be

deduced, or vice versa. This relation is utilized in the so-called Venturi

meter
,
a device for indicating through pressure differences in a constriction,

the rate of flow of a fluid through the interposed device. Bernoulli’s

principle is invoked to account for many other phenomena, such as the

action of a gas jet in sucking in air, of an atomizer, and of the carburetor-

jet of a motor car in sucking liquid fuel into a blast of air; the curving of

baseballs and golf balls; and so forth. Strictly speaking, Bernoulli’s prin-

ciple applies only to incompressible fluids, but with certain reservations it

may be used qualitatively to explain these other effects.

The Energy Principle Applied to Machines

Another area in which the idea of conservation of mechanical energy

may be usefully applied is the design of machines. Newton had a some-

what vague prevision of this in the Scholium to his third law of motion

(91:28). A modern version of it would be a statement of the equality

of work done to energy absorbed in a given process. This can be applied

to the lever, which has already been treated by the force method. By
that method it was shown that if, for example (Fig. 138), the long arm

of a lever is twice as long as the short arm, a force on the short arm will be

balanced by one of half the magnitude on the long arm. Now when the

lever is in action, motion is produced at the point of application of each
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Pig. 137. Venturi Meter Tube
(Courtesy of Builders— Providence.)

force, and by the simplest geometry it will be seen that the point of

application of the small force will move twice as far as that of the large

force. Hence, if we take products of forces and distances moved, the

work done at one end of the lever is found equal to that done at the

other.

The so-called compound pulley is sometimes treated as a modified

lever, with the fulcrum at one end, the weight in the middle, and the

force applied at the other end. This is entirely justifiable, as an exam-
ination of the shaded portion of the pulley of Figure 139 will show, but
somehow the analogy appears a bit strained when it is realized that the

shaded portion represents successive-

ly different portions of the pulley.

But if Newton’s work principle is

applied the mechanical minutiae can

be avoided entirely. From the mere
observation that the weight W is

supported by two ropes symmetri-

cally placed, the force exerted through

each is seen to be necessarily W/2.
The application of the work principle

will then require the conclusion that if the weight is to be raised a certain

distance, the free end of the rope must be raised twice that distance.

Similarly for two pulleys (four ropes over the lower pulleys) (Fig. 140),
the weight is distributed equally among four ropes, the force exerted will

be in the ratio one to four, and the distance consequently four to one.

The ratios 1 : 6 and 6 : 1 will apply to three pulleys, and so forth. As
a matter of convenience to the user, in all three of these cases, the free

end of the rope would in practice be carried over an upper fixed pulley.

A downward pull on a suspended rope enables the user to use his muscles
to better advantage, of course.

The term mechanical advantage
,
commonly applied to such devices,

indicates the ratio between weight and force. For example, in the lever

of Figure 138 and in the pulley of Figure 139 the mechanical advantage is 8.

In Figure 140 it has the value 4, and so forth. The use of the extra fixed

pulley referred to in the preceding paragraph does not affect the mechani-

Fig. 138. The Work Principle
Applied to the Lever
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Fig. 139. The Pulley as
a Lever

Fig. 140. Compound
Pulley

cal advantage, which for a pulley system is affected only by the number
of ropes attached to the moving block.

Efficiency

It is usually not permissible, in actual practice, to disregard the energy

wasted by a machine, as has been done in the preceding examples. The
energy expended upon a machine always exceeds that yielded by it, the

excess being the energy dissipated, principally through friction. In many
mechanical operations the ratio of energy yielded to energy absorbed is

sufficiently constant to be taken as descriptive of the performance. This

ratio is termed efficiency, and the efficiency of an operation is thus describ-

able in numerical terms by some number less than unity. Examples are

not hard to find. An eight-hundred-pound elevator raises a two-hundred-

pound man. The useful work done, the raising of the man, is proportional

to his weight, but the total work done is proportional to the total weight.

The efficiency of the operation is then the ratio of two hundred to one

thousand or 0.2. It is true that at the conclusion of the upward trip the

elevator possesses potential energy, which might in theory be utilized

and thus raise the efficiency of its operation. In practice the remaining
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4

0.

8 is nearly always a total loss, since the subsequent descent without the

man is usually kept under control by friction, thus dissipating the potential

energy in non-useful heat.

Power

There is a final application of the concept of work to be made before

the next subject is taken up. While the same amount of work would be

required, say, to ascend a flight of stairs in five minutes as in five seconds,

the rate of doing work would be quite different in the two cases. The rate

of doing work is of sufficient importance to have received a name and a unit.

Rate of doing work is termed power . In this case as in the case of other

technical terms careful attention must be paid to the exactness of this

definition, and how it contrasts with the wide range of vague meanings

attached to it in non-technical use. Power is work per unit time. In the

English system the foot-pound has been mentioned (page 145) as a unit

of work. Thomas Savery, whose pumping engine, patented in 1698, was

the first device actually to use steam power in industry, suggested as a

standard of power the rate at which a horse could do work. The figure

550 foot-pounds per second was somewhat casually set by James Watt
in 1782 for this rate. Watt was making major improvements in the design

of steam engines at the time (cf. Chapter 20) and either by guess or by

rather crude observation set at 180 pounds the force that an average

draft horse would be able to exert while walking at the rate of three feet

per second. The resulting value for the power of a horse, 540 foot-pounds

per second, was apparently rounded out later to 550 1 and the unit thus

determined was named the horsepower . This is an awkward unit in more

ways than one, but it was a natural one to introduce at a time when every

prospective customer of the engine-builder was asking the question,

“If I buy one of your engines, how many horses will it replace?

”

In the metric system the unit of power is, naturally, one joule per second,

and it is named the watt
,
in honor of James Watt, whose inventions im-

proved the steam engine nearly to the plane of its present performance.

The watt, as a unit of power, is used so commonly in connection with

electrical devices that the association produces the impression that it is an

electrical unit. Such is, however, not the case. It is fundamentally a

unit of mechanical power, similar to the horsepower, though much smaller.

It^requires 746 watts to be the equivalent of one horsepower. The metric

unit of power which is analogous to the horsepower is the kilowatt (1000

watts). The horsepower is thus 0.746 of a kilowatt.

Questions for Self-Examination

1. Carry through the two courses of reasoning that led to the collision between
Leibnitz and Descartes on the proper measure of “quantity of motion.”

x The American Physics Teacher
, 4, 120 (193(5).
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2. Evaluate Galileo’s early contribution leading up to the concept of energy as formu-

lated later by others.

3. Describe Galileo’s treatment of the pendulum.

4. Show that the velocity of a pendulum at its lowest point, the descent having been

through a height of h, is V2 gh and comment on the significance of the method of

derivation.

5. Distinguish between kinetic energy and potential energy. Mention instances of

conversion from one to the other.

6. Discuss the velocity of efflux of a liquid jet.

7. State Bernoulli’s principle and < onnect it with the conservation principle.

Problems on Chapter 14

1. A gun shoots a projectile weighing a ton with a speed of 2250 ft/sec. Calculate

the energy in foot-pounds. 1.6 X 108
.

2. A belt from a pulley 4 feet in diameter making 300 revolutions per minute trans-

mits 1 14 horsepower. How strong must it be?

It must withstand at least 1000 lbs.

3. A 150-pound man runs upstairs, rising 15 feet in 3 seconds. What horsepower

does he develop? 1.4.

4. An automobile requires 50 horsepower to drive it 60 miles per hour. What is the

force being exerted on it by the engine? 310 lbs.

5. A 30-gram bullet initially traveling 4(X) m/sec penetrates 10 centimeters into a

wooden block. What average force does it exert? 2400 kg.

6. The starting point of a “ loop-the-loop ” must be at least how much higher than

the highest point of the loop? The center of gravity of the car is above the track

at the start and below it while “topping” the loop. What bearing does this

have on the answer to the foregoing question? \ of the radius.

7. A Prony brake of length l feet registers a force of / pounds exerted by an engine of

speed n revolutions per minute. What is the “brake horsepower” P?

1 / n P m l a W
7. 4 100 100 7.6 8. 100 10 30° 500

4 150 80 9.1 100 10 50° 770

4 200 60 9.1 100 10 70° 940

4 250 40 7.6 100 10 90° 1000

Iibw much work W in foot-pounds is done when an w-pound box is
.
pulled without

friction up an incline l feet long which makes an angle a with the horizontal?

In the preceding problem, what horsepower P is necessary to accomplish the

task in t seconds?

W t P m l a
I

K
9. 500. 1 .91 10. 1 1 20° 3.4

766. 2 .7 1 1 30° 4.9

939.7 3 .57 1 1 50° 7.5

1000. 4 .45 1 1 60° 8.5

10. A mass of m kilograms slides down a frictionless inclined plane of length l meters,

which make an angle a with the horizontal. Find the kinetic energy K at the

foot of the incline in joules.
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11. Solve the preceding problem assuming a coefficient of friction k.

m l a k K m P t V V a

11. 1 1 200 .3 .59 12. 4000 50 1 14 13. 5 21.

1 1 30° .3 2.4 4000 50 5 32 20 5.1

1 1 50° .3 5.6 4000 50 10 45 40 2.6

1 1 60° .3 7. 4000 50 20 64 60 1.7

12. An w-pound automobile possesses P horsepower in excess of that required to

overcome friction and air resistance. What speed v in miles per hour can it acquire

in t seconds on a level road? (Note that this involves motion under constant

power
,
which is of quite a different type than motion under constant force [see

problems 1 and 2 of Chapter 10].) In this case the conservation principle is useful.

The surplus work, in absolute units, done by the engine is equal to the final kinetic

energy of the car.

What is the acceleration 0
,
in miles per hour per second, of the automobile of the

preceding problem when the speed has reached v miles per hour?

A steamship is driven v miles per hour by engines of P horsepower working at

13

14.

an efficiency e per cent. What is the thrust F of the screwr in tons?

V P e F P V n V P
14. 5 1000 30 11. 15. 100 10 1 20 400

10 4000 30 22. 400 20 2 30 1300

15 9000 30 34. 1350 30 3 40 4300

20 16000 30 45. 4267 40 4 50 13000

15. It requires p horsepower to drive a ship through the water at a speed of v miles

per hour. If the resistance of the water is proportional to the wth power of the

speed, what horsepower P is required to drive the ship at a speed of V miles per

hour?

16. An inverted simple pendulum of weight m kilograms and length l meters, having

a rigid suspension, is released. With what speed v in meters per second does it

pass its lowest point and what is the tension T in kilograms in the suspension

at the instant?

m / V T m l V T
16. 4 .64 5.0 20 17. 4 .64 5.6 24

4 1 . 6.3 20 4 1.00 7.0 24

4 1.44 7.5 20 4 1.44 8.4 24

4 1.96 ‘8.8 20 4 1.96 9.8 24

17.

The pendulum of problem 16 is given an initial velocity such that as it passes the

top it exerts no force on the support (cf. problem 14 of Chapter 11). With what
velocity v in meters per second does it pass its lowest point and what is the tension

T in kilograms in the suspension at the instant?



CHAPTER 15

Rotation

Human Intuitions on Rotation Are Unreliable

Nearly all the discussion of mechanics, in the foregoing chapters, has

been confined to translatory motion. The one exception was in Chapter 7,

which presented some aspects of rotational statics. This bore somewhat
the same relation to the dynamics of rotation that the subject of resolu-

tion and composition of vectors as presented in Chapters 4 and 5 did to

Newton’s laws of motion.

In developing the statics and dynamics of translatory motion, it was
possible to make rather free use of the accumulation of intuitions and ideas

which develop in the ordinary daily experience of the average individual.

While they needed to be clarified at many points, the development of

many of the fundamental concepts of translatory mechanics consisted

primarily in extending and generalizing these common intuitions.

It is quite otherwise with rotation. The muscular reflexes which hu-

manity has perfected are associated almost exclusively with translatory

motions and are of very little help when an occasion arises for the acquire-

ment of insight into rotatory phenomena. The behavior of a spinning

top is perhaps the most familiar example of rotation, but the deficiency

of popular comprehension of its principles is indicated by the mystification

with which the action of a gyroscopic ship stabilizer or the stability of a

gyroscopic monorail car is regarded — both of which embody in somewhat

simplified form the principles of the top. Because of this lack of intuitive

material with which to work, it will be necessary to make a somewhat

different approach to the subject of rotation from that which has charac-

terized the treatment of translation. Instead of building up the logical

structure of rotatory dynamics from the scanty materials provided by
daily experience, the general plan will be to make extended use of analogy

with the dynamics of translation as developed in the preceding chapters.

This will be greatly facilitated by the fact that there is virtually a com-

plete parallelism between these two great sections of mechanics. For

every phenomenon of translatory motion, there is a corresponding phe-

nomenon of rotatory motion. By minor modifications, Newton’s laws of

motion, the phenomena of harmonic motion, the laws of impact, and the

great generalizations on work and energy— all treated earlier exclusively
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from the standpoint of translation — may be extended to include rota-

tion.

The Analogy of Rotation with Translation

In setting up an analogy between translation and rotation, it will be

evident immediately that the rotational entity which corresponds to linear

motion is angular motion. In place of the measurement of linear displace-

ments in feet or meters, the measurement of rotatory displacements in

revolutions, in degrees, or in radians, preferably the latter, is substituted.

Similarly in place of linear speeds and linear accelerations, angular speeds

and angular accelerations are substituted, defined in precisely analogous

terms. This makes it possible to formulate immediately for rotation the

kinematical relations deduced for translation in Chapter 2 and Chapter 3.

There will naturally be some changes in notation. It is the custom in

mathematics, physics, and engineering to use Greek letters to denote

angular quantities. The common notation for angular displacement

(corresponding to s for linear distance) is d (theta); for angular speed

(corresponding to v for linear speed) is co (omega)
;
for angular acceleration

(corresponding to a for linear acceleration) is a (alpha). Using this nota-

tion, the following equations may be stated at once for rotation by analogy

with the corresponding equations for translation.

Chap.

From
Page Eqn. For Translation For Rotation

2 14 1 V - S
/ V

e n e
co = — > 0 = co/, / = -

t CO
(1)

10 94 1 v - at co = at (2)

94 2 s *=
\ at2 6 = \ at2 (3)

94 3 v » y/l as co = \/2 ad (4)

94 4 v - flo + at co = co0 + at (5)

94 5 s ~ Vot + \ at2 6 *= coo/ + | at2
(6)

94 6 v = y/v* + 2 as co *= a/coo
2 + 2 ad (7)

12 122 7
4 7T

2

« = ~^f S & ll 1 •3|f
(8)

123 8 (9)

It is of great importance to comprehend the situations described in the

equations at the right. One way of cultivating such comprehension is

to state the situation in words, thus: Equation (3) gives the total number
of radians, 6, described by a rotating body possessing an angular accelera-

tion of a radians per second per second, during the t seconds elapsed after

starting from rest. A similar verbal formulation may be made for each of

the other equations to great advantage.
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The Analogy of Torque with Force

Besides the conversion of distances, speeds, and accelerations into

corresponding rotational entities, there is a second type of conversion

which is involved. The groundwork for this has already been laid in

Chapter 6, where the conception of torque was introduced. It was noted

there that torque was related to rotatory acceleration in the same way
that force is to translational. Hence, in converting translatory equations

to rotatory, it will be necessary to substitute torque (

L

) for force (f) wher-

ever the latter occurs. The two principal examples encountered up to

this point are as follows.

From
Chap. Page Eqn. Translation Rotation

12 123 9 /= -ks 111
(10)

14 145 4 W-fs n & (11)

One of the principal problems encountered in statics is that of the com-
position and resolution of forces. It is natural to inquire whether the

analogy between forces and torques extends to the composition and resolu-

tion of torques. Intuitively, it is rather difficult to conceive how torques

can be either combined or resolved into components in the sense in which

forces have been seen to be subject to these operations.

But as has already been observed, intuition is a weak reed upon which

to lean when rotation is under consideration. The fact is that torques

are as amenable to composition and resolution as are forces. Since

torques possess both magnitude and direction, they are vectors and as

such are subject to the same laws of vector addition as are forces, dis-

placements, velocities, and accelerations.

The Analogy of Moment of Inertia with Mass

Besides the transformation of linear displacements into angular dis-

placements and forces into torques, there is a third and last conversion

which is involved before translatory relations can be applied unreservedly

to rotation: namely, that of mass into its rotatory analogue. The funda-

mental dynamical equation of translatory motion has been seen to be

/ = ma,

the algebraic formulation of Newton’s second law of motion. As has

already been seen, to correspond to this, a rotational equation would

transform the force / to a torque L and the linear acceleration a to an

angular acceleration a . The remainder of the problem is to find or to

define an attribute of a rotating body which is related to torque and

angular acceleration in the same way that mass, in the above equation,

is related to force and linear acceleration.

The first man apparently to solve the problem with a full recognition

of its significance was Euler, in 1765, though Huygens had treated it sue-
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cessfully, albeit somewhat casually, in 1673. Euler (37:Cap. Ill) set

up the definition of the required entity and named it moment of inertia .

Pending a consideration of its properties, which will be presented shortly,

it may be tentatively introduced under the notation /, which is commonly

used. It becomes possible immediately to write the rotational equation

which corresponds to / = ma, namely,

L = la.

In the same way the other translational relations involving mass, which

have been developed in preceding chapters, may now be converted into

their rotational equivalents, as in the following table. The preceding

pair of equations is included for the sake of completeness.

From
Chap. Page Eqn. Translation Rotation

10 96 9 /= ma £11 (12)

12 123 11 T - 2'^ IT

u
*(13)

13 139 K.E. = \ tm? 11* (14)

* Lq is an elastic constant of the “torsion pendulum’ 1
' to which equation (13) applies. As

in equation (9) (page 123), in which k is the ratio of any force / to the corresponding displace-

ment x, so L0 is the ratio of any torque, L, to the corresponding angular displacement or twist, 0
,

for the given torsion pendulum.

What Moment of Inertia Depends Upon

The moment of inertia is thus an entity which, in rotational phenomena,

plays a r61e entirely analogous to that played by mass in translational

phenomena. It is not, however, quite as definite an attribute as mass,

since a given object may have an indefinite number of moments of inertia,

depending upon the relative position of the axis about which it is rotated,

whereas there is only one value for the mass of any object. But for a given

object, rotating about a given axis, the value of the moment of inertia is

perfectly definite.

It is, of course, as necessary that moment of inertia shall be measurable

and statable in numerical terms as it is that mass or any of the other

physical entities shall possess that characteristic. One of the ways in

which the measurement of the moment of inertia may be effected is by
the application of equation (12). If the object whose moment of inertia

about a given axis is desired is set in rotation about that axis by the applica-

tion of a measured torque, and the angular acceleration thereby produced

is observed, the ratio of torque, L
,
to angular acceleration, a, will obviously

give the value of /, the moment of inertia.1 An approximate measure of

the moment of inertia of any ordinary object may be made by simply giving

1 Due attention must, of course, be paid to units. For equation (12), as for all other equa-

tions connecting force and motion, to be applicable, the so-called absolute units must be used.

For the system prescribed in this text, these would be forces in newtons, masses in kilograms,

distances in meters.
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the object a twist about the prescribed axis. For example, a book, grasped

in the middle of one side and twisted quickly will show a certain sluggish-

ness about taking up the rotation imparted to it, and this will give a rough

muscular estimate of its moment of inertia about a central axis in its plane.

This sluggishness will be found much more pronounced if the same book
be grasped at a corner and rotated about one of its edges. The moment
of inertia for this case is, in fact, four times that of the previous case. The
dependence of the value of the moment of inertia upon the position of

the axis is especially pronounced for long narrow objects. A broomstick

turned about its own axis presents an almost negligible inertia; but if it

is grasped by the center and rotated about an axis perpendicular to its

length, a man must be unusually strong to oscillate it through ninety

degrees more than about twice a second.

Thus the value of the moment of inertia of an object depends upon the

relative position of the axis. Naturally, it depends also upon the value of

the mass. If the broomstick had been an iron bar of the same dimensions,

the moment of inertia about any axis would have been greater than that of

the broomstick in the ratio of the masses. Hence, as the matter is com-

monly stated, the value of the moment of inertia of an object depends both

upon the mass and upon its distribution around the axis of rotation. This

suggests the question whether it is possible to compute moments of inertia

about given axes, merely from knowledge of masses and dimensions.

Calculation of Moment of Inertia for the Simplest Cases

The answer to the foregoing question is in the affirmative. For regular

solids, the computation of moment of inertia from mass and dimensions is

possible. For a few cases the process is extremely simple. For most,

however, mathematical processes are involved which are not found in the

equipment of the average man-in-the-street. Nevertheless, the principle

involved is sufficiently simple, so that it will repay some attention.

To develop this principle, consider a particle of mass m at the end of

a rod of length r and of negligible weight pivoted at the end opposite the

mass (Fig. 141). A force / acts upon it, always perpendicularly to the

rod. The torque thereby produced will have the value fr . As regards the

force itself and the acceleration, a, which it produces in the mass, m,

Newton’s second law of motion applies, that is,

/ = ma. (15)

It is now desirable to show how equation (12) may be developed out of this,

without using the somewhat arbitrary analogies of force with torque,

linear with angular acceleration, and mass with moment of inertia, which

have characterized the preceding treatment. One step in this direction

is quite obvious. Multiplication of both sides of equation (15) by r will

give on the left fr which is the torque L, that is,

fr = L = mar .
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Also the angular acceleration a can be introduced by noting that in radian

L ~ m*ar*r ® mr2a. (16)

Now comparing equation (16) with equation

(12) it will be seen that the two are of the

same form except that for the I which appears

in (12) the corresponding term in (16) is wr2
.

The natural and indeed almost the only pos-

sible inference is that the moment of inertia

1 of a particle of mass m concentrated at a dis-

tance r from the axis of rotation has the value

I = mr2
. (17)

It will be fairly evident that equation (17)

would still represent the moment of inertia of

the mass m, if the mass, instead of being con-

centrated at a single point, were extended a-

round into a circular filament having its center

on the axis and being contained in a plane per-

pendicular to the axis. This extension is per-

missible because all parts of the mass of the ring are still at a distance r from

the axis. Again, and for the same reason, equation (17) also applies to a thin

hollow cylinder whose geometrical axis coincides with the axis of rotation.

Moments of Inertia of Geometrical Forms

It is not possible to deal as simply as this with any other geometrical

forms. The difficulty is that in all other objects the material constituting

them, instead of being concentrated at one distance from the axis of rota-

tion, is distributed. Approximate values of their moments of inertia can

be secured by dividing such objects, in imagination, into sections so small

that their masses may be considered concentrated at points, multiplying

each such elementary mass by the square of its distance from the axis of

rotation, and finding the sum of all these products. The smaller the sec-

tions, the more accurate the result, the ideal case of perfect accuracy being

the division of the object into infinitely small sections and the addition of

the resulting infinitely large number of products. The logical machinery

for such a process is found in a branch of mathematics known as the in-

tegral calculus. The possession of this intellectual tool cannot be assumed
on the part of every reader (though many will no doubt have it). It would
be possible to deduce the moment of inertia of certain geometrical forms

in the way that early investigators did, namely, by indulging in laborious

detours around the mathematical obstruction. It is hardly worth while,

however, and the computation of moments of inertia of the various stand-

ard geometrical forms will simply not be undertaken. The following table

gives the values for certain standard forms.

measure, a « ar, whence

Fig. 141. Calculating the
Moment of Inertia of a
Particle
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Object Axis Through Moment of Inertia

thin rod center perpendicular to length

thin rod end perpendicular to length \m&
rectangle center perpendicular to plane Mr m (a

* + &2)

rectangle center parallel to side a •A- mb2

disk or solid cylinder center (geometrical axis) | mr2

disk center in plane \mr2

ring or hollow cylinder center (geometrical axis) mr2

sphere center £ mr2

The Radius of Gyration

It will be evident that in the case of the solid cylinder, for example, a

thin hollow cylinder of the same mass but with a radius equal to of that

of the solid cylinder would have the same moment of inertia, namely,

Am
lent hollow cylinders. The radius of the equivalent hollow cylinder goes

by the inappropriate name of radius of gyration, possibly suggested by
Huygens’ cumbersome term distantia inter axem ct centrum oscillationis.

The “center of gyration” of an object is remotely analogous to the center

of gravity, some of the properties of which were developed in Chapter 6,

in that, for the purpose of rotation about a given axis, all the mass of the

body may be considered concentrated at one distance from the axis. If

this distance k be known, the value of the moment of inertia 7 of a body

of mass m may be immediately written:

7 = mk2
. (18)

It would be interesting and quite simple to deduce the value of the radius

of gyration for all of the forms in the foregoing table, a task which is left

to the reader.

The Center of Oscillation

Knowledge of the radius of gyration of a compound pendulum simplifies

the problem already referred to (on page 128) of the length of the equiva-

lent simple pendulum. In his Horologium OscUlatorium, Huygens formu-

lated this problem along with several others associated with the compound

pendulum (59:117 ff). The inadequacy of the mathematical methods

then available necessitated a decidedly roundabout type of solution, but

he finally arrived at the conclusion that the length l of a simple pendulum

having the same period as a given compound pendulum was

square of radius of gyration

~
distance from axis to center of gravity

All objects may be considered similarly replaceable by equiva-
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Huygens coined the term center of oscillation to describe the point on a

compound pendulum which would lie abreast of the bob of an equivalent

simple pendulum. From the foregoing table of moments of inertia, it is

possible to show, for example, that for a composite pendulum composed

of a thin rod swinging from one end, the length of the equivalent simple

pendulum is two thirds the length of the rod. For the case of a spherical

bob at the end of a long suspension, the center of oscillation is much closer

to the center of gravity than for a pendulum composed of a rod, but the

two are still not identical. This is in part the origin of the difficulty in

identifying exactly the length of simple pendulum (see page 128).

An interesting application of the principles of rotational inertia may be

found in the gyroscope
,
a model of which is illustrated in Figure 142.

This is so mounted that in addition to its spin (about OX in Figure 143)

it may also turn about OY and OZ. If a torque be applied to such a

gyroscope while it is not spinning, say by hanging a weight F on the end

of the axle, rotation about OY will occur. But if the gyroscope is spinning

in the direction shown, the consequent rotation will actually be about OZ
and is termed the precession . At first such behavior seems paradoxical.

To understand it consider the accelerations of (and hence the forces on)

various portions of the gyroscope.

Look at the gyroscope from the point X (Fig. 144). A weight on the

end of the axle (now projecting toward the reader) would, in the absence of

spin, cause rotation about OY, the top of the gyroscope moving toward

the observer and the bottom moving inward. Consider now the effect of

Fig. 142. A Gyroscope Mounted in Gimbae Rings
(Sperry Gyroscope Company, Inc.)
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Fig. 143. Elements of Gyroscopic Fig. 144. Gyroscope Viewed from
Motion the Positive End of the OZ Axis

the inertia of a particle in each of the four quadrants in resisting this rota-

tion about OF, and producing, as will appear, a rotation about OZ instead.

A particle in quadrant a is being carried by the spin constantly further

away from the OF axis, and hence any rotation about OF would cause

this particle to move faster (out of the page) as it receded from that axis.

Its inertial reluctance to increase its speed out of the page is the equivalent

of a force awayfrom the observer. A particle in quadrant b is at the same

time getting closer to OF on account of the spin, and hence any rotation

about OF would cause it to move more slowly away from the observer.

Its inertia, acting to maintain this motion of recession, consequently pro-

vides the equivalent of another force away from the observer, as was

that on a.

Similar reasoning about the inertial reactions of particles in the quad-

rants c and d will show that they are in the opposite direction; that is,

toward the observer. Clearly these two pairs of reactions will cause the

spinning gyroscope to rotate about the axis OZ, if free to do so, instead

of about OF as it would under the given torque if not spinning. That

is to say, under a torque about OF the precession will be about OZ.

The precessional response being at right angles to the torque in a gyro-

scope is at first puzzling. At first inspection it appears to contravene

Newton’s second law. But the paradox is only superficial, as the fore-

going analysis shows. The directional relation between spin, torque and

precession is sometimes formulated as follows

:

Let the torque applied to a gyroscope be represented by a force on the axis

and perpendicular to it (Fig. 143). Rotate the vector representing this

force through 90° in the direction of spin of the gyroscope to find the direc-

tion of precession.

The foregoing “ gyroscope rule” deals only with the direction of the

precession. The magnitude of the precessional angular velocity £2, as



164 rotation Chapter is

related to torque L and spin velocity co for a gyroscope having a moment
of inertia 7, is given by the relation

8 = (19)

To deduce this, consider one of the attributes of uniform circular motion.

In such motion tangential velocity is associated with radial acceleration

and hence radial (or “ centripetal ”) force. Thus the force and the velocity

are at right angles analogously to torque and precession in the gyroscope.

The equations of uniform circular motion will make this clear. From
equation (4) on page 110,

= = (20)
r r

where a represents the radial acceleration of an object traveling in a circle;

v represents the tangential velocity of the same object and co represents

the angular velocity of the same object about the axis of rotation. The
acceleration and the velocity are mutually perpendicular as observed above.

Multiplying both sides by m (the mass of the revolving object),

ma = wivo)

or by Newton’s second law

/ = momentum X co. (21)

This is a translatory motion, the translation being in a circular path.

Like the other translatory equations previously converted into equations

describing corresponding rotatory motions, change force / to torque L
}

momentum mv to angular momentum 712 and the result is

L - 712co. (22)

Solved for 12 this is equation (19). The angular velocities must both

be expressed in radians per second and the data on which L and 7 depend
must, in the metric system, be in meters, newtons and kilograms.

Fig. 144a. Gyro-Horizon for Three Positions of the Plane:
Level Flight, Climb, and Bank
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Equation (19) applies to all cases of gyroscopic motion. This includes

the motion of an ordinary top, the “ precession of the equinoxes” of the

earth, the upsetting torques on motorcycles when negotiating turns, the

“ somersaulting" tendency of a car when turning too sharply at high speed,

and all similar phenomena. In recent years the gyroscope has been ap-

plied in many ways, especially to navigation and aviation. The Gyro-
scopic Compass and the Gyroscopic Stabilizer are well known. The
Gyro-Horizon, the Directional Gyro, and the Automatic Pilot are common
devices in airplanes. All depend upon either gyroscopic inertia or pre-

cession or upon the combined action of the two. Figure 144a shows the

dial of a gyro-horizoji for three positions of the plane: level flight, climb,

and bank. Its utility when the actual horizon is obscured requires no
emphasis.

Questions for Self-Examination

1. Describe the three changes that are made in translational equations to convert

them to rotational equations and give examples.

2. For the following translatory equations, state the corresponding rotatory equa-

tions; then state the substance of three of the latter in wjords: V = at, v ~ vq + at
}

T = 2 T W = fs, f = ma, K.E. = \ rmi\

3. Write a short exposition on the nature of the entity known as moment of inertia.

4. Derive the equation 7 = mr for the moment of inertia of a hollow cylinder, starting

with / = ma,

5. Define “radius of gyration” and “center of oscillation.”

6. State the “gyroscope rule.” Show how it applies to the flywheel of an automobile

rounding a corner; to the wheels of a motorcycle making a turn.

7. Tell the meaning of each term of the precession equation (equation 19) and derive

the equation.

Problems on Chapter 15

1. The mass of the earth is about 6.6 X 1021 tons and its radius about 4000 miles.

Calculate the moment of inertia of the earth about its axis of rotation,

23 X 1038
lb-ft2.

2. If the friction of the tides slows down the rotation of the earth to such an extent

that a hundred years from now the day will be about one second longer than it is

now, how great is the drag due to tidal friction? 4.7’ 10s tons.

3. A sphere rolls along a level surface. Find the ratio of its rotational kinetic energy

to its translational kinetic energy. 2/5.

4. A ball is launched down a bowling alley, without initial rotation, at a speed of

6 m/sec. The coefficient of friction is .2. How much time elapses before sliding

ceases, the subsequent motion being one of pure roll? (Hint: Pure roll sets in
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when the increasing speed of the surface due to rotation becomes equal to the

diminishing speed of the center of the ball.) .88 second.

5. If a rapid “backward” spin is imparted to the ball of the preceding problem at

the instant that it is launched, consider the nature of the subsequent motion.

6. Find the moment of inertia / of a hollow cylinder of mass m kilograms and mean
radius r centimeters in kilogram-meters squared.

m r I I n N L
6. 1 10 .01 7. .01 1 5 .0063

1 15 .02 .01 2 5 .025

1 20 .04 .01 3 5 .057

1 25 .06 .01 4 5 .1

7. A wheel whose moment of inertia is I is spinning with an angular speed of n revo-

lutions per second. What is the frictional torque L in newton-meters that will

bring it to rest in N revolutions?

8. A force of / kilograms acts on the axle of a wheel / r R M N n
of radius R centimeters and mass M kilograms .5 1 10 1 20 5.6

while the wheel turns through N revolutions. 1. 1 10 1 20 7.9

The radius of the axle is r centimeters. Find the 1.5 1 10 1 20 9.7

resulting angular speed n in revolutions per second. 2. 1 10 1 20 11.

Assume the mass of the wheel to be concentrated

at the rim. For such a case I — MR2
.

9.

A ship-stabilizing gyroscope of radius r feet and of mass m tons is brought up to

a speed of n revolutions per second by a motor. What horsepower p must be

exerted to accomplish this in t hours? Assume the weight of the gyroscope to be
concentrated at the rim, and neglect friction and air resistance.

r m 11 t p Vi V2

3 10 20 10 2.2 10. .25 1.6 1.8

4 20 17 10 5.7 .5 2.2 2.6

5 50 15 1 10 17. .75
;

2.7 3.1

6 120 13
|

10 45. 1 . 3.1 3.6

10. A thin hollow cylinder rolls without sliding down an incline of vertical height

h meters. What is its speed Vi in meters per second at the foot of the incline?

What would be the speed v2 of a solid cylinder? What effect would a change in

size or mass of the cylinder have on the result?

11. A thin hollow cylinder rolls down an incline making an angle of degrees with the
horizontal. What is its acceleration a\ in m/sec2

? What would have been the
acceleration a2 of a solid cylinder? (The moment of inertia of the thin hollow
cylinder about its line of contact with the incline of 2 mr2 and of a solid cylinder

is 3/2 mr2
.)

Q\ &2

2.5 3.3

1.7 2.3

.85 1.2

.43 .57

Fig. 145

12. An w-kilogram spool is formed of two heavy disks joined by a cylindrical body of

negligible mass. A cord wound around the body is pulled horizontally with a
force of / kilograms causing the spool to roll. Which direction will the spool roll?

The radius of the disk-shaped ends is R centimeters and of the body is r centi-

meters. What is the acceleration a of the spool in m/sec2
?
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m
1

1

1

1

/
.1

.1

.1

.1

R
5

5

5

5

13. A bicycle whose frame has a mass of M kilograms and

wheels of m kilograms each is pushed forward with a

force of/ kilograms. How many seconds t would be re-

quired to bring it up to a speed of v kilometers per hour?

Assume the mass of the wheels to be concentrated at

the rims.

14.

M m / V t

6 1.5 2 30 5.1

8 2. 3 30 4.5

10 2.5 4 30 4.3

12 3. 5 30 4.1

second strikes a pivoted

solid disk in the manner shown. The disk weighs M kilograms and has a radius

of R centimeters. Calculate the angular velocity n in revolutions per second com-

municated to the disk. Assume the impact to be inelastic and neglect the weight

of the bullet in calculating the moment of inertia of the disk.

m V M R r n

5 200 1.0 20 2 .16

5 200 1.0 20 6 .48

5 200 1.0 20 10 .79

5 200 1.0 20 20 1.6

15. A gyroscope weighing M grams and having a radius of r centimeters is spinning at

N revolutions per second. A weight of m grams is hung on the axis at a distance

d centimeters from the center. What is the precessional angular velocity n in

revolutions per minute? Assume the weight of the gyroscope to be concentrated

at the rim.

500

500

500

500

N
50

60

70

80

m
100

100

100

100

Fig. 148
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16. A gyroscopic ship stabilizer of mass M tons and radius
' M r (a N L

r feet is given a precessional angular velocity of w radians 10 3 .1 20 35.

per second by the precession motors. The gyroscope is 20 4 .1 17 110.

spinning at a rate of N revolutions per second. What 50 5 .1 15 370.

torque L in ton-feet is produced on the ship? Assume 120 6 .1 13 1100.

the mass of the gyroscope to be concentrated at the rim.

17. A motorcycle whose wheels weigh m kilograms each and have a radius of r centi-

meters rounds a curve of radius R meters at v kilometers per hour. What torque

L in kilogram-meters acts to upset the machine as a consequence of the gyroscopic

action of the wheels? If the center of gravity is h meters from the ground, what

upsetting force F in kilograms is acting at this point? (This is, of course, in addi-

tion to the centrifugal force. It does not take account of the similar action of the

fly-wheel, which in one- and two-cylinder machines has the same effect.) Compare
these values of F with those of problem 13 of Chapter 11.

tn r R V h L F
10 35 15 25 .5 2.3 4.6

10 35 20 30 .5 2.5 5.0

10 35 25 35 .5 2.7 5.4

10 35 30 40 .5 2.9 5.9
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CHAPTER 16

Temperature and Thermal Expansion

Thermometers and Temperature Scales

The science of heat, unlike that of mechanics, had no significant develop-

ments until the seventeenth century. It began when the first thermometer

was devised. The first of these to survive was made by Galileo, though
there are records indicating that similar instruments had been made cen-

turies earlier. Galileo’s thermometer was described as follows by one of

his pupils (132:83):

Galilei took a glass vessel about the size of a hen’s egg, fitted to a tube

the width of a straw and about two spans long; he heated the glass bulb in

his hands and turned the glass upside down so that the tube dipped in water

contained in another vessel. As soon as the ball cooled down the water rose

in the tube to the height of a span above the level in the vessel. This in-

strument he used to investigate the degrees of heat and cold.

Such a thermometer, easily made, will be found surprisingly sensitive,

though rather erratic because its readings depend upon atmospheric pres-

sure as well as upon temperature. But neither the existence of this

pressure nor its variations were recognized at the time of Galileo.

These were the discoveries of Torricelli and Pascal (pages 83,85).

There is some significance in the fact that scientific comprehension of

heat phenomena began when the first instrument for measuring temperature

was devised. About fifty years ago this close relation between knowledge

and measurement was expressed by Lord Kelvin as follows:

when you can measure what you are speaking about and express it in

numbers, you know something about it. . .

.

Galileo’s crude thermoscope was not itself capable of translating temper-

atures into numbers, to be sure. But it was the parent of instruments that

did. Prior to that the only method of judging temperature was by sensa-

tion, which is notoriously unreliable.

Between 1592 and 1742, just a century and a half, the thermometer de-

veloped into its present form. The second stage of its development, in

1632, consisted of inverting the instrument and filling it with water, which

thus became the new thermometric substance. Though far less sensitive

than Galileo’s form, it no longer responded to fluctuations in barometric
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pressure, even though the tube was open at the top. Twenty-five years

later, the tubes were commonly sealed at the top and alcohol was substi-

tuted for water. The first use of mercury was in 1659 (25:100). It had

the advantage of being opaque, of not wetting the tube, of conducting heat

readily, of having a low freezing point and a high boiling point, and, as was

discovered later, of changing its volume more nearly in proportion to

changes of temperature than other liquids in common use. It is little won-

der that one physicist enthusiastically exclaimed, “ Surely nature has given

us this mineral for the making of thermometers” (25:117).

The growth of thermometric scales, the final stage in the development of

the thermometer, was a chaotic process.

A commentator in 1779 enumerated nine-

teen different scales which were in cur-

rent use. Three have survived: the

Fahrenheit
,

devised before 1708 by a

Danish astronomer named Olaf Roemer 1

(cf. page 288) and later given publicity

by Daniel Fahrenheit; the Reaumur
,
de-

vised by a Frenchman of that name in

1730; and the centigrade
,
devised by a

Swede named Celsius in 1742 which is

now the standard scale of temperature

in the metric system. The three scales

are represented in Figure 149. The
centigrade and Reaumur both use the

temperature of melting ice as their zero

point, while the Fahrenheit denominates

that temperature as 32° above zero.

The Fahrenheit zero was set arbitrarily

by Roemer. The centigrade sets 100°

as the boiling point of water, and the

Reaumur 80°. The same temperature

happens to be represented by 212° on the

Fahrenheit scale. Fahrenheit’s original

upper point of reference was not that

temperature, but was instead the tem-

perature of the human body. He called

this (38 :6)

160
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40

32 Melting

k ice

Fig. 149. Comparison of
Thermometer Scales

(Courtesy of Taylor Instrument Companies.)

. . . the 96th degree, and the alcohol expands to that point if the ther-

mometer be held in the mouth or armpit of a healthy person.

It is a great pity that a scale established so awkwardly and so inaccurately

should be the one uniformly used in English-speaking countries.

The point of departure in the establishment of any thermometer scale is

1 Annals cf Science, 133 (1937).
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a pair of fixed points, temperatures which can be realized with maximum
precision without reference to any thermometer whatever. By common
practice, these are now the freezing and boiling points of water at “normal”
atmospheric pressure. Roemer (27a :40) is said to have been the first to

suggest that two fixed points were required to establish a thermometric

scale, not merely one. When Celsius established the centigrade scale in

1742 by dividing the temperature range between the freezing and boiling

points of water into 100 equal parts, he chose the boiling point as his zero

and measured down to the freezing point, which he called 100°. This was
soon inverted by a contemporary of his, however, producing the centigrade

scale as we know it now (25:118).

The use of expansion as a measure of change of temperature has its lim-

its, of course. It becomes inapplicable both at low temperatures where
thermometric substances freeze and at high temperatures where they va-

porize. Other methods, electrical and optical, take the place of expansion

in these temperature ranges. The instruments used in that connection are

too technical to justify description here.

The Effect of Temperature on Gases

The behavior of gases under changes of temperature happens to be much
simpler than that of liquids or solids, and it is fortunate that this happened

to be the first case studied. The earliest study in this field, made by
Amontons (1663-1705) in 1699 (77:129), concluded

that unequal masses of air under equal weights increase equally the force

of their spring for equal degrees of heat.

The context indicates that by “increase in force of spring” the writer

means ratio of change in pressure to the original pressure so that the some-

what hazy seventeenth-century phraseology means that air always shows

the same value of this ratio for a given temperature change. Let the change

in pressure be represented by AP, 1 the original pressure (conventionally

taken as the pressure at 0° C.) be represented by P0 and the change in tem-

perature by At. Then “increase in force of spring for equal degrees of

heat” becomes

-
AP
P0At

’

(1 )

This ratio, denominated by in equation (1), is called the pressure co-

efficient.

Evidently the value of the pressure coefficient ff can be determined by

measuring the pressures of air at each of two observed temperatures while

maintaining the volume at a constant value. This comes out to be ap-

proximately a va^ue which has been found to apply, not only to air,

but with considerable fidelity to all “permanent” gases, that is, gases

1 Capital delta (A) is frequently used to express the idea of “change of," especially when

small changes are implied.
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6

which liquefy at such low temperatures that their liquefaction was consid-

ered impossible until fairly recently. For such gases the value of /3 is also

quite constant over a wide range of temperature. At one time hydrogen was
supposed to perform more consistently in this respect than any other gas.

For this reason it has been officially designated as the standard thermo-

metric substance. All thermometers are accordingly standardized ulti-

mately by a hydrogen thermometer in which the volume of the gas is held

constant, the change of pressure measuring the change of temperature.

The Concept of "Absolute Zero

”

Equation (1) may be modified into the following form. Let the upper

temperature be t and the lower 0° C., whence At becomes L Let the higher

pressure be Pt and the lower P0,
whence AP = P t

— P{) . Making these

substitutions and solving for P t

P
t = Po(l + fit). (2)

Since has the value equation (2) states that the pressure of a gas is

augmented by ^4 3d of its zero-degree value for every degree centigrade

that the temperature rises and is diminished in the same measure for every

degree that the temperature falls. Thus, at 273° above zero the pressure

of a gas should have double the zero-degree value, and at 273° below zero

the pressure should disappear entirely. This latter hypothetical state of

affairs has given rise to the concept of the absolute zero
,
which is a useful

concept as long as one does not demand too much from it. So-called abso-

lute temperature (“°K”) then is expressible by adding 273° to the centi-

grade temperature. Thus 0° C. is 273° K, and 100° C. is 373° K, and, of

course, —273° C. is 0° K.

It may not be difficult to imagine the pressure of a gas dropping to zero,

but after this has occurred, the substance can scarcely be termed a gas.

Moreover, the fact that gases behave in the ordinary range of temperatures

as though their pressure would become zero at some temperature outside

of that range does not necessitate the conclusion that this would actually

occur. Amontons, who was the one to get the idea first (in 1703), could be

excused for drawing unwarranted conclusions, but it is now known that at

low temperatures the value of the pressure coefficient /3 departs from its

conventional value of for even the most “ permanent ” of the gases.

Nevertheless the concept of absolute zero persists. Its presumed value,

extrapolated from data taken at higher temperatures, is —273.18° C. The
lowest temperature actually reached as yet is within .005° of that point .

1

The Expansivity of Gases

If, instead of holding the volume of a gas constant and allowing the pres-

sure to increase as the temperature rises, we hold the pressure constant by
allowing volume to change, the proportional change in volume that occurs

per degree change in temperature could logically be termed the volume

1 Proceedings of the Royal Society
, 149, 152 (1935).
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coefficient, as distinguished from the pressure coefficient previously dis

cussed. The term expansivity is preferable, however, since it is more gen

eral, being applicable to liquids and solids as well as gases. In terms par

allel to those defining the pressure

coefficient — equation ( 1 )
— expan-

sivity of a gas may now be defined as

follows: If a change of volume AV at

constant pressure accompanies a

change of temperature A/, the vol-

ume at 0° C. being F0,
then the mean

expansivity a is

Corresponding to equation (2) with

analogous notation,

V t ~V0(l+cd). (4)

Fig. 150. Variation of Pressure
with Temperature for Air

The first reliable measurements of expansivity of gases were made nearly

a century after pressure coefficients had been identified and measured.

They were made by Jacques A. C. Charles (1746-1823) about 1787 but

were never published. Fifteen years later Joseph L. Gay-Lussac (1778-

1850) performed the same experiments with better technique and results

(106:27 fL). He concluded (106:47)

that all gases, speaking generally, expand to the same extent through equal

ranges of heat; provided all are subject to the same conditions.

This is analogous to the fact that the pressure coefficient is also substan-

tially the same for all permanent gases. The question arises whether the

two coefficients are also equal to each other. Gay-Lussac’s value for ex

was .00375 (106:44). This value was refined by later observers to .00366,

which is precisely 2
-
7-^, thus answering the above question in the affirmative.

The haw of Boyle and Gay-Lussac

When Boyle’s law was considered in Chapter 7, it wras noted that the

law was applicable only if the temperature of the expanding or contracting

gas was held constant. Now that the response of a gas to changes in tem-

perature is known, this limitation may be removed. If we imagine a body

of gas undergoing successively a change of temperature (either at constant

volume or constant pressure) and a Boyle’s-law change of pressure and

volume, it may easily be shown that either

PV * P0Fo(l + (to) (temperature change at constant volume)

or

PV = P0Fo(l + at) (temperature change at constant pressure),

where t is the change of temperature in degrees centigrade, P0 being the

initial pressure, here taken as one atmosphere (1.013 *10* newtons,/m2
) and
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Vo the corresponding volume in cubic meters (the initial temperature being

supposed 0° C.), and P and V the final pressure and volume. It is some-

times put in the form

PV = RT (6)

where T is the temperature on the absolute scale and R is P0Vo/273.
Equation (6) may readily be deduced from equation (5) by giving a or /3

its value and then changing the temperature scale.

The product PqVq and hence the corresponding value of R will depend on

the quantity of gas being compressed and expanded. If some specified

mass of gas be considered, say one kilogram, the value of the product, and

hence of J?, will depend on the density of the gas. If the value of R is

known for one gas, it may readily be found for any other through multiply-

ing by the inverse ratio of the densities. But if V is taken as the volume

of one gram-molecule (the number of grams of the gas numerically equal

to its molecular weight), then V0 will be the same fcr all gases, and R
becomes a “ universal constant.” On this basis, the value is R = 8.3 13,

pressures being expressed in newtons/m2
,
corresponding volumes being

those of one gram molecule of the gas in cubic meters.

The Expansivity of Liquids

Equations (3) and (4) cover the case of the expansivity of liquids as well

as gases, except that the value of a is, in general, very much less than that

of gases, is different for different liquids, and bears only approximately the

same value in notably different temperature ranges even for the same
liquid. The pressure coefficient /3— equation (1) — has no practical sig-

nificance in connection with liquids. Liquids are so incompressible that no

ordinary container could withstand the pressures necessary to maintain the

volume unchanged as temperature rises.

The increase in volume of a liquid with rising temperature, measurably

proportional to such rise, is accompanied, of course, by a decrease in

its density. Advantage of this is taken in hot-water heating systems,

which depend for their action upon the expansivity of water. So-called

convection currents are set up by the sinking of the more dense cooled

water in the upper portions of heating systems into the “boilers” below,

thus continuously exchanging places with the water previously heated.

Hot-air furnaces work on the same principle, except when circulation is

effected by motor-driven fans. The draft in chimneys is similarly induced,

and most meteorological phenomena, including winds, cyclones, tornadoes,

and cloud formation, are principally large-scale manifestations of con-

vection currents set up by localized expansions and contractions of air.

The Anomalous Expansivity of Water

Though all liquids expand non-uniformly, water, the most common
liquid, shows this in a particularly flagrant manner. This is indicated
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graphically in Figure 151. This shows, with temperatures as abscissas and

volumes as ordinates, the volume of a mass of water which occupies unit

volume at 4° C. The anomalous behavior of water consists in the fact that

the volume is a minimum at

this temperature, increasing for

lower as well as for higher tem-

peratures. This means that

the value of a is negative for

temperatures below 4° C., zero

at that temperature, and posi-

tive for all higher temperatures.

Figure 151 may be compared

with Figure 150, in which the

uniformity of the expansivity

of air, indicated by the straight-

ness of the line in the earlier

figure, is in contrast with the

non-uniformity of the expansivity of water as shown in this one. In both

cases the expansivity is proportional to the slope of the curve. The ex-

pansivity of water at different temperatures may be estimated from the

slope of the curve of Figure 151 and will be seen to vary from approxi-

mately — .0001 at — 2° C., through zero at -I- 4° C., to + .0001 at + 12° C.

That ice forms on the tops of bodies of water instead of below the surface

is due to this peculiarity. Were it not for the negative value of the expan-

sivity of water just above the freezing temperature, many forms of aquatic

life could not exist, for the formation of ice on the bottoms of rivers and

lakes would deprive marine life of its food supply during the winters.

The Expansivity of Solids

For gases and liquids, volume expansion is the important consideration.

For solids, while this must sometimes be taken into account, greater im-

portance attaches to linear expansion, that is, expansion along any one of

the three dimensions of a solid. The expansivity is usually the same along

one dimension as another, though values may be different along the grain

of wood or the axis of a crystal than crosswise. Values for solids are less

than those for liquids and, like the latter, are not necessarily the same at

different temperatures. Negative values, corresponding to that of water

below 4° C., are extremely rare in solids, however. Linear expansivity

may be defined in terms analogous to those used in equation (1) and equa-

tion (3). Thus, if a change of length AL accompanies a change of tem-

perature At, the length at 0° C. being U, then the linear expansivity X of

the material is

AL
UAt)

Temperature

Fig. 151 . Curve of Expansion of Water

X (7)
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Corresponding to equations (2) and (4), with analogous notation

L t
- Lo(l + X/). (8)

Values of X for the common metals*run from about .000,025 for aluminum

down to .000,000,9 for invar, a nickel steel mixture especially alloyed for

low expansivity. They are thus much smaller than expansivities of liquids.

In spite of small expansivity, changes in length of structural materials

exposed to seasonal extremes of temperature are sometimes considerable.

A mile of railroad is a yard longer in summer than in winter. A thousand-

foot bridge changes its length by seven or eight inches. A long steam

line requires special appliances to allow for expansion. Unless proper

provisions are made, the stresses set up by expansion and contraction would

damage the structures.

Ratio Between Linear and Volume Expansivities

It is occasionally desirable to know the volume expansivity of a solid, as

when changes in volume of a glass container with changing temperature are

required. The volume expansivity is easily shown to be almost exactly

three times the linear expansivity. To show this consider a cube the length

of whose edges is L0 at 0° C., the corresponding volume being of course LV
When the cube is heated to f C. the length of the edges increases to

£o(l + \t) and the volume becomes V
t
. Then

V t = IA(1 + X/) 3

- F0(l + 3 X/ + 3 X2
/
2 + XV).

But since X is so small, the terms involving X2 and X3 are negligible in com-

parison with those preceding. 1 Hence, to a dose approximation

V t = Fo(l + 3 X/). (9)

Comparison with equation (4) will show that a = 3 X. (10)

Questions for Self-Examination

1. Identify the stages in the evolution of the mercury-in-glass thermometer.

2. What was the evolution of the “fixed points” necessary in establishing any ther-

mometric scale?

3. Tell the history of the fahrenheit scale; of the centigrade scale.

4. Define and compare the pressure coefficient and the expansivity of gases.

5. Compare the expansivities of gases, liquids, and solids.

6. Restate Boyle’s law for the case where heat of compression is allowed to accumu-

late and discuss it.

1 For example, with iron (X « .000,01)

Vi - Fo(l + .000,03 / + .000,000,000,3 /
2 + .000,000,000,000,001 t*).

Terms beyond the second in the parentheses are clearly negligible in comparison with the

rest for any conceivable temperature range to be met in practice. Hence, to an abundantly

sufficient degree of approximation

Vi * F0(l + .000,03 1).
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7. Discuss the expansivity of water.

8. Show why the volume expansivity of a solid has three times the numerical value

of the linear expansivity.

Problems on Chapter 16

1. A meteorological balloon whose initial volume is 5 cubic meters rises from a level

where the pressure of the gas in it is 75 centimeters of mercury at a temperature
of 20° C. to a height where the temperature is — 30° C. and the pressure in the

balloon due to expansion is 32 centimeters. Find the new volume, assuming the

balloon to have expanded freely. 9.7 cubic meters.

2. A glass vessel contains 200 cubic centimeters of alcohol and is full at a temperature

of 15° C. How many cubic centimeters will spill out when the temperature is

raised to 40° C.? (X — 000,008 for glass and a — .001 1 for alcohol.) 5.4 cc.

3. A steel ball displaces 400 cubic centimeters of water at 0° C. How many cubic

centimeters will be displaced at 30° C.? (X = .000,0105 for steel.) 400.38

4. A wrought iron tire whose inner diameter is 70 centimeters at 0° C. is to be shrunk

on a wheel whose diameter is | centimeter too large. To what temperature must
the tire be heated? (X == .000,0114 for wrought iron.) 840° C.

5. A clock with a wrought iron seconds pendulum keeps accurate time at 0° C.

How much will it lose per day at 20° C.? (X = .000,0114 for wrought iron.)

10 secs.

6. Assuming that the highest temperature attained by materials exposed to the sun
the year around is 50° C. and that the lowest is — 30° C., what allowance in inches

must be made for extreme seasonal changes of length in the following cases?

Object Expansivity Length (ft.) Allowance (in.)

steel rail 12 • HT* 30.
! .35

steel bridge span 12 • ltr* 1700. ! 20.

cement walk panel 10 • 10”6 4. .04

pine deck boards, length 5.4 • 10~6 12. .06

pine deck boards, width 48 • 10-« .25 .011

7. An £-meter stainless steel tape is correct at 0° C. L t l

What correction l in millimeters must be applied when 2 - 10 - .19

it is used at t° C.? (Take X = .0000096.) 5 + 5 + .24

10 + 20 + 1.9

20 + 30 ! + 5.8

8. An iron steam pipe joins two points L meters L t T /

apart. The temperature of the pipe varies 200 — 20 180 48.

between t° C. and T° C. What must be the 150 — 10 170 32.

range of motion / in centimeters of an expan- 100 0 160 19.

sion joint to be placed in the line? The ex- 50 10 150 8.4

pansivity of iron is .000012.

9. The linear expansivities of some metals and their specific gravities at 20° C. are

as shown below. Find the specific gravities at T° C.

Metal Sp.g. at 20° C. Lin. Exp. T Sp.g. at T° C.

aluminum 2.7 22.21 10~tt 0 2.7

copper 8.89 15.96 50 8.9

iron 7.86 11.45 100 7.8

tin 7.3 20.94 150 7.2

10. Two strips of metal whose thickness is a centimeters and which have expansiv-

ities of a and fi respectively, are riveted together forming a straight bar. The

temperature is raised t° C. What is the radius of curvature r in meters?
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a / a 0 r

.1 1 .000018 .000012 170.

.1 100 .000018 .000012 1.7

.1 10 .000064 .000018 2.2

.1 10 .000026 .000007 5.3

A collapsible gas tank has a volume of v cubic me- V t T V
ters at a temperature t° C. What is its volume V in 20 0 20 21.5

cubic meters at T° C. if the pressure on the con- 20 10 30 21.4

tained gas remains the same? 20 20 40 21.4

20 30 50 21.3

T Sp.g. Water W
0° .99987 99.99

4 1 . 100.01

8 .99987 100.01

20 .99823 99.86

50 .98807 96.75

p t P T
10 —20 20 230

15 0 25 180

20 20 30 170

25 40 35 160

30 60 40 170

14 The reading of a barometer is Bt centimeters at T° C. Br T Bo
Knowing that the linear expansivity of the brass scale is 75 10 74.9

.00001900 and that the volume expansivity of the mercury 74 20 73.8

is 0001818, find what the reading B0 would have been if the 73 30 72.6

temperature had been 0° C. 72 40 71.5

15. A clock pendulum is of a metal whose coefficient of linear expansion is Ai. Its

length to the bottom of the bob is / meters. A container holds mercury

to produce compensation for changes in length of the pendulum with

changing temperatures. At what height h in centimeters must the

mercury stand? Allow for change in cross-section of the container

with changing temperature as well as for change in length of the

suspending rod. The coefficient of linear expansion of the material of

the container is X2 . The coefficient of volume expansion of the mercury

is .0001815.

Ai / X2 h
.000011 1 .000011 14

.000011 1 .000025 17

.000018 1 .000011 23

Fig. 152 .000018 1 .000025 27

16. A block of metal whose coefficient of expansion is X and whose Young’s modulus is

V newtons per square centimeter, is placed in a vise strong enough to hold its

length l constant, and is then heated through t° C. What force / in metric tons

does each square centimeter of its cross section exert?

I X, Y t I /
10 .000008 60 * 10* 100 4.9

10 .000011 21.4 • 10* 100 2.4

10 .000018 10.8 • 10* 100 2.

10 .000023 6.5 • 10* 100 1.5

13. A steel drum contains hydrogen at a pressure of

P atmospheres at t° C. If the limit of safety of

the drum is P atmospheres, what temperature,

T° C., will the drum safely withstand, assuming

that its strength remains the same?

12. The linear expansivity of glass is .000008.

Find the weight of water W contained in a glass

flask which is rated at 100 cubic centimeters at

0° C., at the temperatures indicated.



CHAPTER 17

Quantity and Migration of Heat

The Distinction Between Heat and Temperattire
The first man to make a clear distinction between temperature and

quantity of heat was Joseph Black (1728-99) of the Universities of Glasgow
and Edinburgh. About the middle of the century 1 he was commenting to

his classes on the current view of the nature of heat. Though Black agreed

with the prevailing theory of his time that heat was a weightless fluid which

flowed from regions of high temperature to those of lower, he disagreed with

some of the conclusions that his contemporaries were drawing from this

theory. His dissent in one instance was expressed as follows (77 :135)

:

This is taking a very hasty view of the subject. It is confounding the

quantity of heat in different bodies with its general strength or intensity

[i.e., temperature] though it is plain that these are two different things, and
should always be distinguished, when we are thinking of the distribution

of heat.

Black did not coin a name for the fluid which he thought constituted

heat. He usually referred to it as the “ matter of heat” or, when he was

concerned with its amount, as the “quantity of heat,” as in the above

quotation. Some time during the latter part of his life the name caloric

was coined to denominate the “matter of heat,” and Black’s views on the

nature of heat have accordingly come to be known as the “caloric” theory.

Black himself never used the term, however.

The Concept of Specific Heat

During Black’s time there was considerable speculation on how heat dis-

tributed itself among the various parts of a region which was at uniform

temperature throughout. One theory was that there was the same quan-

tity of heat in every equal part of the volume. Another was that the heat

was distributed proportionally to the weights of the various parts of the

region in question. Black showed that both surmises were incorrect. He
referred to some experiments by Fahrenheit in which water and mercury

at different temperatures were mixed. The heat yielded to the mixture

1 The exact time when Black first formulated this point of view is somewhat in question,

since he never published it himself. It was published posthumously from notes taken by

his pupils at about the time indicated.
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was found not to be proportional either to the volume or to the weight of

whichever was the hotter of the two liquids. He stated his conclusion

thus (77:136-39):

This shews that the same quantity of the matter of heat has more effect

in heating quicksilver than in heating an equal measure of water, and
therefore that a smaller quantity of it is sufficient for increasing the sensible

heat of quicksilver by the same number of degrees. . .
.
Quicksilver, there-

fore, has less capacity for the matter of heat than water has; it requires a

smaller quantity of it to raise its temperature by the same number of

degrees

We must therefore conclude that different bodies, although they be of

the same size, or even of the same weight, when they are reduced to the

same temperature or degree of heat, whatever that may be, may contain

very different quantities of the matter of heat; which different quantities

are necessary to bring them to this level, or equilibrium with one another.

This idea of Black’s of a certain “ capacity for heat” characteristic of

each substance was new and proved to be correct. His terminology, how-

ever, was soon modified, the term specific heat being introduced by some of

his contemporaries to describe essentially what Black meant by “ capacity

for heat” (131:183, 204).

In Chapter 8, the convenience of having some standard of reference for

densities was pointed out. The density of water being accepted in this

r61e, the ratio of the density of any given substance to that of water as-

sumed some importance and was termed the specific gravity of the sub-

stance in question. Water has also come to be the standard for specific

heats, the specific heat of any substance being defined as the ratio of the

quantity of heat required to warm a given mass of the substance between two

temperatures to the quantity similarly required for water.

Like specific gravity, which changes its value in consequence of the

thermal expansion of the substance, specific heat also depends upon tem-

perature. Tables of values of either entity always specify the temperatures

for which the tabular values apply.

The Unit of Quantity of Heat

The creation of the concept of quantity of heat necessitates the choice of

a unit. The calorists employed as this unit the quantity of heat that must
enter a unit mass of water to raise its temperature one degree; or they re-

versed the definition to involve the heat which must be abstracted from a

unit mass of water to lower its temperature one degree, experiment having

demonstrated that the quantity of heat involved was the same in either

case. This definition is still valid. In metric units, one Calorie is defined

as the quantity of heat transferred whenever one kilogram 1
of water changes its

temperature by one degree centigrade . As thus defined the Calorie has

1 An older definition, now going out of vogue, provided for a calorie as large as this.

It was termed the gram-calorie, because a gram was used in place of a kilogram as here. The
word “

Calorie,

”

representing the kilogram-Calorie, will be capitalized in this book to dis-

tinguish it from the gram-calorie.
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slightly different values at different temperature levels, since the remark of

the preceding paragraph applies to water as well as to other substances.

The value of the Calorie fluctuates between extremes of about a half a per
cent above and below its mean value. For accurate work a more precise

definition is necessary, but it need scarcely be formulated here — partly in

view of the fact that there is as yet no complete agreement on what this

definition should be.

Ways in Which Heat Is Transferred

On page 1 76 one of the ways of transferring heat was mentioned, that of

convection currents. The idea is almost absurdly simple and would
scarcely merit further mention were convection not commonly included in

a trilogy of ways in which transference of heat is commonly stated to occur.

Convection, involving motion of the medium, is more of a mechanical than

a heat phenomenon since the actual heating and cooling of the medium
can take place in no other way than by conduction or radiation. Convec-

tion is, however, one of the major elements in meteorology, since terrestrial

air motions of all kinds are simply convection currents on a huge scale.

Conduction has been defined (82:10) as

the flow of heat through an unequally heated body from places of higher to

places of lower temperature.

In this process, unlike convection, the heated substance does not migrate.

Obviously, conduction can occur when the heated substance is in any one

of its three states, solid, liquid, or gaseous, while convection is necessarily

confined to the last two.

Radiation
y
or radiant energy, has been similarly defined (loc. cit .) as a

process by which

the hotter body loses heat and the colder body receives heat through some

intervening medium which does not itself thereby become hot.

The most impressive example of radiation is the transfer of heat from the

sun to the earth through regions of

space known to be frigid in the ex-

treme, but the process occurs in

greater or less measure wherever

differences of temperature exist. It

is worthy of note that the entity in

transit by radiation cannot properly

be called heat until absorbed at the

end of its journey whereupon it reas-

sumes its ability to elevate tempera-

ture. Radiation of heat may be

compared to broadcasting a radio

signal; indeed, radiation actually is

a broadcast, though on wave-lengths

much shorter than those to which a
Fig. 153. Relative Value of the Cal-

orie at Different Temperatures
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radio receiving set can be tuned. Sounds are converted at a broadcast

studio into an electromagnetic disturbance which, whatever it may be, is

certainly no longer sound. Captured by a receiving set, this disturbance

is reconverted into sounds tolerably similar to those which had entered the

microphone. In a closely analogous way, the heat of the sun, for example,

is converted into radiant energy and transmitted into space. Some of it is

intercepted by the earth and other astronomical bodies and absorbed. In

the process of absorption it is reconverted into heat.

Thermal Conductivity

If a wooden object and a metal object are removed by hand from a hot

oven, the metal object will feel much the hotter of the two. If the same
two objects be picked up outdoors on a cold winter day, the metal object

will this time seem to be the colder of the two. In both cases the metal

could be demonstrated to be at the same temperature as the wood. There

can be no question about the metal transferring heat the more rapidly to

the hand in the first case, nor away from it in the second, but this is not

due to any higher or lower temperature. Rather the impression of temper-

ature is an illusion produced by the greater rate at which heat is trans-

ferred. All of this constitutes an additional reason for distrusting sensation

as a means of evaluating temperature.

The proclivity of different materials for transferring heat forms the basis

of a concept called thermal conductivity. The definition of thermal con-

ductivity which is today generally accepted was first formulated by Joseph

Fourier in 1822 in a work which has already been referred to in another

connection (page 1 16) and which will later be seen to have inspired some of

the early discoveries in current electricity (page 463). Fourier pointed out

that the rate of conduction of heat would be proportional to the cross sec-

tional area, a, of the conducting body, proportional to the difference of

temperature, AT*,1 between the two regions delivering and receiving the

heat, and inversely proportional to the distance, /, between these regions.

It would also depend on the substance conducting the heat. Such depend-

ence could be specified by a numerical coefficient, <r, termed the thermal

conductivity in the following way.

Consider the number of calories, H, flowing in t seconds between two
points having a difference of temperature AT. By the preceding para-

graph

H aAT
7 = (i>

Then, when a is one square meter, AT 1° C., and l one meter,

1 The Greek capital delta (A) is frequently used to express the difference between two quan-
tities, usually implying that the difference is small, though that is not an essential point in the

present use of the symbol.
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or, in words, the thermal conductivity of any substance is the number of Cal-

ories which will flow each second between opposite faces of a cube of that sub-

stance one meter on an edge under a temperature difference of 1° C.

Defined in this way, the numerical values of thermal conductivities of

some of the metals are, in order of magnitude:

silver .. .00100 tungsten. . .

.

... .00035

copper. . . . ,

.

.. .00092 iron . .. .00016

gold .. .00070 mercury .... . .. .00002

aluminum .. .00048

It is worthy of note that this same table represents also the order and the

relative values of electrical conductivities, a discovery of considerable the-

oretical significance first made in 1853. 1 (Compare page 465.)

The thermal conductivities of building materials are of practical im-

portance, the values naturally being very much less than those of metals.

They range from about 10~c for brick through 10~7 for wood down to nearly

10-* for felt.

The thermal conductivities of liquids and gases are much more difficult

to measure than those of solids, for the disturbing effects of convection are

hard to circumvent. Their values are all low. Water is among the highest

of the liquids, being about 13 -10~7
. Among the gases hydrogen and

helium are the highest, each being about 3.3- 10~7
,
while air is .57-10

~

7
.

The kinetic theory of gases has utilized measured values of heat conductiv-

ity to yield information on the mean distance between molecules.

One of the classical early applications of Fourier’s theory of heat, in-

cluding his definition of thermal conductivity, was the first scientific esti-

mate of the age of the earth. The temperature of the earth was known to

increase about 1° C. for every hundred feet depth. Measurements of the

conductivity of the igneous rock constituting the bulk of the earth then

gave information on the rate at which heat was escaping from the center

of the earth to outer space. It was then largely a matter of arithmetic to

set the time at which the earth originally contained enough heat to cause

its temperature to be that of the sun from which it had presumably been

thrown off in the beginning. The age of the earth thus deduced from

Fourier’s theory 2 was not more than 200,000,000 years. This estimate

is now considered much too low, for it is now known that the earth is cool-

ing less rapidly than was originally supposed, there being a supply of heat

from radioactive materials not known at the time.

The Discovery of Radiant Energy

The fact that radiation from the sun travels in some other guise than

heat was mentioned on page 183. The fact that the paths followed by this

radiation can be traced by tracing the accompanying light furnishes a

‘Wiedemann and Franz, Poggmdorf’s Annaien, 89, 497 (1853).

* William Thomson, Cambridge Sr Dublin Mathematical Journal (1844).
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temptation to identify heat radiation with light. In the common use of

burning glasses over a period of many centuries no clear distinction was
ever made until the seventeenth century between the light and the heat

that were focused by the glasses. But in 1620, Francis Bacon showed the

first clear recognition of the possibility that the two might be handled

separately. He said (11:127):

Let the burning glass be tried on warm objects which emit no luminous

rays, as heated but not ignited [i.e., not incandescent] iron or stone or hot

water, or the like; and observe whether the heat becomes increased and

condensed, as happens with solar rays.

About sixty years later, Mariotte discovered another phenomenon which

emphasized still further the distinction between light and heat radiation.

Though the two remained together when sunlight was acted upon by a

burning glass, they were separated by a burning glass when the source was
a fire instead of the sun. In his experiment he put a concave metal mirror

before a fire. At its focus the hand could not long endure the heat; but

when a glass plate was placed over

the mirror, heat could no longer

be felt at the focus, though the

light was substantially undimin-

ished (11 2:1 :303, 344).

More than a hundred years

elapsed before further steps were

made toward an understanding of

heat radiation. In 1777, CarlW.
Scheele (1742-86) repeated and

extended Mariotte’s observations

(112 :120 ff.) not only distinguish-

ing radiant energy from light on

the one hand, as Bacon and Mariotte had done, but also distinguishing

it from “fire” or ordinary heat on the other hand. He coined the name
“ radiant heat” and spoke of “ the radiant heat which is invisible and differs

from fire,” that is to say, which is neither light nor ordinary heat.

Mariotte’s observation furnishes the explanation for the action of the

familiar “hothouse.” Glass transmits radiation from the sun but is

opaque to radiation from lower-temperature sources, such as stoves, and
even more so to radiation from sources of still lower temperature, such as

warm earth. Hence, a glass-covered box exposed to the sun acts as a
“heat trap ” and permits the enclosed earth to build up temperatures much
above those of the surroundings. The same effect is oppressively evident

inside an automobile that has stood for some time in the sun. For the

same reason, a thermometer exposed to the sun will always indicate temper-

atures higher than that of its surroundings. The amount of the excess

depends on the thermometer. It would be small if the bulb contained

Fig. 154. Glass Acts as a Heat Trap
to Radiation ejrom the Sun
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alcohol, since much of the radiation would simply travel through the trans-

parent liquid without being absorbed. The excess would be greater for

opaque mercury, though the silvery surface would still reflect much of the

radiation. But if the bulb were painted a dead black, most of the radiation

incident on it would be absorbed and the thermometer would register a

temperature far higher than that of its surroundings. Hence one may see

that any statement about temperature in the sunshine is largely meaning-

less, since every object exposed to the sun assumes a different tempera-

ture.

Subsequent studies have made it clear that radiation is much more
analogous to light than to heat. The relation is, indeed, much closer than

that of mere analogy. Because of this fact, it will be of advantage to defer

a consideration of some of the attributes of radiation until the character-

istics of light have been studied (pages 393 ff.). Others lend themselves to

treatment without the concepts furnished by a study of light.

Provost’s Theory of Exchanges

As early as the sixteenth century, Giambattista della Porta, whose con-

tributions to light at the tender age of fifteen will presently be considered,

had remarked (98:264) that a concave mirror reflected sound, light, heat,

and cold. Noting that the light of a candle set before a mirror and its heat

each produced its appropriate sensation on the eye placed at the conjugate

focus, he remarked

but this is more wonderful, that, as heat, so cold should be reflected: if you

put snow in that place if it come to the eye ... it (the eye) will presently

feel the cold.

A similar effect was identified by subsequent observers. The observation

lent some weight for a time to a theory that there was a fluid carrying the

attributes of cold just as there had been assumed to be the fluid called

“caloric.” But that theory was short-lived. It did, however, produce

more substantial fruit in what has become known as Prevost's theory

of exchanges of 1791. The correct interpretation of Porta's observation

was not that the ice radiated “cold” to the eye but that the eye, being

the warmer of the two, radiated heat to the ice and felt cool in conse-

quence.

Prevost, of Geneva, asked himself a hundred and fifty years ago whether

the warm eye ceased radiating whenever a warmer body was substituted for

the ice. (104.) He concluded that it did not; that, on the contrary, every

body radiated heat no matter what its temperature was; but that warmer

bodies radiated more rapidly than cooler and that, hence, the net flow was

from the warmer to cooler bodies. He considered that the ultimate state

of equal temperature represented, not the cessation of radiation, but merely

a state of dynamic equilibrium in which the bodies radiated and absorbed

heat at equal rates.
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Laws of Cooling

Having observed that rates of cooling of warm bodies were greater the

higher their temperatures above the surroundings, Newton made a state-

ment in 1701 involving the hypothesis that rate of cooling is actually pro-

portional to excess of temperature over that of the surroundings. This is

commonly called Newton’s law of cooling. It was never intended as a law

of radiation, though it is sometimes classified as such and criticized in con-

sequence for its inaccuracy. It was merely an attempt to describe, on a

purely empirical basis, the rate of cooling of hot specimens ordinarily en-

countered. While this cooling is due in part to radiation, conduction to

the surrounding air also makes a contribution. This contribution is, of

course, influenced by the convection currents thereby set up. Within its

province Newton’s law of cooling is a useful approximation applying to

small differences of temperature, but it is nothing more.

Almost two centuries after Newton’s time (1879) the real law of cooling

by radiation was discovered by Joseph Stefan (1835-93). It is usually

termed Stefan’s fourth power law. He said (77 :378)

:

We obtain numbers which come very close to the [observed] rates of

cooling if we assume that the heat radiated by a body is proportional to

the fourth power of its absolute temperature.

Stefan was thinking of radiation in the same sense as Prevost had been

thinking of it nearly a hundred years earlier. Thus the net radiation be-

tween a heated object and its surroundings would be proportional to the

difference of the fourth powers of the respective absolute temperatures.

Compare, for example, the radiation from a piece of metal at the tempera-

ture of boiling water (100° C.) with its radiation when heated to the point

where it barely glows in the dark, say 500° C., the surroundings being at

room temperature, say 20° C. The ratio would be

(273 + 500)4 - (273 + 20)4 (35.7 - .74) • 10w

(273 + 100)« - (273 -I- 20)4 (1.93 - .74) • 1010

Thus a piece of iron barely red hot experiences a net loss of heat by radia-

tion about thirty times as fast as it does when at the temperature of boiling

water. Though it is quite unfair to Newton’s law to invoke it in such a

case, the corresponding calculation is
500 - 20

100 - 20
6, a notable discrepancy.

It is interesting to observe, however, that if the two temperatures are taken

as 22° C. and 21° C., the room temperature being still 20° C., the two

results agree within a fraction of one per cent.
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Questions for Self-Examination

1. Sketch the development of ideas about the nature of heat.

2. Explain the concept of specific heat.

3. Define the Calorie.

4. Define thermal conductivity and give approximate values for representative

materials.

5. How was the radiant energy (“heat radiation”) first identified?

6. Comment on the apparent radiation of cold and its connection with Prevost’s

theory of exchanges.

7. Compare Newton’s law of cooling with Stefan’s fourth power law and give a
numerical example of your own devising.

Problems on Chapter 17

1. The product of the weight of an object by the specific heat of its material is some-

times termed its water equivalent. Why is the term appropriate?

2. A 50-gram slug of gold of specific heat .032 is used to measure the temperature of

a small furnace. Taken from the furnace and dropped into 50 grams of water

initially at 0° C., it raises the water to 29° C. What was the temperature of the

furnace? 940° C.

3. The specific heat of glass is .17 and its specific gravity is 2.6. The corresponding

figures for mercury are .033 and 13.6. Show that when a thermometer of given

volume is dipped into a liquid, the heat absorbed by it is almost independent of

the proportion of glass and mercury making up the thermometer.

4. An iron boiler is made of plate 1 centimeter thick. Its exposed surface is 8 square

meters. The water inside is at a temperature of 100° C. The exposed surface is

at 80° C. How much heat is lost every hour by conduction? 9200 Calories.

5. The heat loss from a certain cottage occurs almost entirely through the sidewalls,

of area 1000 square meters. The walls are 30 centimeters thick, made of masonry

of conductivity 10"6
. How much heat is lost per hour when the inside tempera-

ture is 20° C. and the outside —20° C.? 480 Calories.

6. A copper vessel of mass tn kilograms contains W kilograms of water at t° C. M
kilograms of copper at a temperature T° C. is dropped into the water. The final

temperature is r° C. Find the specific heat, s
,
of copper.

m W M t T r s

.3 .4 .5 10 100 19.
]

.095

.3 .45 .5 10 100 18.2 .096

.3 .5 .5 10 100 17.5 .096

.3 .55 .5 10 100 16.8 .095

7. In a bomb calorimeter containing W kilo- W m M t II

grams of water m grams of coal are burned. 1.5 2 1 10 8100

The bomb is of steel ;and weighs M kilo- 1.75 2 1 9 8400

grams. The observed rise in temperature 2. 2 1 8 8500

is t° C. Find the heating value H of the coal 2.25 2 1 7 8300

in calories per gram. Take the specific heat

of steel as .133.

8.

A “cooling calorimeter” consists of a copper container weighing m grams. When
it is filled with W grams of water, T seconds is required to cool from the higher to
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the lower of two observed temperatures. When it is filled with M grams of a liquid

of unknown specific heat, t seconds is required between the same two temperatures.

What is the unknown specific heat, s? Take the specific heat of copper as .093.

m w M T t s

100 300 225 900 341 .480

100 300 250 900 370 .471

100 300 275 900 405 .472

100 300 300 900 438 .471

9. The thermal conductivity of aluminum is .00048. d a T
\

II

How many Calories of heat II will pass in an hour .3 100 125 140

through an aluminum teakettle containing boiling .3 100 115 87

water? The bottom of the teakettle is d centi- .3 100 110 58

meters thick and the area is a square centimeters.

It is set on a gas flame which maintains the outside

at a temperature T° C.

.3 100 105 29

10. A wall is composed of plaster and brick, the plaster (conductivity p) P meters

thick and the brick (conductivity b) B meters thick. If the inside temperature is

T° C. and the outside f C., what is the temperature, r, at the interface and how
many calories, H, escape through each square meter of wall in the course of a day?
Use the principle that the quantity of heat which escapes through the entire thick-

ness must pass through each layer in turn.

P p B b T t r U
.02 7 • 10-7 .10 15 • 10”7 20 - 20 8 36
.02 7 • 10-7 .10 15 • 10“7 20 0 14 18

.01 7 • 10-7 .10 15 • 10 7 20 - 20 13 43

.01 7 • 10-7 .10 15 • IQ'7 20 0 16 21



CHAPTER 18

Change of State

The Heat of Fusion

Blades work was not confined to setting up the concept of specific heat

and laying the foundation for the definition of a heat unit. These marked
the beginning of the science of heat by making the first and all-important

distinction between temperature and quantity; but more was to come.

Armed with the new concept of quantity of heat, ]Black naturally turned

next to the heat relations involved in transformations between solid, liquid,

and gaseous states of aggregation.

These needed clarification. Black pointed out that even a casual con-

sideration of the prevailing ideas on melting and freezing, for example,

showed that they must be erroneous. He remarked (21 :116 ff.):

Fluidity was universally considered as produced by a small addition to

the quantity of heat which a body contains when it is once heated up to the

melting point. ... If this common opinion had been well founded, if the

complete change (of ice or snow) into water required only the further

addition of a very small quantity of heat, the mass, though of considerable

size, ought all to be melted, in a very few minutes or seconds, the heat

continuing incessantly to be communicated from the air around

Were this really the case, the consequences of it would be dreadful in

many cases; for, even as things are at present, the melting of great quanti-

ties of snow and ice occasions violent torrents, and great inundations in

the cold countries, or in the rivers that come from them. But were the ice

and snow to melt as suddenly as they must necessarily do, were the former

opinion of the action of heat in melting them well founded, the torrents

and inundations would be incomparably more irresistible and dreadful.

They would tear up and sweep away everything, and that so suddenly

that mankind should have great difficulty to escape from their ravages.

This sudden liquefaction does not actually happen. The masses of ice

or snow, after they begin to melt, often require many weeks of warm
weather, before they are totally dissolved into water

A great quantity
,
therefore, of the matter of heat which enters into the

melting ice, produces no other effect but to give it fluidity, without aug-

menting its sensible heat; it appears to be absorbed and concealed within

the water, so as not to be discoverable by the application of a thermometer.

In order to understand this absorption of heat into the melting ice and
concealment of it in the water more distinctly, I made (among others) the



192 change of state Chapter 18

following experiment I put a lump of ice into an equal quantity of

water heated to the temperature 80° C. 1 and the result was that when the ice

was all melted the fluid was no hotter than water just ready to freeze

I shall now mention another example, an experiment first made by
Fahrenheit [Philosophical Transactiofis

, 88, 78 (1724)]. He... exposed

globes of water in frosty weather so long that he had reason to be satisfied

that they were cooled down to the degree of the air, which was four or five

degrees below the freezing point. The water, however, still remained

fluid, so long as the glasses were left undisturbed, but, on being taken up
and shaken a little a sudden freezing of a part of the water was instantly

seen. . . . But the most remarkable fact is, that while this happens the

mixture of ice and water suddenly becomes warmer, and makes a ther-

mometer, immersed in it, rise to the freezing point.

Only in a field in which scientific development was long overdue could

almost casual observations have been so devastating to previous views.

What would seem to be the inescapable implication in the length of time

required for ice to melt even in warm weather had been lost on previous

observers. It would seem as though anybody might have observed that a

chunk of ice would cool an equal weight of water through 80° and have

drawn a correct deduction therefrom. And even as acute an experimenter

as Fahrenheit had failed to grasp the significance of his sub-cooling and
freezing experiment of forty years before. These observations pointed

unequivocally toward the absorption of a huge quantity of heat in the

process of melting unaccompanied by any rise in temperature, and the

evolution of a corresponding quantity in freezing.

Black coined the term “latent heat” to describe the heat which seemed

thus to become concealed when fusion occurred and mysteriously to reap-

pear when freezing set in. The term, while still in use, is giving way to the

more descriptive heat offusion. One may conclude correctly from Black’s

observations that the heat of fusion of ice is 80 Calories per kilogram.

Farmers use the heat of fusion of ice to protect stored fruit from freezing.

They provide large tubs of water, the freezing of which at a temperature

slightly above that which would damage the fruits evolves heat which pre-

vents the room from becoming colder as long as any considerable amount of

water remains unfrozen.

The Influence of Pressure on the Freezing Point

Most substances occupy a larger volume in the liquid than in the solid

state, the process of solidification being accompanied by contraction. Water

is a notable exception. It is for this reason that pee floats. Its specific

gravity is .917. Thus about 8 per cent of the total volume of floating ice

projects above water.

The temperature at which freezing occurs, termed the freezing point
,
is

1 Black's thermometers were graduated in Fahrenheit degrees, and his other measurements

were in the English system. All observations are here converted to centigrade degrees and
the metric system.
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ordinarily stated to be 0° C. The melting point
,
analogously defined, is the

same temperature. But both, while identical, may deviate from the con-

ventional 0° C. It was not until the middle of the nineteenth century

(63 -1 :1 56) that the discovery was made that the freezing or melting point

was lowered by the application of pressure, the amount of such lowering

being .0075° C. for each additional atmosphere of pressure. This is an-

other discovery that it seems rather curious was not made earlier, for the

making of snowballs is dependent on the lowering of melting point by pres-

sure. Moreover, skating, while not dependent upon it, is considerably

facilitated by it. The flow of glaciers also depends in part on this.

The reason for this phenomenon is not far to seek. Consider a mixture

of ice and water at 0° C. Any further melting will decrease the volume,

and, conversely, anything acting to decrease the volume will stimulate

melting. Now, apply pressure. The natural decrease-of-volume response

will be accompanied by the melting of a part of the ice. The remainder of

the mixture will grow colder through yielding the heat of fusion absorbed

by the melting ice. Melting will cease with the resulting establishment of

a new state of temperature equilibrium
;
that is, the melting point will have

become lower. One of the implications of this explanation which has been

borne out by observation is that, in the case of solids which expand on

melting, the application of pressure will raise the melting point and vice

versa.

The Heat of Vaporization

Transformations between the liquid and solid states are not the only

changes of state that can occur. Even more common, in fact, are trans-

formations between the liquid and the vapor states. Of the heat relations

involved in this type of occurrence, Black was also the discoverer. He said

(21:154):

I can easily shew, in the same manner as in the case of melting, that a very

great quantity of heat is necessary to the production of vapour. . . . This

great quantity of heat enters into the vapour gradually, while it is forming,

without making it perceptibly hotter to the thermometer. , . . On the other

hand, that when the vapour of water is condensed into a liquid, the very

same great quantity of heat comes out of it into the colder matter by

which it is condensed.

In support of his last assertion, Black invoked the common knowledge

possessed by his hearers in consequence of their presumed familiarity with

a “favorite
” Scotch pursuit. He said (21 :166)

:

All of you know well enough how the operation of common distillation is

conducted ...

He pointed out as evidence of the heat yielded through the condensation

of a vapor into a liquid, the heating of the steady stream of cold water
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which flowed over the condenser of a still in operation. He might have

utilized measurements of this heating effect to secure information on the

“ latent heat” of condensation, but there is no record of his having done it

in just that way. Instead he made a somewhat indirect measurement of

the heat consumed in vaporizing water, now called the heat of vaporization .

It gave the value 450 Calories per kilogram. The value is now known to

be 539.5 Calories per kilogram. Black’s value was very creditable, consid-

ering the pioneer character of his venture.

The Influence of Pressure on Boiling Point

The temperature at which boiling sets in, termed naturally the boiling

point
y
depends upon pressure, as does the freezing point, and for a quite

analogous reason. The volume

of a liquid increases upon vapor-

ization, and since pressure inhib-

its increase of volume, increased

pressure will put an impediment

in the way of vaporization, that

is, raise the boiling point. From
100° C. at one atmosphere of

pressure, the boiling point of

water rises to 120° C. for 2 at-

mospheres, 152° C. for 5, 181° C.

for 10, 214° C. for 20, and so

forth (see Fig. 155). Below

normal atmospheric pressure,

the diminution of the boiling

point is even more rapid. This

diminution is one of the accom-

paniments of any increase in

altitude such as in mountain

climbing or an airplane flight. At an altitude of 1000 meters above sea

level where the barometric pressure is .91 of the sea-level normal, the boiling

point of water is 97° C. instead of 100. At 5000 meters, where the pressure

is .57 of the normal, the boiling point is 87° C., and at 10,000 meters where

the pressure is .32 of the normal, the boiling point is 71° C. (see Fig. 156).

Under such circumstances, the boiling of meats and vegetables must be

done in pressure-cookers.

Since the boiling point of water lowers and the freezing point rises as

pressure is diminished, one is led to inquire whether the two may become

identical at some value of the pressure. If that condition should occur,

water could be seen boiling in the presence of ice. Such a state of affairs is,

in fact, possible and has been realized. It occurs at a pressure of about

.006 atmosphere (4.6 mm. Hg.), and a temperature of .0075° C. It is quite

appropriately termed the triple point (see Fig. 157).

Fig. 155 . Pressure of Water Vapor
Above One Atmosphere as a Function of
Temperature
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Fig. 156. Pressures or Water Vapor Bei.ow Fig. 157. The Triple Point of

One Atmosphere as a Function of Tem- Water
PERATURE

Sublimation

Though the triple-point pressure for water is a small fraction of an at-

mosphere, this is not true for all substances. One exception is the triple

point of carbon dioxide which occurs far above atmospheric pressure.

Consequently this substance cannot exist in liquid form at atmospheric

pressure. Solid carbon dioxide, familiar under the name of Dry Ice, is so

called because in evaporating at atmospheric pressure it passes directly

from the solid to the vaporous state, a process known as sublimation. Sev-

eral common substances, such as camphor and naphthalene (“moth balls”),

act in the same way. The converse, the passage directly from the vaporous

into the solid state, is well illustrated in the formation of frost and snow.

Corresponding to the existence of definite temperatures at which melting

and vaporization occur, there seem to be corresponding temperatures at

which sublimation occurs, the solid remaining at that temperature as heat

is supplied until vaporization is complete. Also, as would be expected, the

heat of sublimation is approximately equal to the sum of the heats of fusion

and of vaporization.

The Caloric Theory of Change of State

The phenomena of change of state created a problem for the calorists,

but under Black’s leadership they rose to the occasion. The problem was,

How can large quantities of heat be poured into a substance while it is

melting or vaporizing, without increasing its temperature? Black had

called this heat “latent,” which was simply a way of saying that it did not

raise the temperature. The adjective constituted no explanation, how-
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ever. Black concocted an explanation which consisted in attributing the

condition to a heat-absorbing type of chemical reaction, a phenomenon

well known to chemists of today. He said, referring to vaporization

(21:161):

The heat, therefore, did not escape along with the vapour, but in it, probably

united to every particle, as one of the ingredients of its vaporous constitu-

tion. And as ice, united with a certain quantity of heat, is water, so water,

united with another quantity of heat, is steam or vapour.

The Kinetic Theory of Change of State

Nearly three hundred years ago, Robert Hooke asked (87:97), What is

the cause of fluidness? and answered his own question thus:

This I conceive to be nothing else but a certain pulse or shake of heat; for

heat being nothing else but a very brisk and vehement agitation of the

parts of a body, . .
.
[they] are thereby made so loose from one another that

they easily move away and become fluid.

This picture lent itself readily to an extension covering vaporization.

Indeed the kinetic concept of gas pressure had become very specific at the

hands of Daniel Bernoulli in 1738, as has already been pointed out (page

140). Not only was gas pressure ex-

plainable in terms of molecular impacts,

increasing in magnitude both with added

compression and with increasing tem-

perature (molecular speeds), but it was

particularly easy to visualize evapora-

tion as consisting of the breaking away
of occasional molecules from the surface

of the liquid (Fig. 158). If the container

was open, these molecular escapes were

permanent. But if the container was

closed, the escaped molecules, being

imprisoned in the space above the

liquid, accumulated in number, and an occasional molecule would be recap-

tured upon impact with the liquid surface. As the density of the vapor

increased through accumulation of the escaped molecules, the frequency of

these recaptures became greater. Presently the number of recaptures be-

came equal to the number of escapes, and thenceforth the molecular con-

centration above the liquid, that is to say, the vapor density, remained

unchanged. It followed that the vapor pressure also remained un-

changed.

It is to this condition that characteristic vapor pressures are today at-

tributed. The vapor pressure above water in a closed container, for ex-

ample, is always the same at a given temperature (about 1.75 centimeters

of mercury at usual room temperature). Oils have lower vapor pressures,

Fig. 158. Solid, Liquid, and Vapor
as States of Molecular Aggre-
gation
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and volatile liquids, such as alcohol and ether, have higher pressures (4.45

and 43.3 centimeters respectively). The latter are associated with the fact

that at room temperature the two liquids are much nearer their boiling

points than is water. In fact, the boiling point is sometimes defined as that

temperature at which the vapor pressure of the liquid becomes equal to

the pressure upon its surface.

But the vapor pressure of a liquid is known to increase with rising tem-

perature. This is clearly evident for water in Figures 155 and 156. This

too is explicable on the kinetic basis. Assume, for example, that a state of

equilibrium has been established for a particular temperature. If, now,

the temperature rises, the rate of escape of molecules from the surface will

increase, and the concentration above the surface will increase in conse-

quence, up to the point where the new and larger number of recaptures

becomes again equal to the number of escapes. A higher vapor density

and vapor pressure is thus established, characteristic of the new temper-

ature.

The Liquefaction of Gases

These concepts shed some light on the next stage in the development of

knowledge about changes of state, the liquefaction of gases. In 1823,

Michael Faraday, whose principal contributions were to the field of elec-

tricity, half by accident liquefied chlorine, which until then had been classi-

fied unqualifiedly as a gas. Through the incident he discovered that the

circumstance that seemed to favor the liquefaction of gases was high pres-

sure accompanied by cooling. He forthwith applied the same treatment

to other gases and was successful with some of them. With the greater

power and more effective refrigeration available in later years, the number
of gases which could be liquefied was gradually extended until in 1908 the

most refractory of all the gases, helium, was liquefied at a temperature
4.3° above the absolute zero. The progress of this work eliminated the

supposed line of division between “permanent gases” and gases which were

liquefiable. This classification had sprung into being in 1845, when at the

conclusion of Faraday’s extended work, the gases which he had not suc-

ceeded in liquefying had received the appellation “permanent gases.”

The Discovery of the Critical Point

In 1863, a significant discovery was made by Thomas Andrews (1813-85)

at Belfast, Ireland. He wrote (quoted 25 :201)

:

On partially liquefying carbonic acid (CO2) by pressure alone and gradually

raising at the same time the temperature to 31° C., the surface of demarca-

tion between the liquid and gas became fainter, lost its curvature and at

last disappeared At temperatures above 31° C., no apparent liquefac-

tion of carbonic acid, or separation into distinct forms of matter, could be

effected, even when a pressure of 300 or 400 atmospheres was applied. . .

.

The properties described in this communication, as exhibited by carbonic
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Fig. 159. Andrews’ Isothermals Above and Below the Critical Points

acid, are not peculiar to it but are generally true of all bodies which can be

obtained as gases and liquids.

Andrews gave the name critical temperature to the 31° point of carbon

dioxide and the analogous temperatures for other substances. Below that

temperature the substance could exist as part liquid, part vapor. The
pressure necessary to liquefy the gas when at the critical temperature was
termed the critical pressure. At lower temperatures, less pressure was
required. At higher temperatures no amount of pressure, however great,

would serve to produce liquefaction.

The circumstances can perhaps best be visualized by reference to one of

Andrews’ diagrams. Figure 159 represents a pressure-volume diagram,

similar to the one used in the discussion of Boyle’s law (Figure 88). Here,

however, at the lower temperatures the behavior of the gas departs from
that shown in Figure 88. The upper isothermal— as the pressure-volume

line for any given temperature is called— is substantially a Boyle’s-law7

line, which indicates that 48° C. is far enough above the critical temper-

ature so that carbon dioxide measurably obeys Boyle’s law. But devia-

tions occur at lower temperatures, suggesting a liquefaction not yet at-

tained. The 31° isothermal represents the bare attainment of liquefac-

tion, and the horizontal portions of the remaining isothermals show the

processes of liquefaction for progressively lower temperatures.

These horizontal portions of the curves are especially informing. The
13° curve, for example, indicates that when carbon dioxide at that temper-

ature has been compressed to about ten atmospheres pressure (point h)

liquefaction begins; that the pressure remains unchanged (line led) as the
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volume diminishes until, when all the vapor is condensed (point d), any
further diminution of volume of the essentially incompressible liquid can
be obtained only by the exertion of enormous pressure (line de). The se-

quence may be represented as in Figure 160.

The constancy of the pressure during the period of condensation, even
though the volume is being sharply

diminished during that interval, is

quite understandable in terms of

the kinetic concepts already used.

If the volume of the saturated vapor

above a liquid is decreased, the con-

centration of vapor molecules in-

creases and, therefore, momentarily

accelerates the recapture of such

molecules by the liquid. The origi-

nal density (and accompanying pres-

sure) is almost instantly restored through this temporary excess of mo-
lecular recaptures over escapes. The process repeats itself upon any fur-

ther diminution of volume, thus maintaining the pressure constant until

the volume of the vapor has diminished to zero. It is evident that the pro-

cess would be reversed if the volume of vapor were undergoing an increase.

40

Fig. 160. Liquefaction of Carbon
Dioxide by Pressure at 13° C.

Questions for Self-Examination

1. Contrast the facts about heat relations accompanying changes of state with early

fancies. Tell what considerations led Black to investigate the subject and how
he did it.

2. How did Black first measure the heat of fusion of ice and the heat of vaporization

of water?

3. What is the effect of pressure on freezing and boiling points and why?

4. With a. P — T diagram describe the properties of the “triple point.”

5. What is the difference between a vapor and a gas in its response to diminution

of volume and why?

6. Sketch and interpret a set of typical P — V isothermal curves such as Andrews

discovered for carbon dioxide.

Problems on Chapter 18

1. If a fine wire with weights at its ends is hung over a block of ice, the wire will cut

through the block yet the ice is solid behind it. A copper wire will cut through the

block more rapidly than an iron wire in this way. Explain this.

2. A lump of iron of mass .75 kilogram at a temperature of 400° C. is laid onto a

piece of ice. It melts 420 grams of the ice in cooling to 0° C. What is the specific

heat of the iron? -H Cals, per kg.
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3. A quantity of water is sub-cooled gradually down to —10° C. before freezing begins.

Freezing then proceeds rapidly without the extraction of any more heat from the

water, the temperature rising in the meantime to 0° C. At the end of the process,

what proportion of the water is frozen? The specific heat of ice is .5. .12

4. Suppose the ground to be covered with snow at 0° C. to an average depth of 10

centimeters, the density of the snow being .2 kilogram per liter. How much
rainfall at 10° C. will be required to melt it? 16 cms.

5. Water initially at 4° C. is confined in a cast iron vessel and exposed to low tem-

perature. Ultimately the vessel bursts. Assuming that water is substantially in-

compressible, would you judge that freezing occurs before or after the bursting?

6. An “ artificial ” ice rink is resurfaced by turning steam into

pipes embedded in the ice for the purpose. If M metric tons

of ice are to be melted, how many tons of steam, s, will be re-

quired, the temperature of the water being t degrees after the

melting is complete? Take heat of vaporization as 539 and
of fusion as 80 Calories per kilogram.

7. Water, if caused to evaporate with sufficient rapidity,

may be frozen by the loss of its own heat of vaporization.

A mass of water, originally M grams, at 7^ C. is so

treated. How many grams m will remain when freezing

is just complete, assuming no radiation or conduction

of heat?

M t s

10 0 1.3

10 10 1.4

10 20 1.6

10 30 1.8

M T m
1000 100 720

1000 50 790

1000 25 830

1000 0 870



CHAPTER 19

Heat and Mechanical Energy

Early Steam Engines and the Mechanical Equivalent of Heat

The next step toward a comprehension of the nature of heat was in part

an outgrowth of the engineering developments of the eighteenth century*

It constitutes an illustration of the continual interplay between the phys-

ical sciences and technology. Technology consists primarily in the adapta-

tion of scientific principles to utilitarian ends. Its motivation is filling the

requirements of daily life in a machine age, and its working materials are

the discovered laws of science. Without the basic sciences it could not

exist. On the other hand, the sciences frequently find in technology fertile

fields for exploration. This is because technology incorporates much of

the unanalyzed accumulated experience of the race along with the scientific

material which it utilizes. The unrecognized mysteries of the commonplace

constitute an inexhaustible store of scientific problems. One needs only to

consider Archimedes and the balance, Galileo and falling bodies, Newton
and the apple, Pascal and the water level, and Black and the flow of heat,

to appreciate this fact.

In 1763, James Watt (1736-1819), scientific-instrument maker in the

University of Glasgow, was asked to repair a model of a type of “fire

engine,” as steam engines were called in those days, which had been in

use for about fifty years. Several hundred of them were then pumping

water from deep mines in England and on the European continent. It was

a very crude affair indeed, and apparently Watt considered it so, for he

set about devising the improvements which have made his name immortal.

But the important thing was, not that the engine was so crude, nor even

that it started Watt in the construction of a better one, but that it was a

practicable device for converting heat into mechanical energy and utilizing

it as a source of power. The discovery that heat could be so converted

possessed enormous potentialities, not merely in unlocking the sources of

power that were to create the Industrial Revolution, but also in giving

emphasis to a phenomenon which was destined to shed much light on the

nature of heat itself.

The reverse discovery, that mechanical energy could be converted into

heat, brings into the scene one Benjamin Thompson (1753-1814). Thomp-

son was a Massachusetts Yankee who became an officer in the British army
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during the American Revolution and later was made a Bavarian Count,

thereafter going under the name “ Count Rumford.” Rumford was the

name of the estate which he owned earlier near Concord, New Hampshire.

While supervising the boring of brass cannon for the Bavarian army,

Rumford’s attention was arrested by the amount of heat generated by
friction of the boring tool with the gun. It seemed so disproportionately

large to come out of the objects evolving it that Rumford’s curiosity was
piqued as to the source of such large amounts of heat. The caloric theory

attributed heat produced in this way to the squeezing out of caloric from

the brass by the action of the boring machinery. This explanation appar-

ently did not appeal to Rumford. It occurred to him that if this were cor-

rect, there should be less caloric in the shavings than in the same weight of

solid brass, because so much would have evolved in the process of convert-

ing the brass to shavings. Rumford decided to find out whether the shav-

ings gave out less heat in the process of cooling than did the same weight of

solid brass. That is, he compared the specific heats of the brass in the two
states, but could find no difference between them.

The discovery that the frictional heat had not been abraded out of the

metal left unanswered the original question as to where it did originate.

Rumford’s suspicion fell upon the horse which, by a treadmill, was furnish-

ing the power for the boring operations. He had noticed that the quantity

of heat developed in the process of boring was not at all proportional to the

amount of metal removed, but that it seemed rather to be proportional to

the work done by the horse, whether much or little metal was removed by
the process. So he set about the measurement of the constant of propor-

tionality, specifically the number of joules of work necessary to heat one

kilogram of water 1° C.1 This ratio between work performed and the heat

generated thereby has come to be called the mechanical equivalent of heat.

Rumford deduced a value that was too high by about one-third, the value

accepted at present being 4183 joules/Calorie.

The Conservation of Energy

It would probably be correct to say that Rumford gave his energies to

preliminary experimental work in a field the principal significance of which

eluded him. When the field next began to assume importance, forty-four

years later, the situation was exactly reversed. The man who reopened the

question in 1842 was, in contrast, enormously impressed with its signifi-

cance; but his approach was characterized by an almost complete lack of

experimentation. He was an obscure German physician, J. R. Mayer
(1814-78). His great discovery, or perhaps, in view of his lack of experi-

mental foundations we should say his great “ hunch,” was what has since

taken the form of the scientific doctrine of the Conservation ofEnergy. This

1 Rumford’s measurements were in the English system of units. The corresponding metric

units are being used here.
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Fig. 161. James P. Joule (1818-1889)

was a concept toward which the scientific mind had been groping for two

hundred years. In his 1842 paper he stated that

force [the current term for energy] once in existence cannot be annihilated;

it am only change its form.

In this and in a succeeding paper in 1845 he expanded this idea to cover

what was, especially for the time, an amazing variety of phenomena. He
began with inorganic manifestations of interconvertibility of work and

heat, including chemical reactions, and extended it to the brand-new idea

that plants and coal deposits when burned were merely yielding up the

heat previously received from the sun. He included animal life— which

took in man— in his idea that heat and energy output are to be equated to

intake, ultimately of energy from the sun. He extended the principle to

astronomical phenomena, computing the speed of fall to the earth from an

infinite distance as 34,450 feet per second, and proposed the theory that the

heat of the sun was due to the impacts of the myriads of meteorites known

to be falling into it daily. Both of these ideas were entirely new at the time.

Joule Determines the Mechanical Equivalent of Heat

James P. Joule (1818-89) was a brewer of Manchester, England. Like

many other men of independent means in the history of science, he became
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a scientist by avocation. He first became interested in “electric engines,”

the electric motor being in somewhat of a prenatal stage at that time.

Before reaching his majority he had published several papers including,

among other things, some measurements of the power developed by his

rudimentary motors. In 1840 he presented a paper to the Royal Society

on the production of heat by the electric current. It seems natural that,

having measured both the power and the rate of evolution of heat mani-

fested by an electric current, he should be led to compare the two. This

he did, in 1842, the year of Mayer’s original paper. He deduced the value

4510 joules per Calorie 1 for the mechanical equivalent of heat. That was
his beginning. From that time on he devoted his life to redetermining, in

every way that lent itself to experimental attack, the value of this constant.

In 1843 he observed the rise in temperature due to the friction of water with

the walls of capillary tubes through which it was driven, and deduced the

value 4145. In 1845 he measured the heat developed or absorbed when air

was compressed or expanded to the accompaniment of a measured amount
of work (4300), In the same year he observed the rise in temperature of

water churned by a paddle wheel whose work was measured (4800). Dis-

satisfied with this he repeated the experiment in water and in oil in 1847

(4200 and 4210). In 1849 he repeated the same measurements (4150).

In 1850 he agitated mercury (4160). In the same year he utilized friction

in cast iron (4165). In 1867 he heated water electrically instead of by a

paddle wheel (4210). In 1878 he repeated his paddle wheel experiment

and deduced his last value, 4154.

Joule concluded one of his papers with the following statement:

I will therefore conclude by considering it as demonstrated by the experi-

ments contained in this paper— (1) that the quantity of heat produced by
the friction of bodies, whether solid or liquid is always proportional to the

quantity of force [i.e., work] expended; and (2) that the quantity of heat

capable of increasing the temperature of a kilogram of water (weighed in

vacuo, and taken at between 13° and 16°) by 1° C., requires for* its evolu-

tion the expenditure of a mechanical force represented by the fall of 424

kilograms through the space of 1 meter.

Ratio of Specific Heats of Gases

When any material is heated, the resulting expansion against surrounding

pressure, atmospheric or otherwise, involves the performance of work. The
heat equivalent of this work, in the ratio determined by Joule, is abstracted

from the object being heated. Consequently more heat is required to pro-

duce a given change in temperature of an expanding object than would be
required if it were not allowed to expand. This additional heat is so small

for solids and liquids that it is ordinarily disregarded. But with gases it is

considerable and results in variable specific heats for a given gas depending

on the accompanying degree of expansion. Two special cases are impor-
1
Joule's results were stated in the English system of units. The corresponding metric

units are being used here, though they were not adopted until after Joule’s time.



Chapter ig HEAT AND MECHANICAL ENERGY 205

tant; one when the gas is heated in a rigid container and not allowed to ex-

pand at all, the other when it is allowed to expand at such a rate as to keep

its pressure constant. Measurements in the former case yield the specific

heat at constant volume
,
in the latter the specific heat at constant pressure .

The latter possesses, of course, the higher value.

The ratio of these two specific heats, usually represented by y (gamma),
is a constant for a given gas, but is different for different gases. It is about

1.66 for monatomic gases like oxygen and nitrogen, 1.41 for diatomic gases

like oxygen and nitrogen, 1.33 for triatomic gases like carbon dioxide, and
still smaller for polyatomic gases and vapors.

The Conservation Concept

Joule, like Mayer, was animated by a conviction of the conservation of

energy. Though he did not particularize on this theory as Mayer did, his

conception of the inclusiveness of the doctrine was no less wide. In his

1843 paper he said (77:205):

I shall lose no time in repeating and extending these experiments, being

satisfied that the grand agents of nature are, by the Creator’s fiat, inde-

structible; and that wherever mechanical force is expended, an exact equiva-

lent of heat is always obtained.

The italics are Joule’s own. This statement is no less inclusive than

Mayer’s. Indeed because he did not particularize as Mayer did, it may be

said to be broader. A comparison of the inclusiveness of this statement

with the very limited number of ways that the principle lent itself to veri-

fication at his hands will make it clear that his experiments constituted far

from conclusive evidence on the validity of his belief. Yet because he per-

formed experiments, even experiments which had little to do with some
of the aspects of his doctrine, his doctrine was accepted in its entirety.

‘Acceptance of Mayer’s doctrine came only when it was seen to be identical

with Joule’s. Actually, the volume of qualitative evidence covering a

wide variety of phenomena which Mayer proffered constituted better sup-

port of the broad implications of the doctrine of conservation of energy

than did the close numerical agreement of Joule’s results in a limited field.

It is perhaps unnecessary to emphasize the new “ turn ” that the doctrine

of Mayer and of Joule gave to the old principle of conservation of energy.

The old form was restricted to purely mechanical transformations. The
phenomena of oscillation, of elastic impact, and of frictionless fluid motion

are frequently treated, as in Chapters 12, 13, and 14, with the aid of the

restricted form of the principle. But wherever friction or other types of

dissipation of energy are involved, accompanied as they must ultimately

be by the generation of heat, only the more inclusive form of the conserva-

tion principle is adequate. That form is variously phrased, but the fol-

lowing statement is perhaps as good as any (102:118):

Energy is recognized in various forms, and when it disappears in one form

it appears in others, and in each case according to a fixed rate of exchange.
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The total quantity of any energy, measured in terms of any one form, is

constant whatever forms it may assume.

Many years were to elapse before the scientific world came to a general

recognition of the full import of the doctrine of conservation of energy.

Perhaps the most effective of its earlier champions was Hermann von Helm-
holtz, who was at that time {1847) principally known as a physiologist who
was especially versed in the field of sound. It is somewhat thought-

provoking to realize that the five men who were the first to comprehend the

full import of the principle of the conservation of energy were all young men
and were all professionally outside of the field of physics at the time that

they made their contributions. These were Mayer, a German physician,

aged twenty-eight; Carnot, a French engineer who preceded all the rest in

the discovery and who will be discussed further in the next chapter, aged

thirty-four; Helmholtz, a German physiologist, aged thirty-two; Joule, an

English industrialist, aged twenty-five; and Colding, a Danish engineer

who made the same discovery independently of the others and almost

simultaneously, aged twenty-seven.

Perpetual Motion

It was the principle of conservation of energy, a principle which Poin-

care has termed “the grandest conquest of contemporary thought,” that

finally set in strong relief the futility of the perennial efforts to devise a

perpetual motion machine. A corollary of the principle that the sum of

all the forms of energy output of a machine must always be exactly equal

to the total energy input is that the output can never exceed the input.

What constitutes the will-o’-the-wisp of the perpetual motionist has been

the fond hope in many quarters that a machine could be devised whose

output would be greater than its input. The principle of conservation of

energy alone, therefore, should be enough to dispel this illusion.

Actually the case for perpetual motion is even less valid than the con-

servation principle, taken by itself, allows. The statement that the total

energy output of a machine is always equal to the input includes in the

energy output such items as friction and heat loss, inescapable character-

istics of the operations of any machine. These forms of “output” are

useless whereas the perpetual motionist is naturally interested only in

useful output. The useful output of any machine is consequently always

less than the input, the ratio of the two being termed efficiency ,
a term

already introduced in the study of mechanics (page 151). The efficiency

of common machines is much lower than the average individual realizes.

That of a high quality internal combustion engine is about 40 per cent, of

a high quality steam engine about 20 per cent, of a locomotive engine about

5 per cent. There are, moreover, certain losses in the transmission of

mechanical or electrical energy to the locality of utilization and in its appli-

cation at the point of consumption which diminish practical efficiency still

further. When coal is burned to supply steam for the generation of elec-
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tricity, only a small fraction of 1 per cent of the coal’s heat energy appears
in the illumination provided by the electricity. All the rest is lost along
the way, dissipated in the form of heat. Even the light itself is absorbed
and ultimately converted into heat.

The Degradation of Energy

The same can be said of any series of energy transformations whatever.

There is a “tax,” payable only in the form of heat, exacted at each step/

All kinds of energy ultimately dissipate themselves in the form of heat.

The tragedy of the process is that the heat thus generated can practically

never be utilized. Once dissipated it can never be recovered or reclaimed.

The user can only turn to the source, almost invariably the sun in the final

analysis, for another handout, which will be similarly spent in its turn.

Just as much energy resides in the dissipated heat as resided in the original

handout from the sun, but it has been rendered unavailable. The process

is technically termed the degradation of energy.

The degradation of energy was first identified by Lord Kelvin in 1851

and is perhaps as important a scientific generalization as is the conserva-

tion of energy. Kelvin pointed out that, as a consequence of this continu-

ous universal process, the inescapable decreasing availability of energy

indicates an ultimate stoppage of all energy flow in the universe, a “running

down” of the cosmic clock. Long before that state is reached all life will

have disappeared, for life depends on, and perhaps consists of, a peculiar

form of energy flow. The end of the world is usually pictured as a state of

utter frigidity. This is not necessarily a correct picture. The final state

of the universe may be temperate or even hot. The important point will

not be temperature level, but the entire absence of differences of tempera-

ture. Everything will be cold or medium or hot to the same degree, and

consequently no energy can flow from one place to another. This state of

affairs is inevitable, according to every evidence now available. Perhaps

it is not necessary to take the matter too seriously, however, for even the

most enthusiastic prophets of doom admit that many billions of years will

elapse before that condition comes to pass, and a lot of things can happen

in a billion years.

Questions for Self-Examination

1 # How did the steam engines of the early eighteenth century differ from the later

types?

2. Tell the story of Rumford’s contribution to our knowledge of the nature of heat.

3. Tell the story of the first estimate of the value of the mechanical equivalent of

heat by Count Rumford.

4. Tell the story of Mayer’s prevision of the doctrine of conservation of energy.

5. Joule’s scientific career was largely confined to measuring the mechanical equiva-

lent of heat. Mention some of its episodes.
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6. State the principles of conservation of energy and degradation of energy and

sketch the prospect of the “heat death” of the universe.

Problems on Chapter 19

1. Coal is consumed at the rate of 56 pounds per hour under the boiler supplying

steam to a 20 II.P. engine. Find the efficiency, assuming that 1 pound of coal

can convert 15 pounds of water at the boiling point into steam at the same tem-

perature. Take the heat of vaporization of water as 971 B.T.U. per pound.

6.3 per cent.

2. A horse working at 28,000 foot-pounds per minute is to be replaced by an engine

of efficiency 4 per cent. How much coal must be supplied to the boiler? Take

the heating value of the coal as the same as in the preceding problem. 3.7 Ibs/hr.

3. The cylinder of an air compressor is cooled by water flowing at the rate of 4 kilo-

grams per minute. If 10 H.P. is expended on the compressor, how much is the

water being raised in temperature? 27° C.

4 . In freezing weather ice forms in a tank at the rate of 1 kilogram an hour. What
is the wattage of an electric light which, when immersed in the tank, will just

prevent freezing? 93 watts.

5 . A weight of M kilograms is attached by means of a cord and pulley to a paddle.

The paddle is of the same material as the container in which it is mounted, the

total mass of the paddle and container being m grams and their common specific

heat s. A fall of the weight through a height of h meters is found to heat the con-

tainer, paddle, and W grams of water through f C. What is the mechanical

equivalent of heat J in joules per caloric, assuming no loss by friction, radiation,

or conduction?

M m s h W t
'

J
10 1500 .093 30 1000 .62 4160

10 1500 .093 30 700 .84 4170

10 1500 .093 30 430 1.23 4200

10 1500 .093 30 240 1.85 4190

6.

What speed in meters per second would be required / v

of a lead bullet initially at f C. to raise its temper- 0 370

ature and just melt it on impact? Assume all the 100 330

heat to remain in the lead. The specific heat of lead 200 290

is .0320, its melting point is 327° C., and its heat of 327 220

fusion is 5.86 Calories per kilogram.
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Heat Engines

Work as a Form of Heat

The usual conception of an “ engine ” as a source of power places at the

center of the stage the picture of a great force: the force of expanding

steam in the steam engine or of explosively burning vapors in the case of

the internal combustion engine. Of course it is true that sources of com-
mercial power do exert forces, yet those forces would be useless if their ex-

ertion did not result in motion. It is the rate at which an engine does

work that counts— not primarily the force that it exerts. But whatever

the immediate manifestation of work, the ultimate origin can only be a

transfer of heat, a portion of which incidentally becomes converted into

work. This idea was emphasized in the preceding chapter and will be

further developed in this one. It suggests the reason why all devices for

converting stores of heat into mechanical work are termed heat engines .

It indicates also why James Watt’s first contribution to the development

of the steam engine— which was the prevention of a great waste of heat—
was also his greatest contribution.

Watt's First Improvements of the Steam Engine

The old Newcomen engine which had been turned over to Watt for re-

pair in 1763 even at its best was consuming at each stroke several times as

much steam as was needed merely to fill the cylinder. This was because

the steam came in contact with the cylinder walls, which were chilled

from the jet of water that had condensed the previous cylinder-full, and

most of it went into heating the walls up to its own temperature. So

much was being lost in this way that Watt found that the engine was con-

suming at every stroke eight cylinder-fulls of steam. Watt, in collabora-

tion with Black, had experimented extensively on the “latent heat” of

steam, and he was acutely aware of the huge amount of heat which was

being lqst. It took him a long while, however, to see how it could be

avoided.

After considering the possibility of making cylinders of some material

of low specific heat, which would, therefore, warm up with little heat, he

finally hit upon a much better idea. He is very explicit about the time

and place where this came to him. He says 1 that he was walking on the

Glasgow Green on a spring day in 1765 thinking of the engine,

1 Hart, Transactions of the Glasgow Archaeological Society, /, 1 (1859).
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when the idea came into my mind that, as steam was an elastic body, it

would rush into a vacuum, and, if a communication were made between

the cylinder and an exhausted vessel, it would rush into it, and might be

there condensed without cooling the cylinder.

Watt’s idea of providing a separate condenser effected a greater improve-

ment in the economy of steam-engine operation than any other invention

but his second idea, that of utilizing the energy of expansion of the steam,

was a close competitor to the first.

In all of the early engines, including those benefiting from Watt’s first

improvement, steam at full boiler pressure followed the piston clear to the

end of its travel. When the exhaust valve was opened at the end of the

stroke, this high-pressure steam escaped without doing any further work.

This was another source of wastage to which Watt some years later turned

his attention. He solved this problem by shutting the steam off early in

the stroke and allowing it to expand, a principle which has characterized

the operation of steam engines ever since. Under this arrangement the

pressure in the cylinder falls gradually during the last portion of each

stroke, almost or quite to that of the condenser. This greatly reduces the

loss of power at each exhaust.

Fig. 162. James Watt (1736-1819)

(Courtesy of The Science Museum, London.)
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As a current example of little or no expansion, we may consider a loco-

motive engine starting under a heavy load. The loud sound of its exhaust

under these circumstances shows the wasted energy. Such sound, on the

other hand, is almost entirely absent from a high-quality stationary engine.

This performance is approached, indeed, by the locomotive engine as it

picks up speed and the cut-off is progressively shifted to points earlier in

the stroke.

The Pressure-Volume Diagram

Perhaps an understanding of the function performed by expansion will

be facilitated by resorting to graphical representation. Let us take pres-

sure-volume co-ordinates as was done in representing Boyle’s law in

Figure 88. Figure 163 represents an idealized case of zero expansion.

Ordinates represent the pressure of steam in the space to the left of the

piston. Abscissas represent the distance of the piston from the extreme

left of its travel. Two simplifying assumptions are made, namely, that

there is zero clearance— space behind

the piston at the extreme left of its

travel— and zero back-pressure —
pressure in the space (for example,

the condenser) into which the spent

steam is exhausted. If steam from

the boiler flows into the cylinder dur-

ing the entire power stroke, as in the

case of the old Newcomen engine and

the modern locomotive engine under

starting conditions, the cycle of events

is represented by the rectangular p~v

pattern of Figure 163. If, however,

the steam is allowed to expand in

the cylinder in consequence of cut-

ting off the supply before the power

stroke is complete, the cycle of events

is represented by the p~v pattern

of Figure 164. It will be evident that

only about one half as much steam

is consumed at each stroke as in the preceding case, but that much more

than one half as much work is done.

The work done by the engine at each stroke is proportional to the area of

the diagram. This is perhaps most immediately evident in Figure 163,

where the area is simply the product of the two dimensions of the rectangle,

that is, the product of the steam pressure by the volume swept out by

the piston in one complete stroke. But this may be stated

(pressure X area of piston) X length of stroke

Admission

Exhaust

V

I

V
^ Admission

— r

Exhaust

M
Fig. 163 . Case of Zero Expansion
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This, being force times distance, is obviously the work done by the steam
at each stroke. The proportionality between the area of the diagram and

p the work done at each stroke still

applies to Figure 164, though the de-

termination of the area would be less

simple for that case.

Another of Watt's great contribu-

tions to the development of the steam
engine was the devising of an instru-

ment called a steam engine indicator,

which would record just such dia-

grams for engines in actual operation.

Indicator diagrams
,
so called, have been of immense utility to engineers

ever since. They not only give information on the power developed by
an engine, that is, work per stroke multiplied by number of strokes per
second, but- what is even more useful— disclose the faults in adjust-

ment of the valve gear and give other types of information on the working
condition of an engine.

Of Watt’s other numerous improvements of the steam engine, the most
notable is making engines double acting

;
that is, applying the steam first to

one side and then to the other of the piston, instead of limiting it to one
side as in all engines up to 1782. All in all, Watt’s work was so far-reaching

that for a century after his death further improvements in the steam engine

could only be made in details.

The Steam Engine as a Heat Engine

But the impossibility of surpassing Watt in improving the practical

operation of the steam engine did not preclude the possibility of deepening

the scientific comprehension of the principles involved. This was the next

step, and it was taken by a brilliant young French engineer, S. N. L. Carnot

(1796-1832), in 1824. By that time the steam engine had become very

common in industrial practice, though it had not yet been applied exten-

sively to transportation. The Atlantic had been crossed only once under
steam power (1819), and the locomotive had not yet come into existence.

Carnot sensed that the theory of the steam engine was comprehended
vaguely or not at all, and set himself the task of correcting this.

Carnot’s great contribution was in directing attention to the fact that

the real source of “motive power” was difference of temperature. The
exertion of pressure on a piston was an incidental detail of a complicated

process, the heart of which was the flow of heat. He said (76:7-9)

:

The production of motion in the steam engine is always accompanied by
a circumstance which we should particularly notice. This circumstance is

the passage of caloric from one body where the temperature is more or less

elevated to another where it is lower. What happens, in fact, in a steam-

engine at work? The caloric developed in the fire-box as an effect of com-
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bustion passes through the wall of the boiler and produces steam, incorpo-

rating itself with the steam in some way. This steam carrying the caloric

with it, transports it first into the cylinder, where it fulfills some function,

and thence into the condenser, where the steam is precipitated by coming

into contact with cold water. As a last result, the cold water in the con-

denser receives the caloric developed by combustion. It is warmed by
means of the steam as if it had been placed directly in the fire-box. . .

.

Everywhere where there is a difference of temperature, and where (a

flow of) caloric can be effected, the production of motive power is possible.

Water vapor is one agent for obtaining this power, but it is not the only

one; all natural bodies can be applied to this purpose, for they are all sus-

ceptible to changes of volume, to successive contractions and dilations

effected by alternations of heat and cold; they are all capable, by this

change of volume, of over-coming resistances and thus of developing

motive power. . . . The vapors of all bodies which are capable of evaporation,

such as alcohol, mercury, sulphur, etc., can perform the same function as

water vapor.

Carnot’s extension of the list of substances capable of utilization in

power production is interesting in view of subsequent developments. He
did not cite gasoline, a substance unknown in his day, but he did mention

alcohol, the use of which is on the increase, and mercury, which was first

used for such a purpose only a little over a decade ago.

The emphasis which Carnot thus placed on the central role played by
the transfer of heat in the operation of what he termed “heat engines

”

was of the utmost significance. He thereby put his finger on the crucial

element in all engines, an idea which seemed to have occurred to no one

before him. He was most explicit about it (77 :20-21) :

The motive power of heat is independent of the agents employed to develop

it; its quantity is determined solely by the temperatures of the bodies

between which, in the final result [i.e., upon the completion of a cycle of

operations] the transfer of the caloric occurs.

The idea was of even broader import than Carnot realized at the time, for

he specifically excepted machines “worked by men or animals, by water-

falls or by air currents.” Not possessing the concept of the mechanical

equivalent of heat, he was in no position to realize that these also, “in the

final result/’ were subject to his great generalization that “motive power”

was always attributable to heat transfer.

The Conservation of Energy

Carnot made another error connected with his association of motive

power with heat transfer. It was much more serious than his simple error

of omitting engines which were not apparently of the heat-transfer type.

The more serious error arose, as did the lesser error, because he did not

possess the concept of the mechanical equivalent of heat. Out of his pre-

occupation with the flow of heat in connection with engines he jumped to
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Correct idea

Motive

power

Fig. 165. Carnot’s Idea and the Correct Idea of the
Heat Flow in an Engine

the conclusion that the theoretically perfect engine would simply transfer

all the heat that it received from the source of higher temperature, intact

to the region of lower temperature. He used an analogy which was quite

plausible.

The production of motive power in the steam-engine is therefore not due to

a real consumption of the caloric, but to its transfer from a hotter to a colder

body We may with propriety compare the motive power of heat with

that of a waterfall. . . . The motive power of falling water depends on the

quantity of water and on the height of its fall; the motive power of heat

depends also on the quantity of caloric employed and on that which might

be named, which we, in fact, will call its descent— that is to say, on the

difference of temperature of the bodies between which the exchange of

caloric is effected.

The italics in the foregoing equation are Carnot’s own. His idea was

perfectly clear and his analogy rather convincing. But it was wrong.

We now know that a part of the heat supplied to any engine is diverted

and changed to mechanical energy, so that less heat is delivered to the

exhaust of even a perfect engine than is supplied from the source. Subse-

quent measurements (47a) showed that the heat delivered at the exhaust

of a steam engine was less than that supplied to it, the difference being the

heat equivalent of the work done by the engine (see Fig. 165).

The principle of conservation of energy makes this conclusion manda-

tory for us, but that principle was unknown in 1824. It was, in fact, the

apparent contradiction between Carnot’s theory and the doctrine pro-

mulgated twenty years later by Mayer and by Joule which was primarily

responsible for the doubts with which the latter was regarded. This error

of Carnot’s is another misdemeanor which must be chalked up to the

discredit of the caloric theory of heat. It was his commitment to this
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theory which caused Carnot to be impressed by the analogy between the

waterfall and the heat-engine and which led him to identify his idea of a
sort of

u conservation of heat” with the doctrine of conservation of matter
,

which had been experimentally established twenty years before.

Though this was Carnot’s influence on the development of scientific

doctrine, he apparently changed his opinion before his death in 1832. Some
of his later papers, published posthumously in 1872 in connection with a

second edition of his Reflections
,
make it unmistakable that he had acquired

a clear prevision of the principle of conservation of energy
;
that he had

even made a surprisingly accurate determination of the mechanical equiva-

lent of heat; and that he had laid out for himself a program of investigation

which included all the important developments in this field made by others

in the ensuing thirty years, a truly amazing foresight. If he had not been

cut down during an epidemic of cholera at the age of thirty-six, he would
probably have developed into one of the greatest men of science of all time.

The Reversibility of an Engine Cycle

Carnot discovered another attribute of engines which was only second

in importance to his emphasis on their heat relations, namely, their re-

versibility. This does not refer to anything as trivial as the direction of

rotation. What it refers to is the possibility of actually reversing the

operation which an engine normally performs. In normal operation an

engine produces mechanical energy by taking heat from a region of high

temperature and delivering some of it to one of low. Therefore, when
“ reversed,” it should be capable of absorbing mechanical energy to effect

a transfer of heat from a region of low temperature to one of high. Carnot

envisioned this with his remark that

wherever there is a difference of temperature the production of motive

power is possible.

He added,

Conversely, wherever this power can be employed, it is possible to produce a
difference of temperature To effect this the operations which we have

just described could have been performed in a reverse sense and order,

and he proceeded to describe this reversal in detail.

The process (represented in Figure 166) is simply the reverse of that pic-

tured in the right-hand portion of Figure 165. Energy is furnished to the

system at the point marked “ motive power input.” This “ pumps” heat

from the cold region to the hot region, adding its own heat equivalent to

the quantity thus delivered to the region of high temperature. This is

simply the working principle of the ordinary electric refrigerator. The

cooling unit is the “ low temperature ” part of Figure 166. Heat is pumped

out of it by the compressor, “ motive power input,” into the condenser,

“high temperature,” and thence escapes into the room outside the refrig-
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Motive

power

input

Fig. 166. The Action of an
Engine Reversed

Fig. 167. The Action of a
Compressor

erator. Thus the compressor of such a refrigerator is simply an engine

with its action reversed.

While minor alterations might be required in the mechanism, an engine

and the compressor of a mechanical refrigerator are in principle identical.

The cycle of their operations can be the same, except that it is performed

in reverse order. (Compare Figure 167 with Figure 164.) The area of the

indicator diagram is proportional to the work done during the cycle, as

before, except that it is now work absorbed instead of work evolved.

The Mechanical Refrigerator

Figure 168 shows the operation of one of the two types of refrigerator

now in common domestic use, the compression type. As in all types, the

Fig. 168. Compression Type op
Mechanical Refrigerator
(“Electric Refrigerator”)

refrigeration is produced by the

evaporation of a volatile liquid in

the evaporator or “cooling unit.”

The resulting vapor is then pumped
up to high pressure by a motor-driven

compressor. The high-pressure vapor

is condensed back into a liquid,

usually by an air-cooled “ condenser.”

It is at this point that the heat re-

moved from the interior of the re-

frigerator plus the heat equivalent

of the work done by the electric

motor on the compressor is delivered

to the room. The liquid then enters

the cooling unit, is vaporized, and

the cycle is repeated.

Figure 169 shows the operation of

the other type of mechanical refrig-

erator in common domestic use, the

absorption type , This type differs
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from the former principally in the agency used to remove the vapor from

the evaporator, condense it back to a liquid, and then complete the cycle.

The two processes are identical as far as what occurs in the cooling unit

is concerned, the evaporator being the actual point of application of refrig-

eration, whatever the system.

The absorption type of refrigerator uses a refrigerant— ammonia—
which is readily soluble in water. A convection current, maintained by a

flame— usually of gas, whence the name “gas refrigerator
5 ’ — carries the

ammonia to the absorber
,
where it is dissolved in water. The solution then

flows to the generator
,
where the ammonia is boiled out of the water again.

The water, raised by the agency of the heat through a process made familiar

in coffee percolators, flows back into the absorber. The hot ammonia
vapor rises to the condenser where, after being converted into a liquid, it

flows by gravity back to the evaporator, thus completing the cycle. The
cycle of events is aided by the presence of a gas— hydrogen— under a

pressure of several hundred pounds, which is sealed into the system, along

with the ammonia and water, in the process of manufacture of this type

of refrigerator.

Fig. 169 . Absorption Type op Mechanical Refrigerator
(“Gas Refrigerator”)

(Courtesy of Servel, Inc.)
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To the uninitiated the .spectacle of “cooling by heat” appears para-

doxical. It is a “paradox,” however, which is equally characteristic of

the “electric” and the “gas” types of refrigerator. In both cases energy

is required to lift the heat out of the refrigerator and deliver it to the higher

temperature of the surroundings. Whether the energy is furnished in the

form of electricity or heat is an incidental detail. If the system is of a type

which requires heat, heat could be furnished equally well by electricity or

gas. If it requires mechanical energy, that too could be provided either by

an electric motor or, say, by a steam engine supplied from a boiler fired by gas.

The central point in any type of refrigerator is the element foreseen by

Carnot, the absorption of energy involved in the engine cycle when reversed.

Refining the Concept of Reversibility

Yet the concept of reversibility in its full sweep involves more than

merely reversing the function of an engine. It requires that the engine

shall be theoretically perfect, be without friction, and work without any

heat losses or other dissipation of energy. For energy so lost cannot be

recovered, and a machine which incurred such losses could never be truly

reversible. A steam engine cycle would not necessarily be reversible in

this way, even if the engine were perfectly insulated against heat losses.

In fact special precautions would have to be observed to make it reversible.

For example, if at the end of its stroke the pressure of the expanded gas is

greater than that in the condenser, as is usually true in actual operation,

it escapes with a characteristic “puff” as the exhaust valve is opened, and

this constitutes an irreversible event. A moment’s thought will make it

dear that the attempt to reverse such an event would be unsuccessful.

For when the intake valve of a

compressor closes and compres-

sion is about to begin, the gas

could not be expected to raise

its own pressure spontaneously

before compression actually

begins, to the extent that it

dropped its pressure at the same
point previously (Fig. 170).

There are other ways in which

a cycle can be rendered irre-

versible and most of them get

in their work in practice, es-

pecially in the innumerable

ways in which heat can be lost

to the surroundings in effect-

ing a cyde of such operations.

But in theory, the reversible

cyde is a possibility of which
Fig. 170. One Way to Make a Cycle

Irreversible
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much has been made, entirely aside from its utility in the mechanical

refrigerator. It will be utilized in the present chapter.

The Efficiency of a Heat Cycle

The efficiency of any operation has been defined (page LSI) as the ratio

of useful energy yielded to total energy absorbed. Originally formulated

to apply to merely mechanical operations, it is still valid when heat and
other forms of energy are included. Specifically, it is applicable to the

engines which have been under discussion. A certain quantity of heat,

Qij leaves the high temperature source in connection with the operation of

an engine. Part of it, ()2 ,
passes through the engine and goes mainly out of

the exhaust. The difference (Q x - Q»), represents the quantity of heat

converted into mechanical energy by the engine. The efficiency of the

process is

efficiency = — (1)
Vi

A somewhat different expression

for the efficiency of an engine was
deduced by Carnot. He derived it

from his water-power analogy (page

214), picturing motive-power as de-

pending on

the quantity of caloric and on

the . . . difference of temperature,

considering it proportional to the

product. Hence, taking Q as the

quantity of heat descending— on

Carnot’s view— from a region of absolute temperature T\ to a region of

absolute temperature T2 ,
the work actually done was proportional to the

product Q (Ti — T2) and the maximum work theoretically obtainable was
QTi. Hence, the efficiency was

Heat source

Fig. 171. Heat Path in a Reversible
Engine

efficiency = Q
(ri - r2)

Ql\

r x -r2

Tx
(2 )

Though this expression, like Black’s concepts of suecific and “latent”

heats, was deduced on a false premise about the nature of heat, it was sub-

sequently found, also like Black’s results, to be nevertheless correct. If,

now, there is no loss of heat, all the rejected heat, Q2 going into a perfectly

insulated reservoir attemperature !'•>, and being capable of being “pumped ”

back to the source undiminished by reversing the action of the engine, then

expressions (1) and (2) represent the efficiency of a reversible engine and
can be equated to each other. Hence, for a reversible engine

Q1-Q2 Ti — r2

Qi
=

2Y (3)
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Either side of equation (3) represents the maximum efficiency any engine

can have. The assertion that no engine can be more efficient than a reversible

engine is known as Carnot's theorem.

Improving the Efficiency of the Steam Engine

Equation (3) shows that the efficiency of a reversible cycle increases with

increase of difference of the temperatures between which it operates. This

is also true of the non-reversible cycles encountered in daily engineering

practice. Efficiency is thus increased with any rise in T\ or diminution

in r2 . Carnot recognized and commented on this fact (76:51). A practi-

cal lower limit is set on T2 by the prevailing temperatures of the air into

which the exhaust usually occurs or of the cooling-water in the case of

engines equipped with a condenser. It is only in connection with T\ that

any latitude occurs. Hence, the tendency in advanced engineering prac-

tice is toward higher and higher steam-pressures, with accompanying in-

creases in steam temperatures. Still higher temperatures are sometimes

secured, without the extra hazard of excessive pressures, by superheating

the steam. This consists of applying extra heat to the steam after it has

been separated from the water, thus causing it to lose the properties of a

vapor and assume more unequivocally the properties of a gas. All the

“permanent” gases are simply the very highly superheated vapors of sub-

stances that can exist as liquids only at extremely low temperatures.

Equation (3) shows that the maximum efficiencies attainable in a steam

engine working between atmospheric pressure and boiler pressures of 50,

100, 200, and 300 pounds per square inch (temperatures 138° C., 164° C.,

194° C., 214° C.) are respectively 9, 15, 20, and 24 per cent. The cor-

responding efficiencies when a condenser is added, providing an exhaust

temperature of, say, 30° C., are 26, 31, 35, and 38 per cent. With the

steam superheated 100° C. above the normal temperature in addition, the

corresponding efficiencies would be 41, 44, 47, and 49 per cent. In prac-

tice, the best operating efficiencies seldom exceed one half of those indi-

cated here as the highest theoretically obtainable.

The Steam Turbine

The difficulty of providing effective lubrication at such high tempera-

tures is one of the reasons why the steam turbine, a steam “windmill”

which has crashed the gate into high engineering society, has largely dis-

placed the reciprocating steam engine. The last word in turbines is one

using mercury vapor instead of water. It works over a temperature range

of 450° C., to which its high theoretical efficiency is due (60 per cent). The
exhaust mercury vapor is used to produce steam which is supplied to a
steam engine, thus adding materially to the efficiency of the process. It is

interesting to note in this connection that Carnot said (76:58):

It would no doubt be preferable if there were an abundant supply of a

liquid which evaporated at a higher temperature than water, the specific
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heat of whose vapor was less for equal volume, and which did not injure

the metals used in the construction of an engine; but no such body exists

in nature.

Mercury answers these specifications today, though it did not in Carnot’s

time, when it was not “ abundant” enough to be used for such a purpose.

Moreover, all engine parts can today be made of steel which mercury does

not attack. Many of them in Carnot’s time had to be made of brass which

disintegrates almost immediately when placed in contact with mercury at

high temperature. The great difficulty with mercury, in addition to its

high cost, is the violently poisonous nature of its vapor.

The Internal Combustion Engine

An account of heat engines would not be complete if it did not include

what is now the most common type of all, the internal combustion engine,

most common in automobile and aviation practice. Electric power plants

are using Diesel engines (page 222) quite commonly; Diesels are beginning

to displace steam turbines in marine practice; and they are even becoming

evident in the most advanced railroad practice.

As the name implies, the chief characteristic of the internal combustion

engine is the fact that combustion of its fuel takes place inside of the cylin-

ders instead of outside as is the case with steam. In effect the internal

combustion engine uses air as its working substance instead of steam, the

air being heated by the burning of the vaporized fuel with which it is im-

pregnated. In this connection, too, Carnot was prophetic. He remarked

(76:56):

Water vapor can be formed only by the aid of a boiler, while atmospheric

air can be heated directly by combustion within itself. Thus a considerable

loss is avoided, not only in the quantity of heat, but also in its thermometric

degree.

The internal combustion engine which Carnot thus envisioned did not

come into existence for more than forty years and did not bfcgin really to

compete with the steam engine for nearly a century.

The Otto Cycle

The details of operation of the automobile type of engine are so familiar

that it is scarcely worth while dwelling upon them. The accompanying

illustration (Fig. 172) shows the nature of the four events constituting the

cycle of operations, namely, intake, compression, power, exhaust. These

events occur on successive strokes, and each requires substantially the

whole of its stroke. This is termed the Otto cycle, first actually effected by

a German engineer of that name in 1876, though it had been proposed four-

teen years before. The cycle itself is shown in Figure 173. The ignition,

accompanied by a large and almost instantaneous increase in pressure
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Fig. 172. The Sequence of
Events in the Orro Cycle

while the piston is near the inner end of its stroke, might be termed a fifth

event in this cycle. It is effected by an electric spark.

The engine described in the preceding paragraph requires four successive

strokes (two revolutions) to complete its cycle. Small engines, such as

those used as the outboard motors of small pleasure boats, complete the

cycle of four events in only two strokes (one revolution). The former

engine is called a four-stroke-cycle (“four-cycle”) engine and the latter a

two-stroke-cycle (“two-cycle”). The two-cycle performs the power and
exhaust on the forward stroke, the intake and compression on the return.

It has the advantage of a power stroke every revolution instead of every

alternate revolution as in the four-cycle, and can, therefore, be made
lighter for the same power. But it is far less efficient.

The Diesel Engine

Though the efficiency of the Otto cycle is higher the greater the com-
pression ratio, there is a practical limit. The explosive mixture which ex-

periences the compression is also heated by it. For compression ratios

greater than about 6:1, the mixture, if the fuel is gasoline, reaches its igni-

tion temperature before the end of the compression stroke. The explosion

thus occurs before the spark, that is, too early in the cycle, and thus ad-

ministers an impulse tending to reverse the engine. This produces a
“knock ” and causes loss of power. The sole function of “ethyl ” is to defer

the ignition and make it take place more slowly, thus facilitating higher

compression ratios.

But even “ethyl” is only a palliative. In 1898, Rudolph Diesel built an
engine which solved the compression dilemma. He allowed only air in the

cylinder during the compression. In the absence of a combustible mix-
ture, no pre-ignition could occur, and there was, therefore, no limit to the
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attainable compression except the structural strength of the engine In

practice the Diesel engine uses compression ratios about two to three times

as great as the highest used in automotive practice. The fuel is injected

into the cylinder in a high-pressure spray. It ignites instantly on account

of the high temperature of the compressed air, no electric ignition system
being required. The spray continues during

an appreciable fraction of the power stroke,

at such a rate as to maintain the pressure

substantially constant. The remainder of

the stroke constitutes the expansion of the

products of this combustion. The form of

the Diesel cycle is shown in Figure 174.

The Diesel engine is about 20 per cent.more
efficient than engines operating on the Otto
cycle. They are rapidly displacing the steam
engine for industrial use. They possess the

disadvantage of great weight of the material

required to withstand the stresses due to

high compression, and of increased friction

due to tighter fit between piston and cylinder walls to prevent leakage at

the high pressures used.

The Diesel engine is being adapted to automotive use through a modi-
fication termed the “semi-Diesel.” In this the compression ratio is re-

duced and the cylinder wall artificially heated to raise the temperature

above the ignition point. It shares with the Diesel the advantage of being

able to use crude oils as fuel, by virtue of the high temperature at which it

operates. It sacrifices some of the theoretical efficiency of the Diesel in the

interests of portability. As soon as the economic resistance from manu-
facturers and vendors of gasoline can be overcome, the semi-Diesel bids

fair to displace the gasoline engine at least for heavy automotive and air-

plane use.

Questions for Self-Examination

1. What were James Watt’s principal contributions to the development of the steam
engine?

2. Draw an idealized indicator diagram for a steam engine, identify its branches

and show how it may be made to yield information on the power being developed

by the engine.

3. Outline Carnot’s contributions to the theory of the heat engine. Identify the

famous error of his theory.

4. Discuss the concept of reversibility of the heat engine and its bearing on theoretical

efficiency.

5. State the principle of the mechanical refrigerator. Compare the “ electric” type

with the “gas” type.

6. What is the basis of Kelvin’s so-called “thermodynamic” scale?

7. Describe the Otto cycle and the Diesel cycle, with the aid of indicator diagrams.

8. Compare the “four-cycle” engine with the “two-cycle” engine.

Combustion

Fig. 174. The Diesel Cycle
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Problems on Chapter 20

1. A steam engine indicator is so geared that each centimeter of abscissa of the dia-

gram corresponds to \ foot of stroke and each centimeter of ordinate corresponds

to steam pressure of 25 pounds per square inch in the cylinder. The diameter

of the piston ol the engine is 15 inches. The engine speed is 60 revolutions per

minute. If the area of an indicator diagram is 25 square centimeters, what is

the “indicated horsepower”? 200.

2. If an automobile engine working at 25 H.P. uses 3 gallons of gasoline per hour,

what is its efficiency? The heat of combustion of gasoline is 29,300 Cals/gal.

18 per cent.

3. In measuring the specific heat of a gas, one applies heat and observes the number
of Calories required to heat one kilogram of the gas through 1° C. The value

comes out to be less if the gas is confined to a constant volume while being heated

than when it is allowed to expand, maintaining a constant pressure. Why should

these two values of the specific heat be different?

4. Ten grams of air (density 1.3 kg/m3 at 0° C.) are heated from 0° C. to 10G° C.

under atmospheric pressure. What is (a) the change in volume, (/>) the work done
by the expanding air, (c) the heat equivalent of this work?

.0028 m3
; 280 joules; .068 Cals.

5. The specific heat of air at constant pressure is .237 Cal/kg. How many Calo-

ries were required to heat the air under the conditions of the preceding problem?

What is the specific heat of air at constant volume? .18 Cal; .17 Cal/kg.

6. A steam engine working between the temperatures of 250° C. and 40° C. has an
efficiency of 20 per cent. How does this compare with the efficiency of a Carnot

engine working between the same temperatures? About J.

7. The volume swept out in one stroke of a certain pump is .1 cubic meter. The
average steam pressure is 10 kilograms per square centimeter. Find the work
done per stroke. If one stroke consumes .5 kilogram of steam, how much heat is

needed to produce it? What therefore is the efficiency?

100,000 joules. 270 Cals. .99 per cent.

8. A locomotive engine uses steam at a pressure of P pounds per square inch (abso-

lute) and exhausts it at p. Corresponding temperatures of the steam in degrees

C. are given below. What is the maximum theoretical efficiency of the engine?

p T P t e(%)
250 205 30 126 17.

200 195 45 135 13.

150 181 60 145 7.9

100 164 75 153 2.5

9.

Calculate the horsepower P and the thermal efficiency e of an engine from the

following details:

diameter of cylinder d inches

length of stroke s feet

speed n revolutions per minute
mean steam pressure p pounds per square inch

consumption of coal c pounds per hour.

One pound of coal will provide 3000 Calories in burning. One horsepower is the

equivalent of 746 watts. The mechanical equivalent of heat is 4183 joules per

Calorie,

d s n P c P e

15 3 80 75 300 190 .14

IS 3 70 60 250 140 .12

IS 3 60 45 200 87 .09

15 3 50 30 150
,

48 .07
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CHAPTER 21

The Nature of Sound

The Production of Sound

The most casual observation shows that sound always originates in some
kind of motion. The sound of an explosion, the thud of a heavy fall, the

impact of a hammer, the tone of a violin string, or the raucous warning of

an automobile horn, all are clearly produced by rapid motion. In some
instances motion is not so evident. The voice of a singer, the shrill sound
of a whistle, the majestic tone of an organ pipe— in these we must be
content with less direct evidence of the existence of motion, either because
the moving object is concealed, as are the vocal cords of the singer, or be-

cause the moving object consists of a fluttering fin of air and, hence, is not
easy to identify. But in every case the origin of a sound can be traced to

motion of some kind.

Since energy must be expended to maintain the motion and acceleration

associated with origins of sound, we are led to consider whether at least a
part of that energy may not go into the sound itself. It is, in fact, possible

to demonstrate that mechanical energy is associated with sound. As
would also be suspected, the energy content becomes greater with increased

loudness of sound.

But the energy content of ordinary sounds is exceedingly small in com-
parison with that involved in most of our activities. The volume of sound
produced by a brass band is moderately large. Yet to produce sufficient

sound to contain one horsepower, it would require a band of ten million

pieces, playing fortissimo. If all the energy of normal speech could be
converted into heat and used to warm a cup of tea, it would require steady

conversation by a million people for an hour and a half to raise the tea to

the proper temperature. The power emanating in sound from a group of

ten thousand people cheering their loudest would be about the same as that

required to maintain an ordinary electric light.

The energy content in sound of any kind is entirely incommensurate

with the work required to produce the sound. In other words, sound-

producing devices, regarded as machines, are uniformly inefficient in the

extreme. One of the most efficient sound-producing instruments is the

“loud speaker” familiar in radio. Even the best of these converts into

sound only about 5 per cent of the electrical energy which it receives. In
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most musical instruments, the mechanical efficiency is probably but a tiny

fraction of 1 per cent. Very recently certain types of “giant speakers,”

used for special kinds of sound projection, have been devised which convert

into sound somewhat more than 50 per cent of the energy which they re-

ceive. These are marvels of sonic efficiency.

Sound Requires a Material Medium

Sound requires a material substance as the medium of travel. Any sub-

stance will do, whether it be gas, liquid, or solid. Without some medium
to bear it, sound cannot travel from place to place. A
bell in an evacuated .glass jar is almost silent even

though its clapper can be seen to beat against the

gong

Figure 1 75 shows the first attempt to perform the

bell in vacuo experiment. It is from a work of

1650 by Athanasius Kircher, a voluminous encyclo-

pedist of the seventeenth century. The iron clapper

of the bell inside the glass globe at the top was actu-

ated from outside by a “vigorous lodestone.” This

was* long before the day of air pumps, and the re-

quisite vacuum was produced by a Torricellian mer-

cury column (page 83) ;
hence, the long vertical tube

was necessary.

Neither this experiment nor similar ones that

followed during the next ten years led to the correct

conclusion. All indicated that sound would traverse

a vacuum. Robert Boyle in 1660 improved the air

pump recently invented by von Guericke (page 85).

With its aid he repeated the experiment and inter-

preted it correctly. He said (84:21):

The experiment was repeated with the suspending

in the receiver a watch with a good alarum, which
was purposely set that it might, before it should begin

to ring, give us time to cement on the receiver very
Fig. 175. The First carefully, exhaust it very diligently, and settle our-
Illustration of the selves in a silent and attentive posture. ... We
perime*nt

VaCU° EX~ silently expected the time when the alarum should

(From Kircher’* MUs«rSia ^ to ring • • and were satisfied that we heard

Umversalu of 1650.) the watch not at all.

The nature of sound was at that time a question largely without an answer.

The importance of the bell in vacuo experiment, and especially of its correct

interpretation, lay in the indication that it gave of the necessity for a
medium for the transmission of sound and the consequent implications

about the nature of sound itself.
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The Speed of Sound in Air

That sound requires time to travel is indicated by many common ob-

servations. The lapse of time between a stroke of lightning and the ensu-

ing thunder, between the puli of smoke emerging from a starter’s pistol

and the report of the explosion, between the stroke of a distant hammer
and the sound of the impact : all these are occurrences of common observa-

tion. In each case the lapse of time may be taken as a measure of the dis-

tance, since it is now known that sound travels through air somewhat over

a mile in five seconds (1087.13 feet or 331.36 meters per second at 0° C.).

Perhaps the most significant thing about the speed of sound in air is the

fact that there is a definite value for it. One might be justified in asking,

for example, whether loud sounds do not travel more rapidly than weak
ones, or whether high-pitched sounds do not travel at different speeds

from low-pitched sounds. The answer to the first question would be in the

negative, though with a qualification to be noted later. The answer to the

second is also negative, this time without any qualification. If the large

and small instruments of a band are in time with each other at the place

where the music originates, they will also be in time with each other as far

as the band is heard. This would not be true if sounds of different pitch

traveled at different rates. If they did, the piccolo might be heard a

measure or two before the bass horn, or perhaps after it. Though the

speeds of some varieties of wave do depend on what for them is the equiva-

lent of pitch in sound (e.g., water waves), this is not the case for sound

waves.

It has long been known that the speeds of extremely loud sounds were

greater than those of sounds of ordinary intensity. The abnormal speeds

of the sounds of concussions produced by heavy artillery were studied in

1918 by D. C. Miller (85a:121 ff.). He found in a representative case that

the speed of the sound produced by a 10-inch rifle was nearly 2500 feet per

second near the muzzle, but that when the sound wave was 100 feet away
from the muzzle, its speed had diminished to 1700 feet per second. At
200 feet it had diminished to 1300 feet per second, and at 300, to about

1100 feet per second. By the time the wave had traveled 650 feet, which

was half a second after the explosion, its speed had fallen to within jfas of

1 per cent of the normal value and remained at the normal value thence-

forth. This makes it clear that any increase in the speed of sound due to

the loudness is a decidedly abnormal condition, encountered only in ex-

treme cases. Ordinarily it is safe to assume that all sounds travel at the

same speed.

Speed of Sound in Other Media

The speed of sound in other media than air is usually not a matter of

great practical importance. In other gases, the speed depends upon the

density (inversely as the square root), so that in hydrogen, for example, the
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density of which is about .07 that of air, the speed of sound is

^7
= or 3.8

times its speed in air. More specifically, speed in gases is related to den-

sity by the relation

(1 )

where d is the density in kg/m3
, p the pressure in newtons/m2

, y is the

ratio of the specific heat at constant pressure to that at constant volume

(see page 204), and V is the speed in meters per second. At first glance it

would appear that the speed depended upon pressure as well as density.

The contrary is the case, however, speed of sound in gases remaining the

same at all pressures. The reason is that slow changes in pressure (such

that heat of compression is dissipated and Boyle’s la^ thus approximated)

produce proportional changes in density, so that the value of the fraction

remains unaffected. If, however, an increase of temperature occurs, then

pressure rises if the gas is confined, or density diminishes if it is not. In

either case the ratio p/d increases in proportion to the ratio of the absolute

temperatures, resulting in an increased value for the speed of sound in the

gas. This is treated further on page 231.

In liquids and solids the speed of sound depends also upon the modulus

of elasticity, directly as the square root. The numerical values of elastic

moduli for liquids and solids are very high, so that as a practical matter

they dominate the value of the speeds of sound in such media rather than

density which dominates in the case of gases. For both liquids and solids

the relation is

V -
(2 )

E represents the volume modulus of elasticity in the case of liquids and
Young’s modulus in the case of solids. The remaining notation is the same
as for equation (1 ).

In water, the speed of sound is nearly a mile per second (4800 feet at 70°

F.) while in steel it is more than three miles per second (about 16,300 feet,

depending on quality of steel). A manifestation of this high speed in steel

may be observed on a railroad track. If the rail is struck, an observer a

hundred or more feet distant will hear two reports: the first coming through

the rail, the second through the air.

Recently sonic methods have been developed for measuring ocean depths.

An electric oscillator, incorporated in the hull of a ship, sends out signals

which, after reflection at the bottom, are received again at the ship. The
time elapsing is a measure of the depth. In this way a continuous record

of ocean depth can be kept by a ship traveling at normal speed, with con-

siderably greater accuracy than was possible with the old method of the



Chapter 21 THE NATURE OF SOUND 231

lead line, which necessitated a complete stop every time a depth measure-

ment was made.

Similar methods of sounding are being developed in what is known as

geophysical prospecting. Oil-bearing or ore-bearing layers are character-

ized by different density than the adjacent layers. A sound wave travel-

ing through the earth will experience partial reflection upon passing from
one of these layers to another, and these reflected waves may be made to

yield information to observers on the surface. Accordingly, one of the

methods of geophysical prospecting is to produce a sound wave in the body
of the earth by exploding a, buried charge of dynamite. Properly located

instruments record both the time of the explosion and the time of the ar-

rival of waves reflected from the various subterranean levels. These may
betray the location of the deposits being sought.

The Effect of Temperature on Speed

The speed of sound is affected somewhat by temperature, being increased

in air by about 1.1 feet per second for every degree rise in temperature on
the Fahrenheit scale (.6 meter per second for each degree centigrade). It

is for this reason that temperature is always specified when a value for the

speed of sound is stated. One result of the effect of temperature is that

ordinary sounds may frequently be heard in a still atmosphere for ab-

normally great distances over water, especially after sunset. This happens

when the higher levels of air are distinctly warmer than the lower. The
greater speed at the upper levels causes the sound pulses to “tip forward”

as shown in part (b) of Figure 176, and thus to bring to earth some of the

sound energy that would otherwise have been dissipated in the upper at-

mosphere. The contrary temperature distribution, warm below and cool

above, has the opposite effect. Sound which initially was moving horizon-

tally is deflected upward and lost as shown in part (c) of Figure 176.

Hence, hearing at a distance is bad under such circumstances. Similar

conditions are produced by a steady

breeze, a breeze “with the sound”

bringing about the condition of part

(ib) of Figure 176 and one “against

the sound” producing that of part

(ic

)

of Figure 176. In the case of

poor hearing conditions, whether

produced by temperature levels or

by adverse wind, a moment’s con-

sideration will make it evident that there is an advantage in having the

source of sound at a considerable altitude. This is the reason for the

custom of placing bells, whistles, and sirens as high as possible.

In liquids, the velocity of sound also increases with rising temperature,

whereas in solids it generally decreases. These changes of velocity of

sound with temperature influence the pitches of musical instruments of all

(a) (b) (0

Fig. 176 . The Curving of aWave Front
of Sound Due to Variation of Speed
with Altitude
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kinds. The pitch of a wind instrument rises with rising temperature, while

that of reeds, bells, and tuning forks falls with rising temperature. In

stringed instruments the pitch is affected, not only by changes in the

velocity of sound in the strings with fluctuating temperature, but also by
changes in tension due to expansion and contraction of the strings and their

supports. It is impossible to make any general statement about the effect

of temperature on pitch that will cover all kinds of stringed instruments.

Sound as a Type of Wave

The propagation of energy from place to place in the form of sound

raises the question of the mechanism by which the transfer occurs. There

are only two ways for this to take place. Either the vibrating source

“kicks” a spray of air molecules in all directions, much as an intermittent

lawn sprinkler sends its vibrant shower into the air, or the disturbance

created by the vibrating source spreads through a relatively stationary air,

as a water wave spreads from the point where a stone is dropped. It re-

quires but little consideration to show that the first assumption is unten-

able. For while there is nothing positively absurd about air molecules,

impelled from a sound source, reaching the ear of a listener, it is much
harder to picture the analogous thing as happening in water, and impossi-

ble to account on this basis for the propagation of sound in solids.

The alternative picture is that of a series of waves emanating from the

source of sound. This presents no difficulty in connection with gases and

liquids. If the imagination balks at picturing waves in solids, it is only

necessary to recall that the mere fact that all solids are elastic constitutes

a sufficient basis for attributing to them the ability to transmit waves.

Naturally, sound waves in solids (and, in fact, in liquids and gases as

well) are not at all identical with the water waves with which we are famil-

iar on rivers, lakes, and oceans. Acquaintance with the latter, however,

may furnish some concepts that will be useful in studying the former.

It is a matter of common observation that, though a wave moves steadily

along the surface, the water itself does not partake of this motion.1 A
floating chip will betray the motion of the water itself. It maintains its

position almost unchanged except that it bobs up and down while succes-

sive waves pass under it. Careful observation of such a chip will show its

motion to be elliptical. Thus the motion of the water is entirely different

from the motion of the wave passing over it.

1 The reference here is to deep-water waves, not the surf waves most common along the shore

line.

Fig. 177. A Transverse Wave Form Wave Form
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Figure 177 conventionalizes and simplifies the concept of a wave. This
shows successive stages in the progress of a wave horizontally over a row
of particles which individually oscillate in a vertical direction. This is an
example of a so-called transverse wave. The name originates in the fact

that the oscillation of the particles constituting the wave is transverse to

the motion of the wave itself, since the particles move vertically, whereas
the wave moves horizontally. It is common to picture sound waves in this

way, for reasons that will appear presently, though sound waves are not,

in fact, transverse waves.

Figure 178 illustrates another kind, the longitudinal wave. The wave in

this case consists of a compression followed by a rarefaction, instead of a
crest followed by a trough. In spite of the absence of a sinuous outline,

this is just as much a wave as was the preceding. The particles oscillate as
they did before, but the direction of their motion is along the line followed

by the wave instead of perpendicular to it and is, therefore, called “longi-

tudinal.” This picture is a represen-

tation of the principle of the sound
wave.

The production and subsequent

travel of an air wave in a pipe is rep-

resented in Figure 179. Sudden with-

drawal of the plunger at the left

creates a partial vacuum (rarefaction)

.

Layers of air move in from the right,

thus progressively shifting the rarefac-

tion along to the right. Air also moves
in from the left, thus producing a re-

versal of the motion of the layers that

had previously entered the partial

vacuum from the right. The result-

ant “piling-up” constitutes a conden-

sation which follows the preceding

rarefaction along the pipe toward the

right. The process is repeated time

after time until the energy originally

imparted by the withdrawal of the

plunger is dissipated and the waves

cease. It will be noted that in a train

of longitudinal waves, here repre-

sented as traveling to the right, the

motion of the particles themselves is

alternately to the left and to the right.

Rarefactions are characterized by

motion of the particles in a direction
Fig< 179 Xhe OT A

opposite to that of the progression of Longitudinal Wave
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the wave; and condensations, by motion of the particles in the same direc-

tion as the wave.

If sound is produced by a vibrating body in the open instead of being

confined to a pipe as represented in Figure 179, the waves will not be con-

fined to a particular direction of travel, but will spread out in spherical

form, much as a wave on the surface of water spreads in a circle regardless

of the direction of the disturbance producing it. It is a section of this kind

of wave which upon entering the ear stimulates the sensation of sound.

In such waves all the properties of sound, both musical and non-musical,

reside.

Questions for Self-Examination

1. Describe some phenomena associated with the fact that sound requires an appreci-

able time to travel ordinary distances.

2. Does the speed of sound vary with (a) the medium, (b) pitch, (c

)

loudness, (d

)

temperature? Expand your answers, giving examples when possible.

3. Describe with the aid of a diagram the curving direction in which sound is some-

times propagated and account for it.

4. Describe the wave-properties of sound.

5. Distinguish between (a) motion of a wave and motion of the medium in which it

travels, (b) transverse and longitudinal waves.

Problems on Chapter 21

1. Two observers operate a “speed trap.” The first sounds a horn as the suspected

motorist passes him. The second thereupon starts his stop-watch, stopping it

when the motorist passes him. The speed limit is 40 miles an hour, a speed which

the motorist is suspected of having attained. What is the percentage error? Is

it favorable or prejudicial to the motorist? Take the speed of sound as 1133 ft/sec.

5.5 per cent.

2. The lowest pitch detectable as sound by the average ear consists of about 20

vibs/sec, and the highest of about 20,000. What is the wave-length of each?

17 m, 1.7 cms.

3. A handclap in front of a stadium is echoed as a musical tone. If the steps are 30

inches wide, what will be the frequency of the reflected sound? 220 vibs/sec.

4. How far away from a band playing at a tempo of 2 per second will marchers be

exactly out of step with members of the band? 170 m.

5. The bevel on the bullet-hole in a glass plate was 10° with the surface of the plate.

What was the speed of the bullet? Take the speed of sound in glass as 5000 m/sec.

880 m/sec.

The speed of sound in a certain metal is V Metal V 1 t

meters per second. If one end of a pipe of steel 4990 100 .28

that metal l meters long is struck, an ob- brass 3500 100 .27

server hears two sounds: one from the wave tin 2500 100 .26

which travels along the pipe, the other

through the air. What interval t in seconds

elapses between the two sounds?

lead 1227 100 .22
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7. Find the speed of sound v in meters per second in air at the temperature 1° C.,

taking the speed at 0° C. as 331.5 meters per second and the increase as .6075

m per sec per deg C.

/ V d t t d
— 40 310 8. 5 1 . 9. 1 4.8

- 20 320 20 2.1 2 19.

20 340 40 3. 3 41.

30 350 70 4. 4 70.

. 8. A stone is dropped into a well of depth d meters to the water surface. In how
many seconds, /, will the splash be heard at the top?

9.

A stone is dropped into a well; / seconds later the sound of the splash is heard.

What is the depth d of the well in meters?

10.

The density of a certain metal is d kilograms per cubic meter. Its Young’s modu-
lus is Y newtons per square meter. Calculate the velocity V of sound in it in

meters per second.

Metal d Y V
steel 7.830 19.6 X 1010 5000

brass 8.400 10.3 X 1010 3500

tin 8.000 5.0 X 1010 2500

lead 11.340 1.7 X 1010 1200

11.

An organ pipe normally sounding middle C of frequency 261.63 is blown in and
with another gas than air having a specific gravity d referred to air and 7 as the

ratio of its specific heats. Find the frequency n (7 for air = 1.405).

Gas d 7 n
hydrogen .06952 1.407 990

methane .5544 1.316 340

oxygen 1.105 1.398 240

chlorine 2.486 1.323 160



CHAPTER 22

The Acoustics of Rooms

The Beginnings of Architectural Acoustics

Ever since the human race started the construction of dwelling places,

the acoustic properties of rooms have been left to chance. Provisions for

heating were mandatory from the beginning, in all except tropical regions,

as a mere matter of preservation of life. Control of lighting was a neces-

sary condition of effective activity. Sanitation was presently found neces-

sary to health, and more recently ventilation has received attention, par-

ticularly in public and semi-public buildings. It is only since the begin-

ning of the twentieth century that substantial progress has been made in

acoustic design. It is now possible for architects to meet acoustic specifi-

cations almost as dependably as they can meet specified conditions of heat-

ing, lighting, and ventilation. There is little excuse for defective acoustic

conditions in any building erected since the beginning of the twentieth

century.

As in all technical problems, when it becomes necessary to consider all

the details involved in the application of acoustic design, there are compli-

cations. The ability to cope with these complications constitutes the

technical equipment of the acoustician, a new type of engineer, whose

services are now necessary in modern architectural design. But, also as

in most technical problems, the essential principles of architectural acous-

tics are simple.

Nearly all of even the smaller subtopics of physics are steps in more or

less continuous developments, the entire courses of which usually cover

one or more centuries. The present subtopic is a notable exception to this

rule. It sprang into being almost entirely de novo beginning in 1895 at the

hands of W. C. Sabine of Harvard University. Very little had been done

in this field prior to the time of Sabine’s contributions. The principal

work— and it was slight indeed— had been done by Joseph Henry of the

Smithsonian Institution forty years before. Henry’s principal contribu-

tions to physics were in the realm of electricity and will be discussed

later.

When in 1895 the lecture room of a new building at Harvard was first

put into use, audiences found it almost impossible to hear a speaker because

of excessive reverberation. Professor Sabine was requested to undertake a
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study aimed at correcting the difficulty. He did his work so thoroughly

that it established a new branch of the science of sound. Sabine’s investi-

gations were so completely and carefully carried out that subsequent work-
ers have done but little in the way of extending the foundations of the sub-

ject. Subsequent additions have largely been confined to the superstruc-

ture.

Reverberation

Since excessive reverberation was recognized at the outset as the princi-

pal defect to be corrected, it was natural that reduction of reverberation

should have been Sabine’s first objective. What there was no reason to

expect, however, was his discovery that reverberation— when clarified by
a precise definition, which will be given presently— constitutes the cardi-

nal principle of architectural acoustics. The necessity for a certain amount
of reverberation, surprising though it may appear at first, may be seen as

rather plausible, at least in the case of music. In music every successive

chord is intimately related to those chords which precede and to those

which are to follow. It is possible that the unity of a musical phrase is

accentuated by the right amount of “ sonic cement” in the form of rever-

beration as an aid in relating successive notes or chords. However that

may be, musicians often complain of the “ deadness” of a hall in which
there is insufficient reverberation.

For speech, the advantage of reverberation is probably of a different

kind. Inasmuch as the energy from a speaking voice is usually less than

that involved in musical performances, reverberation unquestionably aids

in bringing to the ear of an auditor a sufficient volume of sound. The
degree of confusion produced by a certain amount of reverberation is ap-

parently not sufficient to counteract the advantage of a greater volume of

sound. However, as in the case of music, the advantage of the right

amount of reverberation is an experimental fact, independent of any specu-

lations that may be offered as to the reason therefor.

The full significance of reverberation in architectural acoustics cannot

be developed until the term is more precisely defined. We are already

sufficiently acquainted with it to realize that reverberation owes its origin

chiefly to the reflection of sound. It should not be confused, however,

with an echo which is also a phenomenon of reflection. The acoustician

reserves the term echo for the case in which a short, sharp sound is dis-

tinctly repeated by reflection, either once from a single surface, or several

times from two or more surfaces. In reverberation, on the other hand,

there is no distinct repetition but rather a mass of sound, filling the whole

room and incapable of analysis into distinct echoes. Reverberation is a

consequence of multiple reflection, and persists as a continuous, though

rapidly decaying, sound for a measurable time after the original sound has

ceased. A reverberation measurement— and such measurements con-

stitute a vital part of acoustic practice — consists of timing the interval



238 THE ACOUSTICS OT ROOMS Chapter 22

Fig. 180. A Visual Analogy Illustrating the Distinction
Between Echo and Reverberation

(Courtesy of Johns-Manville Company.)

from the cessation of the original sound to the complete dying-out of the

reverberation.

Time of Reverberation

It is now possible to establish a definition of the term “ time of reverbera-

tion.” As used heretofore, the concept has been too vague to be of much
use. The reverberation of a loud sound would obviously persist longer

than that of a weak one. In addition observers having different acuities

of hearing would disagree as to the time when the reverberation had com-
pletely died out. These two sources of uncertainty are eliminated as

follows.

Observation is made of the power of the source of a sound that is just

barely audible to the experimenter in the room under test. This may be
done practically by measuring the electrical energy fed into a loudspeaker.

Then a tone is produced— in the same loudspeaker— that possesses

exactly one million times the energy of the original barely audible tone.

This is not excessively loud, for the ear can accommodate a very wide range
of intensities. The time required for this to die away until it becomes in-

audible to the same experimenter is then the time of reverberation. This
is a time which can be shown to be substantially the same for all observers

whose hearing is not seriously deficient. For if the experiment were re-

peated by a slightly deaf observer, the error that he would make by failing

to hear the reverberation until it became as faint as the reverberation his

predecessor was able to hear would be balanced by the fact that the slightly

deaf observer had had initially to make the original tone correspondingly

louder.

The time of reverberation is thus completely defined. Its importance
lies in that fact already implied, that it has been found to be the principal
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factor affecting the acoustic properties of rooms . Not only is it an objective

index of acoustic properties, but it can be controlled and, hence, the

acoustic properties of a room can be adjusted to meet the requirements of

good hearing conditions.

One would suspect that the time of reverberation might suffer a change
if the speaker or performer should move to an entirely different part of the

room or if the auditor should do likewise or if the pitch of the sound should

change. Sabine found, however, that neither of the first two changes

materially affects the reverberation time and that change of pitch, except

for extremes, need be taken into account only under exceptional circum-

stances.

In ordinary small auditoriums (school- and classrooms and the like) the

best time of reverberation is one second or less. With increasing size, the

proper time of reverberation rises until in an auditorium having a volume
of one million cubic feet the optimum time is two seconds. This is as large

an auditorium as would commonly be encountered.

Reverberation and Sound Absorption

Sound is one form of energy and, when once released, will continue until

it either escapes or is converted into some other form. Some of it escapes

through open doors and windows. The rest of it, being to a greater or less

degree absorbed at each successive reflection, must ultimately suffer com-

plete absorption and conversion into heat. The rate at which this pro-

gresses will depend on the absorbing power of the surfaces and upon the

frequency with which the sound waves encounter these surfaces. Thus,

the softer and more porous the surfaces and the smaller the room, the

shorter will be the time of reverberation. In a room of a given size, the

time of reverberation can thus be governed by the introduction or removal

of absorbing materials.

That there was a connection between reverberation and amount of ab-

sorbing material present in a room was not Sabine’s discovery. It had

been pointed out both by Henry (54:227) and even more explicitly just

before Henry by a doctor in Boston who had done extensive experimenta-

tion with acoustical problems (66:6). But Sabine was the first to formu-

late mathematically the relation between time of reverberation and the

amount of sound absorption provided by a given room. As in so many
other instances, it was the new possibility of stating acoustical problems

in numbers and, hence, of deducing quantitative answers that just before

the turn of the twentieth century brought architectural acoustics into the

fold of the sciences.

An Absorption Unit for Sound

Before a numerical relation can be stated between the time of reverbera-

tion of a room and the amount of sound absorption provided by the room,
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a unit for the latter entity must be defined. Sabine at first expressed the

amount of sound absorption in terms of the number of seat-cushions

brought into or taken out of the room in the course of his early experiments.

Figure 181 is one of his graphs,

showing times of reverberation as

ordinates plotted against the num-
bers of seat-cushions in the room
as abscissas. He soon recognized

that a seat-cushion was scarcely an

appropriate unit to use for absorb-

ing power and cast about for some-

thing that could be more readily

standardized. It occurred to him
that an aperture, such as an open

window, was the most complete
“ absorber ” of sound that could

very well be devised. The fact

that it did not really absorb sound

but only allowed it to escape from

the room under test was not im-

portant. Its principal feature was
that substantially none of the sound

incident on an open window was reflected back into the room. Sabine
introduced his “ open-window unit” in these words (110:23):

For the purpose of the present investigation, it is wholly unnecessary to

distinguish between the transformation of the energy of the sound into

heat and its transmission into outside space. Both shall be called absorp-

tion. The former is the special accomplishment of cushions, the latter of

open windows. It is obvious, however, that if both cushions and windows
are to be classed as absorbents, the open window, because the more uni-

versally accessible and the more permanent, is the better unit. The
cushions, on the other hand, are by far the more convenient in practice,

for it is possible only on very rare occasions to work accurately with the

windows open, not at all in summer on account of night-noises— the noise

of crickets and other insects— and in the winter only when there is but
the slightest wind; and further, but few rooms have sufficient window sur-

face to produce the desired absorption. It is necessary, therefore, to work
with cushions, but to express the results in open-window units.

Sabine accordingly adopted as the metric unit the sound absorption

furnished by an aperture one square meter in area. The unit has never
formally been given a name. Sabine referred to it as the “ open-window
unit.” Now it is usually termed merely an absorption unit . It is scarcely

surprising to learn, as Sabine did by careful experiment, that two square
meters of aperture absorb sound at twice the rate that one square meter
does, and other areas in proportion.

\
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Fig. 181. One of Sabine's Curves
Showing the Relation of Time of
Reverberation to the Amount of
Absorbing Material Present

(110 : 22 .)
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Absorption of Various Materials

It is, of course, impossible to find any material which is more effective

than an aperture in absorption of sound, area for area. The surfaces ordi-

narily presented in completed and occupied structures absorb sound in

varying degrees. They are rated by comparison to equal areas of aperture.

The ratio of the rate of absorption of sound by a given material to that of

an equal area of aperture is termed the absorptivity of the material in ques-

tion. Absorptivity can have any value from substantially zero up to

unity. Sabine found that his seat cushions had an absorptivity of .80.

Commercial sound-absorbing materials seldom exceed this value even
when designed explicitly for maximum absorption. The absorptivities of

some materials commonly encountered in occupied buildings are listed

below.

ABSORPTIVITIES OF COMMON BUILDING MATERIALS

Adapted from Official Bulletin,

Acoustical Materials Association

Material 125

Frequency

500
(cydes/sec)

2000

Brick, painted .012 .017 .023

unpainted .024 .030 049

Carpet, unlined .09 .20 .27

lined .11 .37 .27

Drapes, light .04 .11 .30

heavy .10 .50 .82

Floors, concrete or stone .01 .015 .02

wood .05 .03 .03

linoleum, cork, etc.

Glass .035

.03-.08

.027 .02

Plaster, smooth .015 .025 .02

rough .04 .06 .05

Wood panelling .08 .06 .06

ABSORPTION OP SEATS AND AUDIENCE

in absorption units

Audience, per person .10-.20 .28-.40 .33-.54

Chairs, metal or wood, each .014 .018 .010

Pew cushions, per person .070-.10 .135-175 .13—.16

Pews, wood, per person

Seats, auditorium

wood veneer, each

upholstered, leatherette, each

upholstered, plush, each

.037

.023

.15

•24-.28

From the definition of absorptivity it will be evident that the number of
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absorbing units a presented by s square meters of material having an

absorptivity a is

a - as. (1 )

Thus the number of absorbing units in an empty room 4x4x3 meters

with smooth plaster walls and ceiling, wood floor, 8 square meters of glass

window, and a wooden door 1x2 meters would be computed as follows.

ceiling 4 X 4 X .025 .40

walls [(16 X 3) - 10] X .025 - .95

floor 4 X 4 X .03 .48

windows 8 X .027 .22

door 2X .03 .06

Total absorption units 2.11

The Reverberation Equation

During the early stages of Sabine’s work the only way to arrive at a

numerical index of the acoustic acceptability of a room was to observe its

time of reverberation. Any departure from the optimum value corre-

sponding to its size gave a measure of the acoustic defect in the room.

Actual measurements of time of reverberation proved, however, to be

laborious and expensive undertakings, and Sabine undertook to find a less

cumbersome way by which it might be determined. A cue to his solution

of the problem is furnished by the graph of Figure 181. The mere fact that

the time of reverberation of the room in question was affected by the num-
ber of absorbing units present indicated the existence of a relation between

the two. This in itself was a major discovery. For such a relation might

make it possible to calculate the time of reverberation if the number of

absorbing units present in the room were known. The foregoing example

indicates that a determination of the number of absorbing units in a room
is a simple undertaking. Thus a way to avoid the difficulties of an experi-

mental determination of time of reverberation is presented.

The form of the curve of Figure 181 suggests the type of relation being

sought. It appears to be an equilateral hyperbola such as was encountered

when Boyle’s law was graphically represented (page 71). Hence, if T is

time of reverberation and A the total number of absorbing units in the

room,

AT *» a constant (2)

would be the form of the desired relation. Sabine tested this relation be-

tween T and A on rooms of many different sizes, the largest having 150

times the volume of the smallest, and found it to hold with them all. The
value of the constant, however, he found to be proportional to the volume

of the room. This too is analogous to Boyle’s law, in which the value of the

constant is proportional to the mass of gas involved. In this case the



Chapter 22 THE ACOUSTICS OF ROOMS 243

constant of proportionality was found empirically to be .164. Thus Sa-

bine’s law may be stated

AT = .164 V. (3)

The Utility of Sabine’s Law

Sabine’s law opens up enormous possibilities. It is in fact the very

heart of the science of architectural acoustics. It enables the architect

to deduce immediately the time of reverberation of a room if its volume
and the number of absorption units present are known. Thus, in the

example on page 242, V has the value 48 cubic meters, and A has the value

2.11. The time of reverberation would, therefore, be found to be nearly

4 seconds. This would clearly be an unacceptable room acoustically.

In this way an architect can tell not only what the acoustics of existing

rooms are, but also what the acoustics of rooms still in the blueprint-and-

specification stage will be. More important still, it enables him to de-

termine how much acoustic material must be provided to render a de-

fective room acceptable. In the foregoing case, for example, the total

number of absorption units necessary to make the time of reverberation

of the room 1 second would be 7.87. Since 2.11 units are already present,

5.76 additional units must be provided. If the furniture and the absorp-

tive power of the occupants do not furnish the required number of units,

the extra may be provided in the form of acoustic surfacing, usually

mounted in requisite quantity on the ceiling of the room. The area re-

quired is immediately determinable if the absorptivity of the surfacing is

known.

Additional Acoustic Factors

While reverberation is the most important, other considerations bear on

the problem of architectural acoustics. In a general way it may be stated

that the acoustic properties of a room depend on three factors; shape, size,

and building materials By a study of reverberation, the last two factors

have been disposed of, and only the first is left.

Two main principles govern shape; avoidance of disproportionate rela-

tive dimensions and avoidance or discriminating arrangement of curved

interior surfaces. It is not necessary to point out the difficulties inherent

in extremely long and narrow rooms, extremely low rooms, or, in fact, al-

most any extreme of relative dimension. The difficulty with curved sur-

faces is their tendency to focus sound at certain points, thereby producing

non-uniform distributions of sound that are often serious. If curved ceil-

ings are used at all, the centers of curvature should be either far below the

floor or far above it, so that the focal points will not lie anywhere near the

level of the audience.

Figure 182 (110:233) delineates the defective distribution of intensity in

an auditorium having a curved ceiling. The sound is concentrated in the
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regions numbered 10, 11, 12 at the expense of the regions 0, 1, 2. The
latter would be called dead spots .

Auditoriums which suffer from faulty design in this respect may be
treated either by putting re-

cessed panels on the curved

ceiling in such a way as to

break up the regularity of the

pattern in the reflected sound
or by crowding absorbing ma-
terial on the curved surfaces so

as to reduce the amount of re-

flection.

Dead spots may also come
about from another cause, not

connected with arched ceilings

or curved walls. It may re-

sult from reflection by perfectly

plane surfaces. The phenome-
non called interference between
the direct and reflected sounds

is capable of producing it. This

phenomenon will be treated

more fully in another connec-

tion. It was discovered early

in the nineteenth century by
Thomas Young, who studied

Fig. 182. Distribution or Intensity at
Head Level in a Room with Barrel-
Shaped Ceiling with the Center of Cur-
vature at Floor Level

it principally in connection with

light. In one of his papers he

described it as it might be ob-

(182 :233.) served with water waves (quoted

133:32).

Suppose a number of equal waves of water to move upon the surface of a
stagnant lake with a certain velocity, and to enter a narrow channel leading

out of the lake. Suppose then another similar cause to have excited another
equal series of waves which arrive at the same channel with the same velocity

and at the same time as the first. Neither series of waves will destroy the
other, but their effects will be combined; if they enter the channel in such
a manner that the elevations of the one series coincide with those of the
other, they must together produce a series of greater joint elevations; but
if the elevations of one series are so situated as to correspond to the de-
pressions of the other, they must exactly fill up those depressions, and the
surface of the water must remain smooth.

Interference as a General Phenomenon

The effects that Young describes are represented graphically in Figure
183. The additive effect is shown first. TTie two component waves, really
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coinciding (dotted curves), are slightly displaced from each other so that

each may be seen. The second part shows the mutual cancellation pro-

duced when the crests of one train lie

on the troughs of the other and vice

versa. The resultant of the two waves

is the straight horizontal line, repre-

senting the condition in which Young
says that “the surface of the water

must remain smooth.” If the waves

do not combine in either of the ways
described above, the resultant will

be a train of waves with crests of a

lower height than that of the first

case. The height of the crests may,

of course, be anything from zero up

to the maximum, depending on the

relative displacement of the compo-

nent trains. The case illustrated is

that of a quarter wave-length displace-

ment, half way between the two ex-

treme cases illustrated previously.

The application to acoustic dead

spots is clear. Since sound is com-

posed of waves, two identical sounds

may combine in such a way as to pro-

duce silence. This can occur by in-

terference between a direct sound and

a reflected sound from the same source.

When it does so at a particular re-

gion, a dead spot results. The cure is

the same as that for dead spots pro-

duced by curved surfaces. Either

break up the regularity of the reflect-

ing surface or cover it with absorptive material.

Fig. 183. Aspects of Interference
Between Two Identical Waves
Traveling in tiie Same Direction

Questions for Self-Examination

1. On what factors do the acoustic properties of a room depend?

2. Given an acoustically defective auditorium, tell what you would do to diagnose

and correct it.

3. Draw Sabine’s reverberation curve, state his reverberation equation, and interpret

them.

4. Define and discuss the unit of sound absorption.

5. Describe the general phenomenon of interference.
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Problems on Chapter 22

1. Calculate the number of absorption units, A> in a vacant classroom of length l,

width w
y
and height h meters. The walls and ceiling are of smooth plaster, the

floor of wood, and there are W square meters of window and glass door. The room

is equipped with n wood veneer seats. (Make the calculations for frequency of

500 and use the mean of spread values.)

1 w h W n A
10 8 4 12 50 9.2

IS 12 4 20 125 18.

20 15 5 25 225 30.

30 25 6 30 500 69.

2. Calculate the time of reverberation, 7\, of the n T, Tt T»

classroom of problem 1 when empty, r2 ,
with an 50 5.7 2.9 2.0

audience of half the seating capacity, and with 125 6.4 3.0 1.9

a full audience. 225 8.1 3.6 2.3

500 11. 4.8 3.1

3. Calculate the number of additional absorption n Vx u. us

units, U\y that must be supplied if the time of re- 50 43 35 26

verberation of the room of problem 1 is to be 125 100 78 57

reduced to 1 second for an empty room, U2 for 225 220 180 140

a half audience, and J78 for a full audience. 500 670 580 500



CHAPTER 23

The Pitch of Musical Tone

Pitched and Unpitched Sound

Up to this point attention has been confined to properties of sound not

necessarily associated with music. Musical tone is, however, precisely

the aspect of sound which has received the most study through the ages

and which, quite naturally, has a correspondingly large place in the science

of sound.

A clear line of distinction between musical and non-musical sound can-

not be drawn. The distinction depends too much on the musical ear and
education of the listener. Less controversial would be the distinction be-

tween sound possessing identifiable pitch (pitched sound) and that which

does not (unpitched sound). Though it would not be hard to find sounds

which would be difficult to classify as between the two, the distinction

seems to be useful and will be invoked here. While not all pitched sounds

can be termed musical, music is the field in which the idea is most useful

and in which the greatest number of illustrations are to be found.

Pitch and Frequency

Experiment shows that if the frequency of vibration of a source of tone

increases, the pitch “rises” as the musician puts it. From many observa-

tions of this kind we have learned to associate a certain pitch with a cor-

responding frequency, regardless of the source. This association is not

always justified. As long as the wave is “simple,” the corresponding tone

being “pure,” 1
it is correct. But if the wave is,at all complicated in shape,

inference of frequency based on observation of pitch is likely to be inade-

quate if not actually misleading. Stated in different terms, a knowledge

of frequency gives reliable information about pitch; but observation of

pitch does not necessarily give any information about frequency. If we
confine attention to pure tones, however, the correspondence between fre-

quency and pitch is complete. For the present this limitation will be

accepted.

Some representative relations between commonly encountered pitches

1 The terms “ simple” and “pure” will be adequately defined later in the discussion of tone

quality. The reader can gain from the context a sufficient comprehension of their meaning

for present purposes.
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and corresponding frequencies are presented in the following table. Many
of the frequencies are averages or approximations.

“Middle C” (Cg)1

Frequency

261.6

Wave-length
(feet) in air

4.37

Highest note from piano (C12) 4,186. .273

Lowest note from piano (A4) 27.5 41.5

Range of orchestral music (C5-C 12) approx. 30-4,000 40-.25

Representative masculine speaking voice (C7) approx. 120. 7.5

Representative feminine speaking voice (Cg) approx. 250. 4.5

Highest audible frequency (Eu) approx. 20,000. .057

Lowest audible frequency (E4) approx. 20. 56.5

Often pitch is associated with wave-length instead of frequency. This

is justifiable if attention be confined to one particular medium. Since the

sound reaching our ears almost invariably comes through the air, the re-

striction to a single medium is a natural one. The wave-lengths in air of

the representative pitches of the table above are listed in the final column.

On entering a different medium, however, the wave-length suffers a change.

If, for example, a sound of wave-length 25 feet in air should enter hydrogen,

the increase in velocity would stretch out the wave-length to about 95 feet.

In water, the wave-length would become 116 feet, and in steel 361 feet.

In none of these cases would either the pitch or the frequency be affected.

While it is often necessary to know the wave-length of a tone, it is more

natural to associate pitch with frequency than with wave-length.

Extremes of Audible Frequency

The last two lines in the above table indicate that a musical sound, to be

audible as such, must possess a frequency greater than 20 vibrations per

second and less than 20,000. These limits are only approximate. There

is wide variation between individuals at both limits. At frequencies below

the lower limit, the sound is that of the separate impulses, individually

distinguishable. As the frequency increases, these merge and produce the

first traces of an extremely low tone. The establishment of the exact

frequency at which the transition occurs is attended by considerable un-

certainty. The experimental basis for the upper limit is rather better,

partly because it is easier to produce pure high tones than it is low ones,

and partly because the ear can more readily discriminate between the

presence and absence of a tone at the upper frequency limit.

Not only is there variation between individuals at the upper limit, but

the upper limit will be found different at different times for the same indi-

vidual. In addition to erratic variations due to colds-in-the-head, general

state of health, and so forth, there is a general trend downward with

increasing age. The following table shows this trend for a group of sub-

1 Subscripts indicating octaves in which designated pitches occur in this text follow the

practice recommended by the Acoustical Society Committee on Standardization. See Journal

of the Acoustical Society
, 2, 318 (1931).
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jects tested at two times separated by somewhat more than twenty years.

All were trained observers, being either musicians or professional men
familiar with music.

Subject

Age at first

observation

Upper frequency limit

1907 1929

E. A. Miller 41 19,500 16,000

F. J. Lehman 40 26,000 17,000

C. H. St. John 52 17,000 13,500

H. W. Matlack 31 25,000 21,000

E. J. Moore 34 18,000 19,500

Observations on very young children have shown the upper frequency

limit to be much higher than the normal for later years; in some cases it

approaches 30,000.

Even though these extremely high tones can be heard, discrimination

between different pitches in this range is largely or entirely lacking.

Changes in pitch which are many times the smallest observable change
in the ordinary musical range are entirely undetected. The auditor can

quite dependably decide on the presence or absence of pitched sound in

this high-frequency region, but finds it almost impossible to say whether

one pitch is higher or lower than another.

Musical Intervals and the Tempered Scale

Musical themes customarily proceed by definite steps or intervals . A
continuous glide from one pitch to another through all the intervening

pitches has not yet become good form in the more conservative types of

musical performance. The system of intervals in common use has varied

in successive musical eras. By a long, unconscious process of trial and

error, presumably covering a large part of the development of the human
race, a series of intervals has been developed and now predominates, at

least in the western world. Any such series of intervals is termed a scale
,

and the particular series now in vogue is called the tempered scale
,
first

brought to popular notice by J. S. Bach (1685-1750).

All scales consist of subdivisions of the basic interval called the octave .

The octave consists of two tones having a frequency ratio of 2:1. It is

called the octave because, during the era when modern musical terminology

was crystallizing, the scale then in vogue consisted of eight subdivisions or

tones. The tempered scale now in use, however, provides twelve tones

to the octave instead of eight. The ratio of the two frequencies constitut-

ing each of the twelve tones 1
is the same. The higher frequency is always

1.0594 times the lower. This is the number which when multiplied by

1 Common usage sanctions several quite different meanings for the word tone. One is as

above, a musical interval expressible by the ratio of two frequencies. Another involves the

idea of a single pitch or frequency, as when it is said that one “tone” is higher than another.

The situation is complicated by still other uses of the term. This is regrettable. In this

treatment, however, the context can be relied upon to clarify any doubt about the sense in

which the word is being used.
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itself twelve times gives the final product 2, the frequency ratio of two

pitches constituting an octave.

Standard Pitch

While it is possible to construct a scale starting with any frequency

whatever, the musical world has belatedly recognized the desirability of

standardization. Recognized standards have existed only for two genera-

tions and been respected through common acceptance only within the last

ten years. The world’s standard frequency is now taken as 440 vibrations

per second. It is the pitch commonly called “violin A.” It is considered

important enough so that it is being broadcasted by short-wave radio

continuously twenty-four hours a day from the United States Bureau of

Standards. Any player or orchestra leader who is properly equipped can

be sure that his performance is based on the world’s standard of frequency.

The Principle of Tonality and the Scale in C
One of the chief characteristics of modern music is the existence of a

predetermined pitch, from which a melody starts, to which it repeatedly

returns during its progress, and upon which it almost always ends. This

pitch is usually determined by the frequency range of the composition and

of the instrument that is to play it. This basic pitch is termed the tonic.

The demand for a tonic on the part of the musically educated ear consti-

tutes the principle of tonality. The collection of sharps or flats at the be-

ginning of a composition tells what pitch is to be regarded for the time

as the tonic.

The standard frequency 440 represents the tonic of only one scale, that

based on A. Musical convention, however, has set apart another scale,

based on a tonic called C as in some sense a unique point of departure for

all scales. C has the frequency of 261 .63, or, of course, any multiple or sub-

multiple of this by the factor 2. The pitch represented by the frequency

261.63 is commonly called middle C. It lies near the middle of the piano

keyboard and represents approximately the upper pitch limit of the male

voice and the lower pitch limit of the female voice.

Fig. 184 shows a section of an organ or piano manual covering one octave

beginning and ending with C. The names of the white digitals are shown
in terms of the usual letters. If the A in this octave is that of the standard

it is middle C, of frequency 261.63.

Thirteen digitals are shown, as re-

quired to provide twelve tones. Each
of the five black digitals lies between

two white ones and is designated by
either of its white neighbors. The one

to the left, for example, lies between

C and D. Its frequency would be higher

than C and lower than D, in either

frequency 440, then the C below

II III 1

C D E F G A B C'

Fig. 184. Section of Organ or Piano
Manual Covering One Octave
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case by the factor 1.0594. It is called either C sharp (C#) or D flat (Db).

This use of two names for the same pitch is quite inexcusable in the twen-

tieth century. It is a vestige of an archaic musical notation which came
into being before the tempered scale was devised, at a time when C# and
D\> were not of the same pitch.

The frequencies of all the pitches appearing in this octave are shown in

the appended table, beginning with that of middle C. Those of pitches

above or below this range would be given by multiplying or dividing the

corresponding frequency given in the table by 2 or the appropriate multiple

of 2.

c 261.6 G 392.0

C# or D\> 277.2 Gft or A\> 415.3

D 293.7 A UO.O
D#otE\> 311.2 A% or B\> 466.2

E 329.7 B 493.9

F
F# or GV

349.3

370.1

C 523.3

Though the above series represents the de jure frequencies of the tem-

pered scale, the de facto series is something quite different though rather

indeterminate. Though organ and piano tuners do not all follow the

same system of tuning, they all agree in following some rule of thumb which

gives a more or less distant approximation to the series of frequencies to

which instruments are supposed to be tuned. In view of the tolerance of

even the musically trained ear, perhaps the extra exertion that would be

involved in really correct tuning is scarcely worth making.

Effect of Velocity of Source or Observer

Every traveler is familiar with the apparent drop in pitch of the gong

at a railroad crossing when heard by a passenger on the train. If the pas-

senger could know the normal pitch of the gong, he could realize that the

pitch seemed higher than normal while the train was approaching, and

lower while it was receding. 1 The reason is simply that during approach

the observer is moving toward the source of sound at the same time that

the sound is coming from the source. The effective speed of the sound as

it reaches the observer is, therefore, the sum of the speed of sound and the

speed of the train. Naturally, a larger number of waves reaches the ob-

server every second, that is, the frequency is increased, and, hence, the

pitch is higher. Just the opposite condition holds while the train recedes,

the pitch being lowered thereby. The effective speed of the sound with

reference to the observer is in this case the difference of the two speeds. In

both these cases, the phenomenon is due to the apparent increase or de-

crease of the velocity of sound relative to the moving observer.

x Note the way this is stated. There is a persistent misapprehension that pitch is rising

during approach and is falling during recession.
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The apparent frequency of the sound will be related to the actual fre-

quency in the same proportion as the apparent speed of the sound to the

real. Hence, if the apparent frequency is n', the real frequency n, the

speed of the observer v, and the actual speed of sound V, then

n’ V ± v

n ~ V ' ( 1 )

The positive sign would, of course, apply to approach; the negative, to

recession.

The other case— that of a fixed observer and a moving source— is

similar in its effect, but somewhat different in principle. This case, too,

is familiar. The sudden drop in the apparent pitch of the horn of an auto-

mobile, the whistle of a train, or the gong of a fire-truck as any of these

pass a stationary observer, is common experience. In this case, however,

the sound reaches the observer with a speed which is both actually and

apparently the normal speed of sound. The speed of sound through air is

not affected by the motion of the source. What really happens in this case

is illustrated in Figure 185. A mov-
ing source “ follows up ” its own sound

wave; hence, the distance between

the source and a given wave is less

at the end of one second than it would

have been if the source had been sta-

tionary. Consequently the waves

are crowded up ahead of the moving
source, and an observer receives a

larger number of waves per second

than he would if the source had been

stationary, and, hence, the pitch is higher than normal. The contrary con-

dition holds behind the moving source, with a consequent lowering of

the pitch.

In this case it is the wave-lengths rather than the frequencies that will

be in proportion to the speeds of sound, apparent and real, as noted by the

moving source. But since wave-lengths are inversely proportional to

frequencies, the following equation expresses the case, u being the speed

of the source:

Fig. 185. The Wave Pattern Ema-
nating from a Moving Source

nl V
n V =f u

(2)

The inversion of the sign in the denominator indicates that the negative

sign would this time apply to approach; the positive, to recession.

An interesting feature of the foregoing is the difference in magnitude be-

tween the two cases. This may be made evident by considering the ex-

treme case when the speed of the moving element (whether observer or

source) becomes equal to the speed of sound. Also, the foregoing dis-
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cussion is limited to the case of direct approach or recession. The case of

oblique encounter is commonly observed in the passage of an airplane.

The lower it is flying as it passes overhead, the more abrupt the passage

from substantially direct approach to direct recession and the smaller the

transition time when oblique encounter is involved.

These phenomena go by the name of the Doppler effect after Christian

Doppler (1803-53), who first worked out the theory in 1842 (95: no. 161).

A famous experimental test of equations (1) and (2) was carried out in

Holland in 1845.1 The use of a locomotive and a flat car was secured for

two days. Trumpeters furnished the sound, and musically trained ob-

servers took the data. The two groups were respectively stationed on the

ground and on the flat car and then exchanged positions. The changes in

pitch were estimated by ear, there being no means of measurement of actual

frequencies at that time. Within the limitations of the method employed,

the equations were found to hold. One wonders what the stolid Dutch
burghers living alongside the railroad must have thought of the perform-

ance.

Though the Doppler effect was originally studied as a phenomenon of

sound, Doppler foresaw that it could be utilized in the realm of light.

Change in wave-length of the light from approaching or receding stars

could be made to give information on the speed of the star relative to the

observer. This has actually been done and has furnished an indispensable

source of astronomical information.

Questions for Self-Examination

1. Tell about the relation between pitch and frequency. Include answers to these

questions: (a) does a given frequency necessarily determine the pitch? (jb) does

a given pitch necessarily determine the frequency?

2. State the relations between wave-length, frequency, and pitch for representative

tones (high, average, and low) in air and other media.

3. Describe the even tempered scale and tell how it came into being.

4. State the principle of tonality and describe the common musical scale in C.

5. Describe the effect of velocity of source and observer on the pitch of a musical tone.

What would be the effect if the speed of source or observer respectively should

become that of sound?

Problems on Chapter 23

1. Two similar wires of the same length are stretched— one by a weight of 4 kilograms

and the other by a weight of 9. What is the musical interval between the notes

which they produce? See page 129 for the laws of vibrating strings and the table

of intervals at the bottom of page 269 to identify the musical interval. A fifth.

2. A stretched string 3 feet long gives the pitch C when vibrating. What note will be

given by a string one foot long stretched by the same weight and made of the same

material but of one quarter the cross-sectional area? G 2\ octaves above.

1 Poggendorffs Annalen
, 66, 321 (1845).
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3. A vibrating string is found to give C when stretched by a weight of 6 kilograms.

What weight must be added to produce E? G? 3.4 kg. 7.5 kg.

4. An observer listens to a whistle sounded on a locomotive which is approaching

him. The pitch appears to be C, but after the locomotive has passed the pitch

is A. What was the speed? 94 ft/sec.

5. A tuning fork making 200 vibrations per second is moved toward a wall with a
speed of 4 meters per second. How many beats per second will be heard between

the direct and the reflected sounds? 4.8

6. What is the length X in meters of a wave constituting a tone whose pitch is n vibra-

tions per second? Take 331 meters per second as the speed of sound in air.

n X n V N n V N
20,000 .017 7. 500 10 520 8. 500 10 520

5000 .066 500 20 530 500 20 530

250 1.3 500 30 550 500 30 550

20 17. 500 40 560 500 40 570

7. A stationary locomotive emits a whistle whose frequency is n vibrations per sec-

ond. What is the apparent frequency N as heard by an observer in a train which

is approaching at v meters per second? Take 340 m/sec as the speed of sound.

8. A locomotive moving with a speed of v meters per second emits a whistle of fre-

quency n vibrations per second. What is the apparent pitch N as heard by a

stationary observer whom the locomotive is approaching?



CHAPTER 24

The Intensity of Sound

Loudness and Intensity

The application of the scientific method to any field of knowledge in-

volves, among other things, the redefining of old terms in a way which per-

mits of the application of precise measurement. In this way, as shown in

the preceding chapter, physics has redefined pitch, an inexact term, into

frequency, a concept which can be measured with almost limitless pre-

cision. There is even more occasion for a similar substitution of concepts in

the case of loudness. For while pitch could be determined with a certain

degree of dependability before the idea of frequency was introduced, there

is inherent and inescapable difficulty in specifying the magnitude of one’s

sensation of loudness. The physicist, therefore, simply disregards loud-

ness, which he cannot measure, and as a substitute invokes another concept

which he can measure. This new concept is not necessarily a faithful

representation of loudness, but in so far as loudness can be specified seems

to be a fair measure of it.

The idea that a spreading sound involves a corresponding spread of

energy has already been introduced. This is involved in the concept of

intensity of sound. It is at least plausible to assume that there is some
connection, doubtless a close connection indeed, between the rate at which

energy in the form of sound flows into the ear of a listener and the strength

of the resulting sensation which is termed loudness. But rate of flow of

energy has already been identified as power. Hence, the unit of sound

intensity will simply be a unit of power. But since the energy content of

ordinary sounds is so small, the ordinary unit of power, the watt, is too

large to be usable. A submultiple one millionth the size, the microwatt, is

commonly used. Accordingly, intensity of sound in a given region may be

defined as the power in microwatts passing through every square meter normal

to the wave-front in the region in question. The measurement of intensity of

sound becomes thus simply a matter of the measurement of a form of

power. This makes it possible to adapt to sound a technique of measure-

ment already highly developed in other fields. Little attention will be

given here to the details of this adaptation, however, because the methods

of measurement are extremely varied and technical. They are chiefly

electrical
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It will be informative to observe the power content of a few common
sources of sound. The flow of power in the form of sound in an ordinary

conversation is about 10 microwatts. Only a tiny fraction of this reaches

the ear of any one listener, of course. For public speech, the power con-

tent of the sound averages about 20 times this amount and for some speak-

ers occasionally reaches 200 times this amount. For a loudly bowed violin

the power is about 60 microwatts; for certain types of organ pipe, from 140

to 3200. A sound that is barely audible carries about one millionth

(10”6
) microwatt per square meter. One that is as loud as the ear can

tolerate carries about one million microwatts. Thus the ear is an instru-

ment of wide range. Not only can it hear over a frequency range of a

thousand (20-20,000), but it is found to respond to an intensity range of

something like a million-million fold. In addition, it can distinguish

delicate shades of musical quality over much of these frequency and in-

tensity ranges. The ear is by far the most versatile of our sense organs.

Limits of Audible Intensity

The lower limit of audible intensity, technically termed the threshold of

hearing
,
has already been described as consisting of a power flow of 10”6

microwatts per square meter. This statement is somewhat arbitrary and

will be clarified shortly. But, first, the existence of an upper limit of

audible intensity should be noted. This seems curious until the concept is

clarified. It seems to imply what is clearly absurd, that as a sound grows

louder it finally reaches an intensity level so great that it can no longer be

heard. This would be a misapprehension, though perhaps a natural one.

When the intensity of a sound reaches one million (10
6
) microwatts (1

watt) per square meter, the ear, in addition to hearing the sound, begins

to experience a tickling sensation. If sound of this intensity were made
incident on the skin it could actually be felt. Any considerable increase

beyond this causes a sensation of pain in the ear. The intensity at which

the tickling sensation begins is commonly taken as the upper limit of audi-

ble intensity, better described by its technical name, the threshold offeeling.

A Unit for Relative Sound Levels

Though sound intensities were stated in microwatts in the preceding

section, in most cases the significant point was not the actual power content

of a sound in mechanical units, but the ratio of those intensities. Almost
always the question is, How much louder is one sound than another?

While in answer to this question, the intensity of each sound could be

stated in microwatts per square meter and the ratio computed, common
usage now sanctions a unit of relative sound levels, in addition to the

mechanical unit of power content of sound.

Two sounds are said to differ in sound level by one unit when their

intensities have the ratio 10. This unit is called the bel in honor of Alexan-

der Graham Bell, the inventor of the electromagnetic type of telephone
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transmitter. Thus, the clatter in a fairly quiet restaurant during lunch

hour has an intensity of about one tenth microwatt per square meter.

This is about ten times as great as the intensity of the average sounds in a

quiet home. The sound level is then said to be one bel higher in the restau-

rant than in the home. Similarly the sounds of a busy department store

have ten times the intensity of those in an average restaurant. The sound

level in the department store is then one bel higher than in the restaurant

and two bels higher than in a quiet home. The sounds in a quiet garden,

consisting mainly of the rustling of leaves in a gentle breeze, have only

one per cent of the intensity of the average sounds in a quiet home. Hence,

in such a garden the sound level is two bels lower than in the home and
four bels lower than in a department store. Readers with a mathematical

background will have observed that the relative sound level in bels is

simply the logarithm of the ratio of relative intensities.

The Decibel as a Derived Unit

The sound levels described in the preceding paragraph differ by rather

large increments. Noises casually encountered would not always differ

in intensity by as large a factor as ten or more. The comparison of ordi-

nary sound levels would, therefore, usually involve fractions of a bel. Since

this is somewhat awkward, a smaller unit is usually used, the first decimal

subdivision of the bel
,
called the decibel (often abbreviated to db). One

bel is then 10 decibels. The sounds of the five sources thus far described

could then be summarized in the different units as follows:

Sound
Intensity in microwatts

per square meter

Sound level

in bels

Sound level

in decibels

Threshold of hearing .000,001 0 0

Quiet garden .000,1 2 20

Average home .01 4 40

Average restaurant .1 5 50

Busy store 1 . 6 60

A somewhat more extensive table of sound levels follows, stated only in

terms of decibels above the threshold of hearing.

Sound Level, db Sound Level, db

Threshold of hearing 0 Street noise, large city 75

Whisper 15 Truck, unmuffled 80

Rustle of leaves in gentle Noisy factory 85

breeze 20 Newspaper press room 90

Purring cat 25 Noisiest spot at Niagara

Turning page of newspaper 30 Falls 95

Quiet home or private office 40 Inside subway car 100

Average restaurant 50 Loud thunder 110

Noisy office or store 60 Threshold of feeling 120

Average radio 70
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The Audiogram

The lower and upper limits of audibility have been stated to lie re-

spectively at 10-6 and 106 microwatts per square meter (0 and 120 db).

These figures are rather arbitrary, not only because different individuals

vary in their ability to hear, but also because even for a given individual,

the limits of audibility depend upon the pitch of the sound. Ordinary

noises consist of a conglomeration of pitches, and the lower limits of au-

dibility in such a case will be for those frequencies in the conglomeration

to which the ear is most sensitive. The frequency band to which the

normal ear is most sensitive has been found to lie between 2000 and 4000

vibrations per second. For both higher and lower pitches an intensity

greater than 10 microwatts per square meter is required for a sound to

be audible. The variation of the lower limit of audibility is indicated by

the lower limit of the enclosed area of Figure 186, called an audiogram.

The audiogram will repay considerable study. On it, sound levels are

represented as ordinates against frequencies as abscissas. The “area of

hearing” extends horizontally from a frequency of 20 to a frequency of

20,000 as indicated in the preceding chapter. It extends vertically from

the threshold of hearing (zero decibels) to the threshold of feeling (about

120 decibels). But the horizontal frequency limits are functions of the

intensity, and the vertical intensity limits are functions of the frequency.

To see how intensity affects the upper and lower audible frequency

limits, note that the frequency limits can only be realized when the sounds

are loud. A horizontal line cuts the enclosed area at 20 and 20,000 only

if it is well up on diagram. If it is lower, say, at 20 decibels, the lowest

pitch which can be sensed is a frequency of about 250, or middle C. The
highest is near 10,000 vibrations per second instead of 20,000. Another

interesting fact may be illustrated by following the horizontal 20-decibel

10 20 40 60 80 100 200 400 1000 2000 4000 10,000 20,000

Fig. 186. The Audiogram of a Normal Ear
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line across the diagram. The left portion of the line is in a region which

corresponds to inaudibility. Raising the pitch while maintaining the

sound level unchanged corresponds to moving to the right on this line.

At a frequency of 250, the sound becomes audible and continues to become

more so as the pitch-rise continues until a frequency of about 3000 is

reached, whereupon the tone becomes dimmer, finally becoming inaudible

again when a frequency of a little over 10,000 is reached. This illustrates

excellently the statement on page 255 that intensity “
. .

.

is not necessarily

a faithful measure of loudness,” for here we have the loudness first increas-

ing and then decreasing while the sound-level remains unchanged.

To see how frequency affects the threshold of hearing (lower boundary

line) note, as has already been pointed out, that a lower limit of lO^6

microwatts per square meter (taken as the zero sound level) can be heard

only if the frequency is between 2000 and 4000 vibrations per second. If

the frequency is either 100 or 16,000, the sound is not audible until a fre-

quency of 40 decibels is reached. This is an intensity of 10“2 microwatts

or 10,000 times that corresponding to the lowest audible sound as ordinarily

stated. The threshold of feeling (upper boundary line) is more nearly at

a constant level, varying only slightly with changes of frequency.

Deafness

The general effect of deafness is to raise the curve of minimum audibility

of Figure 186. For in such a case an intensity greater than the normal is

required in order to stimulate the sensation of hearing. But it does not

necessarily follow that because a greater intensity is required in order to

hear low-pitched tones, a similar increase is necessary for the high, or vice

versa. Figure 187 illustrates a case of partial deafness for high tones, and

Figure 188 one of deafness for low tones. Through tests of this kind otolo-

10 20 40 60 80 100 200 400 1000 2000 4000 10,000 20,000

Fig. 187. Audiogram or an Ear Deficient in

Hearing of High Pitches
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Fig. 188. Audiogram of an Ear Deficient in

Hearing of Low Pitches

gists are able to diagnose the nature of diseases of the ear that would other-

wise remain unknown and to prescribe much more effectively the correct

remedy— whether it is a case for medical or surgical assistance or for arti-

ficial aids to hearing.

These curves make clear the limitations on artificial aids to hearing, for

it is evident that there is no virtue in so amplifying the intensity as to

raise it above the threshold of feeling. Unless the curve of minimum
audibility lies well below this threshold, sound amplifying devices of any

kind are of questionable utility.

The audiogram is a method of representing graphically an enormous

amount of information about the performance of the normal and abnormal

ear. It was devised in the Bell Telephone Laboratories by Dr. Harvey

Fletcher and his associates during the 1920
,

s (41:141 ff.).

Beats

The interference of the sounds from two sources was described on

page 245 ff. Interference was seen to involve the possibility that the com-

bination of two sounds might possess either greater or less intensity than

that of the individual component sounds. One of the common manifesta-

tions of these two effects is especially interesting and important. When
two sources of nearly but not quite the same pitch act simultaneously, the

result is a sound which alternately increases and diminishes in intensity.

If the two interfering sounds have the same intensity, the resulting inten-

sity will sink to zero between successive maxima. The resulting alternate

swells and lulls are termed beats. Beats produced by two sources with a

frequency ratio of 24:25 are illustrated in Figure 189.

It will be evident that beats constitute one manifestation of the general

phenomenon of interference of sound, yet the two are usually distinguished
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Fig. 189. Beats ae the Resultant of Two Pitches
Having the Frequency Ratio 25:24

(Curve supplied by T. E. Soller.)

from each other. The term interference as applied to sound is usually re-

served for the combination of equal frequencies, while the term beats refers

to the combination of frequencies which differ, though only slightly,1 from

each other. The principal distinction is between a stationary and a moving

sound pattern. In other words, interference consists, throughout time, of

places of maximum and minimum intensity, whereas beats consist, through- 1

out space
,
of times of maximum and minimum intensity.

Tuning by Beats

The frequency of the waxing and waning of intensity which constitutes

beats is simply the difference between the frequencies of the beating

sounds. This would be evident from the very cause of the beats. One

maximum intensity occurs when the two sounds are exactly in phase at

the ear of the observer; the next maximum occurs when, having passed

an interval of being out of phase, with accompanying waning of intensity,

the two sounds again come “into step.” Successive maxima can only

occur when one of the sounds has gained or lost one vibration with respect

to the other. Two pitches of 440 and 439 v.p.s.
2 will accordingly, when

sounding simultaneously, produce one beat per second. Two pitches of

440 and 438 will produce two beats per second, and so forth.

The utility of beats in comparing the pitches of two sounds of nearly

the same frequency will be evident. If the frequency of one of the sources

is known, that of the other may be inferred by counting beats when the

two are sounded simultaneously. This does not tell whether the frequency

of the unknown is greater or less than that of the standard, however. This

may be learned by slightly raising or lowering the pitch of the unknown

and repeating the observation. If when the pitch is lowered, the frequency

of the beats increases, then the unknown was originally of lower pitch than

the standard. If the frequency of the beats decreases, then the unknown

was originally of higher pitch than the standard. Similar results obtain—
1 See, however, page 265 for the treatment of an important apparent exception to this limi-

tation.

* The term “vibrations per second ” will usually be abbreviated to v.p.s.
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though with appropriate changes— when the pitch of the unknown is

raised. Though a particularly well-trained musician can bring two pitches

into coincidence within about a half a per cent without counting beats, any-

body, even a tone-deaf person, can tune an instrument much more accu-

rately than that by counting beats, provided that the original mistuning

was not so great as to prevent the detection of beats.

Combination Tones

One of the many major contributions of Hermann von Helmholtz (1821-

94) to the science of music was his explanation of what are commonly
termed difference tones

,
the discovery of a similar phenomenon called sum-

mation tones
,
and a development of the theory of both, called by the general

term combination tones.

In 1714, an Italian musician named Tartini discovered that when two

especially loud tones were sounded simultaneously, a third tone became

evident.1 Later observers established the interesting fact that the fre-

quency of Tartini’s “third tone” was simply the difference of the frequen-

cies of the two components.

Difference tones are easily observable. Whenever two persons engage

in a whistling duet, soprano and alto, especially if the rendition is energetic,

they will become conscious of what seems at first like a curious buzzing

in the ears. More careful observation will disclose that this “buzzing”

consists of a sequence of tones of rather peculiar quality not uttered by
either performer. The tones possess identifiable pitches, much lower than

the frequency range of the main performance. Double-barreled whistles,

of the type frequently used by police, exhibit the same phenomenon even

more prominently. The effect may be studied most readily by the use of

an array of small organ pipes mounted on the same wind chest and
capable of being blown in pairs.

Suppose that five pipes are selected for such an experiment, namely,

C8 (261.6), £8 (329.7), Fs (349.3) Gg (392.0), and C9 (523.3).
2 They are

represented in pairs in the upper score of Figure 190. When sounded in

pairs as shown, the difference tone produced by each pair may be identified

with a little practice as the tones represented in the lower staff. These are,

for C8 with £g, C6 (65.4); C8 with F8,
F6 (87.3); C8 with G8,

C7 (130.8); C8

with C», C8 (261.6); E% with G8 ,
C6 (65.4). The corresponding differences

in the frequencies of the successive pairs are 68.0, 87.6, 130.4, 261.7, and
62.4. Within the approximations which constitute the tempered scale, the

frequencies of the difference tones are thus the differences of the frequencies

of the respective pairs of primes. Helmholtz discovered that there was
another series of tones produced by such combinations, the frequencies of

1 See A. T. Jones, American Physics Teacher
, 5, 49 (1935), for a discussion of priority of

discovery of difference tones.

2 The experiment can be performed with somewhat more satisfactory results if the pipes

used are two octaves higher than this. The frequencies which are used here are chosen merely
for convenience of representation on the staff of Figure 190.
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Fig. 190. Primes and Difference Tones

which were the sums of the frequencies of the primes, instead of the differ-

ences as in the preceding. They are, however, very hard to produce and

identify, and seem not to play any considerable practical r61e.

The Nature of Difference Tones

For a long time the cause of these difference tones (and of combination

tones in general) was not understood. Helmholtz, who first gave the ex-

planation now generally accepted, formulated it in terms that are too

mathematical to warrant quoting in this connection (53:156, 411). The

case can be stated somewhat more simply than he does as follows:

Nearly all sources of sound involve the vibration of elastic bodies, the

air being classified as an elastic body for this purpose. As long as moderate

intensities obtain, the resultant of two superposed sound vibrations is

simply the algebraic sum of the components, as in Figure 189. This is true

whether the vibrations are superposed in the actual vibrating object con-

stituting the source of the waves or in the membranes of the ear which

receives the two sounds. But if in any of these stages the magnitude of

the vibrations becomes such as, in actuality or in effect, to exceed the

elastic limit of the vibrator, the resultant can no longer be the algebraic

sum of the component vibrations. The amplitude of the resultant of the

two identical vibrations producing Figure 189 would no longer be twice that

of either component. When Helmholtz investigated this condition mathe-

matically, he found that the vibration resulting from such a condition

possessed, not merely the frequency pattern characteristic of Figure 189, but

also other frequencies that were identifiable, among them one equal to the

difference of the component frequencies (“ difference tone”) and another

equal to the sum (“ summation tone”).

The combination tones are found experimentally to be especially pro-

nounced when the oscillator upon which the component vibrations are

being impressed is asymmetrical, so that the successive opposite phases of

the resultant vibration possess different amplitudes. One example of

an asymmetric vibrator would be a rubber diaphragm with a metal plate

covering a large part of its area, fastened to it at the center point. This is

illustrated in Figure 191. It happens that the membranes of the ear are

asymmetrical vibrators, as are the vibrating members of some musical
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instruments. A representative form of an asymmetrical resultant vibra-

tion is shown in Figure 192.

From the fact that the frequency of beats, like

that of a difference tone, is equal to the difference

of the two combining frequencies, there is some

temptation to identify difference tones with beats.

Indeed difference tones are sometimes called beat

tones. The parallel is somewhat misleading. Mere

beats could never produce a third tone, even of the

difference-tone pitch, not to mention the sum-

mation-tone pitch. One can see, however, how a

third tone, of the difference-tone pitch, could arise

from the asymmetrical vibration shown in Figure

192. For this case the mean displacement in os-

cillating positions could be said to lie along the

Fig 191. An Asymmet- dotted curve of Figure 192. This curve represents

rical Vibrator a frequency equal to the difference of the combining

frequencies. No such frequency exists in the

curve of Figure 189, for the mean displacement there is zero.

The Use of Difference Tones in Tuning Instruments

On page 260 the consideration of beats was limited to tones of nearly

equal frequencies. That limitation may now be relaxed by virtue of the

new element introduced by difference tones.

For example, the difference tone between two frequencies an octave

apart has the same frequency as the lower of the two primes (Fig. 190,

Cg — C9). If the octave is slightly mistuned, the difference tone will beat

with the lower prime tone. From this arises the phenomenon of beats

between two tones an octave apart. Similarly for Cg — Gg (an interval

somewhat ingenuously called a “fifth” because it spans five white keys),

the difference tone is C7 . This forms a so-called second order difference

tone with C8 ,
which is also C7, and beats result if the original chord is mis-

tuned. Again, for Cg — Fg (a “fourth”), the first order difference tone is

Fg. The frequency of Fg is 87.3. The frequency difference between this



Chapter 24 THE INTENSITY OF SOUND 265

and F& is 261.9, which is C8 . The second order difference tone will thus

beat with C8 if the original chord is mistuned.

Hence, for mistuned octaves, fifths, and fourths, beats may be heard,

due to the effect of difference tones. Hence, beats may be utilized not only

to tune unisons, as described previously, but also to tune other intervals.

This is regularly taken advantage of by piano and organ tuners, who find

just these three intervals especially useful.

"Laying the Scale
99

After bringing the appropriate string or pipe into agreement with the

standard tuning fork, by eliminating beats between the unison, the tuner

proceeds to “lay the scale ” by fifths and fourths. Anyone who has atten-

tively listened to a tuner at work will recognize the following sequence

commonly used to establish all the frequencies throughout one of the oc-

taves (Fig. 193). After this, the frequencies outside of this octave can be

established by octave beats.

VJHI

1

|£j .
'mmmmm31mmHi31 mrAia

i

Fig. 193. The Succession or Fifths and Fourths
Used by Tuners to “Lay the Scale”

As will appear in the following chapter, the frequency ratios established

between fifths and fourths when beats have been eliminated are respec-

tively 3 :2 and 4 :3. The corresponding intervals in the tempered scale do not

have quite exactly these frequency ratios. Hence, if the tempered scale is

desired, tuners should not tune out the beats entirely, but should retain a

certain number, which is different for each pair of frequencies used in the

tuning. Problem 9 at the end of this chapter develops this sequence.

Practically, however, tuners almost never work as accurately as this. The
result of the usual job of tuning is therefore a more or less distant approxi-

mation to the tempered scale.

Questions for Self-Examination

1. Discuss the relation of loudness to intensity of sound.

2. Define the decibel and state the approximate intensity levels of several common
sounds.

3. Draw and interpret the audiogram of the normal ear.

4. Draw and interpret the audiograms of an ear deaf to low pitches and of an ear

deaf to high pitches.

5. What are difference tones and how are they produced?
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Problems on Chapter 24

1. When twin babies both cry at the same time, how many decibels higher is the

intensity of the sound than when one cries alone? Similarly for quintuplets? 3, 7

2. How many times as intense is the sound in a subway as that at the noisiest spot of

Niagara Falls? Compare similarly a subway with an average restaurant.

3, 100,000.

3. Helmholtz set 30 beats per second as the rate characterizing maximum dissonance.

At what portion of the keyboard is the maximum dissonance for a semitone? for

a tone? What musical interval in the region of C7 produces maximum dissonance?

in the octave beginning with Cs? Cd, Cio, a third, a fifth.

4. An organ manual covers the range from Ce to Cn. The difference tone produced

by depressing a certain pair of keys is near the lowest key on the manual and the

summation tone near the highest. What are the two keys? B9 and C10.

5. Beats often afford a convenient means of determining the frequency of an un-

known pitch. A certain pipe of an organ is found to beat 33 times in 10 seconds

with a tuning fork which has a frequency of 260 cycles per second and to increase

this rate when small pellets of wax are attached to the fork. What is the frequency

of the note on the organ? 263.3

6. A tuning fork making N vibrations per second is moved toward a wall. An ob-

server in the line of motion of the fork, the fork being between him and the wall,

hears n beats per second due to the Doppler effect.

v is the fork moving?
How many meters per second

N n V N V n

6. 200 1 .83 7. 200 1 1.2

200 2 1.7 200 2 2.4

200 3 2.5 200 3 3.6

200 4 3.3 200 4 4.8

7. The tuning fork of problem 6 is known to be moving v meters per second. How
many beats n per second will the observer hear?

8. Two musical instruments sound the same note simultaneously. One plays in just

temperament, the other in even temperament. How many beats n per second will

be produced in each pitch of the octave containing the standard A (440)?

Base Discrepancy

frequency Interval Magnitude (bcats/min.)

C 2 9. 220. A - E fifth up 45

D 3 329.62 E - B fourth down 67

E 0 246.94 B - Fit fifth up 50

F 3 370. F#~ C# fourth down 75

G 4 277.18 fifth up 56

A 0 415.31 G#-m fourth down 84

B 1 311.13 m-A# fourth down 64

C 5 233.09 AHhP fifth up 47
349.23 F - C fourth down 71

261.63 C -G fifth up 53

391.99 G -D fourth down 80
293.66 D -A fifth up 60

9. Calculate the frequency of a perfect fifth above “cello A ”
(220 v.p.s.). Compare

with the frequency of the nearest E
t
and from this verify the fact that the first

step of “laying” the tempered scale is to establish E lower than a perfect fifth

above “cello A 99 by 45 beats per minute. Verify the corresponding facts for the

rest of the scale as shown in the adjoining table. (Refer to page 251 and use the

frequencies indicated for the first of each pair of pitches.)



CHAPTER 25

The Quality of Musical Tone

Quantity and Wave Form

Such degree of understanding as we now possess of the physical attributes

of musical sounds stems in very large measure from the work of Helmholtz.

His contributions to the science of sound were only a part of his total work,

but even that part was of major significance. Not the least of it was his

identification of the nature of what is called the timbre or quality of musical

tone. He outlined the problem at the beginning of his discussion of the

subject in the following words (53:18-19):

Loudness and pitch were the first two differences which we found between

musical tones; the third was quality of tone which we have now to investi-

gate. When we hear notes of the same loudness and same pitch sounded

successively on a pianoforte, a violin, clarinet, oboe or trumpet, or by the

human voice, the character of the musical tone of each of these instruments,

notwithstanding the identity of loudness and pitch, is so different that by
means of it we recognize which of these instruments was used. . .

.

On inquiring to what external physical difference in the waves of sound

the different qualities of tone correspond, we must remember that the

amplitude of vibration determines the loudness, and the period of vibration

the pitch. Quality of tone, therefore, can depend upon neither of these.

The only possible hypothesis, therefore, is that the quality of tone should

depend upon the manner in which the motion is performed within the

period of each single vibration.

Examples of wave outlines which possess different forms, though they

are of the same amplitude and wave-length (wave-length being the graphi-

cal analogy to Helmholtz’s “ period”)
,
may be found in Figure 194. Wave-

forms corresponding to tones of three different qualities are represented

there. The physical attribute of different tone qualities superficially ap-

pears thus to be wave-form. While it is true that different qualities do

involve different wave-forms, it is also true that different wave-forms are

sometimes to be associated with one and the same quality. This does

not, however, require development. For the present, attention will be

confined to cases in which different wave-forms do represent different

qualities.
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Fig. 194. Three Wave Forms, Representing Tones Which, Though of

the Same Pitch and Intensity, Are of Different Quality.

Pitches, Lengths, and Frequencies of Vibrating Strings

To prepare the way for the next development in the study of tone qual-

ity, the scene must be shifted back more than two thousand years. In the

sixth century b.c., Pythagoras is said to have studied vibrating strings

experimentally. He observed that if a string was subdivided, the pitches

of the vibrating segments depended on the lengths. Moreover, harmonious

combinations could be secured by adjusting the lengths of the vibrating

segments to certain ratios.

The law of vibrations of strings (page 129) tells us that frequencies are

inversely proportional to lengths. Hence, the foregoing ratios of lengths

corresponding to standard musical intervals will also be the ratios of fre-

quencies, paying due attention to inversion. The comparison between fre-

quency ratios on the foregoing Pythagorean scale and on the scale of even

temperament will then give some idea of the degree of “ perfection of stand-

ard musical intervals ” as supposedly produced by keyed instruments. The
following table summarizes a few of these.

Frequency ratios

Pythagorean Tempered scale

Interval fraction decimal fraction decimal

Octave 2:1 2. 2:1 2.

fifth 3:2 1.500 392./261.6 1.498

fourth 4:3 1.333 349.3/261.6 1.335

major third 5:4 1.250 329.7/261.6 1.260

minor third 6:5 1.200 311.2/261.6 1.189
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Fig. 195. Common Musical Intervals Based on Middle C Represented
on a Keyboard

The third numerical column represents the frequency ratios in the tem-

pered scale on a foundation of middle C (261.6). They could, of course, be

built on any other pitch, with the same result.

Figure 195 shows a keyboard with intervals as they might be laid out

when based on C.

Comparison of the two columns headed “decimal,” taking the Pythago-

rean ratios as the standard, gives a measure of the departure of some of the

intervals of the tempered scale from this standard. The greatest discrep-

ancy is about one per cent. This would be detectable by a well-trained

musical ear under laboratory conditions, but probably not under the con-

ditions ordinarily obtaining in a musical rendition.

Composite Vibrations in Strings

In 1636, Mersenne, who had been the first to make an accurate measure-

ment of the speed of sound, published the first observation of what are

now popularly termed “ overtones.” In studying the vibrations of strings,

he detected other pitches higher than ordinarily associated with the vibra-

tion of a given string under specified conditions. He identified five pitches

in addition to that expected from the string, now called the fundamental .

These were the first and second octaves of the fundamental, the fifth above

the first octave, the major third above the second octave, and the “major

second” above the third (unheard) octave (135:140). This being his first

observation of this phenomenon, it is not surprising that Mersenne missed

some of the “harmonics” which we now know every string exhibits. Fig-

ure 196 shows the first twelve of the pitches, termed partial tones
,
emitted

by a vibrating string. The fundamental is assumed to be C6 (65.4), two

octaves below middle C. The sequence is represented both on a staff and

on a keyboard. The six partials which Mersenne heard, including the

fundamental, were the first, second, third, fourth, fifth, and ninth. There

is no record that Mersenne completed the series, nor even that he identified

these higher pitches with the vibrations of the string in segments as re-



Fig. 196. The First Twelve Partial Tones or a Vibrating
String Whose First Partial (Fundamental) Is C

Fig* 197 . Vibration of a String in Various Simple Modes
(From The Science of Musical Sound, by Dayton C. Miller. The Macmillan Company, publishers.)
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Fig. 198 . Compound Vibrations of a String Made up of Combinations
of Simple Modes

(From The Science of Musical Sound, by Dayton C. Miller. The Macmillan Company, publishers.)

corded by Pythagoras. That was first done in 1677 by John Wallis,1 who
has appeared before in connection with the study of impact.

A somewhat more adequate identification of partial tones was made in

1701 by a Frenchman named Sauveur. After discussing the vibrations of

strings in segments, he stated that vibrations in these subdivisions oc-

curred at the same time that the string was vibrating in a single segment.

As he phrased it (quoted 135 :141)

:

Each half, each third, each fourth part of a string has its own special vibra-

tions, while at the same time the string vibrates as a whole.

This was the first clear recognition of the composite nature of the vibra-

tion of strings. The phenomenon is not easy to visualize. Figure 197

shows time exposures of a string vibrating in a single segment and in two,

three, and five segments. Figure 198 shows in the same way strings vibrat-

ing, not in simple modes as before, but in combinations of such modes. The
irregularity of the outlines is testimony to the complexity of such vibra-

tion. The vibrations of the strings of musical instruments in actual

performance are characterized by some such complexity of motion. '

The capstone to all this was established by Helmholtz, as has already

been stated. Viewed in perspective, the recognition seems natural and
rather inevitable that tone quality is determined by the form of sound

1 Philosophical Transactions (abridged), 2, 380 (1677).
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waves generated by compounding of partials, these partials arising, in the

case of strings, from simultaneous vibration in several modes. Actually

in this as in most other fields of science, the final discovery was the climax

of several stages, each slowly and even painfully evolved, the whole process

covering many centuries.

Recording the Forms of Sound Waves

Effective experimental study of tone quality required, not only a device

capable of giving a faithful record of the forms of the sound waves to be

studied, but the development of a whole new experimental method. Sev-

eral major attempts during the fifty years after the time of Helmholtz’s

great contribution failed to provide either an adequate instrument or an

effective method. The need was first supplied by I). C. Miller, of Case

School of Applied Science, through his famous phonodeik 1 and the experi-

mental technique developed in its use. This

gave way some years later to the immensely

( \ more versatile cathode-ray oscillograph. It is

\ / not feasible to describe either of these instru-

\^/ ments here, but comprehension of their product

requires a brief account of the basic process of

N
recording sound waves, which is common to

both.

If a pencil were attached to one prong of a

(b) vibrating tuning fork and a strip of paper were

drawn across the pencil perpendicular to the

line in which it was vibrating, the resulting

trace, after enlargement, would in its essentials

/\ be the same as part (a) of Figure 199. The
/ \ same experiment performed upon a violin string

I ^ would give a variety of results depending on

\ J which string was chosen, how it was bowed,^ and so forth. But among others a curve re-

Fig. 199. Representative sembling that of part (b) might appear. Again,

(«* Tuning Fork!
recording the pressure changes in one type of

(b) Violin, (c) Open Or- organ pipe (though it would require something
gan Pipe more refined than an ordinary pencil) might

produce a curve resembling that of part (<c).

In each case the sound waves themselves, at a distance from the sounding

body, would register, through the agency of a properly designed recording

device, forms resembling those produced by the vibrating bodies.

- The phonodeik and later the cathode-ray oscillograph were capable of

thus recording the forms of sound waves from all kinds of sources. Such
records constituted the first material upon which an exhaustive study could

be made of the relation of tone quality to wave-form.

1 For a description of the phonodeik, together with an account of earlier attempts to solve

the problem, see 85: Lecture III.
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The Rudiments of Wave Analysis

But successful recording of wave-forms is only the beginning. The heart

of the study is the “breaking down” or analysis of the recorded wave into

its “harmonic components.” What this process means may be illustrated

by further consideration of the curves of Figure 199.

The curves of Figure 199 have the same wave-length and the same am-
plitude, only the wave-forms being different. Part (a) is of particular

interest. It is the simplest of the group. It lacks any complications in

the way of kinks or angles. It is, in fact, a simple harmonic wave . We
imagined it to have been produced by a tuning fork, as indeed it might have
been. The tuning fork is one of the very few musical instruments which
normally produces this kind of curve. A tone corresponding to this wave
form is called a pure tone.

Now consider part (c) of Figure 199. It is only a degree less simple than

part (a). It can be constructed out of two simple curves, both like that

of part (a) except for size. The first is identical with part (a), and the sec-

ond has half the wave-length and half the amplitude of the first (Fig. 200).

Superposing the second on the first gives the curve of part (c) of Figure 199.

It appears that the air in the organ pipe which we imagined to have pro-

duced part (c) must have had two types of vibration acting simultaneously,

both simple but combining to form the curve of part (c). This is the same
type of occurrence that has already been observed in strings.

Now consider part
(
b) of Figure 199. This was the curve ostensibly pro-

Fig. 200. Part (c) of Fig. 199

and Its Two Simple Harmonic
Components

Fig. 201. The Effect of the Addi-
tion of Successive Partials on the
Form of the Composite Wave
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duced by the violin string. The series of partial tones, all of which we are

imagining to be present, will have the relative frequencies 1, 2, 3, 4, 5, and

so forth. If the intensity of each upper partial is assumed to be less than

that of the one below it— which is not always the case — it will be con-

venient to regard the relative amplitudes as 1, and so forth,

multiplied by that of the fundamental. Figure 201 shows the process of

successively adding such a series of partial tones. The second curve is, of

course, identical with that of part (c) of Figure 199. Those following show

the effect of adding the successive overtones that have been specified.

The inclined part of the resultant curve approaches more and more closely

to a straight line as a larger and larger number of partials are added.

Compounding simple harmonic curves into their resultant is termed

synthesis. The reverse process, breaking down composite curves into their

simple harmonic components, is termed analysis . That any recurrent

curve can be thus analyzed into a unique series of simple harmonic com-

ponents was first announced by a Frenchman named Joseph Fourier in

1807. The statement is one form of what is termed Fourier's theorem.

The consequences of this theorem bob up in most unexpected places in all

portions of physics. Though they are especially prominent in the study of

sound, the principle was discovered in the course of Fourier’s study of the

conduction of heat. Helmholtz made his acknowledgments to Fourier and

restated his theorem in a form most readily applicable to the analysis of

tone as follows (42 :34)

:

Any vibrational motion of the air in the entrance to the ear, corresponding

to a musical tone, may be always . . . exhibited as the sum of a number of

simple vibrational motions, corresponding to the partials of this musical

tone.

Sound Spectra

The two components of the wave pictured in part (c) of Figure 199 were

represented separately in Figure 200.

There is, however, a simpler and more
informative way of representing them.

The two components differ from each

other in two respects, wave-length and
amplitude. These may be repre-

sented, as in Figure 202, by vertical

lines, whose positions on a horizontal

scale are governed by the frequencies

(which are in inverse proportion to

the wave-lengths) and whose lengths

are determined by the amplitudes.

This representation of the frequency

and amplitude of the partials of a

composite tone is called a sound spec-

Partials

1st 2nd

Fig. 202. Sound Spectrum Method
of Representing the Partials Indi-
cated by the Waves in Fig. 200
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Fig, 203. Curve Representing the
Wave Form of the Tone of an
Organ Pipe

The component partials are represented here

by simple harmonic waves and by a sound
spectrum. (From The Science of Musical
Sounds, by Dayton C. Miller. The Macmillan
Company, publishers.)

trum. The upper left portion of Figure 203 shows the wave-form of the

tone of an organ pipe. Below this is the array of simple harmonic curves

into which the composite curve was analyzed, and at the right of the figure

the corresponding sound spectrum. Each component simple curve is rep-

resented by a line indicating frequency by its position and amplitude by its

length.

In the same way Figure 204 shows the actual wave-form of the tone of a

Frequency

Fig. 204. Wave Form and Sound Spectrum of the Tone of a Piano

(From Speech and Bearing , by Harvey Fletcher. D. Van Nostrand and Company, publishers.)
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Clarinet

Frequency

Fig. 205. Wave Form and Sound Spectrum of the Tone of a Clarinet
(From Speech and Hearing , by Harvey Fletcher. D. Van Nostrand and Company, publishers.)

piano together with its sound spectrum. The frequency of the funda-

mental is 512. Figure 205 represents similarly the analysis of the tone of a

n n n n

Fig. 206. The Combination of Two
Oppositely Directed Running Waves
into a Stationary Wave

clarinet with fundamental frequency

256.

Stationary Waves and Running

Waves

The vibration of a string in one or

more segments constitutes an exam-

ple of what are called stationary waves .

The phenomenon is of first impor-

tance in the study of sound, since

every musical instrument without

exception depends for its action on

the principle of stationary waves.

The real nature of stationary waves
can hardly be appreciated, however,

without reference to the running

waves of which they are composed.

If a long rope or wire is struck or

sharply plucked near one end, a wave
will be set up which can be seen to

travel to the other end and return by
reflection, possibly repeating its to-

and-fro journey several times before

it dies away. This is an example of

a running wave . If instead of a single
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impulse, a steady train of identical waves had been set up at one end, the

string would shortly have been bearing two such trains, moving in opposite

direction, one the direct and the other the reflected train.

The effect of the combination of two oppositely directed trains of waves
in a string is indicated in Figure 206. The two trains first encounter each

other at the middle of the string. Beginning at the top, the successive

stages in the resulting motion of the string where these two trains overlap

are shown. To describe these successive stages would be awkward and
unnecessary. They can best be envisioned by a careful scrutiny of the

figure.

Some general observations may be made, however. At points on the

string marked by the vertical lines n, n
,
n

,
n, no motion occurs. These

points are commonly called nodes. Midway between these points the

string moves up and down through a greater amplitude than anywhere
else. These points are commonly called loops. Comparison of the result-

ant displacements with the component displacements due to the individual

waves will show that at the nodes the displacements due to one of the waves
is always equal and opposite to that due to the other. This is the reason for

the continuously zero resultant displacement at the nodes. At the loops,

on the other hand, the displacements due to the individual waves, while

also always equal, are in the same direction . The two displacements, there-

fore, add at these points. Neither of these conditions obtain at intervening

points.

Figure 207 is a photograph of a stationary wave pattern produced by
two sets of ripples traveling in opposite directions. The ripples themselves

Fig. 207. Stationary Waves on Water Created by Two Oppositely
Directed Trains or Ripples

(From Michelson’s Studies on Optics, Fig. 5. University of Chicago Press.)
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are produced at the two needle-points dipping into the liquid and are only

faintly visible in the background as two sets of concentric circles expanding

from their respective centers.

Thus stationary waves may be produced, and indeed always are pro-

duced, by the combined effects of two identical oppositely directed running

waves in the same medium. This is a special case of interference already

discussed in general terms (page 244). The segments into which vibrating

strings have been seen to divide (Fig. 197) are thus identified as successive

loops in a system of stationary waves. It will be evident that the distance

between adjacent loops or adjacent nodes is one-half the length of the wave
in that particular medium. Knowing the frequency, w, in addition to

observing the wave-length, X, in this way, the speed, v, of the wave in the

string can be computed from the relation

v = n\. (1)

Boundary Conditions in Strings

The two ends of a string under tension are almost necessarily clamped.

It is hard to imagine tension being applied under any other circumstances.

In a sense, a streamer fluttering in a stiff, steady breeze is under tension

with one end free; so is a heavy string suspended vertically from its upper

end. These cases are somewhat trivial, however, and in general it is un-

availing to try to consider what would be the attributes of the stationary

waves set up in a string which does not have both of its ends clamped. It

is well to keep such an imaginary possibility in mind, however, for it will

shed some light on the behavior of stationary air waves in pipes, soon to be

considered.

Because both ends of a string must be fixed and, therefore, constitute

nodes, a string can vibrate in any integral number of segments (1, 2, 3,

4, . . .). The familiar frequency sequence of the partial tones of strings (in

ratios 1, 2, 3, 4, . . .) is a consequence of this fact. The same sequence of

partials would exist in the purely imaginary case of a vibrating string with

both ends free. But for the case of a string with one end fixed and one end
free the free end would be a loop instead of a node. The number of seg-

ments would clearly not be integral for this case, but would be an odd num-
ber of half segments (•£, £,•§,.. .), and the frequency sequence would show
the same ratios (1, 3, 5, . , .). This is not a practicable possibility for

strings, as has already been pointed out. It is mentioned here because it

has a counterpart in the modes of vibration of stationary waves in pipes

such as will now be considered. The parallelism between the two, even
though merely theoretical in the case of one of them, is illuminating.

Stationary Waves in Pipes

Until one becomes accustomed to thinking in terms of longitudinal

waves, it is hard to visualize a longitudinal stationary wave, such as char-
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acterizes sound waves in pipes. The process may be facilitated by a study

of Figure 208. This represents the successive motions constituting a longi-

tudinal stationary wave. The nodes

are abreast of the dotted vertical lines

n
,
n, n

,
n. The vibratory motion, in-

stead of being transverse as in Figure

206, is longitudinal. The seven stages

represent half a complete period.

The sinusoidal line indicates the

magnitude of the displacements of the

various layers of air from their normal

position corresponding to uniform den-

sity. Thus the column of air will be

seen to divide into segments character-

ized by nodes and loops just as truly

as did a string. The displacements,

though longitudinal,may be represented

as transverse. To do so helps consid-

erably in following the process. Thus
the stationary wave pattern, the succes-

sive stages of which are pictured in

Figure 208, is represented diagrammatically in Figure 209. The pattern

(four nodes, five loops) is to a pipe what the last part of Figure 197 was to

a string. (XXX0
Fig. 209. Diagrammatic Representation of a Stationary Longitudinal

Wave of Five Segments

Boundary Conditions in Pipes

Unlike strings, pipes may produce either of two partial-tone sequences.

One is the same as that of strings, the complete series of frequency ratios

(1, 2, 3, 4, . . ,), and the other is the odd-numbered series of frequency ratios

(1, 3, 5, 7, . . .). The former is produced by open pipes (pipes having both

ends open)
;
the latter, by closed pipes (pipes having one end closed). The

third possibility, pipes having both ends closed, is almost as much removed

from practical possibility as is the corresponding case of a string having

both ends free. Pipes which confined the sound within their interiors

would scarcely make acceptable musical instruments. Besides, there must
be access to the interior in order to blow the pipe. Whether the blown end

of a pipe or wind instrument should act like an open or closed end might be

in doubt if only its structural features were taken into consideration. Ex-

periment shows, however, that the blown end usually produces an “open”
effect.

Fig. 208. Motion Involved in a
Longitudinal Stationary Wave
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Fig. 210. The First Three Modes Fig. 211. The First Three Modes
or Vibration in an Open Pipe of Vibration in a Closed Pipe

The reason for the difference in the action of open and closed pipes has

already been intimated: the likeness or unlikeness of the boundary condi-

tions, Figure 210 shows the first three modes of vibration in an open pipe.

The ratios of the number of segments are 1, 2, 3. Figure 211 shows the

first three modes of vibration in a closed pipe. The ratios of the numbers

of segments are 1, 3, 5. Open ends always have loops; closed ends,

nodes.

As in the case of a string the distance between adjacent nodes (or adja-

cent loops) marks half the wave-length of the sound. There is this differ-

ence, however. In strings such distances represent wave-lengths in the

string
,
whereas in pipes such distances represent wave-lengths in air

.

Pipes are consequently more useful as indicators of the lengths of sound

waves emitted to the surrounding air.

Manifestly then, an open pipe sounding its fundamental possesses a

length approximately half that of the sound wave which it generates, and
a closed pipe, approximately a quarter the length of the sound wave which

it generates. In the second partial tone of the open pipe, the length of the

pipe marks two halves that of the wave, the third three halves, and so

forth. In th£ second partial tone of the closed pipe the length of the pipe

marks three quarters of a wave-length, the third, five quarters, and so

forth. The qualification involved in the word “ approximately” arises

from certain disturbances at the ends, affecting the exactness of the ratio.

The discrepancy depends upon the ratio of the diameter of the pipe to its

length if it is completely open, or upon the relation of the dimension of the

aperture to the length if the pipe is not completely open.

The case of pipes which are not straight sided— brass instruments and
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certain others— is naturally somewhat less simple than that of the straight

sided pipes discussed here, and will not be considered.

Reflection in Pipes

The closed end of a pipe acts on adjacent layers of air much as the fixed

end of a string acts on its adjacent portions. The layer next to the closed

end is clamped to the end almost as literally as the string is clamped to its

support. It could move away only by virtue of the creation of a vacuum,
which just doesn’t happen in practice. It being thus “ fixed,” the longi-

tudinal sound waves are reflected from it under the same condition which
governs reflection of the transverse waves at the fixed end of a string. That
is, there is a reversal of their displacements. This produces reflection with-

out change of phase — which in this case means that condensations are

reflected as condensations and rarefactions as rarefactions.

The opposite occurrence accompanies the reflection of a sound wave at

the open end of a pipe. Condensations are reflected as rarefactions and
rarefactions as condensations. This is not so easy to visualize, but when
once seen, it explains why the open end of a pipe is always the scene of a

loop of the stationary wave pattern within the pipe. The displacement of

the particles constituting a condensation occurs in the direction of motion

of the wave. That of the particles constituting a rarefaction occurs in the

opposite direction. Hence, when a condensation traveling to the right is

reflected as a rarefaction traveling to the left, the displacements of the two
combining waves near the open end of the pipe are both to the right, and

their magnitudes, therefore, add. The result is a maximum amplitude in

that portion of the stationary wave pattern next to the open end of a pipe

— thus defining a loop.

Bars, Diaphragms, and Plates

In nearly all the common musical instruments the vibrating element is

either a string or a pipe. There are a few in which the vibrating element

is a bar. This would include the xylophone (wooden bars) and the glocken-

spiel (metal bars) and might be extended to include reeds, which are really

small and very flexible bars. A few instruments involve the vibrations of

diaphragms or plates. The drum is an example of the former and cymbals

of the latter. These instruments are somewhat non-standard, however,

and need not be considered. Moreover, the vibrations of bars, dia-

phragms, and plates are extremely complicated. The upper partials are

numerous, inharmonic, and unstable. That is to say, their frequencies are

not integral multiples of the frequencies of the fundamental, as is the case

with strings and pipes, and those which are to be elicited depend more on

the mode of excitation of the instrument.

It should be realized also that other factors besides the direct contribu-

tions of upper partials contribute to the general effect produced by a musi-

cal instrument. An enormous contribution is made by the combinational
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tones between these partials, though very inadequate attention has been

given to that point. Equally important is the effect produced by the cir-

cumstances of starting or stopping the tone and the mode of excitation in

general. The effect of such instruments as the piano, for example, is in no

small measure due to the original impact followed by the subsequent dying

away of the intensity. This factor is not included in the “ quality ” of the

tone as ordinarily defined by the physicist. As yet the physicist has been

able to account for the properties of musical tone only to a limited extent.

While the time will ultimately arrive when he can give a more complete

account and even indicate major ways of improving the design of basic

musical instruments, that day is not yet upon us. It is only in reproduction

of music, such as by radio, phonograph, and sound pictures, that the science

of music has taken the lead over the art of music.

Questions for Self-Examination

1. How may quality of a musical tone be associated with the accompanying wave-

form? Who discovered it?

2. Who made the first association between pitches and lengths of vibrating strings?

Between pitches and frequencies?

3. Show two ways of representing graphically the analysis of a sound wave. What
are their respective advantages?

4. What are stationary waves and how are they produced?

5. Compare modes of vibration in “open” and “closed” pipes.

6. Compare “boundary conditions” in strings with those in pipes.

Problems on Chapter 25

1. What would be the outline of a vibrating string, photographed by time exposure,

when its first and second partials (fundamental and first overtone) are especially

prominent?

2. The bugle has no valves. How can different notes be sounded on it? To what

notes is the bugler practically limited and why?

3. An open organ pipe has a length of 40 centimeters. What will be the frequency of

the fundamental and of the first four overtones? Similarly for a closed pipe of the

same length.

4. If the loudness of a musical sound is increased in such a way that all the partial

tones are augmented in the same ratio, it is still possible that there might be a

change in quality. Why?

5. When the first few partials (including the fundamental) of a tone are removed by
an acoustic filter, the pitch remains unchanged but the quality is profoundly

affected. Why (for both circumstances)?

6. A wire is L meters long and weighs M grams. Whet tension F in kilograms must
be applied if the wire iB to produce a tone whose frequency is n vibrations pet

second?
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L M n F L r l

1 . 2 200 33 7. 120 1 6
T Z 7.

1 . 4 150 37 120 "IT 12.

1 . 6 100 24 120 9 13.

1 . 8 75 18 520 6
7T

20.

120 T 24.

120 4 30.

120 8
IS

40.

7. The strings of a cello have a length L centimeters. By how many centimeters l

must they be shortened by fingering to change the pitch by a frequency ratio r?

8. Find the length h in meters of an open cylindrical organ pipe, d centimeters in

diameter, which will give a note of frequency n vibrations per second, the end
error being .6 of the radius; and find also the length Z2 of a dosed pipe. Take the

speed of sound as 340 m/sec.

Dissonant Number
note n r h h Interval partials beats

8. Ca 16.35 40. 10. 5.1 9. c<; none

c. 65.41 12.5 2.6 1.3 C-F none

A, 440. 2.5 .38 .19 C-E 10th, 8th 20

Cit 2093. 1 . .078 .038 9th, 7th 50

5th, 4th 10

E-Tr 7th, 6th 50

6th, 5th 20

F~G 10th, 9th 40

9th, 8th 10

8th, 7th 50

1st, 1st 40

E-F 2d, 2d 40

1st, 1st 20

9.

Find the dissonant partials between the respective intervals of a fifth, a fourth,

a major and minor third, a tone, and a semitone. Take as representative of these

respective intervals the combinations CG, CF
,
CE, EG

,
FG, and EF. Use partials

up to the tenth inclusive. Take frequencies of C, E
,
F, and G respectively as

261.5, 329.6, 349.2, and 392. Take as the criterion of dissonance any number of

beats between 5 and 50 per second.





LIGHT





CHAPTER 26

Elementary Properties of Light

Rectilinear Propagation of Light

It is commonly stated in textbooks that light travels in straight lines.

The statement requires clarification, but is based upon a volume of com-
mon observation which extends back so far that it is impossible to identify

its first author. Light is commonly contrasted with sound in this respect.

It is pointed out, for example, that after passing through an aperture light

continues directly on and casts a sharp shadow, whereas sound billows out

in all directions and is audible, not merely in the direct line of the source

and aperture, but at all points on the far side of the obstruction. The sig-

nificance of this distinction will be developed in Chapter 33. There are,

however, many apparent exceptions to the rectilinear propagation of light.

But, notwithstanding these apparent exceptions, the doctrine (if it may
be so termed) of rectilinear propagation of light will probably continue in-

definitely as a generalization on the main trend of commonly observed

phenomena. It is not really a scientific “law,” but within its limitations

it is a useful concept and as such finds numerous applications. Too rigor-

ous an insistence on its universal validity can, however, lead to difficulties,

as Newton realized when he tried to incorporate this doctrine into his for-

mulation of the essential properties of light.

Speculations on Speed of Light

A second ancient source of perplexity about light was the speed of its

propagation. Empedocles (ca. 490-435 b.c.), the first Greek philosopher

to give serious attention to light, did not credit it with instantaneous propa-

gation as did many later philosophers, but believed that it moved with a

finite speed (111 :1 :87), Pliny (a.d. 23-79) (111 :1 :249) was more explicit.

He remarked that the speed of light was greater than that of sound— a de-

duction which any child can make from the common observation that one

can see a distant hammer fall an appreciable interval before one hears the

sound of its impact. A thousand years later Al-Biruni (973-1048), whom
Sarton considers one of the greatest scientists of all time (111 :1 :7Q7-08), de-

clared that the speed of light was immense as compared with the speed of

sound. And two hundred and fifty years after this, Roger Bacon expressed

his faith that, though the speed of fight had proved too great to measure,

it was nevertheless finite (13:12:489).

This would appear to be all that could be expected, in the absence of
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experimental data* Unfortunately the lack of such data made it impossi-

ble to decide between this prophetic opinion and the opinion, which was
also widely held, that the propagation of light occurred instantaneously.

Both Kepler (64:9). and Descartes (quoted 105:125) held this opinion,

though the latter, oddly enough, also promulgated the irreconcilable doc-

trine that the speed of light varies in different media.

jMeasurements of the Speed of Light

The first attempt actually to measure the speed of light was made by the

Florentine Academy (27a :12) in 1667 following an earlier suggestion of

Galileo (46:43). They undertook to determine the time required for two

observers to flash lanterns back and forth at each other, when they were

stationed nearly a mile apart. They expected thus to secure a measure of

the speed of light. It is unnecessary to remark that the experiment was

unsuccessful. It is important, nevertheless, not merely because it is sig-

nificant historically, but also because some of the later successful determi-

nations involved the same principle— sufficiently refined to cope with the

prodigious speed which light possesses.

The first measured value of the speed of light was reported to the French

Academy by Olaf Roemer (1644-1710) in 1676. Roemer had been study-

ing the motions of Jupiter’s moons and had observed that a greater time

elapsed between successive passages of one of the moons behind Jupiter

during the six months when the earth was receding from Jupiter than

elapsed during the other six months when the earth was approaching.

Roemer concluded that light required 22 minutes to travel across a diam-

eter of the earth’s orbit, thus giving a value of about 227,000 kilometers

per second for the speed of light. In comparison with the later more accu-

rate values (300,000) Roemer’s value was much too low, though it was of

the correct order of magnitude. It was, however, great enough to strain

the credulity of many of his contemporaries beyond the breaking point.

His work was at first unfavorably received, and it was not until eighteen

years after his death that an unexpected but conclusive confirmation of his

work put an end to the current doubts.

Of the work of Bradley, whose observations furnished the crucial verifi-

cation and correction of Roemer’s results, as well as of the great refinements

introduced into the measurement of the speed of light successively by
Fizeau, Foucault, and Michelson, space will allow but scant account. The
method of Fizeau (77 :340) is perhaps the most significant, partly because it

furnished the model followed by the succeeding experimenters, but also be-

cause it embodied in an effective experimental method the principle which

Galileo had suggested.

Fizeau replaced Galileo’s first lantern shutter by a rapidly revolving

toothed disk, the successive apertures and teeth of which allowed some
nine thousand pulses of light to pass each second. He replaced Galileo’s

second lantern by a mirror placed about five miles away, which reflected
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Fig. 212. Refraction of Ripples

(From General Physics for Colleges, by Webster, Farwell and Drew,
The Century Company, publishers.)

these light pulses back to the toothed disk. If the disk was stationary, the

light could be made to return through the same aperture that it had trav-

ersed in the outward journey. But if the disk was turning fast enough, the

path of the returning pulse of light would be blocked by the tooth adjacent

to the original aperture, which in the meantime had moved into the path of

the beam. If the speed of the disk was doubled, the light could again re-

turn, but now through the adjacent aperture, not through the original one.

Calculation of the time which the light required to make the double journey

was made possible by noting the speed of the disk and the number of teeth;

from these the speed of light could be computed. The value thus obtained

was about 5 per cent higher than that commonly accepted now.

Thirteen years later, in 1862, Leon Foucault avoided some of the inac-

curacies which were inescapable in Fizeau’s method by substituting a rotat-

ing mirror for the toothed wheel and thus secured greater precision of

results. By further improvement of technique, Michelson, in 1880 and

again in 1927, secured the highest accuracy thus far attained. The final

value was:

299,796 dt 4 km/sec.

Whether the speed of light was greater in other media than it was in air,

or less, was a moot question until as late as 1850 when Foucault, in his early

experiments with the rotating mirror method demonstrated for the first

time that “the velocity of light is less in water than in air.” 1 This was
twelve years before he made his precision measurement of the speed of

light in air. During the seventeenth and eighteenth centuries the prevail-

ing opinion had been that light traveled more rapidly in dense media than

in air. Such was the opinion, already referred to, of Descartes. Newton
also had cast the weight of his opinion on that side, under the impres-

sion that the refraction of light could best be accounted for in this way
(91 :226-28; 90:79). Possibly this opinion received some support by anal-

ogy with the known fact that sound traveled more rapidly in metals than in

1 Comptes Rendus
, 80, 556 (1850).
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air. In any case, the contention of Huygens in 1678 (61 :32—38) that light

must slow down upon entering dense media was almost entirely disregarded

for a century.

Refraction of Light

There was as much opportunity for difference of opinion concerning the

change in direction that characterized the passage of light into a dense

medium, as there was concerning the change in speed. Aristotle, in his

Book of Problems, correctly described the appearance of an oar dipped in

water. Ptolemy (ca. a.d. 127-51) tabulated angles of refraction corre-

sponding to angles of incidence for air into water, air into a piece of glass,

and water into glass and sought for some law connecting these angles.

He concluded that the ratio of the angle of incidence to that of refraction

was constant for the same pair of media, a generalization which seems

scarcely justified on the basis of his tables of refraction.

Ptolemy’s tables were extended (though not entirely correctly) by
Vitellio about 1270 and by Kircher (1601-80). Kepler, who, in addition

to his astronomical studies, made important contributions to optics, was

so impressed with the work of the former that he entitled his first book on

optics (1604) A Supplement to Vitellio. He started his second book on

optics, Dioptrice, written seven years later, by describing his experiments

on refraction, in which he used the device illustrated herewith (Fig. 213).

He, like Ptolemy, tried to discover some relation between the angles of in-

cidence and refraction. The best he could do was to record that, for angles

of incidence less than about 30° in air,

the angle of refraction in glass was about

two thirds the angle of incidence, a for-

mulation not greatly in advance of that

of Ptolemy, nearly fifteen hundred years

before. It was natural for these early

investigators to look for a relation be-

tween the angles, but in 1621 Willebrord

Snel (1591-1626) discovered that the be-

havior of light upon refraction could be

formulated, not by a ratio of the angles involved, but instead by a ratio

of trigonometric functions of the angles. Snel’s law, as it is now stated, is:

Fig. 213. Kepler’s Refractometer
(From his Dioptrice ol 1611.)

sin i

sin r
(3)

where i represents the angle of incidence, r the angle of refraction, and n the

ratio at their sines, termed the index of refraction of the second medium.

Refraction and the Speed of light

Though Snel’s observation settled the ancient problem of the direction

of refracted light, it did not determine whether light was retarded or accel-
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erated in the process of refraction. That controversy continued until

Foucault’s measurements in 1850, already mentioned (page 289).

A simple illustration of refraction produced by the diminution of the

speed of a wave is to be found in the change in direction of waves or ripples

upon oblique approach to a beach. Figure 212 shows this effect on a train

of ripples. The water, very shallow everywhere, is rendered still more
shallow in the lower portion of the photograph by a sheet of glass laid on
the bottom of the tray. The resulting diminution in the speed of the lower

portion of the ripples produces the refraction shown. This is also true,

we now know, with light waves entering such substances as glass or water.

Questions for Self-Examination

1. What can be said of the common impression that light travels in straight lines?

2. Tell the approximate value of the speed of light and outline the stages in the de-

velopment of methods of measuring it.

3. Describe Roemer’s method of determining the velocity of light by the eclipse of

Jupiter’s moons.

4. Define index of refraction and sketch the evolution of the idea.

5. Give an account of the old controversy over whether light traveled faster or slower

in air than in glass.

6. Define index of refraction. How is it related to the speed of light?

Problems on Chapter 26

1. In a repetition of Fizeau’s determination of the speed of light the distance be-

tween the wheel and mirror was 8500 meters. The wheel had 88 teeth. When
the .first occultation of the reflected beam occurred the wheel was rotating at 100

r.p.s. What value did this give for the speed of light? 3 X 10® meters/sec.

2. Roemer observed that the lapse of time between successive occultations of one of

Jupiter’s moons was seven minutes greater when the earth was receding from

Jupiter than when it was approaching. The approximate period of the satellite

being 42^ hours, what was the speed of light given by these observations? Take
the radius of the earth’s orbit as 1,5 X 1011 meters. 2.2 X 10® meters/sec.

3. If, due to atmospheric refraction, the sun is visible for 15 minutes after it has

actually set, what is its angular displacement? 4 degrees.

4. Assuming the rigidity of the ether to be approximately that of steel (E ** 8 X 1010

newtons/square meter), what is the density of the ether in kilograms per square

meter? 10~7
.

5.

What percentages of error were involved in the second column of Ptolemy’s table

of refraction if the index of refraction of water is •£? Errors up to 7 per cent.

6.

Light incident on a block of glass at i degrees i r

with the normal is refracted at r degrees. What 40 25

is the refractive index /jl? What is the velocity v 50 30

per second of light in the glass? 60 35

75 40

M v

1.52 1.97 X 108

1.53 1.96X 10®

1.51 1.99X10®
1.50 2.00X10®



CHAPTER 27

Illumination

Modern Standards of Illumination

Until very recently artificial illumination was confined to providing the

minimum amount of light that would enable man to continue the more es-

sential activities normally carried on during the day. Artificial illumina-

tion competed merely with darkness, never with daylight. To imitate

daylight, either in quality or quantity, was at first impossible and later

prohibitively expensive on any scale large enough to be generally useful.

Within the last decade, however, new types of illuminant have pro-

vided a quality scarcely distinguishable from north-sky light, the best for

general illumination. A campaign of encouragement has in addition

brought many users to the point of providing a quantity of illumination

rivaling and occasionally even exceeding that of daylight. This encourage-

ment has not been entirely disinterested, to be sure, for the distributors of

electric power have much to gain through general acceptance of the new
standards of illumination. But the public also has much to gain, since the

previous “ starvation diet ” of light has been taking its toll in inefficiency,

accidents, and nervous ailments. There is scarcely a possibility that the

public can be persuaded to provide more illumination than is good for it.

In the meantime sound inducements for more illumination are being of-

fered in this country in the form of electric rates which are much lower than

those anywhere else in the world, as well as in improved lighting equipment

at progressively lower cost. This form of propaganda by “the Utilities

need never cause any misgiving.

Luminous Intensity and Its Unit

Sources of “artificial” light vary greatly in their intensity. From night

lamps, the luminous equivalents of a single candle, to beacon lights, whose
luminous intensities may be expressed as the equivalent of millions of

candles, the whole range of human requirements is covered. Moreover, a

given source will invariably appear to be of different intensities when
viewed from different angles. This effect is enhanced by reflectors de-

signed to distribute light to the best advantage and becomes especially

pronounced for such devices as headlights and searchlights. When the

luminous intensity of a source is specified without qualification, it is either
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Fig. 214. Two Types of Light-Meter
(Courtesy of Illuminating Engineering Society.)

the average of all directions {mean spherical candlcpower) or is limited by

the context to a specific direction.

One of the few anachronisms of scientific terminology is the use of the

term candlcpower to describe the unit of luminous intensity. Only the

name is anachronistic, however. The original unit was a candle, as the

name indicates, of a particular kind, burning at a specified rate. But the

most recent definition of the unit is a product of recent international agree-

ment between England, France, and the United States, effective in 1941.

This agreement was entered into before the onset of the European war, but

there is no compelling reason why it should not be carried out, though for

some reason Germany persistently refused to enter into it during the whole

course of the negotiations.

The new international candle is defined as one sixtieth of the luminous in-

tensity provided by one square centimeter of a “ black body” at the tem-

perature of melting platinum.1 The term “ black body” need cause no

perplexity. It merely involves the requirement that the nature of the

radiating surface shall be such that the surface appears perfectly black when

1 Revue de Mitrologie Pratique et Ligate (2), 18, 10 (1940).
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cold. Perfect blackness in the sense of reflecting no visible light is, of

course, an unrealizable ideal, but is one which can be approximated pretty

closely by various artifices. It is a useful concept in the theory of radia-

tion. In this instance perfect blackness must be invoked because the

intensity of an incandescent surface at a given temperature depends some-

what on the degree of blackness of that surface when cold; the blacker it is

when cold, the brighter it is when heated to incandescence.

Until a few years ago all illuminants were rated in candlepower. The
more common sizes of electric light were procurable in 8, 16, or 32 candle-

power sizes. Automobile lamp bulbs are still rated that way. All others,

however, are rated, not in intensity, but in power consumption, that is,

not in terms of luminous output but in. terms of power input. While in-

candescent lamps dominated the lighting market this was a fairly conven-

ient way of rating sources of light, for the luminous output was roughly

proportional to power input. But with the advent of fluorescent lamps and

other new types of illuminant, comparisons of intensity by power ratings

have lost all significance. A twenty-watt fluorescent bulb gives several

times as much light as a twenty-watt incandescent bulb.

Illumination and Its Units

Up to this point, the word “illumination” has been used in its usual

loose, general sense. Science has commandeered it, however, as a technical

term. As such it gives a numerical measure of the adequacy of the supply

of light in the region where it is to be applied. It is, in a sense, of primary

interest to the “consumer,” whereas intensity is of primary interest to the

“producer.”

After light has left its source it is sometimes used directly, to attract

attention, as with electric signs. But in the great majority of cases it is

utilized indirectly, by its incidence on a surface, producing what is called

technically illumination. Naturally, the illumination of a surface directly

facing the source depends both on the luminous intensity of the source and

on its distance from the source, being proportional to the former and in-

versely proportional to the square of the latter. The inverse square law is

already familiar in gravitation and in 9ound and will appear again in con-

nection with magnetic and electrostatic forces. It depends for its validity,

as in the other cases, on the source’s being concentrated at a point.

The English unit of illumination is the one most commonly used and is

called the foot-candle. As the name indicates, it is the illumination at a

surface one foot distant from a source of luminous intensity of one candle-

power, the surface being normal to the source.

The metric unit is called the lux. It is similarly defined except that a dis-

tance of one meter is involved instead of one foot. The ratio of the two
units is simply the square of the ratio between the meter and the foot or

10.76, the foot-candle representing the greater illumination. The lux will

be the preferred unit in this chapter. If it becomes necessary to convert
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an illumination given in luxes to the more common English unit, foot-

candles, the latter may be approximated by dividing the former by 10

(strictly 10.76).

As has already been intimated, standards of illumination have been

rapidly rising. Until recently 50 luxes was considered sufficient illumina-

tion for sustained reading. Now 500 or even more are commonly provided,

and the requirements are still rising. That this is not excessive is indicated

by the fact that daylight illumination on the north side of a building on an
average bright day is about 5000 luxes and in direct sunlight is about

100,000.

Measurements of illumination are commonly made by the “photo-

voltaic” type of light-meter, illustrated in Figure 214. They are more
fully described on page 572 than is feasible here. They depend for their

action on the fact that when certain “photovoltaic” materials are illumi-

nated, they generate minute amounts of electric power. These tiny power
impulses are made to energize electric meters, graduated to read in luxes or,

more commonly, foot-candles.

Luminous Flux and Its Unit

The fact that the intensity of a source of light, measured in candlepower,

may be quite different in different directions has already been mentioned.

For some purposes the total amount of light emitted by an illuminant, the

“flow” or flux ,
is of importance. Sometimes the intensity of a lamp is

given in mean spherical candlepower, that is, the average of the intensities

in all directions. In such a case the total flux could be said to be 4 w times

the mean spherical candlepower.

The factor 4 r originates in the geometry of the sphere about the lamp

as a center, and over which the il-

lumination issupposed to be spread.

The area of a sphere is 4 7r times

the square of the radius. Itisnatu-

ral to take as the unit of luminous \
{

flux the flux from a source of

unit mean spherical candlepower '/

through one square meter of the

surface of a sphere of one meter

radius having the lamp at its cen-

tet.1 This is called a lumen. The pIG- 215. Luminous Flux Over Unit
area of the entire sphere will be 4 it Solid Angle

times the area through which the

unit flux, as thus defined, passes. Consequently the total flux from a lamp

of one mean spherical candlepower is 4 ir lumens.

1 Though the lumen is defined here as a metric unit, there is no distinction between this

and the English unit. The flux through one square foot of a sphere of one foot radius having

the lamp as its center will obviously be the same as the flux described above. (See Fig. 215.)
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The shortcomings of wattage as a measure of the luminous output of a

lamp were noted above. It would be much more sensible to use luminous

flux in this role. Indeed it would be eminently appropriate to do so. The
present uninformative ratings of, say, two twenty-watt lamps, one incan-

descent and one fluorescent, would then be replaced by their flux ratings of

240 lumens and 800 lumens respectively. Unfortunately there is no pros-

pect that such a change will occur in the near future.

There is, however, one respect in which the lumen is coming into com-

mon use. That is in rating the luminous efficiencies of lamps. Since the

proper unit of luminous output is the lumen and of power input is the watt,

the luminous efficiency of electric lamps is quite appropriately being speci-

fied in lumens per watt. There has been a steady increase in the efficiency

of electric illumination since the time of Edison’s first incandescent lamp.

That lamp gave 1.4 lumens per watt. Tungsten filament lamps of com-

parable size give 12 lumens per watt and the new fluorescent lamps give

40. It is rather curious that the lumen, denied access to common use up
to the present through lamp output ratings, seems to be entering by the

back door of efficiency ratings.

Comparison of Luminous Intensities

Light flux is a form of power in the technical meaning of that term.

Physicists would find their aesthetic sense gratified if only the practice had

been established of measuring light in watts as mechanical and electrical

power are measured and as rate of flow of sound energy is sometimes speci-

fied. But as with rates of energy flow in the form of heat, an arbitrary unit

of light flux holds the field. For both heat and light the arbitrary basic

units were established before their numerical relations with the absolute

unit of power were known or, indeed, even imagined.

As with luminous flux, so with luminous intensity. Intensity, being

simply flux per unit area, might well be specified in absolute units as watts

per square meter instead of in candlepower. Since common practice does

not sanction the absolute unit, intensities may only be compared with

each other in terms of the purely arbitrary unit. The procedure of com-

paring intensities of sources is called photometry (“light measurement”),

and the instruments commonly used for the purpose are photometers.

Until recently, almost all photometers involved the visual matching of

illuminated areas. Though a human observer is very unreliable in any
direct comparison of different intensities, he is fairly consistent in the

ability to tell when two identical adjacent surfaces are of the same bright-

ness when illuminated from the same kind of source. Visual photometers

invariably utilize this ability, differing among themselves principally in the

means taken to adjust to equality the illumination from the two sources.

The most common arrangement is to place the two sources at different

distances until a match is secured. Another is to interpose a rotating sec-

tored wheel in the path of the more intense illumination, adjusting the pro-
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Fig. 216. A Common Type of Photometer Head of a Visual-Match Type

portion of the open to the closed sectors until a match is secured. Still

another way is by the use of polarizers such as those described in the chap-

ter on polarized light. The central feature in any visual-match type of

photometer is the optical device for juxtaposing the illuminated surfaces so

that both can be seen simultaneously. One arrangement for doing this, the

so-called Lummer-Brodhun photometer head, is illustrated in Figure 216.

The two lights being compared are off the scene, at measurable distances to

rjght and left. A system of reflecting prisms in the central box enables the

observer, upon applying his eye to the small oblique observing telescope, to

see the opposite sides of the white screen receiving the light from the re-

spective lamps, apparently side by side. The carriage is moved until a

visual match is secured. Then application of the inverse square law— a

questionable procedure unless the sources are small in comparison with the

distances involved — enables the ratio of the intensities of the two sources

in the given direction to be deduced.

The visual -match types of photometer have been rendered somewhat ob-

solete, however, by the photovoltaic type of light meter (page 572). Com-
parison of the pointer readings when the light meter is exposed to two
illuminants successively, at the same distance, gives a direct measure of the

relative intensities of the two sources. No adjustments to effect a match
are required, as in visual photometers.

The replacement of the old visual-match types of photometer by the

photovoltaic type brings its own problems, however. The chief problem

is manufacturing photovoltaic surfaces which possess the same sensitivities
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as the human eye to the various colors making up the light being measured.

The difficulty in solving that problem delayed the advent of the photovol-

taic photometer for several years.

Comparison of Luminous Fluxes

The fact has already been pointed out that the usual illuminant dis-

tributes its flux quite non-uniformly. Its candlepower, therefore, is quite

different when measured from different directions. It is desirable fre-

quently to know the total flux emitted by a lamp, regardless of how that

flux may be distributed. The preceding statements of luminous efficiencies

of various types of lamp involve total flux rather than candlepower. The
ordinary photometer, whether of the visual or the photovoltaic type, is not

capable of yielding such information directly. In the purely theoretical

case of a uniformly distributed flux, the candlepower in any direction mul-

tiplied by 4 w (the area of the sphere of unit radius having the lamp at its

center) yields the total flux. But since uniform distribution practically

never obtains, no relation can be specified between the candlepower and the

total flux from a given lamp. The value of the flux can be approximated

in such a case by measuring the candlepower in a sufficient number of

properly chosen directions, striking an average and then proceeding as in

the case of uniform distribution of flux.

The indirection involved in the approximation just described may be

avoided by the use of the so-called Ulbricht sphere. This is a hollow

sphere, of large diameter in comparison with the longest dimension of the

lamp being tested, coated on the inside with a special variety of highly dif-

fusing white paint, and having set into it at one point a window of trans-

lucent glass. The lamp to be measured is placed inside of the sphere and

between it and the window is placed a screen so that the direct rays from

the lamp do not strike the window. The theory of the device shows that

the brightness of the window is then directly proportional to the luminous

flux of the lamp, provided that certain precautions are observed.

Whatever type of photometer is used, the intensity or the flux of a lamp
under test becomes known only if that to which it is being compared is

known. The basic standard, the “new international candle,” has already

been described. Its use is, however, necessarily confined to the principal

standardizing laboratories. The common standard lamp is a specified

variety of incandescent electric light, duly aged so that it has settled down
to a constant performance, carefully guarded against mechanical and elec-

trical misuse, and operated at a specified voltage. Such lamps, calibrated

in terms of a basic standard, are securable from government standardizing

agencies, in this country the United States Bureau of Standards.

The Automobile Headlight

Next to interior illumination, highway lighting is the most urgent re-

quirement, at least in the United States. This is provided largely by flood*
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ing the roads ahead of the motor cars by lights on the cars themselves.

Though this is far from an ideal solution of the problem of highway il-

lumination, it is the only one feasible at present outside of populous areas.

When adequate illumination is provided in this way, however, the glare is

intolerable to approaching drivers. The central problem of automobile

headlighting is how to get sufficient illumination without glare.

A solution to this problem which is in sight through the agency of polar-

ized light is described in Chapter 35. It cannot be effected immediately,

however, and in the meantime the less complete method now available is

worthy of attention. Its principal defect is that it depends upon the initi-

ative of drivers in momentarily pointing their headlight beams slightly

downward out of consideration for the plight of other drivers approaching.

Though only a simple flick of a conveniently located switch is involved, a

disheartening proportion of those using the road are notably uncooperative

in this respect.

The point of departure for automobile headlighting, as for other types of

light projection, is the formation of a parallel beam. The standard device

for converting the divergent light from a concentrated source into a sub-

stantially parallel beam in this connection is the so-called paraboloidal re-

flector. The principle is developed on page 392. For headlighting pur-

poses the reflected beam from such a reflector is modified by its passage

through an appropriately contoured cover glass. The beam is spread

laterally by vertical flutes, and distributed vertically by small-angled prisms

cast into the glass.

The depression of the beam for the convenience of approaching motorists

is effected by a second filament in the head-

light bulb, located slightly above the main

filament. Figure 217 shows how this acts.

It represents the vertical mid-section of a

point source and paraboloidal reflector. The
dotted lines show the normals to the surface

at the points of incidence. The fact that

the angle of reflection has the same value as

the angle of incidence in each case will be

evident.

Some headlamps use the same artifice to

deflect the beam to the right. To produce

this, the second filament is mounted at the

left of the main filament, as viewed from the

driver’s seat. Figure 217 may also be used

to illustrate this effect by regarding it as a

horizontal section instead of a vertical. Hori-

zontal deflection, in headlamps which incor-

porate it, is invariably combined with depression. The second filament

in these lamps is thus above and to the left of the main filament viewed

from the rear.

Fig. 217. The Effect of
Displacing the Source on a
Beam Reflected from a
Paraboloid
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Questions for Self-Examination

1. What does the term “candlepower” mean? Is the luminous intensity of a lamp

increased by using a reflector?

2. Compare the wall with the lumen as units of luminous output of electric lamps.

3. How may the luminous output of lamps be compared with one another?

4. Describe the operation of the offset-filament type of automobile headlight.

Problems on Chapter 21

1. A 2-meter photometer of the intensity-matching variety shows equal illuminations

of the screen when the lamps being compared are 75 centimeters and 125 centimeters

distant respectively. If the 20-candlepower standard is the nearer of the two

lamps, what is the candlepower of the other? Why would this type of photometer

not give accurate results for frosted lamps? 56 cp.

2. On a line through two electric lights of candlepower 60 and 100 respectively, 10

feet apart, is a screen. Find the point between them where the two sides of the

screen will have the same intensity of illumination. Find also the point, not be-

tween the two, where the illumination of one side of the screen is the same as that

of each side before. 5.6 and 44 ft from the larger.

3. Three clerks have their desks side by side, 4 feet between centers. Eight feet

above the center desk is a 500-candlepower lamp. What is the illumination at the

center of each desk, taking obliquity into account? 7.8, 5.6 foot-candles.

4. If the desks of problem 3 are 4 feet X 2\ feet, how many lumens does each desk

receive, assuming the intensity at the center to be the average in each case? Does
this assumption possess an equal degree of validity for each desk? Assume also

that the flux from the lamp is uniformly distributed. 78 and 56.

5. A 100-watt incandescent lamp of the most efficient type delivers about 1200

lumens. The power equivalent of one lumen is about .0093 watt. What is the

efficiency of the lamp? 11 per cent.



CHAPTER 28

Image Formation

The Pinhole as an Image-Forming Device

Common experience with photography and with picture projection, as in

the cinema, has created an impression that for the production of images a

complicated and more or less expensive equipment of lenses and optical

accessories is required. While it is true that image-production is greatly

facilitated by these devices, they are by no means indispensable. Faithful

images may be formed, even photographs taken, with equipment no more

pretentious than a diaphragm pierced with a small pinhole, backed by

some sort of box or dark chamber (camera obscura) to block out stray

light. Figure 218 is a photograph taken in this way. The great disad-

vantage in this type of photography is the faintness of the image, with con-

sequent great length of exposure required. The accompanying photograph

required twenty minutes’ exposure in full sunlight.

Image formation by a pinhole depends on the circumstance that the

angle subtended by such an aperture at an object whose image is being

formed is invariably much smaller than the angle subtended by the object

itself at the aperture. Though pinhole image formation has been on record

ever since the time of Aristotle (7 :1 :333) the correct explanation for it was

not forthcoming until 1575 (81 :29), some two thousand years later.

Fig. 218. A Pinhole Photograph
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P

Fig. 219. The Principle of Pinhole Image Formation

Figure 219 shows the principle. Light from the point P of the arrow

constituting the object is confined to the area p on the screen and light

from the tail T to t. Because the aperture subtends a small angle at the

object, light from each extremity of the object (as well as for all points

between) is spread out over a small area on the screen Consequently a
pinhole image can never be sharp, but the sharpness can be increased up
to a certain limit by diminishing the size of the aperture. This is, however,

necessarily at the expense of brightness of the image. Tolerable sharpness

requires tiny apertures and hence a very dim image results. This is the

reason for the length of exposure required for the photograph of Figure 218.

Though the angle constituting the small cones of light radiating from

each extremity of the object of Figure 219 has been greatly exaggerated in

magnitude, it is still small in comparison with the angle TOP subtended by
the object at the aperture. Since the latter angle is also equal to top, the

angle subtended by the image at the aperture, it will be evident that the

“spread ” of the small cones of light must be very small indeed in compari-

son with the spread of the main cone spanning the entire image. That is,

the angle subtended by the aperture at the object must be small in com-
parison to that subtended by the object at the aperture if an image is to be
formed by a pinhole as was stated above.

The Birth of the Camera

The photographic camera is one of the simplest and most common types

of image-forming instrument. The name comes from the old Latin term
camera obscura

,

literally “dark chamber.” These instruments were origi-

nally used as aids in sketching to form images which could be traced.

Leonardo da Vinci presumably used such a device in the fifteenth century,

for in one of his manuscripts is a drawing of a camera obscura (116:0:404)

using a pinhole as the image-forming element. The first recorded use of a
lens for this purpose was in 1599, in the writing of one Giambattista della

Porta (99:363). Therein Porta invented the modem camera as far as the

working principle of its optical system was concerned, though the chem-
istry of light-sensitive substances to record the images thus produced was
not to come into existence for two and a half centuries.
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How We Localize Objects

From every luminous point, emitted light spreads fanwise. We “see”
these points because our eyes receive portions of the diverging cones of

light. Very early in life we learn to interpret the complex sensations pro-

duced by the receipt of light and to infer the locations of the objects emit-

ting it. Figure 220 represents a luminous point and the positions of two
pairs of eyes that are regarding it. The cone of light entering the pupil of

each eye is so narrow that it is pictured as a single ray. For the pair of eyes

nearest the source, the degree of divergence of the two rays is greater than

for the more distant pair. The nearer observer must “ cross ” his eyes more
sharply to converge them upon the light. A different degree of muscular

effort is involved in converging the eyes, corresponding to different dis-

tances. For normal persons possessing the use of both eyes, this muscular

effort is translated into estimates of distance and is the chief source of visual

information about distances of near-by objects. It enables the eyes to

perform the function of rapid-fire surveying instruments, giving quick and

accurate location of luminous points.

Common experience, however, deals, not with mere visible points, but

with extended objects. Such objects are aggregates of infinite numbers of

points and act accordingly in the process of vision. But to draw two or

more diverging rays from many points of an extended object, such as the

vertical arrow of Figure 22
1 ,
would produce such a confusion of lines as to

obscure the ideas that optical diagrams are intended to illustrate. Hence,

it is usual to illustrate rays proceeding from only two points of an object,

often the two extremities, as in this figure.

Moreover, it is not necessary that the objects under consideration shall

be self-luminous, as might perhaps be assumed from the foregoing discus-

sion. By far the greater proportion of the objects of our experience, on the

contrary, become visible by light not originating in themselves, but re-

flected more or less directly from surrounding sources. From the stand-

point of the optics involved, it is really a matter of indifference whether

light originates in an object under observation or is only reflected from it.

Fig. 220. How Wt Localize a
Luminous Point

Fig. 221. Visualizing an Extended
Object
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Fig. 222 . Optical System or Coincidence Range Finder

The Coincidence Range Finder

The precision with which objects can be located by binocular vision

diminishes rapidly with increasing distance. The effort of convergence

becomes so slight for distances of more than a few yards that, if it were not

supplemented by other means of estimating distances, we should be contin-

ually reaching for distant objects just as babies do.

Convergence is greater the greater the distance between the two eyes of

an observer. Accurate estimates of greater distances are facilitated by
artificially increasing (in effect) this interpupillary distance. In coincidence

rangefinders this
“
interpupillary distance” may be as great as seventy-five

feet. The optical system of such a device is illustrated in Figure 222. It

is used by artillerymen especially in naval practice. Smaller specimens are

used as accessories to cameras to aid in focusing. Since convergence of the

two lines of sight cannot be registered by muscular effort as in actual binoc-

ular vision, some other means must be used to correlate convergence with

distance. A common method is to compensate the difference in direction

of the two beams by interposing a prism in one of them. The optical sys-

tem is so arranged that two portions of the field, displaced while the com-

pensation is incomplete, are brought into coincidence (whence the name of

the instrument) when the prism compensates the binocular angle. The
distance of the target corresponding to that angle may then be read di-

rectly on a scale. Figure 223 shows the field of view of a coincidence range

finder both before and after adjustment has been effected.

Fig. 223 . Field or View op Coincidence Range Finder

The Stereoscope

As one views a scene from different positions, the relative positions of

foreground and background change. This is what produces the depth or
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relief characteristic of binocular vision. This relief can be provided in

photographs, from which it is normally absent, by use of the stereoscope .

This instrument requires two photographs side by side, one corresponding

to the scene as it appears to each eye. Then, usually by prisms in the

stereoscope, one eye of the observer is directed at one photograph and the

other at the other, so that the binocular effect is secured just as if the two

eyes were observing a single object directly from two different angles. The
result is a rather striking illusion of depth. The stereoscope, in this form,

is no longer commonly used, but it provided entertainment in the parlors of

our grandparents. Amusement is now a mass-production enterprise, and
the next step in stereoscopic vision will have to be taken in the field of

moving-picture projection. This is now in a fair way to be realized. It is

described on page 406.

How We See "Images”

Since perception of location is determined primarily by the directions

from which light enters the eyes, the apparent location of an object is af-

fected by modifying the course of the light as it proceeds from object to

observer. Such modifications can occur

in a number of ways, among the most

common being through the agencies of

mirrors and lenses. In a plane mirror,

for example, the scene is completely

transposed from where we know it to be.

Of the light radiating from an object

(Figure 224), two rays encounter a mirror

at such an angle as to be reflected into

the eyes of an observer. The angle of re-

flection for each of these rays is equal to

the angle of incidence, a law which must

have been known before men ever began

to write. The divergence of these rays after reflection is such that they seem

to have come along the dotted lines from a point as far behind the mirror

as the object is in front of it. Light has not actually radiated from this

point behind the mirror, it only appears to have done so because the eye has

been trained to “see” an object at the point from which light appears to be

diverging. This illusive reproduction of the object is what is termed an

image. An extension of Figure 224 to cover the case of an extended object

would show also that the image was the same size as the object upon reflec-

tion in a plane mirror.

Image Formation by Spherical Mirrors

If the mirror is curved instead of plane, the same general principle ap-

plies, though with modifications. The divergence of the two rays entering

the eyes is then affected by curvature of the mirror, so that the direction,

Fig. 224. Deceptive Localization
by Reflection
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distance, and size of the image is different than it would have been if seen

in a plane mirror. Thus in the convex mirror of Figure 225, the increased

divergence of the rays causes the image to seem closer than in a plane mir-

ror. An extension of Figure 225 to cover the case

of an extended object would show also that the

image was smaller than the object, instead of being

the same size, as in a plane mirror.

In a concave mirror, on the other hand, the de-

creased divergence of the reflected rays, as shown in

Figure 226, causes the image to appear farther

away than it would in a plane mirror, and the

image to appear larger than the object.

Distinction Between Real and Virtual Images

Unlike the case of the convex and plane mirrors,

however, the action of the concave mirror will be

different for different distances of the object. Fig-

ure 226 applies to cases in which the object is nearer to the mirror than is

the so-called principalfocus. If the object is outside of the principal focus,

a new phenomenon appears. In this case the divergence of the incident

rays is not merely decreased by the reflection as before, but is actually

reversed, the reflected rays becoming convergent (Figure 227). After pass-

ing through a focus the rays again diverge, and the observer then sees the

image, not back of the mirror, as previously, but in front of it. In this case

the light does not merely appear to have diverged from the image, as before;

it actually does diverge. For this reason, this type of image is termed real
y

in contrast to the former type termed virtual. The images of real objects

formed by plane and convex mirrors are always virtual, whereas the image

formed by a concave mirror may be real or virtual, depending upon the

distance of the object. It is sometimes of advantage to catch ” a real

image on a screen, as is done in the cinema and by cameras. Virtual im-

ages cannot be so caught.

Fig. 225 . Image Forma-
tion by Convex Mirror

Fio. 226 . Virtual Image by
Concave Mirror

Fig. 227 . Real Image by
Concave Mirror
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An inspection of Figures 220 to 227 will show that the location of an im-

age is determined by the intersection (real or virtual) of rays which orig-

inally diverged from the same point. In every case the rays have been

shown ultimately entering the eyes of an observer. It should now be pos-

sible to realize that the presence or absence of an observer has nothing to

do with the existence of the image. The condition for such existence is

merely the intersection (whether real or virtual) of rays of light originally

coming from the same point of the object. Henceforth the observer will be

dispensed with in all diagrams, and optical problems will be considered

solved when the appropriate intersections of rays have been effected.

The Principal Focus

One case of image formation is of particular importance— this is when
the object is a great distance away. At any one point of such an object the

mirror subtends a very small angle: so small that the rays reaching oppo-

site edges of the mirror from that point are all but parallel. The plane in

which parallel rays are brought to a focus is termed the principalfocal plane

of the mirror. The images formed by the mirror of all distant objects lie

substantially in this plane. Thus
the image of the sun formed by a

concave mirror, as in the burning

glasses of antiquity, lies in the prin-

cipal focal plane. Objects which are

so far away that their images lie sub-

stantially in the principal focal plane

are said to be infinitely distant.

The image of an infinitely distant

point-object located on the axis will

also be on the axis. This point is

termed the principal focus.

The advantage of bringing the images of distant and otherwise inacces-

sible objects within range in this way is, of course, that thereupon they may
be viewed as minutely as desired. It is even possible to apply a magnifying

glass to them, as one could do for an actual object close at hand. This com-

bination of a real image at the principal focus of a mirror or lens with a mag-

nifying glass applied to it constitutes the working principle of the telescope

and of the compound microscope, both of which will be more fully discussed

in Chapter 30.

Fig. 228 . Image of an “ Infinitely
Distant” Object Formed by Concave
Mirror
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Questions for Self-Examination

1. Describe the development of the idea of image formation by pinhole.

2. Trace the evolution of the optical features of the camera.

3. Describe how we localize objects by binocular vision.

4. Tell the principle of the coincidence range finder.

5. Show how to locate the image of an object formed by (a) a plane mirror, (b) a

convex mirror, (c

)

a concave mirror; the last for a distant object and a near-by

object.

6. Distinguish between real and virtual images and give an example of the formation

of each with the aid of a diagram.

Problems on Chapter 28

1. If cameras had pinholes instead of lenses, would they have to be focused?

2. Where would be the image if a point-object were placed at the center of curvature

of a spherical mirror? At the principal focus?

3. Would light, initially parallel, then reflected successively from a convex mirror and

a concave mirror of the same radius, necessarily be parallel again? Explain.

4. Light converging immediately after reflection forms a real image; diverging, a

virtual image. Light from a (real) object diverges as it strikes a mirror. What
could be the meaning of the term “ virtual object”?
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Spherical Reflecting and Refracting Surfaces

The Principal Focus of the Concave Mirror

A ray of light, parallel to the axis, strikes a concave spherical mirror as

shown in Figure 229. The angle of incidence (that is, the angle with the

normal) is a, and the angle of reflection, therefore, also has the value a .

Since the normal makes an angle a with the incident ray, it must also

make an angle a with the axis, to which the incident ray is parallel by

hypothesis. Again, since the reflected ray makes an angle 2 a with the

incident ray, it must also make an angle 2 a with the axis to which the

incident ray is parallel. But the angle a between the normal and the

axis has the value in radians of arc/radius, and the angle 2 a between the

reflected ray and the axis has the approximate value arc1/focus.

Therefore,

- = «. and - = 2 a, f = -• (1)
r J l

Thus the principal focus of a spherical mirror lies on the axis midway be-

tween the mirror and its center of curvature, and the principal focal length

is, therefore, half the radius of curvature. If the distant object lies of! the

axis, the image, while not now at the focus, will be found in or very near to

the focal plane, that is, the plane through the focus perpendicular to the

axis, so that equation (1) still applies (Fig. 230).

1 Strictly, the arc a pertains only to the angle a, having the radius r. An arc having the

radius / would be of slightly different length, but for mirrors ordinarily used in optical systems

the angle a is very small and the difference is negligible.

Fig. 229. The Position op the
Principal Focus

Fig. 230. The Position op the
Opp-Axis Image
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Fig. 231. The Concept of the
Focal Plane

Fig. 232. The Image in the Focal
Plane

This may be made evident by imagining the mirror rotated about its

center of curvature until the axis is parallel to the rays from the point in

question (Fig. 231). As long as the angle of such rotation is small, it will

be evident that the image will be very close to the original focal plane.

This condition, or more accurately, the corresponding condition for

image formation by a lens, is realized in focusing a camera on a distant

large object, such, for example, as a tree. Let a tree (Fig. 232) be far

enough away from a concave mirror so that the two extreme rays from any

point of it, such as the tip, are nearly parallel and, hence, converge after

reflection almost exactly in the principal focal plane. This does not mean
that rays from another point, such as the base, will be parallel to those

from the tip. If they were, no image would be formed. All rays would

converge to the same point, a type of action of which no mirror or lens is

capable, popular opinion to the contrary notwithstanding. Instead all the

rays from the base are converged at a different point from those originating

at the tip, though still in the focal plane. Thus rays from the tip and the

base are separately converged, and the corresponding action of light origi-

nating at each point between results in the formation of an image of the

tree.

The Object-Image Relation

If the object, while still at some distance from the mirror, is close enough

so that the extreme rays from any point of it are no longer nearly parallel,

the image will not be in the principal focal plane. To find the position of

Fig. 233. The Geometry of the
Object-Image Relation

the image, assume a point object O
(Fig. 233) on the axis of a mirror

having the point C as its center of

curvature. Let the distance of the

object from the mirror be u, that of

the image be v
,
and the radius of

curvature of the mirror be r. Now
note that

ft - 6 + y and y ** 9 + a> (2)
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Eliminating 6 between these two equations,

a + j3 = 2 y. (3)

But as in the consideration of Figure 229, for the small angles usually in-

volved,

a == -> P == -> and y = -• (4)
* u * v r

Hence, substituting these values in equation (3),

or, by virtue of equation (1), - + - =uvr u v f
(5 )

Equation (5) makes it possible to find the distance v of the image from the

mirror, knowing that of the object u and the radius r of the mirror. It will

be immediately evident that the first two of equations (4) are approxima-

tions and that consequently equation (5) is not rigorously correct. It is,

however, so nearly correct that it is very useful in almost all practical

cases. The closeness of approximation is greater as the angles assume

smaller and smaller values.

As is readily seen from Figure 232, object and image are interchangeable.

This means that a clear image of I could be seen at 0, as well as a clear

image of O at I. At each point the image of an object at the other would
be “in focus.

,, The two points are termed conjugate foci of the mirror.

There are obviously an infinite number of pairs of such conjugate foci for

a given mirror.

If, in the first form of equation (5), u is assigned a large value, corre-

sponding to a very distant object, the value of 1/u becomes very small,

approaching zero as u increases. The corresponding distance of the image

is termed the principal focal length, /, of the mirror. Making these sub-

stitutions in equation (5),

This is equation (1). It thus appears that the values 00 and r/2 for u and

v respectively (or the reverse) are simply one of the infinite number of pairs

of conjugal focal lengths of a mirror.

Robert Smith 9
s Graphical Method for Reflection

It is often convenient to be able to make a quick graphical determination

of the location of an optical image. The simplest way of doing this was
devised by Robert Smith, one of Newton’s early successors at Cambridge

University. It has already been observed that the image formed by a

mirror is located at whatever point the rays intersect after reflection (page

305). It is always possible to trace two rays by making the angles of

reflection equal to the angles of incidence and thus to establish the point
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Fig. 234 . Locating the Image by An- Fig. 235 . Locating the Image by
gles of Incidence and Reflection Robert Smith’s Construction

of intersection and, hence, to locate the image (Fig. 234). The method is

laborious, however, and Smith simplified it immensely by taking advantage

of some very elementary facts. Of the infinite number of rays radiated

from the object, three of them are particularly easy to trace (Fig. 235):

(1) The ray OAI from the object which is parallel to the axis is reflected

through the principal focus.

(2) The ray OCI which passes through the center of curvature is re-

flected back along itself.

(3) The ray OFI which passes through the principal focus before striking

the mirror is reflected parallel to the axis.

Any two of these rays may be used to make a quick graphical determina-

tion of the location of an image. The laying-out of angles, the laborious

part of ray-tracing, is entirely eliminated. Smith used only the first two
of the foregoing rays. The third is a later addition, equally useful, both as

a check and under certain circumstances as a substitute for one of the

preceding.

Lateral Magnification

The relation of the size of the image to that of the object, termed the

lateral magnification
,
is simply the relation of the corresponding distances

from the mirror, as may be seen by reference to Figure 236. Suppose the

image of the point 0 of an arrow is found to be located at 7. One of the

rays forming this image could be

OAI
9
where the angles of inci-

dence and reflection, a, are of

course equal. Because of the

equality of these angles, and the

consequent similarity of the two
triangles,

Fig. 236. Relation of the Image Size

to the Object Size

BI AB
CO " AC
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BI AB
But— is the lateral magnification (to be termed m) and— is the relation

C(/ A L

of the distance of the image from the mirror to that of the object. For the

former the notation v has been adopted, and for the latter u. Designating

also the inversion of the image by a negative sign (whence the lateral

magnification for an erect image would be +),

m =
u

(6)

Suppose, for example, that an object

is 10 inches distant from a concave mir-

ror of focal length 6 inches. From
equation (5)

1 ,1 i

Tn + - ss
A’ orVBS 15.

10 v 6

H-

From equation (6)

» - - io =

This is illustrated in Figure 237, 0 be-

ing the object and I the image. The
positions of the object and image might

have been interchanged, being conju-

gate foci of the mirror, whereupon, applying the same two equations,

Fig. 237. Lateral Magnification
of a Spherical Mirror

i
.

i i

m = — or — f

.

For this case the image is closer to the mirror and smaller than the object,

and still inverted. This is always the case whenever the object is outside

of the center of curvature of a concave mirror, while the image is farther

from the mirror and larger if the object is between the center of curvature

and the principal focus.

Virtual Images by Concave Mirror

The preceding treatment of the con-

cave mirror has involved only cases in

which the object was “ outside

”

(farther

from the mirror than) the principal

focus. An important case is that in

which the object is “ inside” of the

principal focus. It is illustrated in Fig-

ure 238. It will be noted that in this

case the reflected rays do not converge
Fig. 238. A Virtual Image by a

Concave Mirror
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to a focus as before. On the contrary, they diverge. Hence, as described

in the preceding chapter (pages 305-06), the image is virtual instead of

real. This case can be dealt with in the same way as that for a more

distant object.

Consider the case of an object 4 inches away from a concave mirror of

focal length 6 inches. Substituting in the second form of equation (5),

1 1 1 1 1 1 ,

- + - = 7 + - = 7 ,
whence v = — 12,

u v f 4 v 6

A comparison of this result with Figure 238 indicates that the significance

of the negative sign of v is that the image lies behind the mirror and, hence,

is virtual. The image is also larger than the object, the lateral magnifica-

tion being, from equation (6),

m = + \2- = 3.

The positive sign of m is associated with the fact that the image is erect.

Thus a concave mirror may produce either a real or a virtual image, real

if the object lies outside of the principal focus, virtual if the object lies

inside of the principal focus. The virtual image is always larger than the

object for the concave mirror. Dentists, having to use mirrors of neces-

sity, often use concave mirrors in just this way. Shaving mirrors are

sometimes made concave, with a large radius of curvature, for the same

reason.

The Convex Mirror

The action of a convex mirror lends itself to the same analysis as has

just been made of that of the concave mirror. The formation of the image

of a point source by such a mirror was described in the preceding chapter

(page 306). Figure 239 shows graphically the case of an extended object.

The image is virtual, erect, and smaller than the object. This is always

true of the image of any real object formed by a convex mirror, a fact which

renders the treatment of the convex mirror simpler than that of the con-

cave.

Equation (5) may be applied to this case by regarding the radius of

curvature and the principal focal length

as negative. Thus for the numerical

values r = — 12 (and, hence, / « — 6)

30,and u

1
+ l

30 p
- 1; whence v <

o
-5

Fig. 239. The Image Produced by
a Convex Mirror

and from equation (6),

-5
— «- s

a

30
tn » - 46
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Convex mirrors are not very widely used. Their principal utility is as

tear-view mirrors for automobiles, but motorists seem to prefer plane

mirrors for that purpose, notwithstanding the limited field of view which

plane mirrors provide. Convex mirrors have, however, been recognized

as image-forming devices for a long time. Euclid treated them at length

in his Catoptrics
,
telling in proposition 21 that the images are smaller than

the objects, and Ptolemy experimentally identified their “ virtual foci” in

the second century a.d. (100:69). Convex mirrors have been treated here

principally for the sake of completeness of the outline and as a simple

introduction to some optical principles.

Object-Image Relation for Refraction; Object in Air

To trace a ray from a point object O in the air to its image I in glass of

index of refraction /x, the surface of the glass being the section of a sphere

of radius r, note that in Figure 240, by definition of index of refraction,

sin 0 _ . . . _ .

/x = — Limiting the case to that
sin <f>

of angles small enough so that it can

be said without appreciable error that

sin 6 . 0 0 x-v

-r—:
= 7, then M = 7- (7)

sin 4> <p <(>

But from the figure

6 = a + 7, and

<t> + 18 = y, or <j> =* y — (3.

Substitute (8) and (9) in (7).

a + y

(8)

(9)

Fig. 240 . The Image Produced by
a Single Refracting Surface

(Object in air.)

7-/3
> whence a + /x/3 = (jjl — 1)7. (10)

Because of the smallness of the angles to which this treatment is limited,

and of the corollary that the arc PD is not appreciably different from the

perpendicular distance to D from the axis, substitutions may be made in

equation (10) as follows, using u and v for object distance and image dis-

tance respectively as before:

PD . PD , is PD— + M— = (fi - 1)
—

u v r

or i + ff_/L=
« v r

1

(ID

This is the object-image relation for a spherical refracting surface corre-

sponding to equation (5) for a spherical reflecting surface. If the index of

refraction {jl and the radius r of the spherical surface are known, the image

distance v can be computed for any given object distance u with the aid

of equation (11). This relation, in a somewhat different form, was discov-

ered by Huygens in 1703 (73:55).
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A spherical refracting surface has two principal focal lengths instead of

one, as does the mirror. Let u approach infinity; then, the corresponding

value of v will be found to be

/*-
M - 1

(12)

where /„ indicates the principal focal length in glass of index /z. This re-

lation, in a somewhat different form, was discovered by Kepler in 1611.

It is really a special case of Huygens’ relation, though discovered a cen-

tury earlier (130:) :204). Letting v approach infinity, the corresponding

value of u will be found to be

fi- ns)

where fi indicates the principal focal length in air of index unity.

Equations (12) and (13) correspond to equation (1) for spherical mirrors.

Graphical Method for Refraction

A graphical method of locating the image corresponding to any object

distance is thus suggested. This method corresponds to that of Figure 235

for a mirror and, like that case, is due to Robert Smith.

(1) The ray OAI from the object which is parallel to the axis is refracted

through the principal focus within the glass.

(2) The ray OCI which is directed toward the center of curvature passes

through undeviated.

(3) The ray OFI which passes through the principal focus in air is re-

fracted parallel to the axis.

Any two of these rays may be used to make a quick graphical determina-

tion of the location of an image. As in the case of the mirror, Smith used

only the first two rays, OAI and OCI .

Lateral Magnification

The lateral magnification of a spherical refracting surface may be de-

duced by reference to Figure 242. With the image IB of the object OA
located by the graphical method or with the help of equation (11), draw
the ray AP to the vertex (as the intersection of the axis with the optical sur-

Fig. 241. The Image Produced by Re-
fraction; Robert Smith’s Construction

A

Fig. 242. The Lateral Magnification
of a Spherical Refracting Surface
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face is termed) and then continue it to B
,
the tip of the image as already

located. The angle <f>
will then be the angle of refraction corresponding to

0 as the angle of incidence. The two angles are related by Sncl’s law (page

6
290), which in this case may be approximated as ju. = and, therefore,

0
0 1“ = ~, taking advantage once more of the smallness of the angles. There-
u 9*

fore, by the same type of approximation

IB
=

<f> and
OA

= e

,

(14)

whence the magnification m is given by

_ IB _ (f>v
__

1 v

OA du \x u] \

Equation (14) is the expression for the magnification of a spherical refract-

ing surface corresponding to equation (6) for a spherical mirror. The minus
sign is attached, as in equation (5), to indicate the inversion of the image.

To illustrate the use of equations (11) and (14), Tables 1 and 2 show

object and image distances produced by a con-

verging surface, the index of refraction being 1.5.

The radius of curvature is +4 in Table 1 and —4
in Table 2. The student will compute the corre-

sponding values of v and m. The two focal lengths

will be seen by equations (12) and (13) to have the

values 12 and 8 respectively. The significance of

the negative signs will not be hard to interpret.

To clarify them it is suggested that each case be

represented by a simple diagram, the position and

relative size of object and image being indicated.

General rules on the sign convention will be found

on pages 318-19.

u V m
00 12 0

24 18
i“ 2

16 24 - 1

12 36 -2
10 60 — 4

8 00 00

6 -36 + 4

4 - 12 + 2

0 0 + 1

Table 1

Object-Image Relation for Refraction; Object in Glass

Another case arises immediately out of the above, that is, its exact re-

versal— the object being within the

glass. The object-image relation

could be derived in the.same way as

equation (11) was, but it will be sim-

pler merely to interchange u with v

and ix with 1 in equation (11). From
this comes the relation

t + l.Lli!. (15)
u v r

Fig. 243. The Image Produced bv a
Single Refracting Surface

(Object in glass.)r
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Also, the equation being derived in the same way that equation (14) was,

v
m - — ti-

ll

(16)

It will be evident that the expressions for the principal focal lengths for

this case, corresponding to equations (12) and (13) for the case of the object

in air, are

(17)

and (18)

For this case, as illustrated in Figure 243, the radius of curvature must be

considered negative (see below).

A table of image distances, v, and magnifi-

cations, m, for various object distances, «, in

this case is appended. As in the previous

case, the values should be checked and lo-

cated on diagrams to get a clear picture of

the action of such a refracting surface. At
first thought the case of the object being em-
bedded in an optically dense medium may
seem rather bizarre. One has only to recall,

however, that these conditions are fulfilled

by anything embedded in glass or immersed

in a globe of water or by a plano-convex lens

lying, flat side down, on a printed page which

is to be magnified.

Sign Conventions

Equations (11) and (IS) apply only to the case of a convex glass surface.

They may be made to apply equally to concave surfaces, by establishing

some simple conventions as to sign. Unfortunately, complete uniformity

on the matter of sign conventions in optics is far from realized, but the

following, which are perhaps as common as any, possess some advantages

of simplicity and consistency.

1. The radius of curvature r of a spherical refracting surface will be con-

sidered positive when the surface is convex to the incident light and nega-

tive when concave to the incident light. The four possible cases are illus-

trated in Figure 244. The first two will be recognized as having been dis-

cussed, the first being covered by equation (11) and the second by equation

(IS). The same two equations may be made to apply without change to

the concave surfaces represented in the third and fourth cases respectively

u V m
oo 8 0

36 12
x
2

24 16 - 1

18 24 -2
IS 40 -4
12 00 00

10 -40 + 6

8 - 16 + 3

6 - 8 + 2

2 - If + lj

0 0 + 1

Table 2
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Fig. 244. Sign Convention for Fig. 245. Sign Convention for
Radius of Curvature Principal Focal Lengths

(Arrow indicates direction of light.)

by giving the appropriate sign to the numerical value of r which is sub-
stituted in these equations.

2. The two focal lengths / of a spherical refracting surface will be con-
sidered positive when a parallel beam is rendered convergent in crossing the
surface and negative when a parallel beam is rendered divergent (Fig. 245).

3. Image distances v will be measured from the vertex of the refracting

surface and will be considered positive when in the direction that the light

is traveling and negative when in the opposite direction (Fig. 246). This
has the effect of placing real images at positive distances from their re-

spective surfaces, and virtual images at negative distances. Both cases

are in evidence in Table 1 and Table 2.

4. Object distances u will be measured from the vertex of the refracting

surface and will be considered positive when in the direction opposite to

that in which the light is traveling and negative when in the same direc-

tion as the light is traveling (see Tables 3 and 4). Negative values occur
frequently when two or more successive refracting surfaces are involved.

When k is negative the object is said to be virtual. The distinction be-

tween real and virtual objects appears in Figure 247. Some optical acces-

sory, such as an auxiliary lens or refracting surface, which is not shown, is

clearly required to produce the converging beam associated with a virtual

object.

Image formation by concave refracting surfaces is illustrated in Tables 3

and 4. The first table is for an object in air, the second for an object em-
bedded in glass (compare the third and fourth cases illustrated in Figure

245). For both cases, the index of refraction n is 1.5 as for Tables 1 and 2.
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Fig. 246. Sign Convention for Fig. 247. Sign Convention for
Image Distances Object Distances

The radius of curvature is taken as — 4 and + 4 in the respective tables.

Negative values of u are included. In both cases, a scale diagram should
be made of the surface, the object, and the image. Table 3 is computed
from equations (11) and (14), and Table 4 from equations (15) and (16).

u V m u V m
co - 12 0 oo - 8 0

8 - 6 + •§ 12 - 4 + i

4 - 4 + § 0 0 + 1

0 0 + 1 - 4 + 4 + t
- 2 + 4 + * - 6 + 8 + 2
- 4 + 12 + 2 - 12 oo 00

- 8 00 oo - 18 - 24 -2
- 16 — 24 - 1 -24 - 16 - 1

-24 - 18

Table 3

-h - 36 - 12

Table 4

-1

Questions for Self-Examination

1. What is a “ principal focus” and what were the first recorded recognitions of it?

2. Clarify the common but incorrect statement that all rays from an “infinitely

distant” object are parallel.

3. Describe Robert Smiths simplified method of locating images formed by a concave

mirror and by a convex mirror.
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4. An object is 15 inches away from a concave mirror of focal length 6 inches. Cal-

culate the image distance. Also make a sketch showing how to locate the image
graphically. Repeat when the object distance is 4.

5. What does a negative sign mean when applied to (a) focal length, (ft) magnifica-

tion, (c) image distance, (<d) object distance, (e) radius of curvature?

Problems on Chapter 29

1. Light is incident on a water surface at 60° with the vertical. What is the angle

of refraction? For water jjl - 4/3. 40°.

2. Through what angle is light deviated when incident upon water obliquely at 45°?

3. How deep is a tank of water which is estimated at 4 feet viewed directly from above?

5.3 ft.

4. A microscope is focused on a paper surface. A piece of plate glass is interposed.

To bring the paper back into focus, the microscope is raised 4 millimeters. The
upper surface of the plate is then brought into focus by raising the microscope an-

other 6 millimeters. What is the index of refraction of the glass? 1.7.

5. If light has 50,000 wave-lengths to the inch in air, how many does it have in water?

67,000.

6. An object is placed u centimeters from a concave u r

mirror of radius r centimeters. What is the dis- 24 12

tance v in centimeters of the image from the mir- 12 12

ror? What is the magnification /3? Locate the 4 12

image on a diagram. 0 12

7. An object is placed u centimeters from a convex u r V &
mirror of radius r centimeters. What is the dis- 24 - 12

tance v in centimeters of the image from the mir- 12 - 12 - 4 -5

ror? What is the magnification /?? Locate the 4 - 12 - 2 f 1
image on a diagram. 0 - 12 0 1

8. See page 317, Table 1.

9. See page 318, Table 2.

10. See page 320, Table 3.

11. Sec page 320, Table 4.



CHAPTER 30

Simple Lenses and Their Aberrations

The Development of Lenses

In southern Europe and in the Orient a peculiar type of bean known as

the lentil is cultivated. Instead of being kidney-shaped, as are most of the

beans we know, it is more like a flattened and sharp-edged doorknob. Its

shape resembles a convex-sided lens enough so that it need not surprise us

that the English word lens is simply the Latin word for lentil.

It is impossible to say who made the first lenses, which were presumably

used as burning-glasses. In any case, the first comprehension of the way
in which lenses act, the point of principal present importance, did not come
until modern times. The first treatment of the subject was at the hands of

Alhazen in the eleventh century, though it was clumsy and very incom-

plete. This treatment was considerably improved by Roger Bacon in the

thirteenth century, especially as regards single refracting surfaces. Kepler

in the early seventeenth century dealt with plano-convex and equibicon-

vex lenses almost in modern terms (130:1 :203). The growth of compre-

hension of the action of lenses was rapid from that time on and readied

substantially its present state within a century of Kepler’s time*

Image Formation by Lenses

In the treatment of spherical reflecting and refracting surfaces in the

preceding chapter, the principal objective was the development of relations

between the object distances, u
}
the image distances, v

,
and the radii of

curvature, r. These relations took the forms of equations (5), (11), and

(15) of Chapter 29. There are similar relations for lenses. Perhaps the

most useful of these is the object-image relation
,

1
+

1 - 1
- n *>>
U V J

(1)

an equation which has its exact counterpart in the second form of equation

(5) of the preceding chapter, applying to spherical mirrors. The simplest

way to derive this equation is to utilize once more Robert Smith’s method
of locating an image (Fig. 248) . As with single reflecting or refracting sur-

faces, an incident ray initially parallel to the axis will, after leaving the

lens, pass through a point on the axis which is termed the principal focus,

the ray OAFI of Figure 248.
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Fig. 248. The Geometry of the Ob- Fig. 249. Robert Smith’s Construc-
ject-Image Relation for a Converg- tion for a Converging Lens
ing Lens

Under certain conditions, one of which is that all angles involved are

small, a ray through the center of the lens will not be deviated. Hence,

OCI will qualifiedly be regarded as a straight line. By pairs of similar

triangles,

whence

VI
O'O

CV
CO'

CV VI VI

COr
Als° CA ~ O'O

FV v v-f
CF * °r

u f '

FV
CF*

from which comes by simple algebra

i
.
i_i

U V f’

which is equation (1 ) above.

A lens has two focal lengths, one on each side, just as does a spherical

refracting surface. But for the lens the two focal lengths are equal as long

as the mediums on both sides of it are the same. For the spherical refract-

ing surface, the ratio of its two focal lengths was simply the ratio of the

refractive indices of the mediums on the two sides of the surface. In a

sense this is also true of the lens as ordinarily used, the medium on each

side being air.

VI CV
In the first proportion of the foregoing derivation, namely = ^y>

the left-hand fraction represents the ratio of the size of the image to the

size of the object and therefore represents the lateral magnification m.

Substituting the values for the right-hand fraction, the equation becomes

(2)

The negative sign is interpolated to describe the inversion of the image

when both v and u are positive.

Thus both the object-image relation given in equation (1) and the expres-
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Fig. 250
Action of Converging Lens Action of Diverging Lens

sion for the magnification given in equation (2) are the same for the con-

verging lens as for the concave mirror. For the lens, as for the mirror—
and, indeed, as for the spherical refracting surface as well— the same rela-

tions may be applied to other forms, due regard being given to the sign

conventions stated on pages 318 ff. The two principal types of lens, cor-

responding to concave and convex mirrors, are the converging and the

diverging types. The names arise from the effect on a beam of light con-

sisting initially of parallel rays. The shape of converging lenses is char-

acterized by greater thickness at the center than at the edges, and that of

diverging lenses by greater thickness at the edges than at the center. A
parallel beam is brought to a point by a converging lens and spread, as

though it were diverging from a point, by a diverging lens, as shown in

Figure 250.

In treating the concave mirror, two cases were emphasized, namely, that

in which the object was outside of the principal focus and that in which it

was inside. The same two cases exist in the action of the converging lens.

Object dis-

tance from

first lens

First mag-
nification

Intermediate

image distance

from second lens

Final image
distance from

second lens

Second mag-
nification

Over-all

magnifica-

tion

00 4 3 — 4 3 - ? + 4
—

+ 12 + 4 1

3 4- 2 - tt + A - A
+ 7i + 5 — 2

.3 + 1 - A 4 A - 1
4- 6 4- 6 - 1 0 41 - 1

+ 5 + n - n - ij + 1 + « - i
4 4 4* 12 - 3 - 6 + 18 +3 _ 9

+ 32 + ts - 4 - 9 00 — —
4- 3* + 21 - 6 - 15 - 22i -ii + 9
4 31 + 39 - 12 — 33 - 12# - * + <

4* 3 00 — 00 - 9 — —
4- 2 \ - 15 4 6 4-21 — 6A + A • + f
4- H - 3 4 2 4 9 - 41 + 1 + 1

0 0 4- 1 4 6 - 31 + 1 + 1
- 3 + 1* 4- i 4 41 - 3 + f + 1
- 12 4- 2i 4* i 4 3* - 2f + t + 1
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It could, in fact, be illustrated by the identical numerical examples that

were invoked in the case of the concave mirror. To avoid repetition, an

example will be given which involves both a converging and a diverging

lens acting together. The image formed by the converging lens is to be

regarded as the object for the diverging lens. The example requires that

the location of the final image formed by the second (diverging) lens be

found for each position of an object

The two lenses have respective focal

lengths + 8 and — 9 and are sepa-

rated by a distance 6.

The values in the accompanying

table should all be checked by cal-

culation, using only the object dis-

tances in the first column as given,

together with the focal lengths and

separation of the lenses. I nterpreta-

tion of the results will be facilitated

by locating the object and the two

images on a separate diagram to

scale for each row of calculated val-

ues. If any difficulty is encountered

:

object distance found in the first and

in front of the first (converging) lens.

Fig. 251. Robert Smith’s Construc-
tion tor a Diverging Lens

n interpreting the negative values of

fourth columns, see page 319.

Shapes of Lenses

It will be evident that a given focal length of a lens can be secured in an

indefinite number of ways. Not only can index of refraction be varied by

proper choices of glass, but even for a given quality of glass, a lens can have

a great variety of shapes, all producing the same focal length. Lenses are

almost invariably bounded by spherical (or sometimes plane) surfaces, a

plane being really a portion of a spherical surface of infinite radius. Thus,

converging lenses may be formed by any of the combinations of spherical

surfaces shown in Figure 252. The focal length might be the same in every

case, notwithstanding the differences in shape. Similarly diverging lenses

may be formed by any of the combinations of spherical surfaces shown in

Figure 253.

Fig. 252. Shapes of Converging
Lens

Fig. 253. Shapes of Diverging
Lens
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The Lens-Maker9
s Equation

Little has been said up to this point as to any relation between focal

lengths of lenses, their shapes, and the qualities of glass of which they are

made. For concave mirrors a very simple relation between focal length

and radius of curvature was found (page 309). Similarly, for spherical

refracting surfaces a less simple pair of equations was established, giving

focal length in terms of radius of curvature and index of refraction (pages

316, 318). A similar relation will now be sought for lenses.

In 1693, Edmund Halley, Newton’s friend and patron, derived a relation

that has proven to be exceedingly useful. 1 With its aid the focal length/ of

a lens can be computed if the radii of curvature ri and y<l and index of

refraction ja of the glass are known. It is customarily stated in the form

r n
(n r“)

<3)

This is commonly called the lens-maker’s equation for obvious reasons. It

applies only to a “thin” lens, that is, a lens whose thickness is sufficiently

small in comparison with its radii of curvature and object and image dis-

tances so that it may be disregarded. This is a justifiable approximation

for most lenses. There is a corresponding equation for lenses that are not

“thin,” but it is less simple and will not be treated here.

With the aid of equation (3) an optician can determine the radii to which

the surface of a lens may be ground to produce a required focal length. It

applies to lenses in the same way that equation (1) of the preceding chapter

did to spherical mirrors and that equations (12), (13), (17), and (18) of the

same chapter did to spherical refracting surfaces. It has already been

pointed out that a lens of any given focal length may possess any one of

many different shapes. There is an indefinite number of combinations of

fi, r2 ,
and fi which will produce the same value of/. The great utility of the

choice of shapes thus available to the manufacturing optician will be

pointed out in another connection.

Two special cases of the lens-maker’s equation had been developed by
Kepler nearly a century before (65 :123). He had observed that light was
so bent when it passed through glass at angles less than 30° from per-

pendicularity to the surface, that angles of refraction were approximately

two thirds of the corresponding angles of incidence. This foreshadowed

the modern concept of index of refraction and in effect assigned to the re-

fractive index of glass an approximate value §. Kepler then deduced geo-

metrically that the focal length of an equibiconvex lens was equal to the

common radius of curvature and that for a plano-convex lens it was equal

to twice the radius of the spherical side. Both of these discoveries of Kep-
ler will be seen to be embodied in the lens-maker’s equation. Assigning to

H the value •£ and setting r2 = — r\ for the equibiconvex lens, the equation
1 Philosophical Transactions (abridged), 5, 593 (1693).
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becomes / = rx . If r2 = is similarly set for the second face of a plano-
convex lens, the equation becomes / = 2 rx .

For equibiconcave and for plano-concave lenses the same approximate
values of the focal lengths will be found, though of course with negative
signs.

Derivation of the Lens-Maker’s Equation

Halley derived his equation somewhat as follows. A lens is obviously
a combination of two spherical refracting surfaces acting in succession.

Therefore, the course of a ray acted on by a lens may be followed by using
equations (11) and (15) of the preceding chapter successively. If the

object is infinitely distant, the corresponding image distance will represent

the principal focal length of the lens. In that case equation (12) replaces

equation (11). This is the procedure that will be followed in deriving the

lens-maker’s equation.

The image of an infinitely distant

object (see Fig. 254) as formed by the

first surface would be at a distance

M - 1

by equation (12) of Chapter 29, if the

second surface did not intervene.
Fig. 254. The Lens Regarded as Two

This expression represents the distance Successive Refracting Surfaces

(negative, of course) of the inter-

mediate image from the second surface, except for the deduction to be

made for the thickness of the lens. By limiting the derivation to the case

of a “thin” lens, this distance may be taken as the object distance for the

second surface.

Accordingly, the rays incident on the second surface of the lens of Figure

254 strike it as though they originated from a point at a distance.

Substitute this for u in equation (15) of Chapter 29, and also substitute

/ for v
,
since the final image will be that of an infinitely distant object.

Then

M ,1 1 ~ M

m. f n
m-1

ft being the radius of the second surface and / the focal length of the lens.

Hence,

(M - 1) (fi
- fi)
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or as more commonly stated,

1

7
Cm- l)

which is the lens-maker’s equation.

The Limitation to Thin Lenses

The limitation of the lens-maker’s equation to “thin” lenses has been

commented upon. It would be necessary to modify the equation some-

what for lenses whose thickness was not negligible. While these modifica-

tions would not be at all difficult to introduce, it does not seem appropriate

to do it here. (See 121 :25.) Halley’s comments in this connection may be

of interest.1 He says:

But if you are so curious to consider the Thickness (/) (which is seldom

worth accounting for), in the case of parallel Rays falling on a Plano-Convex

of Glass, if the plane-side be toward the Object, t does occasion no Differ-

ence, but the Focal Distance f - 2 r. But when the Convex Side is toward

the Object, it is contracted to 2 r — §/; so that the Focus is nearer by §/.

If the Lens be Double Convex, the Difference is less; if a Meniscus, greater.

If the Convexity on both sides be equal, the Focal Length is about it

shorter than when i = 0. In a Meniscus, the Concave side towards the

Object increases the Focal Length, but the Convex towards the Object

diminishes it.

Disregarding the thickness of the lens — as is commonly done to simplify

the treatment of it— thus introduces a limitation to the accuracy of the

resulting theory. Whether this theory fits the facts for a given lens used

in a given way depends on whether the assumption of negligibility of thick-

ness is satisfied for those particular conditions. If it is not, corrections

must be introduced.

Aberrations

The element of approximation introduced into lens theory through con-

fining attention to “thin” lenses is typical of a whole series of similar ap-

proximations, introduced either tacitly or explicitly at various stages of

the foregoing treatment of mirrors, of spherical refracting surfaces, and of

lenses alike. Besides the element of thickness (applying only to lenses)

some other particularly important types of approximation have been made
at various points in the foregoing treatment. On account of these, lenses

always fall short of the “perfect” performance described by the equations

constituting their theory. These discrepancies between the theory and the

actual performance of uncorrected lenses are termed aberrations . For

some reason, the corrections which are made necessary in consequence of

disregarding the thickness of lenses are not customarily included in the list

of aberrations. Aside from these, the most important are spherical aberra-

1 Philosophical Transactions (abridged), 3, 598 (1693).
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tion, astigmatism
,
chromatic aberration

,
distortion

,
and curvature. The first

two and the last two can be described now, but the third must await the

development of the concepts of the following chapter.

On page 309 (footnote), 311 (eqns. 4), 315 (eqns. 7), 317, and 323, it was
specified that consideration was being limited to small angles. This condi-

tion permeates the whole structure of geometrical optics. It consists, in

fact, of two conditions instead of one. For one, if a spherical surface in-

volved in any optical system subtends more than a few degrees at its center,

imperfections are produced in the image which are said to be due to spheri-

cal aberration. For the other, if any of the rays from the object subtend

more than a few degrees at a spherical surface, the resulting imperfections

in the image are of a different type from those attributed to spherical

aberration and are said to be due to astigmatism. The word astigmatism

is derived from a, a Latin negative prefix, and stigma
,
a spot or point.

Therefore, the word astigmatism implies that light originating at any one

point of the object fails to converge to a point in the image. The term is

not at all descriptive and fails to give much of any inkling as to the essen-

tial nature of astigmatism or as to how it differs from spherical aberration.

One may say that spherical aberration originates in the angular magnitude

of the spherical surfaces involved and that astigmatism originates in

obliquity of the rays passing through those surfaces.1 The nature of these

two aberrations is now to be described.

Spherical Aberration

Spherical aberration will be considered principally with reference to the

spherical reflector. It exists also in spherical refracting surfaces and in

lenses, but in these its nature and the means of correcting it cannot be

described quite as simply as with mirrors, though spherical aberration is

the same in principle for all these cases. A brief consideration of the reflec-

tion from a concave mirror of large angular aperture will show that rays

reflected from the edge do not pass anywhere near the “focus” toward

which the central rays converge (Fig. 255). This effect was first com-

mented upon in 1575 by Franciscus Maurolycus— both for reflection and
refraction by spherical surfaces (81:39, 65). The first clear analysis was
made by Huygens a century later (130:7 :341).

The curve to which the reflected rays are tangent is called a caustic. Its

cusp is the focus, to which the light from the central part of the mirror is

reflected. Figure 255 treats only the case of parallel incident light, as

Huygens did. It shows half of an axial cross-section of the caustic curve.

The entire cross-section is frequently visible in the reflection of sunlight

from the cylindrical interior of polished dishes, for example, as on the sur-

x The so-called astigmatism of the human eye, although it manifests itself in a somewhat
similar way, is really an entirely different effect and should possess a different name. It exists

even at points on the axis, unlike true astigmatism, and is produced by the existence of different

radii of curvature in different radial planes of the refracting surface.
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face of a tumbler of milk when the sunlight is incident almost horizontally.

The complete “ curve ” is, of course, three-dimensional and has somewhat
the form of the stem end of an apple with the stem removed. The distance

a (Fig. 255) from the focus to the intersection of the marginal rays with the

axis, divided by the focal length is a measure of the spherical aberration, or

more properly, of the axial spherical aberration of the mirror. The same
effect is common in lenses, being illustrated in Figure 256. It will be evi-

dent that the sharpest image will not be found at F, the point to which the

central rays converge, for the image of a point would there be spread into a

diffuse disk due to the diverging marginal rays. The radius of this disk of

illumination would diminish as the lens is approached until the point l is

passed, after which it would again increase. At l is said to exist the circle

of least confusion, the radius of which, divided by the focal length of the

lens, is a measure of the lateral spherical aberration. The axial spherical

aberration a/f is evident in the figure.

The correction of spherical aberration, in either mirrors or lenses, is

fairly simple. For mirrors, especially, the method of eliminating it has

been known for many centuries. One point, however, should be empha-
sized. Spherical aberration can be corrected only for one object distance.

A mirror or lens in which spherical aberration is eliminated for one particu-

lar distance of the object will still show spherical aberration for other object

distances. To eliminate it for these other distances would require other

mirrors or lenses, a different onefor each distance. Fortunately this stricture

is not.as serious as might appear at first sight. All telescopes, for example,

and most cameras are intended to focus on what are virtually infinitely

distant objects. The elimination of spherical aberration for parallel rays

will, therefore, meet all the requirements of these types of optical device.

The Parabolic Reflector

In the case of the mirror, reference to Figure 257 will show that by de-
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forming the margin of a spherical mirror outward through the proper angle,

the marginal rays could be diverted to the focus. It has long been known
that if a concave mirror possessed a form such that all incident parallel

rays would pass through the same point after reflection, its cross-section

would possess the form of the familiar curve known as a parabola. The
first clear demonstration of this fact known in scientific literature is in a

fragment written about the middle of the sixth century by one Anthemius

of Tralles (25:10; 130:1:34). There are ill-founded traditions that both

Archimedes and Claudius Ptolemy had done the same thing, ten centuries

and four centuries earlier respectively. Either or both may have done so,

for such of their writings as have survived indicate that they were easily

capable of such an accomplishment. But the evidence that they actually

did it is not strong enough to compel acceptance of the tradition at present

(130:1:46).

Five centuries after Anthemius, that is, in the eleventh century, Alhazen

wrote a whole treatise on parabolic mirrors.1 Alhazen is known to have

taken some of his other cues from Ptolemy, hence the fact that he treated

parabolic mirrors extensively creates a mild presumption that Ptolemy

may have written on the same subject. It is not known whether Alhazen

was acquainted with the work of Anthemius. In 1278 this treatise of

Alhazen was translated from Arabic into Latin by Wilhelm von Moerbeck,

Archbishop of Corinth (25: 26), and from that time on knowledge of the

parabolic mirror was more or less public property.

Obviously, a mirror which brings parallel light to a focus will convert the

light from a point source at the focus into a parallel beam after reflection.

The parabolic mirror is used very commonly in this way for searchlight

reflectors and in automobile headlamps. But even a reflector which is

perfect as far as spherical aberration is concerned cannot give a perfectly

parallel beam because the source of light is not rigorously a point. The

finite size of any practical source, such as a carbon arc or an incandescent

filament, produces divergence in the reflected beam which is in strict pro-

portion to the angle subtended at the reflector by the source of light.

Lenses may be shaped to aspherical surfaces to cause them to act in the

same way as parabolic reflectors, but a more common way to make this

correction is by combining lenses which have equal and opposite spherical

aberrations. Lenses corrected for spherical aberration are termed apla-

natic from Greek roots meaning “not spreading.’'

Astigmatism

The second principal aberration, astigmatism— except when it is due

to defects in the image-forming system, as in the human eye— is produced

by oblique incidence of light on the mirror or lens. It is like spherical

aberration in that there is no one distance for which all rays from one point

1 Not to be confused with Alhazen’s larger work, the Opiicae Thesaurus, which did not be-

come generally known until much later than his work on parabolic mirrors.
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Fig. 257 . Reflection by Small Plane Mirrors Arranged
Along a Parabola

of the object converge to a single point in the astigmatic image. Indeed,

astigmatism is sometimes classified as one manifestation of a sort of gener-

alized spherical .aberration. But it is quite unlike spherical aberration (in

the more usual restricted meaning of that term) in the pattern formed by
the errant rays in their failure to converge to a point. This pattern may
be visualized by different astigmatic patterns of a circle of luminous points

(Fig. 258). In the first drawing the adjustment of focus has been made for

what would correspond in spherical aberration to the circle of least con-

fusion (page 330). Each point thus appears as a small disk. In the case

of spherical aberration this disk becomes larger for any change of focus,

whether an increase or a decrease. But the case is different for astigma-

tism, as the succeeding drawings show. Increasing the focal adjustment
elongates the images radially and at the same time shrinks them in the
other dimension to mere lines. On the other hand, decreasing the focal
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Fig. 258. The Two Astigmatic
Images

Fig. 259. Another Manifestation
of Astigmatism

adjustment elongates the images tangentially and at the same time

shrinks them in the other dimension to mere lines at right angles to those

of the preceding case. Thus astigmatic foci consist of two lines at right

angles to each other and in different planes. One of the lines lies in the

plane of incidence — as a radial plane containing the axis and an incident

ray is called — and the other perpendicular to it.

Figure 259 illustrates astigmatism in a slightly different guise. The
plane of incidence is the plane of the paper in the upper figure (which is the

usual practice in optical diagrams). The astigmatic focal line, correspond-

ing to the tangential lines of Figure 258, is represented end-on by the point

Fi. The lower figure is the same arrangement as the upper, but viewed as

the upper would appear if looked at from the top of the page. The lens is

turned somewhat about the axis AB. The astigmatic focus corresponding

to the radial lines of Figure 258 is represented end-on by the point F2 .

Again it will be seen that the two focal lines are at right angles to each

other and in different planes.

From the above it will be evident that if the object should consist of a

right-angled mesh instead of a point, the vertical lines of the mesh would

Fig. 260. Distortion

(Courtesy of the Eastman Kodak Research Laboratories.)
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<«#•
Fig. 261. A Test Object for Visual Astigmatism

(The lines should all look equally black to a person of normal vision.)

be brought to a focus in a different plane than would the horizontal lines.

Hence, a strongly astigmatic photograph of such a mesh could be in focus

for one set of lines or for the other, but not for both at once. Similarly, in

the astigmatic image of groups of parallel lines (Fig. 261), not all groups

are in focus at once. This is the regular test for astigmatism of the eye, a

test which anyone can make for himself. For this case, as has already been

remarked, the astigmatism is produced by non-uniformity of the radii of

curvature— usually in the cornea— in different radial planes instead of by
obliquity of passage through a lens. The effect is much the same, how-

ever. The correction of visual astigmatism consists simply of cylindrical

spectacle-lenses which will change the focal length for one of the astigmatic

images to bring it to the same value as the other.

The reduction of astigmatism in lenses, unlike its correction in the human
eye, is a matter of some difficulty. Only in recent years has the reduction

become common enough so that other cameras besides the most expensive

may be equipped with so-called anastigmat (“not astigmatic”) lenses. It

is not possible to develop, within the limits of this text, a statement of the

principles upon which this correction is based.

The Minor Aberrations

In addition to the three major shortcomings of lenses, spherical aberra-

tion, astigmatism, and chromatic aberration— which has not yet been

treated in detail— there are several lesser aberrations, the chief of which

are distortion and curvature of plane. Unlike the other aberrations, dis-

tortion does not involve any failure of the light from one point of the object

to converge to a single point in the image. As the name indicates, distor-

tion consists, not of a “fuzzy” image, but of a misshapen image. Straight

lines in the object become warped in the image, especially at the edges. A
square object produces a bulging image or else an image the sides of which

sag inwards. The former is barrel distortion and occurs in real images

formed by uncorrected converging lenses. The latter is pincushion distor-

tion and occurs in the virtual image formed by the same kind of lens. Ex-

amples are shown in Figure 260.

The edges of photographs showing distortion are usually somewhat out

of focus. This indicates that the edges of the image would be in focus, not

in the same plane as the center, but in front of or behind it. A saucer-
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shaped screen would be required to catch all portions of such an image in

focus at once. This type of aberration is known as curvature.

Distortion and curvature are corrected by the use of twin lenses, usually

somewhat separated, with a diaphragm between them. The distortion and

curvature produced by one component are neutralized by equal and op-

posite aberrations produced by the

other. Such a combination is termed

a rectilinear lens.

Chromatic aberration, the only im-

portant deficiency of simple lenses

that has not been discussed, is caused

by the fact that the focal length of a

lens is different for different colors.

Hence, numerous images of the same

object, different in color and size, are

formed by a lens which is not cor-

rected for chromatic (that is, color) aberration. The manifestation of

chromatic aberration on a photograph is much the same as that of spherical

aberration. The cause, however, is quite different. The detailed discus-

sion of it must await the developments of the following chapter.

Fig. 262. Chromatic Aberration

Questions for Self-Examination

1. Use Robert Smiths construction to locate the image of an object 7\ centimeters

away from a converging lens of focal length 3 centimeters; 4 centimeters away
from the same lens; 6 centimeters away from a diverging lens of focal length

— 9 centimeters.

2. Using the lens-maker’s equation ~ = (n - 1) —Y deduce the focal length
J vi r2/

(in terms of the radii of curvature) of (a) a plano-convex and a plano-concave lens,

(b) an equibiconvex and equibiconcave lens, (r) a positive meniscus lens of which
the radii bear the ratio 2:1. In all cases assume the index of refraction to have
the value 1.5.

3. Describe spherical aberration. Tell how it may be corrected and what the limita-

tions are on such correction.

4. Describe astigmatism both as it is produced in lenses and in the eye.

5. Describe the aberrations termed distortion and curvature.

Problems on Chapter 30

1. An object is l centimeters from a wall. A converging lens forms an image of it on
the wall. When moved a distance d centimeters it also forms an image. Prove

that the focal length of the lens / is

f 4/

2. Prove that the ratio of the sizes of the two images produced as in the preceding

problem is

'l + d\

»
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3. A double convex lens, the ratio of whose radii is 6:1, produces parallel rays when
a source of light is 2 inches away. What are the radii if the index of refraction is

1.5? 7 in. and 1^ in.

4. A plano-convex lens is to be made of glass of index 1.6. It is to form a real image

of an object placed 2 inches in front of it and to magnify it three times. What must
be the radius of curvature? .9 in.

5. The lens-maker’s equation, when the thickness l of the lens is taken into account, is

r\H -
1

-r 2t

/»
M “ 1 (ji- m('i ~ r2)

Calculate the focal lengths of the cquibiconvex lens mentioned in the quotation

from Halley on page 328, both with this relation and with its simplified form in

equation (3) and verify Halley’s statements.

6. An object is placed u centimeters from a thin con- u f v m
verging lens of focal length / centimeters. What is 24 6 8

the distance v in centimeters of the image from the 12 6 12

lens? What is the magnification m? Locate the 4 6 — 12

image on a diagram. 0 6 0

7. An object is placed n centimeters from a thin di- u f v

verging lens of focal length / centimeters. What is 24 — 6 — 4|
the distance v in centimeters of the image from the 12 — 6 — 4

lens? What is the magnification m? Locate the 4 — 6 — 2f
image on a diagram. 0—6 0

8. Two thin lenses, of focal length fi and /2 centimeters respectively, are placed d
centimeters apart. An object is placed a distance U centimeters in front of the

first lens. How far V from the second will the image be formed and what will

the magnification be? Make a diagram. (For data, see page 324.)

9. At what distance, Uy (referred to the focal length /), must an object be placed from
a converging lens in order that the image shall be magnified m times? From a
diverging lens, distance being u2? Interpret the signs in data and answers.

_ 1

Tt

- 1

3

1

m
.V

&
3
5

1

9.

m

2

1

i

U\ u2

f 1 n r2 M I /
i ~ i 10. 30 -30 1.5 1 30
0 0 30 00 1.5 60

- 1 1 30 60 1.5 120
- 2

4

3

2
3
V

2

- 4
- 3

- 2

— i

30 15 1.5
1

-60

- 1

- 2

10.

A thin lens has radii of curvature r\ and r2 centimeters (positive if convex to inci-

dent light). The index of refraction of the glass is /*. What is the focal length /
of the lens in centimeters?

11.

Equibiconvex lenses made of various materials, each having radii of curvature of
10 centimeters, are immersed in water. Find the focal length, /i, in air and that,

J%9 in water for each lens.

Material A h A A F
11. diamond H 4 12. 6 4 2.5

flint glass if 6» 16 5 3 1.9

crown glass 1* 10 40 4 2 13
water H 15 00 3 1 75
air 1 00 -20



12. Two thin lenses in contact have focal lengths /i and /2 centimeters respectively.

What is the focal length F of the combination in centimeters?

13. A near-sighted person finds his distance of most distinct vision to be d centimeters.

What should be the focal length / of his spectacles to make the distance of most
distinct vision 40 centimeters with their aid? Assume the spectacle lens to be in

contact with the simple lens which is to be regarded as the optical equivalent of

the eye.

d

13. 9

15

24

33

/ d f
- 12 14. 50 200
- 24 60 120
- 60 90 72
- 190 240 48

14. Solve problem 13 for a far-sighted person.

15. A normal person has 40 centimeters as his distance of most distinct vision. If, in

order to examine a small picture, he uses a reading glass of focal length/ centimeters,

producing a lateral magnification m, how far u from the picture and / from his

eyes will he place the lens? What will be the ratio a of the angles subtended at

his eye by the image and the picture?

Image

Fig. 263

16. Two thin converging lenses, each of focal length / centi- / d V
meters, are placed d centimeters apart. How far V in cen- 2 6 4

timeters from the second is the image of an infinitely distant 2 3 — 2

object? (This gives the position of the principal focus of 2 1 |
the combination.) Make a diagram. 2 0 1

17. A Ramsden eyepiece consists of two lenses of equal focal length / centimeters

separated by a distance d centimeters. What are the distances l of the principal

foci from the component lenses? Draw a diagram.

f d l ji ft d h k
: c 2 c 2 i a i 1 6 —

17. 5.5 3.5 TS 18. 2 6 3. + f
6
IT

4.5 3.
9
$ 2 5 3.5 + T -¥

3.5 2.5
7
V 1 4 2.5 + TT -¥

3. 2.
3

i ¥ 1 2 1.5 + i
2“ H

18.

A Huygens eyepiece consists of two lenses of focal length fi and fa centimeters

respectively, separated by a distance d centimeters, and so placed that light trav-

erses first the lens of greater focal length. What are the distances l\ and h of

the principal foci of the combination, each from its respective lens? Draw a

diagram.



CHAPTER 31

Properties of Prisms

Early Attempts to Correct the Aberrations

It was in the middle of the seventeenth century that aberrations of

lenses and mirrors became a live topic for study and experiment. Galileo

had made one type of telescope famous early in the century, and Kepler had

designed another. Astronomers had in the meantime become thoroughly

awake to the value of what is now their principal instrument, and Huygens

had become deeply involved in supplying them with telescopes which were

longer than any ever made, before or since. 1 In the course of this work he

devised a type of eyepiece which is in use to this day and still bears his

name.

Since aberrations are magnified in just the proportion that images are,

the use of these long telescopes was making the aberrations of their lenses

most dishearteningly prominent. At this time chromatic aberration had

not been identified, and it was generally supposed that lenses were subject

to no other errors than those which arose from the spherical figure of their

surfaces. The trend of the times was to try to correct these errors by the

substitution of aspherical surfaces, attempts which were only partly suc-

cessful for reasons which are common knowledge today.

Newton*s Approach to the Problem

Newton, as an undergraduate at Cambridge University, had become in-

terested in optical problems through reading Kepler’s Dioptrice
,
published

in 1611 . Among others he had accordingly interested himself in telescopes,

and as early as 1662, at the age of twenty, he was busily grinding specially

figured lenses in attempts to improve their performance. Finding that

chromatic aberration still remained after the spherical aberration had been

reduced to a very tolerable minimum and concluding over-hastily from

some rough experiments that it was inherently impossible to eliminate

chromatic aberration from lenses, he turned to mirrors in place of lenses as

telescope objectives. As Newton himself stated it (90:102):

Seeing therefore the Improvement of Telescopes of given lengths by Re-
fractions is desparate; I contrived heretofore a Perspective 2 by Reflection,

using instead of an Object-glass a concave Metal.

1 "Telescopes,” Encyclopaedia Britannica (14th edition).

* For several centuries the English term for telescope was perspective glass, or more briefly

Perspective.
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Encouraged by a considerable measure of success in his first reflecting tel-

escope, Newton made a second, larger and optically better, and in Decem-
ber 1771 he donated this second telescope to the Royal Society of London,
where it has remained to this day (Fig. 264).

Newton was not the first to think of the possibility of substituting a con-

cave mirror for a lens as the objective of a telescope, but he was the first

actually to make such an instrument. The first to design a reflecting tel-

escope seems to have been Niccolo Zucchi in 1616 (130:7 :307).

Important though the development of the reflecting telescope was, it

was of far less significance than a discovery which grew out of Newton’s
attempts to circumvent the chromatic aberration which he believed to be
inescapable in the refracting type of telescope. About a month after he
had presented his reflecting telescope to the Royal Society, Newton wrote
the following in a letter to the Secretary (19:3 :5):

I desire that in your next letter you would inform me for what time the

society continue their weekly meetings; because if they continue them for

any time, I am purposing them, to be considered of and examined, an ac-

count of a philosophical discovery which induced me to the making of the

said telescope; and I doubt not but will prove much more grateful than

the communication of that instrument, being, in my judgment, the oddest,

if not the most considerable detection which hath hitherto been made
in the operations of nature.

Newton's First Scientific Paper

The last clause in the foregoing letter is rather startling, coming from

Newton. An equivalent statement from almost anyone else about one of

his own discoveries would quite naturally encounter skepticism. Even
Newton still had his reputation to make; for though he was now nearly

thirty years of age and had already laid the foundation for his major scien-

tific accomplishments, he was yet to publish his first scientific paper. In

fact the paper which he read before the Royal Society a month after the

foregoing letter, setting forth the “ philosophical discovery” which was

‘‘the oddest, if not the most considerable detection which hath hitherto

been made in the operations of nature,” constituted the material for his

first scientific paper, which was published in the Philosophical Transactions

of the Royal Society for the year 1672.1 The judgment of succeeding gen-

erations has fully vindicated Newton’s high opinion of the value of this, his

first contribution to scientific literature. Next to his discovery of the law

of gravitation, which matured several years after this time, and which is

commonly considered the greatest of all scientific discoveries, Newton’s

first scientific paper, entitled A New Theory about Light and Colours
,
is his

best. Besides its scientific value, it is a model in clarity of exposition. An
excellent short summary is to be found in his Optical Lectures

,
written about

two years before in connection with his teaching at Cambridge University,

1 (Abridged), 6,
3075-87.
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but not published until 1728, nearly fifty years after they were written. At

one point he says (89 :5)

:

Concerning Light, I have discovered that its Rays, in respect to the

Quantity of Refraction, differ from one another. Of those that have all

the same Angle of Incidence, some will have their Angle of Refraction

somewhat greater, others will have it somewhat less I moreover find

that the Rays refracted the most produce purple Colours and those the

least refracted produce red Colours . . . and so the Rays ... do generate

these Colours in order; red, yellow, green, blue and purple, together with

all the intermediate ones that may be seen in the rainbow That you
may not think we have declared to you Fables instead of Truth, we shall

immediately produce the Reasons and Experiments on which these things

are founded.

Newton 9
s Discovery of the Spectrum

Newton was not the first to record an observation of the production of

spectral colors by a prism, nor even the first to study it in some detail.

Among earlier observers had been Marcus Marci in 1648 (130:7:314),

Francisco Grimaldi in 1665 (49), and even Seneca in the first century

(114:30). But Newton's discovery, though later than these, was made
independently of them and went far beyond any of them toward being

complete and exhaustive.

The scene as Newton undertook his experimentation with a prism pro-

Fig. 264 . Newton's Reflecting Telescope
(Photographed in the Royal Society of London.)
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Fig. 267. Newton’s Illustration 1

of His Prism Experiment

cured for the purpose has been admirably reconstructed in the painting

reproduced in Figure 265. What he saw is indicated in Figure 266. 2 The
pinhole made in the window curtain formed a single white image of the

sun and when the prism was interposed in the beam as shown in his own
drawing (Fig. 267), this was divided into an infinity of spectrally colored

images of the sun, serially displaced to form the pattern shown in Figure

266. Newton tried every conceivable arrangement of aperture, screen, and

prisms in the process of identifying the origin and nature of the phenome-
non under investigation. To two of these arrangements he gave particular

emphasis. One was the recombination of the dispersed colors back into a

single white-light image of the sun by the use of a second prism identical

with the first, but so set as to produce contrary refraction (Fig. 268). This

showed that spectral colors, when recombined, produced white light, an

utterly new idea and one which was destined to produce violent controversy

and criticism of his work. Another was what Newton termed his “experi-

mentum crucis,” his own illustration of which appears in Figure 269. Col-

1 Figures 267 and 268 are redrawn from Newton’s Optical Lectures
,
delivered at Cambridge

University, England, in 1669 and filed in the University Archives. The lectures were not

printed until 1728.

2 Figures 265 and 266 are on the color plate, opposite pages 386-87.

Fig. 268. Recombination by a
Second Prism

Fig. 269. Newton’s “Experiments Crucis

”

(Redrawn from his Opticks of 1704.)



342 PROPERTIES OF PRISMS Chapter 31

ors from the first prism were allowed, one by one, to pass through a second

prism. Two significant observations resulted; first, there was no further

dispersion. Green light passing through the second prism remained green,

and similarly for other colors. Second, refraction by the second prism was

greatest for violet light and least for red. Hence, in Newton’s words:

\White]
Light is not similar or homogeneal, but consists of diform Rays

,

some of which are more refrangible than others
;
so that without any Differ-

ence in their Incidence on the same Medium, some shall be more refracted

than others.

Thus went one of the most famous of all scientific papers (the italics are

Newton’s own).

Newton9
s Erroneous Opinion on Chromatic Aberration

It is somewhat ironic that such a definitive study as the foregoing should

have led to one serious misapprehension, that misapprehension being on the

very point which was the point of departure for Newton’s famous study as

outlined above. He concluded, erroneously, that it was forever impossible

to design lenses wThich would be free from chromatic aberration. It is

worth while to observe the basis for this error.

During the course of his experimentation Newton used five or six prisms,

the refracting angles of which varied from 45 degrees to 64 degrees. The
prisms of larger angle deflected their spectra further to one side than did

the prisms of smaller angle, and also produced spectra which were longer

than those produced by the narrower prisms. Newton surmised that the

lengths of the spectra produced by the prisms were in strict proportion to

the mean deviations of the beams of light produced by them. If, for

example, his 64-degree prism deviated the light four times as far to one

side as did the 45-degree prism, he expected to find that the two spectra had
also a length-ratio of four to one; and within the limits of his apparently

hasty measurements, he found this to be true. Thus far aH was well. But
at this point Newton made a curious blunder. It occurred to him to in-

quire whether the proportionality between mean deviation and length of

spectrum applied also to other substances besides glass, and he accordingly

made a glass-sided hollow prism wherewith to repeat the experiment using

water. He should have found a decided departure from the expected pro-

portionality: he should have observed, for example, that, for the same devi-

ation, the water prism produced a spectrum shorter than that produced by
the glass. Instead, he found that (90:31)

in a Vessel made of polished Plates of Glass cemented together in the shape

of a Prism and filled with Water, there is the like Success of the Experiment

according to the quantity of the Refraction.1

1 Italicized phrase indicates proportional to the deviation as the context here and at other

points of Newton’s treatment of the subject shows.
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The cause of this blunder we shall probably never know. Its bearing on
the problem of correcting chromatic aberration is not far to seek.

Newton9
s Erroneous Opinion on Chromatic Aberration

Achromatic lenses are today constructed of two components. A con-

verging lens of crown glass is paired with a diverging lens of flint. The
crown lens acts on the light in two ways: by bending it (refraction) and by
spreading it into colors (dispersion). The flint lens acts in the same two
ways, but with its refraction and dispersion both in opposite directions to

those of the crown lens. It is so proportioned to the crown lens, moreover,

that the opposite dispersions effected by the two are equal. Light dis-

persed into the colors of the rainbow by the crown lens is hence recombined

into white light by passing through the flint lens.1 But though the dis-

persions are equal, the refractions are not. The converging effect of the

crown lens is only partly offset by the diverging effect of the flint. New-
ton’s error was in concluding too hastily that lenses possessing equal and

opposite dispersions must necessarily also possess equal and opposite re-

fractions and that a combination of two lenses whose dispersions mutually

neutralized could not possibly bring light to a focus. If this were true, then

his conclusion that “the Improvement of Telescopes by Refractions is

desparate” was inescapable.

The credit for correcting Newton’s error and manufacturing telescopes

possessing achromatic objectives is commonly given to John Dollond, who
repeated Newton’s experiments with water prisms and published the cor-

rected results.2 He had received very broad hints, however, from publica-

tions of a Swede named Klingenstierna and the French mathematician

Clairaut, neither of whom were in a position to submit their theories to the

test of the actual manufacture of achromatic lenses. Moreover, it sub-

sequently developed that a certain Chester More Hall had anticipated Dol-

lond by twenty-five years in making achromatic lenses, but he made only a

few and did not publish his accomplishment. Hence, the invention was
soon forgotten. Dollond, on the contrary, put the design and manufacture

of achromatic lenses onto a sound foundation, in virtually its present form.

Since he entered the scene at the proverbial psychological moment it is

natural, if not strictly correct, to accord him the credit of having originated

the current method of dealing with chromatic aberration in objective

lenses.

Minimum Deviation

Newton’s experiments with prisms consisted primarily in a study of what

deviations from their original directions prisms produced in beams of light.

The experiments concerned especially the differences in these deviations

1 More correctly they neutralize only for two predetermined colors, leaving a slight residual

aberration, which is, however, seldom of significance.

2 Philosophical Transactions, 50, 733 (1758).
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Fig. 271 . Refraction
Through a Prism

which the different colors composing white light experienced. Though
he was not the first to observe either of these effects, he was the first to con-

duct an exhaustive study of them. But as an incidental element in this

study, he made the first observation on record of the phenomenon known as

minimum deviation . He observed that there was a certain angle of inci-

dence for which the angle through which a beam of light was deviated by
a prism possessed a minimum value. A prism so oriented with reference to

the incident light is said to be in a position of minimum deviation, and the

corresponding angle of incidence is said to be the angle of minimum devia-

tion. Newton established the fact that for this position the prism was
symmetrically located with reference to the rays incident on the prism and
those leaving it. That is (Fig. 270), the angles i and i' are equal.

It is striking enough to see the beautiful colors of the spectrum projected

on a screen from a beam of white sunlight. It is even more striking to see

that spectrum, moving across the screen in response to a rotation of the

prism, slow down and ultimately reverse its motion while the prism contin-

ues to rotate in the original direction. Newton states his observation of

this effect as follows (89 :19~20)

:

If the Prism be held in the Sun’s Light, and by a gentle Motion turned

about its Axis, you will see the Colours, which it makes, to be by a continual

Motion translated from Place to Place, in such a Manner, as sometimes

they will appear to ascend, and then again descend. Observe therefore the

Middle between these contrary Motions, when the Colours', now ascending

and presently being about to descend, seem to be stationary. . . . Then the

Inclination of the emerging Ray to the incident one will be least of all.

Which, when it happens, the Refractions on both sides are equal, as shall

be demonstrated hereafter.

The “ demonstration,” to be found in his Optical Lectures of 1669 (Sec.

Ill, Prop. 25), is one of the first, if not the very first, applications of New-
ton's famous Method of Fluxions. This method later developed into the

branch of mathematics now known as Calculus . Since a grasp of this very

useful branch of mathematics cannot be presumed on the part of the reader,

Newton's argument will be modified as follows.

Fig. 270 . The Position of
Minimum Deviation
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Consider first the case where i i
f

(Fig. 271). The angle of deviation

is always the angle between the incident and emergent ray. Imagine the

direction of the ray shown herewith to be reversed. Though it traverses the

prism in the opposite direction, it follows the same path as before, and,

hence, its deviation is the same. That is, two different angles of incidence

produce the same deviation. Therefore, if we gradually change the angle

of incidence from i to i\ the simultaneously changing angle of deviation

starts and ends with the same value. Hence, disregarding the possibility

of a constant, unchanging angle of deviation — which can readily be shown
not to obtain — the deviation must in the meantime have first decreased

and then increased (passed through a minimum) or vice versa (passed

through a maximum). The former is what really occurs. This minimum
value of the deviation occurs when the angle of incidence lies between i and
i\ no matter how small the difference between these two angles may be.

So it must occur when i = i'.

The Role of the Prism in Refractive Index Measurements

It is convenient to set a prism at the position of minimum deviation in

many of its uses in the laboratory. Not only is the spectrum at its sharpest

and brightest for this position, but the measurement of index of refraction

of the glass of which the prism is made— a frequent necessity— is greatly

simplified by this adjustment. For this case, D being the angle of minimum
deviation for a prism having a refracting angle R

y
the index of refraction is

sin \{R + D)
> '

sin ^ R
' (1)

This commonly utilized relation was first established by Joseph Fraunhofer

(1787-1826), a Bavarian about whom much will be said in the following

chapter. It may be derived as follows. In Figure 271, the deviation is

seen to take place in two steps : that at the first surface is i — r, and that at

the second is i' — r'. The total deviation is the sum of these two, or

D = i — r + i' — r' - (i + i') — (r + /).

But from the figure r + r' = R.

and hence r = r'. Therefore

Also, in case of minimum deviation i =* i'

I) = 2i-R or i = %(R + D) and r
R
2

(2)

But applying Snel’s law (page 290) to the ray entering the prism and sub-

stituting equations (2) in it,

sin i sin \ (R + D)
n “ :

—

r~B >

sin r sm ^ R

which is equation (1) . Determination of the index of refraction of a speci-

men of glass made into a prism thus requires only two angle measurements:

the refracting angle R of the prism and the angle of minimum deviation D.
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Fig. 272 . Descartes’ Method Fig. 273 . Newton’s Method
of Measuring Index of Re- of Measuring the Indices
FRACTION OF LIQUIDS

It is worthy of note that, in the time of Galileo, Descartes utilized what
was in effect this same method in measuring indices of refraction (quoted
103:135). His arrangement was really one half of the prism to which
equation (1) applies (Fig. 272). The deflection was also half that denoted
until now by D. Hence, equation (1) applies as it stands to Descartes’

method.

Newton devised an almost identical way of measuring the index of refrac-

tion of liquids (103:135). A glass-bottomed container (Fig. 273) was
mounted on a graduated scale. The device was tilted until the emerging
beam was parallel to the carrier, the inclination to the vertical giving the
angle of refraction. Then the liquid was removed and the angle of inci-

dence similarly determined. A direct application of Snel’s law then gave
the value of the index of refraction of the liquid.

Total Reflection

Newton referred frequently— though in a purely incidental manner—
to another phenomenon which like the production of spectra may be con-
veniently demonstrated with the aid of prisms. This phenomenon was
total reflection. Without doubt he owed his recognition of it to Kepler, who,
in his Supplement to Vitellio of 1604, was the first to mention it. The name
total reflection arises from the fact that under certain conditions reflection

of light may occur with only a very small loss of the incident light. This is

in marked contrast to reflection from ordinary mirrors, which is usually
characterized by the loss of about one quarter of the incident light. Prisms
designed to provide total reflection are used wherever economy of light is

important. One of the common examples of this is in the so-called prism
binocular (Fig. 274). This is a double-barreled telescope the length of
which has been shortened by reflecting the light back and forth to secure
the necessary distance without the inconvenient length associated with the
usual “spy-glass.”

The nature of total reflection may readily be comprehended. Consider
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Fig. 274 . The Optical System of a Prism Binocular
(Courtesy of Bausch and Ivomb Optical Company.)

first the passage of light into a block of glass at a variety of angles (Fig.

275). It is evident that all rays incident within the right angle jon will

after refraction be comprehended within the acute angle j'on', in accord-

ance with Snel’s law, jjl = In particular, the grazing ray jo, making

an angle of incidence of 90°, enters the glass after refraction at the much
smaller angle j'on'. The magnitude of the angle j'on' may be deduced by
substituting the value of jjl and of i (90°) in Snel’s law and solving for r.

For crown glass the angle is about 40°; for water, nearly 50°. If the entire

surface of the glass were covered except for a small hole at 0
,
no illumination

from any direction whatsoever could reach beyond the region p'f . The
rays of and op' are called critical rays. The angle which they make with

the normal to a surface are characteristic of the medium. If their direction

in glass is reversed, a converging cone

from below only 80° in width spreads

out to a full 180° upon emergence

above the surface. Whatever the

angle of incidence from beneath, as

long as it is within the cone p'oj

some of the light is reflected back

into the lower medium. But the

larger part of it penetrates the sur-

face and emerges to be spread out

through a full 180°.

If, now, a ray should originate in

the lower medium (glass or water),

outside of the cone limited by the

critical angle, and proceed toward 0,

Fig. 275 . The Significance of
the Critical Angle
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what would occur? Obviously it cannot emerge through o
,
for the cri tical ray,

fo, upon emergence took the grazing direction oj. There is, however,

nothing to prevent its being reflected, and that is precisely what will hap-

pen. Since none of it can escape into the outer medium it is all reflected.

This is the origin of the term total

reflection.

A somewhat different manifes-

tation of the same effect is what

is sometimes termed the fish's-eye

view. To an eye beneath the sur-

face of water, the entire outside

horizon is contained within the

cone beb of Figure 276. The gen-

eral impression must be somewhat

like that which one would receive on looking up from a manhole through

the circular open cover— except that within the illuminated circle all of the

surrounding scenery is contained. Moreover, on looking toward what

would be the upper portion of the side of the “manhole,” one would see an

inverted image of the bottom of the pool, reflected in the surface of the

water (for example, the ray dfe in Figure 276). The state of affairs is well

illustrated in Figure 277. The fisherman’s legs are doubled, being seen

both directly and inverted by reflection. The rest of him, seen past the edge

of the “manhole,” appears raised into the air.

The most common way of utilizing total reflection in optical instruments

is by means of a prism whose angles are 45-45-90 degrees respectively.

Fig. 277. The Fish’s-Eye View op a Fisherman
(From College Physics, by A, L. Foley. P. Blakiston’s Son & Co,, Inc., 1933.)

Fig. 276. The Geometry of Underwater
Vision
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Fig. 279. The 1,ens as a
Graded Array of Prisms

Since the critical angle for glass is about 40°, the angle of incidence on the

hypotenuse of the prism, being 45°, is greater (Fig. 278). Total reflection,

therefore, occurs at this face. The principal losses are by absorption within

the glass and, more important, by the small amount of reflection at the two
short faces of the prism as the light enters and leaves. It is in this way that

the two prisms in each tube of a prism binocular act. The prisms are so

disposed, moreover, that one of them reinverts the image which in the

usual telescope is normally seen upside down, and the other rereverses the

image similarly once reversed.

Perhaps the greatest scientific utility of the phenomenon of total reflec-

tion is in facilitating the measurement of indexes of refraction. Although a
specimen in the form of a prism is required for the method of minimum
deviation, a glass specimen in the form of a plate with a polished edge may
be used for refractive index measurement by the method of total reflection.

The principle involved is simply the determination, which is usually some-

what indirect, of the critical angle. From this the index of refraction may
be calculated from Snel’s law, since for refraction at the critical angle, the

corresponding angle of incidence is 90°. Thus in fx = substitute

i = 90°, r = 0, the critical angle, whence

/* =
1

sin 0
(3)

Next to the lens, the prism is perhaps the most useful of optical devices.

In a sense, the prism is more fundamental than the lens, in that the latter

may be regarded as made up of a succession of prisms with a continuous

gradation of angles (Fig. 279). Of the numerous uses which have been

found for prisms— only a few of which have been mentioned here— the

most significant in the development of physics is unquestionably the pro-
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duction of spectra. Notwithstanding this, the prism is not the only, nor

even the most advantageous, instrument used nowadays in the study of

spectra. While the prism still has its advantages in this field, other and

more powerful devices have displaced it for certain purposes. The nature

of some of these will become evident incident to a closer study of spectra

themselves.

Questions for Self-Examination

1. Describe chromatic aberration and Newton’s misconception about it.

2. Tell the story of Newton’s discovery of the composition of white light.

3. What is the common method of correcting a lens for chromatic aberration, and
what is the limitation on such correction?

4. What did Newton observe about the position of minimum deviation (make a
sketch)?

5. Describe two ways of using a prism in the measurement of index of refraction.

6. What is meant by the terms “ critical angle” and “total reflection”?

7. Describe and account for the “fish’s-eye view.”

Problems on Chapter 31

1. What is the lowest value of refractive index for which a 45-45-90 prism will be
totally reflecting? 1.4.

2. If the fish of Figure 277 is 3 feet below the surface, what is the diameter of the

apparent “aperture” at the water surface above him? 6.8 ft.

3. Achromatic lenses usually consist of two thin lenses in contact. Show that for

such a case the reciprocal of the focal length of the combination is the sum of the

reciprocals of the focal lengths of the individual lenses. (Apply equation (1)

of Chapter 30 to find the position of the image— formed by the second lens—
of the image of an infinitely distant object formed by the first lens.)

4. It is found that the two components of an achromatic lens require focal lengths

in the ratio of —3:5, the crown component being positive and the shorter of the

two. What will be the focal length of each of the components of the objective of

a 20-foot achromatic telescope? 8 ft, ~13£ ft.

Light incident on a block of glass at i degrees i r M V

with the normal is refracted at r degrees. 40 25 1.52 1.97 • 108

What is the refractive index n? What is the 50 30 1.53 1.96

speed v in meters per second of light in the 60 35 1.51 1.99

glass? 75 40 1.5 2.

Light is incident from beneath on a smooth surface of water of refractive index

1.332, at an angle i with the normal. What angle r does the emergent ray make
with the normal?

i r D
6. 20° 27° 7. 45° 1.59

30° 42° 50° 1.64

40° 59° 55° 1.69

48° 39' 90° 60° 1.73
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7. Light is caused to be incident on a 60-degree prism. The angle of minimum devia-

tion is found to be D degrees. What is the refractive index /x?

8. What is the deviation d in degrees of a ray of monochromatic light upon passing

through a 60-degree prism of refractive index /x, if the ray is incident upon one

face at an angle i degrees with the normal?

i M d medium M e 0
60° 1.6 47° 9. water 1.33 49° 10. 34° 34'

50° 1.6 46° crown glass 1.52 41° 38° 35'

40° 1.6 51° flint glass 1.7 36° 42° 34'

34° 34' 1.6
|

64° diamond 2.42
1 24° 46° 25'

9. The indexes of refraction of various media being jx, what is the critical angle, 0,

for each medium?

10. The angle of emergence of the critical ray in the prism of problem 7 is found to

be 0 degrees. What value ju does this give for the refractive index?

The refractive index of a glass plate d centi- Mr Mv d n
meters thick is jj.r for red light (wave-length 1.5127 1.5214 1 130

6500 angstroms in air) and ^ for violet light 1.6038 1.62 1 250
(wave-length 4000 angstroms in air). By how 1.6126 1.6213 1 130

many n of its own wave-lengths is red light 1.7434 1.7723 1 440
ahead of violet after both have traversed the

plate, starting together? (1 angstrom =*

10“10 meter.)
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Color

Colored Lights vs . Colored Pigments

Newton’s accomplishment in making the first correct and complete

analysis of the structure of white light stands out, even today, as one of the

more outstanding scientific contributions. But it was such a complete

break with traditional views that the discovery was not only accepted

slowly, it actually met with strong opposition for more than a century.

This originated partly in professional jealousy as in his encounter with

Robert Hooke (14:73), partly in contrary philosophical predilections

(Schelling 113:270; Hegel 119:419), and partly in aesthetic considerations

(Art. “ Goethe,” Encyclopaedia Britannica
,
9th edition) . There were, how-

ever, certain difficulties of a more substantial variety in Newton’s color

theory.

One of the obstacles which stood in the way of a ready acceptance even

by men of science of Newton’s discovery of the nature of color was its ap-

parent disagreement with common experience in mixing colors. It was a

matter of everyday knowledge then, as now, that mixing yellow and blue

paints produces green. But it had been one of the implications of New-
ton’s studies on color that yellow light superposed on blue would produce,

not green, but a neutral gray, which lacked only the requisite intensity to

be called white. Newton, however, does not seem to have recognized that

this was involved in his own theory. The first actual observation of this

effect to be recorded was made by Helmholtz in 1852, more than two hun-

dred years later. The blue-yellow paradox requires explanation even to-

day. It is not surprising that it proved a stumbling block to Newton’s

contemporaries.

Actually, there are two different phenomena involved. One is the mixing

of colored substances (mixing “pigments” as the expression goes) and the

other is the superposition or “mixing” of differently colored lights. A
clear distinction between the two is the first step toward the understanding

of either. But it is only the first of several steps that are necessary before

the difficulty can be cleared up. The basis for what is observed when pig-

ments are mixed was established by Newton. But, though he observed

some of the facts involved in the mixing of lights, the explanation for those

facts did not take even a preliminary form until more than a century after

his time, and is even now not entirely conclusive.
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The nature of the process of mixing pigments may best be seen by re-

peating Newton’s original experiment with the prism. In this case, how-
ever, before allowing the light to strike the prism, cause it to be reflected

from a surface painted with a solution of gamboge yellow, which is the pig-

ment most commonly used to produce yellow paint. The color of the sur-

face suggests that only yellow light is reflected from it, and one might per-

haps expect, therefore, to see all the spectrum except the yellow blotted

out. Instead, it will be seen that, not only the yellow, but also some red,

some orange, and still more clearly some green are present in the spectrum.

It is evident that the eye interprets this mixture of hues as yellow. Thus
there are at least two ways in which the eye may be stimulated to “see”

yellow. One is by light constituting a narrow band in the spectrum be-

tween orange and green, and the other, which may seem identical in effect,

is by a certain mixture of all colors except blue and violet. The former is

termed a spectrally pure yellow
;
the latter, while still stimulating the sensa-

tion of yellow, is spectrally very impure indeed. There is, in fact, an al-

most indefinite number of mixtures of colors which will stimulate the yellow

sensation. It is not even necessary that yellow be present in the mixture.

Light containing only spectrally pure red and green in a certain proportion

— there being no spectral yellow whatever in it — will still appear yellow.

If, instead of gamboge yellow, a surface painted with Prussian blue

should be substituted, a similar phenomenon would be observed. Besides

the blue of the spectrum, violet and green would be evident. In this case,

as before, it becomes evident that there is more than one way to excite the

sensation of blue, and that it is possible, with the aid of a prism, to distin-

guish a spectrally pure blue from apparently identical hues not otherwise

distinguishable.

The only color reflected by both pigments was green. If, now, the two

pigments were mixed and a third surface painted with the mixture, all

colors except the green would be absorbed by the mixture, some by one

component and some by the other. The painted surface would appear

green* and in this instance the prism would demonstrate that it was a spec-

trally pure green. All the other colors would be absent, absorbed by the

mixture covering the surface from which the light was reflected. Hence,

the mixture of yellow and blue pigments produced green because, by joint

action of the two pigments, all other colors were absorbed. The produc-

tion of green by a mixture of yellow and blue pigments is represented in

Figure 281.

Refinements in Color Observation

Since the eye is not capable of discriminating between spectrally pure

colors and mixtures of color stimuli producing the same effect, it is evident

that the eye is not as effective in the analysis of light as the ear is in the

analysis of sound. Two or more pitches sounded simultaneously will be

detected by the normal ear as so many separate pitches, not as a single
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pitch constituting a sort of resultant of the several pitch stimuli. But

with light, it is necessary to spread the illumination out into a spectrum,

by means of a prism or equivalent device, before the observer can decide

what the color components of any given stimulus really are. The unreli-

ability of the unaided eye in color discrimination has created an immense

amount of confusion in the formulation of theories of color vision. It is

only within the last ten or fifteen years that it has become possible even to

describe a color with sufficient precision and in numerical terms, so that it

can be reproduced at will. In recent years, however, an adequate sys-

tem of color terminology has come into existence under competent stand-

ardizing agencies, for example, the Colorimetry Committee of the Optical

Society of America and the International Commission on Illumination;

and instruments known as colorimeters, which analyze color stimuli in

terms which facilitate the reproduction of a given color on demand, have

come into common use.

Colorimeters work on the principle, which is not rigorously correct, that

any color stimulus may be regarded as composed of a properly selected

admixture of three spectral hues. The three spectral hues into which any

color may thus be analyzed have often been termed “primary colors,” and

the history of theories of color vision is all cluttered up with arguments

over which three colors were to be considered “primary,” and whether,

indeed, the number should be three. The originator in 1807 of the three-

color theory was Sir Thomas Young (1773-1829). He is the versatile

genius who discovered the nature of accommodation (focusing) and of

astigmatism in the eye; who first established experimentally the wave-

hypothesis of light; who first comprehended the nature of surface tension

in liquids; who made contributions to elasticity that are acknowledged in

the term “Young’s modulus”; and who, by deciphering the Rosetta Stone,

made it possible to read Egyptian hieroglyphics. Young considered that

the “primary” hues were red, green, and blue, but it is now realized that

there is a very wide range of choice as to which colors may be considered

“primary.” The desirability of standardization makes it more important

that agreement should be reached on some set of three than that those

three agree with any particular theory of color-vision. Hence, the selection

of the three hues to be considered basic for colorimetric purposes has been,

within certain limits, arbitrary. The choice, nevertheless, has fallen very

close to the red, green, and blue which Young described as “primary.”

Complementary Colors

The high point of Newton’s experiments with the prism had been the

discovery that white light was really the combination of all the spectral

colors and that, even after being sorted out, the colors making up the solar

spectrum could, by various means, be mixed together again, whereupon
white light would once more appear. He said, referring to white:

’Tis ever compounded; and to its Composition are requisite all the afore-

said primary Colours, mix’d in a due Proportion.



Chapter 32 color 355

But the observation that any spectral hue can be produced by mixing

three “ primary ” colors implies that white, the combination of all spectral

colors, can also be produced by a properly chosen combination of the three

primaries. This may readily be tested experimentally by mixing lights

which are of three hues which have been found to be “ primary. ” An easy

way to do this is to project three spots of light, one of each of the pre-

scribed hues, and superpose them. The resultant will be found to be

white. If the three are separated so that they overlap only in part, as in

Figure 280 (opposite page 387), additional information may be adduced.

One would expect to find that the overlapping of two hues produces an

intermediate hue. This is found to be the case for the blue and green, the

result being a bluish green, and for the red and blue, the result being violet.

But a distinct surprise awaits in the overlapping region of red and green.

There a pure yellow is seen. This verifies the statement of page 353 to the

effect that yellow may be produced by mixing only red and green lights,

neither of which contains any yellow component.

Further examination of the figure will bring out a final interesting point.

The central white patch, being red + green + blue
y
will be seen also to be

(red + green) + blue . But (red + green) has been seen to constitute yellow.

Hence, the central white patch may be considered to be composed of

yellow + blue. Thus, in mixing lights, the combination of yellow and blue

produces white, as pointed out on page 352.

The yellow-blue paradox is now completely resolved. Light reflected from

blue pigments has usually experienced absorption of only its red, orange,

and yellow components (Fig. 281). Light reflected from yellow pigments

has usually experienced absorption of its blues and violets. From light re-

flected by a mixture of the two all except the green has therefore been ab-

sorbed and the mixture consequently appears green. So much for pigments.

RED ORANGE YELLOW GREEN BLUE VIOLET

Colors absorbed by yellow pigment

Colors absorbed by blue pigment

Sole color not absorbed

Fig. 281. Spectral Absorption op Yellow and Blue Pigments
Separately and Mixed

RED ORANGE YELLOW GREEN BLUE VIOLET

Fig. 282. The Spectrum Aspect op Mixing Blue and Yellow Lights
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When corresponding lights are mixed, however, blue contributes green,

blue and violet, yellow contributes red, orange, yellow and green, and the

two together contribute every color of the spectrum. The result is white

(Fig. 282). The basis for the difference in mixing blue and yellow pigments

and mixing yellow and blue lights should now be evident. The former is a

subtractive process; the mixture of pigments absorbs the total of all the hues

absorbed by the two pigments separately and reflects only the hue that

neither pigment absorbed, namely, green. The latter, however, is clearly

an additive process; in it colored lights are superposed, and the resultant,

being the true sum of the separate hues, produces white. This may be

traced back ultimately to Newton’s observation that white is the sum of all

colors.

But yellow and blue is not the only pair of hues which combines into

white. The figure shows that the combination of green and violet has the

same effect, as does the combination of red and blue-green. Any two hues

which, when added together, produce white are termed complementary

colors . These are the only three

pairs which this particular trio of

primaries can produce which are

complementary. But there is

an almost indefinite number of

primary trios and, hence, a cor-

responding number of comple-

mentary pairs. In his Opticks

Newton concocted a scheme for

the representation of comple-

mentary pairs by arranging the

spectral hues on a circle in such

a way that any two diametrically

opposite hues would be comple-

mentary (Fig. 283). It is to be

understood that the colors pro-

gress gradually through all the

intermediate spectral stages as one goes around the circle; they are not

in sharply divided blocks, as would be suggested by the division into sec-

tors. The center of this circle, being the sum of all colors, would be white.

Proceeding outward, say toward the red, the color becomes at first a faint

pink, then a deeper and deeper red until at the circumference the hue is
“
saturated.” Other colors are arranged similarly.

Current Theories of Color Vision

The three-primary-color theory of Thomas Young was amplified by
Hermann von Helmholtz (1821-94) fifty years later and is today commonly
called the Young-Helmholtz theory. There have been other theories,

notably that of Ewald Hering (1834-1918) and of Christine Ladd-Franklin
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(1847-1930) . No one of the theories accounts for all the known phenomena
of color-vision.

The more difficult of these phenomena to deal with are the various mani-

festations of color-blindness. Color-blindness, as is well known, most

commonly affects the ability to distinguish between red and green. It

seems to be a sex-linked characteristic, being confined almost entirely to

men, like baldness and hair on the face. The first scientific study of color-

blindness was made by John Dalton (1766-1844), the founder of the atomic

theory of chemistry. In 1794 he read before the Manchester Literary and

Philosophical Society a paper entitled Extraordinary Facts relating to the

Vision of Colours. Dalton’s interest in the subject arose from his own
color-blindness. He first became aware of it when as a boy, being present

at a review of troops and hearing those around him exclaiming on the gor-

geous effect of the red uniforms, he asked in what respect the color of a

soldier’s coat differed from that of the grass on which he trod.1

It is probably no mere coincidence that Young’s theory of color-vision,

the first of the series, was formulated shortly after Dalton’s identification

of color-blindness. In ability to correlate the various forms of normal and

abnormal color-vision, the honors are about equally divided between the

three theories. The great difficulty with them all is that, though each

postulates a separate set of
“
receptors ” in the retina for each primary color,

there is no anatomical evidence for the existence of any of the assumed

variety of receptors. A modified version of the Young-Helmholtz theory

is current in physics and technology merely because it lends itself the most
readily to the practices of colorimetry.

Color Photography

The increasing vogue of color photography justifies a brief description

of the basic process. Figure 284 is a color camera disassembled to show the

arrangement of the interior. By an arrangement of reflectors, three pic-

tures are taken at once. The picture at R is produced by the direct light

from the lens, substantially as in an ordinary camera, except that there is a

red filter in front of the film. But before reaching this film, the light has

passed through two lightly silvered forty-five-degree mirrors, each of which

diverts about a third of the light at right angles. That portion reflected

from the first mirror passes through a green filter and then exposes the

film at G. That which penetrates the first mirror and is reflected from the

second passes through a blue filter and exposes the film at B? Thus light

from a pure red object will expose only the film R, that from a pure green

object only the film G, and that from a pure blue object only the film B.

The three films are then developed in the usual way as black-and-white

negatives, and positives are made from them. Wherever the negative was

1 “Dalton,” Encyclopaedia Britannica (9th edition),

* This blue filter is often dispensed with. The same effect is attained by using ttte ordinary

old-style photographic emulsion for this film. This emulsion is sensitive only to blue.
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2

Fig. 284. Interior Arrangement of a Color Camera

transparent the positive is opaque and vice versa. These positives are

then dyed, each a separate color. Film R is dyed a light blue. This blue

affects only the “opaque” portions of the positive leaving the transparent

portions uncolored. Similarly, film G is dyed red, in the same way, and B
is dyed yellow. Thus in each case, where a color was bright in the object,

the corresponding positive is transparent, and where a color was absent,

the corresponding positive is dyed its characteristic color.

The three colored positives are next superposed, and white light is sent

through them. Where the object was red, the R positive is transparent,

the B positive is yellow, and the G positive is red. Only the red portion of

the white light can get through both the red and yellow spot; hence, that

portion of the image will appear red, A similar process takes place for the

other two primary colors. Where the object was white, all three positives

are transparent, and the white light will therefore penetrate them unaf-

fected. Where the object was black, all three positives are colored, and
none of the white light can penetrate all three colored films. Such portions

of the image consequently appear black. The color reproduction is not
one hundred per cent faithful to the original, of course, but it is surprisingly

good.

The “ Technicolor ” process, common in colored motion picture practice,

differs from this only in detail up to making the positives. Then, the

opaque portions of the positives are processed so as to swell, producing
raised surfaces. The three positives, instead of being dyed, are then run
over separate colored inked rollers. The repioduction is the same as for

the preceding case.

The “Kodachrome” process, though similar in basic principle, is utterly

different in detail. The three photographic emulsions and two color
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Fig. 285 . The Most Famous of Rainbow Photographs
(From Clouds, by G. A. Clarke. London, Constable and Company, 1920.)

filters are all made up into a single five-ply film only .02 millimeter thick.

This film is then developed, reversed, and dyed intact. This is an amazing

process when one recalls that the three emulsions must he dyed each a dif-

ferent color. At present it can be done only at the Eastman factory, to

which exposed Kodachrome films must be sent. The Kodachrome process

produces only one copy of a film, though it is possible to re-photograph the

finished film. This is unlike the two previous processes which permit an

unlimited number of transparencies to be made from a single set of nega-

tives.

The Rainbow

Perhaps the most persistent of all quests in the field of color has been

the perennial inquiry about the nature of the rainbow. The main facts

about the appearance of the bow have been well known for centuries. The
accompanying illustration is perhaps the best rainbow photograph ever

taken. The radius of the main or primary bow subtends an angle of be-

tween 40° and 42° at the eye of the observer— 40° at the inner or violet

edge and 42° at the outer red edge, the two-degree interval spanning the

intermediate colors of the spectrum. The red edge, moreover, is a purer

color, more nearly saturated than is the violet edge. The space within the

concavity of this primary bow may be seen to be filled with diffusely scat-

tered white light, notably brighter than the space outside the convexity.

If conditions are favorable, an outer or secondary bow may be seen. The
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Fig. 286. Descartes’ Diagram of the Rainbow
(From hia Les Mtteorcs of 1637.)

radius of this subtends from 50° to 53°, with the red inside at 50° and the

violet outside at 53°. The whole is dimmer than the primary bow. The

red edge, as in the primary, is purer than the other colors, and the region of

scattered white light is outside the bow instead of inside as with the pri-

mary. Sometimes some fine supernumerary bows appear, like ripples, just

inside of the primary and outside of the secondary bow.

The most prominent of these appearances is, of course, the primary bow.

Attempted explanations of this date clear back to Aristotle (9:3:371 b).

He was followed in this attempt by a distinguished series of writers,1 cul-

minating two thousand years later in Descartes in 1637. Descartes’ was

the first really correct explanation of the rainbow, as far as it went. It may
be taken from his own illustration (Fig. 286) . The dots in that illustration

represent falling drops. While they are in the region where the observer

sees the primary bow, say G, the course of sunlight through them is as

shown in the ray ABCDE through a magnified drop. Each drop acts like

a prism; hence, when the observer at E looks in slightly different directions,

he sees the colors of the rainbow. Suppose DE to be the direction of the

red portion of the bow. Since blue is deviated more than red in the process

of refraction, the drops at slightly lower altitude will send blue to the ob-

server. Hence the red side of the primary bow is the outer portion and the

blue the inner. The primary bow will be seen to be formed by light that

has experienced two refractions and one reflection in traversing a raindrop.

The secondary bow is formed by light that has experienced two reflections

1 Seneca (114:29), first century; Vitellio (130:/ :83), 1269; Qutb-al-din (111:2:23, 762, 1018),

thirteenth century; Theodotich of Saxony (58:23; 130:/, 58, 173), about 1310. See also Gilbert’s

Annalen der Pkysik
t 52 , 406; Maurolycus (81:79), 1611; de Dominis (130:/:172), 1611.
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Fig. 287 . The Angle of Maximum
Deviation in Refraction Through
a Sphere

within the drops (ray FGHIKE) . The direction characterized by the lesser

refraction will this time be lower than that characterized by the greater;

hence the red will lie at the inner edge of the secondary bow instead of at

the outer as in the primary. All this Descartes deduced by observing the

passage of light through spherical flasks of water and correlating its be-

havior with the observed characteristics of the rainbow.

Descartes then sought the reason why inside of the primary bow there is

a region of diffuse uncolored illumination, as is also the case outside of the

secondary bow, there apparently being no reflection to the eye of the ob-

server from raindrops between the two bows. This proved to be a laborious

undertaking. Using SnePs law he is said to have traced some ten thousand

rays through a drop at various angles

of incidence and discovered the exist-

ence, in a spherical drop, of an angle of

maximum deviation (Fig. 287), cor-

responding to the angle of minimum
deviation later discovered by Newton
in the prism (pages 343 ff .) . As in the

case of the prism, the intensity of the

light of any particular color coming to

the eye of the observer increases to a

sharp maximum as the line of sight

approaches the primary bow from

beneath. Then it diminishes suddenly to zero. What the observer sees as

a semi-circular streak of violet light, therefore, is really a whole half-disk of

violet light, increasing sharply in intensity toward the edge (Fig. 288, op-

posite pages 386-87). He also sees superposed on this a red disk, larger by

two degrees; hence, its brilliant edge projects beyond the edge of the violet

disk. The intervening colors have similar effects. Inside of the “bows”

where all colors overlap, the effect is, of course, that of white light. This

diminishes in intensity as the line of sight leaves the bow and approaches

the common center of its colored arcs. Descartes found that similar con-

siderations applied to the secondary bow except that the luminous region

was outside of the bow instead of inside. Thus the reason for the regions

of diffuse illumination was identified. At the same time the reason was

supplied for the greater purity of the red edges of the bows, these edges not

being diluted by the presence of other overlying colors.

Descartes’ explanation of rainbow phenomena was a masterpiece as far

as it went. In two respects, however, it was incomplete — though through

no fault of Descartes. The time was not yet ripe for the final word to be

said on the subject. The first omission was Descartes’ ignorance of why
refraction through raindrops and through prisms produced color. He had

simply observed that it did and had to leave it at that. Newton, as has

been seen, furnished the answer to that problem a generation later. The

second omission was treatment of the supernumerary bows. This was a
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diffraction phenomenon, and was identified as such in 1804 by Sir Thomas
Young, the originator of the Young-Helmholtz theory of color-vision.

Since diffraction of light has not yet been discussed, a consideration of the

supernumerary bows will have to be postponed.

Questions for Self-Examination

1. Describe and account for what appears in the overlapping regions when circles

of red, green and blue lights are projected on the same screen.

2. Tell the results of adding blue and yellow lights; of mixing blue and yellow paints.

Account for the difference.

3. How do color cameras produce their effects?

4. Describe and account for the appearance of the primary rainbow. How is the

phenomenon of minimum deviation involved?
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Lengths of Light Waves

Light: A Corpuscle or a Wave

The foregoing treatment of the effect of reflection and refraction on light

deals primarily with what light docs
,
especially with ways in which it has

been utilized for human convenience. Utilitarian aspects form an absorb-

ing and important part of the story of the unfolding of any branch of

science. But experience has shown that even the utilitarian possibilities

become restricted unless the quest is carried beyond what an agency can do

into the realm of what it is. Of course, the principal answer to any ques-

tion of what it is comes through a sufficiently broad inquiry into what it

does. But seldom do purely utilitarian manipulations furnish the required

information.

Perplexity over the nature of light has been rife ever since the time of

the Greeks. Indeed, today’s perplexity on this question is strikingly simi-

lar to that of twenty-live centuries ago. In this respect light is unique

among all the subtopics of physics. In the others there has either been

an entire absence of tenable theories, as in gravitation, or a progressive

modification of concepts until theory and observed phenomena coalesced

into a more or less complete agreement. It is only in light, which, para-

doxically, more than any other field of science, has lent itself to extensive

and accurate study in the laboratory, that we are still struggling over al-

most the same apparently incompatible concepts that perplexed the Greek

philosophers.

The two antagonistic views of the nature of light which have thus been

pitted against each other in varying forms are that of a stream of particles

or corpuscles 1 versus that of a sequence of waves. Until the time of New-
ton the issue between these theories lay in the field of mere controversy like

most issues of the pre-scientific era— and like some even today. Newton
was perhaps the first to seek experimental evidence, but even with some
very good evidence at hand, he appears to have had considerable difficulty

in making up his mind. From his extensive experimentation with light he

concluded that certain of the implications of both theories were inescap-

1 The term corpuscle was first used in scientific literature to describe the supposed atomic

particles of matter by Robert Boyle in his Defense of the Doctrine Touching the Spring and Weight

of Air (1662).
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able, and tried to combine them. Perhaps the most representative short

formulation of his views is as follows: 1

Assuming the rays of light to be small bodies emitted every way from

shining substances, those, when they impinge on any reflecting or refracting

superficies, must as necessarily excite vibrations in the aether as stones

do in water when thrown into it.

Notwithstanding Newton’s indecision, his successors attributed to him

an espousal of a corpuscular theory. Perhaps there was some warrant for

this, for in his efforts to “ straddle the fence” he had fallen more often on

that side than on the other. Bulwarked by Newton’s enormous prestige,

the corpuscular theory entered on almost a century of triumphal preva-

lence. The opinion of Hooke in 1665 comparing a spreading pulse of light

to “the rings of waves on the surface of the water” (57:57) and that of

Huygens in 1690 that light “spreads by spherical waves like the movement
of sound” (61:20) were completely disregarded. The same was true for

even Newton’s own statement that rays of light, even though regarded as

small bodies, “must as necessarily excite vibrations in the aether as stones

do in water when thrown into it.”

Newton*s Rings

Newton had made a very thoroughgoing study of the color patterns seen

when light traversed thin films. His first films were of air, formed by lay-

ing the convex side of an extremely long-focus lens on a plane piece of glass.

Figure 289 shows what Newton saw when he looked through the film of air

formed in this way. The central portion of the pattern was bright. The
reason for this was not entirely understood and could not be without the

wave concept. It will be developed presently. But at a certain distance

from the point of contact was seen the smallest of several concentric dark

rings. We now know that this marked a region where the separation of

the plates was one quarter of the wave-length of the light being used.

That portion of the light which was twice reflected in the air film conse-

quently traveled a half wave-length further than that transmitted directly.

Hence when the two rays combined, they were in opposite phases of vi-

bration and would destructively interfere with each other* The same

condition obtained wherever the glass surfaces were separated by three

quarters wave-length, five quarters, seven quarters, etc. Between these

dark rings were bright rings, produced by path differences of a full wave-

length, two wave-lengths, three wave-lengths, etc., the corresponding dis-

tances between the plates being one half, two halves, three halves wave-

length, etc.

The Interpretation of Color in Newton*s Rings

Naturally, the size of a given ring depended on the wave-length of the

1 Philosophical Transactions
, 7 ,

5087 (1672).
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light used, the ring being larger for red light than for blue light. Newton
observed the dependence of size upon color. He said (90:208):

I found the circles which the red light made to be manifestly bigger than

those which were made by the blue and violet. And it was very pleasant

to see them gradually swell or contract accordingly as the Colour of the

Light was changed.

Thus Newton made an association which today is interpreted as inescap-

able evidence that color is associated with wave-lengths. But he came
even closer to the wave hypothesis than this. Trying to explain the divi-

sion of light into reflected and transmitted (or absorbed) portions whenever

it strikes a surface of any kind, he imagined every beam of light to be

divided into sections of uniform length, one section being easily trans-

mitted, the next easily reflected, and so on in alternation. In his own
words (90:278-85),

Every Ray of Light in its passage through any refracting Surface is put

into a certain transient Constitution or State, which in the progress of the

Ray returns at equal Intervals, and disposes the Ray at every return to be

easily transmitted through the next refracting Surface, and between the

returns to be easily reflected by it. . .

.

The returns of the disposition of any Ray to be reflected I will call its Fils of

easy Reflection
,
and those of its disposition to be transmitted its Fils of easy

Transmission
,
and the space it passes between every return and the next

return, the Interval of its Fits

If the Rays which paint the Colour in the Confine of yellow and orange

pass perpendicularly out of any Medium into Air, the Intervals of their

Fits of easy Reflection arc the ^itarsth part of an Inch. And of the same
length are the Intervals of their Fits of easy Transmission.

The context shows that Newton took the thickness of the film at the

first bright ring as the measure of the “Interval of the Fits,” which we
should now say marks half the wave-length of light. The yellow-orange

part of the spectrum is now known to possess a half wave-length of 8^-
Q-^th

of an inch. Thus Newton not only postulated a periodic nature for light, he

measured the periodicity and deduced a figure within 5 per cent of the mod-
ern value of the wave-length.

Change of Phase in Newton 9
s Rings

Nor was this all. Newton observed the rings in the reflected portion of

the light as well as in the transmitted portion (Fig. 291). Their visibility

was, indeed, much greater by reflected light. He observed that the center

of this system of rings was dark, instead of light as before. Though he did

not recognize it, this was almost as clear a manifestation of a property of

waves as was the periodicity which he had previously deduced. It pro-

vided an excellent example of change of phase at reflection, one of the

basic properties of wave motion.
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' Fig. 289. Newton’s Rings by
Transmitted Light

Fig. 290. The Production of New-
ton’s Rings by Transmitted Light

Fig. 291. Newton’s Rings by
Reflected Light

Fig. 292. Destructive Interference
Due to Change of Phase at Reflec-
tion

r

\ I

The phenomenon of change of phase at the reflection of a mechanical

wave and of a sound wave has already been encountered. Here it occurs

in light. The parallel with the case of sound is especially close and need

not be traced in detail. Reflection from the first of two surfaces in contact

involves a 180-degree change, that from the second involves no change of

phase (Fig. 292). If the distance between the surfaces producing the re-

flection is small in comparison with a wave-length of light, the combination

of the two reflected waves will produce destructive interference. Hence
comes the black center (of the Newton’s-ring pattern), which if it were not

for the reversal of phase by reflection at the first surface would be bright.
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Young's Identification of Interference

Newton’s heroic attempt at interpretation of his rings is what lends

significance to the phenomenon. But this significance is immensely in-

creased by an extension, both to the phenomenon and its interpretation,

made by Thomas Young (1773-1829) more than a century and a half later.

At the beginning of the nineteenth century a London physician named
Thomas Young reported to the Royal Society some experiments which,

when their full import was realized, turned the tide of scientific opinion

from the corpuscular to the wave theory of light. Young had done exten-

sive experimentation with sound, and had apparently been deeply im-

pressed with the phenomenon of beats. The fact that two sounds could so

combine as to produce silence was most easily explainable on the basis of

their wave properties and had by common consent established the wave
theory of sound. In connection with his medical studies Young had al-

ready discovered the mechanism of accommodation (focusing) of the eye,

and through that channel had become interested in the study of light

itself. Observing some indications of a phenomenon in light comparable to

beats in sound, he was led to question the prevailing corpuscular theory of

light and ultimately to espouse the wave theory which was, in consequence,

to prevail for more than a century. The work for which he is best known
was the experimental demonstration that light exhibited attributes of wave

motion to an extent that justified abandoning the prevailing corpuscular

theory attributed to Newton.

The experimental basi^for the wave hypothesis of light as Young formu-

lated it was interference. The fact has already been observed (page 245)

that two trains of water waves may be so superposed that in certain re-

gions the troughs of one train will lie continuously on the crests of another,

thereby producing zero disturbance. Intervening regions, instead of being

characterized by quiescence, exhibit increased disturbance on account of

Fig. 293 . Interference in a Wedge-Shaped Film of Air
Between Two Glass Plates

At left, window glass; at right, plates with “optically plane” surfaces.

(Courtesy of Bausch and Lomb Optical Company.)
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combinations of waves occurring by the continuous superposition of the

crests of one train on the crests of the other, and similarly for the troughs.

Destructive interference is said to occur between the two trains of waves in the

former case and constructive interference in the latter. Similarly, two sound

waves may be so combined as to produce alternate regions of silence and

enhanced sound. The phenomenon of interference, of which the foregoing

are familiar examples, is easily comprehensible in the case of combining

waves, but would be utterly incomprehensible in the case of combining

streams of particles. So when Young demonstrated in 1 803 that two beams

of light could, under properly controlled conditions, be made to combine in

such a way as to produce alternate regions of darkness and light, he was

rightly considered to have identified in light a characteristic property of

waves.

The First 'Determination of Wave-Length of Light

Newton had made his measurements yield some rudimentary informa-

tion on the interval between the “fits of easy reflection” for yellow-orange.

Young carried the same idea much further, deducing the wave-length

ranges of the conventional colors of the entire spectrum. His values,

reproduced below, agree very well with those assigned today. For con-

venience in comparison, his values (stated in inches) are converted into

centimeters, the unit upon which modern wave-length tables are based.

WAVE-LENGTH RANGES OF SPECTRAL COLORS

From Young's measurements on Newton’s rings.

Color Inches

(in millionths)

Centimeters

(in millionths)

red 24.6-26.6 62.5-67.6

orange 23.5-26.6 59.7-62.5

yellow 21.9-23.5 55.7-59.7

green 20.3-21.9 51.6-55.7

blue 18.9-20.3 48.1-51.6

violet 16.7-18.9 42.4-48.1

Young took his data in large measure from Newton’s own measurements of

the diameters of interference rings, checking Newton’s statements by ob-

servations of his own. The thickness of film which Newton had found at

the first yellow-orange ring was inch, which, when multiplied by

2, gives a wave-length of 22.5 millionths (page 365). This may be com-

pared with the corresponding values in Young’s table above.

The "Black Spot” in Liquid Films

Young’s next observation, like those on Newton’s rings, was simply an

improvement and extension of what had been done before. Newton had
made rather careful observations on colors of soap bubbles. Though bub-

bles did not lend themselves readily to measurements of thickness as did
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air films between convex glass surfaces, the colors were more brilliant.

Newton describes his observations in these words (90:214):

The Colours emerged in a very regular order, like so many concentrick

Rings encompassing the top of the Bubble. And as the Bubble grew thinner

by the continual subsiding of the Water, these Rings dilated slowly and

overspread the whole Bubble, descending in order to the bottom of it,

where they vanished successively. In the mean while after all the Colours

were emerged at the top, there grew in the center of the Rings a small

round black Spot . . . which continually dilated itself till it became some-

times more than \ or f of an Inch in breadth before the Bubble broke.

This observation of the “ black spot” in a liquid film was of considerable

importance. Young himself observed the same thing later, under circum-

stances which made more extended examination possible.

He described his observation in these words (134:368):

When a film of soapy water is stretched over a wine glass, and placed in a

vertical position, its upper edge becomes extremely thin, and appears nearly

black, while the parts below are divided by horizontal lines into a series of

coloured bands.

Figure 294 is a photograph of Young’s own drawing of the appearance

of a soap film under these circumstances. Though the appearance of a

soap film is somewhat difficult to demonstrate to large groups, Young’s

demonstration has become somewhat of a classic. The “black spot” is

of particular interest. The name is rather misleading. The top of the

film is not black in the sense of being opaquely so. On the contrary, the

transparency is even more marked there than elsewhere. It is so called

because, when the film is “highlighted” by strong reflection, that portion

fails to share in the general brilliance and hence appears black by contrast.

This absence of reflection is the same effect that appeared at the center of

Newton’s rings when seen in reflected light, and is due to the same cause

except that now it is the back surface of the film which produces the

180-degree change of phase instead of the front.

Reduction of Reflection by Thin Films

An interesting application has recently been made of this absence of

reflection from a film which is sufficiehtly thin. Undesirable reflections

are often encountered, such as the reflection of a window or of an electric

light on a near-by glass-covered picture which makes the picture nearly or

quite invisible until the angle of view is changed. If the reflecting glass

surface could be covered with a thin film, most of the reflection would be

eliminated. The difficulty has lain in producing films which were suffi-

ciently thin and yet rugged enough to survive. This was first successfully

done in 1939. Figure 295 shows the increased visibility produced by this

treatment of glass. The right third is uncoated, the left third has a coating

of the optimum thickness, and the center portion has a coating of inter-



Fig. 294. Photograph of Young’s Drawing (the Original
in Color) of a Vertical Soap Film on the End of a Tube

(From his Lectures on Natural Philosophy of 1807.)

Fig. 295. Visibility Through the Coated, Partially Coated, and
Uncoated Portions of the Glass Cover of an Electrical Instrument

(Courtesy of Dr. Katharine Blodgett, of the General Electric Company.)



Chapter jj LENGTHS OF LIGHT WAVES 371

mediate thickness. This technique will solve the troublesome problem of

loss of light by reflection at surfaces of the lenses used in photography and

in picture projection.

Grimaldi's Observation of Diffraction

The work of Newton and Young meshed at still another and very crucial

point. In 1665 was published the work of a friar named Francesco

Grimaldi (1618-63), who had noticed some peculiarities in the behavior of

light which had passed successively through two tiny apertures. Grimaldi

had given the name difraction to the new phenomenon. It was produced,

among other ways, by sending a beam of sunlight successively through two

tiny apertures, as in Figure 296, and observing what happened to it. He
described his observation as fol-

lows (77:297):

[When the light is incident on]

a smooth white surface it will

show an illuminated base IK
notably greater than the rays

would make which are trans-

mitted in straight lines through

the two holes This is proved

as often as the experiment is

tried by observing how great

the base IK is in fact and de-

ducing by calculation how great

the base NO ought to be which

is formed by the direct rays. . .

.

Further it should not be

omitted that the illuminated

base IK appears in the middle

suffused with pure light, and at

either extremity its light is

colored.

Newton not only referred to Grimaldi’s experiments (90:317 ff.), but he

repeated and improved upon them. Apparently prompted by Grimaldi’s

observation of color effects, Newton compared the widths of the luminous

patches produced by the lights of different portions of the spectrum, and
remarked (90:336):

Comparing the Fringes made in the several colour’d Lights, I found that

those made in the red Light were the largest, those made in the violet were
the least, and those made in the green were of a middle bigness.

Here, too, as we see it, Newton was well within the domain of the wave
hypothesis, for as will be shown shortly, the scale on which diffraction

effects occur should, on that hypothesis, be proportional to the wave-
lengths, as Newton found it to be. But even with a man of Newton’s

Fig. 296 . Grimaldi’s Observation of
Diffraction

(From his Physico-mathesis de Lumine of 1665.)
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A

Fig. 297 . Huygens’ Principle
(Redrawn from his Traite dc la Lumicre of 1690.)

caliber, the preoccupation with one theory blinded him to the significance

of the evidence pointing toward another; and it was left for Thomas Young
to find the most convincing evidence on the wave hypothesis.

Huygens9 Principle

Young utilized in this connection a principle which Huygens had formu-

lated more than a hundred years earlier, but which had remained largely

unnoticed. Huygens had stated his principle in the following words (61 :19)

:

Each particle of matter in which a wave spreads ought not to communi-
cate its motion only to the next particle which is in the straight line drawn
from the luminous point, but it also imparts some of it necessarily to all

the others which touch it and which oppose themselves to its movement.

So it arises that around each particle there is made a wave of which that

particle is the centre. Thus if DCF [Fig. 207] is a wave emanating from the

luminous point A
,
which is its centre, the particle B, one of those com-

prised within the sphere DCF, will have made its particular or partial wave
KCL

,

which will touch the wave DCF at C at the same moment that the

principal wave emanating from the point A has arrived at DCF
;
and it is

clear that it will be only the region of C of the wave KCL which will touch

the wave DCF
,
to wit, that which is in the straight line drawn through AB .

Similarly the other particles of the sphere DCF
,
such as bb

,
dd, etc., will

each make its own wave. But each of these waves can be infinitely feeble

only as compared with the wave DCF, to the composition of which all the

others contribute by the part of their surface which is most distant from

the centre A.

The principle which Huygens here sets forth is now commonly stated

somewhat more succinctly as follows: Every point on an advancing wave

front acts as a source from which secondary waves continually spread . The
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masking of the sideways-moving portions of the secondary waves by the

more energetic forward-moving portion, upon which Huygens commented,

may be reduced by causing a wave to pass through a small aperture. The
sideward components will then become visible. The passage of a ripple

through an aperture (Fig. 299) illustrates this effect. It was a similar

spreading of beams of light, which under Huygens* principle seems so

natural, that gave rise to the phenomena which Grimaldi had classified

under the name diffraction in his publication of 1665.

Young Confirms Huygens’ Principle for Light

Young took advantage of this spreading of light by diffraction in another

experiment, the one for which he is probably best known. If ripples orig-

inate in two closely adjacent sources, their overlapping regions will exhibit

alternate areas of constructive and destructive interference (Fig. 300).

Young obtained a similar effect with sunlight, which he reported to the

Royal Society in 1803. A cone of sunlight, spreading from a tiny aperture

in the screen S (Fig. 301), became incident on two small apertures, a and b
,

very closely adjacent to each other in a second screen. The two cones

spreading from these apertures overlapped. The interference pattern in

this overlapping region was made evi-

dent by interpolating a third screen,

on which appeared parallel light and
dark bands which exhibited colors.

Young described his observations as fol

lows (134:365):

When the two beams are received on

a surface placed so as to intercept

them, their light is divided by dark

stripes into portions nearly equal.

The middle of the portions is always

light, and the bright stripes on each

side are at such distances, that the

light, coming to them from one of the

apertures, must have passed through

a longer space than that which comes Fig. 298. Condition for Reinforce-
from the other, by an interval which ment of Diffracted Light Waves
is equal to the breadth of one, two,

three or more of the supposed undulations [Fig. 298] while the intervening

dark spaces correspond to a difference of half a supposed undulation, of

one and a half, of two and a half, or more.

Wave-Length from Double-Slit Diffraction

The observation of interference bands produced in this way, added to

the thin-film observations, furnished enormous support for the wave
hypothesis. But one of the most significant parts of the undertaking was
causing the observations to yield the values of the wave-lengths of the



Fig. 299. Diffraction of a Ripple upon Passing Through an Aperture

(From General Physicsfor Colleges
, by Webster, Farwcll, and Drew. The Century Company, publishers.)

Fig. 501. Interference in the Overlapping Region of
Two Diffracted Beams of Light

(From Studies on Optics, by A. A. Michelson. The University of Chicago Press, publishers.)



Fig. 302. Young’s Representation of Overlapping Waves
(From his Lectures on Natural Philosophy of 1807.)

Fig. 303. Appearance of Interference
Pattern from Two Apertures

(From Studies on Optics , by A. A. Michelson. The University of Chicago Press, publishers.)

Fig. 304. The Geometry of Interference
Between Diffracted Beams

Fig. 305. Appearance of Diffraction Pattern
Produced by Passage of Light Through a Slit

(From Studies on Optics
, by A. A. Michelson. The University of Chicago Press, publishers.)
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light used in producing the interference patterns. Young had extracted

this information from measurements on the interference patterns in thin

films. His ability to do so in this case also and the fact that the two sets of

results checked each other excellently could scarcely fail to lend strength

to the hypothesis which Young was invoking to account for his results. It

is no wonder that Young said, in introducing his work to the Royal Society: 1

The proposition, on which I mean to insist at present, is simply this,

that fringes of colours are produced by the interference of two portions of

light; and I think it will not be denied by the most prejudiced, that the

assertion is proved by the experiments I am about to relate.

Referring to the determinations of wave-length in this way he said

(134:365):

It appears that the breadth of the undulations constituting the extreme red

light must be supposed to be, in air, about one 36 thousandth of an inch,

and those of the extreme violet about one 60 thousandth.

Reference to Figure 304 2 will show how these wave-lengths could be de-

duced. The point O is a region of constructive interference for all wave-

lengths. Light from the two apertures travels an equal distance in arriving

at O and hence will be “in step” upon arrival. If at B

'

(and B) are found

the first regions of constructive interference for a particular wave-length,

say red, then ac must represent a difference of path of one wave-length

between the two beams reaching B

'

which originate from the two apertures

a and b respectively (compare Fig. 298) . If the distance ac can be deduced,

the wave-length of red light will become known.

This can readily be done with the aid of elementary geometry. The
angle OfB' (Fig. 304) is very small and nearly equal to abc. (For an inter-

ference band to be large enough to be seen, OB' would usually be less than

j oVo °f Of.) Hence with tolerable accuracy it can be said that

OB

Of
’

But when B' represents the first bright region off of the axis, the distance ac

represents one wave-length of light, which will be termed X. Also ab repre-

sents the distance d between apertures, Of the distance L from the apertures

to the screen and OB' the width w of one interference band. Hence,

X

d
X

cod

7T (2)

1 Philosophical Transactions, 94, 1 (1804).

* In this and succeeding diagrams dealing with diffraction, the angles are enormously ex-

aggerated. Their actual values would be, almost without exception, small fractions of a
degree. It is the smallness of these angles that permits what otherwise appear to be unjusti-

fiable substitutions of chords for arcs, angles for sines or tangents, and similar approximations
used in the derivations.



Chapter 33 LENGTHS OF LIGHT WAVES 377

Since w
t
d

,
and L may all be directly measured, it becomes possible to de-

termine the value of X, the wave-length of the light. This was Young’s

deduction. It gave him values of wave-lengths wherewith to check those

secured by interference in thin films. The agreement was such as ulti-

mately to vindicate his stand for the wave hypothesis.

Fresnel and the Single-Slit Pattern

Young had observed that when light passed through a single small

aperture, and indeed when it passed only one sharp edge of an obstacle,

alternate light and dark bands were produced as in the case of two aper-

tures, though the bands were different in many details. He erroneously

attributed these bands to interference between light reflected from the

edges of apertures, or between direct beams and the light so reflected. At

this point he was corrected by a young French military engineer, named
Augustin Fresnel (1788-1823). Fresnel had established a reputation in

the field of light, had independently discovered the phenomena which

Young had been studying, and had, in fact, carried the subject much
further. When Young’s work came to his attention it stimulated an ex-

tended friendly correspondence between the two men. Fresnel pointed out

Young’s error and gave a correct account of the cause of these diffraction

phenomena. His treatment of the case of the single aperture is a classic

which may well be quoted verbatim. But first the diffraction pattern pro-

duced by a single slit-formed aperture should be observed (Figure 305).

It should be compared with the pattern due to two slits (Fig. 303). The

widths of the bands in this case are not uniform, and the intensity dimin-

ishes rapidly on each side of the center. Fresnel accounted for these ap-

pearances as follows (31 :114)

:

LetAG (Fig. 306) be the aperture through

which the light passes. I shall at first sup-

pose that it is sufficiently narrow for the

dark bands of the first order to fall inside

the geometrical shadow of the screen. Let

P be the darkest point in one of these two

bands; it is then easily seen that this must

correspond to a difference of one whole

wave-length between the two extreme rays

AP and GP . (To show this) let us imag-

ine another ray, PI
,
drawn in such a way

that its length shall be a mean between

the other two. . . . Corresponding elements

of the aperture on each side of I send to

the point P vibrations in exactly opposite

phases, so that these must annul each

other.

By the same reasoning it is easily seen

that the darkest points in the other dark

Fig. 306. Fresnel’s Treat-
ment or Diffraction Due to
a Single Aperture
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bands also correspond to differences of an even number of half wave-lengths

between the two rays which come from the edges of the aperture; and in

like manner, the brightest points of the bright bands correspond to differ-

ences of an uneven number of half wave-lengths This is true with the

exception of the point at the middle which must be bright.

The last sentence accounts for the fact that the central band of the

single-slit diffraction pattern is twice as wide as the bands on either side.

To account for the diminution in intensity of the bands upon receding

from the center, imagine the aperture divided into an odd number of sub-

divisions. At a point on the screen, for example, such that the diffracted

light travels wave-lengths further from one edge of the aperture than

from the other (Fig. 307 (a)), there will be, by Fresnel’s preceding observa-

tions, a region of maximum brightness. But this maximum will be much
less bright than the adjacent central bright band. For if the aperture be

in imagination divided into three subdivisions, the path difference between

corresponding points in adjacent subdivisions will be one half wave-length.

Between the outside edges of either adjacent pair of subdivisions, the path

difference will be one wave-length; and hence light from these two areas

will nullify each other just as it did at point P (Fig. 306) in Fresnel’s ob-

servations. Hence, only the remaining third of the area is effective in pro-

ducing light. Similarly, at a point on the screen such that the over-all

difference of path is 2\ wave-lengths (Fig. 307 (&)), only one fifth of the

area of the aperture is effective, etc. Figure 305 indicates the appearance

of the diffraction pattern produced by a single slit. This should be com-

pared again with Figure 303. The comparison will show that the interfer-

ence pattern due to two slits is simply superposed upon the diffraction

pattern due to each.

Diffraction and Resolving Power

If the diffracting aperture is a circular opening, the pattern of a point

source will consist of concentric circles, fading out rapidly with radial dis-

tance from the center. Such patterns are always formed whenever light

passes through circular apertures, such as the lenses of microscopes and

telescopes. The lenses themselves are powerless to correct the spreading

produced by diffraction, as astronomers and biologists are well aware. For
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Fig. 308 . Artificial Double Stars at Different Separations

(Courtesy of Dr. J. A. Anderson, of the Mount Wilson Observatory.)

this reason, the spread-out images of two points which are very closely adja-

cent often overlap sufficiently to make it difficult or impossible to tell

whether two points or one are under observation. Close double stars

(Fig. 308) and the fine structure of cells are often indistinguishable from

this cause. In such cases the adjacent objects are said not to be “ resolved
”

by the telescope or microscope. The “limit of resolution ” of the instru-

ment has been passed. To be able to separate such a pair of objects, either

the aperture producing the diffraction (and containing the objective lens)

must be made larger or the wave-length of the light must be made shorter.

Hence, blue light, or even ultra-violet light, is sometimes used in micros-

copy when maximum resolving power is required.

Multiple-Slit Diffraction; the Grating

If parallel light from a point source is acted upon by a converging lens,

it will be brought to a focus. If a series of closely spaced parallel apertures

(a grating

)

be interposed in front of the lens, the original image will not be

affected, except to be reduced in intensity. But there will appear in ad-

dition a number of subsidiary images on each side of the central image, the

successive images diminishing rapidly in intensity in each direction from

the middle. The reason for this multiplication of images is not far to seek.

In addition to the original wave-front (Fig. 309 (a)) the grating now pro-

duces additional wave-fronts such as that of Figure 309 (b) and 309 (c)

Fig. 309 . The Action of a Grating
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Each of these is brought to a focus by the lens and forms its own image.

But the direction of each of these subsidiary wave-fronts will depend upon

the wave-length of the incident light. White light will thus produce a se-

ries of continuous spectra. In this the grating is comparable to the prism in

its action on light. Gratings are indeed more extensively used than prisms

to produce spectra.

But to be effective, a grating must consist of many thousands of lines

ruled extremely close together. Rulings spaced fifteen thousand to the

inch are fairly common. Moreover, the accuracy of such rulings must be

extremely high. The construction and operation of ruling-engines for

making gratings is one of the most exacting of the useful arts. The diffi-

culty of ruling gratings on glass has led to the practice of ruling them on

polished metal; the combination of reflection and diffraction from the metal

does what combined transmission and diffraction accomplish through the

glass grating. The first man to make extensive use of gratings in the pro-

duction of spectra was Joseph Fraunhofer (1787-1826), whose work will be

more extensively described in the following chapter. He used them first to

measure the wave-length of light from a sodium lamp.1 His gratings were

very primitive, consisting of fine wires stretched across the space between

two parallel screws, the spacing being determined by the pitch of the screws.

Even with this primitive equipment, however, he secured good results,

four of his most concordant observations being in millimeters, .0005891,

.0005894, .0005891, and .0005897. The mean .0005893 is almost exactly

the value now assigned.

The method of using a grating to determine the wave-length of light is

precisely the same as Thomas Young’s use of the double slit. In fact a

double-slit is a rudimentary grating consisting of two rulings. The grating

has until recent years been by far the most accurate instrument for the

measurement of wave-lengths. Thus Young, though he never dreamed of

a real grating, devised the principle which later made possible the precise

measurement of wave-lengths.

The finest of Fraunhofer’s gratings had a spacing of .0528 millimeter

between the centers of adjacent wires. Thus in Figure 304 the sine of the

angle 0 had the value X/.0528. Fraunhofer’s mean value for 0 was such as

to give the wave-length of sodium light correct within .005 per cent. This

astonishing degree of accuracy was prophetic of what the grating was to

accomplish in the following hundred years. It developed, indeed, into the

most powerful tool available for the study of spectra.

Characteristics of Grating Spectra

A grating produces many spectra, instead of just one spectrum as does

a prism, the order being identified as first, second, etc., each way from the

center. Hence, each of the spectra produced by a grating is less bright

than the single spectrum produced by a prism. But gratings possess ad-

1 Philosophical Magazine (5), F5, 245 (1888).
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Bands on Distance Between Slits

vantages which more than offset this handicap. They do not produce the

absorption which is characteristic of the passage of light through consider-

able thicknesses of glass or quartz. A very small grating may be capable of

spreading out a spectrum through as wide an angle as would require a

bulky array of prisms. Most useful of all, perhaps, is a certain uniformity

of grating spectra which is not characteristic of prism spectra. Within

certain limits a spectrum formed by one grating is exactly similar to that

formed by any other, the two being exact copies of each other except for a

difference in scale. Moreover, any distance measured along a grating

spectrum is approximately proportional to the corresponding wave-length

range. Spectra produced by two prisms, on the other hand, cannot safely

be compared with each other even when reduced to the same length. The
relative widths of the blue and the green sections, for example, may be

quite different or, in extreme and somewhat unusual cases, the two sections

might actually be reversed in relative position. Also, it is characteristic

of a spectrum produced by a prism that the long-wave-length end (the red)

is compressed and the short-wave-length end (the violet) is greatly ex-

panded, in comparison with the corresponding spectrum produced by a

grating. The grating spectrum is termed a normal spectrum, in conse-

quence of the very useful approximate proportionality between distances

along the spectrum and corresponding wave-length ranges.

The “ coarseness” or
“
fineness” of an interference pattern produced by

two slits depends upon the distance between the slits, a large distance pro-

ducing a fine concentrated pattern, a short distance producing a larger-

scaled pattern (Fig. 310). This is also true of the interference pattern

produced by a grating. Thus the angular spread per unit of wave-length

range, known as the dispersion
,
will depend solely on the grating space, in

an inverse proportion. Thus the dispersion of a grating depends entirely

on the number of rulings per unit width and not at all upon the total num-
ber of lines.

The so-called resolving power of a grating depends, on the other hand,

solely on the total number of rulings and not upon the spacing. This term,
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resolving power, as used here, is closely analogous in meaning to the same

term as used on page 379. A high resolving power implies in this case high

ability of a grating to produce separate images of closely adjacent wave-

lengths in a spectrum. Fraunhofer’s gratings did not possess sufficient

resolving power to produce separate images of the sodium line, now known
to be double. Hence, his wave-length was .0005893 mm, the mean of

.0005890 mm and .0005896 mm, the wave-lengths of the two components.

The numerical measure of the resolving power of a grating or a prism is the

ratio of the mean wave-length to the difference between the wave-lengths

which are barely resolvable. Thus it requires a resolving power of

or approximately 1000, to produce separate images of the two components

of the sodium line.

The Ruling of Gratings

The “ruling” of gratings is a delicate, as well as a useful art. A pro-

digious amount of labor has gone into the construction of “ruling engines.”

The heart of the machine is the screw which advances the ruling diamond

the required interval between successive strokes. Making this screw

requires months of skilled labor. The completed ruling engine must be so

mounted as to be free from jars, and stringent measures are taken to main-

tain a constant temperature while a ruling is in progress. To rule gratings

as much as six inches wide, with fifteen thousand to twenty-five thousand

lines to the inch, all to the required high accuracy and uniformity, is a major

undertaking. Such gratings are literally priceless, for so large is the ele-

ment of luck in the manufacture of gratings that the best gratings are few

and arc invariably retained for the use of the maker, only the less perfect

ones being placed on sale.

The game has been distinctly “worth the candle,” however. It was in

spectroscopy that the earliest of the real precision measurements were

made in the field of physical sciences. More than anything else, physics

owes its reputation for being the most exact of the exact sciences to the

development of precision measurements made possible by the diffraction

grating. Thus an obscure phenomenon, neglected for a century after

Grimaldi’s early discovery, and even then coming only slowly into scientific

use, ultimately developed, as do many similar phenomena, into one of the

major factors in the growth of a science.

Questions for Self-Examination

1. What was Newton's opinion on the controversial question of the nature of light?

2. Describe Newton’s rings as seen by reflected monochromatic light and account

for them.

3. How did Newton “solve” the problem of why part of the light is reflected from

glass?
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4. What evidence did Thomas Young adduce to support his contention that light

was a wave motion?

5. How is the “black spot” in thin films produced and what application is now being

made of the phenomenon?

6. What is diffraction and who made the earliest observations of it?

7. State Huygens' principle and give an example.

8. Why do interference bands appear in the overlapping region of light diffracted

through two adjacent apertures?

9. Show how double-slit diffraction gives information about the wave-length of light.

10. Describe and account for the diffraction pattern produced by a single slit.

11. What are the relative merits of prisms and gratings as spectrum-producing devices?

Problems on Chapter 33

1. As oil films or soap films grow thin enough to exhibit colors, the first color to

appear is blue. Why is this?

2. The film over the left third of the dial of Figure 295 was produced by dipping the

glass into a solution of cadmium arachidate 44 times. If the final thickness of

the film was .025 of the average wave-length of white light (.000059 cm), how much
was deposited at each dipping? The middle section was dipped 26 times. What
was its thickness? 3.3 • 10~8 cm. 8.6 • 10“7 cm.

3. In observing “Newton's rings,” Newton found the radius of the fifth dark ring

produced by reflection to be -

eVuV inch. The rings were produced by laying a

lens having a radius of curvature of 91 inches on a piece of plane glass. He de-

duced that the thickness of the air film at that point was -g-ffxnnr inch. Check his

calculations. What value does this give for the average wave-length of white

light? Compare your result with the table on page 368.

4. Sodium light of wave-length .000,058,93 centimeter passes through a grating having
6000 lines per centimeter. Through what angle is the first-order diffracted beam
bent? 21°.

5.

The headlamps of an automobile are 1 meter apart. The diffraction patterns

produced when these lights are observed through a silk umbrella overlap. An
observer 100 meters away notes that the fifth-order image of one light falls squarely

on the other light. What is the spacing of the threads of the umbrella?

40 threads per cm.

6. Two glass plates in contact at one edge are sep-

arated at the other by a piece of tinfoil. When il-

luminated by light of wave-length X angstroms, n
interference bands are counted across the width of

the plates. What is the thickness d of the tinfoil in

millimeters?

X n d
6678 30. 0.01002

5893 33.9 0.00999

5780 34.6 0.01

5461 36.6 0.01

7. Parallel light of wave-length X angstroms, from a point source, passes normally
through a narrow slit a millimeters wide and falls normally upon a screen which is

d meters distant from the slit. What is the breadth b of the central bright diffrac-

tion fringe in

X

millimeters?

a d b a n a X
7. 5893 .5 4 9.4 8. .5 5 45.91 6700

5893 .4 3 8.8 .5 5 40.52 5900

5893 .3 2 7.9 .5 5 39.74 5800

5893 .2 1 5.9 .5 5 37.55 5500
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8. Monochromatic light is placed before the collimator of a spectrometer. A vertical

auxiliary slit of width a millimeters is placed before the telescope, and the telescope

brought approximately into line with the collimator. The system of diffraction

bands then appear as shown in Figure 305. The cross hair is set first on the nth

dark fringe to the right of the center and then on the nth dark fringe to the left.

The telescope in the meantime turns through an angle of a minutes of arc. What
is the wave-length X of the light in angstrom units?

9. A certain grating is ruled with n lines per centimeter. Parallel light is incident

normally upon it. What is the angle a in degrees between the normal to the grat-

ing and the line to the violet end (4000 angstroms), and the angle
j
8 in degrees

between the normal to the grating and the line to the red end (8000 angstroms)

of the mth order spectrum? What fraction r of the (m — l)th order spectrum over-

laps the wth?

ft m a P r X v

2500 5 30° 90° .8 10. 6562.14 30
2500 4 24° 53° .68 6560.83 90
2500 3 17° 37° .5 6558.86 180

2500 2 12° 24° 0 . 6556.24 300
2500 1 6° 12°

10. The so-called C line of hydrogen has a normal wave-length of 6562.80 angstroms.

But the same line emitted by a “nova” (exploding star) shows a wave-length X.

With what speed, v, is the exploded material approaching the earth, in kilometers

per second? (Velocity of light = 3 * 105 km/sec.)

11. A double slit is placed over the objective of an astronomical a a
telescope. The two slits are at first placed close together. 10 .5672

The telescope is then directed at a double star, and the distance 30 .1891

between the slits increased until the interference fringes (at 100 .05672

first visible in the telescope) disappear. The distance is then 400 .01418

a centimeters. What is the angular separation a of the two
stars in seconds of arc? Take 5500 angstroms as the wave-

length.

!



CHAPTER 34

Spectra

The Birth of Spectroscopy

Newton adapted the word spectrum from the Latin to describe an elon-

gated and colored image of the sun which was produced by his prism. His

first public use of the word in this connection was in his paper of 1672

before the Royal Society. The term was not particularlydescriptive at

the time, for the Latin word spectrum is not associated in any way with

color. It means simply appearance, image, or specter and is derived from

the verb specere
,
to look or see. Subsequent use has, however, made the

word spectrum one of the richest terms in the vocabulary of physics.

In Newton's time, and indeed for a hundred and thirty years after his

first paper on spectra, the only means of identifying portions of a spectrum

was by color. The modern association between color and wave-length

could not be made, partly because the means of measuring wave-length

were not at hand, but more especially because light was generally imagined

to consist of flying particles to which no wave-length concept was appli-

cable. But when Sir Thomas Young first took advantage of interference

phenomena to secure information about the wave-lengths of light, and

found that red light was made up of longer waves than violet, he provided

the foundation for the most imposing structure of nineteenth-century ex-

perimental science, that of spectroscopy.

In 1802, William Wollaston (1766-1818), saw in a spectrum of the sun

something that, by strange chance, nobody had ever seen before. His own
account of the discovery is as follows: 1

If a beam of day-light [i.e., sunlight] be admitted into a dark room by a
crevice rfo of an inch broad, and received by the eye at the distance of 10

or 12 feet through a prism of flint glass, free from veins, held near the eye,

the beam is seen to be separated into the four following colours only, red,

yellowish-green, blue and violet. . .

.

The line A that bounds the red side of the spectrum is somewhat confused,

which seems in part owing to want of power in the eye to converge red light.

The line B between red and green, in a certain position of the prism is per-

fectly distinct; so also are D and E the two limits of violet. But C, the

limit of green and blue, is not so clearly marked as the rest; and there are

1 Philosophical Transactions
, 92, 378 (1802).
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also on each side of this limit other distinct dark lines / and g,
either of

which in an imperfect experiment might be mistaken for the boundary of

these colours

The chief point of importance in this imperfect account is the discovery

that the solar spectrum, as formed by a prism from light which has trav-

ersed a slit, is crossed by a series of dark lines (Fig. 312, opposite page

387). These lines have since become known as Fraunhofer lines
,
after a

later German observer who discovered them independently and with

better comprehension of their nature and significance. Wollaston saw only

seven lines. Fraunhofer recorded about six hundred, and later observa-

tions with improved instruments have increased the number to more than

10
,
000 .

Fraunhofer Utilizes the Solar Absorption Lines

The lone investigator of the subject between 1814 and 1824 was Joseph

Fraunhofer, the same man who made the first measurements of wave-

length with a grating. As the optician in a “ mathematical institute ” in

Bavaria, he had occasion to make determinations of indexes of refraction of

glass specimens used in the manufacture of achromatic lenses. The in-

dexes were of course different for different colors but they were also differ-

ent for different parts of the same color as spread out in a spectrum.

Fraunhofer’s great perplexity was how to specify with sufficient precision

just what portion of the spectrum was being used in a given determination

of index of refraction. He had accidentally discovered in the spectra of

various kinds of flame lamps an extremely narrow isolated section of the

yellow part now termed the sodium “line.” He found this to be always

“exactly in the same place and consequently very useful” in the determi-

nation of indexes. Wishing for greater brilliance, it occurred to him to see

(45:10).

whether a similar bright line could be seen in the spectrum of sunlight as

in the spectrum of lamplight, and I found, with the telescope, instead of

this, an almost countless number of strong and feeble vertical lines, which
however, were darker than the other parts of the spectrum, some appearing

to be almost perfectly black.

Here was precisely what Fraunhofer needed: an array of sharp landmarks,

well distributed throughout the spectrum, which could be used as points of

reference when the necessity arose for describing precisely any desired part

of the spectrum. These dark lines were, of course, the same that had been

seen by Wollaston, but in vastly greater numbers because Fraunhofer’s in-

strumental equipment was much better.

Unlike Wollaston in another respect, Fraunhofer proceeded to explore

all the implications of his discover}". His measurement of the wave-
lengths of the principal dark lines, now called the Fraunhofer lines, has
already been described. Recognizing that the wave-length measurements



Fig. 265. Newton Studying the Solar Spectrum
Produced by a Prism (seep. 341)

© Bausch and Lorab Optical Co. Reproduced by permission.



Fig. 311. A Continuous Spectrum, the Source Being an Illuminated Slit

Fig. 288. The Rainbow is Really a “Pile” of Superposed Colored Disks (see p. 361)

Fig. 313. The Emission and the Absorption Spectrum of Sodium (see p. 388)
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facilitated the comparison of the positions of the lines from various sources,

he directed his spectroscope (the name which came to be applied to his

combination of telescope, prism, and angle-measuring device) at the moon
and some of the planets and found the lines in the same position. In the

stars, however, he found notable differences, though with many lines un-

changed. The points of difference made it possible to conclude that the

dark lines were not due, at least not exclusively, to the action of the ter-

restrial atmosphere. It was the later extension of this part of Fraunhofers

work by others which has made it possible to state with certainty the

chemical constitution of the heavenly bodies. Not without reason does

Fraunhofers tomb bear the words, “Approximavit sidera.”

The Extension of Fraunhofer’s Work

Gustave Robert Kirchhoff (1824-87) of Heidelberg resumed where

Fraunhofer had left off. Kirchhoff, working in collaboration with R. W.
Bunsen (1811-99), had been studying the spectra of flames into which

various vaporized substances were introduced. They had observed that

these spectra, instead of being unbroken bands of color continuously graded

from red to violet, consisted of individual lines scattered across the spec-

tral region, each line possessing the color of that portion of the spectrum

in which it was located. These have since received the name emission

line spectra to distinguish them from the absorption line spectra which Wol-

laston and Fraunhofer had seen in light from the sun. It had been found

that a given chemical element always showed the same spectrum, that the

spectra of different elements were easily distinguishable from each other,

and that within certain limits the spectrum of an element remained un-

changed by chemical combination with other elements. Hence Kirchhoff

was using spectra as an aid in making chemical analyses of unknown sub-

stances.

The simplest of these emission line spectra was that of the metal called

sodium. It appeared at first to consist of a single yellow line, but on closer

inspection it proved to be double, the two components being very close

together. Fraunhofer had seen this line in candle flames, and had noticed

that it occupied the same position in the spectrum as one of the most

prominent dark lines of the sun, which he had labeled the D line merely

for identification. There his observation had stopped. Kirchhoff, besides

identifying the line with sodium (in itself a major discovery, though others

had anticipated him in this part of the work), proceeded to show the con-

ditions under which this emission line became converted to an absorption

line, and then extended the same observation to the spectral lines of other

elements. Here is his own description of his procedure (77 :355)

:

Fraunhofer noticed that in the spectrum of a candle flame two bright lines

occur which coincide with the two dark lines D of the solar spectrum. We
obtain the same bright lines in greater intensity from a flame in which com-

mon salt is introduced. I arranged a solar spectrum and allowed the sun’s
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rays, before they fell on the slit, to pass through a flame heavily charged

with salt. When the sunlight was sufficiently weakened there appeared,

in place of the two dark D lines, two bright lines; if its intensity, however,

exceeded a certain limit the two dark D lines showed much more plainly

than when the flame charged with salt was not present. (Fig. 313, opp.

page 387.)

The Identity of Solar and Terrestrial Lines

To verify this indication that absorption lines were produced by sending

light through a flame which was the source of corresponding emission lines,

Kirchhoff repeated the experiment, using not the sun, as before, but a

laboratory source of white light which would normally produce a continu-

ous spectrum without the dark lines characteristic of the solar spectrum.

He thus describes the result (77 :355 ff.):

If an alcohol flame in which salt is introduced is placed between the [white

light] and the slit, then in place of the bright lines two dark lines appear,

remarkably sharp and fine, which in every respect correspond with the D
lines of the solar spectrum. Thus the D lines of the solar spectrum have

been artificially produced in a spectrum in which they do not naturally

occur.

Kirchhoff then extended his observations to the spectra of other chemical

elements and drew his conclusions as follows:

If we introduce lithium chloride into the flame of a Bunsen burner, its

spectrum shows a very bright, sharply defined line which lies between the

Fraunhofer lines B and C. If we allow the sun’s rays of moderate intensity

to pass through the flame and fall on the slit, we shall see in the place indi-

cated the lines bright on a darker ground; when the sunlight is stronger

there appears at that place a dark line which has exactly the same character

as the Fraunhofer lines. If we remove the flame the line disappears com-

pletely, so far as I can see.

I conclude from these observations that a colored flame in whose spec-

trum bright sharp lines occur so weakens rays of the color of these lines,

if they [the rays] pass through it, that dark lines appear in place of the bright

ones, whenever a source of light of sufficient intensity, in whose spectrum

these [dark] lines are otherwise absent, is brought behind the flame. I

conclude further that the dark lines of the solar spectrum, which are not

produced by the earth’s atmosphere, occur because of the presence of those

elements in the glowing atmosphere of the sun which would produce in the

spectrum of a flame bright lines in the same position. We may assume that

the bright lines corresponding with the D lines in the spectrum of a flame

always arise from the presence of sodium; the dark D lines in the solar

spectrum permit us to conclude that sodium is present in the sun’s atmos-

phere. Brewster has found in the spectrum of a flame charged with salt-

peter bright lines in the position of the Fraunhofer lines A, a, B; these

lines indicate that potassium is present in the sun’s atmosphere. From my
observations, according to which there is no dark line in the solar spectrum
coinciding with the red line of lithium, it seems probable that lithium either
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is not present in the sun’s atmosphere or is there in relatively small quan-

tity.

The investigation of the spectra of colored flames has thus acquired a

i
new and great importance It gives an unexpected interpretation of the

I Fraunhofer Lines and allows us to draw conclusions from them about the

composition of the sun’s atmosphere and perhaps also of that of the brighter

fixed stars.

It would be hard to exaggerate the significance of these observations and
conclusions. August Comte 1 (1798-1857), the famous social philosopher,

had remarked only a few years before this that man could never know any-

thing about the chemical composition of the heavenly bodies. This fatal-

istic pronouncement was confuted almost within his own lifetime. Subse-

quent progress in spectrum analysis proceeded so rapidly that within nine

years after Kirchhoff had initiated it, a previously unknown chemical ele-

ment, helium, was identified in the sun more than a quarter of a century

before its existence on the earth was discovered.

The Doppler Effect in light

But the spectroscope was to yield other types of information about the

stars than merely their chemical constitution. For many years astron-

omers had desired to secure information about the motions of the stars.

The components perpendicular to the line of sight had yielded to direct

measurement, but no way was known for determining the components

toward or away from the earth (“radial motion”). But the spectroscope

opened the way to the measurement of this radial motion. The principle

was one that had been applied already to sound, the so-called Doppler effect

(page 253). The fact that the apparent pitch of an approaching sounding

body is higher than its actual pitch means that the sound waves which it is

emitting are crowded up in front of it and that hence the wave-length of

the sound is less than normal. For the contrary reason, the wave-length

of the sound sent out behind a moving body is greater than normal. The
same is true for light, as was pointed out by Doppler himself in 1842

(58:140).

But two obstacles stood in the way of using the information thus ren-

dered possible. One was the inaccuracy of knowledge of the velocity of

light and the other the lack of the necessary precision in astronomical in-

struments. But by 1868 both obstacles had been surmounted and Sir

William Huggins (1824-1910) in that year made the first successful meas-

urement of the radial velocity of a star. Since then many such measure-

ments have been made. The velocities of approach or recession of most

stars are less than 40 miles per second, though a few exceed this speed

(Fig. 314).

One of the interesting applications of the Doppler principle is in the

observation of double stars, pairs which are rotating about each other.

1
J. A. Thomson, The System of Animate Nature (New York: Henry Holt, 1920), /:15.
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Fig. 315. The Speed Record or a Double Star
(The change occurred within eighteen hours.)
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At certain times in their revolutions, one star is approaching the earth and
the other receding from it. Under those circumstances each line in the

spectrum of the pair becomes double (Fig. 315), the light from the ap-

proaching star decreasing its wave-length slightly, that from the receding

star increasing. When the stars have traveled an additional quarter of

their orbit, the spectral doublets coincide, and thus the process continues.

Some double stars are known to be such only through this spectroscopic

evidence. They are too far away to be seen separately by any telescope.

Photography as a New Spectroscopic Tool

During the interval between Fraunhofer’s con-

tributions and those of Kirchhoff and Bunsen, some-

thing occurred which was destined to have a more

profound effect on spectroscopy than all the other

developments before or since. In 1826 a French

cavalry officer named Niepce made the first photo-

graph on record, using a thin coating of asphaltum

on a metal plate. With the aid of an associate

named Daguerre he improved the process. After

the death of Niepce, Daguerre in 1839 announced

a new type of photography which he called the

daguerreotype
,
which sprang immediately into com-

mon use for portraiture. In those days a visit to

the photographer was quite an ordeal. In the first

trials, the face of the sitter was dusted with white

powder to increase the visibility, and even on a

bright day an exposure of from five to seven min-

utes was required.

Cumbersome as this process was, judged by mod-
ern standards, photography was immediately seized

upon as a useful way to record spectra. Ever since

that time it has been the principal tool of spectros-

copy. In 1842 Edmond Becquerel (1820-91) made
the first photograph of a complete solar spectrum,

a really amazing accomplishment, considering the

times, and one which was not surpassed for more
than a generation (69 :81) . Becquerel’s photograph

is reproduced herewith, the red end being at the

bottom.

The Discovery of the Ultra-Violet Region

Becquerel’s photograph pointed up several devel-

opments which had been taking shape during a

number of years preceding. The one which was the

most significant will be evident in the fact that,

Fig. 316. Becquerel’s
Photograph of the
Solar Spectrum
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though the red end of the photograph included only that portion of the spec-

trum which was visible when viewed directly, the violet end extended far

beyond the region which was visible. Had Becquerel been looking at the

spectrum itself, instead of its photograph, he would have seen nothing above

the point H. At that point was the violet end of the spectrum, the visi-

ble spectrum extending from II down through the successive colors ending

with red at the extreme bottom. Evidently the camera was capable of

catching a section of the spectrum above H which was not visible to the

eye. Today we call that the ultra-violet portion of the spectrum and say

that it consists of wave-lengths shorter than 4000 angstrom units.

This was not the first time, however, that evidence had appeared of the

existence of invisible radiations outside of the spectrum. As early as 1801

J. W. Ritter 1 (1776-1810) of Jena had reported that beyond the visible

violet the spectrum had the power of blackening silver chloride and that,

indeed, the blackening was more pronounced there than in the visible part

of the spectrum. This observation of its proclivity for stimulating certain

chemical reactions led to the ultra-violet’s being called for many years the

“chemical spectrum.”

The identification of the physiological effects of ultra-violet light and
the development of its therapeutic use have occurred within the present

generation. But its spectroscopic attributes were quite thoroughly ex-

plored within a few years of its discovery. The establishment of actual

wave-lengths had to await the construction of Angstrom’s wave-length

tables some thirty years later. But by 1852 Sir G. G. Stokes (1819-1903)

of Cambridge University had found that quartz transmitted ultra-violet

much more readily than glass. With a spectroscope consisting of a quartz

prism and lens he identified an ultra-violet region of the solar spectrum

twice as long as had been seen with glass, and extended the ultra-violet

spectrum from an electric spark over a range five or six times as long as the

entire visible portion of the spectrum produced by the same prism.

The Wave-Length Range of Ultra-Violet

Stokes used fluorescence as his exploring agent in the ultra-violet. Most
of the other experimenters in this field were using photography. The same
division of practice exists today in the much shorter wave-length region

called X-rays. The fluorescent screen or fluoroscope is used quite inter-

changeably with photography to render X-ray beams visible. Two promi-
nent contemporaries of Stokes who used photography to make the ultra-

violet spectrum visible were Professor W. A. Miller (1817-70), also of

Cambridge University (69:88), and E. E. N. Mascart (1837-1908) 2

Miller used a quartz prism and Mascart a grating to produce the spectra.

The difference was important. Whereas both Stokes and Miller had ob-
served that the ultra-violet portions of their prism spectra were five or six

1 Gilbert’s Annalen, 7, 527 (1801); 13, 409 (1802).

* Comptes Rrndus, 67, 789; 68, 1111 (1863HS4).
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times as long as the visible portions, Mascart’s grating spectra indicated

that the ultra-violet portion, even though it included all the parts shown

by Stokes and Miller, was nevertheless scarcely even as long as the visible

portion. We now know that Mascart’s results give the more accurate

picture of the actual conditions by reason of the “normal” spectra pro-

duced by gratings (page 381). The “normality” of Mascart’s results will

be evident when it is realized that the visible spectrum extends roughly

from 7500 angstrom units down to 4000, whereas that portion of the ultra-

violet with which these investigators were concerned began at 4000 a.u.

and could scarcely have gone below 2000 a.u., if indeed it went that far.

Thus, during the first half of the nineteenth century there developed a

realization that the visible spectrum contained only a portion of the radia-

tions emitted by luminous bodies. Knowledge of the extension of the

visible spectrum beyond the violet was greatly facilitated by the develop-

ment of photography, the effectiveness of which lay in the fact that the

maximum sensitivity of photographic emulsions lay in the ultra-violet, to

which the eye was not sensitive at all. The short wave-length limit

(2000 a.u.), which investigators were unable to pass for more than fifty

years, is now known to have been due in part to the inability of the gelatin

coating of the photographic plates to transmit wave-lengths shorter than

2000 a.u., and in part to the fact that air itself is afflicted with the same

inability. Not until photographic emulsions were made without the use of

gelatin (“Schumann plates”), nor until entire spectrum-producing systems

were enclosed in evacuated chambers, did it become possible to investigate

the wave-length region less than 2000 a.u. This “far ultra-violet” (so

called to distinguish it from the “near ultra-violet,” 4000-2000 a.u.), or

Schumann region
,
was not studied until the beginning of the twentieth

century.

The Discovery of the Infra-Red Region

During the same span of years that saw the extension of the visible

region at the short wave-length end into the ultra-violet, the other obvious

extension at the long wave-length end into the so-called infra-red was
occurring. It was, in fact, a year before Ritter’s first observation of the

ultra-violet in 1800 that Sir William Herschel (1738-1822) took thermom-
eter readings at different portions of a prismatic spectrum and observed

that the temperature was higher at a certain distance beyond the red end
than at any other point. Commenting on this observation he said: 1

May not this lead us to surmise that radiant heat consists of particles of

light of a certain range of momenta, and which range may extend a little

farther, on either side of refrangibility, than that of light? ... In this case,

radiant heat will at least partly, if not chiefly, consist, if I may be permitted

the expression, of invisible light; that is to say, of rays coming from the

sun, that have such a momentum as to be unfit for vision. . . . Hence we
1 Philosophical Transactions (abridged), 18, 675 (1796-1800).
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may also infer, that the invisible heat of red-hot iron, gradually cooled till

it ceases to shine, has (only) the momentum of the invisible rays . . and

this will afford an easy solution of reflection of invisible heat by concave

mirrors.

Herschel later investigated the reflection and refraction of this “ invisible

light ” and demonstrated both the equality of the angles of incidence and
reflection and the applicability of Snel’s law.1 It is worthy of note that

Herschel described his observation in terms of the “momenta” of “par-

ticles” of light. This was two years prior to Young’s pioneer work on

interference, by which the wave theory of light was to be placed on its

first secure foundation, so it would be expecting too much to have Her-

schel’s statement couched in terms of the wave theory. The observation

itself was entirely sound, and indeed required only minor changes in phras-

ing to lend itself to the wave terminology.

As was the case with Ritter’s observation of ultra-violet, Herschel’s

discovery of the infra-red remained largely undeveloped for a generation.

This was in part due to the fact that thermometers were too clumsy and

insufficiently sensitive to yield better than rough observations in this field.

This handicap was removed in 1830 by the invention of the lher?nopile by
Leopoldo Nobili (1784-1835). Collaborating with Nobili in the improve-

ment of the thermopile, Macedonio Melloni (1798-1854) began a brilliant

series of researches on the infra-red spectrum, culminating in his final

publication in 1850, La Thermochrose
,
ou la coloration calorifique. As the

title indicates, Melloni established the existence of different “colors” of

radiant heat. After exhaustive tests he found that rock salt would trans-

mit this radiant heat the most readily, just as a few years later Stokes dis-

covered that quartz was almost the only substance that would transmit

ultra-violet. Hence Melloni used rock salt for the lenses and prisms with

which he studied his infra-red spectra.

Completing the Conquest of the Infra-Red

Photography had been one of the major factors in the development of

Fig. 317. Spectral Distribution op Energy
por Various Hot Materials

ultra-violet, but it was not

adapted to the exploration of

the infra-red. Largely because

of this fact, the final stage in the

exploration of infra-red came
much later than that of the ultra-

violet. Nevertheless, the final

stages of the two were strikingly

similar. In both cases, the

conclusive stage arrived with

the substitution of gratings for

prisms, thus producing “normal”
1 Ibid., 18, 692

,
750.



Fig. 318

Spectra shown are: (1) the spectrum of silver produced by an electric arc; (2) that of zinc, by an electric

spark; (3) that of carbon monoxide and <4) that of carbon dioxide; (5) a band spectrum of nitrogen, pro-

duced by an electric discharge in rarefied gas (e.g., electric signs); (6) the spectrum of copper as it appears

in the “green flame" familiar when copper salts are thrown into a fire.

(From Spectroscopy by E. C. C. Baly, 1918 edition [Longmans, Green and Company, publishers].)
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spectra, making wave-length measurements possible, and eliminating

the selective absorption due to passage through the prisms. This step

was taken in 1880 by S. P. Langley 1 (1834-1906) of the Smithsonian

Institution. Langley had devised a vastly more sensitive temperature in-

dicator than Melloni’s thermopile, which he called a bolometer. A very

fine strip of wire had its resistance increased by exposure at a given point

in the spectrum. Measurement of the change in resistance could be made
so precisely that temperature changes of one ten-millionth of a centigrade

degree were identifiable. The combination of grating and bolometer very

soon enabled Langley to write finis on the problem of the infra-red. The
wave-lengths of the solar spectrum were extended from 7500 a.u. to about

30,000 a.u. (.003 mm) where the solar spectrum appeared suddenly to

terminate. Terrestrial sources yielded even longer waves, some of them
as great as 500,000 a.u. (.05 mm) as measured by later observers.2

Moreover, Langley found that the maximum temperature of the solar

spectrum lay at the wave-length corresponding to yellow light, instead of

in the red as indicated by Herschel and Melloni. Most important, per-

haps, was his discovery that the position of this maximum depended upon
the temperature of the source, so that by charting the temperature dis-

tribution across the spectrum of a distant source, such as a star, the position

of the maximum betrayed the temperature of the source (Fig. 317). Later

workers even applied this method to low-temperature sources such as the

moon and the planets.

The Origin of Spectra

Thus the study of spectra provided very early several types of informa-

tion about the astronomical bodies whose distance rendered them other-

wise inaccessible. The physical state (whether gaseous, as indicated by
emission line spectra, or solid or liquid, as indicated by continuous spectra),

the chemical constitution if in the gaseous state, the state of motion toward

or away from the observer, and the temperature; all these types of informa-

tion were adduced from studies of the spectra of distant luminous bodies.

Other types of information a|iout astronomical bodies were forthcoming

as experimental methods improved, but in the meantime another spectro-

scopic discovery bore significant fruit of a different kind.

It was realized very early that the spectrunj of a gas was not made more

complicated by any increase in the: quantity of the gas producing the

spectrum, nor rendered any more simple by' reduction of the quantity.

The same array of spectral lines, whether of emission or of absorption, ap-

peared in both cases. A natural conclusion, and one which has since been

demonstrated to be correct, was that in such cases each atom or molecule

of the gas emitted the same array of spectral lines. The only effect of in-

1 Proceedings American Academy, 16, 342 (1881).
'

* Rubens and Nichols, Physical Review, 4, 314 (1897).
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creasing the number of spectrum-emitting particles was to make the spec-

trum more intense.

But if each atom or molecule emits the complete spectrum, a sufficient

mechanism must reside in each such particle to produce the complete

spectrum. Some spectra are extremely complicated. That of vaporized

iron, to take a somewhat extreme example, contains many thousands of

lines; hence the atom of iron must be very complicated. Professor H. A.

Rowland (1848-1901) of Johns Hopkins University is said to have re-

marked once that, compared with an atom of iron, a grand piano must be

a very simple structure. Notwithstanding the natural implication that a

study of spectra should yield information on the structure of the atoms

and molecules producing them, spectra withstood all attempts at such in-

terpretation until the twentieth century was well under way. But cer-

tain observations paved the way for these twentieth-century discoveries.

Molecular Spectra

One of Wollaston’s observations with the prism, presumably at about the

time that he saw what later came to be known as the Fraunhofer lines, was

the spectrum of the blue portion at the base of the candle flame (30:293).

This resembled neither a continuous spectrum nor a line spectrum, but

presented a curious fluted appearance which seventy years later received

the name hand spectrum.1
It is now known that what Wollaston saw was

the spectrum of the carbon monoxide produced by incomplete combustion

of the material of the candle. A different band spectrum, that of carbon

dioxide, is produced when combustion is complete. Figure 318, spectra

numbers 3 and 4, shows both these band spectra, photographed more than

a century later. It was not until 1882 that it was shown 2 that band

spectra originate in gases in the molecular state. The more familiar line

spectra were shown to be produced by gases in the atomic state. Thus pure

gaseous carbon would give one type of line spectrum, pure oxygen another,

but the combination would give a band spectrum of one kind if each mole-

cule consisted of one atom each of carbon and oxygen (carbon monoxide)

and of the other kind if of one atom of carbon and two of oxygen (carbon

dioxide). The flutings or bands were later found not to be continuous

gradations of light, as was at first supposed, but to consist of masses of

closely spaced spectral lines (Fig. 319). Studies of the regularities in the

sequence of wave-lengths constituting these bands have in recent years

yielded an immense amount of information about the structures of the

molecules responsible for band spectra. Thus another attribute of spectra

has been made to give further information on the condition of the luminous

material producing the light (or the non-luminous material absorbing it).

1 Wtillner, Poggendorfi's Annalen
, 137, 337 (1879).

* Goldstein, Wiedemann's Annalen
, 15, 280 (1882).



398 SPECTRA Chapter 34

Fig. 319. A Band Spectrum Under Low Dispersion and a
Portion of It Under High Dispersion

(Spectrogram by O. S. Duffcndack.)

Fig. 320. The First Few Lines of the Balmer Series
in the Spectrum of Hydrogen

(From Molecular Spectra
, by Gerhard Herzbcrg. Prentice-Hall, Inc., publishers.)

Spectral Series

Regularities in the spacing of the spectral lines in line spectra were ob-

served very early. Under certain circumstances, the spectrum of hydrogen

had been discovered to consist of a simple sequence of lines, the wave-

lengths of the first four being 6562.10, 4860.74, 4340.1, and 4101.2. Figure

320 is a photograph of this series, showing other lines besides those of the

above wave-lengths. It is called the Balmer series after J. J. Balmer

(1825-98), who first identified the relation between its wave-lengths. In

1885 Balmer published the results of his search for the nature of the regu-

larity of the lines constituting the spectrum. He found that the wave-

length sequence could be described by a “common factor ” of value 3645.6

multiplied by a series of numbers, one for each line, consisting of f, , f-f-,

and respectively. Stated algebraically

X = 3645.6 X —r~~rw2 - 4

in which m assumed the values 3, 4, 5, and 6 successively. The wave-
lengths of the lines, computed from this formula, were 6562.08, 4860.8,

4340, and 4101.3. The agreement with the measured values was very im-

pressive. The agreement became still more significant when subsequent

discovery of other lines in the series, the existence of which had not been
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known to Balmer, yielded wave-lengths agreeing with Balmer’s formula

within a margin which, though not as startlingly small as the first four, was
still tolerable. The complete series which Balmer 1 gave in his paper is

reproduced herewith:

m Calculated Observed

3 6562.08 6562.1

4 4860.8 4860.74

5 4340. 4340.1

6 4101.3 4101.2

7 3969. 3968.1

8 3888. 3887.5

9 3834.3 3834.

10 3796.9 3795.

11 3769.6 3767.5

12 3749.1 3745.5

13 3733.3 3730.

14 3720.9 3717.5

15 3711. 3707.5

16 3702.9 3699.

Balmer’s discovery opened a new era in spectrum analysis. His formula

served as a model for later spectral formulas and became the foundation of

an immense structure on the theory of spectral lines. Most of it has been

built during the present century, and cannot be described here. The later

portions of it have succeeded definitely in connecting the arrangement of

spectral lines with the structures of the atoms emitting the light. Thus the

immense body of knowledge of spectra has become available as a tool in the

modern attack on the structure of atoms.

Balmer’s first paper was confined to the study of spectral lines of hydro-

gen. He realized the desirability of extending the study to other sub-

stances. He also commented on the possibility that other spectral series

might be identified by the use of some number other than 4 in the denom-

inator of his formula. Such series were actually found; one corresponding

to a value 9, another to a value 1. The first corresponds to a series in the

infra-red, the other to a series in the ultra-violet, known respectively as the

Paschen and the Lyman series, after the twentieth-century experimenters

who established their actual existence.

Spectrum Analysis as an Example of Science in Action

The study of spectra has yielded an incalculable amount of information

on regions otherwise inaccessible on account of distance, as with sun and

stars, or on account of minuteness and delicacy of structure, as with atoms

and molecules. Neither of these two great fields was in prospect when the

study of spectra began. If investigators had waited to study spectra until

some utility for the study became evident, the development of physical

1 Annalen der Physik und Chemie
, 25, 80 (1885).
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science, and with it the development of modern civilization, would have

been retarded by at least a century. There have been two eras when

cultural civilization stood on a high plane. One was the time of the

early Greeks in their day of political independence, the other is the present.

Both originated in the impartial and avid pursuit of knowledge. The
“practical” man played his part in both instances. He was the skilled

artisan in Greek times and the engineer in modern times. Always his

contribution, important though it was, has been secondary to that of those

who have blazed the trail of new knowledge, without any necessary pre-

vision of where it would lead. It is easy and common to stigmatize the

ideal of disinterested search for truth, regardless of its immediate utility, as

visionary and futile. In a sense, it is always visionary and it sometimes

seems futile. But without it we should still be living in caves. The totali-

tarian assault on disinterested intellectual endeavor may yet put us back

into caves.

Questions for Self-Examination

1. Tell about the first observation (by Wollaston) of solar-spectrum absorption lines

and his interpretation of them.

2. Tell about Fraunhofer’s rediscovery of solar-spectrum absorption lines and what
he did with them.

3. Tell about Kirchoff's extension of previous studies of “Fraunhofer lines.”

4. What information may be secured by measuring the shifts and the doublings of

spectrum lines from certain stars?

5. Tell the story of the discovery of the ultra-violet portion of the spectrum.

6. Tell the story of the discovery of the infra-red portion of the spectrum.

7. Describe Balmer’s discovery and tell what new phase of spectrum interpretation

was inaugurated by it.



CHAPTER 35

Polarized Light

Polarization and the Wave Hypothesis

The verb “polarize” is a technical term commonly applied in several

unrelated fields. Unfortunately it is not particularly descriptive. Its

application to light is no exception. The general connotation of “com-

municating polarity” (Webster) gives no inkling of the nature of the

phenomena in light to which the term is applied. Polarized light, though

recently acquiring an increasing utilitarian significance, is far from new.

It has for more than three centuries yielded information on the nature of

light which could not have been adduced from any other source.

The last two chapters centered in the concept of the wave-nature of

light. But though this concept was developed to the point of dealing quite

circumstantially with wave-lengths, the question as to the nature of the

wave aspects of the disturbance constituting light was not raised. The
wave theory of refraction, diffraction, and interference involved no sup-

position as to how the vibrations were directed in space, nor, more spe-

cifically, as to the relation of this direction to the direction of propagation.

On these questions, the first and indeed almost the only information avail-

able has grown out of the phenomena of polarized light.

When classified according to relation between direction of vibration and
direction of propagation, the two principal types of wave are longitudinal

and transverse. The most common example of the longitudinal is the

sound wave, and a convenient example of the transverse is the wave easily

set up in an inextensible string. In the early nineteenth century when
the wave theory of light was getting a foothold, the unanimous assumption

was that light waves were longitudinal. When it was observed, in ways
that will presently be described, that polarization phenomena could not be
accounted for in terms of the imagery of longitudinal wave motion, for a

time it was assumed that that fact rendered the wave hypothesis untenable.

A considerable number of years elapsed before it developed that the very

phenomena that were at first supposed to have rung the death knell of the

struggling wave theory actually constituted the most incontrovertible

evidence of the wave properties of light.
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Fig. 321. The “Polarization” of Waves in a Cord

The Nature of Polarization

The observed phenomena of polarized light changed their r61e from one

of a threat to the wave theory to one of fundamental support only when
men ceased regarding light as a longitudinal wave and began to picture it

as a transverse. The basic concept may perhaps be most easily visualized

by considering waves in a cord which is passed through slots, horizontal and
vertical, in a series of picket fences (Fig. 32 1).

1 Let the vibrations im-

pressed at one end be in horizontal and vertical planes and indeed in all

intermediate planes, in quick succession. The wave motion thus set up
would be termed unpolarized. Upon passage through the first fence it

would become polarized, with its

vibrations in a vertical plane.

These vertical vibrations would

not be affected by passage through

a second fence with its apertures

also vertical, but would be elimi-

nated by passage through a third

fence with its apertures horizontal.

Analogously, the vibrations con-

stituting unpolarized light occur

in all possible directions in the

plane perpendicular to the line of

propagation (Fig. 322) . The part

of the first picket fence may be

played by any one of a variety of

1 Twelve of the illustrations in this chapter have been furnished through the courtesy of

Dr. Martin Grabau of the Polaroid Corporation. He has, in addition, given extended con-

structive criticism.

Polarized light

v

Fig. 322. The Polarization of Light
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polarizing devices which will be described later. After passing through

one of these devices, the light exhibits properties which are most
aptly described by likening its behavior to that of the portion of the

cord beyond the first picket fence. It is then said to be polarized. More
specifically it is called plane polarized

,
to distinguish it from the circularly

and elliptically polarized light which will presently be treated. Any de-

vice which produces the same effect is termed a polarizer .

The unaided eye is unable to detect any difference between polarized

and unpolarized light. But if the polarized beam be sent through another

device, similar to that which produced the polarization, its state of polar-

ization may be inferred by rotating

the analyzer (as the second device is

termed, from its use in “analyzing”

the light). If the polarizing axis 1 of

the analyzer (comparable to the slots

in the fence) be parallel to that of the

polarizer, the intensity of the light

is unaffected. But if the axis of the

analyzer be turned to a position at

right angles to that of the polarizer,

the light is extinguished. The two

cases are diagramed in Figure 323.

J t will immediately be evident that

a longitudinal wave cannot be polar-

ized. If the cord of Figure 321 had

been a spring and the vibrations had

consisted of longitudinal displace-

ments, these displacements would

have been in no way affected by pas-

sage through the successive picket fences, regardless of the orientation of

their apertures. Thus the mere fact that light can be extinguished and re-

stored at will merely by turning an analyzer about the plane-polarized ray

as an axis of rotation, identifies light unequivocally as a transverse vibration

and rules out the possibility of its being longitudinal. This reasoning seems

today to be straightforward and elemental, and the conclusion both natural

and inescapable. The case was quite otherwise when this field of knowledge

first took shape early in the nineteenth century.

Common Polarizing Devices

Until very recently polarizers and analyzers most commonly took the

form of what are known as Nicol prisms
,
devised in 1828 by the Scottish

physicist W. Nicol (1768-1851). Nicol prisms are still used where the

utmost attainable precision is required. But their bulk and expense is

causing them to be replaced by more modern polarizing devices. The
1 The term axis used in this connection means a direction rather than a particular line.

Fig. 323 . The Function of the
Analyzer
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working principle of the Nicol prism is noted on page 415. The polarizing

function may also be performed through reflection at glass surfaces or trans-

mission through glass plates under conditions which will shortly be de-

scribed. But these, too, are very awkward to use and are correspondingly

limited in utility. Recently a group of so-called “ Polaroid ” products have

become available which are proving so convenient and inexpensive as not

only to displace other types of polarizers and analyzers, but also to extend

greatly the field to which polarized light is applicable. A brief account of

the origin of Polaroid products accordingly seems appropriate.

In 1852 a distinguished English physician, W. B. Herapath, discovered

a synthetic crystalline material which transmitted polarized light of all

colors with astonishingly little absorption. Chemically it came to be

known as sulphate of iodo-quinine, but later it was christened “Hera-

pathite.” The potential utility of this material was fully recognized, and

it was diligently studied all over Europe for a number of years. Unfortu-

nately, however, herapathite crystals were so fragile that they shattered

into a useless powder at the slightest touch and hence defied all attempts

to make them up into optical units. The discovery was soon all but for-

gotten.

About seventy-five years later the abandoned problem was taken up
and solved by Edwin H. Land, then an undergraduate in Harvard Col-

lege. Instead of trying to make single crystals large enough for optical

use, Land hit upon the idea of embedding myriads of microscopic crystals

in a transparent sheet of flexible plastic. Means were devised for aligning

these crystals all in one direction. This material is now produced in

quantity.

An interesting application of these films is shown in Figure 324. A few

club cars of streamlined trains are being equipped with these Polaroid

windows. An outer disk is permanently set and an inner may be rotated

by a hand-wheel so that passengers may adjust the amount of light ad-

mitted. The advantages of such an arrangement over the usual window
shade are obvious and striking.

Polarized Light as a Potential Aid in Night Driving

A potential application of polarized light may be found in the field of

automotive illumination. Unfortunately it has not yet come into use,

though its engineering development is complete. There is always a lag

between scientific discovery and its general acceptance for utilitarian pur-

poses. The lag is seldom less than ten years and often runs into cen-

turies. It seems likely that this particular development may come into

use within the next ten to fifteen years, though predictions of this kind are

hazardous.

If an automobile possessed headlamps which projected polarized light,

and an approaching car were equipped with an analyzer with its plane of

transmission set crosswise of the plane of vibration of the polarized light
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Fig. 324. A Polaroid Window, the “ Density” of Which can be Con-
trolled at Will, is a Great Improvement Over a Window Shade

from the oncoming car, the driver of the second car would not be troubled

by glare from the approaching headlights. Though this analyzer extin-

guishes the light from the oncoming car, as indicated by its shadow across

the eyes of the driver, it in no way interferes with his vision of the road.

On the contrary, his vision is enormously improved because glare has been

eliminated. Figure 325 shows this improvement.

To effect this improvement, the polarizer on the headlamps of the ap-

proaching car must be “crossed” with respect to the analyzer of the driver,

who would otherwise be subjected to glare. Figure 326 shows a simple

way of doing this. If the polarizer and analyzer of each car had their

planes of transmission set in the direction upper right to lower left as seen

by the driver of that car, they would lie in the direction upper left to lower

right as seen by the driver of an approaching car.

The expense of equipping a car in this way would not be at all prohib-

itive. Securing general adoption of this kind of road illumination is no

longer a scientific or an engineering or even an economic problem. Like so

many other instances of applied science, it is purely a social problem. The
average driver will not assume even the small expense of providing his car

with polarized light equipment because it will only be of benefit to the

other fellow, not directly to him. The general level of the social conscience

Fig. 325 . Vision of the Road is Greatly Improved
by Polarized Headlight Illumination
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has not yet reached the point where this motivation is sufficient. We shall

have to await legislation, which, in a democracy, is perhaps a rudimentary

form of social conscience. Legislation is usually a long process. Perhaps

the radically new design that seems to be in prospect for post-war auto-

mobiles may incorporate this feature.

Stereoscopic Projection

The stereoscope was described on page 304. It is adaptable only to

individual observers. The problem of stereoscopic projection promises to

be solved by the use of polarized light, thus extending the effect to audi-

ences. Two stereoscopic scenes are required in this case also, but they are

supeq>osed instead of being presented

side by side. Both scenes are pro-

jected in polarized light, the planes of

vibration being perpendicular to each

other as indicated in Figure 328.

Each member of the audience is pro-

vided with a pair of polarizing spec-

tacles, the axis of the lenses being

also perpendicular to each other cor-

responding to the two planes of vibra-

tion of the projected scenes. Hence
one eye will see one scene and the

other eye the other scene. Thus, in

figure 327 a single image will seem
to be behind the screen at B if the

right eye sees only the right image

and the left eye sees only the left

Fig. 327. Varying Degrees of Con-
vergence of the Eyes Produce the
Illusion of Depth
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Polaroid spectacles

Fig. 328. Schematic Diagram of Stereoscopic Projection with
Polarized Light

image of the same object. But it will seem to be in front of the screen

at F if the right eye sees only the left image and the left eye sees only the

right image. In stereoscopic scenes, different portions will be dif-

ferently displaced, both in direction and in magnitude; thus the illusion

of depth or “relief” is produced.

Though there have been other ways of producing the same effect for

black-and-white projection, the use of polarized light is the only method of

projecting stereoscopic pictures in full color that seems practicable at pres-

ent. The addition of relief to sound and color, both fairly recent develop-

ments, will make the projection of moving pictures almost complete repro-

ductions of the original events.

Rotatory Polarization

One of the later discoveries in this field 1
(1811) was that under some

circumstances the plane of vibration of polarized light was rotated by
passage through transparent materials. There seem to be three types of

such rotation, one observable in such crystalline substances as quartz,

another in Certain liquids and solutions, and a third in thin crystal sections

called “half-wave plates.” Discussion of the last type will be reserved

until later in the chapter (page 418).

The rotation in quartz occurs only when light traverses the specimen

in a particular direction termed the “optic axis” (see page 416). The
rotation is considerable, being from 14° to 40° por millimeter of thickness,

depending on the wave-length of the light. One of the most interesting

features is that quartz having one of its two crystalline forms rotates the

plane of vibration to the right (clockwise) while the other crystalline form,

a mirror image of the first, rotates it to the left (counter-clockwise).

Certain liquids such as turpentine show the same effect, though in far

1 103:436.
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less measure. A millimeter layer of turpentine rotates the plane of vibra-

tion only between a quarter and three quarters of a degree, depending on

the wave-length of the light. Such liquids are said to be “ optically active.”

Optical activity of liquids and solutions seems to be a fundamentally

different phenomenon than that of solids such as quartz, for when quartz

is melted it loses its optical activity. A fairly satisfactory theory of optical

activity of solids has been built up, but the optical activity of liquids is

largely unexplained. It is not really surprising that crystalline solids

should possess this property, and that it should be contingent on passage

of light in a particular direction through the solid. The regularity of the

arrangements of atoms in crystals makes optical activity an effect that is

at least not implausible. But the random orientations of molecules in

liquids and solutions present quite a different problem. Unless the very

passage of the light “ lines up” the molecules in a liquid, thus creating a

temporary crystalline substance, it is difficult to account for the phenome-

non. There seems to be no independent evidence for such an hypothesis.

Double Refraction

Rather paradoxically, the first studies of polarized light did not involve

any observation of polarization. They centered in what was called, and is

still appropriately termed, double refraction . That double refraction in-

volved polarization of the doubly refracted beams was later observed by
Huygens (61:92) and by Newton (90:385). The first hint that here was a

new field for investigation was dropped by a Danish physician named
Erasmus Bartholinus in 1669 (16). Bartholinus’ observations may ap-

propriately be described in his own words. He started by describing

a transparent crystal, recently brought to us from Iceland, which perhaps

is one of the greatest wonders that nature has produced.

After describing the shape of this new crystal, Bartholinus continued:

As my investigation of this crystal proceeded there showed itself a won-
derful and extraordinary phenomenon: objects which are looked at through

the crystal do not show, as in the case of other transparent bodies, a single

refracted image, but they appear double. This discovery and its explana-

tion occupied me for a long time, so that I

neglected other things for it; I recognized

that I had come upon a fundamental question

in refraction.

Bartholinus went on to describe the ap-

pearance of an elongated rectangular ob-

ject when placed respectively in the posi-

tions B and A (Fig. 329) with respect to

the crystal and viewed from above. In the

former position, instead of B he saw two
images, H and G side by side; in the latter,

Fig. 329. Bartholinus’ Descrip-
tion of Double Refraction

(From his Experimenta Crystalli Islandici

of 1669.)
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instead of A he saw two overlapping images, EF and CD. The displace-

ment of the images with respect to each other was always along the bisector

of the angle SRQ. Subsequently the plane determined by this bisector and

the edge RL was termed the principal section of the crystal and came to

play an important r61e in the theory of double refraction. It is scarcely

necessary to remark that Bartholin us’ placement of his refracted images

on the upper face of the crystal was nothing more than a device to simplify

his diagrams. It was intended merely to show what he saw when he looked

down through the crystal at B or A .

The "Ordinary” and the "Extraordinary” Rays

Bartholinus described another observation in the following terms:

If we look at objects through [ordinary] transparent media, the image re-

mains fixed and immovable in the

same position, however we move the

medium. ... In this case, on the other

hand, we can observe that one of

the two images is movable.

He described this novel effect with the

aid of Figure 330. Double refraction

produced two images, C and B of the

fixed point A . If now the crystal was

rotated about a vertical axis, C re-

mained stationary while B revolved in

a circle around it. He concluded that

we can distinguish two kinds of refrac-

tion, and we designate that one which

gives us the fixed image as ordinary

refraction and the other, which gives

the movable image, as extraordinary

refraction.

These somewhat naive terms, ordinary and extraordinary, have persisted

to this day.

Here Bartholinus’ contribution ended. It will be noted that he did not

discover any trace of polarization in the doubly refracted beams. That

was first observed by Huygens twenty years later, and developed still

further by Newton. Neither did he provide any explanation of double

refraction. Though he tried, he had nothing better to propose than a con-

jecture that it might be occasioned by the disposition of the pores through

which the light was transmitted. Here the knowledge of double refraction

remained for nearly a hundred and fifty years except for the refinement of

Bartholinus
,
original observations by Huygens and Newton. Huygens

especially made some notable advances in comprehension of double refrac-

tion on the basis of the wave theory of light. But since the wave theory

was not to come into its own until the nineteenth century, Huygens’ discov-

eries received little attention.

Fig. 330 . The Behavior or the
Ordinary and Extraordinary Rays

(From Bartholinus’ Experimenta Crystalli

Islandici of 1669.)
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Polarization by Reflection

One evening in the year 1808 a whole new chapter was added to the

subject of polarized light and incidentally to the comprehension of double

refraction, A young French army engineer named fitienne Louis Malus
(1775-1812), who had interested himself in optical theory, had his atten-

tion drawn to the phenomena of double refraction by the announcement of

a prize to be awarded by the Paris Academy for the best mathematical

treatment of the subject. While engaged in experimentation with some
doubly refracting crystals he idly directed one of them at sunlight reflected

into his room from a window of the Luxembourg Palace and was astonished

to observe that one of the two images which he expected to see was absent.

Polarization by reflection is now well known, but it did not at first occur to

Malus to attribute what he saw to the effect of reflection. Instead he

speculated on the possibility that passage of the light of the setting sun

through long reaches of atmosphere was responsible for this effect. But
when after sunset he examined light from tapers reflected from a pane of

glass and also from a water surface, and observed the same effect that he

had seen in the reflected sunlight, he could not escape associating it with

the reflection itself.

Malus’ observations can now be formulated in modern terms. Suppose

light which is initially unpolarizcd to be incident on a glass plate. A por-

tion of it will be reflected and that portion is completely plane-polarized for

a certain value of the angle of incidence. This polarizing angle depends

upon the index of refraction of the glass, but for ordinary crown glass it is

approximately 57°. The vibrations of the reflected polarized light are

perpendicular to the so-called plane of incidence (the plane containing the

incident and the reflected rays).

According to the electromagnetic theory of light a polarized electro-

magnetic vibration (light being one example) consists of two parts both

Unpolarized

incident light

Fig. 331. Polarization by Reflection
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transverse to the direction of travel of course, and mutually perpendicular

to each other. One of these is a vibratory electrostatic field, the other a

magnetic field. There is strong evidence that of these two, only the electric

vibration affects a photographic emulsion or the retina of the eye. “Light

vibrations” are accordingly to be identified with the electric vibrations of

the electromagnetic theory. In the case of light polarized by reflection

these lie in a plane which contains the ray and is normal to the plane of in-

cidence. This will be termed the plane of vibration

}

It is indicated by the

arrows athwart the reflected ray in Figure 331.

It would be natural for one to look for polarization phenomena in light

reflected from an ordinary mirror. They would not be found. More
properly speaking, their manifestations would be far from simple and their

identification would require optical devices much more pretentious than

the mere analyzer that would suffice for light reflected from transparent

surfaces such as glass or water. An ordinary mirror is a metallic reflector.

The discoveries of Malus do not apply to reflection from metals, as he him-

self observed. They apply only to reflection from substances that are non-

conductors of electricity. This is one of the lines of evidence that light is

basically an electromagnetic radiation, though that theme cannot be

developed here.

It is also necessary to distinguish between reflection from polished sur-

faces such as glass and from mat surfaces such as paper, linoleum, wood,

asphalt or concrete pavements, etc. This distinction lies at the basis of

the reduction of glare by the use of polarizing sun glasses and similar ap-

plications described in the following section. A mat material, such as

paper, is composed of intertwined fibers which are at least translucent if

not transparent. Some of the light reflected from paper comes from the

very outer fibers, and the rest from internal surfaces after being shuttled

around in the texture of the paper. So we must distinguish between specu-

lar (mirror-like) and diffuse reflection. It is the specular reflection from
the top surface that produces glare. This, like light reflected from glass, is

in a state of partial polarization, and the glare can therefore be reduced by
polarizing devices. But the diffusely reflected light, which is the part

really useful in making the material visible, is unpolarized, and hence vision

by this light is unimpeded by its passage through polarizing spectacles.

Some Utilitarian Aspects of Polarization hy Reflection

Light reflected from windows or other glass surfaces frequently obscures

by its glare the visibility of objects behind the glass. This glare may be

reduced by taking advantage of the state of polarization of the light produc-

ing it. The contents of a showcase, or show window, for instance, are

frequently obscured by the glare. If the case or window is photographed by

1 The term plane of polarization is sometimes used. This refers to the plane of incidence of

light reflected at the polarizing angle. It is at right angles to the plane of vibration. The
term came into use before the direction of vibration was known. It will not be used here.
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Unpolarized

Fig. 332 . How Polaroid Spectacles
Reduce Glare

a camera with an analyzer in front of the lens, the glare is eliminated.

The polarizing axis of the analyzer would have to be set horizontal to cut

out the glare light, the plane of vibration of which is in this case verti-

cal. (The plane of incidence is horizontal.) In the same way glare from
pavements may be reduced if the driver wears polarizing spectacles with

their axes vertical. Figure 332 explains diagrammatically how the polar-

izing spectacles operate.

Glare may be avoided in another way if the source of light can be polar-

ized. If the plane of vibration of such a source is parallel to the plane of

incidence, the light after reflection can contain no horizontal component of

vibration perpendicular to the plane of incidence. Figure 333 shows a pic-

ture illuminated by unpolarized and polarized light. Reading lamps con-

taining polarizing screens are now available.

Fig. 333. Glossy Print Illuminated by Unpolarized and Polarized Light
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Brewster*s Law

In 1815 David Brewster (1781-1868), who later became the founder of

the famous British Association for the Advancement of Science, discovered

that for light incident at the polarizing angle
,
the reflected and the refracted

rays are at right angles with each other . This discovery is now known as

Brewster’s law . It furnishes a reason for the otherwise puzzling phenom-

enon of polarization by reflection. Certain experiments, the nature of

which cannot be considered here, indicate that reflection, instead of occur-

ring at the surface, occurs after the light has penetrated the medium to a

small depth. Consequently it is after refraction that reflection really

occurs, and the reflected ray splits from the refracted rather than the in-

cident ray. Brewster’s law thereupon makes it evident that, if light be a

transverse vibration, the reflected ray can consist only of vibrations per-

pendicular to the plane of incidence.

To show this, consider Figure 334. In this figure, ah
,
cd

, ef, gh ,
represent

various transverse directions of the vibrations constituting the incident

ray so. All these vibrations can be

resolved into two component vibra-

tions, one parallel to the plane of

incidence and represented by the

short cross-lines on the ray so, and
the other perpendicular to that

plane and represented by dots (as

though other short cross-lines were

seen “ end-wise ”) . Considering the

reflected ray which has split off

the refracted ray, any vibrations

parallel to the plane of incidence

would have to have been longitud-

inal vibrations in the refracted ray

from which it separated. But, as

has already been seen, if light pos-

sessed any longitudinal vibrations,

polarization would be impossible.

Hence, any ray reflected at the po-

larizing angle cannot possess any

vibrations parallel to the plane of

incidence. It is therefore completely plane-polarized, and consists solely of

vibrations perpendicular to the plane of incidence.

Another Form of Brewster*s Law

Brewster’s law is frequently stated somewhat differently, namely, that

the tangent of the polarizing angle is numerically equal to the index of refrac-

tion of the reflecting substance. This may not at first sight be obviously the

m

Fig. 334. Brewster’s Law and Polari-
zation by Reflection
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equivalent of the first statement of Brewster’s law, but the equivalence will

become evident by the examination of Figure 335. By the first form of

Brewster’s law, mop is a right angle,

m But by construction qon' is also a

right angle, and the two angles are

therefore equal. Since they have

qop in common, moq is equal to pon'

.

That is,

90 — * = r (1)

(2 )

1 = r

hence, sin (90 — i) = sin r

or cos i = sin r

whence, in Snel’s law of refraction

sin t

sin r
= M

sin 1

cos i
= n = tan i (3)

Fig. 335. The Geometry of Brewster’s which is the second form of Brew‘

Law ster’s law, thus deduced from the

first form.

The reason that the polarizing angle of crown glass is about 57° is, there-

fore, that the refractive index of crown glass is about 1.54, and 1.54 is the

tangent of 57°, the circumstance first observed by Malus (page 410).

Similarly, as Malus also observed, the polarizing angle for water, being 53°,

is to be associated with the fact that the tangent of 53° is 1.33, the refractive

index of water.

Since the refractive index of a medium has different values for different

wave-lengths, the polarizing angle will, strictly speaking, be different for

different wave-lengths and complete polarization cannot be secured for

white light by reflection. This becomes evident when reflected white light

is observed through an analyzer. Not only can no angle of incidence be

found for which complete extinction is securable with the analyzer, but

colors appear when the closest approximation to complete extinction is

realized. This is a consequence of the complete extinction for one wave-
length and the resulting distortion of color values.

Polarization in Double Refraction

Malus had stumbled onto the phenomenon of polarization by reflection

while studying double refraction. The side show almost eclipsed the main
show, but not quite. He took advantage of reflection to adduce information

not otherwise easily obtainable about the polarization of doubly refracted

light. He found that the two beams into which light was split by a crystal

were both polarized, with the two planes of vibration mutually perpendic-

ular. This is illustrated in Figure 336, in which the plane of vibration of

the least refracted ray is seen to be perpendicular to the plane of incidence
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Two plane polarized

Fig. 336. Polarization Accompanying Double Refraction

which is arranged to be also the principal section (see page 409) and that of

the most refracted ray parallel to the plane of incidence. Here is the way
he described his observation (77:318):

We look through a block of crystal at the image of the flame reflected at the

surface of the body or of the liquid. We see in general two images; but by
turning the crystal about the visual ray as an axis, we perceive that one

of the images diminishes as the other increases in brightness ... [For a

particular angle of reflection] if we continue to turn the crystal slowly,

we shall perceive that one of the two images is extinguished alternately at

each quarter of a revolution.

The alternate extinction of the two images which Malus saw is easily

accounted for. If the light incident on the crystal, instead of being un-

polarized as shown in Figure 336, were polarized (by reflection or other-

wise), then the crystal would act as a sort of double analyzer. If the vibra-

tions of the incident light were perpendicular to the principal section, then

only the least-refracted ray would penetrate (the crystal being in the posi-

tion shown in Figure 336). This is indicated in Figure 337 (a). If the

vibrations were parallel to the principal section, then only the most-

refracted ray would penetrate (Fig. 337 (&)). In either case, turning the

crystal would produce the effect which Malus described, the alternate

eclipse of the two images. Thus a crystal acts as a sort of screen or filter

to the light, separating light which passes through it into two components.

The Nicol prism referred to on page 403 is simply an Iceland spar crystal

cut and recemented in such a way as to reflect one of the two rays off to

one side. Hence the light which emerges is the other— plane-polarized —
ray.

The Velocities of Doubly Refracted Rays

A clue to the reason for this separation of the vibrational components
of light by passage through a crystal may be found in the fact that the
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(a)

(a) with the plane of vibration perpendicular to the (b ) with the plane of vibration parallel to the

plane of incidence. plane of incidence.

Fig. 337. Double Refraction with the Incident Light Polarized

two beams are refracted by different amounts upon entering the crystal.1

Refractive effects have already been associated with the change of speed

of the light upon entering the refracting material. The greater the devia-

tion of a ray of light upon entering glass, the more pronounced is the

diminution of its speed. Thus, in Figure 336, light consisting of vibrations

parallel to the principal section of the crystal must have been slowed down
more upon entering than light consisting of vibrations perpendicular to

the principal section. Otherwise the two beams would not have taken

different directions in the crystal.

It was Thomas Young to whom it first occurred to associate the different

states of polarization of the two rays produced by double refraction with

the presumable difference in the velocities of the rays. This is scarcely

surprising since he stood almost alone in support of the wave hypothesis of

light (page 368). A few years earlier a man named Ernst Chladni, who
had made notable contributions to the science of sound, had observed that

sound traveled 25 per cent faster along the fibers of a block of wood than

it did at right angles to them. Apparently Young took his cue from this

observation, for he quoted it as a precedent for the concept of a connec-

tion between speed and direction of vibrations of a wave. 2 With some
allowance for figures of speech, crystals may be said to resemble wood in

possessing a “ grain” and consequently light vibrations parallel to that

“grain” might conceivably travel at a different speed than those perpen-

dicular to it. This optical “ grain ” of a crystal is now termed its optic axis.

When light is passed through a doubly refracting crystal in various

directions, it is found that there is always at least one direction (“uniaxial

crystals”) for which no double refraction occurs. This direction is, by
definition, the optic axis of the crystal. Some crystals have two optic axes

and are termed “biaxial.” The absence of double refraction in the case of

1 The fact that one of the rays, the extraordinary, actually does not obey Snel’s law makes
its own contribution to the case, in addition to the circumstance mentioned here.

* Young, in an article on “Chromatics” in the Encyclopaedia Britannica for 1817.
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light traveling parallel to the axis of a uniaxial crystal is readily accounted

for. The vibrations of a transverse wave which is traveling parallel to the

axis are naturally all perpendicular to that axis and hence all are propa-

gated with the same speed.

If a crystal is so cut that the surface is parallel to the optic axis, instead

of perpendicular, as in the foregoing section, and light is incident normally,

the double image effect is again absent, though for a different reason. If

the incident light is polarized with the plane of vibration perpendicular to

the optic axis, the speed through the crystal will have the value character-

istic of that condition. For Iceland spar this is the ordinary ray and is the

slower of the two (Fig. 338 (a)). If the plane of vibration of the incident

polarized light is parallel to the optic axis, the speed through an Iceland

spar crystal will be greater, characteristic of the extraordinary ray (Fig.

338 (b)). In neither case will the ray be deviated from its original direction

upon entering the crystal. If now the incident light is unpolarized, the

component vibrations corresponding to the ordinary ray will traverse the

crystal more slowly than those corresponding to the extraordinary. Both
the preceding effects will be present simultaneously (Fig. 338 (c)). Though
the extraordinary ray gains on the ordinary, there will be no lateral separa-

tion and hence no doubling of the image.

Indexes of Refraction of Crystals

Since index of refraction is defined as the ratio of the velocity of a light

wave in air to that in the medium under consideration, it will be evident

that a doubly refracting crystal possesses two different indexes of refraction,

one for the ordinary ray and the other for the extraordinary. That for

the ordinary ray is a constant for a given substance regardless of direction

in the crystal. But that for the extraordinary is variable, depending for

its value on the direction of the ray in the crystal. This value lies between

two limits. The lower limit (for Iceland spar; the upper for quartz and
certain other crystals) has the same value as the index for the ordinary

ray and is realized when the ray travels parallel to the optic axis. The

(a) (b) (c)

Fig. 338. Passage op Light Through a Crystal with Its Face Cut Parallel
to the Optic Axis

(Optic axis in plane of paper.)
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upper limit (for Iceland spar; the lower for quartz) is realized when the

ray travels perpendicularly to the optic axis, as in Figure 338. For oblique

passage through a crystal, the index for the extraordinary ray has some

value intermediate between these two extremes. The extremes are called

the principal indexes of refraction . The values of the two principal indexes

for several crystalline materials are shown in the accompanying table:

Crystal Index

Ordinary Extraordinary

Iceland Spar 1.658 1.486

Beryl 1.581 1.575

Sapphire and Ruby 1.769 1.760

Ice 1.309 1.310

Mica (Muscovite) 1.561 1.592

Quartz 1.544 1.553

The table shows why double refraction is so much more prominent in

Iceland spar than in other crystals. It also shows the existence of two

types of double refraction. One, exemplified by the first three crystals,

involves higher indexes for the ordinary ray than for the extraordinary.

The other, exemplified by the last three, involves lower indexes for the or-

dinary ray than for the extraordinary. The geologist terms the former

type of crystal negative, the latter positive. As in the case of glass, the

values of the indexes of crystals are different for different wave-lengths.

The above values are for the yellow light emitted by incandescent sodium,

the wave-length conventionally used. Because the indexes are different for

different colors, when white light is used double refraction phenomena are

often attended by brilliant color effects.

The Half-Wave Plate

The passage of light in a direction perpendicular to the optic axis of a

crystal was discussed in the second preceding section. A special case of

this is involved in the so-called half-wave plate, a crystal of such a thick-

ness that the speedier of the two doubly refracted but undeviated rays

emerges from the crystal one half wave-length ahead of the slower. The
half-wave plate possesses the peculiar property of rotating the plane of

vibration of incident polarized light through an angle which depends on the

orientation of the plate. (Recall the discussion of rotation of plane on
page 407.)

To account for the behavior of the half-wave plate, let the incident light

be polarized, the plane of vibration making an angle, say somewhere be-

tween zero and 90° with the principal section of the crystal. As the ray
progresses through the crystal, two component vibrations, one parallel to

the principal section and the other perpendicular to it, will travel with dif-

ferent speeds. The slower will emerge a half wave-length behind the

faster. A “ crest ” of the slower wave, which we shall imagine to have been
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Fig. 339. The Rotation of Plane of Fig. 340. Rotation of the
Vibration by Passage of Plane- Plane of Vibration by a
Polarized Light Through a Half- Half-Wave Plate
Wave Plate

initially associated with a “crest” of the faster, is upon emergence associ-

ated with a “ trough ” of the faster. Figure 339 will show that in conse-

quence the plane of vibration of the emergent light is not the same as the

plane of the incident light. The angle between the two is twice the angle

between the plane of the incident light and the principal section of the

crystal.

In Figure 339 let e and o represent the components of an instantaneous

surge of a light vibration entering a crystal. Upon emergence these two
components now represented by e' and o' have become separated because

the e component traveled more rapidly through the crystal. That portion

of the e component vibration which will combine with o' will be the portion

now abreast of it,- namely e", a half wave-length behind e'. The resultant

of o' and e" will then lie in a different plane from the incident vibration.

The angle between the two planes may be seen to be twice the angle made
by the plane of vibration of the incident light with the principal section of

the crystal, taken to be parallel to o (Fig. 340).

The Quarter-Wave Plate and Circularly Polarized Light

If the foregoing plate had been half as thick as it was, the two component
vibrations would have emerged a quarter of a wave-length apart instead of

half a wave-length. The c vibrations {e' and e" of Figure 341) in the

emerging ray, separated now by X/4, would then be mutually out of phase

by 90° instead of by 180° as in the previous case. The resultant of har-

monic motions of the same period but 90° out of phase is an elliptical
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Fig. 341 . The Conversion of
Plane-Polarized Light into El-
liptically Polarized Light by
Passage Through a Quarter-
Wave Plate

Fig. 342 . Elliptical and Circular
Polarization

motion. Hence, the plane vibrations of the incident beam would be con-

verted into elliptical vibrations in the emergent beam by passage through

a quarter-wave plate.

If the o and e (Fig. 341) components entering the quarter-wave plate had
been equal, the elliptical vibrations constituting the emergent light would

have had equal axes. This is the condition for a circle. Equality of the

o and e components could be secured by so orienting the plate that its prin-

cipal section would make an angle of 45° with the plane of vibration of the

incident light. Light so produced is appropriately said to be circularly

polarized (Fig. 342). When one views elliptically polarized light through

a plane-polarizing analyzer, the intensity changes as the analyzer is ro-

tated, though there is of course no position which produces extinction.

But with circularly polarized light no such fluctuation of intensity is pro-

duced by rotating the analyzer. Thus an unaided analyzer is incapable of

distinguishing between circularly polarized and unpolarized light. One
way of identifying circularly polarized light is to add a quarter-wave plate

(not to be confused with the one producing the circularly polarized light

if it is so produced) to the analyzer. This will convert circularly polarized

light into plane-polarized light but will not affect unpolarized light. The
conversion of circularly into plane-polarized light is a consequence of the

fact that two quarter-wave plates are the equivalent of a half-wave plate.
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Colors in Thin Crystals

If a piece of mica be viewed by plane-polarized white light through an

analyzer, a color pattern will be observed, the form and colors of which will

depend upon the specimen. Rotating the analyzer through a quarter-turn

will cause all colors to change to their complements.

To understand this, suppose that one point on the mica is just thick

enough to constitute a half-wave plate for the violet portion of the light.

Since red light possesses a wave-length approximately twice that of the

violet, this same point on the mica will constitute a quarter-wave plate

for the red portion of the light which traverses the crystal. Thus the

violet portion of the emergent light would be plane-polarized and the red

portion elliptically or circularly polarized. The analyzer could be so

oriented as to extinguish the violet portion of the light, but not the red

portion. The appearance of color is a consequence. Since the colors

extinguished for one position of the analyzer are precisely those which have

their maximum intensity for the position 90° away, a quarter-turn of the

analyzer produces complementary colors. The action of the intervening

Fig. 343. Strain Pattern in a Bar Fig. 344. Strain Pattern in a Bar
with Semicircular Grooves, Sub- with Central Circular Hole Sub-
jected to Tension jected to Tension

(From Photoelasticity

,

by M. M. Frocht. John Wiley & Sons, Inc., publishers.)
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colors of the spectrum complicates the case somewhat, but the general

effect is understandable through considering the extremes.

A crystal which is too thin to act like a half-wave plate in violet light

cannot show marked color effects, since no color can be entirely extin-

guished for any position of the analyzer. On the other hand, a crystal so

thick as to be, say a $-wave plate for violet light would be a -J-wave plate

for green and a $~wave plate for red. Since the action of all these is the

same as that of a half-wave plate, the effect would be the extinction or the

transmission of all three colors simultaneously; in other words, a substan-

tial dimming of color effects. Thicker crystals would accentuate this

dimming, ultimately eliminating color effects entirely. Hence color phe-

nomena cg.n be observed only with crystals which are thin enough to be

the equivalent of a small number of half-wave plates, but which are thick

enough to be the equivalent of at least one half-wave plate. Marvelously

beautiful moving color patterns can be observed by viewing in polarized

light a mass of crystals forming from a supersaturated solution of a sub-

cooled liquid. The fact that cellophane is doubly refracting is being used

to draw attention to kaleidoscopic color displays in advertising, produced

by polarization. The first commercial examples of this new display me-
dium were exhibited at the 1939-40 fairs in New York and San Francisco.

Double Refraction by Strain

If a piece of glass or cellophane be put under strain it will exhibit colors

when viewed in polarized light. The strain has effected a certain degree

of “lining up” of the molecules with the result that the specimen acts

somewhat like a crystal. The effect is the same whether the strain is pro-

duced mechanically, as by squeezing a specimen in a vise, or thermally as

by rapid and unequal cooling of a glass specimen, thus producing internal

stresses. The latter is the basis for testing whether optical glass has been

properly annealed. If it has, color patterns fail to appear when suspected

specimens are examined in polarized light. The former is the basis for the

technique known as photoelasticity. The distribution of stresses in struc-

tural steel, in gear teeth, and similar metal specimens may be determined

by constructing transparent models, subjecting them to stresses equivalent

to those which the actual specimens will experience when in use, and
studying the resulting patterns produced in polarized light. Photoelas-

ticity has developed to such a point that it is now a whole branch of en-

gineering in its own right.

Figures 343 and 344 show in this way the strain patterns due to stresses

in transparent specimens subjected to tension. Though the distribution of

stresses lends itself to mathematical calculation in some instances, the

photoelastic method solves many problems not amenable to mathematical

treatment.
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Questions for Self-Examination

1. How does polarized light differ from ordinary light?

2. Describe how polarized light promises to eliminate the glare of approaching auto-

mobile headlights.

3. Describe the principle of stereoscopic projection with the aid of polarized light.

4. Describe what happens when polarized light travels through “ optically active”

materials.

5. State the principal facts about double refraction.

6. State the principal facts about polarization by reflection and mention some appli-

cations.

7. State Brewster’s law in two forms and demonstrate their equivalence.

8. Describe how a half-wave plate rotates the plane of polarization of a polarized

beam passing through it.

9. Describe how a quarter-wave plate converts into elliptically polarized light a

plane polarized beam perpendicularly incident on it.

10. Why are colors produced by the passage of polarized light through thin layers

of doubly refracting material?

11. Describe the phenomenon of photoelasticity.
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Electric Currents

Joseph Priestley, in his History of Electricity
,
said (105)

:

The electric fluid is no local or occasional agent in the theatre of the world.

Late discoveries show that its presence and effects are everywhere.

This was a remarkable statement to have been made as long as nearly two

centuries ago. But even Priestley could scarcely have imagined such a

complete and literal fulfillment of his description as occurs today in every

city. For he was dealing exclusively with what we now call “static”

electricity, that is electricity at rest. Current electricity, electricity

“flowing” or in motion, the kind that supplies virtually all our electric

power requirements, had not even been identified at the time that Priestley

wrote.

There is somewhat the same distinction between static and current

electricity that there is between water lying stagnant in a pool, and water

circulating through the pipes of a city water system. The utility of

electricity, like that of water, is enormously enhanced by provisions made
for its circulation. Those provisions involve, in both cases, the expendi-

ture of energy to create motion and pressure (or their electrical equiva-

lents) and the reappearance of a part of that energy at the places where

the water or electricity is utilized.

The energy is commonly supplied to electric distribution systems today

in the form of mechanical power, through steam or internal combustion

engines driving electrical “generators.” But another source of electrical

energy is chemical, examples being familiar in automobile and flashlight

batteries. It was, indeed, in the operation of an ancestor of the flashlight

battery that current electricity was first identified. This was described

in 1800 by Alessandro Volta (1745-1827), of the University of Pavia in

Italy. In a letter to the president of the Royal Society of London entitled,

“On the Electricity excited by the mere contact of conducting substances

of different kinds,” he said (77:430):

We set up a row of several cups or bowls (small drinking glasses or goblets

are very suitable) half-full of pure water, or better of brine or of lye; and
we join them all together in a sort of chain by means of metallic arcs of

which one arm A which is placed in one of the goblets is of . .

.

copper and
the other Z, which is placed in the next goblet is of tin or better of zinc
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Fig. 345. Volta’s Electrolytic Batteries
{Philosophical Transactions oj the Royal Society, 00, 430, [1800].)

The two metals of which each arc is composed are soldered together some-

where above the part which is immersed in the liquid.

This is clearly the prototype of the modern electrolytic battery, or simply

battery as it is commonly called today. Volta described also a somewhat
more compact form, which has come to be known as the voltaic pile, as

follows (77:428):

I provided myself with several dozen small round plates or discs of copper,

of brass or better of silver, an inch in diameter more or less (for example,

coins) and an equal number of plates of zinc I further provided a suffi-

ciently large number of discs of cardboard, of leather, or of some other

spongy matter which can take up and retain much water, or the liquid

with which they must be soaked if the experiment is to succeed

I place horizontally on a table or base one of the metallic plates, for

example one of the silver ones, and on this first plate I place a second plate

of zinc; on this second plate I lay one of the moistened discs; then another

plate of silver, followed immediately by one of zinc, on which I place again

a moistened disc. I thus continue ... to form from several of these steps

a column as high as can hold itself up without falling.

The ordinary flashlight battery of today is a fairly direct descendant of

the voltaic pile, though a whole century of evolution has intervened be-

tween the two. That evolution will not be traced here.1 It consisted

primarily in finding ways to eliminate the corrosion and formation of gases

which characterized the action of the early batteries and which reduced

1 See C. J. Brockman, The Journal of Chemical Education
, 4, 770 (1927).
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Fig. 346. Sir Humphry Davy (1778-1829)

their effectiveness after relatively short operation. All batteries worked

on the principle that the energy of certain chemical reactions became avail-

able in electrical form, and that this electrical energy would continue as

long as the supply of reagents lasted. The principle of the storage battery

was involved in the discovery in 1801 1 that one such chemical reaction

was reversible and that a depleted supply of reagents could, under certain

conditions, be restored by sending a current through the exhausted battery

in a reverse direction. Storage batteries are sometimes termed secondary

batteries, in contrast to the ordinary non-reversible type, correspondingly

termed primary batteries. The conventional type of battery, both primary

and secondary, often consists of two or three or more units called cells.

Thus we may purchase a two-cell or a three-cell flashlight battery, or pur-

chase the cells separately. The usual automobile storage battery consists

of three cells, connected in series like Volta’s first form. Strictly speaking,

the term “battery” applies only to an assembly of two or more cells, but

it is often loosely used to describe a single cell as well.

Volta’s experiments had grown out of some observations of a contem-

porary named Luigi Galvani (1737—98). Galvani had attributed the

1 By Nicholas Gautherot, Philosophical Magazine, 24> 185-86 (1801),
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twitching of a dead frog when placed in contact with two dissimilar metals

to some agency in the frog’s organism which he called “animal electricity”

(77:224). Volta demonstrated that the electricity was not at all of “ani-

mal” origin, as Galvani assumed, but appeared whenever humid contact

occurred between dissimilar metals. Galvani’s influence on the science

of electricity, in spite of his error, is attested by the contemporary use of

the noun “galvanometer” and the verb “galvanize,” both words having

grown out of the nineteenth-century term “galvanic current,” or simply

“galvanism,” for what we now call electricity.

Electric Heat and Light

In 1801 the heating effect of the electric current was observed, and

various metals were fused by its agency. The first commercial application

was in 1808 when electric ignition of gunpowder used in blasting was in-

troduced.

In 1802 was exhibited the first electric light produced by current elec-

tricity. The production of light by electrostatic devices of one kind and

another had for a century been receiving desultory attention with no prac-

tical result. But in 1802 in Paris, a piece of charcoal was connected to each

end of a voltaic pile of 120 elements and the two brought into contact and

separated. There resulted (86:342)

a brilliant spark of an extreme whiteness that was seen by the entire society.

This accomplishment is ordinarily attributed to Sir Humphry Davy in

1809, at which time he gave the demonstration on a considerably larger

scale, probably in ignorance of its having been done before. This was the

prototype of the “carbon arc” which was very common from seventy-five

to one hundred years later. But at the time that it was first exhibited

the consumption of electrical energy was so huge in comparison with the

amount normally available that the arc light (as it came to be called from

the circular arc which marked the path of the electric discharge) was only

a scientific curiosity.

The Beginnings of Telegraphy

In the same year (1802) occurred the first instance of electroplating

(“galvanizing”), a process which was ultimately to develop into a major

industry. There were also at this time some faint stirrings of the idea of

electric telegraphy. Several proposals had been made during the preced-

ing century, which involved the conduction of static charges. None of

them could have been made practicable except over distances so short

that other methods of signalling were more effective. After two projects,

one in 1795 and another in 1802 (86:312, 361), about which not enough is

known to form a basis for evaluation, the first major attempt to use current

electricity for signalling was made in Munich (110a). It involved the

principle of decomposition of water. The two instruments were connected
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Fig. 347. Soemmerring’s Electrochemical
Telegraph oe 1809

with thirty-five wires, one for each letter and number, the receiving end

of each wire dipping into a tube of water. As current was sent over any

one of the wires a stream of bubbles at the immersed end signalled the

corresponding letter. The inventor succeeded in making his model work

through two miles. The original apparatus is in the Deutsches Museum
in Munich. In 1811 the number of wires was reduced to two and a code

established to transmit the letters. Partly due to the shortcomings

inherent in the method and partly due to official inertia, the scheme came
to nothing. Another attempt in England was wrecked in 1816 by the

official statement (86:439):

Telegraphs of any kind are now wholly unnecessary and no other than the

kind now in use will be adopted.

The “kind now in use” consisted of a row of semaphore towers within

sight of each other, which relayed messages from one to the other from end

to end of the line.

It was possible for the foregoing preliminary applications of the new
agent, electric current, to be made immediately. But real progress in this,

as in all other fields of physics, could not be made until units were estab-

lished and it thereby became possible to pass from the preliminary quali-

tative development of the subject to the quantitative phase. The bridge

from the crude beginnings of the use of electricity in heat, light and com-

munication a hundred and forty years ago to the extensive applications

typified in the episode with which the subject of electricity was introduced

can, without serious exaggeration, be said to be the establishment of the

unit of electric current.

It is now a commonplace that two parallel electric currents exert a
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force on each other. It is a force of attraction if the currents flow in

the same direction and one of repulsion if they flow oppositely. The force

is implemented by an intermediary called magnetism
,
but that fact is not

of particular importance in the present connection. This force between

two parallel currents had been observed long before magnetism was known
to be associated in any way with an electric current.1

But the real development of this observation into a means of defining

a unit of electric current occurred at the hands of Andre Marie Ampere
(1775-1836) in 1820.2 Ampere was developing some of the implications

in a discovery just made by Hans Christian Oersted (1770-1851), of the

University of Copenhagen, which will be described presently. Ampere
did not content himself with observing merely that there was a force

between parallel currents, but he established the fact that its magnitude
depended on the strengths of the currents. To do this he had to make
his own instruments, for none existed at the time.

Ampere made one wire easily movable on a delicately poised suspension

{CD of Fig. 348). The other (AB)
he fixed just below it, connecting

each with a voltaic pile. He veri-

fied the fact that the two wires

were attracted to each other if the

currents were in the same direction

and were mutually repelled if the

currents flowed in opposite direc-

tions, and discovered that the force

became greater when either of the

two currents was increased and less

when the distance between them
was increased.

Within a very few weeks a pair

of Ampere's contemporaries, Jean
Biot (1774-1862), and a young assistant named F61ix Savart (1791-1841),

made a great addition to Ampere's observation. They secured the in-

formation which made it possible to compute the magnitude of the force

from knowledge of the currents and distances involved. They discovered 3

that the force per unit length on one wire due to the current in another
neighboring, “ infinitely " long straight wire was directly proportional to

the product of the currents and inversely proportional to the distance

between the wires. Stated algebraically, I and i being the two currents

in amperes and r the distance apart in meters,

- Ii r Ii
/ °c — or / = c y newtons per meter. (1)

1 Annates de Chtmie et de Physique
, 89, 209 (1801).

1 Annates de Chtmie et de Physique

,

(2) 15, 59 (1820).

• Annates de Chtmie, 15, 220 (1820).

Fig. 348. Ampere’s Current Balance
prom His Own Drawing or 1820
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In the second form of the equation, c is a numerical constant, the value of

which could not be determined at the time of Biot and Savart since no

unit of current had then been established. Today it is possible to specify

its value. Stating the case more accurately, if a value be arbitrarily

assigned to c, the unit of current, now called the ampere
,

is thereby de-

termined. This value of c is 2 X 10“ 7 when r is in meters and/ in newtons

per meter of one of the wires.

Perhaps the most useful parallel to draw in a preliminary consideration

of concepts leading to electrical units is that of a water system. The rate

of flow of water in a pipe (measured, for example, in gallons per second)

is quite completely analogous to current in an electrical circuit. It is

quite appropriate that the unit of current which, in the electric circuit,

might be said to correspond to the unit rate of flow of one gallon per

second in the water system, has been named the ampere. An electrical

instrument which registers amperes is termed an ammeter
,
a contraction

of “ ampere meter.”

Thus equation (1) may be regarded as defining the ampere. For if

the two currents be made equal, which could be done even though no

unit had been established, and adjusted to such a value that the force

between every meter of length of two long wires a meter apart were 2 • 10“7

newtons, then, substituting in equation (11):

2-10-7 = 2-10-7
- j or 7-i-l. (2)

Hence the ampere may be defined as that constant current which
, if main-

tained in two long
,
straight

,
parallel conductors

,
one meter apart in air

,
pro-

duces a mutual force of 2-10~7 newtons per meter of length. In an actual

Fig. 349. The Principle of the Current Balance
(From The American Physics Teacher

, 5 ,
8 [1937].)
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experimental determination of the magnitude of the ampere, the wires

would be placed close together instead of a meter apart, in order that the

greater force thereby produced between them could be more readily meas-

ured. They would also be coiled into circles, each coil consisting of many
turns, to reduce the bulk of the apparatus. These alterations involve

minor modifications in the defining equation but the principle of the defi-

nition of the ampere is not affected. A pair of coils so mounted that their

mutual attractions or repulsions can be counterpoised by weights and

therefore measured is termed a current balance
,
and is the device used when

there is occasion to establish the absolute value of the ampere directly

from mechanical units.

The Relation Between Current and Quantity

If an attendant in a pumping station should observe that his flow-meter

indicated, say, one hundred gallons per second, and that ten hours was
required, at that rate, to empty the reservoir, he could readily compute

that the reservoir had initially held 3,600,000 gallons. The type of calcu-

lation involved would be

quantity = rate offlow X time .

He could doubtless have determined the volume of water in some other

way, such as by measuring the interior of the reservoir, but the former

method would be possibly the most convenient one. Analogously, a con-

venient way to specify quantity of electricity is by the relation

quantity » current X time .

If the current is measured in amperes and the time in seconds, the quantity

is represented in units called coulombs . Expressed algebraically

Q = It (3)

where Q represents quantity in coulombs, / current in amperes, and t time

in seconds. Obviously, a current of one ampere flowing for one second will

transfer one coulomb of electricity .

Electrolysis

Another chapter in the early history of current electricity belongs logi-

cally with the work of Volta, though chronologically it was part of the sub-

sequent wave of progress. The discovery of the evolution of hydrogen
and oxygen when an electric current was passed through water has already

been commented upon, as has the now common phenomenon of elec-

troplating. Certain unexplained aspects of these phenomena came to

the attention of Michael Faraday (1791—1867) in 1832 and resulted in his

discovery of the laws of electrolysis which go by his name. Faraday coined

the term electrolyte (39:1 :197) to describe

bodies decomposed directly by the electric current, their (chemical) ele-

ments being set free.
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The process of decomposition itself he termed electrolysis
,
and the surfaces

at which the products t)f electrolysis appeared he called electrodes.

Faraday’s laws of electrolysis are now usually phrased somewhat as

follows:

1. The mass of the substance liberated from an electrolyte is proportional

to the Quantity of electricity driven through the solution.

2. The masses of the substances liberated from an electrolyte by a given

quantity of electricity are proportional to their atomic weights.

3. The masses of the substances liberated from an electrolyte by a given

quantity of electricity are inversely proportional to their respective

valences.

The term valences introduced in the third law will presently be discussed.

The point of great present significance in Faraday’s laws will become

apparent by associating them with the idea that all matter consists of

atoms. This idea had become quite explicit in the beginning of the science

of chemistry during the generation preceding Faraday’s work. If the pro-

portionality set forth in the first law extended down to such small portions

of substance as the individual atoms involved in electrolysis, which was a

natural assumption, then it followed that every atom of a given substance

had associated with it the same quantity of electricity . By the second law the

same number of atoms of different substances must be associated with a

given quantity of electricity, and hence the same quantity of electricity was
associated with every atom participating in a given manifestation of electroly-

sis regardless of the substance involved. This statement was subject,

however, to modification by the implications of the third law, which will

now be developed.

The Atomicity of Electricity

Before proceeding to the third law however, the epochal nature of the

first two should be emphasized. Faraday himself said (39:1 :249):

It is impossible perhaps, to speak on this point without committing oneself

beyond what present facts will sustain; and yet it is equally impossible, and
perhaps would be impolitic, not to reason upon the subject. Although we
know nothing of what an atom is, yet we cannot resist forming some idea

of a small particle, which represents it to the mind; and though we are in

equal, if not greater, ignorance of electricity . .
.
yet there is an immensity

of facts which justify us in believing that the atoms of matter are in some

way endowed or associated with electrical powers, to which they owe their

most striking qualities, and amongst them their mutual chemical affinity.

As will presently appear (Chapter 48), the idea was born at this time that

electricity itself is atomic and that one or more atoms of electricity are

associated with every atom of substance, but the idea was not completely

developed for the better part of a century. If it were possible in some way
to count the number of atoms A" in a given mass of substance, and if each
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Fig. 350 . Michael Faraday (1791
-1867)

atom had a quantity of electricity e associated with it, then the quantity of

electricity E necessary to deposit the given mass by electrolysis would be

E = Ne. (4)

If the mass thus deposited were M grams and each atom weighed m grams,
then

and therefore

M - Ntn,

E_ _ Ne _ e

M Nm m

(5)

(6)

That is to say that even though Faraday could not know either the mass m
of an atom or the quantity of electricity e associated with it, his laws made
it possible to state what the ratio of those two magnitudes was. This was
a long step in advance.

The third law made its own considerable contribution to the new pic-

ture The possibility of the existence of an atom of electricity was hinted

at above. This atom, for the present purely hypothetical, will be called
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the electron. The third law allows for the possibility of more than one

electron’s being associated with an atom. If, for example, two electrons

were associated with an atom, then the mass of substance deposited by a

given quantity of electricity would be half as great as it would be if there

were only one. If there were three electrons on an atom, then only one

third as much substance would be deposited, etc. The term valence,

therefore, means a number numerically equal to the number of electrons

associated with each atom deposited out of an electrolyte. One would

have to consider the possibility that in a given instance of electrolysis,

atoms of all kinds of valence might have to be taken into account, except

that experience has demonstrated conclusively that this is not the case.

In a given instance, all the atoms collecting at one electrode will have

the same valence.

Faraday tied the eighteenth-century discoveries of Volta in with nine-

teenth-, even twentieth-century physics. Noting that the solutions which

Volta used for his batteries were all electrolytes and that electrolytic action

was necessarily a part of the operation of these batteries, he went on to

point out a close association between these facts of electrolysis and some

of the basic phenomena of chemical transformation. On the basis of this

association he said (39:1 :248)

:

It touches by its facts more directly and closely than any former fact, or

set of facts, have done, upon the beautiful idea that ordinary chemical

affinity is a mere consequence of the electrical attractions of the particles

of different kinds of matter. ... I have such conviction that the power

which governs electro-decomposition and ordinary chemical attraction is

the same.

Thus was laid the groundwork for the interplay between physics and

chemistry which a century later was so to vitalize the relations between

the two as to make of them virtually a single science.

Questions for Self-Examination

1. Tell about Volta’s invention of the electrolytic battery.

2. What was the point at issue in the controversy between Volta and Galvani?

3. Mention the first significant applications of current electricity to the production

of heat and light.

4. How was electrolysis utilized in one of the earliest attempts at telegraphy?

5. Define the ampere and the coulomb.

6. What is a current balance?

7. State Faraday’s laws of electrolysis. How do they indicate the existence of “ atoms ”

of electricity?
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Problems on Chapter 36

1. What is the force per meter between the two conductors of the extension cord to

a 100-watt lamp if the conductors are .25 centimeters apart? Is it one of repulsion

or attraction? .000,05 newton.

Two straight parallel wires each carrying 7 amperes of cur- I s
I /

rent ate separated a distance s millimeters. Find the force/ 10 1 .02

per meter length between them in newtons. 20 1 1 .08

20 2 .04

100 8 .25

3. The ratio E/M of the charge on the monatomic hydrogen ion to the weight of the

ion has been measured as 9.21 • 10B coulombs per gram. Assuming that the charge

is due to the excess or deficiency of one electron in the atom, compute the mass
in grams of the hydrogen atom. Take the charge of an electron as 1.591 *10~19

coulomb. 1 .656 * 10"24

4. From the electrochemical equivalent of univalent copper (.000659 gms/coulomb),

find the mass in grams of the copper atom. 1.048* 10~22

5. In an electron stream, the measured value e/m of the charge of each electron to

its mass is 1.77 -106 coulombs/gm. What is the mass of the electron in grams?

8.991 *10~28



CHAPTER 37

Interaction Between Currents and Magnets

Oersted9
s Observation

A very large part of the applications of electricity depends upon the

interaction between currents and magnets. That there should be some

such interaction had been strongly suspected for nearly a century before

its discovery actually occurred. Beginning with records as early as 1735

of some magnetizing effects of lightning strokes,1 a long search, at first

casual but later systematic,2 was made to find some relationship between

electricity and magnetism. It was not until 1819 that the long-sought

discovery was made by Hans Christian Oersted (1770-1851). The story

of the discovery was told as follows by one of Oersted’s pupils (62:^:395)

in the quaint phraseology of one not entirely at home with the English

language

:

Once after the end of his lecture, as he had used a strong galvanic battery in

other experiments, he said;
4 ‘Let us now once, as the battery is in activity,

try to place the wire parallel to the [suspended magnetic] needle.” As this

was made he was quite struck with perplexity to see the needle making a

great oscillation Then he said; “Let us now invert the direction of the

current”; and the needle deviated in the contrary direction. Thus the

discovery was made, and it has been said, not without reason, that he

tumbled over it by accident. He had not before any more idea than any
other person that the force should be transversal.

Besides Oersted’s observation of a reaction between a magnet and an

electric current, which was the principal discovery and a momentous one,

he observed a peculiarity in the nature of that reaction to which the above

account scarcely does justice: that the magnet, instead of being attracted

or repelled as would have seemed more natural, set itself perpendicularly

across the wire which carried the current. This was regarded as very

mysterious and did, in fact, lead to some very far-reaching conclusions.

Oersted’s observation was interesting enough, but one is scarcely pre-

pared for the furor which it aroused, nbt merely among men of science but

even among those whose knowledge of science was confined to hearsay.

Figure 352 shows a device used by an itinerant lecturer of the time, William

1 Philosophical Transactions
, 39, 74 (1735); 41, 614 (1740). See also 117a:10.

2 The Electrical Engineer, 13, 27 (1892). See also 116a:54.
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Fig. 351 . Oersted’s Experiment
(From the Oersted medal of the American Association of Physics Teachers. Courtesy of J. Rud

Nielsen.)

Sturgeon (about whom we shall soon hear more), in his demonstrations of

Oersted’s discovery before popular audiences. It has its counterpart in

almost every physics laboratory today.

Extensions of Oersted's Discovery

Seldom, if ever in the history of science, has the publication of a dis-

covery precipitated such a landslide. Oersted’s paper, published in the

Fig. 352. Sturgeon’s Oersted Demonstration
(From Transactions oj the Royal Society oj Arts, 48, plate 3 [1825].)
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Fig. 353 . Andr£ Marie Ampere ( 1775
-1836)

form of a pamphlet dated July 21, 1820, was reported to the French Acad-

emy of Sciences on the following September 11, by D. F. J. Arago (1786-

1853). The result was like a starting gun at a hundred-yard dash. More

than a dozen capable experimenters immediately set to work on one

aspect or another of the field thus

opened up. Of these the most ener-

getic proved to be Ampere. Nearly

all the weekly meetings of the Acad-

emy for the next four months were

devoted to the development of the

implications of Oersted’s discovery,

and Ampere was the principal con-

tributor.

Ampere’s first paper was given on

September 18, just one week after

Oersted’s observation had been re-

ported to the Academy. In it he

refined and generalized Oersted’s re-

sults. Oersted had stated that a piv- pIG 354 Circular Magnetic Field
oted magnetic needle would set itself Around a Current
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Fig. 355 . The Relative Direction of
Current and Resulting Magnetic
Field (Current out of the Page)

Fig. 356 . Right-Hand
Screw Rule

perpendicularly to a neighboring wire carrying a current, and that its

deflection would take place one way for one direction of the current and
the opposite way for the other direction. Ampere clarified this by formu-
lating in a graphic way a relation between the direction of the current and
that of the motion of the needle. His original imagery has been modified

into a more useful form, customarily stated as the right-hand screw rule:

Encircle the wire with the fingers of the right hand
,
thumb extended in the

direction of flow of the current . The fingers then point in the direction of
deflection of a north pole .

If, as is often the case, it is the deflection of a needle that is observed, the
direction of the current being unknown, the same rule will apply, con-
versely phrased.

Thus it appeared that an array of tiny compass needles, free to move,
would form a pattern of concentric circles around a current. Arago, the
friendly competitor of Ampere who was quoted above, demonstrated this

very nicely by dipping a wire carrying a current into a pile of iron filings,

and showing that while the current flowed, the filings adhered in a tuft,

with their long dimensions tending to be perpendicular to the wire. The
circumstance is described today by saying that there is a circular magnetic
field around a long straight wire carrying a current. It can be made
evident with the aid of iron filings, the direction of the lines showing the
direction of the field, and their density (extent of their crowding) showing
the strength of the field.

This circularity of the magnetic field around a current was very neatly
demonstrated by Faraday within a few months of Oersted’s discovery.
Faraday showed that, when the proper experimental conditions were ob-
served, a constant and rapid rotation of a magnet about a wire would
occur. He also demonstrated the converse, the rotation of a wire about a
magnet (Fig. 357), Such an effect, if it had not been conclusively demon-
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Fig. 357 . Faraday's Rotating Magnet and Wire
(From the Quarterly Journal of Science , 12, plate 7 [1822].)

strated, would probably have been termed altogether incredible. But it

was only one of the implications of Oersted’s own observation of the trans-

versality of the force between a magnet and a current.

The Direction of Flow of a Current

Nearly a century earlier, a Frenchman named Charles Dufay (1698-

1739) had observed that there appeared to be two kinds of electricity

which he called vitreous and resinous respectively. The vitreous he so

named because it most commonly occurred on glass (Latin vitrus) and the

resinous because it was the kind observed on amber and similar resinous

materials. His nomenclature was soon changed by Benjamin Franklin to

positive and negative respectively, and by those names they are known to

this day. Dufay continued (77 :399)

;

The characteristick of these two electricities is that a body of the vitreous

electricity
,
for example, repels all such as are of the same electricity; and on

the contrary attracts all those of the resinous electricity Amber on the

contrary will attract electrick glass and other substances of the same class

and will repel gum-lac, copal, silk, etc. . . . From this principle one may
deduce the explanation of a great number of other phaenotnena. And it

is probable, that this truth will lead us to the further discovery of many
other things.

Dufay’s expectation was fully realized. Subsequent developments have

verified his idea of the existence of two distinct varieties of electricity, and
the concept has occupied a central rdle m “the further discovery of many
other things.” But his implication that both kinds of electricity moved
with equal facility through conductors has not been borne out. It is

apparent now that, though both kinds are ubiquitous and exist normally
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in equal and therefore mutually neutralizing measure in all substances,

only the negative kind (resinous) is mobile. It is solely the motion of

negative electricity that constitutes a current through a wire. One of the

consequences of this fact is that the actual direction of motion of the

electricity constituting a current is from the negative terminal to the

positive . This is necessitated by Dufay’s observation, abundantly con-

firmed, that charges of like sign repel and of unlike sign attract each other .

Unfortunately Ampere, in his later study of electric currents, had no

means of knowing that only negative electricity was mobile. At that time

nobody knew whether a current consisted of negative flowing as just de-

scribed, or of positive flowing in the opposite direction, or of both simul-

taneously. It was correctly supposed that the external effects, such as

the magnetic field and the development of heat, would be the same in

any one of the three cases and thus that it made no difference as far as

these phenomena were concerned (the only ones known at the time) which

of the three alternatives was chosen. So Ampere chose one of them arbi-

trarily, simply to avoid repetitious qualifications. The one that he hap-

pened to seize upon was that the current would be considered to flow from

the positive pole of a battery to the negative, hence that it consisted of

the motion of positive electricity. This was exactly contrary to what is

now known to be the case. But it was nearly three quarters of a century

before the real nature of the electric current became known. During that

time Ampere’s convention became so firmly rooted in the literature of

electricity that it is now virtually impossible to dislodge it. Even today

the most recent books solemnly define the direction of electric flow as

from positive to negative, though everybody knows better. To do other-

wise would involve so many changes in terminology that it is not worth

while to disjoint the whole literature of the subject merely for the sake

of the small number of relatively obscure phenomena whose description

would thereby be simplified.

The Measurement of Current

The current balance could conceivably be used in the regular practice

of measuring currents. Actually it is not sufficiently rapid or convenient

to be acceptable for such use. It is a primary standardizing instrument,

not a rough-and-ready meter for daily use.

The first ammeter (the name is a contraction of “ ampere meter”) was
devised in the autumn of 1820 while Ampere was presenting his first papers

before the French Academy on the outgrowths of Oersted’s work. It

originated in Halle, Germany, at the hands of one Johann S. C. Schweigger.1

The year following his great discovery Oersted had remarked that there

seemed to be some relation between the deflection of a suspended magnetic
needle and the magnitude of the current causing that deflection.2 This

1 Schweigger’s Journal fur Chcmic und Physik
, 31, 1-17 (1820).

* Philosophical Magazine
, 57, 44 (1821).



Fig. 358. A Modern Galvanometer
OF TIIE d’ArSONVAL TYPE

(Courtesy of Leeds and Northrup.)

Fig. 359. Con. and Needle of Ammeter
(Courtesy o£ Leeds and Northrup.)
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implied that the deflection might be utilized to give information about

the magnitude of the current, a fact which Schweigger had apparently

detected before Oersted did. But the great difficulty with an ammeter of

that kind, consisting of a single wire and a magnetic needle, was its in-

sensitivity. Schweigger, observing that the deflection produced by a

current flowing above the needle in one direction was in the same direction

as that produced by an oppositely directed current underneath the needle,

simply looped his wire around the needle, thus doubling the effect. A
second loop made the response of the needle four times as great for a given

current, a third loop six times as great, etc.; whence the name “ electro-

magnetic multiplier.’
1

Schweigger’s first contrivance was a very humble
affair, consisting of two turns of

wire within which was placed a com-

pass needle; it is shown in Figure

360. Unimpressive though this ap-

pears to a casual observer, probably

more electrical history has grown
out of this than out of any other

single device, with the single excep-

tion of the compass itself. During the next fifty years this instrument,

consisting, as is evident, of a stationary coil and a moving magnet, became
highly refined, largely byWilliam Thomson (Lord Kelvin), as a device for re-

ceiving signals over the first Atlantic cable. The nature of the improve-

ments need not concern us, however, since this type of galvanometer 1
is now

not very commonly used. A modification, consisting of nothing more than

making the coil movable and the magnet stationary, has displaced it not

only for general laboratory use but also as a receiving instrument in sub-

marine telegraphy, as will appear shortly.

1 A generic term, coined by Ampere, in honor of Galvani, applying to the basic type of current-

measuring instrument.

Fig. 360 . The First Galvanometer
(From Edinburgh Encyclopedia [1831], 3d sup-

plementary vol., Plate 522.)

Fig. 361 . The First d’Arsonval Galvanometer
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The Evolution of the Modern Galvanometer

Schweigger’s “ electromagnetic multiplier ” indicated current by the

deflection of a movable magnet under the action of the current in a fixed

coil. Obviously, if the magnet had been fixed and the coil made movable,

the equal reaction could have been utilized to the same effect. Sturgeon

actually did this in 1636, but his device was too crude to be accurate and

nearly sixty years elapsed before a practical instrument of this kind was

developed.1 When it was done, the new d'Arsonval galvanometer displaced

the older style quickly and completely. It will repay examination because

it embodies the working principle of many of the electrical instruments

in common use today. A strong and substantially uniform magnetic

field is furnished by a heavy permanent magnet of modified horseshoe

shape. A coil, sensitively but ruggedly suspended between the poles of

this magnet, experiences a torque when traversed by a current. In

Figure 361 this torque was measured by the position of a sliding weight

necessary to counterbalance it, a true
“ current balance.” In later models

a pointer and scale were added and a spiral spring restored the coil and

the needle to the zero point when the current ceased to flow.

The moving-coil galvanometer had been brought to a high state of per-

fection by Lord Kelvin under the name of the “ siphon recorder” and uni-

versally used as a receiving instrument in submarine telegraphy ten years

before the same device, independently invented, came into use under the

name d’Arsonval galvanometer. But the siphon recorder was patented

and the royalties furnished its inventor with a very tidy income. This

may explain why the modern form of the moving-coil galvanometer grew

out of the later French instead of out of the earlier English invention.

The Evolution of the Ammeter

The term galvanometer has come to designate a sensitive current-measur-

ing instrument intended primarily for laboratory use. Though it may
possess a scale, the scale does not read in any specified units. The variety

of conditions under which a galvanometer may be used generally involves

a new calibration for each situation. When, however, the conditions of

use become standardized and especially when extreme sensitivity is no

longer required, two minor modifications will convert this type of gal-

vanometer into a conventional ammeter.

Suppose, then, that it were found, as would invariably be the case, that

the currents to be measured in a representative instance of non-laboratory

use were too large for the galvanometer at hand. Figure 362 suggests the

way in which the solution of this problem evolved. The first step would

be to use two or more identical galvanometers, connected in such a way
that the current would distribute itself equally between them. The read-

ing of any one of the instruments, multiplied by the number of instru-

1 La Lumitre £lectrique
,
2

) 462 (1880) and 4, 310 (1881).
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Fig. 362. The Evolution of the Galvanometer Shunt
(Courtesy of Leeds and Noi thrup.)

ments, would then give the total current. Or, to avoid using so many
complete instruments, one galvanometer connected in the same way with

merely the separate coils of as many others as were required would secure

the same result. Or, finally and most simply of all, a single wire which

would have the same effect as all the extra coils could be selected by trial

and connected across the terminals of the galvanometer. Only a pre-

determined fraction of the current would then flow through the galvanom-

eter coil, the remainder flowing through the by-passing wire connected to

its terminals.

Such a conductor, termed a shunt
,
plays an important part in every

ammeter. By changing the resistance of this shunt, any desired fraction

of the total current may be made to pass through the coil, the scale being

graduated to indicate the total current
,
not merely the part flowing through

the coil. The method of establishing these graduations is described on
page 470. After a given shunt is provided, the scale may be graduated

and the galvanometer becomes a full-fledged ammeter. The coil and
needle are shown in Figure 359, page 445.

The Dynamometer Instrument

Another form of ammeter, somewhat less common than the one just

described, is illustrated in Figure 363. It is called the dynamometer type,
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Fig. 363 . Dynamometer Type of Ammeter
(Courtesy of Weston Electrical Instrument Company.)

the name apparently having been selected for no good reason. The instru-

ment consists of two coils, one fixed, the other movable, instead of a coil

and a magnet. If the same current flows in both coils, the movable coil

will experience a torque and will turn against the restoring force of a

spiral spring fastened to it. The attached pointer will indicate current

in the same way as before.

One of the uses of the dynamometer type of instrument is in connection

with the alternating current which is today almost universally used. In

the former type of ammeter, reversal of current causes reversal of deflec-

tion. Hence, rapid alternations (120 reversals per second in the usual

A.C.) would cause the needle simply to tremble somewhat while remaining

at the zero position. With the dynamometer instrument, however, simul-

taneous reversal of the current in both coils produces re-reversal of the

deflection of the needle. Each surge of current acts in the same direction,

notwithstanding the successive reversals, and the needle maintains a posi-

tion on the scale which is determined by the average value of the fluctuating

current.

The dynamometer instrument can usually be distinguished from the

d’Arsonval instrument by the character of the scale. The d’Arsonval scale

is uniform, or nearly so, while the dynamometer scale is “ compressed ” at



450 INTERACTION BETWEEN CURRENTS AND MAGNETS Chapter 37

10 15

25

the low end and “ stretched out” at the high end. (See Fig. 364.) The

reason is evident. Doubling the current doubles the torque on a d’Arsonval

instrument; but in a dynamometer

instrument, the torque is doubled

twice, once due to the fixed coil and

again due to the movable. Hence

the scale of such an instrument must

be graduated proportionally to the

squares of the currents indicated.

There are other types of electric

measuring instruments than those

which have now been described, dif-

fering both as to construction and as

to purpose. The voltmeter, for

measuring potential difference, has

not yet been described, nor has the wattmeter for measuring electric power.

Before these can be developed, however, it will be necessary to become
acquainted with another major principle of current electricity, Ohm’s law.

25

Fig. 364. Scales or Two Types of
Ammeter

Questions for Self-Examination

1. Describe Oersted's discovery of electromagnetism.

2. Tell about Ampere's extension of Oersted's discovery and state his “right-hand

rule."

3. How did Faraday demonstrate the existence of a circular magnetic field around
a current?

4. What can be said about the direction of flow of electric currents?

5. Describe the principle of an ordinary galvanometer.

6. How may an ammeter be made out of a galvanometer?

7. Describe the “dynamometer" type of ammeter. Of what use is it?
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Potential Difference

The Concept of Potential Difference

A basic prerequisite to the establishment of a system of units is a clear

identification of the entities for which units are required. Up to the time

of Ampere, not even a beginning had been made at clarifying the concepts

of electricity and magnetism. Ampere himself made the first step in this

direction. One of his memoirs on the actions between currents began :
1

Electromotive action is manifested by two sorts of effects which I believe I

should first distinguish by precise definitions. I shall call the first electric

tension
,
the second electric current .

Ampere then proceeded to distinguish the two “effects.” His names for

both have survived. That for the first may be seen on the signs attached

to the steel towers which support electric power lines. “DANGER!
High tension line.” The same electrical attribute is more commonly
termed potential difference or, less formally, voltage . Ampere’s second term,

current
,
is now the most common word in electrical literature.

Possibly it is “carrying coals to Newcastle” to enlarge, in this electrical

age, on these two concepts. And yet one hears sufficiently often such
expressions as “a current of so-many volts” tc give ground for the sus-

picion that while twentieth-century youth may have the technical patter,

there is often lacking a corresponding comprehension of the terms which
are used so glibly. It was a mark of rare discrimination on Ampere’s part
to have discovered and emphasized the distinction between potential dif-

ference (“tension,” “voltage”) and current. It is just as clearly the mark
of a lack of discrimination, inexcusable in the twentieth century, to confuse

the two by associating one with the other, as in the above expression.

Potential difference is sometimes described as the electrical condition

which produces a flow of electricity. This indicates a certain similarity

between potential difference and pressure difference between parts of a
water system. That is, we may picture an electric current being kept in

motion from one point to another in a circuit by the potential difference

between those points much as a water current is kept in motion through a
pipe by the pressure difference between the ends of the pipe. This analogy
is often invoked and is indeed very helpful. But in spite of its utility, it is

x Annates de Chimie et de Physique (2), 75, 59 (1820).
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not quite complete. The necessary amendment to it may be provided by
a slight shift in emphasis. Some water systems pump water into an ele-

vated tank and the subsequent distribution occurs from this point. The
elevation of the tank produces pressure in the system, but that is now an

incidental and in a certain sense an irrelevant feature. The elevation of

the tank necessitates an expenditure of power to keep water flowing into it,

and emphasizes what is, in fact, the crucial point, that it is to this expendi-

ture of power that the pressure and hence the flow of the water in the pipes

is due when other conditions permit such flow to occur.

The Definition of the Volt

Potential difference is much more closely analogous to energy than to

pressure. Actually, the wo**d potential may be regarded as an abbrevia-

tion of the term potential energy
,
the kind of energy that the elevated water

possesses, the rate of change of which is responsible for the subsequent

flow. Analogously, electrical potential is due to energy of one kind or an-

other, imparted to an electrical system, the resulting rate of expenditure of

this energy being responsible for the current if other conditions are favor-

able. Hence, the unit of potential difference, named the volt in honor of

Alessandro Volta, is defined as the difference of electrical potential between

two points on a wire carrying a current of one ampere when the power dissi-

pated between these points is one watt. Expressed algebraically where E
represents difference of potential in volts, P power in watts, and I current

in amperes:

E=~, or P = EI (l)
1

The watt has already been encountered as a unit of power in the section

on mechanics (page 152). It is much more commonly used as a unit of

electrical power than as a unit of mechanical power, though it is the same

unit in either case. Small electric accessories, for example, electric lights,

are usually rated in watts and heavy electric machines in kilowatts. Hence
the use of the watt along with the ampere in defining potential difference is

simply a return to a unit already defined in mechanics and which is even

more familiar in its present electrical setting.

The Measurement of Potential Difference

Equation (1) suggests the basic or “ absolute ” method of measuring po-

tential difference. Measure the power P in watts required to maintain a

current of I amperes between two points in a circuit. The ratio P/

1

then

represents the potential difference between those two points. It would be

possible to use this method to measure potential difference. In practice,

voltage measurements can be made much more rapidly and conveniently.

As in the case of current measurement (page 444), the “absolute” method
is not acceptable for ordinary routine work.

1 Another definition of the volt will be found on page 457.
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The common instrument for measuring potential difference, known as a

voltmeter
,

is really an ammeter, though with some minor modifications

adapting it to the new purpose. The current flowing through any wire is

proportional to the potential difference between its terminals. This was
discovered in 1827 by Georg Simon Ohm (1789-1854), whose work will be

studied more in detail in the following chapter. Ohm’s discovery applies

to the current flowing through an electrical instrument as well as through

any other conductor of electricity. Hence the deflection of an ammeter
will indicate, not only the current flowing through it, but also the potential

difference between its terminals. Hence an ammeter may be graduated in

volts and used as a voltmeter. To adapt an ammeter to the measurement

of voltage in the ranges ordinarily encountered, its electrical characteristics

must be considerably modified in ways that will be described immediately.

The point of principal importance is that most instruments ordinarily

termed voltmeters are in reality modified ammeters, depending for their

operation on the proportionality of voltage to current in a given conductor.

On page 448 the use of a so-called “ shunt resistance ” was described as a

step involved in converting a galvanometer to an ammeter. The corre-

sponding step in converting a galvanometer into a voltmeter is the intro-

duction of a “series resistance.” The idea may be developed in somewhat
the same way. Refer to Figure 365, which corresponds to Figure 362 on

page 448. This time it is the value of the voltage between two terminals

that is desired instead of the current. A galvanometer is connected to the

terminals with the expectation of using it as a voltmeter. Suppose it were

found, as would certainly be the case, that the voltage is so large as to drive

a current through the galvanometer greater than it can carry. The first

step is to use two or more identical galvanometers connected in such a way
that the voltage will distribute itself equally between them. Comparison

of Figures 362 and 365 will show that this involves a different arrangement

of the meters for the measurement of voltage than for the measurement of

current. The galvanometers are now said to be connected in series . The

Fig. 365. The Evolution of the Series Resistance in the Voltmeter
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reading of any one of these series-connected instruments, multiplied by the

number of instruments, would then give the total current. But, to avoid

using so many complete instruments, one galvanometer connected in the

same way with merely the separate coils of as many others as are required

will secure the same result, or, as is actually done, a single conductor having

a resistance equal to the sum of the resistances of the required number of

coils. This constitutes the series resistance which, incorporated into the

case with the galvanometer, converts it to a voltmeter. The scale may
now be graduated to indicate the total voltage between the original terminals,

not merely the part of it which exists between the terminals of the galva-

nometer proper.

Connection of Electrical Instruments

Figure 366 shows how an ammeter would be connected to measure the

current delivered to a group of three electrical devices, for example, three

electric lights. All of the current delivered to these lights has to flow

through the ammeter. No change in voltage will directly affect the read-

ing of the ammeter. Figure 367 shows in the same way how a voltmeter

would be connected to measure the voltage applied to the same three

lamps. No change in the current delivered to the lamps will directly affect

the reading of the voltmeter.

One of the first principles of instrument design is that the use of the

instrument shall not affect the value of the entity being measured. This

requirement is met in the ammeter by the shunt providing, as it does, an

easy channel for the flow of the current so that interposing the ammeter in

the circuit introduces no appre-

ciable obstacle to the flow of

current. It is met in the volt-

meter by the series resistance.

This being high, as it always is,

prevents the diversion of any

appreciable current through the

voltmeter in excess of that re-

quired to actuate the instru-

ment itself.

If a voltmeter should mistak-

enly be connected as one would

an ammeter, so little current

could traverse it that the lamps

would probably not even glow

dimly, but otherwise no harm
would be done. If the opposite

mistake should be made how-

ever, connecting an ammeter as

Fig. 367. Connecting a Voltmeter one would a voltmeter, a casu-

Fig. 366. Connecting an Ammeter
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alty would immediately result. Such a heavy current would flow through

the ammeter as to burn it out in a fraction of a second.

The Measurement of Electric Power

Figure 368 is a combination of Figures 366 and 367. It shows an am-
meter and a voltmeter connected to the same circuit, indicating respec-

tively the current through the three lamps (and incidentally through the

voltmeter besides) and the voltage across the lamps. Now the second of

equations (1) on page 452 shows that the product of volts and amperes

represents electric power in watts. Hence the arrangement of Figure 368

permits the calculation of the power consumption in an electric circuit,

merely by finding the product of the readings of an ammeter and a volt-

meter connected into that circuit.

But with the aid of a dynamometer type of instrument (page 449) power

consumption in watts may be measured directly instead of requiring two

readings multiplied by each other. With each of the two coils possessing

separate terminals, one coil may be equipped with a shunt to function like

an ammeter, the other with a series resistance to function like a voltmeter.

With each coil then connected independently into the circuit in the manner

appropriate to its function, the deflection will be proportional to the prod-

uct of volts and amperes, the scale may be graduated to read directly in

watts, and the determination of power consumption will be correspondingly

simplified.

It is scarcely necessary to warn the reader against confusing the watt-

meter as above described with the
“ wattmeter ” (incorrectly so-called)

used to meter electric service. The latter records watt-hours and multi-

ples, not watts. The product of power by time is electrical energy, not

power. The principle of action of the watt-hour meter is, moreover en-

Fig. 368. Measuring Electric Power Fig. 369. Dynamometer Connected
Consumption with Voltmeter and as a Wattmeter
Ammeter
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Fig. 370. Watt-Hour Meter
(Courtesy of Weston Electrical Instrument Company.)

tirely different from that of the wattmeter. The former is a small electric

motor whose speed varies with the power consumption, driving a set of

gears which records the energy used.

Thus, the commodity which the user of electricity purchases from his

power company is electrical energy
,
not a quantity of electricity, as is often

supposed. Just as much electricity leaves the user’s premises as arrives

there. All the user does is to strip the electricity of its energy and return

it to the power house to be supplied with energy again. The wattmeter,

properly so called, merely indicates the momentary rate at which such

energy is being used. That is, it registers power consumption in watts.

The watt-hour meter measures the product of power by time, that is,

energy. If the dials of this instrument were graduated in watt-seconds, it

would indicate energy in joules, the energy and work unit already familiar

in mechanics and heat. Instead common practice has established the

watt-hour, otherwise unnamed, as the commercial unit of electric energy.

Its magnitude is, of course, 3600 joules.

Electromotive Force

Equation (1) (page 452) may be expressed somewhat differently after

having multiplied both sides by t.
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Fig. 371. Thermo E.M.F. as a Function of Temperature

Thus, Pt = Elt

W
whereas W = EQ or E =» —

> (2)

where W represents work, the product of power and time, and Q represents

quantity of electricity which is the product of current and time by equation

(5) (page 434). Equation (2) is sometimes used as a defining equation for

the volt in place of equation (1). Stated in words, the volt, by this defini-

tion, is the difference of electrical potential between two points when one joule

of work is expended in moving one coulomb betzveen these points. This defini-

tion renders more plausible the term potential (contraction for potential

energy)
,
when used in electricity, since potential difference is now being

defined in terms of work. When a battery, a generator, or other source of

electric energy is involved, the potential difference which it is capable of

developing when no current is being delivered is commonly termed electro-

motive force, commonly abbreviated to e.mf. The name is both awkward

and inappropriate, but seems to have fastened itself too firmly in electrical

terminology to be dislodged. The foregoing definition of the volt implies

that an electric charge, placed between two terminals under a difference of

potential, experiences a force. This implication is involved in the state-

ment that moving such a charge requires the expenditure of work, which

can only be the case if force is exerted in accordance with the familiar

definition of work as force multiplied by distance. Work and distance

being given, the force is a necessary corollary. The subject of forces be-

tween charged bodies and forces on charges placed in an electric field will

be developed in a later chapter.

Thermo-Electromotive Force

In 1821, Thomas J. Seebeck (1770-1831) discovered that heating the

junction of two dissimilar metals produced a current. We now know that

it is not the magnitude of the current thus produced that is significant, but

rather the voltage. This is termed a thermo-electromotive force . It varies
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between wide limits for different pairs of metals, but is always a very small

fraction of a volt.

Figure 371 is a curve with temperature as abscissas and thermo-e.m.f.

as ordinates. The right intersection of the curve with the temperature

axis represents the temperature of the heated junction of the two metals

and the left that of the cooled junction. The curve is in fact a parabola,

the vertex of which represents the so-called neutral temperature. The
e.m.f. produced by heating one of the junctions increases as the junction’s

temperature rises, reaches a maximum at the neutral temperature, de-

creases to zero at the temperature of inversion, and then reverses. At the

reversal, the temperature of the heated junction is as far above the neutral

temperature as that of the cooled junction is below it.

The thermoelectric effect, as this group of phenomena is termed, is applied

in many ways, one of the most important of which is the measurement of

temperatures that are outside the range of ordinary thermometers. By
placing thermocouples (the term applied to junctions of dissimilar metals

used this way) at the foci of astronomical telescopes, the temperatures of

planets can be measured and those of stars compared with each other.

The Photoelectric Cell

On page 297 the so-called photovoltaic cell was mentioned. This is a

variant of what is more commonly called the photoelectric cell. Just as the

thermoelectricity was an electric effect of application of heat, so photo-

electricity is an electric effect of the application of light. If light is pro-

jected onto certain metals, or especially certain compounds which have

been found to be more sensitive than metals, electrons are liberated. If

the surface is sealed into an evacuated tube along with another electrode

which may be charged positively with a battery, it will gather up these

electrons and a weak current will flow through the cell whenever light

strikes it.

The time required for photoelectric cells to act is extremely short, less

than 3 X 10
-9

seconds. Hence they are effective for even such rapid-fire

operations as are involved in the sound-track of motion-picture films and

even the much more exacting performance of television.

The photovoltaic cell referred to above acts somewhat differently. It

requires neither an evacuated tube nor a battery. It is, indeed, its own
battery, developing an electromotive force which is proportional to the

intensity of the light striking it. The active material is a thin layer of

cuprous oxide formed on a base of copper. Over the oxide is deposited an

exceedingly thin and fairly transparent layer of some metal to act as an

upper electrode. When illuminated, this cell delivers current, the top

layer of metal being the positive terminal and the base plate of copper the

negative. The currents are tiny, but with the aid of an amplifier (page

581), can be made as heavy as required.
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The Electrolytic Cell

But perhaps the most widely useful of all the ways of exciting an electro-

motive force between dissimilar conductors is the way discovered by Volta.

The statement was made on page 428 that the ordinary flashlight battery

is a fairly direct descendant of the voltaic pile. The “dry cell,” two or

more of which make up the ordinary flashlight battery, consists of a zinc

cup which contains the chemicals and also acts as the negative electrode.

The positive electrode is a carbon rod centered in the cup. Between the

two is packed a mixture of manganese dioxide, granulated carbon, graph-

ite, and plaster of paris. This powdery aggregate is soaked with a mixture

of ammonium chloride and zinc chloride. The top is then sealed with

pitch.

The “storage cell” is an electrolytic cell in which it is possible to reverse

the chemical reactions which take place during discharge by forcing an

electric current through it in the reverse direction. There are two princi-

pal types, each possessing its particular merits and shortcomings. The
most common is the lead-acid type, consisting, as the name indicates, of

lead electrodes immersed in dilute sulphuric acid. In the process of

“charging,” one of the plates (the positive) becomes coated with brown
lead peroxide. It is not customary to make the positive plates of lead

directly, but to give them the form of grids upon which is placed a paste of

lead oxide. This increases the area and improves the efficiency of the cell.

The e.m.f. of such a cell is about 2.1 volts. It changes a little with varying

degrees of charge, but the change in voltage is in far lower proportion than

the accompanying change in specific gravity of the acid. Hence it is cus-

tomary to test the state of charge of such a cell with an hydrometer rather

than with a voltmeter. The specific gravity of a fully charged cell of this

type is about 1.250, which diminishes to 1.150 as the cell approaches a state

of complete discharge.

The plates of the other type of storage cell, the Edison cell, contain

nickel oxide (positive) and finely divided iron (negative) . The electrolyte is

potassium hydroxide and the container is steel instead of glass or hard

rubber as in the lead-acid cell. The electromotive force of a completely

charged cell is about 1.4 volts per cell, diminishing to one volt as the cell

becomes discharged, averaging 1.2 volts per cell. A voltmeter rather than

an hydrometer is used to test the state of charge of this type of cell.

The Edison cell is far more rugged mechanically than the lead-acid cell,

and deteriorates far less rapidly. It is in fact practically everlasting with

ordinary care. But it can deliver only a fraction of the current that the

lead-add cell can and hence is not usable for automobile starting purposes

where a hundred or more amperes are frequently required. Also the fluc-

tuation of its voltage, both with state of charge and with temperature is a

disadvantage for many purposes.



Fig. 373 . Cutaway View of Lead-Acid Cell
(Electric Storage Battery Co.)



Fig. 374. Cutaway View of the Edison Storage Cell
(Thomas A. Edison, Incorporated.)

Questions for Self-Examination

1. What is the general meaning of the term potential difference?

2. Define the volt, as the unit of potential difference, in two ways.

3. What is the principle of the voltmeter?

4. Show how to connect a voltmeter and an ammeter in a circuit.

5. Distinguish between a wattmeter and a watt-hour meter.

6. What is thermo-electromotive force and how does it act?

7. Compare two main types of photoelectric cell.

8. Compare the main types of electrolytic cell.
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Problems on Chapter 38

1. An X-ray tube takes I milliamperes at E kilovolts. What is its power consump-

tion P in watts? (The prefixes milli- and kilo- have their usual meanings.)

I E P P E I d

1 100 100 2. 100,000 2 50 1 .

1.5 110 165 100,000 30 33 .26

2 120 240 100,000 75 1.3 .16

2.5 130 325 100,000 100 1.0 .14

2. High voltage is always used to transmit electric power over long distances. If

P kilowatts are transmitted at E kilovolts, what is the current I in amperes and
what are the relative diameters d of wire required for a given efficiency?

3. How many amperes I does a 110-volt electric motor developing P horsepower

require when its efficiency is e per cent?

P c 1 I w 11

.125 25 3.4 4. 25 2100

.500 50
I

6.8 60 5200

10. 90 75. 100 8600

100. 97 700. 150 13000

4. How many Calories of heat H are developed in an hour by a lamp rated at w watts?

5. How many Calories H per second are developed in an electric furnace which takes

/ amperes at E volts, and what horsepower P is required to supply the furnace?

I E H P
10 100 .24 1.3

30 50 .36 2.0

50 40 .48 2,7

100 25 .60 3.4



CHAPTER 39

Ohm’s Law

Electrical Resistance

In Chapter 17 was developed the idea that different materials conduct

heat with different degrees of readiness. The concept of heat conductiv-

ity, first clearly formulated by Joseph Fourier in 1822, was extended to

include electrical conductivity by a German experimenter, Georg Simon

Ohm (1789-1854), in 1826. Ohm’s work ranks on a par with the identifica-

tion of current and potential difference as essential entities in electrical

science.

Fourier’s work had attracted a great deal of attention. Since it came so

soon after the discoveries of Ampere, it is rather surprising that the work
did not stimulate others besides Ohm to the recognition of possible paral-

lels between heat and electricity. Fourier had found that the rate at which

heat was conducted became greater as the difference of temperature in-

creased, as the area of the conductor was increased, and as its length was
decreased. He found also that the rate of heat conduction depended on

the material of which the conductor was composed. But Ohm seems to

have been alone in seeing the possibility of a similar dependence of electric

current on the dimensions and material of wire. Though Ohm’s concept

of electrical conductivity was anticipated by Henry Cavendish fifty years

earlier (26:1 :77), the significance of Cavendish’s work was not to be recog-

nized for many years. Even more important was Ohm’s idea that poten-

tial difference might play the same r61e in the flow of electricity that tem-

perature difference had been found to play in the flow of heat.

Ohm’s first undertaking was to compare the current-conducting powers

of wires of the same size, but of nine different materials. Putting these

wires into his circuit, he adjusted their lengths until he secured the same
deflection of his galvanometer. This instrument, it may be remarked in

passing, he had made himself for the purpose. Though it was in principle

simply Oersted’s magnetic needle and single wire, it was so carefully built

that it was probably the first really precise current-measuring instrument.

With it Ohm found the lengths of equal-sized wires required to permit the

same current to flow.

The “batteries” of Ohm’s day were exceedingly erratic, and Ohm’s
work did not yield dependable results until, following a suggestion by
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g

Kirchhoff, he began to utilize thermocouples as his source of current. 1

These could be kept sufficiently steady, and from the time that he began to

use them, Ohm secured dependable results.

Ohm then tried the effects of different lengths of the same wire and found

that the galvanometer deflection diminished as the length of wire increased.

He then took wires of the same material but of different sizes and found

that his galvanometer deflection was the same for each wire when the

lengths of the wires were proportional to their cross-sectional areas. These

observations established the dependence of the flow of electricity on the

dimensions of the wire.

Thus Ohm established three facts. The ease with which a wire conducts

electricity (1) depends on the material of which the wire is composed, (2) is

inversely proportional to the length, and (3) is directly proportional to the

cross-sectional area of the wire. These observations were quite analogous

to those of Fourier on the conduction of heat and have been abundantly

verified since Ohm’s time. But today it is usual to look at electrical con-

ductivity from the reverse side and to concentrate attention on the diffi-

culty, instead of the ease, of transmission of electricity. The reciprocal of

the values which Ohm deduced has received the name resistance. Stating

the above facts in these terms one would say that the resistance R of a wire

(1) depends on the material, (2) is directly proportional to the length Z, and

(3) is inversely proportional to the cross-sectional area a. Stated algebrai-

cally:

R = P U (1)
a

where p is a constant, the so-called resistivity
,
characteristic of the material

and having values for different materials proportional to reciprocals of the

values given in Ohm’s table. By giving l and a the value 1 (meter) it will

be evident that the resistivity of any material can be found by measuring

the resistance between opposite faces of a cube of the material one meter on

an edge. A table of resistivities and temperature coefficients (see the next

page) of some common metals is given herewith.

It is of passing interest that electrical conductivities and the thermal con-

ductivities of metals were later found to be very closely proportional, the

so-called Wiedemann-Franz law (compare page 185). Thus, the parallel

between the flow of heat and the flow of electricity proved to be more than

a mere analogy.

At one point in his paper Ohm made another remark which is worthy of

notice. He said (77 :472)

:

I cannot avoid mentioning here ... an observation that the conductivity

of metals is increased by lowering the temperature. I took a 4-inch brass

conductor and brought it into the circuit; it gave 159 divisions. When I

heated it in the middle with an alcohol flame, the force gradually decreased

1 Journalfar Chernie und Physik
, 46, 137 (1826).
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Resistivities and Temperature Coefficients

Temperature
Resistivity (p) Coefficient (a)

Material X 10“ X 103

Aluminum 2.8 3.9

Brass 7. 2.

Copper 1.7 3.9

Carbon 5000. .5

Gold 2.4 3.4

Iron 10. 5.

Lead 22 3.9

Mercury 95.8 .9

Nickel 7.8 6.

Platinum 10. 3.

Silver 1.6 3.8

Tin 11.5 4.2

Tungsten 5.6 4.5

Zinc 5.8 3.7

by 20 or more divisions; . . . but when I placed on it a layer of snow, the

force increased by 2 divisions.

In 1833 it was found that the change in resistivity occasioned by change

of temperature was very nearly proportional to the number of degrees of

rise or fall. This discovery was made in 1833 by the Russian physicist

H. F. E. Lenz,1 whose work in another field will be encountered elsewhere.

This dependence upon temperature makes it necessary in equation (1) to

specify the temperature, which is conventionally taken at 0° C. Then the

resistance of the wire in question at any other temperature, f C., is given

by the relation:

R = R0(l + erf) (2)

where R0 is the resistance at 0° C. and a is a constant termed the tempera-

ture coefficient of resistivity . The values of this constant for some common
metals are shown in the above table.

The Discovery of Ohm’s Law

But Ohm's greatest contribution was still to be made, in the form of

what has come to be known as Ohm 9

s law . In the course of his experi-

ments, he had noticed that if, maintaining his circuit otherwise unaltered,

he changed the “ electric force" (the voltage of his source), the deflection

of the galvanometer changed proportionally. But if, maintaining the

voltage unaltered, he changed the resistance of the wires constituting the

circuit, the deflection of the galvanometer changed in inverse proportion to

the resistance. He generalized on this in a statement the modern equiva-

lent of which would be the following (94:36):

1 Poggendorff’s Annalen, 34y 418 (1833).
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The current flowing in any circuit is directly proportional to the algebraic

sum of all the impressed voltages and inversely proportional to the total

resistance.

Expressing the foregoing proportionalities algebraically, / representing cur-

rent, E potential difference, and R resistance,

t EE/OC-, or / = fe- (3)

The value of the proportionality factor k appearing in the second equation

will be determined by the choice of the unit of resistance, which may now
be made.

Equation (3) can be restated

R = kj (30

But the unit of current, the ampere, has already been defined as has also

the unit of potential difference, the volt. If, now, a conductor is so ad-

justed that a current of one ampere flows through it when the potential

difference between its terminals is one volt, and its resistance is termed one

unit, k assumes the value unity and drops out of the equation; whence

R = f. (4)

Thus the unit of resistance, now called the ohm
,
is the resistance of a con-

ductor which will permit one ampere to flow when its terminals are maintained

at a potential difference of one volt .

Equation (4) or either of its algebraic variations

/ = f or E = IR, (4')

is the form in which Ohm’s law is usually stated. The formulation of this

law was the high point of Ohm’s work.

Potential Distribution in a Circuit

Ohm’s law, like all really great generalizations, possesses many implica-

tions not apparent on the surface. Such byways invite exploration. Some
of them Ohm himself explored. Others have been opened up only with the

later development of physics.

Consider the simplest of all electrical circuits: a uniform wire, say, of

3 ohms resistance connecting the terminals of a battery which, when its

terminals are connected by the wire, will maintain a potential difference of

9 volts. The existence of this potential difference could be observed with

the aid of a voltmeter— an instrument whose construction will shortly be
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examined— connected as shown in Figure 375. The current flowing in all

parts of the wire is given by Ohm’s law as:

7 E 9 ,/ = — = -z = 3 amperes.
K 6

Ohm asked himself the question as to the distribution of potential along

the wire under these circumstances. He concluded that if the right-hand

terminal of the voltmeter should be

moved away from the battery along E
the wire, the potential difference reg- I

istered by the instrument would be J
seen to diminish steadily from the >
maximum value of 9 at the position <
shown in the figure, down to 6 at the <
position B,1

4} 2 at C, 3 at 1), and to
|

approach zero as the moving contact *—j

\

j

approached the other terminal of the D

voltmeter at E. If the foregoing po- Fig. 375. A Simple Circuit

tential differences are represented by
distances perpendicular to the plane of the wire as in Figure 376, a graphi-

cal picture of the potential distribution results. If the circuit is divided at

the battery and spread out in a plane, the result is the triangle FGH
,
in

Figure 377 taken from Ohm’s book. This way of regarding a circuit sheds

1 The points B and D trisect the resistance and the point C bisects it.

Fig. 376 . Potential Distribution in a Simple Circuit

Fig. 377. Ohm’s Representation of Potential Distribution
in a Simple Circuit
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a certain amount of light on the properties of electric circuits. But what
is far more important, it can be made to yield a general rule, which is in

effect another interpretation of Ohm’s law second only in importance to

the interpretation heretofore placed upon it.

Ohm’s Law Applied to Portions of a Circuit

In its original form, Ohm’s law was made to apply to a circuit in its

entirety. V represented “ the algebraic sum of all the impressed voltages”

and R the “total resistance” (page 466). It may now be shown that the

law is also applicable to any individual part of a circuit. For example, con-

sider the part BCDE of Figure 375. The current is 3 amperes, the resist-

ance of the entire wire being 3 ohms, that of BE (two thirds of it) is 2 ohms.

The observation was made that the voltmeter would read 6 when the termi-

nals were connected to the circuit at B and E . If Ohm’s law applies to this

section, substitution of / =* 3, V = 6, and R = 2 in the equation

I - - (5)
r

* In applying Ohm’s law, capital letters will be used for quantities associated with the circuit

as a whole; small letters for quantities involved in portions of the circuit. For example, in

the above case, I represents the current in the whole circuit, r the resistance of a portion of it,

and c the potential difference across that portion.

should produce an equality, as it will be seen to do. Ohm’s law can also be

shown to apply to the sections CE and DE.
The crucial difference between the total-circuit and the partial-circuit

uses of Ohm’s law centers in the interpretation of E (or e). In the total-

circuit case E stands for the algebraic sum of the voltages maintained by
the actual sources of electric power in the circuit. In the partial-circuit

case e stands for the fall of potential along the wire caused by its resistance.

If the portion of the circuit under consideration includes any source of

electrical power, the corresponding voltage (termed “electromotive force”

when appearing in this role) has to be added in with due attention to

algebraic sign. This is not^ however, the usual case.

Conductors in Series

These two interpretations of Ohm’s law make it possible to find how the

aggregate resistance of a group of conductors depends on the individual

resistances of which the aggregate

is composed. Basically there are

two ways in which conductors may
be joined together: in series

,
that is,

end to end such that the entire cur-

rent passes through each wire se-

rially; and in parallel
,

that is,

branched, so that the current di-

vides itself between the conductors.

Series

nAAAn
AAAAAAr
VvWWWW—

*

Parallel

Fig. 378. The Two Basic Ways or
Combining Conductors
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There are other ways of connecting conductors together, but these two will

cover all the cases to be encountered here. Naturally, the aggregate resist-

ance will depend on how the individual wires are put together.

Consider, then, a case of three conductors in series, of resistances r\, r2 ,

and r3, respectively (Fig. 378). Let a current I be floVing through them.

To each wire the partial-current form of Ohm’s law may be applied. Thus:

ei = Ir 1 ,
e2 = Ir2 ,

e3 = Irs .

But the sum of these successive potential differences, viy v2 ,
and v3 ,

must
equal the outside electromotive force V which is driving the current through

these wires. Hence,

E = ei + e2 + e3 = Iri + Ir2 + Jr3 = I(r1 + r2 + r8). (6)

But this is Ohm’s law for the total circuit, the general form of which is

E - IR. (7)

A comparison of (6) with (7), both expressing the same fact, shows that

R = + r2 + r3 . (8)

Hence, the aggregate resistance of any number of conductors in series is the

sum of their individual resistances.

Conductors in Parallel

The case of parallel conductors can be treated similarly (Fig. 378).

Again apply the partial circuit form of Ohm’s law to each conductor. In

this case the value of the current is different in each wire, but the sum of

the currents in each wire must equal the total current flowing. Thus

/ = i\ + i2 + i3 . (9)

But the potential difference across each wire must be the same, since all

three wires branch from the same two points, and this potential difference

must equal the outside electromotive force which drives the total current

through the circuit. That is,

. E . E . E
%\ = — , t2 — —7 t3 = —

•

r1 r2 r8

Substituting (10) into (9)

,_? + * + *. £(l + i + iY
ri r2 r3 \ri r2 r3f

(10)

(11 )

But this is Ohm’s law for the total circuit, the general form of which is

7 = | or I = ‘ (12)
R R
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A comparison of (11) with (12), both expressing the same fact, shows that

1

R r 1 r2 n
(13)

Hence, the aggregate resistance of any number of conductors in parallel is the

reciprocal of the sum of their reciprocals.

Shunt and Series Resistances in Electrical Instruments

The use of shunts to bring galvanometer sensitivities within the ranges

required by workaday ammeters was described on page 448. The use of

series resistances in voltmeters for the same purpose was described on page

453. Ohm’s law can be used to determine the relation between the resist-

ance of a galvanometer and that of the shunt or series accessory to adapt

the resulting instrument to use within a given range.

Suppose, in the case of an ammeter, that the range of a galvanometer of

resistance g ohms is to be multiplied A times by the provision of a shunt,

the resistance s of wrhich is to be calculated. This means that a given dif-

ference of potential must send A times as much current through the com-

pleted ammeter as through the original galvanometer. The resistance g
must hence be A times the aggregate of g and s in parallel. That is,

or, solving for s,

S - A
1

i+i
g s

(14)

Thus, multiplying the current range of a galvanometer by factors of 10,

100, etc., requires shunts having resistances
-J,

etc., times that of the

original instrument.

In the case of a voltmeter, suppose that the range of a galvanometer of

resistance g ohms is to be multiplied V times by the provision of a series

resistance r ohms, the value of which is to be calculated. This means that

V times as much voltage will be required to send a given current through

the completed voltmeter as through the original galvanometer. The total

resistance of the voltmeter must hence be V times that of the galvanometer

alone. That is,

g + r = Vg,

or, solving for r,

r-g(V-l). (IS)

Thus, multiplying the voltage range of a galvanometer by factors of 10,

100, etc., requires series resistances 9, 99, etc., times the resistance of the

original instrument.
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The Measurement of Resistance

Besides the instruments for measurement of current, potential difference,

and power, those for measurement of resistance require attention. One
way to measure resistance and in some respects the simplest is with the

aid of a voltmeter and ammeter. If V volts are thus observed to drive I
amperes through the conductor under test, then by Ohm’s law

The method is especially adaptable to extremely high and extremely low

resistances, instruments of appropriate ranges being selected.

But for accurate determinations of resistance over ordinary ranges the

so-called “Wheatstone’s bridge” is the standard device. It did not origi-

nate with Sir Charles Wheatstone (1802-75). He himself says that his

own (presumably independent) treatment of it was anticipated by ten

years by a man named S. H. Christie. Notwithstanding this, Wheat-

stone’s name has always been associated with the instrument. Since his

description of it leaves little to be desired by way of clarity, it will be re-

produced here. 1 He called it a Differential Resistance Measurer .

Figure 379 represents a board on which are placed four copper wires Zb,

Za
,
Ca, Cb

,
the extremities of which are fixed to brass binding screws.

The binding screws Z
,
C are for the purpose of receiving wires proceeding

from the two poles of a battery, and those marked a, b are for holding the

ends of the wire of a galvanometer. By this arrangement a wire from each

pole of the battery proceeds to each end of the galvanometer wire, and if

the four wires be of equal length and thickness, and of the same material,

perfect equilibrium is established, so that a battery however powerful will

not produce the least deviation of the galvanometer from zero. . . . But if a

resistance be interposed in either of the four wires (The terminals cd and ef

are provided for this purpose), the equilibrium of the galvanometer will

be disturbed. ... It may be restored by placing an equal resistance in either

of the adjacent wires.

1 Philosophical Transactions
, 133, 323 (1843).

0 1 2 3 4 5 6 inches

Fig. 379. Wheatstone’s Original Bridge Diagram
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Fig. 380. A Slide-Wire Bridge
(Courtesy of Leeds and Northrup.)

The Theory of Wheatstone*s Bridge

The use of Wheatstone’s bridge involves initially adjusting for equilib-

rium, introducing the unknown resistance in one branch, and placing a

variable but known resistance in the opposite branch. When the latter

has been altered until the galvanometer needle returns to zero, the value

to which it has been adjusted tells the resistance of the unknown. It is not
necessary, moreover, that the resistances Za and Ca be equal, though.

Wheatstone implies that it is. All that is necessary is that their ratio be
known. Then when equilibrium is attained the ratio between the unknown
and the standard resistances is the same.

The foregoing principle is applied in two forms, the slide-wire bridge

and the box bridge. In the former a single uniform wire replaces ZaC, a
sliding-knife-edge contact performing the function of the terminal a. After

approximate adjustment of the known to near-equality with the unknown,
the final balance is secured by changing the position of a. Then

cd _ Za

ef Ca
’ (16)

and if the ratios of the lengths Za and Ca are observed along with the

known resistance e/, the value of the unknown is immediately calculable.

With the box bridge, pairs of resistance spools carefully adjusted to deci-

mal ratios take the place of ZaC . Among other advantages of this type,

one standard resistance can do duty for all decimals of its value as well.

This type of bridge frequently contains within one small box the battery,

galvanometer, and standard resistance in addition to the ratio coils replac-

ing ZaC. It is used almost universally in commercial testing.

To justify equation (16) note that when no current flows through the
galvanometer the points a and b must be at the same potential. Hence,
the fall of potential from Z to b must be the same as that from Z to a and
similarly for the fall from b to C and from a to C. Hence, by Ohm’s law

Hb • cd = iz« • Za and iCb * ef - iCa • Ca. (17)
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Fig. 381. A Box Bridge
(Courtesy of Leeds and Northrup.)

But since all the current through cd passes also through ef and similarly

for the other two,

izb « kb and iZa = iCa -
' (18)

Therefore, substituting equations (18) into equations (17)

kb-cd = ka-Za. (19)

Dividing (19) by the second of (17),

kb • cd _ ka * Za

kb-ef ka'Ca

or

cd Za

ef Ca
which is equation (16).

The Potentiometer

It is frequently necessary to measure electromotive forces, defined on

page 457 as the potential difference maintained by a source of electrical

energy when no current is being delivered. The use of an ordinary volt-

meter involves a flow of current, which precludes the use of such an instru-

ment when precise measurements of e.m.f. must be made. In such a case

a potentiometer is used, an instrument which has many uses wherever pre-

cise electrical measurements are made. Its principal use is as a device for

checking the accuracy of voltmeters, ammeters and wattmeters
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M M' B n M * M

P
. — p

Fig. 382. Divided Flow in Water Fig. 383. Divided Flow or Elec-

System tric Current

As an aid in comprehending the principles involved in the potentiometer

an analogy is useful. In Figure 382 let OB represent a section of pipe car-

rying a current of water. Between the points M and M' a pressure differ-

ence exists, which, other things remaining unchanged, will increase with the

distance between the points in question, the higher pressure being at M.
If the pipe is tapped at M and M' and a branch pipe MPM' attached, a

current flows as indicated, the flow of water is produced by the pressure

difference.

Pressure difference in a water system is analogous to potential difference

in an electric circuit; a current flows in a conductor only when a potential

difference exists. If, in the preceding paragraph, the terms conductor
,

electricity
,
and potential difference are substituted, respectively, for pipe

,

water
,
and pressure difference

,
and reference is made to Figure 383 instead

of Figure 382, the same statements hold true without other modification.

The paragraph referred to will then read : Let OB represent a section of a

conductor carrying a current of electricity. Between the points M and M'
a potential difference exists, which, other things remaining unchanged, will

increase with the distance between the points in question, the higher po-

tential being at M. If the conductor is tapped (contact made) at M and

M' and a branch conductor MPM' attached, a current flows as indicated;

the flow of electricity is produced by the potential difference.

Referring next to Figure 384, let a rotary pump be inserted in the branch

MPM' and let it rotate in the direction indicated by the arrow. By the

action of the pump, a pressure difference will be maintained betweenN and

P with the higher pressure at P. It is easy to conceive of the pump as be-

ing driven at constant speed so as to maintain a steady pressure difference,

and to imagine such strength of current in OB that the pump exactly bal-

ances the pressure difference between M and M'. In this situation no cur-

rent flows through the branch MPM' because the tendency to flow in one

direction is exactly neutralized by the tendency to flow in the opposite

*

Fig. 384. Water Analogy of

Potentiometer

0
M *. M»

B

Fig. 385. Principles of
Potentiometer
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direction. The absence of current could be shown by some kind of flow

meter inserted in the branch MPM'.
With the same substitution of terms as before, the identical reasoning

applies to Figure 385. Here a battery is represented as the source of po-

tential difference and is analogous to the pump as the source of pressure

difference.

In the diagram, Figure 386 the cell W, which may be an ordinary dry cell,

causes a current to flow through the resistance OB in the direction indi-

cated by the arrow. The result is a potential difference between any two
points on OB

,
such as M and M'

.

With the current flowing as indicated,

M is the higher potential and hence is positive with respect to M'.

Now consider the circuit MEGM' in which E represents any source of

steady potential difference and G represents a galvanometer. The points

P and M are brought to the same potential by connecting them with a con-

ductor; then if the potential of N is as much below P as that of M' is below

M, obviously N and M' must be at the same potential. The net result is

that no current can flow in this circuit,, and the galvanometer, which is

merely a current-indicating instrument, shows no deflection. If, with the

value of E remaining constant, the contact at M' were shifted a little to the

right or left ofM ', a current would immediately flow because the potential

difference between M and M' would then be either greater or less than the

fixed value of E. The galvanometer would no longer read zero but would

indicate the current in MEGM'.
Therefore, with the aid of a galvanometer, two points M and M' can be

found on a conductor OB
,
between which the potential difference is equal

to that of a known potential E. It is immaterial where the two points on

OB are located, provided that the resistance between them has the correct

value, and M is connected to the terminals of like sign of P and W.
Having found two such points, and identified the potential difference

between them by the use of a “ standard cell,” a different potential differ-

ence “ tapped off” from two other points will be in proportion to the length

of wire spanned. Hence, if a cell of unknown electromotive force be sub-

stituted for the standard cell, and the adjustment of MM' be repeated, the

R

Fig. 386. Potentiometer Circuit
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second value of MM' may be read, whence the unknown voltage may be

immediately computed from the proportion stated above. This is the

principle of the use of the potentiometer to compare two potential differ-

ences, a procedure that is obviously involved whenever it becomes neces-

sary to standardize voltmeters.

If a potentiometer is used to make an accurate measurement of potential

difference across a resistance of accurately known value, the current that is

flowing can be determined to a corresponding accuracy with the aid of

Ohm’s law. This is the principle of the use of the potentiometer to com-
pare two currents, a procedure that is obviously involved whenever it

becomes necessary to standardize ammeters.

Kirchhoff’s Rules

Many modern applications of electricity involve wiring which is too

complex to be easily analyzed into combinations of simple circuits. Such

complex circuits are called electrical networks. Their treatment requires a

method somewhat more powerful than the simple form of Ohm’s law.

Gustav Kirchhoff (1824-1887) discovered two principles, so simple as to

seem almost obvious, which are effective in treating electrical networks.

They are called Kirchhoff's rules. The first will be called the point rule
,
the

second the loop rule.

The point rule is merely a formal statement of the fact that at any point

in a circuit in which current is flowing steadily the total current flowing

away must equal the total current flowing toward that point. If this were

not true, there would be an accumulation of electricity at some point, a

condition which is contrary to the above assumption of a steady current.

If the latter currents be termed positive and the former negative, then the

point rule may be succinctly stated thus. At any point in a conducting net-

work
,
the algebraic sum of the currents is zero. Algebraically,

2/ - 0 (20)

The loop rule is a formal statement of the fact that around any closed

loop of a network the aggregate e.m.f. of all sources of electrical energy is

equal to the sum of the differences of

potential along the conductors con-

necting them. These differences of

potential are, by Ohm’s law, the prod-

ucts of resistances and corresponding

currents. They are frequently re-

ferred to as “IR drops,” and quite

appropriately so. If oppositely di-

rected e.m.f.’s be given opposite signs

such that the aggregate e.m.f. is

positive, then the loop rule may be
stated thus. Around any closed loop inFig. 387. Single Loop in a Network
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a network the algebraic sum of all e.mf's present in the loop
,
minus the sums

of all the IR drops around the loop
,
is equal to zero . Algebraically,

SE - 2IR - 0. (21)

Consider, for example, the right-hand junction of Figure 387. It con-

sists of three conductors in which the indicated currents are flowing. By
the point rule,

i\ "f* ii — ^2 == 0. (22)

From the loop rule applied to Figure 387, another equation may be stated,

namely,

(E — e) — i\r\ - i*r2 + nrz = 0. (23)

The problem involved in the solution of a network usually consists in

computing the currents, given the voltages and resistances. For the case

before us this appears at first impossible, since there are four unknowns,

iiy /2 ,
and i4 ,

and only two equations. However, Figure 387 shows only

a single loop. Consideration of adjacent loops would give other equations

involving the same unknowns (as well as others). When the entire net-

work was taken into account, it would be found that there were in fact a

larger number of equations than there were unknowns. Hence not only

could the values of the unknown be found, but the extra equations could be

used to furnish a check.

The signs assumed for the currents in the various branches of the net-

work must be consistent in the two equations. If they are, and the actual

resulting currents are in the directions assumed, all values of i will be posi-

tive. If any value of i comes out negative, that merely means that a

wrong guess was initially made as to the direction of that particular cur-

rent. It is common, indeed, to assume positive currents to be flowing

clockwise, even in those branches in which an intuitive estimate indicates

otherwise, and to rely entirely on the signs of the final results to give in-

formation on actual directions of the currents. This was not done, how-
ever, in the foregoing example and the corresponding equations.

Though the foregoing presentation of Kirchhoff’s rules was limited to the

case of steady currents, they may be modified to apply to alternating cur-

rents in circuits containing not only resistances and sources of alternating

e.m.f.s, but other electrical devices, called inductances and capacitances
,
the

nature of which will become evident in succeeding chapters.

Questions for Self-Examination

1. Tell what Ohm discovered about (a) resistivities of materials, (b) dependence of

resistance on length and cross-section and temperature, and (c) aggregate resistance

of wires in series,

2. Ohm was led to formulate his principles of electrical conduction by analogy with

Fourier’s statements about heat conduction. State both sets of principles in
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parallel columns and describe how Ohm verified his electrical principles experi-

mentally.

3. State Ohm’s law. Define resistivity and temperature coefficient.

4. Interpret Ohm’s law as applied to the whole circuit and to parts of a circuit, and

discuss potential distribution in a simple circuit.

5. Prove by the use of Ohm’s law that the aggregate of a group of resistances in series

is the sum of the individual resistances.

6. Prove by the use of Ohm’s law that the aggregate of a group of resistances in

parallel is the reciprocal of the sum of the reciprocals of the individual resistances.

7. Describe the function of series and parallel resistors in voltmeters and ammeters.

8. Describe “Wheatstone’s bridge.”

9. State the principle of the potentiometer. To,what uses is it ordinarily put?

10.

State Kirchoff’s two rules.

Problems on Chapter 39

1. Three resistances of a,
b

,
and c ohms respectively are connected in series. A bat-

tery of electromotive force E and internal resistance d is connected in series with

these. What is the potential difference across each resistance and the battery?

a b C d E PDa PDb PDC PDc
(1) 100. 200. 300. 0. 600 100. 200. 300. 600.

(2) 95. 150. 250. 5. 250 48. 75. 130. 250.

(3) 4. 10. 20. 6. 8 .8 2. 4. 6.8

(4) .1 .2 .4 .05 100 13. 27. 53. 93.

(5) .02 .03 .05 .1 100 10. 15. 25. 50.

(6) 3. 4 5. 1 . 2 .46 .62 .77 1.8

(7) 6. 7. 8. 1 . 3 .82 .95 1.1 2.9

(8) 5. 8. 11. 2. 10 1.9 3. 4.2 9.2

(9) 20. 30. 40. 5. 10 2.1 3.2 4.2 9.4

(10) 15. 23. 31. 5. 10 2. 3.1 4.2 9.3

(11) 5. 7. 9. 1. 3 .68 .95 1.2 2.9

Three resistances of a ,
b, and c ohms re- a b c r

spectively are connected in parallel. (1) 9 12 18 4.

What is their joint resistance r? (2) 40. 100 200 25.

a (3) 40 66§ 100 20.

^aaa (4) 33 48 88
|

16.
'v V[jV \r\ (5) 20 30 60 10.^—WWW

0 (6) 9 10 11 3.3
1

>wwwwvs (7) 1 2 3 .55

(8) 7 10 12 3.1

(9) 12 18 20 5.3

(10) 5 12 15 2.9

E
(11) 3 4 5 1.3

Fig. 388

3. The parallel resistances of the preceding problem are connected in a circuit as
shown, containing leads whose total resistance is e and a battery of electromotive
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force E and internal resistance d. Find the current I in the circuit and in each
branch.

e d E / h h n
(1) 5. 1 . 10 1 .

4
'!

2
$

(2) 20. 5. 100 2.
r>

4 i
1
4

(3) 27. 3. 200 4. 2.
6
li i

(4) 80. 4. 500 5.
8 0
3 3f

r>

~S a
(5) 2. 0 . 120 10. 5.

1 0"3" %
(6) 1.5 .4 2 .38 .14 .13 .12

(7) .3 .2 20
j

19. 10. 5.2 3.5

(8) 3. 5. 5 .45 .20 .14 .12

(9) 5. 5. 10 .65 .29 .19 .17

(10) 3. 3. 25 2.8 1.6 .67 .54

(ID 1 . 1 . 15 4.6 1.9 1.5 1.2

4. A low-range voltmeter may be quite conveniently used r V
as an ammeter for the measurement of very small cur- 100 10.

rents. If an instrument so used has a resistance of r 50 1.

ohms and shows a scale reading V, what current is 50 .4

flowing? 10 .2

5. A galvanometer whose resistance is r ohms is shunted by r s

a resistance s ohms. What proportion p of the total cur- 500 2

rent pisses through the galvanometer? 100 10

100 5

90 10

6. A wire / meters long and of diameter d milli- l d R p
meters has a resistance R ohms. What is the 10 1 .2 1.6 • 10~8

resistivity p of the material of which it is 10 1 .9 7.1 • 10~8

made? Can you determine, by reference to 10 1 1.4 11. * 10~8

tables, what the material is? 10 1 4. 31. • 10“8

7. The temperature coefficient of resistance of r t R r
platinum is .00366. The resistance of a plati- 300 0 2000 1550

num thermometer is r ohms at temperature 300 0 1000 640
1°C. Its resistance becomes R ohms at an un- 300 0 500 180

known temperature. Find the unknown tem-

perature T in degrees C.

300 0 100 - 180

8. A resistance thermometer is found to have a resistance of Ro ohms at 0°C. and a

resistance of R\ ohms at T°C.

a. Find the temperature coefficient of resistance a of the metal of which the

thermometer is made. Can you determine by reference to a table what
the metal is?

b. If the thermometer shows a resistance of R2 ohms for a determination of the

boiling point, find the temperature t at which this liquid boils. Knowing
• that this liquid is a chemical element, can you determine by reference to

tables what it is?

Ro Ri T R2 a t

10 14 98 12.4 .0041 59

25 40 97 20. .0062 -32
100 152 96 257. .0054 290

200 223 95 422. .0012 917

9. The tungsten filament of a light bulb has a resistance Rm at 20°C. Find the re-

sistance Rt of the filament at a temperature /°C. Take the average temperature

coefficient of resistance of tungsten to be 0.00554 per degree. Assuming the lamp

to be operated on 120 volts, find the initial and final current.

I

.1

.02

.008

.02

P
.004

.091

.048

.1
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i?20 t R< Initial Final

20.2 2412° 290 6 0.42

13.48 2412 190 9 0.62

10.11 2412 140 12 0.83

5.05 2412 70 24 1.67

10. Neglecting the loss due to radiation, what is the rise in temperature / per second

in the following lengths of copper wire, each of mass m grams and resistance r

ohms, when subjected to a potential difference of V volts? Take the mechan-
ical equivalent of heat as 4183 joules per calorie

and the specific heat of copper as .0939 Calorie m r V t

per kilogram. Assume the resistance and specific 9.5 .32 3 16

heat to remain a constant as the temperature 9. .16 3 16

changes. What would be the effect of allowing 18. .08 3 16

for loss due to radiation? 36. .04 3 16

11. In the potentiometer circuit Figure 389, the slide wire ab is 200 centimeters long and
its resistance is .5 ohm per centimeter. The batteries E\ and E2 have negligible

internal resistance. Ei - 2 volts, E2 - 1.6 volts, Ri — 20 ohms, resistance of the

galvanometer G - 100 ohms. Find the magnitude and direction of the current

in the galvanometer. Find the position of the contact C which gives zero current

through the galvanometer. .00027 amp., 8 cm.

b

Fig. 389 Fig. 390

12. In Figure 390 Ei= 6 volts with an internal resistance of 1 ohm, E2 = 4 volts with

an internal resistance of .6 ohm.

a. If ^3 = 3 ohms, find the current in R2 ,
E\, and E2. 1.4, 1.8, —4 amp.

b. Find the current in Ri when E2 is removed. 1.5 amp.
c. For what value of Ri will the current in E2 be zero? 2 ohms.

13. Apply Kirchoff’s rules to the network of the accompanying figure to find the

current in each branch. The voltage of the battery is 10, with zero internal re-

sistance; the resistances are as follows: n = 25, r2 = 45, = 75, = 75, r# = 125,

r% = 60. .10, .063, .063, .038, .038, 0.

C

Fig. 391



CHAPTER 40

Capacitance

Condensers

One of the most common electrical devices is the accessory called a
condenser . Radio apparatus, for example, consists in a surprisingly large

proportion of condensers of many sizes both at the sending and the receiv-

ing ends. The very act of tuning a radio receiver usually consists of

adjusting a condenser. A telephone message invariably passes through

a dozen or more condensers. Automobile ignition and battery-charging

circuits incorporate condensers. Large condensers are used on commer-
cial electric systems' to increase the efficiency of distribution. The variety

of uses to which condensers are put make them much more common than
many devices that are in fact better known. But in spite of the profusion

of condensers, the average user of electrical appliances is not likely to be
acquainted with them because they are usually small, are almost always

hidden, and seldom require servicing.

Basically, condensers are devices for storing electrical energy, usually

in infinitesimal amounts and for tiny intervals of time. There is little

occasion to confuse them with storage batteries (page 459), partly because

the two are put to very different uses and partly because their construction

and action are so different. Structurally condensers are simply two adja-

cent electrical conductors separated by an insulating medium. Usually

the conductors are very close together and of large area; for example, a

representative telephone condenser con-

sists of two sheets of tinfoil nearly a square

yard in area, separated by a sheet of par-

affined paper about a thousandth of an

inch thick. The whole is rolled up into a

small volume and sealed in a metal case,

so that the area is not evident to a casual

user.

Electrostatic Attraction

Some twenty-six centuries ago a phil-

osopher named Thales, residing in an an-

cient city of Asia Minor called Miletus,

^*%/(lfl /V, -

J'y-
1

1 t’LW l)

"*
I ^1

if

Fig. 392. A Variable Condenser
of the Type Used in Radio Sets

(The National Co. Inc.)
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was the first to record the fact that objects which were electrically charged

would attract each other. At that time the only known way of generating

electricity was by friction on amber, the Greek name of which was electron
,

whence our term electricity} It took two thousand years, however, to dis-

cover that electricity could be generated by friction in other substances

than amber. It was still later that the fact was discovered by Nicolo

Cabeo in 1629 (24:194) that repulsion as well as attraction occurred be-

tween electrified bodies, that attraction characterized the action between

unlike charges (positive and negative, as we term them now) and that re-

pulsion characterized the action between like charges. Still later, Stephen

Gray (1696-1736) discovered that electrical charges could travel from

one place to another along wires (77 :395). Today conduction along wires

is almost taken for granted as the most prominent characteristic of elec-

tricity, and that electricity can exist at all in a stationary or static state

is often not fully appreciated. This reverses the historical order of discovery

of the principal phenomena of electricity.

How Condensers Work

These basic facts of electricity, namely, the forces between charges

and the phenomenon of flow along conductors, account for the ability of

a condenser to store electricity. Imagine two metal plates (Fig. 393)

brought near together, the lower one connected to the earth. Let a posi-

tive charge be placed on the other plate. Under this attraction electrons

(being negative) will flow from the earth, which has virtually an inexhausti-

ble supply of electrons, to the lower plate. The greater the area of the

plates, the larger the number of positive charges that are accommodated

on the top plate and hence the larger the number of electrons that are

attracted to the other. The closer together the plates, the easier it is to

place more positives on the top plate against the repulsion of the positives

already there. This is because the repulsion of the positives on the top

plate for additional positives approaching it is more nearly balanced by
the attraction of the negatives on the bottom plate. Hence both the

areas and the mutual proximity of the two plates conspire to increase the

quantity of electricity that can be placed on them. These two conditions

go far toward determining the capacitance of a condenser.

1 First used in print in 1646. (See 43:26 and 22, bk. II, chap. IV.)

/Metal plates /Meta! plates

+ + + + + +/+ + + + + 1

1
+ + + + + + + +T++I

Fig. 393 . Charging a
Condenser

Fig. 394 . Charging a Con-
denser in Reverse Direction
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If the upper plate had originally been charged negatively instead of

positively, electrons would have been repelled from the lower plate to the

earth instead of being drawn to it, thus leaving a corresponding number
of unneutralized positives on the lower plate.1 Thus, the condenser

would be charged in the opposite direction to that previously described,

but otherwise the state of affairs would be the same as before.

It is usually not necessary in practice to connect one plate of a con-

denser to the ground as described above. The ground connection is really

necessary only when a condenser is to be

charged by transfer of a quantity of stat-

ic electricity. When it is to be charged

by a battery or other bipolar source of

electrical energy, no ground connection

is required. Thee.m.f.in any such source

pulls electrons away from one plate of

the condenser and piles them up on the

other plate as indicated in Figure 395.

The process continues until the poten-

tial difference between the terminals of

the condenser becomesequal to thee.mi

.

of the source, after which no further

current can flow. Practically this sel-

dom requires more than a tiny fraction

of a second. Charging a Condenser by Battery

The Evolution of the Condenser

Originally condensers were called “Leyden jars” because of a supposi-

tion that their action was first observed by an experimenter in Leyden,

Holland. One form of condenser bears that name to this day (Fig. 396).

It first consisted of nothing more than a bottle of water with a nail stuck

through the cork. Its birth came about through a lucky misapprehension.

The gradual loss of electrification that a charged body was observed to

experience had been attributed to evaporation. From this arose the idea

of putting the charged body into a container to reduce this “evaporation.”

What more natural than to use a bottle, and what more natural than to

put water into the bottle as the object to be charged? A nail through

the cork was a convenient way to establish electrical contact without

opening the bottle. The amazing behavior of this simple device was first

recorded by E. G. von Kleist, Dean of the Cathedral in Kammin, Pomer-

ania, in a letter dated November 4, 1745. Holding the jar in one hand,

he presented the nail to an electrical machine, then withdrew the jar

and touched the nail with his other hand, whereupon, in his own words

(105:81),

I receive a shock which stuns my arms and shoulders.

1 Refer in this connection to page 444, where the convention as to direction of flow of an

electric current is clarified.
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Fig. 396. A Group op Leyden Jars
(From Williams: Foundations of College Physics. Courtesy of Ginn & Co.)

Taking electrical shocks was nothing new at this time. It had become, in

fact, a widespread and favorite form of parlor pastime. But the shocks

had always been taken directly from a machine and the victims never

before experienced more than a mild degree of discomfort. Here appar-

ently was a device capable of “ condensing” a large amount of electricity

into a small volume and delivering it with disconcerting violence. Peter

van Musschenbroek, Professor at the University of Leyden, immediately

made another condenser out of a bowl, the glass of which, be it noted,

was very thin, and wrote that when he tried it, he felt himself struck in

his arms, shoulders, and breast, so that he lost his breath and was two
days recovering from the effects of the blow and the terror. He added,

writing to a French scientific friend, that he would not take another such

shock for the Kingdom of France. It was more than twenty years before

this stunning shock was unequivocally identified with the same sensation

produced by contact with an electric eel, a phenomenon that had been

known from antiquity, but the idea that they were identical in nature

occurred almost immediately and the method of demonstrating it was
gradually worked out.

Von Kleist made another observation which was of significance. He
said that none of these terrible shocks or bright sparks could be secured

unless the jar was held in the hand and concluded:

The human body therefore must contribute something to it.

This was a natural but erroneous conclusion. It seemed to be associated

with electrical phenomena observed in the cat, with its counterpart in the
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action of human hair when vigorously brushed on a dry day (which just

before this time had been recognized by Robert Boyle as electrical), and
even more strikingly with the action of the electric eel. These effects were

being lumped under the term “ animal electricity,” and von Kleist’s ob-

servation was naturally but mistakenly interpreted in those terms. The
relevant fact, which was shortly discovered, was that the outside of the

jar must be covered with some conducting material, A sheet of metal

would have been even more effective than moist human flesh. Similarly,

the important point as to the interior was not the nature of the liquid con-

tained in it, but only that the inside as well as the outside of the jar should

be covered with a conducting layer. These facts came quickly to be real-

ized and within a very few months the Leyden jar assumed the form char-

acteristic of it to this day, covered inside and out with a thin coating of

metal, the condenser delivering its charge through any circuit connecting

the inside to the outside coating. Benjamin Franklin was soon to intro-

duce the important modification of substituting a pane of glass, coated on

both sides with tin-foil, for the jar. Naturally, the

larger the coated jar or pane of glass, the greater

the quantity of electricity that could be stored on

it with the expenditure of a given amount of en-

ergy. Also as Musschenbroek’s experience indi-

cated, the thinner the glass the greater the quan-

tity of electricity stored under the same condition.

Forces Between Charges

The fact that attractions and repulsions exist

between electrical charges has already been stated

(page 457). Electrical repulsions were used in

one of the earliest electrical instruments to be de-

vised, the gold-leaf electroscope (Fig. 397). In

this instrument the divergence of two leaves of

gold foil bearing charges of like sign was taken as

a rough way of comparing electrical potentials of

charged bodies to which the electroscope was con-

nected. It also provided a comparison of the

quantities of electricity on the same body at two
different times, since such quantities were neces-

sarily in proportion to the potential. The elec- (From Philosophicai Tfansac.

troscope did not, however, give any information fans, 77 , 34 [1787].)

on the relation between forces exerted by charged

bodies on each other and their charges and separations. This, the most
significant of the early measurements in electricity, was made in 1784-85

by Charles A. Coulomb (1736-1806) . Coulomb demonstrated that electro-

static forces acted in accordance with an inverse-square law. entirely

analogous to that which Newton had postulated for gravitation and which
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Fig. 398. The Principle of Cou- Fig. 399. Coulomb’s Apparatus
lomb’s Apparatus for Measuring for Measuring Forces Between
Forces Between Charged Bodies Charged Bodies

(From Mtmoires de VAcadlmie Royales dcs

Sciences [1785], p. 569.)

had just been directly verified by experiment by Cavendish. Coulomb’s

method was nearly like that of Cavendish, which was described in the

section on mechanics (page 112). Electrified bodies were substituted for

the gravitational masses of Cavendish’s experiment. (See Figs. 398 and

399.) The result for electrical charges Coulomb termed The Fundamental

Law of Electricity and phrased it substantially as follows (77:411):

The force between two small spheres charged with electricity is in the

inverse ratio of the squares of the distances between the two spheres.

The Idea of Quantity of Electricity

The precision with which Coulomb determined that the inverse-square

law was true for electrical charges constituted a major contribution. But
even so, a comparison with Cavendish’s results will show that they left

much to be desired. Cavendish had not only verified the inverse-square

law, but he had also demonstrated that gravitational forces were directly

proportional to the products of the masses, M and m, of the mutually

attracting bodies. In addition he determined the constant of propor-

tionality, G. In algebraic form the relation was

By contrast, Coulomb determined, for electrical forces, only that

(2)



Chapter 40 CAPACITANCE 487

Since Coulomb’s time this has been rounded out into a form completely

analogous to equation (1), namely,

,
i Qs

J
4irko r2

(3)

where Q and q represent the quantities of electricity on the respective

charged spheres and 1/4 7r^0 corresponds to G as the constant of propor-

tionality. This is now called Coulomb's law . Coulomb could undoubtedly

have put it into this complete form, including an evaluation of ko (now
accorded the value 8.854- lQru

) if only a unit of electrical quantity had

been in existence. But that was not definitively accomplished until eighty

years later, at which time a unit of electrical quantity then established

was appropriately given the name coulomb . This unit has already been

defined (page 434).

The Dielectric Constant

One of the respects in which fails to be completely analogous to G is
47t£0

significant. Gravitational attraction seems to be entirely independent of

the medium between the two bodies involved. The attraction between

the sun and the moon, for example, is entirely unaffected by the interven-

tion of the earth between them at the time of a lunar eclipse. Electro-

static forces, on the other hand, are profoundly affected by the intervening

medium. The value of ko, given above (8.854- 10“12
), applies only to a

vacuum. For any other medium the constant of proportionality in equa-

tion (3) has a different value, and k0 is replaced by another constant, say k.

This constant is different for different substances. The ratio of its value

to that of h is known as the dielectric constant, K, of the medium in ques-

tion. That is,

As the name indicates, the higher the dielectric constant, the better the

insulator. Approximate values of K for some common insulators are

shown below.

air 1.011

water 81.07

porcelain 5.73

glass 7.

mica 6.

shellac 3.1

The abnormally high value for water is largely without practical signifi-

cance, for it is next to impossible to remove impurities from water to such

a degree as to attain, much less hold, the high tabular value of the dielectric
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constant. The theoretical significance of the abnormal dielectric constant

of water is considerable, however.

Forces on Charged Bodies

The force experienced by a charged body between the plates of a con-

denser will be required in later chapters. The simplest case is that of a

charge of one coulomb between plates whose distance apart 5 is so small in

comparison with the dimensions of the plates that the force / on it is the

same everywhere. This is the condition for a so-called uniform field . Then
the work W necessary to move the unit charge from one plate to the other is

W=fs.

But by the second definition of the volt (page 457), W is simply the po-

tential difference AV between the plates. Hence

AV-fs

AV
and therefore / = -y-* (5)

The term AV/s is called the electric field strength, and is measured in

volts per meter of separation of the plates. Consequently, the force in

newtons on one coulomb in a uniform electric field is numerically equal to the

electric field strength in volts per meter . If the charge experiencing the force

is q coulombs instead of one coulomb, then the force is simply q times as

great as that on one coulomb, assuming that the charge is not great enough

to destroy the condition of a substantially uniform electric field.

Capacitances of Condensers

It is now possible to define the unit of capacitance by which condensers

are rated. A condenser is said to have unit capacitance when a potential

difference of one volt between its terminals is required to charge it with one

coulomb of electricity . This unit is the farad, so named in honor of Michael

Faraday. The farad is too large a unit for most practical purposes and
hence one millionth of it, called the microfarad (mf) is in common use.

For condensers encountered in radio practice another submultiple is usu-

ally used, the millionth of a microfarad, the micromicrofarad (mmf).

Besides depending on area and separation of its plates, the capacitance

of a condenser depends in addition on the dielectric constant of the medium
between the plates. When a medium of dielectric constant k is substituted

for air (or, more precisely, for a vacuum) of dielectric constant k0y the

capacitance of the condenser is changed in the ratio k/h. For the media
in common use (glass, mica, paraffined paper, etc.) this always means in

practice a considerable increase in capacitance when the new medium is

substituted for air between the plates of a condenser.

If two or more condensers are connected in parallel, their group capaci-
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tance is the sum of the individual capacitances. Being in parallel the

potential differences must all be the same. Hence for the group

C = Q _Q\ ,Qz ,

v~v +
v
+ Ci + C2 + . . .

.

(6)

If two or more condensers are con-

nected in series, their group capaci-

tance is the reciprocal of the sum of

the reciprocals of the individual ca-

pacitances. Being in series, and initi-

ally uncharged, the quantity in each

condenser must be the same when a

potential difference is applied to the

outer terminals of the series. Hence,

for the group

I.I + l + l
C Cx CjC,

Fig. 400. Condensers in Parallel
and in Series

1 = F = Fi 1

C Q Q
+
Q
+ " mm

Ci
+
Ct

+ "" (7 )

Electrostatic Induction

The flow of electricity in charging a condenser involves a phenomenon
commonly termed electrostatic induction 1 which has played a prominent

part in the development of electrical theory. Electrostatic induction is

simply a general name to cover the redistribution of static electricity on a

conductor due to any changes in the charges of neighboring bodies. Gray 2

had examined the phenomenon rather closely, remarking that

the Electric Virtue may be carried from the Tube, without touching the Line

of Communication, by only being held near it.

1 The qualifying term electrostatic is introduced to distinguish this effect from electromagnetic

induction, a totally different phenomenon discovered in 1831 by Faraday and Henry. (See

Chapter 42.) It is a misfortune, rather uncharacteristic of scientific terminology, that the

same noun should have been selected to denominate two such diverse phenomena. However,
so cumbersome is the entire term “electrostatic induction” that only the noun will be used
except under circumstances where confusion might result.

2 Philosophical Transactions (abridged), 6
,
part II, 26 (1731).

Fie, 401. Charging by Electrostatic Induction
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The nature of this action, though not comprehended at the time, is now
quite clear. If a body charged, say, negatively, is brought near the end of

an insulated conductor, negative will be repelled to the far end of the con-

ductor, leaving the end near the charged body positive. This was what
Gray observed. But much more can be made of it. If the far end be

touched, the negative will escape, leaving a surplus of positive on the con-

ductor. Another conductor can be charged in the^same way, and as many
more as are desired, all without reducing the quantity of electricity on the

neighboring charged body. A similar

result, mutates mutandae
,
can be se-

cured by a positively charged body.

Two generations after Gray identified

this effect, Volta used it in his electro-

phorus. This embodied the working

principle of all the electrostatic ma-
chines such as may be found in any
physics-laboratory even today. They

were successors to frictional machines which were the sole mechanical

sources of electricity up to and including the day of Benjamin Franklin.

The Condenser and Lightning

It was the condenser which provided the final link in the chain of evi-

dence that lightning was an electrical phenomenon. This was the most
sensational of several major contributions made by Benjamin Franklin to

the young science of electricity. Franklin was by no means the first to

suspect that lightning was electrical. He was not even the first to capture

lightning from the upper atmosphere and put it through its paces in an at-

tempt to furnish conclusive demonstration that it was electrical. But he

was the first to bottle it in a condenser and to show by this means that it

was identical with the electricity similarly bottled from a frictional ma-
chine.

In 1746, at the age of forty, Franklin happened to see a Doctor Spencer,

from Scotland, perform some electrical experiments at Boston. That was
the beginning of an all-absorbing interest in the subject. Within two years,

Franklin had become so engrossed in this study that he sold his .printing

house, newspaper, and famous Almanack
,
with the view of retiring from

business at the age of forty-two, to devote all his time to his electrical ex-

periments. His principal interest then was in lightning prevention. In a

long letter of 1750, which he submitted through a friend for the consider-

ation of the Royal Society, he described his idea, based on experiments of

1749. He leads up to the proposal in this way (44:5:231 ff.):

Points have a property, by which they draw on as well as throw off the

electrical fluid, at greater distances than blunt bodies can Thus a pin

held by the head, and the point presented to an electrified body, will draw

I
+++++++++++++++

TT

Fig. 402. The Action or the
Electrofhorus
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off its atmosphere at a foot distance; where, if the head were presented

instead of the point no such effect would follow. . .

.

If these things are so, may not the knowledge of this power of points be
of use to mankind in preserving houses, churches, ships etc. from the stroke

of lightning . . . Would not pointed rods probably draw the electrical fire

silently out of a cloud before it came nigh enough to strike, and thereby

secure us from that most sudden and terrible mischief?

But Franklin’s contribution to lightning prevention, important though

it was, he apparently regarded somewhat in the light of a by-product. In

his notebook of the same year as his letter to the Royal Society is found

the following comparison' of lightning and electricity (25 :129)

:

Electrical fluid agrees with lightning in these particulars: (1) Giving light;

(2) colour of the light; (3) crooked direction; (4) swift motion; (5) being

conducted by metals; (6) crack or noise in exploding; (7) subsisting on water

or ice; (8) rending bodies it passes through; (9) destroying animals; (10)

melting metals; (11) firing inflammable substances; (12) sulphurous smell.

But there remained one point, whether of similarity or of difference, to

be settled experimentally. Would lightning be attracted and drawn off

by points like the electric charge in his jars? Two French observers tried

it, using pointed iron rods forty and ninety-nine feet high respectively and

found that it would.

But Franklin was not satisfied. The lengths of the rods used by the

Frenchmen were not great enough to convince him that the electric dis-

turbances at the bottom really originated in the clouds above. Nor had
the electricity been caught in a Leyden jar and its identity with frictional

electricity established. He puzzled over how to cover these points. There

came to him the idea of flying a kite into a thunder cloud. He had one

made with a number of metal points projecting from it, communicating

with the cord by which the kite was to be flown.

The rest of the story is a part of the education of every school child.

At the appropriate time the kite was raised and disappeared into the cloud.

As soon as the string had been rendered conducting by becoming wet, its

electrified state became evident through the sudden standing out of the

loose fibers of the string. From his sheltered position under a shed, hold-

ing the string by a dry silk cord, knotted to it for the sake of safety, Frank-

lin then performed the crucial operation, no doubt wondering whether it

might not be his last act. He presented his knuckle to a key which he had
tied to the end of the string. A spark jumped from the key with the char-

acteristic crackling sound which he had heard hundreds of times when
taking the discharge of a frictional machine. It was but the work of a

moment to lower the key to one of the Leyden jars brought for the purpose,

to charge the jar, and to test it in the same way. The great discovery—
the most sensational in the annals of electricity and the first major experi-

ment with a condenser— was complete.
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Questions for Self-Examination

1. Describe a typical condenser and tell some of the uses of condensers.

2. Describe how it is possible for condensers to retain an electrical charge sufficiently

large to be observable.

3. Tell about the evolution of the condenser (Kleist, Musschenbroek, Franklin).

4. State Coulomb's law and tell how it is affected by the dielectric constant of the

medium.

5. Define electric field strength and state its unit.

6. Name and define the unit of capacitance.

7. Tell how to calculate the aggregate capacitance of a group of condensers in series

and in parallel and show why this should be so.

8. Describe the action of the electrophorus.

9. Recount the sequence of events leading to the final identification of lightning as

a discharge of static electricity.

Problems on Chapter 40

1. Coulomb found that when his device (Figs. 398 and 399) was electrically charged,

the moving needle carrying the charged spheres turned through 36° in consequence

of the repulsion. By twisting the suspending fiber through 126° he brought the

needle back to a deflection of 18°. Show how these data indicate an inverse-

square law of repulsion.

2. Two small objects carrying positive charges of Q and q microcoulombs respectively

are separated a distance r centimeters in air. Find the force /i of repulsion in

newtons. Find the force /2 when the objects are immersed in oil of relative di-

electric constant 3.

Q
10“2

Q
10“3

r

5

5

10

10

/i

2 10
-

8

2

5

h
.710"

4

2.8

.7

1.6

3.

Two identical conducting spheres, each of mass milligrams, are supported by two
very light conducting threads of length l

centimeters from two points separated by
a distance s centimeters on a horizontal

metal bar. The whole system is given an
electrostatic charge, the charges on the

balls causing them to repel each other so

that their supporting threads make an
angle 6 with the vertical. Find the charge

q on each ball in microcoulombs.
Fig. 403

m s l e q
50 1 4 30° 9* 10~3

50 2 8 30° 18* 10“3

50 2 8 10° 4.7 * 10~6

50 2 8 10° 2.3 *10-6

4. The hydrogen atom consists of a relatively stationary nucleus with a positive

charge of 1.600* 10“19 coulombs and an electron of equal but opposite charge ro-



CAPACITANCE 493Chapter 40

tating about the nucleus in an approximately circular path of radius 5.27 *10~11

meter. If the mass of the electron is 9.11 -10“31 kgm., what must be the angular

speed in revolutions per second in order that the centrifugal force will balance

the electrostatic force of attraction? Ans. 7 • 10 lf> rev./sec.

5. An electric “dipole” (the electrostatic equivalent of an ideal small magnet) con-

sists of two equal charges of opposite sign separated by a distance so small that

the mutual attraction holds the charges tenaciously together. Calculate the field

strength in E
y
in newtons per coulomb both in direction and magnitude, at a dis-

tance d centimeters from the center of a dipole made up of two charges q and — q

microcoulombs separated by a distance of l centimeters which is very small in com-

parison with d\

a. Along the line joining the charges,

b. Perpendicular to the line joining the charges.

<1 / d Ea Eb

1 1 10 200* 103 100- 103

1 1 100 0.2 0.1

2 1 10 450. 220.

2 2 100 0.9 0.4

A condenser of capacity C microfarads is charged to a C E c e

potential difference of E volts. Its two terminals are 2 100 1 67.

then connected to those of another condenser, un- 3 100 2 60.

charged, of capacity c microfarads. What is the 4 100 3 57.

resulting potential difference e in volts? 5 100 4 56.

7. Three condensers of capacity C\, C*, and Ca respectively are connected in series.

A potential difference of E volts is applied to the outer terminals of the set. What
are the potential differences ei, c2 ,

and c3 across the respective condensers?

Ci c2 c3 E Cl €2 c3

1 2 3 100 55. 27. 18.

2 3 4 100 46. 31. 23.

3 4 5 100 43. 32. 26.

4 5 6 100 41. 32. 27.

8. What would be the aggregate capacitance of 12 one-microfarad condensers con-

nected in three series groups of four each, the three groups connected in parallel

with each other? If each condenser will stand 1000 volts, how many coulombs

will it hold? How many would the entire group of condensers, as connected,

hojd? .75 m.f., .001 coulomb, .003 coulomb.



CHAPTER 41

Magnetism

The Significance of the Study of Magnetism

The attractive force between a magnet and a piece of iron is today a phe-

nomenon so familiar to us that we often fail to realize that we really know
very little more than the ancients as to how this attraction occurs. When
we observe a piece of soft iron clinging to a steel bar, ordinarily bent into

a shape somewhat like a horseshoe, we say that the bar is magnetized and

think no more about it. In regarding this attraction thus, we do not

measure up to the intellectual acuteness of our ancestors of twenty-five

hundred years ago who, when they observed a similar phenomenon,

thought a great deal about it.

There is, nevertheless, far more reason why we of this generation should

give serious attention to the phenomenon of magnetism than did the Greek

philosophers. The entire technology of an electrical age centers in it.

Without it we should still be living as humanity did hundreds of years ago.

Moreover, in spite of the vaunted prowess of physical science, we have had

scant success in accounting for magnetic phenomena. A considerable por-

tion of this subject we comprehend almost as little as did the earliest ob-

servers. Yet there is good reason for an opinion that the very pattern of

scientific thought received its first impulse from the study of magnetism

and it is certainly true that the magnetic compass has had more influence

on world affairs than any other single device that could be mentioned.

The first philosopher known to give serious thought to the nature of

magnetic forces was Thales of Miletus, the same man who made the first

study of frictional electricity. He must have been a most extraordinary

man. He lived in the seventh and sixth centuries b.c. All his writings (if

he ever set any down) have been lost, and we know him only through his

commentators. Yet writers of every age agree in regarding him as the

father of philosophy. Thales regarded ability to move about or to cause

other objects to move about as prima facie evidence of the possession of a

soul. Hence he thought, according to Aristotle’s account, “that the mag-
net has a soul because it causes movement to iron.” This was a new and
radical idea, much more radical than it appears at first sight to us. Until

the time of Thales (and indeed for long after), magnetic action had been

classified as magic. About such matters, the uninitiated might not even
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Fig. 404 . Peregrine’s Idea of the Positions of Compass Needles
Around a Magnet

(As represented in Cabeo’s Philosophia Magnetica , 1629.)

think, for fear of incurring the anger of the gods. But, if the magnet pos-

sessed a soul, as did men and animals, that was another matter. It could

not be impious to wonder about your own possessions or those of others.

Hence, magnetism became one of the first natural phenomena to be subject

to investigation. As such it gave an early, and perhaps the first, impetus

to scientific thought, which was not to come into full maturity for twenty-

three hundred years.

Magnetic Polarity

The magnetic phenomenon that seems most strongly to have impressed

the ancient commentators was magnetic attraction. Observations on the

correlative phenomenon, magnetic repulsion, seem to have been very infre-

quent. The Roman poet Lucretius (99-55 b.c.) was probably the first to

record this observation (72:269), but its significance was not realized for

fourteen hundred years. Today every schoolboy knows that a magnet

possesses two ends with characteristics which are, in certain respects, mag-
netically opposite to each other. These ends are usually called poles

,
a

term introduced by William Gilbert in 1600. It is common knowledge now
that unlike poles show a mutual attraction as do unlike electrical charges,

while like poles show a mutual repulsion. But this distinction between the

behavior of different pairs of poles is of fairly recent origin. The first inti-

mation of it was in the Opus Minus of Roger Bacon (12:383-84), written

near the middle of the thirteenth century. But the first really clear state-

ment of the principle of magnetic polarity was contained in a remarkable

letter written in 1269 by Peter Peregrine, a close friend of Bacon’s (96:5).

He told how to verify it by breaking a piece of lodestone and noting how a

new pair of opposite poles appeared at the fractured ends. He also

described correctly the orientations of a compass needle in various positions

around a spherical piece of lodestone (Fig. 404). It was perhaps natural
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Fig. 405 . The First Known Illustration of
a Pivoted Compass (1269)

(From Peregrine’s Epislola de Magnete, 1269.)

that he should have been the first to do this, since this same letter also con-

tained the first known illustration of a pivoted compass (Fig. 405).

Magnetic Fields

The behavior of a compass needle in the vicinity of magnets indicates

that these regions of space are in an abnormal condition. The state of

affairs is perhaps most readily visualized by studying the arrangement of

iron filings around a magnet (Fig. 406). The pattern of these filings out-

lines what has come to be called the magnetic field of the acting magnet.

The concentration of the lines along which filings arrange themselves is a

rough measure of the relative strengths of different portions of the magnetic

field. Experience shows that the end or “pole” of another magnet, small

enough so that it produces negligible disturbances to the field and is hence

usable for test purposes, experiences a force along the lines, of magnitude

proportional to the concentration of the lines.

To the early workers in magnetism these “lines of force” were very real.

They were formalized into the basic principles of magnetism, the strength

of a magnetic field being stated in terms of the number of lines per unit of

area normal to them. Michael Faraday, in his work on magnetism, went

even farther, attributing a corporeal reality to “lines of force” and endow-

ing them with physical properties, notably elasticity. The fact is, of



Chapter 41 magnetism: 497

Fig. 406. Iron Filings Around a Magnet
(From Williams: Foundations of College Physics. Courtesy of Ginn & Co.)

course, that “ lines of force,” however convenient they may be as aids to

visualization, are mere figments of imagination, and as such constitute an
inadequate foundation for magnetic theory. It is better to build the cen-

tral concepts in this, as in any field, out of phenomena that can be observed,

operations that can actually be performed in the laboratory.

Magnetic Field Strength

Iron filings, sprinkled on a sheet in the neighborhood of a helically wound
wire carrying a current, arrange themselves in a pattern similar to that

around a bar magnet, indicating that an electric current may be so disposed

as to be the equivalent of a magnet (Fig. 407). A test magnet placed in the

field of the helix as described above will experience a similar force. The

Fig. 407. Iron Filings Around a Solenoid
(Sawders.)
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magnitude of the force on the end of a given test magnet in either case is

taken to be proportional to the strength of the field at the point under scru-

tiny. But just as the original bar magnet could be replaced by an electric

current, so the test magnet may be replaced by another current. The
force on a conductor carrying this second current becomes, under pre-

scribed conditions, the actual measure of the strength of the magnetic field

produced by the first.

But the force between adjacent currents has already been encountered.

It was involved in the definition of the ampere (page 433). From that

definition it follows that when a long straight wire carries a current of one

ampere, the force on each meter of a parallel wire one meter away is

2 X 10~ 7 newtons. This is utilized as the basis for the definition of the unit

of magnetic flux density .
' The flux density one meter away from an in-

finitely long straight wire carrying one ampere is thus defined as 2 X 10“7

units. Since the force on 1 meter length of wire carrying one ampere in a

magnetic field of strength 2 X 10~7 units is 2 X 10~7 newtons, it follows that

when a wire carrying a current of one ampere
,
perpendicularly to a uniform

magnetic field ,
experiences a force of 1 newton on each meter of its lengthy the

magnetic flux density is 1 unit . The principal name by which this unit is

known is the awkward one of weber per square meter . From the foregoing

definition of the unit of magnetic flux density the force / in newtons on a

wire l meters long perpendicular to a magnetic flux density B webers/m2
is

/ = IIB. (1)

From the law of Biot and Savart (page 432) the magnetic flux density B
at a distance r meters from a long straight wire carrying a current I amperes

is

B = 2 X 10“7 ^webers/m2
. (2)

r

As was implied on page 446, however, much stronger magnetic fields can be

produced by winding the wire into a coil than are produced by the same cur-

rent when traversing a straight wire. Though the calculation of the field

strengths produced within coils is usually an undertaking of some com-
plexity, it is very simple for two particular forms of coil. One is a long thin

coil, the so-called solenoid
,
such as could be produced by winding wire in a

single layer on a broomstick. The other is a flat coil, whose windings are

substantially all in a single circle, such as could be produced by winding

wire around the edge of a thin disk. Inside of a solenoid having n turns of

wire per meter of length carrying I amperes, the flux density B at the mid-
point of the length is simply

B = jLtonl webers/m2
. (3)

The factor /*o has the value 4 w X 10~7
(1.257 X 10~6

). It is termed the

permeability of space , If the region inside the solenoid is occupied by some
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material substance, /Lto must be multiplied by another constant m character-

istic of that substance. Values of m, termed relative permeability, have been

measured and tabulated for many substances. (See Appendix.)

If the length of the solenoid is ten times the radius, equation (3) is cor-

rect within one half per cent. For “longer” solenoids the accuracy is still

higher. Also, the equation applies to points at considerable distances from

the midpoint as long as one remains inside of the solenoid at a discreet dis-

tance from the ends.

From equation (3) B/ho = nl
,
the product of the number of turns of

wire per meter by the current in amperes. This quantity, which is inde-

pendent of the medium surrounding the coil, is called the magnetic field

strength (or magnetizing force by engineers), and is represented by the

symbol //, whence

II « nl. (4)

In describing magnetic fields, therefore, two vector quantities B and H
are commonly used. If one is given, the other can always be found from

the equation

II = — in air, (5)
Mo

or

E «— in any medium, (6)
MMo

M being the relative permeability of the medium as described above. As
suggested by equation (4) the field strength II in a solenoid is expressed in

ampere turns per meter. The term applies not merely to the field within a

long solenoid, but to any magnetic field strength, no matter how produced.

The second type of coil for which it is easy to calculate the flux density is

that of a flat coil. If the coil has a radius r meters, and bears N turns of

wire carrying a current / amperes, the field strength at the center is

or

ptumVm,
Mo 2 r

Nl
B =* no

— webers/m2
. Cl)

2 r

Equations (3) and (7) are readily derivable from the law of Biot and
Savart (page 432) with the aid of some of the simpler processes of cal-

culus, but will not be derived here.

Magnetic Flux

The fact was pointed out on page 496 that concentrations of lines of iron

filings in a magnetic field provided a rough measure of the relative strengths

of different portions of that field. In Figure 407, for example, the strength
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of the magnetic field inside of the solenoid is greater than outside, as in-

dicated by the greater number of lines per unit area (perpendicular to the

lines). For some purposes, however, there would be significance to the

total number of lines within the solenoid. This would be the product of the

number per unit area by the area itself. In other words, a new concept is

being introduced involving the product of magnetic flux density by the area .

This is termed the magnetic flux . Algebraically, magnetic flux <f> is related

to B and area S (perpendicular to the direction of the field) by the equation

<j> = BS. (8)

B is, of course, in webers/m2 and S in m2
. The unit of magnetic flux is

termed the weber.

Magnetic Moment

The strength of a magnetic field is sometimes defined as the force on a

magnetic pole of unit strength. If magnetic poles could be located precisely

enough to make this definition at all useful, the next step would be to define

the torque on a magnet suspended crosswise of a magnetic field as the

product of the force on each end by the distance between the poles. This

would then be

torque = flux density X (pole strength) X (distance between poles).

But neither pole strength nor distance between poles is a determinable

quantity. Nevertheless, the product is readily determinable. For example,

the torque necessary to hold a compass needle at right angles to the mag-

netic north-south position could be readily measured in spite of the fact

that neither the strengths nor the positions of its individual poles could be

determined. Consequently, it is customary to focus attention upon the

determinable product of these two quantities rather than on the undeter-

minable quantities themselves. This product (pole strength X distance

between poles) is called the magnetic moment M of a magnet and is defined

by the above equation. That is,

L = BM or M = ~, (9)3

where L is the torque in newton-meters required to hold the magnet cross-

wise of a magnetic field of B webers/m2
. If the magnet is to be displaced

from the direction of the field merely by 0 degrees instead of by 90°, then

equation (9) takes the form

M L
B sin d

(10)

Terrestrial Magnetism

That the earth in itself is a huge magnet, in that it possesses a magnetic

field, observable in direction and measurable in magnitude, has been real-
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ized ever since William Gilbert, sometimes called “ the father of magnetism,”

published his treatise De Magnele in 1600 (41A). The realization did not

dawn with the beginnings of the use of the magnetic compass for navigation

some five centuries earlier,1 as might be reasonable to suppose. At that

time the action of the compass was commonly attributed to mountains or

islands of magnetic material, variously located in accordance with the

imaginations of different authors (97:6?, 124 and 355).

That the magnetic compass does not point exactly to the geographic

north has been known in a general way almost ever since the compass was

devised. The angle between true north and the so-called magnetic north is

termed magnetic declination. The systematic study of magnetic declination

was apparently given its initial momentum through some observations

made by Christopher Columbus in 1492 in an early stage of his first voyage

to the East Indies (as he thought) by sailing west. In a letter to the King

and Queen of Spain, Columbus thus describes his discovery (78:127)

:

When I sailed from Spain to the West Indies, I found that as soon as I

had passed 100 leagues west of the Azores . . . the needle of the compass,

which hitherto had turned toward the northeast, turned a full quarter of

the wind to the northwest, and this took place from the time when we
reached that line.

By degrees the declination of the compass was established in various

parts of the world and charted. The first well-authenticated table was
drawn up by Robert Norman in 1581, nearly a century after Columbus’

observation of declination (92). Today extensive charts are available indi-

cating the declination in all parts of the world. They consist of lines

drawn through all places of equal declination, these being called isogonic

lines. Such charts have to be redrawn from time to time, to provide

for the changes which are continually occurring.

The point that apparently impressed Columbus the most was not the

existence of magnetic declination, which he and doubtless others had known
about before, but rather the discovery of a region of no declination, that is,

a line along which the compass indicated a true geographic north; for obvi-

ously in changing from an easterly to a westerly declination, the needle

would have to pass through a position of zero declination, that is, point true

north. He associated this region of no declination with certain climatic

changes, with certain imagined astronomical perturbations, and with the

circumstances creating the famous accumulation of sea vegetation at that

place, known as the Sargasso Sea, and felt that he had discovered a region

for some reason unique on the surface of the earth.

Pope Alexander VI was possibly influenced by similar considerations

when he made this line of zero declination the political division between the

two portions of the earth in which new territory, when discovered, should

be allocated respectively to Portugal and Spain, the two world powers of

that era.

1 H. Winters, Mariner's Mirror
,
23

} 95 (1937).
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Vasco da Gama, under Portuguese auspices, following the compass on

another great adventure, checkmated Columbus’ discovery of America by
finding a sea route to the East Indies around the Cape of Good Hope, thus

meeting with success, where, in the contemporary view, Columbus had

failed. Spain, green with envy, commissioned Magellan to make another

attempt to reach the same place by traveling west to bring the East Indies

within her own claim. For obviously, though the islands had already been

reached by sailing east from the line of zero declination and, hence, had

been claimed by Portugal, if they could be attained by traveling west from

the same line, the claim of Spain to them under the provisions of Alex-

ander’s arrogant decree would be just as good. The really important out-

come of this competition was not so much the desired shift in economic

advantage of one nation over another, as the new scientific advance which

resulted from Magellan’s circumnavigation of the globe in 1520-22, from

which all nations profited.

Who then shall measure the human achievements stimulated by the

study of the earth’s magnetism? Vast economic shifts; political rivalries

leading to catastrophic wars; unprecedented mass movements in popula-

tion; the mingling of races with consequent impacts of different cultures

and religions; scientific discovery leading to the establishment of new
standards of living: In a word, a world which had been palsied for a dozen

centuries began to move forward with the might and majesty of an entirely

new racial enterprise. And back of it all lay a slender* bit of magnetized

iron, poised unstably on a pivot, yet always looking to the north.
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Magnetic Dip and Field Strength

But discoveries in the realm of magnetism had only begun. In this, as in

most other fields, general recognition that the activity was of value to

society acted to accelerate the acquirement of knowledge, and successive

major steps in advance were, from this time on, to be separated only by
decades rather than by centuries as heretofore.

In 1544, Georg Hartmann, a vicar in Nuremberg, observed that a steel

needle, balanced to remain horizontal when unmagnetized, was thrown

out of balance upon magnetization, the north

end dipping toward the earth. He communi-

cated his discovery to Count Albert of Prussia,

but the letter failed to come to public notice

for nearly three hundred years. The effect

was rediscovered in 1576 by Robert Norman,
the same man who in 1581 published the first

charts of magnetic declination. The mag-

netic dip of a needle is very great. In fact,

the earth’s magnetic field in this latitude comes

nearer to being vertical than it does horizontal.

Norman constructed a needle so that it would

rotate in a vertical instead of a horizontal

plane, and found the dip in London to be 71°

50' (93). Like magnetic declination, magnet-

ic dip or inclination has now been determined

for nearly all portions of the earth, and * IG - 409. Norman’s First

charted by tsochmc lines. Again like mag-
{FlomTheNewAltracti,vbyRohe[t

netic decimation, dip changes with the passage Norman, 1590.)

of time. The dip in London, which was 71°

50' in Norman’s day, reached a maximum of 74° 42' one hundred and

fifty years later and has since been decreasing.

Declination and dip represent two aspects of direction of the earth’s

magnetic field. In some respects, knowledge about the strength of the

earth’s field is of even greater significance. In 1776, just two hundred years

after Norman’s observation of dip, and at a time when American men of

science were concerned with other than scientific matters, Jean Charles

Borda, a French mathematician and astronomer, discovered a way to com-

pare the strengths of the earth’s magnetic field at different points. His

method was comparable to the use of a pendulum to compare the accelera-

tions of gravity (page 127). The period of an oscillating magnetic needle,

like that of a swinging pendulum, will be affected by the strength of the

earth’s field, magnetic in one case and gravitational in the other. In the

case of gravitation, the mere swinging of a pendulum at two places gives

only the ratio of the strengths of the earth’s field at those places, not the

absolute values. The same is true of the swinging of a magnetic needle.
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Until a unit was established for magnetic field strength, which did not come

about until 1833 (77 :519), results secured by different observers, or by the

same observer using different needles, could not be compared, and world-

wide charts of magnetic field strengths could not be made.

It is now known that the strength of the earth’s field is nearly three times

as great at its point of maximum as at its point of minimum, the correspond-

ing angles of dip being 87° and 8° respectively. Today magnetic charts

always go in sets of three, the first two, consisting of isogonic and isoclinic

lines respectively, have already been mentioned. The third type of chart

lays down a set of isodynamic (equal field strength) lines over the map of

the world. By consulting all three maps, we can learn the complete mag-
netic state of almost any point on the surface of the earth.

Like declination and dip, the strength of the earth’s field is constantly

changing. All three changes are for the most part slow, but ever since

1722 (86:156) the existence of regular daily and even hourly fluctuations

have been known. In addition, there are erratic fluctuations, sometimes

of major extent, often, though not always, accompanying and evidently

produced by sunspots and aurorae borcales
,
this correlation having been

observed as early as 1740 (86:139).

The Electromagnet

Aside from the magnetic compass, the commercial electromagnet is un-

doubtedly the principal channel of application of magnetism. The pro-

genitor of all electromagnets was apparently that of William Sturgeon,

made in 1823. It consisted of a single layer

of bare wire wound on a varnished iron core.

No significant improvement was made for four

years. On October 10, 1827, Joseph Henry,

the first American to make major contributions

to physics after the time of Benjamin Franklin,

entered the scene with a modification of the

electromagnet, which though small in principle

was great in effect. Sturgeon’s electromag-

net had consisted of a single layer of bare

copper wire wound on an insulated iron core.

Henry’s improvement consisted in insulating the wire instead of the

core and winding many layers instead of only one onto the iron

core.1

This improvement was not as simple as it appears today. Henry had
to provide his own insulation, even as Ohm, two or three years before,

had had to make his own wire. Some of the Henry relics, still preserved at

Princeton University, indicate that the strips of silk cloth which constituted

the insulation were provided by cutting up some of his wife’s petticoats.

If so, it was fortunate for science that modern styles had not yet come in.

1 Renews of Modern Physics
,
J, 472 (1931).

wmmmm

Fig. 410. Sturgeon’s Bar
Electromagnet

(From Transactions of the Royal

Society of Arts, 43, plate 4 [1825].)
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Fig. 411 . Modern Industrial Electromagnet

(Courtesy of General Electric Company.)

On account of this handicap, Henry had to labor interminably at winding

insulation on miles of wire for use in his experiments.

The result, however, amply justified the effort. Henry made larger

and larger electromagnets until by 1831 he had constructed a magnet

which would support 750 pounds. This may be compared with Sturgeon’s

first which would support only a few ounces. In the course of his successive

trials, Henry learned to establish a proper proportion between the voltage

of his batiery and the resistance of the windings on his electromagnets to

secure a maximum effect. This constituted a partial rediscovery of Ohm’s

law, which, though Ohm had already published it, Henry was not to learn

about until 1837, because of the delay in general recognition of Ohm’s work.

Joseph Henry and the Beginning of Telegraphy

The further development of the electromagnet to the dimensions of that
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Fig. 412. Henry's Drawing of One of His First Electromagnets
(From the American Journal of Science, 19, 408 [1831].)

now used in the heavy industries is a matter of improvement in minutiae

of design which need be of no present concern. But a somewhat different

application which Henry made is worthy of more than passing notice.

Henry had not confined his attention to heavy electromagnets, but had also

constructed small magnets capable of acting through long lines at a consid-

erable distance from the battery. By 1831, he had made one which

actuated a clapper to strike a bell, and demonstrated it to his classes and to

visitors through a mile of wire, in that way transmitting signals. These

facts are of considerable importance when it is realized that Morse, to whom
the invention of the telegraph is commonly attributed, constructed his first

model in 1835, applied for a patent in 1837, and was awarded it in 1840, in

Fig. 413. Henry’s Telegraph
(His own illustration.)
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the meantime having received detailed information about Henry’s electro-

magnets, some of it directly from Henry himself, and incorporated these

ideas into his own instruments.1 Moreover, the corresponding invention of

the telegraph in England in 1837, by Wheatstone and Cooke, did not occur

until two months after Henry had visited Wheatstone on April 11 and
freely given him all the information at his disposal about crucial points in

the design of electromagnets for telegraphic purposes, the proper propor-

tioning of resistance to voltage and length of line, as has already been men-
tioned. Henry never envied these men the fortunes they made, partly

through appropriating his ideas, but he did feel bad that neither of them
made a word of acknowledgment of the assistance which he had given so

freely.

Questions for Self-Examination

1. What is the earliest record of observation of magnetic attraction and why is it

significant?

2. Describe the development of the idea of magnetic polarity.

3. What is taken as the measure of the strength of a magnetic field?

4. Name and define the unit of magnetic flux density.

5. Name and define the unit of magnetic field strength.

6. Name and define the unit of magnetic flux.

7. What are some of the principal facts about magnetic declination and dip?

8. Describe the evolution of the electromagnet.

Problems on Chapter 41

A wire l meters long carrying I amperes is perpendicular

to a magnetic field of flux density B webers/m2
. What

/ I B F
1 10 .01 .10

force F in newtons does it experience? 1 15 .005 .075

1 20 .002 .040

1 25 .001 .025

2. A square galvanometer coil of length l centimeters and breadth b centimeters con-

sists of N turns. It is suspended vertically in a horizontal magnetic field of flux

density B webers/m

2

and carries a current of 1 amperes. When set so that its

plane makes an angle a with the direction of the field, what torque L in newton

meters does it experience?

l b N a 7 B L
5 1 100 0 .001 .01 5.0 X 10"7

5 1 100 5 .001 .01 5.0 X 10~7

5 1 100 20 .001 .01 4.7 X 10~7

5 1 100 50 .001 .01 3.2 X 10~7

3. There are N wires on the armature of an electric motor, each of length l centimeters

parallel to the axis of rotation b centimeters from it, carrying a current of I am-

peres and rotating in a radial magnetic field of flux density B webers/m2 at n

revolutions per second. What horsepower P does the motor develop?

1 Annual Report
,
Smithsonian Inslitution

t 1857 , pp. 99 ff. and 264 ff.
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N l b I B n P
2000 30 10 1 .50 20 5.1

2000 30 10 2 .45 30 14.

2000 30 10 3 .40 40 24.

2000 30 10 4 .30 50 30.

4.

What is the flux density B in webers/m2 within a long solenoid of length l centi-

meters, consisting of N turns of wire of radius r centimeters, carrying a current of

1 amperes?'

1 N r I B N r I B
20 200 1 1 .0013 5. 1 20 10. 3.1 X 10"6

30 200 1 2 .0017 10 20 2. 6.3 X 10"6

40 200 1 3 .0019 25 20 .5 3.9 X 10~5

50 200 1 4 .0020 50 20 .2 3.1 X 10~B

5. What is the flux density B in webers/m2 at the center of a circular coil of N turns

of radius r centimeters, carrying a current of I amperes?

6. A circular coil of N turns and radius R centimeters carries a current I amperes.^

Concentric with this, but with its plane at right angles to the plane of this, is

another coil of n turns and radius r centimeters carrying a current of i amperes.

The second coil is so small that the magnetic field in its neighborhood due to the

first may be considered uniform. What is the force moment L in newton meters

tending to turn the two coils into the same plane?

N R I n r i L
20 10 1 10 .5 1 .99 X 10~7

20 15 1 10 1.0 1 2.6 X 10-7

20 20 1 10 1.5 1 4.4 X IO
-7

20 25 1 10 2.0 1 6.3 X 10~7
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Electromagnetic Induction

Henry's First Observation of Electromagnetic Induction

Important as the telegraph is and, still more so, the almost infinite

variety of other applications of the electromagnet which Henry developed

to the point of practicable use, they are, after all, mere by-products of

science. Henryk real contribution to physics was his observation in

August, 1830, of a new and fundamental phenomenon, that of induction.

He was using one of his electromagnets, the terminals of which were sol-

dered to the plates of the battery. There was no switch in the circuit, and

to turn the electromagnet on and off he had to immerse the battery plates

in the electrolyte and withdraw them as required. Around the armature

(a piece of soft iron laid across the poles of his electromagnet), he had

wound a few turns of wire and connected their terminals to a galvanometer.

It is to be borne in mind that there was no electrical connection between

the wires leading to the galvanometer and those leading to the battery.

Let him tell about the subsequent observations in his own words: 1

At the instant of immersion, the

north end of the needle was de-

flected 30° to the west, indicat-

ing a current of electricity from

the helix surrounding the arma-

ture. The effect, however, ap-

peared only as a single impulse,

for the needle, after a few oscilla-

tions, resumed its former undis-

turbed position in the magnetic

meridian although the galvanic

action of the battery, and con-

sequently the magnetic power,

was still continued. I was,

however, much surprised to see

the needle suddenly deflected

from a state of rest to about 20°

to the east, or in a contrary direc-

1 American Journal of Science
, 22y 40S

(1832).

Fig. 414. Henry's Discovery of
Electromagnetic Induction

CThe Electrical Engineer, 13, 53 [1892].)
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tion when the battery was withdrawn from the acid, and again deflected

to the west when it was reimmersed. The operation was repeated many
times in succession, and uniformly with the same result. . .

.

This experiment illustrates most strikingly the reciprocal action of the

two principles of electricity and magnetism, if indeed it does not establish

their absolute identity. In the first place, magnetism is developed in the

soft iron of the galvanic magnet by the action of the current of electricity

from the battery, and secondly the armature, rendered magnetic by con-

tact with the poles of the magnet, induces in its turn currents of electricity

in the helix which surrounds it; we have thus as it were electricity converted

into magnetism and this magnetism converted again into electricity.

The Prior Search for Induction

The key to the whole undertaking is to be found in Henry’s last clause,

“magnetism converted again into electricity.” The phenomenon is now
called electromagnetic induction . It had been diligently sought by experi-

menters ever since Oersted in 1820 had demonstrated the reverse effect,

that is, the production of magnetic effects by a current of electricity. From
that time on, competition had been keen to discover the production of a

current of electricity by magnetism. It is somewhat amusing to observe

that, such is the influence of wishful thinking, no less a person than Fresnel,

in the height of the fever induced by Oersted’s discovery, announced that

he had decomposed water by current from a coil of wire within which a

magnet had been placed motionless. This had emboldened Ampere to re-

mark that he too had noticed something in the way of production of electric

currents from a magnet. But within a few weeks both statements were

withdrawn by their authors.

The search, however, went on. In 1822, Ampere actually observed the

effect of an induced current, but failed to recognize it.
1 In 1824 the same

mishap occurred, in a different form, to Arago. His observation (3*4:424)

that a pivoted bar magnet would be set in motion by an adjacent rotating

copper disk was moreover repeated by others without their recognizing

that the torque between the two was produced by the magnetic effects of

currents induced in the disk by its motion near the magnet. In 1826,

Ampere “muffed” the discovery of induction a second time by failing to

see the significance of his successful repetition of Arago’s experiment, with

a coil of wire carrying a current substituted for Arago’s magnet. Among
those who made several unsuccessful experiments during this time while

searching for electromagnetic induction was Michael Faraday. Faraday,

however, was ultimately successful. Indeed, except for Henry’s priority

of observation, Faraday’s work was even more significant than that of

Henry, in that he published first, and that, aided by equipment that was
far superior to anything Henry could command, his work was more thor-

ough and conclusive.

1 Philosophical Magazine (fifth series), 39, 534 (1895).
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Henry and Faraday

Faraday has been encountered before, both in Faraday’s laws of elec-

trolysis (page 435) and as having been the first to demonstrate the rotation

of a magnet about a wire and of a wire about a magnet (page 442). He
was associated with the Royal Institution in London, where he progressed

from a somewhat menial assistant’s position to that of the directorship.

Between his life and that of Henry there were several curious parallels.

Both were of humble and unpromising parentage. Both were apprenticed

to tradesmen, Henry to a watchmaker and Faraday to a bookbinder. Both

received their inspiration to a scientific career through casual reading dur-

ing their middle teens of a current book on science, Henry by Gregory’s

Lectures on Experimental Philosophy and Faraday by Marcet’s Conversations

on Chemistry. With both boys, the early death of the father left with each

a premature responsibility for the affairs of the family. Henry succeeded

in acquiring a better education than Faraday, but Faraday later enjoyed

the enormous advantage of continuous association with the most productive

scientists of the time. Both men had their attention drawn to electro-

magnetism and induction and worked assiduously at these fields. Either

could easily have made a fortune by exploiting his discoveries commer-
cially, but both resolutely refused to take out any patents, and died with-

out having laid aside even a modest competence. Both men developed a

clear prevision of electromagnetic radiation almost half a century before

the experiments of Hertz launched the age of radio on its course. And
finally, each spent the larger portion of his life as director of a scientific

institution, Faraday with the Royal Institution, established at London by
an American, and Henry with the Smithsonian Institution, established at

Washington, D.C., by an Englishman.

Faraday’s Rediscovery of Induction

Faraday must have shared the general “gold rush” of 1820 and 1821 to

acquire further information on the relations between magnetism and elec-

tricity. But the first actual record that he had embarked on the search

for induction occurs in an entry of 1822, a memorandum of things which
he expected to undertake. It read :

“ Convert magnetism into electricity.”

In 1824 he tried passing a bar magnet through a helix of wire, but could

detect no current. In 1825 he carried out some very elaborate experi-

ments of a similar kind, with every variation he could conceive, but still no
results. Later observations showed that what he had needed were stronger

magnets and more sensitive galvanometers. But at the time he concluded

that the effect which he sought did not exist. Apparently he thereupon

laid aside this search, not to resume it until 1831 and at last on August 29 of

that year found it in a form different from that in which he had looked for

it (40:/ :367). It was at that time, apparently, that he first realized that

induced currents were transient effects, existing only during the interval
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that the actuating magnetic field was changing. Once in possession of this

idea, Faraday ran rapidly up the ladder of discovery to a complete com-

prehension of the phenomena of induction, and within less than a month
was able to announce his discoveries. Though this was a full year after

Henry’s first observation of the same effect, Faraday immediately pub-

lished his findings and thereby es-

tablished formal priority.

Faraday’s first observation was
quite similar to Henry’s— the jerk

of the needle of a galvanometer con-

nected to one coil when current in

an adjacent coil was started or

stopped. He varied the experiment

by changing the distance between

the two coils instead of starting and
stopping the current, and secured

the same result. He accentuated

the effect by using cores of soft iron.

Then he thrust a bar magnet into

the coil connected to the galvano-

meter and withdrew it, and also

moved the coil, leaving the mag-
net stationary, in all cases pro-

ducing the same result (40:1:375).

Finally he substituted the mag-
netic field of the earth for that of

the magnet and was again success-

ful.

Faraday announced his findings to the Royal Institution in December
1831 and January 1832. He published them in April 1832.1 Seeing a
report of this publication the following June, Henry was stimulated into
doing some hasty additional work, having laid aside his researches with
the recurrence of his heavy teaching responsibilities the preceding Sep-
tember. He brought his previous experiments to a conclusion and secured
publication in July, acknowledging Faraday’s priority based on date of

publication and drawing a clear distinction between what he (Henry) had
done before reading Faraday’s article and what he had done afterward. So
thorough had been Faraday’s work, that there was little for Henry to add,
however, except at one point. This he developed in the last paragraph
almost as if it were an afterthought. It represented some work, however,
which had been done three years before, and which in some respects was
fully as significant as the inductive effects which he was describing in the
body of his paper. This new contribution will be described on page 514.

* Philosophical Transactions, 122
, 125 (1832).
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The Principle of the Transformer

Out of the principle of induction discovered by Henry and Faraday have

grown an almost inconceivable number of inventions and engineering

applications. One of them, the transformer
,
bears almost the same relation

to induction that the telegraph does to electromagnetism. It is the one

device, above all others, that has made the distribution of electric power

over distances of more than a mile or two economically possible. A com-

prehension of this method of solving the problem of electric distribution

may be facilitated by referring to a similar problem in the distribution of

natural gas. In domestic appliances, gas is used at very low pressure.

The cost of the large pipes which would be required to carry gas at low

pressure over considerable distances would be prohibitive. But by com-

pressing it, the greater density and higher speed of flow securable makes

it possible to pipe natural gas through small pipes for hundreds of miles.

Reducing-valves change its pressure at the consuming area to conventional

values, whereupon large pipes again become necessary.

An analogous situation exists in the distribution of electric power, with

voltage substituted for pressure, current for volume, and size of wires for

size of pipes. It is evident from the fact that electric power is the product

of voltage and current that a given power rate can be maintained by heavy

current at low voltage or by small current at correspondingly high voltage.

Application of Ohm’s law to the transmission lines for the two cases will

show that the power lost in transmission for the first case would be very

large unless the size of the wires were so great as to be prohibitive. But

with a “ step-up” transformer performing the part of the pump at the

power-house end of the line and a “step-down” transformer in lieu of the

reducing-valve at the consuming end, the conflicting requirements of low

voltage and great distance are reconciled in the electrical system somewhat
as the corresponding conflict of low pressure and distance is in the gas

system.

The Commercial Significance of the Transformer

But it is to be remembered that when induction is produced by the

action of the current in one coil on an adjacent coil, as in the transformer, it

is only while the current is increasing or decreasing in the former (the

“primary”) that current is induced in the latter (the “secondary”).

Hence, a transformer can function only during changes in value of the

primary current. It is almost solely for this reason that commercial

electric power takes the form of the so-called alternating current. As the

name implies, the direction of flow is not constant, but is constantly revers-

ing and re-reversing. The American standard frequency of such reversals

is sixty double reversals per second, termed sixty cycles. These reversals

are not abrupt, but gradual. The “wave form” most desired for alter-

nating current (though it is seldom completely realized) is the simple sine
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wave (Fig. 416). Thus at all times, except at the instants represented by

the crests and troughs, the current is changing, and hence can induce

currents in a secondary coil, which is part of a closed circuit. These in-

duced currents will also alternate, and with the same frequency as the

primary currents. If the secondary

coil contains a larger number of turns

of wire than the primary, the secon-

dary voltage will be the greater of the

two and a “step-up” transformer is

t? aa £. k t a the result. If the reverse is the case,

Current Wave Form a step-down 77
transformer is the re-

sult. The ratio of the voltage is very

nearly the ratio of the number of turns on the two windings. Usually the

two windings may be used interchangeably, either one as the primary,

the other one as the secondary.

The date when Henry first announced his observation of the inter-

convertibility of “ intensity ” and “quantity” was a momentous one.

The present-day prevailing use of alternating current, which makes possible

the full utilization of his observations, did not occur for nearly seventy-

five years. But the existence of great centers of electric power where pro-

duction in large units makes for economy, and of long cross country power
lines for distribution are none the less very directly attributable to that

almost casual observation. It would be impossible to estimate the in-

fluence which cheap and easily accessible electric power has had on western

culture. But the device which typifies it more than any other single

thing would be a modern transformer, the product of many minds in suc-

cession, beginning with Joseph Henry's conception of the interconverti-

bility of “intensity” and “quantity” by induction.

Henry*s Discovery of Self-Induction

It has been hinted (page 512) that Henry's paper of 1832 described a
major phenomenon that Faraday had not observed. This phenomenon
has since received the name of self-induction, to distinguish it from the

inductive effect described above which is somtimes called mutual induc-

tion. The difference between the two can be made clear by a closer in-

spection of self-induction.

The appropriateness of the adjective “mutual” to describe the fore-

going variety of induction will be evident in the observation that the form
in which both Henry and Faraday first identified it was the effect of a
change in current in one coil on another coil. It becomes natural to inquire,

“Will induction still perform its function if the two coils, instead of being

entirely separate, are simply different sections of the same coil? If so,

how will it make its effect evident?” Henry's observation provided an
affirmative answer to the first question and showed one way in which the

second might be answered.
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I may, however, mention one fact which I have not seen noticed in any
work, and which appears to me to belong to the same class of phenomena
as those before described; it is this; when a small battery is moderately

excited by diluted acid, and its poles which should be terminated by cups

of mercury, are connected by a copper wire not more than a foot in length,

no spark is perceived when the connection is either formed or broken;

but if a wire thirty or forty feet long be used instead of the short wire,

though no spark will be perceptible when the connection is made, yet

when it is broken by drawing one end of the wire from its cup of mercury,

a vivid spark is produced. . . . The effect appears somewhat increased by

coiling the wire into a helix.

In a later publication Henry confirmed and extended his observations as

follows: 1

A wire coiled into a helix gives a more vivid spark than the same wire

when uncoiled.

Large copper handles, soldered to the ends of a coil of ninety-six feet,

and these both grasped, one by each hand, a shock is felt at the elbows,

when the contact is broken in a battery of a single pair with one and a half

feet of zinc surface.

The effect produced by an electromagnet, in giving the shock, is due prin-

cipally to the coiling of the long wire which surrounds the soft iron.

This self-inductive effect Henry termed the “ extra current.” Though
his first published account of it was in 1832, the observations upon which

it was based were first made in August, 1829. Always somewhat remiss

about publication, Henry did not suffer as seriously from this lapse as he

did from delay in publishing his observations on mutual induction. This

time his publication was the first to be made, notwithstanding the delay.

Faraday did not observe self-induction until 1834, and published it the same

year, having somehow missed the significance of the final paragraph in

Henry’s 1832 paper.

The Contribution of H. F. E. Lenz

The independent and almost simultaneous discoveries by such widely

separated workers as Henry and Faraday constitute another example of

the oft-repeated observation that scientific developments are as much a

product of the time as of the man. In this case, the fact is made more
striking by the simultaneous work of a Russian scientist, H. F. E. Lenz

(1804-64), in the same field. Lenz was only a step behind the other two
men. He knew nothing of the work of Henry and had only a partial knowl-

edge of that of Faraday. Besides duplicating some of the work of each of

these men, he formulated a generalization which had eluded both of them
and which now goes by the name of Lenz’s law.

1 Journal of the Franklin Institute
, 75, 169 (1835).
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Fig. 417. A Modern Transformer
(Courtesy of General Electric Company.)

Lenz’s law has to do with the reaction of an induced current on the induc-

ing agency. It may be stated as follows:

A current brought into action by an induced electromotive force always

produces effects which oppose the inducing action.

This generalization is very useful. Except for the inductive opposition to

the rise of current, such rise would be instantaneous which is not the case

actually, though it is very rapid. Similarly for the stoppage of current,

which also requires a finite but very short time. In both cases the induced

electromotive force opposes whatever change is occurring, first the rise and
then the fall of current respectively. Some of the implications of this fact

are developed further in Chapter 43.
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This inductive opposition cuts down the mean value of any alternating

current which would otherwise flow and which would be determined by
Ohm’s law, resulting in what appears superficially to be a greater resistance

of the coil to alternating current than to direct. This apparent extra

resistance, termed reactance
,
will be discussed in a later chapter. A coil

designed to utilize it for the purpose of cutting down current flow is termed

a choke coil . The effectiveness of a choke coil will be greater as the fre-

quency is increased or as any circumstance obtains which increases the in-

ductance, such as the introduction of iron.

When a magnet is thrust into a coil, current induced in the coil will

oppose the insertion of the magnet, making it necessary to exert a greater

force than would otherwise be required to move it. This additional force

is hard to observe in this particular case, because it is small in comparison

with the forces involved in overcoming friction and inertia. But it is not

always small. It has its counterpart in the power necessary to drive a

generator of electricity. When such a generator is anywhere near its

maximum output, the added power required because of its inductive action

is usually many thousands of times the power necessary to drive it at

the same speed when not delivering current. Again, if the direction of the

current in the secondary of a transformer were observed it would be found

to have a net value opposite to that in the primary .

1 Thus the induced

current acts on the surroundings in opposition to the effects of the inducing

current. Hence the self-induction of the primary winding is reduced to

just the extent that current flows in the secondary. Consequently, in-

creasing the secondary current reduces the choke-coil effect of the primary

winding and allows the primary current to increase correspondingly.

This produces a result which to the uninitiated is often puzzling. As more
current is taken from the secondary of a transformer, the current sup-

plied to the primary increases in substantially the same proportion, though

the two are not electrically connected at all. This is one of the many phe-

nomena which, otherwise sometimes difficult to comprehend, is clarified by
Lenz’s law. Other examples will appear as the subject develops.

The Units of Self-Inductance and Mutual Inductance

The proclivity of inductance for opposing all changes of current reminds

one of a corresponding property of mass in a mechanical system. Between
the two there is in fact more than a passing resemblance, there is a close

parallel. This parallel may be made evident as follows. From Newton’s

second law of motion,

inertial reaction is proportional to rate of change of velocity

or

inertial reaction

rate of change of velocity
a constant for a given body termed its mass.

1 It is not opposite at every instant, the conditions varying with the design of the trans-

former and the degree of its load.
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Similarly in an inductive circuit,

induced voltage is proportional to rate of change of current

or

*n^ucec* vo
^.

age = a constant for a given circuit termed its inductance .

rate of change of current

Stating the two cases algebraically,

F
AV/At

= M and
E

AI/At
= L

f (1 )

L being the notation commonly assigned to self-inductance. In case the

numerical value of E and AI/At are the same, the value of L will be unity.

Hence, the unit of self-inductance is usually defined as

the inductance of a coil in which a rate of change of current of one ampere

per second induces an electromotive force of one volt .

This unit has, with entire appropriateness, been named the henry . The
henry, like the farad, is too large a unit for convenience in rating induct-

ances commonly encountered. The most common subdivision is the

millihenry
,
which, as the prefix indicates, is one thousandth of a henry.

The same unit, defined in the same way, applies to the inductive influence

of a coil on an adjacent but separate coil. In that case it is termed mutual

inductance instead of self-inductance. It is defined as the ratio of the induced

secondary e.m.f. E to the time rate of change of current AI/At in the primary

and is expressed, as before, by

M = TT7I--AI/At

If E is in volts, AI in amperes and At in seconds, M is in henrys.

Induced E.M,F,

Passage of a current through a coil produces a magnetic flux within the

coil. Faraday pictured the “lines of force” constituting this flux as form-

ing closed curves, emerging from the magnetic north end of the coil and re-

entering the south end. These closed “lines of force” are thus linked with

the windings of the coil. When the current changes, the flux changes in

proportion. This change of flux is associated with an induced e.m.f., the

magnitude of which is proportional to the rate of change of the flux. That
is,

Ecc
At

where E is the induced e.m.f. in volts, and A<f>/At is the rate of change of

the flux through the coil. In the M.K.S. system the proportionality factor

is unity and hence,
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Equation (3) applies only to a coil consisting of a single turn. If there are

two turns, the e.m.f. induced by a changing flux will obviously be doubled.

Hence for a coil of N turns

JS- (4)

Confining attention for the moment to a coil having a single turn, the

rate of change of the flux will be proportional to the rate of change of the

current producing it. That is,

A
,<f>

AI—— CC •

At At

The proportionality factor is simply the coefficient of self-induction L of the

coil. That is,

A<£ _ AT

At
~ L

At’
(5)

Combining equations (3) and (5), the e.m.f. induced in a coil by changing

the current flowing through it is

Ex
=

(6)

If a second coil were within the region occupied by the magnetic flux of the

first (the case of the transformer), an e.m.f. would also be induced in it by a

change of current in the first, the magnitude of the e.m.f. being given by a

relation completely analogous to equation (6) except that the self-induction

of the one coil is now replaced by the mutual induction between the two.

For such a case

E2 = M A0

At

'

(7)

Now equations (4) and (6) both express the magnitude of the induced

e.m.f. in a coil, one in terms of changing flux, the other in terms of changing

current. Equating the two,

(8)

If the flux changes from 0 to <f> as the current rises from 0 to I, then, at the

end

N<t> = LI. (9)

Equation (9) makes it possible to calculate L for any coil for which the

value of <t> can be determined for a given I. As was shown in Chapter 41,

this is possible for simple cases such as the long solenoid and the ring-form

coil, the flux in webers being simply the product of the area of the cross-

section of the coil and the flux density in webers/m2
.
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Questions for Self-Examination

1. Compare the contributions of Henry, Faraday and Lenz to early knowledge of

electromagnetic induction.

2. Tell the principle and the main function of the transformer.

3. State Lenz’s law and give some examples of its action.

4. Name and define the units of self-induction and of mutual induction.

5. Upon what does induced electromotive force depend?

Problems on Chapter 42

1. A current I amperes through a coil of self-inductance L henrys drops to zero in

t seconds. How many volts electromotive force E are induced?

I L t E M E
5 .1 .001 500 2. .03 150

4 .15 .001 600 .05 200

3 .2 .001 600 .07 210

2 .25 .001 500 .09 180

2. Another coil is placed at such a distance from that of the preceding problem that

the mutual inductance between the two is M henrys. What electromotive force E
is induced in it in volts?

3. A solenoid having N\ turns produces a magnetic flux of <j> webers when I amperes

flow through it. A secondary coil of N 2 turns is wound over it. What is the value

M of the mutual inductance and the value L of the self-inductance of the primary

in millihenrys?

Ni <t>
I Ar

, M L
1000 .0004 2 400 80 200

1200 .0003 3 500 50 120

1500 .0002 4 600 30 75

1800 .0001 5 700 14 36

4.

A solenoid of length l centimeters consisting of N turns of radius R centimeters

carries a current of / amperes. A secondary coil of n turns is wound upon the

middle part of the solenoid. What is the average electromotive force E in volts

in the secondary if the primary current falls to zero in t seconds? What is the

mutual inductance M in millihenrys? Assume that the total flux through the

primary cuts the secondary.

l N R I « t E M
200 2000 10 5. 1000 .001 200. 39.

100 1500 5 2. 750 .001 22. 11.

50 1000 3 .6 500 .001 2.1 3.6

25 500 1 ' .5 200 .001 .079 .16

5.

What electromotive force E in volts is generated in the primary of the preceding

problem by the cessation of the current? What is the value of the self-inductance

L in millihenrys?

l N R I t E L
200 2000 10 5. .001 390. 79.

100 1500 5 2. .001 44. 22.

50 1000 3 .6 .001 4.3 7.1

25 500 1 .5 .001 .20 .39



CHAPTER 43

Electric Transients

Rise and Fall of Currents

When a switch is turned on, thus completing a circuit, a certain time is

required for the current to approach its maximum steady value. The time

depends principally, though not exclusively, on inductance in the circuit.

Ordinarily it is a small fraction of a second, but it may be much longer if

the inductance is sufficiently large. The same condition holds when a cur-

rent is turned off. The current does not fall instantly to zero, but dies away
at a rate which is again partly dependent on the inductance in the circuit.

The value of a direct current in a circuit after a steady state has been
reached depends upon voltage and resistance in accordance with Ohm's
law, as was brought out in Chapter 39. Here, however, is another cir-

cumstance to be considered, namely, the temporary or transient value of a

current prior to the attainment of a steady state and immediately following

its cessation. The study of electric transients possesses a value all out of

proportion to the time required for them to function. An electric power
installation, designed to give “ steady state" service, may be seriously

damaged by transient electric surges accompanying a too abrupt stoppage

of service due to some mishap. Also the sciences of telephony and of radio

communication center in the control of transient electric phenomena.
A simple mechanical parallel will help to visualize the nature of electric

transients. If one should undertake to push a heavy truck, the “ steady

state" speed that could be attained would depend entirely on the friction

that had to be overcome. But the time necessary to attain that speed

would depend primarily on the mass of the truck. The time might be con-

siderable, even if the bearings were substantially frictionless. Also, once

under way, the time for the truck to come to a stop after the force ceased

Fig. 418, Henry's Diagram or the Rise and
Fall or a Current in an Inductive Circuit
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R L

Fig. 419. A Circuit with Inductance and Resistance

acting would again depend on the mass, now in relation to friction or other

forces which act while the truck is in motion. Somewhat comparable

statements can be made about the starting and stopping of electric cur-

rents.

Joseph Henry appears to have been the first to realize the existence of

electric transients. He made his first public statement about them in

1840 in a paper which he read before the American Philosophical Society,1

in which the diagram of Figure 418 appeared, representing the rise of cur-

rent at “make” and the dying away of current at “break.” He had ob-

served the effect in electric sparks produced in circuits containing induct-

ances studied by a mirror rotating ten times a second. He stated that the

time required for a current to rise and to subside seemed to depend on the

inductance. He estimated it to be of the order of a ten thousandth of a

second for the inductances with which he was dealing. He could hardly

have been using any of his heavy electromagnets in these experiments, or

the times which he observed would have been much greater.

Circuit Containing Inductance and Resistance

Suppose a battery with an e.m.f . of E volts were connected to a circuit of

resistance R ohms and self-inductance L henrys (Fig. 419). The final

steady state value I of the current would of course be given by Ohm’s law,

and after that value was attained, the entire e.m.f. of the battery would be

used to overcome the resistance; that is,

E - RI. (1)

But prior to the attainment of this steady state, part of the e.m.f. would

be diverted to setting the current in motion against the opposition provided

by the inductance. Represent the smaller (and variable) value of the cur-

rent during this interval by i. By equation (1) of the preceding chapter,

1 Tramactions of the American Philosophical Society, 8} 20, 34 (1843).



the voltage e2 required to produce a change of current Ai in a time At

through an inductance L is

Ai

e* = L-- (2 )

If now the remaining portion of the voltage available for producing the JR
drop be called ei, so that e\ + e2 = E ,

then during the transient stage

E - Ri+Lf,

•

The solution of this equation for the instantaneous value of the current i

at any time during the transient stage lies beyond the mathematical level

which students of general physics may be assumed to have attained.

Equation (3) is one of the simpler examples of what is termed a differential

equation. The solution is

i('-n
The appearance of a new term € (epsilon) need create no difficulty. It

is merely a tabular quantity, whose values will be found in the expo-

nential table on page xxiv of the Appendix. To illustrate the use of this

table, values of the current through an ordinary electric bell or buzzer of

resistance 5 ohms and inductance 1 millihenry will be computed for various

intervals following the application of 5 volts by pressing the button. The
value R/L is 5000. From the exponential table the following values of

, ~ c-x : i may be taken, denominating by x the values
1 x e i

'

0* 0.1. 0. 0f the fraction — for the various values of t .

.00001 .05 .95 .05 L

.00005 .25 .78 .22 The steady state value of the current, given by

.00010 .50 .61 .39 Ohm’s law, is of course 1 ampere. Hence, with-

.00020 1.00 .37 .63 in less than y<nro °f a second after the button is

.00030 1.50 .22 .78 pressed, the current rises to within 2 per cent of

.00050 2.50 .08 .92
jts ultimate maximum. Figure 420 represents

.00080 . . .9 the rise of current as calculated above. If now
the voltage impressed on the bell is removed, the resistance and inductance

of the circuit remaining unchanged, equation (3) is replaced by

0 = Ri -f" L

the solution of which may be shown to be

Rt

i = It~

in which I is the value of the current at the instant that it begins to sub-

side, namely, the steady state value. The values of i may be calculated
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t t

Fig. 420 . Rise of Current Fig. 421 . Fall of Current
in an Inductive Circuit in an Inductive Circuit

for various values of t as before. The results, represented graphically, are

indicated in Figure 421. Figures 420 and 421 may be seen to follow the

form of rising and subsiding currents indicated by Henry in Figure 418.

In an actual bell system the fall of current would be much more rapid

than the preceding calculation indicates. The reason is that in the act of

releasing the button a very high resistance (an air gap) is introduced into

the circuit which makes the values of x in the calculation much larger than

those assumed.

Circuit Containing Capacitance and Resistance

Another simple instance of electric transients occurs in charging and dis-

charging condensers. Suppose a battery of e.m.f. E volts were connected

through a resistance R ohms to a condenser of capacitance C farads (Fig.

422). The current-time equation in this case is

(7 )

If E and R are given the values 5 volts and 5 ohms respectively as before

and C is taken as 2 microfarads, the capacitance of a representative tele-

Fig. 422. Circuit with Capacitance and Resistance
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Fig. 423 . Charging Curve of Fig. 424 . Discharge Curve of
a Condenser a Condenser

phone condenser, the exponential table will yield values of the current in-

dicated in Figure 423. The current is a maximum at the beginning before

any charge has accumulated on the condenser and hence before any voltage

is built up in it to oppose the e.m.f. of the battery. It approaches zero as

the voltage of the condenser approaches the e.m.f. of the battery. The
discharge curve of the condenser will be the same, except that the currents

arc taken as negative to indicate flow in the opposite direction. The dis-

charge would be effected by removing the battery and connecting together

the terminals previously leading to it.

If, instead of considering current involved in the charge and discharge of

a condenser, attention be given to the quantity of electricity in the con-

denser, the charge curve is of the same form as Figure 420 and the dis-

charge curve has the same form as Figure 421. Thus the quantity-time

curve for a condenser first charged and then immediately discharged would

have the same general form as Figure 418, Henry’s curve for rise and fall

of current in an inductive circuit.

Circuit Containing Inductance and Capacitance

When inductance and capacitance arc both present in a circuit, a new
phenomenon appears. It takes the form of electric oscillations, comparable

to mechanical oscillations under the joint action of a spring (to which a

condenser is comparable) and a suspended mass (to which an inductance

is comparable). Joseph Henry was apparently the first to identify this

phenomenon also. It was an observation deserving to rank with his dis-

covery of self-induction ten years earlier, if it is not, in fact, of even greater

importance. It was the seed from which the whole science of radio trans-

mission and reception ultimately grew. Earlier observers had indicated

considerable perplexity about the direction of the current when a con-

denser was discharging. Even though known to be charged in the same

direction, a condenser in discharging seemed to produce a current some-

times in one direction, sometimes in the other. The direction of the current

was being inferred by observing the magnetic polarity produced in a steel
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needle when current from the condenser was sent through a coil wound
around the needle.

Also some fifty years earlier, Wollaston, the man who first observed the

Fraunhofer lines in the solar spectrum, had been similarly perplexed by
observing that, when he tried to decompose water by electric discharge

from Leyden jars, hydrogen and oxygen appeared at both electrodes, in-

stead of hydrogen at one and oxygen at the other as in the case of “gal-

vanic” current .

1 The anomaly, so long unexplained, Henry 2 attributed to

a quality of condenser discharges which had never before been recognized.

He said:

The discharge, whatever may be its nature, is not correctly represented by
the single transfer of an imponderable fluid from one side of the [Leyden]

jar to the other. The phenomena require us to admit the existence of a

principal discharge in one direction
,
and then several reflex actions backward

and forward,
each more feeble than the preceding

,
until the equilibrium is

obtained.

Henry’s theory of the nature of condenser discharges was never seriously

questioned, though it left much to be desired. It was apparently mere

inference, for he presented no experimental evidence not already known.

Also, it called for mathematical development, though perhaps this was too

much to expect, electrical science still being largely in the descriptive stage.

Only eleven years elapsed, however, before the required mathematical

treatment was forthcoming. It was furnished by Lord Kelvin in a classi-

cal paper entitled “On Transient Electric Currents.” 3

Kelvin’s paper showed that a condenser discharge would be oscillatory

only if the circuit contained an inductance. Thus the very coil, which

Henry had used to magnetize needles in studying condenser discharges,

had itself rendered the discharge oscillatory.

Kelvin also found what determined the number of oscillations per sec-

ond which the system would produce (the frequency)

.

He discovered it to

depend primarily upon the inductance and capacitance in the circuit

according to the relation

/=
i

2tVIC (8)

One of Kelvin’s comments is worthy of special notice, in view of subse-

quent occurrences. He expressed the opinion that an oscillatory discharge

might be produced artificially from a Leyden phial or other conductor

[sparking] across a very small space of air, and through a conductor of very

large electrodynamic capacity 4 and small resistance. Should it be im-

1 Quoted by Helmholtz, in Philosophical Magazine (4), 5, 401 (1853).

* Proceedings, American Philosophical Society
, 2, 193 (1842).

8 Philosophical Magazine (4), 5, 393 (1853).

4 “Electrodynamic capacity ” was the current term for inductance
, the latter term not having

yet come into use.
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Time in

micro-seconds

Fig. 425. Two Instances of Electrical Oscillation in
Circuits of Different Resistance

possible on account of the too great rapidity of the successive flashes, for

the unaided eye to distinguish them, Wheatstone’s method of a revolving

mirror might be employed and might show the spark as several points or

short lines of light separated by dark intervals.

This experiment suggested by Kelvin was employed six years later by
Fedderson 1 in a series of brilliant experiments. He identified in his revolv-

ing mirror the oscillatory nature of the spark and the circumstances under

which oscillations degenerated into a single discharging surge; and he

measured the frequency when oscillations were occurring.

Circuit Containing Inductance, Capacitance, and Resistance

If a resistance be added to the inductance and capacitance, the oscilla-

tions do not necessarily cease unless the resistance be made too large. In

the complete absence of resistance or other agent causing progressive loss

of energy from the oscillating circuit, electric oscillations once set up would,

of course, continue undiminished indefinitely as would an oscillating mass

on the end of a spring in the absence of friction or air resistance. Practi-

cally such loss of energy can never be avoided, and resistance is usually

the principal occasion for it. Consequently, even though oscillations may
continue in the presence of resistance, their amplitude falls off steadily, or is

damped . To continue the above simile, if a mass hung on the end of a

1 Poggendorf’s Annalen
,
103

, 69 (1859).
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Time in

micro* seconds

Fig. 426. Two Instances of Con-
denser Discharge in Circuits Having
Greater than the Critical Damping
Resistance

spring were immersed in heavy oil, its oscillations would be damped more

rapidly than in a light liquid or in air. If the oil were extremely viscous—
as molasses is— no oscillations would occur at all. The corresponding

electrical case was identified in Kel-

vin’s theory, the critical damping re-

sistance being the minimum resist-

ance required to inhibit all oscilla-

tion. Two representative cases of

electrical oscillation are represented

graphically in Figure 425. Types of

“ oscillation ” that result if the resist-

ance is made equal to and greater

than the critical damping value are

shown in Figure 426.

It was recognized very early, how-

ever, that resistance was not the only

agency that acted to dissipate the energy of an oscillating circuit. Energy

was also dissipated from such a circuit by radiation into surrounding space,

much as a candle sends out energy in the form of light as well as by the heat

it gives its surroundings. In 1864, J. Clerk Maxwell 1 developed the conse-

quences of this concept in what was probably the most momentous mathe-

matical discovery in the history of electrical science. This paper laid the

foundation for the whole science of radio. Unfortunately it was too far

ahead of its time to be comprehended. It was not until twenty years later

that Heinrich Hertz, of Karlsruhe, Germany, produced and was able to

receive at a distance, the electromagnetic waves, which Maxwell had pre-

dicted. The series of engineering developments from that point on, be-

ginning with Branley, Fleming, and Marconi and leading to radio as we

know it now, is common knowledge.

The series of events which Henry initiated in 1842 furnishes an excellent

illustration of the interplay of experiment and mathematical theory in

physics. Beginning with Henry’s experiments, the major successive devel-

opments were alternately experimental and theoretical, one after the other,

until the foundation was laid for perhaps the greatest engineering accom-

plishment of all time. Henry, Kelvin, Fedderson, Maxwell, Hertz; experi-

ment, theory, experiment, theory, experiment. Not a single one of those

stages could have been realized without the sequence that went before it.

Even Henry’s work was an outgrowth of his own earlier investigations and

those of others. As a means of securing an insight into the scientific

method, one can do no better than to consider this example. The techno-

logical sequels, which form the subject matter of the next four chapters,

are little more than top foliage of this primary process, the taproot of our

material civilization.

1 Philosophical Transactions
,
155

, 419 (1864).
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Questions for Self-Examination

1. Describe the behavior of currents when turned on and off. What circumstances

determine how fast they rise and fall?

2. Does Ohm’s law apply while a current is changing? Explain.

3. Describe what happens to current and quantity of electricity in a condenser as a

circuit containing resistance and capacitance is turned on and off.

4. A circuit contains a condenser, an inductance, and a resistance connected in series.

The condenser is charged. What are the various possibilities as to what may
ensue?

5. What happens in the circuit of the preceding question when inductance and capaci-

tance are made larger in turn?

Problems on Chapter 43

1. A condenser of capacity 1 microfarad is charged to a potential difference of 100

volts. Its two terminals are then connected by a resistance of 10® ohms. The
voltage across the condenser is given as a function of the time by the equation

i_

c = Ee CR where e is the base of natural logarithms. Find the voltage e across

the plates of the condenser for the following values of t in seconds. (See expo-

nential table in Appendix.)

t 0 .2 .4 .7 1. 2. 4.

v 100 82 67 50 37 13
‘

2

2. Repeat problem 1 for R = 10 B ohms.

t
!

0 .1 .2 .3 .4 .5

®
i

100. 37. 13. 5. 1.8 .7

3. Plot values of v as ordinates against values of t as abscissas for problems 1 and 2.

4. A condenser of capacity C microfarads is charged to a potential difference of E
volts. Its two terminals are then connected by a resistance of R ohms. What
quantity q in coulombs remains in the condenser after the lapse of t seconds?

_ t

the equation q — CEe CR
.

C E R t

4. 1 100 10® 0

1 100 10“ .25

1 100 10® .75

1 100 10® 1.5

<1

1 .00 - 10“4

.78- 10"4

.47 • 10~4

.22 • 10“4

C E
5. 1 100

1 100

1 100

1 100

R t

10® .25

10® .75

10® 1.5

10® 3.0

Q
.22 - 10~4

.53 * 10~4

.78 -10-4

.95 • 10“4

Use

5. A condenser of capacity C microfarads, initially uncharged, is suddenly connected

to a potential difference of E volts through a resistance of R ohms. What is the

quantity q in coulombs in the condenser at a time t seconds after the connection is

made? Use the equation q * CE (1 — e CR
).

6. A condenser of capacity C microfarads is charged to a certain potential difference

and immediately discharged through an undamped ballistic galvanometer, pro-

ducing a deflection D. Its two terminals are then connected to the core and sheath

respectively of a cable under test, and charged to the same potential difference

as before. After t seconds it is discharged through the same galvanometer, pro-
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ducing a deflection d. What is the insulation resistance R of the cable? Use the
t

equation Q = CEt CR where Q represents the quantity in coulombs remaining in

a condenser of capacity C (in farads) originally charged to a potential difference

of E volts, after having discharged through a resistance of R ohms for t seconds.

c D / d R L R I t i

1 20 30 3 16. -106
7. 1 20 1 0 1.00

5 20 30 4 3.7* 106
1 20 1 .01 .82

10 20 30 7 2.9* 106 1 20 1 .03 .55

20 20 30 10 2.2 106 1 20 1 .10 .14

7. A coil of inductance L henrys and resistance R ohms carries a current of I amperes.

The potential difference which is setting up this current is suddenly removed.

What is the current i in amperes at a time t seconds after the removal?

8. A coil of inductance L henrys and resistance R ohms is suddenly connected to a
potential difference of E volts. What is the current i in amperes after the lapse

of a time t seconds following the establishing of the connection?

L R E t i CL N
8. 1 20 20 .01 .18 9. 5 .1 230

1 20 20 .03 .45 .5 .01 2,300

1 20 20 .10 .86 .05 .001 23,000

1 20 20 .25 .99 .0005 .0001 710,000

9. An oscillating circuit of negligible resistance contains C microfarad of capacity and
L henrys of inductance. What is the natural frequency N of the circuit in double
oscillations per second?



CHAPTER 44

Dynamos

Electrical Power as a Servant of Man

Comparisons are sometimes made between Greek culture and modern
culture, in which a parallel is drawn between slave labor and modern
machinery. It is occasionally said that the average American has at his

disposal the mechanical equivalent of forty or fifty or sixty slaves, the

number depending on the inclinations of the statistician making the state-

ment. The limitations on the personal services that can be performed by
mechanical and electric appliances remove much of the validity of this

comparison, but, strained though the metaphor is, there is in it real

material for thought.

The one circumstance above all others that lends a certain amount of

validity to the parallel is the extended use of electric appliances, especially

those involving the use of electric motors. All such devices, whether light-

ing, heating, or power-producing, consume electric energy. The consump-

tion is usually far greater than batteries can supply, a condition which has

occasioned the development of power-driven machines to produce the

required electric energy; these machines are called generators . Electric

motors and generators are identical in principle, the former transforming

electrical into mechanical power and the latter performing the reverse proc-

ess, mechanical power into electrical. Though in practice there are usually

certain minor differences in construction between motors and generators,

the two are customarily treated together. Two generations ago when
motors and generators were evolving into something like their present

forms, the generic name for them all was dynamo-electric machines
,
later

contracted into dynamos .

The Birth of the Dynamo

The feature which all dynamos have in common, regardless of whether

they are motors or generators, and regardless of type, is continuous rela-

tive rotation of conductors (usually coils of wire) and the magnetic fields.

Thus when Michael Faraday in 1821 caused a magnet to rotate around a

wire carrying a current as well as the same operation vice versa (40:/ :50)

(Fig. 357) he thereby devised an electric motor. It was rudimentary but

it was, by a surprisingly wide margin, the first. Similarly when ten years
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later he rotated a copper disk between the poles of an electromagnet (Fig.

427) and observed the resulting current under various conditions he thereby

devised the first rudimentary generator (40:7 :381).

But Faraday, as has already been

noted, took no interest in developing

his discoveries into utilitarian forms.

He was a scientist, not an inventor.

He once remarked a propos of

these very discoveries (123 :248)

:

I have rather, however, been de-

sirous of discovering new facts

and new relations dependent on

magneto-electric induction than

of exalting the force of those al-

ready obtained; being assured

that the latter would find their

full development hereafter.

Faraday’s confidence that applica-

tions “would find their full develop-

ment hereafter” was so fully justified that the expected developments have

constituted the larger part of the age of electricity. The developments were

especially prompt in the case of the electric motor, which sprang almost

full fledged into something like its modern form in 1834. The generator,

curiously enough, in spite of its basic identity with the motor, and in

spite of the fact that the motor could not realize its full potentiality while

relying upon the expensive and inconvenient battery as the source of

electric power, did not reach a form that was measurably complete, even

in principle, until nearly twenty years after the perfection of the motor.

Faraday’s rotating magnet and rotating wire of 1821 were mere toys in

size and not even that in power, but they were immensely significant as

the first embodiment of the transformation of electrical into mechanical

energy. They were followed in 1823 by the stellate wheel of Peter Barlow,

in reality simply Faraday’s disk generator working as a motor. Nothing
further occurred until 1831 when in quick succession three more toy motors
were devised by an American, an Italian, and an Englishman respectively.

But in 1834 two models were made almost simultaneously in the United
States and in Russia which contained for the first time all the elements

which were to make the electric motor an industrial tool instead of a
mere toy. Moreover, both inventors realized their objective of construct-

ing really powerful motors, as standards of power went in those days.

Thomas Davenport and the Electric Motor

In December of 1833, an enterprising young blacksmith of Forestdale,

Vermont, named Thomas Davenport (1802-51), heard of a remarkable
magnet used to extract iron from pulverized ore in the iron works at Crown

LA
1

Fig. 427. Faraday’s Sketch or His
Disk-Type Generator oe 1831

(From Faraday's Diary, published by the Royal
Institution of Great Britain. G. Bell & Sons, Ltd.,

publishers.)
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Point, New York, twenty miles away. Among its other reputed capabili-

ties was that of suspending a hundred-and-fifty-pound anvil. The “mag-
net” was, of course, an electromagnet. It had been furnished by Joseph

Henry, who was destined to give Davenport some direct aid in developing

the electric motor. Davenport went to Crown Point to see this extraordi-

nary device, intending also to purchase some iron for his shop while there.

When the electromagnet was exhibited, he asked permission to make some

experiments with it, a request which was denied. Thereupon he offered to

buy the magnet outright, and a price being agreed upon, he laid down the

money with which he had expected to purchase iron. This act was pro-

phetic of his later experiences, for he was destined to reduce his family to

destitution in his struggles to perfect and market the electric motor.

Let him tell in his own words of his first experience with the new device: 1

As soon as I became the possessor of the magnet, I immersed the cups

in the solution and then severed one of the conductors, so as to break the

circuit of galvanism. Of course, I found the magnetism wholly destroyed,

but on connecting the wires together with my fingers, the magnet became

again fully charged. However rapidly the connection and separation of

the conductors were made, I found the charging and discharging of the

magnet to correspond, and I observed that the magnet produced a hundred-

fold more power than was required to make and break the connection.

Like a flash of lightning the thought occurred to me, that here was an

available power whifch was within the reach of man. If three pounds of

iron and copper would suspend in the air 150 pounds, what would 300

pounds suspend? “In a few years,” I said to some gentlemen present,

“steam-boats will be propelled by this power.”

Davenport’s prediction was destined to be fulfilled sooner than he ex-

pected, but not by him. He set to work immediately to devise a motor,

and within a few months was successful. He says:

In July, 1834, 1 succeeded in moving a wheel about seven inches in diameter

at the rate of thirty revolutions per minute. It had four electromagnets,

two of which were upon the wheel and two were stationary and placed

near the periphery of the revolving wheel. The north poles of the revolving

magnets attracted the south poles of the stationary ones with sufficient

force to move the wheel upon which the magnets revolved, until the poles

of both the stationary and revolving magnets became parallel with each

other. At this point, the conducting wires from the battery changed their

position by the motion of the shaft; the polarity of the stationary magnets

was reversed, and being now north poles, repelled the poles of the revolving

magnets that they before attracted, thus producing a constant revolution

of the wheel.

Unfortunately, no model or diagram of this motor has survived, but a later

model is shown in Figure 429. The subsequent experiences of Davenport

were the disheartening ones that have beset so many inventors who
1 Electrical Engineer, 11, 4 (1891).
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Fig. 428. The Motor of Davenport’s First Patent, February 25, 1837

(United States National Museum.)

lacked the financial resources to develop and market their own inventions.

His first patent application and the accompanying model were destroyed

in the disastrous Patent Office fire of 1836. A new application was pre-

pared and filed and was granted in 1837. The accompanying model,

now in the Smithsonian Institution,

is illustrated in Figure 428. In that

same year he constructed and used

motors of a third of a horsepower.

In 1839 one of his motors weighing

one hundred pounds, horsepower un-

known, was driving a large printing

Fig. 429. The Davenport Motor Pfess in New York City . But he and

op 1835 his supporters were being victimized

by unscrupulous promoters and ulti-

mately his financial liabilities overtook his engineering resources, com-
pelling him to retire from the inventive field.

Jacobi and the Electric Motor

During the interval covering Davenport’s activities a Russian physicist
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named Moritz Hermann von Jacobi (1801-74), a brother of the famous

mathematician Karl G. J. Jacobi, was independently pursuing almost ex-

actly the same path. So nearly simultaneously were these efforts timed

that it is quite impossible to establish priority of either over the other in

any conclusive or significant degree. Jacobi’s work grew out of Faraday’s

discoveries in somewhat the same way that Davenport’s grew out of

Henry’s. It was in December of 1834 that Jacobi reported to the French

Academy of Sciences his experiments with electric motors which he stated

had begun in the preceding May. He measured the power of his first model

at about -g^th horsepower. But in 1838, with another motor almost

identical except in size, he succeeded in driving a boat along the river

Neva in St. Petersburg (now Leningrad), the first fulfillment of Daven-
port’s prophecy of five years before.

Many years elapsed before the motors of Davenport and of Jacobi were

improved upon. Slow development was partly a consequence of the ex-

pense of operation, the only source of power being batteries. But it was
also partly due to the fact that both men had so unerringly identified the

basic principles of design of electric motors that there was little left for

the next generation to do except to make improvements in details.

The Anatomy of the Direct-Current Motor

Several features contributed to the basic completeness of these first

effective electric motors. One was the use of rotatory motion instead of

the oscillatory motion produced in several of the early “toy” models, the

latter being suggested no doubt by the reciprocating steam engine. An-
other was the use of electromagnets for both the fixed and moving parts,

which was peculiar to these models and made it possible to produce mag-
netic forces which were far greater than when one set consisted of either

permanent magnets or merely soft iron armatures. A third feature was
the introduction of the commutator to change periodically the polarity of

one of the two sets of electromagnets, thus taking advantage of magnetic

repulsions as well as attractions in a way which none of the numerous prior

motors had done. Both Davenport and Jacobi gave particular emphasis
to this feature in their descriptions.

With both the field magnets and the armature (as the rotating part of the

direct-current motor came to be called) supplied with current from the

same source, the question of whether to connect them in series or in parallel

with each other arose. The early motors were all series-wound, apparently

for no very good reason. In later years, beginning about 1880, the shunt-

wound motor (the parallel-connected type) came into use. Today both
are common. The series type is used on street-cars and wherever heavy
torque is frequently required, as in starting and in hill-climbing. Shunt-

wound motors are however somewhat the more common, as their speed

is more readily controlled and is steadier under fluctuating loads.
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The Phenomenon of Counter-Electromotive Force

When a direct-current motor is in operation, it is functioning not only

as a motor but as a generator also. The motion of the wires of the arma-

ture across the magnetic field induces an electromotive force which, by
Lenz’s law, will oppose the current which is being forced through the arma-

ture from the outside source of electrical energy. This internal opposing

voltage is termed the counter-electromotive force. Any diminution in speed

of the motor, such as would result when a street-car encounters a hill,

reduces the counter-electromotive force, diminishing the opposition to the

flow of current through the armature, thus permitting a greater current to

flow. If the field windings are in series with the armature, the increased

current produces a stronger magnetic field, thus increasing still further the

torque which the motor exerts. Thus the effect which the automobile

driver secures by shifting gears is automatically secured in the series-

wound motor of a street-car through the agency of counter-electromotive

force.

Another peculiarity of the counter-electromotive force is taken ad-

vantage of to facilitate control of the speed in shunt-wound motors. Con-

trary to one’s natural preconception, increase of speed is secured by de-

creasing the strength of the magnetic field, and vice versa. This peculiar

circumstance comes about through the fact that weakening the field

decreases the counter-electromotive force, thus permitting more current

to flow through the armature. It is simpler to interpose a resistance in

the field circuit of a shunt-wound motor than in the main circuit, because

the currents are far smaller in the former. So the shunt-wound motor

lends itself more readily to speed control than does the series-wound, albeit

in what seems at first to be a rather back-handed manner.

Jacobi comprehended fully the central r61e played by counter-electro-

motive force in the operation of motors, calling it the “electromotive force

of reaction.” The importance of the concept can scarcely be overempha-

sized, but it is remarkable that Jacobi should have caught the significance

of it as early as he did. There is no evidence that Davenport was equally

discerning.

To Jacobi also is due the somewhat less impressive first recognition that

motors and generators are in principle structurally identical. The lateness

of this discovery (1850) seems curious today, especially in view of the

identity of Barlow’s wheel of 1823 with Faraday’s disk of 1831. But, as

will be seen, the early designers of generators struggled through the dis-

coveries of commutator, armature windings, and shunt and series field

connections for generators entirely independently of the corresponding

previous discoveries in connection with motors. Only when the process

was nearly completed did it dawn on anyone that motors and generators

were completely interconvertible.
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The Industrial function of the Electric Motor

It had been the idea of Davenport and Jacobi that the electric motor
would compete with the steam engine as a “prime mover,” that is, as a

device for the direct conversion of heat or chemical energy into work. They
envisioned their motors as consuming zinc and other chemicals making up
batteries in the same way that steam plants consumed wood and coal, and
expected their method of producing commercial power to be the more
economical of the two. This expectation was not borne out. The result

was that commercial development of the electric motor had to await the

discovery of an economical source of supply of electricity. This ultimately

came in the form of the electric generator, a device which itself required to

be driven by a prime mover. Thus combinations of motors and generators,

together with the circuits connecting them, became merely very convenient

and versatile channels for distributing the power produced by steam en-

gines and water wheels. Instead of competing with the steam engine, the

electric motor facilitated the easy application of the engine’s power and

thus tremendously stimulated the growth of the machine age. This is

perhaps illustrative of the basic misconception which underlies much of

the apprehension with which “technological unemployment” is often re-

garded. While machines often do supplant particular labor groups, they

have almost invariably created new demands which have multiplied the

general market for labor by hundreds and thousands-fold.

The Development of the Generator

In a certain sense, the first electric generator consisted of the coil and

bar magnet with which Faraday in 1831 produced a surge of induced elec-

tricity by mechanical energy (page 512). Like his first electric motor,

however, it was far too rudimentary to entitle him to any credit except

for the bare discovery of the principle. Even his disk generator (Fig.

427), the reverse of Barlow’s wheel of eight years earlier, and a wire rec-

tangle in which he later produced currents by rotation in merely the

earth’s magnetic field fell short of being real generators, largely because

Faraday characteristically declined to interest himself in designing a com-

mercial machine. Anticipatory of a variety of machine which had a con-

siderable vogue for a time was the “magneto” of Hippolyte Pixii of France,

made in 1832, and that of Joseph Saxton, exhibited in 1833 to the two-year-

old British Association for the Advancement of Science. In each case

the magnetic field was furnished by permanent magnets. In Pixii’s ma-

chine the magnets rotated and the armature was fixed, whereas in Saxton’s

the opposite was the case.

One difficulty with all the early machines was that they produced alter-

nating current which, unlike the situation today, was almost useless. A
device for converting this alternating to direct current, now termed the

commutator
,
was first constructed in 1834 by William Sturgeon, who called
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it by the descriptive though cumbersome name of “unio-directive dis-

charger.” 1 This “ commutated” the current as illustrated in Figure 430,

by periodically re-reversing the current by means of a rotating contact in

such a way as to maintain the succes-

sive surges in one direction. In 1841

the surges, still objectionable, even

though rectified, were smoothed out

by a multipolar armature devised by
Wheatstone of “ bridge” and tele-

graph fame. This produced contin-

uous direct current, substantially as

from a battery, but generators were

still very inefficient. It was not until

1845 that the superiority of electro-

magnets over permanent magnets for

the production of the required field became generally recognized in spite

of the fact that electromagnets had displaced permanent magnets in

motors more than ten years before. Notwithstanding this, the famous
“Alliance” generator, using 240 permanent magnets, was in common use

as a source of electric current in French lighthouses in the late sixties.

Types of Field Winding

The advent of electromagnets brought a new problem to designers of

electric generators, that of the source of current to energize the field mag-
1 Philosophical Magazine

, 7, 230 (1835).

Fig. 430. Alternating and Com-
mutated Current

Fig. 431. The Alliance Generator op the Late Sixties
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Fig. 432. Types of Field Winding and Their Performance

nets. At first batteries were used. The possibility of utilizing a part of

the output of the generator to energize its owp magnets evidently did not

occur to anyone until 1851 (122:2:10), and nearly twenty years more

elapsed before self-excitation became a common feature in the design of

direct-current generators.1 Self-excitation, in turn, raised a problem: how
to connect the field coils to the armature. The simplest way, in series, had

the grave disadvantage that unless considerable current were flowing, the

magnetization of the field would be weak and the voltage too low. The
immediate alternative, connecting the field coil directly across the terminals

of the machine, had the opposite disadvantage that the voltage would be

a maximum when no current was being delivered away from the machine

and would become steadily less as the external current increased, in con-

sequence of the operation of Lenz’s law. Thus, though the series- and
shunt-wound motor seemed each to have its place, neither the series- nor

shunt-wound generator was acceptable as a sufficiently constant source of

electric power.

The problem was finally solved, though not completely until after 1880,

by combining shunt and series windings on the field coils in such propor-

tions that the fall in voltage characteristic of the shunt winding was
measurably compensated by a corresponding rise due to the increasing

current in the series winding, thus keeping the net voltage substantially

uniform over the full range of operation. Such a generator was said to

possess compound-wound field magnets.

Induced E.M.F.

The working principle of all generators consists of moving a conductor

across a magnetic field. The induction of electromotive forces by relative

motion of conductors and magnetic fields has already been encountered

1 Transactions of the American Institute of Electric Engineers
,
JO, 166 (1893).
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in Chapter 42, though the relative motion was produced in a different way.

In this case also, however, the e.m.f. induced is proportional to the rate

at which a magnetic flux is cut by a conductor. Algebraically

£ = A<j>

At

(1 )

which is simply a repetition of equation (3) of Chapter 42, E being the

induced e.m.f. in volts and A<t>/At the rate at which a magnetic flux is

cut by a moving conductor.

A particularly simple case of induced e.m.f. is illustrated in Figure 433.

A wire CD perpendicular to a magnetic field of flux density B webers/m2

is moved in the direction indicated by the arrow. If the width of the field

spanned by the wire is l meters and the wire moves v meters per second,

the area of the magnetic field across which it sweeps in a second is Iv

and the rate at which magnetic flux is cut by the wire in consequence is

(2)

Therefore, the e.m.f. in volts induced in the moving wire during this

interval is, by substitution of equation (2) in equation (1),

E — Blv. (3)

N

-VvWA-

This e.m.f. may be communicated to other points through the horizontal

wires on which CD slides and, provided there is adequate electrical con-

tact, a current can flow, the magnitude

of which will be determined in accord-

ance with Ohm's law by the total re-

sistance in the circuit.

Equation (3) is the basic equation of

Motion of wire the generator. Though no actual gen-

erator is ever like the one indicated by
Figure 433, all generators embody that

principle, and equation (3) may be made
to describe their operation by proper

interpretation in light of the details of

design of the particular generator to

which it is applied.

Fig. 433 . Induction by Motion of
a Straight Wire Across a Mag-
netic Field

Alternating Current

Up to this time the entire objective in the design of generators had been
to produce steady direct currents with greater power and with less expense

than could be expected from batteries. No sooner was this problem solved

than another appeared which seemed to render of little avail all previous

progress in generator design* It arose out of the fact, not previously

realized, that efficient distribution of electric power over wide areas called
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for alternating current instead of direct. The reason for this has already

been pointed out (pages 513 ff.). It now became necessary to develop

alternating-current generators to the degree of perfection already reached

by direct current. The subject is too

technical to justify the presentation

here of any save a few elementary

points.

The simple generator, prior to Stur-

geon’s introduction of the commuta-
tor, generated alternating current.

But more was involved than simply

perfecting and enlarging this device.

A simple alternating current was not

satisfactory in the operation of A.C.

motors, roughly for the same reason

that a single-cylinder engine is not

satisfactory for an automobile. Two
separate alternating currents, out of

step by 90°, or better three currents

mutually out of step by 120° were bet-

ter. Such double- and triple-barreled

sources of alternating currents are

termed iwo-phase and three-phase cur-

rents respectively. Practically, two-

Fig. 434 . Single-Phase, Two-
Phase, and Three-Phase

Currents

phase alternating current is seldom encountered any more, its distribu-

tion being less efficient than that of three-phase currents for reasons which
will not be developed here.

But since two-phase circuits are simpler than three-phase circuits, the

former can be used to illustrate the principles common to both. In this

way the armature of a two-phase generator is represented in Figure 435.

Fig. 435 . The Armature of a Two-Phase Generator
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It is supposed to be rotating in a magnetic field produced by a pair of

electromagnets not shown. 1 When the current has its maximum value in

phase A, it will be zero in phase B and vice versa.

A separate source of direct current is necessary to energize the field

magnets of an A.C. generator, since it is not possible, as in D.C. genera-

tors, to utilize the output of a machine to energize its own magnets. No
better way has been devised than to provide a separate D.C. generator for

each A.C. machine. The separate D.C. generator is termed an exciter and

is usually built into the A.C. machine as an integral part of its structure.

The Relative Merits of Alternating and Direct Current

All of the great power plants of the world now generate alternating

current exclusively, and most of the small ones. Business sections of the

large cities are usually supplied with direct current, their requirements

being dominated by the greater versatility of D.C. motors, especially for

elevator service. Most of the large office and store buildings have their

own plants, so that the problem of distribution does not present itself.

For similar reasons passenger ships and naval vessels usually use direct

current. But both on land and at sea, the wide use of alternating current

is encroaching on the domain of direct current. It is interesting to observe,

however, the appearance of a possibility that high-potential direct current

may come into use to reduce the inductive line-losses characteristic of

A.C. distribution. But the prominent part that has been played by elec-

tric power in the last fifty years in revolutionizing the prevailing modes
of living is in very large measure due to the adaptability of alternating

current to economical transmission over large areas. Without alternat-

ing current we should still be living much as people did in 1890 as far as

availability of commercial electric power is concerned.

Synchronous Alternating-Current Motors

This chapter began with an account of the development of the direct-

current motor. It will end with a brief description of the three principal

types of alternating-current motor. The first is simply the alternating-

current generator reversed, termed the synchronous motor, a descriptive

name, as will presently appear. Figure 435 will serve to illustrate the

single-phase and polyphase synchronous motor as well as the generator.

With its field magnets energized by direct current from some external

source and the armature in motion, supplied by alternating current, it

will be evident that if the armature passes a field-pole before a reversal

of currents takes place, the continuing attraction will retard it. It is

perhaps not so evident that if it fails quite to reach the field-pole before a
1 In actual practice the field magnets of an A.C. generator almost always rotate inside a

stationary armature, instead of vice versa as here indicated. The essential principle of any
generator is relative motion of conductors and magnetic fields so that the question of which
shall be the moving and which the fixed element is secondary, to be decided by engineering

expediency.
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reversal occurs, the inductive effect of the reversal will hurry it along.

Thus the armature is forced into step with the frequency of the alternating

current supplying it, regardless of how lightly or how heavily it is loaded.

It is this characteristic which gives it the name “synchronous.” Such a

motor is not self-starting, and requires an external source of D.C. power
for its field magnets, hence it has its limitations. It is very efficient how-

ever, and the absolute constancy of its speed is for many purposes a great

advantage. Hence it is used in large factories where direct current is

available in addition to alternating and where means for starting the motor

are not difficult to effect. Sometimes the exciter, acting as a D.C. motor,

is used to bring the synchronous motor up to speed and then, by changing

connections, is made to resume its normal function of a D.C. generator

furnishing current to the field magnets of the synchronous motor now
running on alternating current. Tiny synchronous motors, which may or

may not have self-starting attachments and which do not require a supply

of direct current, constitute the motive power of electric clocks. If such

clocks are to keep time, the central-station A.C. generators supplying the

current must “keep time” with the degree of precision required of the

clocks. Special devices, controlled by standard clocks and radio time

signals, bring this condition about.

Induction Motors

The second type of A.C. motor is the induction motor, a name as de-

scriptive as was “synchronous” for the preceding. It is in principle a

polyphase motor, though with a certain diminution of efficiency it can be

designed to perform on single-phase currents. It depends for its action

upon the existence of a rotating magnetic field. How a polyphase alter-

nating current may be made to produce a rotating field will be described

shortly. For the present assume such a field to exist, rotating as shown

in Figure 437, and consider the effect on the copper bars of a “squirrel-

cage” rotor of the type indicated in Figure 436 (the moving element in an

induction motor). When this rotor is placed in the rotating field, induc-

tion comes into play in consequence of the motion of the field across the

copper bars. The bars being welded to a copper ring at each end, the

resistance is low and the induced current correspondingly high. But a

current experiences a force in a magnetic field. The forces on the bars

on opposite sides of the rotor are oppositely directed and the rotor will

consequently turn about its axis. A double application of the right-hand

screw rule (page 442) will show that the torque will cause the coil to rotate

in the direction that the field is rotating. This, in brief, is the principle

of the induction motor, so called because the current in the rotor is induced,

there being no electrical connection between that element and any outside

source of current.

The production of a rotating magnetic field by two-phase alternating

current depends basically on the fact that two simultaneous harmonic
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Fio. 436. “Squirrel-Cage” Rotor

motions of the same amplitude and period, one quarter cycle out of phase

with each other, compounded at right angles, will produce circular motion.

If phase A actuates one pair of magnets in Figure 437 and phase B the

other, this condition will be realized. Suppose that at the instant when
the A magnets are traversed by the maximum current and the B magnets

carry zero current, a compass needle between the magnets points up and

to the left as shown in (a). An eighth of a cycle later the current is equal

in both pairs of magnets (decreasing in the A and increasing in the B
magnets), and under their joint effect the needle assumes a vertical posi-

tion (5). After another eighth of a cycle the current in the A magnets has

fallen to zero, and the needle, now under the sole influence of the current

in the B magnets, now at its maximum value, points up and to the right (c).

The process continues until at the end of one complete cycle the compass

needle will have returned to its initial position. So the needle rotates

continuously; in other words the two-phase alternating current produces a

rotating magnet field. With three electromagnets (or any multiple of

three) the same effect may be produced by three-phase alternating current.

The production of a rotating field by a single-phase alternating current

involves some engineering tricks-of-the-trade which, while simple, need

scarcely be described here.

The Universal Motor

The third and last of the basic A.C. motors is called the universal motor,

because it may be run on either alternating or direct current. It is a modi-

fied D.C. motor whose operation on alternating current depends on the

fact that reversal of current in both armature and field does not reverse the
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Questions for Self-Examination

1. State the principle of the dynamo and cite the earliest examples.

2. Sketch the main points in the early development of the D.C. electric motor.

3. Why does the current flowing into a D.C. motor increase as increasing load dimin-

ishes the speed?

4. Tell how counter-electromotive force adapts the operation of series-wound motors

to fluctuating loads and facilitates speed control of shunt-wound motors.

5. Outline the development of the D.C. generator.

6. Draw wiring diagrams of series-, shunt- and compound-wound generators and
describe the effect of the respective types of winding.

7. Upon what factors does the voltage of a generator depend?

8. Write a short exposition on two-phase (or three-phase) alternating currents and
show how such currents can be made to produce a rotating magnetic field.

9. Describe the operation of one type of A.C. motor.

Problems on Chapter 44

1. Two parallel guide wires are / meters apart. A cross-wire in contact with them has

a speed of v meters per second. (See Fig. 427.) A magnetic field perpendicular

to the plane of the cross-wires has a flux density B webers/m2
. The circuit to

which the guide wires connect has a resistance R ohms. How many amperes I

flow in the circuit? What is the backward “drag” F on the wire in newtons?

1 V B R I F
.30 .2 .1 .01 .60 .0180

.25 .3 .09 .02 .34 .0076

.2 .4 .08 .03 .21 .0034

.15 .5 .07 .04 .13 .0014

2. A copper disk of radius r centimeters rotates with its r B n E
axis parallel to a magnetic field of flux density B webers/

m

2
. 10 .5 5 .016

(See the Faraday disk, page 532.) Its angular velocity 10 .3 10 .019

is n revolutions per second. What is the potential differ- 10 .2 20 .025

ence E between the center and the edge in volts? 10 .1 30 .019

3. The windings on the armature of a certain generator are parallel to the shaft,

r centimeters from it, and / centimeters long. The magnetic field in which they

move is radial and has a flux density B webers/m2
. The armature turns n revolu-

tions per second. What e.m.f. E in volts is developed if the windings are all con-

nected in parallel?

r / B n E
100 120 3. 5 110

80 100 2.5 10 130

60 80 2. 20 120

40 50 1.5 30 57



CHAPTER 45

Alternating Currents

The Nature of Alternating Current

Some of the attributes of alternating current have been mentioned as an

incidental feature of the treatment of the subjects of induction and dyna-

mos. The all-but-universal prevalence of alternating current for illumi-

nation and other applications of electric power indicates the advisability

of a systematic treatment of a few of its rudiments.

Until now considerable use has been made of an analogy between water

systems and corresponding systems of electric distribution. The utility of

the analogy becomes less when alternating current is encountered. A
water system in which the flow was alternately in one direction and then

the other would seem at first thought to be quite fantastic. The picture of

water alternately emerging from a faucet and then re-entering is somewhat

misleading, however. We do not run electricity into a pail and carry it

away, even in direct-current practice. If the principal use made of a water

system were the heat developed by the friction incident to the flow—
which is somewhat the condition in the electrical parallel— the direction

of the flow would be of slight importance, and such a water system might

have an analogy value for present purposes.

Effective Values of Current

Naturally, some of the concepts which have been formed to deal with

direct current will require modification when applied to alternating cur-

rent. For example, with the current fluctuating rapidly from a maximum
in one direction through zero to a maximum in the opposite direction with

indefinite repetition, what is the significance of the steady deflection that

may be seen on an A.C. ammeter connected into the circuit? The in-

strument can scarcely indicate an average value in the ordinary sense of

the term, for the linear average of a fluctuating quantity that consists of

regularly repeated equal and opposite surges is zero. The difficulty,

largely a conceptual one, is surmounted simply by defining the effective

alternating current of, say, one ampere, as that alternating current which

produces the same heating effect as one ampere of direct current. The
instantaneous values of the alternating current will successively take all

values, positive and negative, between zero and a maximum considerably
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Fig. 438 . Deduction of Effective Value of an
Alternating Current

in excess of the effective value. Since heat is evolved at a rate propor-

tional to the square of the current, the effective value of an alternating

current really involves striking a linear average of the squares of all the

instantaneous values of the current. The square root of this is the effective

value of the alternating current, sometimes given the awkward name of the

root mean square value.

The process of arriving at the effective value of an alternating current

having an instantaneous maximum value of one ampere is illustrated in

Figure 438. The dotted curve represents the alternating current. The full

curved line represents the squares of the instantaneous values outlined

by the dotted curve. The horizontal dotted line represents the linear

average of these squares, and the horizontal full line represents the effective

value. The effective value, .707 ampere (or -^=), is seen to be produced

by an alternating current whose maximum values, positive and negative,

are one ampere.1 The same ratio which has here been noted for the cur-

rent curve applies to the voltage curve. Thus the effective voltage of 110
— nominally furnished to commercial alternating-current accessories—
really reaches maximum values of 110 X V2 or 156 volts. It is partly

for this reason that alternating current is more uncomfortable to “take”
than direct current of the same nominal voltage, and that the problem of

insulation is more exacting.

On page 449 the utility of the dynamometer-type instrument as an A.C.

meter was pointed out. It may now be observed that this utility is even
more pronounced than it was possible to specify at that point, because it

is the only kind of instrument which may be calibrated by direct current

and then used with complete accuracy to measure alternating currents.

This is true because, as was also mentioned on page 450, the deflection of a

dynamometer-type instrument is proportional to the square of the current.

Hence, the “average” deflection which an alternating current produces

1 This is true only if the alternating-current curve follows a simple harmonic pattern. This
condition is usually realized to a first approximation and is assumed to hold throughout this

discussion of alternating current.
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in such an instrument has the same proportion of the maximum instan-

taneous values— — already noted as the defining condition of effective

values. Though there are other types of A.C. instruments, they must all

be standardized by comparison with dynamometer-type instruments.

Phase Displacement in an Inductance and in a Resistance

The obstruction which an inductance provides to any change of current

in the circuit containing the inductance has already been commented upon

(pages 516 ff.). The form which this obstruction takes in the case of an

alternating voltage may most easily be understood by invoking once more

the parallel between inductance and mass. Imagine a well-lubricatecj

heavy cylinder oscillating in a cylindrical guide under an harmonic force

(Fig. 439). In the resulting harmonic motion of the cylinder there will be

found the usual quarter-period phase displacement between velocity and

acceleration and, hence, between the velocity and the applied force. At

the instant that the cylinder is at the extreme left, its velocity, of course,

is zero, and its acceleration is directed to the right with a maximum
value. Hence, the applied force possesses its maximum positive value. A
quarter period later the cylinder is passing the mid-point, the velocity is at

its maximum positive value, and the applied force has fallen to zero. After

another quarter period the cylinder is at the extreme right, its velocity is

zero, and the applied force possesses a maximum negative value.

In the corresponding electrical case let the current be compared to the

velocity and the applied voltage to the force. The inductance in the circuit

may be considered the analogue of the mass (see page 517). It will then be

evident that the corresponding electrical events can be represented as in

Figure 440. It would be correct and it is indeed common to say for this

case that the current lags behind the voltage by a quarter of a period.

Contrast this with the case of a circuit which contains only resistance,

in which the maximum instantaneous value of the current would coincide

with the corresponding value of the voltage (Fig. 441). The mechanical

Velocity

— Force

T 1

" r

c

Fig. 439. Mechanical Analogue
to Inductance

Fig. 440. Quarter-Period Phase
Displacement Between Alter-
nating Voltage and Resulting
Current in a Circuit Containing
Only Inductance
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analogy to this would be realized by substituting for the arrangement of

Figure 439 a loose weightless piston working in a cylinder of oil — the

conventional dashpot used in door checks, automobile shock-absorbers,

and similar mechanical devices. For this

case an alternating force would produce

an oscillation of the piston strictly in phase

with it, the instants of high and low speed

coinciding with those of greater and less

force.

Power Consumption in A.C. Circuits of

Pure Resistance or Pure Inductance

In a direct current circuit carrying /
amperes under a potential difference of E
volts, the rate of consumption of electrical

energy in watts is given by the product El
(page 452). This is also true for alternat-

ing current, both as to instantaneous and effective values, provided that the

circuit contains only resistance. In Figure 442 this case is represented

graphically. The two full lines represent respectively the voltage and cur-

rent, the dotted line being the product of the two, plotted point by point.

The product, El, is positive at all times, the effective value being one-half

the maximum instantaneous value.

The case of pure resistance is somewhat unusual, however, since electrical

circuits which do not contain inductance and capacitance are rare. Most
systems distributing commercial electrical power involve primarily in-

ductance in addition to resistance.

The voltage, current, and power curves are shown in Figure 443 for the

Fig. 441. Zero Phase Displace-
ment Between Alternating
Voltage and Resulting Cur-
rent in a Circuit Containing
Only Resistance

Fig. 442. Instantaneous Power
Consumption for Alternating
Current with Resistance Alone

Fig. 443. Instantaneous Power
Consumption for Alternating
Current with Inductance Alone



ALTERNATING CURRENTS SSIChapter 45

case of pure inductance, the resistance being zero. The power curve is

positive wherever the voltage, and current curves have the same sign and is

negative wherever they have opposite signs. Negative values mean merely

that the system is returning energy to the source instead of receiving it

from the source. The symmetry of the positive and negative loops indi-

cates that as much energy returns to the source as comes from it. This

electrical case is comparable to the mechanical case of the pendulum swing-

ing without friction or other resistance.

This sometimes produces a rather paradoxical situation. If an alternat-

ing-current generator in a power station could be connected to an electrical

system consisting of pure inductance, its instruments might indicate that

it was producing the maximum current that it was capable of generating,

at its full rated voltage, and yet be delivering no power whatever. A watt-

meter connected to the circuit would, in fact, show a zero reading. This is

the real basis for the fact, presented on page 517, that the primary winding

of an unloaded transformer consumes no measurable electrical energy. It

consists of almost pure inductance. Such current as flows lags behind the

voltage by a quarter period and is what the electrical engineer terms “watt-

less current.” For this reason, too, A.C. generators are not rated in watts

or kilowatts as are D.C. generators, but in volt-amperes or kilovolt-am-

peres. The actual power that A.C. generators can deliver depends upon
the character of the circuit as well as upon the size and design of the

machine. One of the problems of the electrical engineer is to reduce the

“wattless current” to its smallest possible value.

Inductive Reactance and Impedance

The observation has already been made (page 517) that inductance

provides an obstruction to the flow of alternating current, entirely aside

from that furnished by resistance. The magnitude of this obstruction,

termed the inductive reactance
,

is proportional to the magnitude of the

inductance, as would seem natural. It is also proportional to the number
of alternations per second (the frequency)

.

Call X the reactance measured

in ohms like resistance, L the inductance measured in henrys, and / the

frequency measured in cycles per second. Then the relation is

= 2 7rfL. (1)

Thus the inductive reactance depends upon both inductance and frequency;

it increases as either is increased and vice versa . A form of what might

be termed Ohm’s law for alternating currents then applies, namely,

E = IX, (2)

assuming the resistance of the circuit to be zero or negligible.

If the resistance is appreciable, however, equation (2) cannot be used.

For the reactance X another term must be substituted which includes the

resistance in the circuit. Though resistance and reactance are both
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measured in ohms, the total obstruction which they jointly present to the

flow of an alternating current is not the sum of the two, but is instead the

square root of the sum of their squares. The total obstruction is termed

the impedance
,
Z (also measured in ohms). It thus has the value

Z = Vs* + xl (3)

The corresponding form of the A.C. version of Ohm’s law is then

E - IZ. (4)

Power Consumption in A.C, Circuits of Resistance and Inductance

As might be expected, A.C. power consumption in circuits containing

both resistance and inductive reactance

is an intermediate case between the two

foregoing cases. It is, indeed, the

practical common case, for resistance

is seldom so small as to be entirely neg-

ligible; hence, the case of pure induct-

ance, though a convenient pedagogi-

cal artifice, is mostly imaginary.

For this case the current curve lags

behind the voltage curve, but not by
a full quarter period (Figure 444).

The power curve is neither entirely

positive nor equally divided between

positive and negative, but intermedi-

ate between the two. The actual

power delivered would be less than the

product of voltage and current. The ratio of the power to this product is

termed the power factor . That is, the power factor is the fraction

PR IR IR R
WT'lz'T <

5 '

In equation (3) above, the three terms

which it contains may, by virtue of the Py-
thagorean theorem, be represented in a right

triangle as shown in Figure 445. The power
factor is then by equation (5) simply the co-

sine of the phase angle 0. That is,

P.F. - |
- cos 6. (6)

Thus, the power factor may be computed for any circuit in which resistance

and impedance are known.

Fig. 445. Elements of an In-

ductive Circuit Carrying an
Alternating Current

Fig. 444. Instantaneous Power
Consumption for Alternating
Current with Inductance and
Resistance
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Effects of Capacitance in an A.C. Circuit

But the constitution of electric circuits is not limited to resistance and

inductance. Besides these two, the typical circuit contains capacitance,

which may be provided explicitly by the presence of condensers as in the

telephone and radio circuits, or may be implicitly present as a by-product of

the character of the circuit. Examples of the latter case will be found in

Chapter 46. In either event, the presence of capacitance profoundly

modifies the behavior of an alternating current.

Inserting a condenser in a D.C. circuit simply stops the flow of the

current. It would be quite natural to imagine that it would have the same

effect on an alternating current. Surely no current can traverse the in-

sulating medium which constitutes a part of the condenser. Yet a very

simple experiment will demonstrate that a condenser, not only does not

stop an alternating current, but, under

certain conditions, may increase the

reading of an ammeter placed in the

circuit.

It is easy to see why a condenser

appears to “ conduct ” an alternating

current. Imagine a condenser and an

A.C. ammeter connected to a source

of alternating current (Figure 446).

During the interval that the voltage

acts in one direction the condenser is charged in that direction, necessitating

a flow of current to do it. Had the source been direct instead of alternating,

the current would have ceased as soon as the accumulated charge on the

condenser brought its voltage to an equality with that of the source. But

with alternating current the voltage soon reverses, the condenser discharges,

and then is charged in the opposite direction. Thus the quantity of elec-

tricity which is alternately poured into one side and the other of the con-

Condenser

Source

of A.C.

Fig. 446 . Transmission or Alter-
nating Current by a Condenser

Fig. 447. What Happens in a Con-
denser as an Alternating Charging
Voltage Rises

Fig. 448 . Quarter-Period Phase
Displacement Between Alter-
nating Voltage and Resulting
Current in a Circuit Containing
Only Capacitance
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denser under the alternating voltage being applied constitutes an alter-

nating current, even though there is no conduction occurring across the in-

sulating medium between the two plates of the condenser.

It is now possible to examine in greater detail the current response to an

alternating voltage when only a condenser is involved. Suppose such an

alternating voltage to be applied to a condenser. Consider the rising por-

tion of the voltage curve. As the voltage increases, an increasing quantity

of electricity accumulates in the condenser. The rate of such accumula-

tion, that is, the current flowing into the condenser, is proportional to the

rate of change of the voltage. When the voltage approaches its maximum,
its rate of change approaches zero, and the current correspondingly ap-

proaches zero. The condenser is now “full” — or at least it is as “full” as

the maximum instantaneous voltage is capable of filling it — the charging

current has ceased; and the diminution of voltage now due will be accom-

panied by a reversal of the current, beginning the process of discharging

the condenser. The sequence of events up to this point is represented in

Figure 447. Part (a) represents the quantity of electricity accumulating

in the condenser as a function of time; part (b) the diminishing charging

current. (Compare the two in light of the definition of current as rate of

change of quantity.)

It is evident from part (b) of Figure 447 that in this case also, as in the

case of pure inductance, there is a quarter-period displacement between the

voltage and the current. But there is an important difference in the two
cases in that the displacement is in the opposite direction. Contrast part (b)

with the right-hand quarter of Figure 440, the case of an inductance. There
the voltage is also rising, but the current is due to reach its maximum a

quarter period later than the voltage maximum. Here the current maxi-

mum occurs a quarter period earlier than the voltage maximum. If the

two curves are extended to cover a complete period as in Figure 448, the

comparison between the two cases can be made to better advantage. The
quarter-period displacement between voltage and current for the case of

inductance has been termed a lag of the current behind the voltage. In

the corresponding but opposite displacement for the case of capacitance the

current is commonly and quite appropriately said to be ahead of or to lead

the voltage by a quarter of a period.

Fig. 449. The Effect of an Harmonic Force on a Spring
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The analogous mechanical phenomenon is observable whenever an alter-

nating force is applied to a weightless spring. Beginning at an instant of

zero distortion of a spring which is being alternately extended and com-
pressed by an harmonic force, imagine the spring to be extended by an

increasing force to the right. In Figure 449, part (b) represents the exten-

sion of the spring as a function of time; part (c) the diminishing speed of the

end of the motion. Comparison of these diagrams with those of Figure 447

will show the formal identity of capacitance and elasticity. The parallel is

occasionally useful, just as the corresponding one between inductance and

mass has been found to be.

Circuit Containing both Inductance and Capacitance

Comparison of Figure 448 with Figure 440 will show that the current re-

sponses to the same alternating voltage by a capacitance and an inductance

are a full half-period out of phase. At every instant, the currents in the

two cases are moving in exactly opposite directions. This fact produces

some curious effects in A.C. circuits containing both inductance and capaci-

tance. If the two are connected in series, for example, the total current

response is the difference (in more general terms, the algebraic sum) of the

responses in the two portions respectively. By proportioning the induct-

ance and capacitance properly, the two current responses may be made
equal and the total response zero. The circuit then acts in some respects

as though neither were present, the current being determined solely by
Ohm’s law as in the case of direct current.

The possibility of thus “ neutralizing” inductance by capacitance and

vice versa has many applications. Electrical engineers reduce “
wattless

current,” by using large condensers (“ capacitors”) to neutralize the sur-

plus of inductance normally characterizing commercial systems. Telegraph

and telephone engineers, on the contrary, use inductances to neutralize

the surplus of capacitance normally characterizing communication systems,

especially cables. This will be enlarged upon in Chapter 46.

Circuit Containing Resistance, Inductance, and Capacitance

It is now possible to deal with the general problem of A.C. circuits con-

taining all three elements, resistance, inductance, and capacitance, in series.

The case of these elements connected in parallel will not be treated. The
total reactance of a series circuit will, of course, be the difference of the in-

ductive reactance and the capacitative reactance. The latter has the value

Xc
- 1

2 7rfc
9

(7)

corresponding to equation (1) for inductive reactance XL . This equation

shows that capacitative reactance depends upon both capacitance and
frequency, but, unlike inductive reactance, decreases as either of the factors

upon which it depends is increased.
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The total reactance X is then

X = XL - Xc. (8)

Equation (2) then applies to the case of inductance and capacitance with

zero resistance, as does equation (4) to the corresponding case where

resistance is included. Equation (3), however, has to be modified to

z = VW+X* (9)

to allow for the effect of capacitative reactance.

Electrical Resonance

The case of equality of inductive and capacitative reactances is of par-

ticular interest. If XL = Xc,
then from equations (1) and (7)

2 7rjL —
1_

2 7rfC
(10)

Inspection of this equation will show that if any one of the three elements

— inductance, capacitance, or the frequency of the impressed alternating

voltage — should be changed, the equality of the reactances which had

been previously established would no longer obtain. Since the impedance

of the circuit possesses its minimum value when the total reactance is zero

— equation (9) — the current will be a maximum for zero reactance and

less than this maximum if the reactance is rendered greater than zero.

Figure 450 shows the effect on the cur-

rent of changing the frequency of the

impressed alternating voltage. Since

for zero reactance the magnitude of

the current depends solely upon the re-

sistance, this magnitude will decrease

at the so-called point of resonance with

any increase in the resistance. This

is illustrated in the figure.1 Effects

of fluctuating frequency are especially

pronounced at high frequencies such as those involved in radio. Canadian

and foreign broadcasting stations often lack the steadiness in frequency of

carrier wave which American stations are required to maintain. Diminu-

tions in signal strength from such stations sometimes illustrate the dimi-

nution in the alternating-current response of the receiving set with change

in the frequency of the incoming signal. In such cases, the original inten-

sity is restored by “retuning” the local set, which is usually effected by
altering the capacitance to produce resonance to the new frequency.

1 The three curves of Figure 450 are each plotted to a different scale of ordinates. Other-

wise they would not intersect each other.

Fig. 450. Variation or A.C. Re-
sponse with Change of Frequency
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If equation (10) be solved for/, the result is

/-
1

2 7rVLC
’
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(ID

This is the same as equation (8) of Chapter 43. But that expressed the

natural frequency of vibration of an oscillating circuit, whereas this is the

condition that a circuit should resonate to an alternating voltage, the in-

ductive and capacitative reactance being equal to each other. This may
be recognized as another parallel between mechanical and electrical oscilla-

tions, for it is one of the best-known phenomena of mechanics that resonance

occurs when the natural frequency of a vibrating body is the same as that

of the impressed vibration.

Questions for Self-Examination

1. Why do alternating-current appliances have to be so designed as to withstand higher

voltages than those indicated by voltmeters in the circuit? How much higher in

normal operation?

2. Why does an alternating current through a pure inductance lag behind the voltage

by a quarter cycle? What does this do to power consumption?

3. What does inductive reactance depend on? In what units is it expressed? How
does it combine with resistance?

4. State and explain the “alternating-current” form of Ohm’s law.

5. What is “power factor” and on what does it depend?

6. How can a condenser “conduct” alternating current?

7. Why does an alternating current through a condenser lead the voltage by a quarter

cycle?

8. When an alternating-current circuit contains both inductance and capacitance,

what relation do they bear to each other in their joint effect? Why? Give an
example.

9. What happens in a circuit containing resistance, inductance, and capacitance when
alternating current of steadily increasing frequency is impressed upon it?

Problems on Chapter 45

1. A power line is distributing 1200 kilowatts of power at 2400 volts. What is the

current if the power factor is .8? How much power is lost in the transmission

line if it has a resistance of \ ohm? 625 amps.; 200 kw.

2. If the voltage were stepped up by means of a transformer to 60,000 volts and
distributed at that voltage, what would be the current and loss of power?

25 amps.; 310 watts.

3. An inductance of .2 henry and a capacitance of 35 microfarads are connected in

series. To what frequency will the combination resonate? 71 cycles per sec.

4. An inductance of .2 henry is connected in series with a variable capacitance. To
what value should the latter be adjusted to cause the combination to resonate to

a frequency of 100 cycles per second? 13 m.f.

5. To the combination of problem 4 a series resistance of 10 ohms is added and the
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whole connected to 100 volts at 100 cycles. What is the current when the capaci-

tance is adjusted to 5, 12.67, and 20 microfarads in turn?

.52, 10, and 2.1 amperes.

6. A coil has an inductance of L hcnrys. What is its reactance X in ohms for a fre-

quency of/ cycles per second?

L / X L R z /

6. 1. 25 150 7. .03 10 15 7.7

1. 60 370 .25 100 140 .82

1 . 500 3,100 1. 400 550 .21

0.03 60 0 5. 2000 2700 .043

5. 60 1,900

85. 60 32,000

7. An inductance of L henrys is connected in series with a resistance of R ohms. Cal-

culate the impedance Z of the combination for a frequency of 60 cycles, and the

effective current 1 which flows if the combination is connected to an alternating

voltage of 115 volts 60 cycles.

8. An alternating current i may be expressed as a function of the maximum value

I of the current, the frequency /, and the time t by the equation

i * / sin 2 irft.

If I — 10 amperes and / - 60 cycles/second, find the value of i in amperes for

each 7^ of a second from t = 0 to 1 - -id second.

720/ 0 1 2 3 4 5 6 7 8 9 10 11 12

i 0 + 5 ... + 10 .. +5 0 -5.. ...0

9.

Plot the values of i obtained in problem 8 as ordinates against the corresponding

values of t as abscissas.

10.

An alternating voltage leads the current of problem 3 by a phase angle of ~ (90°).

The expression for it is c = E sin ^2 Trft 4- Given that E is 10 volts and / is

60 cycles, find the values of e in volts for each of a second from / = 0 to t =
second.

720/ 0 1 2 3 4 5 6 7 8 9 10 11 12

e + 7.1 + 9.7 - 2.6 + 2.6+ 7.1

11. Plot the values of e in problem 10 against the corresponding values of t on the
same graph used in problem 9.

12. Given a condenser of capacity C microfarads, find its reactance X in ohms for a
frequency of/ cycles per second.

C / X C / R z I
1 . 25 6,400. 13. 100. 60 100 103. 1.1

1 . 60 2,600. 5. 60 100 530. 0.22

1 . 500 320. 1 . 60 100 2600. 0.044
0.03 60 84,000. 1 . 500 100 330. 0.34

0.03 500 10,500. 1 . 5000 100 105. 1.1

0.03 5000 1,050. 0.03 5000 100 1050. 0.11
0.03 5*105 10.5 0.03 5* 106 100 100.5 1.1

0.001 60 260,000. 0.001 5* 105 100 330. 0.34
0.001 5*106 320.

5. 60 520.

5. 5000 6.4

100. 60 26.
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13. A condenser of capacity C microfarads is connected in series with a resistance R
ohms and connected to 115 volts A.C. (effective),/ cycles per second. Find the

impedance Z in ohms for the combination and the effective current I in amperes
that flows.

14. A coil of inductance L henrys, a condenser of capacity C microfarads, and a re-

sistance R ohms are connected in series. An effective voltage of 115 volts at 60
cycles is applied. Find the inductive reactance, XL} the capacitive reactance,

XC9 the total reactance, X - XL — XCf the impedance, Z
y
all in ohms, and the

effective current, /, in amperes.

L C R X* Xc X Z I

1 . 10 100 380 270 110 150 0.77

1 . 5 100 380 530 - 150 180 0.64

1.4 5 100 527 530 - 3 100 1.1

0.7 10 100 264 265 - 1 100 1.1

15.

An inductance of .2 henry, a capacitance of 35 microfarads, and a resistance of 10

ohms are connected in series. 100 volts A.C. is applied at a frequency of/ cycles

per second. Calculate the impedance and current for each of the following fre-

quencies, 0, 20, 40, 50, 55, 60, 70, 80, and 100. Plot the current as a function of

the frequency. (Compare Fig. 450.) At exactly what frequency does resonance

occur?

/ 0 20 40 50 55 60 65 70 80 100

I 0 .5 1.5 3.3 6. 10. 6.5 4. 2.2 1.2

16. Repeat problem 15 for a resistance of 100 ohms, and plot the current against

frequency on the same graph.

/ 0 20 40 50 55 60 65 70 80 100

I 0 .45 .76 .96 .99 1 . .99 .97 .91 .78

An electrical appliance is found to use I / V W P.F.

amperes when connected to V volts. A 1 115 100 0.9

wattmeter indicates that W watts of power 2 115 190 0.8

are used. What is the power factor? 3 230 600 0.9

4 230 750 0.8



CHAPTER 46

The Telegraph and Telephone

Essential Elements in Electrical Communication

Underlying all the electrical arts of communication— and these include

not only telegraphy and telephony but also telephotography, television and

sound-pictures— are a few basic principles. To appreciate those funda-

mentals is to possess a pass-key which opens to ready understanding the

systems of communication which at first thought appear to have no essen-

tial in common. Whether the transmission medium is wire or wireless,

whether the signals which convey the information are audible or visual,

there is a unity to all the communication arts. However different their

devices and contrivances may seem to be, all of them are merely means for

performing one or another of six typical operations. Four of these opera-

tions are essential to any system of communication and the other two

to all except the simplest systems. 1

The four operations thus stated to be common to all devices for electrical

communication are: (1) generation of some effect which can be transmitted;

(2) modulation (or “molding”) of the current which has been generated in

accordance with the signals which arc to be transmitted; (3) transmission

to the point of destination; and (4) detection
,
the conversion of the modu-

lated current into intelligible signals. The other two operations are:

(5) amplification,
which becomes necessary where great distance enfeebles

the current; and (6) some process of selection, which is required when the

transmitting medium is carrying more than one message at the same time.

The first four operations are evident in the electric telegraph of Henry.

The battery generated a current. His switch, which evolved into the tele-

graph key of Morse and of Wheatstone, modulated this current. Wires
transmitted the current, and a bell — later a recording device and still later

a telegraph “sounder” — detected the modulated current. It will be illu-

minating to describe other agencies of communication, notably the tele-

phone and the radio, from the standpoint of the elements common to all

electrical devices for conveying intelligence.

Obstacles to Early Development

Electrical communication plays such a prominent part in modem life

1 John Mills, Bell Telephone Quarterly
, 14, 13 (1935).
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that it is hard to visualize the circumstances of a social order which felt no
need for it and was in some ways hostile to it.

It was, to be sure, scarcely surprising that even a well-informed man
should have said as early as 1837 that “the electric telegraph, if successful,

would be an unmixed evil to society,” but that it should have occurred to

no American railroad official for seven years after Morsel patent was
granted that the telegraph might be useful in dispatching trains is almost

unbelievable. Perhaps it was natural for a southern Kentucky community
to destroy a near-by telegraph line in 1849 on the basis that

it robbed the air of its electricity, the rains are hendered, and ther* ain’t

been a good crop sence the wire was put up.

But that the United States War Department as late as 1885 should have

declared officially that provision for electrical communication was not

needed by the army, would pass the bounds of credibility were it not

actually on record (50:487).

But, though the early lack of appreciation of the value of electrical com-

munication was unedifying, some of the manifestations of its actual appre-

ciation are even more so. It is a great misfortune that this inventive field

has been the subject of more frequent and bitter dispute than any other.

The three-cornered dispute between Morse, Wheatstone, and Henry set a

precedent which was to be paralleled and even exceeded in the development

of the telephone and radio. The victories in these disputes seem, regret-

tably, to have gone more often to the sides possessing the heaviest economic

artillery than to those who could really present the best cases. While these

disputes will not be of primary concern here, such evaluation of them as

circumstances require will be made more from the evidence itself than from

popular impressions of what that evidence indicates.

Early Telegraphy

The three major improvements in telegraphy which gave the art its

present place were submarine-cable telegraphy, multiplex telegraphy, and

the printing telegraph, now called the teletype. The last two were almost

entirely engineering problems, that is, the adaptation of well-known scien-

tific principles to particular requirements. The first, however, was almost

as much on the scientific as on the engineering frontier. It commanded
the attention of Lord Kelvin and of Michael Faraday, both being physicists

of the highest standing. A considerable portion of the early difficulties

experienced with transatlantic telegraphy arose in fact from the disregard

by “practical” engineers of the procedures specified by these men of

science.

There was, to be sure, no lack of purely engineering problems to be

solved. The construction of submarine cables was made possible in the

first place by the invention of gutta-percha in 1847. This, with all its

shortcomings, was the only material then known that would perform satis-
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factorily the function of an insulating substance under such exacting con-

ditions. The problems involved in laying such cables were also primarily

within the engineering realm, and were of the first magnitude. Though a

few relatively short cables had been laid during the fifties— across the

English channel, between islands in the Mediterranean, and between coast

cities in the United States— engineers of the sixties were for the most part

without experience in cable manufacture or cable laying; and their acquire-

ment of such experience in connection with the Atlantic cable was accom-

panied by several disastrous and very expensive failures. Four major

unsuccessful attempts ate up millions of investors’ dollars and almost dis-

credited the whole idea of a trans-oceanic cable.

The engineering problems of laying the Atlantic cable, serious though

they were, were rendered less troublesome than they might have been by
the discovery in 1852-53 of a submarine plateau between Newfoundland

and Ireland, the two natural termini of the main section of such a cable.

Ordinarily the ocean-bottom has localities of rugged “ scenery”: rocky

hills, deep gorges, swift submarine currents. But between Newfoundland

and Ireland was found a smooth plain, such an ideal bed for a cable that

it was immediately named Telegraph Plateau . It was deep enough to

place the cable beyond the reach of anchors, icebergs, and drifts, yet shal-

low enough to render feasible the laying of cable. Microscopic shells,

brought to the surface unbroken and unabraded, indicated the absence

of destructive currents. Except for this purely fortuitous circumstance,

the history of Atlantic cable-laying would have been even more checkered

than it was.

But besides the engineering problems, major scientific problems were

involved in the operation of a cable as long as that across the Atlantic.

The necessity for sufficiently delicate instruments spurred sensitive gal-

vanometers into being long before they would otherwise have been de-

signed, as has already been observed (page 447). But the main difficulty

with the operation of the cable was the apparent sluggishness with which

signals seemed to be transmitted. It was a difficulty which had been

largely unforeseen and which has been ameliorated only within the last

twenty years.

The reason for this peculiarity was the fact that a cable was so long in

comparison with the usual line, and its wires were so close together that a

condenser of very large capacitance was produced. Transmission was slow

because it was necessary to “fill” this condenser before a signal could

emerge at the receiving end. Even upon emergence, the signal was so

distorted by its experience that it was likely to be unrecognizable. Hence,
even when conditions were at their best, the transmission of a message by
transatlantic cable was found to require much more time than by the short

lines in use before then.

No way of even ameliorating this handicap was devised from 1858 when
it was first encountered until 1924. In that year Oliver Buckley of the Bell
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Telephone Laboratories introduced into the sheath of a new transatlantic

cable a layer of tape of a newly devised alloy called permalloy. The pecul-

iar magnetic properties of this alloy (high permeability, whence the prefix

“perm”) had the effect of increasing the inductance of the cable. The
consequent lag in the phase angle of the current constituting the signal

partly neutralized the lead produced by the high capacity of the cable (see

page 555), and made it possible to send messages five or six times as rapidly.

There are still serious strictures on the utility of long submarine cables,

however. To this day they are totally unusable for telephonic purposes.

The Telephone

In the telephone may be found a second illustration of the basic prin-

ciples of electric communication. In this case a microphone or “trans-

mitter” replaces the telegraph key as the modulator of the electric current.

The current, instead of consisting of a succession of long and short signals

according to a code, is molded to a wave-form similar to that of the sound

waves incident on the transmitter. This fluctuating current is reconverted

into sound by the receiver at the listening end of the line. The whole process

is indicated in its simplest form in Figure 452.

The type of microphone commonly used in telephone practice effects:

Fig. 451 . The Transmitter Used by Bell on
March 10

,
1876
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Fig. 452. A Simple Telephone Circuit

changes in the resistance of a telephone circuit under the influence of inci-

dent sound waves, such that the resulting fluctuating current will be a

passably faithful replica of the sound. The oscillation of a diaphragm

alternately compresses and releases carbon granules contained in a con-

nected pellet somewhat as idealized in Figure 453.

The receiver is essentially an electromagnet acting on a diaphragm. The
incoming electric current, modulated according to the original sound pat-

tern, sets the diaphragm in motion in a sequence of oscillations approxi-

mately similar to those executed by the diaphragm of the microphone at

the other end of the line. The corresponding sound waves, upon reaching

the ear of the listener, complete the

function which the telephone is de-

signed to perform.

The reader will recognize a certain

parallel between the telephone re-

ceiver and the electric motor. Like

the motor, the receiver responds

with mechanical motion to an elec-

tric current, modulated for the pur-

pose. This fact leads one to specu-

late whether the reciprocal relation

between motor and generator applies

to this case; that is, whether, upon
imparting motion to the diaphragm of a receiver, a current will be generated

in the winding of the electromagnet. The discovery that this was the case

was made in 1875 by Alexander Graham Bell, and receivers thus used “in
reverse

,,
were at one time the only kind of transmitter generally known.

The first well-authenticated electric telephone appears to have been
devised in 1861 by Philipp Reis, a teacher of physics in Friedrichsdorf,

Germany. His microphone consisted of a single loose contact between
metals, and his receiver had nq diaphragm other than the sounding-board
to which the electromagnet was attached. But these circumstances merely
reduced the efficiency of operation without affecting the principle. His
telephone operated well enough to carry out Reis’s main objective, which
was to transmit speech. That he accomplished this has been amply con-

Fig. 453. Action or Carbon-Granule
Microphone

(Drawing reproduced by permission of

John Mills, Bell Telephone Laboratories.)
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firmed by the unequivocal testimony of several reputable men of science

who actually used Reis's original instruments, both under his direction

and independently.1 Though there have been many other claimants to

the distinction of having devised the first successful telephone instruments,

Reis presents the clearest title of them all.

The first words understood over a telephone in the United States were
spoken by Alexander Graham Bell on March 10, 1876. The transmitter

described and illustrated in his own patent, granted three days before,

had been of the receiver type, mentioned above. But on the famous
tenth of March, Bell used, not that transmitter, but one which was a

precursor of the microphone type. This latter transmitter had been very

completely described and illustrated in a document submitted to the patent

office nearly a month before, by a competitor of Bell named Elisha Gray,

about which Bell subsequently acknowledged having received information

prior to March 10. Bell sedulously refrained from mentioning his now
famous exploit of 1876 for more than four years, and in the meantime his

company developed the receiver type of transmitter exclusively. All this

indicates unmistakably what Bell thought during that time about where

the credit belonged for the transmitter with which the first American tele-

phone conversation was conducted.2

Later Telephone Development

The invention and perfection of the carbon-granule microphone spanned

the eighties. It was first devised by an English clergyman named Hun-
nings, the principal improvements being by Thomas Edison and Anthony
White.3 Since that time neither the transmitter nor the receiver used in

ordinary telephony has been modified in any respect except minor details.

As applied to public address systems and to radio telephony, however,

major modifications have been made and will be described in appropriate

connections.

The lack of improvements in modulation and detection of telephone

messages during the last fifty years has been simply an outgrowth of the

fact that by 1890 these two operations of telephony had developed to a

point fifty or more years in advance of the intervening operation, trans-

mission. It is in this operation that all the significant developments have

occurred since 1890. They have followed two main lines. The first is the

1 Though Reis’s success and even his intention to transmit speech have been vigorously

denied and though the denial has been supported by court decisions in the United States,

both the denial and the decisions seem to have been based on incomplete and ex parte testi-

mony. The reader is referred to S. P. Thompson’s Phillip Reis, Inventor of the Telephone

(London, Spon, 1883), especially the Preface, pp. 36-38, and pp. 112 fit.

2 For a more extended account of the issue between Bell and Gray the reader is referred to

The American Physics Teacher
, 5, 243 (1937).

3 For a'detailed history of the development of the microphone see The Bell Telephone Quarterly
,

10, 164 (1931). This account, though well documented, is unfortunately seriously in error at

several important points.
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Fig. 454. The Transmitter Illustrated
in Bell’s Patent Granted March 7,

1876

improvement in central office equip-

ment and organization, facilitating the

control of ever-incrcasing numbers of

calls with ever-decreasing delay and

culminating in the machine-switching

equipment — the prevalence of which

is now indicated by the use of dial

telephones in all large communities.

The second is the extension of the

distances over which telephone con-

versations could be conducted. The
first has been primarily a matter of

refinement of technological minutiae

which need not concern us. The
second, however, centers in two major scientific developments which are

worthy of note: the development of the so-called loading coil and that of

the electron-tube amplifier or repeater
,
as it is called in telephone practice.

Fig. 455. The Transmitter Illus-

trated in Elisha Gray’s Caveat
of February 14, 1876

The Extension of Telephonic Distance

The circumstance that limited the range of early telephone conversation

was the same as that which had slowed up communication over submarine

cables, namely, the electrostatic capacitance of the lines. The difficulty

was met in the case of the cables by retarding the speed at which tele-

graphic messages were clicked off. No such solution was possible for the

telephone problem. This was partly because there was a definite lower

limit to the speed of intelligible enunciation, and partly because the fre-

quency of telephone signals (speech sounds) was in the range of hundreds

or even a few thousands per second, whereas that of telegraph messages

never exceeded eight or ten characters per second.

The problem was solved in 1899 in somewhat the same way that a partial

solution of the cable problem was effected many years later, namely, by
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neutralizing the effect of the capacitance of the cables by judicious intro-

duction of inductances at intervals along the line. It was necessary that
the distances between these inductances should not be greater than a cer-

tain fraction of the mean wave-length of the telephone messages, and that

the magnitude of the inductances should be properly adjusted to produce
a phase lag that should equal the phase lead which it was desired to

neutralize. This difficult problem was solved by Michael I. Pupin (1858-

1935), a professor in Columbia University, who in 1874 had landed in this

country, a Serbian immigrant with just five cents in his pocket and not a

word of English on his tongue. The effect of the cable’s capacitance had
been to cause voice-waves of different frequencies to travel with different

speeds, thus distorting the emerging speech signals beyond the point of

intelligibility. The “ loading coils ” which corrected this difficulty may now
be seen placed in collections of iron boxes along transcontinental telephone

cable lines at intervals of approximately a mile and a quarter. Pupin’s

solution for overland telephone cables was much more complete than

Buckley’s later solution of the submarine telegraph cable problem, not-

withstanding the fact that the performance of telephone cables is immeas-

urably more exacting than that of telegraph cables. The impossibility of

interpolating properly designed inductance coils at intervals along a sub-

marine cable precludes the utilization of Pupin’s discovery in that field.

In 1902 public telephone service between New York and Chicago, made
possible by the loading coil, was inaugurated with great ceremony. This

was to mark the virtual maximum of telephone distance until the advent

of the repeater in 1915, which made it possible to renew the energy of the

voice currents at appropriate intervals along transcontinental lines.

The repeater is simply a special form — for telephone use — of a device

more commonly known as an amplifier. By means of it, weak electrical

impulses can so control a strong local source of electric output as to mold

it into the same forms. Thus a telephone current, which is weak to the

point of utter inaudibility, upon passing through a repeater station emerges

with as great energy as at the source, or even greater. This amplification

may be repeated as many times along a line as is necessary to reach a

required distance.

The heart of the amplifier is a device which, in its usual forms, presents

somewhat the appearance of a peculiarly shaped electric light globe. It is

variously known as a thermionic vacuum tube, a three-electrode vacuum

tube, or a triode. It originated in an observation by Edison in 1883 in con-

nection with his study of electric illuminants. To investigate the cause of

an asymmetrical blackening of the inside surfaces of his early lamps, he had

sealed an additional electrode into the side of one of them. He observed

that a small current could be made to flow across the evacuated space be-

tween the incandescent filament and this second electrode if the latter were

given a positive polarity, but not otherwise. Since no possible use could be

imagined for this peculiar phenomenon, Edison merely recorded it, but
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A A
Fig. 456. A Rectified Alternating

Current Wave Form

gave it no further attention. In 1889 an English scientist showed that the

effect was due to a flow of electrons, released from the filament by its high

temperature, to the second electrode when attracted by a positive charge.

This accounted for the absence of a contrary flow when the polarity of the

second electrode was reversed. A German investigator promptly utilized

the phenomenon to “rectify” alternating current. A common modern
example of this process is to be found in the “Tungar” rectifier used to

charge storage batteries from A.C. power lines.

The next two stages in the development of the vacuum tube— and, ex-

cept for minor improvements, the final stages— were made by two early

workers in the field of wireless telegraphy. It occurred in 1904 to James A.

Fleming, an Englishman who was one of Marconi’s associates, that the

rectifying action of the vacuum tube might solve the most troublesome

problem of detection of wireless waves. His subsequent development of

what is known in England to this day as the “Fleming valve” gave the

vacuum tube its first real start to fame. In 1906, Lee Deforest, an Amer-
ican radio experimenter and promoter, not satisfied with the performance of

the Edison-Fleming tube, modified it by introducing the element which,

above all others, rendered the vacuum tube adaptable to the purposes it

is now serving. He tried the experiment of placing between the filament

and the second electrode (now called the plate) a tiny grid with bars of fine

wire, through which he hoped to secure an extra measure of control over

the cloud of electrons occupying that space when the tube was in opera-

tion. This step proved to be a stroke of genius, the results of which must
have been a surprise even to Deforest himself.

Fig. 457. The Interior Ar-
rangement of a Three-
Electrode Tub
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There has probably never been another single invention that has in-

fluenced technology so profoundly. The fact that it facilitated long-dis-

tance telephony is one of its lesser outgrowths. Most of the modern at-

tributes of radio communication are traceable to the addition of a third

electrode to the vacuum tube, and the broader fields of electrical engineer-

ing are finding new uses for the three-electrode tube almost every day.

It is indeed quite impossible to overestimate the ultimate importance of

Deforests contribution to vacuum tube design.

The principle of the action of the third electrode is simple. Thrust into

the electron cloud which always exists between the plate and the incan-

descent filament, it is in a position to exercise, through its electrical poten-

tial, an intimate control over the motions of these electrons. A certain

negative potential will stop the flow of electrons from the filament to the

positively charged plate; a smaller negative potential will permit a limited

flow; a positive potential
,

1
if not too great, will cause the flow to be greater

than it would have been in the absence of a grid. Thus the flow of electrons

from filament to plate or, in the usual terminology, the plate current is inti-

mately controlled by the grid potential . With the proper attention to de-

sign and operation, changes in plate current may be made proportional to

changes in grid potential. Small changes in potential may thus, through

the agency of a three-electrode tube, control a local source of electrical en-

ergy in such a way as to produce in it relatively large but proportional

surges. This is the principle of operation of the tube used as an amplifier.

If one such amplifier is insufficient, its output may constitute the input of a

second tube. Though there are practical limits to the number of such

stages of amplification, set by a sort of electrical analogy to the economic

“law of diminishing returns,” six or seven stages are common, giving ampli-

fication ratios up to many millionfold. This is the action of the telephone

“repeater,” more familiar examples being the action of public address sys-

tems and ordinary radio receiving sets.

Refinements of Telephony

Under certain circumstances several telephone messages may be sent

simultaneously over the same wire. In the case of the so-called “coaxial

cable” between New York and Philadelphia, as many as two hundred and

forty two-way messages may be transmitted at one time. In such cases the

technique is similar to that of the generation and reception of radio mes-

sages. The telephone transmitters each modulate an alternating current

of different frequency, instead of modulating direct currents as in the case

of the ordinary telephone. The frequencies of the alternating currents are

so great as to be beyond the audible range; hence, the ear hears only the

modulated waves and is entirely unaware of the carrier wave . Each of

the receiving instruments is tuned to the frequency of the corresponding

transmitter. The signals travel along a wire, instead of through space*

1 As usually arranged, a triode seldom utilizes a positive potential on its grid.
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Fig. 458. A Section of the First “Coaxial Cable ” Consisting of a Pair
of Wires Each in the Axis of a Copper Cylinder

(Courtesy of Bell Telephone Company.)

The sending of photographs by wire, which has in recent years become
one of the routine features of news dispatch, differs only in detail from send-

ing telegrams or conversations by wire. The chief difference is that the

electrical current is modulated by a light beam instead of by a sound wave
at the sending end and is reconverted into a correspondingly fluctuating

beam by the receiver. A microscopic view of a picture sent by wire shows
it to consist of lines either varying in density or varying in width, to produce
the required effects. These lines are produced by a process of scanning at

the sending end. A tiny pencil of light moves across the transparency

to be transmitted in successive, closely spaced parallel lines. The fluctua-

tions in intensity of the portion of the beam that penetrates the trans-

parency go over the line in the form of fluctuations of current. These
actuate a light valve at the receiving end, controlling the intensity of a

Fig. 459. A Photograph and a
Magnified Section Sent Over
a Wire in Lines of Variable
Density
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Fig. 460. A Telephotographic System in Outline
(I)rawing reproduced by permission of Bell Telephone Company.)

pencil of light to duplicate the variations at the transmitting station. The
details of how these steps are effected are not of present concern. The
important point is to realize that in principle the operation of sending

pictures by wire is the same as that of sending conversations by wire.

The process of (1) generation, (3) transmission, (5) amplification, and (6)

selection (see page 560) are identical in the two cases. Only (2) modula-

tion and (4) detection are different because the original and final forms

are light patterns instead of sound patterns. The process of broadcast

television differs from that of telephotography somewhat as moving picture

photography differs from ordinary still photography. Instead of there

being nearly twenty minutes to send a picture, as in telephotography, a

televised picture must be completed in about one-sixteenth of a second.

During that brief interval the scanning, transmission, and restoration at

the receiving end must be completed, for to avoid flicker, sixteen such

Fig. 461. A Portion or a Telephotograph

Produced by Lines of Variable Width

Fig. 462. A Common Type of
Exposure Meter

(Courtesy of Weston Electrical

Company.)
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pictures must succeed each other every second. The basic process is the

same in both cases, however, though the mechanism involved in so enor-

mous a speeding-up is necessarily different.

The Photoelectric Cell

Playing a central r61e in telephotography as well as in television is a

device which will merit special attention by way of concluding this chapter.

It is known as the photoelectric cell . It is the principal agent through which

electric currents may be modulated by light patterns. The pencil of light

which penetrates the transparency at the sending end of the line strikes a

photoelectric cell which, with the aid of its accessories, acts to convert the

fluctuating intensities of light into corresponding fluctuations of current.

It depends on a phenomenon, first observed by Hallwachs in 1888, that

under appropriate conditions electrons are liberated from metal surfaces by
light, especially by ultra-violet light. The short-

ness of the interval between the incidence of the

light and the release of electrons was astonishing,

being only a few billionths of a second. Ampli-

fication of the small potentials thus created made
it possible to use the photoelectric cell to effect

modulation of an electric current by light. In

recent years, synthetic surfaces have been con-

structed which are enormously more effective

than metals. 1 A different type of cell, which

generates currents instead of merely emitting

electrons when exposed to light, is becoming fa-

miliar to photographers as the working nucleus

of the “ exposure meter.” The current generated

in such cells is caused to actuate a delicate but rugged galvanometer, so

that the whole compact assembly can be used to make a rapid determina-

tion of the intensity of light. These cells are sometimes termed “ photo-

voltaic,” a very descriptive name, to distinguish them from the older type

termed “
photoelectric.”

Fig. 463. A Common Type
of Photoelectric Cell
(Courtesy of Weston Electrical

Company.)

Questions for Self-Examination

1. What is the principal scientific problem involved in operating long telegraph

cables?

2. How does the simple modern telephone differ from that invented by Alexander

Graham Bell?

3. Describe the two main stages in the development of long-distance telephony.

4. Tell how a “vacuum tube” acts as a rectifier.

5. Outline the principle of sending pictures by wire.

1 Notably that devised by M, J. Kelley of the Bell Telephone Laboratories. See Bell Labora-
tories Record

,
October, 1933.
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Radio Communication

The Versatility of Radio

Radio is the miracle of the ages. Aladdin's Lamp, the Magic Carpet, the

Seven League Roots of fable and every vision that mankind has ever enter-

tained, since the world began, of laying hold upon the attributes of the

Almighty, pale into insignificance beside the accomplished fact of radio.

By its magic the human voice may be projected around the earth in less

time than it takes to pronounce the word “radio."

The story of wireless broadcasting has ramifications as ancient as civili-

zation because since time began men have struggled with the very riddle

to which this latest triumph of human ingenuity brings solution. Blind

gropings of generations of experimenters have contributed to progress along

the pathway to the pinnacle from which . . . science suddenly glimpsed the

secret of radio broadcasting. (4:3.)

Radio is playing an ever-increasing part in human life on land, on sea, and

in the air. It makes possible a great deal more than the mere communica-

tion of news, entertainment, and messages from place to place. It plays an

important part in navigation. The radio beacon and the radio compass

permit the pilot and mariner to locate positions in fog and storm. The
radio printer delivers his weather maps daily. Without radio, travel by
air would not be, as it is fast becoming, one of the safest methods of trans-

portation. Radio instruments indicate the absolute altitude of the plane,

guide the airliner from port to port, and facilitate landing, making “blind”

flying possible. The pictures in our daily newspapers are transmitted by
wireless. Even the geophysicist does prospecting by means of radio instru-

ments.

In the opening paragraphs of the chapter on the telegraph and telephone

six typical operations involved in various methods of communication were

enumerated. Each of these six operations plays an important part in radio

communication. They are important enough to warrant restatement here.

These six operations are: (1) generation of some effect which can be trans-

mitted, this effect being called in radio the carrier wave
,
or carrier; (2) mod-

ulation of the carrier by the signal to be transmitted; (3) transmission to

the receiver; (4) selection of the modulated carrier at the receiver, this

process being commonly called tuning; (5) detection
,
or conversion of the
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Ballast resistance

Fig. 464 . The Transmission of Sound Over a Light Beam

modulated carrier into intelligible signals; and (6) amplification of weak

electric currents.

The Transmission of Sound over a Light Beam

Light beams have occasionally been used as carriers of sound. Though

such an experiment is more of a “stunt” than a scientific or utilitarian

measure, it furnishes an apt illustration of some of the principles of radio.

The process is shown in Figure 464. The carrier is a beam of light generated

in Sj a special light source operating on principles similar to the familiar

neon lamp. In fact a small neon lamp may be used. This type of lamp

has its light produced by an electrical discharge in a rarefied gas and differs

from the ordinary incandescent, or filament type, lamp in that the intensity

of the light emitted can be made to change very rapidly.

The battery J3j furnishes the voltage to operate the light source S. As

long as the current through this lamp remains constant the intensity of the

light emitted remains constant. If, however, afluctuating current, produced

when sound strikes the microphone M, is sent through the primary of the

transformer T, the fluctuating voltage produced in the secondary of this

transformer is superimposed on the voltage already applied by the battery

Bt to the lamp 5. This causes the current through the lamp, and hence

the light radiated from it, to fluctuate in intensity in accordance with the

sound vibrations striking the microphone. The light is then said to be

modulated by the sound current originating in the microphone M . The
light radiated from the source falls on the lens Li which converts it into a

nearly parallel beam. The apparatus described thus far may be called the

transmitter.

The modulated beam of light is directed at the lens L2>
which focuses it

on the photoelectric cell P . The photoelectric cell, as explained in the pre-
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ceding chapter, has the property of conducting electricity in proportion to

the amount of light incident upon it. Thus, when the light beam is con-

stant in intensity, the current through the photoelectric cell is constant,

and when the light beam is modulated, the current through the cell fluctu-

ates in accordance with the modulation. The photoelectric cell serves as

the detector
,
or converter of the modulated carrier into a current, the fluctua-

tions of which are the same in frequency and relative intensity as those

produced by the microphone at the transmitter. This fluctuating current

through the cell is very feeble end must be amplified before being applied

to a speaker to be converted into sound. The receiving apparatus, begin-

ning with the second lens and ending with the speaker, is commonly referred

to simply as the receiver.

Thus has been described the generation of the carrier at the light source;

the modulation of the carrier by a voice current; the propagation of the

carrier through space; the detection of the modulated carrier by a photo-

electric cell; and amplification both in the transmitter and receiver.

If modulated beams of light from two similar transmitters were to fall

simultaneously on the receiver, interference would result. This confusion

could be eliminated by making the light radiated from transmitter A red

and that from B blue. Then either transmitter could be selected at will, A

Fig. 465. Heinrich Hertz (1857-1894)
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by placing a red transmission filter in front of the photoelectric cell, and B
by a blue filter. This process could be termed selection.

The transmission of sound by a modulated light beam involves the same

fundamental operations as form the basis of radio communication. In-

deed, it will presently be shown that in both cases the sound is carried by
modulated electromagnetic waves.

The Discovery of Electric Oscillations

Wireless communication was made possible, not through the efforts and

discoveries of any one man, but by the accumulated results of the works

of many. As stated in Chapter 43, Joseph Henry in 1842 discovered the

existence of the electrical oscillations produced by the spark discharge of a

condenser. Though the nature and properties of these oscillations were

not comprehended until many years later, Henry surmised that there was

some similarity between their behavior and that of light. He made the

comparison as follows (70 :33) :

It would appear that a single spark is sufficient to disturb perceptibly the

electricity of space throughout a cube of 400 feet capacity, and ... it may
be further inferred that the diffusion of motion in this case is almost com-

parable with that of a spark from flint and steel in the case of light.

Based on the vast amount of data that had been accumulated and the

theories that had been formulated on electricity and magnetism, especially

on the experimental researches of Faraday on electricity and the work of

Henry, Lodge, and others on electrical oscillations, James Clerk Maxwell

wrote in 1856 his famous theoretical paper, A Dynamical Theory of the

Electromagnetic Field. In this paper he propounded the theory that if

electrical waves could ever be generated, they would travel through space

with the speed of light and that light was essentially an electromagnetic

phenomenon. Furthermore, he pointed out that light and electrical waves

should differ only in wave-length or frequency; and any difference in their

behaviors should be the result of the difference in wave-lengths. We know
now that gamma rays, X-rays, ultra-violet light, visible light, infrared

rays, heat radiation, and radio waves are all electromagnetic in nature.

Maxwell’s theoretical and highly mathematical developments leading to

his electromagnetic theory were not fully appreciated until some years

later. One outstanding scientist (Fitzgerald) even went so far as to publish

a paper On the Impossibility of Originating Wave Disturbances in the Ether by

Means of Electric Forces .

Hertzian Waves

The electromagnetic waves predicted by Maxwell on purely theoretical

grounds and on indirect evidence were not demonstrated until the later

years of his life. In 1888 a young German physicist, Heinrich Hertz (1857-

94), not only produced and demonstrated these waves but also showed



Chapter 47 radio communication 577

that they had many of the properties of light. They were subject to the

laws of reflection, refraction, and interference. Subsequently it was shown
that their speed was identical with the speed of light.

Hertz’s experiment is shown diagrammatically in Figure 466. The left

spark gap was connected to the terminals of the secondary of an induction

coil. The passage of a spark produced
an oscillatory discharge in space, of

form similar to that shown in Figure

425, creating an electromagnetic wave
which traveled out into space with

the speed of light. A few feet away
was placed a rectangular conductor

with a small spark gap. A sliding rod 1< IG . 466 . The Generation of

EF
,
while making good contact with Hertzian Waves

the other two wires, could be moved
along, thus changing the electrical properties of the circuit. Hertz found

that when the sliding rod was properly adjusted a spark discharge

produced a small but definite spark at the second gap, thus proving that

energy in the form of an electromagnetic wave did pass from the “ trans-

mitter ” to the “receiver.”

Experimentation was carried on further by Hertz and others, notably

Lodge in England, Popoff in Russia, and Branly in France. Strange as it

may seem, none of these men realized that they had within their grasp a

means of wireless communication, a goal long sought by such men as Henry,

Faraday, Morse, Bell, Trowbridge, Edison, and Preece. Sir William

Crookes, in 1892, was the first to predict the use of electromagnetic waves

for telegraphic communication, lie even indicated the possibility of tuning

to special wave-lengths.

The Birth of Wireless Communication

In the summer of 1894 a young Italian, Guglielmo Marconi, twenty

years of age, chanced to read an article describing the work of Hertz, who
had died earlier in the year. It was there that the young experimenter got

his idea of using the radiated Hertzian waves for communication. “It

seemed to me,” said Marconi some time later, “that if the radiation could

be increased, developed, and controlled it would be possible to signal across

space for considerable distances. My chief trouble was that the idea was

so elementary, so simple in its logic, that it seemed difficult for me to be-

lieve that no one else had thought to put it into practice. I argued, there

must be more mature scientists who had followed the same line of thought

and arrived at almost similar conclusions. From the first the idea was so

real to me that I did not realize that to others the theory might appear

quite fantastic.”

Marconi had a vision and fulfilled it. Within two years he succeeded in

sending code signals by electromagnetic waves over a sufficiently great dis-
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tancc to warrant taking out a patent and presenting his invention to the

public. Almost immediately the cry went up from many quarters that

Marconi was not the true inventor of wireless. It was claimed that all he

did was to take advantage of the work done by others, merely acquiring and

adapting their theories and their devices. Some commentators were more

generous. One competent writer said (70:28):

Let me say at once, to avoid misunderstanding, that without the energy,

ability, and enterprise of Signor Marconi, what is now called the “ wireless

”

would not have been established commercially, would not have covered the

earth with its radio stations, and would not have taken the hold it has

upon the public imagination.

Marconi remained a man of visions and dreams until the day of his

death (1937), but he was neither a visionary nor a dreamer. His keen per-

ception of the latent possibilities in the field of wireless revealed to him

years before their consummation many of the developments and practices

which are now considered commonplace by the scientific world.

The Reception of Radio Broadcasts

When the unmodulated carrier sent out by a radio broadcasting station

falls on the antenna, or “ pick-up ” wire, of a receiving set, there is generated

in the receiver a high frequency alternating current of form shown in

Figure 467. For transmission within the so-called broadcast band the fre-

quency of the carrier will be somewhere between 550 and 1600 kilocycles

per second.

In contrast to these high frequencies, the frequencies of the “sound”

currents generated by the microphone of the transmitter are usually con-

fined to between 50 and 10,000 cycles. These are said to constitute the

Fig. 468 . Audio-Frequency Current Produced in a Microphone by a
Pure Tone
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Fig. 469. Carrier Current Moduiatkd by Audio-Frequency Current

audio-frequency range as contrasted with the radio-frequency range speci-

fied in the preceding paragraph. Figure 468 shows the form of the current

produced in a microphone. A sinusoidal wave-form is selected for sim-

plicity in making and interpreting the diagrams. In practice, the waves

produced by sound currents are seldom as simple as this, but the descrip-

tions about to be given would apply to any wave-form.

The process of modulation at the transmitter results in the amplitude of

the carrier being controlled by the audio-frequency current flowing through

the microphone. Thus, if the sinusoidal audio-frequency current of Figure

468 is used to modulate the carrier of Figure 467, there results a modulated

carrier the envelope of which is a replica of the modulating current. The

form of the resulting current in the antenna circuit of the receiving set is

shown in Figure 469.

A very simple type of receiving set is shown in Figure 470. The antenna

consists of a wire some distance above the earth and insulated from it. L x

is a coil of wire wound on an insu-

lating form. Ci is a condenser the

capacitance of which aan be va-

ried. These elements constitute

the so-called antenna circuit. The

alternating current flowing in this

circuit because of the action of the

carrier wave from the transmitter

will be a maximum when the con-

stants of the antenna circuit are

adjusted so that its resonance fre-

quency corresponds to that of the

carrier wave. This adjustment,

called tuning, is made by varying

thecapacitanceof the condenser Ci

.

Electromagnetically coupled

with the coil L\ is a second coil L%.

The high frequency current flow-

ing through the coil Li induces a

Fig. 470. A Simple Broadcast Re-
ceiver with a Tuned Antenna Cir-

cuit Coupled to a Tuned Circuit with
a Crystal Detector
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and is shown by the dotted line.)

Speaker

Fig. 473. Schematic Diagram of a Radio Receiver

corresponding high frequency voltage in the coil L2j the two coils together

constituting a radio-frequency transformer. The coil L2 and the variable

condenser C2 constitute an oscillating circuit in which current flows, the

current being at maximum when the circuit is tuned to resonance by adjust-

ment of the capacitance of the condenser C2 . The high frequency voltage

across the condenser in this circuit is applied to the detector and the head-

phones connected in series.

The detector has the property of rectification, that is, it permits current

to flow in one direction and not the other. In the case under consideration

the current flowing through the detector may be represented as in Figure

471. While this current is unidirectional, reference to Figure 471 shows

that it may be considered as a sinusoidally fluctuating direct current of

audio-frequency on which is superimposed a radio frequency of varying

amplitude. The radio-frequency component passes through the small by-

pass condenser of Figure 470, this condenser having a relatively low im-

pedance for such a high frequency. The fluctuating direct current com-

ponent, which in form and frequency is similar to that in the transmitter

microphone, flows through the head-phones and is reproduced as sound.

In this receiver there are embodied the two fundamental operations of

tuning and detection. In practice the modulated radio-frequency current
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is amplified before detection so as to be satisfactorily detected and again
after detection so that a loud speaker can be used. As schematically repre-

sented in Figure 473, a modern radio receiver contains a tuner, a radio-

frequency amplifier, a detector, an audio-frequency amplifier and a speaker.

The Thermionic Vacuum Tube

Without question the invention of the thermionic vacuum tube did more
to make modern radio what it is today than any other single accomplish-

ment since the birth of radio. Although volumes have been written on the

theory and application of thermionic vacuum tubes, it will be advantageous

to consider but a few of the applications, for example, the use of the two-

electrode vacuum tube as a detector and of the three-electrode tube as an
amplifier and as an oscillator.

In Chapter 46 the process of rectification of alternating currents by

means of the diode, or two-electrode vacuum tube, has already been de-

scribed. A diode could be used as the detector in the receiver of Figure 470.

The student will have no difficulty in understanding its action there, espe-

cially if he refers to rectification as explained in Chapter 46.

The Triode

Before we take up the action of the triode, or three-electrode vacuum
tube, as an amplifier, it will be helpful to examine one of its characteristics.

The structure and basic principles of operation of the triode have already

been given in the previous chapter. Figure 474 shows how the relation be-

tween the plate current and the grid voltage can be determined. The bat-

tery Eb serves as the source of potential for the plate circuit. The milliam-

meter Ip measures the current in the plate circuit. The battery Ec ,
to-

gether with the potential-dividing rheostat P, makes it possible to make the

grid negative with respect to the cathode by any desired voltage within the

range of the battery. The voltmeter Eg
indicates the voltage applied to

the grid. Moving the slider on the rheostat P changes this voltage and

changes the current IP in the plate circuit. Part (b) of Figure 474 shows

the dependence of the plate current Ip on the grid voltage Eg . As explained

in the former discussion of the three-electrode tube, the grid is nearly

always kept negative with respect to the cathode. Use of this character-

istic curve is made in the explanation of the triode as an amplifier.

With the triode as an amplifier (Figure 475), the straight-line portion of

the characteristic curve is used. The average voltage of the grid is main-

tained at the midpoint of the straight-line portion of the characteristic

curve. The voltage to be amplified is applied to the grid by means of the

input transformer 2\, this voltage fluctuating about the average value of

the grid voltage maintained by the battery Ec . As shown in Figure 476,

this causes a fluctuating direct current to flow through the primary of the

output transformer T2 in the plate circuit of the tube and to induce an al-

ternating voltage in the secondary of this transformer. This voltage is



Fig. 474 . Experimental Determination of the Relation Between the
Plate Current and the Grid Potential of a Triode

(Part (b) shows the characteristic Ip - F.g curve of a triode.)

Fig. 475 . The Triode as an Audio-Frequency Amplifier

the same, in frequency and wave form, as that impressed on the primary

of the input transformer, but is capable of furnishing more power. The
output voltage may be further amplified or may be used in any manner de-

sired, for example, to operate a loud speaker. The amplification of radio

frequency voltages is very similar except that transformers are used which

do not have iron cores.

The triode may be used as a generator either of audio-frequency or radio-

frequency oscillations. In Figure 477 the inductance L\ and the condenser

Ci form an oscillatory circuit. When oscillations are set up n this circuit

they tend to “die down” in the manner shown in Figure 425 (Chapter

Fig. 476. The Performance of
the Triode as an Amplifier

Fig. 477 . The Triode as a Radio-
Frequency Oscillator
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Fig. 478. A Simple Radio Telephone Transmitter

43) due to the dissipation of energy. But the alternating voltage across the

condenser Ci is impressed on the grid of the tube causing fluctuations of

the same frequency in the plate current. The coil L2 in the plate circuit is

inductively coupled with the coil Lh and the fluctuating current through

the coil L2 induces an alternating voltage in the coil Lu which is of the same

frequency and phase as the oscillations in the L1C1 circuit. Sufficient en-

ergy is fed into this circuit to overcome the losses, and continuous oscil-

lations are maintained, the frequency of which is determined by the values

of the inductance Li and the capacitance C\. By the proper selection of Li

and Ci, continuous oscillations may be obtained, from a few cycles per

second to many billions. In the oscillator shown in the diagram the fre-

quency can be changed by a factor of three or four by adjusting the vari-

able condenser.

A Simple Radio Telephone Transmitter

The simplest type of radio transmitter requires a radio-frequency oscil-

lator to generate the carrier, a means for modulating the carrier with the

sound current, and an antenna to radiate the electromagnetic waves from

the transmitter. A simple radio telephone transmitter is shown in Figure

478 and consists of the oscillator shown in Figure 477 with two additions,

one for modulation, the other for radiation. The pulsating sound current

controlled by the microphone M flows through the primary of the trans-

former T and induces an alternating voltage in the secondary of the trans-

former. This voltage is superimposed on that already applied to the tube

by the battery Ehf the result being that the oscillations generated by the

oscillator are caused to vary in amplitude in accordance with the fluctua-

tions of the sound current. Thus the carrier is modulated. The func-
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tion of the condenser C2 is to by-pass the high frequency current around

the secondary of the transformer. The antenna circuit consists of the

antenna itself, the coil Lz inductively coupled to the coil Lh the variable

condenser C3 ,
and a connection to the earth. When the condenser C3 is

adjusted so that the antenna circuit is resonant to the carrier frequency the

current is a maximum. There is then radiated from the antenna a modu-
lated electromagnetic carrier wave. It is this wave that is picked up by
the antenna of the receiving set.

Continuous Wave Telegraphy

For the transmission of telegraph code signals a transmitter similar to

that shown in Figure 478 may be used. However, instead of modulating

the carrier wave, arrangements are made for starting and stopping the

oscillations by means of a telegraph key. Pulses of radiation of the carrier,

of long and short duration corresponding to dashes and dots of ordinary

wire telegraphy, are radiated from the antenna of the transmitter. This

type of signaling is used because the messages are “readable” over longer

distances than the voice of a radio telephone.

The reception of interrupted continuous wave signals requires a slightly

different type of receiver than that used for a modulated carrier. The re-

ceiver of Figure 479 is identical with that previously described for broad-

cast reception except that a local oscillator is inductively coupled to it by
means of the coil Lz . Therefore there is induced in the coil L2 of the re-

ceiver not only the high frequency current from the transmitting station

but also that of the local oscillator which is tuned to a frequency of about

1000 cycles per second different from that of the transmitter. For ex-

ample, if there were being received interrupted continuous-wave signals of

a frequency of 1,700,000 cycles per second, the local oscillator might be

tuned to 1,699,000 cycles per sec-

ond. The effect of these two radio

frequencies on the receiver can be

explained by means of Figure 480;

(a) represents the frequency of the

local oscillator and (b) that of the

incoming signal. Since these two
frequencies differ by 1000 cycles

per second, they will be exactly in

phase 1000 times each second and
their effects are additive; and 1000

times each second they will be ex-

actly out of phase and their effects

subtractive. The form of the re-

sulting current in the XjC2 circuit is

shown in (c) of the figure. This wave
form is similar to that of a carrier

Fig. 479. A Receiver for Interrupted
Continuous Waves
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Incoming

high

frequency
(b)

Fig. 480 . The Formation of a Beat Wave of Audio Frequency by
Interference Between Two Radio-Frequency Waves

modulated with a 1000 cycle per second frequency. When detected in the
‘

manner previously described in connection with the broadcast receiver, a

tone of 1000 cycles per second will be heard in the phones. If either of the

two high frequencies is lacking, no tone will be heard. Hence, the listener

will hear dots and dashes as sent out by the operator of the transmitter.

Interference

A difference frequency similar to that of one thousand cycles described in

the last paragraph is called a beat frequency . If the beat frequency of two

radio carrier waves falling on the antenna of a receiver lies within the range

of audibility, interference
1 results. The interference manifests itself as a

“whistle,” the pitch of which is determined by the two radio frequencies

causing it. It is to avoid interference of this kind that the Federal Com-

munications Commission has placed the frequency assignments of broad-

casting stations at 10 kilocycle intervals.

In order that a radio receiving set may have the proper selectivity, that

is, the ability to tune in one station to the exclusion of others, it is neces-

sary to make it relatively insensitive to audio-frequencies above five

thousand cycles per second. Since overtones above this frequency contrib-

ute greatly to the fidelity of the reproduction of music, present-day radio

broadcasting and reception fall far short of perfection. Although broad-

casting stations are generally equipped to reproduce programs of higher

fidelity, it is impracticable with the present frequency allocations to have

1 The term interference in this section refers to disturbances caused by beat frequencies,

static, and so forth. It should not be confused with the term interference technically defined

elsewhere in the text.
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radio receivers sensitive to the higher frequencies because of interference.

Without question the most troublesome type of interference present in

radio is that due to static. Electrical discharges of any kind create electro-

magnetic waves. Whether these originate from the dissipation of charges

collected in the atmosphere, especially evident during electrical storms, or

from the sparking of electrical devices, such as automobile ignition systems,

brushes of electric motors, thermostats of beating appliances, or high ten-

sion electric light wires, there result irritating crackling noises in the radio

receiver which cannot be eliminated by any sort of tuning. Some of the

causes can be removed, but not all of them. Even if we had truly high

fidelity reproduction, with our present system of broadcasting it would be

marred by the presence of static.

The difficulty is that static interference consists of electromagnetic dis-

turbances spread over a wide range of frequencies. It cannot be tuned out,

being present throughout the entire range of frequencies used for radio

broadcasting. Any attempt to increase the fidelity of radio reception by
widening the frequency response of the receiver would result in an increase

of the noise from static.

There is, however, a new system of broadcasting, invented by Major
Armstrong and called frequency modulation

,
which does make it possible to

minimize if not eliminate static and to have greatly improved reproduction.

The type of modulation described earlier in this chapter and used in

present-day broadcasting is called amplitude modulation . In this type of

modulation the amplitude of the carrier is made to fluctuate in accordance

with the audio signal being transmitted. The magnitude of the fluctuation

depends on the strength or intensity of the audio signal. The frequency

of the carrier amplitude fluctuations depends on the frequency of the audio

signal.

In frequency modulation the frequency of the carrier is made to fluctuate

in accordance with the audio signal being transmitted. The magnitude of

the carrier frequency fluctuation depends on the strength or intensity of the

audio signal and the number of carrier frequency fluctuations per second

depends on the frequency of the audio signal. For example, if a sinusoidal

audio signal of 1000 cycles per second were used to frequency-modulate a

carrier of 44,000 kilocycles, this carrier frequency would be made to fluctu-

ate sinusoidally 1000 times per second between two frequencies, say 43,990

and 44,010 kilocycles per second. If the audio signal of 1000 cycles per

second were made twice as great in amplitude the carrier frequency would
be made to fluctuate 1000 times per second between 43,980 and 44,020 kilo-

cycles per second. Thus the frequency and amplitude of the fluctuations

of the carrier frequency are determined by the frequency and amplitude

of the audio signal.

Throughout the entire frequency-modulation system of broadcasting

and reception every attempt is made to eliminate amplitude modulation of

the carrier. Most types of interference, including static, are similar to
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amplitude modulated signals. Therefore they are eliminated by a re-

ceiving system which is made insensitive to amplitude modulation.

The Radio Spectrum

High fidelity broadcasting requires the reproduction of audio-frequencies
up to 15,000 cycles per second. Proper frequency modulation of the carrier

under these circumstances requires a band of radio frequencies 200 kilo-

cycles wide. This band is twenty times as wide as that now ordinarily

used by an amplitude modulated transmitter. On the other hand, a tele-

vision transmitter requires a band of radio frequencies from 4000 to 6000
kilocycles wide. The present band of frequencies used by broadcasting

stations extends from 550 to 1590 kilocycles per second. Only five fre-

quency modulated transmitters could operate simultaneously in this range,

while it would take from four to six times this range to accommodate one

television transmitter.

At the present time the assigned radio spectrum extends from 17.6

kilocycles per second to 401,000 kilocycles per second, that is, from a wave-

length of about 17 kilometers to 75 centimeters. This spectrum is divided

up into over a thousand bands which are allotted to the various services by
the Federal Communications Commission. The assignment of these bands

of frequencies is made somewhat easier because of the fact that the shorter

radio waves are usable for comparatively short distances only.

The Propagation of Radio Waves

The energy radiated from a transmitter may be propagated as a ground

wave along the surface of the earth or as a sky wave through the atmosphere.

The ground wave becomes weaker as it travels from the transmitting an-

tenna, the attenuation depending in a complicated manner on the distance,

the frequency, and the electrical conductivity of the earth. The sky wave

consists of energy radiated in directions other than along the ground. If

these waves were to continue onward in their original direction they would

of course have their energy lost in space.

There is, however, beginning some one hundred kilometers above the sur-

face of the earth, a region in the atmosphere where the radiation from the

sun has produced ionization to a degree sufficient to cause “reflection” of

radio waves. This ionized region, or ionosphere (also termed the Kennelly-

Heaviside layer after the two scientists who independently suggested

its existence) does not really reflect the radio waves but rather bends them

back to the earth by a continuous refraction process similar to that in-

volved in the formation of mirages. The amount of penetration of the

radio wave into the ionosphere before being bent back to the earth depends

in a complicated manner on the direction and frequency of the wave and

on the density of the free electrons in the ionosphere. That there are

several effective “ reflecting” layers in the ionosphere and that some of the
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layers undergo diurnal and seasonal variations as well as variations corre-

lated with sun-spot cycles add to the complexity of the situation.

During the daytime, signals received on frequencies within the broadcast

band are transmitted by the ground wave, the sky wave being almost com-

pletely attenuated. At night, however, the sky wave plays an important

part and accounts for the reception of radio signals at distant points.

In the so-called short-wave region (1600 to 30,000 kilocycles) the ground

wave is attenuated so rapidly as to be of no importance except for very short

distances. Short-wave communication depends on the sky wave which

may be “reflected” back and forth several times between the ionosphere

and the earth before it is received at a far distant point. In the ultra-

high frequency range (30,000 kilocycles and upward) the ground wave is

very quickly absorbed and there is no “ reflected ” sky wave. Satisfactory

communication in this region can be obtained only by using waves which

pass from the transmitter to the receiver in a straight line. Due to the

curvature of the earth this limits the range to a few miles. For this reason

the reception of television and frequency modulated signals, which are al-

located to the ultra-high frequency region, is limited to a distance of ap-

proximately thirty-five miles from the transmitting antenna. This means

that for the near future, at least, these services will be limited to metro-

politan areas.

Questions for Self-Examination

1. Outline the stages.involved in transmitting sound over a beam of light and com-

pare them with radio transmission.

2. Compare the contributions of Maxwell, Hertz and Marconi to the birth of radio

communication.

3. Distinguish between a transmitted radio signal and the accompanying carrier wave.

4. Draw the circuit of a simple broadcast receiver, without amplification, and tell

the function of each part.

5. Describe the “ triode ” and tell how it functions (a) as an amplifier, (/>) as an electric

oscillator.

6. Why can a continuous (unmodulated) radio wave not be heard? How can it be

made audible for purposes of radio telegraphy?

7. Distinguish between amplitude modulation (the older method) and frequency

modulation. What is the advantage of the latter?

8. What causes radio waves to take the curved path necessary to travel around
the earth?
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Cathode Rays and the Electron

Instrumentation as an Element in Scientific Discovery

The history of scientific discovery is to a great extent the history of scien-

tific instruments and improvements in experimental technique. This is

especially true of those remarkable discoveries of the twentieth century that

are usually classified under the general heading of “Modern Physics.”

Although the year 1895 is generally considered to be the dividing line be-

tween the new physics and the old, actually the transition was a gradual

process extending over a period of forty years. The immediate cause of the

rapid transition which occurred in 1895-1900 was the discovery of X-rays

and electrons. It must be kept in mind, however, that the investigations

which led to these discoveries originated in the study of electrical discharges

through rarefied gases. These experiments, in turn, were made possible by
improvements in the method of producing high vacuums.

The Evolution of Vacuum Pumps

The first mechanical air pump, which was invented by von Guericke in

1650, has been mentioned on page 85. Except for improvements in me-

chanical details no advance in vacuum technique was made in the next two

hundred years. It was in 1855 that

Heinrich Geissler, a skillful glass

blower in Bonn, Germany, and the

originator of the Geissler discharge

tube, devised a new type of vacuum

pump.
In Geissler’s apparatus all mechan-

ical plungers and leather valves were

eliminated, and the only moving part

was a column of mercury. The ac-

tion of the pump depends upon the

existence of the Torricellian vacuum

in the top of a barometer tube (page

85). The operation of Geissler’s

apparatus is easily understood with

the aid of Figure 481. A is the glass
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vessel which is to be evacuated. B is a bulb blown in the top of a barom-

eter tube, which is connected to a reservoir of mercury R by means of the

rubber tube T. This reservoir can be raised or lowered by means of a cord

and windlass.

With the stop-cock C2 closed and C\ open, R is raised until the level of

mercury reaches C\. Ci is then closed and R lowered until the mercury

level is at h and B is evacuated. C2 is now opened, and the air originally

contained in A is distributed between A and B. By repeating the above

process, the air in B is forced out through C\. In each operation a certain

fractional part of the remaining air in A is removed. After several hours

of slow and monotonous work, a high degree of vacuum can be attained—
the final pressure being determined by the tightness of fit of the stop-cocks

and the vapor pressure of mercury. All the early discharge tubes and X-ray

tubes were evacuated by this slow, laborious method.

The next important advance was the invention of the diffusion pump
by Gaede and Langmuir in 1913. This pump has no moving parts and is

very fast. In a few minutes it can produce a higher vacuum than it is pos-

sible to obtain in several hours with the older type of apparatus. The es-

sential part of the Langmuir pump is a jet of mercury or oil molecules which

are moving with a high speed. This molecular stream tends to drag along

adjacent layers of air so that a pumping action results.

With modern technique, pressures as low as 10~8 millimeters of mercury

can be maintained in large vessels. It must be remembered, however, that

current expressions such as “vacuum tube” and “high vacuums” must be

interpreted in a relative sense. Even at the very lowest pressures now ob-

tainable there are still approximately

one hundred million molecules of air

in each cubic centimeter of the “vac-

uum.” Although this number sounds

very large, the molecules are so small

that at this pressure an atom of elec-

tricity can travel several feet with-

out colliding with a single molecule.

The Electric Discharge in Rarefied

Gases

When an electric discharge passes

through a gas at low pressure, several

beautiful and interesting effects can

be observed. A convenient arrange-

ment for studying these effects is

shown in Figure 482. The induction

coil supplies the high potential re-

If the glass tube is relatively long—
or five feet— the display is more spectacular.

Fig. 482. Appearance op Electric
Discharge 'Through a Partial Vac-
uum

quired to maintain the discharge.



Chapter 48 CATHODE RAYS AND THE ELECTRON 591

At atmospheric pressure, there is no discharge. But when the pressure

is reduced to 7 or 8 centimeters of mercury, a violet-colored thread of light

extends from one electrode to the other. As the exhaustion proceeds the

tube becomes filled with a soft glow, and at pressures of from 1 to 2 milli-

meters of mercury the discharge has the characteristics shown in Figure

482. The cathode appears to be covered with a velvety, luminous coating

A called the cathode layer. Beyond this is a dark region D known as the

Crookes 7 dark space. Next is a luminous patch A, called the negative

glow, which is followed by the Faraday dark space F . The remainder of

the tube is filled with a luminous band P, known as the positive column,

which is divided into sections or striae of unequal intensity.

The length of the Crookes 7 dark space is independent of the distance

from cathode to anode but is a function of the pressure. As the exhaustion

of the tube proceeds, the Crookes’ dark space becomes longer, while the

positive column becomes shorter and less luminous. At a pressure of ap-

proximately .001 millimeter of mercury the positive column disappears

and the Crookes’ dark space seems to fill the tube. At the same time the

glass walls of the tube in the region surrounding the anode glow with a

bright green fluorescent light.

It is natural that the first detailed study of discharge phenomena should

have been made in Bonn, the home of Geissler. Three years after Geis-

sler’s invention of his vacuum pump, Plueckcr, professor of Physics at the

University of Bonn, published a paper entitled The Influence of a Magnet

upon the Electric Discharge in Rarefied Gas . Using a highly evacuated tube

he observed the green fluorescent glow described above. But his most

important observation was that when the tube was brought near an

electromagnet the position of the glow shifted, changing from one side to

the other when the polarity of the magnet was reversed. He also observed

that the effect of the magnetic field upon the luminosity was independent

of the nature of the gas in the tube and the material of the cathode. Gold,

silver, and copper cathodes gave identical effects.

In 1869, Pluecker’s student and colleague at Bonn, W. Hittorf, began

a new series of investigations on discharge phenomena. He made the

interesting discovery that all objects, solid or liquid, conductor or insulator,

cast a well-defined shadow when placed before the cathode of a discharge

tube. This shadow of an opaque object was later demonstrated in a

spectacular manner by the English chemist Sir William Crookes. The

type of tube used by Crookes, which is still in common use for demonstra-

tion purposes, is shown in Figure 483. When the electrode C is used as the

cathode or negative terminal for the discharge a shadow of the cross is

visible as shown in the figure.

The existence of these sharp shadows suggests that something is coming

from the cathode which travels along straight lines. In order to verify this

hypothesis Pluecker devised the tube shown in Figure 484. He observed

that when the electrode b was used as the cathode, the negative glow filled
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Fig. 483 . Type of Discharge Tube Fig. 484 . Type of Discharge Tube Used
Used by Crookes by Pluecker

the long arm of the tube. On the other hand, when a was used as the

cathode the glow was confined to the short arm; the luminosity did not

bend around into the arm cb . Hittorf therefore concluded that the glow

was propagated along straight lines or rays and that each point of the cath-

ode acted as the source of a cone of rays.

He observed also that if the cathode was a plane disk, a magnetic field at

right angles to the line of discharge caused the negative glow to shift to the

edge of the disk. He interpreted this shift correctly as an example of the

motor principle.

Rival Theories Concerning Cathode Rays

During the next decade the principal studies of discharge phenomena
were made by Goldstein in Berlin and Crookes in England. In addition to

verifying Hittorfs work, Goldstein showed that the luminous “rays”

given off by the cathode were perpendicular to the emitting surface. This

is quite different from the emission of ordinary light, where the radiation

is emitted in all directions. The study of this effect led Goldstein to waste

a great deal of time and energy in making several hundred cathodes of

various geometrical forms. The ultimate scientific value of all this work

was negligible. He did, however, make two contributions which influ-

enced later developments. One of these, the discovery of positive rays,

will be discussed in Chapter 51. The other was the proposal and defense

of the hypothesis that cathode rays were a type of electromagnetic radia-

tion similar to light. The term “cathode rays” — kathodenstrahlen in

German — was introduced by Goldstein although it seems to have been

suggested orginally by Wiedemann.
Meanwhile Sir William Crookes, who had acquired experience in high

vacuum technique in connection with his radiometer experiments, had be-

gun to work on cathode rays. Crookes was largely self-taught and, like

Faraday, had had no training in mathematics. But these deficiencies were

outweighed to a certain degree by his experimental ingenuity and his re-

markable imagination. Another important factor which contributed to

his productivity and success was the great technical skill of his assistant

and glassblower, G. C. Gimingham. Some of the tubes that he built have

never been improved upon.
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Crookes adopted the hypothesis— first proposed by Varley in 1871 —
that the cathode rays were tiny corpuscles shot off in straight lines from the

cathode. Following a suggestion that Faraday had made in 1816, he called

these corpuscles “ radiant matter” or

matter in a fourth state or condition which is as far removed from the

state of a gas as a gas is from a liquid.

Consequently all his experiments were designed for the purpose of proving

the corpuscular nature of the rays. First, he verified and extended earlier

observations on shadows and magnetic deflection. Then he attempted to

prove that the cathode rays have momentum.

The Momentum and Kinetic Energy of Cathode Rays

According to Newtonian mechanics, a stream of material particles mov-
ing with high speed must have momentum and kinetic energy. In order to

demonstrate the momentum of the rays Gimingham constructed the tube

shown in Figure 485. The paddle wheel W has light mica vanes and rolls

freely along the horizontal glass rails g. When electrode a is the cathode

the wheel rotates to the right, and when b is the cathode it rotates in the

opposite direction. At the time, this experiment was considered by many
to be conclusive evidence in favor of the corpuscular theory. Several years

later, however, J. J. Thomson showed that the observed rotation is pro-

duced by the heating of the vanes and not by the transfer of momentum
through direct impact. Since ether waves also produce a heating effect

the experiment is not decisive.

The transmission of energy by the cathode ray beam was demonstrated

by the tube shown in Figure 486.

The cathode c is a spherical cap

which focuses the rays at the

point £>. When a discharge is

sent through the tube the plat-

inum disk at b becomes white

hot. When the cathode rays are

deflected by a magnet the heat-

ing effect disappears.

Fig. 485 . Tube Designed to Show Fig. 486 . Tube Designed to Show
that Cathode Rays Possess Mo- that Cathode Rays Possess Ki-
MENTUM NETIC ENERGY
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Early Reactions to the Study of Cathode Rays

Since Crookes was an able and vigorous expositor of scientific subjects,

his work soon attracted attention. In 1879 he was invited to give a general

lecture on cathode rays— or radiant matter as he called them— before

the British Association.
.
In this address, he gave spectacular demonstra-

tion of all the known properties of radiant matter. The list of his demon-

strations is instructive and worth repeating. He showed that cathode rays

produced fluorescence, traveled in straight lines, were deflected by a

magnetic field, carried momentum and transmitted energy. Furthermore,

he emphasized the fact that all these effects were entirely independent of

the chemical nature of the gas in the tube and the material of the cathode.

Crookes concluded his address with the following enthusiastic and pro-

phetic statement: 1

In studying this fourth state of matter wc seem at length to have within

our grasp and obedient to our control the little indivisible particles which,

with good warrant, are supposed to constitute the physical basis of the

universe. We have seen that in some of its properties radiant matter is

as material as this table, whilst in other properties it almost assumes the

character of radiant energy. We have actually touched the borderland

where matter and force seem to merge into one another.

I venture to think that the greatest scientific problems of the future will

find their solution in this border land, and even beyond; here, it seems to me,

lie Ultimate Realities, subtle, far-reaching, wonderful.

Crookes’ demonstrations were generally taken to substantiate his verdict

that cathode rays were “ matter,” albeit in a “ fourth state.” But accord-

ing to Maxwell’s theory, electromagnetic waves possessed four of the five

properties demonstrated. The one characteristic of the rays that was not

shown by electromagnetic waves was deviability in a magnetic field.

Crookes’ enthusiasm was not shared by the majority of English physi-

cists. Many were apathetic and some actually hostile. The latter went so

far as to advise young men not to enter this field of research. They main-

tained that the study of cathode rays had no future. Their attitude was
well expressed by a wealthy manufacturer who had endowed a physics

laboratory. When he was shown a long discharge tube in operation he

remarked, “How beautiful and how useless.”

In Germany the corpuscular idea encountered strong opposition because

it was in direct conflict with Goldstein’s ether theory. Helmholtz, how-

ever, who was the leading German theorist at that time, favored the corpus-

cular view. He made several unsuccessful attempts to convert Goldstein.

The strongest support for the ether theory came from the work of Hertz

and Lenard during the period 1880-94. In order to appreciate Hertz’s

keen critical insight we must consider first an experiment of fundamental

importance made by Rowland in 1876.

1 Report of the British Association for the Advancement of Science (1879).



Chapter 48 CATHODE RAYS AND THE ELECTRON 595

Rowland's Experiment

When Maxwell wrote his Treatise on Electricity and Magnetism in 1873,

he was in doubt concerning the following question: Is a piece of matter that

is charged electrostatically and moving with high speed equivalent to an
electric current in a wire? If so, a magnetic effect similar to that existing

around the wire should be produced. Maxwell calculated the anticipated

magnetic effect as being within the range of experimental possibilities.

At the suggestion of Helmholtz, Rowland attempted to obtain an answer

to Maxwell’s question. He attached strips of tin foil to the outer part of a
glass disk, charged the strips electrostatically and set the disk into rotation.

When the speed of rotation was sufficiently high a magnet near the disk was
deflected; reversing the direction of rotation produced a deflection in the

opposite direction. Owing to this experiment and to additional support

based on theoretical considerations all physicists at the time accepted the

principle that a moving charged body is equivalent to an electric current.

The Experiments of Hertz and Lenar

d

Hertz saw that this principle provided the means of making a crucial test

of the corpuscular theory. The presence of a magnetic field would be con-

vincing evidence for moving corpuscles. But he was never able to detect

such a field near the cathode ray beam. A few years later he devised an-

other crucial experiment. The cathode rays were shot between two parallel

plates, one of which carried a positive charge and the other a negative. The

principles of electricity required that a charged particle must be deviated in

passing between the plates. Hertz was unable to detect even the slightest

deviation. These two experiments convinced him that the corpuscular

theory was untenable. His conclusion was logically sound but unfor-

tunately his experimental results were wrong. Later work with improved

technique showed that both effects actually exist.

In 1892 the ether theory received additional support when Hertz showed

that cathode rays can penetrate thin sheets of metal. This interesting

effect was thoroughly examined by Lenard who used a tube similar to that

shown in Figure 487. One'end of the glass tube is closed with a metal plate

P . A small hole in the plate is covered with aluminum foil F . A sheet

of foil .003 mm. thick is transparent to cathode rays but impervious to air.

Cathode

Fig. 487 . Lenard Tube
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Lenard found that thin sheets of many substances, for example glass, mica,

paper, gold, and copper were partially transparent to the rays. This

showed that Crookes' corpuscles could not be charged atoms or molecules

as had been assumed.

The Decisive Experiments of J, /. Thomson

Using improved technique, Thomson proved the existence of the electro-

static deflection that Hertz had looked for but had failed to find. His most

important results, however, were the first reliable determinations of the

speed of the rays and the ratio of their charge to their mass.

Concerning the cause of Hertz’s failure, Thomson says (77 :583):

On repeating this (Hertz’s) experiment I at first got the same result, but

subsequent experiments showed that the absence of deflection is due to the

conductivity conferred on the rarefied gas by the cathode rays. On meas-

uring this conductivity I found that it diminished very rapidly as the ex-

haustion increased; it seemed then that on trying Hertz’s experiment at

very high exhaustions there might be a chance of detecting the deflection

of the cathode rays by an electrostatic field.

[The apparatus used is represented in Figure 488.]

The rays from the cathode C pass through the slit in the anode A. . .

.

After passing through another slit they travel between two parallel alumi-

num plates about 5 centimeters long and 2 broad and at a distance of 1.5

centimeters apart; then they fall on the end of the tube and produce a

narrow well defined phosphorescent patch At high exhaustions the

rays were deflected when the aluminum plates were connected to a battery

of small storage cells; the rays were depressed when the upper plate was
connected with the negative pole of the battery, the lower with the positive

and raised when the upper plate was connected with the positive, the lower

with the negative pole. The deflection was proportional to the difference of

potential between the plates, and I could detect the deflection when the

potential difference was as small as two volts.

In discussing these results, Thomson says:

As the cathode rays carry a charge of negative electricity, are deflected

by an electrostatic force as if they were negatively electrified, and are

acted on by a magnetic force in just the way in which this force would act

on a negatively electrified body moving along the path of these rays, I can
see no escape from the conclusion that they are charges of negative elec-

tricity carried by particles of matter. The question next arises, What are

these particles? Are they atoms, or molecules, or matter in a still finer

state of subdivision? To throw some light on this point, I have made a
series of measurements on the ratio of the mass of these particles to the

charge carried by it.

The same tube (Fig. 488) was used for the determination of the ratio

mass/charge. When the plates D and E are at the same potential the rays

strike the fluorescent screen at a . When a potential difference exists, and
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Fig. 488 . Interior of Thomson’s Tube to Show
Electrostatic Deflection of Cathode Ray Stream

D is negative, the fluorescent spot is deflected to the position b. The
amount of this deflection ab can be calculated from the principles of me-

chanics and electricity.

Assume a stream of identical charged particles moving to the right be-

tween the plates with a constant speed v. Let the charge of each particle

be e and its mass m. If F is the intensity of the electric field between the

plates the force on each particle is Fe . By Newtonian mechanics each

particle will then have an acceleration a given by

After an interval of time /, its velocity downward Vv will be

Fct

Now let t = h where h is the time required for the particle to travel the

distance l between the plates.

7

11
= -

(3)
V

Fe
^

Fel

m mv
(4)

and equation (2) becomes

where Vvi is the downward velocity of the particle as it leaves the region
*4

between the plates. The actual velocity of the particle Vr is the resultant
— —4

of the horizontal velocity v and Fv i as shown in Figure 489. From the

figure we see that the angle 6 is determined by

. Vvi Fel ...

tan 6 =— = —;• (5)

From Figure 488 we find that the experimental value of tan 6 is ab/a0 .

Since F and l can be measured, equation (5) gives us a numerical value for
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Fig. 489 . Composition of Electron Fig. 490 . Establishing Elec-
Velocities Tronic Charges as Negative

e/mv2
. To obtain the separate values of e/m and v it is necessary to have

another independent relation between them.

Another Relation Yielding Information on Speed of Electrons

This desired relation can be obtained from another experiment in which

the rays are deflected by a magnetic field. It will be recalled that both

Rowland’s experiment and the electromagnetic theory show that a stream

of negatively charged particles moving to the right is equivalent to an

electric current in the opposite direction. If, for example, the magnetic

field in Figure 490 is perpendicular to the plane of the paper and down-
ward, and if its intensity is II each particle will experience a force

/ = IM)IIcV. (6)

Since jjloH is equal to the magnetic induction B
,
equation (6) can be written,

/ - Bev . (7)

When B is expressed in wcbcrs/sq. meter, e in coulombs, and v in meters/

sec, / is in newtons. The force deflecting a stream of electrons is identical

with the force on an equivalent current. As Figure 490 indicates, the

force / has the peculiar property of being perpendicular to both H and v.

This necessitates a continuous change in the direction of /, since the

velocity v is always changing direction. The magnitude of/, however, does

not change.

On page 1 10 it was shown that a particle moving in a circular path of

radius R with a constant speed v has an acceleration of t^/2?, which is

directed toward the center of the circle. This is equivalent to the state-

ment that in uniform circular motion the acceleration of a particle is al-

ways at right angles to its direction of motion. Since acceleration is al-

ways proportional to force, the acceleration of the particle in Figure 490
will be perpendicular to the path. In order to comply with this condition
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and at the same time keep the magnitude of / constant, the path must be
the arc of a circle. The radius R of this circle is given by the equation for

centripetal force (page 110).

Centripetal force = -jj-* (8)

Substituting the value of the force from equation (7), (8) becomes

Bev =
mv2

X (9)

or

BR =
(j^j

v. (10)

(B in webers/sq. meter; R in meters; m in kgms; e in coulombs; v in

meters/sec.)

Equation (10) has proved to be one of the most useful relations in modern

physics. Since B and R can be measured readily it gives a convenient

method of finding v if m/e is known or of comparing values oi m/e for par-

ticles having the same velocity. We shall come across many applications

of (10) in the chapters which follow. As a matter of historical accuracy it

should be pointed out that j. J. Thomson was not the first to derive and

use this equation. It was used in theoretical work by Riecke in 1881, and

three years later Schuster suggested its application to the problem of find-

ing m/ e.

Thomson found the velocity of the cathode rays by adjusting the mag-

netic field B to such a value that the magnetic force Bev was equal and oppo-

site to the electric force Fe. Under these conditions

Bev - Fe or (id

(v in meters/sec; F in newtons/coulomb
;
B in webers/sq. meter). His

original observations gave values of v between 2.2 X .07 and 3.6 X 107

meters/sec. Substituting the value of v in equation (5) he found m/e to

be approximately 10
-11 kgms/coulomb.

Surprising Conclusions from Thomson’s Experiments

Thomson’s value for m/e was surprising; for it was only 10
1
00 of the cor-

responding ratio for the hydrogen ion in electrolysis. At this time the

hydrogen atom was believed to be the lightest particle of matter that could

exist. In discussing his unexpected results Thomson said:

The smallness of m/

e

may be due to the smallness of m or the largeness

of e or to a combination of the two. That the carriers of the charges in the

cathode rays are small compared with ordinary molecules is shown, I think,

by Lenard’s results.
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In other words, the results of Thomson and Lenard can be reconciled and

explained in a satisfactory manner by making the radical assumption that

atoms can be subdivided into smaller particles. The year 1897, therefore,

may be considered as marking the end of the age-old concept of the atom
as an indivisible unbreakable entity. Since that time, the elastic billiard

ball atom of kinetic theory has been replaced by a complex structure of

smaller components. The significance of the new point of view was sum-

marized by Thomson as follows:

Thus on this view we have in the cathode rays matter in a new state, a state

in which the subdivision of matter is carried very much further than in

the ordinary gaseous state; a state in which all matter— that is matter

derived from different sources such as hydrogen, oxygen, etc.— is of one

and the same kind; this matter being the substance from which all chemical

elements are built up.

The Irish theorist G. F. Fitzgerald was the first to appreciate fully the

fundamental significance of Thomson’s work. In 1897 1 he said:

As regards the calculation of the ratio of the numerical measure of the

mass of the corpuscle to the electric charge it carries, there are two sugges-

tions that can be made in respect to it. The first is that we are dealing

with free electrons in these cathode rays.

After pointing out that Thomson’s results do not actually prove that

atoms have been dissociated, he makes the following prophecy:

In conclusion, I may express the hope that J. J. Thomson is quite right

in his by no means impossible hypothesis. It would be the beginning of

great advances in science, and the results it would be likely to lead to in the

near future might easily eclipse most of the other great discoveries of the

nineteenth century.

The profound and extensive alterations in the structure of physics which
resulted from the discovery of the electron, X-rays, and radioactivity will

be treated in the following chapters.

The Zeeman Effect

A few months before Thomson solved the problem of cathode rays a

remarkable discovery was made by P. Zeeman in Leyden, Holland. Plac-

ing a sodium flame between the poles of a magnet, he observed that the

spectral lines which under normal conditions are sharp and narrow, were

broken into two or three lines very close together. An explanation of the

effect was given immediately by the Dutch theorist Lorentz in terms of his

electron theory of matter. Lorentz assumed that just as the electrical

oscillations in an antenna give rise to radio waves-so the vibrations of ions

(or electrons) in an atom produce light. When the atom is in a magnetic
field the vibrating electron is subject to an electromagnetic force given by

1JP, 103 (1897).
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equation (7). This additional force produces a change in the frequency
of vibration of the electron which is manifested by a change in the fre-

quency and wave-length of the emitted light. By observing the change
in wave-length and knowing the magnetic field intensity, Lorentz was
able to calculate the value oi m/e for the vibrating charge in a sodium
atom. His result for this ratio was approximately 10~n kgms/coulomb—
which, within limits of experimental error, is precisely the same as the

value obtained a few months later for cathode rays. Furthermore, Lorentz

showed that the vibrating ion that was responsible for the emission of light

carried a negative charge. When we recall that all cathode rays carry nega-

tive charges and are extracted from matter, it becomes evident that this

tiny negatively charged corpuscle plays an important rdle in physical proc-

esses. To appreciate the excitement and enthusiasm which prevailed in

scientific circles at this time it should be recalled that the discoveries of

X-rays and radioactivity had been announced just the year before, 1896.

The Measurement of the Electronic Charge

Having made the assumption that the corpuscular mass m instead of the

charge e was responsible for the small value of m/e
y
Thomson next under-

took to prove it. Since a direct determination of the mass of a single atom
is impossible, he attempted to measure the charge e. In this case also, it

seemed impossible to proceed directly by observing the charge of a single

ion. He therefore adopted the alternative of measuring the total charge

carried by a known large number of ions. At first sight this seems to in-

volve the impossible task of counting ions which are invisible. But this

aspect of the difficulty was overcome in a very ingenious manner.

At that time a Scotchman in Thomson’s laboratory, C.T. R. Wilson, was

studying the formation of fogs. He found that if ions, that is, atoms or

molecules carrying electrical charges, are present in saturated water vapor,

they act as nuclei of condensation when the vapor is cooled. Around each

ion a tiny water droplet is formed. With proper illumination the fog is

clearly visible and its movement can be observed. Thomson found the

total mass of a given fog by precipitating it and weighing the water. This

weight divided by the mass of a single droplet gives the number of droplets

and presumably the number of ions. But the weight of a single fog droplet

is so small that it must be found by indirect methods.

Here again, Thomson’s ingenuity and wide theoretical knowledge sup-

plied the solution. Early in the nineteenth century, Sir George Stokes had

shown that a small sphere of radius a moving through the air with a speed v

experiences a resistance R given by

R = 6irariv (12 )

where r\ is the coefficient of viscosity of the air. It is owing to this resist-

ance that rain drops fall with a constant speed. As a falling drop gathers
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speed, the resistance of the air increases until it becomes equal to the down-

ward force of gravity on the drop. The resultant force now being zero, the

velocity of the drop remains constant. Neglecting the slight correction

arising from the buoyancy of the air, the downward force on a droplet of

mass m is equal to mg . When the speed of the droplet has reached its con-

stant value Vc,
equation (12) becomes

6 7rarjVc =* R - mg. (13)

But we know that

m = ^ 7ra3d (14)

where d is the density of water. From (13) and (14) we find

a2 = |^- (15)
dg

Having found a from (15) we can calculate the mass of a single droplet.

This, in turn, enables us to find the total number of droplets in the cloud.

The total charge of all the ions in the cloud can be measured with a sensitive

electrometer. Thus all the necessary data for determining the charge of a

single ion is now available.

Using this method and assuming that each droplet contained one ion,

Townsend, in 1897, obtained a value of the ionic charge of approximately

1 X 10~"19 coulombs. After making certain changes in technique, however,

he repeated the experiment and gave his final result as 1.1 X 10“19 coulombs.

The next important improvement in experi-

. B , mental procedure was made by H. A. Wilson
r]l jh

[n 1903. In his method a cloud of droplets is

q » - formed between horizontal parallel plates as

shown in Figure 491. When the plates C and

A
y

Lmm'dimi A are connected to a battery, an electrostatic

doud of
' is established in the region between them.

water droplets If the field strength is E> each ion with a charge

.it , ^ ei will be subject to a force Eei. By selecting

Method of^MeIsu^g ProPer values of E it is possible to hold the

Electronic Charge droplets stationary or to cause them to fall or

rise. In the last case the electrical force Eei

must be greater than mg. Assuming that this condition holds, equation

(13) gives for the velocity of rise VE

ve = " -Z— ' (I6)

Similarly the velocity of fall without the electric field is

T/ mS .

. V,

Dividing (16) by (17) gives

VB Eei - mg
(18)
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or

mg (Fg + Vg)

E V
g

(19)

By measuring all the quantities on the right side of (19), Wilson obtained

values of the average charge of a droplet, which varied from 0.7 X 10~19

to 1 .4 X 10~19 coulombs. Although the results were significant they could

scarcely be considered satisfactory.

The important improvements in Wilson’s method which finally led to

precise results were introduced by R. A. Millikan at the University of

Chicago. Millikan saw that Wilson’s difficulties arose from two sources.

One was the impossibility of making accurate observations on the velocity

of any body as extended and amorphous as a cloud
;
the other was the evap-

oration of the droplets. He removed the first by observing a single droplet

and eliminated the second by using oil instead of water. The essential

features of the final arrangement are shown in Figure 493. Oil is sprayed

from an atomizer and a few droplets are allowed to fall through a small hole

in the upper plate C. Under the intense illumination from the source of

light S, the droplets are visible in the telescope T. Most of the droplets

become charged when they are sprayed from the atomizer. When the
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electric field is applied, some of those with a negative charge will move
upward. Selecting one of these, the observer can measure its speed VE
with the electric field and its speed V0 without the field. Equation (19)

then gives e\ which is the charge carried by this particular droplet and not

an average value as was the case in Wilson’s experiment. Millikan and his

students made thousands of observations on individual droplets. In every

case they found that the charge on the droplet ei was a certain value e or

2e or 3 e, etc., that is, e multiplied by an integer. The value of this

smallest charge e was 1.60 X 10~19 coulombs.

The significance of this experiment was stated by Millikan (85b :77)

:

[These results] place beyond all question the view that an electrical charge

wherever it is found, whether on an insulator or a conductor, whether in

electrolytes or in metals, has a definite granular structure, that it consists

of an exact number of specks of electricity [electrons] all exactly alike,

which in static phenomena are scattered over the surface of the charged

body and in current phenomena are drifting along the conductor.

It must not be supposed, however, that the influence of the electron concept

is confined to electrical phenomena. As our brief notice of the Zeeman
effect has indicated, the electron and its behavior play a very important

part in all questions concerning the structure of atoms and the emission of

light. Recent indirect evidence indicates that Millikan’s original value

for the electronic charge is in error by about one half of one per cent. To-

day the most probable value of e is taken to be 1.60 X lO^19 coulombs.

The Significance of the Determination of the Electronic Charge

Besides its intrinsic interest, the value of e determines other constants

which are of the utmost importance in physics and chemistry. One of

these is Avogadro’s number N which is the number of molecules of any
substance contained in a gram molecular weight of that substance. For
example, 2 grams of hydrogen, 32 grams of oxygen, and 18 grams of water

each contain N molecules. Faraday’s law of electrolysis, page 435, shows

that the deposition of one gram-atom of silver requires the passage of

96,490 coulombs of electricity. If the charge carried by each silver ion is

the electronic charge, then Avogadro’s number



Chapter 48 CATHODE RAYS AND THE ELECTRON 60S

2V =
96,490

1.6 X lO"19
= 6.03 X 1023 .

This number is of fundamental importance.

Knowing the ratio m/

e

and the value of e, wc can now find the mass m of

a cathode ray particle, or electron, for the correctness of Fitzgerald’s con-

jecture that cathode rays are free electrons that have been released from
matter has been firmly established. Substituting the numerical values of

m/e and e we have

wt
m = - X c - 9.1 X 10“ 31 kgms

c

or 9.1 X 10“~28 gms. The striking aspect of this result is that it is only^
of the mass of the hydrogen atom.

Thus the long sequence of experiments, beginning with Pluecker in 1859

and culminating with Thomson and Millikan in 1900-15, have shown be-

yond any doubt that one of the constituents of all atoms is the electron.

This concept has clarified and unified the fundamental laws of physics and

chemistry to a remarkable degree.

Questions for Self-Examination

1. Outline the evolution of the vacuum pump.

2. What is the evidence that cathode rays are negatively charged particles?

3. What is the evidence that an electric current is simply static electricity in motion?

4. Describe Thomson’s method of measuring the speeds of cathode particles and the

ratio of their charge to their mass.

5. What support did the discovery of the “Zeeman effect” give to the hypothesis of

the existence of “ electrons”?

6. Describe Millikan’s method of measuring the electric charge of the electron.

Problems on Chapter 48

1. (a) An electron that is accelerated in a vacuum through a potential difference of 1

volt is said to have kinetic energy of 1 electron-volt. Show that this unit of

energy is 1.60 X 10~19 joules.

(b) What is the velocity of an electron whose kinetic energy is 20,000 electron-

volts? 8Xl07 m/sec.

2. What is the velocity of a proton whose kinetic energy is 20,000 electron-volts?

1.9 X 10® m/sec.

3. Electrons having a speed of 4 X 107 m/sec move in a uniform transverse magnetic

field of .001 webers/m2
. What is the radius of the path? .2 meters.

4. Electrons having a horizontal velocity of 4 X 107 m/sec move between parallel

plates as in Thomson’s apparatus (Fig. 488). If the plates are 2 centimeters long

and the transverse electric field is 104 newtons/coulomb, what is the downward
velocity of the electrons when they emerge from the field? 8 X 10* m/sec.

5. In Millikan’s oil-drop apparatus the intensity of the electric field is 105 newtons/

coulomb. An oil drop carrying a charge of two electrons is balanced in the field.

What is the mass of the drop? 3 X 10~16 kgm.
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X-Rays and Radioactivity

The Announcment of the Discovery of X-Rays

On January 5, 6, and 7, 1896, newspapers in all parts of the world gave

prominent notice to a “ sensational scientific discovery.” The discovery,

which was made by Professor Roentgen of Wurzburg, Germany, consisted

of a new kind of light which was able to penetrate wood, human flesh, and

most other opaque objects. With the new rays Roentgen had taken

photographs of the bones in a human hand and of pieces of metal inside a

closed wooden box. One paper closed its report with the following remark :

The Press assures its readers that there is no joke or humbug in the matter.

It is a serious discovery by a serious German Professor.

At first, scientists were skeptical; they considered it just “another news-

paper story.” Curious physicians and laymen, however, besieged the lab-

oratories clamoring for X-ray photographs of various parts of the human
body. The result was that within a few days practically every major

laboratory in the world had verified the astounding discovery. Within one

year over a thousand articles on X-rays were published.

Very few scientific discoveries are made in the way Roentgen discovered

X-rays, though the general public seems to have an impression that most
of them are made that way. The whole development occurred within a

few weeks from the time Roentgen got his first “hunch”; it was all done

by one man; it was immediately applicable to pressing problems outside

of the field of physics; and it promptly caught the popular imagination.

Most of the really important scientific discoveries proceed in the opposite

patterns.

The Circumstances of the Discovery of X-Rays

When Roentgen began to investigate cathode rays in the autumn of

1895 he first repeated some of the experiments of Lenard and Crookes. His

apparatus, a diagram of which is shown in Figure 494, consisted of a “fairly

large induction coil ” and a cathode ray tube of the Crookes type. It will be

recalled that the principal method of observing cathode rays was by means
of the fluorescence they produced. In order to be able to observe even a

slight fluorescence, Roentgen was working in a dark room and had covered
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the tube with black paper. When a discharge was sent through the tube,

he observed that a screen covered with barium platino-cyanide gave off

fluorescent light. The effect was visible even when the screen was two
meters away from the tube. Further,

the fluorescence occurred only while

the discharge was passing.

Although the new rays were first

observed on November 8, 1895, Roent-

gen made no announcement of the dis-

covery until December 28, when he

submitted his first communication en-

titled, On a New Kind of Rays (Pre-

liminary Communication)

.

During this interval of seven weeks

we have a situation which is almost,

if not entirely, unique in the history of

science. Roentgen was fifty years old

and was universally recognized as a

competent investigator. His publica-

tions, consisting of forty-eight papers,

included several which were notable contributions to physics. He had just

discovered an entirely new phenomenon and was completely aware of its

extreme importance. Naturally he worked feverishly, yet carefully, to

explore as many ramifications of the effect as possible. 1 Later

Mrs. Roentgen said that she had to go through several terrible days. Her

husband came late to dinner and usually was in a very bad humor; he ate

little, didn’t talk at all, and returned to the laboratory immediately after

eating.

In his first paper on the new rays Roentgen said (109:3):

For brevity’s sake I shall use the expression, “rays”; and to distinguish

them from others of this name I shall call them X-Rays.

He then reported the following observations:

1. All substances are more or less transparent to X-rays; they are able

to penetrate several centimeters of wood and 1.5 centimeters of aluminum.

Lead, however, only 1.5 millimeters thick, is practically opaque.

2. X-rays affect a photographic plate.

3. No perceptible refraction of the rays could be observed in water,

carbon disulphide, hard rubber or aluminum. Hence X-rays cannot be

focused by means of lenses. No evidence of regular reflection was found.

4. X-rays are not deviated in a magnetic field. Since cathode rays are

deviated by a magnet, the new rays are of an entirely different type.

5. X-rays seem to originate in the point where the cathode rays strike

1 From Glasser’s Wilhelm Conrad Rontgcn
, pp. 129 ff. Courtesy of Charles C. Thomas,

publisher.

Fig. 494. The Arrangement of the
Apparatus with the Aid of Which
Roentgen Discovered X-Rays
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the glass wall of the discharge tube. The glass, however, is not essential;

X-rays are generated when any solid body is struck by cathode rays.

6. X-rays cause the discharge of electrified bodies in air. The rate of

discharge increases with the intensity of the X-ray beam.

The Search for Further Properties of X-Rays

Thus in the brief period of two months Roentgen had determined the

essential properties of the new rays as well as the method of producing

them. The thoroughness of his work is shown by the fact that no new
physical properties of X-rays— except perhaps polarization — were dis-

covered in the next seventeen years.

During the next year, Roentgen made a more detailed study of the pene-

trating power of the rays in different substances. He found that rays from

a “hard” tube — that is, one in which the vacuum was high— were more
penetrating than those from a soft tube. Further, he showed that the ab-

sorbing power of a metal sheet was not simply proportional to its density.

Dense metals such as lead absorbed more than aluminum but not in the

ratio of their densities.

To Roentgen the fundamental and challenging question was: What is the

physical nature of X-rays? Thus in the concluding paragraph of his third

paper, which was submitted in March, 1897, he said (109:40):

Since the beginning of my work on X-rays I have tried repeatedly to ob-

tain diffraction phenomena with them; several times I have obtained with

narrow slits etc., phenomena whose appearance reminded one, it is true,

of diffraction images; but when by alteration of the conditions of experi-

ment tests were made of the correctness of the explanation of these images

by diffraction, it was refuted in every case ... I have no experiment to

describe from which, with sufficient certainty, I could obtain proof of the

existence of diffraction by the X-rays.

There has been much speculation concerning the reasons for Crookes* and
Lenard’s failure to discover X-rays. In most of their experiments rather

intense X-rays were produced, but they failed to detect their presence.

Lenard’s failure was in part accidental. To detect the cathode rays, he

happened to use a different kind of screen than Roentgen used later, coated

with a substance which, while sensitive to cathode rays, was not affected

by X-rays. Other investigators immediately took up the search for inter-

ference and diffraction effects. In spite of their improved apparatus and
more intense rays no interference could be found. It was not until 1912

that a brilliant suggestion was made that brought success after seventeen

years of failure. This will be outlined on page 610, but first a description

must be given of some of the great advances made in the technique of pro-

ducing and measuring X-rays during the interval.

Roentgen9
s Tubes

The X-rays emitted by an ordinary Crookes tube are not very intense.

Realizing that the X-rays are generated by the impact of cathode rays
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Gas” Type

upon a solid target Roentgen designed a tube similar to that shown in

Figure 495. High-speed electrons from the cathode C are focused upon a

platinum target T which becomes the source of the X-rays. The operation

of this type of tube is erratic because it depends upon the gas pressure in the

tube. Unfortunately this pressure changes when the tube is used for long

intervals. Gas may be adsorbed or emitted by the walls of the tube. If

the pressure is too low the discharge will not pass; if the pressure is too

high the discharge occurs at such low voltage that the X-rays are weak.

The Coolidge X-Ray Tube

The solution of the problem was supplied by two developments in exper-

imental technique. As was noted in Chapter 48 the advent of the diffusion

type of vacuum pump in 1912 made possible the production of higher vacua.

With improved vacuums Langmuir had shown that pure tungsten filaments

emitted electrons when heated to high temperatures. Encouraged by

Langmuir’s results, W. D. Coolidge of the General Electric Company de-

signed the tube shown in Figure 496. The tungsten filament F is heated by

a battery B until it emits electrons. When the target or anode T is raised

to a high positive potential the electrons are attracted and strike the tar-

get with high speed. The number of electrons is controlled by the filament

temperature and their speed at the instant of impact by the potential dif-

ference between F and T. Tubes of this type operating at high potentials

emit much more intense X-rays than Roentgen was able to obtain. This

ordinary type of Coolidge tube is used for voltages up to approximately

150,000 volts. Recent tubes for therapeutic work, which operate at a mil-

lion volts or more, are much longer and require special design.

Measurement of X-Ray Intensities

Roentgen observed that X-rays passing through air rendered it conduct-

ing. This effect was studied more carefully by J. J. Thomson and Ernest

Rutherford, who had just come from New Zealand to work in the Cavendish

Laboratory at Cambridge University in England. They found that when

the air between the plates A and B in Figure 497 was exposed to X-rays a
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small current passed through the sensitive galvanometer G . When the

applied potential V was increased the current varied as shown in Figure

498. The maximum constant value, Is ,
was called the saturation current.

The existence of this saturation effect was explained by assuming that when
V was high enough the ions produced by the X-rays were swept over to the

plates just as rapidly as they were formed. Hence /, was a measure of the

intensity of the ionizing X-rays. This ionization method is still used to

measure X-ray intensities.

Diffraction of X-Rays by Crystals

By 1912, most workers in the X-ray field were convinced that the rays

were similar to light but of much shorter wave-length— approximately
10“9 centimeters in contrast to ordinary light which has a wave-length of

about S-IO-5 centimeters. The failure to observe X-ray diffraction pat-

terns was attributed to this extremely small value of the wave-length.

For, as optical interference theory shows (page 376), the width of the fringes

wave-length
depends upon the ratio - — To ma^e slits narrow enough, or to

rule gratings closely enough, to give observable effects with X-rays seemed

out of the question.

The difficulty was surmounted by a brilliant suggestion made by Max
von Laue of Munich, Germany. One of Laue’s friends was working upon
the theory of the propagation of light in crystals. In discussing this prob-

lem the following question was proposed: Assuming X-rays to be light of

very short wave-length, what would occur when a beam passes through a
crystal? It happened that Laue was eminently qualified to answer this

question. He was an authority on interference effects and knew something
of crystallography. After making a careful analysis of the problem, he
predicted that a narrow pencil of X-rays would give a definite diffraction

pattern after passing through a crystal.

The Experiment of Friedrich and Knipping

Since Laue was a theorist, two of his colleagues, Friedrich and Knipping,
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Fig. 499. Diagram or Apparatus
to Produce Laue Spots

••

Fig. 500. A Typical Laue Spot
Pattern

immediately undertook to test the prediction experimentally. Their

apparatus is shown in Figure 499. X-rays from the target T pass through

the pinholes in the lead screens S\ and and then through the crystal C.

Most of the rays strike the photographic plate P at the central point 0. A
small fraction, however, are diffracted and strike the plate at points which

form a regular pattern. After a few unsuccessful attempts a photograph

somewhat comparable to Figure 500 was obtained. This definite arrange-

ment of spots on the plate constituted the first definite experimental proof

that X-rays gave interference effects similar to those obtained with light.

This is a striking example of the importance of a definite hypothesis in stim-

ulating and guiding research. Many persons had sent X-rays through

crystals before 1912, but no one had observed any diffraction effects. It

was only after Laue’s theory had predicted what to look for that the effect

was found.

Bragg’s 'Equation for X-Ray Interference

The theory of the formation of the Laue spots cannot be presented in ele-

mentary form. This difficulty does not apply, however, to the ingenious

method devised by W. H. Bragg in England.

Bragg assumed that the atoms or ions in a

crystal are arranged in a regular pattern such

as that shown in Figure 501, which repre-

sents the sodium and chlorine ions in a crys-

tal of sodium chloride (common salt). The

distinction between crystalline and non-

crystalline bodies is simply the difference be-

tween regular and irregular arrangement of

the atoms or ions constituting them. Let

us consider a single line of atoms as shown

in Figure 502. Under the influence of the

incident X-rays, the atoms emit weak X-ra-

Fig. 501. A Crystal is Made
up op Rows and Columns op
Atoms
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Fig. 502 . Reflection of X-Rays from Fig. 503 . Interference Between X-Rays
a Single Layer of Atoms in a Crystal Reflected from Successive Layers in a

Crystal

diation in all directions. These scattered wavelets reinforce one another

only in the direction shown, i.e., when the angle of reflection is equal

to the angle of incidence. A very small fraction of the X-ray energy, there-

fore, is said to be “ reflected” by a layer of atoms. In the crystal there are

thousands of these reflecting layers evenly spaced as in Figure 503. That
part of the incident beam which is reflected by the top layer of atoms will

travel a distance equal to AOD . That reflected from the second layer

will travel A'O'D'. The path difference is BO' + O'C since OB and OC
are perpendicular to A'O' and O'D' . If this path difference is an integral

number of wave-lengths of the X-rays, the two reflected beams will rein-

force one another. The condition for a strong reflection therefore is that

n\ « BO' + O'C . (1)

But from Figure 503, BO' + O'C - 2(00') sin 6 . If the distance between

adjacent layers of the crystal is called d
,
the equation (1) can be written

[n\ = 2 d sin 0 (2)

where n is an integer and X the wave-length of the X-rays that are strongly

reflected at the angle 0. Equation (2), which is called Bragg’s equation, is

one of the most useful relations in contemporary physics. Having found 0

experimentally we can calculate X if d is known, or find d if X is known. In
this way we obtain information concerning the X-rays and detailed knowl-
edge about the arrangement of atoms in the crystal. This type of infor-

mation is of utmost importance in chemistry, physics, biochemistry, metal-
lurgy, and mineralogy.

Bragg’s Determination of X-Ray Wave-Lengths

In order to apply equation (2), Bragg constructed the X-ray spectrom-
eter shown in Figure 504. The first slit, 5, permits a narrow pencil of

X-rays from the tube to fall upon the crystal C. The “reflected” rays pass
through the second slit, S

,
and enter the ionization chamber, J. The

intensity of this ionization current is indicated by a sensitive galvanometer.
As the angle of incidence is varied, certain values are found which give

intense reflections. Bragg interpreted these values as those which satisfy

equation (2).
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Knowing the density and structure of the crystal, he was able to calculate

the distance d between the crystal planes. Referring to Figure 501, we see

that a crystal of salt is made up of a large number of tiny cubes. The
volume of each cube is d3

. In the interior of the crystal each ion is shared

by eight cubes, and a complete cube requires eight ions. Therefore the

total number of cubes is equal to the number of ions. Since a molecule of

sodium chloride consists of one sodium atom and one chlorine atom, the

number of molecules in the crystal is one half the number of atoms or ions.

From the laws of chemistry we know that 6.03 X 1023 molecules of sodium

chloride have a mass of 58.45 grams. A crystal of this mass has a volume

cubic centimeters since its density is 2.17 gms/cc. The number of

tiny cubes in this crystal is 2 X 6.03 X 1023
. We have, therefore,

(2 X 6.03 X 102V =

or d - 2.81 X 10~8 cms.

Using this result and equation (2), Bragg was able to determine X-ray

wave-lengths. He found that a rhodium target emitted two strong rays of

wave-length 0.607 X 10~8 and 0.533 X 10~8 centimeters or 0.607 X lO""11

and 0.533 X 10~n meters. Similarly palladium, copper, and nickel emitted

two-line X-ray spectra. These intense X-ray lines of definite wave-length

are called characteristic X-rays since they are characteristic of the target.

A tube also emits general X-radiation which depends largely upon the tube

voltage and only slightly upon the material of the target.

Absorption of X-Rays

In his pioneer experiments Roentgen observed that the intensity of a

beam of X-rays suffers greater diminution in passing through a sheet of

lead than through the same thickness of aluminum. The amounts of ab-
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sorption, however, are not directly proportional to the densities of the two

metals.

Later investigations using homogeneous beams— that is, X-rays of a

single wave-length— showed that the intensity, /, of the beam after pass-

ing through x centimeters of absorbing material is

/ = /o6"^ (3)

where I() is the intensity of the original incident beam and /z is a constant

called the linear coefficient of absorption
;
“e” is the base of natural loga-

rithms (see exponential table in Appendix). Equation (3) can also be

written in the form

I - y
-£(p*>

h e * (4)

where p is the density of the absorbing screen. The quotient ju/p is known
as the mass absorption coefficient . Its numerical value is a function of the

atomic number (see page 639) of the absorbing material and the wave-

length of the X-rays.

The Discovery of Radioactivity

The discovery of radioactivity by Henri Becquerel in 1896 is another in-

stance of an important discovery resulting from a fallacious hypothesis.

On January 20, 1896, the mathematician Poincare reported Roentgen's

discovery of X-rays to the French Academy of Science. In the discussion

which followed it was brought out that the X-rays emanated from the part

of the glass discharge tube which fluoresced strongly. It immediately oc-

curred to Becquerel and others that X-rays might be related to fluorescence

and phosphorescence. Becquerel was doubly fortunate in having the

necessary materials and training to test this hypothesis. He was the son

and grandson of eminent physicists who had made important contributions

in the field of phosphorescence.

After several substances had given negative results, Becquerel happened

to test a compound of uranium. His method is best described by his own
words (77:610):

I wrapped a Lumiere photographic plate with bromized emulsion with

two sheets of thick black paper, so thick that the plate did not become
clouded by exposure to the sun for a whole day. I placed on the paper a

plate of the phosphorescent substance, and exposed the whole thing to the

sun for several hours. When I developed the photographic plate I saw the

silhouette of the phosphorescent substance in black on the negative. If I

placed between the phosphorescent substance and the paper a coin or a
metallic screen pierced with an open-work design, the image of these

objects appeared on the negative. . .

.

We may therefore conclude from these experiments that the phospho-

rescent substance in question emits radiations which penetrate paper that

is opaque to light, and reduces silver salts.
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This result was reported on February 24, 1896. One week later, on March
2, he had more exciting results to report (77:611):

I particularly insist on the following fact, which appears to me exceed-

ingly important and not in accord with the phenomena which one might
expect to observe: the same encrusted crystals placed with respect to the

photographic plates in the same conditions and acting through the same
screens, but protected from the excitation of incident rays and kept in the

dark, still produce the same photographic effects. I may relate how I was
led to make this observation: among the preceding experiments some had
been made ready on Wednesday the 26th and Thursday the 27th of Feb-

ruary and as on those days the sun only showed itself intermittently I kept

my arrangements all prepared and put back the holders in the dark in the

drawer of the case, and left in place the crusts of uranium salt. Since the

sun did not show itself again for several days 1 developed the photographic

plates on the 1st of March, expecting to find the images very feeble. The
silhouettes appeared in the contrary with great intensity. I at once

thought that the action might be able to go on in the dark.

Further tests showed that Becquerel was correct. The activity of the sub-

stance did not depend upon exposure to sunlight. It was soon found that

all minerals containing uranium spontaneously emitted the penetrating

rays. By March 9, he had shown that the uranium rays, like X-rays, were

able to ionize air. This property gave a rapid and convenient method of

testing samples for the presence of “Becquerel rays,” as they were called.

The interest in X-rays was so intense in 1896 that the general public and

most scientists paid little attention to Becquerel’s discovery; it seemed to

be of minor importance. In Paris, however, a young Polish physicist,

Marie Curie, became interested in the new rays and set out to test the

activity of all the elements and of many minerals. She soon found that

thorium was the only other
L
known element that was active. While ob-

serving the ionization produced by certain uranium ores she noticed that

the effect was three or four times as great as that normally obtained from

the same amount of uranium. She attributed this intense activity to the

presence of a new, hitherto unknown element, and began the difficult task

of separating it. Her husband, Pierre Curie, realizing the importance of

this work gave up his own research in piezoelectricity and assisted her.

After months of tedious work, they separated a substance which had an

activity about four hundred times as great as that of uranium. This new

metal, which was similar to bismuth in its chemical properties, was called

polonium
,
after the native country of Marie Curie.

The Discovery of Radium

A few months later, in December, 1898, the Curies reported the discovery

of a new element which was much more active than polonium (77:615-16)

:

We believe . . . that this substance, although for the most part consisting

of barium, contains in addition a new element which gives it its radioac-
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tivity and which furthermore is very near barium in its chemical proper-

ties M. Demarcay has found in the spectrum a ray which seems not

to belong to any known element. This ray (of the new substance), which

is scarcely visible in the chloride that is 60 times more active than uranium,

becomes strongly marked in the chloride that was enriched by fractionation

until its activity was 900 times that of uranium. The intensity of this ray

increases at the same time as the radioactivity, and this, we think, is a

strong reason for attributing it to the radioactive part of our substance.

The various reasons which we have presented lead us to believe that the

new radioactive substance contains a new element, to which we propose to

give the name radium .

The Nature of the "Rays” from Radium

The availability of more active sources of Becquerel rays containing polo-

nium and radium led to a further study of the nature of the rays. At first

Becquerel and others had assumed that the radiation consisted of weak
X-rays. In 1899, however, Giesil in Germany and Becquerel showed that

part of the radiation emitted by radium was deviated in a magnetic field.

The direction of this deviation suggested that this part consisted of high-

speed electrons. By deflecting the rays in an electric field as Thomson did

charge
with cathode rays, he was able to calculate the ratio and to prove

mass
definitely that these rays were electrons. His first approximate value for

the velocity of the emitted electrons was 1.6* 108 meters/sec, which is about

one half the velocity of light.

Alpha, Beta, and Gamma Rays

In January, 1899, the young New Zealander, Rutherford,1 found that the

rays from uranium were complex and that

there are present at least two distinct types of radiation— one that is very

easily absorbed, which will be termed for convenience <x radiation, and the

other of a more penetrating character which will be termed the radiation.

Later Villard observed some very penetrating radiations emitted by
radium and called them y (gamma) rays. Although later experimental evi-

dence has shown that the a, (l, and y rays are not new and distinct entities,

the nomenclature has remained in common usage. A substance which
spontaneously emits any of these rays is said to be radioactive. It should

be emphasized that “ radio ” in this case refers to radium and does not imply
any relationship whatever with wireless telephony, which we in America
call radio.

The Nature of Alpha Rays

Because they were unable to deflect the a rays in a magnetic field Bec-
querel and others assumed that the rays were easily absorbed X-rays.

1 Philosophical Magazine, January, 1899, p. 109.
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Since Roentgen had shown that X-rays are produced when fast electrons

are suddenly stopped it was natural to assume that the«/3 particles from

radium would be accompanied by X-rays.

For several years no one questioned this interpretation of the nature of

a rays. In 1902, however, Rutherford was impressed by the fact that the

inert gas helium was always found occluded in minerals which contained

uranium or thorium. This suggested that helium was related in some way
to radioactivity. He suspected that the alpha rays were helium atoms or

ions and set out to prove it.

There is no evidence that Rutherford or any one else at that time thought

that this search would lead to results of extraordinary importance. Yet

such proved to be the case, for the study of the nature of alpha rays and

their interaction with matter led Rutherford step by step to his nuclear

model of the atom and the transmutation of elements. As we shall see

later, these new ideas have altered our fundamental concepts in physics

and chemistry as profoundly as Newton’s mechanics altered natural philos-

ophy in the seventeenth and eighteenth centuries.

By using electric and magnetic fields of greater intensity Rutherford, in

1903, succeeded in deflecting the a rays. The observed deviations showed

that the a particles were positively charged and that their ratio of charge to

mass was 4.8 X 107
coulombs

kgm
This ratio is approximately the same as that

for an atom of helium which has acquired a charge of 4- 2 e by losing two of

its normal quota of electrons. The experimental evidence, however, was

not conclusive. For a molecule of hydrogen that had lost one electron

charge
would have the same value of

mass
This alternative explanation did

not deter Rutherford from proceeding on the assumption that the a rays

were high-speed helium atoms carrying a charge of + 2 e.

The year 1903 was notable for two other important advances in the new
field of radioactivity— the heating effect of radium and the theory of radio-

active transformation. Curie and Laborde showed that a small amount
of a radium salt placed in a cavity in a block of lead maintained itself at a

higher temperature than the surrounding air. Since the heat is conducted

and radiated away by the lead, the existence of this temperature difference

shows that heat energy is being given off continually and spontaneously by
the radium. Measurements of temperature difference and rate of heat loss

showed that one gram of radium gave off heat at the approximate rate of

.1 calorie per hour. Rutherford immediately suggested that this heating

effect was simply the manifestation of the kinetic energy of the a particles

emitted by the radium. Knowing approximately the number of a parti-

cles emitted per second by one gram of radium, he was able to calculate

their total kinetic energy. This energy was found to be of the same order

of magnitude as the heat given off, as he had suspected. This numerical
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Fig. 505 . Sir Ernest Rutherford
( 1871

-1937)

agreement gave further support to Rutherford’s hypothesis that helium was
given off in radioactive processes.

The Theory of Radioactive Transformations

By 1903 a great mass of unrelated and puzzling facts concerning radio-

active change had been accumulated. Many of the observed phenomena
seemed strange and inconsistent. This chaotic material was reduced to

order by the theory of radioactive transformation proposed by Rutherford
and Soddy. This theory, which is the product of a remarkable scientific

imagination, is notable for its originality, its completeness, and its sim-
plicity. The fundamental idea is that the atoms of a radioactive substance
are unstable. In a particular time interval a certain per cent of the atoms
will explode, ejecting high-speed a or /3 particles in the process. The ejec-

tion of one of these particles, however, leaves a residue which differs from
the original atom. The theory assumes that this residue is a new chemical
element. Thus we have chemical elements changing into different ele-

ments by a process of spontaneous explosions. Although we are able to
observe and follow the interesting transformations we are not able to con-
trol them. The rate at which they explode is entirely independent of tem-
perature, pressure, and chemical forces. This shows that the radioactive
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Fig. 506 . Transformation Series of the Uranium Family
(The upper number in each circle is the atomic mass, the lower the atomic number. Below each circle is

the name and the “half life” of the corresponding element.)

processes are quite different from ordinary chemical processes. According

to the theory the complexity of the observed facts arises from long series

of disintegrations which follow one another in a particular family of active

elements. The sequence of transformations in the case of the uranium fam-

ily is shown in Figure 506. From the figure we see that when a uranium

atom, atomic weight 238, emits an a particle, mass 4, the residue is an atom
of uranium Xi, mass 234. Similarly, uranium Xi emits a /? particle and

creates a new atom uranium X2 which has different properties than the

mother substance. The final product of the sequence of changes is radium

Gj which is not radioactive and cannot be distinguished chemically from

ordinary lead.

Although we cannot retard or accelerate the transformation process, the

rate of decay of a particular element can be represented by an equation of

the form

X = X0
€-xt

(5)

where N = number of atoms which have not exploded after a time interval

/, and No is the number of atoms at the beginning of the interval. € is 2.718

(the base of natural logarithms) and X is a constant which is characteristic

of the active element. 1 For substances such as radium which transform

slowly, X is equal to the fraction of the atoms which break up in one second.

Since X is constant, if one half of the original atoms remain unchanged after

a time T
,
one fourth will remain after 2 T

,
one eighth after 8 T

,
and so on.

The time T is called the half-period of the substance. As shown in Figure

1 For values of this exponential function see the table on page xxiv of the Appendix.
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506, the half-periods of the members of the uranium family vary enor-

mously. For radium it is 1590 years; for radium A 3.05 minutes; and

for radium C only one millionth of a second.

The Energies of Alpha Particles

When an atom of radium explodes, the a particle is always ejected with

approximately the same speed, 1.52-109 cms/sec. This is about one

twentieth of the velocity of light or over 9000 miles per sec. In other words,

in a vacuum the a particle would travel this distance in one second. In air

at atmospheric pressure, however, it travels only 3.3 centimeters. Owing
to its positive charge it removes electrons from many of the molecules

which it encounters and thus ionizes the air.

Although the speed of the a particle is not as great as that of electrons in

an X-ray tube, the kinetic energy is much greater. For the mass of the a
particle is 7320 times the electronic mass. To give an electron a kinetic

energy equal to that of an a particle from radium would require a tube oper-

ating at 4,800,000 volts. We say, therefore, that the energy of the a par-

ticle is 4.8 million electron-volts. The a particles from radium C have

energies of over 7 million electron-volts. Using these energetic particles

Rutherford later was able to probe the central cores of atoms and to deter-

mine their structure.

The Significance of the Transformation Theory

The importance of the Rutherford-Soddy theory of radioactive trans-

formation cannot be overemphasized. Before 1903 it was considered defi-

nitely established that atoms were constant and fixed. The idea that they

spontaneously exploded and changed into new elements was contrary to all

the principles of chemistry. It is not surprising, therefore, to find that the

theory encountered strong opposition. It was too radical for the chemists

and the older generation of physicists. Instead of deterring Rutherford,

the criticism seemed to stimulate him. Assisted by capable and enthusi-

astic students, he piled up such an overwhelming mass of experimental

evidence that within a few years even his most severe critics were con-

vinced. But even more remarkable is the fact that all the new data which
have come to light since 1903 are in complete harmony with the theory as it

was orginally proposed. No essential modifications or alterations have
been necessary.

Questions for Self-Examination

1. Describe the circumstances leading up to Roentgen’s identification of X-rays.

2. Outline the evolution of X-ray tubes.

3. Tell how natural crystals gave evidence of wave-length structure of X-rays.

4. How did Bragg deduce the distances between atoms of crystals?
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5. Describe the circumstances leading up to Becquerel’s discovery of radioactivity

and tell how the Curies extended that discovery.

6. Describe the characteristics of the three types of radioactive radiation.

7. Describe successive stages in a representative series of radioactive transforma-

tions.

Problems on Chapter 49

1 . What is the value of the ratio
charge , . ,

_

for an a particle?
mass

4. X 107
coulomb

kgm

2. Alpha particles emitted by radium A have a velocity of 1.7 X 107 m/sec. What
intensity of magnetic field will cause them to move in a circle of .50 meters radius?

.7 webers/m2
.

3.

Express the kinetic energy of the a particles from radium A in electron-volts.

6 X 106 electron-volts.

4. In making observations with a Bragg spectrometer (p. 613), an intense reflected

beam is obtained when the angle 0-7° 16'. If the reflecting crystal is rock-salt,

what is the wave-length of the X-rays? .7 X 10~8 cms.

5. The decay constant, X in equation (3), for radon is .181 day
~1

. What percentages

of a given amount of radon will remain after 2, 4, 6, and 10 days respectively?

(A table of is given in the Appendix.) .69, .48, .34, ,16.
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Quantum Theory and Atomic Structure

The "Black Body

”

In 1859, G. KirchhofT showed that a good absorber of radiant heat is also

a good emitter. It follows from Kirchhoff’s analysis that a perfect black

body
,
that is, one which absorbs all the radiation that falls upon it, is the

best possible emitter of radiant energy. The theory also showed that the

total radiation from a black body depends only on the temperature of the

body and not on its chemical or physical nature.

Applying thermodynamical methods to radiation, Stefan and Boltzmann
showed in 1879 and 1884 respectively that the radiant energy emitted per

second by a black body was proportional to the fourth power of its absolute

temperature. Certain applications of this law were discussed on page 188.

No natural solid substance is known which absorbs all the radiation that

falls upon it; even lampblack reflects about 1 per cent of the incident ra-

diant energy. Consequently, when Lummer and Wien in 1895 began to

investigate black body radiation, their

first problem was to devise a satis-

factory black body. Their ingen-

ious solution of the problem is shown
in principle in Figure 507. The de-

vice consists of a small furnace whose
walls are maintained at a uniform

temperature. If radiation enters the

enclosure through the small opening

0, it is scattered by repeated reflec-

tions from the walls, and only a very
small fraction of it will escape through
0. The opening O, therefore, has the

properties of a black body. When
equilibrium is reached, the walls are

emitting radiation as well as absorb-

ing it. The radiation which escapes

through the opening has the prop-
erties of black body radiation. It depends only on the uniform temper-
ature of the walls of the enclosure, not on the nature of the furnace walls.

Fig. 507 . Laboratory
“Black Body”
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Experimental Results of hummer and Pringsheim

In the years 1897-99, Lummer and Pringsheim in Berlin made careful

measurements of the distribution of the energy of black body radiation

through the spectrum. The radiation from a black body at high tem-
perature fell upon a prism spectrometer and was spread out into a spectrum.
The intensities of various regions of

the spectrum were then measured
with a sensitive thermopile. Graph-
ical representation of their results

gave curves similar to those shown
in Figure 508.1

The point of principal present im-

portance is not so much the different

heights of the curves for different

temperatures as the fact that the

wave-length at which the maximum
energy concentration occurs is pro-

gressively shorter as the temperature

rises. For each temperature there is

a definite wave-length \max< which
has maximum energy. The progress region ^ increasing

of the maximum energy region to-
jrIG 508. Spectral Energy Distribu-

ward the shorter wave-lengths ac- tion of Black Body Radiation
counts for the fact that at moderate

temperature a furnace appears red, but when the temperature increases,

it appears yellow and finally white. In 1893 Wien showed by thermody-
namical arguments that the wave-length of the maximum in Figure 508,

Xmax.
was inversely proportional to the absolute temperature, or

Xmax. T = A (1)

where A is a constant. This relation is known as Wien’s Displacement

Law.

The experiments of Lummer and Pringsheim verified Wien’s Law and
gave the numerical value of A as 2.89 X 107

if Xmax .
is expressed in ang-

stroms and T in absolute Centigrade degrees. If it is assumed that the

sun radiates as a “ black body,” equation (1) gives a convenient method of

calculating the temperature of that body. Measurement of the energy

distribution of sunlight gives a value of X^. of 4700 A. Substituting this

value in equation (1) we find the temperature of the sun’s surface to be
6150° absolute. This result cannot be considered exact since the dis-

tribution of energy in sunlight differs slightly from that of a black body.
1 Compare Figure 317. Curves of black body radiation for temperatures from 373° K to

about 6000° K are shown in that figure. Actual temperatures are not stated there and the

vertical energy scale is not uniform. If it had been, the curve for the sun would have been
many thousands of times as high as that for boiling water.
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Planck*s Quantum Theory of Radiation

Although Wien’s Law is very important, it gives no information what-

ever about the detailed shape of the energy distribution curve. This

question was carefully studied by Lord Rayleigh in England, who as-

sumed that the vibrating electrons in the atoms emitted and absorbed

radiation in accordance with Maxwell’s laws, which had been verified in

regard to radio waves. His further assumptions involved well-established

principles of heat and mechanics. The final result, however — shown by
the broken curve in Figure 508— was in striking disagreement with the

experimental results. Other theorists examined the question, and all

agreed that Rayleigh’s method and results were theoretically sound.

The laws of electricity, heat, and mechanics established during the nine-

teenth century could give no other answer than that obtained by Rayleigh
— and it was definitely wrong.

In 1899 the contradiction between theory and experiment was removed
by a brilliant and radical suggestion made by Max Planck. Planck as-

sumed that the atomic vibrator could absorb or emit energy only in finite

amounts or quanta . Further, the size of this quantum of energy was not

the same for all vibrators but was equal to a constant h multiplied by the

frequency v of the oscillator. The constant h is called Planck’s constant

and has the same value for all substances. It is one of the so-called uni-

versal constants.

The quantum theory of Planck gave the correct answer, but it repre-

sented a drastic break with traditional methods in physics. According to

Planck, a vibrating electron in an atom could have amounts of energy

equal to hv, 2 hv
,
3 hv

,
and so forth, but could never have a total energy

equal to, say, 2.2 hv or any other non-integral multiple of the fundamental

quantum. This concept that energy can be added or removed only in

finite
“ chunks” or quanta is in direct contradiction with classical New-

tonian mechanics and Maxwell’s electromagnetic theory. One of New-
ton’s fundamental maxims was that “Natura non saltus facit.” (Na-

ture does not provide discontinuities.)

Naturally such a radical theory encountered strong opposition. All

efforts to find a less violent remedy, however, were unsuccessful. The
quantum idea spread to other fields of physics, and when the first Solvay

Conference met in Brussels in 1911 to discuss the major problems of

physics, the topic was “The Quantum Theory of Radiation.” By this

time the leading theorists of the world were convinced that it was not

possible to derive the correct formula for black body radiation without

making use of Planck’s quantum concept.

Photoelectric Effect

The most direct and convincing evidence for the quantum theory came
from the study of the photoelectric effect, the principle upon which the
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light-beam receiver of Chapter 47 was based. In the course of his experi-

ments on electric waves in 1887, Hertz observed that a spark discharge

between two metal spheres was able to jump a greater distance when the

spheres were exposed to the light from another spark. A year later, Hall-

wachs showed that a negatively charged zinc plate lost its charge when it

was illuminated with ultra-violet light. If the plate were charged posi-

tively, however, the loss of charge did not occur. Later experiments indi-

cated that the effect existed even when the plate was in an evacuated tube.

After the discovery of the electron in 1897 the general features of photo-

electric emission became clear. When light of wave-length less than a

certain limiting value falls upon a metal, electrons are emitted from the

surface of the metal. Radiation of wave-length greater than this limiting

value, or threshold
,
as it is called, produces no emission. The threshold

frequency or wave-length is characteristic of the emitting substance. For

the more common metals such as copper, zinc, and silver it is in the ultra-

violet region, between 2500 and 3900 angstrom units. For the alkali

metals, sodium, potassium, and caesium, it is in the region 7000 to 20,000

angstroms. Hence, these metals are sensitive to visible light and are

therefore commonly used in photoelectric devices.

Einstein
9

s Theory of the Photoelectric Effect

In 1902, Lenard made the astonishing discovery that the maximum
velocity of the photoelectrons was independent of the intensity of incident

light. It is true that the number of electrons emitted per second was
found proportional to the light intensity, but increasing or decreasing the

intensity had no effect upon the speed of emission of the fastest electrons.

This maximum speed, however, did depend upon the frequency of the

incident light. Three years later Albert Einstein, who was then an ex-

aminer in the Swiss Patent Office, pointed out that Lenard’s results could

be explained in a very simple manner by making use of Planck's quantum
concept. Einstein’s explanation involved three assumptions. First, that

the energy in a beam of light was concentrated in very small bundles or

quanta. These quanta are now called photons. Second, that the energy

of an individual photon was hv where v is the frequency of the incident

light. Third, that in the photoelectric effect all the energy of one photon

was transferred to a single electron, that is, one electron could never absorb

half the energy of a photon or that of two or three photons. On the basis

of these hypotheses the conservation of energy can be written in the form

i max.

= hv - W (2)

where z/max.
*s the maximum speed of the emitted electrons, v is the fre-

quency of the incident light, and W is the work required to remove an

electron from the metal. If v0 is the frequency of the light corresponding

to the threshold, equation (2) becomes

0 * hv0 - W
W » hvo . (3)or
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and equation (2) becomes

\ max. = hv - hv0. (4)

Equation (3) shows that the work required to remove an electron from

a metal is equal to the threshold frequency ^0 multiplied by Planck’s con-

stant A. This quantity is called the work function of the metal.

Since the kinetic energy of an electron can never be negative, equation

(4) explains the observed fact that when the frequency of the incident

light v is less than no photoelectrons are emitted.

Experimental Support for Einstein9
$ Equation

Lenard’s original experiments were not very precise. Owing to this fact

and to the radical nature of Einstein’s assumptions, the theory was not

generally accepted for several years.

The first convincing experimental

test of equation (4) was reported by
Millikan in 1916. The principal

features of his method are shown

in Figure 509. Light that has been

made monochromatic by passing

through a prism falls upon the

plate A. When the potential of

the plate B is positive the electrons

are attracted and the number
striking B per second is measured

with a sensitive galvanometer G.

If, however, the potential of B is

made more and more negative, a

Fig. 509. Study of Photoelectric value V* is reached where all the

Emission electrons including the fastest ones

are turned back and the current inG
is zero. This stopping potential Va enables us to evaluate the kinetic

energy of the fastest electrons. For the principle of conservation of energy

gives

eV, = J mi?- maj[ . (5)

where e is the electronic charge. Equation (4) now becomes

eV. = h{v - vo). (6)

By observing V, for different values of v, Millikan found that the stop-

ping potentials were directly proportional to the frequency of the light as

is predicted by equation (6) . If V, is plotted as a function of v as in Figure

5 10, the slope of the line is h/e. Since the electronic charge was known from
the oil-drop experiment, Millikan found h to be 6.55 X 10-27 erg sec or

6.55 X 10-84 joule sec. The agreement between this result and Planck’s

value of 6.52 X 10-84 joule sec, which was obtained sixteen years earlier,
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is a very convincing argument in favor of Einstein’s photoelectric equation.

At first sight, it is surprising that a constant so small as h can be detected

experimentally and can be a signifi-

cant factor in most physical and

chemical processes. Jn this connec-

tion, it must be remembered that

h usually occurs in the product hv.

The frequency v can be very large.

For visible light having a wave-

length of 6000 angstroms, v is

5 X 1014
,
and the quantum of energy

hv is approximately 33 X 10"20

joules. Since one electron-volt is

1 .6 X 10~19 jpules, the energy of this

quantum is 2.06 electron-volts. In

the case of penetrating X-rays and

of gamma rays from radium, the energy of a quantum of radiation may
be of the order of a million electron-volts.

Einstein
9
s Equation in the X-Ray Region

When they are irradiated with X-rays, all substances emit photoelectrons.

In this case the electron speeds are so high that they are easily detected.

By applying a magnetic field and observing the curvature of the electron

paths, De Broglie in 1921 determined the velocities of emission and showed

that equation (4) held for X-ray wave-lengths. In the case of this high

frequency radiation the term hv0 in equation (4) is negligible in comparison

with hv, and equation (4) becomes

\ mv2
max .

= hv. (7)

The Inverse of the Photoelectric Effect

In the phenomena described above, a metallic surface emitted electrons

when it was illuminated. The question naturally occurs: Does the inverse

effect exist? That is, if electrons having kinetic energy \ mv
2 strike a

metallic surface, will radiation be produced having a frequency v which

satisfies equation (7)? The discoveries of Laue and Bragg described in

Chapter 49 enable us to answer this question. If we observe the shortest

wave-length, and hence the highest frequency, of X-rays’emitted by a tube

when the target is bombarded with electrons having a known kinetic

energy, it is possible to calculate h from equation (7). These values of

Planck’s constant are in excellent agreement with those found by other

methods. All the experimental evidence shows conclusively that equation

(7) represents a very general relationship. It applies to all transformations

between radiant energy and electronic energy irrespective of the direction

of the process. Thus Planck’s quantum concept was found to have a

Fig. 510. Graph of Einstein’s Photo-
electric Equation
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much broader field of application than was originally suspected. Full

appreciation of its significance, however, did not come till Bohr applied

it to the problem of atomic structure.

Counting Atoms

In following the development of physics in the eighteenth and nineteenth

centuries, we have encountered the word “atom” several times. The
concept of tiny perfectly elastic billiard-ball atoms proved to be very fruit-

ful in interpreting many phenomena in the subject of heat. Yet many
scientists refused to admit the existence of atoms. To them the atom was
a theoretical concept and nothing more. Furthermore, they challenged

the enthusiastic atomists to demonstrate the existence of individual atoms.

Owing to the experimental genius of two men, C. T. R. Wilson and Hans
Geiger, the challenge has been met. As K. K. Darrow has aptly remarked

(34:107):

One of the things which distinguishes ours from all earlier generations is

this, that we have seen our atoms .

This statement requires some explanation. It does not mean that we
can observe a single stationary atom with a microscope as we can a micro-

organism or grain of sand. But it does mean that the path of a single high-

speed atom can be observed and photographed just as the trail of a shooting

star can be observed.

The Scintillation Method

In Chapter 49 we saw that the kinetic energy of a single alpha particle

was very great. In 1903, Sir William Crookes, and also Elster and Geitel,

observed faint short flashes of light when alpha particles bombarded a

zinc sulphide screen. The short flashes, or scintillations, appeared to

occur at random and could easily be seen with a low-power magnifying glass.

It was assumed that each flash was produced by a single alpha particle.

This assumption was later confirmed by Geiger’s electrical method of

detecting the particles.

It is a curious fact that not all zinc sulphide crystals show these scintil-

lations. Pure crystals show none at all since a very small proportion of

certain impurities must be present for the scintillations to be visible.

Crystals containing one ten-thousandth part of certain copper salts give

best results. The flashes are so faint and so short in duration that it is

difficult to count them accurately. For many years, however, it was the

only method of investigating the details of atomic phenomena.

The Cloud Chamber of C. T. R. Wilson

In Chapter 48 reference was made to C. T. R. Wilson’s method of pro-

ducing clouds in ionized air. As early as 1899, he had found that in a

supersaturated vapor every ion becomes the center of a tiny droplet, which
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was visible under proper illumination. His first cloud expansion chamber,

which has served as the prototype for all subsequent developments, was
built in 1912. The principle of the chamber is shown in Figure 511. The
chamber C consists of a short cyl-

inder closed at the top with a

glass plate and at the bottom with

a movable piston P. The satu-

rated air in C is cooled and be-

comes supersaturated when the

piston P is suddenly moved down-

ward. Water droplets form rap-

idly on the ions produced by the

alpha and beta particles from the

minute amount of radioactive ma-
terial on the wire R. Under the

intense illumination from L the

droplets appear as bright points
Fl(. su Principle of Wn.S0N-

s Cloud
against a black background and Expansion Chamber
may be observed or photographed.

As indicated in Figure 512 the tracks produced by alpha particles are

straight lines radiating from the source R. Owing to their large mass and

great energy, these particles are able to ionize the molecules which they

encounter without being deviated from their course. In a few instances,

however, a sharp kink is observed near the end of a track. The study

of these kinks has yielded important information concerning the inner

structure of atoms.

Figure 5 13 is a photograph of tracks produced by beta rays from Radium

E. The beta particles are moving upward and the tracks are curved owing

to the presence of a magnetic field of approximately .03 webers,/

m

2
. Since

the number of ions produced pier centimeter by an electron is only a small

fraction of the number produced by an alpha particle these tracks are very

fine broken lines instead of heavy continuous ones.

Wilson’s apparatus enables us not only to detect and observe the be-

havior of a single atomic particle, but to identify it as well. In comment-

ing on the cloud chamber method, Lord Rutherford 1 said:

To the period 1895-1912 belongs the development of an instrument which

to my mind is the most original and wonderful in scientific history. I refer

to the cloud or expansion chamber of C. T. R. Wilson It was a wonder-

ful advance to be able to see, so to speak, the details of the adventures of

these particles in their flight through the gas. Any one with imagination

who has seen the beautiful stereoscopic photographs of the trails of swift

alpha particles, protons and electrons cannot but marvel at the perfection

of detail with which their short but strenuous lives are recorded.

As Figure 513 shows, when the expansion chamber is placed in a magnetic

i Nature, 138, 865 (1936).
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Fig. 512. Cloud Chamber Photograph of Tracks of Alpha Particles

Fig. 513. Photograph Showing Tracks of the Beta Rays of Radium E
in a Field of about 300 Gauss
(Photograph provided by F. Rasetti.)

field of intensity B which is parallel to the direction of motion of the piston,

the particles which move in a plane perpendicular to B describe circular

arcs. The radius R of a track is related to B
)
e/m, and velocity v of the

particle by

v (8)
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Fig. 514. Geiger Point Counter

as was pointed out in Chapter 48. If the identity of the ionizing particle

is known, by measuring B and R we can find the speed v. It is also im-

portant to recall that particles with charges of opposite sign will curve in

opposite directions.

Geiger Counters

Although several thousand ions are produced by a single alpha particle

or fast electron, the resultant ionization current is not large enough to be

detected electrically. For electrical detection some process of amplification

is necessary.

The first successful method, which was devised by Geiger in 1908, is

shown in Figure 514. One electrode of the ionization chamber is a short

cylinder C; the other is the point of a needle P . The ionizing particles

enter through the very thin window W. The applied potential V is just

below the value that will produce a glow discharge in the chamber. When
an ionizing particle enters and produces ions, these ions are accelerated

by the electric field between C and P to such an extent that they produce

other ions by collision. A momentary current flows through the high re-

sistance R, which causes a visible “kick” of the electrometer E. In this

manner the entrance of each individual particle can be observed. In re-

cent years the electrometer E has been replaced by an amplifier of the type

used in radio receivers, and the output of this is recorded by an automatic

device which registers the total number of pulses.

In 1928, Geiger and Mueller developed the tube counter
,
which is usually

referred to as the Geiger-Mueller counter.

It operateson the same principle, but has

a different arrangement of the electrodes

as shown in Figure 515. The outer elec-

trode is a metal cylinder as before, but

the central electrode is a wire along the

axis of the cylinder. In the one shown

the electrodes are sealed into a glass

bulb which is filled with gas at a reduced

C

Fig. 515. Geiger-Mueller Counter
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pressure — usually from 2 to 10 centimeters of mercury. This counter is

very efficient as a detector of cosmic rays and weak gamma radiation.

When the incident radiation ejects a photoelectron from the walls of the

cylinder C, a “count” is recorded. As we shall see in the next chapter,

most of the investigations of cosmic rays and of artificial radioactivity

have been made with counters of this type.

Scattering of Alpha Particles by Heavy Atoms

In 1906, while studying the paths of alpha particles in magnetic fields,

Rutherford observed that the particles were slightly deviated or “scat-

tered” by very thin sheets of mica. Since the particles have a relatively

large mass and enormous speeds, he realized that the forces responsible for

this scattering must be very intense. A few years later we find Geiger, who
was working in Rutherford’s laboratory, making a detailed study of the

scattering of alpha particles in thin films of gold. In reporting this work
Geiger remarked that a very small number of the particles, about one in

ten thousand, were deviated a surprisingly large amount.

At this point we have another illustration of Rutherford’s genius. In-

stead of dismissing the few observations of large scattering as accidental,

he continued to puzzle over a possible explanation. He asked Geiger and
Marsden to investigate the large angle scattering in detail. A few days

later they reported that some of the particles turned around in the foil

and emerged from the same side at which they had entered. Twenty
years later, in speaking of his reactions to this information, Rutherford

said (88:68):

It was quite the most incredible event that has ever happened to me in

my life. It was almost as incredible as if you fired a 15-inch shell at a piece

of tissue paper and it came back and hit you. On consideration I realized

that this scattering backwards must be the result of a single collision, and
when I made the calculations I saw that it was impossible to get anything

of that order of magnitude unless you took a system in which the greater

part of the mass of the atom was concentrated in a minute nucleus. It

was then that I had the idea of an atom with a minute massive center

carrying a charge. I worked out mathematically what laws the scattering

should obey, and I found that the number of particles scattered through a
given angle should be proportional to the thickness of the scattering foil,

the square of the nuclear charge, and inversely proportional to the fourth

power of the velocity.

These deductions were verified by
Geiger and Marsden. Their simple

and beautiful experiments may be
considered the experimental basis for

the nuclear model of the atom which
is now the foundation of modem

Fig. 516. Scattering or Alpha Par-
ticles by a Thin Foil
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physics and chemistry. Their experimental method is shown schemati-

cally in Figure 516. A narrow beam of alpha particles from the radioactive

source R passes through the foil F and produces scintillations when it strikes

the small zinc sulphide screen S. M is a low-power microscope for observ-

ing the scintillations. By moving S and M along the arc of a circle, the

number of particles deflected through various angles </> can be observed.

In this manner all of Rutherford’s theoretical deductions werfe verified.

The Nuclear Atom

Rutherford envisaged the atom as consisting of a small, concentrated,

positively charged nucleus surrounded by a number of electrons, different

for the atoms of different chemical elements, but the same for each atom
of a given element. The radius of the nucleus of a gold atom was found to

be of the order of 10~12 centimeters. All the facts of chemistry and physics

indicate that the radius of the whole atom is of the order of 10~"8 centimeters.

Thus the nucleus was only nUolfo the size of the atom itself. In spite of its

extreme smallness, the nucleus was assumed to be the seat of practically the

entire mass of the atom. The nuclear charge was estimated to be +Ze,
where Z is an integer equal to about one half the atomic weight of the atom
and e is the numerical value of the electronic charge, 1.6 X 1()~19 coulombs.

Later experiments have shown that if the elements are arranged in the

periodic table and numbered consecutively, beginning with hydrogen as

unity, the nuclear charge of the Zth element is +Ze. The integer Z is

called the atomic number of the element. Hence, referring to the periodic

table in the Appendix, we see that for helium Z = 2, for lithium Z = 3,

for sodium Z = 11, etc. Further inspection of the table shows that, while

Z is approximately one half the atomic weight for the light elements— as

Geiger and Marsden had found — this relationship does not hold for the

heavy elements. Tn the case of mercury, for example, the atomic weight

is 200.6, but Z is only 80. Since an atom in its normal state is electrically

neutral, it is possible, and often useful, to think of the atomic number as

determining the number of electrons moving about the nucleus of the nor-

mal atom.

In April, 1912, a young Dane, Niels Bohr, who had just received his

doctorate in physics at Copenhagen, arrived at Manchester to work with

Rutherford. After starting some experimental work he became so inter-

ested in trying to formulate a theory of the nuclear atom that he asked per-

mission to devote all his time to this theoretical problem. Rutherford

granted his request and gave him every encouragement.

In order to appreciate the difficulty and magnitude of Bohr’s problem,

it is necessary to recall some of the requirements of a satisfactory atomic

theory. In addition to explaining the scattering of alpha particles, it must

account for the emission and absorption of radiation in both the visible

and the X-ray region, ionization by various agents, radioactivity, the

general features of the periodic arrangement of elements, and the laws of

chemical valence.
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Bohr’s Explanation of the Spectrum of Hydrogen

From the point of view of nineteenth-century physics, Rutherford’s

nuclear atom model was not satisfactory. For according to Maxwell’s

electromagnetic equations, the electrons circulating about the central

positive charge must radiate energy, therefore lose speed, and in a short

interval spiral into the nucleus. His theory also shows that such an atom
is unstable and cannot emit the types of spectra that are actually observed.

The concept of a planetary atom was not new; it had been suggested

by Perrin in 1901 and Nagaoka in 1904. Owing to the above defects, how-

ever, it had never received serious consideration. Bohr was fully aware

of these previous failures when he attacked the problem in 1912.

All the experimental facts reviewed in Chapter 34 indicate that the

spectrum of a substance is determined by the structure of the emitting atom
or molecule. It will be recalled that in 1885 Baimer found that the wave-

lengths of one group of spectral lines emitted by hydrogen could be repre-

sented by the equation

X = 3645.6 x-e-r. (9)
nr — 4

where X is in angstrom units and m takes the integral values 3, 4, 5, 6, . .

.

(page 398). Since that time these lines have been known as Balmer’s

series.

Later, the Swedish physicist Rydberg wrote equation (9) in the follow-

ing form:

1
1 fm

2 - 4\

X 3645.6 \ m2 )' (10)

Multiplying the numerator and denominator of the right side of (10) by

4, we have

1

X 3645
_(i-±y
.6 \22 m2

/
(11)

If X is expressed in centimeters this becomes

(12)

The factor 109,720 is known as Rydberg’s constant and is usually desig-

nated by the letter R. Later more precise determinations of R gave the

value 109,677.8 cms-1
,
or 1.096778 X 107 reciprocal meters.

Lyman, in 1906, and Paschen, in 1908, discovered two other series in

the spectrum of hydrogen which can be represented respectively by

(13)
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where m = 2, 3, 4 . .
. ,

and

with m taking integral values beginning with 4.

Thus all the spectral lines emitted by hydrogen can be represented by
an equation of the type

(15)

where n and m are integers. If (15) is written in the form

X n2 m2
' (16)

the right side is the difference of two quantities called spectral terms.

Bohr’s great contribution to modern physics consisted in devising an

atomic theory which gave a simple physical interpretation of these terms.

Bohr9
s Theory of the Hydrogen Atom

Bohr’s first step was to propose a theory of the hydrogen atom that

would account for Balmer’s series. Accepting Rutherford’s idea of a small

massive nucleus he assumed that the hydrogen atom consisted of a tiny

nucleus with a charge -he, called a proton, about which a single electron

was rotating. The letter e represented the magnitude of the electronic

charge.

From Coulomb’s law of electrostatics it was known that the force of

attraction between the proton and electron varied inversely as the square

of the distance between them. In general therefore, the electron would

describe an elliptical orbit about the proton just as the planets move in

ellipses around the sun.

In order to simplify the calculations Bohr first considered the special

case where the electron moved in a circular orbit. Since the proton

mass is 1840 times the mass of the electron it is assumed that the proton

remains at rest, only the electron being in motion. The electrostatic at-

c
2

traction between the proton and electron is ~ —* This force directed

toward the center of the orbit gives the electron a centripetal acceleration

coV. Applying Newton’s second law we have

moi2r
4 Trkcf

2
’ (17)

where m is the mass of the electron, co its angular velocity, and kQ is the

dielectric constant of empty space.

According to Maxwell’s electromagnetic theory this circulating electron

must radiate energy and describe a spiral path until it collides with the
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proton. The observed spectrum of hydrogen shows that this gradual

collapse of atoms does not occur. Bohr therefore assumed that Maxwell's

theory does not apply to atomic processes, although we know that it is

valid for large scale phenomena such as radio.

With the insight of genius Bohr made two assumptions or postulates

which enabled him to solve the problem. The first postulate specified that

only those electronic orbits were possible in which the angular momentum
of the electron was nhj2 7r, where n was an integer, that is, 1, 2, 3, 4, . .

.

.

The permissible orbits, which were the ones that occurred in nature accord-

ing to the theory, were called stationary motions or stationary states. In

any one of these states the energy of the atom was assumed to be constant

;

no radiation was emitted. The quantum number of the state or orbit was
called n. The second postulate stated that when an electron made a

transition or jump from a state having a quantum number n2 and total

energy Wn2 to a lower state where n = and the energy was Wn \ ,
the

energy loss Wn2 - Wn 1 was given off as radiation. It was further assumed
that the frequency v of this radiation was given by

v =
Wn

2

- Wnl

h
(18)

Fig. 517 . Model op Hydrogen
Atom

where h was Planck's constant.

Applying these postulates to the hy-

drogen model, Figure 517, Bohr derived

the correct equation for all the spectral

series of hydrogen. Even more striking

was the fact that the theory gave the nu-

merical value of R . To derive Rydberg's

formula we start with (17) which can be

written

<19)

The first postulate requires that

mar* = ~
(20)

JL 7

r

since the angular momentum of the electron is moor1
. (In Chapter 15

angular momentum is defined as /w, and in this case I * wr2
.) Squaring

both sides of (20) and dividing by (19) we have

mr = (4 irko)n2h2

47r2
e
2

or

r
(4 7t&q)n2h2

4 w2e2m <21)
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where n can have only integral values. Hence, the radii of the possible

stationary states are in the ratio 1, 4, 9, ... . In order to find the fre-

quency of the emitted light it is necessary to calculate the energy of the

atom, Wn ,
when the electron is in the «th orbit. This total energy is

equal to the sum of the kinetic and potential energies. From electrostatics

we have for the potential energy U of the electron

17 = -
4 irhrn

(22 )

where r„ is the radius of the nth orbit. The negative sign comes from the

negative charge of the electron. From (19) the kinetic energy is found

to be
€“

2 mv
2 = 2 mo)2r2n = - •

(4 7t&0)2 r„
(23)

The total energy can now be written

wn
= er +w-7i ..V

•

(4 7t£o)2 rn
^

(24)

Substituting for rn ,
from equation (21),

— 2 7r
2e*m

\Al — — - •

* (4tAo)W
(25)

The values of Wn are the energy states or energy levels of the atom. When
the electron falls from a higher level n2 to a level «i the frequency of the

emitted radiation is given by (18).

W„2 - Wn , = 2 tVot / 1
1 \

h (4 irka)'
lh\n? n?)

or the reciprocal wave-length is

1 v 2 7r
se4w /I 1 \

X c (4 7r&o)
2
c/t

3
\»i

2 «2
2
/

If we make
2 7r

2
s*tn

(4 irko)
2
ch*

(26)

(27)

(28)
1

equation (27) is identical with Rydberg’s expression for Balmer’s series.

Substituting the numerical values of e, m, k0 ,
c, and h in (28) we find for

the value of R, 1.09 X 107 reciprocal meters which agrees within the limits

of experimental error with the value obtained from spectra. This agree-

1 In the c.g.s. system of units 4 xk0 = 1, so that the expression for Rydberg’s constant be-

comes
_ 2
R “

ch*
’

which is the equation given in most textbooks.
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ment is quite remarkable since the measurements of the five constants

e
,
m

y koy c
,
and h are entirely independent of the spectrum of hydrogen.

Another success of the theory is that the value of the radius of the first

orbit, n = 1, calculated by equation (25) is .53 X 10~10 meters, which agrees

with the results obtained from the kinetic theory of gases.

In the normal state of the atom the electron is in the state of mini-

mum energy, that is, n = 1. As long as it remains in this state no

radiation is emitted. When a

hydrogen atom is bombarded
by electrons or ions the elec-

tron will be raised to an orbit

further removed from the cen-

ter. It remains here a very

short interval of time and then

falls to a lower orbit. As indi-

cated in Figure 518 the transi-

tions which end on the level n =

2 give rise to the lines of the

Balmer series. Those ending on

the level n = 1 produce the

Lyman series, and for n = 3

the so-called Paschen series.

For each transition the wave-

length of the emitted radiation

is given by equation (27).

The cardinal feature of Bohr’s contribution to atomic physics is his

concept of stationary states or energy levels. In its normal state the

atom is in the lowest level. No radiation can be emitted until its energy

is increased to a higher level. This increase may be brought about by col-

lisions due to high temperature, by electronic impacts, or by absorption

of radiation. The amounts of energy in electron-volts required to raise

the atom to the higher levels are called the excitation potentials of the atom.

The energy necessary to remove one electron is called the first ionization

potential. According to the theory the ionization potential is numerically

equal to the energy of the atom in the normal state. Similarly, differences

between various excitation potentials should be equal to the differences in

energy levels as found from spectra.

By bombarding gases and vapors with electrons of different energies

Franck and Hertz in 1913 were able to verify all these predictions of the

theory. They showed further 'that if an atom was struck by an electron

which did not have sufficient energy to raise the atom to its first excited

state, the collision was elastic. Practically no energy was transferred to

the atom and no radiation emitted. But in case the electronic energy was
great enough to excite the atom, a large fraction of the collisions would
result in excitation and emission of light. Since atoms can exist only in a

Lyman series

Fig. 518 . Circular Orbits in the
Hydrogen Atom
(Not drawn to scale.)
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discrete number of energy states they can accept energy only in finite

chunks or quanta. The Bohr theory, then, can be considered an extension

of Planck's quantum idea to all atomic processes.

Application of Bohr’s Theory to More Complex Atoms

It will be recalled that the atomic number, Z, fixes the number of elec-

trons in a given atom, which, in turn, determines its chemical behavior.

Thus any atom with Z = 10 is neon irrespective of its atomic mass. As
we shall see in the next chapter, atoms having the same value of Z but dif-

ferent masses are known as isotopes.

As an example of the extension of Bohr's theory to an atom with several

electrons, we shall consider an atom of sodium. The atomic number of

sodium is 11; hence, there are eleven electrons moving about the nucleus.

The electrons are attracted by the nucleus and repelled by one another.

From the optical and X-ray spectra of sodium and its chemical behavior,

Bohr and others have proposed an arrangement of the eleven electrons

which seems to meet the requirements imposed by our knowledge of the

properties of the sodium atom. The general features of the arrangement

are shown schematically in Figure 519. Two electrons remain relatively

close to the nucleus; they are in quantum states having n = 1 and are said

to be in the K shell. Eight elec-

trons are in states having n = 2,

which constitute the L shell; states

having n = 3 constitute the M shell

;

and so on. It should be pointed out

that the eight electrons of the L shell

— and the electrons of any single

shell except the K— do not all have

the same energy and are not all in

identical orbits. The word shell
,

therefore, is not synonymous with

energy level. The eight electrons

which have n — 2 form what is

called a closed shell. Hence, the

eleventh electron must remain in the

M shell. This single outermost elec-

tron determines the optical and chemi-

cal properties of sodium. When it is raised to a higher, normally unoc-

cupied, energy level, it falls back, and the atom emits radiation in accord-

ance with Bohr's second postulate. Conversely, if light of all wave-lengths

is passed through sodium vapor, those wave-lengths will be absorbed which

are emitted by electron jumps ending on the lowest or normal energy level.

This group of lines is known as the principal series of sodium. The other

series observed in emission do not occur in the absorption spectrum.

Fig. 519 . Arrangement of Elec-
trons in the Sodium Atom

(Not drawn to scale.)
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X-Ray Spectra; Moseley’s Law

The optical spectrum of an element is a complex arrangement of many
lines. Its interpretation is often difficult. X-ray spectra, on the other

hand, are exceedingly simple, consisting of only a few lines which can be

easily classified and interpreted by Bohr’s theory.

The remarkable simplicity of X-ray spectra was first observed and inter-

preted in 1913 by a young graduate student, H. G. J. Moseley. Working
in Rutherford’s laboratory in Manchester he determined the wave-lengths

of the characteristic X-rays emitted by successive elements in the periodic

table. Moseley’s experimental method was essentially the same as

Bragg’s (page 611). The X-rays of the element which was being investi-

gated were excited by electron bombardment. They were reflected from

a rotating crystal and their wave-lengths computed by Bragg’s equation

(page 612).

Moseley found that each element gave two groups of characteristic

X-ray lines. Adopting the nomenclature of Barkla he called the group

having the shorter wave-lengths, K lines, the other L lines. The two
strongest lines in the K group were designated as Ka and Kp . In his first

paper 1 wave-lengths were given for the Ka and the Kp lines of the elements

from calcium to zinc, whose atomic numbers extend from 20 to 30. Al-

though the optical spectra and chemical properties of these elements vary

greatly, their X-ray spectra are all similar. The only change with in-

creasing atomic number is a shift of the lines toward the shorter wave-
lengths. Moseley found that the frequencies of the Ka lines for these

elements were given accurately by the equation

= b (Z — 1)* (29)

where J is a constant and Z is the atomic number. Thus the frequency

increases regularly with the nuclear charge Z. There is no periodicity in

X-ray spectra corresponding to the chemical periodic table.

As Moseley himself pointed out, equation (29) can be readily interpreted

in terms of Bohr’s theory. Assuming that the Ka line is emitted when an
electron jumps from a state n = 2 to one where n — 1, the theory gives

approximately

vKa = cR(Z- l)*(f,-^} (30)

which is of the same form as equation (29).

X-Ray Spectra and Electron Shells

A few years after Moseley’s pioneer experiments Kossel gave a detailed

explanation of X-ray spectra in terms of the Bohr atom model. This

explanation can be best presented by considering a special case, say copper.

1 Philosophical Magazine (6), 26, 1024 (1913).



Chapter 50 QUANTUM THEORY AND ATOMIC STRUCTURE 641

Since the atomic number of copper is 29, the atom has 29 electrons. Chem-
ical and spectroscopic evidence indicates that two electrons are in the K
shell, eight in the L shell, eighteen in the M shell, and one in the N shell.

To excite the Ka lines of an atom it is

necessary to remove one electron from
the K shell. This requires bombard-
ment with fast electrons since the K
electrons are well shielded by other

electrons and are strongly attracted by
the nuclear charge of +29 e. In the

case of copper, energy of approximately

9000 electron-volts is required to re-

move a K electron; for tungsten

(Z = 74) 69,000 electron-volts is neces-

sary. Thus an X-ray tube with a cop-

per target must be operated at a poten-

tial of 9000 volts or more in order to

excite its characteristic Ka X-rays.

When one of the K shell electrons has been removed the vacancy is

filled by a transition from the L or M shell. As shown in Figure 520, a
jump from the L shell gives rise to the Ka X-ray line, while one from the M
shell produces Kp . The La line originates in a transition from M to L .

If Kossel’s interpretation of these processes is correct, we must have

hvKa + hvLa = hvKfi . (31)

For according to Bohr’s theory, both sides of equation (31) are equal to

the difference in energy of an electron in theM shell and one in the K shell.

Taking account of the slight differences in energy of the different electrons

in a single shell, equation (31) is

found to be true.

Although an element emits an
X-ray spectrum consisting of sharp

lines it does not have an absorp-

tion spectrum of the same type.

The reason for this can be under-

stood with the aid of Figure 520.

Assume that copper Ka X-rays pass

through a sheet of copper. The
energy hv of the rays is just suffi-

cient to raise a K electron to the

L shell. As was pointed out above,
however, the L shell is filled so that the transfer cannot take place. Radia-
tion having a value of hv sufficient to remove an electron from the atom
will be strongly absorbed, but there is no sharp absorption line like that
obtained in the optical case. Thus the Bohr theory, which was designed

hv0

O'

Fig. 521 . Compton’s Theory of a Col-
lision Between a Photon and an
Electron

Fig. 520 . Some Possible Electron
Transitions in Producing X-Rays
of Copper
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to interpret optical spectra, proved to be just as successful in interpreting

the emission and absorption of X-rays.

Photon Hypothesis and the Compton Effect

In his interpretation of the photoelectric effect (page 625), Einstein

assumed that light consisted of quasi-corpuscles, called photons. The
energy of an individual photon was taken to be hv. At about the same

time Einstein was led by his special theory of relativity to propose a funda-

mental relationship between mass and energy, namely,

mass = energy
(32)

where c = velocity of light. According to this viewpoint a photon of radia-

, -it,. . hv _ hv hv
tion can be considered as having a mass of ~r and momentum -r-c = —

cl c
L c

Owing to the large value of v in the X-ray region an X-ray photon may have

a mass comparable to that of an electron at rest.

When a beam of light passes through a fog some of it is diffused or

scattered in all directions. It is by means of this scattered light that we
are able to see the beam. The diffused light has the same wave-length

as the original beam, and the mechanism of the scattering can be explained

by Maxwell's electromagnetic theory.

In 1922, the American physicist A. H. Compton made the surprising

discovery that when X-rays are scattered by a light substance such as

carbon, the wave-length of the radiation is slightly increased. This change

of wave-length is contrary to all predictions of the wave theory of light.

The photon hypothesis, however, gives a beautifully simple explanation of

the phenomenon.

In Compton's theory of the process the collision between a photon and
an electron is treated in the same manner as the collision between two per-

fectly elastic particles. As was shown in Chapter 13, such a collision is

characterized by the conservation of momentum and the conservation of

energy. Let us consider a photon hv0 ,
Figure 521, which collides with an

electron e
,
originally at rest. After the impact the electron will have a

certain velocity v in the direction ee'. Since the electron has acquired an

amount of energy, mv2
,
the energy of the scattered photon is

hv = hvo — \ mv2
. (33)

The frequency v being less than vQy the wave-length of the scattered X-rays
must be greater than that of the incident beam. Applying equation (33)

and the condition for conservation of momentum, Compton was able to

calculate the exact change in wave-length for a given angle of scattering.

His experimental values were in excellent agreement with the theoretical

predictions.

The Compton effect is often presented as conclusive proof of the corpus-
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cular nature of radiation. A more careful analysis, however, shows that

although the photon is quasi-corpuscular in interacting with matter it

cannot be considered a corpuscle in the sense in which Newton used the

term. There is no experimental evidence that photons collide with one an-

other. In order to determine the mass and energy of the photon its wave-
length must be measured by a process in which the photon is considered

to be a wave motion and nothing more. Further, it travels with only one
velocity, the velocity of light in vacuo

,
whereas the velocity of a particle

varies with its energy. All the experiments on interference and diffraction

of Chapter 33 can be simply and accurately interpreted in terms of a pure

wave theory. Thus the experimental facts require us to adopt the view-

point that under certain experimental conditions light can be treated as a

purely wave phenomenon; under other conditions it must be considered

quasi-corpuscular.

Matter-Waves of De Broglie

In attempting to reconcile the wave and corpuscular features of light

Louis de Broglie was led to suggest in 1924 that particles of matter should

have wave properties. The general ideas which guided him in developing

his theory have been clearly stated by De Broglie himself in his Nobel
Prize address, given in 1929 (35 :168)

:

When I began to consider these difficulties I was chiefly struck by two
facts. On the one hand the Quantum Theory of Light cannot be considered

satisfactory, since it defines the energy of a light corpuscle by the equation

W = hv, containing the frequency v. Now a purely corpuscular theory

contains nothing that enables us to define a frequency; for this reason alone,

therefore, we arc compelled in the case of Light, to introduce the idea of a

corpuscle and that of periodicity simultaneously.

On the other hand, determination of the stable motion of electrons in the

atom introduces integers; and up to this point the only phenomena involv-

ing integers in Physics were those of interference and normal modes of

vibration. This fact suggested to me the idea that electrons too could

not be regarded simply as corpuscles, but that periodicity must be assigned

to them also.

By applying Einstein’s special theory of relativity De Broglie derived

the following relation between the motion of a particle and its associated

wave:

mv
(34)

where X is the wave-length of the wave, mv is the momentum of the particle,

and h is Planck’s constant. It is interesting to note that equation (34)

holds for photons. For electromagnetic waves we have

c he h /o cn
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As was shown on page 642, hv/c is the momentum of the photon. Thus the

h
relationship X = seems to be a very general one which holds

momentum
for both matter and radiation.

Experiments of Davisson and Germer

Equation (34) shows that the wave-lengths of the De Broglie waves
associated with the smallest particle that can be observed and weighed are

very much shorter than that of any known radiation. They are so short

that there seems to be no possibility of detecting them experimentally.

In the case of electrons, however, the situation is different. If we consider

an electron which has a kinetic energy of 100 electron-volts, its momentum

mv is 9.1 X IO-31 X 5.93 X 106 = 5.40 X 10~24 kgm—
sec

„ . 6.62 X 10 -34
. „ ....

Hence, X = r-77.-

—

rjzzr. = 1.22 X 10“10m
5.40 X 10~24

«= 1.22 angstroms,

which is in the region of X-ray wave-lengths.

In 1927, the American physicists Davisson and Germer showed that

beams of electrons are diffracted by a crystal in precisely the same manner
that X-rays are. Applying Bragg’s equation (2), page 6l2, they were able

to determine X for electrons of known energy. The experimental values

agreed with those calculated by De Broglie’s equation. In this experiment

we have the surprising phenomenon of a beam of electrons showing inter-

ference effects similar to those exhibited by X-rays.

Interpretation of Wave-Particle Duality

One must not conclude from Davisson and Germer’s results that “elec-

tron waves ” and X-rays are identical in nature. As J. J. Thomson showed
in 1895-97, fast electrons have properties which are entirely absent in light

waves. In most situations electrons can be considered small particles, each

having a definite mass and charge. Their behavior can be predicted by
the equations of Newton and Maxwell. But when they interact with

atoms of a gas or crystal it is necessary to use the wave-equations of De
Broglie and Schroedinger. These equations predict interference effects

which are actually observed. We cannot, however, give a “physical

picture” of these waves in the sense that we can of sound waves, for ex-

ample. At the present time we must simply regard them as mathematical
symbols which are used in predicting the outcome of certain types of experi-

ments.

Although this wave-particle duality is found in radiation phenomena
and in experiments involving only matter, the two cases are far from
identical. Photons differ fundamentally from electrons. They have zero
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rest mass, no electric charge, and always travel with the same speed.

Their mass and momentum seems to be concentrated, yet interference

effects are obtained with only a single photon passing through the ap-

paratus at a time. The photon interferes with itself, so to speak. A
single photon must therefore cover a whole grating or lens. All these

apparently contradictory results show that our simple intuitive concepts

based upon ordinary mechanics are not able to deal with the interactions

of radiation and matter. We cannot visualize processes on the atomic scale.

Questions for Self-Examination

1. What was the central point in Planck's revolutionary hypothesis on the nature

of radiant energy?

2. What is the “photoelectric effect" and what was Einstein's hypothesis as to its

nature?

3. What new type of phenomenon did Wilson's cloud chamber disclose?

4. What was the significance of the scattering of alpha particles first observed by

Rutherford?

5. Tell how Bohr combined the quantum hypothesis with Rutherford's picture of the

atom to account for the spectrum of hydrogen.

6. Compare a typical X-ray spectrum with the spectrum of hydrogen and tell why
the similarity exists.

7. What is the evidence that light waves possess some of the properties of flying

particles?

8. What is the evidence that electrons possess some of the properties of waves?

Problems on Chapter 50

1. If the photoelectric threshold of a metal is 3000 angstroms, what energy in electron-

volts is required to remove an electron from the metal? 4 electron-volts.

2. Using equation (21) calculate the radius of the first Bohr orbit for an atom of

hydrogen. .5 X 10~10 m.

3. Calculate the wave-lengths of the first two lines of the Balmer's series using equa-

tion (27). Compare your results with the experimental values on page 399.

4. What is the shortest wave-length in angstroms emitted by an X-ray tube that is

operating with a potential difference of 30,000 volts between filament and target?

.4 angstrom.

5. What is the wave-length of the De Broglie waves of an electron whose kinetic

energy is 10,000 electron-volts? 1.2 X 10“u meters.
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Nuclear Physics

The Nucleus of the Atom

After the remarkable successes of the Bohr theory in interpreting opti-

cal and X-ray spectra there was little doubt concerning the validity of its

principal features. The existence of energy levels and the arrangement of

electrons in shells were firmly established.

It must be kept in mind, however, that the tiny positively charged

nucleus is the real controlling element. Its charge determines the number
of electrons and therefore the chemical and optical properties of the atom.

All the experiments on the scattering of alpha particles and Moseley’s

law for X-ray wave-lengths are consistent with the view that the nuclear

charge of any atom is given by + Ze
,
where Z is the atomic number of the

element and e is the magnitude of the electronic charge. Thus, referring

to the table of elements in the Appendix, for hydrogen Z = 1 ,
helium Z = 2,

lithium Z = 3, neon Z = 10, and so on.

Any atom with a nuclear charge + 10 e will have ten extra nuclear elec-

trons which give it the spectrum and chemical behavior of neon. Removal
of one of these outer electrons does not create a new type of atom. The
resulting positive ion captures an electron and reverts to a normal atom of

neon. To change an atom into another chemical type it is necessary to

change the nuclear charge Ze.

Chemical Elements and Types of Atoms

The periodic table shows ninety-two chemical elements with values of Z
from 1 to 92 and atomic weights from 1.008 for hydrogen to 238.14 for

uranium. Chemical atomic weights are relative. All oxygen atoms are

assumed to have a weight of 16.00 atomic weight units, and the other

atomic weights are relative to this value. For example, the atomic weight

of sodium is given as 23.00; this means that the ratio

weight of N sodium atoms 23

weight of N oxygen atoms 16

where N is any integer.

Forty years ago the two questions: how many chemical elements are

there? and how many types of atoms are there? would have been consid-
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ered synonymous. It was assumed that each element consisted of a single

type of atom. This assumption of ninety-two distinct types of atoms is

not very satisfactory to those who believe that all natural phenomena can

be interpreted in terms of afew fundamental concepts. In 1813, ten years

after Dalton had proposed his atomic theory, Dr. Prout, an Edinburgh
physician, observed that the atomic weights of all the elements were in-

tegers, taking hydrogen as one . This suggested that all atoms are composed
of a number of primordial atoms, and therefore all atomic weights should

be integers.

Later accurate determination of atomic weights showed that Prout’s

hypothesis was not tenable. For, as the periodic table shows, the atomic

weights of the great majority of the elements are not integers.

After the discovery of radioactivity, elements were found which could

not be separated by chemical means but which had distinct radioactive

properties. This led Soddy to state in 1910 (88:100-101):

Chemical homogeneity is no longer a guarantee that any supposed element

is not a mixture of several [elements] of different atomic weights, or that

any atomic weight is not merely a mean number.

Soddy’s suggestion was considered quite radical at the time. Jt proposed

that an element such as neon, atomic weight 20.18, for example, consisted of

a mixture of atoms having different weights, say 20, 21, and 22. Although

these three types of atoms have different weights it is not possible to sep-

arate them by chemical means. Since they always occur in nature in the

same proportions, the atomic weight of the mixture is always found to be

20.18. In accordance with Soddy’s suggestion atoms having different

masses but identical chemical properties are called isotopes (meaning same

place in the periodic table).

Precise Measurements of Atomic Masses

As was pointed out in connection with J. J. Thomson’s experiment

(page 596), masses of particles even smaller than atoms can be determined

if the particle has an electric charge. Although atoms normally are not

charged, they acquire a charge when ionized in a discharge tube.

In 1886, in the course of his work on cathode rays, Goldstein observed

rays behind a perforated cathode. Several years later Wien and J. J.
Thomson showed that these so-called positive rays were atoms which had

lost one or more electrons. By bringing these ions into a magnetic field it

is possible to determine their relative masses with high precision.

The first precise results by this method were obtained by F. W. Aston in

the Cavendish laboratory. His apparatus, called a mass spectrograph
,
is

rather complicated in design, so we shall describe a more recent instrument

designed by K. T. Bainbridge.

The essential parts of the Bainbridge apparatus are shown in Figure 522.

The ions to be “weighed” are formed in a discharge tube above the slit Si.
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After passing through the slit St and between the parallel plates Pi and Pi,

they emerge through another slit S3 into a region in which there is a uniform

magnetic field B perpendicular to

the plane of the diagram. In this

field the ions describe a circular

path of radius R given by

<»

where m * mass of ion, e = charge,

and v = velocity- (Equation (10),

page 599.)

After traversing the semicircle

the ions strike the photographic

plate, producing a trace or line.

From the positions of these lines

the values of 72 can be found. If

all ions have the same velocity and

the same charge, equation (1) shows
that the ionic masses are proportional to 72. If there is an electrostatic

field between the plates Pi and P2 ,
and a magnetic field perpendicular to

the electric one, only ions with a certain specific velocity can pass through

the slit S3 . This insures the constancy of v in equation (1).

The results of Aston, Bainbridge, and others have shown that Prout’s

hypothesis is essentially correct. All elements having fractional atomic

weights are found to consist of a mixture of several isotopes. For example,

lithium, atomic weight 6.94, consists of a mixture of two types of atoms hav-
ing atomic masses of 6 and 7. Assuming 7.9 per cent of the atoms have the

smaller mass, the average mass of the mixture is 6.94.

In light of our present information, therefore, the two questions pro-

posed above are not identical. The number of chemical elements is 92, but

287 different atoms having distinct masses have been observed.1

Notation for Atomic Nuclei

In order to identify the various isotopic nuclei a specific notation has

been adopted. The chemist uses an abbreviation or symbol for each ele-

ment. Thus H represents hydrogen, Ne neon, Li lithium, and so forth.

The complete list is given in the periodic table. To represent the nuclei

the atomic number Z is written as a subscript at the left of the chemical

symbol and the mass number as a superscript at the right. For example,

the three types of neon nuclei are written loAe20, lofte
21

,
and lolVe

22
, Since

the atomic mass is very nearly the same as the nuclear mass, the same
notation is used for atoms.

Fig. 522. Diagram of Bainbridge’s Mass
Spectrograph

1 Reviews of Modern Physics
, 12t 31 (1940J.
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Relation Between Mass and Energy

As the precision of mass spectrographs was increased it became evident

that the whole-number rule for atomic masses was only approximate. The
more accurate masses of the first light elements are hydrogen, 1.00813; the

hydrogen isotope known as heavy hydrogen or deuterium, 2.01473; helium,

4.00389; (lithium)6
, 6.0168; (lithium) 7

,
7.01818. As we shall see later, an-

other fundamental particle is the neutron, having no charge and a mass of

1.00893 units.

At first sight the above values seem to contradict Prout’s hypothesis.

If we assume, for example, that the helium nucleus is composed of two

neutrons and two protons (hydrogen nuclei), the resultant structure has the

correct charge +2 e. The total mass of the four particles, however, is

4.03422 while the observed mass of helium is 4.00389. An appreciable

amount of mass has disappeared.

This difficulty can be eliminated by accepting the relation between

mass and energy which was proposed by Einstein in 1905. In his special

theory of relativity, Einstein put forward the hypothesis that the inertial

mass m of any particle of matter varies with the velocity v of the particle

according to the equation

where c is the velocity of light, and mo is a constant known as the rest mass

of the particle. In ordinary mechanics the ratio v/c is so small that the

mass can be considered constant and equal to mo. In the case of high-speed

electrons, however, v is of the same order of magnitude as c and the varia-

tion of mass with speed must be taken into account. All experimental ob-

servations in this field are in harmony with equation (2).

If we retain the Newtonian definition of force as the rate of change of

momentum and the usual definition of work, it can be shown that the ki-

netic energy of a particle with rest mass mo and velocity v is given by

From equations (2) and (3) we have

K.E. = (m — fWo)c® (4a)

,
K.E.

m ** Wo + 2
•

c2
(4b)

Equation (4b) states that the increase in mass of a moving particle is

equal to its kinetic energy divided by the square of the velocity of light.
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But there seems to be no good reason for assuming that this relationship

is limited to kinetic energy. Consequently, Einstein and others adopted

the hypothesis that the relation is a general one — that with an amount of

energy, W, in any form, kinetic, potential, thermal, etc., there is always

associated a mass, w, equal to W/c2
.

According to this point of view the mass of a molecule must be less than

the mass of its component atoms. Consider, for example, a diatomic

molecule. Let m be the mass of the molecule, nhn and m02 the rest masses

of the atoms
,
and D the work done against attractive valence forces in

separating the atoms. Since the work D must be added to the molecule

in order to produce two atoms, equation (4b) gives

or

I)
m + — = m0 1 + mo2

m = moi + mo2 —
'D

(5a)

(5b)

In ordinary chemical reactions D is so small that the change in mass is

imperceptible. In nuclear reactions, however, D
,
which is called binding

energy
,
is large enough for the change in mass to be observed. All the data

available at the present time are in harmony with the relation (5b) and the

experimental values of losses in mass are used to calculate nuclear binding

energies.

Radioactivity as a Nuclear Process

The nuclear atom model gives a direct and satisfactory explanation of

the principal facts of radioactive disintegration. A radioactive element is

one whose nucleus is unstable. It eventually explodes ejecting fast alpha

or beta particles in the process. In symbolical notation the transformations

from radium to radium C 1 can be written

iRa226 = seRn222 + 2Hc4
(6)

sRn222 = 84Ra/l
218 + 2He4

(7)

tRaA 218 = 82Ra£214 + 2He4
(8)

>RaB2U = fflRaC
214 + (9)

where -ie° represents an electron or beta particle. The mass of the electron

is not actually zero, but it is very small in atomic weight units. Equation

(6) states that when a radium nucleus having a mass of 226 units and
charge of +88 e explodes, it ejects an alpha particle, 2He4

,
having a mass

4 and charge +2 e, leaving a residual nucleus of mass 222 and charge

+86 e. Conservation of mass is insured by balancing the sum of super-

scripts on both sides of the equation; conservation of charge by balancing

1 Compare these equations with the diagrammatic representation of the successive changes

involved in radioactive disintegration in Figure 506.
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the subscripts. As equation (9) shows, when an electron is ejected from a
nucleus a new element is formed with a higher nuclear charge.

Since some of the observed beta rays come from the nucleus it was orig-

inally assumed that nuclei were composed of alpha particles, protons, and
electrons. More recent experimental and theoretical work, however, favors

the view that the only constituents of atomic nuclei are protons and neu-

trons. It is now assumed that the nuclear beta particles are created when
the radioactive change occurs. Many of the beta particles which are ob-

served come from the electron shells. These seem to be emitted by a kind

of “internal photoelectric effect/

The above equations of radioactive change give no account of the origin

of gamma rays. After the remarkable success of the Bohr theory in ac-

counting for X-ray spectra it was a natural step to extend the concept of

energy levels to the nucleus. Thus, in certain radioactive transformations,

the newly formed nucleus is assumed to be in an excited state. As it falls

to the normal state its excess energy is given off as gamma radiation. This

accounts for the fact that gamma rays are always associated with the emis-

sion of alpha or beta particles.

The First Transmutation of a Stable Element

During 1914-18, Rutherford’s research efforts turned from atomic nu-

clei to submarine detection. During his spare moments in 1917-18,

however, he made observations on the passage of alpha particles through

gases. He devised an experimental approach to the problem which is il-

lustrated in Figure 523. The radio-

active source R was placed in a tube T
which could be filled with different

gases. At one end was a thin window

and a zinc sulphide screen, S. The
impacts of alpha particles on this

screen produced scintillations not un-

like the sparks from a blacksmith’s Fig. 523. Rutherford’s Apparatus

anvil. The scintillations were ob- FOR the Transmutation or Nitrogen

served with the microscope M

.

The alpha particles themselves could travel 7 centimeters in air. But a

few scintillations were observed when the distance RS was as large as 40

centimeters. Rutherford suspected that these particles striking the screen

were hydrogen nuclei. By deflecting them in a magnetic field he was able

to show that the scintillations were produced by protons. The most sur-

prising fact, however, was that the greatest number of long-range particles

were observed when the tube was filled with pure nitrogen. In reporting

his results Rutherford said :
1

It is difficult to avoid the conclusion that the long-range atoms arising

1 Philosophical Magazine, 37, 581 (1919).
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from the collision of alpha particles with nitrogen are not nitrogen but proba-

bly atoms of hydrogen or atoms of mass 2. If this be the case we must

conclude that the nitrogen atom is disintegrated under the intense forces

developed in a close collision with a swift alpha particle and that the hydro-

gen atom which is liberated formed a constituent part of the nitrogen

nucleus.

These observations may be considered the origin of the science of nuclear

physics. His simple apparatus presents a striking contrast to the gigantic

“ atom smashers ” used in nuclear research today.

Further work in Cambridge and Vienna showed that all the elements be-

tween boron (Z -* 3) and potassium (Z = 19) with the exception of oxygen

and carbon could be disintegrated by fast alpha particles. In each case

protons were emitted.

The disintegration of nitrogen can be represented symbolically by

,N14 + 2He4 = 8017 + 1H1
. (10)

This indicates that one chemical element, namely, nitrogen, was trans-

muted into another distinct element, oxygen, in the process. In a limited

sense the dreams of the alchemists had been achieved.

The Neutron

In 1930-31, Bothe and Becker in Germany showed that the element

beryllium emitted a penetrating radiation when it was bombarded with

alpha particles. Because of its great penetrating power they assumed that

this radiation consisted of gamma rays of very short wave-length.

A year later, Irene Curie, daughter of the famous Curies who discovered

radium, made a detailed study in collaboration with her husband, F.

Joliot, of the absorption of this

new radiation. Their experimen-

tal arrangement is shown sche-

matically in Figure 524. Alpha
rays from polonium P struck the

beryllium B, producing the pen-

etrating rays which were detected

by means of the ionization cham-
ber I and a very sensitive electrometer. While testing various absorbing

screens S, they made the surprising discovery that if S was a thin sheet

of paraffin the ionization current was increased, being approximately

doubled.

They suspected that the increased ionization was produced by fast

protons being knocked out of the paraffin which is rich in hydrogen. By
placing the paraffin inside a Wilson expansion chamber and photographing

tracks they showed that their suspicions were correct. The momentum of

a gamma ray photon is not high enough to give a proton the velocity that

they observed. It was evident that this mysterious radiation coming from

A
1.^1

To
electrometer

Fig. 524. The Cxjrie-Joliot Arrangement
eor the Study or Neutrons
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the beryllium was not ordinary gamma rays, as Bothe and Becker assumed.

As long as twelve years before this, Rutherford had pointed out that

many facts concerning atoms could be interpreted in a very satisfactory

manner by assuming the existence of a particle having the same mass as

the proton but no charge. For such a particle he proposed the name
neutron. Two separate attempts to detect the neutron in 1920 failed.

When J. Chadwick saw an account of the experiments of Curie-Joliot he

immediately realized that fast neutrons striking the hydrogen in the paraf-

fin would give the observed effects. After further experiments which con-

firmed his theory he announced that the experimental evidence furnished

conclusive proof of the existence of the neutron.

Since the neutron has no charge it experiences very little retardation and

produces no ions in passing through a gas. In this respect it differs from

alpha particles, beta particles, and protons. Owing to their charges, the

latter remove electrons from atoms producing ions. The ions manifest

their presence by electrical effects or by the tracks observed in the Wilson

cloud chamber. Neutrons produce no cloud tracks. However, when they

collide directly with protons, the latter are driven back with sufficient speed

to produce a track.

Even dense solids, such as lead, show very slight absorption of neutrons.

Slow neutrons can penetrate several inches of lead but are completely ab-

sorbed by a sheet of cadmium as thin as writing paper. Neutron behavior

varies widely with speed. There is as much difference between the proper-

ties of fast and slow neutrons as between visible radiation and hard X-rays.

Since neutrons are very penetrating and can knock protons out of mole-

cules, they cause serious damage to living cells. Exposure to intense beams
of neutrons produced with modern cyclotrons 1 may be fatal. To safe-

guard workers these machines are surrounded by tanks of water giving a

screen several feet in thickness.

At first, attempts were made to consider the neutron a closely combined

proton and electron. But in light of later experimental and theoretical in-

formation it seems preferable to consider it one of the fundamental con-

stituent units of matter, on equal footing with the proton. The present

generally accepted view is that all atomic nuclei are composed of pro-

tons and neutrons. This gives a simple and satisfactory interpretation of

isotopes. Thus in the case of lithium, for example, the isotope of mass 6

has 3 protons and 3 neutrons while that of mass 7 has 3 protons and 4
neutrons. Adding a neutron to a nucleus does not change the atomic

number Z or the number of electrons in an atom. It simply increases the

mass by one unit producing an isotope of the original element.

Before 1932 it was supposed that all matter was composed of protons and

electrons. Chadwick’s discovery added a third fundamental particle, and

a few months later Anderson in America discovered the positron, a particle

similar to the electron but having a positive instead of a negative charge.

1 See page 657.
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As often happens in scientific research, Anderson’s discovery was a “by-
product” in his investigations on cosmic rays.

Concerning Cosmic Rays

During the last decade cosmic ray studies have enlisted the attention of

a large number of scientists. As K. K. Darrow 1 has so aptly said,

This field is unique in modern physics for the minuteness of the phe-

nomena, the delicacy of the observations, the adventurous excursions of the

observers, the subtlety of the analysis and the grandeur of the inferences.

The study of these rays began with the observation by Elster and Geitel

and C. T. R. Wilson in 1900 that a closed ionization chamber filled with dry

dust-free air showed a very weak but definite conductivity. Wilson sug-

gested that the ionization might be produced by radiation similar to X-rays

or cathode rays coming from outside the earth’s atmosphere.

In order to find out whether this radiation came from the earth or from
outer space the Swiss physicist Gockel in 1910 made balloon observations

up to altitudes of 4500 meters. At this altitude the ionization was greater

than at the earth’s surface. Since 1922, Millikan and his collaborators

and many others have made careful measurements of the intensity of this

penetrating radiation at different altitudes and at different points on the

earth’s surface. All observers agree that the intensity increases with alti-

tude reaching a maximum at approximately 31 ,000 meters above the earth’s

surface, where the atmospheric

pressure is about 8 centimeters of

mercury. Further, the intensity,

especially at the higher altitudes,

is much less near the equator than

at high latitudes. *

The great penetrating power of

these cosmic rays is shown in Fig-

ure 525 which gives the intensity

of the rays after passing through

lead screens of different thickness.

The first 10 centimeters of lead

reduce the intensity about 25
per cent. Beyond this thickness the absorption is slight, indicating a very
penetrating or hard radiation.

As Darrow has stated, the nature of cosmic rays has been the source of

much discussion and speculation. Their penetrating power suggests

gamma rays of extremely short wave-length. On the other hand their

deviation in the earth’s magnetic field indicates that they are electrically

charged particles.

When the cosmic rays pass through matter, high-speed electrons are
1 BeU System Technical Journal

, 11, 148 (1932).

Cms. lead

Fig. 525. Penetrating Power of Cosmic
Rays in Lead
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Fig. 526 . Anderson’s Discovery of the Positron
(From The Physical Review. Photograph provided by Dr. Carl D. Anderson.)

r

ejected which can be detected with Geiger-Mueller counters or with a Wil-

son cloud chamber. By placing the cloud chamber in a magnetic field the

speeds of the electrons can be determined from the curvatures of their

tracks. In August, 1932, while studying tracks by this method, C. D.
Anderson, of the California Institute of Technology, obtained the photo-

graph shown in Figure 526. The track is identical with those produced by
electrons. But assuming that the direction of motion is upward it curves

in the wrong direction. As shown in the photograph, the particle passed

through a lead sheet six millimeters thick. If the assumption is made
that the track was made by an electron traveling in the opposite direction

it is impossible to avoid the embarrassing conclusion that it gained 40

million electron-volts of energy in passing through the lead. This is con-

trary to all the experimental and theoretical properties of the electron.

The density of the track and the ability of the particle to penetrate six mil-

limeters of lead definitely eliminates the hypothesis that the track was
made by a proton. Hence, Anderson concluded that the track was pro-

duced by a particle of electronic mass but having a positive instead of a

negative charge.

Additional work by Anderson and by Blackett showed that the positron

tracks are usually accompanied by numerous electron tracks. These
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groups or “ showers” of particles are produced when cosmic rays pass

through matter.

Transmutation of Atoms by Fast Protons

In 1932, Cockroft and Walton, working in Rutherford’s laboratory,

showed that lithium, boron, and other light elements disintegrate with the

emission of fast alpha particles when they are bombarded with high-speed

protons.

After several years of research Cockroft

and Walton constructed a high-voltage

generator capable of producing a poten-

tial difference of 700,000 volts. Protons,

generated in a hydrogen discharge tube,

were accelerated in a high-voltage tube

and struck the lithium target T
}
Figure

527. When the accelerating potential

reached 125,000 volts, bright scintillations

were observed on the zinc sulphide screen

S, The scintillations were identical in ap-

pearance with those produced by alpha

particles. Observation of the tracks in

a cloud chamber showed that the par-

ticles coming from the lithium were actually alpha particles. The energy

of these particles was comparable to that of the fastest alpha rays from
radioactive substances.

In nuclear notation the transmutation can be written

3Li
7 + xH 1 - 2He 4 + 2He 4 + Q (11)

where Q is the energy released in the process. In this case Q is 17 million

electron-volts. This great release of energy shows that the incident pro-

tons must penetrate the lithium nucleus forming a structure composed of

four neutrons and four protons. Such a nucleus, having a charge + 4 e,

would be beryllium 4Be 8
, The only known stable beryllium atom, how-

ever, is 4Be°, which has a nuclear structure of 4 protons and 5 neutrons.

The 4Be8
is unstable and explodes producing two high-speed alpha particles.

The important difference between this disintegration and that achieved

by Rutherford in 1919 is that the fast particles in this case were produced
and controlled by the experimenter. Before this the only particles with

sufficient energy to penetrate the nucleus were obtained from radium prod-

ucts and were, therefore, very limited in intensity. With larger and more
powerful machines the transmutation of all elements was now within the

range of possibilities.

The Cyclotron

The most ingenious and most successful device for producing high-speed

M

Fig. 527 . The First Observation
of Transmutation by Protons
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w

Fig. 528 . The Cyclotron

ions is the cyclotron developed by E. 0. Lawrence at the University of

California. The cyclotron consists of two hollow D-shaped plates, called

“dees” (Fig. 528, A and B), which are placed between the poles of a

large electromagnet. The plates are

in an evacuated chamber and are

connected electrically to the termi-

nals of a high frequency generator. In
this manner an alternating potential

difference of approximately 100,000

volts is applied to the “dees” pro-

ducing an intense alternating electric

field across the gap between A and

B . If positive ions are produced at P
near the center and the potential of A is negative, they will be accelerated

toward A. Owing to the magnetic field perpendicular to the plane of the

figure they will move in a circular path inside A . When they reach the gap

at Gi the potential has reversed, C being negative and A positive. Hence,

they are accelerated at G\, describe a larger semicircle, and are accelerated

again at G2 . As their speed increases the ions describe larger and larger

semicircles until they reach the periphery where they are deflected to the

window W by a negatively charged plate D.

The successful performance of the apparatus depends upon the fact that

the time required for an ion to describe a semicircle in the magnetic field

is independent of the radius of the circle and is determined only by the ratio

—^r— of the ion and the magnetic field intensity. This characteristic of
mass

the motion enables the ions to remain “in step” with the alternating field

and acquire higher and higher velocities. The energy acquired by a given

type of ion is proportional to B2R2 where B is the magnetic flux density

and R the radius of the ion path just before it strikes the window. Since

the maximum value of B is fixed by the magnetic saturation of iron, the

only method of obtaining higher energies is to increase the radius R . With
a radius of 15 inches Lawrence obtained protons, deuterons, and alpha

particles (helium nuclei) having respectively energies of 4, 8, and 16

million electron-volts. His new cyclotron with R - *30 inches has already

produced protons and deuterons with energies of 8 and 16 million electron-

volts respectively. Theory indicates possible energies of 25 million elec-

tron-volts with deuterons and 50 million with helium nuclei.

Induced Radioactivity

In 1934, Irene Curie and F. Joliot observed a new type of nuclear dis-

integration. While investigating the emission of positrons from aluminum

bombarded with alpha particles they found that positrons were emitted for

several minutes after the source of alpha particles had been removed. The
number of positrons emitted per second after the bombardment had ceased
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decreased with time according to the exponential law found in radio-

activity (page 619). In other words, the aluminum nuclei were trans-

muted into radioactive nuclei by the alpha particle impacts. The half

period of this radioactive aluminum was found to be 3 minutes 15 seconds.

Similar .effects were observed with boron and magnesium.

By chemical analysis the Joliots were able to show that the active sub-

stance in the case of aluminum was an isotope of phosphorus. Hence, the

equations for the process are

13AF + 2He 4 -
[ 1&P

30
] + on

1
(12)

followed by

[ 15P
30

]
= uSi50 + +1e° (13)

where +ie° represents the positron. The square brackets indicate an un-

stable or radioactive nucleus.

Since 1934 radioactive isotopes of practically all the elements have been

produced and studied. A recent survey by J. J. Livingood and G. T.

Seaborg 1 catalogues the type of radiation, half life, and method of excita-

tion for several hundred radioactive nuclei.

One of the most interesting cases of induced radioactivity is that of

sodium discovered by E. O. Lawrence. He bombarded rock salt with

deuterons of 2 million electron-volts energy and obtained radioactive

sodium. The reaction can be written

nNa23 + 1FP = [nNa24
] + (14)

followed by

[nNa24
]
= ^Mg24 + _ie°, (15)

with a half life of fifteen hours. The magnesium nucleus, however, is in an

excited state and in falling to the normal state emits gamma rays. Hence,

radiosodium emits beta and gamma rays identical in nature with those from

natural radioactive substances. These gamma rays are more penetrating

than those from radium. In most instances the amounts of radioactive

substances produced by bombardment are very minute. The activity is

detected with a Geiger-Mueller counter which counts individual electrons.

With the recent large cyclotrons, however, it is possible to produce radio-

sodium in sufficient quantities for medical purposes.

The advent of induced radioactivity creates new possibilities in biological

and chemical research. The active atoms are so easily detected that they

can be traced through a process or reaction. They serve as marked or

“tagged” atoms which can be located by their effect upon the counter.

Nuclear Fission

The nuclear transformations described so far have been effected by fast

alpha particles, protons, or deuterons. The most generally effective trans-

muting agent, however, is the neutron. In the case of heavy elements the

1 Reviews of Modern Physics
, 12 ) 30 (1940).
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nuclear charge Ze is so large that electrostatic repulsion prevents the proton
or deuteron from making a close encounter with the nucleus. There is no
such difficulty with the neutron. Owing to its lack of charge it can easily

penetrate a nucleus and provoke a transformation. The struck nucleus
may eject an alpha particle, a proton, two neutrons, or gamma rays. An
example of the first type is nitrogen:

7N14 + on
1 - 5B 11 + 2He4

. (16)

Many of the induced radioactive isotopes of the heavier elements have been
produced by neutron bombardment.

In all the reactions described above, one of the final products of the
transformation is a light particle; that is, an alpha particle, a proton, a
neutron, or an electron. The other disintegration product has a mass
which is not very different from that of the original bombarded element.
In 1939, Hahn and Strassman found that, when a uranium nucleus is

bombarded with neutrons, it may break up into two or more heavy frag-

ments. Their observations indicated that the process was probably

92U238 + on
1 - aoBa148 + 3f)

Kr91 + Q. (17)

These isotopes of barium and krypton are very unstable and emit electrons

until a stable nucleus is obtained. Neutrons also are emitted in the process.

The energy released, Q ,
is exceptionally large — more than 150 million

electron-volts. Since the nuclear fragments are so large, this process is

called nuclear fission in order to distinguish it from the more common type
of reaction. Another astonishing observation was that the fission of ura-

nium could be produced by either fast neutrons or slow thermal neutrons,

but not by those of intermediate speed. Bohr attributed this to the exist-

ence of two isotopes of uranium, U235 and U238
. Later experiments have

shown that Bohr’s hypothesis is correct and that slow neutrons produce
fission in U236

,
but fast neutrons are required to break up U238

.

In each fission of uranium two or three neutrons are emitted. If each
of these neutrons could produce fission in neighboring nuclei a “ chain re-

action” might occur with explosive violence. If the rate of reaction could
be controlled a practical source of atomic power is within the range of pos-

sibilities. Calculation shows that the energy released by a pound of ura-

nium in such a reaction would be a million times that given off by the com-
bustion of a pound of coal. Although many laboratories are investigating

possible methods of producing and controlling nuclear “ chain reactions,”

no successful procedures have been announced.

A very interesting type of reaction was observed by Chadwick and Gold-
haber in 1932. They found that the hard gamma rays from Thorium C"
caused the deuteron to break into a proton and neutron. The reaction can
be written:

1H2 + hv = iH1 + on
1

(18)

where the incident photon is represented by hv. In the photoelectric
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effect the energy of a photon is transferred to a single electron. In equa-

tion (18) the energy is transferred directly to a nucleus. By determining

the lowest frequency at which the reaction (18) occurs it is possible to

calculate the energy required to separate a proton and neutron. In this

way the energy of cohesion of the deuteron was found to be 2.2 million

electron-volts.

Production of Electron-Positron Pairs

After the discovery of the positron it was observed that hard gamma rays

passing through matter often produced an electron-positron pair, the two

particles having the same origin and equal energies. All the observations

indicate that the photon disappears completely in the process. A little

consideration shows that the production of pairs is consistent with the rela-

tion between mass and energy discussed on page 649. For in equation

(4a), page 649, (m — m0)c
2
is equal to an amount of kinetic energy. Hence,

nhc2 can be considered as the intrinsic energy of the particle at rest due to,

or associated with, its rest mass ra0 . In order to be able to produce a pair,

therefore, the frequency, v, of the gamma rays must satisfy the relation

hv > 2 nw2
(19)

where m is the rest mass of the electron or positron. The experimental

evidence indicates that the relation (19) is always satisfied. As might be

expected, the observations show that the reverse process also is possible.

That is, an electron and positron may combine and their total rest masses

and kinetic energies be converted into two photons.

Since the rest mass of the photon is zero, some physicists speak of the

above processes as the “interconversion of matter and radiant energy.”

This statement is probably too general since the word matter connotes

more than electrons and positrons.

This interpretation of pair production, however, does emphasize the

great change that has taken place in the last forty years concerning fun-

damental concepts in physics. At the close of the last century all physi-

cists accepted the viewpoint that matter and energy were distinct entities,

each having its own independent law of conservation. But in the last

twenty years the atomic physicist has found it increasingly difficult to

maintain a clear-cut distinction between those properties which are char-

acteristic of matter and those which are characteristic of energy. In the

fields of atomic and nuclear physics, Einstein’s relation between mass and
energy has proved to be a most useful guiding principle. For the ordinary

large-scale phenomena of physics and chemistry, however, the conserva-

tion of energy and the conservation of mass are still independently valid

and fundamental.

The Mesotron

The most recent addition to the list of fundamental particles is the
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mesotron (called meson by some writers) or heavy electron. Its existence

was postulated in order to explain the great penetrating power of the

“hard” cosmic rays. There is considerable evidence that a particle exists

which has a mass between 150 and 250 times the electronic mass. Accord-

ing to the theory mesotrons may have either a positive or negative charge

of electronic magnitude or may be neutral. It is further assumed that the

particles of intermediate mass disintegrate producing electrons.

This rapid survey of nuclear physics shows that in this field, as in all other

fields of science, the development has been one of rapid evolution, not

revolution. The growth has occurred step by step, involving a continual

interplay between theory and experimental technique. These character-

istics have been well described by two of the most influential physicists of

modern times, the Dutch theorist, H. A. Lorentz, and the founder of nu-

clear physics, Lord Rutherford.

In a lecture given at the Royal Institution in London in 1923 Lorentz

said (71:17):

One of the lessons which the history of science teaches us is surely this, that

we must not too soon be satisfied with what we have achieved. The way of

scientific progress is not a straight one which we can steadfastly pursue.

We are continually seeking our course, now trying one path and then an-

other, many times groping in the dark, and sometimes even retracing our

steps. So it may happen that ideas, which we thought could be abandoned

once for all have again to be taken up and come to new life.

Lord Rutherford, in surveying the growth of atomic physics in the

twentieth century concluded with the following statement (88:73):

I have also tried to show you that it is not in the nature of things for any

one man to make a sudden violent discovery; science goes step by step,

and the work of every man depends on the work of his predecessors. When
you hear of a sudden unexpected discovery — a bolt from the blue as it

were— you can always be sure that it has grown up by the influence of

one man on another, and it is this mutual influence which makes the enor-

mous influence of scientific advance. Scientists are not dependent on the

ideas of a single man but on the combined wisdom of thousands of men, all

thinking of the same problem, and each doing his little bit to add to the

general structure of knowledge which is being gradually erected.

Questions for Self-Examination

1. Describe the principle of the mass spectrograph.

2. What is the evidence on the interconvertibility of mass and energy in the case of

the electron?

3. What was the significance of Rutherford's disintegration of nitrogen?

4. What are neutrons and under what circumstances are they produced?

5. Describe the nature of cosmic rays.
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6. Describe the cyclotron. Why is it such an important scientific instrument?

7. What is the nature and what are the potentialities of the process termed nuclear

fission?

8. What can be said about two-way interconversion of matter and radiant energy

in general?

Problems on Chapter 51

1. Show that the energy released in the nuclear reaction equation (10) is equivalent,

within the limits of experimental error, to the mass that disappeared in the process.

Precise nuclear masses are given on page 650.

2. Singly charged ions of Li6 and Li 7 emerge from the slit S 3 in a Bainbridge mass

spectrograph (Fig. 522) with the same velocity. If the Li6 ions describe a circle

of 20 centimeters radius, what is the radius of the path of the Li7 ions? How far

will their respective traces be separated on the photographic plate?

23 cms and 6 cms.

3. The cyclotron has produced deuterons having energies of 16 million electron-volts.

If the radius of the path described by the deuterons is 75 centimeters, what is the

intensity of the magnetic field in the cyclotron? 1 weber/m2
.

4. The time required for an ion to traverse a semicircle of radius R in a transverse

magnetic field of intensity B is w R/v
}
and the velocity v is given by equation (1)

(page 648). Show that this time is independent of the radius of the path.

5. The mass of an electron and a positron is converted into radiation in the form of

two photons of equal energy. What is the wave-length of the radiation produced?

2.4 X 10~12 meters (.024 angstroms).



EPILOGUE

Freedom in the search for truth has been suffering from such a threat as it has

never experienced before. Ironically, this threat came partly from the land

where “ Lehrfreiheit” and “ Lernfreiheit" were first generally recognized and

practiced. So far has Germany strayed from her own former ideals that in

1986, at an anniversary of the University of Heidelberg, Dr. Bernhard Rust,

the Nazi Minister of Science and Education, could say:

The old idea based on the sovereign right of abstract intellectual endeavor

has gone forever. The new science is quite the opposite of uncontrolled

search for truth which has been the ideal heretofore. The true freedom of

science is to support the State and share its destiny and to make the search

for truth subservient to this aim.

The outgrowth of this policy is written large in the condition of Europe and

Asia in 1943. The United Nations have assumed the task of restoringfreedom

wherever it has been lost. The first step is the destruction of the power of those

who are responsible for this relapse into intellectual barbarism. The next will

be tofurnish leadership in a return to the scientific ideal of disinterested search

for truth.

Physics, as the pioneer science, can well set the standard for such a return.

Also, it is potentially belter equipped than any other agency for turning tech-

nology from destructive back to constructive ends. But if that potentiality is

to be realized, physicists must be much more than mere specialists in the most

technical of all sciences. They must inculcate breadth of view of their field and

through it a comprehension of the nature of the rest of the intellectual enter-

prise. In the hope of contributing to this end, the present treatise adds to the

conventional presentation of physics an opportunity for the student to become

familiar with the struggles involved in establishing physics as the predecessor

and prototype of all the sciences.
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The Meter-Kilogram-Second System of Units

In 1935 the International Committee on Weights and Measures, the

central authority on all questions of international scientific standards,

legislated that

the actual substitution of the absolute system of electrical units [the M.K.S.
system] shall take place on January 1, 1940.

The war will delay the realization of this plan in Europe, hut there is little

reason why it should not be put into effect here. It is a highly desirable

simplification which had been debated for more than a generation before

finally receiving official sanction.

In accordance with that provision, the M.K.S. system of units has been

incorporated into this text. It displaces the C.G.S. system, first officially

sanctioned in 1881. In its application to mechanics the M.K.S. system

constitutes a relatively minor departure from the older system. It in-

volves the substitution of the meter for the centimeter as the basic unit of

length and the kilogram for the gram as the basic unit of mass. These

substitutions seem the more conservative in that the world's standard of

length is the meter and that the world's standard of mass is the kilogram.

Along with a number of other anomalies, the M.K.S. system clears up that

of two of the world's standards not being used as the basic units.

But the real motivation for the change is the desire to clarify electrical

units. Up to now the common or “ practical" units have been in reality

outside the basic scheme of fundamental units. The principal feature of

the M.K.S. system is that the simple shifts from centimeter to meter and

from gram to kilogram legitimatize the practical units and remove all

occasion for further use of the electrostatic and electromagnetic units.

This should make a strong appeal to those who teach general physics.

Though physics has cold-shouldered the practical units for two generations

and more, it has never been able to decide which of the two other common
sets of units it preferred. The effect on beginning students has been

devastating. In a subject which would beset them with an unusual array

of conceptual hazards even if there were only one system of units to deal

with, they have had to learn three different units for almost every electrical

entity, and to shift from one to another as the requirements of a particular



viii THE METER-KILOGRAM-SECOND SYSTEM OF UNITS

problem or the whim of the teacher indicated. This difficulty disappears

as the M.K.S. system comes in and the old electrostatic and electromag-

netic systems go into the discard.

To facilitate the process of transition from the old to the new system a

conversion table of the units most commonly used is appended. In-

spection will show that for the most part M.K.S. units are of magnitudes

more convenient to use than C.G.S. units, once one has learned to think in

the new terms. Aside from-lepgth and.mass, the absurdly small unit of

force, the dyne, is replaced by the newton, 10
s times as large. The still

more minuscule erg is replaced by the joule, 10
7 times as large. The awk-

ward erg-per-second is replaced by the watt, a most natural unit of power.

With electrical units the advantages of the M.K.S. system are still more

impressive. In a few cases the advantage lies mildly the other way. The

density of water, instead of being numerically unity, is 1000 kgm/ms
,
with

that of other substances in proportion. Specific gravities, of course, re-

main unaffected. Resistivities are inconveniently small when the cross-

sectional unit is a square meter. It is possible that as a practical matter

constants of this variety may retain their old values. Even the C.G.S.

system condescended to express resistivities in ohms instead of in electro-

magnetic units!

At the infrequent points where a choice between the so-called rationalized

and unrationalized electrical units has been necessary, the rationalized

units have been specified. This issue, a relatively minor one as far as

general physics is concerned, has not yet been decided by the aforemen-

tioned international standardizing agency.
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Table of a Few of the More Common Physical Entities,

Comparing M.K.S. and C.G.S. Units

(The International Committee on Weights and Measures prescribed in 1935 that the
M.K.S. system of units should displace the C.G.S. system as of January 1, 1940.)

Entity M.K.S. Unit C.G.S. Unit
Ratio

M.K.S. Unit/
C.G.S. Unit

Length Meter Centimeter 10*

Mass Kilogram Gram 10*

Time Second Second 1

Density Kilograms per cubic meter Grams per cubic centimeter ur*
Velocity Meters per second Centimeters per second 102

Acceleration Meters per second2 Centimeters per second2 10*

Force Newton Dyne 10*

Torque Newton meter Dyne centimeter 107

Moment of inertia Kilogram meter2 Gram centimeter2 107

Work Joule Krg 10*

Power Watt Erg per second 107

Quantity of heat Kilogram-calorie Gram-calorie 10*

Luminous intensity International candle International candle
1

1

Luminous flux Lumen Lumen 1

Illumination Lux Phot 10--*

Current Ampere Abampere 10 1

Potential difference Volt Abvolt 10*

Resistance Ohm Abohm 10*

Resistivity Ohm-meter Abohm-centimeter 10“
Quantity Coulomb Abcoulomb 10 2

Capacitance Farad Abfarad ' 10-*

Inductance Henry Abhenry 10«

Field strength Ampere turns per meter Gauss 10*

Magnetic flux Weber Maxwell 10*

Flux density Weber per square meter Gauss 104

Certain Physical Constants in M.K.S. Units

(Values are given to four significant figures. Only three are required in the solutions of

the problems at the end of Chapters 48-51.)

Electronic charge

Electronic ratio of charge to mass

Mass of electron

Planck’s constant

Mass associated with unit atomic weight

Avogadro’s number

Speed of light

Permittivity of space

Permeability of space

e «= 1 .601 X 10~19 coulombs

C/m=1.76X10*<£?“?
kgra

m=9.103X10-»kgm
h=6.610X10

-*4 joule-secs

w,-1.659X10-J, kgm

N- 6.028X 10**—°—
mole

c® 2.998X 108 meters/sec

&o=8.854X 10“w

iuo=1.257XtO~«



Periodic Table





Atomic Weights

Element Symbol
Atomic

Number
Atomic

Weight
Element Symbol

Atomic

Number
Atomic

Weight

Aluminum A1 13 26.97 Molybdenum Mo 42 95.95
Antimony Sb 5i 121.76 Neodymium Nd 60 144.27

Argon A 18 39-94 Neon Ne 10 20.18

Arsenic As 33 74-91 Nickel Ni 28 58.69

Barium Ba 56 137-36 Nitrogen N 7 14.008

Beryllium Be 4 9.02 Osmium Os 76 190.20

Bismuth Bi 83 209.00 Oxygen 0 8 16.00

Boron B 5 10.82 Palladium Pd 46 106.70

Bromine Br 35 79.92 Phosphorus P 15 30.98
Cadmium Cd 48 112.41 Platinum Pt 78 195-23

Calcium Ca 20 40.08 Potassium K 19 39.10
Carbon C 6 12.01 Praseodymium Pr 59 140.92

Cerium Ce 58 140.13 Radium Ra 88 226.05

Cesium Cs 55 132.91 Radon Rn 86 222.00

Chlorine Cl i7 35-46 Rhenium Re 75 186.31

Chromium Cr 24 52.01 Rhodium Rh 45 102.91

Cobalt Co 27 58.94 Rubidium Rb 37 85.48

Columbium Cb 4i 92.91 Ruthenium Ru 44 101.70

Copper Cu 29 63-57 Samarium Sm 62 150.43

Dysprosium Dy 66 162.46 Scandium Sc 21 45.10

Erbium Er 68 167.20 Selenium Se 34 78.96

Europium Eu 63 152.00 Silicon Si 14 28.06

Fluorine F 9 19.00 Silver Ag 47 107.88

Gadolinium Gd 64 156.90 Sodium Na 11 22.997
Gallium Ga 3i 69.72 Strontium Sr 38 87.63

Germanium Ge 32 72.60 Sulfur S 16 32.06

Gold Au 79 197.20 Tantalum Ta 73 180.88

Hafnium Hf 72 178.60 Tellurium Te 52 127.61

Helium He 2 4.003 Terbium Tb 65 159.20

Holmium Ho 67 164.94 Thallium T1 81 204.39
Hydrogen H 1 1.008 Thorium Th 90 232.12

Indium In
’

49 114.76 Thulium Tm 69 169.40

Iodine I 53 126.92 Tin Sn 50 118.70

Iridium Ir 77 193-10 Titanium Ti 22 47.90
Iron Fe 26 55.85 Tungsten W 74 183.92

Krypton Kr 36 83.70 Uranium U 92 238.07
Lanthanum La 57 138.92 Vanadium Va 23 50.95
Lead Pb 82 207.21 Xenon Xe 54 131.30
Lithium Li 3 6.94 Ytterbium Yb 70 173-04
Lutecium Lu 71 174-99 Yttrium Y 39 88.92

Magnesium Mg 12 2432 Zinc Zn 30 65.38

Manganese
Mercury

Mn
Hg

25

80
54.93

200.61

Zirconium Zr 40 91.22



Table of Elastic Moduli

and Breaking Strengths

(Tabular values multiplied by 1010 give newtons/

m

2
)

Material
Young’s

modulus
Rigidity

modulus
Volume
modulus

Breaking

strength

Aluminum 7 2.5 7 .010

Copper 10 4.2 12 .020

Cast Iron 11 5 10 .033

Steel (mild) 22 8 16 .050

Greek Alphabet

Greek

letter

Greek

name
English

equivalent

Greek

letter

Greek

name
English

equivalent

A a Alpha a N v Nu n

B0 Beta b 2 ( Xi X

Ty Gamma g 0 0 Omicron 6

A 5 Delta d II 7

r

Pi P
E c Epsilon 6 r p Rho r

z r Zeta z 2 a Sigma s

H ij Eta e T T Tau t

e e Theta th T v Upsilon u

i i Iota i $ <t> Phi ph
K K Kappa k Xx Chi ch

A X Lambda 1 Psi ps

Mm Mu m 0 a) Omega 6
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Natural Tangents 0°-45°

0 .0000
1 .0175
8 .0349

8 .0524

4 .0699

5 .0875

6 .1051

7 .1228

8 .1405

9 .1584

10 .1763

11 .1944

12 .2126

13 .2309

14 .2493

15 .2679
16 .2867

17 .3057

18 .3249

19 ,3443

20 .3640
21 .3839

22 .4040

23 .4245

24 .4452

25 .4663

26 .4877

27 .5095

28 .5317

29 .5543

80 .5774

31 .6009

32 .6249

83 .6494

84 .6745

35 .7002

36 .7265

87 .7536

88 .7813

39 .8098

40 .8391

41 .8693

42 .9004

43 .9325

44 .9657

1i
.0058 .0087 .0116 .0145 .0175
.0233 .0262 .0291 .0320 .0349
.0407 .0437 .0466 .0495 .0524
.0582 .0612 .0641 .0670 .0699
.0758 .0787 .0816 .0846 .0875

.0934 .0963 .0992 .1022 .1051

.1110 .1139 .1169 .1198 .1228

.1287 .1317 .1346 .1376 .1405

.1465 .1495 .1524 .1554 .1584

.1644 .1673 .1703 .1733 .1763

.1823 .1853 .1883 .1914 .1944

.2004 .2035 .2065 .2095 .2126

.2186 .2217 .2247 .2278 .2309

.2370 .2401 .2432 .2462 .2493

.2555 .2586 .2617 .2648

1

.2679

.2742 .2773 .2805 .2836 ' .2867

.2931 .2962 .2994 .3026 .3057

.3121 .3153 .3185 .3217 .3249

.3314 .3346 .3378 .3411 .3443

.3508 .3541 .3574 .3607 .3640

.3706 .3739 .3772 .3805 .3839

.3906 .3939 .3973 .4006 .4040

.4108 .4142 .4176 .4210 .4245

.4314 .4348 .4383 .4417 .4452

.4522 .4557 .4592 .4628 .4663

.4734 .4770 .4806 .4841 .4877

.4950 .4986 .5022 .5059 .5095

.5169 .5206 .5243 .5280 .5317

.5392 .5430 .5467 .5505 .5543

.5619 .5658 .5696 .5735 .5774

.5851 .5890 .5930 .5969 .6009

.6088 .6128 .6168 .6208 .6249

.6330 .6371 .6412 .6453 .6494

.6577 .6619 .6661 .6703 .6745

.6830 .6873 .6916 .6959 .7002

.7089 .7133 .7177 .7221 .7265

.7355 .7400 .7445 .7490 .7536

.7627 .7673 .7720 .7766 .7813

.7907 .7954 .8002 .8050 .8098

.8195 .8243 .8292 .8342 .8391

.8491 .8541 .8591 .8642 .8693

.8796 .8847 .8899 .8952 .9004

.9110 .9163 .9217 .9271 .9325

.9435 .9490 .9545 .9601 .9657

.9770 .9827 .9884 .9942 1.0000

mm\

1SS 14 56 7 »•

Natural Cotangents 45°-90° Proportionll Pasts
(Subtract)
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EXPONENTIAL TABLE

z r* "'Log,**-* X i- *LOG 10
€“* 8 r* Loc^e-*

JOO 1.0000 0.0000 1.7 .1827 .2617 mrrm .00823 .9154
.05 .9512 .9783 1.8 .1653 .2183

' jr tv .0a6738 .8285
.10 .9048 .9566 1.9 .1496 .1749 VT tv .02551 7 .7417
.15 .8607 .9349 2.0 .1353 .1313 V/ rv .024517 .6548
,20 .8187 .9131 2.1 .1225 VGMv r fji .023697 .5679
•25 .7788 .8914 2.2 .1108 .0445

** tv .0 23028 .4811
liVTi^K .7408 .8697 2.3 .1003 .0013 VrtV .022479 .3942

.35 .7047 .8480 2.4 .09072 .9577 1 tj
|

.3074
.40 .6703 .8263 2.5 .08208 .9142 Vr rv .2205
.45 .6376 .8046 2.6 .07427 .8708 T rfl .o2i354 .1317

.6065 .7828 2.7 .06721 .8274 T tff .o2iii4 .0468
.55 .5770 .7612 2.8 .06081 .7840 ijtv .039118 .9599
.60 .5488 .7394 2.9 .05502 .7405 7.2 .037466 .8731
.65 .5221 .7178 3.0 .04979 .6971 El .O36H2 .7862
.70 .4966 .6960 3.1 .04505 .6537 Bl .6994
.75 .4724 .6743 3.2 .04076 .6102 El .0 34097 .6125
.80 .4493 .6525 3.3 .03688 .5668 ,033354 .5256
.85 .4274 .6308 3.4 .03337 .5334 mm ,032747 .4388
.90 .4066 .6092 3.5 .03020 .4800 8.4 ,032249 .3519
.95 .3867 .5874 3.6 .02732 .4365 8.6 .0*1841 .2651

1.00 .3679 .5657 3.7 .02472 .3931 8.8 .031507 .1782
1.10 .3329 .5223 3.8 .02237 .3497 9.0 .031234 .0913
1.20 .3012 .4789 3.9 .02024 .3062 9.2 .O3IOIO .0045
1.30 .2725 .4354 4.0 .01832 .2629 9.4 .048272 .9176
1.40 .2466 .3920 4.2 .01500 .1761 9.6 .046773 .8308
1.50 .2231 .3485 4.4 .01228 .0892 9.8 .04554S .7439
1.60 .2019 .3051 4.6 .01005 .0022 10.0 .044541 .6571

Mantissa only.
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aberration, chromatic, 335; chromatic, cor-

rection of, 343; Newton’s erroneous view on,

343; spherical, 328; spherical, axial, 330;
spherical, lateral, 330

aberration of lenses, 328; spherical, 328
absolute zero, 174
absorption line spectra, 387
absorption lines, solar, Fraunhofer’s identifica-

tion of, 386
absorption of X-rays, 613
absorption unit, the, 239
absorptivities of building materials, 241

acceleration, of gravity, 20; of gravity, de-

termination of, by pendulum, 126; inversely

proportional to mass, 95; in harmonic mo-
tion, 120; proportional to force, 94; relation

to displacement in harmonic motion, 122;

uniform, 18; in uniform circular motion, 109;

uniform, under constant force, 93

achromatic lens, birth of, 343

action, and reaction, 98 fL; Planck’s element of,

626
advantage, mechanical, 150

alpha particles, energies of, 620; scattering

of, 632; scintillation method of counting,

628
alpha rays, 616
alternating current, and direct current, rela-

tive merits of, 542; effective value of, 547;

rectification of, 567; three phase, 541; two
phase, 541

amber, as origin of electric charge, 482

ammeter, 433; evolution of, 447
ampere, the, 433; definition of, 433

Ampere’s current balance, 432
Ampere’s distinction between potential and

current, 451
amplifier, 567 ;

function of triodc as, 582

amplification as an element in the communica-
tion system, 730

amplitude, in harmonic motion, 117

amplitude modulation, 586
analysis, harmonic, 274; sound wave, 273
analyzer, polarized light, 403
anastigmat lens, 334
angle of repose, limiting, 44 f

.

anomalous expansivity of water, 176
aplanatic lenses, 331
appreciation of scientific method, 5

arc, electric, 430

Archimedes’ principle, 79 ff.

Arm, lever, 55
armature, 530, 535
art contrasted with science, 4
artillery “director,” 26
astigmatism, 329, 331, 333; of the eye, 329 n.

asymmetric vibrator, 264
Atlantic cable, first laying of, 561
atom, energy levels of, 637; hydrogen, orbits

in, 638
atomic masses, measurement of, 647
atomicity of electricity, 596; Faraday’s pre-

vision of, 435
atoms, complex, Bohr’s theory of, 639; simple,

Bohr’s theory of, 635
attraction, electrostatic, 481
Atwood’s machine, 92 ff., 99 f.

audible frequency, limits of, 248
audiogram, 258; normal ear, 258; subnormal

ear, 259
automobile headlight, 298, 404
average velocity in free fall, 18

Avogadro’s number, 604
axial spherical aberration, 330
axis, optic, 416

balance, beam, equal armed, 58, 59; compared
with spring balance, 90; spring, compared
with beam balance, 90; current, 434; current,

Ampere’s, 432; current, principle of, 433
ballistic pendulum, 135

Balmer series, 398, 634 f., 637
band spectrum, 397
bar, vibrations of, 281

bar electromagnet, Sturgeon’s, 504
Barlow’s wheel, 532
barometer, 83
barrel distortion, 334
battery, electrolytic, Volta’s invention of, 428;

primary, 429; secondary, 429; storage, 429
beam, shear and bending of, 66 ff.; cantilever,

67; beam balance, compared with spring
balance, 90

beats, 260; distinguished from interference,

260; tuning by, 261
bel, the, 256
bell in vacuo

,
228

bending, of a beam, 66
Bernoulli effect, 148
Bernoulli’s principle, 148
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beta particles, 616
binding energy, 650
binocular, prism, 346
black body, 293, 623
“black spot” in liquid film, 368
Bohr’s theory, 640 f., 651

Bohr’s theory of complex atoms, 639
Bohr’s theory of the hydrogen spectrum, 634
boiling point, 194; effect of pressure on, 194
bolometer, 396
Bothe and Becker’s discovery of the neutron,

652
boundary conditions in pipes, 279; in strings,

278
box bridge, 473
Boyle and Gay-Lussac, law of, 1 75
Boyle’s law, 70 ff., 140, 175, 198; limitations on,

71; Joule’s deduction of, 140
Bragg’s determination of X-ray wave-lengths,

612
Brewster’s law, 413 ff.

bridge, Wheatstone’s, 471 f.; box type, 473;
slide-wire type, 472

bridge truss, stresses, computation of, 36 II.

de Broglie, matter waves of, 643
building materials, absorptivities of, 241
burning glass, 322

cable, Atlantic, first laying of, 561
cable, coaxial, 570
caloric, 181 ;

definition of, 183

camera, color, 358
camera obscura

,
301 f.

camera, pinhole, 301

candle, new international standard, 293
candlepower, 293
cantilever beam, 67
capacitance, neutralization by inductance, 555;

of a condenser, 482; unit of, 489
capacitative lead, 554
capacitative reactance, 555
capacitator, 555
carbon dioxide, cutical point of, 198
carbon-granule microphone, 564
Carnot’s theorem, 220
carrier wave, 569; modulation of, 579
cathode rays, magnetic deflection of, 597;

electrostatic deflection of, 596; kinetic en-

ergy of, 593; first identification of, 591;
momentum of, 593

cathode-ray oscillograph, 272
caustic curve, 329
Cavendish experiment, the, 112
cell, electrolytic, Volta’s invention of, 428;

photoelectric, 458; storage, 429; Edison, 459,

461; photoelectric, 572; primary, 429; sec-

ondary, 429
center of gravity, 56 ff.

center of oscillation, 128 f., 161 f.

centigrade scale, 172 f.

centrifugal force, 110
centripetal force, 1 10

Chadwick and Goldhaber, disintegration of

deuteron, 659
change of phase in Newton’s rings, 365
change of state, kinetic theory of, 106
charge, electrical unit of, 434

charge, force on, in electrostatic field, 488
charges, electrical, inverse-square force be-

tween, 486
charging by electrostatic induction, 489
Charles’ law, 175

chemical spectrum, 392
choke coil, 517
chromatic aberration, 335; correction of, 343;
Newton’s erroneous opinion on, 343

circle of least confusion, 330
circle of reference, 116
circuit, containing inductance and resistance,

522; containing capacitance and resistance,

524; containing inductance and capacitance,

525; containing inductance, capacitance, and
resistance, 527; simple, potential distribu-

tion, in, 466
circular motion, uniform, 109
circularly polarized light, 403, 420
clock, pendulum, of Galileo, 126; of Huygens,

126; of Richer, 130

clocks, electric, 543
closed pipe, modes of vibration in, 279
cloud chambers of C. T. R. Wilson, 628
Cockroft and Walton, disintegration by pro-

tons, 656
coefficient, of friction, 44; of restitution, 136;

pressure of a gas, 1 73

coin and feather, 16
coincidence range finder, 304
cold, apparent radiation of, 187
collision, types of, 132

color-blindness, 357
color camera. 358
color circle, Newton’s, 356
colorimeters, 354
colorimetry, 354
color photography, 357 ff.

color theory, Newton’s, reception of, 352
color vision, Ladd-Frank lin theory of, 356;
Young’s theory of, 354; Young-Helmholtz
theory of, 356

colors, complementary, 354 ff.; primary, 354;
in Newton’s rings, 364; in thin crystals, 421

combinations of forces, 30
combination tones, 262
combination of two lenses, 324
commutator, 531, 538
compass, magnetic, pivoted, first description

of, 495
complementary colors, 354 ff.

complex atoms, 639
composition and resolution of torques, 157
composition of forces, 31, 45 ff.

compound pulley, 150
compound-wound generators, 539
Compton’s collision theory, 641
Compton effect, 642
concave mirror, image formation by, 306;

principal focus of, 307
condenser, apparent conduction of Alternating

current, 553; capacitance of, 482; electrical,

483; evolution of, 483; and lightning, 490;
steam engine, 210

conduction heat, 183
conductivity, electrical, compared with heat

conductivity, 185
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conductivity, thermal, 184 ff.

conductors, in parallel, resistance of, 469; in

series, resistance of, 468
confusion, circle of least, 330
conjugate foci, 311
connection of electrical instruments, 454
conservation of energy, 133 ff., 141, 205; May-

er’s prevision of, 202 ;
and the theory of the

steam engine, 213 f.

conservation of mechanical energy, 143 ff.

conservation of momentum, 133 ff.

constant of proportionality, 69
constant of universal gravitation, 111

constructive interference, 368
continuous-wave telegraphy, 584
convection, 176, 183

convergence, visual, 304
converging lens, 324
convex minor, image formation by, 306
Coolidge X-ray tube, 609
cooling, laws of, 188

corpuscular theory of light, 363
cosmic rays, 654 ff.

cosmic ray showers, 656
coulomb, the, 487
Coulomb’s identification of inverse-square

force between electrical charges, 486
Coulomb’s law, 487
counter-electromotive force, 536
counters, Geiger, and Geiger-Mueller, 631

critical damping resistance, 528
critical point, 197; of carbon dioxide, 198

critical pressure, 198
critical ray, 347
critical temperature, 198
Crookes’ dark space, 591

Crookes’ tube, 592
crystal, principal section of, 409
crystals, refractive indexes of, 417; thin colors

in, 421

cumulative nature of science, 4
Curie-Joliot, discovery of induced radioactiv-

ity, 657; study of neutrons, 652
current, direction of, 443; alternating, effective

value of, 713; electric, 427 ff.; magnetic

field around, 442; transient value of, 521;

rectification of, 568
currents, rise and fall of, 521

current and potential, Ampere’s distinction

between, 451
current and quantity, relation between, 434

current balance, 434; Ampere’s, 432; principle

of, 433
curvature of plane, 334 f.

curve, caustic, 329
cycle, engine, reversible, 215; Diesel, 223;

four-stroke, 222; Otto, 221; two-stroke, 222

cyclotron, 656

daguerreotype, 391
damping resistance, critical, 528
d’Arsonval galvanometer, 445 f.

Davenport’s motor, 532
Davisson and Germer, experiments of, 644
day, solar and sidereal, 1

2

dead spots, acoustic, 244
deafness, 259

decibel, 257
declination, magnetic, 501
degradation of energy, 207
density, defined, 13; 79; of the earth, mean, 111

Descartes’ method of measuring index of re-

fraction, 346
Descartes’ theory of the rainbow, 360 f.

destructive interference, 368
detection as an element in the communication

system, 560
deuterons, 659
deviation, 345; minimum, Newton’s discovery

of, 343; minimum, position of, 344
diaphragm, vibrations of, 281

dielectric constant, 487
Diesel cycle, 223
difference tones, 262 ff.; use in tuning, 264
differential equation, 523
diffraction, 371; double-slit, wave-length from,

373; Grimaldi’s observation of, 371

diffraction grating, 379; dispersion of, 381;

Fraunhofer’s, 380
diffraction pattern, single-slit, Fresnel and,

377; X-ray, 611

diffusion pump, 590
dip, magnetic, and field strength, 503
dipping needle, 503
direction of a current, 443
dispersion of diffraction grating, 381

displacement of phase, in an inductance, 549;

in a resistance, 549; in a condenser, 554
distortion, 64; barrel and pincushion, 3.34

distribution of potential in simple circuit, 466
direct and alternating current, relative merits

of, 542
“director,” artillery, 26
displacement in harmonic motion, 117 f.;

clastic, motion under, 123; relation to accel-

eration in harmonic motion, 122

distribution, wave-length, of spectral energy,

396
diverging lens, 324
Doppler effect, 253; in light, 389; in double

stars, 389
double refraction, discovery of, 408; polariza-

tion in, 414; by strain, 422
double-slit diffraction; wave-length from, 373
double stars, Doppler effect in, 389
doubly refracted rays, velocities of, 415
Dufay’s classification on basis of electrical

conductivity, 443
dynamo, 531

dynamometer instrument, 448
dynamometer type of alternating-current in-

strument, 449
dyne, 96 n.

e/m for electron, first determination of, 599
earth, mean density of, 1 1 1 •

earth’s magnetic field, strength of, 503
echo, distinguished from reverberation, 237
Edison effect, 567
Edison storage cell, 459, 461
effective value of an alternating current, 547
efficiency, 151 ;

of a heat engine, 219; luminous,

295 ;
of steam engine, 220

efflux, speed of, 147
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Einstein’s equation, 627 213 f.; mechanical, conservation of, 146 ff.,

Einstein’s theory of photoelectric effect, 625
elastic constant, 158
elastic displacement, 123
elastic limit, ,124

elasticity of materials, 64 ff.; Hooke’s law of,

69; modulus of, 69; of gases, 70 ff.

electric arc, 430
electric current, 427 ff.

electric light, first, 430
electric power, measurement of, 455
electric quantity, unit of, 434
electric telegraphy, early anticipation of, 430
electric transient, 521 ff.; Henry’s observation

of, 522
electrical charges, inverse-square force be-

tween, 486
4

electrical conductivity, compared with heat

conductivity, 185

electrical instrument, connection of shunt and
series resistances in, 454, 470

electrical oscillations, Henry’s discovery of, 576
electrical resistance, 463 ff.

electrical resonance, 556
electrical unit, development of, 432
electricity, atomicity of, Faraday’s prevision

of, 435; origin of term, 482
electrochemical telegraph, Soemmerring’s, 431
electrodes, 435
electrolysis, 434; Faraday’s laws of, 434; ratio

of charge to mass in, 436
electrolyte, 434
electrolytic battery, Volta’s invention of, 428
electrolytic cell, 459; Volta’s invention of, 428
electromagnet, 504; bar, Sturgeon’s, 504; in-

dustrial, 505; early, Henry’s, 505
electromagnetic induction, 509 ff.

;
early search

for, 510; Faraday’s rediscovery of, 511;

Henry’s observation of, 509
electromagnetic theory, Maxwell’s, 636
electromagnetic waves, Hertz’s identification

qf, 528; Maxwell’s prediction of, 528
electromotive force, e.m.f., 456
electron, 437 ;

collision with proton, Compton’s
theory of, 642; ratio of charge to mass, first

determination of, 599; speed of, first deter-

mination of, 599; measurements of wave-
lengths of

,
644

electron-positron pairs, production of, 660

electron shells and X-ray spectra, 641

electronic charge, early attempts to measure,

601 ff.; Millikan’s measurement of, 604
electrophorus, 490
electroplating, first instance of, 430
electroscope, gold-leaf, first, 485
electrostatic attraction, 481

electrostatic field, force on charge in, 488; uni-

form, 488
electrostatic forces, effect of medium on, 487
electrostatic induction, 489; charging by, 489
elliptically polarized light, 403, 420
e.m.f., electromotive force, 456; induced, 518,

539
energy, conservation of, 133 ff.; 141, 205; ki-

netic, 139 ff.; conservation of, Mayer’s previ-

sion of, 202; degradation of, 207; conserva-

tion of, and the theory of the steam engine;

potential, 145 ff.; radiant, 183; spectral,

wave-length distribution of, 396, 623
energy content of sound, 227
energy levels of the atom, 637
energy of alpha particles, 620
energy relations in impact, 138 ff.

engine, Diesel, 222; heat, 212 ff.; heat, effi-

ciency of, 219; internal combustion, 221 ff.;

Newcomen, 209; steam, 201 ff.; steam, effi-

ciency of, 220; steam, theory of, and con-
servation of energy, 213 f.

equatorial bulge, 113
equilibrant, 72

equilibrium, translational, 34 ff.; rotational,

52 ff.; stable and unstable, 58; strength and
elasticity of materials, 64 ff.

equilibrium of forces, 34 ff.

evolution of ammeter, 447
evolution of condenser, 483
exchanges, Provost’s theory of, 187
excitation potentials, 638
expansion of steam, utilization of, 210
expansivity, linear and volume, ratio between,

178; of gases, 174; of liquids, 176; of solids,

linear, 177

“experimentum crucis,” Newton’s, 341
exposure meter, 572
“extra current,” Henry’s, 515
extraordinary ray, 409
eye, astigmatism of, 329 n.

eyepiece, Huygens, 337 f.; Ramsden, 337

Fahrenheit scale, 172
farad, 488
Faraday and Ilenry, comparison of careers, 511
Faraday’s laws of electrolysis, 434
Faraday’s observation of electromagnetic in-

duction, 51

1

Faraday’s prevision of the atomicity of elec-

tricity, 435
feather and coin, 16
feeling, threshold of, 256
field, electrostatic, force on charge in, 488;

electrostatic, uniform, 488; magnetic, 496;
around a current, 442; magnetic, rotating,

production of, 544
film, liquid, black spot in, 368; thin, reduction

of reflection by, 369; soap, colors in, 369 ff.

first electric light, 430
first law of motion, Newton’s, 97
fish’s-eye view, 348
fission, nuclear, 659
fixed points, thermometric, 173

Fizeau’s measurement of speed of light, 288
Fleming valve, 568
flow, stream-line, 148; turbulent, 148 n.

fluoroscope, 392
flux, luminous, 295
flux density, magnetic, 498
focal length of a lens, 323; of spherical refract-

ing surface, 316, 318; sign convention for,

319; of spherical minor, 309
focal plane, principal, 307
foci, conjugate, 311
focus, principal, 307
foot, 10
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foot, candle, 294
foot-pound, 145

force, erroneously identified with “motion,”
95; centrifugal and centripetal, 110; torque

compared with, 157; electromotive, c.m.f.,

456; on charge in electrostatic field, 488;
electrostatic, effect of medium, 487; inverse-

square, between electrical charges, 486; mag-
netic lines of, 496; thcrmo-electromotive, 457

forces, combinations of, 30; resolution of,

graphical method, 32; composition of, 31,

45 ff.; non-concurrent, 52
forces, electrical, between charges, 485
force moment, 53 n.

force table, 47, 48
fork, tuning, 272 f.

Foucault’s measurement of speed of light, 289
Fourier’s theorem, 274
four-stroke-cycle, 222
fourth power law, Stefan’s, 188, 622
Franklin’s experiment with the kite, 491
Fraunhofer’s diffraction gratings, 380
Fraunhofer’s lines, 386; Fraunhofer’s identifi-

cation of, 386
free fall, 15 IT.; as a type of motion, 16; average

velocity in, 18; energy relations in, 146
freezing point, 192; effect of pressure on, 193

frequency and pitch, 247; and wave length of

sound, 248; audible limits of, 248; of vibra-

tions of stretched strings, 129; threshold of

audible, 625
frequency modulation, 586
frequency ratios of musical intervals, 269
Fresnel and the single-slit diffraction pattern,

377
friction, 43 ff.; coefficient of, 44
frogs, Galvani’s experiments with, 429
fusion, heat of, 191

fusion of ice, heat of, 192

Galileo and the Tower of Pisa, 17

Galileo’s thermoscope, 171

Galvani’s experiments with frogs, 429
“ galvanism,” discovery of, 480
galvanometer, 446 ff.; d’Arsonval’s, 445 f.

;

first, 446; Schweigger’s, 446
galvanometer shunt, evolution of, 448
gamma rays, 616
gas, pressure coefficient of, 1 73

gas, volume modulus of, 74; identified as the

pressure, 75

gases, elasticity of, 70; expansivity of, 174;

liquefaction of, 197

gas pressure, kinetic theory of, 73, 140; as the

volume modulus, 75

Geiger counter, 631

generation as an element in the communication
system, 560

generator, Faraday’s, 532; Pixii’s, 537; Sax-

ton’s, 537
generators and motors, structural identity of,

531, 536
generators, series, shunt and compound wound,

538
geometrical forms, moment of inertia of, 160

geophysical prospecting by sound, 231

glare, reduction of, by polarizing spectacles, 412

gold-leaf electroscope, first, 485
graphical method, Robert Smith’s, of location

of image formed by: converging lens, 323, di-

verging lens, 324, reflection, 312, refraction,

316; of location of image by: reflection, 312,

refraction, 316; of location of image formed
by : converging lens, 323, diverging lens, 324;

of resolution, 32

grating, diffraction, 379; dispersion of, 381;

Fraunhofer’s, 380; resolving power of, 381;

ruling of, 382
grating spectra, orders of, 380
gravitation, Newton’s law of, 106; universal,

106 ff., in
gravity, acceleration of, 20; center of, 56
Greek alphabet. Appendix, xiii

grid of three-electrode tube, 568
Grimaldi’s observation of diffraction, 371

“guinea and feather” experiment, l7

gyration, radius of, 161

gyroscope, 162 ff.; applied to navigation and
aviation, 164

half-wave plate, 418
Halley’s comet, 113

harmonic motion, 116 ff.; definition of, 117;

simple, 116
headlight, automobile, 298, 404
headlight beam, polarized, 404
hearing, threshold of, 256
heat, mechanical equivalent of, Joul6’s; meas-
urement of, 203; Rumford’s estimate of, 202

heat and temperature, Black’s distinction be-

tween, 181

heat conductivity compared with electrical

conductivity, 185

heat engine, 212 ff.; efficiency of, 219
heat of fusion, 191

heat of fusion of ice, 192

heat of vaporization, 193

heat radiation, 183

heating effect of radium, 616
heating effect of the electric current, 430; first

observation of, 430
henry, definition of, 518
Henry and the beginning of telegraphy, 505
Henry and Faraday, comparison of careers, 511
Henry’s discovery of self-induction, 514
Henry’s early electromagnets, 505
Henry’s observation of electromagnetic induc-

tion, 509; of electric transients, 522
Henry’s telegraph, 506
hcrapathite, 404
Hertz’s identification of electromagnetic waves,

528
Hertzian waves, 576
historians and science, 4
Hooke’s law, 69; 123

horsepower, definition of, 152; relation to kilo-

watt, 152

Huygens’ eyepiece, 337 f.

Huygens’ principle, 372 ff.

hydraulic press, 82
hydrogen atom, orbits in, 63$
hydrogen spectrum, Bohr’s theory of, 634 ff.

hydrostatic paradox, 82
hydrostatic stresses, 65
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ice, heat of fusion of, 191

Iceland spar, 408, 415 ff.

identity of solar and terrestrial lines, 388
illumination, 292 ff.

image formation, by concave mirror, 306; by
convex mirror, 306; by pinhole, 301 ff.; by
lenses, 322 ff.; by spherical mirrors, 305 ff.

images, virtual and real, 306
impact, 132 ff.; inelastic, 133, 135 f.; energy re-

lations in, 138 ff.; perfectly elastic, 135; types

of, 132

impedance, 552
incidence, plane of, 410
inclined plane, 42 ff.

index of refraction, 290; Descartes' method of

measurement of, 346; measurement by mini-

mum deviation, 345; of liquids, Newton’s
method of measurement of, 346; principal,

418
indexes of refraction of crystals, 417

indicator diagram, 212
induced e.m.f., 539
induction, electromagnetic, 509 ff.; Faraday’s

observation of, 511; Henry’s observation of,

509
induction, electrostatic, 489; charging by, 489
induction, mutual, 514
induction, self, Henry’s discovery of, 514
induction motor, 543
inductive reactance and impedance, 551
Industrial Revolution, 201

inelastic impact, 133, 135 f.

inertia, 89; moment of, 157 ff.

infra-red spectrum, discovery of, 393
intellectual defeatism, 4
intensity, and loudness of sound, 255; of repre-

sentative sounds, 256; of sound, unit of, 255;
luminous, 292; of earth’s magnetic field, 503;
of X-rays, measurement of, 609

intensity-range of audibility, 256
interference, 244; constructive, 368; destruc-

tive, 368; distinguished from beats, 260; in

X-rays, 612; radio, 585; Young’s identifica-

tion of, 367
internal combustion engine, 221 ff.

international candle, new, 293
intervals, musical, 249; frequency ratios of, 269
inverse-square force between electrical charges,

486
inverse-square law as an outgrowth of Kepler’s

laws, 108
ionosphere, 587
ions, fast, 629
isochronism of a pendulum, 126
isoclinic lines, 503
isodynamic lines, 504
isogonic lines, 501 f.

isotopes, 647

Jacobi’s motor, 534
joule, 145

Joule’s measurements of the mechanical equiv-
alent of heat, 203 f.

Kater’s pendulum, 128
Kennelly-Heaviside layer, 587
Kepler’s refractometer, 290

l

kilowatt, relation to horsepower, 152
kinetic energy, 139 ff.; 145

kinetic theory of change of state, 196
kinetic theory of gas pressure, 73, 140

Kirchhoff’s identification of sodium spectrum,

387
Kirchhoff’s rules, 476
kite, Franklin’s experiment with, 491
knot, as a unit of velocity, 14

Kodachrome process, 358

Ladd-Franklin theory of color vision, 356
lamp, reading, polarizing, 412; standard, 298
lateral magnification, of a spherical minor,

312; of a spherical refracting surface, 316
lateral spherical aberration, 330
Laue spots, 610
laws of cooling, 188
laying the scale, 265
length, world’s standard of, 10

lens, aberration of, 328; aplanatic, 331; achro-

matic, birth of, 335; converging, 324; di-

verging, 324; focal length of, 323; image
formation by, 322; object image relation for,

310; rectilinear, 335; shapes of, 325; thick-

ness, effect of, 328
lens-maker’s equation, 326; derivation of, 327
lenses, two, combination of, 324
Lenz’s law, 515, 539
levels, sound, relative unit of, 256; sound,

representative, 257
lever and work principle, 150
lever arm, 55
Leyden jar, 483
light, Newton’s opinion on, 363 ff.; Doppler

effect in, 389; electric, first, 430; refraction

and speed of, 290; refraction of, 290 ff.;

speed of, Rocmer’s measurement of, 288;
speed of, Michelson’s measurement of, 288;
speed of, 287 ff.; speed of, Fizeau’s measure-
ment of, 288; speed of, Foucault’s measure-
ment of, 289; wave-length of, first deter-

mination of, 368; transmission of sound by,

574; polarized, nature of, 402
lightning, 490 f.

lights vs. pigments, 352
limit, elastic, 124; of resolution, 379
limiting angle of repose, 44 f.

line spectra, absorption, 387 ;
emission, 387

linear coefficient of absorption, 614
linear expansivity of solids, 177

lines of force, magnetic, 496
liquefaction of gases, 197
liquid films,

1
‘black spot” in, 368

liquids, expansivity of, 176
literature contrasted with science, 4
loading coil, 566
localization, visual, 303
longitudinal wave, 233
loop rule, Kirchhoff’s, 476
loudness and intensity of sound, 255
lumen, 295
luminous efficiency, 296
luminous flux, 295
luminous intensity, 292
Lummer and Pringsheim’s measurement of

special distribution of energy, 623
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Lummer-Brodhun photometer, 296
lux, the, 294
Lyman series, 399, 634, 638

magnetic compass, pivoted, first description of,

magnetic declination, 50

i

magnetic dip and field strength, 503
magnetic field, around a current, 442; earth’s

intensity of, 503; rotating, production of, 544
magnetic flux density, 498 ff.; unit of, 498
magnetic moment, 500
magnetic polarity, 495
magnetism, 494 IT.; terrestrial, 500
magnetism, associated with flow of electric

current, 432
magneto, Pixii’s, 537; Saxton’s, 537
magnification, lateral, of a spherical mirror,

312; of a spherical refracting surface, 316
manometer, 83
Marconi’s development of wireless telegraphy,

577
Mariotte’s law, 71

mat surface, nature of reflection from, 411
mass, atomic, measurement of, 647; compared

with weight, 89; measurement of, 90
mass absorption coefficient, 614
mass spectrograph, 647
matter-waves of De Broglie, 643
maximum ordinate of trajectory, 23

Maxwell’s prediction of electromagnetic

waves, 528
mean value, 18

measurement, derived units of, 12; establish-

ment of standards of, 10

measurement of resistance, 471

mechanical advantage, 150

mechanical equivalent of heat, Joule’s meas-
urement of, 203; Rumford’s estimate of, 202

mechanical refrigerator, 215; absorption type,

216; compression type, 216
mechanics as the key to physics, 8

medium, effect on electrostatic forces, 487

melting point, 193; effect of pressure on, 193

mercury turbine, 220
mesotron, 660
meter-kilogram-second system, 96
meter, standard, 10; Venturi, 149; watt-hour,

456
method, scientific, 5

Michelson’s measurement of speed of light, 288

microphone, 563; carbon-granule, 564

microwatt as a unit of sound intensity, 255

millihenry, 518
minimum deviation, Newton’s discovery of,

343; position of, 344; refractive index by
measurement of, 345

mirror, concave, image formation by, 306;

convex, image formation by, 306; convex,

314; spherical, conjugate foci of, 311; spheri-

cal, image formation by, 305 ff.; spherical,

focal length of, 309
M. K. S. system, 96
modes of vibration in pipes, 280; in strings, 270

modulation, amplitude, 586; as an element in

the communication system, 560; frequency,

586; of carrier wave, 580

modulus, of elasticity, 69; and the speed of

sound, 230; of rigidity, 70; of volume, 70;
Young’s, 70

' " '

molecular spectra, 397
moment, of force, 53 n.\ of inertia, 157 ff.; of

inertia of geometrical forms, 160
moment, magnetic, 500
momentum, 97, 144; conservation of, 133
Moseley’s law, 640
motion, “natural,” doctrine of, 22; Newton’s

first law of, 97; Newton’s second law of, 96;

Newton’s third law of, 98; projectile, 21;

under constant force, 93; “violent,” doctrine

of, 22
“motion,” erroneously identified with force, 95
motor, Barlow’s, 532; Davenport’s, 532; D.C.,

speed control of, 536; induction, 543;

Jacobi’s, 534; series-wound, 536; shunt-
wound, 536; synchronous, 542; universal,

544
motors and generators, structural identity of,

531, 538
musical intervals, frequency ratios of, 269
mutual induction, 514

“natural” motion, doctrine of, 22
natural philosophy, 6
“natural” state, doctrine of, 22
nature of light, Newton’s opinion on, 363 ff.

Nautical Almanac. , 100
needle, dipping, 503
negative crystals, 418
neutral temperature, 458
neutron, 649, 651, 652; discovery of by Bothe
and Becker, 652; study by Curie-Joliot, 652

new international candle, 293
Newcomen engine, 209
Newton, the, 96
Newton’s color circle, 356
Newton’s color theory, reception of, 352

Newton’s discovery of minimum deviation,

343
Newton’s discovery of the spectrum, 340
Newton’s erroneous opinion on chromatic

aberration, 343
Newton’s first law of motion, 97
Newton’s first scientific paper, 339
Newton’s law of cooling, 188

Newton’s law of gravitation, 106

Newton’s laws of motion, universal appli-

cability of, 100

Newton’s laws of motion in impact, 137

Newton’s method of measuring the refractive

indexes of liquids, 346
Newton’s opinion on the nature of light, 363 ff.

Newton’s reflecting telescope, 338
Newton’s rings, 364 ff.; change of phase in,

365; colors in, 364
Newton’s second law of motion, 96; applied to

rotation, 157

Newton’s third law of motion, 98
Nicol prism, 403
nitrogen, transmutation of, 651
non-concurrent forces, 52
normal spectrum, 381
nuclear atom, 633
nuclear fission, 659
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object distances, sign convention for, 319
object-image relation for lenses, 322; for re-

fraction, at spherical surface, 315; for spheri-

cal mirrors, 310
Oersted’s experiment, 439
Ohm, definition of, 466
Ohm’s law, 463 ff.; Joseph Henry and, 505
oil-drop experiment, Millikan’s, 604
open pipe, modes of vibration in, 280
optic axis, 416
orbits in hydrogen atom, 638
orders of grating spectra, 380
ordinary ray, 409
ordinate, maximum, of trajectory, 25
organ pipe, closed, modes of vibration in, 280;

open, modes of vibration in, 280
orifice, flow through, 147

origin of spectra, 396 £E.

oscillation, 116; center of, 128 f., 161 f.

oscillator, function of triode as, 582
oscillograph, cathode-ray, 272
Otto cycle, 221
overtones, 269

parabola, 24
parabolic reflector, 330
paradox, hydrostatic, 82
parallel, condensers in, capacitance of, 488;

conductors in, resistance of, 469
parallelogram of vectors, 31 ff., 46 ff.

partial tones, 269
Pascal’s bases, 83
Pascal’s principle, 81

Paschen series, 399, 634, 638
pendulum, simple, 124; compound, 128;

Kater’s, 128; ballistic, 135; torsion, 158

pendulum clock of Galileo, 126

pendulum clock of Huygens, 126

pendulum clock of Richer, 130
pendulum method of determination of gravity,

126

perfectly elastic impact, 135

period in harmonic motion, 1 1

7

permeability of space, 498; relative, 499
perpetual motion, 206
phase, in harmonic motion, 117

phase, change of, in Newton’s rings, 365
phase displacement in an inductance, 549; in a

resistance, 549; in a condenser, 554
phonodeik, 272
photoelasticity, 422
photoelectric cell, 458, 572
photoelectric effect, Einstein’s theory of, 625
photography, in color, 357 ff.; in spectroscopy,

391
photometer, 296; Lummer-Brodhun, 297;

photovoltaic type, 297

photometry, 296
photon, 625; collision with electron, Compton’s

theory of, 642
photovoltaic cell, 572
physics as the fundamental science, 5

pigments vs. lights, 352
pile, voltaic, 428
pincushion distortion, 334
pinhole, image formed by, 301
pipes, boundary conditions in, 279; modes of

vibration in, 280; reflection in, 281; station-

ary waves in, 278
Pisa, Tower of, 16
pitch, and frequency, 247; standard, 250
pitched sound, 247
pivoted compass, first description of, 495
Pixii’s magneto, 537
Planck’s constant, 624, 636, 643
Planck’s element of action h

,
626

plane, inclined, 42 ff.

plane, focal, principal, 307; inclined, 42 ff.

plane of incidence, 410
plane of vibration, 411

plane-polarized light, 403
plate, vibrations of, 281; of three-electrode

tube, 568
Pluecker’s tube, 592
point rule, Kirchhoff’s, 476
polarity, magnetic, 495
polarization, by reflection, discovery of, 410;

in double refraction, 415; nature of, 402 ff.;

of refracted light, 413; plane of, 410; rotary,

407
polarized headlight beam, 553
polarized light, nature of, 402
polarizer, 403
polarizing angle, 410
polarizing axis, 403
polarizing reading lamps, 412
polarizing spectacles, reduction of glare by, 412
Polaroid products; 404 ff.

Polaroid windows, 405
poles, magnetic, 495
positive crystals, 418
positron, 654 f.

potential and current, Ampere’s distinction be-

tween, 451

potential difference, 474; measurement of, 452;
nature of, 45 1 ;

units of, 452
potential distribution in a simple circuit, 466
potential energy, 145

potentiometer, 473
poundal, 96
power, units of, 152
power consumption in A.C. circuits, 550, 552
precession, in spanning gyroscope, 162

press, hydraulic, 82
pressure, critical, 198; effect on bailing point,

194; effect on freezing point, 193; gas, kinetic

theory of, 73, 141

pressure coefficient of a gas, 173

pressure difference, in flow of electric current,

474
Provost’s theory of exchanges, 187

primary battery, 429
primary colors, 354
primary rainbow, 359
principal focal length of lens, 323
principal focal length of spherical mirror, 309
principal focal plane, 307
principal focus, 307 ;

of spherical mirror, 309
principal index of refraction, 418
principal section of crystal, 409
principle of Archimedes, 79 ff.

principle of tonality, 250
prism, Nicol, 403
prism, total reflection, 346, 349
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prism binocular, 346
problems, remarks on, 27
projectile motion, 21
projection, stereoscopic, 406
prospecting, geophysical, by sound, 231
protons, fast, transmutation by, 656
Prout’s hypothesis, 647 ff.

pulley, compound, 150
pump, vacuum, 16, 103; diffusion, 590;

Geissler’s, 589
pure tone, 273

quality, and wave form, 267; of musical tone,

267 ff.

quanta, 624
quantity, and current, relation between, 649
quantity of electricity, the idea of, 406; unit of,

434
quantum number, 636
quantum theory, 622
quarter-wave plate, 419

radiant energy, 183, 185

radiation from radium, 616
radiation, heat, 183; effect on the thermometer,

187

radio receiver, simple, 579
radio spectrum, 587
radio waves, propagation of, 587
radioactive transformations, 618 ff.; equation

of, 650 .

radioactivity, 650; induced, discovery of, 657
radium, heating effect of, 616; isolation of, 615;

radiation from, 616
radius of curvature, sign convention for, 318
radius of gyration, 161

rainbow, 359; Descartes 7 theory of, 360 f.;

primary, 359; secondary, 359
Ramsden’s eyepiece, 337
range finder, coincidence, 304
range, maximum, in mate

,
23

range of trajectory, 23
ratio of charge to mats in electrolysis, 436
ratio of specific heats on gases, 204
ray, critical, 347; cosmic, 654 ff.

reactance, 517
reactance, and impedance, inductive, 551;

capacitative, 555; inductive, 551

reaction and action, 98 ff.

reactions at supports, 54
reading lamps, polarizing, 412
real and virtual images, 306
r6aumur scale, 172

receiver, 563; for radio, simple, 579; telephone,

electromagnetic, 564
recording sound waves, 272
rectifier, 568; Tungar, 568
rectilinear lens, 335
rectilinear propagation of light, 287
reduction of glare by polarizing spectacles, 412
reduction of reflection by thin films, 369
reflecting telescope, Newton’s, 338
reflection, from mat surface, nature of, 411 ;

in

pipes, 281 ;
polarization by, 410; reduction of

by thin films, 369; total, 346 ff.

reflector, parabolic, 330
refracted light, polarization of, 413

j

refraction, at spherical surface, image forma-
tion by, and object-image relation for, 315;
double, 408; of light, 290 ff.; and speed of

light, 290
refractive index, Descartes

7 method of meas-
urement of, 345; measurement of, by mini-
mum deviation, 345; of crystals, 417; of

liquids Newton’s method of measurement
of, 346; principal, 418

refractometer, Kepler’s, 280
refrigerator, mechanical, 215; absorption type,

216; compression type, 216
relative sound levels, unit of, 256
relativity, 101

repeater, 566 f.

repose, limiting angle of, 44
resinous electricity (negative), 443
resistance, electrical, 463 ff.; of conductors in

parallel, 469; of conductors in series, 468;
measurement of, 471; temperature coeffi-

cient of, 465
resistivities (table), 465
resistivity, 464; temperature coefficient of, 465
resolution, of forces, 31 ff.; and composition of

torques, 157; graphical method, 32; limit of,

379; trigonometrical method, 32

resolving power, 378; of a diffraction grating,

381

resonance, electrical, 556
restitution, coefficient of, 136

resultant of two vectors, 31

reverberation, 237; and sound absorption,

239 ff.; distinguished from echo, 237; time
of, 238

reverberation equation, Sabine’s, 242
reversible cycle, 215

Richer’s pendulum clock, 130

right-hand screw rule, 441 f.

rigidity modulus, 70
rings, Newton’s, 364 ff.; and change of phase

in, 365

ripples, refraction of, 289
Roemer’s measurement of speed of light, 288
Roentgen’s discovery of X-rays, 606
rotation, compared with translation, 155; New-

ton’s second law of motion applied to, 157

rotational equilibrium, 52 ff.

rotatory polarization, 407
rotor, squirrel-cage, 544
Rowland’s identification of effect of moving

charge, 595
ruling of gratings, 382

running waves, 276
Rydberg’s constant, 634
Rydberg’s formula, 634, 636

satellite, determination of mass by period of,

113
saturated vapor, behavior of, 194

Saxton’s magnet, 537
scalar quantities, 30
scale, in C, frequency of, 251 ;

laying the, 265;

musical, 249; tempered, 249
scales, thennometric, 172

Science, and historians, 4; contrasted with lit-

erature and art, 4; sequential and cumula-
tive nature of, 4
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scientific method, S
scintillation method of counting alpha parti-

cles, 628
screw, 42, 45
second law, Newton’s, applied to rotation, 157

second law of motion, Newton’s, 96
second, mean solar, 12

secondary battery, 429
secondary rainbow, 359
selection as an element in the communication

system, 560
self-inductance and mutual inductance, unit of,

517
self-induction, Henry’s discovery of, 514
sequential nature of science, 4
series, Balmer, 398; condensers in, capacitance

of, 482; conductors in, resistance of, 468;

Lyman, 399; Paschen, 399; spectral, 398
series resistance in voltmeter, 453
shear, 65; in bending, 66
shear diagram, 67
shearing stresses, 65
shunt, galvanometer, evolution of, 448
shunt and series resistance in electrical instru-

ments, 470
sign convention, for focal length, 319; for

image distances, 319; for object distances,

319; for radius of curvature, 318; for refract-

ing surfaces, 311 ff.

simple harmonic motion, 1 16 ff.

simple harmonic wave, 273
single-slit diffraction pattern, Fresnel end, 377

siphon recorder, 447
slide-wire bridge, 472
Smith, Robert, graphical method of location

formed, by converging lens, 323; diverging

lens, 325; by reflection, 311; by refraction,

316
SneFs law, 290
soap film, colors in, 368
sodium spectrum, Kirchhoff’s identification of,

387
Soemmerring’s electrochemical telegraph, 431

solar absorption lines, Fraunhofer’s identifica-

tion of, 386
solar and terrestrial lines, identity of, 388

solar spectrum, first photograph of, 391

solenoid, 497 f.

sound absorption and reverberation, 239 ff.

sound, and motion, 227 ;
as a type of wave, 232;

effect of temperature on speed of, 231
;
energy

content of, 227; pitched and unpitched, 247;

transmission over light beam, 574
sound levels, relative, 256
sound spectra, 274
sound, speed of, in air, 229; in other media, 229

sound-wave analysis, 273
sound waves, recording, 272

specific gravity, 81

specific heat, 181

specific heat at constant volume, and at con-

stant pressure, 205

spectacles, polarizing, reduction of glare by, 412
spectra, origin of, 396 ff.; X-ray and electron

shells, 641
spectral energy, wave-length distribution of,

396

spectral series, 398; Balmer’s, 398; Lyman’s,
399; Paschen’s, 399

spectroscope, 387
spectroscopy, 385 ff . ;

and photography, 391
spectrum, band, 397; grating, orders of, 380;

infra-red, discovery of, 393; line, absorption,

387
;
line, emission, 387 ; molecular, 397 ;

nor-

mal, 381 ;
radio, 587 ;

Newton’s discovery of,

340; sodium, Kerchhoff’s identification of,

387; sound, 274; X-ray, 640
spectrum analysis, 399
specular reflection, 41

1

speed, in harmonic motion, 119; and refraction

of light, 290; of efflux, 147; of electrons, 599;
of light, Fizeau’s measurement of, 288; of

light, Foucault’s measurement of, 289; of

light, Michelson’s measurement of, 288; of

light, Roemer’s, measurement of, 288; of

sound effect of temperature on, 231 ;
of sound

in air, 229; of sound in other media, 229
sphere, Ulbricht, 298
spherical aberration, 328; axial, 330; lateral,

330
spherical mirror, conjugate foci of, 311; focal

length of, 309; image formation by, 305 ff.;

object-image relation for, 310
spherical surface, refraction at, image forma-

tion by, and object-image relation for, 313
spring balance, compared with beam balance, 90
squirrel-cage rotor, 544
stable elements, first transmutation of, 651
standard lamps, 298
standard pitch, 250
standing waves, 276 ff.

stars, double, Doppler effect in, 389
state, “natural,” 22
statics, the two principles of, 53
stationary waves, 276 ff.; in strings, 277; in

pipes, 278
steam engine, 201 ff.; efficiency of, 219; theory

of, and conservation of energy, 213 f.

steam, expansion, utilization of, 210
steam turbine, 220
Stefan’s fourth power law, 188
stereoscope, 304
stereoscopic projection, 406
storage battery, 459
strain, double refraction by, 422
stream-line flow, 148
strength and elasticity of materials, 64 ff.

stress and strain, 64 ff.

stresses, classification of, 65; combined, 66
stretched strings, vibration of, 129
strings, boundary conditions in, 278; modes of

vibration in, 270; stationary waves in, 277;
vibrating, pitches, lengths, and frequencies
of, 268

Sturgeon’s bar electromagnet, 504
sublimation, 195
summation tones, 262 f.

supports, reactions at, 54
synthesis, harmonic, 274

“Technicolor” process, 358
telegraph, electromechanical, Soemmerring’s,

431; Henry’s, 505; Morse’s, 506; Wheat-
stone’s, 507
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telegraphy, continuous-wave, receiver for, 584;
early, 561; wireless, Marconi’s development
of, 577

telephone, 563 ff.

telephotography, 570
telescope, reflecting, Newton’s, 338
television, 571
temperature, and heat, Black’s distinction be-

tween, 181; critical, 198; effect on speed of

sound, 231; table, 465; temperature coeffi-

cient of resistivity, 465
temperature, neutral, in thermo-electromotive

force, 458
temperature and thermal expansion, 171 ff.

temperature of inversion, in thermo-electro-

motive force, 458
temperature scales, 171

tempered scale, 249; in C, frequencies of, 251

tensile and compressive stresses, 65
terrestrial and solar lines, identity of, 388
terrestrial magnetism, 500
thermal conductivity, 184 ff.

thermocouples, 458
thermoelectric effect, 458
thermoelectromotive force, 457; neutral tem-

perature in, 458; temperature of inversion in,

458
thermometer, evolution of, 171; as affected by

radiation, 186
thermometric scales, 172

thermopile, 394
thermoscope, Galileo’s, 171

thickness of lens, effect of, 338
thin crystal, colors in, 421
thin film, reduction of reflection by, 369
third law of motion, Newton’s, 98
threshold of feeling, 256; of hearing, 256
tides, Newton’s explanation of, 113

time, of reverberation, 238; standard of, 121

totalitarian philosophy, 3

tonality, principle of, 250
tone, musical, 249 f.; combination, 262; differ-

ence, 262 ff.; partial, 269; pure, 273; summa-
tion, 262 f.

torque, 53; applied to a gyroscope, 163; com-
pared with force, 157 ;

composition and reso-

lution of, 157

torsion, 66
torsion pendulum, 158

total reflection, 346 ff.

Tower of Pisa, 16

trajectory, 22; in vacuo, 23; maximum ordinate

of, 25; range of, 25; time of flight of, 25

transformer, commercial significance of, 513

transient value of a current, 521

translation, rotation compared with, 155

translational equilibrium, 34 ff., 53
transmission as an element in the communi-

cation system, 5, 60; of sound over a light

beam, 574
transmitter, radio telephone, simple, 583
transverse wave, 233

trigonometrical method of resolution, 32
triode, 469 as amplifier, 582; as oscillator,

582; characteristics of, 581
triple point for water, 194

Tungar rectifier, 568

tuning by beats, 261
tuning fork, 272 f.

turbine, mercury, 220; steam, 220
turbulent flow, 148 n,

two-stroke-cycle engine, 222

Ulbricht sphere, 298
ultra-violet spectrum, discovery of, 391

;
wave-

length range of, 392
uniform circular motion, 109
uniform field, electrostatic, 488
universal gravitation, 106 ff., 111 f.; constant

of, 111; Newton ’s law of, 106 ff

.

universal motor, 544
unpitched sound, 247
uranium family, transformation series of, 619

vacuo, bell in, 228
vacuum pump, 16, 85
vacuum tube, as oscillator, 582; characteristics

of, 581 ;
thermionic, 581 ;

three-electrode as

amplifier, 582
valence, 435 f.

vapor, saturated, behavior of, 194

vaporization, heat of, 193; of water, heat of, 194

vapor pressure of water, 194

vases, Pascal's, 83
vectors, 30; parallelogram of, 31 ff., 46 f.

velocity, defined, 13; difficulty of direct meas-
urement of, 17; in free fall, 16 ff.; of doubly
refracted rays, 415; uniform, 13; units of, 13

vena contracta
,
148

Venturi meter, 149

vibrating strings, pitches, lengths, and fre-

quencies of, 268
vibration, modes of, in strings, 270; of bars,

diaphragms, and plates, 281; of stretched

strings, 129; plane of, 411

vibrator, asymmetrical, 264
“violent” motion, doctrine of, 22
virtual and real images, 306
visual localization, 303
vitreous electricity (positive), 443
volt, definition of, 452, 457
voltaic: pile, 428
Volta’s invention of the electrolytic cell, 428
voltmeter, 453
volume modulus, 70; of a gas, 74

water, anomalous expansivity of, 176; vapor
pressure of, 194

watt, the, 152

watt-hour meter, 456
wave, Hertzian, 576; longitudinal, 233; radio,

propagation of, 587; running, 276; simple

harmonic, 273; sound as a type of, 232;

sound, recording, 272; stationary, 276 ff.;

stationary, in pipes, 278; transverse, 233

wave analysis, sound, 273
wave form and quality, 267
wave-length distribution of spectral energy,

396
wave-length and frequency of sound, 248
wave-length from double slit diffraction, 373
wave-length of light, first determination of, 368
wave-lengths, X-ray, Bragg’s determination of,

612
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weber per square meter, unit of magnetic flux

density, 498
wedge, 42, 45
weight, variability of, 88; compared with mass,

89; measurement of, 90
Wheatstone’s bridge, 471 f.

Wien’s displacement law, 623
Wilson’s cloud chamber, 629
windows, Polaroid, 405
work, 144 ff.

;
units of, 145

World War II, “a physicists’ war,” 3

X-ray diffraction pattern, 61

1

X-ray intensities, measurement of, 609
X-ray spectra, 640; and electron shells, 641

X-ray spectrometer, Bragg's, 613
X-ray tube, Coolidge, 609; early forms, 608
X-ray wave-lengths, Bragg’s determination of,

612

X-rays, discovery of, 606 ff.; absorption, 613;

interference in, 611; reflection in, 612

Young-Helmholtz theory of color vision, 356
Young’s modulus, 70, 354; and the speed of

sound, 230
Young’s theory of color vision, 354

Zeeman effect, 600
zero, absolute, 174








