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PREFACE 

The aim of this book is to provide a course in the principles 

of mechanics suitable for engineering students. Accordingly 

the gravitational unit of force, the pound, is generally 

employed rather than the poundal which is seldom used by 

engineers. 

In this new edition a chapter on hydrostatics has been 

added in order to complete the work required in mechanics 

for the Intermediate Engineering Examinations of universities 

and the Associate Membership Examinations of the pro¬ 

fessional Engineering Institutions. As in some of these 

examinations an elementary knowledge of the kinematics of 

the motion of a rigid link is now required, a short section 

on this subject has been added as an Appendix. 

ARTHUR MORLEY. 

Bath, 
March, 1941. 
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MECHANICS FOR ENGINEERS 

CHAPTER I 

KINEMATICS 

I. Kinematics deals with the motion of bodies without 

reference to the forces causing motion. 

Motion in a Straight Line. 

Velocity.—The velocity of a moving point is the rate of 
change of its position. 

Uniform Velocity.—When a point passes over equal 

spaces in equal times, it is said to have a constant velocity ; the 

magnitude is then specified by the number of units of length 

traversed in unit time, e.g. if a stone moves 15 feet with a 

constant velocity in five seconds, its velocity is 3 feet per 

second. 

U s = units of space described with constant velocity v in 

/ units of time, then, since v units are described in each second, 

{v X /) units will be described in / seconds, so that— 

s = vt 

and V 

Fig. I shows graphically the relation between the space 

described and the time taken, for a constant velocity of 3 feet 

per second. Note that z/~ or ~ or a constant 
r 3 2 I 

B 
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velocity of 3 feet per second whatever interval of time is 
considered. 

Fif;. I.—Space curve for a uniform velocity of 3 feet per second. 

2. Mean Velocity.—The mean or average velocity of a 
point in motion is the number of units of length described, 

divided by the number of units of time taken. 
3. Varying* Velocity.—The actual velocity of a moving 

point at any instant is the mean velocity during an indefinitely 
small interval of time including that instant. 

4. The Curve of Spaces or Displacements.—Fig. 2 
shows graphically the relation between the space described and 

Fig. a.—Space curve for a varying velocity. 

the time taken for the case of a body moving with a varying 
velocity. At a time ON the displacement is represented by 
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PN, and after an interval NM it has increased by an amount 
OR, to QM. Therefore the mean velocity during the interval 

NM IS represented by or p-g or by tan QPR, i.<?. by the 

tangent of the angle which the chord PQ makes with a hori¬ 
zontal line. If the interval of time NM be reduced indefi¬ 
nitely, the chord PQ becomes the tangent line at P, and the 
mean velocity becomes the velocity at the time ON, Hence 
the velocity at any instant is represented by the gradient of the 

tangent line to the displacement curve at that instant An upward 
slope will represent a velocity in one direction, and a down¬ 
ward slope a velocity in the opposite direction. 

5. If the curvature is not great, ue, if the curve does not bend 
sharply, the best way to find the direction of the tangent line 
at any point P on a curve such as Fig. 2, is to take two ordi¬ 

nates, QM and ST, at short equal distances from PN, and join 
QV 

QS; then the slope of QS,viz. , is approximately the same 

as that of the tangent at P. This is equivalent to taking the 
velocity at P, which corresponds to the middle of the interval 
TM, as equal to the mean velocity during the interval of 

time TM. 
6. Scale of the Diag^ram.—Measure the slope as the 

gradient or ratio of the vertical height, say QV, to the hori¬ 
zontal SV or TM. Let the ratio QV : I’M (both being 
measured in inches say) be x. Then to determine the velocity 
represented, note the velocity corresponding to a slope of 
T inch vertical to i inch horizontal, say y feet per second. 
Then the slope of QS denotes a velocity of xy feet per 
second. 

7* Acceleration*—The acceleration of a moving body is 
the rate of change of its velocity. When the velocity is in¬ 
creasing the acceleration is reckoned as positive, and when 

decreasing as negative. A negative acceleration is also called 
a retardation. 

8. Uniform Acceleration.—^When the velocity of a point 
increases by equal amounts in equal times, the acceleration is 

said to be uniform or constant: the magnitude is then specified 
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by the number of units of velocity per unit of time; eg. if a 
point has at a certain instant a velocity of 3 feet per second, 
and after an interval of eight seconds its velocity is 19 feet per 

second, and the acceleration has been uniform, its magnitude is 

increase of velocity to —3 ^ , 
— - -^ ~ ^~ 2 feet per second in each of 

time taken to increase 8 ^ 
the eight seconds, i.e. 2 feet per second per second. At the end 

of the first, second, and third seconds its velocities would be 

(3 + 2), (3 + 4), and (3 + 6) feet per second respectively (see 

■■■■■■■■■■■■■■■a 

aaaBaBaaBaBBBaaa 

Tirrve^ trv seconds 

Fig. 3.—Uniform acceleration. 

9. Mean Acceleration.—The acceleration from 3 feet 

per second to 19 feet per second in the last article was sup¬ 
posed uniform, 2 feet per second being added to the velocity 

in each second; but if the acceleration is variable, and the 

increase of velocity in different seconds is of different amounts, 
then the acceleration of 2 feet per second per second during 

the eight seconds is merely the mean acceleration during that 
, increase of velocity 

time. The mean acceleration is equal 

and is in the direction of the change of velocity. 
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The actual acceleration at any instant is the mean 
acceleration for an indefinitely small time including that 

instant. 
10. Fig. 3 shows the curve of velocity at every instant 

during the eight seconds, during which a point is uniformly 

accelerated from a velocity of 3 feet per second to one of 

19 feet per second. 
11. Calculations involving Uniform Acceleration.— 

u =: velocity of a point at a particular instant, and f = uni¬ 
form acceleration, i.e, f units of velocity are added every 

second— 

then after i second the velocity will be u + / 

and „ 2 seconds „ „ // -h 2/ 

» i) 3 » » » 3/ 
„ „ / „ „ z; will be«-f// (i) 

e^, in the case of the body uniformly accelerated 2 feet per 

second per second from a velocity of 3 feet per second to a 
velocity of 19 feet per second in eight seconds (as in Art. 8), 
the velocity after four seconds is 3 + (2X4)=n feet per 

second. 
The space described (s) in / seconds may be found as 

follows: The initial velocity being «, and the final velocity 

being v, and the change being uniform, the mean or average 

velocity IS ——. 

1. u V u u + ft . ^ 
Mean velocity = —^~ 2 —2 ' “ ^ 2/"^ 

(which is represented by QM in Fig. 3. See also Art. 2). 

Hence u + ^/t = j 

and j = «/ -f- -i//* ... (2) 

in the above numerical case the mean velocity would be— 

—= 11 feet per second (QM in Fig. 3) 

and ^=11X8=: 88 feet 

ori* = 3X8 + ix 2 x82 = 24 + 64 =:88 feet 

It is sometimes convenient to find the final velocity in 
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terms of the initial velocity, the acc^eleration, and the space 

described. We have— 

from (i) V — u + ft 
therefore ^ 2uft + 2/(2^/ + 

and substituting for (tit \ff) its value s from (2), we have— 

-k- 2fs.(3) 

The formulae (i), (2), and (3) are useful in the solution of 
numerical problems on uniformly accelerated motion. 

12. Acceleration of Failing: Bodies.—It is found that 
bodies falling to the earth (through distances which are small 

compared to the radius of the earth), and entirely unresisted, 
increase their velocity by about 32*2 feet per second every 

second during their fall. The value of this acceleration varies 
a little at different parts of the earth’s surface, being greater 

at places nearer to the centre of the earth, such as high lati¬ 

tudes, and less in equatorial regions. The value of the 
“acceleration of gravity” is generally denoted by the letter 
g. In foot and second units its value in London is about 

32*19, and in centimetre and second units its value is about 
981 units. 

13. Calculations on Vertical Motion.—A body pro¬ 
jected vertically downwards with an initial velocity u will 
in / seconds attain a velocity u + gt^ and describe a space 

In the case of a body projected vertically upward with a 
velocity u, the velocity after t seconds will be w — ^/, and will be 

upwards if gt is less than but downward if gt is greater than 

u. When t is of such a value that gt = u, the downward 
acceleration will have just overcome the upward velocity, and 

the body will be for an instant at rest: the value of t will then be 
u 

The space described upward after t seconds will be 

^ - ig^- 
The time taken to rise h feet will be given by the equation— 

h^ut-- Igf 

This quadratic equation will generally have two roots, the 
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smaller being the time taken to pass through h feet upward, and 

the larger being the time taken until it passes the same point on 
its way downward under the influence of gravitation. 

The velocity z;, after falling through “ h feet from the point 

of projection downwards with a velocity is given by the 
expression z/* = + 2gh^ and if w = o, i,e, if the body be simply 
dropped from rest, = 2gh^ and v =■ J 2gh after falling h feet 

14. Properties of the Curve of Velocities.—Fig. 4 
shows the velocities at all times in a particular case of a body 

FiG. 4.—^Varying velocity. 

Starting from rest and moving with a varying velocity, the 
acceleration not being uniform. 

(i) Slope of the Curve.—At a time ON the velocity is 
PN, and after an interval NM it has increased by an amount 

QR to QM; therefore the mean acceleration during the 
OR OR 

interval NM is represented by or i.e, by the tangent of 

the angle which the chord PQ makes with a horizontal line. 
If the interval of time NM be reduced indefinitely, the chord 

PQ becomes the tangent line to the curve at P, and the mean 
acceleration becomes the acceleration at the time ON. So that 
the acceleration at any instant is represented by the gradient of 

the tangent line at that instant The slope will be upward if 

the velocity is increasing, downward if it is decreasing; in the 
latter case the gradient is negative. The scale of accelerations 

is easily found by the acceleration represented by unit gradient. 

If the curve does not bend sharply, the direction of the 
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tangent may be found by the method of Art. 5, which is in this 
case equivalent to taking the acceleration at P as equal to the. 
mean acceleration during a small interval of which PN is the 
velocity at the middle instant. 

(2) The Area under the Curve.—If the velocity is 
constant and represented by PN (Fig. 5), then the distance 

described in an interval 
NM is PN.NM, and there¬ 
fore the area under PQ, 
viz. the rectangle PQMN, 
represents the space de¬ 
scribed in the interval 
NM. 

If the velocity is not 
constant, as in Fig. 6, sup¬ 
pose the interval NM 

divided up into a number 
of small parts such as 

CD. Then AC represents the velocity at the time represented 
by OC; the velocity is increasing, and therefore in the interval 
CD the space described is greater than that represented by the 
rectangle AEDC, and less than that represented by the rect¬ 
angle FBDC. The total space described during the interval 

N CD 
Tifrve> 

Fig. 6.-Varying velocity. 

NM is similarly greater than that represented by a series ot 
rectangles such as AEDC, and less than that represented by a 
series of rectangles such as FBDC. Now, if we consider 
the number of rectangles to be increased indefinitely, and 
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the width of each to be decreased indefinitely, the area 
PQMN under the curve PQ is the area which lies always 
between the sums of the 
areas of the two series of 
rectangles, however nearly 
equal they may be made by 
subdividing NM, and the 
area PQMN under the curve 
therefore represents the space 
described in the interval NM. 

The area under the curve 
is specially simple in the case 
of uniform acceleration, for 
which the curve of veloci¬ 

ties is a straight line (Fig. 7)* Fig. 7. 

Here the velocity PN being 
u, and NM being t units of time, and the final velocity being 
QM = z/, the area under PQ is— 

PN + QM 
2 

t/ + 7/ 
or 

X NM = ST X NM 

X t (as in Art. 11) 

And if f is the acceleration f - —(represented by or 

i.e. by tan QPR), 

V ^ U ft 
U V 

and the space described —— x / is 
u -^ft 

2 X /, which is 

^t \ft'^ (as in Art. ii). 
15. Notes on Scales.—If the scale of velocity is i inch 

to X feet per second, and the scale of time is i inch to y seconds, 
then the area under the curve will represent the distance 

described on such a scale that i square inch represents xy 
feet. 

16. In a similar way we may show that the area PQMN 
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(Fig. 8) under a curve of accelerations represents the total 
increase m velocity in the interval of time NM. 

If the scale of acceleration is i inch to z feet per second 
per second, and the scale of time is i inch to y seconds, then 

the scale of velocity is i square inch to yz feet per second. 
17. Solution of Problems.—Where the motion is of a 

simple kind, such as a uniform velocity or uniform acceleration, 
direct calculation is usually the easiest and quickest mode of 
solution, but where (as is quite usual in practice) the motion is 
much more complex and does not admit of simple mathematical 
expression as a function of the time taken or distance covered, 

a graphical method is recommended. Squared paper saves 
much time in plotting curves for graphical solutions. 

Example 1.—A car starting from rest has velocities v feet per 
second after C seconds from starting, as given in the following 
table ;— 

/ i c 4 9 ! 17 24 30 32 40 45 53 58 62 
V 

_i 

0 II'O 22*6 j 35*6 44'5 49*0 48-9 40*6 337 26*8 24-3! 24-0 

Find the accelerations at all times during the first 60 seconds, and 
draw a curve showing the accelerations during this time. 

First plot the curve of velocities on squared paper from the 
given data, choosing suitable scales. This has been done in 
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Fig. 9, curve I., the scales being i inch to lo seconds and 
I inch to 20 feet per second. 

In the first lo seconds RQ represents 24*2 feet per second 

s 

Fig. 9. 

gain of velocity, and OQ represents 10 seconds; therefore the 
acceleration at N 5 seconds from starting is approximately 
24*2 
10”’ second per second. Or thus: unit 

gradient i inch vertical in i inch horizontal represents— 

20 feet per second 

-P®" 

, RQ I'21 inch 
hence — = i'2i 

OQ I inch 
hence acceleration at N ) ^ , 

ic T«^T V ^ >= 2*42 feet per second per second 

^ (see Art. 14) 

Similarly in the second 10 seconds, SV which is SM — RQ, 

represents (39*8 — 24*2), or 15*6 feet per second gain of velocity; 
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therefore the acceleration at W, 15 seconds from starting is 

approximately or 1*56 feet per second per second. 

Continue in this way, finding the acceleration at say 5, 151 
25, 35, 45, and 55 seconds from starting; and if greater ac¬ 
curacy is desired, at 10, 20, 30, 40, 50, and 60 seconds also. 
The simplest way is to read off from the curve 1. velocities 

in tabular form, and by subtraction find the increase, say, in 
10 seconds, thus— 

/ .* 0 5 10 
1 
1 «5 20 25 30 1 35 40 45 50 55 60 

V . 0 |24‘2l32*8 |39;845*4 47*5 40*6 33*7: 29*0 25-1 24’] 

Change in v 124^2 15-6 -r-4 
-i3’8 

-11-6 

-8-6 
“5*i 

for 10 secs. I9’3 b-6 21 

Acceleration [2*42 1*93 1-56 1*26 

1 rH 0-21 -0-84 -I'38 -ri6 -0-86 -o‘Si 

From the last line in this table curve 11., Fig. 9, has been 

plotted, and the acceleration at any instant can be read off 
from it. 

It will be found that the area under curve II. from the 

start to any vertical ordinate is proportional to the correspond¬ 
ing ordinate of curve I, (see Art. 16). The area, when below 
the time base-line, must be reckoned as negative. 

Example a.—Find the distance covered from the starting-point 
by the car in Example i at all times during the first 60 seconds, 
and the average velocity throughout this time. 

In the first 10 seconds the distance covered is found approxi¬ 
mately by multiplying the velocity after 5 seconds by the time, ue, 
13*5 X 10 = 135 feet. This approximation is equivalent to taking 
13*5 feet per second as the mean velocity in the first 10 seconds. 

In the next 10 seconds the mean velocity being approximately 
32*8 feet per second (corresponding to / = 15 seconds), the distance 
covered is 32*8 x 10 = 328 feet, therefore the total distance covered 
in the first 20 seconds is 135 + 328 = 463 feet. Proceeding in this 
way, taking lo-second intervals throughout the 60 seconds, and 
using the tabulated results in Example i, we get the following 
results 
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t. 0 10 20 .30 1 40 50 60 
Space in | 

328 previous > 0 135 454 475 337 251 
10 secs. 1 

Total space 0 135 463 917 1392 1729 1980 

from which the curve of displacements, Fig. lo, has been plotted. 

Scale of Inches 

Fio. 10. 

Greater accuracy may be obtained by finding the space 
described every 5 instead of every 10 seconds. 

The average velocity = = 33*0 feet per sec. 
time taken 60 

Note that this would be represented on Fig. 9 by a height which is 
equal to the total area under curve I. divided by the length of 
base to 60 seconds. 

Examples I. 

I. A train attains a speed of 50 miles per hour in 4minutes after starting 
from rest. Find the mean acceleration in foot and second units. 
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2. A motor car, moving at 30 miles per hour, is subjected to a uniform 

retardation of 8 feet per second per second by the action of its brakes. 

How long will it take to come to rest, and how far will it travel during this 

time? 

3. With what velocity must a stream of water be projected vertically 

upwards in order to reach a height of 80 feet ? 

4. How long will it take for a stone to drop to the bottom of a well 

150 feet deep ? 

5. A stone is projected vertically upward with a velocity of 170 feet per 

second. How many feet will it pass over in the third second of its upward 

flight ? At what altitude will it be at the end of the fifth second, and also 

at the end of the sixth ? 

6. A stone is projected vertically upward with a velocity of 140 feet per 

second, and two seconds later another is projected on the same path with 

an upward velocity of 135 feet per second. When and where will they 

meet ? 

7. A stone is dropped from the top of a tower 100 feet high, and at the 

same instant another is projected upward from the ground. If they meet 

halfway up the tower, find the velocity of projection of the second stone. 

The following Examples are to be worked graphically^ 

8. A train starting from rest covers the distances s feet in the times t 

seconds as follows :— 

t ... 0 5 " 1 18 22 27 1 31 38 46 ! 50 
s j ° 10 170 260 390 450 504 550 570 

Find the mean velocity during the first 10 seconds, during the first 30 

seconds, and during the first 50 seconds. Also find approximately the 

actual velocity after 5, 15, 25, 35, and 45 seconds from starting-point, and 

plot a curve showing the velocities at all times. 

9. Using the curve of velocities from Example 8, find the acceleration 

every 5 seconds, and draw the curve of accelerations during the first 40 

seconds. 

10. A train travelling at 30 miles per hour has steam shut off and 

brakes applied ; its speed after t seconds is shown in the following table 

t . 0 4 12 20 26 35 42 50 
Vi miles perl 

hour .../ 
30-0 

i 

26’0 21-5 167 

1 

14*0 io‘4 1 7*7 4-8 
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Find the retardation in foot and second units at 5-sccond intervals through¬ 
out the whole period, and show the retardation by means of a curve. Read 
off from the curve the retardation after 7 seconds and after 32 seconds. 
What distance does the train cover in the first 30 seconds after the brakes 

are applied ? 
II. A body is lifted vertically from rest, and is known to have the 

following accelerations / in feet per second per second after times / 

seconds:— 

1 

/ ... 
1 

' 0 1 
1*9 ^ 

1 ! 
3'o I 3'9 4-8 6*0 6*8 8-0 8-8 

/ - 1 3-0 2*9 2-85 
1 

2'6o j 2-20 175 j 1-36 1*20 
_1 

1*04 0*97 

Find its velocity after each second, and plot a curve showing its velocity at 
all times until it has been in motion 8 seconds. How far lias it moved in 
the 8 seconds, and how long does it take to rise 12 feet ? 

Vectors. 

18. Many physical quantities can be adequately expressed 
by a number denoting so many units, e.g, the weight of a 
body, its temperature, and its value. Such quantities are called 
scalar quantities. 

Other quantities cannot be fully represented by a number 
only, and further information is required, e. g, the velocity of a 
ship or the wind has a definite direction as well as numerical 

magnitude: quantities of this class are called vector quantities 
and are very conveniently represented by vectors. 

A Vector is a straight line having definite length and 
direction, but not definite position in space. 

ig. Addition of Vectors,—o find the sum of two vectors 

olfmA cd (Fig. ii), set out ab of proper length and direction, 
and from the end b set out be equal in length and aaralle) to 
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cd; join ae. Then ac is the geometric or vector sum of ah and 
cd. We may write this— 

ah he(U 

or, since be is equal to cd— 

ah cd:=^ ae 

20. Subtraction of Vectors.—If the vector cd (Fig. 12) 
is to be subtracted from 
the vector ah^ we simply 

find the sum ae as before, 
of a vector ah and second 
vector he^ which is equal 
to cd in magnitude, but is 
of opposite sign or direc¬ 
tion ; then— 

Fig. la. ae ^ ah he ^ ah cd 

If we had required the difference, cd — ah^ the result would 

have been ea instead of ae. 
21. Applications: Displacements.—A vector has the 

two characteristics of a displacement, viz. direction and magni¬ 

tude, and can, therefore, represent it completely. If a body 
receives a displacement ah {¥ig, ii), and then a further dis¬ 
placement completely represented by cdy the total displacement 
is evidently represented by ae in magnitude and direction. 

22. Relative Displacements. Case I. Definition.—If 

Pig. 13. 

a body remains at 
rest, and a second 

body receives a dis¬ 
placement, the first 
body is said to re¬ 
ceive a displacement 
of equal amount but 
opposite direction re¬ 
lative to the second, 

Case II. Where Two Bodies each receive a Displacement— 
If a body A receive a displacement represented by a vector ab 

(Fig. 13), and a body B receive a displacement represented by 
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cdy then the displacement of A relative to B is the vector 
difference, ab — cd. For if B remained at rest, A would have 

a displacement ah relative to it. But on account of B’s motion 

(cd)^ A has, relative to B, an additional displacement, dc (Case 

I.) j therefore the total displacement of A relative to B is ab-\-dc 
(or, ab --cd) ab + be := ae (by Art. 20) ; where be is of equal 

length and parallel to dc, 

23. A Velocity which is displacement per unit time can 
evidently be represented fully by a vector; in direction by the 
clinure of the vector, and in magnitude by the number of units 
of length in the vector. 

24. Triangle and Polygon of Velocities.—A velocity is 
said to be the resultant of two others, which are ^ 
called components, when it is fully represented g__q 
by a vector which is the geometrical sum of two / 
other vectors representing the two components ; / 

e,g. if a man walks at a rate of 3 miles per 6 J 
hour across the deck of a steamer going at 6 T 
miles per hour, the resultant velocity with which di 
the man is moving over the sea is the vector / 
sum of 3 and 6 miles per hour taken in the proper co 

directions. If the steamer were heading due 

north, and the man walking due east, his actual velocity is 
shown by ac in Fig. 14; 

ab := 6 be - $ 

ae= + 3^ = V45 miles per hour 
= 671 miles per hour 

and the angle 0 which ae makes with ab E. of N. is given by— 

tan ^ i ^ = 26° 34’ 

Resultant velocities may be found by drawing vectors to 
scale or by the ordinary rules of trigonometry. If the re¬ 

sultant velocity of more than two components (in the same 

plane) is required, two may be compounded, and then a third 
with their resultant, and so on, until all the components have 
been added. It will be seen (Fig. 15) that the result is repre^ 
sented by the closing side of an open polygon the sides of 
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which are the component vectors. The order in which the 
sides are drawn is immaterial. It is not an essential condition 

that all the components should be in the same plane, but if 

not, the methods of solid geometry should be employed to 
draw the polygon. 

Fig. 15. 

Fig. 15 shows the resultant vector af of five co-planar 

vectors, ab^ bc^ cd, de^ and ef 

If, geometrically, ac ^ ab be 
and ad = ae + cd 

then ad ab + be 4* cd 

and similarly, adding de and ef— 

(if = db be ed 4“ de 4“ ef 

In drawing this polygon it is unnecessary to put in the 

lines ae^ ad, and ae. 
25. It is sometimes convenient to resolve a velocity into 

two components, i,e, into two other velocities in particular 

directions, and such that their vector sura is equal to that 

velocity. 
Rectangular Components.—The most usual plan is to 

resolve velocities into components in two standard directions 

at right angles, and in the same plane as the original veloci¬ 
ties: thus, if OX and OY (Fig. 16) are the standard directions, 

and a vector ab represents a velocity v, then the component in 

the direction OX is represented by ae, which is equal to adf 

cos 6, and represents v cos 0, and that in the direction OY is 

represented by cb, i,e, by ab sin and is v sin 0. 
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This form of resolution of velocities provides an alternative 
method of finding the re^ 
sultant of several velocities. 
Each velocity may be re¬ 
solved in two standard 
directions, OX and OY, 

and then all the X com¬ 
ponents added algebraically 

and all the Y components 
added algebraically. This 
reduces the components to 

two at right angles, which 
may be replaced by a re¬ 
sultant R units, such that 

Fig. 16. 

the squares of the numerical values of the rectangular com¬ 

ponents is equal to the square of R, e.g. to find the resultant 

Fig. 17. 

of three velocities V^, Yg, and Vg, making angles a, /3, and y 
respectively with some fixed direction OX in their plane 

(Fig. 17). 
Resolving along OX, the total X component, say X, is— 

X = Vi cos a -f V2 cos jS -f V3 cos y 

Resolving along OY— 

Y = Vi sin « -f- V3 sin 5 -f V3 sin y 

and R® = X" 4- Y" 
or R = + Y" 

Y 
and it makes with OX an angle d such that tan ^ 
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Fig. 17 merely illustrates the process; no actual drawing 
of vectors is required, the method being wholly one of calcu¬ 

lation. 

CL 

Fig. 18. 

Exercise i.—A steamer is going through the water 
at 10 miles per hour, and heading due north. The 
current runs north-east at 3 miles per hour. Find 
the true velocity of the steamer in magnitude and 
direction. 

(1) By drawing vectors (Fig. 18). 
Set off ab^ representing 10 miles per hour, to scale 

due north. Then draw be inclined 45° to the direction 
ab, and representing 3 miles per hour to the same 
scale. Join ac. Then ac^ which scales 12*6 miles per 
hour when drawn to a large scale, is the true velocity, 
and the angle cdb E of N measures 10®. 

(2) Method by resolving N. and E. 

N. component = 10 -f 3 cos 45® = 10 -1- ~-t~ miles per hour, 
V 2 

or I2’I2 

= 3 sin 45° = 
V2 

miles per hour, or 2*12 

Resultant velocity R = ^(*2*12)^ + (2’I2)^ = 12*6 miles per hour 
And if 6 is the! 

angle E-ofN-T^* 

••• » = 9° 55' 

10 + f2/ 12*12 
175 

Relative Velocity. 

26. The velocity of a point A relative to a point B is the 
rate of change of position (or displacement per unit of time) 
of A with respect to B. 

Let V be the velocity of A, and u that of B. 

If A remained stationary, its displacement per unit time 
relative to B would he —u (Art. 22). But as A has itself a 
velocity its total velocity relative to B is + (— ^/) or z; — 
the subtraction to be performed geometrically (Art. 20). 

The velocity of B relative to A is of course u — 7/^ equal in 
magnitude, but opposite in direction. The subtraction of 
velocity v u may be performed by drawing vectors to scale, 
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by the trigonometrical rules for the solution of triangles, or by 
the method of Art 25. 

Example.—Two straight railway lines cross : on the first a 

train 10 miles away from the crossing, and due west of it, is ap¬ 
proaching at 50 miles per hour ; on the second a train 20 miles 

away, and 15® E. of N., is approaching at 40 miles per hour. 

How far from the crossing will each train be when they are nearest 
together, and how long after they occupied the above positions? 

First set out the two lines at the proper angles, as in the left side 

of Fig. 19, and mark the positions A and B of the first and second 

trains respectively. Now, since the second train B is coming 
from 15® E. of N., the first train A has, relative to the second^ a 

component velocity of 40 miles per hour in a direction E. of N., 

in addition to a component 50 miles per hour due east. The 
relative velocity is therefore found by adding the vectors fq 50 
miles per hour east, and qr 40 miles per hour, giving the vectorpr^ 

which scales 72 miles per hour, and has a direction 57^® E. of N. 

Now draw from A a line AD parallel to pr. This gives the posi¬ 
tions of A relative to B (regarded as stationary). The nearest 
approach is evidently a distance BD, where BD is perpendicular 
to AD. The distance moved by A relative to B is then AD, which 
scales 23*2 miles (the trains being then a distance BD, which scales 

8*12 miles apart). The time taken to travel relatively 23*2 miles 

23*2 
at 72 miles per hour is hours = 0*322 hour. 
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Hence A will have travelled 50 x 0*322 or i6*i miles 
and B „ „ 40 x 0*322 or 12*9 » 

A will then be 6*i miles past the crossing, and 
B „ „ 7* I „ short of the crossing. 

Fig. 20. 

27. Composition, Resolution, etc., of Accelerations. 
—Acceleration being also a vector quantity, the methods of 
composition, resolution, etc., of velocities given in Arts. 23 
to 26 will also apply to acceleration, which is simply velocity 

added per unit of time. It should be noted 
that the acceleration of a moving point is not 

necessarily in the same direction as its velocity: 
this is only the case when a body moves in a 
straight line. 

If ^ (Fig. 20) represents the velocity of a 
point at a certain instant, and after an interval t 
seconds its velocity is represented by ac^ then 
the change in velocity in t seconds is bCy for 

ah be ^ ac (Art. 19), and be ^ ac ah (Art. 
20), representing the change in velocity. Then 

during the / seconds the mean acceleration is represented by 

be -f- and is in the direction be, 
28. Motion down a Smooth Inclined Plane.—Let a 

be the angle of the plane to the horizontal, then the angle 

ABC (Fig. 21) to the vertical is (90^^ — a). Then, since a 
body has a downward ver¬ 
tical acceleration its 
component along BA will 

be g cos CBA=^ cos 
(90° — a) = ^ sin fit, pro¬ 
vided, of course, that there 
is nothing to cause a re¬ 
tardation in this direction, 

Le, provided that the plane is perfectly smooth and free from 
obstruction. If BC = h feet, AB == h cosec a feet. The 
velocity of a body starting from rest at B and sliding down 

AB will be at A, 2 .^sin a x ^ cosec « = aJ2gh^ just as if it 
had fallen h feet vertically. 
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29. Angrular Motion : Angular Displacement.—If 
P (Fig. 22) be the posi- p 
tion of a point, and Q yf 
a subsequent position 
which this point takes / 

up, then the angle QOP 0^ . 

is the angular displace- ^ Q 
ment of the point about *** 
O. The angular displacement about any other point, such as 
O', will generally be a different amount. 

30. Angfular Velocity.—The angular velocity of a moving 
point about some fixed point is the rate of angular displacement 
(or rate of change of angular position) about the fixed point; it 
is usually expressed in radians per second, and is commonly 
denoted by the letter w. As in the case of linear velocity, it 
may be uniform or varying. 

A point is said to have a uniform or constant angular 
velocity about a point O when it describes equal angles about O 
in equal times. The mean angular velocity of a moving point 
about a fixed point O is the angle described divided by the 
time taken. 

If the angular velocity is varying, the actual angular velocity 
at any instant is the mean angular velocity during an in¬ 
definitely small interval including that instant. 

31. Ang:ular Acceleration is the rate of change of 
angular velocity; it is usually measured in radians per second 

per second. 
32. The methods of Arts, 4 to ii and 14 to 16 are 

applicable to angular motion as well as - 
to linear motion. ^ N. , 

33. To find the angular velocity about / 
O of a point describing a circle of radius [ q —Jp 
r about O as centre with constant speed. V / 

Let the path PP' (Fig. 23) be de- / 
scribed by the moving point in t seconds. _^ 
Let V be the velocity (which, although f'jo- n- 
constant in magnitude, changes direction). Then angulai 

velocity about O is cu = 
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But B = 
ar^]^' 

r 
and arc PP' = vt 

/. 0 = - and <0 = - 
r t 

V 

r 

This will still be true if O is moving in a straight line with 

velocity v as in the case of a rolling wheel, provided that v 
is the velocity of P relative to O. 

If we consider t as an indefinitely small time, PP' will 

be indefinitely short, but the same will remain true, and we 

V 
should have w = - whether the velocity remains constant in 

r 

magnitude or varies. 

In words, the angular velocity is equal to the linear 
velocity divided by the radius, the units of length being the 

same in the linear velocity v and the radius r. 

Example.—The cranks of a bicycle are inches long, and the 
bicycle is so geared that one complete rotation of the crank carries 
it through a distance equal to the circumference of a wheel 65 
inches diameter. When the bicycle is driven at 15 miles per hour, 
find the absolute velocity of the centre of a pedal—(i) when 
vertically above the crank axle; (2) when vertically below it; 
(3) when above the axle and 30° forward of a vertical line 
through it. 

The pedal centre describes a circle of 13 inches diameter 
relative to the crank axle, i.e, I3ir inches, while the bicycle travels 
65Tr inches. Hence the velocity of the pedal centre relative to the 
crank axle is J that of the bicycle along the road, or 3 miles per 
hour 

15 miles per hour = 22 feet per second 

3 t* i> “ 4*4 ♦> »> 

FlO. 84* 
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(1) When vertically above the crank axle, the velocity of pedal 
is 22 + 4*4 = 26*4 feet per second. 

(2) When vertically below the crank axle, the velocity of pedal 
is 22 — 4*4 = i7’6 feet per second. 

(3) Horizontal velocity X = 22 + 4*4 cos 30° = 22 + 2*2 feet 
per second. 

Vertical velocity downwards Y = 4*4 x sin 30° = 2*2 feet per 
second. 

Resultant velocity being R— 

R“=(22 + 2-2^/3)^+(J-^)’ 

R = 22^= 25-8 feet per second 

and its direction is at an angle 0 below the horizontal, so that— 

tan 0 - ^ ^ 22 + 2*2^3 ~ I I732 “ 

and 0 = 4*87° 

Examples II. 

I. A point in the connecting rod of a steam engine moves forwards 
horizontally at 5 feet per second, and at the same time has a velocity of 3 
feet per second in the same vertical plane, but in a direction inclined 110° 
to that of the horizontal motion. Find the magnitude and direction of its 
actual velocity. 

^2. A stone is projected at an angle of 36° to the horizontal with a 
velocity of 500 feet per second. Find its horizontal and vertical velocities. 

^•^3. In order to cross at right angles a straight river flowing uniformly at 
2 miles per hour, in what direction should a swimmer head if he can 
get through still water at 24 miles per hour, and how long will it take him 
if the river is 100 yards wide ? 

4. A weather vane on a ship*s mast points south-west when the ship is 
steaming due west at 16 miles per hour. If the velocity of the wind is 
20 miles per hour, what is its true direction ? 

5. Tw'o ships leave a port at the same time, the first steams north-west 

at 15 miles per hour, and the second 30® south of west at 17 miles 
per hour. Wliat is the speed of the second relative to the first ? After 
what time will they be ic» miles apart, and in what direction will the 
second lie from the first ? 

' 6. A ship steaming due east at 12 miles per hour crosses the track 
of another ship 20 miles away due south and going due north at 16 miles 
per hour. After what time will the two ships be a minimum distance apart, 
and how far will each have travelled in the interval. 
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7. Part of a machine is moving east at 10 feet per second, and after ^ 
second it is moving south-east at 4 feet per second. What is the amount 
and direction of the average acceleration during the ^ second ? 

* 8. How long will it take a body to slide down a smooth plane the 
length of which is 20 feet, the upper end being 37 feet higher than the 
low^ one. 

The minute-hand of a clock is 4 feet long, and the hour-hand is 
3 feet long. Find in inches per minute the velocity of the end of the 
minute-finger relative to the end of the hour-hand at 3 o’clock and at 
12 o’clock. 

A crank, CB, is i foot long and makes 300 turns clockwise per 
minute. When CB is inclined 60® to the line CA, A is moving along AC 

at a velocity of 32 feet per second. Find the velocity of the point B rela¬ 

tive to A. 
I. If a motor car is travelling at 30 miles per hour, and the wheels 

are 30 inches diameter, what is their angular velocity about their axes ? If 
the car comes to rest in 100 yards under a uniform retardation, find the 
angular retardation of the wheels. 

k/12. A flywheel is making 180 revolutions per minute, and after 20 seconds 
it is turning at 140 revolutions per minute. How many revolutions will it 
make, and what time will elapse before stopping, if the retardation is 

uniform ? 
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THE LAWS OF MOTION 

34. Newton’s Laws of Motion were first put in their present 

form by Sir Isaac Newton, although known before his time. 

They form the foundation of the whole subject of dynamics. 

35. First Law of Motion.—Every body continues in its 

state of rest or uniform motion in a straight line except in so far 

as it may be compelled by externalforce to change that state. 

We know of no case of a body unacted upon by any force 

whatever, so that we have no direct experimental evidence of 

this law. In many cases the forces in a particular direction 

are small, and in such cases the change in that direction is 

small, eg, a steel ball rolling on a horizontal steel plate. To 

such instances the second law is really applicable. 

From the first law we may define force as that which tends 

to change the motion of bodies either in magnitude or direction. 

36. Inertia.—It is a matter of everyday experience that 

some bodies take up a given motion more quickly than others 

under the same conditions. For example, a small ball of iron 

is more easily set in rapid motion by a given push along a 

horizontal surface than is a large heavy one. In such a case 

the larger ball is said to have more inertia than the small one. 

Inef'tia is, then, the property of resisting the taking up of 

motion. 

37. Mass is the name given to inertia when expressed as 

a measurable quantity. The more matter there is in a body 

the greater its mass. The mass of a body depends upon its 

volume and its density being proportional to both. We may 

define density of a body as being its mass divided by its 

voliime, or mass per unit volume in suitable units. 
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If m = the mass of a body, 

V = its volume, 

and p = its density, 

then p - ~~ 
V 

A common British unit of mass is one pound. This is 

often used in commerce, and also in one absolute system 

(British) of mechanical units; but we shall find it more con¬ 

venient to use a unit about 32*2 times as large, for reasons 

to be stated shortly. This unit has no particular name in 
general use. It is sometimes called the gravitational unit of 
mass, or the “ engineer’s unit of mass.” 

In the e.g.s. (centimetre-gramme-second) absolute system, 

the unit mass is the gramme, which is about —^ — lb. 
453*6 

38. The weis^ht of a body is the force with which the 
earth attracts it. This is directly proportional to its mass, but 

is slightly different at different parts of the earth’s surface. 

39. Momentum is sometimes called the quantity of 
motion of a body. If we consider a body moving with a 
certain velocity, it has only half as much motion as two 

exactly similar bodies would have when moving at that 

velocity, so that the quantity of motion is proportional to the 
quantity of matter, i,e, to the mass. Again, if we consider the 

body moving with a certain velocity, it has only half the quantity 

of motion which it would have if its velocity were doubled, so 

that the quantity of motion is proportional also to the velocity. 

The quantity of motion of a body is then proportional to 

the product (mass) x (velocity), and this quantity is given 

the name momentum. The unit of momentum is, then, that 

possessed by a body of unit mass moving with unit velocity. 
It is evidently a vector quantity, since it is a product of 
velocity, which is a vector quantity, and mass, which is a scalar 

quantity, and its direction is that of the velocity factor. It 

can be resolved and compounded in the same way as can 
velocity. 

40. Second Law of Motion.—The rate of change of 
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momentnm is proportional to the force applied^ and takes place in 

the direction of the straight line in which the force acts. This 

law states a simple relation between momentum and force, and, 

as we have seen how momentum is measured, we can proceed 

to the measurement of force. 
The second law states that if F represents force— 

F X rate of change of {ni y, v) 

where m = mass, v = velocity; 

therefore F x w X (rate of change v)^ if ni remains constant 
or F oc m y f 

where / = acceleration, 

F and f oo — 
m 

where F is the resultant force acting on the mass m, 

hence F = w X / X a constant, 

and by a suitable choice of units we may make the constant 

unity, viz. by taking as unit force that which gives unit mass 
unit acceleration. We may then write— 

force = (mass) x (acceleration) 

or F = w X / 

If we take i lb. as unit mass, then the force which gives 

I lb, an acceleration of i foot per second per second is called 

the poundaL This system of units is sometimes called the 
absolute system} This unit of force is not in general use with 

engineers and others concerned in the measurement and calcu¬ 

lation of force and power, the general practice being to take 

the weight of i lb. at a fixed place as the unit of force. We 

call this a force of i lb., meaning a force equal to the weight 
of I lb. As mentioned in Art. 38, the weight of i lb. of 

matter varies slightly at different parts of the earth’s surface, 
but the variation is not of great amount, and is usually negligible. 

* The gravitational system is also really an absolute system, inasmuch as 
all derived units are connected to the fundamental ones by fixed physical 
relations. 
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41. Gravitational or Engineer’s Units.—One pound 
of force acting on i lb. mass of matter (viz. its own weight) 

in London^ gives it a vertical acceleration of about 32*2 feet 

per second per second, and since acceleration = —i lb. of 
mass 

force will give an acceleration of i foot per second per second 

{ix, 32*2 times less), if it acts on a mass of 32*2 ibs. Hence, 

if we wish to have force defined by the relation— 

force = rate of change of momentum, 
or force = (mass) X (acceleration) 

F = /// X / 

we must adopt g lbs. as our unit of mass, where g is the 
acceleration of gravity in feet per second per second in some 
fixed place; the number 32*2 is correct enough for most 
practical purposes for any latitude. This unit, as previously 

stated, is sometimes called the engineers’ unit of mass. 

Then a body of weight w lbs. has a mass of ^ units, 
g 

UD 
and the equation of Art. 40 becomes F = ~ X /. 

Another plan is to merely adopt the relation, force = (mass) 

X (acceleration) x constant. The mass is then taken in 
pounds, and if the force is to be in pounds weight (and not in 

poundals) the constant used is g (32*2). There is a strong 

liability to forget to insert the constant g in writing expressions 
for quantities involving force, so we shall adopt the former plan 
of using 32*2 lbs. as the unit of mass. The unit of momentum 

is, then, that possessed by 32*2 lbs. moving with a velocity of 

r foot per second, and the unit force the weight of i lb. The 
number 32*2 will need slight adjustment for places other than 

London, if very great accuracy should be required. 

Defining unit force as the weight of 1 lb. of matter, we 

may define the gravitational unit of mass as that mass which 

has unit acceleration under unit force. 
42. C.G.S. (centimetre-graitime-second) Units.—In 

this absolute system the unit of mass is the gramme; the 

* The place chosen is sometimes quoted as sea-level at latitude 45°. 
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unit of momentum that in i gramme moving at i centimetre 
per second; and the unit of force called the dyne is that 
necessary to accelerate i gramme by i centimetre per second 

per second. The weight of i gramme is a force of about 
981 dynes, since the acceleration of gravity is about 981 centi¬ 
metres per second per second (981 centimetres being equal to 
about 32’2 feet). 

The weight of one kilogram (looo grammes) is often used 
by Continental engineers as a unit of force. 

Example i.—A man pushes a truck weighing 2*5 tons with a 

force of 40 lbs., and the resistance of the track is equivalent to 

a constant force of 10 lbs. How long will it take to attain a 

velocity of 10 miles per hour? The constant effective forward 
force is 40 — 10 = 30 lbs., hence the acceleration is— 

force _ . 2‘5 x 2240 _ 

mass “ * 32*2 
10 miles oer hour 

= 0*1725 foot per second per second 

The time to generate this velocity at 0*1725 foot per second per 
second is then 0*1725 = 85 seconds, or i minute 25 seconds. 

Example 3.—A steam-engine piston, weighing 75 lbs., is at 
rest, and after 0 25 second it has attained a velocity of 10 feet per 

second. What is the average accelerating force acting on it 
during the 0*25 second ? 

Average acceleration = 10-1-0*25 = 40 feet per sec. 

per sec. 

hence average accelerating force is 7$ 

32*2 
X 40 = 93*2 lbs. 

43. We have seen that by a suitable choice of units the force 
acting on a body is numerically equal to its rate of change of 
momentum; the second law further states that the force and 

the change of momentum are in the same direction. Mo¬ 
mentum is a vector quantity, and therefore change of momentum 

must be estimated as a vector change having magnitude and 

direction. 
For example, if the momentum of a body is represented by 

ah (Fig. 25), and after / seconds it is represented by cd, then 
the change of momentum in / seconds is cd ab = eg (see 
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Art. 20), where ef^cd and gf ^ ah. Then the average rate 

of change of momentum in t seconds is represented by y in 

magnitude and direction, /.<?, the resultant force acting on the 
body during the i seconds was in the direction eg. Or Fig. 25 

may be taken as a vector diagram of velocities, and eg as 

representing change of velocity. Then ^ represents accelera¬ 

tion, and multiplied by the mass of the body it represents the 

average force. 

Example.—A piece of a machine weighing 20 lbs. is at a certain 
instant moving due east at 10 feet per second, and after 1*25 seconds 
it is moving south-east at 5 feet per second. What was the average 
force acting on it in the interval ? 

The change of momentum per second may be found directly, 
or the change of velocity per second may be found, which, when 
multiplied by the (constant) mass, will give the force acting. 

Using the method of resolution of velocities, the 

final component of velocity E. = 5 cos 45° = feet per second 

initial ,, ,, E. =10 „ ,, 
hence gain of component 1/5 \ ^ ( S \ 

velocity } = (*'’ - :hj 

Again, the gain of velocity south is 5 sin 45® = feet per second 
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If R = resultant change of velocity— 

and R = VS4*3 = 7*37 f^et per second in i} spends 

Hence acceleration = 7'37 ~ 1*25 = 5*9 feet per second per second, 
20 

and average force acting = —x 5*9 = 3*66 lbs. in a direction 
32*2 

south of west at an angle whose tangent is ~ 

or 0*546, which is an angle of about 28^° south of west (by table 
of tangents). 

44, Triangfle, Polygon, etc., of Forces.—It has been 
seen (Art. 27) that acceleration is a vector quantity having 
magnitude and direction, and that acceleration can be com¬ 
pounded and resolved by means of vectors. Also (Art. 40) 
that force is the product of acceleration and mass, the latter 
being a mere magnitude or scalar quantity; hence force is a 
vector quantity, and concurrent forces can be compounded by 
vector triangles or polygons such as were used in Arts. 19 and 
24, and resolved into components as in Arts. 25 and 28. 

We are mainly concerned with uniplanar forces, but the 

methods of resolution, etc., are equally applicable to forces in 
different planes; the graphical treatment would, however, in¬ 
volve the application of solid geometry. 

The particular case of bodies subject to the action of 
several forces having a resultant zero constitutes the subject of 

Statics. 
The second law of motion is true when the resultant force 

is considered or when the components are considered, i.e, the 
rate of change of momentum in any particular direction is pro¬ 
portional to the component force in that direction. 

45. Impulse.—By the impulse of a constant force in any 
interval of time, we mean the product of the force and time. 
Thus, if a constant force of F pounds act for t seconds, the 
impulse of that force is F X /. If this force F has during the 
interval t acted without resistance on a mass causing its 
#elocity to be accelerated from to z^2> the change of momentum 

c 
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during that time will have been from mv^ to ntv^^ ue, m%\ — mv^ 

or m{v^ — Vi). And the change of velocity in the interval / 
under the constant acceleration / is / X / (Art. ii), therefore 
^^3 — =r//, and m(v2 — 7Jj) ~ but m xf=^ F, the 

accelerating force (by Art. 40), hence m{v2 — = F/, or, in 
words, the change of momentum is equal to the impulse. The 

force, impulse, and change of momentum are all to be estimated 
in the same direction. 

The impulse may be represented graphically as in Fig. 26. 

If ON represents / seconds, and PN represents F lbs. to scale. 

then the area MPNO under the curve MP of constant force 

represents F x /, the impulse, and therefore also the change of 
momentum. 

Impulse of a Variable Force.—In the case of a 
variable force the interval of time is divided into a number of 
parts, and the impulse calculated during each as if the force 
were constant during each of the smaller intervals, and equal 

to some value which it actually has in the interval. The sum 

of these impulses is approximately the total impulse during the 
whole time. We can make the approximation as near as we 

please by taking a sufficiently large number of very small 

intervals. The graphical representation will illustrate this 

point. 
Fig. 27 shows the varying force F at all times during the 

interval NM Suppose the interval NM divided up into a 
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number of small parts such as CD. Then AC represents the 
force at the time OC; the force is increasing, and therefore in 
the interval CD the impulse will be greater than that repre¬ 

sented by the rectangle AEDC, and less than that represented 
by the rectangle FBDC. 
The total impulse during 
the interval NM is simi¬ 
larly greater than that 
represented by a series 

of rectangles such as 

AEDC, and less than 
that represented by a 
series of rectangles such 
as FBDC. Now, if we 
consider the number of 

rectangles to be indefi¬ 
nitely increased, and the width of each rectangle to be decreased 

indefinitely, the area PQMN under the curve PQ is the area 
which lies always between the sums of the areas of the two 

series of rectangles however far the subdivision may be carried, 
and therefore it represents the total impulse in the time NM, 
and therefore also the gain of momentum in that time. 

It may be noticed that the above statement agrees exactly 

with that made in Art. i6. In Fig. 8 the vertical ordinates 
are similar to those in Fig. 27 divided by the mass, and the 
gain of velocity represented by the area under PQ in Fig. 8 is 
also similar to the gain of momentum divided by the mass. 

Note that the force represented by (ue, by the 
length NM 

Fig. 27.—Impulse of a variable force. 

average height of the area PQMN) is the mean force or time- 
average of the force acting during the interval NM. This 

^ j j total impulse 
time-average force may be defined as--i--. 

® total time 

The area representing the impulse of a negative or opposing 
force will lie below the line OM in a diagram such as Fig. 27. 

In case of a body such as part of a machine starting from rest 

and coming to rest again, the total change of momentum is 
zero; then as much area of the force-time diagram lies below 



36 Mechanics for Engineers 

the time base line (OM) as above it The reader should sketch 
out such a case, and the velocity-time or momentum-time curve 
to be derived from it, by the method of Art. i6, and carefully 
consider the meaning of all parts of the diagrams—^the slopes, 
areas, changes of sign, etc. 

The slope of a momentum-time curve represents accelerat¬ 

ing force just as that of a velocity-time curve represents accelera¬ 

tion (see Art. 14), the only difference in the case of momentum 
and force being that mass is a factor of each. 

It is to be noticed that the impulse or change of 
momentum in a given interval is a vector quantity having 
definite direction. It must be borne in mind that the change 
of momentum is in the same direction as the force and 
impulse. If the force varies in direction it may be split into 
components (Art. 44), and the change of momentum in two 

standard directions may be found, and the resultant of these 
would give the change of momentum in magnitude and 
direction. 

46. Impulsive Forces.—Forces which act for a very 
short time and yet produce considerable change of momentum 
on the bodies on which they act are called impulsive forces. 
The forces are large and the time is small. Instances occur in 
blows and collisions. * 

47. The second law of motion has been stated, in Art 40, 
in terms of the rate of change of momentum. It can now be 

stated in another form, viz. The change of momentum is equal 

to the impulse of the applied force, and is in the same direction. 
Or in symbols, for a mass m— 

w(z/2 — z'l) = F. / 

where and Vi are the final and initial velocities, the sub¬ 

traction being performed geometrically (Art 20), and F is the 
mean force acting during the interval of time /. 

Example i.—A body weighing W Ihs. is set in motion by 
a uniform net force Pj lbs., and in /j seconds it attains a velocity 
V feet per second. It then comes to rest in a further period of 
4 seconds imder the action of a uniform retarding force of Pa lbs. 
Find the relation between Pj, Pj, and V. 
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During the acceleration period the gain of momentum in the 
W 

direction of motion is ™ . V units, and the impulse in that direction 

‘ is Pj/j, hence— 

PiA 

During retardation the gain of momentum in the direction 
W 

of motion is — —. V units, and the impulse in that direction 

is ~ P2.4 ; hence— 

and finally 

P24 

W 

W 

P P 
V = P,4 = P24 = + 4) 

the last relation following algebraically from the two preceding 
ones. 

Example 2.—If a locomotive exerts a constant draw-bar pull 
of 4 tons on .a train weighing 200 tons up an incline of i in 120, 
and the resistance of the rails, etc., amounts to 10 lbs. per ton, 
how long will it take to attain a velocity of 25 miles per hour from 
rest, and how far will it have moved ? 

The forces resisting acceleration are— 
lbs. 

{fl) Gravity of 200 tons (see Art. 28) = = 3733 

(3) Resistance at 10 lbs. per ton, 200 x 10 = 2000 

Total . 5733 

The draw-bar pull is 4 x 2240 = 8960 lbs.; hence the net 
accelerating force is 8960 — 5733 = 3227 lbs. 

Let the the required time in seconds; then the impulse is 3227 
X t units. 

25 miles per hour = x 88 feet per second (88 feet per second 
= 60 miles per hour) 

W 
so that the gain of momentum is — . V— 

X ^ X 88 
32'2 12 

therefore— 

3227./=???-^i^x-5-x88 
32-2 12 

from which / = 158 seconds, or 2 minutes 38 seconds 
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Since the acceleration has been uniform, the average speed 
Is half the maximum (Art. n), and the distance travelled will be in 
feet— 

J X X 88 X 158 = 2897 feet 

Example 3.—How long would it take the train in Ex. 2 to 
go I mile up the incline, starting from rest and coming to rest at 
the end without the use of brakes ? 

Let /j = time occupied in acceleration, 
4 = time occupied in retardation. 

During the retardation period the retarding force will be as in 
Ex. 2, a total of 5733 lbs. after acceleration ceases. The average 
velocity during both periods, and therefore during the whole time, 
will be half the maximum velocity attained. 

5280 
Average velocity = 7~t~7 second 

-t" ^2 

and maximum velocity = 2 x feet per second 
tx + ^2 

, 200 X 2240 , ^ _ C280 
•. momentum generated =-x 2 x units 

32*2 

The impulse = 3227A = 57334 

t\ — 
5733. 
3227 

3960 j 

3227 

By the second law, change of momentum = impulse. 

. 200 X 2240 5280 
• -X 2 X Tr~T-7\ = 57334 

32*2 (4+4) 

and substituting for 4 the value found— 

32-2 + 4 8960^^’ + 

agreeing with the last result in Ex. i. 

hence (4 + 4) = 267 seconds = 4 minutes 27 seconds 

Example 4.—A car weighing 12 tons starts from rest, and has 
li constant resistance of 500 lbs. The tractive force, F, on the car 
after / seconds is as foUows:— 
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/ ... 0 2 5 8 II 13 16 19 20 

F ... 1280 1270 1220 mo 90s 800 720 670 660 

Find the velocity of the car after 20 seconds from rest, and show 
how to find the velocity at any time after starting, and to find the 
distance covered up to any time. 

Plot the curve of F and /, as in Fig. 28, and read off the force, 

1400 

1200 

1000 

^ 800 

g 600 

400 

200 

0 2 4 6 a 10 12 14 16 (6 2( 
t, in, seconds 

Fig. 28. 

say every 4 seconds, starting from / = 2, and subtract the 500 lbs. 
resistance from each as follows 

2 6 j 10 18 
••• 1270 1 1190 980 760 680 

770 690 480 260 180 

The mean accelerating force in the first 4 seconds is approxi¬ 
mately 770 lbs., and therefore the impulse is 770 x 4, which is also 
the gain of momentum. 

The mass of the car is —- >< 2240 _ units 
32 2 

The velocity after 4 seconds = c. 
mass 835 

= 3*69 feet per second 
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Similarly, finding the momentum and gain of velocity in each 
4 seconds, we have— 

t . 0 1 4 8 12 16 
1 

20 
Gain of momentum) 

in 4 seconds ... ) 
0 3080 1 2760 1920 1040 720 

Momentum . 0 3080 5840 7760 I 8800 9520 
Velocity, feet per) 

second .1 
0 3-69 7*00 929 10*54 II'40 

After 20 seconds the velocity is approximately 11*40 feet per 

second. The velocity after any time may be obtained approxi¬ 

mately by plotting a curve of velocities and times from the values 
obt lined, and reading intermediate values. More points on the 

velocity-time curves may be found if greater accuracy be desired. 

The space described is represented by the area under the 
velocity-time curve, and may be found as in Art. 14. 

Examples III. 

''I. The moving parts of a forging hammer weigh 2 tons, and arc 
lifted vertically by steam pressure and then allowed to fall freely. What is 
the momentum of the hammer after falling 6 feet ? If the force of the 
blow is exnended in 0*015 second, what is the average force of the blow ? 

A body weighing 50 lbs. acquires a velocity of 25 feet per second 
in 10 seconds, and another weighing 20 lbs. acquires a velocity of 32 feet 
per second in 6 seconds. Compare the forces acting on the two masses. 

3. A constant unresisted force of 7000 dynes acts on a mass of 20 kilo¬ 
grams for 8 seconds. Find the velocity attained in this time. 

A train weighing 200 tons has a resistance of 15 lbs. per ton, sup¬ 
posed constant at any speed. What tractive force will be required to 
give it a velocity of 30 miles per hour in 1*5 minutes ? 

■5. A jet of water of circular cross-section and 1*5 inches diameter 
impinges on^a flat plate at a velocity of 20 feet per second, and flows oflf at 
right angles to its previous path. How much water reaches the plate per 
second ? What change of momentum takes place per second, and what force 
does the jet exert on the plate ? 

6. A train travelling at 40 miles per hour is brought to rest by a uniform 
resisting force in half a mile. How much is the total resisting force in 
pounds per ton ? 

t/7. A bullet weighing i oz. enters a block of wood with a velocity of 
1800 feet per second, and penetrates it to a depth of 8 inches. What is 
the average resistance of the wood in pounds to the penetration of the 
bullet ? 

& The horizontal thrust a steam-engine crank-shaft bearing is 10 tons, 
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and the dead weight it supports vcrticaDy is 3 tons. Find the magnitude 
and direction of the resultant force on the bearing. 

9. A bullet weighing i oz. leaves the barrel of a gun 3 feet long with a 
velocity of 1500 feet per second. What was the impulse of the force pro¬ 
duced by the discharge? If the bullet took 0*004 second to traverse the 
barrel, what was the average force exerted on it ? 

ro. A car weighing 10 tons starts from rest. During the first 25 
seconds the average drawing force on the car is 750 lbs., and the average 
resistance is 40 lbs. per ton. What is the total impulse of the eflfective force 
at the end of 25 seconds, and what is the speed of the car in miles per hour ? 

II. The reciprocating parts of a steam-engine weigh 483 lbs., and 
during one stroke, which occupies 0*3 second, tlie velocities of these parts 
are as follows:— 

Time 
Velocity I 
in feet) 
per sec.) 

1 1 
0*0 0*025 0

 d Cr
t |o*o75 0*100 

j 
0*125 0*150 0*175 

1 i 
0*200 0*225 o*25ojo*275 0*300 

0*00 

1 

3‘46 6-55 8*91 j 10*22 10*90 10*48 

. i 

9‘32 , 775 6*02 4*14 2*10 
j j 

000 

P'ind the force necessary to give the reciprocating parts this motion, and 
draw a curve showing its values on a time base throughout the stroke. 
Draw a second curve showing the distances described from rest, for every 
instant during the stroke. From these two curves a third may be drawn, 
showing the accelerating force on the reciprocating parts, on the distance 
traversed as a base. 

48. Third Law of Motion.—To every action there is an 
equal and opposite reaction. By the word “ action ” here is meant 
the exertion of a force. We may state this in another way. 

If a body A exerts a certain force on a body B, then B exerts 
on A a force of exactly equal magnitude, but in the opposite 
direction. 

The medium which transmits the equal and opposite forces 
is said to be in a state of stress, (It will also be in a state of 
sUmn^ but this term is limited to deformation which matter 
undergoes under the influence of stress.) 

Suppose A and B (Fig. 29) are connected by some means 
(such as a string) suitable to withstand tension, and A exerts 
a pull T on B. Then B exerts an equal tension T' on A. 

This will be true whether A moves B or not. Thus A may be 
a locomotive, and B a train, or A may be a ship moored to 

c* 
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a fixed post, B. Whether A moves B or not depends upon 
what other forces may be acting on B. 

Again, if the connection between A and B can transmit a 

Fig. 29.—Connection in tension. 

thrust (Fig. 30), A may exert a push P on B. Then B exerts 

an equal push P' on A. As an example, A may be a gun, and 
B a projectile; the gases between them are in compression. 

Fig. 3o.-~Connection in compression. 

Or in a case where motion does not take place, A may be 
a block of stone resting on the ground B j then A and B are 

in compression at the place of contact. 
49. An important consequence of the third law is that the 

total momentum of the two bodies is unaltered by any mutual 
action between them. For since the force exerted by A on 

B is the same as that exerted by B on A, the impulse during 
any interval given by A to B is of the same amount as that 

given by B to A and in the opposite direction. Hence, if B 
gains any momentum A loses exactly the same amount, and 

the total change of momentum is zero, and this is true for any 

and every direction. This is expressed by the statement that 

for any isolated system of bodies momentum is conservative. 
Thus when a projectile is fired from a cannon, the impulse or 

change of momentum of the shot due to the explosion is of 

equal amount to that of the recoiling cannon in the opposite 
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(ijrection. The momentum of the recoil is tiunsmitted to the 
earth, and so is that of the shot, the net momentum given to 
the earth being also zero. 

v^50. Motion of Two Connected Weights.—Suppose 
two weights, Wj lbs. and Wg lbs., to be connected by a light 
inextensible string passing over a small and perfectly smooth 
pulley, as in Fig. 31. If is greater 
than W2, with what acceleration (/) 
will they move (Wj downwards and Wq 

upwards), and what will be the tension 
(r) of the string ? 

Consider Wj ^ of mass — ^ : the 

downward force on it is Wj (its weight), 
and the upward force is T, which is the 
same throughout the string by the 
“ third law; hence the downward W, 
accelerating force is Wi — T. 

W 
Hence (by Art. 40) y\/ = W, ~ T.(i) 

Similarly, on Wy the upward accelerating force is T — Wj} 

adding (i) and (2)— 

Wi +W2 

w 
hence-^/= T--W, . . 

/= W, - W, 

and from (i)— 

W. + w; 

Wi + w 

(a) 

The acceleration / might have been stated from considering 
the two weights and string as one complete system. The 
accelerating force on which is — Wg, and the mass of 

W1 + W2 

which IS —— 

, ^ accelerating force 
-tptaJmass - 

_ W, - Wj 
“ w,+w, 
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As a further example, suppose Wg instead of being suspended 
slides along a perfectly smooth horizontal table as in Fig. 32, 

the accelerating force is Wi, and the mass in motion is 

g 

hence the acceleration f = 

and since f also = 

we have T = 

Wi 

Wi + 
accelerating force onJWg 

mass of W2 
W,W2 

Wi + Wa 

T 
Ws''®’ 

If the motion of Wj were opposed by a horizontal force, 

the acceleration would be 
W, - F 

F. 

We have left out of account the weight of Wg and the 

reaction of the table. These are equal and opposite, and 

neutralize each other. The reaction of the pulley on the 
string is normal to the direction of motion, and has therefore 
no accelerating effect. 

Atwood's Machine is an apparatus for illustrating the 
laws of motion under gravity. It consists essentially of a 

light, free pulley and two suspended weights (Fig. 31), which 
can be made to differ by known amounts, a scale of lengths, 

and clockwork to measure time. Quantitative measurements 
of acceleration of known masses under the action of known 

accelerating forces can be made. Various corrections are 



The Laws of Motion 45 

necessary, and this method is not the one adopted for measuring 

the acceleration g. 

Example i.—A hammer weighing W lbs. strikes a nail weigh¬ 
ing w lbs. with a velocity V feet per second and does not rebound. 
The nail is driven into a fixed block of wood which offers a 
uniform resistance of P lbs. to the penetration of the nail. How 
far will the nail penetrate the fixed block ? 

Let V' = initial velocity of nail after blow. 

W 
Momentum of hammer before impact = - 

W_4-w 

hence• V--^.V 
g g + W 

momentum of hammer and nail after impact = 

Let / = time of penetration. 

W 
Impulse P/ = — .V (the momentum overcome by P) 

•• irP' 

During the penetration, average velocity = (Arts. 11 and 14) 
hence distance moved by nail = JV" x / 

w wv 
W + ^ 

V2 W2 

- + W 

Example a.—A cannon weighing 30 tons fires a looo-lb. pro¬ 
jectile with a velocity of 1000 feet per second. With what initial 
velocity will the cannon recoil ? If the recoil is overcome by a 
(time) average force of 60 tons, how far will the cannon travel ? 
How long will it take ? 

Let V = initial velocity of cannon in feet per second. 

Momentum of projectile = X 1000 = momentum of cannob 

1000 30 X 2240 
Qj.- X 1000 = --^ X V 

g g 
1000 X 1000 

and V - 
30 X 2240 

= i4'88 feet per second 

Let/ s= time of recoil. 
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Impulse of retarding force = 6o x 2240 x / = momentum of shot 
. ^ looo X 1000 

32*2 

and hence t = 0*231 second 

Distance moved = JV x /; 14*88 X 0*231 = 1*72 feet 

Example 3.—Two weights are connected by a string passing 
over a light frictionless pulley. One is 12 lbs. and the other ii lbs. 
They are released from rest, and after 2 seconds 2 lbs. are removed 
from the heavier weight. How soon will they be at rest again, 
and how far will they have moved between the instant of release 
and that of coming to rest again ? 

First period. 

. , accelerating force 12 — i 
Acceleration =-~ °- = —;— 

total mass 12 -f 11 
X ^ - «S» O'? 

L 
23 

*^2*2 
velocity after 2 seconds = 2 x ~— = 2*8 feet per second 

23 

Second period. 

Retardation = -- x ^ 
II -h 10 21 

velocity 
time to come to rest = = 

retardation 
2 X = 1*826 sec. 

average velocity throughout = J maximum velocity (Art. ii) 
total time = 2 + r826 seconds 

distance moved = J x 2*8 x 3*826 = 5*36 feet 

Examples IV. 

I. A fireman holds a hose from which a jet of water i inch in diameter 
issues at a velocity of 80 feet per second. What thrust will the fireman 
ha^ to exert in order to support the jet ? 
▼ 2. A machine-gun fires 300 bullets per minute, each bullet weighing 

I oz. If the bullets have a horizontal velocity of 1800 feet per second, 
find the average force exerted on the gun. 

3. A pile-driver weighing W lbs. falls through h feet and drives a pile 
*^^eighing w lbs. a feet into tlie ground. Show that the average force of 

W'* 
the blow is, tl^l( ■- lbs. 

W 4* w 
'^4. A weight of 5 cwt. falling freely, drives a pile weighing 600 lbs. 

2 inches into the earth against an average resistance of 25 tons. How far 
will the weight have to fall in order to do this ? 
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^ 5. A cannon weighing 40 tons projects a shot weighing 1500 lbs. with 
a velocity of 1400 feet per second. With what initial velocity will the 
cannon recoil ? What average force will be required to bring it to rest in 

3 feet ? 
6. A cannon weighing 40 tons has its velocity of recoil destroyed in 

2 feet 9 Inches by an average force of 70 tons. If the shot weighed 14 cwt,, 

find its initial velocity. 
A lift has an upward acceleration of 3*22 feet per second per second. 

What pressure will a man weighing 140 lbs. exert on the floor of the lift ? 
What pressure would he exert if the lift had an acceleration of 3*22 feet per 
second per second downward? What upward acceleration would cause 
his weight to exert a pressure of 170 lbs. on the floor ? 

' 8. A pit cage weighs ro cwt., and on approaching the bottom of the 
shaft it is brought to rest, the retardation being at the rate of 4 feet per 
second per second. Find the tension in the cable by which the cage is 
lowered. 

"^9. Two weights, one of 16 lbs. and the other of 14 lbs., hanging 
vertically, are connected by a light inextensible string passing over a 
perfectly smooth fixed pulley. If they are released from rest, find how far 

they will move in 3 seconds. What is the tension of the string ? 
10. A weight of 17 grammes and another of 20 grammes are connected 

by a fine thread passing over a light frictionless pulley in a vertical plane. 
Find what weight must be added to the smaller load 2 seconds after they 
are released from rest in order to bring them to rest again in 4 seconds. 
How many centimetres will the weights have moved altogether ? 

'^ ll, A weight of 5 lbs. hangs vertically, and by means of a cord passing 
over a pulley it pulls a block of iron weighing 10 lbs. horizontally along a 
table-top against a horizontal resistance of 2 lbs. Find the acceleration of 

the block and tension of the string. 
12. What weight hanging vertically, as in the previous question, would 

give the lo-lb. block an acceleration of 3 feet per second per second on a 
per-fectly smooth horizontal table ? 
' 13. A block of wood weighing 50 lbs. is on a plane inclined 40® to 

the horizontal, and its upward motion along the plane is opposed by a 
force of 10 lbs. parallel to the plane. A cord attached to the block, running 
parallel to the plane and over a pulley, carries a weight hanging vertically. 
What must this weight be if it is to haul the block 10 feet upwards along 

the plane in 3 seconds from rest ? 



CHAPTER III 

WORK, POWER, AND ENERGY 

51. Work.—When a force acts upon a body and causes motion, 

it is said to do work. 
In the case of constant forces, work is measured by the 

product of the force and the displacement, one being estimated 

by its component in the direction of the other. 
One of the commonest examples of a force doing work 

is that of a body being lifted against the force of gravity, its 
weight. The work is then 
measured by the product of 
the weight of the body, and 

the vertical height through 
which it is lifted. If we 
draw a diagram (Fig. 33) 

setting off the constant force 

F by a vertical ordinate, OM, 
then the work done during 

any displacement represented 
by ON is proportional to the 

area MPNO, and is represented by that area. If the scale of 
force is i inch = p lbs., and the scale of distance is i inch = q 
feet, then the scale of work is i square inch = pq foot-lbsi 

53. Units of Work.—^Work being measured by the 
product of force and length, the unit of work is taken as 

that done by a unit force acting through unit distance. In 
the British gravitational or engineer’s system of units, this is 

the work done by a force of i lb. acting through a distance 
of I foot. It is called the foot-pound of work. If a weight 

Fig. 33.—^Work of a con.stant force. 
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W lbs. be raised vertically through h feet, the work done is 
ysih fooMbs. 

Occasionally inch-pound units of work are employed, 
particularly when the displacements are small. 

In the C.G.S. system the unit of work is the erg. This is 
the work done by a force of one dyne during a displacement 

of I centimetre in its own direction (see Art. 42). 

53. Work of a Variable Force.—If the force during 
any displacement varies, we may find the total work done 

approximately by splitting the displacement into a number 

of parts and finding the work done during each part, as if 
the force during the partial displacement were constant and 
equal to some value it has during that part, and taking the sum 

of all the work so calculated in the partial displacements. We 
can make the approximation as near as we please by taking 

a sufficiently large number of parts. We may define the work 
actually done by the variable force as the limit to which such 

a sum tends when the subdivisions of the displacement are 
made indefinitely small. 

54. Graphical Representation of Work of a Variable 
Force.—Fig. 34 is a diagram showing by its vertical ordinates 

the force acting on a body, and by its horizontal ones the dis¬ 

placements. Thus, when the displacement is represented by 
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ON, the force acting on the body is represented by PN. 

Suppose the interval ON divided up into a number of small 
parts, such as CD. The force acting on the body is represented 

by AC when the displacement is that represented by OC. 
Since the force is increasing with increase of displacement 
the work done during the displacement CD is greater than 

that represented by the rectangle AEDC, and less than that 

represented by the rectangle FBDC. The total work done 

during the displacement will lie between that represented by 

the series of smaller rectangles, such as AEDC, and that 
represented by the series of larger rectangles, such as FBDC. 
The area MPNO under the curve MP will always lie between 

these total areas, and if we consider the number of subdivisions 
of ON to be carried higher indefinitely, the same remains true 
both of the total work done and the area under the curve MP. 
Hence the area MPNO under the curve MP represents the 

work done by the force during the displacement represented 

by ON. 
The Indicator Diagram, first introduced by Watt for 

use on the steam-engine, is a diagram of the same kind as 
Fig. 34. The vertical ordinates are proportional to the total 

force exerted by the steam on 

P the piston, and the horizontal 
ones are proportional to the dis- 

^ placement of the piston. The 

^ area of the figure is then pro- 
^ portional to the work done by 

the steam on the piston. 

I_ In the case of a force vary- 
0 SpcLce N ing uniformly with the displace- 
Fig. 35,~Forcc varying uniformly ment, the curve MP is a Straight 

with space. 

MPNO = 
OM + PN 

X ON, or if the initial force (OM) is Fi 

lbs., and the final one (PN) is Fa lbs., and the displacement 
F, + Fo 

(ON) is ^ feet, the work done is —~—. d foot-lbs. 

Ii> stretching an unstrained elastic body, such as a spring. 
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the force starts from zero (or = o). Then the total work 

done is where Fg is the greatest force exerted, and d is 
the amount of stretch. 

Average Force.—The whole area MPNO (Figs. 34 and 
35) divided by the above ON gives the mean height of the 
area; this represents the space-average of the force during the 
displacement ON. This will not necessarily be the same as 

the time-average (Art. 45). We may define the space-average 
of a varying force as the work done divided by the displacement. 

55. Power.—Power is the rate of doing work, or the 

work done per unit of time. 
One foot-pound per second might be chosen as the unit 

of power. In practice a unit 550 times larger is used; it is 

called the horse-power. It is equal to a rate of 550 foot-lbs. 
per second, or 33,000 foot-lbs. per minute. In the C.G.S. system 

the unit of power is not usually taken as one erg per second, 

but a multiple of this small unit. This larger unit is called 
a watt, and it is equal to a rate of 10^ ergs per second. 

Engineers frequently use a larger unit, the kilowatt, which 
is 1000 watts. One horse-power is equal to 746 watts or 

0746 kilowatt. 

.^Example i.—A train ascends a slope of i in 85 at a speed of 
20 miles per hour. The total weight of the train is 200 tons, and 
resistance of the rails, etc., amounts to 12 lbs. per ton. Find the 
horse-power of the engine. 

The total force required to draw the load is— 

(200 X 12) -i- = 7670 lbs. 
«5 

The number of feet moved through per minute is J x 88 x 60 
==1760 feet; hence the work done per minute is 1760 x 7670 
= 13,500,000 foot-lbs., and since i horse-power = 33,000 foot-lbs. 
per minute, the H.P. is = 409 horse-power. 
^Example 2.—A motor-car weighing 15 cwt. just runs freely at 

K2 miles per hour down a slope of i in 30, the resistance at this 
speed just being sufficient to prevent any acceleration. What horse¬ 
power will it have to exert to run up the same slope at the same 
speed ? 

In running down the slope the propelling force is that of gravity, 
which is ^ of the weight of the car (Arts. 28 and 44); hence the 
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resistance of the road is also (at 12 miles per hour) equivalent to 
15 X 112 . „ ^-or 56 lbs. 

30 

Up the slope the opposing force to be overcome is 56 lbs. road 
resistance and 56 lbs. gravity (parallel to the road), and the total 
112 lbs. 

The distance travelled per minute at 12 miles per hour is J 
mile — or 1056 feet ; hence the work done per minute is 

112 X 1056 foot-lbs., and the H.P. is or 3*584 H.P. 

"^Example 3.—-The spring of a safety-valve is compressed from 
its natural length of 20 inches to a length of 17 inches. It then 
exerts a force of 960 lbs. How much work will have to be done 
to compress it another inch, z>. to a length of 16 inches ? 

The force being proportional to the displacement, and being 
960 lbs. for 3 inches, it is or 320 lbs. per inch of compression. 

When 16 inches long the compression is 4 inches, hence the 
force is 4 X 320 or 1280 lbs.; hence the work done in compression 

is X I, or 1120 inch-lbs. (Art. 54, Fig. 35), or 93*3 

foot-lbs. 

Examples V. 

]/. A locomotive draws a train weighing 150 tons along a level track 
at 40 miles per hour, the resistances amounting to 10 lbs. per ton. What 
horse-power is it exerting ? Find also the horse-power necessary to draw 
the train at the same speed (ii) up an incline of i in 250, {d) down an incline 
of I in 250. 

2. If a locomotive exerts 700 horse-power when drawing a train of 
200 tons up an incline of i in 80 at 30 miles per hour, find the road 
resistances in pounds per ton, 

3. A motor-car engine can exert usefully on the wheels 8 horse-power. 
If the car weighs 16 cwt., and the road and air resistances be taken at 
20 lbs. per ton, at what speed can this car ascend a gradient of i in 15 ? 

/ \4.. A winding engine draws from a coal-mine a cage which with the 
i,coal carried weighs 7 tons ; the cage is drawn up 380 yards in'J'^seconds. 
Find the average horse-power required. If the highest speed attained is 
30 miles per hour, what is the horse-power exerted at that time ? 

A stream delivers 3000 cubic feet of water per minute to the highest 
point of a water-wheel 40 feet diameter. If 65 per cent, of the available 
work is usefully employed, what is the horse-power developed by the 
wheel ? 

A bicyclist rides up a gradient of 1 in 15 at 10 miles per hour. The 
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weight of fider and bicycle together is i8o lbs. If the road and oth«r 
resistances are equivalent to of this weight, at what fraction of a horse¬ 
power is the cyclist working ? 
, 7. Within certain limits, the force required to stretch a spring is 

proportional to the amount of stretch. A spring requires a force of 
800 lbs. to stretch it 5 inches : find the amount of work done in stretching 
it 1 inches. 
V 8. A chain 400 feet long and weighing 10 lbs. per foot, hanging 
vertically, is wound up. Draw a diagram of the force required to draw 
it up when various amounts have been wound up from o to 400 feet. 
From this diagram calculate the work done in winding up {a) the first 
100 feet of the chain, (^) the whole chain. 
»/9. A pit cage weighing 1000 lbs. is suspended by a cable 800 feet long 
weighing lbs. per foot length. How much work will be done in wind¬ 
ing the cage up to the surface by means of the cable, which is wound on a 
drum ? 

56- It frequently happens that the different parts of a body 

acted upon by several forces move through different distances 

in the same time; an important instance is the case of the 
rotating parts of machines generating or transmitting power. It 

will be convenient to consider here the work done by forces 

which cause rotary motion of a body about a fixed axis. 
Moment of a Force.—The moment of a force about a 

point is the measure of its turning effect or tendency, about 

that point. It is measured by the 
product of the force and the per¬ 

pendicular distance from the point 
to the line of action of the force. 
Thus in Fig. 36, if O is a point, and 

AB the line of action of a force F, 
both in the plane of the figure, and 
OP is the perpendicular from O on 
to AB measuring r units of length, 

the moment of F about O is F X r. 

The turning tendency of F about O will be in one direction, 
or the opposite, according as O lies to the right or left of AB 

looking in the direction of the force. If O lies to the right, the 
moment is said to be clockwise ; if to the left, contra-clockwise. 

In adding moments of forces about O, the clockwise and contra- 

clockwise moments must be taken as of opposite sign, and the 

Fig. 36. 
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algebraic sum found. Which of the two kinds of moments is 

considered positive and which negative is immaterial If O 
lies in the line AB, the moment of F about O is zero.^ 

The common units for the measurement of moments are 
pound-feet. Thus, if a force of i lb. has its line of action i 
foot from a fixed point, its moment about that point is one 
pound-foot. In Fig. 36, if the force is F Ibs,^ and OP represents 

r feet, the moment about O is F. r pound-feet. 

Moment of a Force about an Axis perpendicular 
to its Line of Action.—If we consider a plane perpendicular 
to the axis and through the force, it will cut the axis in a point 
O; then the moment of the force about the axis is that of the 

force about O, the point of section of the axis by the plane. 
The moment of the force about the axis may therefore be 
defined as the product of the force and its perpendicular distance 
from the axis. 

In considering the motion of a body about an axis, it is 
necessary to know the moments about that axis of all the 

forces acting on the body in planes perpendicular to the axis, 
whether all the forces are in the same plane or not. The total 

moment is called the torque^ or twisting moment or turning 

moment about the axis. In finding the torque on a body 
about a particular axis, the moments must be added algebrai¬ 
cally. 

^^57. Work done by a Constant Torque or Twist¬ 
ing Moment.—Suppose a force F lbs. (Fig. 37) acts upon a 
body which turns about an axis, O, perpendicular to the line 
of action of F and distant r feet from it, so that the turning 

* Note that the question whether a moment is clockwise or contra- 
clockwise depends upon the aspect of view. Fig. 36 shows a force (F) 
having a contra-clockwise moment about O, but this only holds for one 
aspect of the figure. If the force F in line AB and the point O be viewed 
from the other side of the plane of the figure, the moment would be called 
a clockwise one. This will appear clearly if the figure is held up to the 
light and viewed from the other side of the page. Similarly, the moment 
of a force about an axis will be clockwise or contra-clockwise according 
as the force is viewed from one end or the other of the axis. The motion 
of the hands of a c/ach appears contra-clockwise if viewed from the back 
through a transparent face. 
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moment (M) about O is F.r Ib.-feet. Suppose that the 

force F acts successively on different parts of the body all 

distant r from the axis O about which it rotates, or that the 
force acts always on the same 
point C, and changes its direc¬ 
tion as C describes its circular 

path about the centre O, so as 
to always remain tangential to 
this circular path; in either case 

the force F is always in the same 

direction as the displacement it 
is producing, and therefore the 

work done is equal to the product 
of the force and the displacement 
(along the circumference of the 
circle CDE). Let the displace¬ 

ment about the axis O be through an angle B radians correspond¬ 
ing to an arc CD of the circle CDE, so that— 

CD 
— = (9, or CD = r. ^ 
r 

(The angle ^ is iir, if a displacement of one complete cir¬ 

cuit be considered.) 

The work done is F X CD = F foot-lbs. 

But M = F . r Ib.-feet 

therefore the work done = M X ^ foot-lbs. 

The work done by each force is, then, the product of the 

turning moment and the angular displacement in radians. If 
the units of the turning moment are pound-feet, the w’ork will 
be in foot-pounds; if the moment is in pound-inches, the work 
will be in inch-pounds, and so on. The same method of calcu¬ 
lating the work done would apply to all the forces acting, and 

finally the total work done would be the product of the total 
torque or turning moment and the angular displacement in 
radians. 

Again, if a> is the angular velocity in radians per second, 

the power or work per second is M. foot-lbs., and the horse* 
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power is — ^, where M is the torque in Ib.-feet; and if N is 

the number of rotations per minute about the axis— 

27rN.M 
H.P. = 

33,000 

This method of estimating the work done or the power, 

is particularly useful when the turning forces act at different 
distances from the axis of rotation. 

We may, for purposes of calculation, look upon such a state 
of things as replaceable by a certain force at a certain radius, 

but the notion of a torque and an angular displacement seems 
rather less artificial, and is very useful. 

The work done by a variable turning moment during a 
given angular displacement may be found by the method of 

Arts. 53 and 54. If in Figs. 33, 34, and 35 force be replaced by 
turning moment and space by angular displacement, the areas 

under the curves still represent the work done. 
In twisting an elastic rod from its unstrained position the 

twisting moment is proportional to the angle of twist, hence 
the average twisting moment is half the maximum twisting 
moment; then, if M = maximum twisting moment, and B = 
angle of twist in radians— 

the work done = 

Example i.—A high-speed steam-turbine shaft has exerted on 
it by steam jets a torque of 2100 Ib.-feet. It runs at 750 rotations 
per minute. Find the horse-power. 

The work done per minute = (torque in Ib.-feet) x (angle turned 
through in radians) 

= 2100 X 750 X 27r foot-lbs. 
2100 X 750 X 2ir 

horse-power = 300 H.P. 
33,000 

Example a.—An electro motor generates 5 horse-power, and 
runs at 750 revolutions per minute. Find the torque in pound-feet 
exerted on the motor spindle. 

Horse-power x 33,000 = torque in Ib.-feet x radians per minute 

, . „ „ horse-power x 33,000 
hence torque m Ib.-feet = radians per Sinut^ 

= 5^33^ = 35 ,b..feet 
750 
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Examples VI. 

The average turning moment on a steam-engine crankshaft is 2000 
Ib.-feet, and its speed is 150 revolutions per minute. Find the horse>power 
it transmits. 

'2. A shaft transmitting 50 H.P. runs at 80 revolutions per minute. 
Find the average twisting moment in pound-inches exerted on the shaft. 

' 3. A steam turbine develops 250 horse-power at a speed of 200 revolu¬ 
tions per minute. Find the torque exerted upon the shaft by the steam. 
‘ 4. How much work is required to twist a shaft through lo° if the 
stiffness is such that it requires a torque of 40,000 lb.-inches per radian of 
twist ? 

* 5. In winding up a large clock (spring) which has completely “run 
down,” 8jJ complete turns of the key are required, and the torque applied 
at the finish is 200 lb.-inches. Assuming the winding effort is always 
proportional to the amount of winding that has taken place, how much 
work has to be done in winding the clock ? How much is done in the last 
two turns ? 

6. A w^L'ter-wheel is turned by a mean tangential force exerted by the 
water of half a ton at a radius of 10 feet, and makes six turns per minute. 
What horse-power is developed ? 

58. Energy.—When a body is capable of doing work, it is 
said to possess energy. It may possess energy for various 

reasons, such as its motion, position, temperature, chemical 

composition, etc.; but we shall only consider two kinds of 

mechanical energy. 

5^. A body is said to have potential energy when it is 
capable of doing work by virtue of its position. For example, 
when a weight is raised for a given vertical height above datum 

level (or zero position), it has work done upon it; this work is 

said to be stored as potential energy. The weight, in returning 
to its datum level, is capable of doing work by exerting a force 

(equal to its own weight) through a distance equal to the 

vertical height through which it was lifted, the amount of 

work it is capable of doing being, of course, equal to the amount 

of work spent in lifting it. This amount is its potential energy 
in its raised position, eg, suppose a weight W lbs. is lifted h 
feet; the work is W . // foot-lbs., and the potential energy of the 

W lbs. is then said to be W. foot-lbs. It is capable of doing 

an amount of work W. h foot-lbs. in falling. 
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^6o. Kinetic Energ:y is the energy which a body has in 
virtue of its motion. 

We have seen (Art. 47) that the exertion of an unresisted 
force on a body gives it momentum equal to the impulse of the 
force. The force does work while the body is attaining the 

momentum, and the work so done is the measure of the kinetic 
energy of the body. By virtue of the momentum it possesses, 
the body can, in coming to rest, overcome a resisting force 
acting in opposition to its direction of motion, thereby doing 

work. The work so done is equal to the kinetic energy of the 

body, and therefore also to the work spent in giving the body 
its motion. 

Suppose, as in Ex. i, Art. 47, a body of weight W lbs. 

is given a velocity V feet per second by the action of a 
uniform force Fj lbs. acting for seconds, and then comes 

to rest under a uniform resisting force Fg lbs. in 4 seconds. We 
had, in Art 47— 

W 
Impulse Fi4 = —V = Fs^ 

s 

But, the mean velocity being half the maximum under a 
uniform accelerating force, the distance ^1, moved in accelerat¬ 

ing, is |V/i feet, and that moved in coming to rest, is |V4; 
hence the work done in accelerating is— 

W W 

and work done in coming to rest is— 

, W W 

g g 
w 

hence 
g 

These two equalities are exactly the same as those of Ex. 

I, Art, 47 f viz. —V = Fj/i = F24 ), with each term multi- 

V 
plied by and problems which were solved from considera¬ 

tions of changes of momentum might often have been (alter¬ 

natively) solved by considerations of change of kinetic energy. 
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The amount of kinetic energy possessed by a body of 
W 

weight W lbs. moving at V feet per second is therefore i- 
O 

foot-lbs. 
Again, if the initial velocity had been u feet per second 

instead of zero, the change of momentum would have been 
W 
— (z/ — u), and we should have had- 
S 

w 
Fj/j = {v — //), V being final velocity 

and the work done = Fj X X =- 

W 
== i- (2,2 . 

= change of kinetic energy 

Similarly, in overcoming resistance at the expense of its kinetic 

energy, the work done by a body is equal to the change of 
kinetic energy whether all or only part of it is lost. 

61. Principle of Work.—If a body of weight W lbs. be 
lifted through /i feet, it has potential energy W/i foot-lbs. If 

it falls freely, its gain of kinetic energy at any instant is just 

equal to the loss of potential energy, so that the sum (potential 
energy) + (kinetic energy) is constant; eg, suppose the weight 

has fallen freely x feet, its remaining potential energy is 

W(/^ — x) foot-lbs. It will have acquired a velocity \f2gx feet 

W 
per second (Art. 13), hence its kinetic energy 

W W 
2^ X2gx=zWx foot-lbs., hence — + = W^, which 

is independent of the value of x, and no energy has been lost. 

Note that for a particular system of bodies the sum of 

potential and kinetic energies is generally nof constant. Thus, 
although momentum is conservative, mechanical energy is not 

For example, when a body in motion is brought to rest by a 
resisting force of a frictional kind, mechanical energy is lost. 

The energy appears in other forms, chiefly that of heat. 
Principle of Work.—Further, if certain forces act upon 
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a body, doing work, and other forces, such as frictional ones, 
simultaneously resist the motion of the body, the excess of the 

work done by the urging forces over that done against the 
resistances gives the kinetic energy stored in the body. Or we 
may deduct the resisting forces from the urging forces at every 

instant, and say that the work done by the effective or net 
accelerating forces is equal to the kinetic energy stored. Thus 

in P1g. 38, representing the forces and work done graphically as 
in Art. 54, if the ordinates of the curve MP represent the 

forces urging the body forward, and the ordinates of M'P' re¬ 
present the resistances to the same scale, the area MPNO 
represents the work done ; the work lost against resistances is 

represented by the area M'P'NO, and the difference between 
these two areas, viz. the area MPP'M’, represents the kinetic 

energy stored during the time that the distance ON has been 
traversed. If the body was at rest at position O, MPFM' 

represents the total kinetic energy, and if not, its previous 

kinetic energy must be added to obtain the total stored at the 

position ON. From a diagram, such as Fig. 38, the velocity 

can be obtained, if the mass of the moving body is known, by 
the relation, kinetic energy = |(mass) X (velocity)^. 

Fig. 39 illustrates the case of a body starting from rest and 

coming to rest again after a distance O^, such, for example, 

as an electric car between two stopping-places. The driving 

forces proportional to the ordinates of the curve ahec cease 
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after a distance oc has been traversed, and (by brakes; the 
resisting forces proportional to the ordinates of the curve def 
increase. The area abed represents the kinetic energy of the 
oar after a distance oc, and the area efgc represents the work 

done by the excess of resisting force over driving force. When 
the latter area is equal to the former, the car will have come 

to rest. 
The kinetic energy which a body possesses in virtue of its 

rotation about an axis will be considered in a subsequent 

chapter. 

Example i.—Find the work done by the charge on a projectile 
weighing 800 lbs., which leaves the mouth of a cannon at a velocity 
of 1800 feet per second. What is the kinetic energy of the gun at 
the instant it begins to recoil if its weight is 25 tons? 

The work done is equal to the kinetic energy of the projectile— 

K.E. = ~x~xV2 = “X X (i8oo)2 = 40,250,000 foot-lbs. 2 g 2 32 2 -r ? J J 

The momentum of the gun being equal to that of the projectile, 
the velocity of the gun is— 

1800 X --= 2571 feet per second 
25 X 2240 ^^ 

and the K.E. = ^ x x (2571)2 = 575,000 foot-lbs. 
2 2 

It may be noticed that the kinetic energies of the projectile 
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and cannon are inversely proportional to their weights. The 
I W I W 

K.E. is “ X ^ X V^, or ~ X ^ x V x V, which is | x momen¬ 

tum X velocity. The momentum of the gun and that of the pro¬ 
jectile are the same (Art. 49), and therefore their velocities are 
inversely proportional to their weights ; and therefore the products 
of velocities and half this momentum are inversely proportional 
to their respective weights. 

Example 2.—A bullet weighing i oz., and moving at a velocity 
of 1500 feet per second, overtakes a block of wood moving at 
40 feet per second and weighing 5 lbs. The bullet becomes 
embedded in the wood without causing any rotation. Find the 
velocity of the wood after the impact, and how much kinetic energy 
has been lost. 

Let V = velocity of bullet and block after impact. 

Momentum of bullet = -4; x 
16 g 

moiftentum of block = - x 40 = 

^ 9375 

g 
200 

!- 
g 
29375 

g 

hence total momentum before 
and after impact 

Total momentum after impact = — x V = ?93.75 
g g 

and therefore V = = 5^‘o feet per second 

Kinetic energy of bullet = " x x x 1500 x 1500 = 2183 foot-lbs. 

= 124 „ Kinetic energy of block = ^ x x 40 x 40 

Total K.E. before impact = 2307 

Total K.E. after impact = - x x 58*0 x 58*0 = 264 i 
2 32 2 

Loss of K.E. at impact = 2307 ~ 264 = 2043 

Example 3.—A car weighs 12*88 tons, and starts from rest; 
the resistance of the rails may be taken as constant and equal to 
500 lbs. After it has moved S feet from rest, the tractive force, 
F lbs., exerted by the motors is as follows :— 

0 20 50 1 110 130 160 IQO 200 

1280 1270 1220 IIIO 905 800 730 

1 
670 660 
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Find the velocity of the car after it has gone 200 feet from rest; 
also find the velocity at various intermediate points, and plot a 
curve of velocity on a base of space described. 

Plot the curve of F and S as in Fig. 40, and read off the force 
every 20 feet, say, starting from S = 10, and subtract 500 lbs. 
resistance from each, as follows :— 

s ... 10 30 50 70 90 110 130 150 170 190 
F ... 1275 1260 1220 1150 1050 90s 800 740 695 670 
F-500 775 j 760 720 650 550 405 300 240 195 170 

Fig. 40. 

The mean accelerating force during the first 20 feet of motion is 
approximately equal to that at S = 10, viz. 775 lbs.; hence the 
work stored as kinetic energy (K.E.), i.e. the gross work done less 
that spent against resistance, is— 

(1275 X 20) - (500 X 20), or 775 X 20 foot-lbs. = 15,500 foot-lbs. 

Then, if V is the velocity after covering S feet, for S = 20— 

K.E. = i X = 15^500 

and W = 12*88 x 2240 lbs. 

therefore 
W 

7’ 

the mass of the car is 
][2*88 X 2240 

32*2 
or 896 units, and— 



Similarly, finding the gain of kinetic energy in each 20 feet, the 
square of velocity (V^), and the velocity V, we have from S = 20 
to S = 40— 

gain of K.E. = 760 x 20 = 15,200 foot-lbs.* 
/. total K.E. at S = 40 is 

15,500 + 15,200 = 30,700 foot-lbs. 
and so on, thus— 

s . 0 20 
! 

i 60 80 1 100 120 140 160 180 200 
Gain of K.E. j 

in 20 feet, 1 0 'SSoo 1^200 14400 13000 IlOOOj 8100 6000 4800 3900 3400 
foot-lbs. ) 1 

Total K.E.,i; 
foot-lbs. /! 

0 15500 30700 45100 58100 69100 77200 83200 88000 91900 95300 

448 
0 

Q
O

 68*5 ioo'6 129-4 154-0 172*1 185*5 196-2 204-8 212-5 
1 

V ft. per sec. 0 5-90 8'28 1003 11*34 12-40 13*12 

1 

13-62 14-01 14*30 14-58 

These velocities have been plotted on a base of spaces in 
Fig. 41- 

s. tit feet 
Fig. 41. 
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Example 4* —From the results of Example 3, find in what time 
the car travels the distance of 20 feet from S = 80 to S = 100, 
and draw a curve showing the space described up to any instant 
during the time in which it travels the first 200 feet. 

At S = 80, V = 11*34 feet per second 
at S = 100, V = 12*40 feet per second 

hence the mean velocity for such a short interval may be taken 
as approximately— 

"" or 11 ‘87 feet per second 

Hence the time taken from S = 80 to S = 100 is approximately— 

= i‘685 seconds 
11*57 

Similarly, we may find the time taken to cover each 20 feet, and 
so find the total time occupied, by using the results of Ex. 3, 
as follows. The curve in Fig. 42 has been plotted from these 
numbers. 

Fig. 4a. 

D 
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s. 
Mean velocity 

0 20 40 60 80 100 120 140 160 180 200 

for last 20tt., 
feet per sec. 

Time for last 

0 2*94 7 *08 915 10*71 11*90 1277 13-38 13*82 14*16 «4-4S 

20 feet, se¬ 
conds 

Total time, 
/ seconds j 

0 

! 

6803 2*825 2*185 1*867 I *681 1*566 1*495 

j 

1-447 1*412 1-384 

0 6*803 9*628 11*814 13*681 15*362 16*928 18*423 I9’870 21*282 22-666 

Examples VII. 

1. Find in foot-pounds the kinetic energy of a projectile weighing 

800 lbs. moving at 1000 feet per second. If it is brought to rest in 3 feet, 

find the space average of the resisting force. 

2. At what velocity must a body weighing 5 lbs. be moving in order 

to have stored in it 60 foot-lbs. of energy ? 

3. What is the kinetic energy in inch-pounds of a bullet weighing 1 oz. 

travelling at 1800 feet per second? If it is fired directly into a suspended 

block of wood weighing i ’25 lb., how much kinetic energy is lost in the 

impact ? 

^4. A machine-gun fires 300 bullets per minute, each bullet weighing 

1 oz. and having a muzzle velocity of 1700 feet per second. At what 

average horse-power is the gun working ? 

v^. A jet of water issues in a parallel stream at 90 feet per second from 

a round nozzle I inch in diameter. What is the horse-power of the jet ? 

One cubic foot of water weighs 62*5 lbs. 

6. Steam to drive a steam impact turbine issues in a parallel stream 

from a jet I inch diameter at a velocity of 2717 feet per second, and the 

density of the steam is such that it occupies 26'5 cubic feet per pound. 

Find the horse-power of the jet. 

* 7. A car weighing 10 tons attains a speed of 15 miles per hour from 

rest in 24 seconds, during which it covers 100 yards. If the space-average 

of the resistances is 30 lbs. per ton, find the average horse-power used to 

drive the car. 

8. How long will it take a car weighing 11 tons to accelerate from 

10 miles per hour to 15 miles per hour against a resistance of 25 lbs. per 

ton, if the motors exert a uniform tractive force on the wheels and the 

horse-power is 25 at the beginning of this period ? 

9. A car weighing 12 tons is observed to have the following tractive 

forces F lbs. exerted upon it after it has travelled S feet from rest:— 

S ••• 0 10 30 50 65 80 94 xoo 

F ... 1440 1390 1250 1060 910 805 

I 1 
760 740 
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The constant resistance of the road is equivalent to 600 lbs. Find the 

velocity of the car after it has covered 100 feet. Plot a curve showing 
the velocity at all distances for xoo feet from the starting-point. What is 
the space-average of the effective or accelerating force on the car ? 

10. From the results of the last question plot a curve showing the 
space described at any instant during the time taken to cover the first 
100 feet. How long does the car take to cover 100 feet ? 

n. A machine having all its parts in rigid connection has 70,000 foot¬ 
pounds of kinetic energy when its main spindle is making 49 rotations 
per minute. How much extra energy will it store in increasing its speed 

to 50 rotations per minute ? 

12. A machine stores 10,050 foot-lbs. of kinetic energy when the speed 
of its driving-pulley rises from 100 to loi revolutions per minute. How 

much kinetic energy would it have stored in it w'hen its driving-pulley 
is making 100 revolutions per minute? 



CHAPTER IV 

MOTION IN A CIRCLE t SIMPLE HARMONIC 

MOTION 

62. Uniform Circular Motion.—Suppose a particle de¬ 
scribes about a centre O (Fig. 43), a circle of radius r feet 
with uniform angular velocity w radians per second. Then 
its velocity, at any instant is of magnitude <or (Art. 33), and 
its direction is along the tangent to the circle from the point 

apart (Fig. 43). Let 
the vector cb parallel to the tangent PT represent the linear 
velocity v at P, and let the vector ah^ of equal length to cb and 
parallel to QT', the tangent at Q, represent the linear velocity 
V at Q. Then, to find the change of velocity between P and 
Q, we must subtract the velocity at P from that at Q; in 
vectors— 

ab cb = ab + be ss ac (Art. 27) 

Then the vector ac represents the change of velocity between 

the positions P and Q. Now, since c^c ^ p6q » length 
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$ 0 
ac=: 2alf, sinwhich represents 2V sin.-, and the time 

2 2 
0 

taken between the positions P and Q is - seconds (Art. 33). 

Therefore the average change of velocity per second is— 

. e 
0 0 ^^^2 

2 V s\n - -f- — or ot)V. 
2 <0 u 

2 

which is the average acceleration. Now, suppose that Q is 
taken indefinitely close to P—that is, that the angle 0 is in- 

. 0 
sin - 

2 ... 
definitely reduced; then the ratio ^ has a limiting value 

2 

unity, and the average change of velocity per second, or 
average acceleration during an indefinitely short interval is 

o . 
taVy or a>V or -, since v = wr. This average acceleration 

during an indefinitely reduced interval is what we have defined 
(Art. 9) as actual acceleration, so that the acceleration at P 

is €dV or feet per second per second. And as the angle 0 

is diminished indefinitely and Q thereby approaches P, the 

vector aly remaining of the same length, approaches cb (a and c 
being always equidistant from b)y and the angle bca increases 

and approaches a right angle as 0 apppaches zero. Ultimately 
the acceleration is perpendicular to PT, the tangent at 

P, i.e, it is towards O. 

/63. Centripetal and Centrifugal Force. — In the 
previous article we have seen that if a small body is describing 

a circle of radius r feet about a centre O with angular velocity 
<i> radians per second, it must have an acceleration towards 

O; hence the force acting upon it must be directed towards 
the centre O and of magnitude equal to its (mass) x a>V or 
W 

<0®/* lbs., where W is its weight in pounds This force causing 
i 
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the circular motion of the body is sometimes called the centri- 
petal force. There is (Art. 48), by the third law of motion, 

a reaction of equal magnitude upon the medium which exerts 
this centripetal force, and this reaction is called the centrifugal 

force. It is directed away from the centre O, and is exerted 
W 

upon the matter which impresses the equal force — wV upon 

the revolving body; it is not to be reckoned as a force acting 
upon the body describing a circular path. 

A concrete example will make this clear. If a stone of 
weight W lbs. attached to one end of a string r feet long 
describes a horizontal circle with constant angular velocity (u 

radians per second, and is supported in a vertical direction by 
a smooth table, so that the string remains horizontal, the force 

W 
which the string exerts upon the stone is - w ‘^r towards the 

centre of the circle. The stone, on the other hand, exerts on 
W ^ 

the string an outufard pull —wV away from the centre. In 

other cases of circular motion the inward centripetal force 
may be supplied by a thrust instead of a tension; e.g. in the 
case of a railway carriage going round a curved line, the centri¬ 

petal thrust is supplied by the rail, and the centrifugal force 
is exerted outward on the rail by the train. 

Motion on a Curved “ Banked '' Track.—Suppose 
a body, P (Fig. 44), is moving with uniform velocity, round a 

smooth circular track of radius OP equal to r feet. At what 

angle to the horizontal plane shall the track be inclined or 
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“banked” in order that the body shall keep in its circular 

path? 
There are two forces acting on the body—(i) its own weight, 

W; (2) the reaction R of the track which is perpendicular to 
W 

the smooth track. These two have a horizontal resultant — • 
g ^ 

towards the centre O of the horizontal circle in which the 

body moves. If we draw a vector, ab (Fig. 44), vertically, to 
represent W, then R is inclined at an angle a to it, where a 

is the angle of banking of the track. If a vector, he, be drawn 
from b inclined at an angle a to ab, to meet ac, the perpendicular 

to ab from a, then be represents R, and ac or (ab + be) represents 
W 

and- the resultant of W and R, viz. 
g 

ae W 
tan a = -T = — • ~ 

ab g r 

wh^h gives the angle a required. 

V 65. Railway Curves.—If the lines of a railway curve 
be laid at the same level, the centripetal thrust of the rails 

on the wheels of trains would act on the flanges of the wheels, 
and the centrifugal thrust of the wheel on the track would tend 
to push it sideways out of its place. In order to have the action 
and reaction normal to the track the outer rail is raised, and the 
track thereby inclined to the horizontal. The amount of this 
“ superelevation ” suitable to a given speed is easily calculated. 

Let G be the gauge in inches, say, v the velocity in feet 

per second, and r the 

radius of the curve in 

feet Let AB (Fig. 45) 
represent G; then AC 

represents the height 

in inches (exaggerated) 
which B stands above 

A, and ABC is the angle 
of banking, as in Art. 64. Then AC = AB sin a = AB tan 
a nearly, since a is always very small; hence, by Art. 64, AC 

represents G tan a, or G^ inches. 
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‘^66, Conical Pendulum.—This name is applied to a 
combination consisting of a small weight fastened to one end 

of a string, the other end of 

4V which is attached to a fixed 
point, when the weight keeping 
the string taut, describes a 

horizontal circle about a centre 

vertically under the fixed point. 
Fig. 46 represents a conical 

pendulum, where a particle, P, 

attached by a thread to a fixed 
point, O, describes the hori¬ 

zontal circle PQR with con- 

R ' 
Fig. 46. 

stant angular velocity about the centre N vertically under O. 
Let T = tension of the string OP in lbs.; 

(o = angular velocity of P about N in radians per second; 

W = weight of particle P in lbs.; 
r = radius NP of circle PQR in feet; 

/ = length of string OP in feet; 
a = angle which OP makes with ON, viz. PON; 

h = height ON in feet; 
g = acceleration of gravity in feet per second per 

second. 
At the position shown in Fig. 46 P is acted upon by two 

forces—(i) its own weight, W; (2) the tension T of the string 

OP. These have a resultant in the line PN (towards N), 
the vector diagram being set off as in Art. 64, ab vertical, 

representing the weight W, of P, and be the tension T. Then 

W 
the vector ac ^ ab bc^ and represents the resultant force 

X <*>V along PN ; hence— 

ac 
tan a = ^ = ■ W = 

W 

S' s 
Also ON or = NP -f- tan ex. == r 

<D*r 

'"F 
4-feet 

hence the height h of the conical pendulum is dependent only 

on the angular velocity about N, being inversely proportional 

to the square of that quantity. 
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^ fr 

Since h ox I cos a = —5, <»* = 7 and w -s/\ 
Also the time of one complete revolution of the pendulum is- 

angle in a circle _ £5 __ 
angular velocity 

the period of revolution being proportional to the square root 
of the height of the pendulum, and the number of revolutions 
per minute being therefore inversely proportional to the square 
root of the height. This principle is made use of in steam- 

engine governors, where a change 
in speed, altering the height of a 

modified conical pendulum, is 
made to regulate the steam 

supply. 
Motion in a Vertical 

Circle.—Suppose a particle or 
small body to move, say, contra- 
clockwise in a vertical circle with 
centre O (Fig. 47). It may be 
kept in the circular path by a 

string attached to O, or by an inward pressure of a circular 
track. Taking the latter instance— 

Let R = the normal inward pressure of the track ; 
W = the weight of the rotating body in pounds ; 
V = its velocity in feet per second in any position P 

such that OP makes an angle d to the vertical 

OA, A being the lowest point on the circum¬ 
ference \ 

Vx = the velocity at A ; 
r = the radius of the circle in feet. 

W 
Then the kinetic energy at A is ~ 

At P the potential energy is W x AN, and the kinetic energy 

W 
is i— and since there is no work done or lost between A 

V 
and P, the total mechanical energy* at P is equal to that at A 

(Art 61). Therefore— 
D* 
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W W 

hence + 2^. AN - . . . . (0 

Neglecting gravity, the motion in a circle would be uniform, and 
W 

would cause a reaction — • ~ from the track (Art. 63). And 
g r , 

in addition the weight has a component W cos B in the 
direction OP, which increases the inward reaction of the track 

by that amount; hence the total normal pressure— 

W 7;^ 
R = _ . _ 4. w cos ^ (2) 

The value of R at any given point can be found by sub¬ 
stituting for V from equation (i) provided 74 is known. The 
least value of R will be at B, the highest point of the circle, 

where gravity diminishes it most. If is not sufficient to 
make R greater than zero for position B, the particle will 
not describe a complete circle. Examining such a case, the 

condition, in order that a complete revolution may be made 
without change in the sign of R, is— 

Rfi ^ o 
W vJ‘ 

i.e, ~ . + W cos 180° > o 
g r 

or, since cos 180° = — i— 

W 

g r 
> W 

or > gr 

and since — 2g, AB = — Agr^ substituting for 
the condition is— 

- 4^'* > gr 
> Sg^ 

ue. the velocity at A must be greater than that due to falling 
through a height |r, for which the velocity would be a/$gr 

(Art, 28). For example, in a centrifugal railway (“ looping the 
loop") the necessary velocity on entering the track at the 
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lowest point, making no allowance for frictional resistances, 
may be obtained by running down an incline of height greater 
than two and a half times the radius of the circular track. 

If the centripetal force is capable of changing sign, as in the 
case of the pressure of a tubular track, or the force in a light 
stiff radius rod supporting the revolving weight, the condition 

that the body shall make complete revolutions is that z'b shall 
be greater than zero, and since the condition is— 

> Agr ^ 
^ 

/>. the velocity at A shall be greater than that due to falling 

through a height equal to the diameter of the circle. Similarly, 
the position at which the body will cease to describe a circular 
track (in a forward direction) if 74 is too small for a complete 

circuit, when the force can change sign and when it can not, 
may be investigated by applying equations (i) and (2), which 
will also give the value of R for any position of the body. 

The pendulum bob, suspended by a thread, is of course 

limited to oscillation of less than a semicircle or to complete 
circles. 

Example i.—At what speed will a locomotive, going round a 

curve of 1000-feet radius, exert a horizontal thrust on the outside 

rail equal to yJo of its own weight ? 

Let W = the weight of loco, 

V = its velocity in feet per second. 

Centrifugal thrust = — 
W ^ 

1000 
, ^ 1000 X g 

100 

= T^W 

= 322 

V ~ 17*94 feet second, equivalent 

to 12*23 miles per hour 

Example a.—A uniform disc rotates 250 times per minute 

about an axis through its centre and perpendicular to its plane. 

It has attached to it two weights, one of 5 lbs, and the other of 7 

lbs., at an angular distance of 90° apart, the first being i foot 
and the second 2 feet from the axis. Find the magnitude and 

direction of the resultant centrifugal force on the axis. Find, also. 
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where a weight, of 12 lbs. must be placed on the disc to make the 
resultant centrifugal force zero. 

The angular velocity is radians per second 

2'^ 

7lbs 

60 3 

The centrifugal pull F, (Fig. 48) is 

(f)’- then X 
32‘2 

106 lbs. 

and the centrifugal pull Fg is 
= 297 lbs. 

^€SUC4S [• 

Fig. 48. 

SWj. 
hence the resultant R of F^ and Fg at right 
angles is— 

106 

R = + 297^ = 315 lbs. 

9-6° to the directic 

(Arts. 24 and 44) 

at an angle tan*^ - tan**^ 0*357 = 19*6° to the direction of Fg 

To neutralize this, a force of 315 lbs. will be required in the opposite 
direction. 

Let X = radius in feet of the 12-lbs. weight placed at 180 — 19*6 
or i6o‘4° contra-clockwise from Fj. 

Then^-x("5-j 

hence x = 1*23 feet 

Example 3.—Find in inches the change in height of a conical 
pendulum making 80 revolutions per minute when the speed 
increases two per cent. 

The increase in speed is x 80 = r6 revolutions per minute 
to 81*6 revolutions per minute. 

The height is ^ (Art. 66), where « is the angular velocity in 

radians per second. 
At 80 revolutions per minute the angular velocity is— 

2ir X 80 8ir j. j 
—7- = — radians per second 

60 3 ^ 
ST *^2*2 X Q 

hence the height Aa, = £3 = 5.^^ • - 

= 0*4588 foot 
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At 8r6 revolutions per minute the angular velocity is— 

2ir X 81*6 8'l6Tr j. , 
-^_ radians per second 

60 3 ^ 
■^2*2 X Q 

and the height is ~ 0*4409 foot 

hence the decrease in height is ) _^ r ^ i 
o t = 0*0179 foot or 0*215 inch 

0*4588-0*4409 S ^ 

Example 4—A piece of lead is fastened to the end of a string 
2 feet long, the other end of which 

is attached to a fixed point. With 

what velocity must the lead be pro¬ 
jected in order to describe a hori¬ 

zontal circle of 2 feet diameter ? 

Let OP, Fig. 49, represent the 

string; then the horizontal line PN 
is to be I foot radius. 

In the vector triangle abc^ ab 

represents W, the weight of lead, 

be the tension T of the string OP, and ac their resultant; then— 

NP _ac ^ 

ON ^ ab^ g ' r S ^ ^ 

where v = velocity in feet per second ; 

hence ^ ^ x ^ x = i8-S9 

and V = 4*312 feet per second 

Example 5*—A stone weighing J lb. is whirling in a vertical 

circle at the extremity of a string 3 feet long. Find the velocity of 

the stone and tension of the string—(i) at the highest position, (2) 

at lowest, (3) midway between, if the velocity is the least possible 

for a complete circle to be described. 
If the velocity is the least possible, the string will just be slack 

when the stone is at the highest point of the circle. 

Let Vq be the velocity at the highest point, where the weight 

just supplies the centripetal force ; 

(i) Then i x 
4 

_i_ X = L 
32*2 3 4 

^0* = 3 32’2 = 96*6 
and Vq = 9*^3 second. 

(2) At the lowest point let the velocity be feet per second 
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Since there is no loss of mechanical energy, the gain of kinetic 
energy is ^ x 6 foot-lbs., hence— 

L * 
2*4 

X - X ■ 
g * ^ 4 g 
and + 2,g.6 

= 96-6 -f- 386*4 = 483 (or 5 X .e* X 3) 

= V483 = 22 feet per second (nearly) 

and the tension is 'J ^ 
I I I 483 I = - 4- = 1*5 lbs., or six times the weight 

4 4 32*2 3 i of the stone 

(3) When the string is horizontal, if v* = velocity in feet per 

second— 

similarly, £ I. I ,2 ^ I I 

2*4^;^^ 2*4‘ 
'o‘^ + -3 

-f 2^ X 3 

= 96*6 4- 193*2 

2/' = V289*8 = 17 feet per second 

and the tension is \ 
I 289^8 > = 0*75 lb., or three times the weight of the 

4‘3?2 ^ “3“ J stone 

Examples VIII. 

\jt. How many circuits per minute must a stone weighing 4 ozs, 
make when whirled about in a horizontal circle at the extremity of a string 
5 feet long, in order to cause a tension of 2 lbs. in the string ? 

At what speed will a locomotive produce a side thrust equal to ^ of 
its own weight on the outer rail of a level curved railway line, the radius of 
the curve being 750 feet ? 

What is the least radius of curve round which a truck may run on 
level lines at 20 miles per hour without producing a side thrust of more 
than iJg of its own weight ? 
g4. How much must the outer rail of a line of 4 feet inches gauge be 

elevated on a curve of 800 feet radius in order that a train may exert a 
thrust normal to the track when travellipg at 30 miles per hour ? 

^5. The outer rail of a pair, of 4 feet 8j inches gauge, is elevated inches, 
and a train running at 45 miles per hour has no thrust on the flanges of 
either set of wheels. What is the radius of the curve ? 

6. At what speed can a train run round a curve of 1000 feet radius 
without having any thrust on the wheel flanges when the outer rail is laid 
1*5 inches above the inner one, and the gauge is 4 feet 8j inches ? 

'^7. To what angle should a circular cycle-track of 15 laps to the mile be 
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banked for riding upon at a speed of 30 miles per hour, making no allow¬ 
ance for support from friction ? 

• 8. A string 3 feet long, fixed at one end, has attached to its other 
end a stone which describes a horizontal circle, making 40 circuits per 
minute. What is the inclination of the string to the vertical ? What is its 
tension ? 

1/9. What percentage change of angular speed in a conical pendulum 
will correspond to the decrease in height of 3 per cent. ? 

10. The revolving ball of a conical i>endulum weighs 5 lbs,, and the 
height of the pendulum is 8 inches. What is its speed ? If the ball is 
acted upon by a vertical downward force of i lb., what is then its speed 
when its height is 8 inches? Also what would be its speed in the case of 
a vertical upward force of i lb. acting on the ball ? 

i^ii. What will be the inclination to the vertical of a string carrying a 
weight suspended from the roof of a railway carriage of a train going 
round a curve of 1000 feet radius at 40 miles per hour ? 
✓f2. A body weighing { lb., attached to a string, is moving in a vertical 

circle of 6 feet diameter. If its velocity, when passing through the lowest 
point, is 40 feet per second, find its velocity and the tension of the string 
when it is 2 feet and when it is 5 feet above the lowest point. 

68. Simple Harmonic Motion.—This is the simplest 

type of reciprocating motion. If a point Q (Fig. 50) describes 

a circle AQB with constant angular velocity, and P be the 
rectangular projection of Q on a fixed diameter AB of the 

circle, then the oscillation to and fro of P along AB is defined 

as Simple Harmonic Motion, 
Let the length OA of the radius be a feet, called the 

amplitude of oscillation. 
Let (I) be the angular velocity of Q in radians per second. 

Let B be the angle AOQ in radians, denoting any position 

of Q. 
Suppose the motion of Q to be, say, contra-clockwise. 
A complete vibration or oscillation of P is reckoned in this 

country as the path described by P whilst Q describes a 

complete circle. 
Let T = the period in seconds of one complete vibration; 

then, since this is the same as that for one complete circuit 

made by Q— 

_ radians in one circle stt 
7' —; - -— - - sr — (i) 

radians described per second <*> * ' 
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Let % = distance OP of P from O in feet, reckoned positive 
towards A, then = a cos 0; 

and let v = velocity of P in 
feet per second in position B, 

Draw OS perpendicular 
to OQ to meet the circum¬ 
ference of the circle AQSB 
in S, and draw SM perpen¬ 

dicular to AB to meet it in M. 

Then for the position or 

phase shown in the figure, 
the velocity of Q is u>a (Art. 
33) in the direction perpen¬ 
dicular to OQ, i.e. parallel to 

OS. Resolving this velocity 

along the diameter AB, OSM 

being a vector triangle, the 
component velocity of Q 

parallel to AB is X 

or n>a sin or w. OM. This 

is then the velocity of P 
towards O, the mid-path. 

o- • A OM Since sin 6 = —~ 

a 

V ^ (i>a sin B 

= — .r* 

which gives the velocity of 
P in terms of the amplitude 
and position. 

Or, if OS represents geo¬ 
metrically the velocity of Q, 

then OM represents that of 

P to the same scale. 
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Acceleration of P,—The acceleration of Q is along 
QO towards O (Art. 62), Resolving this acceleration, the 

PO 
Component in direction AB is aP-a x qq, or aPa, cos or 

vP. towards O; and it should be noted that at unit distance 
from O, when x == i foot, the acceleration of P is feet per 
second per second. 

The law of acceleration of a body having simple harmonic 
motion, then, is, that the acceleration is towards the mid-path 

and proportional to its distance from that point. When the 
body is at its mid-path, its acceleration is zero; hence there is 

no force acting upon it, and this position is one of equilibrium 
if the body has not any store of kinetic energy. Conversely, 

if a body has an acceleration proportional to its distance from 
a fixed point, O, it will have a simple harmonic motion. If 

the acceleration at unit distance from O is ju. feet per second 

per second (corresponding to (P in the case just considered), 
by describing a circle with centre O about its path as diameter, 

we can easily show that the body has simple harmonic motion, 

and by taking o) = ///x, /x. corresponding to P in the above 
case, we can state its velocity and acceleration at a distance 
X from its centre of motion O, and its period of vibration, viz. 

velocity v 2X x feet from O is jL. *J x'^^ot /J— x^). 
Acceleration at x feet from centre O is ij.,x, and the time 

of a complete vibration is -7=^* 
Vjx 

Alternating: Vectors.—We have seen that, the displace¬ 

ment of P being OP, the acceleration is proportional also to 

OP, and the velocity to OM; so that OP and OM are vectors 
representing in magnitude and direction the displacement and 

velocity of P. Such vectors, having a fixed end, O, and of 
length varying according to the position of a rotating vector, 

OQ or OS, are called “ alternating vectors.” It may be noted 
that the rate of change of an alternating vector, OP, of ampli¬ 
tude a is represented by another alternating vector, OM, of the 
same period, which is the projection of a uniformly rotating 
vector of length OS = 10. OQ or ina (to a different scale), and 

one right angle in advance of the rotating vector OQ, of which 
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OP is the projection. A little consideration will show that the 

rate of change of the alternating vector OM follows the same 
law (rate of change of velocity being acceleration), viz. it is 

represented by a third alternating vector, ON, of the same 
period, which is the projection of a uniformly rotating vector 
of length OQ' = . OS or tiP‘a (to a different scale), and one 
right angle in advance of the rotating vector OS, of which OM 
is the projection. 

The curves of displacement, velocity, and acceleration of 

P on a base of angles are shown to the right hand of Fig. 50. 

The base representing angles must also represent time, since 
the rotating vectors have uniform angular velocity w. The 

B 0 
time ^ ~ seconds, since <i> = The properties of the curves 

of spaces, velocities, and accelerations (Arts. 4, 14, and 16) 

are well illustrated by the curves in Fig. 50, which have been 

drawn to three scales of space, velocity, and acceleration by 
projecting points 90® ahead of Q, S, and Q' on the circle on 

the left. The acceleration of P, which is proportional to the 
displacement, may properly be considered to be of opposite 
sign to the displacement, since the acceleration is to the left 

from P to O when the displacement OP is to the right of O. 
The curves of displacement and acceleration are called “ cosine 

curves,” the ordinates being proportional to the cosines of angle 

POQ, or 6, or w/. Similarly, the curve of velocity is called a 

“ sine curve.” The relations between the three quantities may 

be expressed thus— 

Displacement (x) : velocity (7^) : acceleration 
= a cos : ao) sin wi : — ao)^ cos o)t 

Curved Path.—If the point P follows a curved path 
instead of the straight one AB, the curved path having the 

same length as the straight one, and if the acceleration of 

the point when distant x feet from its mid-path is tangential 

to the path and of the same magnitude as that of the point 
following the straight path AB when distant x feet from mid¬ 

path, then the velocity is of the same magnitude in each case. 

This is evident, for the points attain the same speeds in the 
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same intervals of time, being, under the same acceleration, 

always directed in the line of motion in each case. Hence 

the periodic times will be the same in each case, viz. 
V ^ 

where \i. is the acceleration in feet per second per second 
along the curve or the straight line, as the case may be. 

69. There are numerous instances in which bodies have 
simple harmonic motion or an approximation to it, for in 

perfectly elastic bodies the straining force is proportional to 

the amount of displacement produced, and most substances 
are very nearly perfectly elastic over a limited range. 

A common case is that of a body hanging on a relatively 

light helical spring and vibrating vertically. The body is 
acted upon by an effective accelerating force proportional to 

its distance from its equilibrium position, and, since its mass 

does not change, it will have an acceleration also 

proportional to its displacement from that point (Art. 40), and 

therefore it will vibrate with simple harmonic vibration. 

Let W = weight of vibrating body in pounds. 
e = force in pounds acting upon it at i foot from its 

equilibrium position, or per foot of displace¬ 

ment, the total displacement being perhaps 
less than i foot. This is sometimes called 
the stiffness of the spring. 

Then e,x ^ force in lbs. x feet from the equilibrium position 

and if jx = acceleration in feet per second per second i foot 
from the equilibrium position or per foot of displacement 

accelerating force 

mass 

W eg 
w 

27r 
hence the period of vibration is or 27r 

/W 
V ^ (Art. 68) 

The maximum force, which occurs when the extremities 

of the path are reached, is where a is the amplitude of 
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the vibration or distance from equilibrium position to either 

extremity of path, in feet. 
The crank-pin of a steam engine describes a circle ABC 

(Fig. 51), of which the length of crank OC is the radius, with 

fairly constant angular velocity. The piston P and other 

reciprocating parts are attached to the crank-pin by a con¬ 

necting-rod, DC, and usually move to and fro in a straight 
line, AP, with a diameter, AB, of the crank-pin circle. If the 

connecting-rod is very long compared to the crank-length, 

the motion is nearly the same as that of the projection N 
of the crank-pin on the diameter AB of the crank-pin circle, 

which is simple harmonic. If the connecting-rod is short, 
however, its greater obliquity modifies the piston-motion to 
a greater extent. 

70. Energ:y stored in Simple Harmonic Motion.— 
If <? = force in pounds at unit distance, acting on a body of 

weight W lbs. having simple harmonic motion, the force at a 
distance x is ex^ since it is proportional to the displacement. 

Therefore the work done in displacing the body from its equili¬ 
brium position through x feet is (Art. 54 and Fig. 35). This 
energy, which is stored in some form other than kinetic energy 
when the body is displaced from its equilibrium position, 

reaches a maximum \ecP‘ when the extreme displacement a 
(the amplitude) has taken place, and the effective accelerating 

force acting on the body is ca. In the mid-position of the 

body (x = o), when its velocity is greatest and the force acting 
on it is nil, the energy is wholly kinetic, and in other inter¬ 

mediate positions the energy is partly kinetic and partly 
otherwise, the total being constant if there are no resistances. 
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Fig. 52 shows a diagram of work stored for various dis¬ 

placements of a body having simple harmonic motion. The 
amplitude OA = <2, and 
therefore the force at A 
is ae^ which is represented 

by AD, and the work done 
in moving from O to A is 

represented by the area 

AOD(Art.54and Fig. 35). 
At P, distant x feet from 
O, the work done in motion 
from O is \ex^^ represented 

by the area OHP, and the 

kinetic energy at P is 

therefore represented by 
the area DAPH. 

71. Simple Pendulum.—This name refers strictly to a 

particle of indefinitely small dimensions and yet having weight, 
suspended by a perfectly flexible weightless thread from a fixed 
point, about which, as a centre, it swings freely in a circular 

arc. In practice, a small piece of 

heavy metal, usually called a pendulum 
bob, suspended by a moderately long 
thin fibre, behaves very nearly indeed 

like the ideal pendulum defined above, 

the resistances, such as that of the 

atmosphere, being small. 
Let O, Fig. 53, be the point of 

suspension of the particle P of a 

simple pendulum. 
Let OP, the length of thread, be 

/ feet. 

Let ^ = angle AOP in radians which OP makes with the 

vertical (OA) through O in any position P of the particle. 

Draw PT perpendicular to OP, ix, tangent to the arc of 
motion to meet the vertical through O in T. 

The tension of the thread has no component along the 

direction of motion (PT) at P. ^The acceleration along PT is 

0 

Fig. 5a. 
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then ^ sin since PT is inclined d to the horizontal (Art. 28). 
If B is very small, sin B may be taken equal to B in radians. 
(If B does not exceed 5°, the greatest error in this approxi¬ 
mation is less than i part in 800.) Hence the acceleration 

arc P 
along PT is ^B approximately. And B = — ; therefore 

t • t X 3.rc AP , , , . . 
acceleration along PT j-, and the acceleration is 

proportional to the distance AP, along the arc, of P from A, 
g 

being ^ per foot of arc. Hence the time of a complete oscilla¬ 

tion in seconds is— 

27r -f (Art. 68) 

and the velocity at any point may be found, as in Art. 68, for 
any position of the swinging particle. 

In an actual pendulum the pendulum bob has finite dimen¬ 

sions, and the length / will generally be somewhat greater than 
that of the fibre by which it is suspended. The ideal simple 
pendulum having the same period of swing as an actual pen¬ 
dulum of any form is called its simple equivalent pendulum. 

For this ideal pendulum the relation t = 27r,v/ L holds, and 

therefore I ~ ^2» which its length in feet may be 

calculated for a given time, /, of vibration. 

The value of the acceleration of gravity, varies at different 

parts of the earth's surface, and the pendulum offers a direct 

means of measuring the value of this quantity g^ viz. by 
accurate timing of the period of swing of a pendulum of known 
length. The length of an actual pendulum, i.e, of its simple 
equivalent pendulum, can be calculated from its dimensions. 

Example 1.—A weight rests freely on a scale-pan of a spring 
balance, which is given a vertical simple harmonic vibration of 
period 0*5 second. What is the greatest amplitude the vibration 
may have in order that the weight may not leave the pan ? What 
is then the pressure of the weight on the pan in its lowest position ? 

Let a = greatest amplitude in feet. 
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The greatest downward force on the body is its own weight, 

and therefore its greatest downward acceleration is occurring 

when the weight is in its highest position and the spring is about 

to return. Hence, if the scale-pan and weight do not separate, 

the downward acceleration of the pan must not exceed gy and 

therefore the acceleration must not exceed ^ per foot of dis- 
a 

placement. 

The acceleration per foot of displacement is » 

therefore 

16^2;;^ .ir 

or«>gfeet 

i.e. a O'204 foot or 2*448 inches 

If the balance has this amplitude of vibration, the pressure 

between the pan and weight at the lowest position will be equal to 

twice the weight, since there is an acceleration g upwards which 

must be caused by an effective force equal to the weight acting 

upwards, or a gross pressure of twice the weight from which the 

downward gravitational force has to be subtracted. 
Example a.—Part of a machine has a reciprocating motion, 

which is simple harmonic in character, making 200 complete oscilla¬ 

tions in a minute ; it weighs 10 lbs. Find (i) the accelerating force 
upon it in pounds and its velocity in feet per second, when it is 

3 inches from mid-stroke; (2) the maximum accelerating force; 

and (3) the maximum velocity if its total stroke is 9 inches, i.e, if 

its amplitude of vibration is 4^ inches. 

60 
Time of i oscillation =-: 

200 

therefore the acceleration per foot| _ 

distance from mid-stroke ~ -m- 

0*3 second 

400ir2 
^ feet per second 

per second 

and the accelerating force 0*25 foot from mid-stroke on 10 lbs. is— 

10 400ir2 -,, 
-X 0*25 X ^-= 34*06 lbs. 
32'2 ^ 9 

and the maximum accelerating force 4J inches from mid-stroke is 

1*5 times as much as at 3 inches, or 34*06 x 1*5 = 51*09 lbs. 
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The maximum velocity in feet per second occurring at mid-stroke 

= amplitude in feet x acceleration per foot of displacement 

(Art. 68) 

= amplitude in feet x 

8 "" 5-3 
, 

2 

V^elocityat 3 inches) _ 
from mid-stroke 3 ^ ^ 

= 7*85 X 

period 

7*85 feet per second 

V4*5" - 3" 
4*5 

4*5 

(Art. 68) 

= 5’85 feet per second 

Example 3.—The crank of an engine makes 150 revolutions 

per minute, and is 1*3 feet long. It is driven by a piston and a very 
long connecting rod (Fig. 51), so that the motion of the piston may 

be taken as simple harmonic. Find the 

piston velocity and the force necessary 

to accelerate the piston and recipro¬ 
cating parts, weighing altogether 300 

lbs., (i) when the crank has turned 

through 45° from its position (OB) in 

line with and nearest to the piston 

path; (2) when the piston has moved 

forward o'65 foot from the end of its 

stroke. 
Let ABC (Fig. 54) be the circular 

path 1*3 feet radius of the crank-pin, CN the perpendicular from 

a point C on the diameter AB. 

The angular velocity of crank OC is • —radians per second 

(i) The motion of the piston being taken as that of N, the 
acceleration of piston when the crank-pin is at C is— 

(5ir)2 X 1*3 X cos 45® (oiVcos 6^ Art. 68) 

and the accelerating force is— 

^ X (5ir)2 X 1-3 X = 2113 lbs. 

The velocity is— 

5» X 1*5 X sin 45° = 14*44 P^r second 

Fig. 54. 
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(2) When BN = 0*65 foot, ON = OB - BN = 1*3 - 0*65 = 0*65 

^ ON 
foot, and CON = cos~^ = cos’^ J = 60°. The accelerating 

force is then— 

^ X (Sir)2 X 1-3 X I = 1494 lbs. 
Z 

and the velocity is— 

5ir X 1*3 X sin 60° = 17*68 feet per second 

Example 4.—A light helical spring is found to deflect 0*4 inch 

when an axial load of 4 lbs. is hung on it. How many vibrations 
per minute will this spring make when carrying a weight of 

IS lbs. ? 

The force per foot of deflection is 4 -5- — =120 lbs. 

hence the time of vibration is 2ir ■ /-L5-=r 0*391 second 
32*2 X 120 

and the number of vibrations per minute is = I53’4 

Example 5.—Find the length of a clock pendulum which will 

make three beats per second. If the clock loses i second per 

hour, what change is required in the length of pendulum ? 

Let / = length of pendulum in feet. 

Time of vibration = J second 

feet = 1*09 inches 

The clock loses i second in 3600 seconds, i.e. it makes 3599 x 3 

beats instead of 3600 x 3. Since / oc ficj:, where n — number 

of beats per hour, therefore— 

correct length __ 3599^ - n — N2 
I *09 inches ~ 3600^ ^ 

= * ”• ridn approximately 

therefore shortening required = inches = 0*000606 inch 

Examples IX. 

I. A point has a simple harmonic motion of amplitude 6 inches and 
period 1*5 seconds. Find its velocities and accelerations o-i second, o*3 
second, and 0*5 second after it has left one extremity of its path. 
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• 2, A weight of lo lbs. hangs on a spring, which stretches 0*15 inch 

per pound of load. It is set in vibration, and its greatest acceleration 

whilst in motion is 16’i feet per second per second. What is the ampli¬ 

tude of vibration ? 
, 3. A point, A, in a machine describes a vertical circle of 3 feet diameter, 

making 90 rotations per minute. A portion of the machine weighing 400 

lbs. moves in a horizontal straight line, and is always a fixed distance 

horizontally from A, so that it has a stroke of 3 feet. Find the accele¬ 

rating forces on this portion, (i) at the end of its stroke ; (2) 9 inches from 

the end ; and (3) 0’05 second after it has left the end of its stroke. 

• 4. A helical spring deflects J of an inch per pound of load. How many 

vibrations per minute will it make if set in oscillation when carrying a load 

of 12 lbs. ? 

5. A weight of 20 lbs. has a simple harmonic vibration, the period of 

which is 2 seconds and the amplitude 1*5 feet. Draw diagrams to stated 

scales showing (i) the net force acting on the weight at all points in its 

path ; (2) the displacement at all times during the period ; {3) the velocity 

at all times during the period ; {4) the force acting at all times during the 

period. 
6. A light stiff beam deflects I'i45 inches under a load of I ton at 

the middle of the span. Find the period of vibration of the beam when so 

loaded. 

• 7. A point moves with simple harmonic motion ; when 0*75 foot from 

mid-path, its velocity is 11 feet per second ; and when 2 feet from the 

centre of its path, its velocity is 3 feet per second. Find its period and its 

greatest acceleration, 

8. How many complete oscillations per minute will be made by a 

pendulum 3 feet long? g = 32-2. 

• 9. A pendulum makes 3000 beats per hour at the equator, and 3011 per 

hour near the pole. Compare the value of g at the two places. 



CHAPTER V 

STATICS—CONCURRENT FORCES—FRICTION 

72* The particular case of a body under the action of several 

forces having a resultant zero, so that the body remains at rest, 

is of very common occurrence, and is of sufficient importance 

to mewt special consideration. The branch of mechanics which 

deals with bodies at rest is called Statics. 

We shall first consider the statics of a particle, i,e. a body 

having weight, yet of indefinitely small dimensions. Many of 

the conclusions reached will be applicable to small bodies in 

which all the forces acting may be taken without serious error 

as acting at the same point, or, in other words, being con¬ 

current forces. 

73. Resolution and Composition of Forces in One 

Plane.—It will be necessary to recall some of the conclusions 

of Art. 44, viz. that any number of concurrent forces can be 

replaced by their geometric sum acting at the intersection of 

the lines of action of the forces, or by components in two 

standard directions, which are for convenience almost always 

taken at right angles to one another. 

Triangle and Polygon of Forces.—If several forces, say four, 

as in Fig. 55, act on a particle, and ab^ bc^ cd^ de be drawn in 

succession to represent the forces of 7, 8, 6, and 10 lbs. respec¬ 

tively, then aey their geometric sum (Art. 44), represents a force 

which will produce exactly the same effect as the four forces, 

i>. (U represents the resultant of the four forces. If the final 

point e of the polygon abode coincides with the point <7, then 

the resultant ae is nil, and the four forces are in equilibrium. 

This proposition is called the Polygon of Forces, and may be 
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stated as follows : If several forces acting on a particle be 
represented in magnitude and direction by the sides of a closed 
polygon taken in order, they are in equilibrium. By a closed 

polygon is meant one the last side of which ends at the point 

from which the first side started. The intersection of one side 
of the polygon with other sides is immaterial. 

The polygon of forces may be proved experimentally by 

means of a few pieces of string and weights suspended over 
almost frictionless pulleys, or by a number of spring balances 

and cords. 
This proposition enables us to find one force out of several 

keeping a body in equilibrium if the remainder are known, viz. 
by drawing to scale an open polygon of vectors corresponding 

to the known forces, and then a line joining its extremities is 

the vector representing in one direction the resultant of the 
other forces or in the other direction the remaining force neces¬ 

sary to maintain equilibrium, sometimes called the equilibrant. 
For example, if forces Q, R, S, and T (Fig. 56) of given 

magnitudes, and one other force keep a particle P in equili¬ 

brium, we can find the remaining one as follows. Set out vectors 

ab^ be, cd, and de in succession to represent Q, R, S, and T 
respectively \ then ae represents their resultant in magnitude 

and direction, and represents in magnitude and direction the 
remaining force which would keep the particle P in equilibrium, 

or the equiUbrant. 
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Similarly, if all the forces keeping a body in equilibrium 

except two are known, and the directions of these two are 
known, their magnitudes may be found by completing the 

open vector polygon by two intersecting sides in the given 

. directions. 
In the particular case of three forces keeping a body in 

equilibrium, the polygon is a triangle, which is called the 

Triangle of Forces. Any triangle having its sides respectively 
parallel to three forces which keep a particle in equilibrium 

represents by its sides the respective forces, for a three-sided 

closed vector polygon {i,e, a triangle) with its sides parallel 
and proportional to the forces can always be drawn as directed 

for the polygon of forces, and any other triangle with its sides 

parallel to those of this vector triangle has its sides also pro¬ 
portional to them, since all triangles with sides respectively 
parallel are similar. The corresponding proposition as to any 

polygon with sides parallel to the respective forces is not true 
for any number of forces but three. 

J 74. Lami’s Theorem.—If three forces keep a particle 
in equilibrium, each is proportional to the sine of the angle 

between the other two. 
Let P, Q, and R (Fig. 57) be the three forces in equilibrium 

acting at O in the lines OP, OQ, and OR respectively. Draw 

any three non-concurrent lines parallel respectively to OP, OQ, 
and OR, forming a triangle abc such that ah is parallel to OP, be 

•o OQ, and ca to OR. Then angle aSc = 180 — POQ, angle 
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hca = i8o — QOR, and angle cH = i8o — ROP, and there¬ 
fore— 

A A 

sin abc = sin POQ 

sin bca = sin QOR 

sin c7ib = sin ROP 

In the last article, it was shown that any triangle, such as 

abc, having sides respectively parallel to OP, OQ, and OR, has 
its sides proportional respectively to P, Q, and R, or— 

P _ Q _ R 
ab~~ be ^ ca. 

, ah be ca 
also -r— .-V y =- 

sin bca sin cab sin abc 

ab be ca 
or-^ =r-. 

sin QOR sin ROP sin POQ 

and multiplying equation (i) by equation (2)— 

P_0_R 

sin QOR sin ROP sin POQ 

(i) 

(*) 

that is, each of the forces P, Q, and R is proportional to the 
sine of the angle between the other two. 

This result is sometimes of use in solving problems in 

which three forces are in equilibrium. 

75. Analytical Methods*—Resultant or equilibrant forces 

of a system, being representable by vectors, may be found by 

the rules used for resultant velocities, i.e, (i) by drawing 
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vectors to scale ] (2) by the rules of trigonometry for the solu¬ 

tions of triangles; (3) by resolution into components in two 
standard directions and subsequent compounding as in Art. 25. 

We now proceed to the second and third methods. 

To compound two forces P and Q inclined at an angle d 
to each other. 

Referring to the vector diagram abc of Fig. 58 (which need 

not be drawn, and is used here for the purpose of illustration 
and explanation) by the rules of trigonometry for the solution 

of triangles— 

(acY = {ahY 4- (pcY — 2 ab.becos abc 
= (aby 4 {bcY 42 ab .be cos 0 

hence if ab and be represent P and Q respectively, and R is the 
value of their resultant— 

R2 = p2 4 Q2 4 2PQ cos e 

from which R may be found by extracting the square root, and 
its inclination to, say, the direction of Q may be found by 

considering the length of the perpendicular ce from c on ad 

produced— 

Since ee = dc sin $ 

and de = de cos 0 
^ , ec dc sin ^ P sin 

\xcicad--- ~ Q + P”cor(? 

which is the tangent of the angle between the line of action of 

the resultant R and that of the force Q. 
When the resultant or equilibrant of more than two 

concurrent forces is to be found, the method of Art. 25 is 
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sometimes convenient. Suppose, say, three forces Fi, F^, 
and make angles a, |3, and y respectively with some chosen 
fixed direction OX, say that of the line of action of Fj, so 

that a = o (Fig. 59). 

Resolve Fi, Fj, and Fg along OX and along OY perpen¬ 
dicular to OX. 

Let Fx be the total of the components along OX, 
and let Fy „ „ „ „ „ OY. 

Let R be the resultant force, and 0 its inclination to OX; 
then— 

Fx == Fi 4- Fa cos /3 4- Fg cos y 

Fy = o 4- Fa sin ^ 4- Fg sin y 

and compounding Fx and Fy, two forces at right angles, R is 
proportional to the hypotenuse of a right-angled triangle, the 

other sides of which are proportional to Fx and Fy; hence- 

R2 = Fx"* 4- Fy2 

and R = VTF?~+"Fy2) 

The direction of the resultant R is given by the relation— 

tan^ = |y 

If the forces of the system are in equilibrium, that is, if 
the resultant is nil— 

R* = o 

or Fx^ 4- Fy^ == o 

This is only possible if both Fx » o and Fy « o. 
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The condition of equilibrium, then, is, that the components 
in each of two directions at right angles shall be zero. This 
corresponds to the former statement, that if the forces are in 
equilibrium, the vector polygon of forces shall be closed, as 
will be seen by projecting on any two fixed directions at right 
angles, the sides of the closed polygon, taking account of the 
signs of the projections. The converse statement is true, for 
if Fx = o and Fy = o, then R = o; therefore, if the com¬ 
ponents in each of two standard directions are zero, then the 

forces form a system in equilibrium, corresponding to the 
statement that if the vector polygon is a closed figure, 
the forces represented by its sides are in equilibrium. 

Example i.—A pole rests vertically with its base on the ground, 
and is held in position by five ropes, all in the same horizontal 
plane and drawn tight. From the pole the first rope runs due 
north, the second 75® west of north, the third 15° south of west, and 
the fourth 30® east of south. The tensions of these four are 25 lbs*, 

S 
Fig. 6a 

15 lbs., 20 lbs., and 30 lbs. respectively. Find the direction of the 
fifth rope and its tension. 

The directions of the ropes have been set out in Fig. 60, which 
£ 
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represents a plan of the arrangement, the pole being at P. The 

vector polygon abcde^ representing the forces in the order given, 

has been set out from a and terminates at e. ae has been 

drawn, and measures to scale 18*9 lbs., and the equilibrant ea is the 

pull in the fifth rope, and its direction is 7® north of east from the 

pole. 
Example 2.—Two forces of 3 lbs. and 5 lbs. respectively act on 

a particle, and their lines of action are inclined to each other at an 

angle of 70°. Find what third force will keep the particle in 

equilibrium. 

The resultant force R will be of magnitude given by the 

relation— 

R2 = 32 4. 52 4. 2.3.5 cos 70° 

= 9 4 25 4 (30 X 0 3420) = 34 4 10*26 = 44*26 

R = V44’26 = 6*65 lbs. 

And R is inclined to the force of 5 lbs. at an angle the tangent of 

which is— 

3 sin 70® _ ___3 .>1.?9397 
5 4 3 cos 70® 5 + (3 X 0*3420) 

- 2 8191 . ,0 
6^26 = ° 468 

which is an angle 25®. The equilibrant or 

third force required to maintain equilibrium 

is, therefore, one of 6*65 lbs., and its line of 

action makes an angle of 180® — 25® or 155® 

Fig. tfi. with the line of action of the force of 5 lbs., 
as shown in Fig. 61. 

Example 3.—Solve Example 1 by resolving the forces into 

components. Taking an axis PX due east (Fig. 60) and PY due 
north, component force along PX— 

Fx = -15 cos 15® - 20 cos 15® 4 30 cos 60® 

= (““35 X 0*9659) 4 (30 X 0*5) = — i8*8o6 lbs. 

Component force along PY— 

Fy =s 25 4 15 cos 75® - 20 cos 75° - 30 cos 30® 
= 25 — (s X 0*2588) - 30 X 0*8660 = -2*274 lbs. 

hence R^ = (i8*8i)^ 4 (2*27)* = 359*0 

R = V35?o = 18*95 lbs. 



Statics—Concurrent Forces—Friction 99 

R acts outwards from P in a direction south of west, being inclined 
to XP at an acute angle, the tangent of which is— 

Fy _ 2*274 _ 
Fx i«'8o6 ~ 

0*121 

which is the tangent of 6® 54'; i.e. R acts in a line lying 6° 54' 
south of west. The equilibrant is exactly opposite to this, hence 
the fifth rope runs outwards from the pole P in a direction 6° 54' 
north of east, and has a tension of 18*96 lbs. 

Examples X. 

1. A weight of 20 lbs, is supported by two strings inclined 30® and 45® 
respectively to the horizontal. Find by graphical construction the tension 
in each cord. 

2. A small ring is situated at the centre of a hexagon, and is supported 
by six strings drawn tight, all in the same plane and radiating from the 
centre of the ring, and each fastened to a different angular point of the 
hexagon. The tensions in four consecutive strings are 2, 7, 9, and 6 lbs. 
respectively. Find the tension in the two remaining strings. 

3. Five bars of a steel roof-frame, all in one plane, meet at a point; 
one is a horizontal tie-bar carrying a tension of 40 tons ; the next is also a 
tie-bar inclined 60® to the horizontal and sustaining a pull of 30 tons ; the 
next (in continuous order) is vertical, and runs upward from the joint, and 
carries a thrust of 5 tons ; and the remaining two in the same order radiate 
at angles of 135° and 210® to the first bar. Find the stresses in the last 
two bars, and state whether they are in tension or compression, i,e. whether 
they pull or push at the common joint, 

4. A telegraph pole assumed to have no force bending it out of the 
vertical has four sets of horizontal wires radiating from it, viz. one due east, 
one north-east, one 30® north of west, and one other. The tensions of the 
first three sets amount to 400 lbs., 500 lbs., and 250 lbs. respectively. Find, 
by resolving the forces north and east, the direction of the fourth set and 
the total tension in it. 

5. A wheel has five equally spaced radial spokes, all in tension. If the 
tensions of three consecutive spokes are 2000 lbs., 2800 lbs., and 2400 lbs. 
respectively, find the tensions in the other two. 

6. Three ropes, all in the same vertical plane, meet at a point, and there 
support a block of stone. They are inclined at angles of 40®, 120®, and 
160® to a horizontal line in their common plane. The pulls in the first two 
ropes are 150 lbs. and 120 lbs. respectively. Find the weight of the block 
of stone and the tension in the third rope. 

^76, Friction.—Friction is the name given to that pro¬ 

perty of two bodies in contact, by virtue of which a resistance 
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is offered to any sliding motion between them. The resistance 
consists of a force tangential to the surface of each body at 
the place of contact, and it acts on each body in such a direction 

as to oppose relative motion. As many bodies in equilibrium 

are held in their positions partly by frictional forces, it will be 
convenient to consider here some of the laws of friction. 

77* The laws governing the friction of bodies at rest aro 

found by experiment to be as follows :— 
(1) The force of friction always acts in the direction opposite 

to that in which motion would take place if it were absent^ and 

adjusts itself to the amou7it necessary to maintain equilibrium. 

There is, however, a limit to this adjustment and to the 
value which the frictional force can reach in any given case. 

This maximum value of the force of friction is called the 
limiting friction. It follows the second law, viz.— 

(2) The limiting friction for a given pair of surfaces depends 

upon the nature of the surfaces^ is proportional to the normal 
pressure between them^ and independent of the area of the sur¬ 

faces in contact. 

For a pair of surfaces of a given kind {i.e. particular sub¬ 
stances in a particular condition), the limiting friction F = ju,, R, 

where R is the normal pressure between the surfaces, and jw. is 
a constant called the coefficient of friction for the given surfaces. 

This second law, which is deduced from experiment, must be 
taken as only holding approximately. 

78. Friction during: Sliding: Motion.—If the limiting 
friction between the bodies is too small to prevent motion, and 
sliding motion begins, the subsequent value of the frictional 

force is somewhat less than that of the statical friction. The 

laws of friction of motion, so far as they have been exactly 
investigated, are not simple. The friction is affected by other 

matter (such as air), which inevitably gets between the two 
surfaces. However, for very low velocities of sliding and 

moderate normal pressure, the same relations hold approxu 

mately as have been stated for the limiting friction of rest, 
viz.— 

F - /4,R 

where F is the frictional force between the two bodies, and R 
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is the normal pressure between them, and ju, is a constant 
coefficient for a given pair of surfaces, and which is less than 
that for statical friction between the two bodies. The friction 

is also independent of the velocity of rubbing. 
^,79. An^le of Friction.—Suppose a body A (Fig. 62) is 

in contact with a body B, and is being pulled, say, to the right, 

the pull increasing until the limiting amount of frictional re¬ 
sistance is reached, that is, until the force of friction reaches a 

limiting value F = /x-R, where R is the normal pressure between 

the two bodies, and ju. is the coefficient of friction. If R and 
F, which are at right angles, are compounded, we get the 
resultant pressure, S, which B exerts on A. As the friction F 
increases with the pull, the inclination B of the resultant S of 

F and R to the normal of the surface of contact, /.<?. to the line 
of action of R, will become greater, since its tangent is always 

ch F 
equal to ^ or - (Art. 75). 

Let the extreme inclination to the normal be A when the 

friction F has reached its limit, )lcR. 

tan A 
R R 

Ik 

This extreme inclination, A, of the resultant force between 
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two bodies to the normal of the common surface in contact is 
called the angle of friction^ and we have seen that it is the angle 
the tangent of which is equal to the coefficient of friction— 

tan X - ju,, or A = tan"^ ju, 

8o. Equilibrium of a Body on an Inclined Plane.— 
As a simple example of a frictional force, it will be instructive 

here to consider the equilibrium of a body resting on an 
inclined plane, supported wholly or in part by the friction 

between it and the inclined plane. 

Let ^ be the coefficient of friction between the body of 

weight W and the inclined plane, and let a be the inclination 

of the plane to the horizontal plane. We shall in all cases 
draw the vector polygon of forces maintaining equilibrium, 

not necessarily correctly to scale, and deduce relations between 

the forces by the trigonometrical relations between the parts of 

the polygon, thus combining the advantages of vector illustra¬ 
tion with algebraic calculation, as in Art. 75. The normal 

to the plane is shown dotted in each diagram (Figs. 63-69 
inclusive). 

I. Body at rest on an inclined plane (Fig. 63). 

W 

I 

Fig. 61- 

If the body remains at rest unaided, there are only two 

forces acting on it, viz. its weight, W, and the reaction S of the 

plane; these must then be in a straight line, and therefore S 

must be vertical, t,e, inclined at an angle a to the normal to the 

plane. The greatest angle which S can make to the normal 
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is \ the angle of friction (Art. 79); therefore a cannot exceed 
X, the angle of friction, or the body would slide down the 
plane. Thus we might also define the angle of friction between 
a pair of bodies as the greatest incline on which one body 
would remain on the other without sliding. 

Proceeding to supported bodies, let an external force, P, 
which we will call the effort, act upon the body in stated 

directions. 

2. HorL^qntal eff start the body up thj^ 
plane. Fig. 64 shows the forces acting, ahdli triangle of 

forces, abc. 

\ 

When the limit of equilibrium is reached, and the body is 
about to slide up the plane, the angle dbc will be equal to A, 
the maximum angle which S can make with the normal to the 

plane; then— 

V ca / , N 
W = 

or P = W tan (a + A) 

which is the horizontal effort necessary to start the body up 
the plane. 

3. Hori:^ntal effort necessary to start the body sliding 

down the plane (Fig. 65). 

When the body is about to move down the plane, the angle 
cbd will be equal to the angle of friction, A; then— 

P ca 
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If a is greater than A, this can only be negative, c falls 

to the left of and the horizontal force P is that necessary 

to just support the body on the steep incline on which it cannot 
rest unsupported. 

4* Effort le^uired parallel to the plane to start the body up 

the plane (Fig. 66). 

Fig. <56. 

When the body is about to slide up the plane, the reaction 

S will make its maximum angle A (dbc) to the normal. 

Then ? = £? = 
W ab sin (90° - A) 

or P = W- 
sin (a + gt) 

which is the effort parallel to the plane necessary to start the 

body moving up the plane. 

Effort required parallel to the plane to start th^ body 

down the plane (Fig. 67). 
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When the body is just about to slide down the plane, chd = X. 

^ = 5^= sin (X - g) 
W ab sin (90° — X) 

or P = W 
cos X 

which is the least force parallel to the plane necessary to start 
the body moving down the plane. If a is greater than X, this 

= W 
be = S 
ea = l* 

Fig. 67. 

force, P, can only be negative, i.e. c falls between a and d, and 
the force is then that parallel to the plane necessary to just 
support the body from sliding down the steep incline. 

6. ^^east force necessary to start the body up the inplipe. 
Draw ab (Fig. 68) to represent W, and a vector, bc^ ot 

indefinite length to represent S inclined X to the normal. 
Then the vector joining a to the line be is least when it 
is perpendicular to be. Then P is least when its line of action 
is perpendicular to that of S; that is, when it is inclined 
90^^ — X to the normal, or X to the plane; and then-— 

-=sm(a + ^) 

Note that when a = o, 

P = W sin A 
E* 
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which is the least force required to draw a body along the 

level. 

7. ^n^ilarly, the least fprce necessary to start the bodj 
down a plane inclined a to the horizontal is— 

P = W sin (A - ol) 

if A is greater than a. If a is greater than A, P is negative, and 

P is the least force which will support the body on the steep 
incline. In either case, P is inclined 90® — A to the normal 

or A to the plane. 

8. Effort required in any assigned direction to start the 

body up the plane. 
Let $ be the assigned angle which the effort P makes with 

the horizontal (Fig. 69). 
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Then ^ r- - sin (A + a) __ sin (A + a) 
W ab sinacb cos <l9 - (a + A)} 

or P = sin (a + g) 
cos - (A + a)} 

which is the effort necessary, in the given direction, to start 

the body up the plane. 

9. The effort in any assigned direction necessary to pull 
the body down the plane may be similarly found, the resultant 

force S between the body and plane acting in this case at an 
angle A to the normal, but on the opposite side from that 
on which it acts in case 8. 

81. Action of Brake-blocks: Adhesion.—A machine 
or vehicle is often brought to rest by opposing its motion by 
a frictional force at or near the circumference of a wheel or 

a drum attached to the wheel. A block is pressed against 
the rotating surface, and the frictional force tangential to the 
direction of rotation does work in opposing the motion. The 

amount of work done at the brake is equal to the diminution 
of kinetic energy, and this fact gives a convenient method of 

making calculations on the retarding force. The force is not 

generally confined to what would usually be called friction, as 
frequently considerable abrasion of the surface takes place, 
and the blocks wear away. It is usual to make the block of a 

material which will wear more rapidly than the wheel or drum 
on which it rubs, as it is much more easily renewed. If the 
brake is pressed with sufficient force, or the coefficient of 

“ brake friction” between the block and the wheel is sufficiently 
high, the wheel of a vehicle may cease to rotate, and begin to 
slide or skid along the track. This limits the useful retarding 

force of a brake to that of the sliding friction between the 

wheels to which the brake is applied and the track, a quantity 

which may be increased by increasing the proportion of weight 
on the wheels to which brakes are applied. The coefficient of 
sliding friction between the wheels and the track is sometimes 

called the adhesion^ or coefficient of adhesion, 

8a. Work spent in Friction.—If the motion of a body 

is opposed by a frictional force, the amount of work done 
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against friction in foot-pounds is equal to the force in pounds 

tangential to the direction of motion, multiplied by the distance 
in feet through which the body moves at the point of applica¬ 

tion of the force. 
If the frictional force is applied at the circumference of a 

cylinder, as in the case of a brake band or that of a shaft or 
journal revolving in a bearing, the force is not all in the same 
line of action, but is everywhere tangential to the rotating 
cylinder, and it is convenient to add the forces together arith¬ 

metically and consider them as one force acting tangentially to 
the cylinder in any position, opposing its motion. If the 
cylinder makes N rotations per minute, and is R feet radius, 

and the tangential frictional force at the circumference of the 
cylinder is F lbs., then the work done in one rotation is 27rR. F 
foot-lbs., and the work done per minute is 27rRF. N foot-lbs., 

and the power absorbed is ^ horse-power (Art. 55). 
33,000 

In the case of a cylindrical journal bearing carrying a 

resultant load W lbs., F = /^W, where ju, is the coefficient of 
friction between the cylinder and its bearing. 

83. Friction and Efficiency of a Screw.—The screw 

Is a simple application of the inclined plane, the thread on 

either the screw or its socket (or nut) fulfilling the same functions 

as a plane of the same slope. For simplicity a square-threaded 

screw (Fig. 70) in a vertical position is considered, the diameter 
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d inches being reckoned as twice the mean distance of the 

thread from the axis. 
Let / = the pitch or axial distance, say in inches, from any 

point on the thread to the next corresponding point, so that 
when the screw is turned through one complete rotation in its 

fixed socket it rises p inches. Then the tangent of the angle 

of slope of the screw thread at its mean distance is which 

corresponds to tan a in Art. 80. Hence, if a tangential hori¬ 

zontal effort P lbs. be applied to the screw at its mean diameter 

in order to raise a weight W lbs. resting on the top of the 

screw— 

^=tan(a + X) 

where tan A = /a (Art. 80 (2)); or, expanding tan (a + X)— 

P _ tan a -f tan A 

W ~ I — tan a tan A 

p -|- jU^TT^ 

ird — ^p 

which has the value —> or tan a for a frictionless screw. 
ira 

Again, the work spent per turn of the screw is— 

P X TTi/ = W tan ( a + A) . TT^ inch-lbs. 

The useful work done is W ./ inch-lbs.; therefore the work 

lost in friction is W tan (a + \)Trd — W/inch-lbs., an expression 

which may be put in various forms by expansion and substitu¬ 

tion. The efficiency or proportion of useful work done 
to the total expenditure of work is— 

__W/ _ tan a 

W tan {a + A)^^ tan (a + A) 

which may also be expressed in terms of d, and ft. The 
. W . . ^ 

quantity is called the mechanical advantage; it is the ratio 

of the load to the eflfort exerted, and is a function of the 
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dimensions and the friction which usually differs with different 

loads. 
84. Friction of Machines.—Friction is exerted at all 

parts of a machine at which there is relative tangential motion 

of the parts. It is found by experiment that its total effects 
are such that the relation between the load and the effort, 

between the load and the friction, and between the load and 

the efficiency generally follow remarkably simple laws between 
reasonable limits. The subject is too complex for wholly 

theoretical treatment, and is best treated experimentally. It 

is an important branch of practical mechanics. 

Example 1.—A block of wood weighing 12 lbs. is just pulled 
along over a horizontal iron track by a horizontal force of lbs. 

Find the coefficient of friction between the wood and the iron. How 

much force would be required to drag the block horizontally if the 

force be inclined upwards at an angle of 30® to the horizontal ? 

If M = the coefficient of friction— 

jit X 12 = 3^ lbs. 

3*5 
/i = ^ = 0*291 

Let P = force required at 30® inclination ; 
S = resultant force between the block and the iron track. 

abc (Fig. 71) shows the triangle of forces when the block just 
reaches limiting equilibrium. In this triangle, cab = 6o®> since P is 
inclined 30° to the horizontal; and— 
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tan ahc = /a = 0*291 or ^ 

I I 7 • 
hence sin abc = -~:r— —-- = sm A 

VC I -f cot* aoc) ^|{\^^ CV^) } ^5 
and cos a = 

~ — sin A _ 
12 ab sin abb sin (A + 60) 

sin A 

sin A + cos A 
2 

7x2 o 
—-= 0-289 
7 + 24v^3 

P = T2 vj 0*280 

Or thus— 

Normal pressure between block \ 

and track / 

horizontal pull P cos 30*^ 

hence P 

Example a.—A train, the weight of which, including locomotive, 

is 120 tons, is required to accelerate to 40 miles per hour from rest 
in 50 seconds. If the coefficient of adhesion is find the necessary 

weight on the driving wheels. In what time could the train be 

brought to rest from this speed, (1) with continuous brakes 

on every wheel on the train) ; (2) with brakes on the driving-wheels 

only ? 

The acceleration is f x 88 x ^ = ri73 feet per sec. per sec. 
I *^0 

The accelerating force is 1*173 x = 4*37 tons 
32 2 

= 12 — P sin 30® 

= /a(i2 - P sin 30®) 

= 12 X 

= 3*46 lbs. 

The greatest accelerating force obtainable without causing the 

driving-wheels to slip is of the weight on the wheels, therefore 

the minimum weight required on the driving-wheels is 7 x 4*37 
= 30*6 tons. 

(i) The greatest retarding force with continuous brakes is 120 x 4 

tons. Hence, if / = number of seconds necessary to bring the train 

120 
to rest, the impulse 120 x } x / = —“ X ^ x §, the momentum in 

32 2 

ton and second units. Hence— 

7 X 88 X 2 

3 X 32*2 
12*75 seconds 
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(2) If the brakes are on the driving-wheels only, the retarding 
force will be restricted to f of 30 6 tons, i.e, to 4*37 tons, which was 

the accelerating force, and consequently the time required to come 
to rest will be the same as that required to accelerate, i.e. 

50 seconds. 
Example 3.—A square-threaded screw 2 inches mean diameter 

has two threads per inch of length, the coefficient of friction 
between the screw and nut being 0*02. Find the horizontal force 

applied at the circumference of the screw necessary to lift a weight 

of 3 tons. 
The pitch of the screw is ^ inch. 

If a = angle of the screw, tan o = — = 0*0796 
2ir 

and if A = angle of friction, tan a = 0*02 

Let P = force necessary in tons. 

I - 0*0796 X 0*02 

Examples XL 

.Jl, A block of iron weighing ii lbs. can be pulled along a horizontal 
wooden plank by a horizontal force of 1*7 lbs. What is the coefficient of 
friction between the iron and the plank ? What is the greatest angle to the 
horizontal through which the plank can be tilted without the block of iron 
sliding off? 

2. What is the least force required to drag a block of stone weighing 
20 lbs. along a horizontal path, and what is its direction, the coefficient of 
friction between the stone and the path being 0*15 ? 

3. What horizontal force is required to start a body weighing 15 lbs, 
moving up a plane inclined 30° to the horizontal, the coefficient of friction 
between the body and the plane being 0*25 ? 

^4. Find the least force in magnitude and direction required to drag a 
log up a road inclined 15® to the horizontal if the coefficient of friction 
between the log and the road is 0*4. 

5. With a coefficient friction 0*2, what must be the inclination of a 
plane to the horizontal if the work done by the minimum force in dragging 
10 lbs. a vertical distance of 3 feet up the plane is 60 foot lbs. ? 

6. A shaft bearing 6 inches diameter carries a dead load of 3 tons, 
and the shaft makes 80 rotations per minute. The coefficient of friction 
between the shaft and bearing is o*oi2. Find the horse-power absorbed in 
friction in the bearing. 

j = tan (a 4- A) = ^ ^ 

= = 0*09976 

hence P = 0*2993 ton 

tan a -f tan A 

tan a tan A 
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7. If a brake shoe is pressed against the outside of a wheel with a force 

of 5 tons, and the coefficient of friction between the wheel and the brake is 

0’3, find the horse-power absorbed by the brake if the wheel is travelling 
at a uniform speed of 20 miles per hour. 

8. A stationary rope passes over part of the circumference of a rotating 
pulley, and acts as a brake upon it. The tension of the tight end of the 
rope is 120 lbs., and that of the slack end 25 lbs., the difference being due 

to the frictional force exerted tangentially to the pulley rim. If the pulley 

makes 170 rotations per minute, and is 2 feet 6 inches diameter, find the 

horse-power absorbed. 

9. A block of iron weighing 14 lbs, is drawn along a horizontal 

wooden table by a weight of 4 lbs. hanging vertically, and connected to 

the block of iron by a string passing over a light pulley. If the coefficient 

of friction between the iron and the table is 0*15, find the acceleration of 

the block and the tension of the string. 

10. A locomotive has a total weight of 30 tons on the driving wheels, 

and the coefficient of friction between the wheels and rails is 0*15. What 

is the greatest pull it can exert on a train ? Assuming the engine to be 

sufficiently powerful to exert this pull, how long will it take the train to 

attain a speed of 20 miles per hour if the gross weight is 120 tons, and the 
resistances amount to 20 lbs. per ton ? 

n. A square-threaded screw, i *25 inches mean diameter, has five threads 

per inch of length. Find the force in the direction of the axis exerted 
by the screw when turned against a resistance, by a handle which exerts a 

force equivalent to 500 lbs. at the circumference of the screw, the co* 

efficient of friction being o'o& 



CHAPTER VI 

STATICS OF RIGID BODIES 

85. The previous chapter dealt with bodies of very small 

dimensions, or with others under such conditions that all the 

forces acting upon them were concurrent. 

In general, however, the forces keeping a rigid body in 

equilibrium will not have lines of action all passing through 

one point. Before stating the conditions of equilibrium of a 

rigid body, it will be necessary to consider various systems of 

non-concurrent forces. We shall assume that two intersecting 

forces may be replaced by their geometric sum acting through 

the point of intersection of their lines of action; also that a 

force may be considered to act at any point in its line of action. 

Its point of application makes no difference to the equilibrium 

of the body, although upon it will generally depend the dis¬ 

tribution of internal forces in the body. With the internal 

forces or stresses in the body we are not at present concerned. 

86. Composition of Parallel Forces.—The following 

constructions are somewhat artificial, but we shall immediately 

from them find a simpler method of calculating the same 

results. 

To find the resultant and equilibrant of any two given like 

parallel forces, /.(?. two acting in the same direction. Let P 

itnd Q (Fig. 72) be the forces of given magnitudes. Draw any 

line, AB, to meet the lines of action of P and Q in A and B 

respectively. At A and B introduce two equal and opposite 

forces, S, acting in the line AB, and applied one at A and the 

other at B. Compound S and P at A by adding the vectors 

Arf and de^ which give a vector A<r, representing Rj, the resultant 
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of S and P. Similarly, compound S and Q at B by adding 
the vectors B/andT^, which give a vector sum B^, representing 

R2, the resultant of Q and S. Produce the lines of action of 
Ri and R2 to meet in O, and transfer both forces to O. Now 

resolve Ri and Ra at O into their components again, and we 

Vector de represents P, 
Vector represents Q. 
Vectors kd and B/ represent equal and opposite forces S- 

Fig, 72. 

have left two equal and opposite forces, S, which have a 

resultant nil, and a force P + Q acting in the same direction 

as P and Q along OC, a line parallel to the lines of action 

of P and Q. If a force P + Q acts in the line CO in the 
opposite direction to P and Q, it balances their resultant, and 
therefore it will balance P and Q, /.<?. it is their equilibrant. 

Let the line of action of the resultant P -f Q cut AB in C. 
Since AOC and Aed are similar triangles— 

OC P 
. . (i> 



tl6 Mechanics for Engineers 

and since BOC and ^gf are similar triangles— 

OC - - Q. 

and dividing equation (2) by equation (i)— 

P 
CA Q 

or the point C divides the line AB in the inverse ratio of the 

magnitude of the two forces ; and similarly the line of action 
OC of the resultant P -f Q divides any line meeting the lines 

of action of P and Q in the inverse ratio of the forces. 
To find the resultant of any two given unlike parallel forces, 

ue, two acting in opposite directions. 
Let one of the forces, P, be greater than the other, Q 

(Fig. 73). By introducing equal and opposite forces, S, at A 

Vector de represents P, 
Vector^ represents Q. 
Vectors A^ and hf represent equal and opposite forces S, 

Fig. 73. 

and B, and proceeding exactly as before, we get a force P — Q 
acting at O, its line of action cutting AB produced in C, 

Snce AOC and hed are similar triangles— 

CA_^_S 
(3) 
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and since BOC and B^/are similar triangles— 

CB ^ 
CO~/^"~Q • • • (4) 

Dividing equation (4) by equation (3)— 

CB_ P 

CA Q 

or the line of action of the resultant P — Q divides the line 
AB (and any other line cutting the lines of action of P and Q) 
externally, in the inverse ratio of the two forces, cutting it 
beyond the line of the greater force. If a force of magnitude 
P — Q acts in the line CO in the opposite direction to that of 
P (/>. in the same direction as Q), it balances the resultant of 
P and Q, and therefore it will balance P and Q; i,e, it is their 
equilibrant. 

This process fails if the two unlike forces are equal. The 
resultants Rj and Ra are then also parallel, and the point of 
intersection O is non-existent. The two equal unlike parallel 

forces are not equivalent to, or replaceable by, any single force, 
but form what is called a “ couple.” 

More than two parallel forces might be compounded by 
successive applications of this method, first to one pair, then to 
the resultant and a third force, and so on. We shall, however, 
investigate later a simpler method of compounding several 
parallel forces. 

87. Resolution into Parallel Components.—In the 
last article we replaced two 
parallel forces, P and Q, acting 
at points A and B, by a single 
force parallel to P and Q, acting 
at a point C in AB, the posi¬ 
tion of C being such that it 
divides AB inversely as the mag¬ 
nitudes of the forces P and Q. 
Similarly, a single force may be 
replaced by two parallel forces 

acting through any two given points. Let F (Fig. 74) be the 
single force, and A and B bo the two given points. Join AB 

Fig. 74.—Resolution into two like 
parallel components. 
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and let C be the point in which AB cuts the line of action of F. 
If, as in Fig. 74, A and B are on opposite sides of F, then F 
may be replaced by parallel forces in the same direction as 

F, at A and B, the magnitudes of which have a sum F, and 
which are in the inverse ratio of their distances from C, viz. a 

CB AC 
force F X ^ at A, and a force F x at B. The parallel 

equilibrants or balancing forces of F acting at A and B are 
CB AC 

then forces F X and F X respectively, acting in the 

opposite direction to that of the force F. 
If A and B are on the same side of the line of action of the 

force F (Fig. 75), then F may be replaced by forces at A and B, 

Fig, 75.—-Resolution into two unlike parallel components. 

the magnitudv^s of which have a difference F, the larger force 
acting through the nearer point A, and in the same direction 
as the force F, the smaller force acting through the further 
point B, and in the opposite direction to the force F, and the 

magnitudes being in the inverse ratio of the distances of the 
CB 

forces from C, viz. a force F X at A, in the direction of F, 

. . r X. AC ^ 
and an opposite force F x ^ at B. 

CB . 
The equilibrants of F at A and B will be F X ^ in the 

AC . 
opposite direction to that of F, and F X ^ in the direction 

of F, respectively. 
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As an example of the parallel equilibrants through two 
points, A and B, on either side of the line of action of a force, 
we may take the vertical up¬ 
ward reactions at the supports 
of a beam due to a load con¬ 
centrated at some place on 
the beam. 

Let W lbs, (Fig, 76) be 
the load at a point C on a 

beam of span / feet, C being 
X feet from A, the left-hand 
support, and therefore I — x feet from the right-hand support, B. 

Let Ra be the supporting force or reaction at A ; 
Rb be the supporting force or reaction at B. 

A > 6
 

^
 

CD
 

K 

1 
Fig. 76. 

Then Ra = W X ^ = W—^ ^ lbs, 

AP X 
and Rb = W X ~ 

More complicated examples of the same kind where there 

is more than one load will generally be solved by a slightly 

different method. 
88. Moments.—The moment of a force F lbs. about a 

fixed point, O, was measured (Art. 56) by the product ¥ X d 

Ib.-feet, where d was the perpen¬ 

dicular distance in feet from O 
to the line of action of F. Let 

ON (Fig. 77) be the perpen¬ 

dicular from O on to the line of 
action of a force F. 

Set off a vector ah on the 
line of action of F to represent 
F. Then the product ah . ON, 

which is twice the area of the 
triangle Oab^ is proportional to the moment of F about O. 

Some convention as to signs of clockwise and contra-clockwise 

moments (Art, 56) must be adopted. If the moment of F 
about O is contra-clockwise, i.e. if O lies to the left of the line 
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of action of F viewed in the direction of the force, it is usual 
to reckon the moment and the area Oab representing it as 

positive, and if clockwise to reckon them as negative. 

89. Moment of a Resultant Force.—This, about any 
point in the plane of the resultant and its components, is equal 

to the algebraic sum of the 

moments of the components. 
Let O (Fig. 78) be any 
point in the plane of two 

forces, P and Q, the lines 
of action of which intersect 
at A. Draw Od parallel to 
the force P, cutting the line 
of action of Q in c. Let 
the vector A<r represent the 

force Q, and set off hJb in 

the line of action of P to represent P on the same scale, 
P 

such that A^ = Ac X q. 

Complete the parallelogram hbdc. Then the vector Kd = 
Ac 4* = Ac 4- hb^ and represents the resultant R, of P 
and Q. 

Now, the moment of P about O is represented by twice the 

area of triangle KOb (Art. 88), and the moment of Q about 

O is represented by twice the area of triangle AOc, and the 

moment of R about O is represented by twice the area of 
triangle AOd 

But the area KOd = area hed + area AOc 

= area Kbd 4 area AOc 

hbd and hcd being each half of the parallelogram Pibdc\ 

hence area KOd = area AO^ 4 AOc, since hOb and kbd are 
between the same parallels; or— 

twice area KOd = twice area KOb 4 twice area AOc. 

and these three quantities represent respectively the moment* 

of R, P, and Q about O. Hence the moment of R about O is 

equal to the sum of the moments of P and Q about that point 
If O is to the right of one of the forces instead of to the leit 
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of both, as it is in Fig. 78, there will be a slight modification 

in sign ; e.g. if O is to the right of the line of action of Q and to 

the left of R and P, the area KOc and the moment of Q about 

O will be negative, but the theorem will remain true for the 
algebraic sum of the moments. 

Next let the forces P and Q be parallel (Fig. 79). Draw 

a line AB from O perpendicular to the lines of action of 

P and Q, cutting them in A and B respectively. Then the 
resultant R, which is equal to P + Q, cuts AB in C such that 
BC _ P 

AC ~ Q* 
Then P. AC = Q. BC 

The sum of moments of P and Q about O is P. OA + Q. OB, 

and this is equal to r(OC — AC) 4- Q(OC 4- CB), which is 

equal to (P + Q)OC - P . AC 4- Q. CB = (P 4* Q)OC, since 
P . AC = Q . CB. 

And (P 4- Q)OC is the moment of the resultant R about O. 

Hence the moment of the resultant is equal to the sum of 

moments of the two component forces. The figure will need 
modification if the point O lies between the lines of action of 
P and Q, and their moments about O will be of opposite sign, 

but the moment of R will remain equal to the algebraic sum 

of those of P and Q. The same remark applies to the figure 

for two unlike parallel forces. 
The force equal and opposite to the resultant, />. the 

equilibrant, of the two forces (whether parallel or intersecting) 

has a moment of equal magnitude and opposite sign to that of 

the resultant (Art. 88), and therfore theequilibiant has a moment 
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about any point in the plane of the forces^ of equal magnitude and 

of opposite sign to the moments of the forces which it balances. In 
other words, the algebraic sum of the moments of any two forces 

and their eqiiilibrant about any point in their plane is zero. 
90. Moment of Forces in Equilibrium.—If several 

forces, all in the same plane, act upon a body, the resultant 

of any two has about any point O in the plane a moment equal 
to that of the two forces (Art. 89). Applying the same theorem 

to a third force and the resultant of the first two, the moment 
of their resultant {ix, the resultant of the first three original 

forces) is equal to that of the three forces, and so on. By 
successive applications of the same theorem, it is obvious that 
the moment of the final resultant of all the forces about any 

point in their plane is equal to the sum of the moments of all 
the separate forces about that point, whether the forces be all 
parallel or inclined one to another. 

If the body is in equilibrium, the resultant force upon it in 

any plane is zero, and therefore the algebraic sum of the moments 
of all the separate forces about any point in the plane is zero. 

This fact gives a method of finding one or two unknown forces 
acting on a body in equilibrium, particularly when their lines 

of action are known. \\Tien more than one force is unknown, 
the clockwise and contra-clockwise moments about any point 

in the line of action of one of the unknown forces may most 

conveniently be dealt with, for the moment of a force about 

any point in its line of action is zero. 

The Principle of Moments, i,e. the principle of equation 
of the algebraic sum of moments of all forces in a plane acting 
on a body in equilibrium to zero, or equation of the clockwise 

to the contra-clockwise moments, will be most clearly under¬ 

stood from the three examples at the end of this article. 

Levers.—A lever is a bar free to turn about one fixed 
point and capable of exerting some force due to the exertion 
of an effort on some other part of the bar. The bar may be of 

any shape, and the fixed point, which is called the fulcrum, 
may be in any position. When an effort applied to the lever 

is just sufficient to overcome some given opposing force, the 
lever has just passed a condition of equilibrium, and the relation 



123 Statics of Rigid Bodies 

between the effort, the force exerted by the lever, and the 

reaction at the fulcrum may be found by the principle of 
moments. 

Example i.—A roof-frame is supported by two vertical walls 
20 feet apart at points A and B on the same level. The line of the 
resultant load of 4 tons on the 
frame cuts the line AB 8 feet 
from A, at an angle of 75® to the 
horizontal, as shown in Fig. 80. 
The supporting force at the point 
B is a vertical one. Find its 
amount. 

The supporting force through 
the point A is unknown, but its 
moment about A is zero. Hence 
the clockwise moment of the 4-ton resultant must balance the 
contra-clockwise moment of the vertical supporting force Rb at B. 

‘ Equating the magnitudes of the moments— 

4 X 8 sin 75® = 20 X Rr Ttons-feet) 
xi sin 7?® 

therefore Rb = ~- i 6 x 0*9659 = 1*545 tons 

Examples.—A light horizontal beam of 12-feet span carries 
loads of 7 cwt., 6 cwt., and 9 cwt. at distances of i foot, 5 feet, and 
10 feet respectively from the left-hand end. Find the reactions of 
the supports of the beam. 

If we take moments about the left-hand end A (Fig. 8r), the 

AC = I foot. J 

7 cuH/, 

f > 

Ociuu 1 9 cwt. 

AD = 5 feet. A_] C b 1 E B 

AE = 10 feet. 
AB =12 feet. 

Rb 

Fig. 81. 

vertical loads have a clockwise tendency, and the moment of the 
reaction Rb at B is contra-clockwise ; hence— 

Rb X 12 = (7 X i) + (6 X 5) -f (9 . 10) 

I2Rb = 7 + 30 + 90 = 127 
Rb = == 10*583 cwt. 
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Rjv, the supporting force at A, may be found by an equation of 
moments about B. Or since— 

Rb + Ra = 7 + 6 4* 9 = 22 cwt. 

Ra = 22 — 10*583 = I r4i6 cwt. 

Example 3.—An L-shaped lever, of which the long arm is 
18 inches long and the short one lo inches, has its fulcrum at the 

right angle. The eifort exerted on 

the end of the long arm is 20 lbs., 

inclined 30° to the arm. The short 

arm is kept from moving by a cord 
attached to its end and perpendicular 

to its length. Find the tension of the 

chord. 

Let T be the tension of the string 
in pounds. 

Then, taking moments about B 

(Fig. 82), since the unknown reaction 

of the hinge or fulcrum has no moment 

Fig. 82. about that point— 

AB sin 30"^ X 20 = BC x T 

18 X ^ X 20 = 10 X T 

T = 18 lbs. 

Examples XII. 

1. A post 12 feet high stands vertically on the ground. Attached to 
the top is a rope, inclined downwards and making an angle of 25® with 
the horizontal. Find what horizontal force, applied to the post 5 feet 
above the ground, will be necessary to keep it upright when the rope 
is pulled with a force of 120 lbs. 

2. Four forces of 5, 7, 3, and 4 lbs. act along the respective directions 
AB, BC, DC, and AD of a square, ABCD. Two other forces act, 
one in CA, and the other through D. Find their amounts if the six forces 
keep a body in equilibrium. 

3. A beam of 15-feet span carries loads of 3 tons, J ton, 5 tons, and 
I ton, at distances of 4, 6, 9 and 13 feet respectively from the left-hand end. 
Find the pressure on the supports at each end of the beam, which weighs 
i ton, 

4. A beam 20 feet long rests on two supports 16 feet apart, and over¬ 
hangs the left-hand support 3 feet, and the right-hand support by i foot. 
It carries a load of 5 tons at the left-hand end of the beam, and one of 
7 tons midway between the supports. The weight of the beam, which may 
be looked upon as a load at its centre, is I ton. Find the reactions at the 
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supports, i,e, the supporting forces. What upward vertical force at the 
right-hand end of the beam would be necessary to tilt the beam ? 

5. A straight crowbar, AB, 40 inches long, rests on a fulcrum, C, near to 
A, and a force of 80 lbs. applied at B lifts a weight of 3000 lbs, at A. 
Find the distance AC. 

6. A beam 10 feet long rests upon supports at its ends, and carries 
a load of ycwt. 3 feet from one end. Where must a second load of 19 cwt, 
be placed in order that the pressures on the two supports may be equal ? 

91. Couples.—In Art. 86 it was stated that two equal 
unlike parallel forces are not replace¬ 
able by a single resultant force; they ^ r 

cannot then be balanced by a single 
force. Such a system is called a couple^ 
and the perpendicular distance between 

the lines of action of the two forces is ^ 

called the arm of the couple. Thus, 

in Fig. 83, if two equal and opposite tp 

forces F lbs. act at A and B perpen- Fig. 83. 

dicular to the line AB, they form a 

couple, and the length AB is called the arm of the couple. 
92. Moment of a Couple.—This is the tendency to pro¬ 

duce rotation, and is measured by the product of one of the forces 
forming the couple and the arm of the couple; eg if the two 
equal and opposite forces forming the couple are each forces 
of 5 lbs., and the distance apart of their lines of action is 
3 feet, the moment of the couple is 5 x 3, or 15 lb,-feet; or 

in Fig. 83, the moment of the 

couple is F X AB in suitable 
units. 

The sum of the moments of 

the forces of a couple is the 
same about any point O in their 

plane. Let O (Fig. 84) be any 
point. Draw a line GAB per¬ 

pendicular to the lines of action of the forces and meeting 
them in A and B. Then the total (contra-clockwise) moment 

of the two forces about O is— 

F. OB - F. OA = F(OB - OA) = F. AB 
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This is the value, already stated, of the moment of the 
couple, and is independent of the position of O. 

A couple is either of clockwise or contra-clockwise ten¬ 

dency, and its moment about any point in its plane is of the 
same tendency (viewed from the same aspect) and of the same 
magnitude. 

93. Equivalent Couples.—Any two couples in a plane 
having the same moment are equivalent if they are of the same 
sign or turning tendency, i.e, either both clockwise or both 

contra-clockwise; or, if the 
couples are equal in magnitude 

^ and of opposite sign, they 
^ balance or neutralise one 

another. l^he latter form of 

the statement is very simply 

proved. Let the forces F, F 

(Fig. 85) constitute a contra- 

clockwise couple, and the forces 

F', F' constitute a clock-wise 
couple having a moment of the 
same magnitude. Let the lines 

of action of F, F and those of 
F', F' intersect in A, B, C, and D, and let AE be the perpen¬ 
dicular from A on BC, and CG the perpendicular from C on 
AB. Then, the moments of the two couples being equal— 

F X AE = F X GC 

F X AB sin ABC = F X CB sin ABC 
F X AB = F X CB 

F ^CB 

F' AB 

Hence CB and AB may, as vectors, fully represent F and F 

respectively, acting at B. And since ABCD is a parallelogram, 

CD = AB, and the resultant or vector sum of F and F' is in 

the line DB, acting through B in the direction DB. 
Similarly, the forces F and F' acting at D have an equal 

and opposite resultant acting through D in the direction BD. 

These two equal and opposite forces in the line of B and D 

balance, hence the two couples balance. 
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It has been assumed here that the lines of action of F and 
F' intersect; if they do not, equal and opposite forces in the 
same straight line may, for the purpose of demonstration, be 
introduced and compounded with the forces of one couple 
without affecting the moment of that couple or the equilibrium 
of any system of which it forms a part. 

94. Addition of Couples. — The resultant of several 
couples in the same plane and of given moments is a couple 
the moment of which is equal to the sum of the moments of 
the several couples. 

Any couple may be replaced by its equivalent couple 
having an arm of length AB (Fig. 93) and forces Fi, Fj, pro¬ 
vided Fj X AB = moment of the 

couple. 
Similarly, a second couple may 

be replaced by a couple of arm AB 

and forces F2, F^, provided Fa X AB 
is equal to the moment of this second 

couple. In this way clockwise 
couples must be replaced by clock¬ 

wise couples of arm AB, and contra- 
clockwise couples by contra-clock¬ 

wise couples of arm AB, until finally we have a couple of 
moment— 

(Fi + Fa + Fs + ... etc.)AB = F, x AB 4- F^ X AB -f F^x 
AB -f- . . . etc. 

= algebraic sum of moments of 
the given couples 

the proper sign being given to the various forces. 

95. Reduction of a System of Co-planar Forces.— 
A system of forces all in the same plane is equivalent to (i) a 
single resultant force, or (2) a couple, or (3) a system in equi¬ 
librium, which may be looked upon as a special case of (i), 
viz. a single resultant of magnitude zero. 

Any two forces of the system which intersect may be 
replaced by a single force equal to their geometric sum acting 
through the point of intersection. Continuing the same process 
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of compounding successive forces with the resultants of others 
as far as possible, the system reduces to either a single re¬ 
sultant, including the case of a zero resultant, or to a number 

of parallel forces. In the latter cdse the parallel forces may 
be compounded by applying the rules of Art. 86, and reduced 

to either a single resultant (including a zero resultant) or to a 

couple. Finally, then, the system must reduce to (i) a single 
resultant, or (2) a couple, or (3) the system is in equilibrium. 

96. Conditions of Equilibrium of a System of 
Forces in One Plane.—If such a system of forces is in equi¬ 
librium, the geometric or vector sum of all the forces must be 

zero, or, in other words, the force polygon must be a closed 
one, for otherwise the resultant would be (Art. 95) a single 
force represented by the vector sum of the separate forces. 

Also, if the system is in equilibrium (/>. has a zero re¬ 

sultant), the algebraic sum of all the moments of the forces 
about any point in their plane is zero (Art. 90). These are 

all the conditions which are necessary, as is evident from 

Art. 95, but they may be conveniently stated as three con¬ 
ditions, which are sufficient— 

(i) and (2) The sum of the components in each of two 

directions must be zero (a single resultant has a zero component 
in one direction, viz. that perpendicular to its line of action). 

(3) The sum of the moments of all the forces about one 

point in the plane is zero. 

If conditions (r) and (2) are fulfilled the system cannot 

have a single resultant (Art. 75), and if condition (3) is ful¬ 

filled it cannot reduce to a couple (Art. 92), and therefore it 

must reduce to a zero resultant (Art. 95), i.e, the system must 
be in equilibrium. 

These three conditions are obviously necessary, and they 

have just been shown to be sufficient, but it should be remem¬ 
bered that the algebraic sum of the moments of all the forces 

about every point in the plane is zero. The above three con¬ 

ditions provide for three equations between the magnitudes of 

the forces of a system in equilibrium and their relative posi¬ 

tions, and from these equations three unknown quantities may 

be found if all other details of the system be known. 



129 Statics of Rigid Bodies 

97. Solution of Statical Problems.—In finding the 
forces acting upon a system of rigid bodies in equilibrium, it 
should be remembered that each body is in itself in equi¬ 
librium, and therefore we can obtain three relations (Art. 96) 
between the forces acting upon it, viz. we can write three 
equations by stating in algebraic form the three conditions of 
equilibrium; that is, we may resolve ail the forces in two 
directions, preferably at right angles, and equate the com¬ 
ponents in opposite directions, or equate the algebraic sums to 
zero, and we may equate the clockwise and contra-clockwise 
moments about any point, or equate the algebraic sum of 
moments to zero. 

The moment about every point in the plane of a system of 
co-planar forces in equilibrium is zero, and sometimes it is 
more convenient to consider the moments about two points 
and only resolve the forces in one direction, or to take 
moments about three points and not resolve the forces. If 
more than three equations are formed by taking moments 
about other points, they will be found to be not independent 
and really a repetition of the relations expressed in the three 
equations formed. Some directions of resolution are more 
convenient than others, eg, by resolving perpendicular to some 
unknown force, no component of that force enters into the 
equation so formed. Again, an unknown force may be elimi¬ 
nated in an equation of moments by taking the moments about 
some point in its line of action, about which it will have a zero 
moment. 

•'Smooth ’’ Bodies.—^An absolutely smooth body would 
be one the reaction of which, on any body pressing against it, 
would have no frictional component, i,e. would be normal to 
the surface of contact, the angle of friction (Art. 79) being 
zero. No actual body would fulfil such a condition, but it 
often happens that a body is so smooth that any frictional force 
it may exert upon a second body is so small in comparison 
with other forces acting upon that body as to be quite negli¬ 
gible, eg. if a ladder with one end on a rough floor rest against 
a horizontal round steel shaft, such as is used to transmit power 
in workshops, the reaction of the shaft on the ladder might 

F 
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without serious error be considered perpendicular to the lengtli 
of the ladder, />. normal to the cylindrical surface of the 
shaft 

I.—A horizontal rod 3 feet long has a hole in one 
end, A, through which a horizontal pin passes forming a hinge. 

The other end, B, rests on a smooth roller at the same level. Forces 

of 7, 9, and 5 lbs. act upon the rod, their lines of action, which are 
in the same vertical plane, intersecting it at distances of 11, 16, and 

27 inches respectively from A, and making acute angles of 30°, 75'^, 

and 45° respectively with AB, the first two sloping downwards 

towards A, and the third sloping downwards towards B, as shown 

in Fig. 87. Find the magnitude of the supporting forces on the 
rod at A and B. 

Since the end B rests on a smooth roller, the reaction Rb at B is 

perpendicular to the rod (Art. 97). We can conveniently find this 

reaction at B by taking moments about A, to which the unknown 

supporting force at A contributes nothing. 

The total clockwise moment about A in Ib.-inches is— 

7 X 11 sin 30° 4* 9 X 16 sinl 

75"' + 5 X 27 sin 45"" | 
77 X 0 5 4* 144 X 0*9664-135 X 0707 

= 273 Ib.-inches 

Th e total contra-clockwise moment about A is Rb x 36. Equating 

the moments of opposite sign— 

Kb X 36 = 273 Ib.-inches 

270-2 _ ^ 
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The remaining force Ra through A may be found by drawing 
to scale an open vector polygon with sides representing the forces 
7, 9, 5, and 7*6 lbs. (Rb) ; the closing side then represents Ra» 

Or we may find Ra by resolving all the forces, say, horizontally 
and vertically. Let Ha be the horizontal component of Ra 
estimated positively to the right, and Va its vertical component 
upwards. Then, by Art. 96, the total horizontal component of all 
the forces is zero ; hence— 

Ha - 7 cos 30° ~ 9 cos 75® + 5 cos 45° = o 
Ha = 7 X 0*866 4- 9 x 0*259 - 5 x 0*707 = 4*86 lbs. 

Also the total vertical component is zero, hence— 

Va -■ 7 sin 30° - 9 sin 75° — 5 sin 45*^ 4- 7*6 = o 
Va = 7 x^4-9X 0*966 4- 5 X 0707 ~ 7*6 = 8* 13 lbs. 

Compounding these two rectangular components of Ra— 

Ra = V{(4-86)« + (8-TM (Art. 7S) 
Ra = V8972 = 9 47 lbs. 

Example 2.—ABCD is a square, each side being 17*8 inches, 
and E is the middle point of AB. Forces of 7, 8, 12, 5, 9, and 
6 lbs. act on a body in the lines and directions AB, EC, BC, BD. 

CA, and DE respectively. Find the magnitude, and position 
with respect to ABCD, of the single force required to keep the body 
in equilibrium. 
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Let F be the required force ; 
Ha be the component of F in the direction AD ; 
Va be the component of F in the direction AB ; 

p be the perpendicular distance in inches of the force 

from A. 

}=o 

Then, resolving in direction AD, the algebraic total component 
being zero — 

Ha + 8 cos BCE -f 12 4“ 5 cos 45® — 9 cos 45*^ 

— 6 cos EDA 

Ha4-8x-4- + i2-4X-4-~6x-^=o 
a/5 a/5 

Ha 4* (2 X 0*894) 4- 12 - 4 X 0*707 = o 

Ha = - 10*96 lbs. 

Resolving in direction AB— 

Va 4- 7 4* 8 cos BEC - 5 cos 45® — 9 cos 45° \ _ 
4- 6 cos AfiD I - o 

V. + 7+.4x^-i4x^ = o 

Va = -7 - 6*26 4- 9*90 = -3’36 

then F = \f{(io*g6y 4- (3*36)^} = 11*46 lbs. 

and is inclined to AD at an angle the tangent of which is— 

-3’36 
—10*96 

= 0*3066 

i,e. at an angle 180 4- 17® or 197®. 
Its position remains to be found. We may take moments about 

any point, say A. Let p be reckoned positive if F has a contra* 

clockwise moment about A. 

11*46 X / 4- 6 X AD sin ADE - 5 x OA — 12 

X AB — 8 X AE sin }- 
106*8 . 89 , , , 142*4 

This completes the specification of the force F, which makes 

an angle 197® with AD and passes 25*52 inches from A, so as to 

have a contra-clockwise moment about A, The position of F it 

shown in Fig. 89. 
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The force might be specified as making 197° with AD and 
cutting it at a distance 25*52 -i- sin 197® or — 87*2 inches from A : 

87*2 inches to the left of A. 

Fig. 89. 

98. Method of Sections.—The principles of the pre¬ 
ceding article may be applied to find the forces acting in the 

members of a structure consisting of separate pieces jointed 

together. If the structure be divided by an imaginary plane of 
section into two parts, 

either part may be looked 
upon as a body in equi¬ 

librium under certain 
forces, some of which are 

the forces exerted by 

members cut by the plane 
of section. 

For example, if a 

hinged frame such as 

ABCDE (Fig. 90) is in 

equilibrium under given forces at A, B, C, D, and E, and an 
imaginary plane of section XX' perpendicular to the plane of 

the structure be taken, then the portion ABzyw is in equilibrium 
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under the forces at A and B, and the forces exerted upon it by 
the remaining part of the structure, viz. the forces in the bars 
BD, BC, and AC. This method of sections is often the 

simplest way of finding the forces in the members of a jointed 
structure. 

Example.—One end of a girder made up of bars jointed 
together is shown in Fig. 91. Vertical loads of 3 tons and 5 tons 

are carried at B and C respectively, and 
the vertical supporting force at H is 12 tons. 

The sloping bars are inclined at 60® to the 

horizontal. Find the forces in the bars 

CD, CE, and FE. 
The portion of the girder ACFH cut 

off by the vertical plane klfr is in equili¬ 
brium under the action of the loads at B 

and C, the supporting force at H, and the 

forces exerted by the bars CD, CE, and 

FE on the joints at C and F. Resolving these forces vertically, 
the forces in CD and FE have no vertical component, hence the 
downward vertical component force exerted by CE on the left- 

hand end of the girder is equal to the excess upward force of the 
remaining three, /.<f. 12 — 3 — 5 = 4 tons; hence— 

Force in CE x cos 30® = 4 tons 
2 

or force in CE = 4 x —~ = 4*62 tons 
V3 

This, being positive, acts downwards on the left-hand end, i,e, it 
acts towards E, or the bar CE pulls at the joint C, hence the bar 

CE is in tension to the amount of 4*62 tons. To find the force in 

bar FE, take a vertical section plane through C or indefinitely 

near to C, and just on the right hand of it. Then, taking moments 
about C and reckoning clockwise moments positive— 

12 X AC — 3 X BC 4- V3 ^ ^ (force in FE) = o 

12 X2 — 3X i-f- 4/3 X (force in FE) = o 

21 
and force in FE --- — 12*12 tons 

The negative sign indicates that the force in FE acts on F in 

the opposite direction to that in which it would have a clockwise 

moment about C, z>. the force pulls at the joint F ; hence the 
member is in tension to the extent of 12*12 tons. 
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Similarly, taking say clockwise moments about E, the force in 
CD is found to be a push of i4‘43 tons towards C, i.e, CD has a 
compressive force of 14*43 tons in it, as follows :— 

12x3 — 3X2-5X 1 + V3 (force in CD) = o 
force in CD = — 14*43 

99. Rigid Body kept in Equilibrium by Three 
Forces.—If three forces keep a body in equilibrium, they 
either all pass through one point (i.e, are concurrent) or are 

all parallel. For unless all three forces are parallel twamust 

intersect, and these are replaceable by a single resultant acting 
through their point of intersection. This resultant cannot 

balance the third force unless they are equal and opposite and 

in the same straight line, in which case the third force passes 
through the intersection of the other two, and the three forces 

are concurrent. 

The fact of either parallelism or concurrence of the three 

forces simplifies problems on equilibrium under three forces by 
fixing the position of an unknown force, since its line of action 

intersects those of the other two forces at their intersection, 

'rhe magnitude of the forces can be found by a triangle of 
forces, or by the method of resolution into rectangular com¬ 

ponents. 

Statical problems can generally be solved in various ways, 
some being best solved by one method, and others by different 

methods. In the following example four methods of solution 

are indicated, three of which depend directly upon the fact that 
the three forces are concurrent, which gives a simple method 

of determining the direction of the reaction of the rough 

ground. 

Example 1.—A ladder 18 feet long rests with its upper end 
against a smooth vertical wall, and its lower end on rough ground 
7 feet from the foot of the wall. The weight of the ladder is 40 lbs., 
which may be looked upon as a vertical force halfway along the 
length of the ladder. Find the magnitude and direction of the 
forces exerted by the wall and the ground on the ladder. 

The weight of 40 lbs. acts vertically through C (Fig. 92), and 
the reaction of the wall F^ is perpendicular to the wall (Art. 97). 
These two forces intersect at D. The only remaining force, F^, on 
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the ladder is the pressure which the ground exerts on it at B. This 
must act through D also (Art. 99), and therefore its line of action 

must be BD. Fi may be found by 
an equation of the moments about B, 

Fi X AE = 40 X iBE 

Fi X -7^) = 40 X I 

F, = 
140 

V(275) 
= 8*44 lbs. 

the horizon 
force of 8*44 lbs. and a vertical force 
of 40 lbs.— 

F2 = V{(8*44/ + 40^} = 40’9 Ihs. 

and is inclined to EB at an angle 

EBD, the tangent of which is— 

= 2 X 4/(2^) _ 
JEB f -‘*74 

which is the tangent of 78* i®. 
A second method of solving the problem consists in drawing a 

vector triangle, abc (Fig. 92), representing by its vector sides Fj, 
Fg, and 40 lbs. The 40-lb. force ab being set off to scale, and be 
and ca being drawn parallel to Fg and F, respectively, and the 
magnitudes then measured to the same scale. A third method 
consists (without drawing to scale) of solving the triangle abc 
trigonometrically, thus— 

Fj \ Y 2^ — ca cb \ ab 
= HB :BD;HD 

= 3’5:v'r(3'5)* + 275I: 

from which Fj and Fg may be easily calculated, viz.— 

Fi = = 844 lbs. 

Fa = 40 X 

2 X V2^ 
V'287 

'/275 
= 40‘9 lbs. 

Fourthly, the problem might be solved very simply by resolving 
the forces Fj and F,* and 40 lbs. horizontally and vertically* as in 
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this particular case the 4olb. weight has no component in the 

direction of Fj, and must exactly equal in magnitude the vertical 
component of Fg ; the horizontal component of Fg must also be 
just equal to the magnitude of F,. 

Example 2.—A light bar, AB, 20 inches long, is hinged at A 
so as to be free to move in a vertical plane. The end B is sup¬ 
ported by a cord, BC, so placed that the angle A6C is 145° and 
AB is horizontal. A weight of 7 lbs. is hung on the bar at a 
point D in AB 13 inches from A. Find the tension in the cord 
and the pressure of the rod on the hinge. 

Let T be the tension in the cord, and P be the pressure on the 

hinge. 
Taking moments about A, through which P passes (Fig. 93)— 

T X AF = 7 X AD 
T X 20 sin 35"" = 7 X 13 

ir47T = 91 

T = 7*93 lbs. 

The remaining force on the bar is the reaction of the hinge, 

which is equal and opposite to the pressure P of the bar on the 

hinge. 
The vertical upward component of this is 7 — T sin 35® 

«= 2*45 lbs., and the horizontal component is T cos 35° = 6'C lbs. 

Hence P = fi&sY + (2 45? = 6*95 lbs. 

The tangent of the angle DAE is = 0*377, corresponding 

to an angle of 20° 40'. 
The pressure of the bar on the hinge vs then 6*95 lbs. in a 
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direction, AE, inclined downwards to the bar and making an angle 
20° 40' with its length. 

Examples XIII. 

1. A trap door 3 feet square is held at an inclination of 30° to (and 

above) the horizontal plane through its hinges by a cord attached to the 

middle of the side opposite the hinges. The other end of the cord, which 

is 5 feet long, is attached to a hook vertically above the middle point of the 

hinged side of the door. Find the tension in the cord, and the direction 

and magnitude of the pressure between the door and its hinges, the weight 

of the door being 50 lbs., which may be taken as acting at the centre of the 

door. 

2. A ladder 20 feet long rests on rough ground, leaning against a rough 

vertical wall, and makes an angle of 60° to the horizontal. The weight of 

the ladder is 60 lbs., and this may be taken as acting at a point 9 feet from 

the lower end. The coejfhcicnt of friction between the ladder and ground 

is 0*25. If the ladder is just about to slip downwards, find the coefficient 

of friction between it and the wall. 

3. A ladder, the weight of which may be taken as acting at its centre, 

rests against a vertical wall with its lower end on the ground. The 

coefficient of friction between the ladder and the ground is J, and that 

between the ladder and the wall What is the greatest angle to the 

vertical at which the ladder will rest ? 

4. A rod 3 feet long is hinged by a horizontal pin at one end, and 

supported on a horizontal roller at the other. A force of 20 lbs. inclined 

45° to the rod acts upon it at a point 21 inches from the hinged end. Find 

the amount of the reactions on the rod at the hinge and at the free end. 

5. A triangular roof-frame ABC has a horizontal span AC of 40 feet, 

and the angle at the ai)ex B is 120°, AB and BC being of equal length. 

The roof is hinged at A, and simply supported on rollers at C. The loads 

it bears are as follow : (1) A force of 4000 lbs. midway along and perpen¬ 

dicular to AB ; (2) a vertical load of 1500 lbs. at B ; and (3) a vertical 

load of 1400 lbs. midway between B and C. Find the reactions or 

supporting forces on the roof at A and C. 

6. Draw a 2-inch square ABCD, and find the middle point E of AB, 

Forces of 17, 10, 8, 7, and 20 lbs. act in the directions CB, AB, EC, ED, 

and BD respectively. Find the magnitude, direction, and position of the 

force required to balance these. Where does it cut the line AD, and what 

angle does it make with the direction AD ? 

7. A triangular roof-frame ABC has a span AC of 30 feet. AB is 15 

feet, and BC is 24 feet. A force of 2 tons acts normally to AB at its 

middle point, and another force of i ton, perpendicular to AB, acts at B. 

There is also a vertical load of 5 tons acting downward at B. If the sup¬ 

porting force at A is a vertical one, find its magnitude and the magnitude 

and direction of the supporting force at C. 
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8. A jointed roof-frame, ABCDE, is shown in Fig. 94. AB and BC are 
inclined to the horizontal at 30®, EB and DB are inclined at 45® to the 



CHAPTER VII 

CENTRE OF INERTIA OR MASS—CENTRE OF 

GRA VITV 

lao. Centre of a System of Parallel Forces.—Let 
A, B, C, D, E, etc. ^Fig. 96), be points at which parallel forces 

Fi> Fa) F3, F4, Fjj, etc., respectively act. The position of the 
resultant force may be found by applying successively the rule 

B 

of Art, 86. Thus Fi and Fg may be replaced by a force 

Fi 4- Fa, at a point X in AB such that ~ (Art. 86). 

This force acting at X, and the force F3 acting at C, may 
be replaced by a force F, 4- F3 + F3 at a point Y in CX such F, 
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Proceeding in this way to combine the resultant of several 
forces with one more force, the whole system may be replaced 
by a force equal to the algebraic sum of the several forces 
acting at some point G. It may be noticed that the positions 

of the points X, Y, Z, and G depend only upon the positions 
of the points of application A, B, C, D, and E of the several 
forces and the magnitude of the forces, and are independent of 

the directions of the forces provided they are parallel. The 
point of application G of the resultant is called the centre of the 

parallel forces Fj, Fg, F3, F4, and Fp acting through A, B, C, D, 

and E respectively, whatever direction those parallel forces may 

have. 
101. Centre of Mass.—If every particle of matter in a 

body be acted upon by a force proportional to its mass, and 
all the forces be parallel, the centre of such a system of forces 

(Art. 100) is called the centre of mass or centre of inertia of 

the body. It is quite independent of the direction of the 
parallel forces, as we have seen in Art. 100. 

Centre of Gravity.—The attraction which the earth 

exerts upon every particle of a body is directed towards the 

centre of the earth, and in bodies of si^es which are small 
compared to that of the earth, these forces may be looked 

upon as parallel forces. Hence these gravitational forces have 

a centre, and this is called the centre of gravity of the body; it 
is, of course, the same point as the centre of mass. 

The resultant of the gravitational forces on all the particles 
of a body is called its weight, and in the case of rigid bodies it 

acts through the point G, the centre of gravity, whatever the 
position of the body. A change of position of the body is 

equivalent to a change in direction of the parallel gravitational 

forces on its parts, and we have seen (Art. 100) that the centre 

of such a system of forces is independent of their direction. 

We now proceed to find the centres of gravity in a number of 
special cases. 

102. Centre of gravity of two particles of given weights at 
a given distance apart, or of two bodies the centres of gravity 

and weights of which are given. 

Let A and B (Fig. 97) be the positions of the two particles 
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(or centres of gravity of two bodies) of weights and 

Fig. 07- 

respectively. The centre of gravity G is (Art. 86) in AB at 

such a point that— 
GA _ ^2 

GB 

_ ^2 
or GA = 

Wx 4“ 

AB 

and GB = 
Wx 4- ze'2 

. AB 

In the case of two equal weights, AG = GB = JAB. 
A convenient method of finding the point G graphically 

may be noticed. Set off from A (Fig. 98) a line AC, making 
any angle with AB (preferably 

at right angles), and proportional 

to a/2 to any scale; from B set 
off a line BD parallel to AC 
on the opposite side of AB, and 

proportional to %Vx to the same 

scale that AC represents a/g- 
Join CD. Then the intersection 

of CD with AB determines the 

point G. The proof follows simply from the similarity of the 

triangles ACG and BDG. 
103. Uniform Straight Thin Rod.—Let AB (Fig. 99) 

be the uniform straight rod of length AB : it may be supposed 

to be divided into pairs of particles of equal weight situated at 

equal distances from the middle 

^ G b , Q point G of the rod, since there 

will be as many such particles 

between A and G as between G 

Fig. 98. 

Fig. 99. 

and B. The c.g. (centre of gravity) of each pair, such as the 

particles at a and is midway between them (Art. 102), viz. 

at the middle point of the rod, G, hence the c.g. of the whole 
rod is at its middle point, G. 
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104. Uniform Triangular Plate or Lamina.—The term 
centre of gravity of an area is often used to denote the c.g. 
of a thin lamina of uniform material cut in the shape of the 

particular area concerned. 
We may suppose the lamina ABC (Fig. 100) divided into 

an indefinitely large number of strips parallel to the base AC. 
The c.g. of each strip, such as PQ, 

is at its middle point (Art. 103), 
and every c.g. is therefore in the 

median BB,' i.e. the line joining B 
to the mid-point B' of the base 

AC. Hence the c.g. of the whole 
triangular lamina is in the median 

BB'. Similarly, the c.g. of the 
lamina is in the medians AA' and 

CC'. Hence the c.g. of the triangle is at G, the intersection 
of the three medians, which are concurrent, meeting at a point 
distant from any vertex of the triangle by | of the median 

through it. The perpendicular distance of G from any side 

of the triangle is \ of the perpendicular distance of the oppo¬ 

site vertex from that side. 
Note that the c.g. of the triangular area ABC coincides 

with that of three equal particles placed at A, B, and C. For 
those at A and C are statically equivalent to two at B', and 

the c.g, of two at B' and one at B is at G, which divides BB' in 

the ratio 2 : i, or such at B'G = |BB' (Art. 102). 
Uniform Parallelogram.—If a lamina be cut in the 

shape of a parallelogram, 
ABCD (Fig. loi), the c.g. of 
the triangle ABC is in OB, 

and that of the triangle ADC 

is in OD, therefore the c.g. of 
the whole is in BD. Similarly 

it is in AC, and therefore it is 

at the intersection O. 
105. Rectilinear Figures in General.—The c.g. of any 

lamina with straight sides may be found by dividing its area up 

into triangles, and finding the c.g. and area of each triangle. 
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Thus, in Fig. 102, if Ga, and G3 are the centres of gravity 
^ of the triangles ABE, EBD, and 

DBG respectively, the c.g. of 
/ the area ABDE is at G4, which 

^ / 1^' ^ divides the length GjGa inversely 
.as the weights of the triangles 

\ ^NvG / AEB and EDB, and therefore 
\ ^2 X. / inversely as their areas. Simi- 
\ \ / larly, the c.g. G of the whole 
\ / figure ABCDE divides G3G4 in- 

Q——— ] versely as the areas of the figures 

^ ABDE and BCD. The inverse 
division of the lines GiGa and 

of G3G4 may in practice be performed by the graphical method 

of Art. 102. 

106. Symmetrical Figures.—If a plane figure has an 
axis of symmetry, i,c, if a straight line can be drawn dividing it 

Fig. 103. 

into two exactly similar halves, the c.g. of the area of the figure 

lies in the axis of symmetry. For the area can be divided into 
indefinitely narrow strips, the c.g. of each of which is in the axis 
of symmetry (see Fig. 103). If a figure has two or more axes of 

Fig. 104. 

symmetry, the c.g. must lie in each, hence it is at their intersection, 

eg the c.g. of a circular area is at its centre. Other examples, 

which sufficiently explain themselves, are shown in Fig. 104. 
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^07. Lamina or Solid from which a Part has been 
removed.—Fig. 105 represents a lamina from which a piece, 
B, has been cut. The centre of gravity of the whole lamina, 
including the piece B, is 

at G, and the c.g. of the - 
removed portion B is at g, 
The area of the remaining 
piece A is a units, and 
that of the piece B is 

units. It is required to 
find the c.g. of the remain- 
ing piece A. 

Let G' be the required F'g. 105. 
c.g.; then G is the c.g. of two bodies the centres of gravity of 
which are at G' and and which are proportional to a and b 
respectively. Hence G is in the line G'^, and is such that— 

GG' \ <^g\ \ h \ a (Art. 102) 

or GG' = -.G^ 
d 

That is, the c.g. G' of the piece A is in the same straight 
line gG as the two centres of gravity of the whole and the part 

B, at ~ times their distance apart beyond the c.g. of the whole 

lamina. The point G' divides the line G^ externally in the 

m 

ratio —: or G'G : G',^ :: b tr -f- 

The same method is ap- 

plicable if A is part of a solid 
from which a part B has been 
removed, provided a repre- / 

sents the weight of the part A, 

and b that of the part B. rX 

Graphical Construe- ^ 
tion.—The c.g. of the part A 

may be found as follows: 
from g draw a line (Fig. ^ 

106) at any angle (preferably 

at right angles) to G^ and proportional to a + b. From G 
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draw GQ parallel to and proportional to b. Join PQ, and 

produce to meet gfx produced in G'. Then G' is the c.g. of 

the part A. 
108. Symmetrical Solids of Uniform Material.—If a 

solid is symmetrical about one plane, />. if it can be divided 
by a plane into two exactly similar halves, the c.g, evidently 
lies in the plane, for the solid can be divided into laminae the 

Fig, 107. 

c.g. of each of which is in the plane of symmetry. Similarly, 

if the solid has two planes of symmetry, the c.g, must lie in the 
intersection of the two planes, which is an axis of the solid, as 

in Fig. 107. 
If a solid has three planes of symmetry, the line of inter' 

section of any two of them meets the third in the c.g., which is 

Fig. 108. 

a point common to all three planes, eg. the sphere, cylinder, 

etc, (see Fig. 108). 
109. Four Equal Particles not in the Same Plane.— 

Let ABCD (Fig. 109) be the positions of the four equal 
particles. Join ABCD, forming a triangular pyramid or tetrahe¬ 

dron. The c.g. of the three particles at A, B, and C is at D', 
the c.g. of the triangle ABC (Art. 104). Hence the c.g. of the 

four particles is at G in DD', and is such that— 

D'G ; GD = 1:3 (Art. 102) 

or D'G = i DD' 
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Fig. 109. 

Similarly, the c.g. of the four particles is in AA', BB', and CC, 
the lines (which are concurrent) 
joining A, B, and C to the centres 
of gravity of the triangles BCD, 

4CD, and ABD respectively. The 

distance of the c.g. from any face 
of the tetrahedron is \ of the per¬ 
pendicular distance of the opposite 

vertex from that face. 
no. Triangular Pyramid 

or Tetrahedron of Uniform 
Material.—Let ABCD (Fig. no) be the triangular pyramid. 

Suppose the solid divided into indefinitely thin plates, such 
as alfo, by planes parallel to the face ABC. Let D' be the 

c.g, of the area ABC. 

Then DD' will intersect 

the plate abc at its c.g., 
viz. at and the c.g. of 
every plate, and there¬ 

fore of the whole solid, 
will be in DD'. Simi¬ 
larly, it will be in AA', 

BB', and CC', where A', 
B', and C' are the centres 
of gravity of the triangles 

BCD, CDA, and DAB 

respectively. Hence the centre of gravity of the whole solid 

coincides with that of four equal particles placed at its vertices 
(Art. 109), arid it is in DD', and distant 5 DD' from D', in CC' 

and \ CC' from C', and so on. It is, therefore, also distant 

from any face, \ of the perpendicular distance of the opposite 
vertex from that face. 

III. Uniform Pyramid or Cone on a Plane Base.— 
If V (Fig. Ill) is the vertex of the cone, and V' the c.g. of the 

base of the cone, the c.g. of any parallel section or lamina into 

which the solid may be divided by plates parallel to the base, will 

be in VV'. Also if the base be divided into an indefinitely large 

number of indefinitely small triangles, the solid is made up of 

Fig. no. 
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an indefinitely large number of triangular pyramids having the 

triangles as bases and a common vertex, V. The c.g. of each 
small pyramid is distant from 
V I of the distance from its 

base to V. Hence the centres 

of gravity of all the pyramids 
lie in a plane parallel to the 

base, and distant from the 
vertex, f of the altitude of 

the cone. 
The c.g. of a right circular 

cone is therefore in its axis, 
which is the intersection of two 
planes of symmetry (Art. 108), 

and its distance from the base 

is J the height of the cone, or its distance from the vertex is f 

of the height of the cone. 

Example i.—A solid consists of a right circular cylinder 3 feet 

long, and a right cone of altitude 2 feet, the base coinciding with 

one end of the cylinder. The cylinder and cone are made of the 

same uniform material. Find the c.g. of the solid. 

If r = radius of the cylinder in feet—• 
the volume of cylinder _ Trr^ x 3_ _ 9 

volume of cone x J x 2 2 

hence the weight of the cylinder is 4*5 times that of the cone. 

The c.g. of the cylinder is at A (Fig. 112), the mid-point of its 

axis (Art. 108), ix. 1*5 feet from the plane of the base of the cone. 

Fig. 113, 

The c.g. of the cone is at B, J of the altitude from the base 
(Art. Ill), ix. 0*5 foot from the common base of the cylinder and 

cone. Hence— 

AB = AD + DB = r5 + 0*5 = 2 feet 

2 
And G is therefore in AB, at a distance " . ^. AB from A 

’ 2 + 9 

(Art. 102), ix, AG = ^ of 2 feet = ^ foot, or 4*36 inches. 
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Example 2.—A quadrilateral consists of two isosceles triangles 

on opposite sides of a base 8 inches 
long. The larger triangle has two 

equal sides each 7 inches long, and 

the smaller has its vertex 3 inches 

from the 8-inch base. Find the dis¬ 

tance of the c.g. of the quadrilateral 

from its 8-inch diagonal. 

Let ABCD (Fig. 113) be the 
quadrilateral, AC being the 8-inch 

diagonal, of which E is the mid¬ 

point ; then— 

ED =3 inches 

EB = 42= v'33 = 5745 inches 

The c.g. of the triangle ABC is in EB and \ EB from E ; or, 

if Gi is the c.g.— 

EGi = 5--^ = 1-915 inches 

Similarly, if Gg is the c.g. of the triangle ADC— 

LG2 = J of 3 inches = i inch 

therefore GjGa = 1*915 -f i = 2*915 inches 

This length is divided by G, the c.g. of the quadrilateral, so 

that— 

GgG _ area of triangle ABC _ M _ 1-915 

GjG area of triangle A CD ED i 

^9^5 
Gi'Gjj i-l-rqiS 2*9f5 
GgG = 1*915 inches 

and EG = GgG - GgE = 1*915 — i = 0*915 inch 

which is the distance of the c.g from the 8-inch diagonal. 
Example 3.—A pulley weighs 25 lbs., and it is found that the 

c.g. is 0 024 inch from the centre of the pulley. The pulley is 
required to have its c.g. at the geometrical centre of the rim, and 

to correct the error in its position a hole is drilled in the pulley 

with its centre 6 inches from the pulley centre and in the same 

diameter as the wrongly placed c.g. How much metal should be 
removed by drilling ? 

Let X be the weight of metal to be removed, in pounds. 
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Then, in Fig. 114, OA being 6 inches and OG 0'024 inch, the 
removed weight x lbs. having its c.g. at A, and the remaining 

Fig. I14. 

25—.1' lbs. having its c.g. at O, the c.g. G of the two together divides 
OA, so that— 

OG ^ 
GA 

OG _ 

OA 

hence x - 

1. A uniform beam weighing 180 lbs. is 12 feet long. It carries a 
load of 1000 lbs. uniformly spread over 7 feet of its length, beginning 
1 foot from one end and extending to a point 4 feet from the other. Find 
at what part of the beam a single prop would be sufficient to support it. 

2. A lever 4 feet long, weighing 15 lbs., but of varying cross-section, 
is kept in equilibrium on a knife-edge midway between its ends by the 
application of a downward force of i *3 lbs, at its lighter end. How far is 
the c.g. of the lever from the knife-edge? 

3. The heavy lever of a testing machine weighs 2500 lbs., and is poised 
horizontally on a knife-edge. It sustains a downward pull of 4 tons 
3 inches from the knife-edge, and carries a load of i ton on the same side 
of the knife-edge and 36 inches from it. How' far is the c.g. of the lever 
from the knife-edge ? 

4. A table in the shape of an equilateral triangle, ABC, of 5 feet sides, 
has various articles placed upon its top, and the legs at A, B, and C then 
exert pressures of 30, 36, and 40 lbs. respectively on the floor. Determine 
the position of the c.g. of the table loaded, and state its horizontal distances 
from the sides AB and BC. 

5. Weights of 7, 9, and 12 lbs. are placed in the vertices A, B, and C 
respectively of a triangular plate of metal weighing 10 lbs., the dimensions 
of which are, AB 16 inches, AC 16 inches, and BC ii inches. Find the 
^,g. of the plate and weights, and state its distances from AB and BC. 

6. One-eighth of a board 2 feet square is removed by a straight saw-cut 
ihrough the middle points of two adjacent sides. Determine the distance 
of the c.g. of the remaining portion from the saw«cut. If the whole board 
before part was removed weighed 16 lbs., what vertical upward force 

_X 

2S - X 

X 

25 
25 X OG o 024 „ 

OA -^5X 6 

Examples XIV. 
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applied at the corner diagonally opposite the saw-cut would be sufficient to 
tilt the remaining J of the board out of a horizontal position, if it turned 
about the line of the saw-cut as a hinge ? 

7. An isosceles triangle, ABC, having AB lo inches, AC lo inches, and 
base BC 4 inches long, has a triangular portion cut off by a line DE, 
parallel to the base BC, and 7*5 inches from it, meeting AB and AC in D 
and E respectively. Find the c.g. of the trapezium BDEC, and state its 
distance from the base BC. 

8. The lever of a testing-machine is 15 feet long, and is poised on 
a knife-edge 5 feet from one end and 10 feet from the other, and in a 
horizontal line, above and below which the beam is symmetrical. The 
beam is 16 inches deep at the knife-edge, and tapers uniformly to depths 
of 9 inches at each end ; the width of the beam is the same throughout its 
length. Find the distance of the c.g. of the beam from the knife-edge, 

9. A retaining wall 5 feet high is vertical in front and 9 inches thick 
at the top. The back of the wall slopes uniformly, so that the thickness of 
the wall at the base is 2 feet 3 inches. Find the c.g. of the cross-section of 
the wall, and state its horizontal distance from the vertical face of the 
wall. 

10. What is the moment of the weight of the wall in Question 9 per 
foot length, about the back edge of the base, the weight of the material 
being 120 lbs. per cubic foot? What uniform horizontal pressure per 
square foot acting on the vertical face of the wall w'ould be sufficient to 
turn it over bodily about the back edge of the base ? 

11. The casting for a gas-engine piston maybe taken approximately 
as a hollow cylinder of uniform thickness of shell and one flat end of uniform 
thickness. Find the c.g. of such a casting if the external diameter is 8 
inches, the thickness of shell inch, that of the end 3 inches, and the 
length over all 20 inches. State its distance from the open end. 

12. A solid circular cone stands on a base 14 inches diameter, and its 
altitude is 20 inches. From the top of this a cone is cut having a base 
3*5 inches diameter, by a plane parallel to the base. Find the distance of 
the c.g. of the remaining frustum of the cone from its base. 

13. Suppose that in the rough, the metal for making a gun consists 
of a frustum of a cone, 10 feet long, 8 inches diameter at one end, and 
6 inches at the other, through which there is a cylindrical hole 3 inches 
diameter, the axes of the barrel and cone being coincident. How far from 
the larger end must this piece of metal be slung on a crane in order to 
remain horizontal when lifted ? 

14. A pulley weighing 40 lbs. has its c.g. 0*04 inch from Us centre. 
This defect is to be rectified by drilling a hole on the heavy side of the 
pulley, with its centre 9 inches from the centre of the pulley and in 
the radial direction of the centre of gravity. What weight of metal should 
he drilled out ? 

15. A cast-iron pulley weighs 45 lbs., and has its c.g. 0*035 i^^^h from 
its centre. In order to make the c.g. coincide with the centre of tl)!' 
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pulley, metal is added to the light side at a distance of 8 inches from the 
centre of the pulley and in line with the c.g. What additional weight 
is required in this position ? If the weight is added by drilling a hole in 
the pulley and then filling it up to the original surface with lead, how much 
iron should be removed, the specific gravity of lead being 11*35, 
iron being 7*5 ? 

112. Distance from a Fixed Line of the Centre of 
Gravity of Two Particles, or Two Bodies, the Centres 

of Gravity of which are g:iven. 
Let A (Fig. 115) be the position 

of a particle of weight and let 

B be that of a particle of weight 

m2, or, if the two bodies are of 
finite size, let A and B be the 

N Q M positions of their centres of gravity. 

Then the centre of gravity of the 

two weights and is at G in AB such that— 

AG _m.2 

or AG = 

and GB == 
Wx 
+ m2 

. AB 

. AB 

Let the distances of A, B, and G from the line NM be 

OTi, ^2, and X respectively, the line NM being in a plane through 

the line AB. Then AN 1= Xj, BM = and GQ = x. 

or VjJS. =-r- 
Wl + 

and GQ or ^ = RQ + GR = AN + 
m2 

-BS 
ze/i + m2 

+ Xq7£/2 ^ - , m3 ^ X^m.-hX^Ti 
hence x = Xi -f-:-(x^ — ^1) = ———r-— 

Wi + W2 u\ + m2 

Distance of the c.g. from a Plane.—If x^ and x^ are 
the respective distances of A and B from any plane, then NM 
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may be looked upon as the line joining the feet of perpen¬ 

diculars from A and B upon that plane. Then the distance H 
of G from that plane is— 

^ = . 
Wx 4* ' 

This length x is also called the mean distance of the two 
bodies or particles from the plane. 

113. Distance of the c.g*. of Several Bodies or of 
One Complex Body from a Plane. 

Let A, B, C, D, and E (Fig. 116) be the positions of 5 par¬ 

ticles weighing W4, and respectively, or the 

centres of gravity of five bodies (or parts of one body) of those 

weights. 
Let the distances of A, B, C, D, and E from some fixed 

plane be jcj, X2, x^^ Xt, and x^ respectively, and let the weights 
in those positions be a/i, ze/j, and respectively. It is 

required to find the distance x of the c.g. of these five weights 

from the plane. We may conveniently consider the plane to 
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be a horizontal one, but this is not essential; then Xi, X2, ^3, 
and Xa are the vertical heights of A, B, C, D, and E respec¬ 

tively above the plane. Let d, <r, d, and e be the projections 

or feet of perpendiculars from A, B, C, D, and E respectively 
on the plane, so that Aa, B^, Dd, and Ee are equal to Xi^ ^2j 

.iTg, X4, and X(i respectively. 

Let Gi be the c.g. of and Wj,, and let be its projection 

by a vertical line on the plane; then— 

= 
+ 7O2X.2 

^'1 -f 
(Art. 112. (i)) 

Let G2 be the c.g. of (701 -f 702) and zo^, and let ^2 be its 
projection by a vertical line on the plane; then G2 divides 
GjC so that— 

G1G2 = 

and G2^2 = 

/—G,C 

(70, -h W2}Gig^ 

w, 4- m2 4- 7^3 
(Art. 112. (i)) 

and substituting the above value of — 

^ ^ 7£/iJri 4- 7v.jX2 + 
'-^2^2 — _|J _j_ 

Similarly, if G3 is the c.g. of w,, 7^/3, and and ^3 is its 

projection on the plane, then— 

^ 7i>,X, + W2X2 4- 7f/3^3 + 
—» and so on 

70, 4" Te^s 4* zifs 4- 7f'4 

and finally- 

^ _ 70,X, 4- 7^V^2 + 7£'3^3 + 7£/4^4 + ^6^5 I X 
Gf or JT = -;-r-:-;- . . (2) 

^ nof -L. -i- 4- •ri’/. 4. •iBi. ' ' w/i + a’2 + a's + a'l + Wi 

which may be written— 

- '2i(wx') 

Wi) • • 
. (3) 

where S stands for “ the sum of all such terms as.” If any 

of the points A, B, C, etc., are below the plane, their distances 

from the plane must be reckoned as negative. 
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Plane-moments*—The products etc., 
are sometimes called plane-moments of the weights of the 
bodies about the plane considered. The plane-moment of a 
body about any given plane is then the weight of the body 
multiplied by the distance of its c.g. from that plane. 

Then in words the relation (3) may be stated as follows: 
“ The distance of the c.g. of several bodies (or of a body 
divided into parts) from any plane is equal to the algebraic 
sum of their several plane-moments about that plane, divided 
by the sum of their weights.” 

And since by (3), jc X we may state that the 
plane-moment of a number of weights (or forces) is equal to 
the sum of their several plane-moments. 

This statement extends to plane-moments the statement 
in Art. 90, that the moment of the sum of several forces about 
any point is equal to the sum of the moments of the forces 
about that p)oint. 

It should be remembered that a horizontal plane was chosen 
for convenience only, and that the formulae (2) and (3) hold 
good for distances from any plane. 

114. Distance of the c.g. of an Area or Lamina 
from a Line in its Plane. 

This is a particular case of the problem of the last article. 
Suppose the points A, B, C, D, and E in the last article and 
Fig. 116 all lie in one plane perpendicular to the horizontal 
plane, from which their distances are Xi, X2, x^, x^y and x^ 
respectively. Then their projections a, by Cy d, and e on the 
horizontal plane all lie in a straight line, which is the inter¬ 
section of the plane containing A, B, C, D, and E with the 
horizontal plane, viz, the line OM in Fig. 117. 

Thus, if Xiy x^y x^y etc., be the distances of the centres of 

gravity of several bodies all in the same plane (or parts of 
a lamina) from a fixed line OM in this plane, then the 
distance of the c.g. of the bodies (or laminae) from the line 
being x— 

““ _ + 'it’sXz 4- + * * . > etc. 
^ ^ Wx +W2+ + ^ etc. 

%wx) 
(4> etc. 
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This formula may be used to find the position of the c.g. of 

a lamina or area by finding its distance from two non-parallel 
fixed lines in its plane. 

If the lamina is of irregular shape, as in Fig. ii8, the dis¬ 
tance of Its c.g. from a line OM in Its plane may be found 

approximately by dividing 
it into a number of narrow 
strips of equal width by lines 
parallel to OM, and taking 
the c.g. of each strip as 
being midway between the 
parallel boundary-lines. The 
weight of any strip being 
denoted by w— 

w = volume of strip X D 

where D = weight of unit volume of the material of the lamina, 
or— 

w = area of strip x thickness of lamina X D 

If the weight of the first, second, third, and fourth strips be 

^8> and ze/4 respectively, and so on, and their areas be 
Oi, dEa> (hy and respectively, the lamina consisting of a material 
of uniform thickness /, then and 
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so on. And if x is the distance of the c.g. of the area from 
OM, then by equation (4)— 

etc. 

4* 0^2 + 4- . . . , etc. 

= + aiiDxj, 4“ astPxs -f . . . , etc. 
OitD + a^lD -f- a^fD 4“ . • . , etc. (5) 

or, dividing numerator and denominator by the factor /D — 

a^x^ 4- 4“ ^3X3 + 4- . . . , etc. 

4 ^ 4- ^2^8 4- ^4 4‘ 

S(«^) ^(ax) 

S(a) A • • • 

, etc. 

(6) 

where A = total area of the lamina, and 5 has the same 
meaning as in (3), Art. 113. 

Similarly, the distance of the c.g. of the area A from 
another straight line may 

be found, and then the 
position of the c.g. is 

completely determined. 
Thus in Fig. 119, if 

X is the distance of the 

c.g. of the lamina from 
OM, and y is its distance 
from ON, by drawing two 

lines, PR and QS, parallel 

to OM and ON and dis¬ 
tant X and y from them 
respectively, the inter¬ 

section G of the two lines gives the c.g. of the lamina or 
area. 

Moment of an Area.—The products OiXi, etc., may be 
called moments of the areas ai, etc. 

Regfular Areas.—If a lamina consists of several parts, the 
centres of gravity of which are known, the division into thin 

strips adopted as an approximate method for irregular figures 

Fig. 1x9. 



158 Mechanics for Engineers 

is unnecessary. The distance 5 of the c.g, from any line OM is 

- _ ^(product of each area anc^istan^ of its c.g. from QM) 

^ ~ whole area 

S(plane mo. of each area about a plane perpend, to its own) 

^ whole area 

The product of an area and the distance of its c.g. from a 

line OM may be called the line moment ” of the area about 

OM, and we may write— 

S(line moments of each part of an area) 

^ whole area 

For example, in Fig. 120 the area ABECD consists of a 

triangle, BEC, and a rectangle, ABCD, 

having a common side, BC. Let the 
height EF ; let AD = I and AB = d, 

g / fGi Then the area ABCD ^ d x I, and the 

^ i X / X and if Gj is the 
c*g» of the triangle BEC, and G2 that of 

! ^^1 the rectangle ABCD, the distance x of 

^ ^ ^ ^ the c.g. of the area ABECD from AD is 
Fig. 120. found thus — 

- (d./) X X 

—Tj+fjTA-w+m— 

2d A 

115. Lamina with Part removed.—Suppose a lamina 
(Fig. 121) of area A has a portion of area a, removed. Let 

X = distance of c.g. G of A from a line OM in its plane; let 

Xi be the distance of the c.g. of the part a from OM; and 

let x^ be the distance of the c.g. of the remainder (A — a) from 

OM. 
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r|-i1 ‘ -f- a'^ / A . \ 
I hen X = -^-^ (Art. 114) 

X ,A = XjO-i- X2{A — a) 

xA — x^a 
and X, = 

A — ^7 

In this way we can find the distance of the c.g. of the part 
A — <T from OM, and similarly we can find the distance from 

JL 
Fig. 121. 

any other line in its plane, and so completely determine its 
position as in Art. 114. This method is applicable particularly 
to regular areas. 

116. Solid with Part removed.—The method used in 
the last article to find the c.g. of part of a lamina is applicable 
to a solid of which part has 
been removed. 

If in Fig. 122 A is a 

solid of weight W, and a 
portion B weighing w is re¬ 
moved, the distance of the 

c.g. of the remainder (W — w) 

from any plane is x^ where— 
— ' '4/ '<i/ 

— xW — XiW 0 ST 
^2 ^ Fig. X2a- 

by (i) Art. T12 and the method of Art. 115, where x = distance 

of c.g. of A from the plane, and x, = distance of c.g. of B from 
the plane. 
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117. Centre of Gravity of a Circular Arc.—Let ABC 
(Fig. 123) be the arc, OA being the radius, equal to a units 

of length, and the length of arc ABC 
being / units. If B is the middle 
point of the arc, OB is an axis 01 
symmetry, and the c.g. of the arc is 
in OB. Draw OM parallel to AC, 

Let the arc be divided into a 
number of small portions, such as PQ, 
each of such small length as to be 

sensibly straight. Let the weight of 

the arc be w per unit length. The 
c.g. of a small portion PQ is at V, its 
mid-point. Draw VW parallel to 
OM, and join OV. Draw PR and QR 

parallel to OM and OB respectively. 
Then, if ^ = distance of c.g. of arc from the line OM, as in 

Art. 114— 

S(PQ X X OW) _ S(PQ X OW) _ S(PQ. OW) 

■S(PQa') ■ S(PQ) I 

Now, since OV, VW, and OW are respectively perpen¬ 

dicular to PQ, RQ, and PR, the triangles PQR and OVW are 

similar, and— 
PQ _ 
OV OW 

or PQ . OW = OV. RP = ^ . RP 

hence S(PQ . OW) = . RP) = aS(RP) = « X AC 

and therefore— 

-_S(PQ.OW)_« 
--- j. AU 

AC 
or — X a 

The c.g. of the arc then lies in OB at a point G such that— 

AC chord 
OG = OB X or radius X- 

I arc 

or, if angle AOC = 2a, i.e. if angle AOB = a (radians)— 

AC 2AD 2 *a%\n X sin a 
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When the arc is very short, OG is very nearly equal to OB. 

ii8. Centre of Gravity of Circular Sector and 
Segment.—Let the sector ABCO (Fig. 124) of a circle 
centred at O and of radius subtend 
an angle 2 a at O. The sector may 
be divided into small parts, such as 
OPQ, by radial lines from O. Each 
such part is virtually triangular when 
PQ is so short as to be regarded as a 
straight line. The c.g. of the triangle 
OPQ is on the median OR, and \a 
from O. Similarly, the centres of 
gravity of all the constituent triangles, 
such as PQO, lie on a concentric arc 
abc of radius §a and subtending an 

Fig. 124. 

angle 2a at O. The c.g. of the sector coincides with 
the c.g. of the arc abe, and is therefore in OB and at a 

distance from O (Art. 117); the c.g. of a semi- 

circular area of radius “ a ” is at a distance -r “ or from 
2 37r 

its straight boundary. 
The c.g. of the segment cut offi>y any chord AC (Fig. 124) 

may be found by the principles of Art. 115, regarding the 
segment as the remainder of the 
sector ABCO when the triangle 

AOC is removed. 
119. Centre of Gravity of 

a Zone of a Spherical Shell. 
—Let ABCD (Fig. 125) be a zone 
of a spherical shell of radius a and 

thickness /, and of uniform material 
which weighs w per unit volume. 
Let the length of axis HF be /. 
Divide the zone into a number of 
equal smaller zones, such as abcdy 
by planes perpendicular to the axis OE, so that each has an 
axial length /i. Then the area of each small zone is the same, 

G 
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viz. z-irah, and the volume of each is then 2TraM. /, and each 

has its c.g. oil the axis of symmetry OE, and midway between 
the bounding planes, such as ad and bc^ if h is indefinitely short. 

Hence the c.g. of the zone coincides with that of a large 
number of small bodies each of weight w. 2'Kah. /, having their 
centres of gravity uniformly spread along the line FH, Hence 

the c.g. is at G, the mid-point of the axis FH of the zone, or— 

OG = 
2 

eg. the distance of the c.g. of a hemispherical shell from the 

plane of its rim is half the radius of the shell 
130. Centre of Gravity of a Sector of a Sphere.—Let 

OACB (Fig. 126) be a spherical sector of radius a. If the sector 
be divided into an indefinitely 

great number of equal small 

pyramids or cones having a 
common vertex O such that their 

bases together make up the base 
ACB of the sector, the c.g.'s of 
the equal pyramids will each be 

\a from O, and will therefore be 

evenly spread over a portion act (similar to the surface ACB) 
of a spherical surface centred at O and of radius ia. The c.g. 
of the sector then coincides with that of a zone, acb^ of a thki 

spherical shell of radius \a^ and is midway between c and the 
plane of the boundary circle ab^ uc. midway between d and c. 

Solid Hemisphere.—The hemisphere is a particular case 
of a spherical sector, and its c.g. will coincide with that of a 

hemispherical shell of radius where a is the radius of the 
solid hemisphere. This is a point on the axis of the solid 
hemisphere, and half of or fa from its base. 

Example i.—The base of a frustum of a cone is 10 inches 
diameter, and the smaller end is 6 inches diameter, the height 
being 8 inches, A co-axial cylindrical hole, 4 inches diameter, 
is bored through the frustum. Find the distance of the c.g. of the 
remaining solid from the plane of its base. 

The solid of which the c.g. is required is the remaining portion 
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of a cone, ABC 127), when the upper cone, DBE, and a 
cylinder, FGKH, have been removed. 

Since the cone diameter decreases 4 inches in a height of 
8 inches— 

The height BM = 8-h8xf = 20 inches 
and the c.g. of the cone^ . , ^ ^ ^ 

Ann ' I ^ }- S inches from AC ABC IS J X 20 inches j ^ 
volume of cone ABC = tt . (5)2. -2^ = n . 

cubic inches 
distance from AC of c.g.) « , , 

of cylinder FGKH ^|=f=4mches 

volume of cylinder) « « , . j Tr.2 .0 — 327r CUbic 
inches 

volume of cone DBE = n . cubic 

distance from AC of c.g. \ « . , 
r T^t,T7 * 8 + = II inches of cone DBE ) * 

then volume of remaining frustum is— 

- 32 - 36) = TT . cubic inches 

Let A = height of c. g. of this remainder from the base. 
Then equating the plane-moments about the base of the three 

solids, BDE, FGKH, and the remainder of frustum, to the plane- 
moment of the whole cone (Art. 113) (and leaving out of both sides 

of equation the common factor weight per unit volume)— 

,r . X 5 = »r{(32 X 4) -f- (36 X II) + (^ X k)} 

833*3 = 524 + 
^ g: X 309*3 = 3*135 inches 

Example 3.—An I-section of a girder is made up of three 
rectangles, viz. two flanges having their long sides horizontal, and 
one web connecting them having its long side vertical. The top 
flange section is 6 inches by i inch, and that of the bottom flange 
is 12 inches by 2 inches. The web section is 8 inches deep and 
I inch broad. Find the height of the c.g. of the area of cross-section 
ftom the bottom of the lower flange. 

Fig. 128 represents the section of the girder. 

Let X = height of the c.g. of the whole section. 

The height ofthe c.g. of BCDE is i inch above BE ; 
„ „ FGHK is 2 4- f « 6 inches above BE ; 
„ „ LMNP is 2 + 8 + i s= 10*5 inches above BE 
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Equating the sum of the moments of these three areas about 

A to the moment of the whole figure about A, we have— 

(12 X 2)1 4- (8 X 1)6 + (6 X i)io*5 = ;r{(i2X2) + (8x1) -i-(6x i)} 

24 + 48 4- 63 = 4^(24 4* 8 4- 6) 

“x = = 3*55 inches 

Fig. laS. 

which is the distance of the c.g. from the bottom of the lower 

flange. 
Example 3.—Find the c.g. of a cast-iron eccentric consisting 

of a short cylinder 8 inches in 
diameter, having through it a cylin¬ 
drical hole 2'5 inches diameter, the 
axis of the hole being parallel to 
that of the eccentric and 2 inches 

B from it. State the distance of the 
c.g. of the eccentric from its centre. 

This is equivalent to finding the 
c.g. of the area of a circular lamina 
with a circular hole through it. In 
Fig. 129— 

AB = 8 inches CD = 2 inches 
EF = 2*5 inches 

I^t the distance of the c.g. from A be x. 
If the hole were filled with the same material as the remainder 

of the solid, the c.g. of the whole would be at C, its centre. 
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Equating moments of parts and the whole about A— 

AC X (area of circle AB) = (AD x area of circle EF) 
+ (x X area of eccentric) 

4 X 64 = 6 X 6*25 + ;r(64 - 6*25) 
- _ 256 J7‘5 _ 

5775 
3783 

hence the distance of the c.g. from C is 4 - 3783 or 0*217 inch. 

volume)— Fig. X30. 

^^ABC ^ gOC } ~ solid acb x f0^r)+(volume of shell Xx) 

S7r63 X g X 6 = Itt X (1)» X J X f + |7r{63 - (§)3}i 

from which x — 2'66 inches 

The c.g. of the shell is on the axis and 2*66 inches from the 
centre of the surfaces. 

Examples XV. 

1. The front wheel of a bicycle is 30 inches diameter and weighs 4 lbs. ; 
the back wheel is 28 inches diameter and weighs 7 lbs. The remaining 
parts of the bicycle weigh 16 lbs., and their c.g. is 18 inches forward of the 

back axle and 23 inches above the ground when the steering-wheel is 
locked in the plane of the back wheel. Find the c.g. of the whole bicycle; 
state its height above the ground and its distance in front of the back axle 
when the machine stands upright on level ground. The wheel centres are 
42 inches horizontally apart. 

2. A projectile consists of a hollow cylinder 6 inches external and 3 
inches internal diameter, and a solid cone on a circular base 6 inches 
diameter, coinciding with one end of the cylinder. The axes of the cone 
and cylinder are in line ; the length of the cylinder is 12 inches, and the 
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height of the cone is 8 inches. Find the distance of the c.g. of the 

projectile from its point. 

3. A solid of uniform material consists of a cylinder 4 inches diameter 

and 10 inches long, with a hemispherical end, the circular face of which 

coincides with one end of the cylinder. The other end of the cylinder is 

pierced by a cylindrical hole, 2 inches diameter, extending to a depth of 

7 inches along the cylinder and co-axial with it. Find the c.g. of the solid. 

How far is it from the flat end ? 

4. The profile of a crank (Fig. 131) consists of two semicircular ends, 

CED and AFB, of 8 inches and 12 inches radii respectively, centred at 

points P and O 3 feel apart, and joined by straight 

lines AC and BD. The crank is of uniform thick¬ 

ness, perpendicular to the figure, and is pierced 

by a hole 10 inches diameter, centred at O. Find 

the distance of the c.g of the crank from the axis O. 

5. Find the c.g. of a T girder section, the 

height over all being 8 inches, and the greatest 

width 6 inches, the metal being J inch thick in the 

vertical web, and i inch thick in the horizontal 

flange. 

6. An I-section girder consists of a top flange 

6 inches by i inch, a bottom flange 10 inches by 

1*75 inches, connected by a web 10 inches by I’I5 

inches. Find the height of the c.g. of the section 

from the lowest edge. 

7. A circular lamina 4 inches diameter has two 

circular holes cut out of it, one l ’5 inches and the 

other I inch diameter with their centres 1 inch and 

1*25 inches respectively from the centre of the 

lamina, and situated on diameters mutually perpendicular. Find the c.g. 

of the remainder of the lamina. 

8. A balance weight in the form of a segment of a circle fits inside the 

rim of a wheel, the internal diameter of which is 3 feet. If the segment 

subtends an angle of 60° at the centre of the wheel, find the distance of its 

c.g. from the axis. 

9. If two intersecting tangents are drawn from the extremities of a 

quadrant of a circle 4 feet diameter, find the distance of the c.g. of the 

area enclosed between the tangents and the arc, from either tangent. 

10. A balance weight of a crescent shape fits inside the rim of a wheel 

of 6 feet internal diameter, and subtends an angle of 60° at its centre. The 

inner surface of the weight is curved to a larger radius than the outer surface, 

the centre from which its profile is struck being on the circumference of the 

inside of the wheel. The weight being of uniform thickness perpendicular to 

the plane of the wheel, find the distance of its c.g from the axis of the wheel. 

N.B.—^The profile is equivalent to the sector of a circle plus two triangles 

minus a sector of a larger circle. 

E 



CHAPTER VIII 

CENTRE OF GRAVITY: PROPERTIES AND 

APPLICA TIONS 

121. Properties of the Centre of Gravity.—Since the 

resultant force of gravity always acts through the centre of 

gravity, the weight of the various parts of a rigid body may 

be looked upon as statically equivalent to a single force equal 

to their arithmetic sum acting vertically through the centre of 

gravity of the body. Such a single force will produce the same 

reactions on the body from its supports; will have the same 

moment about any point (Art. 90); may be replaced by the 

same statically equivalent forces or components; and requires the 

same equilibrants, as the several forces which are the weights of 

the parts. Hence, if a body be supported by being suspended 

by a single thread or string, the c.g. of the body is in the same 

vertical line as that thread or string. If the same body is 

suspended again from a different point in itself, the c.g. is 

also in the second vertical line of suspension. If the two lines 

can be drawn on or in the body, the c.g., which must lie at 

their intersection, can thus be found experimentally. For 

example, the c.g. of a lamina may be found by suspending 

it from two different points in its perimeter, first from one and 

then from the other, so that its plane is in both cases vertical, 

and marking upon it two straight lines which are continuations 

of the suspension thread in the two positions. 

Fig. 132 shows G, the c.g. of a lamina PQRS, lying in both 

the lines of suspension PR and QS from P and Q respectively. 

The tension of the cord acts vertically upwards on the lamina, 

and is equal in magnitude to the vertical downward force of 



168 Mechanics for Engineers 

the weight of the lamina acting through G. The tension can 
only balance the weight if it acts through G, for in order that 
two forces may keep a body in equilibrium, they must be con- 

Q 

Fig. 132. 

current, equal, and opposite, and therefore in the same straight 

line, 
A “ plumb line,” consisting of a heavy weight hanging from 

a thin flexible string, serves as a convenient method of obtaining 

a vertical line. 
122. Centre of Gravity of a Distributed Load.—If 

a load is uniformly distributed over the whole span of a beam, 
the centre of gravity of the load is at mid-span, and the 

reactions of the supports of the beam are the same as would 
be produced by the whole load 

concentrated at the middle of 

the beam. Thus, if in Fig. 133 

a beam of 20-feet span carries a 
load of 3 tons per foot of span 

(including the weight of the beam) 

uniformly spread over its length, 

the reactions at the supports A 

and B are each the ^me as would be produced by a load 
of 60 tons acting at C, the middle section of the beam, 

viz. 30 tons at each support. Next suppose the load on a 

beam is distributed, not evenly, but in some known manner. 

Suppose the load per foot of span at various points to be 
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shown by the height of a curve ACDEB (Fig. 134). The 
load may be supposed to be piled on the beam, so that the 
curve ACDEB is its profile, and so tliat the space occupied is 
of constant thickness in a direction perpendicular to the plane 
of the figure. Then the c.g. of the load is at the c.g. G of 

the area of a section such as ACDEB in Fig. 134, taken 
halfway through the constant thickness. The reactions of 
the supports are the same as if the whole load were concen¬ 

trated at the point G. The whole load is equal to the length 
of the beam multiplied by the mean load per unit length, 

which is represented by the mean ordinate of the curve ACDEB, 
ie. a length equal to the area ACDEB divided by AB. 

Example.—As a par¬ 

ticular case of a beam 
carrying a distributed load 
not evenly spread, take a 
beam of 20-feet span carry¬ 
ing a load the intensity of 

which is 5 tons per foot 
run at one end, and varying 
uniformly to 3 tons per foot 
at the other. Fig. 135 
represents the distribu¬ 
tion of load. Find the 
reactions at A and B. 

The total load = 20 x mean load per foot = 20 x = 80 tons 
2 

Let X be the distance of the c.g. of area ABCD from BD. 

J(area ACFB-f area CDF) = (loxarea ACFB)-f (^xarea CDF) 

J(3 X 20 -f J. 20 X 2) = (10 X 20 x 3) -f X ^ X 2 
- 600 + 133-3 
==-- = 9*16 feet 

and distance of c.g. from AC =r 20 — 9*16 = 10*83 feet 
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If Ra and Rb be the reactions at A and B respectively, equating 
opposite moments about B of all the forces on the beam— 

Ra X 20 = 8o X 9*i6 

Ra = 8o X = 36*6 tons 
20 

Rb = 80 — 36*6 = 43*3 tons 

1:13. Body resting: upon a Plane Surface.—As in the 
case of a suspended body, the resultant of all the supporting 
forces must pass vertically through the c.g. of the body in 

order to balance the resultant gravitational forces in that 
straight line. The vertical line through the c.g. must then 
cut the surface, within the area of the extreme outer polygon 
or curved figure which can be formed by joining all the points 
of contact with the plane by straight lines. If the vertical 
line through the c.g. fall on the perimeter of this polygon 
the solid is on the point of overturning, and if it falls outside 

that area the solid will topple over unless supported in 

some other way. This is sometimes expressed by saying 

that a body can only remain at rest on a plane surface if 
the vertical line through the c.g. falls within the base. From 
what is stated above, the term “ Mse ” has a particular mean¬ 

ing, and does not signify only areas of actual contact; eg, 

in Fig. 136 are two solids in equilibrium, with GN, the vertical 

line through G, the c.g., falling within the area of contact; 
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but in Fig. 137 a solid is shown in which the vertical through 
the c.g. falls outside the area of contact when the solid rests 
upright with one end on a horizontal plane. If, however, 
it falls within the extreme area ABC, the solid can rest in 
equilibrium on a plane. 

Fig. 137. 

Two cases in which equilibrium is impossible are shown in 
Fig. 138, the condition stated above being violated. The first 
is that of a high cylinder on an inclined plane, and the second 

that of a waggon-load of produce on the side of a high crowned 

road. It will be noticed that a body subjected to tilting will 

topple over with less inclination or more, according as its c.g, 

is high or low. 

Example.—^What is the greatest length which a right cylinder 
of 8 inches diameter may have in order that it may rest with one 
end on a plane inclined 20® to the horizontal ? 
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The limiting height will be reached when the c.g. falls vertically 
over the circumference of the base, i.e. when G (Fig. 139) is 

vertically above A. Then, G being the mid-point of the axis EF, 
the half-length of cylinder— 

GE = AE cot AGE - AE cot ACD 
or GE = AE cot 20° = 4 x 27475 = *0*99 inches 

The length of cylinder is therefore 2 x 10*99 = 21*98 inches. 

124. Stable, Unstable, and Neutral Equilibrium.— 
A body is said to be in stable equilibrium when, if slightly 
disturbed from its position, the forces acting upon it tend 

to cause it to return to that position. 

If, on the other hand, the forces Acting upon it after a 
slight displacement tend to make it go further from its former 
position, the equilibrium is said to be unstable. 

If, after a slight displacement, the forces acting upon the 
body form a system in equilibrium, the body tends neither 
to return to its former position nor to recede further from it, 

and the equilibrium is said to be neutral, 
A few cases of equilibrium of various kinds will now be con¬ 

sidered, and the conditions making for stability or otherwise. 

125. Solid Hemisphere resting: on a Horizontal 
Plane.—If a solid hemisphere, ABN (Fig. T40), rests on a 
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horizontal plane, and receives a small tilt, say through an 

angle the c.g., situated at G, f of ON from O and in the 
radius ON, takes up the position shown on the right hand of 

the figure. The forces acting instantaneously on the solid are 
then—(i) the weight vertically through G, and (2) the reaction 

R in the line MO vertically through M (the new point of 

contact between hemisphere and plane) and normal to the 
curved surface. These two forces form a “ righting couple,” 

and evidently tend to rotate the solid into its original posi¬ 

tion. Hence the position shown on the left is one of stable 

equilibrium. Note that G lies below O. 

126. Solid with a Hemispherical End resting: on 
a Horizontal Plane.—Suppose a solid consisting of, say, 

Fic. 141. 

d cylinder with a hemispherical base, the whole being of 
homogeneous material, rests on a plane, and the c.g. G (Fig 

T41) falls within the cylinder, beyond the centre O of the 

hemispherical end reckoned from N, where the axis cuts the 
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curved surface. On the left of Fig. 141 the solid is shown in 
a vertical position of equilibrium. Now suppose it to receive 
a slight angular displacement, as on the right side of the figure. 
The weight W, acting vertically downwards through G, along 

with the vertical reaction R of the plane, forms a system, the 
tendency of which is to move the body so that G moves, not 
towards its former position, but away from it. The weight 

acting vertically through G and the reaction of the plane acting 

vertically through O form an “ upsetting couple ” instead of a 
“righting couple.” Hence the position on the left of Fig. 141 
is one of unstable equilibrium. Note that in this case G falls 

above O. If the upper part of the body were so small that G 
is below O, the equilibrium would be stable, as in the case of 
the hemisphere above (Art. 125). The lower G is, the greater 

is the righting couple (or the greater the stability) for a given 

angular disturbance of the body. While in the case of in¬ 

stability, the higher G is, the greater is the upsetting couple or 

the greater the instability, and we have seen that such a solid 
is stable or unstable according as G falls below or above O. 

127. Critical Case of Equilibrium neutral.—If G 
coincides with the centre of the hemisphere (Art. 126), the 

equilibrium is neither stable nor unstable, but neutral. Suppose 

the cylinder is shortened so that G, the c.g. of the whole solid, 
falls on O, the centre of 
the hemisphere. Then if 

the solid receives a slight 
angular displacement, as 

in the right side of Fig. 

142, the reaction R of 

the plane acts vertically 

upwards through O, the 
centre of the hemisphere 

(being normal to the surface at the point of contact), and 

the resultant force of gravity acts vertically downward through 

the same point. In this case the two vertical forces balance, 

and there is no couple formed, and no tendency to rotate 

the body towards or away from its former position. Hence 
the equilibrium is neutral. 
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In each of the above instances the equilibrium as regards 
angular displacements is the same whatever the direction of 

the displacement. As 
further examples of neu¬ 
tral equilibrium, a sphere 

or cylinder of uniform 
material resting on a 
horizontal plane may be 

taken. The sphere is 
in neutral equilibrium 

with regard to angular 
displacements in any direction, but the horizontal cylinder 

(Fig. 143) is only in neutral equilibrium as regards its rolling 
displacements; in other directions its equilibrium is stable. 

Example.—A cone and a hemisphere of the same homogeneous 
material have a circular face of i foot radius 

in common. Find for what height of the 

cone the equilibrium of the compound solid 
will be neutral when resting with the hemi¬ 

spherical surface on a horizontal plane. 

The equilibrium will be neutral when the 

e g. of the solid is at the centre of the hemi¬ 

sphere, i.e. at the centre O (Fig. 144) of their 

common face. 

Let h be the height of the cone in feet. 

Then its c.g. Gi is \h from O, and its volume 

is J/i X - X 2^ = \Trh cubic feet. 

The c.g. Gjj, of the hemisphere is at § foot from O, and its 
volume is cubic feet. Then— 

^ - weight of hemisphere _ frr 

GgO I weight of cone Jtt// 

and = y 
ft 

h - — 1732 feet 

If h is greater than ^3 feet the equilibrium is unstable, and if it 
is less than V3 feet the equilibrium is stable. 
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ia8. In the case of bodies resting on plane surfaces and 
having more than one point of contact, the equilibrium will 
be stable if the c.g. falls within the area of the base^ giving 

the word the meaning attached to it in Art. 123 for small 
angular displacements in any direction. If the c.g. falls on 
the perimeter of the base, the equilibrium will be unstable for 
displacements which carry the c.g. outside the space vertically 
above the “ base.” 

The attraction of the earth tends to pull the c.g. of a body 
into the lowest possible position; hence, speaking generally, 
the lower the c.g. of a body the greater is its stability, and 
the higher the c.g. the less stable is it. 

In the case of a body capable of turning freely about a 
horizontal axis, the only position of stable equilibrium will be 

that in which the c.g. is vertically below the axis. When it 

Fig. 145. 

is vertically above, the equilibrium is unstable, and unless the 

c.g. is in the axis there are only two positions of equilibrium. 

If the c.g. is in the axis, the body can rest in neutral equilibrium 
in any position. 

Fig. 145 represents a triangular plate mounted on a hori¬ 

zontal axis, C; it is in unstable, stable, or neutral equilibrium 
according as the axis C is below, above, or through G, the c.g. 

of the plate. 
Work done in lifting: a Body.—When a body 

is lifted, it frequently happens that different parts of it are lifted 

through different distances, e.g. when a hanging chain is wound 

up, when a rigid body is tilted, or when water is raised from 

one vessel to a higher one. The total work done in lifting the 
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body can be reckoned as follows: Let w^y w^y 7V4, etc., be 

the weights of the various parts of the body, which is supposed 
divided into any number of parts, either large or small, but 

such that the whole of one part has exactly the same displace¬ 
ment (this condition will in many cases involve division into 

indefinitely small parts). Let the parts Wiy 70^^ etc., be at 

heights x-iy x^, x^y etc., respectively above some fixed horizontal 
plane; if the parts are not indefinitely small, the distances Xi, 

x^t x^y etc., refer to the heights of their centres of gravity. 

'1(7£>X) 

^w) 

(Art. 113). After the body has been lifted, let xi, xi, xiy etc., 
be the respective heights above the fixed plane of the parts 

weighing 7i\y Tv^y w^y etc. Then the distance x! of the c.g. 

above the plane is (Art. 113). 

The work done in moving the part weighing is equal to 

the weight 70^ multiplied by the distance (jc/ — through 

which it is lifted; i.e. the work is Tvfxl — xi) units. 

Similarly, the work done in lifting the part weighing is 

7v<lxl — x^. Hence the total work done is— 

w^{xi - x) + - Xi) + Ws(xi - ^3) +, etc. 

Then the distance x of the c.g. from the plane is 

which is equal to— 

(TVixi + toqxI 4- rvsxl +y etc.) - (7Vj^Xi + Tif^x^ -h ^3X3 -f, etc.) 
or X(wx) — ^(70x) 

But 2(7£/y) = x'^(v) and '!S,(7£fx) = x%{7v) 

therefore tne work done = x'^{7v) — x^{7ii) 

= {x' — x)^{7i) 

The first factor, x'’^Xy is the distance through which the 

c.g. of the several weights has been raised, and the second 

factor, '%{7v)y is the total weight of all the parts. Hence the 

total work done in lifting a body is equal to the weight of the 

body multiplied by the vertical distance through which its c.g. 

has been raised. 
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Example i.—A rectangular tank, 3 feet long, 2 feet wide, and 
1*5 feet deep, is filled from a cylindrical tank of 24 square feet 
horizontal cross-sectional area. 

ij 

Fig. 146. 

The weight ot the 9 cubic 
= 562*5 lbs. 

The level of water, before filling 
begins, stands 20 feet below 

the bottom of the rectangular 
tank. How much work is re¬ 
quired to fill the tank, the 
weight of I cubic foot of water 
being 62-5 lbs. ? 

The water to be lifted is 
3 X 2 X 1*5 or 9 cubic feet, 
hence the level in the lower 
tank will be lowered by or 
I of a foot, re. by a length BC 
on Fig. 146. The 9 cubic feet 
of water lifted occupies first 
the position A BCD, and then 
fills the tank EFGH. In the 

B former position its c g. is JBC 
Q or foot below the level AB, 

and in the latter position its 
c.g. is JGH or I foot above 
the level EH. Hence the 
c.g. is lifted + 20 -f |) feet, 
re. 2o}f, feet, or 20*9375 feet, 

feet of water lifted is 9 x 62*5 

Hence the work done is 563*5 x 20-9375 = 11,777 foot-lbs. 

Example 3.—Find the work in foot-pounds necessary to upset 

Fig. 147. 

a solid right circular cylinder 
3 feet diameter and 7 feet high, 
weighing half a ton, which is 
resting on one end on a hori¬ 
zontal plane. 

Suppose the cylinder (Fig. 
147) to turn about a point A on 
the circumference of the base. 
Then G, the c.g. of the cylinder, 
which was formerly 3*5 feet 

above the level of the hori¬ 
zontal plane, is raised to a 
position G', r.e. to a height A'G' 

above the horizontal plane before the cylinder is overthrown. 
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The distance the c.g. is lifted is then A'G' - EG— 

A'G' = V(AE^TEG2) = + yf) == 3-8o8 feet 
The c.g. is lifted 3'8o8 — 3-5 = 0*308 foot 

and the work done is 1120 x 0*307 = 345 foot-lbs. 

Example 3.—A chain 600 feet long hangs vertically ; its weight 

at the top end is 12 lbs. per foot, and at the bottom end 9 lbs. per 
foot, the weight per foot varying uniformly 

from top to bottom. Find the work necessary 

to wind up the chain. 
It is first necessary to find the total weight 

of the chain and the position of its c.g. The 

material of the chain may be considered to be 

spread laterally into a sheet of uniform thick¬ 
ness, the length remaining unchanged. The 
width of the sheet will then be proportional 

to the weight per foot of length ; the total 

weight, and the height of the c.g. of the chain, 

will not be altered in such a case. 

The depth of the c.g. below the highest 

point (A) of the chain (Fig. 148) will be the 
same as that of a figure made up of a rect¬ 
angle, ACDB, 600 feet long and 9 (feet or other units) broad, 

and a right-angled triangle, CED, having sides about the right 

angle at C of (CD) 600 feet and (CE) 3 units. 

The depth will be — 

(600 X 9 X 300) -f X 600 X 3 X ggQ) V 

(600 X 9) + (^ X 600 X 3) ^ 

which is equal to 285*7 feet. 

The total weight of the chain will be the same as if it were 

12-4-0 
600 feet long and of uniform weight —^ or 10*5 lbs. per foot, 

viz. 600 X 10*5 = 6300 lbs. 

Hence the work done in raising the chain all to the level A is— 

6300 X 285*7 = 1,800,000 foot lbs. 

130. Force acting on a Rigid Body rotating uni* 
formly about a Fixed Axis. 

Let Fig, 149 represent a cross-section of a rigid body of 

weight W rotating about a fixed axis, O, perpendicular to the 

figure. For simplicity the body will be supposed symmetrical 

Fig. X48, 
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about the plane of the figure, which therefore contains G, the 
c.g. of the body. In the position shown, let be the weight 

of a very small portion of the 
body (cut parallel to the axis) 
situated at a distance r from 
O. Let 0) be the uniform 

angular velocity of the body 
about the axis O. Then the 

force acting upon the small 
portion of weight in order 

to make it rotate about O is 

Wx 
—directed towards O 

(Art. 63), and it evidently 

acts at the middle of the 
length of the portion, i.e, in the plane of the figure. Resolving 

this force in any two per{)endicular directions, XO and YO, 

the components in these two directions are ^ cos 0 and 

Wx 
—(0^;' sin 0 respectively, where 0 is the angle which AO 

makes with OX. 

These may be written — . o>^. vV and . y respectively, 

where x represents r cos 0 and y represents r sin 0^ the 

projections of r on OX and OY respectively. 
Adding the components in the direction XO of the centri¬ 

petal forces acting in the plane of the figure upon all such 

portions making up the entire solid, the total component— 

Fx = '~'S,{wx) = 

and the total component force in the direction YO is— 

Fv = ^ / 

where x and y are the distances of G, the c.g. of the solid 

(which is in the plane of the figure), from OY and OX re¬ 

spectively. 
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Hence the resultant force P acting on the solid towards 

O is— 

p = vWT?V) = w. V(?"+/) = ^. 0,^ R 

where R = V -h jp^ the distance of the c.g. from the axis O. 
Hence the resultant force acting on the body is of the same 

/W . \ 
magnitude as the centripetal force which must act 

on a weight W concentrated at a radius R from O in order 
that it may rotate uniformly at an angular velocity w. Further, 

Fy 
the tangent of the angle which P makes with XO is -p- 

y GN 
(Art. 75), which is equal to-^^, or where GN is perpen¬ 

dicular to OX. Hence the force P acts in the line GO, and 
therefore the resultant force P acting on the rotating body is 

in all respects identical with that which would be required to 

make an equal weight, W, rotate with the same angular velocity 

about O if that weight were concentrated (as a particle) at G, 

the c.g, of the body. 
It immediately follows, from the third law of motion, that 

the centrifugal force exerted by the rotating body on its con¬ 

straints is also of this same magnitude and of opposite direction 

in the same straight line. 

Example.—Find the force exerted on the axis by a thin 
uniform rod 5 feet long and weighing 9 lbs., making 
30 revolutions per minute about an axis perpen¬ 
dicular to its length. 

The distance from the axis O to G, the c.g. of 
the rod (Fig. 150), is 2*5 feet, the c.g. being midway 
between the ends. The angular velocity of the 

rod is ~ ^ radians per second. The cen 

trifugal pull on O is the same as that of a weight of 
9 lbs. concentrated at 2*5 feet from the axis and describing 
about O, ?r radians per second, which is— 

— X TT-* X 2*5 = 6*89 lbs. 
32*2 ^ ^ 

Fig. ISO. 
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131. Theorems of Guidinus or Pa|>pus.—{a) The 
area of the surface of revolution swept out by any plane curve 

revolving about a given axis in its plane is equal to the length 

of the curve multiplied by the length of the path of its c.g. 
in describing a circle about the axis. Suppose the curve 

ABC (Fig. 151) revolves about the 

^ , A 2ixis 00', thereby generating a surface 
of revolution of which OO' is the axis. 
Let S be the length of the curve, and 

^_jc Q j0 suppose it to be divided into a large 
/ number of small parts, j-j, s^, etc., 
I each of such short length that if drawn 

straight the shape of the curve is not 

appreciably altered. Let the distances 

0 ^ of the parts j“i, etc., from the 

axis be a:i, jr.,, etc.; and let G, the 

c.g. of the curve which isjn the plane of the figure, the plane 
of the curve, be distant x from the axis 00'. The portion 

generates a surface the length of which is 27r.:^;i and the breadth 

Si; hence the area is Similarly, the portion jr2 gene¬ 
rates an area 27r.:v2. Sq, and the whole area is the sum— 

27r:t^iJ-j -f 27r^2^2 + 27rXsSs , etc., or 2Tr2(.;t:j‘) 

If the portions Siy s^, etc., are of finite length, this result is 
only an approximation; but if we understand S(Arj‘) to represent 
the limiting value of such a sum, when the length of each part 
is reduced indefinitely, the result is not a mere approximation. 

Now, since S(a:j) = jc x S(s) = x X S, the whole area of 

the surface of revolution is 27rx. S, of which 27rx is the length 

of the path of the c.g. of the curve in describing a circle about 

GO', and S is the length of the curve. 

(^) The volume of a solid of revolution generated by the 
revolution of a plane area about an axis in its plane is equal 
to the enclosed revolving area multiplied by the length of the 
path of the c.g. of that area in describing a complete circle 
about the axis. 

Suppose that the area ABC (Fig. 152) revolves about the 

axis OO'i thereby generating a solid of revolution of which 



Centre of Gravity: Properties and Applications 183 

00' is an axis (and which is enclosed by the surface generated 
by the perimeter ABC). 

Let the area of the plane figure ABC be denoted by A, 

and let it be divided into a large 
number of indefinitely small parts 

^2, ^3^8, etc., situated at distances 
•^85 etc., from the axis 

00'. 
The area <7i, in revolving about 

00', generates a solid ring which 
has a cross-section and a length 

2'kXyy and therefore its volume is 
Similarly, the volume swept 

out by the area <^2 is 2Trx./t.^^ and 
so on. The whole volume swept 

out by the area A is the limiting value of the sum of the small 
quantities— 

27rxYaY -f 2TrX2a2 "f 217x^0^ + , etc., 
or 2Tr{aYXi -f ^2^2 4- -f , etc.,) or 2TT^{ax) 

And since 'Ziax) = x^{a) x, A (Art. 114 (6)), the whole 

volume is 2Trx. A, of which 27rx is the length of the path of 
the c.g. of the area in describing a circle about the axis 00', 

and A is the area. 

Example.— A groove of semicircular section 1*25 inches 

radius is cut in a cylinder 8 inches diameter. Find (a) the area of 

the curved surface of the groove, ^ g 
and (0 the volume of material-r-“i-1^- 
removed. V—y J 

(a) The distance of the c.g. of >!■ 
the semicircular arc ACB (Fig. ^ i rv* ( 2*c ^ ^ 

1*25 X ) or ~ 
tt/ tt 

inches. Therefore the distance of 
the c.g. of the arc from the axis _f__J_ 

00' is inches. The Fic. 153. 

length of path of this point in making one complete circuit about 

A B 

c 

-T- 
1 

>!■ 
1 

_^_ 

Fic. 153. 
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OO' is 27r^4 - = (Stt - 5) inches. The length of arc ACB 

is i'2$Tr inches, hence the area of the surface of the semicircular 

groove is— 

i*257r(87r — 5) square inches = iott^ — 6‘25»r 
987 - 19*6 

= 79*1 square inches 

{b) The distance of the c.g. of the area ABC from AB is 

4 
X 1*25 = 0*530 inch, and therefore the distance of the c.g. from 

00' is 4 — 0*53 — 3*47 inches. 

The length of path of this point in making one complete circuit 

about 00' is 27r X 3*47 = 21*8 inches. The area of the semicircle 

is 1(1*25)V = 2*454 square inches, hence the volume of the material 

removed from the groove is— 

21*8 X 2*454 = 53*5 cubic inches 

132. Height of the c.g, of a Symmetrical Body, 
such as a Carriage, Bicycle, or Locomotive.—It was stated 

in Art. 121 that the c.g. of some bodies might conveniently 
be found experimentally by suspending the bodies from two 

different points in them alternately. This is not always con¬ 

venient, and a method suitable for some other bodies will now 

be explained by reference to a particular instance. The c.g. 

of a bicycle (which is generally nearly symmetrical about a 

Fig. i54» 

vertical plane through both wheels) may be determined by first 
finding the vertical downward pressure exerted by each wheel 

on the level ground, and then by finding the vertical pressures 

when one wheel stands at a measured height above the other one. 

Suppose that the wheels are the same diameter, and that 

the centre of each wheel-axie, A and B (Fig. 154), stands 
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at the same height above a level floor, the wheels being locked 

in the same vertical plane. 
When standing level, let = weight exerted by the front 

wheel on a weighing machine table; let W® = weight exerted 

by the back wheel on a weighing machine table; then— 

Wx + Wb = weight of bicycle 

Let AB, the horizontal distance apart of the axle centres, 

be d inches. If the vertical line through the c.g. G cuts AB in 

C, then— 
W 

Next, let the weight exerted by the front wheel, when A 
stands a distance “ h ” inches (vertically) above B, be ; and 

let CG, the distance of the c.g. of the bicycle above AB, be H. 

Then, since ABE and DGC (Fig* 155) are similar triangles— 

GC _ BE _ 

CD AE h 

and CD = BC-BD = 
W, 

W^ + Wb W^ + W, W;i+Wb 

hence GC or H = 
J(d^ - 

" h W^+"Wb- 

In an experiment on a certain bicycle the quantities were 
</= 44 inches, ^ = 6 inches, weight of bicycle = 32*90 lbs., 

pressure fW^) exerted by the front wheel when the back wheel 
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was on the same level = 14*50 lbs., pressure (WJ exerted 
by the front wheel when the back wheel was 6 inches lower 
= 13*84 lbs. 

Hence H = ^ L4,'S?^J3;84 ^ 
6 32-90 

= 6*41 inches 

or the height of the c.g. above the ground is 6*41 inches plus 

the radius of the wheels. The distance BC of the c.g. horizon¬ 

tally in front of the back axle is X 44» or 10*4 inches. 
^ 32 90 ^ ^ 

A similar method may be applied to motor cars or locomotives. 

In the latter case, all the wheels on one side rest on a raised 
rail on a weighing machine, thus tilting the locomotive sideways. 

Examples XVL 

1 A beam rests on two supports at the same level and I2 feet apart. 
It carries a distributed load which has an intensity of 4 tons per foot-run 
at the right-hand support, and decreases uniformly to zero at the left-hand 
support. Find the pressures on the supports at the ends. 

2. The span of a simply supported horizontal beam is 24 feet, and 
along three-quarters of this distance there is a uniformly spread load of 
2 tons per foot run, which extends to one end of the beam : the weight of 
the beam is 5 tons. Find the vertical supporting forces at the ends. 

3. A beam is supported at the two ends 15 feet apart. Reckoning 
from the left-hand end, the first 4 feet carry a uniformly spread load of 
I ton per foot run ; the first 3 feet starting from the right-hand end carry 
a load of 6 tons per foot run evenly distributed, and in the intermediate 
portion the intensity of loading varies uniformly from that at the right- 
hand end to that at the left-hand end. Find the reaction of the supports. 

4. The altitude of a cone of homogeneous material is 18 inches, and 
the diameter of its base is 12 inches. What is the greatest inclination on 
which it may stand in equilibrium on its base ? 

5. A cylinder is to be made to contain 250 cubic inches of material. 
What is the greatest height it may have in order to rest with one end on a 
plane inclined at 15° to the horizontal, and what is then the diameter of the 
base? 

6. A solid consists of a hemisphere and a cylinder, each lo inches 
diameter, the centre of the base of the hemisphere being at one end of the 
axis of the cylinder. What is the greatest length of cylinder consistent 
with stability of equilibrium when the solid is resting with its curved end 
on a horizontal plane ? 
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7. A solid is made up of a hemisphere of iron of 3 inches radius^ and 
a cylinder of aluminium 6 inches diameter, one end of which coincides 
with the plane circular face of the hemisphere. The density of iron being 
three times that of aluminium, what must be the length of the cylinder if 
the solid is to rest on a horizontal plane with any point of the hemispherical 
surface in contact ? 

8. A uniform chain, 40 feet long and weighing 10 lbs. per foot, hangs 
vertically. How much work is necessary to wind it up ? 

9. A chain weighing 12 lbs. per foot and 70 feet long hangs over a 
(frictionless) pulley with one end 20 feet above the other. How much 
v/ork is necessary to bring the lower end to within 2 feet of the level of 
the higher one ? 

10. A chain hanging vertically consists of two parts : the upper portion 
is 100 feet long and weighs 16 lbs. per foot, the lower portion is 80 feet 
long and weighs 12 lbs. j)er foot. Find the work done in winding up 
{a) the first 70 feet of the chain, {b) the remainder. 

11. A hollow cylindrical boiler shell, 7 feet internal diameter and 
25 feet long, is fixed with its axis horizontal. It has to be half filled with 
water from a reservoir, the level of which remains constantly 4 feet below 
the axis of the boiler. Find how much work is required to lift the water, 
its weight being 62*5 lbs. per cubic foot. 

12. A cubical block of stone of 3-fect edge rests with one face on the 
ground : the material weighs 150 lbs. per cubic foot. How much work is 
required to tilt the block into a position of unstable equilibrium resting on 
one edge? 

13. A cone of altitude 2 feet rotates about a diameter of its base at a 
uniform speed of 180 revolutions per minute. If the weight of the cone 
is 20 lbs., what centrifugal pull does it exert on the axis about which it 
rotates ? 

14. A shaft making 150 rotations per minute has attached to it a pulley 
weighing 80 lbs., the c.g. of which is o‘i inch from the axis of the shaft. 
Find the outward pull which the pulley exerts on the shaft. 

15. The arc of a circle of 8 inches radius subtends an angle of 60® at 
the centre. Find the area of the surface generated when this arc revolves 
about its chord ; find also the volume of the solid generated by the revolu¬ 
tion of the segment about the chord. 

16. A groove of V-shaped section, 1*5 inches wide and i inch deep, is 
cut in a cylinder 4 inches in diameter. Find the volume of the material 
removed. 

17. A symmetrical rectangular table, the top of which measures 8 feet 
by 3 feet, weighs 150 lbs., and is supported by castors at the foot of each 
leg, each castor resting in contact with a level floor exactly under a comer 
of the table top. Two of the legs 3 feet apart are raised 10 inches on to the 
plate of a weighing machine, and the pressure exerted by them is 66*5 lbs. 
Find the height of the c.g. of the table above the floor when the table 

stands level. 



CHAPTER IX 

MOMENTS OF INERTIA—ROTATION 

133. Momenta of Inertia. 
(1) Of a Particle.—If a particle P (Fig. 156), of weight w 

and mass — , is situated at a distance r from an axis 00', then 

its moment of inertia about that 

axis is defined as the quantity 

—. or (mass of P) X (distance 
S 
from OO')'*^. 

(2) Of Several Particles,—If 

several particles, P, Q, R, and 

S, etc., of weights «'4, etc., be situated at distances 

^11 ''2» ''3» and ^4, etc., respectively from an axis 00' (Fig. 157), 

End view of axis 00'. 
Fig. 157. 

then the total moment of inertia of the several particles about 

that axis is defined as— 
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2 

g g g 

or 

or 2{(mass of each particle) x (its distance from 00')^} 

(3) Bodies,—If we regard a rigid body as divisible 
into a very large number of parts, each so small as to be 

regarded as a particle, then the moment of inertia of the rigid 

body about any axis is equal to the moment of inertia of such 
a system of particles about that axis. Otherwise, suppose a 

body is divided into a large but finite number of parts, and the 

mass of each is multiplied by the square of the distance of 

some point in it from a line 00'; the sum of these products 

will be an approximation to the moment of inertia of the whole 

body. The approximation will be closer the larger the number 

of parts into which the body is divided; as the number of parts 

is indefinitely increased, and the mass of each correspondingly 

decreased, the sum of the products tends towards a fixed 
limiting value, which it does not exceed however far the 

subdivision be carried. This limiting sum is the moment of 

inertia of the body, which may be written 2(wr^) or 

Units.—The imits in which a moment of inertia is stated 

depend upon the units of mass and length adopted. No 

special names are given to such units. The “ engineer’s unit ” 
or gravitational unit is the moment of inertia about an axis of 

unit mass (32*2 lbs.) at a distance of i foot from the axis. 

134. Radius of Gyration.—The radius of gyration of a 
body about a given axis is that radius at which, if an equal 

mass were concentrated, it would have the same moment of 

inertia. 

I^t the moment of inertia of a body about some 

axis be denoted by I, and let its total weight %{w) be W, and 

therefore its total mass 



rgo Mechanics for Engineers 

Let k be its radius of gyration about the same axis, 
from the above definition— 

and W W 

Then, 

135. Moments of Inertia of a Lamina about an 
Axis perpendicular to its 

Plane. 
Let the distances of any 

particle, P (Fig. 158), of a 
lamina from two perpen¬ 
dicular axes, OY and OX, 
in its plane be and yi re¬ 
spectively, and let Wx be its 
weight, and Tx its distance 

from O, so that 
Then, if Ix and ly denote the moments of inertia of the 

lamina made up of such particles, about OX and OY re¬ 
spectively— 

I^=^/x*+^W + 5y,*+,etc. 

I^ = ^V + ^V + yV+,etc. 
060 

and adding- 

+ Iv = + J,*) + +y.^) + ~{x^+y^)+, etc.} 
' g 

g g g 

or which may be denoted by lo. 

Then = Ix “f* ly (*) 

This quantity To is by definition the moment of inertia 
about an axis 00' perpendicular to the plane of the latnina,* 
and through O the point of intersection of OX and OY. 
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Hence the sum of the moments of inertia of a lamina about 
any two mutucUly pet'pendicular axes in its plane^ is equal to the 
moment of inertia about an axis throtigh the intersection of the 

other two axes and perpendicular to the plane of the lamina. 

Al^o, if ^yj Sind be the radii of gyration about 
OX, OY, and 00' respectively, OO' being perpendicular to the 

(w\ W 
plane of Fig. 158, and if 2(I = -, 

^ iS 16 

lamina— 

the mass of the whole 

2(^^)or l„ = ^o^ 

and Iv = . 

and ly - kf • 

W 

s 
w 
g 
w 
g 
w, 

and therefore, since Ix + Iy = >^0^. (^) 

Or, in words, the sum of the squares of the radii of gyration of 
a lamina about two mutually perpendicular axes in its plane, 
is equal to the square of its radius of gyration about an axis 

through the intersection of the other two axes and perpendicular 
to the plane of the lamina. 

136. Moments of Inertia of a Lamina about 

Parallel Axes in its Plane.—Let P, Fig. 159, be a 
constituent particle of weight 

Wx of a lamina, distant x-^ from 
an axis ZZ' in the plane of 

the lamina and through G, the 
c.g. of the lamina, the distances 

being reckoned positive to the 
right and negative to the left 

of ZZ'. Let 00' be an axis 
in the plane of the lamina 

parallel to ZZ' and distant d 
from it. Then the distance 

of P from 00' is ^ — x^^ whether P is to the right or left 

ofzr. 
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Let lo be the moment of inertia of the lamina about 00'; 
and let i, „ „ ,, ZZ'. 
Then— 

i« = {’^(‘1 - »,)’ + ~V - +|V - +,»tc.} 

I. . ^^S+5+5+,e,c) + (JV + -V +-|v+,e«.) 

— 2-{wjXi + w^2 + 2e'8^3 +> etc.) 
<i?" 

The sum WiX-^ W2X2 + +, etc., is, by Art 114, equal 

to 

{wi + 2^2 + ^3 +1 etc.) X (distance of c.g. from ZZ') 

which is zero, since the second factor is zero. Hence— 

lo = y(a'i+a'a+a'8+,etc.)+( jW + yV +,etc.) 

= rf*2(|) + I* 
w 

orIo = -<f* + Iz.(i) 

where W is the total weight of the lamina. And dividing each 
W 

term of this equation by —— 

V = + .(2) 

where ko and kj, are the radii of gyration about 00' and ZZ' 
respectively. 

137.^ Extension of the Two Previous Articles to 
Solid Bodies,—(a) Let ZX and ZY (Fig. 160) represent (by 
their traces) two planes perpendicular to the plane of the paper 

and to each other, both passing through the c.g. of a solid 

body. 
Let P be a typical particle of the body, its weight being a»i, 

’ This article may be omitted on first reading. The student acquainted 
with the integral calculus will readily apply the second theorem to simple 
solids. 
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and its distances from the planes ZY and ZX being and^i 
respectively. Then, if is the distance of P from an axis ZZ^ 
which is the intersection 
of the planes XZ and 
YZ, and passes through 
the c.g. rl' = x^ + 

Let Iz be the moment 
of inertia of the body 
about ZZ', and Iq that 
about a parallel axis 
00'. Let OO' be distant 
d from ZZ', and distant 
p and q from planes ZY and ZX respectively. Then 

Let other constituent particles of the body of weights 

^81 be at distances x.^^ x^^ x^^ etc., from the 
plane ZY, and distances y^, ^3, J4, etc., from the plane ZX 
respectively, the x distances being reckoned positive to the 
right and negative to the left of ZY, and the y distances being 

reckoned positive above and negative below ZX. Let /2, ^3, ^4, 
etc., be the distances of the particles from ZZj. Let Wi + 
+ 2^/3 +, etc. = '^{w) or W, the total weight of the body* 

By definition— 

Io=|s(w..OP*) 

and OP,* = (/> - ^1)* + (i' - ji)* 

therefore Io=- ■*!)* + - /,)* + 

+ Wi{q-y2Y + +, etc,} 

Io=^{/“(«'i+a'a+7f'3+, etc.)+f*(r£'i+J£'a+«'3+. etc.) 

+ + «'s(V+^s*)+. 

etc. — 2p{wix,i+«'»*a+k'»X3+, etc.) — + 

O'a^a + 'W^yt 4-, etc.)) 

lo S i{/*W + f'N + (a/,r,» + +. etc.) 

— spS(zi'x) — 2gS(vy)l 

= -{(/“ + ?®)W + S(a>f^) — 2/S(a>x) — 2gS(zvy)} 

H 
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and ^ 

^2(je/r') = I* 
d> 

S(wx) = 2(a'j') = o 

since the planes XZ and YZ pass through the c.g. of the body 
(Art. 113). 

Hence lo = + Iz.(i) 
o 

W 
and dividing both sides of (i) by ^— 

V = + .(2) 

where ho = radius of gyration about 00', and kj, = radius of 
gyration about ZZ'. 

(b) Also— 

Iz=f'-r” + jV + ^V/+,etc. 

«b o 

= -(zt'ij;!* + w.ipc} + w^i +, etc.) + + 

Wa>'s* +. etc.) 

y/iz*=-^2(wa:’)+^2(k'/>.(3> 

i s _ X s^.^) 
<ez - W W 

which may be written— 

V =3?* +3^ U) 

where and are the mean squares of the distances of the pair* 
tides of the body from the planes YZ and XZ respectively. The 

two quantities 0? andy are in many solids easily calculated. 
138. Moment of Inertia of an Area.—The moment 

of inertia lo of a lamina about a given axis GO' in its plane 

“ Kf*33) , where w is the weight of a constituent 
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particle, and r its distance from the axis 00'. This quantity 
W 

is equal to (Art. 134), where k is the radius of gyration 

about this axis 00', and W is the total weight of the lamina, 
so that— 

^2 = or 
^(wr^) 

w 

In a thin lamina of uniform thickn^,ss /, the area a (Fig. 
161) occupied by a particle of 
weight w is proportional to a/, for 
w = . D, where D is the weight 
per unit volume of the material; 

hence = /D5(^rr2) 

and similarly, W = A . . D, where 
A is the total area of the lamina; 

hence P = 
At. D A 

Thus the thickness and density of a lamina need not be 
known in order to find its radius of gyration, and an area may 
properly be said to have a radius of gyration about a given 

axis. 
The quantity %(ar^) is also spoken of as the moment of 

inertia of the area of the lamina about the axis 00' from which 

a portion a is distant r. 
The double use of this term moment of inertia" is un¬ 

fortunate. The “moment of inertia of an area” %{at^) or 

^. A is not a true moment of inertia in the sense commonly 

used in mechanics, viz. that of Art. 133; it must be multiplied 
by the factor “ mass per unit area ” to make it a true moment of 
inertia. As before mentioned, the area has, however, a radius 

of gyration about an axis 00' in its plane defined by the 
equation— 

~ A 
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Units*—The units of the geometrical quantity 
called moment of inertia of an area^ depend only upon the units 
of length employed. If the units of length are inches, a 
moment of inertia of an area is written (inches)^. 

139, Moment of Inertia of Rectangular Area about 
Various Axes. 

Fig. i6a. 

Let ABCD (Fig. 162) be a rectangle, AB = </, 
BC = b. The moment of inertia of the 
area ABCD about the axis 00' in the side 

AD may be found as follows. Suppose AB 
divided into a large number «, of equal 
parts, and the area ABCD divided into n 

equal narrow strips, each of width i The 

^ whole of any one strip EFGH is practically 
at a distance, say, FA from AD, and if 

EFGH is the /th strip from AD, FA = / x 

Multiplying the area EFGH, viz. ^ X by the square of 

its distance from AD, we have— 

(area EFGH) x FA’ = <5 x ^ X 

There are n such strips, and therefore the sum of the 
products of the areas multiplied by the squares of their distances 
from 00', which may be denoted by is— 

bcP 
-^(i* + 2“ + 3* + 4* + • • • +/* +...+«*) 

or ^{ar^) = ^ X 
bd^ n{n + i)(2« + r) 

o'. n n^J 

9 I 

When n is indefinitely great, ^ and -2= and the sum 

bd^ bd^ 
becomes X 2 or — * This is the ** moment of inertia 

of the area " about OO'; or, the radius of gyration of the area 

about 00' being k— 
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If ABCD is a lamina of uniform thickness of weight its 
fUJ 20 

true moment of inertia about 00' is P - \ — . d. 
g g 

The radius of gyration of the same area ABCD about an 
axis PQ (Fig. 163) in the plane of the 
figure and parallel to OO' and distant 

~ from it, dividing the rectangle into 

halves, can be found from the formula (2), 

Art. 136, viz.— 

V or 

where = radius of gyration about PQ; 

whence = (J — 

o c D O' 
Fig. 163. 

The sum ^(ar^^) about PQ is then ^(a) x X — = 

Similarly, if kg is the radius of gyration of the rectangle 

about RS-^ 
kJ = ^32 

and therefore, if = radius of gyration about an axis through 
G (the c.g.) and perpendicular to the figure— 

ko^ = + iiv or ^(/^ 4- (Art. 135 (2)) 

which is also equal to JCIB®. 

B 

Example.—A plane figure consists of a rectangle 8 inches by 
4 inches, with a rectangular hole 6 inches 
by 3 inches, cut so that the diagonals of 
the two rectangles are in the same straight 
lines. Find the geometrical moment of 
inertia of this figure, and its radius of 
gyration, about one of the short outer 
sides. 

Let Ia be the moment of inertia of the 
figure about AD (Fig. 164), and k be its 
radius of gyration about AD, Fig. 164. 

CL 

Moment of inertia of abed \ 

about AD ^ 

Moment of inertia of) 
ABCD about AD / 

= I^(2irea. abed) x (side ab)^ 4* (area abed^ 
X (|AB)2 (Arts.. 139 and 136) 

= J X 4 X 83 
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Hence Ia = moment of inertia of ABCD — moment of inertia of 
= i ‘ 4.8’’ - (iV X 63 X 3 + 6 X 3 X 42) 
~ (54 4. 288) = 34o‘6 (inches)* 

The area of the figure is— 

8x4 — 6x3 = 14 square inches 

therefore ^ = 24*33 (inches)^ 

and k — 4*93 inches 

140. Moment of Inertia of a Circular Area about 
Various Axes.—(i) About an axis OO' through O, its centre, 
and perpendicular to its plane. 

Let the radius OS of the circle (Fig. 165) be equal to R. 

Suppose the area divided into a large 
number /?, of circular or ring-shaped 

R 
strips such as PQ, each of width 

Then the distance of the /th strip from 

R 
O is approximately / X and its 

area is approximately— 

R R 

n 
27r X radius X width = ztt x /- 

R* 

The moment of inertia of this strip of area about 00' is 

then— 
R2 

X 

and adding the sum of all such quantities for all the n strips— 

R* 
^{ar^) = 27r^,(i3 + 2« + 33 + 4" + 

R* i n{n +1)1^ R* w* -f 2«3 -f. fi^ 

When n is indefinitely great, - a= o and --5=0, and the 
n 
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sum %{a^) becomes which is the “ moment of inertia of 

the circular area ” about 00\ 

. ttK* 
And since 2(^^) about 00' =-, if we divide each side 

of the equation by the area (ttR^) of the circle— 

ioVR" = 

/V() - 

2 

2 

where ko is the radius of gyration of the circular area about 

an axis 00' through its centre and perpendicular to its 
plane. 

(2) About a diameter. 

Again, if and kc are the radii of gyration of the same 

area about the axes AB and CD 
respectively (Fig. 166)— 

•D2 

V + = = “ (Art. 135 (2)) 

hence == i ^ 

from which the relations between 

the moments of inertia about AB, 
DC, and 00' may be found by 
multiplying each term by ttR^ 

That is, the moment of inertia of 

the circular area about a diameter is half that about an axis 

through O and perpendicular to its plane. 

Example.—Find the radius of gyration of a ring-shaped 
area, bounded outside by a circle of radius and inside by a 
concentric circle of radius about a diameter of the outer 
circle. 

The moment of inertia of the area bounded by the outer circle, 
* 

about AB (Fig. 167) is •— ; that of the inner circular area about 
4 
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• irb^ It 
the same line is — ; hence that of the ring-shaped area is 

4 4 
The area is 7r{a^ - ; hence, if k is the radius of gyration of 
the ring-shaped area about AB— 

^ ■>r 
4 

4 

Note that 

, SO that when a and b 

are nearly equal, ie, when a b 
is a small quantity, the radius of 

gyration about the axis O, approaches the arithmetic mean 

——- of the inner and outer radii. 

141. Moment of Inertia of a Thin Uniform Rod.—The 
radius of gyration of a thin rod d units long and of uniform 
material, about an axis through one end and perpendicular to 
the length of the rod, will evidently be the same as that of a 
narrow rectangle d units long, which, by Art. 139, is given by 
the relation | where k is the required radius of gyration. 

Hence, if the weight of the rod is W lbs., its moment of inertia 
. W „ W 

about one end is —or —. —• 
g g Z ^ 

Similarly, its moment of inertia about an axis through the 
W 

middle point and perpendicular to the length is 

142. Moment of Inertia of a Thin Circular Hoop.— 
(i) The radius of the hoop being R, all the matter in it is 
at a distance R from the centre of the hoop. Hence the 

radius of gyration about an axis through O, the centre of the 
hoop, and perpendicular to its plane, is R, and the moment 

W 
of inertia about this axis is —, R*, where W is the weight of 

s 
the hoop. 
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(2) The radius of gyration about diameters OX and OY 
(Fig. 168) being and ky respectively— 

= V(Art.i35(2)) 

hence 2 _ 
2 

and the moment of inertia about 
any diameter of the hoop is 
W R2 

g ‘ 2*^' 
143. Moment of Inertia of 

Uniform Solid Cylinder.—(i) 
About the axis 00' of the cylinder. 
The cylinder may be looked upon as divided into a large 
number of circular discs (Fig. 169) by planes perpendicular 
to the axis of the cylinder. 
The radius of gyration of each 
disc about the axis of the cylinder 

R* 
is given by the relation = —> 

where k is radius of gyration of 
the disc, and R the outside radius 
of the cylinder and discs. If the 
weight of any one disc is «/, and 

that of the whole cylinder is W, the moment of inertia of one 
disc is— 

g' 2 

and that of the whole cylinder is- 

2g ^ ' g 2 

and the square of the radius of gyration of the cylinder is 

(2) About an Axis perpendicular to that of the 
Cylinder and through the Centre of One End.—Let OX 
(Fig, 170) be the axis about which the moment of inertia 

H* 
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of the cylinder is required. Let R be the radius of the 
cylinder, and / its length. 

Let :x? = the mean square of the distance of the constituent 

particles from the plane YOO'Y'; 

f = the mean square of the distance of the constituent 

particles from the plane OXX'O'; 

^0 = the radius of gyration of the cylinder about 00'. 

Then = P -fp by Art. 137 (4) 

and from the symmetry of the solid, P = y ; 

hence or = 2P = 2^ 

_ 
and p = “ = y 

The cylinder being supposed divided into thin parallel rods 

all parallel to the axis and / units long, the mean square of the 

Y' 

distance of the particles forming the rod from the plane YOX 
of one end, is the same as the square of the radius of gyration 

of a rod of length / about an axis perpendicular to its length 
P 

and through one end, viz. - (Art. 141). The axis OX is the 

intersection of the planes XOO'X' and YOX, the end plane; 

hence, if is the radius of gyration about OX— 

'^/=? + J=7 + j(Art. 137(4)) 
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(3) Also, if ^0 is the radius of gyration about a parallel axis 

through G, the c.g. of the cylinder— 

V = 4“ + (-0'(Art. 137 (2)) 
72 -0 2 72 

2. 2 2. 2 ^ ^ I ^ or A} = ---1- 
^4412 

The moments of inertia of the cylinder about these various 
axes are to be found by multiplying the square of the radius of 

uo 
gyration about that axis by the mass —, where w is the weight 

of the cylinder, in accordance with the general relation I 

= (Art. 134). 

Example.—A solid disc flywheel of cast iron is 10 inches in 

diameter and 2 inches thick. If the weight of cast iron is 0*26 lb. 

per cubic inch, find the moment of inertia of the wheel about its 

axis in engineers’ units. 

The volume of the flywheel is tt x 5'^ x 2 = ^orr cubic inches 

the weight is then 0*26 x Sott = 40*8 lbs. 

, , . 40’8 
and the mass is — = 1*27 units 

32*2 

The square of the radius of gyration is (feet)^. Therefore 

the moment of inertia is— 

1*27 X = O'1102 unit 

Examples XVII. 

1. A girder of I-shaped cross-section has two horizontal flanges 5 inches 
broad and 1 inch thick, connected by a vertical web 9 inches high and i 

inch thick. Find the moment of inertia of the area ” of the section about 
a horizontal axis in the plane of the section and through its c.g. 

2. Fig. 171 represents the cross-section of a cast-iron girder. AB is 4 
inches, BC i inch, EF i inch ; EH is 6 inches, KL is 8 inches, and KN is 
1'5 inches. Find the moment of inertia and radius of gyration of the area 
of. the section about the line NM. 

3. Find, from the results of Ex. 2, the moment of inertia and radius of 
gyration of the area of section about an axis through the c.g. of the section 
nnd parallel to NM. 
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4. Find the moment of inertia of the area enclosed between two con¬ 
centric circles of 10 inches and 8 inches diameter respectively, about a 
diameter of the circles. 

5. Find the radius of gyration of the area bounded on the outside by a 
circle 12 inches diameter, and on the 
inside by a concentric circle of 10 
inches diameter, about an axis through 
the centre of the figure and perpen¬ 
dicular to its plane. 

6. The pendulum of a clock con¬ 
sists of a straight uniform rod, 3 feet 
long and weighing 2 lbs., attached 
to which is a disc 0 5 foot in diameter 
and weighing 4 lbs., so that the centre 
of the disc is at the end of the rod. 
Find the moment of inertia of the 
pendulum about an axis perpendicular 
to the rod and to the central plane 

of the disc, passing through the rod 2*5 feet from the centre of the disc. 
7. Find the radius of gyration of a hollow cylinder of outer radius a and 

inner radius b about the axis of the cylinder. 
8. Find the radius of gyration of a flywheel rim 3 feet in external 

diameter and 4 inches thick, about its axis. If the rim is 6 inches broad, and 
of cast-iron, what is its moment of inertia about its axis? Cast iron 
weighs 0*26 lb, per cubic inch. 

144. Kinetic Energry of Rotation.—If a particle of a 
body weighs lbs., and is rotating with angular velocity a> 
about a fixed axis feet from it, its speed is wri feet 

per second (Art. 33), and its kinetic energy is therefore 

Similarly, another particle of 

the same rigid body situated feet from the fixed axis of 
rotation, and weighing lbs., will have kinetic energy equal to 

• (<*>''2)^; and if the whole body is made up of particles 

I flD 

(cun)" foot-lbs. (Art. 60), 

weighing Wg, etc., lbs., situated at n» '2j ^4» etc., 
feet respectively from the axis of rotation, the total kinetic 
energy of the body will be— 

or 

+ ^(o>r,y +, etc.[ 

^r} 4- etc.) foot-lbs. 
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The quantity +» or 

has been defined (Art. 133) as the moment of inertia I, of the 

body about the axis. Hence the kinetic energy of the body is 
W W 

^1(0®, or or foot-lbs., where K = radius of 

gyration of the body in feet about the axis of rotation, and 
V = velocity of the body in feet per second at that radius of 
gyration. This is the same as the kinetic energy or 

—y2 Qf ^ mass M or 
2g 

W 
all moving with a linear velocity V. 

The kinetic energy of a body moving at a given linear 
velocity is proportional to its mass; that of a body moving 
about a fixed axis with given angular velocity is proportional 

to its moment of inertia. We look upon the moment of 

inertia of a body as its rotational inertia, i,e, the measure of 
its inertia with respect to angular motion (see Art. 36). 

145. Changes in Energy and Speed.—If a body of 
moment of inertia I, is rotating about its axis with an angular 

velocity wj, and has a net amount of work E done upon it, 

thereby raising its velocity to then, by the Principle of 

Work (Art. 61)— 

il(a>,2 . ^^2) ^ E 

or - a„*) = E 

or - V,^) = E 

where K = radius of gyration about the axis of rotation, and 

V2 and Vi are the final and initial velocities respectively at 

a radius K from the axis. 
Hence the change of energy is equal to that of an equal 

weight moving with the same final and initial velocities as a 

point distant from the axis by the radius of gyration of the 

body. If the body rotating with angular velocity wa about 

the axis is opposed by a tangential force, and does work of 
amount E in overcoming this force, its velocity will be reduced 
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to <*»!, the loss of kinetic energy being equal to the amount ot 

work done (Art. 6i). 
146. Constant resistin^f Force.—Suppose a body, such 

as a wheel, has a moment of inertia I, and is rotating at an 
angular velocity 0)2 about an axis, and this rotation is opposed 
by a constant tangential force F at a radius r from the axis 

of rotation, which passes through the centre of gravity of the 

body. Then the resnltant centripetal force on the body is 

zero (Art. 130). The particles of the body situated at a 

distance r from the centre are acted on by a resultant or 
effective force always in the same straight line with, and in 

opposite direction to, their own velocity, and therefore have 
a constant retardation in their instantaneous directions of 

motion (Art. 40). Hence the particles at a radius r have 
their linear velocity, and therefore also their angular velocity, 

decreased at a constant rate; and since, in a rigid body, the 
angular velocity of rotation about a fixed axis of every point 

is the same, the whole body suffers uniform angular retardation. 

Suppose the velocity changes from (0.2 to cui in t seconds, 
during which the body turns about the axis through an angle 

^ radians. The uniform angular retardation a is — ——\ 

Also the work done on the wheel is Fr x ^ (Art. 57), 

hence— 

F. r. ^ — ^\) = loss of kinetic energy . (i) 

The angle turned through during the retardation period is— 

Note that F. r is the moment of the resisting force or the 

resisting torque. 

Again, <02^ — = ((Ug + <j»i)(w2 — <»>i) 

and (02 
and Oh + «02 = twice the average angular velocity 

during the retardation 

26 
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Hence the relation— 

F . r. ^ - 0)^2) 

may be written— 

2O 
Fr^ = il.a./.y 

or F . r = I . a.(2) 

i,e. the moment of the resisting force about the axis of rotation 
is equal to the moment of inertia of the body multiplied by its 
angular retardation. 

Similarly, if F is a driving instead of a resisting force, the 

same relations would hold with regard to the rate of increase 
of angular velocity, viz. the moment of the accelerating force 

is equal to the moment of inertia of the body multiplied by the 

angular acceleration produced. Compare these results with 

those of Art. 40 for linear motion. 

We next examine rather more generally the relation 
between the angular velocity, acceleration, and inertia of a 

rigid body. 

147. Laws of Rotation of a Rigrid Body about an 
Axis through its Centre of Gravity.—Let7£/be the weight 
of a constituent particle of the 

body situated at P (Fig. 172), 

distant r from the axis of rota* 
tion O ; let <0 be the angular 
velocity of the body about O. 

Then the velocity 2/ of P is (or. 
Adding the vectors repre¬ 

senting the momenta of all Fig. 17a. 

such particles, we have the total momentum estimated in any 
particular direction, such as OX (Fig. 172), viz.— 

^{wr cos S) 

But 2 {wr cos 6) is zero when estimated in any direction if 

r cos B is measured from a plane through the c.g. Hence the 
total linear momentum resolved in any given direction is zero. 

Moment of Momentum, or Angular Momentum of 
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a Rigrid Body rotating* about a Fixed Axis.—This is 
defined as the sum of the products of the momenta of all the 
particles multiplied by their respective distances from the axis, 

or S(E. 

But 2(J.v.r) = 5(1. a,r. r) = 

= 0)2^^=*) = I . a> 

or the angular momentum is equal to the moment of inertia 
(or angular inertia) multiplied by the angular velocity. 

Suppose the velocity of P increases from to the 
angular velocity increasing from (Oj to 0)3, the change of 
angular momentum is— 

2(|W,) - 2(|W,) = - r.,)} 

If the change occupies a time / seconds, the mean rate of 

change of angular momentum of the whole body is— 

where f is the average acceleration of P during the time /, and 
w 

or F is the average effective accelerating force on the 

particle at P, acting always in its direction of motion, 
acting always tangentially to the circular path of P (see Art. 40). 

Also 2 (F. r) is the average total moment of the effective 

or net forces acting on the various particles of the body or the 
average effective torque on the body. 

If these average accelerations and forces be estimated over 
indefinitely small intervals of time, the same relations are true, 

and ultimately the rate of change of angular momentum is 

equal to the moment of the forces producing the change, so 

that— 

rate of change of Iw = 2(Fr) = M 
«total algebraic moment of effective 

forces^ or effective torque 
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Also— 

rate of change of Io> = I X rate of change of w 

or I. a, where a is the angular acceleration or rate of change of 
angular velocity. Hence— 

S(Fr) = M = la 

a result otherwise obtained for the special case of uniform 
acceleration in (2), Art. 146. 

Problems can often be solved alternately from equation 
(i) or equation (2) (Art. 146), just as in the case of linear 

motion the equation of energy (Art. 60) or that of force (Art. 
47) can be used (Art. 60). 

Example 1.—A flywheel weighing 200 lbs. is carried on a 
spindle 2*5 inches diameter. A string is wrapped round the spindle, 
to which one end is loosely attached. The other end of the string 
carries a weight of 40 lbs., 4 lbs. of which is necessary to overcome 
the friction (assumed constant) between the spindle and its 
bearings. Starting from rest, the weight, pulling the flywheel 
round, falls vertically through 3 feet in 7 seconds. Find the 
moment of inertia and radius of gyration of the flywheel. 

The average velocity of the falling weight is ^ foot per second, 
and since under a uniform force the acceleration is uniform, the 
maximum velocity is 2 x ? or f foot per second. 

The net work done by the falling weight, f.j. the whole work 
done minus that spent in overcoming friction, is— 

(40 - 4)3 foot-lbs. = 108 foot-lbs. 

The kinetic energy of the falling weight is— 

= 0-456 foot-lb. 

If I = moment of inertia of the flywheel, and w = its angular 
velocity in radians per second, by the principle of work (Art. 61)— 

JIfiP* + 0*456 = 108 foot-lbs. 
= 108 - 0*456 = 107*544 foot-lbs. 

The maximum angular velocity « is equal to the maximum 
linear velocity of the string in feet per second divided by the radius 
of the spindle in feet, or— 
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therefore JI x 

And if ^ = radius 
200 lbs.— 

12 _ 7 2_ 
-25 875 

= 8*23 radians per second 
(8-23)2 = 107-544 

I=.L07.;544 X2^2i52^ 
(8-23)2 67-7 

of gyration in feet, since the wheel weighs 

200 

3^ 
^ = 0*512 (foot)® 

k — 0715 foot or 8*6 inches 

Example 2.—An engine in starting exerts on the crank-shaft 

for one minute a constant turning moment of 1000 lb.-feet, and 
there is a uniform moment resisting motion, of 800 Ib.-feet. The 
flywheel has a radius of gyration of 5 feet and weighs 2000 lbs. 

Neglecting the inertia of all parts except the flywheel, what speed 
will the engine attain during one minute 1 

(i) Considering the rate of change of angular momentum— 

The effective turning moment is 1000 — 800 = 200 Ib.-feet 

-7000 
The moment of inertia of the flywheel is x 5® = 1553 units 

Hence if a = angular acceleration in radians per second per second 

200 = 1553a (Art. 146 (2)) 
200 

a =-=0*1288 radian per second per second 
1553 ^ ^ 

And the angular velocity attained in one minute is — 

60 X 0*1288 = 7*73 radians per second 

7*7^ X 60 
or —--= 74 revolutions per minute 

(2) Alternatively from considerations of energy. 

If = angular velocity acquired 

~ = mean angular velocity 

Total angle turned through \ x = 30* radians 
in one minute ' 2 

Net work done in one minute = 200 x 3o<tf foot-lbs. 
200 X 3o« = 

6ooo« = 1553. w® 

= 7*73 radians per second 
^553 as before 

w rs 
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Example 3,—A thin straight rod of uniform material, 4*5 feet 
long, is hinged at one end so that it can turn in a vertical plane. 
It is placed in a horizontal position, and 

then released. Find the velocity of the 
free end (i) when it has described an 
angle of 30°, (2) when it is vertical. 

(i) After describing 30° the centre 
of gravity G (Fig. 173), which is then 

at Gi, has fallen a vertical distance 
ON. 

ON = OGi cos 60° = JOG, = \ 

If W is the weight of the rod in pounds, the work done by 

gravitation is— 
W X 1*125 foot-lbs. 

The moment of inertia of the rod 

W (4*5)^ 

/ * ’ 3 g 
If wj is the angular velocity of the rod, since the kinetic energy 

of the rod must be ri25W foot-lbs.— 

i-V-= I-J25W 

= I X -§1 X 32*2 = 10*73 
= 3'27 radians per second 

the velocity of Ao in position Aj is then— 

3*27 X 4*5 = 1471 feet per second 

(2) In describing 90° G falls 2*25 feet, and the kinetic energy ii 

then 2*25W foot-lbs. 

And if is the angular velocity of the rod— 

2-25W 

"a® = f X A X 32*2 = 21*47 
(Wg = 4*63 radians per second 

and the velocity of Ao in the position Aj is— 

4*63 X 4*5 = 20*83 second 
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148* Compound Pendulum.—In Art. 71 the motion of 
a “ simple pendulum ” was investigated, and it was stated that 
such a pendulum was only approximated to by any actual 

pendulum. We now proceed to find the 
simple pendulum equivalent (in period) 
to an actual pendulum. 

Let a body be suspended by means 
of a horizontal axis O (Fig. 174) perpen¬ 
dicular to the figure and passing through 

the body. Let G be the c.g. of the body 
in any position, and let OG make any 

angle B with the vertical plane (OA) 
through O. 

174. Suppose that the body has been raised 
to such a position that G was at B, and then released. Let 

the angle AOB be and OG = OB = OA = h. 

The body oscillating about the horizontal axis O constitutes 

a pendulum. 
Let / = length of the simple equivalent pendulum (Art. 71); 

I = the moment of inertia of the pendulum about the 
axis O; 

= radius of gyration about O; 
ko, = radius of gyration about a parallel axis through G. 

Let W be the weight of the pendulum, and let M and N 

be the points in which horizontal lines through B and G 

respectively cut OA. 
When G has fallen from B to G, the work done is— 

W X MN = W(ON - OM) = W(/5 cos 6> - cos 

= W^(cos B — cos 

Let the angular velocity of the pendulum in this position 

be 0), then its kinetic energy is (Art. 144), and by the 

principle of work (Art. 61), if there are no resistances to 

motion the kinetic energy is equal to the work done, or— 

= W//(cos ^ — cos 

find therefore— 
aW>4 

^2 - cos ^) . . . . (i) 



213 Moments of Inertia—Rotation 

Similarly, if a particle (Fig. 175) be attached to a point 
O' by a flexible thread length /, and be released from a 

position B' such that B'O'A = O'A O’ 

being vertical, its velocity v when passing 

G' such that G'O'A = ^ is given by— ^ 

5y2 s- 2^. M'N' = 2^/(cOS B — cos </>) , N. / ® 
N- 

and its angular velocity o> about O' 
. , V ^ 
being ^— Fig. 175. 

= -^^(cos 6 — cos 4).(a) 

The angular velocity of a particle (or of a simple pendulum) 
given by equation (2) is the same as that of G (Fig. 174) 

given by equation (i), provided— 

g 

/ I wv 

ix. provided— 

^2 
This length -J- is then the length of the simple pendulum 

equivalent to that in Fig. 174, for since the velocity is the same 

at any angular position for the simple pendulum of length / 

and the actual pendulum, their times of oscillation must be the 
same. Also, since— 

4* = V + (Art. 137 (2)) 

h h 

The point C (Fig. 174), distant 'J' + ^ from O, and in the 

line OG is called centre of oscillation'^ The expression 

k 
^ ^ shows that it is at a distance beyond G from O. 

A particle placed at C would oscillate in the same period 

about O as does the compot^ndpendulum of Fig. 174. 
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Example.—A flywheel having a radius of gyration of 3*25 feet 

is balanced upon a knife-edge parallel to the axis of the wheel and 

inside the lim at a distance of 3 feet from the axis of the wheel. 
If the wheel is slightly displaced in its own plane, find its period of 

oscillation about the knife-edge. 
The length of the simple equivalent pendulum is— 

3 H" 
(3*25)^ 

Hence the period is 

3 + 3*5208 = 6*5208 feet 

2*83 seconds 

149. The laws of rotation of a body about an axis may be 

stated in the same way as Newton's laws of motion as follows :—* 
Law T. A rigid body constrained to rotate about an axis 

continues to rotate about that axis with constant angular 

velocity except in so far as it may be compelled to change 
that motion by forces having a moment about that axis. 

Latv 2. The rate of change of angular momentum is pro¬ 

portional to the moment of the applied forces, or torque about 

the axis. With a suitable choice of units, the rate of change 
of angular momentum is equal to the moment of the applied 

forces, or torque about the axis. 
Law 3. If a body A exerts a twisting moment or torque 

about a given axis on a body B, then B exerts an equal and 

opposite moment or torque about that axis on the body A. 

150. Torsional Simple Harmonic Motion.—If a rigid 
body receives an angular displacement about an axis, and the 
noment of the forces acting on it tending to restore equilibrium 

is proportional to the angular displacement, then the body 
executes a rotary vibration of a simple harmonic kind. Such 

a restoring moment is exerted when a body which is suspended 

by an elastic wire or rod receives an angular displacement 

about the axis of suspension not exceeding a certain limit. 

Let M = restoring moment or torque in Ib.-feet per radian 

of twist; 
I = moment of inertia of the body about the axis of 

suspension in engineer's units; 

Ik = angular acceleration of the body in radians per 

second per second per radian of twist. 
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Then M = I. /* (Art. 147) 
M 

or /A = Y 

Then, following exactly the same method as in Art. 68, if 
Q (Fig. 176) rotates uniformly with angular velocity aJjxmvi 

circle centred at O and of radius OA, which represents to scale 

the greatest angular displacement of 
the body, and P is the projection 
of Q on OA, then P moves in the 

same way as a point distant from O 
by a length representing the angular 
displacement at any instant to the 
same scale that OA represents the 

extreme displacement. The whole 

argument of Art 68 need not be 
repeated here, but the results are— f’ig. 176* 

Angular velocity for an angular displacement represented 

by OM, is - 
Angular acceleration for an angular displacement repre¬ 

sented by PO, is fi, 0, 

T = time of complete vibration = —= seconds 
V/A 

or, since— 
M 

f^=j 

Example.—A metal disc is 10 inches diameter and weighs 
6 lbs. It is suspended from its centre by a vertical wire so that 
its plane is horizontal, and then twisted. When released, how many 
oscillations will it make per minute if the rigidity of the suspension 
wire is such that a twisting moment of i Ib.-foot causes an angular 
deflection of 10® ? 

The twisting moment per radian twist is 

The square of radius of gyration is KA)* ~ 0*0868 (foot)* 

I = 573 Ib.-feet 
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The moment of inertia is — - x o*o868 = 0*01617 
32*2 

Hence the time of vibration is 2Tr* / ~ = 27rA / 
V M V 573 

= 0*334 second 
The number of vibrations per minute is 

then 
60 

0-334 

179 

151. It is evident, from Articles 144 to 150, that the rotation 

of a rigid body about an axis bears a close analogy to the 

linear motion of a body considered in Chapters L to IV. 
Some comparisons are tabulated below. 

Linear. 

. W 
Mass or inertia, ~ or m. 

Length, /. 
Velocity, v. 
Acceleration,/. 

P'orce, F. 
w 

Momentum, —. ^ or mv. 
O , . / 

Average velocity, y 

Average acceleration,-— 

^ w (Vi — V2) 
Average force, •-;—^ or 

6 * 
ntjvi — V2) 

t 
Work of constant force, F. /. 

w 
Kinetic energy, \ —v‘ or ^ 

Period of simple vibration, 

e = force per unit displace¬ 

ment. 

Angular or Rotational. 

Moment of inertia, I. 

Angular displacement, $. 
Angular velocity, w. 
Angular acceleration, a. 

Moment of force, or torque, M. 

Angular momentum, I. o>. 

Average angular velocity, y 

Average angular acceleration, 
COj — <i>2 

' 7~ 

Average moment or torque, 
I((tfi ~ (02) 

/ 

Work of constant torque, M. 0. 

Kinetic energy, llu)® 

Period simple vibration, 

where M=torque 

per radian displacement. 
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The quantities stated as average values have similar mean* 
ings when the averages are reckoned over indefinitely small 
intervals of time, or, in other words, they have corresponding 
limiting values. 

152. Kinetic Enerjg:y of a Rolling Body.—We shall 
limit ourselves to the case of a solid of revolution rolling along 

a plane. The c.g. of the 
solid will then be in the 
axis of revolution about 
which the solid will rotate 
as it rolls. Let R be 
the extreme radius of the 
body at which rolling 
contact with the plane 
takes place (Fig. 177); 
let the centre O be moving 
parallel to the plane with 
a velocity V. Then any point P on the outside circumference 

of the body is moving with a velocity V relative to O, the 
angular velocity of P and of the whole body about O being 

g, or say o> radians per second. 

Consider the kinetic energy of a particle weighing w lbs. 
at Q, distant OQ or r from the axis of the body. Let OQ 

make an angle QOA = B with OA, the direction of motion of 
O. Then the velocity z/ of Q is the resultant of a velocity V 
parallel to OA, and a velocity mr perpendicular to OQ, and 
is such that— 

= {i^rf + V2 + 2(or. V . cos (90 + B) 

Hence the kinetic energy of the particle is— 

(cdV^ 4. — 2(DrV sin B) 

The total kinetic energy of the body is then— 

4. — 2a)rV sin ^)|’ 

= ^ ^ sin 
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Now, sin = o (Art. 113 (3)) 

and 

hence s(^ •»’) = 

the moment of inertia of the solid 
about the axis O 

W 
rlco'' + I V2 

= kinetic energy of rotation about O 4* 
kinetic energy of an equal weight 
moving with the linear velocity of 

the axis. 

This may also be written— 

where k is the radius of gyration about the axis O. The 

kinetic energy — V^i +^2) then the same as that of a 

weight w(^i 4- moving with a velocity V of pure trans- 

lation, ie, without rotation. 

In the case of a body rolling down a plane inclined 0 to 

the horizontal (Fig. 178), 
using the same notation as 
in the previous case, the 

component force of gravity 
through O and parallel to 
the direction of motion down 

the plane is W sin 0, In 

rolling a distance .r down 

_ the plane, the work done 
is W sin 6. s. Hence the 

kinetic energy stored after the distance s is— 

I + = W sin ^j (Art. 61) 

R* 
or = 2sg sin 

This is the velocity which a body would attain in moving 

i?V<: 
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without rotation a distance s from rest under an acceleration 
R3 

g sin Hence the effect of rolling instead of sliding 

down the plane is to decrease the linear acceleration and linear 

velocity attained by the axis in a given time in the ratio 
R2 

R2+^-2 (see Art. 28). 

We may alternatively obtain this result as follows; 
Resolving the reaction of the (rough) plane on the body at T 
into components N and F, normal to the plane and along 
it respectively, the net force acting down the plane on the 
body is W sin ^ — F; and if a = angular acceleration of the 
body about O, and / = linear acceleration down the plane— 

a 
R 

But la = FR (Art. 146 (2)) 

F being the only force which has any moment about O; 

la 1/ 
hence F 

R R* 

and the force acting down the plane is W sin ^ 

„ force acting down the plane . I/\ . W 
Hence / =-^^-= l W sin — 

mass of body \ Ry g 

f^gsm e -/g2 

R2 
or/=^sin e X 

Example.—A solid disc rolls down a plane inclined 30° to the 
horizontal. How far will it move down the plane in 20 seconds 
from rest ? What is then the velocity of its centre, and if it weighs 
10 lbs., how much kinetic energy has it ? 

The acceleration of the disc will be— 

R2 

32*2 X sm 30® X .. = 32*2 X J X I 
Ra+ - 

2 
= 1073 feet per second per second 
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In 20 seconds it will acquire a velocity of— 

20 X 10*73 = 214*6 feet per second 

Its average velocity throughout this time will be— 

214*6 - , 
—= 107*3 f^^t per second 

It will then move— 

107*3 X 20 = 2146 feet 

corresponding to a vertical fall of 2146 sin 30^^ or 1073 feet. 
The kinetic energy will be equal to the work done on it in 

falling 1073 feet, ue, 1073 x 10 = 10,730 foot-lbs. 

Examples XVIII. 

1. What is the moment of inertia in engineer’s units of a flywheel 
which stores 200,000 foot-lbs. of kinetic energy when rotating 100 times 
per minute ? 

2. A flywheel requires 20,000 foot-lbs. of work to be done upon it 
to increase its velocity from 68 to 70 rotations per minute. What is its 
moment of inertia in engineer’s units ? 

3. A flywheel, the weight of which is 2000 lbs., has a radius of 
gyration of 3*22 feet. It is carried on a shaft 3 inches diameter, at the 
circumference of which a constant tangential force of 50 lbs. opposes the 
rotation of the wheel. If the wheel is rotating 60 times per minute, how 
long will it take to come to rest, and how many rotations will it make in 
doing so ? 

4. A wheel 6 feet diameter has a moment of inertia of 600 units, and 
is turning at a rate of 50 rotations per minute. What opposing force 
applied tangentially at the rim of the wheel will bring it to rest in one 
minute ? 

5. A flywheel weighing 1*5 tons has a radius of gyration of 4 feet. 
If it attains a speed of 80 rotations per minute in 40 seconds, find the mean 
effective torque exerted upon it in pound-feet ? 

6. A weight of 40 lbs. attached to a cord which is wrapped round the 
2-inch spindle of a flywheel descends, and thereby causes the wheel to 
rotate. If the weight descends 6 feet in 10 seconds, and the friction of the 
bearing is equivalent to a force of 3 lbs. at the circumference of the spindle, 
find the moment of inertia of the flywheel. If it weighs 212 lbs,, what is 
its radius of gyration ? 

7. If the weight in Question 6, after descending 6 feet, is suddenly 
released, how many rotations will the wheel make before coming to rest ? 

8. A flywheel weighing 250 lbs. is mounted on a spindle 2*5 inches 
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diameter, and is caused to rotate by a falling weight of lbs. attached to 
a string wrapped round the spindle. After falling 5 feet in 8 seconds, the 
weight is detached, and the wheel subsequently makes 100 rotations before 
coming to rest. Assuming the tangential frictional resisting force at the 
circumference of the axle to be constant throughout the accelerating and 
stopping periods, find the radius of gyration of the wheel. 

9. A rod is hinged at one end so that it can turn in a vertical plane 
about the hinge. The rod is turned into a position of unstable equilibrium 
vertically above the hinge and then released. P'ind the velocity of the 
end of the rod (i) when it is horizontal; (2) when passing through its 
lowest position, if the rod is 5 feet long and of uniform small section 
throughout. 

10. A circular cylinder, 3 feet long and 9 inches diameter, is hinged 
about an axis which coincides with the diameter of one of the circular ends. 
The axis of the cylinder is turned into a horizontal position, and then the 
cylinder is released. Find the velocity of the free end of the axis (i) after 
it has described an angle of 50®, (2) when the axis is passing through its 
vertical position. 

11. A flywheel weighs 5 tons, and the internal diameter of its rim is 
6 feet. When the inside of the rim is supported upon a knife-edge passing 
through the spokes and parallel to its axis, the whole makes, if disturbed, 
21 complete oscillations per minute. Find the radius of gyration of the 
wheel about its axis, and the moment of inertia about that axis. 

12. A cylindrical bar, 18 inches long and 3 inches diameter, is suspended 
from an axis through a diameter of one end. If slightly disturbed from 
its position of stable equilibrium, how many oscillations per minute will it 
make ? 

13. A piece of metal is suspended by a vertical wire which passes 
through the centre of gravity of the metal. A twist of 8’5° is produced 
per pound-foot of twisting moment applied to the wire, and when the 
metal is released after giving it a small twist, it makes 150 complete 
oscillations a minute. Find the moment of inertia of the piece of metal 
in engineer’s or gravitational units. 

14. A flywheel weighing 3 tons is fastened to one end of a shaft, the 
other end of which is fixed, and the torsional rigidity of which is such that 
it twists 0*4° per ton-foot of twisting moment applied to the flywheel. If 
the radius of gyration of the flywheel and shaft combined is 3 feet, find the 
number of torsional vibrations per minute which the wheel would make if 
slightly twisted and then released. 

15. The weight of a waggon is 2 tons, of which the wheels weigh J ton. 
The diameter of the wheels is 2 feet, and the radius of gyration 0*9 foot. 
Find the total kinetic energy of the waggon when travelling at 40 miles 
per hour, in foot-tons. 

16. A cylinder is placed on a plane inclined 15® to the horizontal, and 
is allowed to roll down with its axis horuontal. Find its velocity after 
it has traversed 25 feet. 
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17. A solid Sphere rolls down a plane inclined a to the horizontal. 

Find its acceleration. (Note.'—The square of the radius of gyration of a 

sphere of radius R is jR*.) 

18. A motor car weighs W lbs., including four wheels, each of which 

weigh w lbs. The radius of each wheel is a feet, and the radius of 

gyration about the axis is k feet. Find the total kinetic energy of the 

car when moving at v feet per second* 



CHAPTER X 

ELEMENTS OF GRAPHICAL STATICS 

*53* In Chapter VI. we considered and stated the condi¬ 
tions of equilibrium of rigid bodies, limiting ourselves to 
those subject to forces in one plane only. In the case of 
systems of concurrent forces in equilibrium (Chapter V.), we 
solved problems alternatively by analytical methods of resolu¬ 
tion along two rectangular axes, or by means of drawing vector 
polygons of forces to scale. We now proceed to apply the 
vector methods to a few simple systems of non-concurrent 
forces, such as were considered from the analytical point of 
view in Chapter VI., and to deduce the vector conditions of 
equilibrium. 

When statical problems are solved by graphical methods, it is 
usually necessary to first draw out a diagram showing correctly 
the inclinations of the lines of action of the various known 
forces to one another, and, to some scale, their relative posi¬ 
tions. Such a diagram is called a diagram of positions, or 
sface diagf'am; this is not to be confused with the vector 
diagram of forces, which gives magnitudes and directions, but 
not positions of forces. 

154. Bows* Notation.—In this notation the lines of 
action of each force in the diagram are denoted by 
two letters placed one on each side of its line of action. Thus 
the spaces rather than the lines or intersections have letters 
assigned to them, but the limits of a space having a particular 
letter to denote it may be different for different forces. 

The corresponding force in the vector diagram has the same 
two letters at its ends as are given to the spaces separated by 
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its line of action in the space diagram. We shall use capital 
letters in the space diagram, and the corresponding small letters 
to indicate a force in the vector diagram. The notation will 

be best understood by reference to an example. It is shown 
in Fig. 179, applied to a space diagram and vector polygon for 

c 

five concurrent forces in equilibrium (see Chapter V.). The 
four forces, AB, BC, CD, DE, of 5 lbs., 6 lbs., 5I lbs., and 
6j lbs. respectively, being given, the vectors ady bcy cdy de are 
drawn in succession, of lengths representing to scale these 

magnitudes and parallel to the lines AB, BC, CD, and DE 
respectively, the vector ea^ which scales 5*7 lbs., represents the 
equilibrant of the four forces, and its position in the space 
diagram is shown by drawing a line EA parallel to ea from the 

common intersection of AB, BC, CD, and DE. (This is ex¬ 

plained in Chapter V., and is given here as an example of the 

system of lettering only.) 

155* The Funicular or Link Polygfon.—To find 
graphically the single resultant or equilibrant of any system of 
non-concurrent coplanar forces. Let the four forces AB, BC, 
CD, and DE (Fig. 180) be given completely, />. their lines of 

action (directions and positions) and also their magnitudes. 

First draw a vector ab parallel to AB, and representing by its 

length the given magnitude of the force AB; from b draw be 

parallel to the line BC, and representing the force BC com¬ 
pletely. Continuing in this way, as in Art. 73, draw the open 
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vector or force polygon aifcde; then, as in the case of con* 
current forces, Art. 73, the vector ae represents the resultant 
(or ea^ the equilibrant) in magnitude and direction. The 

problem is not yet complete, for the position of the resultant 
is unknown. In Chapter VI. its position was determined by 
finding what moment it must have about some fixed point. 

The graphical method is as follows (the reader is advised to 

draw the figure on a sheet of paper as he reads): Choose any 

convenient point 0 (called a pole) in or about the vector 

polygon, and join each vertex a, d, c, </, and e of the polygon 
to 0; then in the space diagram, selecting a point P on the 
line AB, draw a line PT (which may be called AO) parallel to 
ao across the space A. From P across the space B draw a 
line BO parallel to to meet the line BC in Q. From Q 
draw a line CO parallel to co to meet the line CD in R. From 
R draw a line DO parallel to do to meet the line DE in S, and, 
finally, from S draw a line EO parallel to eo to meet the line 
AO (or PT) in T. Then T, the intersection of AO and EO, 
is a point in the line of action of EA, the equilibrant, the magni¬ 
tude and inclination of which were found from the vector ea* 

V 
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Hence the equilibrant EA or the resultant AE is completely 
determined. The closed polygon PQRST, having its vertices 

on the lines of action of the forces, is called a funicular or link 
polygon. That T must be a point on the line of action of the 
resultant is evident from the following considerations. Any 

force may be resolved into two components along any two 
lines which intersect on its line of action, for it is only neces¬ 

sary for the force to be the geometric sum of the components, 

(Art. 75). Let each force, AB, BC, CD, and DE, be resolved 
along the two sides of the funicular polygon which meet on 
its line of action, viz. AB along TP and QP, BC along PQ 

and RQ, and so on. The magnitude of the two components 
is given by the corresponding sides of the triangle of forces 

in the vector diagram, e.g. AB may be replaced by components 

in the lines AO and BO (or TP and QP), represented in magni¬ 

tude by the lengths of the vectors ao and ob respectively, for 
in vector addition— 

ao + ob — ab (Art. 19) 

Similarly, CD is replaced by components in the lines CO and 
OD represented by co and od respectively. When this process 
is complete, all the forces AB, BC, CD, and DE are replaced 
by components, the lines of action of which are the sides TP, 
PQ, QR, etc., of the funicular polygon. Of these component 

forces, those in the line PQ or BO are represented by the 
vectors ob and bo, and therefore have a resultant nil. Similarly, 
all the other components balance in pairs, being equal and 

opposite in the same straight line, except those in the lines TP 

and TS, represented by and oe respectively. These two 
have a resultant represented by cu (since in vector addition 

ao oe= ae), which acts through the point of intersection T 

of their lines of action. Hence finally the resultant of the 

whole system acts through T, and is represented in magnitude 

and direction by the line ae; the equilibrant is equal and 

opposite in the same straight line. 

/156. Conditions of Equilibrium.—If we include the 
Equilibrant EA (Fig. 180, Art. 155) with the odier four forces, 
we have five forces in equilibrium, and (i) the force or vector 
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polygon ahcde is closed; and (2) the funicular polygon 
PQRST is a closed figure. Further, if the force polygon is 
not closed, the system reduces to a single resultant, which may 

be found by the method just described (Art 155). 
It may happen that the force polygon is a closed figure, 

and that the funicular polygon is not. Take, for example, a 
diagram (Fig. 181) similar to the previous one, and let the 

forces of the system be AB, BC, CD, DE, and EA, the force 

EA passing through the point T found in Fig. 180, but 
through a point V (Fig. i8i), in the line TS. If we draw a 

line, VW, parallel to oa through V, it will not intersect the line 
TP parallel to aOy for TP and VW are then parallel. Re¬ 

placing the original forces by components, the lines of action 
of which are in the sides of the funicular polygon, we are left 

with two parallel unbalanced components represented by ao 

and oa in the lines TP and VW respectively. These form a 

couple (Art. 91), and such a system is not in equilibrium nor 

reducible to a single resultant. The magnitude of the couple 
is equal to the component represented by oa multiplied by the 

length represented by the perpendicular distance between the 

lines TP and VW. A little consideration will show that it is 

also equal to the force EA represented by ea^ multiplied by 
the distance represented by the perpendicular from T on the 
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line VX. Or the resultant of the forces in the lines AB, BC, 
CD, and DE is a force represented by ae acting through the 

point T; this with the force through V, and represented by 
ea^ forms a couple. 

Hence, for equilibrium it is essential that (i) the polygon 
of forces is a closed figure ; (2) that the funicular polygon is a 
closed figure. 

Compare these with the equivalent statements of the 
analytical conditions in Art. 96. 

Choice of Pole.—In drawing the funicular polygon, the 
pole 0 (Figs. 180 and 181) was chosen in any arbitrary posi¬ 
tion, and the first side of the funicular polygon was drawn 

from any point P in the line AB. If the side AO had been 
drawn from any point in AB other than P, the funicular 
polygon would have been a similar and similarly situated figure 

to PQRST. 

The choice of a different pole would give a different 

shaped funicular polygon, but the points in the line of action 
of the unknown equilibrant obtained from the use of different 

poles would all lie in a straight line. This may be best appre¬ 

ciated by trial. 
Note that in any polygon the sides are each parallel to a 

line radiating from the corresponding pole. 
157. Funicular Polygon for Parallel Forces.—To 

find the resultant of several parallel forces, we proceed exactly 
as in the previous case, but the force polygon has its sides all 
in the same straight line; it is “ closed ” if, after drawing the 
various vectors, the last terminates at the starting-point of the 

first. The vector polygon does not enclose a space, but may 

be looked upon as a polygon with overlapping sides. 

Let the parallel forces (Fig. 182) be AB, BC, CD, and DE 
of given magnitudes. Set off the vector ab in the vector 

polygon parallel to the line AB, and representing by its length 

the magnitude of the force in the line AB. And from b set 
off be parallel to the line BC, and representing by its length 

the magnitude of the force in the line BC. Then be is evi¬ 

dently in the same straight line as ab^ since AB and BC are 
parallel Similarly the vectors cd^ de^ and the resultant ae of 
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the polygon are all in the same straight line. Choose any 
pole 0^ and join and e to 0, Then proceed to put 

in the funicular polygon in the space diagram as explained in 

Fig. 182. 

Art. 155. The two extreme sides AO and EO intersect in 
T, and the resultant AE, given in magnitude by the vector ae^ 

acts through this point, and is therefore completely deter¬ 

mined. 

To find Two Equilibrants in Assigned Lines 
of Action to a System of Parallel Forces. 

As a simple example, we may take the vertical reactions 

Fig. 183. 

at the ends of a horizontal beam carrying a number of vertical 

loads. 

Let AB, BC, CD, and DE (Fig. 183) be the lines of action 
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of the forces of given magnitudes, being concentrated loads on 
a beam, xy^ supported by vertical forces, EF and FA, at y and 
X respectively. Choose a pole, as before (Arts. 156 and 
157), and draw in the funicular polygon with sides AO, BO, 

CO, DO, and EO respectively parallel to ao^ bOy cOy doy and eo 
in the vector diagram. Let AO meet the line FA (/>. the 
vertical through in /, and let q be the point in which EO 

meets the line EF (/>. the vertical through y\ Join pq^ and 
from 0 draw a parallel line ^to meet the line abcde in /. The 
rnagnitude of the upward reaction or supporting force in the 

line EF is represented by efy and the other reaction in the line 
FA is represented by the vector fa. This may be proved in 
the same way as the proposition in Art. 155. 

af and fe represent the downward pressure of the beam at 

X and y respectively, while fa and ef represent the upward 

forces exerted by the supports at these points. 

159. In the case of non-parallel forces two equilibrants 

can be found—one to have a given line of action, and the 

other to pass through a given point, to fulfil altogether three 
conditions (Art. 96). 

Let AB, BC, and CD (Fig. 184) be the lines of action of 
given forces represented in magnitude by aby bcy and cd respec¬ 

tively in the vector polygon. Let ED be the line of action of 
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one equilibrant, and p a point in the line of action of the 
second. Draw a line, dx^ of indefinite length parallel to DE. 
Choose a pole, and draw in the funicular polygon corre¬ 
sponding to it, hit drawing the side AO through the given 
point /. Let the last side DO cut ED in q. Then, since the 

complete funicular polygon is to be a closed figure, join pq. 
Then the vector oe is found by drawing a line, oe^ through o 

parallel to pq to meet dx in e. The magnitude of the equili¬ 
brating force in the line DE is represented by the length de^ 

and the magnitude and direction of the equilibrant EA through 
p is given by the length and direction of ea. 

Bending Moment and Shearing Force.—In con¬ 

sidering the equilibrium of a rigid body (Chapter VL), we have 

hitherto generally only considered the body as a whole. The 

same conditions of equilibrium must evidently apply to any 

part of the body we may consider (see Method of Sections, 

Art. 98). For example, if a beam (Fig. 185) carrying loads 

Wj, W2, W3, W4, and Wg, as shown, be ideally divided into two 

V. vy. vy. ^4 

1 :a : 

i 

R 

Fig. 185. 

B 

parts, A and B, by a plane of section at X, perpendicular to 
the length of the beam, each part, A and B, may be looked 
upon as a rigid body in equilibrium under the action of forces. 

The forces acting on the portion A, say, fulfil the conditions of 

equilibrium (Art. 96), provided we include in them the forces 
which the portion B exerts on the portion A. 

Note that the reaction of A on B is equal and opposite to 
the action of B on A, so that these internal forces in the beam 

make no contribution to the net forces or moment acting on 

the beam as a whole. 

For convenience of expression, we shall speak of the beam 
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as horizontal and the loads and reactions as vertical forces. 
Let and R® be the reactions of the sujDports on the por¬ 

tions A and B respectively. 
Considering the equilibrium of the portion A, since the 

algebraic sum of the vertical forces on A is zero, B must exert 
on A an upward vertical force Wj 4- Wo — R^. This force is 
called the shearing force at the section X, and may be denoted 

by Fx. Then 

Fx = W, + Ws - Ra, or W, + « R^ ~ Fx = o 

If the sum Wj -f W2 is numerically less than R^, Fx is 
negative, i.e. acts downwards on A. 

The shearing fo7re at any section of this horizontal beam is 
then numerically equal to the algebraic sum of all the vertical 
forces acting on either side of the section. 

Secondly, since the algebraic sum of all the horizontal forces 
on A is zero, the resultant horizontal force exerted by B on 
A must be zero, there being no other horizontal force on A. 

Again, if and d^ are the horizontal distances of R^, Wj, 

and W2 respectively from the section X, since Wj, W^, and R^ 
exert on A a clockwise moment in the plane of the figure 
about any point in the section X, of magnitude— ^ 

Ra.^1 - - W2.4 

B must exert on A forces which have a contra-clockwist 

moment Mx, say, numerically equal to Ra • — Wj^i — 
for the algebraic sum of the moments of all the forces on A is 
zero, i.e,— 

(Ra.^i-W24)-Mx= o 

or Mx = Ra . 

This moment cannot be exerted by the force Fx, which has 

zero moment in the plane of the figure about any point in the 

plane X. Hence, since the horizontal forces exerted by B 

on A have a resultant zero,, they must form a couple of 
contra-clockwise moment, Mx, i-e. any pull exerted by B must 

be accompanied by a push of equal magnitude. This couple 
Mx is called the moment of resistance of the beam at the 

section X, and it is numerically equal to the algebraic sum of 
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moments about that section, of all the forces acting to either 
side of the section. This algebraic sum of the moments about 
the section, of all the forces acting to either side of the section 
X, is called the bending moment at the section X. 

f6i. Determination of Bending: Moments and Shear¬ 
ing: Forces from a Funicular Polyg:on.—Confining our¬ 
selves again to the horizontal beam supported by vertical 
forces at each end and carrying vertical loads, it is easy to 
show that the vertical height of the funicular polygon at any 
distance along the beam is proportional to the bending moment 

at the corresponding section of the beam, and therefore repre- 
sents it to scale, that xl (Fig. 186) represents the bending 

moment at the section X, 
Let the funicular polygon for any pole 0^ starting say from 

5, be drawn as directed in Arts. 155 and iS7> being drawn 
parallel to zp or GO, the closing line of the funicular, so that 
Ri, the left-hand reaction, is represented by the vector ga and 
Rg by fg, while the loads W^, Wg, Wg, W4, and Wg are repre¬ 
sented by the vectors bc^ cd, de, and {/"respectively. Con¬ 
sider any vertical section, X, of the beam at which the height of 
bending-moment diagram is xL Produce xl and the side zw 
to meet in y. Also produce the side wm of the f^icular 
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polygon to meet xy in and let the next side mq of the 
funicular meet xy in L The sides zw^ wm^ and mq (or AO, BO, 
and CO) are parallel to ao^ bo^ and co respectively. Draw a 
horizontal line, zk^ through z to meet xy in a horizontal line 
through w to meet xy in r, and a horizontal through o in 
the vector polygon to meet the line abcdef in H. Then in the 

two triangles xyz and gao there are three sides in either parallel 

respectively to three sides in the other, hence the triangles are 
similar, and— 

xy _ zy 

ag^ ao (i) 

Also the triangles zky and oYia are similar, and therefore— 

zy ^ zk 

ao ^ oH (2) 

Hence from (i) and (2)— 

xy zh 

~ ^ ~ oW 

Therefore, since ag is proportional to Ri, and zk is equal or 
proportional to the distance of the line of action of Ri from X, 
ag. zk is proportional to the moment of Rj about X, and oH 

being an arbitrarily fixed constant, xy is proportional to the 
moment of Rj about X. 

Similarly— 
ab. wr 

and therefore yn represents the moment of Wi about X to the 

same scale that xy represents the moment of Rj about X. 

Similarly, again, nl represents the moment of Wg about X to 
the same scale. 

Finally, the length xl or (jxy ^ ny In) represents the 
algebraic sum of the moments of all the forces to the left of 

the section X, and therefore represents the bending moment at 

the section X (Art, 160). 
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Scales.—If the scale of forces in the vector diagram is— 

I inch to p lbs. 

and the scale of distance in the space diagram is— 

I inch to q feet; 

and if oH is made h inches long, the scale on which xl repre¬ 
sents the bending moment at X is— 

I inch to q. h. lb.-feet. 

A diagram (Fig. 187) showing the shearing force along the 

A!B 

Fig. 187. 

length of the beam may be drawn by using a base line, j/, of 
the same length as the beam in the space diagram, and in the 

horizontal line through g in the force diagram. The shearing 

force between the end of the beam s and the line AB is con¬ 
stant and equal to Ri, i.e, proportional to ga. The height ga 

may be projected from « by a horizontal line across the space 
A. A horizontal line drawn through b gives by its height above 

g the shearing force at all sections of the beam in the space R 
Similarly projecting horizontal lines through r, and / we 

get a stepped diagram, the height of which from the base line 

St gives, to the same scale as the vector diagram, the shearing 

force at every section of the beam. 
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Examples XIX. 

1. Draw a square lettered continuously PQRS, each side 2 inches 
long. Forces of 9, 7, and 5 lbs. act in the directions RP, SQ, and QR 
respectively. Find by means of a funicular polygon the resultant of these 
three forces. State its magnitude in pounds, its perpendicular distance 
from P, and its inclination to the direction PQ. 

2. Add to the three forces in question i a force of 6 lbs. in the direction 
PQ, and find the resultant as before. Specify it by its magnitude, its 
distance from P, and its inclination to PQ. 

3. A horizontal beam, 15 feet long, resting on supports at its ends, carries 
concentrated vertical loads of 7, 9, 5, and 8 tons at distances of 3, 8, 12, 
and 14 feet respectively from the left-hand support. Find graphically the 
reactions at the two supports. 

4. A horizontal rod AB, 13 feet long, is supported by a horizontal hinge 
perpendicular to AB at A, and by a vertical upw^ard force at B. Four 
forces of 8, 5, 12, and 17 lbs. act upon the rod, their lines of action cutting 
AB at I, 4, 8, and 12 feet respectively from A, their lines of action making 
angles of 70°, 90®, 120®, and 135° respectively with the direction AB, each 
estimated in a clockwise direction. Find the pressure exerted on the 
hinge, state its magnitude, and its inclination to AB. 

5. A simply supported beam rests on supports 17 feet apart, and canies 
loads of 7, 4, 2, and 5 tons at distances of 3, 8, 12, and 14 feet respectively 
from the left-hand end. Calculate the bending moment at 4, 9, and ii feet 
from the left-hand end. 

6. Draw a diagram to show the bending moments at all parts of the 
beam in question 5. State the scales of the diagram, and measure from it 
the bending moment at 9, ii, 13, and 14 feet from the left-hand support. 

7. Calculate the shearing force on a section of the beam in Question 5 
at a point 10 feet from the left-hand support ; draw a diagram showing the 
shearing force at every transverse section of the beam, and measure from it 
the shearing force at 4 and at 13 feet from the left-hand support. 

8. A beam of 20-feet span carries a load of 10 tons evenly spread over 
the length of the beam. Find the bending moment and shearing force at 
the mid-section and at a section midway between the middle and one end. 

162. Equilibrium of Jointed Structures. 
Frames.—The name frame is given to a structure consist¬ 

ing of a number of bars fastened together by hinged joints; 

the separate bars are called members of the frame. Such 

structures are designed to carry loads which are applied mainly 
at the joints. We shall only consider frames which have just 

a sufficient number of members to prevent deformation or 

collapse under the applied loads. Frames having more 
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members than this requirement are treated in books on 

Graphical Statics and Theory of Structures. We shall further 
limit ourselves mainly to frames all the members of which are 

approximately in the same plane and acted upon by forces all 
in this same plane and applied at the hinges. 

Such a frame is a rigid body, and the forces exerted upon 
it when in equilibrium must fulfil the conditions stated in Art. 

96 and in Art. 156. These “external” forces acting on the 
frame consist of applied loads and reactions of supports ; they 
can be represented in magnitude and direction by the sides of 

a closed vector polygon; also their positions are such that an 
indefinite number of closed funicular polygons can be drawn 
having their vertices on the lines of action of the external 

forces. From these two considerations the complete system 
of external forces can be determined from sufficient data, as in 

Arts. 155 and 159. The “internal” forces, i.e. the forces 

exerted by the members on the joints, may be determined from 
the following principle. The pin of each hinged joint is in 

equilibrium under the action of several forces which are 

practically coplanar and concurrent. These forces are: the 
stresses in the members (or the “ internal ” forces) meeting at 

the particular joint, and the “external” forces, i.e, loads and 

reactions, if any, which are applied there. 
If all the forces, except two internal ones, acting at a given 

joint are known, then the two which have their lines of action 
in the two bars can be found by completing an open polygon 

of forces by lines parallel to those two bars. 
If a closed polygon of forces be drawn for each joint in the 

structure, the stress in every bar will be determined. In order to 

draw such a polygon for any particular joint, all the concurrent 

forces acting upon it, except two, must be known, and therefore 

a start must be made by drawing a polygon for a joint at which 

some external force, previously determined, acts. Remembering 

that the forces which any bar exerts on the joints at its two 

ends are equal and in opposite directions, the drawing of a 
complete polygon for one joint supplies a means of starting 

the force polygon for a neighbouring joint for which at least 

one side is then known. An example of the determination of 
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the stresses in the members of a simple frame will make this 
more easily understood. 

Fig. 188 shows the principles of the graphical method of 
finding the stresses or internal forces in the members of a 
simple frame consisting of five bars, the joints of which have 
been denoted at (a) by i, 2, 3, and 4. The frame stands in 

Fig. i88. 

the vertical plane, and carries a known vertical load, W, at the 

joint 3; it rests on supports on the same level at i and 4. 
The force W is denoted in Bow's notation by the letters PQ. 

The reactions at i and 4, named RP and QR respectively, have 

been found by a funicular polygon corresponding to the vector 

diagram at (^), as described in Art. 158. 
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Letters S and T have been used for the two remaining 

spaces. When the upward vertical force RP at the joint i is 
known, the triangle of forces rps at (c) can be drawn by making 

rp proportional to RP as in (/^), and completing the triangle by 
sides parallel to PS and SR (/>. to the bars 12 and 14) 
respectively. After this triangle has been drawn, one of the 

three forces acting at the joint 2 is known, viz. SP acting in 

the bar 12, being equal and opposite to PS in (c). Hence the 
triangle of forces spt at {d)^ for the joint 2 can be drawn. Next 

the triangle tpq at {e) for joint 3 can be drawn, tp and pq being 

known; the line joining qt will be found parallel to the bar 

QT if the previous drawing has been correct; this is a check 

on the accuracy of the results. Finally, the polygon qrst at (/) 
for joint 4 may be drawn, for all four sides are known in 

magnitude and direction from the previous polygons. The 
fact that when drawn to their previously found lengths and 

directions they form a closed polygon, constitutes a check to 

the correct setting out of the force polygons. The arrow-heads 

on the sides of the polygons denote the directions of the forces 

on the particular joint to which the polygon refers. 
163. Stress Diagrams.—It is to be noticed in Fig. 188 

that in the polygons (^), (^), {d), (e)^ and (/), drawn for the 
external forces on the frame and the forces at the various joints, 

each side, whether representing an external or internal force, 

has a line of equal length and the same inclination in some 
other polygon. 

For example, sr in (c) corresponding to rs in (/), and pt 
in (d) with tp in (i). The drawing of entirely separate polygons 
for the forces at each joint is unnecessary; they may all be 

included in a single figure, such as (^), which may be regarded 

as the previous five polygons superposed, with corresponding 
sides coinciding. Such a figure is called a stress diagram for 

the given frame under the given system of external loading. It 
contains (i) a closed vector polygon for the system of external 

forces in the frame, (2) closed vector polygons for the (con¬ 
current) forces at each joint of the structure. 

As each vector representing the internal force in a member 

of the frame represents two equal and opposite forces. 
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arrow-heads on the vectors are useless or misleading, and are 

omitted. 
Distinction between Tension and Compression 

Members of a Frame.—A member which is in tension is 
called a “ tie,” and is subjected by the joints at its ends to a 
pull tending to lengthen it. The forces which the member 

exerts on the joints at its ends are equal and opposite pulls 

tending to bring the joints closer together. 
A member w^hich is in compression is called a ‘‘strut;” 

it has exerted upon it by the joints at its ends two equal and 
opposite pushes or thrusts tending to shorten it. The member 

exerts on the joints at its ends equal and opposite “ outward ” 

thrusts tending to force the joints apart. 
The question whether a particular member is a “ tie ” or a 

“ strut ” may be decided by finding whether it pulls or thrusts at 

a joint at either end. This is easily discovered if the direction of 

any of the forces at that joint is known, since the vector polygon 

is a closed figure with the last side terminating at the point from 

which the first was started. Eg, to find the kind of stress in 
the bar 24, or ST (Fig. 188). At joint 4 QR is an upward 

force; hence the forces in the polygon qrst must act in the 

directions qf\ 7's, si, and tq; hence the force ST in bar 24 acts 
at joint 4 in the direction s to t, i,c. the bar pulls at joint 4, 

or the force in ST is a tension. Similarly, the force in bar 23, 

or PT, acts at joint 3 in a direction Ip, i.e. it pushes at joint 

3, or the force in bar 23 is a compressive one. 

Another method,—Knowing the direction of the force rp at 

joint I (Fig. 188), we know that the forces at joint i act in the 

directions rp, ps, and sr, or the vertices of the vector polygon 

rps lie in the order r—p—s. 

The corresponding lines RP, PS, and SR in the space 

diagram are in clockwise order round the point i. This order, 

clockwise or contra-clockwise (but in this instance clockwise) 
is the same for every joint in the frame. If it is clockwise for 

joint I, it is also clockwise for joint 2. Then the vertices of 

the vector polygon for joint 2 are to be taken in the cyclic 

order s—p—t, since the lines SP, PT, and TS lie in clockwise 
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order round the joint 2, e.g, the force in bar 23, or PT, is in 

the direction i,e. it thrusts at joint 2. 
This characteristic order of space letters round the joints is a 

very convenient method of picking out the kind of stress in one 
member of a complicated frame. Note that it is the character¬ 

istic order of space letters round a joint that is constant—not 

the direction of vectors round the various polygons constituting 

the stress diagram. 
164. Warren Girder.—A second example of a simple 

stress diagram is shown in Fig. 189, viz. that of a common type 

of frame called the Warren girder, consisting of a number of 

bars jointed together as shown, all members generally being 

of the same lengths, some horizontal, and others inclined 60° to 

the horizontal. 

Two equal loads, AB and BC, have been supposed to act 
at the joints i and 2, and the frame is supported by vertical 

reactions at 3 and 4, which are found by a funicular polygon. 

The remaining forces in the bars are found by completing the 
stress diagram abc . . . klm. 

Note that the force AB at joint i is downward, ie. in the 
direction ah in the vector diagram corresponding to a contra- 

clockwise order, A to B, round joint i. This is, then, the 

characteristic order (contra-clockwise) for all the joints, eg. to 

find the nature of the stress in KL, the order of letters for 

joint 5 is K to L (contra-clockwise), and referring to the vector 
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diagram, the direction ^ to / represents a thrust of the bar KL 
on joint 5 ; the bar KL is therefore in compression. 

165. Simple Roof-frame. — Fig. 190 shows a simple 
roof-frame and its stress diagram when carrying three equal 
vertical loads on three joints and supported at the extremities 
of the span. 

The reactions DE and EA at the supports are each obvi¬ 

ously equal to half the total load, />. e falls midway between a 
and d in the stress diagram. The correct characteristic order 
of the letters round the joints (Art. 163) is, with the lettering 

here adopted, clockwise. 
166. Loaded Strings and Chains.Although not 

coming within the general meaning of the word frame/^ stress 
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diagrams can be drawn for a structure consisting partly of 
perfectly flexible chains or ropes, provided the loads are such 
as will cause only tension in flexible members. 

Consider a flexible cord or chain, X123Y (Fig. 191), sus¬ 
pended from points X and Y, and having vertical loads of 

Wj, W2, and Wj suspended from points i, 2, and 3 respectively. 
Denoting the spaces according to Bow’s notation by the letters 

A, B, C, D, and O, as shown above, the tensions in the strings 
Xi or AO and i 2 or BO must have a resultant at r equal 

to Wi vertically upward, to balance the load at i. If triangles 
of forces, abo^ bco^ and cdo^ be drawn for the points i, 2, and 3 

respectively, the sides bo and co appear in two of them, and, as 
in Art. 163, the three vector triangles maybe included in a 
single vector diagram, as shown at the right-hand by the 
figure abcdo. 

The lines ao^ bo, co, and do represent the tensions in the 

string crossing the spaces A, B, C, and D respectively. If a 

horizontal line, be drawn from 0 to meet the line abed in 

H, the length of this line represents the horizontal component of 

the tensions in the strings, which is evidently constant through¬ 

out the whole. (The tension changes only from one space to 

the neighbouring one by the vector addition of the intermediate 

vertical load.) The pull on the support X is represented by 
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aoy the vertical component of which is ; the pull on Y 
is represented by od, the vertical component of which is 

A comparison with Art 157 will show that the various 

sections of the string X123Y are in the same lines as the sides 
of a funicular polygon for the vertical forces Wj, W2, and W^, 

corresponding to the pole 0. If different lengths of siring are 
attached to X and Y and carry the same loads, Wj, W2, and W3, 

in the lines AB, BC, and CD respectively, they will have 
different configurations; the longer the string the steeper will 

be its various slopes corresponding to shorter pole distances, 

He?, i.e. to smaller horizontal tensions throughout. A short 
string will involve a great distance of the pole 0 from the line 
ahedy ix. a great horizontal tension, with smaller inclinations of 
the various sections of the string. The reader should sketch for 
himself the shape of a string connecting X to Y, with various 

values of the horizontal tension the vertical loads remain¬ 

ing unaltered, in order to appreciate fully how great are the 

tensions in a very short string. 

A chain with hinged links, carrying vertical loads at the 
joints, will occupy the same shape as a string of the same 

length carrying the same loads. Such chains are used in sus¬ 

pension bridges. 
The shape of the string or chain to carry given loads in 

assigned vertical lines of action can readily be found for any 

given horizontal tension, by drawing the various sections 
parallel to the corresponding lines radiating from Oy c.g, AO 
or Xi parallel to ao (Fig. 191). 

Example i.—A string hangs from two points, X and Y, 5 feet 
apart, X being 3 feet above Y. Loads of 5, 3, and 4 lbs. are 
attached to the string so that their lines of action are i, 2, and 
3 feet respectively from X. If the horizontal tension of the string 
is 6 lbs., draw its shape. 

The horizontal distance ZY (Fig. 192) of X from Y is— 

3^ = 4 feet 

so that the three loads divide the horizontal span into four equal 
parts. 

Let Vx and Vy be the vertical components of the tension of the 
string at X and Y respectively. 
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The horizontal tension is constant, and equal to 6 lbs. Taking 
moments about Y (Fig. 192)— 

Clockwise. Contra-clockwise. 

Vx X 4 = (4 X i) 4- (3 X 2) + (5 X 3) 4 (6 X 3) Ib.-feet 
4Vx = 44*64' 154* 18 = 43 
Vx = = 1075 lbs. 

Since the vertical and horizontal components of the tension of 
the string at X are known, its direction is known. The direction 

of each section of string might similarly be found. Set out the 

vector polygon abed, and draw the horizontal line Ht? to represent 
6 lbs. horizontal tension from H, aH being measured along abed of 

such a length as to represent the vertical component T075 ihs. of 

the string at X. Join o to a, b, c, and d. Starting from X or Y, 

draw in the lines across spaces A, B, C, and D parallel respectively 

to ao, bo, CO, and do (as in Art. 157). The funicular polygon so 

drawn is the shape of the string. 
Example 2.—A chain is attached to two points, X and Y, 

X being i foot above Y and 7 feet horizontally from it. Weights 
of 20, 27, and 22 lbs. are to be hung on the chain at horizontal 
distances of 2, 4, and 6 feet from X. The chain is to pass through 
a point P in the vertical plane of X and Y, 4 feet below, and 3 
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horizontally from X. Find the shape of the chain and the tensions 
at its ends. 

Let Vx and Vy be the vertical components of the tension at X 
and Y respectively, and let H be the constant horizontal tension 
throughout. 

Fig. 193. 

Taking moments about Y (Fig. 193)— 

Clockwise. Contra-clockwise. 

Vx X 7 = (H X i) -f (20 X 5) + (27 X 3) + (22 X l) 

7Vx = H -f 203 Ibs.-feet.(i) 

Taking moments about P of the forces on the chain between 
X and P, since this portion of the chain is in equilibrium— 

Clockwise. Contra-clockwise. 

Vx X 3 = H X 4 4- (20 X 1) 
3Vx = 4H + 20.(2) 

and 28Vx = 4H + 812 from (i) 
hence 25VX = 792 

Vx = 31*68 lbs. 
H = 7Vx - 203 = 22176 - 203 = 1876 lbs. 

Draw the open polygon of forces, abed (a straight line), and set 
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off am from a to the same scale, 31*68 lbs. downwards. From m 
set off mo to represent 1876 lbs. horizontally to the right of m. 

Then the vector ao — am-¥ mo ^ tension in the chain XZ, 
which pulls at X in the direction XZ. By drawing XZ parallel 

to ao the direction of the first section of the chain is obtained, and 

by drawing from Z a line parallel to bo to meet the line of action 
BC, the second section is outlined. Similarly, by continuing the 

polygon by lines parallel to co and do the complete shape of the 
chain between X and Y is obtained. 

The tension ao at X scales 37 lbs., and the tension od at Y 

scales 44 lbs. 

167. Distributed Load.—If the number of points at 
which the same total load is attached to the string (Fig. 191) 

be increased, the funicular polygon corresponding to its shape 
will have a larger number of shorter sides, approximating, if 
the number of loads be increased indefinitely, to a smooth 

curve. This case corresponds to that of a heavy chain or 
string hanging between two points with no vertical load but its 

own weight. If the dip of the chain from the straight line join¬ 

ing the points of the attachment is small, the load per unit of 
horizontal span is nearly uniform provided the weight of chain 

per unit length is uniform. In this case an approximation to the 

shape of the chain may be found by dividing the span into a 
number of sections of equal length and taking the load on each 

portion as concentrated at the mid-point of that section. The 

funicular polygon for such a system of loads will have one 

side more than the number into which the span has been 
divided; the approximation may be made closer by taking 

more parts. The true curve has all the sides of all such poly¬ 
gons as tangents, or is the curve inscribed in such a polygon. 

The polygons obtained by dividing a span into one, two, 

and four equal parts, and the approximate true curve for a 

uniform string stretched with a moderate tension, are shown in 

Fig. 194. 
Note that the dip QP would be less if the tensions OH, OA, 

etc., were increased. 
168. The relations between the dip, weight, and tension 

of a stretched string or chain, assuming perfect flexibility, can 
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more conveniently be found by ordinary calculation than by 

graphical methods. 
Assuming that the dip is small and the load per horizontal 

foot of span is uniform throughout, the equilibrium of a portion 

AP (Fig. 195) of horizontal length .s;, measured from the lowest 

point A, may be considered. 

Let w = weight per unit horizontal length of cord or chain; 

y 5= vertical height of P above A, viz. PQ (Fig. 195); 

T = the tension (which is horizontal) at A; 

T' = the tension at P acting in a line tangential to the 
curve at P. 
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The weight of portion AP is then wx^ and the line of action 

of the resultant weight is midway between AB and PQ, ue, at 
X 

a distance from either. 
2 

Taking moments about the point P— 

T X PQ = wx X ^ 

or T Xy 

y 

wx^ 
2 

WX^ 

7t 

This relation shows that the curve of the string is a 
parabola. 

If ^ = the total dip AB, and / = the span of the string or 

chain, taking moments about N of the forces on the portion 

AN— 

wl’^ 

8T’ 
or T = 

wl^ 

Yd 

which gives the relation between the dip, the span, and the 

horizontal tension. 
Returning to the portion AP, if the vector triangle rst be 

drawn for the forces acting upon it, the angle 0 which the 

tangent to the curve at P makes with the horizontal is given 

by the relation— 

XUf 

T 
sf 
tr 

= tan 0 

Also the tension T' at P is T sec or— 

T = TVTTtan^ = T^i + 

and at the ends where x = -— 
2 
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And since T = the tension at N or M is— 

wl 
2 

f /_^ + x.or ,, 
V id 

wP / 

Sfl'V 
I + 

16//® 

zvl^ d 
which does not greatly exceed (or T), if y is small 

Example.—A copper trolley-wire weighs ^ lb. per foot length ; 
it is stretched between two poles 50 feet apart, and has a horizontal 
tension of 2000 lbs. Find the dip in the middle of the span. 

Let d = the dip in feet. 
The weight of the wire in the half-span BC (Fig. 196) is 

25 X I = I2‘5 lbs. 

Fig. 196. 

The distance of the c.g. of the wire BC from B is practically 
12*5 feet horizontally. 

Taking moments about B of the forces on the portion BC— 

2000 X d = 12*5 X 12*5 
d = 0*07812 foot — 0*937 inch 

Examples XX. 

I. A roof principal, shown in Fig. 197, carries loads of 4, 7, and 5 tons 
in the positions shown. It is simply supported at the extremities of a span 

of 40 feet. The total rise of the roof is 14 feet, and the distances PQ and 
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RS are each S *4 feet. Draw the stress diagram and find the stress in each 
member of the frame. 

2. A Warren girder (Fig. 198), made up of bars of equal lengths, carries 
a single load of 5 tons as shown. Draw the stress diagram and scale off 

the forces in each member; check the results by the method of sections 
(Art. 98). 

3. Draw the stress diagram for the roof-frame in Fig. 199 under the 

given loads. The main rafters are inclined at 30® to the horizontal, and 
are each divided by the joints into three equal lengths. 

4. A chain connects two points on the same level and 10 feet apart; 
it has suspended from it four loads, each of 50 lbs., at equal horizontal 
intervals along the span. If the tension in the middle section is 90 lbs., 
draw the shape of the chain, measure the inclination to the horizontal, and 
the tension of the end section. 

5. Find the shape of a string connecting two points 8 feet horizontally 
apart, one being i foot above the other, when it has suspended from it 
weights of 5, 7, and 4 lbs. at horizontal distances of 2, 5, and 6 feet 
respectively from the higher end, the horizontal tension of the string being 
6 lbs. 

6. A light chain connects two points, X and Y, 12 feet horizontally apart, 
X being 2 feet above Y, Loads of 15, 20, and 25 lbs. are suspended from 
the chain at horizontal distances of 3, 5, and 8 feet respectively from X, 
The chain passes through a point 7 feet horizontally from X and 4 feet 
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below it. Draw the shape of the chain. How far is the point of suspension 

of the 15‘lb. load from X ? 

7. A wire is stretched horizontally, with a tension of 50 lbs., between 

two posts 60 feet apart. If the wire weighs 0*03 lb. per foot, find the sag 

of the wire in inches. 

8. A wire weighing o'oi lb. per foot is stretched between posts 40 feet 

apart. What must be the tension in the wire in order to reduce the sag to 

2 inches ? 

9. A wire which must not be stretched with a tension exceeding 70 lbs. 

is to be carried on supporting poles, and the sag between two poles is not 

to exceed r5 inches. If the weight of the wire is 0*025 lb. per foot, find 

the greatest distance the poles may be placed apart 



CHAPTER XI 

HYDROSTATICS 

169. Liquids and Fluid Pressure.—The molecules of a 

liquid, unlike those of a solid, although they are in contact 

one with another, move freely one over another. Liquids 

have some resistance, called viscosity, to rapid change of 

shape, this being a tangential one opposing sliding motion ; 

it is proportional to the speed of sliding motion of one mole¬ 

cule over another. At low speeds it is negligible and in a 

liquid at rest it is zero. That is, the force between two 

molecules of a liquid at rest is entirely perpendicular to their 

surfaces in contact or wholly normal. And, for such liquids 

as we need consider the force transmitted between a liquid 

and a solid surface can be regarded as a normal pressure. 

This is true of water at rest and very nearly true so long as it 

moves slowly. 

The intensity of pressure exerted within a fluid or on the 

walls of a containing vessel is measured by the force per unit 

of area, generally pounds per square inch or per square foot. 

This is very commonly called merely the pressure^ although it 

is an intensity or degree of pressure and not the total force 

exerted which is also called the pressure, but to avoid con¬ 

fusion the latter is sometimes called the total pressure. It 

follows from the fact that only normal pressure can be 

transmitted by a stationary fluid that this normal pressure 

is equal in all directions at a given point in a fluid. And this 

point can be demonstrated experimentally by the use of 

pressure gauges. 

170, Relation of Pressure to Depth in a Liquid.—In 

a liquid large intensities of pressure may arise from the 

weight of the liquid when it extends continuously to a great 
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depth. To investigate how much such pressure amounts to, 

imagine a vertical cylindrical shaped portion of a liquid at 
rest in a tank (Fig. 200), then, since the pressure on the curved 

vertical surface of the cylinder is everywhere horizontal it will 

have no vertical effect, and difference of the vertical pressure 
on the two flat ends must balance the weight of the cylindrical 

column of water. Putting this in the form of symbols, let A 

be the area of cross-section of the imagined cylinder, in 

square feet, h its height in feet,and the intensities of 

pressure at the top and bottom ends respectively in pounds- 
force per square foot. Then the volume of liquid in the 

cylinder is A x cu. ft., and if the liquid weighs w lb. per 
cu. ft., the total weight of the cylinder of water is 

A X ^ cu. ft. X w Ib./cu. ft. 

or A , A . w lb. 

and this must equal the net external force exerted upward on 

the cylinder which is 

A sq. ft. Xp2 Ib.-force/sq. ft. (upward) 

— A sq. ft. X Pi Ib.-force/sq. ft. (downward) 

= A (p2 lb.-force (upward). 

Hence, since this balances the downward force, 

HP2-P1) lh. = A.A.wlh. 
p^ — wh lb. per sq. ft. . (i) or 
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That is, the increase of pressure for a depth h ft. is wh lb. 

per sq. ft. or w lb. per sq. ft. per ft. of increase^yof depth. 
If one end of the imaginary cylinder is in the free surface 

of the water the upward pressure of the surrounding water on 

the base of the cylinder is just equal to the weight of the 

cylinder of water. 

Or, reckoning from the surface of the liquid, the pressure 

intensity at a depth ^ ft. will exceed the atmospheric pressure 

at this surface by 
wh Ib./sq. ft. 

And for pressures at great depths, the atmospheric pressure, 
equivalent to a depth of 34 ft. of water (see example below), 

becomes negligible. 

The density of water (or its mass per unit volume) is 

about 62*4 lb. per cu. ft, at F., so that for water w = 62*4 

lb."force per cu. ft. and at a depth of i ft. the intensity of 

pressure (reckoned above atmosphere) is 
p = 62*4 Ib./sq. ft. 

^*-^33 ib./sq. in. 144 
and at a depth of h ft., pressure intensity 

= 0*433 Ib./sq. in. per ft. depth X h ft. 

— 0*433 h ib./sq. in. (above the pressure 
of the atmosphere). 

Thus at a depth of 100 ft. the pressure would be 0*433 

X 100 == 43*3 lb. per sq. in. above atmospheric pressure. 

And to give a pressure of i lb. per sq. in. a depth or 

“ head ” of 1/0*433 or 2*31 ft. of water would be required, 
or 2*31/ ft. forp lb, per sq. in. 

Example.—What head of water would give a pressure equal 

to that of the atmosphere, namely, 14*7 lb. per sq. in. ? 

14*7 lb. per sq. in. = 14*7 X 144 lb. per sq. ft. = 2117 lb. per 
sq. ft. I cu. ft. of water weighs 62*4 lb. and a column h ft. high 

and I ft. sq. in section would weigh 62*4^ lb., which would give a 

pressure of 2117 lb. on the base provided that, 

62-4^ = 2117 

^ 

This is sometimes called the height of the water-barometer.” 
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Mercury Barometer.—The atmospheric pressure corre- 

sponds to that of a column of mercury of which the height 
will be less than that of the water barometer in the ratio that 

mercury is heavier than water, viz. 13*6. Hence the height 

of a mercury column to give a pressure of 14*7 lb. per sq. in. 
is about 34 ft./i3*6 = 2*5 ft. — 30 in. 

171. Pressure on Submerged Surfaces.—Since we 
know that the pressure per square foot at a depth ^ in a 

liquid which weighs w lb. per cu. ft. is wk lb. per sq. ft. 

(above atmospheric pressure), any horizontal surface such as 
the bottom of a tank of area A sq. ft. has upon it a total 

pressure of 
wh Ib./sq. ft. X A sq. ft. == whK lb. force . (i) 

Fig. 201.—Pressure on submerged plate. 

But if we wish to know the total pressure on any plane 

surface which is not horizontal we have to deal with a pressure 

which is continuously varying across the surface, according 

to the varying depth, so we now consider the problem in 

symbols to find a simple rule. 

Take a vertical surface of total area A sq. ft. (shown in 

Fig. 201) and suppose it divided into a large number of parallel 

horizontal strips, the areas of which are ^2? etc., in 

square feet, and the depths of the strips are ^1, ^2» -^3? etc., 

ft. respectively below the surface of the liquid, then the total 

pressures on the successive strips will be 

ze/^2^2) etc., 

and the total pressure P, say, in pounds will be 

p = whiOi + + ‘^h^a^ + . . . etc. 

= + >^2^2 + + • • • etc.) (2) 
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Now the sum of the products >^1^1, etc., constitute 
the moment of the area A (see Art. 114) about an axis which 
is the line of intersection of the vertical plane of the sub¬ 
merged surface with the surface of the liquid, and this 

moment is such that 

^1^1 “f" ^2^2 ~f“ ^3^3 ~f" ~ ^ . A . . (3) 

where h is the distance of the centroid, centre of area or 
so-called centre of gravity of the total area A from the same 
axis. Hence we may write the equation (2) as 

V = w .h ,A\h.(4) 

where h is the depth of the centre of gravity of the surface. 

To put the matter in another way, the pressure per square 

foot /, say, at a depth h will be wh^ so that 

P=/Alb.(5) 

where / is the mean pressure intensity or the intensity of 
pressure at the depth of the centre of gravity or centroid of 

the immersed surface. In words, 

Total pressure in lb. = area in sq. ft. 
X pressure per sq. ft. at c.g. of area. 

If a surface is neither horizontal nor vertical but oblique 
at some intermediate inclination, the same rule applies, 

where h still refers to the vertical depth of the centre of 
gravity. 

Example 1.—Find the total pressure on a lock gate the width 
of which is 20 ft,, when the depth of fresh water is 15 ft. 
Depth of c.g. of wetted area — 15/2 ft. = 7-5 ft. 
Pressure at depth of c.g. = 7*5 ft. X 62-4 Ib./cu. ft. == 468 Ib./sq. ft. 
Total wetted area == 20 ft. X 15 ft. = 300 sq. ft. 

Total pressure = 468 Ib./sq. ft. X 300 sq. ft. , 
= 140,400 lb. 

Example 2.—A submerged rectangular sluice gate is 3 ft. by 
2 ft., having its long sides vertical and short sides horizontal. The 
top side is 5 ft. below the surface of water. Find the total water 
pressure on the gate. Take salt water at 64 lb. per cu. ft. 

K 
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The depth of the c.g. below the top side = 3/2 ft. === 1-5 ft. 

Depth of c.g. below surface of water = 5 -f* i*5 = 6-5 ft. 
Pressure at depth of c.g. = 6-5 ft. X 64 Ib./cu. ft. =- 426 Ib./sq. ft. 

Total area = 3 ft. X 2 ft. — 6 sq. ft. 

Total pressure — 426 Ib./sq. ft. X 6 sq. ft. = 2556 lb. 

Example 3.—The tank shown in elevation in Fig. 202 is 6 ft. 

broad (in a direction perpendicular to the diagram). 

Find the pressure on {a) a sloping side, [b) a vertical side, and 

(c) on the bottom when the tank is full of water. 

{a) Length of sloping side — ft. — 11-31 ft. 

Area of sloping side ~ 11-31 ft. X 6 ft. = 67*86 sq. ft. 

Depth of c.g. of sloping side — 8/2 = 4 ft. 

Pressure on sloping side = 67*86 sq. ft. X 4 ft. X 62*4 Ib./cu. ft. 

~ 16,960 lb. 

W e can divide the 

vertical side into a central 

rectangle 8 ft. deep and 26 2 

X 8 = 10 ft. long, and two 

right-angled triangles 8 ft. 

deep and each having a base 
Fig. 202. Problem on tank. in the water surface 8 ft. long. 

The depth of the centres of 

gravity of these triangles will be 8/3 ft. below the water surface. 

Rectangular area = 10 ft. X 8 ft. — 80 sq. ft. 

Depth of c.g. = 8/2 ft, == 4 ft. 

Total pressure on this part = 80 sq. ft. x 4 ft. X 62*4 Ib./cu. ft. 

= 19,970 lb. 

Two triangular areas — 2 X 8 x 8 X J = 64 sq. ft. 

Depth of c.g. — 8/3 ft. — 2*67 ft. 

Total pressure on those parts 

— 64 sq. ft. X 2*67 ft. X 62*4 Ib./cu, ft. 

= 10,650 lb. 

Total pressure on vertical side = 30,620 lb. 

(c) Area of bottom = 10 ft. X 6 ft. == 60 sq. ft. 

Depth of c.g. == 8 ft. 

Total pressure = 60 sq. ft. X 8 ft. X 62*4 Ib./cu. ft. 

= 29,950 lb. 

172. Centre of Pressure.—In the previous article we 

found the magnitude of the total distributed pressure on a 

vertical or an inclined immersed plane surface, but not the 
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line of action of this resultant pressure. To determine this 
we find where the whole pressure if concentrated would have 
the same moment as the actual distributed pressure about 

the axis in which the plane of the surface intersects the free 

water surface, i.e, the axis of moments used in Art. 171 and 
shown in Fig. 201. Adopting the same symbols as in Art. 

171, the forces on successive strips are 

whiOiy etc. 

and their distances from the axis being, ^3, etc., 

respectively, the moments of these forces about the axis are 

wh^a^ wh^a^ . . . etc. 

and the total moment. 

Z{wah^) — w(a^h^ + + ^3^3^ + . . . etc.) 
~wZ(a/t^).(i) 

It will be noticed that the sum is the so-called moment 

of inertia or second moment (see Art. 138) of the area A 

about the axis of moments in the water surface. If P, the 

total pressure, is to have the same moment about this axis as 

that of the distributed pressure shown in (i), and if the 

unknown distance of its line of action from the axis is H, then 

since from (4) of Art. 171? = whh. 

whA X H= wU{ak^).(2) 

H = S{ah^)lkA .... (3) 

And from Art. 138 since E{ah^) may be written k^'^A where 

kQ is the radius of gyration of the immersed area A about the 

axis of moments from which h also is measured, 

h-vama = vm .... (4) 

which gives the depth of the centre of pressure below the 

water surface. If the radius of gyration about a (horizontal) 

parallel axis through the centroid or c.g. of the area A be 

then from (2) of Art. 136, 

V=>^o2 + (^)2.(5) 

since h is the depth of the c.g., i.e. the distance apart of the 

two axes. Hence (4) may be written 
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or k^^lh is the distance of the centre of pressure below the 
centroid of the immersed area, e.g. for a rectangle of depth 

d with one side in the free surface h and kf- ^ d^ji 2 

hence H == fd. 
When the immersed area has a line of symmetry perpendi¬ 

cular to the axis of ^0 l^he centre of pressure will lie 

in this line at the depth given by (6). Thus its position is 

completely determined. 

Example 1.—P^ind the depth of the centre of pressure of the 

sluice gate in Ex. 2 of Art. 171, and the moment of the total 

pressure about hinges in the top side of the gate. 

From Art. 139 the square of the radius of gyration about an 

axis through the centroid of the gate area is 

= A X 3* ft. 

and since h is 6-5 ft., the distance of the c.p. below the c.g. is 

X 3V6-5 =0-1154 ft. 

and since the c.g. is 1*5 ft. below the hinge, the distance of the c.p. 

from the hinge is 1*5 4- o-i 154 = 1*6154 ft. And the total pressure 

was found in Ex. 2 of Art. 171 to be 2556 lb., hence the total moment 

of the pressure about the hinge is 

25561b. X 1*6154 ft. =4i29lb.-ft. 

Example 2.—Find the depth of the centre of pressure of the 

vertical trapezoidal side of the tank specified in Ex. 3 of Art. 171, 

given that the radius of gyration of a triangular area about its 

base is i/Vb of its vertical height.* 

Using the results of Ex. 3, Art. 171, part (<^), and that h* about 

the axis in the water surface is 8^/3 (see Art. 139) for the central 

rectangle, the depth of the c.p. below the water surface is by (4) 

64 

3x4 

* This may easily be found by integration. In Fig. 100 let the base 
AC be B and the vertical height be D. A strip PQ distant x from AC, 
and of width dx has a length B X (D — x)/D and area dx times this. 
Its moment of intertia about AC is 

(D - x)x‘i/x X B/D. A^'=J“a:»(D - x^x x B/D 

1 D«(i - i)B/D = ABD* 
hence = JD® since A = JBDr 
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And the moment of the pressure on this area about the axis is 

19,9701b. X 16/3 ft. = 106,500 Ib.-ft. 

Depth of c.p. of the triangular areas is from (4), 

6 / 3 ~ 

Moment of the pressure on two triangular areas is 

10,650 Ib. X 4 ft. == 42,600 Ib.-ft. 

Total moment of pressure on trapezium about top side is 

106,500 -f 42,600 = 149,100 Ib.-ft. 

Dividing this by the total pressure of 29,950 lb. (Art. 171), 

149,100 
4-978 ft. Depth of c.p. of trapezium 

29,950 

Example 3.—The tank shown in end view in Fig. 203 has 

rectangular vertical sides and a horizontal semi-cylindrical bottom 

of radius <2, with flat vertical ends 

DEBCA. Find the resultant pres¬ 

sure on the end and the centre of 

pressure (i) when liquid of density 

w is in the tank to the level of the 
diameter AB of the semi-circle, 

and (2) when the tank is full. 

(i) The depth of the c.g. of 

semicircle ABC below AB is, by 

Art. 118, 4fl/37r or o*4244<2. Then 

from (4), Art. 171, 

Total pressure 

\TTa^ X w X C 

or 0‘(>(y6'ja^w, 

about AB (as for a circle about a diameter) is hence 

from (4), Art. 172, 

Depth of c.p. below AB = 4244a ~ ^Traji^ or 

0*2 5^2/0*4244 = 0-5890^^. 

(2) Total pressure on rectangle DEBA = 20^ X \aw = a^w. 
Depth of c.p. of this = ~ |«. 

Moment of this pressure about DE = a^w X ~ ^a^tu or 

o*6667a*7e'. 

Depth of c.g. of semicircle ABC below DE ~ \'4244a. 

Total pressure on ABC 

about horizontal axis through c.g. (Art. 136), 

~ ~ (o•4244^^)* = 0*0699^*. 

X 1'4244020 — 2-2375<2*w. 
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Depth of c.p. below c.g., by (6) of Art. 172, 

o'obooa* 
=-= 00491« 

x-4244« 
,, ,, DE = 1-4244^ -f 0-0491^2 = i*4735<*- 

Moment of pressure on ABC about DE — 2’227S^*‘^ X i*473S^ 
= 3*2969^*a'. 

Total moment about DE == (3*2969 -f 0'666j)a^m 

=yg626a*w. 

Total pressure on end = 2-2^7$a*w -f <2^^ “ 3‘2375«*«;. 

Depth of c.p. of end = — i*2244£z. 
3*2375^»2£; 

(Four places of decimals are used to avoid large errors in the 

relatively small differences from subtractions.) 

173. Liquid Pressure on Curved Surfaces.—The 

preceding articles relate to plane surfaces and the total 

hydraulic pressure on them is also the resultant pressure, for 
the pressures on all parts, though varying in intensity, are all 

parallel so that the resultant is the arithmetic sum of all the 

parts. If the surface is curved the pressure varies in direction 
in different parts and the resultant, though it is the vector sum 

of all the parts, is not the arithmetic sum. This latter 

quantity, the arithmetic sum of the pressures on all the 

elements into which the surface might ideally be divided, is 

sometimes called the whole pressure on the curved surface. 

It has no mechanical significance when it differs in magnitude 

from the resultant pressure and may be dismissed from further 

consideration. 

The resultant pressure on the immersed surface is the 

vector sum of the pressures on all parts of the curved surface. 

To determine it in the general case is a matter of difficulty, 

but we can consider a few simple cases as examples. 

The pressure on a small element of curved surface may 

be resolved into three mutually perpendicular components, 

one vertical and two horizontal. If we take one horizontal 

in the vertical plane through the normal to the element of 

surface then the other horizontal component will be tangential 

to the surface, and therefore zero since the pressure is wholly 
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normal. In many surfaces the planes of the normals, and 

therefore the horizontal components, will vary in direction 

from one point in the surface to another. But if we consider 

the curved surface of a cylinder with its axis horizontal the 

normals to every point in the surface will be perpendicular 

to the axis of the cylinder and therefore in vertical planes 

parallel one to another. And the horizontal components of 

the pressures will all be parallel. 

Example 1.—A cylinder of internal length / and internal 
radius a stands with its axis vertical and is full of liquid weighing 
w per unit volume. Find the pressure exerted by the liquid on one 
of the halves into which the cylinder would be divided by a vertical 
plane containing the axis. 

Consider the equilibrium of the liquid in the half cylinder. 
The weight of the liquid is equal and opposite to and in the same 
straight line as the vertical upward force exerted by the base of the 
half cylinder on the liquid. For no other force has any vertical 
component, the normals to the curved surface and to the plane 
separating the liquid from that contained in the other half of the 
cylinder all being horizontal. The horizontal forces can be 
divided into two resultants of distributed pressure, viz. that of the 
curved cylindrical surface and that of the remaining liquid which 
exerts a pressure across the axial plane. These can only balance 
if equal and opposite and in the same straight line. Consequently 
the resultant pressure of the curved face is equal to that on a 
rectangular area I X 2a with an average intensity of pressure 
\lw, giving a resultant of magnitude l^aw which acts through the 
centre of pressure of the (projected) rectangular area. This c.p. 
is in the axis and at a depth 2//3. The pressure of the curved 
surface on the liquid is equal and opposite to that of the liquid on 
the curved surface and in the same straight line, and therefore the 
resultant pressure of the liquid on the surface has been determined 
in magnitude, direction (horizontal) and position. 

This illustrates the principle by which the resultant pressure 
of liquid on various curved surfaces may be found, viz. by applying 
the conditions of equilibrium applicable to solids to a body of 
liquid contained between the curved surface and a plane area which 
is the projection of the curved surface. In this example the forces 
exerted on the liquid from which the result is deduced do not include 
any vertical gravitational force, since the forces exerted on and by 
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the curved surface are horizontal. But in other cases the force of 

gravity (the weight of liquid) will need to be taken into account 

if the forces considered have any vertical component, as in the 

following examples. 

Example 2.—A hollow sphere of internal radius a is filled with 

liquid weighing w per unit volume. Find the resultant pressure 

exerted on each half into which it can be divided by a horizontal 

plane through the centre of the sphere. 

On the lower hemisphere across the central plane there is a 

pressure of uniform intensity wa due to a head a which is the 

maximum depth of liquid (over the centre). This exerts a total 

resultant vertical downward pressure rra^ X wa — na^w on the 

liquid in the lower hemisphere and its line of action is through the 

centre of the sphere. The only other forces exerted on the liquid 

in the lower hemisphere are the pressure of the curved surface and 

the weight of the contained water downward which is X w, and 

its line of action is also through the centre. Consequently, the 

resultant pressure of the curved surface must be vertically upwards 

through the centre of the sphere and equal to 
rra^w -{- ^ira^w — 

and the pressure of the liquid on the curved surface must be of this 

magnitude and vertically downward. Considering now the upper 

hemisphere, the contained liquid is subject to the pressure na^w 

vertically upward across the central horizontal plane, and the 

weight ^Tra^w downward, leaving a vertical upward central force 

^Tra^w to be balanced by the pressure exerted by the curved 

surface vertically downward through the centre of the sphere. 

The pressure of the liquid on the curved surface is equal and 

opposite to this and is therefore ^Tra^w vertically upward and 

central. Its magnitude is | of that on the lower hemisphere. 

Example 3.—Find the resultant pressure of the liquid on one 

of the halves into which the lower hemisphere of Example 2 may 

be divided by a vertical plane through the centre when the sphere 

is filled with liquid. 

This may be found from the resultant pressure of the curved 

surface of the quarter sphere on the liquid contained in it by 

considering the equilibrium of the forces which act on this liquid. 

The half hemisphere OAB centred at O is shown in central cross- 

section in Fig. 204. The forces acting on the liquid in this portion 

OAB are (i) The resultant pressure Pj on the semicircular area 

represented by the line OA exerted by the liquid above it. (2) The 

resultant pressure Pj on the semicircular area OB exerted by the 
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liquid to the left of the central vertical plane OB, (3) The weight 

of the liquid in the half hemisphere OAB. (4) The resultant 
pressure exerted on the liquid by the curved surface. 

The intensity of the pressure at the level of the centre O is that 

due to a depth a as in the previous example and in Ex. 3 of Art. 172, 
viz. wa^ hence 

Pi = \TTa^ X wa ~ 

and as it is uniformly distributed over the area OA the centre of 

this pressure or line of action of Pi is at the centroid or c.g. of the 
semicircular area on which it acts, i.e, at a distance 4^z/37r or o*4244«z 

from O in the plane of the diagram. 

The resultant W of the weight of the liquid acts in this plane 

also and the distance of the c.g. of the liquid like that of a hemi¬ 

sphere must be from O (see Art. 120) and its magnitude is 
W = J X ^na^w — Ina^w 

The resultant of Pj and W will be a vertical force 

Pi 4- W = (J -f — 2'6i^oa^w 

and its distance from O is to be found by taking moments about O. 

Moment of Pi about O — x 0-42440 — 0‘666ya*'w 

,, ,, W ,,,,== J7ra*w X 0*375^2 = o»3927g*2e> 

,, ,, Pi -f W ,, ~ i-o594fl^w 

~ 2-6i8oa^2o 
Distance of resultant Pj + W from O 

= 0*404722 

K* 
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The force P2 is that on a semicircular area, the head of liquid 

above the diameter at O being a. This value was found in Ex. 3 
of Art. 172 to be 2’2^y$a^w, and the depth of its line of action 
below O (under this head of liquid) was 0*4735^. 

The line of action of 4- W intesects the line of action of 

Pg in C and the resultant pressure of the curv^ed surface on the 

liquid must pass through C to balance the two forces Pg and 

(W ~j- Pj) and its magnitude (Art. 75) is 

R = V'{P,» + (Pi4-W)2} = \/'{(2-2375a»a»)*+(2-6i8oa>w)*} 

= 3-444o’w 

and its inclination 0 to OA is given by 

tan 6 = 2-6i8/2'2375 — 1-17 == tan 49*5° 

It will be apparent that R is in the line CO and direction C to O 

which is also evident because the pressure of every small element 

of the surface is normal and passes through O, hence the resultant 

also passes through O, 

Finally the pressure R of the liquid on the curved surface is of 

the same magnitude 3*444<2®w and is directed along OC in the 

direction O to C opposite to that of the surface on the liquid. 

The work may easily be checked by verifying that the resultant 

R passes through O. Thus 

Clockwise moment of P2 + W about O == i-0S94a*20 (see above). 

Counter-clockwise moment of Pj about O ==2'2375fl®w X 0*4735^1 

= 1*0594^2*0/. 

These two moments are equal and opposite, hence their result* 

ant has zero moment about O, i.e. it passes through O. 

Or the work may be checked by taking the value 

tan 6 ~ OD/DC = o-4735<2/o*4047tf = 1-17 as before. 

174, Density and Specific Gravity.—The density of 

a homogeneous substance is its mass per unit volume for 
which the standard symbol is p so that 

__ mass 

^ volume. 

Density is generally expressed in lb. per cu. ft. or in grammes 

per cubic centimetre. If a body is not homogeneous, (i) gives 

the average density. 

The specific gravity S of a homogeneous substance is the 

ratio of the weight of any volume of that substance to the 
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weight of an equal volume of a standard substance. (If mass 
is substituted for weight, the ratio is unaltered.) The 
standard substance for solids and liquids is water at 4° C. (its 
temperature of maximum density). It is evident that the 
specific gravity of a substance is also the ratio of the density 
of the substance to that of the standard substance (both being 
in the same units). 

The density of water at 4° C. is about 62*4 lb. per cu. ft. 
or I gm. per cu. cm. If the density of a particular steel be 
480 lb. per cu. ft., its specific gravity would be 480/62-4 = 7-8. 

175. Flotation and Buoyancy.—If a solid body is 
wholly or partially immersed in a liquid, it experiences a 
degree of support from 
the upward pressure of 
the liquid in contact with 
it. If we consider any 
small portion of the 
immersed surface of the 
body, Fig. 205, and 
imagine the surface pro¬ 
jected in any horizontal 
direction through to the 
opposite side of the body, 
a thin prism is outlined the cross-section of which is equal to 
the projected area, say, a, of the chosen small area of surface 
of the body. If this area is at a depth >^i,the horizontal force 
on each end of this prism will be Pj — wa^i, and thus the 
horizontal forces on this portion of the body will be balanced. 
This is true also for any and every horizontal direction and 
also for every element of surface and so the resultant horizontal 
force exerted on the body by the liquid is zero. 

We next conceive the whole solid to be divided into very 
thin vertical prisms the cross-sections of which are the 
projected areas of small elements of surface of the solid. Let 
a be the area of cross-section of such a prism and let the lower 
end of it in the surface of the solid be at a depth Ao below the 
free surface of the liquid. Then the upward force of the 

Free Surface of Liquid 
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liquid on the prism is P2 = awh<i which is equal to the weight 
of a volume of liquid of section a and length i.e. from the 

lower surface of the solid up to the free water surface. If 

the prism of the solid does not extend to the free water sur¬ 

face but terminates at a depth there is on its upper end a 
downward pressure P3 = awh^. The net or resultant 
upward pressure is then 

(>^2 “ h^^w'K a 

being zero if the prism ends at the free surface of the 
liquid or above it. And summing this for the whole body, 

the total upward pressure, 

P = — h<^aiv) or wE{{h^ — ^3)^} . (i) 

The sum of all such small quantities as — h^a is 

^{(^2 - - Vi . .... (2) 

where is the volume of the part or whole of the solid which 

is below the free surface of the liquid, and E{{h<2, — h^aui) 

is the weight of an equal volume of the liquid. The volume 

Vj is called the volume of liquid displaced by the free solid. 
(Not a strictly accurate term for the case of a body placed in 

a liquid contained in a vessel of relatively small size, but 

commonly used and understood.) 

It is evident from the way in which P was deduced that 

it is equal to the total weight of the displaced liquid and that 

it acts through the c.g. of that displaced liquid. The force P, 

the upward thrust of all the pressures on the body, is called 

the force of buoyancy of the immersed body and the c.g. of 

the displaced liquid through which P acts is called the centre 

of buoyancy. (The British Standard abbreviation is CB, 

and the diagram letter for this is B. Formerly H was used 

in books on mechanics.) 

Conditions of Equilibrium of a Floating Body.—If 

the body floats either partially or wholly immersed (without 

any support except the buoyancy) then for equilibrium the 

buoyancy (P) and the weight (W) of the body must be equal 

and in the same vertical line so that 

P == W .(3) 
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and P is in the vertical line through the c.g. of the whok 
body. It will be noted that for total immersion the c.g. and 
centre of buoyancy coincide. 

Partial Immersion,—If a homogeneous solid body, of 
sp. gr. S, floats freely in a liquid of sp. gr. Sj, let V be the 

volume of the solid and Vj that of the part immersed. Then 

W ™ ze/SV and the buoyancy P - ze/S^Vi, namely the weight 

of the displaced liquid ; and from (3) 

z£^SV == z£/SiVi and Vj/V = S/Si . . (4) 

i,e. the ratio of the volume immersed to the whole volume of 
the solid is S/Si ; and for a flotation in fresh water for which 

Si ~ I, Vi/V = S. Thus a piece of wood of sp. gr. 0*6 will 

float in fresh water with o*6 of its volume below and 0*4 above 
the water surface. 

Constraints,—If a body does not float freely but is partly 

supported by, say, a suspension or by an upthrust of magni¬ 

tude T from a support beneath, then 

P + T ^ W.(5) 
or T W - P.(6) 

Thus a body suspended from a spring balance and 
immersed in a liquid would record an apparent weight not 

of W but W minus the weight of a volume of liquid equal to 

that displaced by the solid. In the case of total immersion 

the apparent weight (T) would be W minus a weight of liquid 

of volume equal to that of the suspended solid. Thus for 

suspension in water and complete knmersion, 

T = W - P - W ~ W/S - W(i - i/S) . (7) 

the buoyancy P being equal to the weight of the displaced 

water, which is i/S of the weight of the solid body. 

This provides a method of finding the sp. gr. of an in¬ 

soluble solid, for by weighing it in air we find W, and by 

weighing it suspended in water we find T, and from (7) 

S = W/(W -- T).(8) 

(For high accuracy it is necessary to allow for the buoyancy 

of air and find the weight in vacuum.) 
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It is evident that if the body is lighter than water it will 

need a force T such as the tension of a thread below the body 
or a downward thrust to keep it immersed, the buoyancy being 

greater than the weight. For this constraint 

T = P - W = W(i/S - i) .... (9) 

For immersion in a liquid of sp. gr. S|, the buoyancy is 

Si times as great as for water ; W/S = P/Si or 

P = WSj/S .(10) 

and equations (7) becomes 

T ^ W(i - Si/S) - W(S Si)/S . (11) 

while (9) becomes 

T ^ W(Si/S - I) - W(Si ^ S)/S . . (12) 

It may happen that the centre of buoyancy is not vertically 

below the c.g, when the body is constrained by an external 

force T, but the resultant upward force of P and T in equa¬ 

tion (6) must be through the c.g. in order to balance W. 

Principle of Archimedes.—The essential facts about the 

buoyancy of liquids are embodied in certain historic pro¬ 

positions which amount to the statement that for a body 

wholly or partially immersed in a liquid at rest the resultant 

upward pressure is equal to the weight of the liquid displaced 

and acts vertically upward through the c.g. of the displaced 

liquid. Note that it specifies the magnitude, direction and 

position of the resultant pressure. 

Example 1.—A thin uniform rod of length I has its lower end 

attached to a cord (or a hinge) at a depth h below the surface of 

still water. Find the position in which the rod will rest. 

Let a be the cross-section of the rod and let 0 be the angle to 

the vertical at which it rests. The weight of the rod is /« X w X S. 

The submerged length will be h sec 0 and its buoyancy wah sec 0. 
Taking moments about the lower end to eliminate that of the 

unknown force there (which is vertical since the other two are 

(Art. 99)), and equating the opposing moments of the weight and 

the buoyancy, 

w/aS X i/. sin 6 == wah sec 6 X \k tan B . . (A) 

S/* cos » 0 = A cos 0 = hjlVE 
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A value which is only possible if it is not greater than unity that is 

/Vs not less than h. The limiting position is vertical when 

/Vs-A, cos 0 = I, 0 == o. But equation (A) would in any case 

be satisfied by 0 = o for smaller values of h, but the equilibrium 

would obviously be unstable. 

Example 2.—A piece of steel of sp. gr. 7-8 floats in mercury 

of sp. gr. 13-6. If sufficient water is added just to cover the steel 

what fraction of the steel is below the surface of the mercury ? 
Let V be the volume of steel and x the fraction in the mercury. ’ 

Weight of steel == weight of mercury displaced -f weight of 

water displaced 

V«/ X 7*8 = xNw X 13-6 + (i — x)Vw 
i2-6jr ~ 6‘8 X — 6-8/I2-6 = 0-54. 

176. Stability of Floating Body. Metacentre.— 

If a body floats freely partially immersed, equilibrium for 

vertical displacements is stable. For a downward displace¬ 

ment increases the buoyancy in excess of the weight, leaving a 

resultant upward restoring force. And an upward displace¬ 

ment reduces the buoyancy below the weight and leaves a 

resultant downward restoring force. 

We now consider an angular displacement about a hori¬ 

zontal axis. Let Fig. 206 {d) represent a cross-section of a 

Fio. 206. 
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floating body such as a boat and let it be symmetrical about 

an axis perpendicular to the diagram. G is the c.g. of the 

boat and B the centre of buoyancy, both being in the vertical 

plane of the diagram. Suppose the body to receive a small 

clockwise angular displacement as shown at {b)^ Fig, 206, 

about an axis O such that the total volume immersed is 
unchanged in magnitude. A vertical line B'M, through B' 

the new centre of buoyancy meets the originally vertical line 
BG produced in M, a point (or rather its limiting position 

when Q is very small) which is called the metacentre. 

If M falls above G as at (c), Fig. 206, the we‘ight W of 

the body acting downward through G together with the 

equal force of buoyancy P ac'ting upward through B' will 

form a couple exerting a counter-clockwise restoring or 

righting moment which will rotate the body counter-clockwise 

about O and the flotation, initially at least, is stable in respect 

of angular displacements. But if M were to fall below G, 

as at {d) of Fig. 206, the couple would exert a torque which 

would rotate the body clockwise, thus increasing the angular 

disturbance and the equilibrium would be unstable. If M 

coincides with G the equilibrium is neutral; there is neither 

a righting nor an upsetting moment, and the body remains 

in any new position to which it is (slowly) rotated within the 

range for which equilibrium may remain neutral. 

Metacentric height.—The stability thus depends upon 

the position of M and we proceed to find this position. 

At (<z), Fig. 206, the new position of the water line CD is 

drawn at CD' showing it relative to the original position of 

the body. The buoyancy of the displaced liquid changes 

with the tilt or heel, 6, by the inclusion of the wedge DOD' 

and the exclusion of the wedge COC', this producing the 

movement of the centre of buoyancy from B to B'. Consider 

the change in the moment of the buoyancy, say, about the 

axis O due to tilting. A prismatic element EE' of the wedge 

DOD' has a cross-sectional area a (an element of the hori¬ 

zontal section of the body through the water surface) and a 

length if r is the distance of the element from the axis O. 
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Its volume Y. a and its buoyancy wBra if w is the weight 

of the liquid per unit volume. (For the volumes of the 
wedges DOD' and COC' to be equal, over the whole 

area must be zero, i.e, the parts of it on opposite sides of the 

axis must be equal and opposite hence the axis O is through 
the centroid of the area 11(a) or A.) The moment of this 

buoyancy wBra is wBr^a, and for the whole of the wedge 
may be written wdZ{ar^), The change in moment of buoy¬ 

ancy resulting from the reduction in buoyancy due to lifting 

the wedge COC' is equal in magnitude and has the same 
rotational effect as the depression of DOD'; hence the 

summation Il(ar^) is to be taken over the whole area of 

section A in the water surface and not only for one-half of it. 

But E(ar^) may be written A • (see Art. 138) where k is 

the radius of gyration of the area A about the axis O. 

The change in moment of the buoyancy is also represented 

by P X BB', where the total buoyancy P is equal to W 
when B is so small that BB' may be taken as horizontal. 

(Note that we are considering not the moments of all the 

forces exerted on the body, which include its weight, but the 

change in moment of buoyancy force due to the change in the 

form of the total displacement of volume V.) Hence, 

P X BB' = A/^2 X wB . . . (i) 

And since P ~ Vz£; and BB' —B X BM,when B is small 

Vw X BM X B ~ Ah^ X wB 

BM - A^2yv .... (2) 

This determines the position of the point M. The length 

GM is generally called the metacentric height For stability 

BM must be greater than BG and for neutral equilibrium (in 

respect of a tilt), BM is equal to BG. The higher M is 

above G the greater the stability. 

The metacentric height GM is found experimentally by 

moving a weight w, say, across the axis of tilt for a distance, 

say, d. This gives a tilting moment of wd. The movement 

of the c.g. is then wdfSN and the angle of heel 
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6 “ 7vdj\W = (GM)} radians, a quantity practically measured 

by the shift s at the end of a plumbline of length /; 

hence 0 =sj/= or GM = ~.y 

Example 1.—How long may the axis of a cylinder of radius 

a be if it is to float freely in stable equilibrium with the axis vertical. 

Let S be the sp. gr. of the material and h be the required length 

of axis. Then the length of axis submerged from (4), Art. 175, is 

Sh, The depth of the centre of buoyancy below the surface is 

JS * /f. The height of c.g. above the centre of buoyancy 

— ih — iSh ~ ih(i — S). Then the volume immersed being 

S X h X na^, height of metacentre above centre of buoyancy 

BM = Ah^/V = X iay(7ra^ X Sh) = ia^Sh 

and for stability, the c.g. (G) must not be above the metacentre M or 
i/t (j — S) must not exceed \a^lS>h 

or ht „ „ jgySCi -- S) 

h „ „ ajV 2S(i — S) 

e.g. if S = J, A must not exceed aV2 

Example 2.—A pontoon is 18 ft. long by 9 ft. wdde and the 

total weight is 27 tons. Find the position of the metacentre for 

rolling in seawater. How high may the c.g. be so that the pontoon 

shall not overturn. Take seawater as occupying 35 cu. ft. per ton. 

Vol. of displacement = 27 X 35 = 945 cu. ft. 

Depth of displacement — 945 cu. ft./(i8 X 9) sq. ft. == 5*8333 ft. 

k is least for the central axis parallel to the long sides and for this 

(Art. 139), 

Ak^ = 18 X 9V12 

BM = Ak^lV = 18 X 729/(12 X 945) = 1*1571 ft. 

Height of M above base = i*i57i -fix 5*8333 == 4*074 ft. 

This gives the limit of the height of c.g. above base for stability. 

Examples XXI. 

1. Find the total pressure on a submerged vertical sluice gate 4 ft. by 
3 ft., the longer sides being horizontal when the top side is 2 ft. below the 

surface of fresh water. 

2. A circular door 4 ft. diameter has its centre 3 ft. below the surface 
of fresh water. Find the total pressure on the door and the depth of 

the centre of this pressure. 



Hydrostatics 275 

3. Find the magnitude and direction of the total pressure on one-half 

of a hollow sphere cut off by a central vertical plane, the internal radius 

being a ft. when the sphere is full of water weighing w lb. per cu. ft. 

4. Find the magnitude and direction of the total pressure on the curved 

surface of one of the two lower quarters of a cylinder between vertical 

and horizontal axial planes when the axis is horizontal and the cylinder 

is filled with water to the level of the axis (radius a length /). 

5. Solve No. 4 when the cylinder is full of water. 

6. A piece of wood weighing 20 lb. floats freely in water with 60 per 

cent, of its volume below the surface. It takes 15-3 lb. of a metal attached 

to the wood just to submerge it. Find the sp. gr. of the wood and of the 

metal. 

7. A ship weighs 2000 tons and has vertical sides at the water line 

where the area of horizontal section is 20,000 sq. ft. How much will she 

rise on passing from fresh to sea water if this weighs 64 lb. per cu. ft., 

and fresh water 62*4 lb. per cu. ft. ? 

8. A uniform rod 3 ft. long is freely hinged at its lower end 2 ft. below 

the surface of water. If the rod rests in a position inclined 30° to the 

vertical, find the sp. gr. of the material of the rod. 

9. A vessel of 1000 tons displacement has its transverse metacentre 

6 ft. above the centre of buoyancy and the c.g. 3*5 ft. above the centre of 

buoyancy. If a load of 10 tons is moved transversely 12 ft. across the 

deck find the consequent angle of heel of the vessel. 

10. Find the condition of stability ot a solid cone or height k and base 

radius a floating in water with its vertex downward it S is the $p. gr. of 

the material of the cone. 
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Plane Motion of a Link.—If a rigid link AB, Fig. 207, has 
motion in, or parallel to, its own plane which is that of the diagram, 
it may be regarded as at any instant rotating bodily about some 
centre in that plane. The principles involved are well illustrated 
by the case of a connecting rod AB of the well-known reciprocating 
engine mechanism shown in Fig. 207, but they apply equally to other 
links having plane motion. (Ignore at first all broken lines in 
Fig. 207.) 

Fio. 207. 

If the directions of the motion of two points A and B on the 
link are known (from the nature of the constraints imposed on the 
link by other parts of the mechanism), lines drawn perpendicular to 
them through A and B, give by their intersection I^ the instantaneous 
centre of rotation of A and B at that instant. Thus B is obliged 
by the crank BC centred at C to move in a circle about C and A 
by a slide is compelled to move in the straight line AC. 

If the crank BC is rotating at a known angular speed <0 radians 
per sec. about C the linear velocity of B is known in magnitude 
(w X BC) and direction. If a vector pb is set off in the direction 
of B’s motion and representing its velocity in magnitude to scaJe 
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by its length and if pa of indefinite length is drawn parallel to AC 
to represent in direction the velocity of A in the line AC, the length 
of the sector pa may be determined as follows. The velocity of A 
relative to B must be perpendicular to AB for A cannot move 
relatively nearer to B, both points being on a rigid link. Conse¬ 
quently, if a vector ba be drawn from b to meet the indefinite line 
i>a it will meet it in a such that pa gives the magnitude as well as 
the direction of the velocity of A. For vectorially 

velocity of A — velocity of B -{- velocity of A relative to B 
represented by vectors 

pa — pb -}- ba 

and in magnitude, velocity of A = velocity of B X pajpb. 

But since AB is perpendicular to ab and IA to pa and IB to 
pb, the triangle I^AB is similar to the triangle pab and 

velocity of A = velocity of B X 

i.e. the velocities of A and B are proportional to IjA and I^B 
respectively, I^AB being a vector diagram of velocities rotated 
through a right angle. It similarly follows that the motion of 
every point in the link is perpendicular to the line joining it to Ij, 
and the magnitude of the velocity is proportional to the length of 
that line. 

To obtain several values of the velocity of A corresponding to 
different positions of the crank BC a series of triangles such as 
IjAB is not very convenient because although the velocity of B 
may be of constant magnitude, the length of the side corresponding 
to IjB will vary with the position of the instantaneous centre, i.e. 
the vector diagrams would be to different scales. A series of vector 
diagrams such as pab can be drawn to a convenient and constant 
scale. The vector diagram illustrated (^pab) shows the true direc¬ 
tions of the various velocities, but sometimes the vector diagrams 
(to a constant scale) are drawn in positions corresponding to IjAB, 
i.e. with lines perpendicular to the directions of the various velocities. 
In either case vector diagrams can be extended to include the 
velocities not only of other points on the rigid link AB but of points 
in other links connected to it. The direction and magnitude of the 
velocity of a point common to AB and another link together with 
the direction only of the velocity of a second point in this other link 
(say DE) give the data to enable us to find the motion of all points 
in this second link. (And so we might proceed to other links.) 
For example, a point D in AB moves perpendicular to I^D and if 
a link DE shown by a broken line has the end E constrained to 
move in a circular arc by a radius bar or link FE turning about 
a fixed point F, IjD perpendicular to the motion of D meets FE 
(produced if it were necessary) perpendicular to the motion of E 
in Ij. This is the instantaneous centre of the link DE and the 
velocity of E is equal to the velocity of D multiplied by EIj/DIj, 
while the velocity of D is known to have a magnitude equal to the 
velocity of B mutliplied by I^D/IiB. The corresponding lines 
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relating to the velocities of D and E are shown by broken lines on 
the vector pab. Here da is made equal to ab x AD/AB 
and pd is the vector representing the velocity of D in magnitude 
and direction. The vector pe is drawn perpendicular to FE, 
i.e. in the direction of motion of E and de is drawn perpendicular 
to DE, i.e, in the direction of motion of E relative to D, to meet in 
e. Then pe gives the velocity of e. 

The motion of a point G on DE could be found by setting off 
from e towards d a distance eg equal to ed X EG/ED. Then pg 
would give the magnitude and direction of the velocity of G. 
(In order to avoid complication the line/g has not been drawn in 
Fig. 207.) The velocity of G could also be found from that of D. 
Thus 

Velocity of D —velocity of B x IjD/IiB 
Velocity of G — velocity of D X IJG/I2D 

= velocity of B X IiD x IaG/(IiB X IjD) 

Question from the Associate Membership Examination 
of the Institution of Mechanical Engineers. 

The crank of the mechanism, revolves at 200 r.p.m. G is 

a fixed centre. Find the velocities of the points B and F 

when the crank CD is in the position shown. 



EXAMINATION QUESTIONS 

Questions selected from the Mechanics or Applied 
Mathematics Examinations Intermediate (En^« 
neerin^) Science of London University. 

1. Prove that if a particle starts from rest and moves with 
uniform acceleration, the difference between the distances traversed 
in successive seconds is constant. If the distance traversed in the 
seventh second is 169 feet, what is the distance traversed in the 
eleventh second ? 

What is the most general path of a particle which moves with 
uniform acceleration, but does not start from rest ? 

2. An engine weighs 30 tons, and its tender 20 tons ; in each 
the frictional resistance to motion is such that free motion down a 
slope of I in 300 would be unaccelerated. Calculate the rate of 
working of the engine (in horse-power), and the tension in the 
coupling (in tons weight), at an instant when the engine is 
drawing the tender up a slope of i in 100 with a velocity of 
10 miles per hour and an acceleration of i mile per hour per 
minute. 

3. A particle attached to the end of a string is whirled so as 
to describe a vertical circle. Prove that the difference between the 
greatest and the least tension in the string is six times the weight 
of the particle. 

If the ratio of these tensions is ii : i, and if the string is 
80 inches long, find the least velocity of the particle. 

4. ABCD is a square, and CDE an equilateral triangle on the 
side of CD remote from the square. AB, BC, AC, AD, DC, DE, 
CE are rods forming a freely jointed framework. The framework 
is supported at A and B on smooth supports, so that AB is 
horizontal, the plane of the framework vertical, and E its highest 
point. Determine graphically the stresses in the rods and the 
pressures on the supports due to a weight W hung at the point E, 

5. Find an expression for the moment of inertia of a rect¬ 
angular area, whose sides are 2a and 2^, about an axis perpendi¬ 
cular to its plane through the middle point of one of the sides of 
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length za, A uniform board, 4 feet long and r foot wide, has a fixed 
smooth horizontal pivot, perpendicular to its plane, through the 
middle point of one end. If the board be raised till its longer 
edges are horizontal and then released from rest, with what angular 
velocity will it arrive at the position in which the longer edges are 
vertical ? 

6. A system of forces in one plane acting on a rigid body 
reduces to a couple. Give a graphical method for determining the 
moment of the couple and prove that the method is correct. 

A uniform horizontal beam AB, 20 feet long, is supported at its 
ends and loaded as in the table— 

Distance from A in feet 1 ^ 

S 11 14 17 
Load in tons. 3 7 1 6 4 

Find the bending moment at a point 8 feet from A. 

7. Determine the C.G. of a solid tetrahedron. Deduce the 
position of the C.G. of a solid cone. 

The diameters of the ends of a frustum of a cone 6 inches high 
are 8 and 4 inches respectively: find the position of its C.G. 

8. ABCDE is a pentagon, AB = 10 feet, BC = feet, 
DC = 4^ feet, BD = 6 feet, ED = 8 feet, DE = 12 feet, AD = 13 
feet. AB, BC, CD, DB, DA, ED form a framework of jointed 
rods in a vertical plane attached to a vertical wall at A and E, A 
being uppermost. If a load of 8 tons be hung at C, find the 
stresses in the rods, pointing out which rods are in tension and 
which in compression. 

9. Determine the motion of a particle down a smooth inclined 
plane. 

A wedge of mass 3 lbs., angle 30®, rests with one face on a 
smooth horizontal plane. If a particle of mass i lb. slides down 
the other face, determine the horizontal force necessary to prevent 
the edge from moving. 

10. If a particle moves under the action of a force constant in 
magnitude and direction, prove that the change in kinetic energy 
is equal to the work done. 

Two weights P and Q are in equilibrium on a wheel and axle^ 
if P and Q be interchanged, show that the angular acceleration is 
^ 
^4. where a is the radius of the wheel, b of the axle, 

[The inertia of the wheel and axle arc negligible.] 
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11. How is an impulsive force measured ? 
A particle weighing 2 lbs. is attached to an inelastic string 10 

feet long, the other end of which is fixed. If the particle be 
allowed to fall from a point in the same level as the fixed end of 
the string and 6 feet from it, determine the impulsive tension in 
the string when it becomes tight, and the loss of energy due to the 
jerk. 

12. A rectangular block of wood weighing 4 lbs. rests on a 
rough horizontal table, and has attached to the middle point of one 
face a fine inextensible string which passes over a smooth pulley 
at the edge of the table and carries at its other end a weight of 
I lb. The part of the string between the block and the pulley is 
horizontal and perpendicular to the edge of the table. When the 
system is released from rest the weight is observed to descend 4 
feet in 5 seconds. Find the value of the coefficient of friction 
correct to two places of decimals. 

13. Prove that the time of a small oscillation of a simple 

pendulum of length / is 

If the pendulum of a clock beats seconds at a -place where 
g = 980*6, how many seconds will it lose per day at a place where 
^ = 979 ? 

14. Find the moment of inertia of a solid cylinder about its 
axis, and deduce the moment of inertia of a thick hollow cylinder 
about its axis. The rim of a flywheel weighs 10 tons, its internal 
and external diameters are 5 and 6 feet respectively ; calculate 
the moment of inertia of the flywheel, neglecting the weight of the 
axle and arms. 

15. A body moves along a straight line with varying velocity, 
and a curve is constructed in which the ordinate represents the 
velocity at a time represented by the abscissa. Prove that the 
distance travelled by the body in any interval is measured by 
the area between the two corresponding ordinates. 

The body is observed to cover distances of 12 yards, 30 yards, 
and 63 yards in three successive intervals of 4 seconds, 5 seconds, 
and 7 seconds. Can it be moving with uniform acceleration ? 

16. A point P describes a circle with uniform speed ; prove 
that the foot of the perpendicular from P upon any straight line 
moves with an acceleration proportional to its distance from a 
fixed point of the line. 

A simple pendulum, 10 feet long, swings to and fro through 



282 Mechanics for Engineers 

a distance of 2 inches. Find its velocity at its lowest point, its 

acceleration at its highest point, and the time of an oscillation, 
calculating each result numerically in foot-second units. 

17. A locomotive weighing 70 tons is attached to a train of 250 

tons and is drawing it up an incline of i in 160, against a fractional 
resistance of 15 lbs. per ton for both engine and train. The speed 
is 25 miles an hour, but is diminishing at the rate of i mile an hour 

in II seconds. Find the pull in tons-weight in the coupling 
between the engine and the train, and the horse-power at which 

the engine is working. 

18. Define the kinetic e7iergy of a moving particle and the 
moment of inertia of a rigid body. Deduce that the kinetic energy 
of a rigid body which is rotating about an axis with angular 
velocity « is where I is the moment of inertia about the axis. 

A projectile whose radius of gyration about its axis is 5 inches 
is fired from a rifled gun, and on leaving the gun its total kinetic 
energy is 50 times as great as its kinetic energy of rotation. How 

far does the projectile travel on leaving the gun before making one 

complete turn ? 

19. Two strings of length feet and 3? feet are tied to a point 
of a body whose weight is 8 lbs., and their free ends are then tied 

to two points in the same horizontal line 3J feet apart. Find the 

tension in each string. 

20. Seven equal light rods are freely jointed together so as to 

form two squares ABCD and ABEF (lying in one plane on 
opposite sides of AB). Two other light rods join DB and AE. 

The system is supported at C and carries a weight W hanging 

from F. Find the tension or compression of each rod, explaining 

the method you use. 

21. Define the centre of mass, and show how to find the centre 

of mass of a compound body made up of two bodies whose masses 

and centres of mass are known. 
Squares are described on two sides AB, BC of a rectangle 

ABCD, the lengths of the sides being a inches and b inches. 

Find the distance of the centre of mass of the whole figure from 

AB. 

22. If three non-parallel forces are in equilibrium, prove that 

their lines of action must be concurrent. 
A uniform plank AB has length 6 feet and weight 80 lbs., and 

is inclined at 40® to the vertical. Its lower end A is hinged to a 
support, while a light chain is fastened to a ring 4 feet vertically 

above A and to a point on the plank 5 feet from A. Find, 
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graphically or otherwise, the tension in the chain, and the 

magnitude and direction of the action of the hinge at A. 

23. Draw a quadrilateral ABCD in which the sides AB, BC, 
CD, DA and the diagonal BD have the lengths 6, 5, 3, 3, and 6 

units respectively. 
Let these lines form a framework of light stiff rods smoothly 

hinged together. If the frame be placed in a vertical plane and 
supported at A and B, AB being horizontal and below the frame¬ 
work, find the stress in each rod when a weight of 50 lbs. is 
suspended at C, and state for each rod whether it is in tension or 

compression. Find also the pressures on the supports at A and B. 

24. Explain how the work done by a varying force can be 
measured by means of an indicator diagram. 

The pressure on a piston P working in a cylinder AB of length 

3 feet is proportional to its distance from A. If the pressure 
on the piston at B is 150 lbs. weight, draw a diagram showing the 

pressure in any position, and find the work done as the piston 
moves from B to A. 

25. Find the acceleration of a point describing a circle with 
uniform speed. 

A heavy particle fastened by a light inextensible string to a 

fixed point A is moving in a horizontal circle at the rate of n revo« 

lutions per second. Prove that the point A is at a distance 

vertically above the centre of the circle. 

26. Given the moment of inertia of a lamina about an axis 
through its mass-centre, show how to find the moment about any 

parallel axis. 

Find an expression for the moment of inertia of a rectangle 

about one edge. 

27. Explain what is meant by relative velocity. 
A ball of mass 8 ounces after falling vertically for 40 feet is 

caught by a man in a motor-car travelling horizontally at 30 miles 

an hour. Find the inclination to the vertical at which it will 

appear to him to be moving, and the magnitude of the impulse on 
the ball when it is caught. 

28. Prove that the mechanical advantage of a screw when the 
effort is just overcoming the load is n cot (a 4. x) where « is the 
angle of the screw, tan x the coefficient of friction, and n the ratio 

of the power-arm to the radius of the cylinder. 

A uniform ladder inclined at 60° to the horizon rests against 
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a smooth wall while its foot is on a rough horizontal plane. Find 
the coefficient of friction if the ladder commences to slip when a 
man has ascended to its middle point. 

29. A light horizontal beam AB of length 7 feet is supported 

at its ends and loaded with weights 40 and 50 lbs. at distances 2 
and 4 feet from A. Find the reactions at A and B, and tabulate 

the bending moment and shearing force at distances i, 3, 5, and 

7 feet from A. 
Draw a diagram from which can be found the bending moment 

at any point of the beam. 

30. A bicycle is geared up to 70 inches and the length of the 
pedal-crank is 6 inches. Calculate the velocity of the pedal {a) at 
its highest point, (J?) at its lowest point, when the bicycle is travel¬ 
ling at 10 miles an hour. 

If the bicycle and rider weigh 160 lbs. find the pressure on the 
pedals in climbing a hill of i in 20. 

31. Write down an expression for the kinetic energy of a wheel 

whose moment of inertia is I, rotating n times a second. 
A wheel has a cord of length to feet coiled round its axle ; the 

cord is pulled with a constant force of 25 lbs. weight, and when the 

cord leaves the axle the wheel is rotating 5 times a second. 

Calculate the moment of inertia of the wheel. 

32. Show that if a simple pendulum of length / beats n times a 

second the acceleration of gravity is^ = /(nvy^. 

Calculate g" in units for which the length of the seconds- 

pendulum is 3*060. 

33. A cyclist always works at the rate of H.P., and rides at 

12 miles an hour on level ground, and 10 miles an hour up an 

incline of i in 120. If the man and his machine weigh 150 lbs. 

and the resistance on a level road consists of two parts, one con¬ 

stant and the other proportional to the square of the velocity, show 

that, when the velocity is v miles per hour, the resistance is 
5^5(76 -f lbs. weight. 

Find also the slope up which he would travel at the rate of 

8 miles per hour. 

34. A beam AB, used as a cantilever, is anchored at A, and 

supported at its middle point C, which is at the same level as A. 
A weight of 10 tons is attached at B, and there is a uniformly dis¬ 

tributed weight of 5 tons on AC. The weight of the beam being 
neglected, find the bending moment and shearing force at each 

cross-section of the beam, and draw curves showing them graphi¬ 

cally. 
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35. Show how to find graphically, by means of a force polygon 

and a fimicular polygon, the resultant of a number of forces whose 
lines of action lie in one plane. 

Draw four parallel lines A, B, C, D, the successive distances 
between them being ij, 2J, 2 inches. The vertices of a funicular 
polygon formed by a light chain are to lie on these lines supposed 
vertical. From the vertices A, B, C, D are to be suspended 
weights of 3, 5, 7, 2 lbs. respectively. Construct the figure of the 
polygon, so that the portion of the chain between B and C shall be 

horizontal, and the portion between C and D shall be inclined at 
60® to the horizontal. 

36. Explain the meaning of the terms centripetal force and 
centrifugal force^ as applied to a mass moving in a circular path. 

A train is travelling in a curve of 240 yards’ radius. The centre 
of gravity of the engine is 6 feet above the level of the rails, and 
the distance between the centre lines of the rails is 4 feet 8| inches. 
Find the speed at which the engine would be just unstable, if the 

rails are both at the same level. 

37. A particle moves with simple harmonic motion ; show that 
its time of complete oscillation is independent of the amplitude of 
its motion. 

The amplitude of the motion is 5 feet and the complete time of 
oscillation is 4 secs.; find, with the help of the Tables, the time 
occupied by the particle in passing between points which are 
distant 4 feet and 2 feet from the centre of force and are on the 
same side of it. 

38. Two ladders, AB and AC, each of length 2^z, are hinged at 
A and stand on a smooth horizontal plane. They are prevented 
from slipping by means of a rope of length a connecting their 
middle points. If the weights of the ladders are 40 and 10 lbs., find 

the tension in the rope and the horizontal and vertical components 
of the action at the hinge. 

39. ABC is a triangle in which BC is horizontal and 32 feet 
long, and CA = AB = 24 feet. D, E, F are the middle points of 
the sides BC, CA, AB respectively, and D is joined to E, A, and 
F. The figure represents a roof truss subjected to vertical loads of 
J, I, I, I and J ton at B, F, A, E, and C, and to pressures of i, 2, 
and I ton at B, F, and A perpendicular to BA. The truss is 
supported by a vertical force at C and an oblique force at B. Find, 

preferably by analytical methods, the supporting force at C and the 
horizontal and vertical components of the supporting force at B ; 

also find graphically, or by the method of sections, the stresses in 
4he bars AF, FD, and DB. 
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40. A train, moving with uniform acceleration, passes three 

points, A, B, and C, at 20, 30, and 45 miles per hour respectively. 

If the distance AB is 2 miles, find the distance BC. If steam is 
shut off at C and the brakes applied, find the total resistance in lb. 

weight per ton mass of the train in order that it may be brought to 

rest J mile from C. 

41. Explain how you would find graphically the velocity of one 

moving point relative to another moving point. 

Two ships are steaming along straight courses with such con-* 
stant velocities that they will collide unless their velocities are 

altered. Show that to an observer on either ship the other appears 

to be always moving directly towards him. 

42. A particle describes a circle of radius a with uniform speed 

V ; prove that its acceleration is always directed towards the centre 
of the circle, and is equal to 

A motor racing track of radius a is banked at an angle «; 

obtain an equation which will give the speed for which the track 

is designed. Show that if the speed of a car is one half this speed, 

there will be a total transverse frictional force of J W sin a between 

the car and the ground, W being the weight of the car. 

43. A wheel of mass M and radius of gyration h is rotating 

with a speed of n revolutions per second. What is its kinetic 

energy in ft.4bs. ? 

Two masses of 7 and 5 lbs. are attached to the ends of a string 

which passes over a pulley of which the radius is a and the radius 

of gyration is a/^2. It is observed that the masses move with an 

acceleration of 4 feet/(sec.)^. Assuming that the string does not 

slip on the pulley, and neglecting the friction at the pivots, prove 

that the mass of the pulley is 8 lbs. 

44. Show that the work that must be done in raising a body 

from one position to another is equal to the product of its weight 

and the height through which its centre of gravity has been 

raised. 

A uniform log weighing half a ton is in the form of a triangular 

prism, the sides of whose cross-section are 2, 3, and 4 feet re¬ 

spectively, and the log is resting on the ground on its smallest 
rectangular face. Show that the work that must be done in raising 

it on its edge so that it may fall over on to its broadest rectangular 

face is 0*44 foot-ton nearly. 

45. ABC is a triangle in which BC is horizontal and 32 feet 

long, and CA = AB = 24 feet. D, E, F are the middle points of the 
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sides BC, CA, and AB respectively, and D is joined to E, A, and 
F. The figure represents a roof-truss, supported at B and C, which 
is subjected to vertical loads of J, i, i, 2, and J ton at B, F, A, E, 

and C. Find graphically the stresses in each bar of the truss. 

46. Show that the angular velocity of a moving point P about a 

fixed origin O is where OP = r, i/ is the velocity of P, andp 

is the perpendicular from O upon the direction of v. 
If two particles describe the circle, of radius fZ, in the same sense 

and with the same speed show that the relative angular velocity 

of each with respect to the other is 

47. Find the normal acceleration of a particle describing a circle 
with constant speed. 

The velocity of a motor-car is the distance between its wheels 
is a^ and the height of its centre of gravity above the ground is h; 

show that the radius of the smallest circle which the centre of 

gravity can describe, without the inner wheel leaving the ground, is 
2’t^h 

* 

48. A rectangular block hangs suspended from a support by 

two wires of equal length attached to tw^o points symmetrically 

situated on the upper face, the upper ends being attached to the 

same point of the support. Show that the tension in the wires is 

increased if their lengths are shortened. 

If the block is cubical, of edge 3 feet and specific gravity 27, and 

the points of attachment of the wires are 2 feet apart, find the 

shortest possible leitgth of the wires, given that the breaking strain 

of each is 175 tons. 

49. The two ends of a train which is moving with constant 

acceleration pass a certain point with velocities u and v. Find in 

terms of u and v what proportion of the length of the train will 

have passed the point after a time equal to one-half that taken by 

the train to pass the point. 

50. A man is cycling at 10 miles per hour up a slope of i in 30. 

If the man and machine weigh 180 lb., and frictional resistances 

arc equivalent to 2 lbs. weight, find the rate in H.P. at which the 

man is working. 
Assuming that the man exerts a constant vertical pressure on 

each pedal in its downward path, find this pressure when the cranks 

are inches and the gear 72 inches. 



288 Mechanics for Engineers 

51. The velocity of a particle moving in a straight line is given 

by the equation v = where k and a are constants and x 
is the distance of the particle from a fixed point in the line ; prove 

that the motion is simple harmonic, and find the amplitude and 

periodic time of the motion. 
Find the time of oscillation of a simple pendulum of length /. 

52. Three rectangular areas, 2 feet by 2 inches, 3 feet by 2 
inches, and i foot by inches, are fitted together to form a T 

figure, the longest area forming the cross-piece. Find the distance 

of the centroid of the figure from the outer edge of the smallest 

area, and find also the moment of inertia of the figure about this 

edge. 

53. Find the centre of gravity of a uniform triangular lamina, 

and show that it is the same as that of a triangle having the same 

vertex, but with its base produced to equal distances on each 

side. 
By employing the latter property (or otherwise) show that the 

centre of gravity of a quadrilateral ABCD whose diagonals AC, 

BD intersect at E, coincides with that of the triangle DBF, where 

F is taken in CA such that CF = AE. 

54. Explain what is meant by the velocity of one moving 

particle relative to another moving particle, and show how to 

determine it. 
To a ship sailing E. at 15 knots another ship whose speed is 

12 knots appears to be sailing N.W. Show that there are two 

directions in which the latter may be moving. Find these direc¬ 

tions, graphically or otherwise, and find the relative velocity in 

each case. 

55. Define the impulse of a force and an impulsive force. 

Find the direction and magnitude of a blow that will turn the 

direction of motion of a cricket-ball weighing 5 J ounces, moving at 

30 feet per second, through a right angle and double its velocity. 

State in what units your answer is given. 

56. Find the moment of inertia of a uniform circular disc about 
an axis through its centre perpendicular to its plane. 

On the circumference of such a disc made of iron i inch thick 
and 4 inches in diameter is wound a string 10 feet long, one end of 

which is looped over a small peg of negligible mass on the rim of 

the disc and the other attached to a mass of i ounce. If the disc 

be free to turn about a horizontal axis through its centre, find the 



Examination Questions 289 

time which elapses before the string drops off the peg, assuming 
that initially the mass is just clear of the disc. 

(Specific gravity of iron = 7, i cubic foot of water weighs 

62J lbs., » = 

Questions selected from the Associate Members’ 
Examinations of the Institution of Civil Eng^ineers. 

1. Two weights A and B are suspended from the two ends of 
a light silken cord which passes over a frictionless pulley. By the 
accelerated descent of the greater weight, A, through a fall of 8 feet, 
the smaller weight, B, is raised through the same height in 2 
seconds of time (starting from a condition of rest). The weight 

B is I lb. : how much is the weight A ? Neglect the mass of the 
cord and of the pulley. 

2. A load of 2 tons is suspended by a vertical rope 300 feet 
long, the rope itself weighing 6 lbs. per foot. In winding up the 
load to the top, how many foot-pounds of work are done 1 

3. A cage, weighing with its load 5 tons, is lifted by a winding- 
engine at the maximum working speed of 30 feet per second. The 

maximum speed is attained by a uniform acceleration in a period 
of 6 seconds after starting. Find the tension in the wire rope 
during this period of time. 

4. A simple triangular roof truss, ABC, consists of a hori¬ 
zontal tie-beam, BC, 10 feet long, supported at each end, and two 

inclined rafters, AB and AC, which are respectively 6 feet and 
8 feet in length, meeting at the ridge A. Determine the stress in 
each of the three members due to a load of i ton imposed upon 
the ridge A. 

5. A straight horizontal beam, ABCD, whose length, AD, is 
100 feet, and! weight 50 lbs. per lineal foot, is supported and held 

down to an abutment at A, and supported also at C, 40 feet from 

A (without being fixed in direction). Find the external forces or 

reactions at A and C due to the weight of the beam; and also the 
value of those forces when the beam carries a load of 2000 lbs. at 
B, which is 10 feet from A. 

6. While a railway train is running 40 miles an hour upon a 

falling gradient of i in 100 (without steam), the brakes are put on, 
applying a total retarding force which is equivalent to one-twentieth 

I. 
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of the weight of the train. In what distance and in what space of 
time will the train be stopped ? 

7. The cables of a suspension bridge hang across a span of 
600 feet from tower to tower, with a dip of 50 feet, and carry a 
uniformly distributed load of 2 tons per foot of the roadway. At 
the top of each tower the cable is laid over roller bearings and 
brought down to the abutment as a backstay at the inclination of 
two horizontal to one vertical. Find the direct stress in the backstay 
and the load upon each tower. 

8. A cyclist running at 20 miles an hour, conies to the foot of 
a hill which rises at the uniform gradient of i in 40. How far will 
the bicycle run up the gradient without pedalling if the rolling and 
frictiojial resistances amount to ^ of its loaded weight ? 

9. Ninety cubic feet of water per minute flow through a 6-inch 
pipe in which there is a right-angled bend ; what is the resultant 
force exerted by the water on the pipe at the bend, neglecting 
friction ? 

10. A load of 5 tons is being hauled by a wire rope up an incline 
of I in 140. Frictional resistance is 60 lbs. per ton. At a certain 
instant the velocity is 15 miles per hour, and the acceleration up 
the incline is i foot per second per second. Find the pull in the 
rope and the horse-power exerted at that instant. 

ji. Show that the moment of inertia of a uniform cylinder, of 
M mass and radius r, about its axis is 

A grindstone, 6 feet in diameter, is making 45 revolutions a 
minute. If the axle be 2 inches diameter, how long will axle 
friction take to stop the motion, the coefficient of friction being 
0*09? 

12. In the case of a rigid body turning about a fixed axis, 
establish from first principles that 

Angular acceleration = (external couple) -f- (moment of inertia 
about axis). 

A uniform thin rod of length I is suspended at a point in its 
length distant \l from its centre. It is making small oscillations 
in a vertical plane. Find the time of a complete oscillation. 

13. A uniform horizontal girder 24 feet long, weighing 3 tons, 
overhangs its two supports 5 feet at one end and 7 feet at the 
other. A uniform load of i ton per foot run rests on the part 
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between the supports, and there is a load of \ ton at each end. 

Find the pressures on each support, and the bending moment at 

the supports. 

14. A shot is fired from a gun. Explain why the momentum 

of the shot is equal to that of the gun, and why the energy of the 

shot is much greater than that of the gun. 
A shot of 500 lbs. is fired from a lo-ton gun, the velocity of the 

shot being 2400 feet per second ; find the velocity of recoil of the 
gun. 

15. A train weighing 300 tons, travelling at 60 miles per hour 

down a slope of i in no, with steam shut off, has the brakes 

applied and stops in 450 yards. Find the space-average of the 
retarding force in tons exerted by the brakes ; if the time that 

elapses between the putting on of the brakes and the moment of 

stopping is 36 seconds, find the time-average of the retarding force 

in tons. 

16. Show that the acceleration of a particle moving with 

constant speed vim. circle of radius r is — towards the centre. 
r 

A mass of 3 lbs. moves as a conical pendulum at the end of a 

string 2 feet long. The radius of the horizontal circle described 

by the mass is 10 inches. Find the tension of the string and the 

speed of the mass in its circular path. 

17. Show that the natural period of vertical oscillation of a load 

supported by a spring is the same as the period of a simple pen¬ 

dulum whose length is equal to the static deflection of the spring 

due to the load. 
When a carriage uqderframe and body is mounted on its 

springs, these are observed to deflect i J inches. Calculate the time 

of a vertical oscillation. 

18. Prove the formula for the acceleration of a point moving 

with uniform speed in a circle. Find in direction and magnitude 
the force required to compel a body weighing 10 lbs. to move in a 

curved path, the radius of curvature at the point considered being 

20 feet, the velocity of the body 40 feet per second, and the 

acceleration in its path 48 feet per second per second. 

19. What is a “ vector ” ? Give examples. 

At midnight a vessel A was 40 miles due N. of a vessel B, A 
steaming 20 miles per hour on a S.W. course and B 12 miles 

per hour due W. They can exchange signals when 10 miles 
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apart. When can they begin to signal, and how long can they 
continue ? 

20. The table of a machine weighs 160 lbs. and moves hori¬ 
zontally with simple harmonic motion. The travel is 1 foot and 
the mean speed 80 feet per minute. Find the force required to 

overcome the inertia at the ends of the stroke and the kinetic 
energy at quarter-stroke. 

21. A uniformly thick cast-iron disc weighing 60 lbs. is 15 

inches in diameter. It is mounted on a shaft 4 inches diameter, 

which rotates at 90 revolutions per minute. The plane of the disc 

is perpendicular to the shaft, and the centre of the disc is 3 inches 

from the shaft centre. Find the centrifugal force on the disc 
allowing for the hole through which the shaft passes. 

22. The bob of a ballistic pendulum weighs 14 lbs. and its 

centre is 48 inches from the point of suspension. A bullet weigh¬ 

ing I ounce is fired into the bob, the speed of the bullet being 2000 

feet per second. Find (a) the angle through which, the pendulum 

moves, {b) the loss of energy due to impact. 

23. ABCD is a square of 2-inch^ side, BD being a diagonal. 

A force of 50 lbs. acts along BC from B towards C ; a force ot 

80 lbs. acts along CD from C towards D ; and a force of 60 lbs. 

acts along DB from D towards B. Replace these forces by two 

equivalent forces, one of which acts at A along the line AD. 

Find the magnitude of both these forces, and the line of action and 

direction of the second. 

24. Show that the moment of inertia of a plane area about a 

line in its plane is greater than that round a parallel line through 

the centre of gravity by an amount where A is the area and d 
the perpendicular distance of the centre of gravity from the line. 

Apply this theorem to find the radius of gyration of a triangle 

about a line through the vertex parallel to the base, having given 

that the square of the radius of g^ation round the base is 

where h is the height of the triangle. 

25. Wind blowing at 20 miles per hour impinges against the 

vanes of a windmill, the plane in which the vanes rotate being per¬ 
pendicular to the direction of the wind. The vane circle is 6 feet 

diameter. If the efficiency of the windmill is 30 per cent., find the 

useful horse-power. Take the weight of air as 0*08 lb. per cubic 

foot. 
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26. ABC is a triangle, AC horizontal, angle BAC = 30®, angle 

BCA = 45®. AB and BC represent two planes. A weight of 40 

lbs. resting on AB is attached by a rope to a weight of W lbs. on BC, 
the rope passing over a pulley B so that the pull on each weight 

is parallel to its plane. Find the least weight W that will pull the 

40-lb. weight up AB. Coefficient of friction = 0*2. 

27. A vertical helical spring whose weight is negligible is 

extended i inch by an axial pull of 100 lbs., a weight of 250 lbs. is 
attached to it and set vibrating axially. Find the time of a com¬ 
plete vibration. If the amplitude of the oscillation was 2 inches, 

find the kinetic energy when the weight is f inch below the. central 
position. 

28. For a length of 4 miles a line of railway is laid upon a 

gradient of i in 50. A train of wagons, standing at the head of 
this incline, begins to run down it under the action of gravity un¬ 

impeded by any resistance except the rolling and frictional resist¬ 

ances which may be taken at of the load. Write out the time¬ 

table giving the time (from the start) when the train may be 

expected to pass each mile-post on the way. Find also the speed 
of the train as it flies past the fourth mile-post. 

29. The weight of a certain body, as determined by a spring- 

balance, is found to be just 16 lbs. The same body, carried upon 

the same spring*balance, is taken into a miner’s cage which is now 

to be hoisted rapidly from the bottom of a shaft. The upward 
journey begins with uniform acceleration of 2 feet per second per 

second, continues for a time at maximum speed, and ends with a 
uniform retardation of 2 feet per second per second. At each of 

these three stages what load will be indicated by the spring-balance ? 

30. A beam ABCD, 30 feet in length, is laid horizontally upon 

the two supports A and C, which are 20 feet apart, so that the end 
D projects 10 feet beyond C. The beam itself weighs 40 lbs. per 

foot lineal, and carries also a weight of 200 lbs. at D, and a weight 

of 300 lbs. at the point B, which is 8 feet distant from A. Find the 

reactions Ra and Re at the two points of support, and the bending- 
moments at B and C. 

31. A locomotive, exerting a gross tractive force of 3i tons upon 
a level line, starts a train whose total weight, including the engine, 

is 400 tons, while the train-resistance on the level is two tons. 

Supposing the tractive force and the whole train-resistance to 
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remain constant, how long a time will it take to get up a speed of 

6o feet per second ? 

32. In the case of a simple revolving pendulum, explain the 
relations between the “ height ” A, the radius r of the circular path, 

and the tangential velocity v. What is the height of such a 

pendulum when it is making 60 revolutions per minute ? 

33. Two trains, X and Y, run on parallel lines in the same 

direction, X being 100 and Y 150 yards long. At a given instant 

Y is travelling at a speed of 50 miles per hour, and the front of Y 

is abreast of the rear of X. If at that time X is travelling at 40 

miles per hour, how long will it be before the rear of Y is abreast 

of the front of X, {a) if the speed of X remains constant, {b) if X is 

being retarded at the rate of J mile per hour per second. The 

speed of Y is constant. 

34. Show how the funicular polygon may be used to find the 

position of the centre of gravity of a system. Hence, or otherwise, 

find the centre of gravity of a buttress 24 feet high and of uniform 

width, having one face vertical, and stepped in three equal sections, 

so that the widths of the top, middle, and bottom sections are 2, 3, 

and 4 feet respectively. 

35. An engine piston weighing 400 lbs. has a stroke of 2 feet, 

and makes 160 strokes per minute. If its motion is regarded as 

simple harmonic, find its velocity, kinetic energy, and acceleration 

when it has travelled a quarter-stroke from one end position. 

36. The weight of a pile-driver is 600 lbs. and it drops 

vertically from a height of 5 feet on to a vertical pile which weighs 

800 lbs., the pile being driven in 6 inches. Find the mean resist¬ 
ance and the energy lost at impact. 

37. A railway truck is loaded so that the pressure on each 

wheel is 5 tons, and the centre of gravity of the truck and load is 

6 feet above the rails. The distance from centre to centre of the 
wheels on an axle is 60 inches. Find the alteration in the vertical 

pressures on the rails due to centrifugal action when the truck is 
going at 30 miles per hour round a curve of 1200 feet radius. 

38. A rod of steel of uniform section, weighing 240 lbs. and 
6 feet long, is pivoted at one end, and swings in a vertical plane. 

It is pulled aside so as to make an angle of 30° with the vertical, 

and then released. Find its kinetic energy and moment of 
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momentum when passing through the vertical position. Regard 
the rod as being thin. 

39. Two struts in a vertical plane are hinged at their upper ends, 
and form an inverted V. The struts are each 10 feet long, and the 
vertical angle is 60°. To prevent the struts from spreading, their 

lower ends are connected together by a rope. When a load of 5 

tons is hung from the apex, find the tension in the rope. Each 

strut is uniform in section, and weighs J ton, and the coefficient of 

friction between struts and ground is o'2. 

Questions selected from the Associate Membership 
Examination of the Institution of Mechanical 
Eng^ineers. 

I. Deduce from first principles a formula relating the rate of 

change of angular velocity of a rotating mass with the applied 

torque. An engine flywheel weighs 5 tons ; it rotates at 180 
revolutions per minute ; it has a radius of gyration of 3 feet. 

Find— 

(i) The torque necessary to reduce the wheel to rest in i 

minute ; (2) The work done in changing its speed from 180 to 

160 revolutions per minute. 

If the wheel takes 8 minutes to come to rest from 180 revolutions 

per minute when all power is taken off and friction is assumed 

constant, find the work done by friction per revolution of the 

engine. 

2. Prove that, if at any instant a body of weight W lb. is moving 

in a circle of radius R feet with velocity v feet per second, the 
Wz/2 

accelerating force is lb. 

A body weighing 50 tons, having a velocity of 50 feet per second 

due east, has its velocity changed to 50 feet per second north-east 

in 10 seconds, the magnitude of the velocity remaining constant 

throughout. Find the magnitude of the impressed force which 
produces the change. 

3. An electric motor develops 50 H.P. at 1,000 revolutions per 

minute, and exerts a constant torque at all speeds. 

Find the time that the motor will take to raise the speed of a 

flywheel, which weighs 2 tons, and has a radius of gyration of 3 feet, 
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from 5CX) to 1,000 revolutions per minute, and find the work done 

by the motor in increasing the speed. 

4. A circular body of mass W lb. and radius of gyration K has 
an angular velocity ai and a linear velocity a>.R, where R is the 

outside radius of the body. Determine an expression for the kinetic 
energy of the body. 

A wheel rim weighs 1,000 lb. Its mean radius is 3 feet. The 

wheel is allowed to run freely down a plane inclined at i in 200 

to the horizontal. 
Find the angular velocity of the wheel rim after it has run from 

rest a distance of 500 feet down the plane. 

5. Prove that the radial acceleration of a mass moving about a 

fixed centre at constant angular velocity a> is to* R and that the 

W 
centrifugal force is — R. Carefully state the units assumed. 

g 
A flywheel weighs 6 tons and is symmetrically supported 

between two bearings on a rigid horizontal shaft. The centre of 

gravity of the wheel is i inch out of centre. When the wheel makes 
i,cxx) revolutions per minute, find the maximum and minimum 

load on each bearing. 

6. A flywheel has a radius of gyration of 6 feet and a weight 
of 20 tons. The number of rotations per minute changes from 450 

to 350 revolutions per minute in i minute. Find—(i) the torque 

acting upon the wheel; (2) the change in kinetic energy in ft.-tons ; 

(3) the change in angular momentum. 

7. A motor-car weighs 25 cwt. Assuming the frictional 

resistances are equivalent to 40 lb. per ton, find the effective horse¬ 

power of the car when travelling at 30 miles per hour up an incline 

of I in 10. Find also the tangential driving force on the driving 

wheels of the car. 

8. A flywheel weighs 10 tons and has a radius of gyration of 

5 feet. If the speed changes from rest at the rate of 50 r.p.m. per 

second, find the torque required to give this acceleration and the 

time required to get up a speed of 300 r.p.m. 

Show that the work done by the torque is equal to the gain of 

kinetic energy of the wheel. 

9. An express train reaches a speed of 58 miles per hour 

3*8 miles from the starting point. It has travelled up a gradient 

of I in 450. The weight of the engine is 120 tons and of the train 

240 tons. 
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Determine—{a) the acceleration, assuming it is constant; {b) 
the tractive force between wheel and rails ; {c) the draw bar pull. 

The frictional resistance is to be taken as constant and equal 

to 10 lb. per ton. 

10. Find expressions for the angular momentum and the kinetic 
energy of a flywheel. 

A flywheel having a radius of gyration of 4 feet and a mass of 

5 tons is fixed to a shaft. A mean torque is applied to the shaft 

of 10,000 ft.-lb. 
Find—{a) the angular acceleration ; {b) the time required to 

get up a speed of 250 r.p.m, ; (c) the kinetic energy of the wheel 

at 250 r.p.m. 

11. A train of 50 tons weight moving at 10 m.p.h. strikes a 

buffer stop and is brought to rest in a distance of 2 feet. Assuming 

the force exerted to be constant, find the force and the time taken 

to bring the train to rest. 

12. Two stations on a railway are i mile apart. The maximum 
speed of a train between the stations is 40 m.p.h. The accelerating 

force on the train is J and.the breaking force J of the weight of the 

train. Find the minimum time to travel from station to station. 

13. Define angular momentum, and derive an expression for 

the angular momentum of a flywheel of radius of gyration R and 

weight M tons revolving at N r.p.m. 

Show that the rate of change of angular momentum of such a 

flywheel is equal to the applied torque. 

A motor gives 10 h.p. at 700 r.p.m. On the shaft is a flywheel 

weighing i ton and having a radius of gyration of 1*5 feet. 

Assuming that the torque of the motor is constant, find the 

time in which the motor, starting from rest, will get up a speed of 
700 r.p.m. 

14. A train weighs 400 tons, and the locomotive and tender 

110 tons. 

The maximum tractive force is a sixth of the weight on the 
driving wheels. 

Find the minimum weight on the driving wheels so that the 

locomotive and train can get up a speed of 60 m.p.h. from rest 

in 3 minutes, assuming the wind resistance to be 8 lb. per ton and 

an incline of i in 500. 

15. A wheel of weight W, radius R, and radius of gyration 
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rolls freely down a plane inclined at an angle a to the horizontal. 

Deduce an expression for :— 
(i) The angular velocity after it has moved a distance L from 

rest along the plane. (2) The angular acceleration of the wheel. 

A wheel having a radius of gyration of 2 feet, rolls freely down 
an incline having a slope of i in 10. The outside radius of the 

wheel is 2 feet 6 inches. 
Find the velocity of the wheel after it has travelled from rest 

a distance of 200 feet down the incline. 

16. Define simple harmonic motion. 

A piston weighs 400 lb. and makes 200 double strokes per 

minute 2 feet in length. 
Assuming the motion is simple harmonic, find r— 
(i) The acceleration at the end of the stroke. (2) The accelera¬ 

tion and velocity at one quarter stroke. (3) The maximum velocity. 

(4) The accelerating force at the end of the stroke. 

Questions selected from the Board of Education 
Examinations in Applied Mechanics. 

(Reprinted by permission of the Controller of His Majesty's 
Stationery Office,) 

1. In a hinged structure, pieces BO and CO meet at the 

hinge O, and a force of 2 tons acts upon O in the direction AO. 

The angle AOB is 115®, BOC is 15°, and the angle AOC is 130®; 
find the forces in the two pieces, and say whether they are struts or 

ties. 

2. A body weighing 644 lbs. has the simplest vibrational 

motion in a straight path, its greatest distance from its middle 

position being 2 feet. Make a diagram showing what force 

must act upon it in every position, and state the amounts at the 
two ends of the path if it makes 150 complete vibrations per 

minute. 

3. There is a triangular roof-truss ABC ; AC is horizontal, the 

angle BCA is 25°, and BAC is 55°; there is a vertical load of 5 
tons at B, What are the compressive forces in BA and BC? 
What are the vertical supporting forces at A and C? What 

is the tensile force in AC.^ Find these answers in any way you 
please. 

4. Choose any three forces not meeting at a point and not 

parallel to one another. Show how we find, graphically, their 

resultant or their equilibrant. 
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5. The pull between locomotive and train is 13 lbs. per ton 
weight of the train when on the level; the train weighs 200 tons, 
what is the pull ? If the train is being pulled up an incline of x in 
80, what is now the pull ? The speed is 30 miles per hour, what is 
the horse-power exerted in drawing the train up the incline ? 

6. A motor-car, when running freely down an incline of i in 25 
maintains a steady speed of 25 miles per hour. What horse-power 
would the car engines have to develop to drive the car up the 
same incline at the same speed ? The weight of the car is 
3000 lbs. 

7. A body has a simple harmonic motion, the total length of 
one swing being 2 feet; it makes one swing in half a second, 
that is, its p>eriodic time is one second. Make a diagram showing 
its velocity and another showing its acceleration at every point of 
its path. What are its maximum velocity and acceleration.^ 

8. A flywheel is revolving without friction at 10 radians per 
second; its kinetic energy is 40,000 foot-pounds, what is its 
moment of inertia ? A couple of 1000 pound-feet now acts upon it 
for a second, what is the increased speed ? 

9. An engine connecting-rod is 8 feet long and weighs 250 lbs. 
The heavier end is laid upon the platform of a weighing machine 
and the lighter end rests on the ground. The weighing machine 
registers 150 lbs. How far is the centre of gravity of the rod 
distant from the heavy end ? 

10. If the force polyglon is closed and the link polygon is closed, 
prove that co-planar forces not acting at a point must be in equi¬ 
librium. 

11. A ballistic pendulum has the following dimensions : Length 
of each of the two supporting cords, 15 feet ; weight of the block, 
2000 lbs. A shot, whose weight is 12 lbs., strikes the block of the 
pendulum, and produces a horizontal displacement of 4 feet 6 
inches. Find the velocity of the shot at the moment it struck the 
pendulum. 

12. A body of 40 lbs. hangs from a spiral spring, which it 
elongates 2J inches. The body is then pulled down a short distance 
and let go. Determine the number of complete oscillations the 
body will make per minute, assuming the spring to be weightless. 

13. Determine the weight of the flywheel of a gas engine which 
has to give out 6000 ft.-lbs. of energy, while its speed is being 
reduced by 3 per cent, from a mean velocity of 160 revolutions per 
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minute. The radius of gyration of the flywheel may be taken as 

3 feet 6 inches. 

14. A body has simple harmonic motion in a straight line, the 

extent of its motion being 8 inches, and the frequency 120 per 

minute. Determine the acceleration of the body when it is moving 

away from the centre, and is distant inches from the centre. 

15. A tram-car weighs 12 tons complete. Each of the axles, 

with its wheels, etc., weighs ^ ton, and has a radius of gyration of 

I foot. The diameter of the wheel tread is 3 feet, and the car is 

travelling at 12 miles per hour. 

Find— 

{a) The energy of the translation of the car ; 

{b) The energy of rotation of the two axles j 

(c) The total kinetic energy of the vehicle. 

16. If the angular speed of a wheel changes from 150 to 200 

revolutions per minute during a period of 5 minutes, what is the 

average angular acceleration of the wheel ? 

17. A flywheel weighing i J tons has a mean radius of gyration 

of 4 feet. Determine the mean effective torque in pound-foot units 

which must be exerted upon the wheel, in order to get up in 40 

seconds a speed of 90 revolutions a minute, starting from rest. 

18. A helical spring is found to elongate 0*5 inch when a 

weight of 5 lbs. is hung on it. How many vibrations per minute 

would this spring make when it is supporting a weight of 10 lbs. 1 
[You may neglect the weight of the spring.] 

19. A wheel of a railway carriage is 3 feet in diameter, and 

weighs 800 lbs. Its centre of gravity is ^ inch from its geometric 

axis. The wheel also carries a vertical load of 5 tons. Find the 

maximum and minimum pressures on the rail when the carriage is 

travelling at 60 miles per hour, 

20. Determine the horse-power needed to drive a motor-car, 

weighing tons, up an incline of i in 15 at a speed of 25 miles 

per hour, if it reaches the same velocity when running freely down 

the same incline. 

21. An acceleration diagram on a time base has an area of 47 
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square inches. The base of the diagram is 2*5 inches long, and 
represents an interval of 25 seconds. The acceleration scale is 
I inch to 3 feet per second per second. If the velocity at the 
beginning is 11 feet per second, what is the velocity in feet per 
second at the end of the 25 seconds? 

22. A hammer-head, weighing i lb., strikes a nail, when the 
head is moving with a velocity of 25 feet per second, and comes to 
rest in o'oi second. What is the average force of the blow on the 
nail ? 

23. A wheel starting from rest receives a uniform angular 
acceleration of radians per second per second. How many 

revolutions per second will it be making at the end of i minute ? 

If the effort is then taken off, and if the frictional resistance of 
the bearings is equivalent to a uniform negative acceleration of \ 
radian per second per second, in how many minutes will the wheel 
come to rest ? 

24. A horizontal shaft is subjected to an axial thrust of 6 tons, 

which is taken up by a collar. The mean friction diameter is 6 

inches, and the width of the rubbing surface is i inch, measured 
radially. How many foot-pounds of work per minute are absorbed 

in the friction of the collar against its support, if the coefficient of 
friction is 0'06, and if the shaft makes 60 revolutions per minute ? 

25. Using the terms speed and velocity to denote scalar and 

vector quantities respectively, define mean speed, mean velocity, 
speed and velocity at any instant, mean speed-acceleration and 

mean velocity-acceleration. 
Using these definitions, calculate the mean speed-acceleration 

and the mean velocity-acceleration over the observed period of a 

body moving at lo^o ft. per second and 4 seconds later at 15so® 
ft. per second. What constant force could produce this acceleration 

in a body having a mass of 0*2 lb. ? Explain how to plot the path 

of the body when under the action of this constant force. 

[Note.—The suffixes indicate the directions of the given 

velocities.] 

26. It is found experimentally that an unbalanced force of 
3 pounds causes an acceleration of 150 ft. per second per second 

of a certain “ particle.’* 
If this particle moves at a constant speed of 120 ft. per second 

along a circular path of 4 ft. diameter, find the unbalanced force 

necessary to produce this motion. Illustrate your solution by a 

diagrammatic sketch. 

27. A body moves at constant speed in a circular path of radius 
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5 feet in a horizontal plane. In an interval of o*2 second the radius 

sweeps out an angle of lo°. 

Find the mean acceleration of the body and state the magnitude, 

direction, and sense of the force required to produce this acceleration 

in a body weighing 2 pounds. 

28. A motor-car is geared so that for i revolution of the engine 

the car travels 1^2 feet along the road. The mass of the car has a 

certain flysvheel effect in steadying the running of the engine, and 

if the engine is to be run separately for test purposes a flywheel 

should be added to give the same steadying effect as the car. 

Calculate the moment of inertia of a flywheel to replace the car 

if the latter weighs 1,200 lb. State the weight of the wheel if it 

may be treated as a ring concentrated at a radius of 6 inches. 

29. A body weighing 3 pounds is known to change its velocity 

in 2 seconds from 20 feet per second due east to 10 feet per second 

30® north of east. 

Find the change in velocity, the acceleration, and the uniform 

force capable of causing the acceleration. 

30. A body weighing 400 pounds is lifted by a variable vertical 

force. The velocity at various heights is given in the following 

table:— 

Height above ground I 

in feet 0 5 10 15 20 25 

Velocity in ft./sec. .. 0 4*2 5*1 4-4 2-9 0 

Deduce the space-average of the lifting force for each interval 

and plot a curve showing approximately the variation of this force 

throughout the motion. Estimate the time taken to reach a height 

of 10 feet. 



TRIGONOMETRICAL FUNCTIONS 

Angle. 

Chord Sine Tangent 
Co- 

tangent De- Radians 
Cosine 

groes. 

o« 0 0 0 0 00 1 1-414 1-5708 OO" 

1 •0175 •017 •0175 •0175 57-2900 •9098 1-402 1-5583 89 
2 •0349 •035 •0348 •0349 28 6868 •9994 1-889 1-5359 88 
8 •0524 •052 •0523 •0524 19-0811 •9986 1-877 1-5184 87 
4 •0698 •070 •0698 •0699 14-3007 •9976 1-864 1-5010 86 

6 •0873 •087 •0872 •0875 11-4301 •9962 1-361 1-4835 86 

6 •1047 •105 •1045 •1051 9-5144 ■9945 1-388 1-4661 84 
7 •1222 •122 •1219 •1228 8-1443 •9925 1-825 1-44K6 83 
8 •1390 •140 •1392 •1405 7-11.54 •99{»3 1-312 1-4812 82 
0 •1671 j •157 •1504 •1584 0-3188 •9877 1-299 1'4137 81 

10 •1745 •174 i -1736 •1763 5-6713 •9848 1-280 1-3963 80 

11 •1920 -192 ■1908 •1044 6-1416 •9816 1-272 1-3788 79 
12 •2094 •209 •2079 •2126 4-7046 •9781 1 -259 1-3614 78 
13 ■2209 •226 •2250 •2309 4-8815 •9744 1-245 1-84.89 77 
14 •2443 •244 •2419 •2493 4-0108 •9703 1-231 1-3265 76 

15 ! ■2618 •201 •2588 •2679 3-7821 J •9659 1-218 1-3090 75 

Ifi •2793 ■278 •2766 •2867 3-4874 •9613 1-204 1-20J5 74 
17 •2907 •296 ! -2924 •3057 3-2709 •9503 1-190 1-2741 73 
18 •3142 •313 •3090 •3249 3-0777 -9511 M76 1-2666 72 
19 •3310 •330 •3256 •3443 2-9042 •0455 1161 1-2392 71 

20 •3491 •347 •3420 •3640 2-7475 •9307 1-147 1-2217 70 

21 •3005 •364 •8584 •3839 2-0051 •9336 1-133 1-2043 09 
22 •3840 •382 •3746 •4040 2-4751 •9272 1-118 1-1868 68 
23 •40J4 •899 •3907 i -4245 2-8550 •9205 1-104 1-1694 67 
24 •4180 •416 •4067 •4452 2-2460 •9135 1-089 11510 66 

25 •4363 •433 •4226 •4663 2-1445 •90fi3 1-075 11346 65 

20 •4538 •450 •4384 *4877 2-0503 •8988 1-060 1-1170 64 
27 •4712 ■467 •4540 •6096 1-9G2G •8910 1-045 1-0996 63 
28 •4887 •484 •4695 •5317 1-8807 •8829 1-030 1-0821 62 
29 •5001 ■501 •4848 ■5543 18040 I •8740 1-016 1-0647 61 

80 •5236 •618 •5000 •5774 1*7321 •8660 1-000 1*0472 60 

81 •5411 •634 •5150 -6009 1-6643 •8572 •985 1-0297 59 
82 •5585 •551 ■5299 •6249 1 -6003 •8480 •970 1-0123 53 
83 •5760 •668 ■5446 •6494 1-5899 •8387 •954 •9948 57 
34 •6934 •585 •5592 •6745 1-4826 •8290 •939 •9774 66 

85 ■6109 •001 •5736 -7002 1-4281 •8192 •923 •9599 55 

30 •6283 •618 •5878 '7265 1-8764 •8090 •908 •9425 54 
37 •0458 •626 •6018 •7636 1 3270 ■7986 ■892 •9250 53 
88 •0032 •051 •6157 •7813 1 2799 •7880 •877 •9076 62 
89 •6807 •668 •6293 •8098 1-2349 •7771 •861 •8901 51 

40 •6981. •684 •6428 •8391 1-1918 j •7600 *845 •8727 50 

41 •7160 •700 •6561 •8693 1-1504 •7547 •829 •8552 49 
42 •7830 •717 •6691 •9004 2 1106 •7431 •813 •8378 48 
48 7.505 •738 •0820 -9325 1-0724 •737 4 •797 •8203 47 
44 •7079 •749 ■6947 •9657 1 0365 •7193 •781 •8029 46 

45'=* •7854 •765 •7071 1-0000 10000 •7071 •766 •7864 45* 

Cosine 
Co¬ 

tangent 
Tangent Sine Chord Radians 

De¬ 
grees 

Angle. 



g 
I t

Si
Sf

e I
 ft

 I 
[ g

 I 
gg

sg
g 

I u
 I 

I g
 1 

gs
g!

^g
 I s

 I 
8 

LOGARITHMS 

6 

!
_

 

1 ^ 9 

4 9 13 17 
8 8 12 16 

4 8 12 15 
4 7 11 16 

3 7 10 13 16 
3 7 10 12 16 

3 6 9 12 16 
3 6 6 12 16 

3 6 9 11 14 
3 6 8 11 14 

3 6 8 11 14 
3 6 8 10 13 

3 6 8 10 13 
2 5 7 10 12 

2 6 7 9 12 
2 5 7 9 11 

2 4 7 9 11 
2 4 6 8 11 

2 4 6 8 11 

2 4 6 8 10 
2 4 6 8 10 
2 4 6 7 9 
2 4 6 7 9 

2 3 6 7 8 
2 3 6 6 8 
2 3 6 6 8 
1 3 4 0 7 

13 4 6 7 
1 3 4 6 7 
[3 4 5 6 

1 3 4 6 6 

.2 4 6 6 

1 2 4 6 6 
1 2 3 6 6 
1 2 3 5 6 
1 2 3 4 6 

1 2 3 4 6 
1 2 3 4 6 
1 2 3 4 5 
1 2 3 4 5 

12 3 4 
12 3 4 
12 3 4 
12 3 4 

6 7 8 9 

26 30 34 38 
24 28 32 87 

23 27 31 36 
22 26 30 33 

21 25 28 33 
20 24 27 31 

20 23 26 30 
19 22 25 29 

18 21 24 28 
17 20 23 26 

17 20 23 26 
16 19 22 26 

16 19 22 24 
15 18 21 23 

16 18 20 23 
16 17 19 22 

14 16 19 21 
14 16 18 21 

13 16 18 20 
13 16 17 19 

12 14 10 18 
12 14 15 17 
11 13 16 17 
11 12 14 16 

10 11 IS 15 
9 11 13 14 
9 11 12 14 
9 10 12 13 

8 10 11 12 
8 9 11 12 
8 9 10 12 
8 9 10 11 

7 8 10 11 
7 8 9 10 
7 8 9 10 
7 8 9 10 

6 7 8 9 
6 7 8 9 
6 7 8 9 
6 7 8 9 

6 7 7 8 
6 6 7 8 
6 6 7 8 
5 0 7 8 



LOGARITHMS 

0 1 2 3 4 5 6 7 8 9 1 2 3 7 6 6 7 8 9 

61 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 6 6 7 8 
62 7160 7168 7177 7185 7193 7202 7210 7218 7226 7236 1 2 2 3 4 6 6 7 7 
68 7213 7261 7250 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 
64 7324 7332 7340 7348 7366 7364 7372 7380 7388 7396 1 2 2 3 4 6 G 6 7 

66 7404 7412 7419 7427 7436 7443 7461 7459 7466 7474 1 2 2 3 4 6 5 6 7 

66 7482 7490 7497 7506 7613 7520 7528 7536 7543 7551 1 2 2 3 4 5 5 C 7 
67 7559 7566 7574 7682 7689 7597 7604 7612 7619 7627 1 2 2 3 4 6 5 6 7 
68 7634 7642 7649 7667 7664 7672 7679 7686 7694 7701 1 1 2 3 4 4 5 6 7 
69 7709 7716 7723 7731 7738 7745 7762 7760 7767 7774 1 1 2 3 4 4 5 6 7 

60 7782 7789 7796 7803 7810 7818 7826 7832 7839 7846 1 1 2 3 4 4 5 6 6 

61 7853 7860 7868 7876 7882 7889 7896 7903 7910 7917 i 1 2 3 4 4 5 6 6 
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 1 1 2 3 3 4 5 6 6 
68 7993 HOOO 8007 8014 8021 8028 8035 8041 8048 8056 1 1 2 3 3 4 5 5 6 
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 H122 i 1 2 3 3 4 5 5 6 

66 8129 8136 8142 8149 8150 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 6 5 

66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8264 1 1 2 3 3 4 5 5 6 
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 1 1 2 3 3 4 5 5 6 
68 8326 8331 8338 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 3 4 4 5 6 
69 8388 8396 8401 8407 8414 8420 8426 8432 8439 8445 1 1 2 2 3 4 4 5 6 

8451 8457 8463 8470 8476 8482 8488 8494 8300 8506 1 1 2 3 3 4 4 5 6 

71 8513 8519 8525 8531 8537 8543 8649 8555 8561 8567 1 1 2 2 3 4 4 5 6 
72 8573 8579 8585 8591 8597 8603 8609 8615 8021 8627 1 1 2 2 3 4 4 5 5 
78 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 1 1 2 2 3 4 4 5 5 
74 8G92 8698 8704 8710 8716 8722 8727 8733 8739 8745 i 1 2 2 3 4 4 5 5 

78 8751 8766 8762 8768 8774 8779 8786 8791 8797 8802 1 1 2 2 3 3 4 5 5 

76 8808 8814 8820 8826 8831 8837 8842 8848 8864 8869 1 1 2 2 3 3 4 6 5 
77 8865 8871 8876 8882 8887 8893 8899 8904 8910, 8915 1 1 2 2 3 3 4 4 5 
78 8921 8927 8932 8938 8943 8949 8954 8960 8966 8971 1 1 2 2 3 3 4 4 5 
79 8976 8982 8987 8993 8998 9004 9009 9016 9020 9025 1 1 2 2 3 ; 3 4 4 5 

80 9031 9036 9042^ 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 2 ‘ 3 4 4 6 

81 9085 9090 9096 9101 9106 9112 9117 9122 8128 9133 1 1 2 2 3 i 4 4 5 
82 9138 9143 9149 9154! 9159 9165 9170 9175 9180 9186 1 1 2 2 3 5 4 4 5 
88 9191 9196 9201 9206 i 9212 9217 9222 9227 9232 i 9238 1 1 2 2 3 3 4 4 5 
84 9243 9248! 9263 9258; 9263 9269 9274 9279 9284 9289 1 1 2 2 3 3 4 4 5 

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 T 3 3 4 4 5 

86 9345 9350 9355 9360 9365 9370 9376 9380 9386 9390 1 1 2 2 3 3 4 4 3 
87 9395 9400 j 9405 9410 9415 9420 9425 9430 9435 9440 0 1 1 2 2 3 3 4 4 
88 9445 9450! 9455 9460 9465 9469 9474 9479 9484! 9489 0 1 1 2 2 3 3 4 4 
89 9494 9499 9604 9609 9513 9518 9623 

1 
9528 9533 9538 0 1 1 2 2 3 3 4 4 

90 9542 9547 9552 9557 9562 9566 9571 9576 9681 9586 0 1 1 2 2 3 3 4 4 

91 9590 9595 9600 9605 9609 9014 9619 9624 9628 9633 0 1 1 2 2 3 3 4 4 

92 9638 9643 9647 9662 9657 9661 9666 9671 9676 9680 0 1 1 2 2 3 3 4 4 
93 9686 9689 9694 9699 9703 9708 9713 9717! 9722 9727 0 1 1 2 2 3 3 4 4 
94 9731 9736 9741 9745 9760 9764 9759 9763 9768 9773 0 1 1 2 2 3 3 4 4 

95 9777 9782 9786 9791 9795 9800 9806 9809 9814 9818 0 1 1 2 2 3 3 4 ~4 

86 9823 9827 9832 9836 9841 9845 9860 9854! 9859 9.863 0 1 1 2 o 3 3 4 4 
97 9868 9872 9877 9881 9886 9890 9894 9899 8903 9908 0 1 1 2 2 3 S 4 4 
98 9912 9917 9921 9926 9930 9934 9939 1 9943 9948 0962 0 1 1 2 2 3 3 4 4 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 0 1 1 2 2 3 3 3 4 



ANTILOGS 

0 1 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 

•00 1000 1002 1005 1007 1009 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2 2 

•01 1023 1026 1028 1030 1083 1036 1038 1040 1042 1045 0 0 1 1 1 1 2 2 2 

•02 1047 1050 1052 1054 1057 1059 1062 1064 1067 1069 0 0 1 1 1 1 2 2 2 

•03 1072 1074 1076 1079 1081 1084 1086 1089 1091 1094 0 0 1 1 1 1 2 2 2 

•04 109G 1099 1102 1104 1107 1109 1112 1114 1117 1119 0 1 1 1 1 2 2 2 2 

•05 1122 1125 1127 1130 1132 1135 1138 1140 1143 1146 0 1 1 1 1 2 2 2 2 

•06 1148 1151 1153 1156 1159 1161 1164 1167 1169 1172 0 1 1 1 1 2 2 2 2 

•07 1178 1178 1180 1183 1186 1189 1191 1194 1197 1199 0 1 1 1 1 2 2 2 2 

•08 1202 1205 1208 1211 1213 1216 1219 1222 1225 1227 0 1 1 1 1 2 2 2 3 

•09 J230 1233 1236 1239 1242 1245 1247 1250 1253 1256 0 1 1 1 1 2 2 2 3 

1259 1262 1266 1268 1271 1274 1276 1279 1282 1285 0 1 1 1 1 2 2 2 3 

•11 1288 1291 1291 1297 1300 1303 1306 1309 1312 1815 0 1 1 1 2 2 2 2 3 
•12 1318 1321 i:m 1327 1330 1334 1337 1340 1343 1346 0 1 1 1 2 2 2 2 3 
•13 1349 1352 1355 1358 1361 1305 1368 1371 1374 1377 0 1 1 1 2 2 2 3 3 
•14 1380 138i 1387 1390 1393 1396 1100 1403 1406 1409 0 1 1 1 2 2 2 3 3 

•16 1416 1419 1422 1426 1429 1132 1435 1439 1442 0 1 1 1 2 2 2 3 3 

•16 IffH 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 1 2 2 2 3 3 
•17 1479 1483 1486 1489 1193 1496 1500 1503 1507 1510 0 1 1 1 2 2 2 3 3 
•18 1614 1617 1521 1524 152S 1531 1535 1538 1542 1545 0 1 1 1 2 2 2 3 3 

•19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 1 2 2 3 3 3 

20 1685 1689 1592 1596 1600 1603 1607 1611 1614 1618 0 1 1 1 o’ 2 3 3 3 

•21 1622 1620 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1 2 2 2 3 3 3 
22 1660 1063 1667 1671 1675 1679 1683 1687 1690 1691 0 1 1 2 2 2 3 3 3 

•23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0 1 1 2 2 2 3 3 4 
•24 1738 1742 1746 1750 1754 1758 1763 1766 1770 1774 0 1 1 2 - 2 3 3 4 

•25 IQH 1782 1786 1791 1795 1799 1803 1807 1811 1816 1 1 2 2 2 3 3 4 

•26 1820 1824 1828 1832 1837 1841 1845 I 1849 1854 1858 lo 1 1 2 3 3 3 4 
•27 1862 1866 1871 1875 1879 1884 1888 1892 1897 1901 0 1 1 2 2 3 3 3 4 
•28 1905 1910 1914 1919 1923 1928 1932 1 1936 1941 1945 0 1 1 2 2 3 3 4 4 
•29 1950 1954 1969 1963 1968 1972 1977 1982 1986 1991 0 1 1 2 2 3 3 4 4 

1998 2000 2004 2009 2014 2018 2023 1 2028 2032 2037 1 1 2 3 3 4 4 

2042 2040 2051 2056 2061 2065 2070 2075 2080 2084 0 1 1 2 3 3 4 4 
2089 2094 2099 2104 2109 2113 211^ 2123 2128 2133 0 1 1 2 2 3 3 4 4 
2138 2143 2148 2153 2168 2163 2168 2173 2178 2183 0 1 1 2 2 3 3 4 4 
2188 2193 2198 2203 2208 2213 2218 2223 2228 2234 1 1 2 2 3 3 4 4 5 

•35 2239 2244 2249 2254 2269 2265 2270 2275 2280 2280 1 1 2 3 3 4 4 6 

36 2291 2296 2301 2307 2312 2317 2323 2328 2333 2339 1 1 ~2~ 2 3 3 4 4 5 
37 2344 2350 2355 2360 2366 2371 2377 2382 2388 2393 1 1 2 2 3 3 4 4 5 
38 2399 2404 2^10 2115 2421 2427 2432 2138 2443 2449 1 1 2 2 3 3 4 4 6 
39 2455 2460 2466 2472 2477 2483 2489 2496 2500 2506 1 1 2 2 3 3 4 6 5 

•40 2512 2518 2523 2629 2535 2541 2547 2553 2669 2504 1 1 2 2 3 4 4 5 5 

•41 2570 2576 2682 2588 2694 2600 2606 2612 2618 2624 1 1 2 T 3 4 4 6 5 
•42 2630 2636 2642 2649 2655 2661 2667 2673 2679 2685 1 1 2 2 3 4 4 6 6 
•43 2692 2698 2704 2710 2716 2723 2729 2735 2742 2748 2 1 2 3 3 4 4 5 6 
•44 2754 2761 2767 2773 2780 2786 2793 2799 2805 2812 1 1 2 3 3 4 4 6 6 

m\ Hi 2825 2831 2838 2844 2851 2838 2864 2871 2877 1 1 2 3 3 4 5 5 6 

•46 2884 2891 2897 2904 2911 2917 2924 2981 2938 2944 1 1 2 3 3 4 5 5 6 
•47 2951 2958 2965 2972 2979 2985 2992 2999 3006 3013 1 1 2 3 3 4 5 5 0 

•48 3020 3027 3034 3041 3048 3065 3062 3069 3078 3083 1 1 2 3 4 4 6 6 6 
•49 3090 3097 3105 3112 3119 3126 3133 3141 3148 3155 1 1 2 8 4 4 5 6 6 



ANTILOGS 

0 1 2 8 4 5 6 7 ‘ 8 9 12 8 4 5 6 7 8 "9 

m 8162 8170 3177 3184 8192 8199 3206 3214 3221 3228 1 1 2 8 4 4 6 6 7 

•fii 8236 8243 8261 8258 3266 3273 3281 3289 8296 3304 1 2 2 3 4 6 5 6 7 
•68 3311 3319 3827 3334 3342 3350 3357 3365 3373 3381 1 2 2 3 4 6 5 G 7 

3388 3396 3404 3412 3420 3428 8436 3443 3451 3469 1 2 2 3 4 5 6 6 7 
3467 3476 3483 3491 3499 3508 3616 3624 3632 3640 1 2 2 3 4 6 6 0 7 

•66 3548 8666 3566 3673 3581 8589 3697 3600 3614 3622 1 2 2 3 4 6 6 7 7 

•66 3631 3639 3648 3656 3664 3673 3681 3690 3698 3707 1 2 3 3 4 6 6 7 8 
•67 3715 3724 3733 3741 3760 3758 3767 3776 3784 3793 1 2 3 3 4 5 6 7 8 
•68 3802 3811 3819 3828 3837 3846 3855 3864 3873 3882 1 2 3 4 4 5 6 7 8 
•5» 3890 3899 3908 3917 3926 3936 3945 3954 3963 3972 1 2 3 4 r> 5 6 7 8 

•80 3981 3990 3999 4009 4018 4027 4036 4046 4066 4064 1 2 3 4 5 6 6 7 9 

‘61 4074 4083 n 4102 4111 4121 4130 4140 4150 4169 1 2 3 4 6 6 7 8 9 
•62 4169 4178 4188 4198 4207 4217 4227 4236 4240 4256 1 2 3 4 6 6 7 8 9 
•63 4266 4276 4285 4295 4305 43 J 5 4325 4335 4345 4365 1 2 3 4 5 6 7 8 9 
•64 4366 4376 4385 4395 4406 4416 4426 4436 4446 4457 1 2 3 4 6 e 7 8 9 

•66 4467 4477 4487 4498 4508 4619 4529 4589 4550 4660 1 2 8 4 5 6 7 8 9 

•66 4571 4681 4692 4603 4613 4624 4684 4645 4656 4667 1 2 3 4 5 6 7 9 10 
•67 4677 4688 4699 4710 4721 4732 4742 4753 4764 4775 1 2 3 4 6 7 8 9 10 
*68 4786 4797 4808 4819 4831 4842 4863 4864 4876 4887 1 2 3 4 6 7 8 9 10 
•69 4898 4909 4920 4932 4943 4966 4966 4977 4989 8000 1 2 3 6 6 7 8 9 10 

6012 6023 5035 6047 6058 6070 6082 6098 5106 6117 1 2 4 5 G 7 8 9 11 

5129 6140 6162 6164 6176 6188 5200 6212 62^4 6236 1 2 4 6 6 7 8 10 11 
6248 6260 5272 6284 6297 6309 6321 5333 6346 6358 1 2 4 5 6 7 9 10 11 

K/ki 6370 6383 5396 6408 6420 6433 6445 6458 6470 5483 1 3 4 5 6 8 9 10 11 

E|] 6495 6508 6621 6534 6646 6689 6672 6585 6598 5610 1 3 4 5 6 8 9 10 12 

•76 6628 6686 6649 6662 6076 5689 
1-- 

6702 6715 |6728 
. 

, 6741 1 3 4 5 7 ! 8 9 10 12 

•76 6764 6768 6781 6794 5808 6821 6834 6848 6861 6875 1 3 4 6 7 8 9 11 12 
•77 5888 6902 6916 6929 5943 6967 6970 6984 6998 6012 1 3 4 6 7 8 10 11 12 
*78 [6026 6039 0053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 10 11 13 
•70 6166 6180 6194 6209 6223 0237 6252 6266 6281 6295 1 3 4 6 7 9 10 11 IH 

6310 6324 6339 6363 0368 6388 6397 6412 6427 6442 
1 

1 3 4 6 1 7 9 10 12 IS 

•81 C467 6471 6486 6601 6616 6631 6546 6661 6677 6592 2 3 6 6 ' 8 ' 9 n 12 14 
•88 6607 6622 6637 6683 6668 6683 6699 6714 6730 6746 2 3 5 n 8 9 11 12 14 
•88 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 3 6 6 8 9 11 13 14 
•84 6918 6934 6950 6966 6982 6998 7016 7031 7047 7063 !2 3 6 6 8 10 11 IS 15 

•86 7079 7096 7112 7129 7146 7161 7178 7194 7211 7228 ■ 2 3 5 7 8 10 12 13 15 

•86 7244 7261 7278 7296 7811 7328 7345 7862 7379 7396 2 3 6 7 8 i‘l7 12 13 15 
•87 7413 7430 7447 7464 7482 7499 7516 7634 7561 7668 2 3 6 7 9 ; 10 12 14 16 
•88 7686 7603 7621 7638 7656 7674 7691 7709 7727 7745 2 4 6 7 9 11 12 14 16 

•89 7762 7780 7798 7816 7884 7862 7870 7889 7907 7926 2 4 5 7 9 11 18 14 16 

m g 7962 7980 7998 8017 8036 8064 8072 8091 8110 2 4 6 7 9 11 18 15 17 

•91 8128 8147 8166 8185 8204 8222 8241 8260 8279 8299 2 4 6 K 9 11 13 15 17 

•98 8318 8387 8366 8375 8395 8414 8433 8453 8472 8492 2 4 6 8 10 12 14 15 17 

•93 8511 8531 8651 8570 8590 8610 8630 8650 8670 8690 2 4 6 8 10 12 14 16 18 

•94 8710 8730 8760 8770 8780 8810 8831 8861 8872 8892 2 4 6 8 10 12 14 16 18 

•96 8913 8938 8954 8974 g 9036 9067 9078 9099 2 4 C 8 10 12 16 17 19 

•96 9120 9141 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11 13 15 17 19 

•97 9333 9354 9376 9397 9419 9441 9462 9484 9606 9628 2 4 7 9 11 IS 15 17 20 

•98 9650 9672 9616 9638 9661 9683 9706 9727 9760 2 4 7 9 11 13 16 18 20 

•99 9772 9796 9817 9840 9863 9886 9908 9931 9964 9977 2 5 7 9 11 14 16 38 20 



ANSWERS TO EXAMPLES 

Examples I. Page 13. 

(i) 0*305 foot per second per second. (2) 5*5 seconds; 121 feet. 

(3) 7^77 per second. (4) 3*053 seconds, 

(5) 89‘5 ; 447*5 feet ; 440*4 feet. 

(6) 5-63 seconds after the first projection ; 278 feet. 

(7) 56*7 feet per second. (8) 4*5, 14*6, and 11-4 feet per second. 

(10) 0*84 and 0 58 foot per second per second ; 880 feet. 

(*0 77*3 feel ; 2*9 seconds. 

Examples II. Page 25. 

(1) 4*88 feet per second ; 35® 23' to the horizontal velocity. 

(2) 405 feet per second ; 294 feet per second. 

(3) 53® up-stream ; 2 minutes 16*4 seconds. (4) 10® 6 west of south. 

(5) 19*54 per hour ; 5 hours 7 2 minutes ; 12® 8' west of south. 

(6) 48 minutes ; 9*6 miles ; 12*8 miles. 

(7) 154 2 feet per second per second ; 21®*5 south of west. 

(^) 2'59 seconds. (9) 5*04 J 4*7*^* (10) 16 4 feet per .second. 

(11) 35*2 radians per second ; 2*581 radians per second per second. 

(12) 135 revolutions and 1*5 minutes from full speed. 

Examples III. Page 40. 

(i) 2735 units; 182,333 (2) 1*172 to I. 

(3) 2*8 centimetres per second. (4) 9802 lbs. 

(5) 15*33 Ihs. ; 9*53 units per second in direction of jet; 9*53 lbs, 

(6) 45*3- (7) 4720 lbs. 

(8) ^0*43 tons inclined downwards at 16° 40' to horizontal. 

(9) 2*91 units ; 727*5 lbs. (10) 8750 units ; 8*57 miles per hour. 

Examples IV, Page 46. 

(1) 67*8 lbs. (2) 17*48 lbs. (4) 34*54 feet. 
(5) 23*44 feet per second ; 255,000 lbs. (6) 1005 feet per second, 

(7) 154 lbs. ; 126 lbs. ; 6*9 feet per second per second. 

(8) 11*243 cwt. (9) 9*66 feet; 14*93 l^s. 

(10) 4*69 grammes ; 477 centimetres. 

(11) 6*44 feet per second per second ; 4 lbs. 

tl2) 1*027 lbs. (13) 48*9 lbs. 



Answers to Examples 3<=>9 

(1) 
(2) 
(4) 

(6) 
(8) 

(I) 

(3) 

(5) 

(I) 

(3) 

(5) 

(7) 

(9) 

(u) 

(I) 

(4) 

(7) 

(8) 
(9) 

(lO) 

|I2) 

Examples V. Page 52. 

160 Viorse-power ; 303'36 horse-power ; 

I5’75 lbs. per ton. 

929 i *;253- 
0*347 horse-power. 

350,000 foot-lbs. ; 800,000 foot-lbs. 

16*64 horse-power. 

(3) 22*15 iniles per hour. 

(5) ^47'5 horse-power. 

(7) 60 foot-lbs. 

(9) 1,360,000 foot-lbs. 

Examples VI. Page 57. 

57*1 horse-power. 

6570 lb.-feet. 

5340 inch-lbs.; 2220 inch-lbs. 

(2) 39,390 lb.-inches. 

(4) 609 inch-lbs. 

(6) 12*8 horse-power. 

Examples VII. Page 66. 

12,420,000 foot-lbs. ; 4,140,000 lbs. 

37,740 inch-lbs. ; 35,940 inch-lbs. 

7*02 horse-power. 

19*6 horse-power. 

10*5 feet per second ; 467 lbs. 

2886 foot-lbs. 

(2) 27*8 feet per second. 

(4) 25*5 horse-power, 

(6) 7*25 horse-power. 

(8) 8*47 seconds. 

(10) 15*3 seconds. 

(12) 500,000 foot-lbs. 

Examples VIII. Page 78. 

68*5 (2) 1185 miles per hour. (3) 2672 feet. 

4*25 inches. (5) 3052 feet. (6) 20 miles per hour 

47° to horizontal. 

52°*5 ; I *64 times the weight of the stone. 

1*5 per cent, increase. 

66*4; 72*7; 59*3 revolutions per minute. (ll) 6®*I. 

38*33 ; 35*68 feet per second, 7*79 ; 6*28 lbs. 

(0 

(2) 
(4) 

(7) 

(8) 

(I) 

(3) 
(5) 

Examples IX. Page 89. 

0'855, 1-56, I-Si feet per second ; 8 05, ygS, —4'4 feet per second 

per second. 

I inch. (3) 1654. 827. >474 lbs. 
153-3. (6) 0*342 second. 

1*103 second ; 67*3 feet per second per second. 

31*23. (9) I to 10073. 

Examples X. 

14*65 lbs. ; 17*9 lbs. 

9*6 tons tension ; 55*6 tons tension. 

2250 lbs.; 2890 lbs. 

Page 99. 

(2) 3 lbs. ; 13 lbs. 

(4) 41° *7 south of west; 720 lb& 

(6) 220 lbs. ; 58*5 lbs. 



310 Mechanics for Engineers 

Examples XI. Page ii2. 

(i) 0*154; S°‘8 (2) 2*97 Ihs. ; 8°*5 to horizontal. (3) 14*51 lb& 

(4) 0*6 times the weight of log ; 36°*8 to horizontal. (5) io®'4 

(6) 0*3066 horse-power. (7) 179 horse-power. 

(8) 3*84 horse-power. 
(9) 3‘4 feet per second per second ; 3*57 lbs. 

^10) 4*5 tons; 31*9 seconds. (il) 3820165. 

Examples XII. Page 124. 

(i) 261 lbs. (2) 16*97 lbs. ; 4*12 lbs. 

(3) Eight, 5*242 tons; left, 5*008 tons. 

(4) Left, 10 tons ; right, 3 tons ; end, 2*824 tons. 

(5) 1*039 inches. (6) 5*737 feet from end. 

Examples XIII. Page 138. 

(1) Tension, 21*68 lbs. ; pressure, 33*4 lbs.; I9°’7 to vertical 

(2) 0-1236. (3) 36°. 

(4) 15*3 at hinge ; 8*25 lbs. at free end. 

(5) 3950 lbs. at A ; 2954 lbs. at C. 

(6) 11*2 lbs. cutting AI) 2*i inches from A, inclined 19^*3 to DA. 

(7) 4*3 tons ; 3*46 tons ; 46*7® to horizontal. 

(8) 8*2 tons compression ; 4*39 tons tension ; 4 tons tension. 

(9) 8*78 tons tension ; 25*6 tons compression ; 21*22 tons tension. 

Examples XTV. Page 150. 

(i) I'27 feet from middle, 

(3) 43 inches. 

(5) 4*18 inches ; 4*08 inches. 

(7) 2*98 inches. 

(9) 975 inches. (10) 

(ii) 11*91 inches. (12) 

(13) 4 feet 5*1 inches. (14) 

(2) 2*08 inches, 

(4) I'b33 feet ; 1*225 f^'^b 
(6) 10*1 inches ; 5*5 Jbs. 

(8) 27*2 inches. 

1293 lb,-feet; 103*5 lbs. per square fool 

4*82 inches. 

0*1;? lb. (15) 0*197 lb. ; 0*384 lb. 

Examples XV. Page 165. 

(i) 19*48 inches ,* 16*98 inches. 

(3) 6*08 inches. 

(5) 2*52 inches from outside of flange. 

(7) 0*202 inch from centre. 

(9) 5*3b inches. 

(2) 12*16 inches. 

(4) 15*4 inches. 

(6) 4*76 inches. 

(8) 16*6 inches. 

(JO) 33’99 inches. 



A nswers to Examples 

Examples XVI. Page i86. 

(i) i6 and 8 tons. (2) 25 and 16 tons. 

(3) I^ft, i6'5 tons; right, 33*4 tons. (4) 53° 10'. 

(5) i6*43 inches; 4*41 inches. (6) 3-53 inches. 

(7) 3-67 inches. (8) 8000 foot-lbs. 

(9) 1188 foot-lbs. (10) 140,000 ; 74,4CX)fooMbs. 

(ii) 75,600 foot“ll)s. (12) 2514 foot-lbs. 

(13) 110*3 lbs. (14) 5'11 lbs. 

(15) 37*6 square inches; 15*7 cubic inches. (16) 7*85 cubic inches. 

(17) 4 feet 3*9 inches. 

Examples XVII. Page 203. 

(i) 312 (inches^. (2) 405 (inches)*; 4*29 inches. 

(3) 195 (inches)* ; 2*98 inches. (4) 290 (inches)*. 

(5) 5*523 inches. (6) 0*887 gravitational units, 

(8) 16*1 inches ; 35*15 gravitational units. 

Examples XVIII. Page 220. 

(l) 3647 gravitational units. (2) 13,215 gravitational units, 

(3) 10 minutes 46 seconds ; 323. (4) 17*48 lbs. 

(5) 350 lb.-feet. (6) 2*134 gravitational units ; 6*83 inches 

(7) 141*3. (8) 7*71 inches. 

(9) 22 feet per second ; 31*06 feel per second. 

(lo) I4’85 feet per second ; 16*94 pcr second. 

(il) 3*314 feet; 3819 gravitational units. 

(13) 0*0274 units. 

(*5) 117*5 foot-tons. 

(17) 23 sin a feet per second per second. 

(12) S3'7- 
(14) 125-5. 

(16) 167 feet per second. 

Examples XIX. Page 236. 

(1) 6*47 lbs. ; o*oi6 inch ; I02°*6. 

(2) 7*8 lbs. ; 0 013 inch ; 54°. (3) I 

(4) 21*6 lbs. ; 134® measured clockwise. 

(5) 30*4» 38'IS* 34*85 tons-feet. 

(6) 38*I5» 34 85, 29*6, 25*95 tons-feet 

(7) 1*65 tons; 2*35 tons; 3*65 tons. 

(8) 25 tons-feet; nil; 18*7$ tons-feet; 2*5 tons. 

(3) I7’7 right? 11 3 left. 

(4) 48® ; 134*5 lbs. 

18) 12 lbs. 

Examples XX. Page 250. 

(6) 4*06 feet. 

(9) 53 feet. 

(7) 3*24 inches. 
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Examples XXL Page 274. 

(i) 2611 lb.; 3714 ft. (2) 2353 lb.; 3 ft. 4 in. 

(3) 13/3 through centre, inclined tan“^(2/3) to horizontal. 

(4) 0*931 a}lw through centre of axis, inclined tan'"'(7r/2) to horizontal 

(5) 2-332 a^lw through centre of axis, inclined 50® to horizontal. 

(6) 0-6; 778. (7) i-oS in. (8) 0-593. (9) 2° 45^ 

(10) a^jh^ greater than (i — ^''S)/'^S. 



INDEX 

{The numbers 

A 

Acceleration, 3 

Adhesion, 107 

Alternating vectors, 81 

Amplitude, 79 
Angular acceleration, 23 

—— momentum, 207 

-motion, 23 

-velocity, 23 

Archimedes, principle of, 270 

Atwood’s machine, 44 

Average force (space), 51 

-force (time), 35 

B 

Barometer, 255, 256 

Bending moment, 231 

-diagram, 233 

Bicycle, centre of gravity, 184 

Bows’ notation, 223 

Brakes, 107 

Buoyancy, 267 

C 

Centre of gravity, 141-165 

-of mass, 141 

-of parallel forces, 140 

-of pressure, 258 

Centrifugal force, 69, 181 

Centripetal force, 69 

refer to pages') 

e.g.s. units, 30 

Chains, loaded, 243 

Circular arc, 160 

-motion, 68 

-sector and segment, 161 

Coefficient of adhesion, 107 

-of friction, 100 

Compound pendulum, 212 

Conditions of equilibrium, 97, 128, 
226 

Conical pendulum, 72 

Couple, 125 

Curve, motion on, 70, 71 

D 

Density, 27, 266 

Derived units, 253 

Displacement curve, 2 

-, relative, 16 

Distributed load, 168, 247 

E 

Efficiency of machines, no 

-_ of screw, 108 

Energy, 57 

-in harmonic motion, 84 

-, kinetic, 58 

Equilibrant, 92 

Equilibrium, conditions of, 97, 128, 
226 

i-, stability of, 17a 
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F 

First law of motion, 27 

Flotation, 267 

Fluid pressure, 253 

Force, 27, 29 

Forces, coplanar, 127 

——, parallel, 114 

-, resolution and composition 
of, 91 

-, triangle and polygon of, 33, 

91 

Frames, 236 

Friction, 99 

-, angle of, loi 

-, coefficient of, 100 

-, laws of, 100 

-of machines, 110 

-of screw, 108 

-, sliding, 100 

-, work spent in, 107 

Fundamental units, 253 

Funicular polygon, 224, 228, 233, 

243 

G 

Gravitational units, 30, 253 

Gravity, acceleration of, 6 

Guldinus, 182 

H 

Harmonic motion, 79 

Hemisphere, 162, 172 

Horse-power, 51 

I 

Impulse, 33 

Impulsive force, 36 

Inclined plane, 102 

-, smooth, 22 

Indicator diagram, 50 

Inertia, 27 

-, moment of, 188 

-, --(areas), 194 

Instantaneous centre, 276 

K 

Kinematics, Chapter I. 

Kinetic energy, 58 

-Qf rotation, 204 

—-. of rolling body, 2 

L 

Kami’s theorem, 93 

Laws of motion, Chapter II. 

Levers, 122 

Lifting, work in, 176 

Limiting friction, 100 

Link, motion of, 276 

Load, distributed, 168 

Locomotive, centre of gravity, 186 

M 

Machines, no 

Mass, 27 

Mechanical advantages of screw, 
109 

Mercury barometer, 256 

Metacentre, 271 

Method of sections, 133 

Moment, 53, 119-122 

-- of an area, 157 

-of inertia, 188 

-of areas, 194 

-of momentum, 207 

Momentum, 28 

Motion, first law of, 27 

-of connected weights, 43 

-, second law of, 28 

-, simple harmonic, 79 

-, third law of, 41 

Motor-car, centre of gravity, 186 
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N 

Neutral equilibrium, 172, 174 
Newton’s laws of motion, 27 

P 

Pappus, 182 
Parallel axes, moment of inertia 

about, 191, 192 
-forces, 114 
Pendulum, compound, 212 
-, conical, 72 
-, simple, 85 
-, simple equivalent, 86, 213 
Plane-moments, 155 
Polygon of forces, 33, 91 
-, funicular or link, 224 
-of velocities, 17 
Pound, unit of force, 29, 253 
Poundal, 29 
Power, 51 
Pressure, centre of, 258 
-, fluid, 253 
--on curved surfaces, 262 
-on submerged surfaces, 256 
Principle of Archimedes, 270 
-of moments, 122 
-of work, 59 

R 

Radius of gyration, 189 
Railway curve, 71 
Reduction of forces, 127 
Relative displacement, 16 
-velocity, 20 

Resolution of accelerations, 22 
-of forces, 91 
-of velocity, 18 
Rolling body, 217 
Roof, 242 

Rotation about axis, 179, 204, 20 

S 

Screw friction, 108 
Second law of motion, 28 
Sections, method of, 133 
Sector of circle, 161 
-of sphere, 162 
Segment of circle, r6i 
Shearing force, 231 
Shearing-force diagram, 235 
Simple equivalent pendulum, 86, 

213 
-harmonic motion, 79 
-, torsional, 214 
-pendulum, 85 
Smooth body, 129 
Space-average force, 51 
-curve, 2 
-diagram, 223 
Specific gravity, 266 
Spherical shell, i6i 
Spring, vibrating, 83 
Stability of floating body, 271 
Stable equilibrium, 172 
Statics, 91 
Stress diagram, 239 
-, tensile and compressive, 240 
String, loaded, 243 
-polygon, 242 
Strut, 240 

T 

Theorem of Guldinas or Pappus, 
182 

Third law of motion, 41 
Tie, 240 

Time-average force, 35, 36 
Torque, 54 
Torsional oscillation, 214 
Triangle of forces, 33, 91 
-of velocities, 17 
Twdsting moment, 54 
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U 

Uniform circular motion, 68 

Units, 253 

Unstable equilibrium, 172 

V 

Vector diagram, 223 

Vectors, 15 

Velocity, i 

-, angular, 23 

-, component, 18 

-curves, 7 

Velocity, polygon of, 17 

-, relative, 20 

Vertical circle, motion in, 73 

-motion, 6 

Vibration of spring, 83 

W 

Warren girder, 133, 241 

Weight, 28 

Work, 48 

-in lifting, 176 

-of a torque, 54 

-, principle of, 59 

THE END. 








