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PREFACE 

The genius of Hertz has been demonstrated in several far-reaching 
results. Beginning with the announcement of his first experiments in 
1887, wide acclaim has been given to his proof of the physical reality 
of electromagnetic waves predicted by Maxwell’s mathematical reason¬ 
ing twenty-eight years earlier. But only in the last decade has great 
practical importance been attached to the region of the spectrum in 
which he worked. This region, embracing hyper frequencies or micro 
waves, is rapidly being opened for engineering applications and vast 
extensions of radio communication channels. 

The development of present-day hyper-frequency technique in this 
coimtry may be considered to date from the original and independent 
work carried out by W. L. Barrow, L. J. Chu, and others at the Massa¬ 
chusetts Institute of Technology and by G. C. Southworth, S. A. 
Schelkunoff, and others at the Bell Telephone Laboratories. Many 
of the extensions and applications which followed this work were 
carried out by L. Brillouin, E. U. Condon, W. W. Hansen, R. H. and 
S. F. Varian, D. L. Webster, and other leading scientists and engineers 
in this country and abroad. 

This book is intended for use by senior students of electrical 
engineering, and by men with equivalent training who have had at 
least one course in radio engineering. Mathematical complexity has 
been avoided, and wherever possible each problem has been approached 
from fundamental physical principles. Nevertheless, a considerable 
amount of mathematics is necessary to permit logical development of 
various phases presented in the book. It may be noted that certain 
of the mathematical sequences are rendered formidable in appearance 
by the inclusion of intermediate algebraic steps which ate omitted in 
many publications. The inclusion of these additional equations should 
fadlitate a complete understanding of the development. 

Although no definitely established frequency limits are associated 
with the terms hyper frequency and ultrahigh frequency as applied to 
radio commiinication systems, frequencies above about 30 megacycles 
per second are generally referred to as ultrahigh frequencies. Originally 
no upper limit was associated with this term. The term microwaves is 
sometimes used to identify the band of frequencies beyond those known 
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as ultrahigh. These wavelengths cover the range from approximately 
3 centimeters to 30 centimeters. We may, therefore, consider the 
ultrahigh-frequency band to cover frequencies lying between 30 and 
1000 megacycles per second, and the hyper-frequency band to embrace 
those of 1000 to 10,000 megacycles per second. 

In treating problems arising in hyper- and ultrahigh-frequency engi¬ 
neering, the ordinary low-frequency circuit theory is inadequate, and 
the more general electromagnetic theory is required. Since the usual 
electrical curriculum does not emphasize general electromagnetic field 
theory, the first three chapters of this book serve to review the subject. 
They follow the standard plan employed in most textbooks and treatises. 

Chapter 1 contains a review of electricity and magnetism. Chapter 2 
presents a formulation of MaxwelFs equations based on the works of 
Ampere, Faraday, and Maxwell. The wave equations arc developed 
in Chapter 3, and reflection and refraction have been treated in Chap¬ 
ter 4. With the knowledge of the electromagnetic field ecjuations and 
the laws of reflection and refraction at boundaries the student is pre¬ 
pared to study the propagation of waves in various t3q>es of enclosures 
and guides as explained in the subsequent chapters. 

The authors are indebted to Lieutenant Commander S. P. Sashoff, 
Di. N. Chako, and Dr. J. F. Lee for reading sections of the manuscript 
and for making valuable suggestions. They make grateful acknowledg¬ 
ment to the editors of the Bell System Technical Journal, Electronics, 
Electrical Communication, Electrical Engineering, Journal of Applied 
Physics, the Proceedings of the Institute of Radio Engineers, and Radio, 
as well as to the McGraw-Hill Publishing Company, for permission to 
reproduce material which originally appeared in their publications. 
They wish to express sincere gratitude to the many graduate students 
of the Illinois Institute of Technology, especially to the Messrs. J. C. 
Aberer, R. M. Soria, and Ensign C. E. Durkee, who worked tirel^sly 
and painstakingly with the mimeographed notes detecting errors and 
obscure points. 

Robert I. Sarbacher 
William A. Edson 
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COPTER 1 

ELECTROSTATICS AND MAGNETOSTATICS 

1*1 Introduction 

The equations of electric circuit th ory in then present form are es- 
'sentially generalizations of the original work of Ohm, Faraday, Henry, 
Lenz, Kirchhoff, and others. Maxwell and liorentz, in developing the 
electromagnetic theory, accumulated in one set of equations the work 
of most of the scientists who preceded them. The mathematical 
deductioas which have resulted from these equations are of the greatest 
importance in hyper and ultra-high frequency engineering 

Prior to the concise formulation of the electromagnetic theory by 
Maxwell and Lorentz, the seat of electromagnetic phenomena was 
taken to be within the conductor. Phenomena taking place outside 
the conductor were only vaguely understood. The conductor was 
considered to carry the electromagnetic energy much as a pipe carries 
water, and it was, therefore, the prmcipal consideration. Even today 
many students and engineers hold to this point of view. On such a 
basis it is obviously difficult to account for the propagation of electro¬ 
magnetic energy through free space without the existence of^a conductor 
of some type. Many students seem to feel that the propagation of 
electromagnetic energy, as in radio, is something quite apart from the 
normal theory involving a conducting medium. 

It is the purpose of the first three chapters to review the basic laws 
of electric and magnetic phenomena and to show how they are inter¬ 
related by the field equations of Maxwell, which we shall formulate. 

1*2 t)efiiiition of the Unit of Electric Force and the Unit of Magnetic 
Force 

The fundamental physical fact that electric charges exert forces on 
one another and that magnetic poles exert forces on one another is 
formulated into a simple law. This law was suggested, in respect to 
charge, by Priestley, and, in respect to magnetic poles, by Mitchell. 
ICavendish was probably the first man to give an accurate experimental 
broof of this relation. Coulomb, however, was the first to publish his 
^ults, and the law is now known by his name. 

1 
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COULOMB’S LAW 

Electrostatic Force 

Coulomb law for the force between 
two point electric charges is given by the 
formula 

Fe 
47r er^ 

[M] 

This states that the force between two 
point charges q and g* is directly propor¬ 
tional to the product of the charges and 
is inversely proportional to the square of 
the distance r between them and to the 
factor e to be defined later. 

Magnetostatic Force 

Coulomb’s law for the force between 
two point magnetic poles is given by the 
formula 

Fm 
1 mm^ 

4ir fjtr^ 
[1*2] 

This states that the force between two 
point poles m and m' is directly propor¬ 
tional to the product of the pole strengths 
and is inversely proportional to the 
square of the distance r between them 
and to the factor to be defined later. 

Magnetic pole strength is sometimes referred to as magnetic charge. 
The north pole of the magnet is called the positive pole or positive 
magnetic charge; and the south pole, the negative pole or negative 
magnetic charge. In either the electrostatic or magnetostatic force 
equations 1-1 and 1*2, if the charges are of the same sign, the force is 
positive; and if they are of opposite sign, the force is negative. 

rs The Constants 

The constant e in equation 1*1 is defined by the relation 

e = KeSo [1-3] 

where «« is a dimensionless coefficient depending upon the material, 
defined as unity for a vacuum, and sq has a value depending upon 
the system of units used. In the cgs electrostatic system, sq is defined 
as l/47r and is tacitly assumed to be dimensionless. In the absolute 
rationalized* practical system discussed later, the value is given by 

^ ~ ^ ^ farad/meter [1-4] 
OOW 

Equation !•! is expressed in coulombs of charge, meters of distance, and 
newtonsf of force. The coulomb, defined by this relation, is chosm 
as the basic electrical unit in conjimction with the mechanical units of 
length in meters, mass in kilograms, and time in seconds. 

* The term rationalized refers to a system in which the multiplier 47r is trans¬ 
ferred into the force equation so that it does not appear in other equations. The 
desirability of this arrangement will become clear as we proceed. 

t One newton of force will accelerate 1 kilogram at the rate of 1 metor per second 
per second. One newton » IQ^ dynes. 
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Faraday gave the name specific inductive capacity to the multiplier 
Ke. More commonly the term dielectric constant is used for this ssmi- 
bol. The value of Ke is defined as unity in vacuum; it is greater 
than unity for all material media. Two charges exert the maximum 
possible mutual force when they exist in vacuum. K they exist in any 
other homogeneous medium the force is reduced by the factor x*. This 
relation is exact only if the medixim is of infinite extent and maybe 
quite inaccurate if either charged body is not in intimate contact with 
the medium. Thus a flat slab <jf dielectric material inserted between 
two charged bodies in vacuum actually increases the force between 
them. 

The dielectric constant depends upon the material and to some 
extent upon temperature, pressure, frequency, etc. At high frequencies 
a time lag is sometimes observed which is associated with a loss of power 
in the dielectric. This may be expressed by assigning a complex value 
(real and imaginary parts) to the dielectric constant. In general, the 
dielectric constant is a constant in the sense that it is independent of 
the magnitude or arrangement of charges. 

TABLE M 

Dielectric Constants 

Solids 

Substance Ke Substance Ke 

Bakelite 3-4 Wood, red beech, 
II fibers Glass &-10 4.8-2.5 

Mica, ruby 4.2-4.6 Wood, red beech. 
Paper 2-2.5 JL fibers 7.7-3.6 
Paraffin 2.2 Wood, oak. 
Quartz 4.5 11 fibers 4.2-2.6 
Steatite 5.5-6.5 Wood, oak, 

X fibers Sulfur 4.0 6.8-3,6 

Liquids Gases 

Alcohol, ethyl 26 Air 1.000588 
Alcohol, methyl 31 Carbon dioxide 1.000988 
Petroleum 2.2 Hydrogen 1.000264 
Water 81 

The dielectric constant of a material is usually determined by meas¬ 
urement of the capacitance of a parallel-plate condenser in which the 
material appears as the dielectric. Table 1*1 gives the dielectric con¬ 
stants of a number of familiar substances. Most of the data presented 
are contained in the Smi&isoman Physical Tables. 
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1*4 The Constant |L 
The constant /x in equationl-2 is defined by the relation 

At = MmAK) [1*5] 

where is a dimensionless coefficient depending upon the material, 
and Ak) has a value depending upon the system of units used. In the 
cgs electromagnetic system /xo is defined as l/47r and is tacitly assumed 
to be dimensionless. In the rationalized practical system the value 
is given by 

/xo = 47r X 10“"^ = 1.257 X 10”"® henry per meter [1-6] 

The term permeability is universally used for the dimensionless 
coefficient Aim- For vacuum the nximerical value of Aim, like is de¬ 
fined as unity. Certain materials have a permeability slightly less 
than unity and are called diamagnetic. Other materials have a perme¬ 
ability slightly greater than unity and are called paramagnetic. A 
few materials having permeabilities much greater than unity are called 
ferromagnetic. 

The remarks made in regard to geometry under the dielectric con¬ 
stant apply directly to the present case. However, no liquids have a 
permeability significantly different from unity. Accordingly, with 
liquids, the experimental significance of Aim is less than that of /ce- 

TABLE 1*2 

PeBME ABILITIES 

Ferromagnetic Materials 
Substance iim Maximum , fim at Small Magnetization 

Cobalt 60 60 
Nickel 50 50 
Cast iron 90 60 
Silicon iron 7000 3600 
Transformer iron 5600 3000 
Very pure iron 8000 4000 
Machine steel 450 300 

Paramagnetic Materials Diamagnetic MaterioXs 

Aluminum 1,00000066 Bismuth 0.99999860 
Beryllium 1.00000079 Paraffin 0 99999942 
MnS04 1.000100 Silver 0 99999981 
NiCl2 1.000040 Wood 0.99999950 

In diamagnetic and paramagnetic materials the permeability is a 
function of temperature, pressure, and frequency but not of the mag¬ 
netic intensity. In ferromagnetic materials the permeability varies 
markedly with the intensity of the magnetization, as well as with the 
above. At high frequencies the permeability may assume a complex 
value. Table 1*2 shows the permeability of a number of materials. 
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1*5 The Unit of Electric Charge and the Unit of Magnetic Charge 

The relations 1-1 and 1*2 contain the definitions of the fundamental 
electric charge and the fundamental magnetic charge, respectively. 

Definition of the Unit Definition of the Unit 
Electric Charge Magnetic Charge 

The unit of electric charge may be The unit of magnetic charge may be 
defined as that charge which repels an defined as that charge which repels an 
equal charge placed 1 meter from it, in equal charge placed 1 meter from it, m 
vacuum, with a force of 9 X 10® newtons, vacuum, with a force of lO^/lfiir* new- 
It is called the coulomb. tons. It is called the weber. 

In this and the previous section we have spoken of the magnetic pole 
or magnetic charge as if the positive pole or charge could be segregated 
from the negative pole. With electric charges this is quite easily 
done. Only recently, however, have free magnetic charges been iso¬ 
lated.’*' Indeed at this time the existence of the free magnetic charge 
may hardly be considered a proved fact. In the past it was customary 
to approximate the free magnetic pole by the use of a very long slender 
magnet. Thus a unit magnetic pole or charge was considered to be 
amorth pole of a long thin magnet, whose south pole was so far removed 
from it that its influence on the experiment was negligible. 

1 -6 The Electrostatic and Magnetostatic Field 

The term fiM is used to identify a region m which electric or mag¬ 
netic forces are acting. 

The Electrostatic Field 

Regions in which electric forces are 
acting are called electric fields. We may 
investigate an electric field by placing a 
unit electric charge in various positions 
in the field and observing the force acting 
upon it. 

In either case it is necessary that the original charges creating the 
field be fixed in position so that they will not be disturbed by the ex¬ 
ploring charge, and that the force observed be multiplied by the ratio 
of unit to actual charge in order to obtain the correct result. This 
result is usually expressed in the ratio form of force per unit charge. 

1*7 The Electric Intensity E and the Magnetic Intensity H 

The electric and magnetic fields of force are expressed quantitatively 
in terms of the electric and magnetic intensities E and H. These quan¬ 
tities are defined as follows: 

T. Ehieuhaft, Fhotophoresis and Its Interpretation by Electric and Mag* 
netic Ions/’ J. Franklin Inst, 288, 285, 1942. 

The Magnetostatic Field 

Regions in which magnetic forces are 
acting are called magnetic fields. We 
may investigate a magnetic field by 
placing a unit magnetic pole in various 
positions in the field and observing the 
force acting upon it. 
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Electric Intensity £ 

The force experienced by a small posi¬ 
tive test charge when held at rest in any 
position or point in an electrostatic field 
divided by the charge is called the elec¬ 
tric intensity E at that point. 

Magnetic Intensity H 

The force experienced by a small north 
magnetic pole when held at rest in any 
position or point in a magnetostatic field 
divided by the pole strength is called the 
magnetic intensity H at that point. 

Both quantities E and H are vectors, which have at every point in 
the field both magnitude and direction. 

If an electric charge is placed in an 
electric field E, the force which it experi¬ 
ences is 

Fe - s'E [1-7] 

If a magnetic charge is placed in a 
magnetic field H, the force which it ex¬ 
periences is 

F„ = m'H [1-8] 

If g' is positive, F, has the same direction 
as E. The equation for the electric in¬ 
tensity due to any electric charge q may 
be obtained by equating 11 and 1‘7 and 
making g' unity. This gives 

E 
Q 

4ir6f* 
11-9] 

which is in the direction of the radius 
vector r joining the two points. In the 
rationalized practical system of units the 
electric intensity is expressed in volts 
per meter or newtons per coulomb. 

If is positive, has the same direc¬ 
tion as H. The equation for the mag¬ 
netic intensity due to any magnetic 
charge m may be obtained by equating 
1*2 and 1*8 and making m' unity. This 
gives 

H = 

m 

4irjur* 
[MO] 

which is in the direction of the radius 
vector r joining the two points. In the 
rationalized practical system of units the 
magnetic intensity is expressed in am¬ 
pere-turns per meter or newtons per 
weber. ♦ 

1*8 Electrostatic and Magnetostatic Potential 

The field strength or intensity may also be defined by means of the 
concept of potential. This concept serves to clarify and simplify 
many difficult problems. It is applied quite generally to the study 
of field problems, such as those arising in thermodynamics, as well as 
to those pertaining to electricity. 

In a thermal problem it is customary to define the conditions exist- 
ing throughout the system in terms of temperature, a scalar quantity 
or function dependent upon position. The flow of heat is then ex¬ 
pressed in terms of the variation of the temperature, the flow being 
greatest in regions where the temperature changes most rapidly. The 
conditions existing in an electrical system may similarly be defined in 
terms of a scalar function called potential. Here the field is strongest 
in regions where the potential changes most rapidly. Potential may 
thus be defined as a quantity whose space rate of change in any direc¬ 
tion is the strength of the field in that direction. 
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Electrostatic Potential 

If electrostatic potential is designated 

V, then from the above definition 

-dV 
B cose (Ml] 

dl 

where B is the angle between the direc¬ 
tion of £ and the path element dl. Hence 

E cos 0 is the strength of the field in the 

direction of dl. The negative sign indi¬ 

cates that in electrostatics the force be¬ 
tween like charges is a repulsion and 

diminishes as the distance between them 

increases. Equation 1*11 may also be 

written 

dV = —E cos B dl [1’13] 

Magnetostatic Potential 

If magnetostatic potential is desig¬ 

nated U, then from the above definition 

-dU 
—— ^HcosB [M21 

dt 

where B is the angle between the direc¬ 
tion of H and the path element dl. Hence 

H cos B is the strength of the field in the 

direction of dl. The negative sign indi¬ 

cates that in magnetostatics the force 
between like poles is a repulsion and 

diminishes as the distance between them 
increases. Equation 1-12 may also be 
written 

dU = -H cos B dl (M41 

The products Eq cos B dl or Hm cos 6 dl represent work since Eq cos 6 or 
Hm cos 0 is a force, and dl is a distance in the direction of the force. If 
a small electric charge is carried from one point to another in an electro- 

a 

static field, work is done. This work will be represented by the inte¬ 
gration of equation 1-13. Consider, for example, the work done in 
carrjong a unit charge from point h to point o, situated in the radial 
electrostatic field about the charge g. Fig. M. Then, from equations 
143 and 1*9 

jdF = — r E COB 6 dl — f ^ ^ 
b Jb 47rer 

but COB B dl — dr, and hence 

* Integrals of this kind are called line integrals. 

[145]* 
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Thus 

F„ - 76 = 
g 

47rsri 47rer2 47re\ri r2/ 
[1-17] 

If we had carried the unit charge along some other path than that 
indicated, the result would have been the same. If this were not so 
there would be a balance of work done in carrying the charge from a 
to b and then along a different path, back to a. Continuous repeti¬ 
tion of this process would constitute a power output which in a static 
system constitutes a violation of the principle of conservation of energy. 
If the work were dependent upon the path chosen, two or more poten¬ 
tials would necessarily be associated with each point. Since the work 
is independent of the path we find that for all electrostatic or magneto¬ 
static systems there is only one value of potential at each point, and 
hence it is required that 

and 

i 

E coaddl = 0 

H cos 6 dl = 0 

[1-18] 

[1.19] 

where the symbols ^ refer to the integration around any closed path. 

It will be shown later that this is true only in static cases but is not true 
in general. A system in which the potential is single-valued is called 
a conservative system, and the field or gradient associated is referred to 
as irrotational. 

We see from equation 1 • 17 that potential is measured by its differences. 
If we can carry a charge between two points in a field without the ex¬ 
penditure of work, these points are at the same potential. Further¬ 
more, equation 1-17 shows that all points at an infinite distance from a 
given chaige are at the same potential, and we may arbitrarily set the 
potential at infinity equal to zero. Thus, by putting the point b at 
infinity, r2 = « and 

7a = 
g 

4mri 
[1.20] 

we assign an absolute potential to the point a. Hence we may define 
the potential at a point in the electric field as follows: 
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Electrostatic Potential 
at a Point 

The electric potential V at a point 
in an electrostatic system may be de¬ 
fined as the work done in bringing a unit 
(positive) charge from infinity up to the 
point and is equal to 

Magnetostatic Potential 
at a Point 

The magnetic potential 17 at a point 
in a magnetostatic system may be de¬ 
fined as the work done in bringing a unit 
magnetic (north) pole from infinity up 
to the point and is equal to 

V = g 
4irer 

[1*21] [1-221 

where g represents the charge producing 
the field and r is the radius vector from g 
to the point. The electrostatic potential 
is measured in joules per unit charge in 
the practical system. 

where m represents the pole producing 
the field and r is the radius vector from 
m to the point. The magnetostatic 
potential is measured in joules per unit 
charge in the practical system. 

The potential is a scalar quantity or function and is especially valuable 
because the effect of many charges or poles is accounted for by a simple 
scalar addition or integration process. Vector addition or integration 
as required by field strength calculation is less simple. 

1 *9 Vectors and Scalars 

Measurable quantities occurring in mathematical physics may be 
divided into two broad groups called vectors and scalars. Vectors 
represent directed magnitudes in 
that they require for their repre¬ 
sentation both direction and mag¬ 
nitude. Forces and electric and 
magnetic intensities are among 
these, as are velocity and accelera¬ 
tion. Scalars belong to that group 
of quantities which can be com¬ 
pletely specified by their magnitude 
alone. Charge, mass, volume, tem¬ 
perature, and electrostatic or mag¬ 
netostatic potential are examples 
of scalars. 

When dealing with vectors it is common practice to decompose them 
into components along some set of arbitrarily chosen coordinate axes. 
For example, the vector components of H in the direction of the x, y, z 
axes, Fig. 1-2, will be designated H*, Hy, and The scalar magni¬ 
tude of H will be designated H, with the components Hx, Hy^ and 
The usual unit vectors along the x, y, and z axes will be designated i, j, 

Resolution of a vector into its 
components. 
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and k, respectively. Thus 

H = H, + + H, = + kff. [1-23] 

where the plus sign refers to the vector sum. See Fig. 1-2. The magni¬ 
tude of H is given by 

H = VhI + 

When a vector has been broken down into its components, analytical 
transformations may conveniently be applied. After these analytical 
transformations have been performed, the effect on the vector may be 
observed by studying the effect produced on its components. This 
situation is sometimes rather awkward, and a method of analysis, known 
as vector analysis, results in extensive simplification. 

1 -10 Electrostatic and Magnetostatic Potential Gradient 

Electrostatic Potential 
Gradient 

In equation Ml we have seen that 

dV 
Eccme^^— [Ml] 

al 

The various components of E along the 
coordinate axes are 

- 

dX 

dz 

[1-24] 

Since E *» lEx 4“ 4- then 

E 
dV dV d 
i^ + j^ + k- dx by dz 

[1*26] 

or E * — grad V (joules per unit charge 
per meter). 

Magnetostatic Potential 
Gradient 

In equation M2 we have seen that 

[M2] H cos 0 ~-—• 
dl 

The various components of H along the 
coordinate axes are 

dx 

dU 

dz 

[1*26] 

Since H = iff* + IHy 4- k^z, then 

/ dU dU dV\ 
H= ~(i—4-J—4-k—) [1-27] 

\ dx ^ dy dzj ^ 

or H = — grad V (joules per unit pole 
per meter). 

Grad 7 (pronounced as it is spelled) is defined as 
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and is called the potential gradient at a given point. The symbol 
grad V is sometimes written 77, pronounced del F or nabla V, where 

V = 
dz 

is a vector differential operator. The potential gradient is a vector, 
having components defined by 

LBx = - grad 7^; \ 

jEy = - grad Vy > 

k£, - -gradyj 

[1.29] 

iff~ grad ' 

jffj, = - grad Uy ^ 

kff z = — grad Uz > 

[1.30] 

and is directed opposite to the electric intensity E as indicated by the 
negative sign. 

1*11 Electric and Magnetic Induction 

Another vector convenient to employ is the induction vector, which 
is related to the intensity vector. 

Electric Induction 

The electric induction at any point is 
defined as the product of the electric in¬ 
tensity at the point by the value of the 
constant e of the medium at the point. 
The electric induction is usually desig¬ 
nated D with components Da;, Dy, and 

Magnetic Induction 

The magnetic induction at any point 
is defined as the product of the magnetic 
intensity at the point by the constant m 
of the medium at that point. The mag¬ 
netic induction is usually designated 
B with components Bx, By, and B«. 

In this discussion we shall consider only homogeneous, isotropic 
media in which m and s are constant and independent of the direction in 
which they are measured. 

Hence Hence 

D = eE [1-311 B == ah [1-32] 
where where 

11 

1 1 

II 1 [1-331 }■ [1-34] 

11 1 B. - mbJ 1 

The vectors D and B represent the electric flux density and magnetic 
flux density, respectively. 

1 * 12 Electrostatic and Magnetostatic Flux 

As used in mathematical physics the term flux designates either the 
product of an aiea by the component of a vector such as D or B or the 
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summation of such products. Such a summation is called a surface 
integral. 

Fig. 1*3 Fig. 1*4 

Electrostatic Flux 

Since both magnitude and direction 
of the electric intensity E are functions 
of the coordinates at any point P in an 
electrostatic field, the same is true of the 
electric induction D. Consider the point 
P, Fig. 1*3, where the electric induction 
vector D pierces the surface element ds 
at an angle B with respect to the normal 
to the surface. The flux of electric in¬ 
duction dip through the area ds is then 
defined as 

d\p — D cos B ds 
or 

dp = Dn ds 

where Dn is the normal component of D 
to the surface ds. 

By integrating over any extended sur¬ 
face S we obtain the total flux p through 
the surface as 

D cos B ds [1-351 

[1-37] 

Magnetostatic Flux 

Since both magnitude and direction of 
the magnetic intensity H are functions of 
the coordinates at any point P in a mag¬ 
netostatic field, the same is true of the 
magnetic induction B. Consider the 
point P, Fig. 1*4, where the magnetic 
induction vector B pierces the surface 
element ds at an angle B with respect to 
the normal to the surface. The flux of 
magnetic induction dp through the area 
ds is then defined as 

dp = B cos B ds 
or 

dp — Bn ds 

where Bn is the normal component of B 
to the surface ds. 

By integrating over any extended sur¬ 
face S we obtain the total flux p through 
the surface as 

B cos B ds [1-36] 

[L38] 

where indicates the surface integral over the surface S, and ds is an element 

of the surface. 

4 
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'1'13 Gauss’s Law 

Gauas’s law applied to the electro¬ 
static field states that, if the surface in¬ 
tegral [1*35] is extended over a closed 
surface surrounding a charge g, then the 
total flux over the surface is equal to q. 
That is, the total normal electric induc¬ 
tion over any closed surface is equal to 
the total electric charge contained within 
the surface. 

Gauss’s law applied to the magneto¬ 
static field states that, if the surface in¬ 
tegral [1*36] is extended over a closed 
surface surrounding a magnetic pole m, 
then the total flux over the surface is 
equal to m. That is, the total normal 
magnetic induction over any closed sur¬ 
face is equal to the total magnetic charge 
contained within the surface. 

Consider any point P in an electrostatic field where the induction 
vector is: 

g 
4717^ 

Then by equation 1-35 

•■//. ‘losed surface 470-2 
cos 6 ds [1.39] 

Let dG be the solid angle subtended at q by ds. Then by the definition 
of the solid angle 

dsn cos B ds 
Ctal — 9 — 9 

where dsn represents the component of the area ds normal to the radius 
vector from q. 

Hence 

closed surface 47r 
dQ -ill dQ = ^ = q [1.40]* 

closed surface 

since the solid angle subtended at any point within a closed surface 
is 47r. 

From this development it is clear that one line of flux is associated 
with each imit charge in the rationalized system, and therefore that the 
flux density is l/47r lines per square meter at a distance of 1 meter from 
the charge. In the familiar non-rationalized system the flux density 
is made equal to unity at unit distance, and therefore At lines are 
associated with each unit charge. 

If a charge is partly inside and partly outside the surface then q refers to the 
charge within the surface. If this is zero then ^ 0 over the surface since as much 
flux enters it as leaves it. 
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1 -14 Poisson’s and Laplace’s Equation 

Consider the infinitesimal rectangular volume shown in Kg. 1-5, of 
dimensions Ax, ^y, Az, situated in an electrostatic field with one comer 
of the volume at the point x, y, z. The volume is shown large for 
convenience. We shall determine the surface integral of the con¬ 
tinuous vector D over the surface of the volume At = Ax Ay A«. 

Fia. 1-5 Infinitesimal volume At = At Ay Az in an electric field at the point a;, y, z. 

The bar over the electric flux density vectors indicates the average value of the 
vectors over the various faces of the volume. 

Let 3x be the average normal component of electric induction over 
the area Ay Az which has one comer at the point x, y, z. If 5* meets 
the continuity requirements of Taylor^s theorem* for the expansion of 
a function about a point, then the average normal component of D over 
the opposite face of the cube will be 

Dx + Ax ll-41]t 
OX 

when we neglect second-order infinitesimals. Similar equations defin- 

* For a discussion of Taylor’s theorem see Burington and Torrance, Higher 
MathemoUics, page 74, section 13. 

fThis expression for the elec¬ 
tric induction may be clarified 
by the following argument. If 
D is a single-valued continuous 
function of x it may be repre¬ 
sented graphically as shown in 
Fig. l-6a. This ciirve represents 
the way D varies in the x direc¬ 
tion when y and z are held fixed. 
If w4 know the ordinate to the 
curve at the point x and call it 

Fig. l-6a 
» o5, our problem is to find 

the value of D at the point 
4: xh terms of Og;. This value is represented by the ordinate qf where 

- cd 'j-de + ef 
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ing the average components of D over the remaining faces are as shown 
in Fig. 1*6. Hence the total surface integral of D in the outward direc¬ 
tion over the volume is 

^ •'cloBed surface \ OX / 

+ Ai/^ AxAs:-S;5AxA2/ +^5^ + ^Aa:^ Ao; Ay [142] 

(bD^ dDy dD^ \ 
giving ^ = (-^ + -^+~/)A.AyA. [143] 

According to Gauss\s theorem, \p is also equal to the charge enclosed by 
the volume. If p is the volume density of charge, then the total charge 
contained in the volume element is p Ax Ay Az == p At. Hence 

/X Dfi ds 
closed surface ,dx ^ dy ^ dz ) 

At — p At [144] 

Or, dividing through by At and taking the limit as the volume ap¬ 
proaches zero, we obtain 

Limit 
At—M) 

a closed surface 

At 

dDx bDy dD, 

dx 
+ —+ “=P [1-45] 

dy dz 

This may be expressed in terms of potential since 

dV 
D = eE = — e 

dl 
so that 

Dx = — e —, Dy = —e —, Dg = —g — 
dx' ^ dy' dz 

dD 
Now cd - Dx and ed - Ax tan 0. But tan 9 - — at the point x. This we may 

dx 

write as • Hence 
dx 

ed = Ax 
dPx 
dx 

Thus to a first approximation 
dDx 

c/ csi td + de = D® H-Ax 
dx 

If Ao; is very small, ef approaches zero and the approximation is more nearly the 
true value of the desired ordinate. Under such circumstances we may write for 
the value of D at rv + Ac 

Dx + —- Ax 
dx 

where X has any value. 
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Substituting for !>*, Dy, and D* in equation 145 we have 

an- ^__p 
dx^ dy^ dz^ e 

[146] 

Equation 146 is known as Poissonequation. In regions in which 
there is no free charge, p = 0 and equation 146 becomes 

d^V 

dx^ 
[147]* 

Equation 147 is known as Laplace’s equation. Equations 146 and 
147 apply to the magnetic field if V is replaced by 17. 

Fig. 1*6 

ri5 The Divergence of a Vector 

Equation 145 may be written more briefly by the use of a definition 
from vector analysis. In vector analysis we write 

Limit 
Ar-M) 

fl closed surface 

At 
= divD=^ + ^^‘' ■ 

ax 
^ + ^ [148] 
dy dz 

defining div D, pronounced divergence of D, or “ div ” D. 

* In vector notation equations 1‘46, 1-46, and 147 become, respectively: 

V-D -p 
V®V - -p/t 

V*V -0 
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The divergence of a vector is a scalar quantity, since it identifies a 
magnitude only. It represents the outward flux of a vector per unit 
volume as the volume approaches zero at a given point. If this volmne 
contains a smalLhole through which an incompressible liquid is flowing 
inward, the outward flow of the liquid through the remainder of the 
surface is positive and the divergence is positive. Refer to Fig. 1-6. 
If, on the other hand, the hole is absorbing the liquid then the diverg¬ 
ence is negative. If the volume contains both source and sink, and the 
rate at which both operate is the same, the divergence is equal to zero. 

The illustration just given is not rigorous, in that the volume is 
necessarily large in comparison to the incoming tube, which is itself of 
finite size. None the less the basic idea is illustrated. Moreover, the 
process of taking the limit as the volume approaches zero is invalid in 
the electrical case with which we are primarily concerned. Electric 
charge is not indefinitely divisible, the charge of the electron being the 
smallest charge wliich may have individual existence. Accordingly 
the divergence over any small closed surface will be zero or an integral 
multiple of the electronic charge. It is doubtful that a surface drawn 
to cut through the electron has physical significance. 

1*16 The Divergence of the Electric and Magnetic Induction 
The divergence of the electrical induction at any point in a medium 

where the charge density is finite is equal to the charge density p at the 

point. 

divD = p . [149] 

At points in a medium where the charge density is zero 

divD - 0 [1*50] 

The lines of force which represent the electrostatic field are considered 
to start and stop on electric charges. If free magnetic poles exist the 
conditions of the magnetostatic field are identical with those of the 
electrostatic field. If, as was formerly believed, no free magnetic poles 
exist we find that all lines of magnetic flux are continuous and in general 

divB = 0 [1-51] 

1 *17 Electric and Magnetic Dipoles 
If equal positive and negative electric charges occupy exactly the 

same point in space, the net electric field due to the charges is zero. 
If, however, there is a slight separation between the charges, the fields 
of the two no longer cancel. Such a combination is known as an 
electric doublet or dipole. The strength of a dipole is defined as the 
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product of the distance separating the charges and the strength of 
either charge. The value of the concept of the dipole lies in the fact 
that the separation of the charges is assumed small compared with the 
distance to other systems. Accordingly the properties of the dipole 
are completely defined by the strength and angular orientation of the 
dipole. This definition may be formulated in terms of potential. 

Fig. 1-7 

The potential at the point P, Fig. 1-7, due to the positive charge as 
defined by equation 1-20 is 

Q 
Vi - 

47rsri 

Similarly the potential at P due to the negative charge is 

72= - 
47rer2 

The net potential is evidently the sum of these two values, or 

9 9 
47reri 47rer2 

This may be written 

47rer2ri 

In so far as r Z we may write 

and 
rir2 == 

f2 — Z cos ^ 

With these substitutions the potential at P becomes 

ql cos 9 rt 
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The line passing through the two charges is referred to as the axis of 
the dipole, the positive direction of this axis being in the direction 
from negative to positive charge. The product ql defines the strength 
or electric moment of the dipole. The length I is assumed to be negligible 
in comparison to all other dimensions of the system. Therefore we 
may say that the potential is zero at all points in a plane through the 
dipole and perpendicular to the axis, since the cosine of 90° is zero. 
The potential is a maximum at points which lie in the line of the axis. 

The potential due to a magnetic dipole, derived in exactly the same 
way, is: 

ml cos 0 
[1-53] 

where ml is the strength or magnetic moment of the dipole. 

1 '18 The Polarization P and the Magnetization M 

The behavior of a material dielectric in an electrostatic field may be 
accounted for in terms of the constant e and in terms of the vector of 
polarization P. We have already considered the concept of dielectric 
constant in section 1-3. In section Ml we expressed the electric flux 
density quantitatively by the relation 

D = eE [1-31] 

We can express the vector D in an alternative way. The application 
of tjie electric field may be thought of as resulting in a rearrangement 
of the molecular structure of the material. This may be expressed 
quantitatively by the relation 

D = eoE + P [1-54] 

where the first term eqE represents the induction which would occur if 
no dielectric were present. The second term P represents the contribu¬ 
tion .to the induction due to the presence of the dielectric. This equar 
tion is taken to define the vector quantity P. The two equations 1-31 
and 1'54 may be combined to give 

. P 
e = + g 

or 
P = (s “ So)^ 

We usually think of a dielectric as comprising a random distribution 
of positive and negative charges in equal numbers bound together in 
an elastic medium. Such a random distribution can have a net external 
fiAld equal to zero since the action of each charge may be canceled by 
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the combined actions of the adjoining charges. Wheit an electric field 
is applied to such a dielectric the positive charges are, on the average, 
displaced a small distance in the direction of the field and the negative 
charges are displaced a similar small distance in the opposite direction. 
An elastic force tending to restore the charges to their original position 
accounts for the fact that the relation is linear and also, as will be shown 
later, that energy is stored in the dielectric. 

This displaced condition may be interpreted in two distinct ways 
at our option. The original distribution may be expressed as coinci¬ 
dent pairs of unlike charges, in which case the pairs are displaced by 
the field and a condition called polarization exists throughout the volume. 
The resulting physical system is indistinguishable from a uniform vol¬ 
ume distribution of dipoles of suitable strength whose axes are in the 
direction of the applied electric field. 

An alternative interpretation is based upon the conditions existing 
at the^boundaries of the dielectric. If we omit for the moment a suit¬ 
able number of charges near each boundary it is always possible to 
find a pairing of the remaining charges so that no external field is pro¬ 
duced. A certain number of positive charges near one boundary acts 
with an equal number of negative charges at the other boundary to 

produce exactly the same effect as 
the volume distribution of dipoles pre¬ 
viously discussed. The effect of these 
charges we have chosen to isolate is 
to annul part of the field in the di¬ 
electric which caused the displace¬ 
ment. Accordingly, the field effective 
in producing the displacement is less 
than that which would be required 
if the dielectric were not present. 

As an example let us consider the 
system of Fig. 1*8. A very narrow flat cavity, drawn enlarged for con¬ 
venience, is located in a dielectric material of constant e. In the di¬ 
electric the electric intensity is E and the induction is 

D = 6E 

The induction vector is continuous across the boundaries, and accord¬ 
ingly the electric intensity in the cavity is e times as great as that in 
the dielectric. The intensity in the cavity, E', may also be written 

E' = eoE-l-P 

The difference between E and E' is accounted for by the charges shown 

Fig. 1*8 Illustration of the in¬ 
creased electric intensity in a flat 

cavity in a dielectric material. 
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at the surfaces. If <r is the density of charge at each surface and Pn 
the normal component of the polarization, it may be shown that a = 
This follows from our use of ra¬ 
tionalized units in which one unit 
charge produces one (not 47r) unit 
of induction. The geometry of the 
problem is such that the total in¬ 
duction passes from the positive 
to the negative charges directly, 
producing an induction or inten¬ 
sity numerically equal to the sur¬ 
face charge density. 

Consider the system of Fig. 
1*9. The electric intensity E in tl 
an induction 

Fia. 1*9 Rectangular section of a ho¬ 
mogeneous dielectric. 

le dielectric is uniform and produces 

D = sE = sqE P 

The atomic displacement produced by this field results in an effective 
charge of density a on the bounding surfaces. The electric moment 
of the entire block as a sort of enlarged dipole is equal to ml But we 
have shown from the preceding work that <r — Pn- Accordingly the 
total moment is equal to PndL Therefore we deduce that the polari¬ 
zation P is expressible as a volumes density of electric moment due to 
a distribution of dipoles. 

The situation existing in the magnetic field is exactly analogous. 
We may write 

B = aiH = moH + M [1*55] 

where M, a vector called magnetization, analogous to P, is the volume 
density of magnetic moment of the equivalent dipoles. 

M=0*-iUo)H, /» = «,+§ [1-56] 

1*19 Energy in the Electrostatic and Magnetostatic Fields 

When a dielectric is inserted in an electric field, the displacements 
suffered in its atomic structure result in a condition very similar to that 
resulting from mechanical strain. As in the mechanical system, a 
certain definite amount of energy is stored per unit volume. This 
energy may be evaluated by assuming a uniform parallel field in the 
X direction. This condition exists in the familiar parallel-plate con- 
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denser. It will be recalled that the capacitance C of such a condenser 
is 

C = [1-57]* 

where A is the area of the plates and d is the spacing between the 
plates. Also it may be shown that the energy W required to establish 
the charge is 

[1.58] 

where V is the potential difference between the two plates. Also 
V = Ed, since the field is uniform. Accordingly the total energy 
stored is 

W = ~ Ad [1.59] 

Since the electric strain is equal in every part of the dielectric we are 
justified in dividing the total energy by the volume Ad. Hence the 
energy stored by the electric field per unit volume is 

2 
[1.60] 

A similar development for the magnetic field gives for the energy 
stored per unit volume by the magnetic field 

2 
[1-61] 

Equations 1-60 and 1*61 are valuable because they permit us to evalu¬ 
ate the total energy stored in a system by integration of these quan¬ 
tities. Electrical energy is stored in all dielectrics and in vacuum but 
not in conductors. Magnetic energy is stored in all tangible materials, 
both paramagnetic and ferromagnetic, as well as in vacuum. 

* The student is possibly more familiar with the relation 

that is obtained when imrationalized units are used. With the rationalised system 
the iv is included in the dectrio intensity. 
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SUMMARY OF CHAPTER 1 

In the two columns below are summarized the laws and relations 
discussed in this chapter. The brief description of these relations 
that has been given is intended only as a review of electrostatic and 
magnetostatic theories. If any doubt remains the student should 
consult textbooks on these subjects. 

UNITS AND EQUATIONS 

Electrostatics Magnetostatics 

Coulomb’s Law 

Electrostatic Units (cgs) 

dynes 

r in oentimetera 

q in stat-coulombs 

In vacuum ic« = unity and 

Fe == dynes 

Electromagnetic Units (cgs) 

m \m^ 
— 2 dynes 

fhnT 

r in centimeters 

m in electromagnetic units of pole 
strength 

In vacuum /xm = unity and 

wim2 , 
Fm = —^ dynes 

Fe 
1 qm 

4ir er^ 

Rationalized Practical Units 

newtons Fm = newtons 
47r fir 

r in meters 

q in coulombs 

r in meters 

m in webers 

e = Ke^O 

eo = 8.854 X farad per meter 

~ the dielectric constant as given in 
standard tables 

In vacuum 

r, 1 Qi^2 
F* ~ -«■ newtons 

4ir eor^ 

MO = 1.257 X 10“ ® henry per meter 

Mm == the permeability as given in 
standard tables 

In vacuum 

1 mim2 
Fm - --ST newtons 

47r M^r 

Electric Field Strength 

Electrostatic Units (cgs) 

q 
E = “3 stat-volts per cm 

r in centimeters 

q in statKsoulombs 

Magnetostatic Units (cgs) 

H = gilberts per cm 
f*mr 

r in centimeters 

m in emu of pole strength 
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In vacuum In vacuum 

E «= Btat-volts per cm 
__ rn 
H gilberts per cm 

Rationalized Practical Units 

1 q 
E = T-5 volts per meter 

4ireo Kef 

r in meters 

q in coulombs 

In vacuum 

volts per meter 

I m 
H == -^ ampere-turns per meter 

dTTMO 

r in meters 

m in webers 

In vacuum 

rr 1 m 
H - “— ^ ampere-turns per meter 

4ir/io r* 

Potential 

Electrostatic Units (cgs) Magnetostatic Units (cgs) 

F == — stat-volts 
KeT 

r in centimeters 

q in stat-coulombs 

In vacuum 

U = — ergs per pole 
thnT 

r in centimeters 

m in emu of pole strength 

In vacuum 

F = - Btat-volts 
r 

(7 = ~ ergs per pole 

F - 7^ — volts 
4ireo KgT 

r in meters 

q in coulombs 

Rationalized Practical Units 

1 

4x^0 f*mr 
joules per pole 

In vacuum 

F - i 2 volts 
4ireo r 

r in meters 

m in webers 

In vacuum 

U = 7^ ^ joules per pole 
4irM0 T 

The Potential May Be Expressed As 

E COB $ dl H COB $ (U 

E ^ - 

The Field Intensity May Be Expressed As 

dV dV 

^ la 

The Flux Density or Induction Is Defined As 

D »» dS B » /iH 
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The Total Flux Is Defined As 

The Divergence of the Induction Vector in Unrationalized Units 

div D = 0 or 4irp div B = 0 

In Rationalized Units 

div D = 0 or p div B = 0 

The Energy per Unit Volume m Unrationalized Units 

Sir 

In Rationalized Units 

Sir 

'T 

PROBLEMS 

2 

When electric charges are uniformly distributed over a spherical surface, the 
force exerted upon a charge at a point outside the surface is the same as if the charges 
on the sphere were all concentrated at the center of the sphere. The net force 
exerted upon an exploring charge placed inside the charged sphere is zero. In the 
problems below, which involve spherical charged bodies, this proposition may be 
used because the charges in question are assumed to be uniformly distributed 
over the spherical surface. 

1*1 Two small charged metal balls are placed 0.6 meter apart. The charge 
on one of them is 6 X 10*“® coulomb, and the charge on the other is lO""® coulomb. 
Both are charged positively. Calculate the force on each ball, and express it in 
pounds, d3mes, newtons, and grams. / S ‘ 

h2 Two similar metal balls each weighing 0.1 gram have equal charges of 10~* 
^ulomb. The balls are suspended from two points 5 cm apart by silk threads of 
equal length and negligible weight. If the force of repulsion between the charges 
holds them 7 cm apart, how long is the suspending thread? 

1*3 ’ Two metal balls having a diameter of 3 cm are placed 1 meter apart between 
centers. If the charge on each is 10~* coulomb, calculate and plot the electric field 
intensity for points between them on the line of centers: (a) when they are both 
charged positively; (6) when one is positive, the other negative. 

1*4 Calculate and plot the potential in volts between the two charged balls of 
problem 3 on their line of centers if both are charged positively. 

1*5 Find the magnetic intensity and potential at a point located on a line 
mfl-king an angle of 30*^ with the axis of a small thin magnet and passing through 
its center. The length of the magnet is 0.1 meter, and the magnetic pole strength 
is m. Let the distance between the center of the magnet and the point in question 
be 1 meter. 

1*6 Two magnets are fixed in space, both being perpendicular to a line joining 
their oenters, which are 0.4 meter apart One has a length between poles of 0.2 
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meter and pole strengtlis of weber. The second magnet has a length between 
poles of 0.01 meter and pole strengths of 10”^ weber. Using Coulomb^s law, cal¬ 
culate the net force on each pole of the small magnet due to the action of both 
poles of the large magnet. 

1*7 In the arrangement of problem 6, calculate the forces by first evaluating the 
field at the small magnet due to the action of the larger magnet. Use equation 1*8. 

1*8. Two iron bars are identical in appearance, hardness, and other easily 
observed characteristics, but one is a permanent magnet and the other has the 
magnetic properties of soft iron. How may the two be identified without the use 
of any additional equipment? 

1*9 An extremely slender bar magnet is relatively long, and one of its poles is 
used to simulate an isolated north pole. How long must the bar be made if the 
field produced by it differs only 1 per cent from the field due to an isolated pole of 
strength equal to that of the magnet, at a distance 5 cm from the pole and along 
the axis of the bar? 

MO A certain glass has a dielectric constant Ke equal to 2.5. Evaluate the 
polarization vector P for this material in mks units. 

1*11 A spherical cavity is cut in a polarized dielectric. Determine the electric 
intensity at the center of the sphere duo to the surface charge on the cavity. 

M2 A particular grade of iron has a penneability jUm equal to 1000. Evaluate 
the magnetization vector M for this material in mks units. 

M3 A narrow flat cavity is cut at right angles to the direction of the magnetic 
induction in a ferromagnetic solid. Determine the intensity in the cavity due to 
the magnetic poles which appear at the surfaces. 

1«14 A particular material has a dielectric constant Ke equal to 4.0 and will 
withstand a maximum electric gradient of 100,000 volts per meter. Calculate the 
energy in joules per cubic meter which may be stored in this dielectric when used 
in a condenser. 

1*15 A metallic sphere has a radius equal to a and is suspended in air which 
will withstand a maximum electric gradient of 10® volts per meter. How large an 
electric charge may be placed on this sphere before the air breaks down and causes 
discharge? 



CHAPTER 2 

THE ELECTROMAGNETIC EQUATIONS 

2*1 The Electron Theory of the Electric Current 

According to the electron theory, conducting bodies include in their 
structure a large number of charged particles or electrons which are 
free to move through the conductor when acted upon by an electric 
force. The movement of these particles is considered to be quite 
erratic. This is caused by the numerous collisions which the electrons 
suffer when they are set in motion. They collide with one another 
and with the relatively stationary atoms and molecules of the con¬ 
ductor. There is, however, a steady net drift of the charged particles 
in the direction of the force. This drift constitutes the flow of electric 
current. 

It is an unfortunate fact that the conventional direction of current 
is opposite to the actual electron motion, since the electron is the prin¬ 
cipal carrying agent in most forms of conduction. This convention 
is a result of early work in electrostatics in which the positive direction 
of charge and current were defined. It was found that the charge 
produced by friction between certain pairs of materials always had a 
definite polarity, and the positive sign was arbitrarily applied to the 
charge of one of a pair of such materials. In particular, glass and simi¬ 
lar materials become positively electrified if they are rubbed with a 
cloth of cotton or silk. Other materials such as resin or amber are 
negatively electrified by the same treatment. The terms vitreous 
and resinous for the two polarities were once in common use. Elec¬ 
trical effects due to friction or mechanical fracture are referred to as 

triboelectric effects. 

2*2 The Continuity Equation for Current 
Let us imagine a small volume element Ar, having dimensions Ar, 

Ay, Az, placed within a conductor, one corner of which is at the point 
X, y, z. Let us observe the motion of the free charges within this 
volume under the action of an electric force. The motion of the elec¬ 
trons through the conductor may be expressed in terms of a current 
density t having components i*, 4y, at the point x, y, z, in the direc¬ 
tion of the axes as shown in Fig. 2-1. Let the average current density 
over the face Ay Az be The total current entering the volume from 

27 
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the X direction is thus The current leaving the opposih 

face is 

(lx + ^ A? [2-lY 

The difference between the current entering and the current leaving 
in the x direction is 

Z 
Fig. 2-1 An infinitesimal volume At = Arp Ay A? at a point rr, y, z inside a con¬ 
ductor through which a current is flowing. The bar over the current-density vectors 

indicates the average value of the vectors over the various faces of the volume. 

Similarly, the difference between the current entering and the current 
leaving the small volume taken in the y direction is 

— ^ Ax Ay Az [2‘3] 

* This relation may be obtained by application of Taylor's theorem for the expan¬ 
sion of a function about a point. Assuming proper oontintuty this gives 

. , . , dhz A2fc2 d% 

* da? dz^ 21 ' da?« 31 

Neglecting second- and higher-order effects, we have 

- 1 A + — Aaf 
dx 

for the current at a distance Ax from the point where the current is See also 
footnote on page 14. 
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taken in the z direction is 

Ax [2-4] 
aZ 

The difference between the current entering and the current leaving 
the volume Ar is (dlx . dly . dtgX 

f2-51 

which is equal to the rate of change of charge inside the volume. If 
the average charge density in the volume Ar is p, the charge in the 
volume At is. p Aa: Ay Az, The rate of change of charge within the 
volume is then 

d'p 
— AxAyAz [2-6] 
at 

Hence, equating 2-5 and 2-6, we obtain (Six Si„ Si\ Sp 
t2.7] 

To reduce to a point relation, let us divide through by Ax Ay Az and 
take the limit as Ax, Ay^ and Az approach zero. The average values 
then approach their values at the point x, y, z, and we have 

dlx 

dx 
+ 

dly dl^ 

dy dz dt 
[2-8] 

This equation is correct in the practical or any other consistent set 

of units. 
If the rate of change of charge is zero, then 

dlx . dly . dlx 
— H—^ ^ 
dx dy dz 

Equation 2*8 may be expressed as 

div i = 
dt 

[2-9] 

I2-10]* 

* This will follow from the definition of divergence given in Chapter 1, since the 
right-hand side of 2 * 8 represents the limit, as Ar approaches zero, of the surface 
integral of i over Ar, divided by Ar, i.e. 

div i ~ limit 
Ar—K) dX^ dz 
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and equation 2*9 as 

div i = 0 [2*11] 

This equation states that, if there is no accumulation or loss of 
charge, the amount of current entering a volume is exactly equal to the 
amount leaving the volume. This is Kirchhoff's first law. If, how¬ 
ever, there is a change of charge, it is equal to the difference between 
the inflowing and outflowing current. This is equivalent 'to saying 
that electricity can be neither created nor destroyed. 

2*3 The Static, Steady, and Non-Steady States 

When electric or magnetic charges are held fixed in a medium, and 
there is no motion of any kind, the conditions are referred to as static. 
The results derived in Chapter 1 are based upon the static state. The 
act of carrying test charges about, of course, constitutes a movement. 
We are concerned, however, not with the conditions arising during this 
movement, but with the static conditions arising at each point at 
which the exploring charges are placed. 

When a continual drift of electric charges has been taking place for 
some time the conditions that exist are referred to as the steady state. 
When a battery has been connected to a circuit for sufiBicient time for 
all transient effects to have died down, the steady state is obtained. 

The non-steady state refers to the interval during which transient 
effects are being observed, as during the interval directly after the 
closing of a switch in an electric circuit, or the application of electric 
forces to a medium. The conditions which exist at all times in an 
alternating-current system are properly referred to as the non-steady 
state. Commonly, however, the condition in which the voltage and 
current are periodic functions of time is referred to as the steady state 
of alternating current. 

2*4 Ohm’s Law 

By means of the electron theory we may develop an analytical 
formulation of the relations existing between the free electrons and the 
electric field intensity within a conductor. For our analysis let us take 
a small section of a wire conductor at right angles to its length, and 
observe the electrons in this section under the influence of an electric 
field. We shall assume that steady-state conditions prevail, and that 
there is an average charge density p moving with a velocity v through 
this section. The product pv at any point in the conductor is called 
the current density i at that point. But the electrons experience 
continuous succession of collisions in pas^g through the conduct* . 
It is to these repeated collisions that the heating effect of an electric 
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current is attributed. They represent a form of resistance to the flow 
of the current. The flow of electrons is sometimes compared with the 
movement of marbles through a viscous liquid. This analogy is very 
useful in considering the action of electrons in metals when the field 
intensity is varying quite rapidly, since it helps one to visualize how the 
velocity of the electrons may lag the field variations. Certainly at 
lower frequencies or with steady fields, 
the average velocity of the electrons 
is proportional to the field intensity E. 
Since p is the average density of charge, 
then I = pv is proportional to E. The 
proportionality constant <t is called the 
cpnductivity of the conductor and we 

may write 
I = <rE [242] 

^8 I2 

Fig 2 2 A section of a cylindrical 
conductor of area ds through which 

a current I is flowing. 

Values of the conductivity <r, in mhos per meter, for common conductors 
and dielectrics are given in Table 2-1. Since the total current I flow¬ 
ing in the wire is J = ids (Fig. 2*2), we have 

I ids = ixEds [243] 

Since the current is the same through all sections of the wire we may 

multiply and divide 243 by dZ, obtaining 

I = ^Edsy^^<r^^Edl [2-14] 
dC dv 

Now cds/dl is a constant depending on the conductivity and dimensions 
of the conductor. Let us set it equal to 1/dR so that we obtain 

I dR == Edl 

TABLE 21 

Conductivity of Common Materials at 20® C. 

[2-15] 

Metals mhos/meter Dielectrics mhos/meter 

Aluminum 3 5 X 10^ Bakelite l(r»to 10-'® 
Copper 6 8 X 10' CeUuloid KT® 

Gold 4.1 X 10' Glass lOr-i* 

Iron 1.0 X 10' Hard rubber 10r'*to KT'® 

Lead 0.6 X 10' Mica 10-“ to 10-“ 

Nichrome 0.1 X 10' Paraflin 10^“ to i(r“ 

Nickel 1.3 X 10' Porcelain 3 X 10r“ 

Silver t.l X 10' Wood, paraffined 10“* to 10-“ 

Tin 0.9 X 10' Petroleum 10-“ 

4*UDg8ten 1.8 X 10' Distilled water 2 X 10“® 

m 1.7 X 10' Sea water 3 to 6 

The data in Uiis table have been taken largely from the Smithsonian Physical Tables, For more 

oomplete data and for other materiala see this reference. 
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Since I and E are constant with respect to Z in a uniform conductor, 
we may write jr%li ph 

dR^ E j dl [2*161 
h 

or 
IR = Eh - Eh [2*17] 

But (Eh — is the work done in carrying a unit charge from h to 
hf and this has been defined as the potential difference between h and h- 
Let this potential difference equal V. Then we obtain the familiar 
form of Ohm's law: 

V = RI [2.18] 

where V is the total voltage drop, I is the total current, and R is the 
total resistance of the conductor. 

2*5 The Magnetic Shell and the Unit Current 

Oersted discovered in 1819 that a conductor carrying a current of 
electricity would deflect a magnetic needle placed near by. The fact 
that an electric current produces magnetic effects provides the link 
between the subjects of electricity and magnetism. 

Shortly after Oersted's discovery. Ampere showed that a small loop 
of wire carrying a current produced a magnetic field similar to that 
due to a short magnet. It was found that, at distances from the loop 
large in comparison to the linear dimensions of the loop, the magnetic 
effect observed was proportional to the area of the loop and to the 
current flowing in it. In practice we must be able to calculate the 
magnetic effect at much smaller distances. The following considera¬ 
tions, due to Ampere, permit such calculation. 

Let us consider the circuit of Fig. 2*3, which consists of a wire, having 
any arbitrary shape, carrying a current L Let us imagine the cir¬ 
cuit divided into a large nximber of small square loops or meshes, each 
of which carries the same current as that which actually exists in the 
boimdary circuit. Now, if each of the small imaginary circuits has its 
sides infinitely close to its neighboring circuits, the effects of the cur¬ 
rents will neutralize or cancel one another at all places except m the 
outside bounding circuit. Also we may choose these loops as small as 
we desire. Hence they may be chosen so as to be small in comparison 
with the distance to any point near the surfax5e formed by the loops. 
Now the effect of each small mesh is equivalent to a magnetic doublet 
previously described, and the total magnetic effect of the true current 
in the bounding wire is equal to the vector sum of the effects of all the 
ma^etic doublets or meshes. Taken altogether the magnetic doublets 
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constitute a magnetic shell, that is, a thin lamina of arbitrary shape, 
the boundary of which coincides with the conductor forming the bound¬ 
ary current. 

A magnetic shell may be thought of as formed by the aggregation of 
many like magnetic dipoles arranged in such a way as to resemble an 
infinitely thin slab cut from a mag¬ 
net. The magnetic moment of a 
dipole is defined as the product of its 
length by its pole strength. The 
moment of a magnetic shell is defined 
as the sum of the moments of the 
dipoles in a unit area or as the prod¬ 
uct of the thickness of the shell by 
the number of poles per unit area. 

This magnetic shell is equivalent 
in its magnetic effect to an electrical 
current whose circuit is its periphery. 
The magnetic effect of each element 
of the shell is M da/^T^, and of the 
whole shell where M is the 
magnetic moment per unit area, da 
is the area of each mesh, and A is 

the total area of the shell.* Also 3.3 :^ctai»gular loop 
the magnetic effect of each mesh is oircuits which completely fill the closed 
I dal^Wy or /A/47nJor the boundary area formed by the physical circuit J. 
circuit. Hence the unit electric cur- The small loops may be considered of 
rent may be defined as one which vanishing size and infinite in number. 

will produce the same magnetic ef- peripheral circuit, 
feet at external points as a magnetic 
shell of unit strength whose boundary coincides with the current pro¬ 
vided that the medium is vacuum. 

Consider the circuit of Fig. 2*4, in which a current of I amperes is 
flowing. The equivalent magnetic shell for this circuit will, by the 
definition of unit current, have a magnetic moment M per unit area, 
where M ijlL Hence the magnetic moment for a small area da about 
a point Q on the shell will be M dajAK. This small section of the shell 

The field due to a free electric or magnetic pole varies inversely with the dielectric 
constant or permeability of the medium surroimding the pole. The magnetic 
field due to an electric current is independent of the surrounding material. Accord- 
nilig^y the strength of the magnetic shell and of the dipoles which comprise it must 
bd made proportional to the permeability of the surroimding medium. In this 
way the field and potential distribution which result are independent of the per¬ 
meability* 



34 THE ELECTROMAar^ETIC EQUATIONS 

is exactly equivalent to a small magnetic dipole. Now at a point P, 
a distance r from Q, the magnetic potential due to this elementaiy 

dipole is, by equation 1*63, 

dU 
M da COB 0 

iirr^ix 
[2.19] 

^here 6 is the angle between r and the 
normal N to the area da. The solid 
angle subtended at P by the area da is 
dil = (do cos Hence 

dU = 
M dSt 
4ir/t 

[2-20] 

Integrating over the whole shell, the potential at P is 

v.m 
4ir/n 

[2.21] 

where 12 is the solid angle subtended at P for the whole shell. Since 
the circuit forms the boundary for the shell, the solid angle is the same 
for circuit or shell. Therefore 

712 
t; = — 

4x 
[2-22] 

As the point P approaches the surface of the shell, the solid angle 
approaches 2x and U = Ij2 at the surface. 

2*6 Magnetomotive Force and Ampere’s Law 

The magnetomotive force may be defined as the work done by the 
magnetic field as a unit magnetic pole is moved along a path joining 
two points P and Q in the field. This may be expressed by the line 
integral 

MMF = H COB 0dl [2-23] 

where B is the angle between the direction of H and the path element 
d?. In the field external to permanent magnets, a problem in the 
static state, this integral taken around any dosed path is .zero. When 
we consider the magnetic field due to the flow of current in a wire, a 
problem in the steady, not static, state, we find a different situation 
where the truth of this statement depends upon the path taken. Let' 
us consider, for example, the magnetic field produced by a straight 
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wire carrying current. If our path of integration encloses the wire, 
as, for example, a circular path about the wire, then the integral is no 
longer zero. This is true for any circuit 
carrying a current, as will be shown. 

Consider the circuit drawn in Fig. 2-5. 
Let us imagine a surface formed so that its 
outside boundary is the wire of the circuit. 
We may imagine this surface to be of the 
type that would be produced by dipping our 
wire circuit into a pail of soapy water. If 
we restrict the paths along which we calculate 
our line integral from cutting the surface, then 
all closed paths along which we calculate the 
integral will be zero. Let us calculate the 
value of equation 2-23 for a path which cuts 
the surface and includes within it the wire Interpretation of a 

carrying the current 7. First we may calcu- “ 
late the line mtegral for a path startmg at a 
point P in front of the surface shown in Fig. 2-5, and proceeding 
around (7 to a point Q on the other side of the surface. The differ¬ 
ence in magnetic potential between P and Q is 

Up - Uc -r-’ cos B dl [2-24] 

If we let the point P approach Q the potential difference does not ap¬ 
proach zero since then our path would cut the surface. It was shown 
in section 2*5, where our circuit was replaced by a magnetic shell, that, 
as P approaches the surface of the shell, the angle subtended at P by 
the surface approaches 2Tr and Up approaches M/2 or 1/2. Similarly, 
as Q approaches the surface, Uq approaches — M/2 or — 1/2. Hence 

Or 

Up - Uq^ ±M or ± I [2*25] 

f. H cos Bdl ±I [2-26] 

Thus if we go aroimd the path in such a direction that the integral is 

positive we have , 

/, H cos ddl = I [2-27] 

where the integration is carried once around a path enclosing the wire. 
If we encircle the wire n times, the work done is In. 
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It must not be assumed from the foregoing that the magnetomotive 
force is located at the surface of the equivalent magnetic shell. Such an 
assumption is obviously illogical, in view of the fact that the magnetic 
shell was arbitrarily chosen in position, and is contrary to all physical 
experience. Actually work is done upon a test pole throughout its 
motion, and the magnetomotive force is accordingly of a distributed 
nature. 

In the practical system the mmf in a closed path linking unit current 
is stated simply as one ampere-turn. The strength of the unit pole is 
such that 1 joule of work is required to carry a unit pole once around a 
unit current. 

2-7 Deductions from Ampere’s Law 

Consider an isotropic medium such as a large conducting mass of 
metal through which an electric current is flowing. Let us set up in 
this medium the coordinate axes shown in Fig. 2-6. The current may 

be considered to be a vector fmiction of position with respect to these 
axes and may have different values at different points in the space. 
Let the current density at any point x, y, r, be i with components 
i*, ty, and t, along the three axes, respectively. Construct the small 
rectangular area abed so that the comer o of this rectangle is at the 
point X, y, z. Let the side ab - dc = Ay, and let the side ad == be = Az. 
For convenience this area is shown greatly enlarged in Fig. 2-6. 

At the point x, y, z, the component of current density perpendicular 
to the area is The remaining components of current density at x, 
y, 2, that is, i^, and i,, contribute nothing to the magnetomotive force 
around the area. Now the components of current density normal to 
the area may be different for different points in the area. Let ^ be 
the average normal component of current density through the area. 
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The total current through the area is then 

I ^ la, Ay Az [2*28] 

Let us consider the magnetic intensity acting along the edges of the 
area abed. If we place a unit-magnetic pole at the point x, y, z, it is 
acted upon by a magnetic force H, having components H^t Hy, and Hg 
along the three axes. These components may vary for different points 
in the medium. This can be expressed mathematically by saying 
that H is a function of x, y^ and z; that is 

H = H(a:,y,2) [2*29] 

Let us define the average mag^tic field intensity acting along the 
edges ah and ad of our area as Hz and Hy, respectively, having the 
arrow direction indicated. We wish to find the values of the magnetic 
field intensity acting along edges he and de. This we can do with the 
aid of Taylor^s theorem if we assume that our function H(a;, y, z) obeys 
the continuity requirements of the theorem. Now the value of the 
field intensity along the edge de will be Hy plus the change in Hy as 
we move the distance Az from ah to dc. Assuming proper continuity 
and neglecting second-order effects, Taylor^s theorem tells us that the 
average intensity acting along de is 

+ [2-30] 
oz 

Similarly the average magnetic intensity along be will be 

fr _L A U^ + —Ay 
dy 

[2-31] 

We will now determine the amount of work done by the magnetizing 
forces when a unit magnetic pole is carried around the edges of the area, 
starting at a, moving to 6, then through c and d, and back to a. The 
work done by a force in displacing its point of application is the product 
of the force and the displacement in the direction of the force. Hence 
the work done is 

006 Bdl = 

Hy Ay + [^* + ^ A2 - ^ Az J Ay - Az [2-32]* 

aiob b to e c to d d to a 

* Since Hf in this case, is everywhere along the path of integration, 0 « 0 or 

180°. Hence cos 0 »» 1 or —1, accounting for the choice of sign in this equation. 
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According to Ampere’s law the work in practical units is equal to 
the current flowing normally through this infinitesimal area. This 
current is given in equation 2-28, and thus we have, equating 2-32 and 
2-28, 

dH — dH 
Ay + n, A2 + —Ay — HyAy-—^ Ay Az — SgAz = I* Ay Az 

ay dz 
[2*33] 

Dividing through by Ay Az, and taking the limit as Ay and Az approach 
zero, we obtain 

Limit 
Ay Azr-*-0 V I 

H cos 0 dl 
Ay Az 

dJJ, 
dy 

12-34] 

where the average values of the magnetic intensity and current approach 
their values at the point ic, y, z, in the limit. 

By constructing similar mathematical areas Ax Az and Ax Ay, and 
then from geometry estimating the work done, we may obtain by 
Ampdre’s law the relations for the y and z components of the current: 

and 

dllx dHz 

17 “ 
[2-35] 

dHy dHx 
dx dy 

[2-36] 

Equations 2-34, 2-35, and 2-36 may be expressed more briefly by the 
single vector equation 

V X H = curl H = i [2-37]* 

* The symbol V H (pronounced nabla cross H) is often used in place of the 
symbol curl H. The curl of a vector is defined by 

Limit 
H cos Q dl 

As 
- curl H 

If curl H is zero, the vector field is referred to as irrotational. In the static cases 
considered in Chapter 1, the fields were irrotational. When curl H is not equal to 
zero, as in this section, the field is said to be rotational. A convenient definition 
for cxirl of a vector is 

curlH 

i j k 

A A 
Bx By Bz 

Hx Hy 

BBS 
andthesymbolV - i— -f j-—1- k~- * 

dz dy dz 
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In the familiar unrationalized units curl H — 47ri. 
in emu and i is in esu, the equation becomes 

curlH = 
4irt 

If H is measured 

where curl H is a vector having x, y, and z components defined by 

curl* H = 

That is, 

dH, b^ 
dy bz 

dH, m. 
bz bx 

bll. 
bx by 

[2-38] 

curl H = i curl* H + j curly // + k curl* H 

2-8 The Electromotive Force Equation and Faraday’s Law 

The electromotive force may be defined as the work done by the 
electric field as a small electric charge is moved along a path joining two 
points P and Q in the field divided by the charge. This may be ex¬ 
pressed by the line integral 

pQ 
EMF = / E cos edl [2-39] 

Jp 

where 0 is the angle between the direction of E and the path element 
dl. In the field of static chaiges this integral taken around any closed 
path is zero. 

Faraday, in 1831, discovered that, when a conducting circuit is placed 
in a magnetic field whose intensity is varying, an electromotive force 
is developed in the circuit, causing a current to flow. This electro¬ 
motive force is proportional to the rate at which the magnetic flux is 
chfinging and varies with the dimensions and configuration of the 
circuit. Thus 

dd> 
EMF = - ^ [240] 

ot 

The magnetic flux ^ is the total flux linking the circuit; it is given by 
the relation 

0 — JJ' Ends 

where the surface integral is taken over the area bounded by the current 
and is an element of the area. Bn is the component of the flux 
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density normal to the element ds. Relation 2-40 is known as Faraday’s 
law for electromagnetic induction. From 2-39 and 2-40 we have 

J^Bnds [2-41] 

in any consistent set of units. If F is measured in esu and B in emu, 
equation 2-41 becomes 

fcos 

2-9 Deductions from Faraday’s Law 

The presence of a physical conductor in the changing magnetic field 
is not in any way a necessary condition for the existence of an electric 
field. Actually, wherever there is a magnetic field changing with time, 
it must necessarily be accompanied by an electric force given by relar 
tion 2-41. 

To reduce this equation to a point relation we may proceed as in 
section 2-7. The relation between flux density B and the total flux 0 is 
analogous to the relation between the current density i and the total 
current I. 

Let us consider the flux linking the rectangle Ay Az placed in a mag¬ 
netic field where the coordinate axes X, Y, Z of Fig. 2*7 have been set 
up. Let one comer of this rectangle be at the point x, y, z. The flux 4> 
linking the rectangle is 

- = //. Sf. ds ^ Ex Ay Az [2-42] 

where Ex is the average normal flux density ower the area Ay Az. 
Let us now consider the line integral of the electric intensity acting 
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around the edges of the area abed. Proceeding as in section 2-7, we find 
the average electric intensity to have the values shown in Fig. 2-7. The 
work done in carrying a unit charge around the rectangle is 

^ E cos 6 dl = 

^ Aj/j ba - ^ Azj Ay - EtAz [243]* 

a to 6 6 to c c to d to 

This work according to Faraday’s law is equal to — dt^/dt. Substituting 
for <t> from equation 242, we obtain 

dE 
Ey Ay + Et Az + Ay Az — Ey Ay-—^ £^y Az — Ex Az = 

ay az 

or 
(dEx _ 
\dy dz ) 

- Ex Ay Ax 
at 

dBx 
t Az --— Ay Az 

at 

[2-44] 

[245] 

Dividing through by Ay Az, and taking the limit as Ay and Az approach 
zero, we have 

Limit 
Ai/ K) 

i E cos 6 dl 

Ay Az 

dEz BEy _ ^ 

dy dz dt 
[246] 

By constructing similar mathematical areas Ax Az and Ax Ay, and 
deducing from geometry the work done, we obtain 

and 

dEx dEx _ dBy 

dz dx dt 

dEy 1 1 1 1 1 

dx dy dt 

[247] 

[248] 

These relations may be expressed more briefly in vector notation by 

dB 
V-E = curlE= - — 

dt 
[249] 

* As in the case discussed in section 2-7, E is always directed along the path of 
integration. From a to 6 and from 6 to c, ^ » 0®, so that cos ^ « 1. Along the 
paths c to d and dtoa,e ^ 180"*, so that cos ^ » -1, thus accounting for the choice 
of sign in this equation. 
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2*10 Maxwell’s Displacement Current 

One of MaxwelFs outstanding contributions to electrical theory is 
his conception of the electrical displacement current and its magnetic 
eflfects. The term displacement current resulted from MaxwelFs 
attempt to explain the phenomena which occur in a physical dielectric 
placed in an electric field. He conceived of separate positive and nega¬ 
tive charges bound together in a perfectly elastic way by the molecular 
structure of the dielectric. When no electric field is applied these 
charges annul the effects of one another and no electric effect is pro¬ 
duced by the dielectric itself. When an electric field is applied by an 
external source, the positive and negative charges are displaced in 
opposite directions and a state of polarization exists. In an isotropic 
medium the amoimt of this movement or displacement is proportional 
to the applied voltage or field. 

Since this is an elastic process it is evident that no steady or con¬ 
tinuous state will result. Maxwell, however, considered the transient 
or unsteady state. He showed that this motion of positive and negative 
charges in opposite directions constitutes a current which flows only 
while the electric field is changing. This concept is of the greatest 
importance in that it explains how magnetic fields may arise in regions 
where no physical conductor of electricity exists. In fact, the displace¬ 
ment is in no way different from the familiar conduction current except 
that it cannot exist as a direct current. Accordingly, it is a vector 
quantity, having direction and magnitude and being capable of resolu¬ 
tion into components like any other vector. 

If a battery is connected to a resistance, a current I flows in the cir¬ 
cuit consisting of the battery, the wire, and the resistance. Such a 
current is called a conduction current, and the circuit is said to be closed. 
If a condenser is connected in series with this system, there is an accumu¬ 
lation of charge of opposite sign on the two plates of the condenser, no 
steady current flows, and the circuit is viewed as an open circuit. If, 
however, an alternating voltage is applied in place of the battery, an 
alternating current flows in the connecting wires, and charges of opposite 
sign appear alternately on the two plates of the condenser. Before 
MaxweU^s time such a circuit was viewed as an open circuit, where the 
current existed only in the wire. Maxwell suggested the possibility 
of a current flowing in the dielectric between the condenser plates. 
Since the plates of the condenser contain at any instant an alternating 
electric charge, there must exist an alternating electric field in tfa^ 
dielectric between them. Maxwell postulated that any change in tike 
electric intensity in a medium is an electric current. 

Let us consider the circuit of ’Fig. 2-8, in which an alternating^nirr^t 
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generator has been connected. If (7 is the capacitance of the con¬ 
denser and V the voltage across it, the instantaneous charge on the 
condenser is defined by g = CV. Now the current I flowing in the 
circuit is, by the definition of current, 
at every instant equal to 

at 

Substituting for g, we obtain 

do dV 

Now with a parallel-plate condenser as shown in Fig. 2-8 the capacitance 
is, in the practical system, 

j Q- 

ffl WT' 
11 C □ 

[2-51] 

where d is the distance between the plates and A is the area of the plates. 
Substituting for C in equation 2-50 we have for the current density 

7 ^ e £7 
A d at 

[2-52] 

Since the potential difference between the plates is the line integral of 
the field intensity E, 

V = Ed [2-63] 

Substituting this value for V in 2-52, we have, in vector form, 

aE an 
^ at ~ at 

[2-54] 

It is seen that aD/at is proportional to a current. Maxwell suggested 
that we call the quantity 30/at a displacement current. It is seen that 
this displacement ciu-rent flows in the condenser whenever the current 
flows in the wire. Hence our total current is continuous. If, as often 
happens, both conduction current i* and displacement current dD/a< 
take place in the same material, the two components of current may 

be added. Thus 

t-w+f M 

In the conductor, ic is large in comparison with dO/at, and the current 
is largely conduction current. In the space between the condenser 
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plates, the conduction current density ic is small compared to the dis¬ 
placement current density SD/dt. Any conduction current flowing 
between the condenser plates is called leakage current. 

With these considerations in mind we may substitute for the current 
density i, in the equations developed in section 2-7, the total current 
density of equation 2-55. This gives 

curlH = Ic + 

dB’ 

dt_ 
[2*56] 

It has been proved experimentally that the displacement current pro¬ 
duces a magnetic field just as a conduction current does. 

2 *11 Maxwell’s Equations 

Collecting the general equations which we have obtained in the first 
two sections, we have:* 

dH, 

dy 

djh 
dz 

dx 

dHy aDxl 
(a) 

dz 

dH^ dDu 
• curl H = 

SD 
(6) [2-57] 

dx 
1 ^ y 

-‘cv-h 

a//* dD. 
(c) dy 

'1 +
 «« 

•• II 

* If magnetic poles can be isolated, then the form taken by Maxwell^s equations is 

curl H 
dD 

-curl E = u + dt 

div D = pe 

div B = pw 

where u», the magnetic current, is equal to and trm is the magnetic conduc¬ 
tivity. The volume density of magnetic charge, pm, is analogous to the volume 
density of electric charge pe- Under these conditions it is seen that Maxwell’s 
equations are symmetrical. The practical significance of the change is question¬ 
able because no materials are known to contain an abundance of free magnetic 
charges. Hence in practical engineering problems we. write 

Im * 0 

Pm = 0 

and the equations take the form given above. 
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BEt 1 II 1 1 (a) 
By dz at 

BE:, dE, dBy dB 
Bz dx dt 

■ curl E = (b) [2-58] 

BEy 1 

^
 1 1 dBz 

(c) dx By dt 

BDx BDy BD, _z j_y 
dx dy 

-f- - * = div D 
Bz 

= p [2-59] 

dBy dlii 

dx By Bz 

D = eE 

B = aiH 

divB = 0 [2-60] 

[2.61] 

[2-62] 

These equations, known as MaxwelFs equations, are called point 
relations since with their aid the electric or magnetic field may be 
determined at any point when the currents 
and charges are specified. 

To determine the forces acting on a charge 
or current other relations are required. The 
force acting on a unit charge at a point was 
defined in Chapter 1 as the electric intensity 
E at that point. The force on any charge is 
given by 

F, = gE [2-63] 
Fia. 2 9 Action of the mag¬ 
netic field upon a current. 
Force Fm = t 5 sin 0 and is 
directed into the paper if 
F and B he in the plane of 

the paper. 

where F is in the direction of E. 
In the magnetic field, the force acting on a 

unit magnetic pole at any point is the mag¬ 
netic intensity H at that point. From the 
definition of unit current in terms of the unit 
magnetic pole, the force acting on unit current at a point is equal to 
mH, the magnetic induction B. This force, however, acts at right 
nngloiH to the magnetic induction and to the current density as indi¬ 

cated in Fig. 2-9. That is, 

Fm = iB sin e [2-64] 

where 9 is the angle between the direction of i and the direction of B. 
The force is perpendicular to the plane in which i and B lie. This 
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is expressed in vector analysis by the vector or cross product 

F„ = ixB [2-65] 

(pronounced “ i cross B ”). When i = pv this may be expressed as 

F„ = p(vxB) [2-66] 

F„ is directed as indicated in the figure. 
If practically all the ciurent is coastrained to flow in a wire conductor, 

the magnetic field in which the wire is placed acts on the current and, 
because of the constraint, on the wire. The force produced on the wire 
is, of course, the well-known motor action, and it is at right angles to 
the plane in which the wire and magnetic intensity vector lie. 

If the current is not constrained to flow in the wire, but consists of a 
beam of electrons traveling through a magnetic field, the force acting 
on the electrons will cause them to deviate from their original direction. 

Fig. 2-10 Path followed by an electron when projected into a magnetic field with 
velocity v. v„ is the component of velocity normal to the magnetic field. 

This force, which is always at right angles to the direction of the field 
and to the instantaneous velocity, causes the electron to follow a curved 
path. If no electric field exists in the region, the electrons travel a 
helical path in passing through the magnetic field. This may be seen 
from a study of Fig. 240. Hence we may write for the force vector 

F = F, + F„ [2-671 

F = glE-f (vxB)] [2-68] 

242 Static State 

In the static state, that is, in the electrostatic and magnetostatic 
cases discussed in Chapter 1, Maxwell’s equations may be expressed 
more simply, since there is then no change with respect to time. They 
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Electrostatic 

dEg dEy 

Magnetostatic 

SHg dHy 

= 0 ^ curl E = 0 [2-69] =r 0 y curlH «0 (2*701 

dPgf ^ dPy ^ dPg 

dx dy dz 
div D = p [2-711 

dBg dBy dBg ^ ^ 
--V -== div B « 0 [2-72] 
dx dy dz 

D - eE B - pH 

As was previously stated, the systems of electrostatics and magneto¬ 
statics are completely independent of one another, and there is no cur¬ 
rent flow. The force between electric or magnetic charges is given by 
the relations: 

F, - Eg [2-75] 
and 

F,„ - Hm 12-76] 

2*13 Steady State 
In the steady or stationary state a current exists, yet both the time 

derivatives of electric and magnetic induction are zero. We have, 
then, for the equations defining the steady state: 

curl H = i 

dH, _ dHy 

dy dz 
— *» 

dHz 

d. dx 
= ly 

1 dHx 
— h 

dx dy 

dEg dEy 
= 0 

dy dz 

dEx dE, 
= 0 

IT dx 

dEy dEx 
= 0 

dx 9y 

curl E « 0 
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BDx ^ 
dy dx 

dx 

BBy 

+ = divD = p 
aZ 

[2-79] 

-h = div B = 0 
az 

[2-80] 

1 = (tE [2-81] 

Equation 2-81 expresses Ohm’s law in terms of current density, electric 
field intensity, and specific conductivity. In this form it represents a 
point relation and is most suitable for use with Maxwell’s equations. 

2-14 Quasi-Steady State 

In the non-steady state we must use the relations in their com¬ 
plete form. We may define, however, a state intermediate between 
the steady and non-steady state, which has been called the quasi¬ 
steady state. This state characterizes most of the problems of electrical 
engineering. The displacement current, except that in condensers, 
is taken as negligible in comparison with the conduction current. 
That is, 

ic ^ [2-82] 

and the field equations become 

dy 

az 

az 

curlH = ic 

dHy dHs 

dx dy *** ^ 

dEx St 

dy dz dt 

dEx dEx _ dBy 

dz dx dt 

dEy dEx _ dBx 

dx dy dt . 

dPg dPy dP, 

a* aj/ az 

curl E 

divD P 

dt 

dBx , dBy dBy 

dx dy dz 
div B 0 

12-83] 

[2-84] 

[2-85] 

[2-86] 
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The equations as given above include the induction law, but the 
magnetic field both inside and outside of the conductor is calculated 
as though it were produced only by the conduction current. The re¬ 
sults obtained when the displacement current is neglected are then 
correct only when it is negligible in comparison to the conduction 
current. This is true in most of the problems associated with low- 
frequency engineering. However, at high frequencies, the displace¬ 
ment current is often extremely important and we must use the com¬ 
plete Maxwellian equations. 

2-15 Further Discussion of the Continuity Equations’^ 
It may be shown that the continuity equation for electric current is 

contained in equation 2*57. Differentiating 2-57a, 2-57?), and 2*57c 
with respect to x, y, and 2, respectively, we obtain: 

dx By dx dz dx \ dt ) 

dy dz By Bx By \ Bt ) 

fHy 
Bz Bx Bz By Bz \ * Bt / 

[2-87] 

[2-88] 

[2-89] 

* The method of vector analysis applied to this manipulation is as follows: 

Given: 

then div curl H = div t 

but ^ div curl of any vector is 0 

therefore div i = 0 

Similarly, given curl E = — — 
dt 

therefore 
dB 

div curl E = 0 = — div —7 
at 

and div-=0 

or div B * 0 
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Adding and rearranging 

dx by by bx 

b^H^ b^H^ 
by bz bz by 

bz bx bx bz] [ bz\ 

The left member of equation 2-90 is zero if 

bx by by bx * bx bz bz bx ' by bz bz by 

These relations are equal if the order of differentiation may be changed, 
and this is true, with few exceptions,* if all the second-order derivatives 
exist. 

Thus 

= tea? + 

ty tcy + 

Hence 
^tx bly bl^ 

bx by bz 

Similarly from equation 2-68 we can show that 

bx by bz 

This equation establishes the continuity of the magnetic induction, or 
flux density, as it is often called. Further discussion of this point was 
presented in a previous section. 

2*16 Continuity of the Tangential Components of E and H 
In the solution of problems involving surfaces of discontinuity, it is 

*See Burington and Torranoe, Higher Mathematics, page 95, Section 17. 
MoQraw-Hill Book Company. 
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necessary to prove certain relations in regard to the boundary conditions 
that must hold in passing from one medium into another. These 
boimdary conditions may be established by means of deductions from 
Ampere's and Faraday's laws. 

Let us consider, for example, 
the surface of discontinuity be¬ 
tween two media shown in Fig. 
2-11. This surface may represent 
a discontinuity in dielectric con¬ 
stant, permeability, or conduc¬ 
tivity. Let us construct the small 
rectangle abed shown in Fig. 2*11 
so that one side of it is in medium 
1 and the other side is in medium 
2. Let the length of the rectangle 
be I and the width as indicated 
in the figure. Along the four sides 
of the rectangle let the average 
values of the electric intensity be Eit acting in medium 1, j52r acting in 
medium 2, = jSiat + E2N and S4 == E^f* + acting in both media 
1 and 2. Also let Bn be the average value of the normal component 
of magnetic flux density over the area of the rectangle. From Faraday's 
law we have 

/. E cos 6 dl — Bn ds 

Taking the path of integration around the rectangle 

i E cos 6 dl = — El tI “b E^w -|- E2 — E^w 
oto& &toc ciod dtoa 

[2*91] 

where 6 — 0 along path from 6 to c and c to d so that cos ^ = 1, and 
6 = 180® along path from a to 6 and d to a so that cos (? = — 1. Also 

= y* ds = SnWl 12-92] 

where wl is the surface area of the rectangle. Thus 

d 

et 
En'^l — — r? + EiHV E2 — E$w [2-93] 

Let us divide through by I and take the limit as w approaches zero. 

This gives 

Limit ["-7 * Limit FSar Bit + 7 (-^4 -^a) 1 [2*94] 
10^ J L ^ J 
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In the limit we have 

0 = E2T El T 
or 

EiT “ E2T [2*95] 

at the surface of discontinuity. Thus the tangential component of 
the electric intensity is everywhere continuous. 

By use of the magnetomotive force equation, i.e., 

In ds [296] 

we can show in a similar way the continuity of the tangential component 
of the magnetic intensity when the current density is everywhere con« 
tinuous. Let us replace the electric intensity vectors around the area 
abed by the magnetic intensity vectors HiT) ^3. and TI4,. Let In 
be the total average current density normal to the rectangle abed. 
Then 

Also 

y i„ ds=i„ y y ds=i„ wi 

y H cos 0 dl = — HitI + H2t^ — Bzw 

[2-97] 

[2-98] 

Eqiiating 2 98 and 2-97, dividing through by I, and taking the limit 
as w approaches zero, we have 

Limit {r„i«} = Limit I — ~ ^s) yi 
►O I IJ 

[2-99] 

In the limit 

or 
0 == —Hit "H H^t 

Hit ~ H2T [2100] 
at the surface of discontinuity. Thus the tangential component of 
the magnetic intensity is everywhere continuous. 

2* 17 Continuity of the Normal Components of D and B 

Two additional relations, useful in the solution of problems in refrac¬ 
tion and reflection, may be derived with the .aid of sectiop 2*15. The 
first of these is based upon the assumption that free magnetic poles 
do not exist, and upon the general equation 1’51, which states that 

ag, dB„ dB, 

ftc ay az 
divB 0 {1-611 
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Because lines of magnetic flux may be considered continuous it is 
necessary that as many leave one side of any given area of the bounding 
surface as arrive at the opposite side. This statement defines only 
the normal components of the magnetic induction and permits us to 
write 

= B2fr [2.101] 

In section 2*15 it was shown that the total current is continuous. 
In any medium where the conduction current is negligible the displace¬ 
ment current is therefore continuous also. This statement is equivalent 
to the equation 

dD^ , dDy , dD, 

dz dy dz 
= div D = 0 

which is valid in any region where there are no free electric charges. 
By means of an aigument equivalent to that above it is shown that the 
normal component of the electric induction is also continuous. That is, 

[2-102] 

2‘18 Units and Dimensions 

Probably no science has inherited a more bewildering array of imits 
than electromagnetism. This oversupply is evidence of the extremely 
wide application and great basic importance of the phenomena. The 
subjects of electrostatics and magnetostatics were built up independently 
and each had a workable, self-consistent system of units. Then 
Oersted’s discovery linked the two flelds, and Maxwell’s researches 
completed the union. It was found that any quantity in electricity 
or magnetism could be expressed numerically in terms of either electro¬ 
static or magnetostatic definitions, and this resulted in a confusing and 
unfortunate situation. Moreover, it became apparent that a basic 
problem of dimensions exists. In either system alone it is possible to 
assume some parameter dimensionless, and dimensions are readily 
developed for all other quantities of the system. It was customary 
to assume the dielectric constant dimensionless in electrostatics and- 
the permeability dimensionless in magnetostatics. Maxwell’s equations 
permit the ready deduction of dimensions of electric quantities in the 
magnetic system, and vice versa. However, e and y cannot both be 
dimensionle^. 

The situation was still further beclouded by the commercial applica¬ 
tion of electricity. The men who built our early generators and motors 
were practical engineers, not phjrsicists, and they demanded a con¬ 
venient set of imits for their work. The so-called practical units, a com- 
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promise between the two previous systems, arose from this demand. 
It works out rather well for problems in electric circuits of resistance 
and inductance, but the unit of capacitance in this system is entirely 
too large to be practical. 

We may evaluate the electric quantities with the aid of dimensional 
analysis in the following manner. It is convenient to take the magneto¬ 
static force equation as our starting point, where the force is given by 
the relation 

„ mi m2 m^ ^ 
F = —0“ = —5 for mi = m2 [2-103] 

fjLir 

We can define mi ~ m2 = 1 when F = 1 and r =r 1 on the assumption 
that fjL is unity in vacuum. But force may be expressed in terms of the 
fundamental units of mass [Jkf], length [L], and time [T] thus: 

F = [MA] = [MLT^^] [2-104] 

Replacing F in 2-103 as given in 2*104, and solving for m, we obtain 

[m] = [2-105] 

Using the equation F = mH or H — F/m, we have the dimensions of 
magnetic field intensity 

[^] = [2-106] 

From the definition of current we deduce its dimensions 

I = cose ds H[L] [2-107] 

[Z] = [2-108] 

But electric current is the time rate of transfer of charge. I = q/t. 
Accordingly the dimensions of charge in the emu system are 

[2] = [2-109] 

In order to compare the systems we now deduce the dimensions of 
electric charge in the cgs electrostatic system. In the electrostatic 
system, the definitive equation is 

F = 
glg8 

er® 
[2-110] 

The dimensions of q which follow from this equation are 

[j] = [2-111] 

Evidoitly electric charge is a fundamental entity and must have the 
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same dimension regardless of any definition used. Accordingly we set 

[j^l/2^1/2^-1/2] ^ f2-112] 

or 
[g-l/2^-l/2j ^ J2.113] 

We may not ascertain the dimensions of e or of /t separately from this 
process but we do know that the quantity 

1 L 
[2-114] 

has the dimensions of velocity. It might be thought that suitable 
manipulations of equations would yield another relation permitting 
explicit solution of the dimensions of m and s. Unfortunately, this is 
not true. We are free to define the dimension of one of the two arbi¬ 
trarily if the above relation is adhered to. 

One attractive possibility is to set 

[e] = [M-^L-^T^] and [/*] = [AfL"*] [2-115] 

From this assumption 

Charge [g] = [L] (length) [2-116] 

Current [7] = [LT~^\ (velocity) [2-117] 

Magnetic field [7f] = [7^^] (angular velocity) [2-118] 

Inductance [L] = [M\ (mass) [2-119] 

Capacitance [C] = [M~^r^] (compliance of a spring) [2-120] 

Potential [IT = [MLT~^ (mechanical force) [2-121] 

It is seen that the familiar properties of inductance, capacitance, and 
potential difference have exactly the same dimensions as the analogous 
mechanical properties. To those who employ physical reasoning this 
is a very real advantage. The energy stored in an inductance, fL/®, 
has the dimensions of kinetic energy. Similarly the energy 
stored in a condenser, jCF®, has the same dimensions \ML^T~% 

Another possible definition, and one which has found consideraJble 
favor, hinges upon the fact that the ohm is the most permanent, repro¬ 
ducible, and transportable of the electric parameters. It has therefore 
been suggested that the ohm be used as the basic electrical dimension 
[0]. The dimensions of c then become 

[e] = [L-^ rcrM 
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and the dimensions of m are 

[m] = [L-i TO] 

Were the ohm dimensionless, these equations would reduce to the 
unreasonable assumption that e and fx have the same dimensions. The 
advantages of the ohm as a basic unit of reference are not to be ignored, 
but it is not necessary to carry through the dimensional implications 
in order to obtain this practical advantage. 

The practice now becoming standard is to use the electric charge as 
the basic electrical dimension. Dimensional relations that follow are: 

Quantity Symbol Dimensions Practical Units 

Length L L Meter 
Mass M M Kilogram 
Time T T Second 
Force F MLT-^ Newton 
Energy W ML^T~^ Joule L 
Power P ML^T-^ Watt 
Charge Q Q Coulomb 
Current 1 T-^ Ampere 
Resistance R Ohm 
Electrical potential V Volt 
Electric field intensity E MLT-Hr^ Volt/meter 
Electric displacement D L-Hi Coulomb/square meter 
Dielectric constant e Farad/meter 
Capacitance C Farad 
Magnetomotive force MMF T-Hl Ampere-tum 
Magnetic field intensity H l-lf-iQ Ampere-tum/meter 
Magnetic induction B Weber/square meter 
Permeability Henry/meter 
Inductance L MLHr^ Henry 

It will be observed that no fractional exponents appear in the fore¬ 
going table and that the units are the familiar practical ones. There 
is, however, a very important basic principle that is not apparent. The 
mks definitions now in use reduce the practical system from an incon¬ 
sistent mass of definitions in terms of standard resistors, standard 
cells, etc., to a consistent reproducible absolute system. That is, any 
electrical property may be expressed in terms of the four basic quan¬ 
tities, the meter, the kilogram, the second, and the coulomb. Since 
the coulomb may be established quantitatively from the other three 
units it follows that the system is absolute and that physical relations 
may be stated precisely by its use. 

The question of rationalization does not appear in the foregoing 
dimensional analysis since it involves only a numerical constant. The 
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question involved is, fundamentally, in just what equations the factor 
4ir shall appear. In the esu and emu systems the force and potential 
equations are free from the 4ir term, while the term does appear in the 
flux, mmf, and field equations. Since we are dealing here primarily 
with the latter equations, we shall find it advantageous to use the 
rationalized system. 

Heaviside was one of the first to advocate a rationalized system. The 
Heaviside-Lorentz system, which he helped to formulate, decreased 
the imit charge of the electrostatic and magnetostatic systems by the 

factor V47r. This leads to a set of MaxwelFs equations that are free 
from the coefficient 4t. Certain of the intervening equations, how¬ 
ever, involve fractional powers of this multiplier, a most undesirable 
feature. 

The rationalized practical system as here used is due to Giorgi. The 
charge in the electric force equation is unchanged, while the unit pole 
of the magnetic force equation is modified by the factor 47r. Thus 
the imit electric charge is 1 coulomb, and the electric current is 1 cou¬ 
lomb per second, or 1 ampere. With a unit pole of the unrationalized 
system, the mmf (work per unit pole) in a closed contour enclosing 
unit current involves the factor 4w. The pole of the rationalized sys¬ 
tem is l/47r of the other pole, and therefore cancels the factor already 
introduced. In addition, the unit of electrostatic flux is associated 
with a unit charge. This leads to a divergence equation and a dis¬ 
placement current that are free from the factor 47r. 

PROBLEMS 

2*1 A circular copper wire has an area of 0.005 cm^ and conducts a current of 
2 amperes. How many electrons pass a given point in this wire per second? As¬ 
suming that there are 16.8 X 10*^ free electrons per cubic centimeter in copper, com¬ 
pute the average velocity of the electrons. An electron has a charge of 1.600 X 10“^® 
coulomb. 

2*2 It is known that the force exerted on a conductor at right angles to a system 
of lines of magnetic induction is BlI, where B is the induction, I is the length of the 
conductor, and I is the total current. Consider a stream of electrons having a 
charge e and a velocity v. By conversion of the above equation show that the 
force on each electron is Bev. 

2*3 In the typical antenna a current is caused to flow at the center of a rela¬ 
tively long straight conductor by inserting a generator there. Explain how the 
continuity of the total current applies in this case. 

2»4 Ordinary telegraphy is accomplished by keying or switching a battery 
circuit. Identify this operation in terms of static, steady, or non-steady state. 
Repeat for telephony using a carbon microphone. Repeat for a vacuum-tube 
oscillator system. Repeat for the electric lens system of a cathode-ray tube. 
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2*5 Calculate the current which will flow in a circular aluminum rod of radius 
0.2 cm if the electric intensity is 0.001 volt per meter. 

2*6 A current of 2 amperes flows in a circular wire circuit having a radius of 
10 cm located in free space. Calculate the magnetic moment per unit area of a 
magnetic shell which will replace this current circuit. 

2*7 An annular torus of soft iron has a major radius of 5 cm and a section radius 
of 0.5 cm. It is wrapped with 100 turns of wire uniformly distributed, carrying a 
current of 1 ampere. Calculate the average magnetic intensity, the total MMF, 
the induction if — 5000, and the total magnetic flux. 

2*8 Discuss the analogy between the electric circuit composed of batteries and 
resistances and the magnetic circuit composed of magnetic shells (or windings) and 
reluctance. In particular, mention numerical difTerences and certain other basic 
differences. 

2*9 Discuss in detail why the permeability of the medium must be considered 
in writing the relation between the magnetic shell and the current in an electric 
circuit. 

2*10 A straight wire 20 cm long is moved at right angles through a magnetic 
field having a value of induction B — 10® webers per square meter with a velocity 
of 5 meters per second. Calculate the voltage induced in this wire. Interpret in 
terms of the line integral of the electric intensity. 

2* 11 In one familiar form of the unipolar generator a disk of a conducting ma¬ 
terial is revolved between the poles of a permanent magnet. The electrical con¬ 
tacts are applied at the center of the disk and at the periphery. Consider such a 
device in which the magnet is greatly expanded and produces a uniform magnetic 
field everywhere normal to the disk. Why do not the flux lines rotate with the 
disk? If they did rotate with the disc what would happen? 

2-12 A circular slab of dielectric is 3 cm in radius and 1 cm thick. It forms 
the dielectric of a parallel-plate condenser which is subjected to an rms voltage of 
100 volts at a frequency of 10® cycles per second. Calculate the MMF (rms) due 
to the displacement current in this slab. 



CHAPTER 3 

MAXWELL’S EQUATIONS 

3'1 Maxwell’s Field Equations in Integral Form 

The fundamental field equations of electromagnetic theoiy as pre¬ 
sented and developed in the first two chapters may be summarized as 
follows:* 

From Gauss 
Clabbical Fobm Vbctoe FoBMf 

J' J'B„ds = 0 11.^“ 

[31] 

(3-2] 

From Ampere and Maxwell 

From Faraday 

where D = cqE + P = *E [3-6] 

and B = /[t«H + M = ;iH [3-6] 

Equations 3*1 and 3*2 state that the surface integral of the total flux 
through any closed surface S is equal to the volume integral of the 
charge density taken throughout the volume enclosed by the surface. 
The element of the surface is ds, and dr is an element of voliune. The 
subscript n refers to the component of the flux vector normal to the 
surface element. Li the electric field, the charge density is p, whereas 
in the magnetic field, we assume that there is no residual charge density 
of magnetization. 

* The form in which these equatbns are given here is used extensively. These 
equations can, however, be expressed in many other ways. 

t The vector ds has the direction of an outward normal to the surface and a magni¬ 
tude equal to the increment of surface area. 

S9 
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Equation 3*3 states that the line integral of the component of mag¬ 
netic intensity along the path element dl is equal to the surface integral 
of the component of total current density normal to the surface element 
ds of the surface bounded by the path along which the line integral is 
taken. The angle d is the angle between the direction of H and the 
direction of the path element dl at any point along the path. The dis¬ 
placement current is dD/dt. 

Equation 3*4 states that the line integral of the component of electric 
intensity along the path element dl is equal to the negative time deriva¬ 
tive of the surface integral of the component of the magnetic flux normal 
to the surface element ds of the surface bounded by the path along which 
the line integral is taken. The angle 0 is the angle between the direc¬ 
tion of E and the direction of the path element dl at any point along the 
path. 

It is understood that the relations D = sE and B = where e and m 
are constant, hold only in isotropic dielectrics and in isotropic parar 
magnetic and diamagnetic materials. 

In order to detennine the force acting on a charge or current in the 
presence of electric or magnetic fields, or both, we need in addition to 
these equations the relation 

F - g(E +v>‘B) [3-7] 

The vector cross product was explained in a previous chapter. Also 
the relation between the current density and the electric intensity 
E (Ohm^s law) is 

i = crE [3*8] 

where <r is the conductivity of the medium. The right-hand side of 
3*3 is often written in terms of the electric intensity. To do this replace 
I and D in terms of E according to equations 3*5 and 3*8. We then 
obtain 

H cos 0dl = 

3*2 Maxwell’s Field Equations in Differential Form 

The field equations as developed in differential form may be sum¬ 
marized as follows: 

From Gauss 
Classical Form Vector Form • 

dD, dD^ 0D. . _ 
-if + + "57 = ” bx by bt 

div D * p 1310] 

hB.. bB. _ 

“to+■^ + 17“® 
div B ** 0 1811] 
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From Ampere and Maxwell 

dH, dHy , „ dDx 

dy dz 

. 
curl* H = tc* + — 

at 
(a) 

dHx dH^ 

dz dx 
curly H = ley + — 

ot 
(6) [312] 

dHy dHx . dD» 

dx 
curl, H = ic, -h — (c) 

From Faraday 

dE» 

dy 

II 1 dB^ 

dt 
curl*E = - ^ 

ot 
(o) 

dEx 

z 

dE, _ 

dx 

dBy 

dt 

1 II (6) ■ [313] 

dEy 

dx 

dEx _ 

dy 

dB, 

dt 
curl, E ~-r- 

dt 
(c) 

Equations 3*12 and 3*13 may be written in the abbreviated vector form: 

curl H = i* + — 
ot 

13-14] 

curl E = - 
dt 

[3-15] 

The above equations refer to the most general medium with which 
we shall deal. This medium is restricted in the following sense: 

1. It is homogeneous in that e, fi, and (t, are constant over the region 
in question. 

2. It is isotropic in that these parameters have the same properties 
in all directions. 

The degree to which these requirements are met by different media 
is quite varied. Some media, such as air or free space, may be con¬ 
sidered to meet them rather exactly. Other materials, such as wood 

*or earth, are extremely inhomogeneous and anisotropic. A large class 
of materials including rubber, glass, and metals meet these require¬ 
ments to an intermediate degree. Average parameters can sometimes 
be selected when applying the field equations in media which deviate 
from these requirements. The field equations then give approxi¬ 
mately correct results depending on the degree of approximation. In 
many systems, it often happens that the conducting properties are 
negligible in comparison to the magnetic and dielectric properties, or 



62 MAXWELL'S EQUATIONS 

vice versa. In such cases the field equations are greatly simplified. 
The simplest of all media is free space or vacuum. 

Maxwell’s equations include practically all the fundamental laws 
and relations of electrostatics, magnetostatics, and electromagnetism 
except those relating to mechanical forces and to acceleration. 

3*3 Plane Waves and the Wave Front 

We are all familiar with the water waves set up when we drop a 
pebble into a still pond. The surface waves set up in this way travel 
outward from the disturbance and form clearly defined concentric rings. 
We may observe that if we drop in a number of stones at the same time 
the disturbance on the surface is quite complicated in the region where 
the stones hit the water. At some distance away, however, the waves 

Fia. 3-1 Illustration of wave motion. 

appear to be clearly defined ridges traveling with a definite velocity. 
At a distant point from the disturbance, let us observe closely the move¬ 
ment of a series of small particles all of which lie on one of the ridges 
as shown in Fig. 3-1. These particles will rise and fall together as the 
waves pass. If we imagine a line joining them, this line is parallel to 
the ridges and is called the “ wave front.” All along the wave front 
the phase of the wave is constant at any instant. If the pond is deep, 
and the water waves xmder consideration have small amplitude, the 
height of the wave will also be constant at all points of constant phase. 
Electric waves likewise resolve themselves at great distances from the 
source into clearly defined layers, thin sections of which change in 
intensity as the wave progresses, like water waves, electric waves 
progress at right angles to the wave front. 
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When water waves have small amplitude, their motion may be 
defined by the use of two vectors. One vector represents the direction 
and velocity of propagation of the wave; the other, the direction and 
amplitude of the wave front from some arbitrary reference level. This 
level may conveniently be chosen as the height of the water when no 
wave is present. To represent an electromagnetic wave, three vectors 
are required. One of them represents the direction and velocity of 
propagation; the other two, the amplitude and direction of the electric 
and magnetic field intensities. If the medium is not isotropic, the 
wave propagation may not be at right angles to the front. A wave 
which has a plane front is called a plane wave; one having a spherical 
front, a spherical wave, etc. Thus the words plane, spherical, etc., 
refer to the shape of the surfaces throughout which the phase of the 
wave is constant at any given instant. The amplitude of the wave 
may or may not be constant over this equiphase surface. With plane 
waves these equiphase surfaces form a system of parallel planes. With 
spherical waves, they form a system of concentric spheres. The term 
** ray ” is used to define a straight line which is everywhere normal to 
the equiphase surfaces and hence is in the direction in which the phase 
of the wave changes most rapidly at any given instant. The rays of 
a plane wave are straight lines, parallel to one another; those of a 
spherical wave are straight lines radiating from the center of the wave 
system. 

3*4 Longitudinal and Transverse Waves 

Water waves of small amplitude are essentially transverse waves * 
in that the variation in amplitude of the waves (the vibration) takes 
place at right angles to the direction of propagation. In the case of 
soxmd waves the displacement in the medium (the vibration) takes 
place along the direction of propagation, ‘ and they are called longi¬ 
tudinal waves. Thus, with transverse waves the vibration takes place 
at right angles to the rays, whereas in longitudinal waves the vibration 
takes place in the direction of the rays. In the electromagnetic wave 
the situation is complicated by the fact that both electric and magnetic 
vectors must be considered. Electromagnetic waves are, in general, 
neither longitudinal nor transverse in the sense that neither the electric 
vector E nor the magnetic vector H is completely longitudinal or com¬ 

pletely transverse. 
In some types of electromagnetic waves, the electric vector E is at 

*In general, water waves are both longitudinal and transverse. Where the 
amplitude of the wave is small, however, they approximate very closely transverse 
waves, and their cross section is nearly sinuBoidaL 
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right angles to the ray while the magnetic vector H is not. Waves of 
this type are called transverse electric waves or TE waves. Since the 
H vector is not normal to the ray it must have a component along the 
ray. In this sense such a wave is sometimes called longitudinal mag¬ 
netic or an H wave. In other t3T)es of waves the magnetic vector H 
is at right angles to the ray while the electric vector E is not. Waves 
of this type are called transverse magnetic or TM waves. In this case, 
E must have a component in the direction of the ray, and for this 
reason the wave is sometimes called longitudinal electric or an £7 wave. 
If both E and H vectors are at right angles to the ray, the wave is called 
transverse electromagnetic or a TEM wave. No electromagnetic field 
exists in which both E and H are wholly in the direction of the ray. 

3*5 Propagation of Plane Electromagnetic Waves in Free Space 

One of the simplest examples of wave motion, which we shall deduce 
from Maxwell’s equations, is a plane wave in free space. With such a 
wave, the electric and magnetic intensities are of constant value over 
any plane perpendicular to the direction of propagation. Such a 
plane is thus a surface of equal phase. Let this plane, which is called 
the plane of the wave, be the YOZ plane. Then the electric and mag¬ 
netic intensities have constant values for all values of y and «. Hence, 
the derivatives of the E and H vectors with respect to y and z are zero. 

From this we know immediately that equations 3‘12 and 3*13 re¬ 
duce to: 

dEx dH. 
0 as e- 

dt 
(a) 

1 
1 

1 II 
o

 (a) 

dHx dEy 
(h) > 13-16] 

dEg dHy 
ib) [3-17] 

dx 
= 6-^ 

dt Hx ~ 
► 

dEz 
(c) 

4 

dE„ _ dHz 
(c) 

i 
dx “ *1^ dx ^ dt 

where lo 0 and D and B have been replaced by eE and /M, respec- 
tively. 

From equation 3* 16a we know that = 0 or a constant ov& all 
space. Since constant values do not enter into wave propagation we 
take Ex « 0. Similarly, from 3* 17a, H, = 0. Hence it is evident that 
the vectors £ and H lie entirely in the YOZ plane. 

The choice of the direction of either the electric intenrity or the 
magnetic intensity in the YOZ plane is wholly arbitrary. Let us 
choose the direction of the electric intensity E parallel to the OY axis, 
and let us further require that E remain in this direction for all values 
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of distance anS time. Under these conditions E, - 0 everywhere. ♦ 
Hence from equations 3‘16c and 3'17& 

dH„ 

dx 
= 0 and [3.18] 

and we see that is also zero. This leaves E„ and as the only 
remaining components of the field, and hence the £ and H vectors are 
at right angles to each other. Equations 3*16 and 3.17 reduce to 

and 

dH, dEy 
[3*19] 

dx ~ ® dt 

dEy dH, 
[3-20] 

dx ~ ^ dt 

We can obtain from these relations an equation in Ey alone or in 
alone by the following manipulation. Differentiate 3-19 with respect 
to X and 3-20 with respect to t, obtaining 

d^Ey 

dx^ ^ dx dt 
= 0 [3.21] 

and 
d^Ey d^H, 

dtdx'^'^ d^ 
= 0 [3.22] 

Subtracting 3*22 multiplied by e from 3.21, we have 

If 

d^Ey 

^ dxdt 

equatidn 3*23 becomes 

d^Ey \ Q
y to

 

dtdx de 

d^Ey _ d^Ey t 
dxdt dtdx 

d^H, 

dx^ 

+ = 0 [3-23] 

[3-24J 

[3.25] 

By differentiating 3-19 with respect to t, and 3-20 with respect to x, and 
carrying through a similar manipulation, we obtain 

O £jy O £iy 

[3.26] 

* This assumes that E varies in amplitude only. A more general case exists in 
which E may be chosen to vary in angle also, 

t See footnote, page 50. 
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Equations of the form 3‘25 or 3-26 are well known in mathematical 
physics.* Equations of this type arise whenever wave motion is 
studied, for example, in the study of the vibrating string or the vibrat¬ 
ing membrane. Hence equations of the type of 3*26 or 3-26 are called 
plane wave equations. 

In solvmg differential equations it is often expedient to assume a 
solution, substitute it in the equation, and see whether there are any 
conditions under which it satisfies the equation. If conditions exist 
for which the assumed solution satisfies the equation, then it is a solu¬ 
tion subject to these conditions. Let us assume that 

Ey = Ey cos {(at — Px) [3'27]t 

is a solution to 3*26 where jS and w are constants to be determined. 
This may be written in the form 

Ey = Ey COS (jD ““ [3*27<i] 

where v = a)//5. Let us find the required partial derivatives and sub¬ 
stitute them into 3*26. We have 

— [Ey COS (ut — /3a:)] = fiEy sin («< — fix) 
ax 

^ [Ey cos (ut — j8x)] = — 0^Ey cos (ut — fix) 
OX 

Similarly 

[Ey COS (ut — jSx)] = — u^El cos (ut —fix) 

Substituting in 3*26 we obtain 

which yields 

— Ey cos (ut — fix) 
MS 

9 « 

^ Ey COS (ut - fix) 

* Page, IfUroducHon to TheoroHcal PhyaicSf D. Van Nostrand, Second Printing, 
1929, page 150. 

t The prime as used in this equation refers to the maxiinum value of tHe sinusoidal 
variation of the vector. Thus Ey represents the maximum value of Ey, Other 
symbols that are commonly used to designate the maximum are J^o> and E^yat, 
Since it is dei^able to include the component designation in addition to toe designa¬ 
tion for maximum, double subtoripts were avoided by the use of toe prime ** 
designation. 
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or, taking the radical as positive 

1 
V = —7= or V 

'V HE 

1 

There are evidently two solutions corresponding to the two values 
of r. These are 

and 

Ey = Ey cos — y/yizx) 

Ey = Ey cos a)(^ + Vms x) 

If we have two solutions to a given differential equation, the sum of 
these is also a solution. Hence the solution of 3*26 may be written 

Ey = Ey cos w Ey COS CO [3-28] 

where we take 

The first term on the right side of equation 3*28 represents a wave 
traveling in the +x direction, that is, away from the origin. To show 
this let us consider the value of Ey as given by this term at a distance xi 
from the origin at a time Then, neglecting for the moment the 
second term, 

Ey = Ey cos CO 

This value of Ey is the same all over a plane normal to the X direction 
at the.distance xi from the origin. Since Ey is a periodic function of 
distance and time, it will have this same value over a plane at a distance 
X2 > Xi from the origin at a later time <2 if 

h 5l 
V 

= <2 “• 
V 

that is, if the argument is the same at both planes. This will be 

true provided that 

^(X2 - xi) » <2 - 
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or provided that 

X2 — xi _ _ 1 

^2 

We see, therefore, that v is the velocity at which the wave is propa¬ 
gated in the direction of x increasing, that is, the +x direction. The 
first term of equation 3*28 is called the incident wave. The second 
term, however, represents a wave moving in the opposite direction. 

for if we consider the argument we find that in order for 

Ey COS CO to have the same value in both planes it is suflScient 

that 

+ 
xi 

t2 + 
V 

or 

X2 — Xi 

h ~ ^1 

Since in this discussion velocity and time are not negative, and since 
X2 > xif it is evident that the wave must be traveling in the direction 
of x decreasing,’that is the —x direction. This term is referred to as 
the reflected wave. 

Let us consider the wave moving in the direction of x increasing, that 
is, the forward-moving wave 

Ey = COS « [3-28o] 

At the time t — 0 

Ey = COS ^ = E'y cos |8x [3*29] 

From this equation we can determine the value of Ey at all points in 
space at this instant. Let us set up the axes shown in Fig. 3-2 in which 
we may draw the curve 

y ^ Ey cos 

Over any plane parallel to the YOZ plane the electric intensity has a 
value given by the ordinate of this curve at the value of x for which 
the plane is drawn. This value of Ey is the same at all points in this 
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plane, and is in the y direction at all points. Similarly over any other 
plane parallel to this one the value of Ey is the same as the value of the 
ordinate to the curve Ey cos at which the plane is drawn. Hence 
equation 3 28a gives us the distribution of Ey throughout all space at 
any instant. 

From Fig 3 2 it is clear that the value of Ey is unchanged if a: is 
increased by some amount X. Let us set jS = 2x/X. Then we may 
write 

27r 
El cos fix = El cos — (x + \) 

A 

since cos fix = cos (fix + 2x) The constant X is known as the wave¬ 
length; it is the distance traveled in one cycle by a periodic function. 
It is equal to the distance db, Fig. 3 2. If the wave travels a distance X 
in a time T 

V 
X 

T 

The constant T is called the period of the wave. It represents the 
time required for the wave to pass through a complete cycle of positive 
and negative values. Hence the frequency / of the wave, defining the 
number of cycles per second, is 

1 
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giving the very useful relation 

V — f\ 

The velocity of propagation is determined by the constants e and n 
of the medium. If the medium is air, € = cq and m = Mo and 

V = = 3 X 10® meters per second 

It has been found experimentally that this velocity is equal to the 
velocity of light, within the limits of measurement. Hence MaxwelFs 
equations predict the identity of the velocity of light and that of radio 
waves in free space. 

The magnetic intensity Hz may be found from equation 3*19, where 

dHz __ _ 

dx ^ dt 

Since (forward-moving wave) 

Ey = E'y cos {(at — ^x) 

SEy 

hence 

dt 

dHz 

dx 

= — <aEy sin (cot — fix) 

= SCO Ey sin {cot — fix) 

Integrating, we obtain 

Since 

Hz - cos (at — fix) 

= si; E'y cos {(at — fix) 

V = 
Viii 

BV 

We obtain 

cos (ut — /3x) 

= Hi cos (at — 0x)' 

the maadmum amplitude of the magnetic intensity is 

K 

[3-30] 

[3'30a] 
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The relation 3*30 is plotted in Fig. 3*3 with equation 3*29 at the time 
< * 0. The remarks made in connection with the vector Ey apply also 
to the vector ff,. 

3*6 General Discussion of Electromagnetic Waves 

The water model illustrates in an extremely limited way the behavior 
of electromagnetic waves, but it is helpful in obtaining the concept of 
the wave front and the plane of the wave. Waves may be either guided 
or free in the same sense that a sound wave traveling inside a speaking 
tube is guided whereas one traveling in the outside air is free. Electric 
waves travding in hollow pipes or along a transmission line are guided 
whereas waves radiated from an outside antenna are free. 

It is often convenient in picturing the process occurring in wave 
phenomena to represent the intensity of electric and magnetic disturb¬ 
ances by the lines-of-force concept mentioned previously. The method 
is as follows. Lines are drawn in the direction of the intensity vectors. 
Solid lines represent the electric vector, and dotted lines the magnetic 
vector. Small arrows are usually drawn on the lines to indicate the 
direction of the force which would act on a small positive charge placed 
in the field. When the intensity is large the lines are drawn close to¬ 
gether; when weak, they are drawn far apart. Thus the density of 
the lines indicates the strength of the field, figure 34 is such a pic¬ 
torial representation, 'where the plane waves discussed in the preceding 
section are reproduced. The height at which the lines stop is chosen 



72 MAXWELL^S EQUATIONS 

arbitrarily. Actually they extend in all directions through space 
wherever the electromagnetic wave exists. In Fig. 34 time is held 
fixed. Actually the whole picture moves in the x direction with velocity 
V and represents a harmonic plane wave traveling forward. The elec¬ 
tric intensity E and magnetic intensity H are everywhere at right 

Fig. 3-4 A plane-polarized wave. 

Fig. 3-5 Alternative representation of a plane-polarized wave. 

angles to each other and to the direction of propagation. Such a wave 
as this is called polarized, in the optical sense. From tfie study of 
reflection of such waves it can be shown that the magnetic intensity 
lies in the plane of polarization, as the term is used in optics, and the 
dectric intensity is therefore at right angles to the plane of polarization. 
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This plane, in Fig. 34, is the XOZ plane. It must be remembered that 
we have not considered the source of the waves at this time; we have 
assumed ourselves at a large distance from it. If we remove ourselves 
a sufficient distance from the seat of the electromagnetic disturbance 
setting up the waves, small sections of the wave front will be suflSciently 
flat to be considered plane. 

When it is necessary to represent the wave configuration shown in 
Fig. 34 in a normal rather than a perspective drawing, it is convenient 
to use open and solid circles to represent vectors normal to the plane 
of the paper. The waves of Fig. 34 are represented in this way in 
Fig. 3-5. The small solid circles represent vectors directed toward the 
observer; the open circles, vectors directed away from the observer. 
Sometimes the convention is adopted of representing vectors directed 
toward the observer by open or solid circles and vectors directed away 
by small crosses. The former convention will be used throughout this 
book. The closeness or density of the circles is proportional to the 
strength of the field. 

3*7 Energy in the Electromagnetic Wave 
It was shown in an earlier section that the energy per unit volume 

associated with the electric intensity in a dielectric is where 
E is measured in volts per meter and the energy is expressed in joules 
per cubic meter. In the plane wave, discussed in the preceding sec¬ 
tions, the electric intensity varies sinusoidally in time and space. 
Moreover the magnetic field varies in the same manner and reaches its 
maximum at a particular point at the same instant that the electric 
field there is a maximum. The maximum density of energy at any 
instant during the cycle at a particular point is thus equal to 

2 2 
[3-31] 

3*8 General Case of Propagation of Plane-Polarized Electromagnetic 
Waves in an Isotropic Medium 

A more general solution to Maxwell’s equations in a homogeneous 
isotropic medium may be obtained by an elimination process which will 
now be described. In this development the substitutions le = oiE, 
D = eE, and B = juH are used. Let us differentiate equation 3*12a with 
respect to time. Then 

= rvooi 
dt \dy dz] dt dy dt dz df 

Differentiate 3-13b with respect to z and multiply through by —I/mi 
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obteuning 

1 a 
H dz\ dz 

1 3% 1 ^ ^ 

fi dz dx dz dt 

Differentiate 3-13c with respect to y and multiply through by 1/y, 
obtaining 

1 d \dEy 

n9y\dx 
1 aX 1 

H dy [dx dy \ ji dy dx y dy^ dy dt 

Add equations 3-32, 3-33, and 3-34, collecting terms involving H on 
the left-hand side and terms involving E on the right-hand side. This 
gives 

aX aX aX dE^ 

dt dy dtdz'^ dz dt dy dt ^ dt 

J. ^ aX ,^*1 

dt^ y 1 dz^ dz dx dy dx dy^ | 
aX _ iX , ^ 
dz dx dy dx dy^ 

aX ^ ^ 
dt dy dy dt dt dz dz dt 

then the left member of 3*35 is zero. Rearranging the right member 
we have 

d^Ey ^ d^E^ 

dy dx dz dx) 

Again, if 

d Jay O Jay 

dy dx dx dy 

^ dE, ^E, 
+ a-— 

aX ^ ^E^ 
dz dx dx dz 

d^Ey aX 
dy dx dz dx dx\ 

dEy dEg 

From equation 3* 10 

dEy dEg 

dx - I 

and hence 

d^Ey dl^Eg d 

dy dx^ dz dx dx \ dx t/ a®* ”* «a* 
[3-30] 
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On substituting this relation in 3-36 we get 

6*5, . 6*5, . 6*5 X U J^x V dEx ^^Ex 1 dp 
[3.40] 

Similar equations may be obtained in Ey and Eg by eliminating the H 
components from equations 3-12 and 3-13. For example, to obtain the 
equation in Ey, first differentiate 3* 12b with respect to L Then differen- 

q2jj 
tiate 3‘13a with respect to 2 so as to eliminate the terms * 

dtdz 
and 

d^Hx 
In order to eliminate the term 

d^Hg 
that is obtained from 3-12b, 

dz dt dt dx 
it is necessary to differentiate 3* 13c with respect to x. Then, when the 
terms are collected as before, we obtain the desired equation in Ey* 
The equations in E may be written then as 

<») 

6*5, 
+ 

6*5, 6*5, 65, 
+ 

6*5, 

6a:* ■ 6y* 
+ 

6z* 
iiff- 

dt 
p& 

6t* 

6*5„ 6*5„ 
+ 

6*5„ dEy 
+ 

6*5„ 

6a:* 
+ 

6j/* 6z* 
Off-? 

dt 6<* 

6*5, 
+ 

6*5, 6*5, dE, 
+ 

6*5, 

dx^ 6j/* 
+ 

6z* “ 
nor- 

dt 
jixe 

d<* 

160 

e dy 

s dz 

[3-41] 

We can obtain a similar set of relations in 5 by eliminating 5 just as 
H was eliminated above. Carrying through the manipulation: 

6*5, 6*5, 
+ 

6*5, 6*5, 
+ 

65, 
(a) 

6a:* 
+ 

6y* 62* 
= P& 

6t* 
jUOr 

61 

6*5„ 
+ 

6*5„ 
+ 

6*5„ d*5„ 
+ 

65„ 
(ft) 6.* 6y* 62* 

= MS 
6/ 

p<T 

dt 

6*5, 
+ 

6*5, 
+ 

6*5, 6*5, 
+ 

65, 
(c) 

6a:* V 62* 
= MS 

6<* 
fiff 

[3.42] 

Relations 3*41 and 3-42 may be more concisely written as 

6*E , 6E . 1 
V ® = M8+ 1^— + - gradp 

Ot 6 

V*H 

6<* 

6*H 
ps 

6<* 
1. 

[3-43] 

[3-44] 

It is highly desirable for the student to carry through this manipulation in order 
to familiarize himself with the process. 
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In an uncharged insulating medium p = 0 and <r = 0, and these equa¬ 
tions become 

li 

>
 [3-45] 

«2tt [3-46] 

We may express the relations 3-45 and 3-46 by means of the equation 

V‘C - i ^ 13471 

where C is symbolic for E^j Ey, Egf 11 xy Hyy or and = I/ms. As 

was mentioned before, this equation arises wherever wave motions are 
discussed and is therefore known as the wave equation. It is one of 
the most important partial differential equations of mathematical 
physics. 

3*9 Direction Cosines and the Normal Form of the Equation of a Plane 

We may find it helpful to review here several relations from analytic 
geometry. 

Fio. 3*6 Representation of direction cosines. 

C!onsider the point x, y, z, Fig. 3*6, at a distance s from the origin. 
If ai, a2y and as are the angles made by s with respect to the Xj F, and 
Z axes, we have 

x = s cos ai 

y ^ s cos a2 

z ^ 8 COS as 
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But 

COS^ ai + 8^ cos* a2 + 8* cos* as 

= 8* (cos* ai + cos* 012 + cos* aa) 

Since 8* = it follows that 

cos* «i + cos* aa + cos* as = 1 [348] 

It is often convenient to let I = cos ai, m = cos aa, and n = cos as, 
where I, m, and n are called the direction cosines of 8. Then 

1* + m* + n* = 1 [3 49] 

Let us now consider the angle 0 
between the lines AB and CD of 
Fig. 3-7. The projection of CD on AB 
is clearly the smn of the projections of 
CM, MK, and KD on AB. Thus 

CD cos 0 = CM cos ai 

+ MK cos aa + KD cos as 

where li = cos ai, mi = cos as, and 
ni = cos as are the direction cosines 
of the line AB. But 

CM — CD cos jSi 

MK = CD cos 02 

KD = CD cos 0a 

Fia. 3'7 Application of direction 
cosines. 

where la = cos 0i, via = cos 0a, and Ws = cos 0a are the direction 
codnes of CD. Thus we have 

CD cos 0 — CD cos ai cos 0i + CD cos as cos 02 + CD cos as cos 0a 

or 

Hence 

CD cos 0 = CD {Ilia + mims + rtiUs) 

cos 5 = fils + mims + niUs [3-60] 

giving the angle between two lines in terms of the direction cosines of 
each. This may also be expressed in terms of the sine of the angle 0 

since 

sin ^ = Vl — cos* 0 

ffln 0 = 1 — (Ilfs ■]■ mims fiiWs^ 

Therefore 

[3*50a] 
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Another relation which it will be useful to consider is the following: 
Let 8 be the length of a perpendicular drawn from the origin to the 
plane shown in Fig. 3-8. Let the point P, whose coordinates are 

y, z, be any point in the plane. Now the projection of OP on the normal 
ON to the plane is the sum of the projections of OM, MK, and KP on 
ON. But OM = X, MK = y, and KP = z. Also the projection of 
OM on ON is equal to OM cos ai. 

Similarly the projection of MK on ON is MK cos az, and of KP on 
ON is KP cos az. Thus 

ON = 8 = OM cos ai + KP cos az + MK cos az 

giving 

8 = * cos ai + y cos a2 + 2 cos «$ 

or 

8 = te + my + tn* [3-511 

giving the normal form of the equation of a plane in rectangular coordi¬ 
nates, in terms of the direction cotinea of the normal draws Ijxhs the 
pri^ to the plane. 
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3'10 - A General Solution of the Wave Equation 

The wave equation 3-47 may be expressed as 

^ = 1 ^ 
ds^ ~ dt^ 

[3-52] 

where C is symbolic for the components of E or H and is some function 
of 8 and t, i.e., C = /(s, t), and s is given by 

8 = Iz + my + m 

In the previous section it was seen that this is the equation of a plane, 
where I, m, n are the direction cosines of s, the perpendicular distance 
from the origin to the plane. The direction cosines may be expressed as 

n 
ds 

dz 

We may show that 3-52 is valid by obtaining the required partial 
derivatives and substituting in 347. Thus 

dx dx d8 d8 

djp dx d8^ ds^ 
Similarly 

d^C , d^C j a*C 2 d^C 
dy^ dr dz^ dr 

Thus 

„2o , a“c , a^c , 2 , ^.d^c i ^ 

dP 

Since ? + m® + n® = 1 we obtain the wave equation 3’52. It is well 
known that any function of s + is a solution of this eqriation, where o 
is a constant to be determined. To illustrate, let 

C = C(s + ca) [3-53] 

vdiei« C(s + of) is any function of s + Let us substitute this 
lunctiion into the pariid differential equation 3-52. We may obtain 
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the required partial derivatives as follows: 

dC _ dC d(s 4“ aO - ^ -c' 
ds d(s + at) ds d(s -f" dt) 

d^C d^C d(s 4" Cit) 

ds^ ~ d{s ds d(s + at)^ 

^ _ dC d(s 4” 
a -aC' 

dt ~ 3(s at) dt 3(8 + OJ) ^ 

d^C _ d^C d(s 4“ uO 
d(s + at)^ dt d(s + at)^ 

Hence 

C" = [3-54] 
tr 

giving 

Thus C(s + at) satisfies 3*52, provided that a == dbr. Therefore 
C2(s + vt) is Si solution of 3*52. Also, from 3*54, any function of 
(s — vt) is also a solution. Let this solution be Ci{s — vt). Thus the 
complete solution is 

C = Ci(s — vt) -f* 4“ 

where Ci and C2 are arbitrary functions in which 

Let us consider the argument (s — vt). Add to 8 an increment As 
and to < an increment At Then Ci(s — vt) will have the same value 
at a distance s + As and time < + A^ if 

s + As — + A/) « s — 

that is, provided that 

or if 

As — vAt = 0 

Thus we see that As is the distance that the plane of Ci (s — vt) travels 
in the time At so that the velocity of propagation, v, of the plane of the 
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wave is 

- ^ 1 
y/ fjz 

in the direction s. In free space, /li = /^o = ^tt X 10"“^ henry per meter, 
and e = So = 8.85 X 10““^^ farad per meter. Thus 

V = = 2.998 X 10® ^ 3 X 10® 
V Moso 

meters per second. Since C is symbolic for the E and H vectors, or their 
components. Maxwell's equations tells us that the velocity at which a 
plane wave is propagated in free space is the velocity of hght. In any 
other dielectric medium where s and m are constant quantities, the 
velocity of propagation of the electromagnetic waves is 

1 

It can be shown in a similar manner that C2(s + vt) represents a 
wave traveling in the opposite direction with the same velocity. As 
far as the wave equations are concerned the general configuration of 
the waves Ci and C2 is wholly arbitrary. It is necessary only that E 
and H be mutually perpendicular and that they lie in the wave front. 
The form of the functions Ci and C2 depends upon the exciting source 
which produces the waves. 

3*11 The Poynting Vector 

Let us consider a portion of a region in which an electromagnetic 
field is changing. It is evident that energy must be flowing into and 
out of this portion across the surface surrounding it. We may deter¬ 
mine. an expression for this energy flow from equations 3*12 and 3-13 
which are repeated below for convenience. 

dHy ^ dE, dEg dEy dHg 
(a) 

dy dz 
(0) 

dy dz 

dHg dUg dEy 
(6) 13-12] 

dEg dE, _ dHy 
(6) 

dz ' dx dz dx ^ dt 

dHy dHg , dE, 
(c) 

dEy dE^ ^ dHg 
(c) 

dx % dx dy ^ dt 

D has been replaced by eE and B by fJS., Let us multiply the three 
equations 3*12 by Ey, and Eg, respectively, and the tlnee equations 
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3-13 by —H,, ~Hy, and —Hg, obtaining: 

„ dH, „ dHy „ . „ dEg\ 
dj/ * dz ‘**®*^“'* at 

bHg 
— -tq/iSy+eJ?,— Ey— ^ 

dHy dHg dE. 
E.-^-E,-^ = ,c.Eg + ,E.^ 

ax ay dt 

dEm dEu QHx 
dy dz at 

dEx 
dz 

M3-55j + dEx 
dx 

dEx dE%i 
dx dy 

nH, 

dHy 

dt 

dHx 
dt 

M3.561 

Let us now add the equations 3*55 and 3*56 and at the same time 
collect terms in such a way that terms differentiated with respect to x, 
2/, and z are grouped together on one side of the equation while deriva¬ 
tives with respect to t are grouped on the other side. 

We obtain: 

dUg . „ affy, „ ^ „ a^yl 

-Eg^ + Eg^-\-II.^-^ -Hg^ 
dy dy dy dy 

affy aff, 3Ey dEg 
.E,— ^Ey— + Hg— -Hy— 

tcxEx + tcyEy + ic»Ex 

+ + [3-67] 

■VtiHx— ^ tiHy — yHx — 
at at at 

Let us consider the first four terms of equation 3*57. It can be seen that 
these may be represented by the negative of the partial derivative of a 
vector component Sx, where Sx == {EyHg ~ EgHy). That is 

dSx 

dx 
EgHy) = -Ey 

dHg 

dx 

H 
dx 

+ E,^ + H.f! [3.57o] 

dSji 
Similarly the next four terms may be represented by —where 

Sy = (EgHg - EgHg) 

dS 
and the following four terms by —^ , where 

dz 

[3-576] 

Sg = (EJiy - EyH,) 

Thus the left side of equation 3-57 becomes • 

dSy dSy 

,dx dy dz/ 
-divS 

[3-67c] 

[3-58] 

Let us now consider the terms involving the partial time derivative <m 
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the right-hand side of equation 3-57. Take, for example, the term 
„ BEt , , e d(Ex)^ 

zEx — . This may be expressed as - - .* Thus equation 3-57 
ut JL ot 

may be written 

-(■ Bx By Bz) 

+ -(* 

■ ) — I'CxEx + l-evEy IcxE, 

The field equations 310, 311, 312, and 313 are sometimes called 
point relations, in that they define conditions at any point in the electro¬ 
magnetic field, subject to the restrictions which we imposed upon them 
during their development. Equation 3-59 has been derived from them 
directly; it is itself a point relation. To analyze it further let us inte¬ 
grate each term in it over a volume r in the field and attempt to interpret 
the meaning of the various volume integrals. 

Equation 3*59, integrated over a volume r in the field, becomes 

//X + fffr 
---m Bt\2 2 ^ 2 ) dr 

J J J j \ 2 2 
[3-60] 

It can be shown that the first integral of equation 3*60 represents the 
outward flux of the vector S over the surface of the volume r. Con¬ 
sider the surface integral of S out of the volume element Ar shown in 

♦ To fllustrate, let = Ae \ Then El ^ A V (*-•*>. But 

^ = - and 
dt Bl 

Hence 

ot 

Therefore 

d^. 1 d(J?,)* 
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Fig. 3*9. The net outward flux through the surfaces of the volume 
parallel to the YOZ plane is 

— Sx Ay Az + (Sx + ^ As^ Ay Az - ^ Ar 
\ ox / ox 

where Sx is the average of Sx over the areas Ay Az, 
ward flux through the other two pairs of surfaces is 

and 

Similarly the out- 

Thus the net outward flxix of S over the surface of the volume element 
Ar is 

\dx dy dz) 

and this is equal to the surface integral of S over the surface of Ar. 
The total amoimt of S flowing out of a volume r per second is simply 

Fio. 3*9 An infinitesimal volume Ar = Ax As at a point x^y^zina, region in 
which an electromagnetic field exists. The bar over the energy vectors indicates 

the average value of the vectors over the various faces of the volume. 

the sum of the amounts flowing from each element of the volume. 
This, in the limit as Ar approaches zero, is 

///( ^Sx dSy 

dx dy dz 

Further, all this amount flows through the surface s surrounding the 

volume r, so that the rate of outward flow is // Sn de. Since these 
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two expressions are equal to each other we have 

This relation is true for any vector function of position; it is known as 
Gauss’s theorem. 

Let us next consider the second term in equation 3‘60. If the region 
in which our volume element is taken has a conductivity <r per unit 
volume, then there will be a diffusion of current through the volume. 

-*~X 

Fxa. 310 

We may study the energy relations in this volume by considering the 
current flow through it as related to the field intensity vectors. See 
Fig. 3-10. 

Let the average electric intensity between the AyAz faces be Ex. 
Then the average potential difference between these faces will be 
Ex Ax. Let the average component of current density flowing between 
the faces be to*. Then the average current flowing between them will 
be Lex Ay Az. The product of potential difference and current is power, 
or energy expended per second. Hence the power expended in causing 
the current to flow in the x direction is 

AF* = ExLcx Ay 

Similarly the average energy expended per second by the field in setting 
up currents in the y and z directions is 

Apy = EyLcy Ac Ay Az 

aPx = Egicx Ac Ay Ac 

The average power expended in the volume dement is thus 

AP = {ExLex + E^ey + E^cx) At 
where 

At - Ax Ay A 
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By dividing through by Ar and taking the limit as Ar approaches zero 
we may obtain a point relation for the energy in the medium. Thus 

Ap dP 
= -— = Exlex + EyI-cv + 

07 

Hence the energy expended throughout the volume r is 

Limit 
Ar 

-//X (Ex^CX H" Eyicy “f* Eglcz) dr — m LcE cos B dr 

where 6 is the angle between the directions of ic and E at any point in the 
region. 

Since the current density ic consists of the movement of a charge 
density p at an average velocity v, the electromagnetic field must supply 
this energy. 

The integrands appearing on the right side of equation 3*60 may be 
expressed more compactly by writing 

2 2 2 2 
and 

2 2 2 2 

It was shown in Chapter 1 that the relations eE^/2 and nH^l2 represent 
the energy per unit volume contained in the electric and magnetic 
fields, respectively. Their sum 

nlP 
2 "*■ 2 

represents the total energy contained in the electromagnetic field. 
Hence the integral 

f-*) 
dr 

represents the total energy of the field in the volume r. The time deriva¬ 
tive represents the rate of change of this total energy. Let us rewrite 
the energy equation 3*60 in the light of the above. It becomes 

Jfs„d8 + 

Outward flux of S 
or rate at whidb 
energy ia radiated. 

cos 0 dr 

Rate at which energy ia ex¬ 
pended in eatabliahing cur¬ 
rent. 

Rate of deoreaae of 
electromagnetic field 
energy. 

[3-611 
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THE ENERGY EQUATION 

It is therefore seen that the rate of decrease of the electromagnetic 
energy in any volume r is given by the right side of equation 3*61, and 
this is equal to the rate at which energy is expended in establishing the 
current (generation of heat in r), and the rate at which the vector S 
flows through the surface surrounding r. We may conclude, therefore, 
that the first term of equation 3*61 represents the rate at which energy 
is passing through the surface, or the rate at which energy is being 
radiated. Equation 3*61, then, is a statement of the conservation of 
energy of the electromagnetic field. 

The vector S, known as the Poynting vector, represents the flow of 
energy per second through unit area of surface. The components of 
S as given by equation 3*57 are 

= EyH, ~ E,Hy 

Sy = E^H^ - [3-62] 

St = ExHy - EyHx 

We can determine both the direction and magnitude of S by the use 
of direction cosines. Let us assign to the three vectors the direction 
cosines as follows: 

Vector Direction Cosines 

X y z 

S 1 m n 

E ^1 nil ni 

H I2 ni2 Ti^ 

[3-63] 

Then from 3-62 
Sx = EH(min2 — nim^) 

Sy = EHinih — lin2) 

St — EHQirnz — mil2) 

[3-64] 

Now the magnitude of S is given by 

S = [3-65] 

Substituting for <S», Sy, and Sz from 3-64, we will obtain, after the 

algebraic manipulation: 

S^ EH Vi - (Ills + miwia + [3-66] 

From equation 3‘50a it is seen that the radical in 3*66 is equal to the 
niuft of the angle between the vectors whose direction cosines are repre* 

seated in it. Thus 
[3-67] 
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where 9 is the angle between E and H. This establishes the magnitude 
of S. Its direction may be found by the following process. Let us 
first determine the direction cosines of S in terms of those of E and H. 
Now 

Sx = (EH sin 9)1 = EH (min2 — nim2) 

Sy = (EH sin 9)in = EH(nil2 — lin2) 

Sz — (EH sin 9)n = EH(lim2 — mih) 

as given by 3*64. Hence 

I — ^1% ~ nim2 
sin 9 

TI1I2 — I1II2 
m =-:—-— 

sm 9 

1x1712 — niih 
n ==-:—-— 

sm 9 

[3-681 

If is the angle between E and S, we know from equation 3-50 that 

cos = III + 

and, if ^2 is the angle between H and S, we also know that 

cos $2 = II2 + rnm2 + nw2 

Substituting for m, n as given in 3-68, we find after cancellation that 
cos = 0 and cos ^2 = 0- Hence and $2 must be 90®. The space 
orientation of the E, H, and S vectors is shown in Fig. 3-11. Since 

S 

#1 « ^2 = 90®, it is evident that S is perpendicular to the plane in 
which the E and H vectors lie. The magnitude of S is given in equation 
3-67. 

The vector S, called Poynting's vector, satisfies the requirements 
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of the vector or cross product, since it is perpendicular to two other 
vectors and has a magnitude equal to the product of these vectors times 
the sine of the angle between them. In vector notation S = E * H or 
[EH], and is designated positive if taken in the direction indicated in 
Rg. 3-11. It will be observed that this is the direction a right-handed 
(standard) screw would move if the vector E, coinciding with the slot in 
the screw, were turned into H. 

From this analysis we see that the direction of flow of energy is 
determined by the direction of the electric and magnetic intensity 
vectors, and its value is proportional to their product and to the sine 
of the angle between them. K the direction of either E or H is reversed, 
the direction of energy flow is reversed. If the direction of both E 
and H is reversed, their relative position is unchanged and the direction 
of energy flow is the same. Since the vectors E and H are traveling 
forward with a velocity v, the energy is streaming past any fixed point 
at this velocity. 

The average power flowing across unit area of surface normal to 
the vector S may be computed with the aid of the Poynting vector. 
Since S represents the energy per second fe-ansferred across a imit area 
normal to S, the average power p flowing across the area is the integral 
of S over a period. Then 

1 r*' 
P = -l [3-69] 

S = iS, -b jSy -1- kS* [3-70] 

Replacing Sx, Sy, and St from 3-62, 

S = iiEyHt - EtHy) -i- KfitHx - ExHt) + k(^*£r„ - EyHx) [3-71] 

This relation may be more concisely expressed by the determinant 

i j k 

S=‘\ Ex Ey Et \ [3-72] 

h Hx Hy H, 

defining the vector or cross product of E and H. Hence equation 3-i 
may be written 

P = ^ (E * B)d{ut) [3-73] 

It is usually o(Hiv«aient to use the exponential form for the vectors E 
and H instead of the sinusoidal or cosinusoidal form when peifonning 
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mathematical manipulations with them. For example, we may express 
the relation 

E = E' cos {(at — fix) in the form E = * 

where it is understood that, in the final solution, we will take only the 
real part. 

This is sometimes written 

E = real (E 
or 

E - [374] 

with similar expressions for the H vector. The electric and magnetic 
vectors may in some cases be out of phase with one another, and in 
general we may write 

E = E^ cos {(at “4” ^i) [376] 

H = cos {(at ^2) [376] 

where ^1 = —jSa: + «/>i and 62 — —fix + <^2» <#>i and <^>2 representing 
phase angles whose values are dependent upon the choice of the origin 
of time. Now cos {(at + ^1) and cos {(at + ^2) are scalar quantities, 
and hence 

E ^H = E^^cos {(at Bi) cos {(at -f* ^2)t [377] 

Hence equation 373 becomes 

^ 2ir jg/ ^ JJ/ 

p — I - I COS {(at + ^1) cos {(at + ^2)} d{(at) 

Since E' and H' are not functions of time, this may be written 

p sss —— C ^|cos (2ci)< + + B2) + cos {$1 — 
2'7r Uq 

E'xH' 
« —^ cos (^1 - ^2) [378] 

* Since £ » E V « E' [cos {<at ~ fix) + j sin (wi — fix)] the real part is 
E' cos {<at — fix). Hence 

E * « E' cos - fix) 

where it is understood that E^ which represents the maximum value of the time and 
distance variation of E, is real. 

t If we substitute E « oEi and H « dHi, where a and h are scalars, into the deteiv 
minant372definingthecrosBproduct, it may be shown that E>(H » E^xHi (06). 

t Since cos » cos y - i cos (« + y) + i cos (« - y). 
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Now 

E - [3-79] 

and 

H - £RHV<"‘+‘^> [3-80] 

We find it convenient at this point to introduce a new vector which 
is the conjugate of H and is written H*. It is given by 

H* = [3-81] 

By its use we have 

91 (E X H*) = £R (E' X [3-82] 

Hence 3-78 may be written 

p = i£R (E X H*) = i9l (E' X 13-83] 

Thus the average power flowing through a unit area of surface normal 
to the direction of flow is given by the real part of the vector or cross 
product of the instantaneous electric intensity E and the conjugate of 
the instantaneous magnetic intensity H. The vector p is known as 
the complex Poynting vector. 

In the forms of the electromagnetic field which we shall consider, 
the phase angle — ^2 is usually zero. Under these circumstances 
the average power p reduces to 

i j k 

p = f(E'xH') = i E'y Ei [3-84] 

Hi Hi 

The vector p may be resolved into components Pxy Pyy and p* directed 
along the coordinate axes so that 

p = ipa: + ypy + ^Vz [3*85] 

= - ElHl) + jWHl - E'Jll) 

+ k|(EX - ElHi) [3-86] 

P. = hW - E'X) 

Vv “ WHi - EM 13-87] 

P. “ WX - EM 

where px is the power flowing in the X direction across unit area parallel 
to the YOZ plane. Similarly -py and p, represent power flowing in 

the Y and Z directions through areas parallel to the XOZ and XOY 
planes, respectively. The total average power P flowing across any 
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given surface can now be computed by taking the surface int^ral of the 
normal component of p over the surface. Thus 

P = J J^Vnds 13-88] 

In the problems which we shall consider, it is possible to choose the 
coordinate axes so that the surfaces imder consideration represent con¬ 
stant values of the independent variables. For example, in the study 
of the rectangular v/ave guide, the sides of the guide are chosen parallel 
to the coordinate system. Thus setting y = 0 or y = a defines a 

Cross Section 
of Wire 

Fig. 3-12 Application of the Pojmting vector. 

surface which coincides with the top and bottom walls of the tube. 
Similarly setting z ^ 0 ov b defines a surface coinciding with the side 
walls of the tube. When considering the flow of power into these sur¬ 
faces from the electromagnetic fields within the guide, the normal 
component of p in the two cases are respectively Py and p*. The total 
power then is the product of these components and the surface areas 

in question. 
To illustrate the operation of Poynting’s vector, let us consider the 

following example. In Fig. 3*12 is shown a wire of finite resistance 
carrying a steady current J. In the dielectric surrounding the wire 
the lines of magnetic intensity form concentric circles around the wire 
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while the lines of electric intensity are in the direction of the wire. 
At the surface of the wire of radius r, the magnetic intensity is 

H = 
2irr 

[3-89]* 

Let the component of the electric intensity along the surface of the wire 
be E. Now E and H are at right angles to each other so that the rate 
at which energy is transferred from the dielectric into the wire is given 
by Poynting’s vector S which, because the current is steady, equals p. 

p = EH sin 0 M 
2ier 

[3-90] 

If we consider the energy entering the surface of the wire of length h, 

the surface area_involved is 2irrA Thus the power through this sur¬ 
face is 

El 
P = 2irr/i— = Elh 

The potential difference (IR drop) V across the section of the wire of 

length h is 
V = Eh 

* Thb relation may be obtained directly from equation 3-3, where 

/ H 006 9 dl 

Taking the line integral around a path coinciding with a line of constant magnetic 
intensity, H may be taken outside the integral sign and 

I 

If r is the radius vector from the center of the wire to the path, 

61 s= 2irf 

Hence I ^ 2irrH or H - I/27rr in rationalized practical units. The student is prob¬ 
ably more familiar with this expression as obtained in unrationalized emu where 
Maxwell’s equation is 

M H COB 9 dl. 

Carrying out the integration we get: 

4r/ * 2ierH or 
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Hence the flow of power into the wire is at the rate of 

P = IV joules per second or watts [3-91] 

This is a relation very familiar to electrical engineers. We can read¬ 
ily see that this result is correct only in the case of direct current or 
when the displacement current is small in comparison with the con¬ 
duction current. Otherwise 3-89 would be 

27rr\ dt / 

Under these conditioas the power entering the wire per unit area is 

E / o dE\ 

and the power entering the surface of area 2Trrh is 

P ^ Eh {I + irrh 
dt 

= 7/ + TrhV 
dt 

[3-93] 

The second term in equation 3*93 may be very important at high fre¬ 
quencies when dE/dt is large and the conductivity is low. 

PROBLEMS 

3-1 Identify the following wave systems as to longitudinal or transverse: (a) 
motion of a violin string; (b) motion of a slender steel bar struck on the end; (c) mo¬ 
tion of a slender steel bar struck transversely at its center; (d) motion of a thin 
circular steel plate struck at its center. 

3*2 Water waves of the ordinary kind travel on the surface. Are they longi¬ 
tudinal or transverse? Sound wav^ travel through the volume of water. Are 
they longitudinal or transverse? 

^ 3*3 A loop antenna in air is formed by a single square turn of wire 0.5 meter 
on a side. The edges lie in the OX and OY directions and are acted upon by a plane 
electromagnetic wave moving in the -j-X direction with its electric vector in the Y 
direction. The wave has a length of 3 meters and maximum electric intensity of 
2 volts per meter. Calculate from the electric intensity the open-circuit voltage 
induced in the antenna. 

3^ Repeat problem 3*3, basing the calculation entirely on the magnetic intens¬ 
ity. Compare the results. 

3*5 In sea water p is zero but <r is not negligible. Show what forms^result when 
a solution of equation 3*43 is attempted by substituting E « 

3*6 A vertical antenna (in the OY direction) 1 meter long is acted upon by the 
wave described in problem 3. Calculate the voltage induced in this antenna> con¬ 
sidering first the action of the electric field, then the action of the magnetic fi^ 
Are these two voltages additive? 
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3«7 The loop antenna of problem 3 remains in the XOY plane but is rotated 
so that its diagonal lies in the OY direction. Calculate the open-circuit voltage 
induced. 

3*8 A vector joins the origin and the point a; = 3, y = 4, 2 = 5. Find the 
direction cosines. 

3*9 Find the equation of the plane which passes through the point (3, 4, 5) 
and is normal to the vector which joins that point and the origin. 

3*10 A vector joins the origin and the point a; = 4, 2/ = 3, 2 « 5. Find the 
direction cosines and the angle which this vector makes with the vector of problem 
8 by means of the direction cosines. 

3*11 Consider a coaxial conductor in which the radius of the inner conductor 
is a and the inner radius of the outer conductor is h. Show that the Poynting vector 
integrated over the area between conductors is equal to VI^ indicating that the 
power is propagated between, rather than within, the conductors. 

^3*12 A plane electromagnetic wave in free space has a maximum electric in¬ 
tensity of 100 volts per meter. How much power is transmitted per square meter 
of/Wave front? 

^3*13 A plane electromagnetic wave travels in a rhedium having kc = 2, * 1.6. 
The maximum value of the electric field is 5 volts per meter. Determine the in¬ 
tensity of the magnetic field and distribution of energy between the electric and 
magnetic fields. 

y 3*14 A plane ectromagnetic wave in free space transmits power at the rate of 
7 microwatts per square meter. Evaluate the intensity of the electric and mag¬ 
netic fields involved. 

3-IS Verify equation 3-24 for the following functions: 

Ey ^ ax + by + cz 

Ey ^ ax + by + ct 

Ey ^ a COB X + b + ct 

where a, 6, and c are constants. 



CHAPTER 4 

REFLECTION AND REFRACTION OF PLANE WAVES 

It is well kno^ that electromagnetic waves are reflected, at least 
in part, whenever they pass a surface of discontinuity. The most 
familiar example is visible light, which is reflected to a greater or lesser 
extent by every material surface. Polished metals reflect nearly all 
the incident light in a regular fashion; that is, the angle of incidence is 
equal to the angle of reflection. Other materials which we call white 
or light colored reflect a large proportion of the incident light, but in an 
irregular or scattered fashion. Dark-colored materials reflect only a 
small portion of the incideqt radiation. In all the above examples the 
radiant energy not reflected is absorbed in the medium. Glass and 
other transparent materials reflect only a small portion of the incident 
radiation and transmit the remainder with small loss so that almost 
all the power which enters the system as light is delivered as such. 
Regular reflection is characteristic of transparent materials even though 
some dark material is occasionally added to absorb the radiation which 
is not reflected. 

In the following sections the familiar laws of physical optics will be 
developed by means of Maxwell’s equations. It will be foimd advan¬ 
tageous to keep the optical problem constantly in mind in order to 
obtain a better understanding of the mathematical argument. 

4*1 Reflection from a Perfect Conductor at Normal Incidence 

It has already been shown that the tangential components of E and H 
are continuous at any boundary. That is 

II [4-1] 

Hij> = H2T 14-2] 

By a similar process we showed that the normal components of D and 
B are continuous at the boimdary between any two media. These 
relations may be written 

Din = D2N [4*3] 

and Bin — B2N [4*4] 

where the subscript 1 refers to conditions in the medium on one side 
of the boundary or dividing surface, and the subscript 2 refers to the 

96 
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conditions in the other medium. The letter T designates the component 
of intensity which is at the point in question parallel or tangential to 
the sm^ace. The letter N refers to the component of induction which 
is at right angles or normal to the surface. 

Equations 4-3 and 44 are exact only when there is no distribution 
of free charge at the boundary surface. We are here concerned, how¬ 
ever, only with wave phenomena, and the action of any fixed or static 
charge is not considered. Accordingly we shall use 4-3 and 44 as 
they are written, ignoring the separate problems in electrostatics and 
magnetostatics which may exist as a result of the action of free 
charges at the boundary surface. 

The four relations expressed by equations 41 to 44 must be satisfied 
by an electromagnetic wave at any surface which separates two different 
media. These relations in addition to the fundamental wave equations 
which must be satisfied at all points permit us to calculate the basic 
laws of reflection and refraction. 

Let us consider first the case in which an electromagnetic wave in 
free space impinges at right angles upon a very large flat plate of per¬ 
fectly conducting metal. More general problems involving imperfect 
conductors, dielectric materials, and incidence at other angles will be 
considered later. Let the conducting surface be parallel to the YOZ 
plane. An electromagnetic wave similar to that shown in Figs. 4-lo 
and 4'1& is propagated to the right along the X axis. Such a wave 
may be described by the equations 

Ey = E'y sin (ut — fix) 1 [4-5] 
> Incident wave 

Hg — H', sin (<at — /Sx) J [4-6] 

Hi^.F-Ei and ^ 
Aim i8 

These equations describe a wave which is a harmonic function of time 
and space and is propagated in the -|-Z direction with the velocity v. 
The constants e and m refer to the space through which the wave moves 
and not to the metal reflecting surface. 

A perfect conductor is defined by the fact that the electric intensity 
within the conductor is zero. From equation 4-1 it is therefore neces¬ 
sary that the tangential component of the electric intensity just outside 
the conductor is also zero. This fact is the basis of the argument by 
which the reflected wave is established. Since the electric intensity 
defined by equation 4-5 is not equal to zero at the conductor it is neces- 

and 

where’ 
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sary that an equal and opposite intensity be assumed which with 4-5 
will add to zero. This second intensity characterizes the reflected 
wave. A trivial solution in which the electric intensity is everywhere 
zero results if the second or reflected wave is assumed to travel in the 
same direction as the original or incident wave. We therefore assume 
a wave of the same frequency and velocity traveling in the opposite 
direction. The reversal of the electric intensity, demanded by the 

Fig. 4-la Instantaneous distribution of electric intensity for reflection at normal 
incidence. 

continuity relation at the surface of the conductor, and the reversal of 
the direction of propagation require that the magnetic intensity of the 
reflected wave be in the same direction as that of the incident wave. 
This conclusion is immediately apparent from a consideration of the 
rule expressed in Fig. 3*11. The two components of the reflected 
wave are characterized by the equations 

Ey = — sin (w< + 0x) 

Hf = Hi edn (wf + fix) 
Reflected wave 

[4-7] 

m 
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The sum of the mcident and reflected waves produces standing waves, 
which are given for the electric intensity by the sum of equations 4-6 
and 4-7. Thus 

Eu(standing) = (wt - fix) - siu (w< + fix)} [4-9] 

For the magnetic intensity they are given by the sum of 4-6 and 4-8: 

(standing) ~ ff^jjsin (o)t fix) sin (o)t + [4* 10] 

Fig. 4*16 Instantaneous distribution of magnetic intensity for reflection at normal 
incidence. 

Equations 4-9 and 4*10, reduced by the trigonometric identity 

smA ± sin5 = 2|sm|(-4 ± jB) cos^(A =F 5)} [411] 

^»3(standlng) = -2^?isin/3a:cosw< 1 [4-12] 
> Standing wave 

(standing) = Sin <of COS /Soi J [4-13] 

At the plane x » xq, where the perfect conductor is located, the 
standing waves are 

Ey (standing —2Ey sin fiXQ (SOS ut [4* 14] 
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and 

IIz (standing) = “2ir' sin (d cos fixo [4-15] 

Our particular choice of the phase of the wave makes it necessary to 
assign to Xq such a value that sin is zero. Thus, Ey will be zero at 
the reflecting surface if Xq is given by the relation 

jSxo = Y n = 0, 2, 4, 6 * • • 

At the planes defined by these values of xq, the electric intensity is 
always zero, satisfying the initial continuity condition, and the magnetic 
intensity varies with time from zero to 2ff 

A useful plot shown in Fig. 4*2 results if we develop, as a function of x, 
the greatest values of the electric and magnetic intensities which occur 

MEDIUM 2 

Fig. 4-2 Stationary waves. 

over a cycle. By placing cos = dbl in equation 4-12 we obtain the 
maximum values of Ey over a cycle. The functional relationship is 
then given by 

landing) = ±2^?'SUl jS* [4-16] 

SimOarly, by placing sin cot = ±1 in equation 4-13 we obtain the 
maximum values of i?* over a cycle. Hence 

(max etanding) “ i2Ha COS ^35 [4* 17] 

Relations 4-16 and 4-17 are recognized as a system of standing waves 
similar to those existing on vibrating strings or other mechanical sys¬ 
tems, and are shown in Fig. 4-2. Thus, although £ and H of the 
incident wave are in time and space phase as are the E and H of the 
reflected wave, the total £ and H vectors ci the standing wave ate in 



POIAEUZATION 101 
C 

time and space quadrature. The doubling of H at the reflecting surface 
may be thought of as due to finite currents induced in the reflecting 
metal by the action of the incident wave. In a conductor of zero 
resistance such currents entail neither electric field nor loss of power. 

It must be understood that curves similar to those of Fig. 4*2 result 
if any value other than 1 is substituted for cos (at. Thus if cos (at = 0.707 
is used the resulting plot represents the space distribution of readings 
of rms instruments. One rather surprising aspect of this situation is 
that at certain points in space, called nodes, the electric intensity is 
always zero and at certain other nodes the magnetic intensity is always 
zero. At all other points the fields vary sinusoidally with time, and the 
values at any instant obey the sinusoidal space distribution shown. 

4*2 Polarization 

All the waves so far discussed have been of the type which is referred 
to as plane polarized. In such a wave the electric intensity is every¬ 
where parallel to some plane and the magnetic intensity is everywhere 
perpendicular to that plane. Such a wave system was described in 
Chapter 3 and is illustrated in Fig. 34. 

Plane-polarized waves are widely used in optics for such purposes as 
the testing of mechanical models, the determination of sugar content, 
and the elimination of glare. The waves produced by most commer¬ 
cial radio broadcasting stations are polarized, the electrical intensity 
being vertical and the magnetic intensity being horizontal, i.e., parallel 
to the earth's surface. 

Ordinary light is composed of radiation from a large number of atoms 
or molecules. Each atom or molecule acts individually in creating the 
light waves, and accordingly the resulting radiation is of a random nature. 
That is, ordinary light consists of many separate components each 
polarized at some arbitrary angle. The overall effect of such combina¬ 
tions shows none of the properties of a simple polarized wave. Such 
light is therefore referred to as unpolarized imless it has been specially 
treated by some selective process which removes all components that 
do not lie in some particular plane. It is by this selecting or filtering 
action that polarized light is produced. Polarized radio waves, on the 
other hand, result from the nature of the source or antenna which pro¬ 
duces them. 

Elliptically polarized waves resxilt from the superposition of two 
plane-polarized wave systems which are propagated in the same direc¬ 
tion and have the same wavelength and frequency. The two waves 
are, in general, of unequal intensity and differ by 90*’ in the plane of 
their polarization. The electric components of the two waves shown 
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in Fig. 4-3 are characterized by the equations: 

Ey = Wy sin M - ^x) [4-18] 

Ez - E'z cos (wt — fix) [4-19] 

It is seen that one wave is equal to zero at any given time and place 
where the other wave is a maximum. These two waves may be con¬ 
sidered as the separate components of a wave whose electric intensity 
E = jEy *+• kEz At any given place, as time is varied, the vector 
which characterizes the electric intensity describes an ellipse as shown 

Fia. 4 3 Analysis of an elhptically polarized wave into component plane-polarized 
waves. 

in Fig. 4-3. At any given instant of time the vector which character¬ 
izes the total electric intensity describes an elliptical helix throughout 
space. 

The magnetic vector which is associated with the sum of the two 
elementary waves is everywhere at right angles to the resultant electric 
vector and is in time phase with it. 

Circularly polarized waves are a special case of the elliptically polar¬ 
ized wave in which \Ey\ l-E*!** Here the electric vector at a given 

* The double bars around a letter refer to its absolute value. 
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place describes a circle during the course of one cycle. At a given 
instant the electric and magnetic vectors describe the form of regular 
helixes, the two being everywhere 90® apart. 

4*3 Boundary between Two Dielectric Materials 

Let us consider a plane surface separating two unlike media, as for 
instance a surface between air and glass. Since the dielectric constant 
of one material is different from that of the other, it is clear that the 
same equations cannot describe the wave on the two sides of the boun¬ 
dary. Accordingly, an additional expression representing a reflected 
wave must be added. It can be shown that three distinct wave sys¬ 
tems exist at every boundary of media. In the familiar example of 
total internal reflection, characteristic of binocular prisms and Incite 
light guides, a wave of extremely small geometrical extent exists in the 
medium of lower dielectric constant. It will appear later that this is 
essentially a standing wave system involving no transmission of energy. 
The three wave systems are generally referred to as the incident, the 
reflected, and the refracted waves or rays. It is our problem to find 
relations between the amplitude and the phase of these three waves 
which satisfy the general boundary conditions stated above. 

The simplest, and a very important, example of reflection occurs 
when a plane electromagnetic wave meets a boundary between two 
materials of different dielectric constant. It will be assumed that 
both media have negligible conductivity and the same permeability. 

In order to simplify the equations, and without loss of generality, we 
choose the incident ray in the XOZ plane of Fig. 4*4 and let the XOY 
plane be the boundary surface. The incident wave may be characterized 
by the exponential form: 

.K-O _ r4.2oi 

where I, m, and n are the direction cosines described previously. How¬ 
ever, m = 0 by our choice of axes, and at the boundary z = 0. There¬ 
fore at the boundary the function reduces to 

[4-21] 

Evidently this wave together with the reflected and refracted waves 
must satiny the boundary conditions. 

Let us assume first a refracted form of the wave 

.Ml*' 
feg-f wgy+ngfX 

H [4*22] 
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This must have the same form as 4*21 at 2 = 0 if it is a solution to the 
problem. The two can be identical for all values of and t only 
if C02 = CO, I2/V2 == l/vu and m2 = 0. These relatively simple equali¬ 
ties contain a wealth of information. The statement C02 = co tells us 
that the frequency is not changed at the boundary, a familiar and 
reasonable result. The fact that m2 = 0 is evidence that the refracted 
wave lies in the same plane as the incident wave. Finally the equa¬ 
tion I2/V2 — l/vi\& the familiar sine law of refraction. This becomes 
more evident if we rearrange the equation to the form vi/v2 = l/h- 
In terms of the angles i and r of Fig. 4*4 

and 
I = cos (90® ~ i) == sin i 

I2 = cos (90® — r) = sin r 

Moreover, vi/v2 is the index of refraction N of the upper material with 
respect to the lower.* We may therefore write 

N 
V2 

I 
h 

sin i 

sinr 
[4.23] 

Thus through the wave equations we have deduced the standard law 
of refraction ordinarily developed from purely optical considerations. 

The wave reflected at the boundary may be treated in much the same 
way. The incident wave function at the boundary is again of the form 

[4.21] 

Since the medium is the same for the reflected as for the incident wave 
we know that both waves have the same velocity vi. The reflected 
wave function is assumed to be of the form 

hr+miy+mz^ 

[4-24] 

which reduces to the form of 4*21 for 2 = 0 only if = w, mi = 0, and 
li = 1. That is, the direction cosine of the reflected ray is equal to that 
of the incident ray. This is possible under the conditions of Fig. 4*4, 
since the cosine of a positive angle is equal to the cosine of the equal 

negative angle. 
We have then established from the boundary conditions the fact 

that the incident, refracted, and reflected rays will lie in the same plane, 
a plane perpendicular to the boundary. In this plane the reflected 
and incident rays make equal angles with the normal. The refracted 
ray obeys the well-known sine law. 

• The index of refraction N is given here as a number greater than unity. It is 
the ratio of the velocities of the wave in the two media. 
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4*4 Reflection at Normal Incidence 

The above treatment, though perfectly valid, is incomplete in that 
it does not deal directly with either the polarization or the intensity 
of the various waves. These will now be developed, first for the special 
condition of normal incidence, later for a more general problem. Again 
the treatment hinges entirely upon the boundary conditions and the 
wave equations, and again the results are the same as those of the 
optical development. 

Let us consider a case similar to the one drawn in Fig. 44 but differ¬ 
ing in that the incident ray is normal to the XOY boundary plane. 
Let us choose E, the electric component of the incident wave, in the X 
direction, anjd H, the magnetic component of the incident wave, in 
the Y direction. Assume a refracted wave with the electric component 
Ez in the X direction and the magnetic component in the Y direo- 
tioe. Fiimlly assume a reflected wave with the electric component Ei 



106 REFLECTION AND REFRACTION OF PLANE WAVES 

reversed or in the negative X direction and a magnetic component Hi 
again in the Y direction. Reversal of a single component suffices to 
reverse the direction of the Poynting vector of energy flow. The 
permeability of both matcnals is taken as equal to that of free space. 
Accordingly, the index of refraction 

The inversion of the last fraction results from the fact that a larger 
velocity is associated with a smaller dielectric constant. 

It is now possible to apply the boundary conditions previously 
discussed. From our choice of wave direction all normal components 
of field are everywhere zero, and it is unnecessary to consider their 
continuity. Continuity of the tangential components of E and H 
gives us 

E - El = Ez I4-26] 

H + Hi ^ Hz [4.27] 

Moreover, in any medium the numerical relation H = E holds. 
Accordingly 

From 4-25, Substituting this value for 62 in 4.28 and 
replacing |ta by its equal m we obtain 

Hz nVTi Hi H 
Ez El E 

[4.29] 

Dividing through by N we have 

11 [4.30] 

Hence 

«..|h [4.31] 

and 

Hz’-^H [4 32] 

* When dealing with media in which mi No dielectrioa are known in which 
the permeability differs appreciably from that of free space. 
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Substituting these values of Hi and H2 into equation 4-27 we obtain 

JEj\ N E9 
TT I * TT ^ yT tA t 

E\ N En 

E E 

or, dividing throi^h by H, 

E “b El = NEz 

Eliminating Ez between equations 4'34 and 4-26 we have 

„ - 1 „ El N-1 
^ JV + 1 E N + 1 

But Ei/E is the reflection coefficient at normal incidence. The ratio 
of intensities or powers is equal to the square of the ratio of the electric 
vectors. Hence 

As the index approaches unity, corresponding to no discontinuity of 
medium, the reflection coefficient approaches zero. If the index is 
veiy large, the reflection coefficient approaches unity but can never be 

exactly one. 
An example may prove interesting. Consider the reflection of a 

wave traveling from air into glass having an index of refraction of 1.5 
(ei = «o> 22 = 2.25eo).* The power in the reflected wave is (0.5/2.5)^ = 
0.04 of the power in the incident wave. Conservation of energy de¬ 
mands that the remaining 96 per cent of the incident power be trans¬ 
mitted in the refracted wave. That such is the fact is readily shown 
by means of Poynting^s vector and the values of E2 and H2 developed 
above. The proof is suggested as an exercise for the student, the 
algebra involved being relatively simple. 

4*5 Ftesnel’s Equationsf 
We shall now consider the general case of reflection and refraction 

at a boundary between two dielectric materials. The equations just 
developed are simply special cases of this very general problem. The 
most significant factor that has not yet been considered is polarization. 
Not only is the angle between the incident ray and the normal arbitrary, 

* It wiU be observed that the value of » 2.25 is lower than the minimiun given 

for fldASS in Table 1*1, page 3. The values in Table 1*1 are derived from radio¬ 

frequency measurements. 
t The name is pronounced FrS n5T as if the s were absent. 
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but also the electric vector may have any angle with respect to the 

plane of the ray. 
In Fig. 44 all the electric vectors lie in the XOZ plane, and the 

magnetic vectors are parallel to the Y axis. In Fig. 4*5 the magnetic 
vectors are shown in the XOZ plane. Consideration of these two 
figures shows that an incident wave having its electric vector in any 

direction may be resolved into the two components shown. Accord¬ 
ingly, a solution of these two cases is a complete solution to the problem. 

Let us consider first the case of Fig. 44. The magnetic vectors are 
entirely in the Y direction, and therefore Hu) and Hax are UU zero. 
We may write from the basic wave equations 

Hy ^J-E; Hiy = . p El; and Hiy » J- [4-37] 
A//X2 
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Moreover, 

Ex - E cos i 

Eix — — El cos i 

E2x = ^2 cos r 

Eg E sin i 

Eu - — El sin i | 

E2z — — E2 sin r , 

The continuity of the normal component of D gives us 

Dg + Du = D2z 
or 

ei(E + El) sin i = ^2^2 sin r 

The continuity of the tangential component of E gives us 

Ex + Eix = E2X 
or 

(E — El) cos i = E2 cos r 

The continuity of the tangential component of H gives us 

Hy + Hly = Ihy 

Substituting for Hy^ Hiy, and II2y from equations 4*37 

^E + J^E^ =J^E2 
\ All \ Ml \ M2 

which may be written, when H2 = Mi 

E -f“ El == NE2 

This last equation may be combined with 4*40 to verify the 
refraction 

sine law of 

Equation 442 may be written 

E — El = E2 ■ 
( 

Eliminating E2 between 445 and 447 

]-{E->rEy)^E—-Ei — 
N cos r cos r 

Separating variables. 

„iVcosi — cosr _ cosr + Ncost 
E-- El- 

iV cos r N cos r 
[449] 
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But 

SO that 

E 

N 
sin i 
sin r 

N cos i — cos r __ sin i cos t — sin r cos r 

N cos i + cos r sin i cos i + sin r cos r 

[4-50] 

[4.51] 

With the aid of the trigonometric relations 

sin ^ cos ^ ^ sin 26 and sin A ± sin J5 = 2 sin dz B) cos =F B) 
[4.52] 

equation 4.51 may be written 

El _ sin 2i — sin 2r ^ sin (? — r) cos (i + r) ^ tan (i — r) 

E sin 2i + sin 2r sin (i + r) cos (i — r) tan (i + r) 

This is one of FresneFs equations. Reduction of this equation in terms 
only of the index and the angle of incidence is possible. Unfortunately 
the form is too complicated to be very useful. 

The alternative case of Fig. 4.5 will now be considered in a parallel 
development. The electric vectors are all parallel to the Y axis. 
Accordingly we write 

1
 

II tl — Ely, E2 = E2y [4-54] 

Hx = —H cos i Hz — H sin i 1 

Hix = cos i Hu = —Hi sin % > [4.55] 

H2x — —^^2 cos r H2t = H2 sin r J 

The magnetic components may be written in terms of the electric 

components since H = Vei/^i^?, Hi = Vsi/miHi, and H2 = ^62/^12^2* 
Thus 

r~" 1— ' 

Hx = — \I—H cos i 
A/mi 

1- 

Hz 
A/mi 

1— 

ffix- ““ \ COS i 

1— 

Hi, « — -v/~Hi sini 
A/Ml 

rr 

> [4-56] 

i?2*“ — •\/~^72 cos r 
\A12 

H21 = J-Hasinr 
AfM2 J 

The continuity of the tangential component of E gives 

E2 E — J®! [4-57] 
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The continuity of the tangential component of H gives 

+ Hlx [4'68] 

Substituting for Hx, Hix and H2X as given in equation 4*56, we may write 

-/— E2 cos r = */— E cos i + -/— Ei cos i [4-59] 
\ \ Ml \ Ml 

or, since M2 = Mi) 

V^JS?2 cos r = \^iE cos i + cos i [4"60] 

The continuity of the normal component of B is equivalent to continuity 
of the normal component of H since mi = M2 throughout. 

H2z = Hx Hix [4'61] 

Substituting for Hx, Hu, and H2X as given in equation 4-56, this may 
be written 

^/— .02 sin r = .»/— 0 sin f — .»/— 0i sin i 
\ M2 \ Ml \ Ml 

or 

V^02 sin r = V^0 sin t — V^0i sin i 

From 4*25, N — Hence 4'60 and 4*63 become 

JV02 cos r = 0 cos i + E\ cos i — (0 + 0i) cos i 

NE2 sin r = 0 sin t — 01 sin 1 = (0 — 0i) sin i 

sin i 
Equations 4-57 and 4*65 again give us iV = . Eliminating 02 

from equations 4*64 and 4*65, we have 

(0 + El) cos i sin r = (0 — 0i) sin i cos r 

[462] 

[4-63] 

[4-64] 

[4-65] 

01 (cos i sin r 4- sin i cos r) = 0 (sin i cos r — cos t sin r) 

01 sin i cos r — cos i sin r sin (i — r) 
— 

[4-66] 

[4-67] 

[4.68] 
sin 1 cos r + cos 1 sin r sin (i + r) 

This is another of Fresnel’s equations. The expressions of 4*53 and 4*68, 

sin (i — r) tan (t — r) 

sin (i + r) 
and 

tan (i + r) 
[4-69] 

approach each other as i and r become small, i.e., as normal incidence 

is approached. Moreover, = N approaches - = iV for small values 
sin r r 
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of i and r. Substituting i = Nr into FresneFs equations, we see that 

sin {Nr — r) tan {Nr — r) Nr — r N — 1 
(for small i and r) [4*70] 

sin {Nr + r) tan {Nr + r) Nr + r AT + 1 

the value previously deduced from equation 4*35 at normal incidence. 

4*6 Polarization by Reflection 

The equation for reflection applying to Fig. 4*4 was shown to be 

El _ tan {i — r) 

E tan {i + r) 
[4-53] 

When {i + r) = 90°, the denominator of the right member becomes 
infinite and Ei becomes zero. Hence there is no reflected wave. In¬ 
spection of the geometry indicates that such a condition is readily 
possible, the angles being i = 56° and r = 34° for ordinary glass.* 
The equation for reflection applying to Fig. 4*5 was shown to be 

El sin {i — r) 

E sin {i + r) 
[4*68] 

This expression is finite for i + r — 90®, and accordingly a finite reflec¬ 
tion obtains. It is seen, therefore, that, under one condition of polariza¬ 
tion, reflection occurs, whereas xmder another it does not. Since an 
unpolarized wave may be expressed in terms of the two cases treated, 
it is evident that a method for obtaining a polarized wave from an 
unpolarized one is available. Thus, when an impolarized wave im¬ 
pinges ^pon a glass surface at an angle of incidence of 56®, only the 
components of E and H in the directions indicated in Fig. 4*5 are 
reflected. This reflected wave is polarized as indicated by the reflected 
wave Elf Hi in this figure. 

We may also detect the plane of polarization of a wave by means 
of this phenomenon. By rotating the glass, while maintaining the proper 
angle of incidence, it is clear that a maximum energy in the reflected 
wave will occur when the vectors of the polarized wave are directed as 
indicated in Fig. 4-5. Conversely, a null method may be employed 
in which the incident vectors correspond to those of Fig. 4*4. Con¬ 
sequently it is possible to produce completely plane-polarized waves by 
this means or to use such a device as a detector of polarization. The 
only restrictions on the dielectric material employed are that if have a 
low conductivity and be suflSciently thick. Also, the use of a blackened 

* These values of the aui^es i and r are obtained from the simultaneous solution 
sin i 

of the equations t -f f * 90® and — « N *= 1.6 for glass. 
^ sm r 
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glass having a low coeflBicient of transmission is desirable in order to 
avoid difficulty with reflections from back surfaces. This critical angle 
of incidence is known as Brewster^s angle. 

4*7 Total Internal Reflection 

Total internal reflection is of interest to the electrical engineer because 
it forms the basis of the dielectric wave guide. The term internal 
reflection refers to the fact that the wave is traveling from the medium 
having the larger to the medium having the smaller index of refraction. 

See Fig. 4*6. Under these conditions N = ^ei/e2 is always greater 
than imity. The term total refers to the fact that under suitable con¬ 
ditions no power is transmitted to the second medium. 

In this case* we must write 

V2 sin r 
iv = — = : 

t’l sin ^ 
or N sin i == sin r [4.71] 

Since iV" > 1, sin r Is alwaj^s greater than sin When the angle of 
incidence has such a value that N sin i = 1, it is evident from equation 
4*71 that sin r = 1 also. This corresponds to r = 90°, which means 
that the refracted wave grazes the surface separating the two media. 
For values of i such that N sin i is greater than 1, equation 4*71 requires 
that sin r be greater by the same amount. This, of course, requires 
imaginary values of r. Physically this condition corresponds to 
complete reflection of the incident wave in medium 1. It must not 
be assumed, however, that no wave exists in the second, less dense, 
medium. Actually a rather special form of guided wave exists at the 
boundary and is propagated along the boundary plane. The situation 
may be treated by mathematical methods similar to those already 
employed. 

Let the incident ray be characterized by the function 

e V 
Ix4-«>y4-njg\ 

/ [4-72] 

where Vi is the velocity in medium 1, which has the higher index of 
refraction. From our choice of axes, Fig. 4-6, we may write m = 0, 
Z = sin t, and n = cos i. 

Accordingly the function may be written 
ag8int4-gco8t\ 

n ) [4-73] 

Similarly the refracted wave may be written 
a?Binr+8COBr 

V2 ) 
* See footnote on page 104. 

[4-74] 
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where, from equation 4*71, 
V2 - Nvi [4*71] 

is the velocity in the upper medium. This form is correct for any angle 
of incidence. From the relations 

cos r = v^l — sin^ r and sin r == JV sin i 

we have _ 

cos r = v'l — sin^ i = j sin^ z — 1 [4*75] 

depending upon whether N sin t is less or greater than unity. If it is 
greater, corresponding to total reflection, the angle is a pure imaginary. 

Fia. 4-6 Transmission from medium of higher dielectric constant to one of lower 
dielectric constant. 

Now the relation 4*74 representing the refracted wave may be written 

(. X8inr\ . /*coBr\ 

; [4.76] 

Replacing cos r by its value given in equation 4»75 for total reflection 
we may write 

. x«nr\ 
j(a\t-1-f 

z \ ^ /e [4-771 

Such a function represents a wave propagated in the +x direction with 
a vdocity i;2/sin r and attenuated in the +z direction by the exponential 
term 

[4.78] 
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Since iV sin t > 1 is the fundamental assumption, the velocity in the 
X direction is always less than V2. The attenuation in the z direction is 
high. The wave falls to 1/e of its value at the boundary for 

V2 

w sin* t — 1 
[4.79] 

If we let N sin i = 1*41, a reasonable assumption for glass of value 
N = 1.5, the radical reduces to unity. Also we have as identities 

V2 = A2 or 2irv2 =* u\2 [4.80] 

Accordingly the condition fo attenuation to 1/e of the value at the 
surface of the glass is 

X2V2 X2 

27rV2 2ir 
[4-81] 

The physical existence of such waves has been demonstrated. Less 
than total reflection results if any absorptive material comes within a 
distance comparable to X2 of the boundary. In fact, the trouble with 
dirt upon the prisms of binoculars is a familiar example. The specks 
of dirt absorb energy from the guided wave at the boundary and so 
impair the reflection. 

It may be observed from equation 4.77 that the planes of constant 
phase are parallel to the VOZ plane (x = constant) and that the planes 
of constant amplitude are parallel to the boundary (z = constant). It 
may readily be shown that Poynting’s vector for such a wave has no 
component normal to the surface, and therefore no energy is propagated 
in that direction. 

An expression for the energy in the reflected wave may be developed 
by means of Fresnel’s equations. It is only through this development 
that the total reflection of energy is established. In the first case 
treated torresponding to Fig. 4.4 we showed that 

_ sin t cos f — sin r cos r _ sin f cos f — jN sin i sin^ f — 1 

E sin f cos t + sin r cos r sin * cos f + jAT sin 1 sin® t — 1 

[4.82] 

Since numerator and denominator are conjugate complex numbers, it is 
evid^t that Ei and E are numerically equal. A phase shift ^dsts, 
however, which is equal to 

2 tan~ ,-i ^ * ~ ^ ) 008 I 
[4-83] 
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In the other case, corresponding to Fig. 4*5 

or 

El _ sin % QOS r — cos i sin r 

E sin i cos r + cos ^ sin r 

— i sin ^ sin^ t — N cos i sin i 

j sin i sin^ t — 1 + iV cos i sin i 

El _ N cos i — j sin^ i — I 

N cos i + j sin^ % — 1 

[4-68] 

[4.84] 

[4-85] 

Again numerator and denominator are conjugate, and Ei and E are 
numerically equal. Thus the statement of total reflection of energy 
is verified in both cases. In this latter case a different phase shift 
equal to 

2 tan ^ 
sin^ i - 1\ 

\ N cos i ) 
[4-86] 

is indicated. 
Several important wave phenomena result from this difference of 

phase shift. One of the most interesting is the formation of elliptically 
polarized waves from plane-polarized waves. If a beam of plane- 

polarized light having components corresponding to Figs. 4-4 and 4-5 is 
totally reflected, the two plane components will have a phase difference. 
In such a wave the electric vector never falls to zero at any place or at 
any time. Rather it acts as a rotating vector of variable amplitude. 
By means of two successive internal reflections it is possible to establish 
circularly polarized light in which the rotating vector is of constant 
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amplitude. Figure 4*7 shows the so-called Fresnel rhomb with con¬ 
stants suitable for the production of circularly polarized from plane- 
polarized light. Evidently the reverse function is also satisfied in that 
circularly polarized light is converted into plane polarized. This form 
of reciprocity is true in general of all such cases. That is, if elliptically 
polarized light is produced from plane-polarized, then plane-polarized 
light will result from the introduction of a suitable elliptically polarized 
beam. 

PROBLEMS 

4*1 A slab of material is to be prepared which will reflect 10 per cent of the 
incident wave power (light) and absorb the remainder, transmitting a n^ligible 
power from its rear face. What properties should the material have? 

4*2 Show that the tangential component of H is not continuous at the surface 
of a conductor if a finite current flows on the surface of that conductor. 

4*3 Show analytically how two plane waves traveling in the same direction in 
free space may be combined to form an elliptically polarized wave. Show the 
phase relation and relative amplitudes and polarization required. 

4*4 A plane wave falls normally upon the surface of a dielectric slab. Calcu¬ 
late the dielectric constant and index of refraction required if the reflection coeffi¬ 
cient on a power basis is 6, 10, 20, and 50 per cent. (Take Mm ~ 1.) 

4*5 A material has a dielectric constant of 4 and a permeability of 1. A plane 
wave travels nonnally from free space into this material. Calculate the relative 
field strengths E and H and the power in the transmitted and reflected waves rela¬ 
tive to the incident wave. 

4*6 Repeat problem 4*5 for a material in which the dielectric constant is 100. 

4*7 Referring to Fig. 4*4, the conductivities are both zero and both permea¬ 
bilities are unity. The dielectric constant of the lower material is unity, and that 
of the upper material is 3. The angle of incidence i is 30°. Given E in the incident 
wave, calculate all other values of E and H, Also calculate the angle of refraction 
r and the powers in the reflected and refracted waves in terms of that in the original 
wave. 

4*8 Repeat problem 4-7 for the orientation shown in Fig. 4‘5. 

4*9 Repeat problem 4-7 for a case in which the lower medium is free space and 
the upper medium has a permeability of 1 and a dielectric constant of 10. 

4*10 Repeat problem 4-9 for the orientation of Fig. 4*5. 

4*11 The electric vector of a wave has equal components in the directions indi¬ 
cated in Figs. 4*4 and 4*5. Repeat problem 4-7 for such a wave. 

4*12 A plane wave traveling in free space makes an angle of incidence i of 45° 
with a material having a dielectric constant of 4 and a permeability of 1. The 
electric intensity E in the incident wave is rotated 30° from the position shown in 
Fig. 4*4 toward that shown in Fig. 4*6. Calculate all other values of E and the 
angle of refraction r, and the power in the reflected and refracted waves in terms of 
the incident wave. 

4*13 A wave traveling in a medium of unit permeability and dielectric constant 9 
strikes a plane boundary with free space. Given i » 45°, <a » 10^^, the orienta- 
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tioQ of Fig. 4*5, calculate the direction and magnitude of the electric field in free 
space at distances of 1, 10, and 100 cm from the bounding surface. Calculate the 
velocity of propagation of the guided wave in free space. 

4*14 A wave traveling in a medium of unit permeability and dielectric constant 4 
strikes a plane boundary with free space. Given i » 60°, w « lO^S and the orienta¬ 
tion of Fig. 4*4, calculate the magnitude of the electric held at distances of 0.2,2, 
and 20 cm from the bounding surface. Calculate the phase shift between the 
incident and reflected waves in the medium. 

4*15 A Fresnel rhomb is to be designed for a material of unit permeability and 
dielectric constant 3. Choose the angles of the rhomb so that plane-polarized light 
is converted into circularly polarized light and so that light enters and leaves the 
faces normally. 

4*16 Design a Fresnel rhomb for a material of permeability 1 and dielectric 
constant 9. 

4*17 Non-polarized light is to be polarized by reflection from the surface of a 
material of dielectric constant 6 and permeability 1. Determine the angle (Brew¬ 
ster’s angle) for this material. 

4*18 Non-polarized light is to be polarized by reflection from the surface of a 
material of dielectric constant 2 and permeability 1. Determine Brewster’s angle 
for this material. 

4*19 Starting from the general form of equation 4*25, N 

equation which corresponds to equation 4*35. 

, develop the 

4*20 Given N , consider Fig. 4*4, and develop the equation which cor¬ 

responds to equation 4*46. 



CHAPTER 5 

PARALLEL PLANE WAVE GUIDES 

5-1 Boundary Conditions at a Perfect Conductor 

The material in this chapter is concerned with the propagation of 
electromagnetic waves that are guided by plane parallel conductors 
immersed in a homogeneous isotropic medium. Under such conditions, 
c, e, and ft, are constant, B = juH, and D == eE. Let us first consider 

that the guides are perfect conductors, that is, conductors which have 
zero resistance or infinite conductivity. Inside such a perfect con¬ 
ductor the electric intensity E vanishes everywhere, and electric charge 
can reside only on its surface. Actually, of course, no such conductor 
exists. However, much useful information can be obtained by making 
such a supposition, and, because of the simplifications which it intro¬ 
duces into the wave equations, it represents an excellent starting point. 

The conditions existing when the conductivity is finite are considered 
by an extension of the method. 

In Chapter 2 it was shown that the tangential compon^t of the elec¬ 
tric intensity E is continuous at the boundary between two media. 
Therefore the existence of a component of electric intensity along the 

conducting surface would require the existence of electric intensity in 
the conducting material. But this is contrary to the definition of a 
perfect conductor. Hence the only electric intensity vectors that can 
exist at the surface of a perfect conductor must be normal to the surface. 

5-2 Waves Guided between Conducting Parallel Planes 

Let us consider the propagation of electromagnetic waves traveling 
in the X direction in a homogeneous isotropic medium which fills the 
space between two perfectly conducting sheets of metal of infinite 
extent. Let these sheets be paraUel to the XOZ plane of our coordinate 

system. Let one of them cut the Y axis at the point y = —yo/2 (Fy?. 
5'1), and the other at the point y = yo/2, so that the distance between 

them is y^. 
For the plane wave in free space, the field equations show that the 

direction of propagation is at ri^t angles to the plane of the wave. 
When we chose the YOZ plane as the plane of the wave, we found that 

119 
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the direction of propagation was along the X axis, and that the E and 
H vectors were at right angles to each other and to the direction of 
propagation. In considering guided waves in this section it is our 
purpose to investigate propagation in the X direction. It does not 
follow that the wave front will be parallel to the YOZ plane, how¬ 
ever, for in the Y direction we have definite boundary conditions to be 
met, and it cannot be expected that the intensity vectors will be con¬ 
stant in this direction at any instant of time. In the Z direction, how- 

Z 
I 

Fio. 6.1 Showing arrangement of axes between two conducting sheets of metal of 
infinite extent. 

ever, we do not have boundaries, since our planes have been chosen 
of infinite extent. We can, therefore, consider that the electric and 
magnetic intensities at any instant of time are constant in this direc¬ 
tion and therefore that their derivatives with respect to z are everywhere 

zero. With this restriction the wave equations: 

dH, 
dy 

dH, 
dz 

dH„ 

die 
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become, when bibz = 0, 

bx 

by bt 

bH, 

bH, bE« 
bx bt 

bHx „ bE. 

dy St 

[5-3] 

bEy 

dx 

dEj 

dx 

BE^ 

By 

—M 

B^ 
Bt 

BHy 

Bt 

Bt 

[5-4] 

Our problem now is to solve these partial differential equations subject 
to the boundary conditions imposed upon them. 

Let us introduce at this point a further restriction, namely, that E 
and H involve time only through the factor This limitation is in 
no sense a narrow one, since we may take the real part or the im¬ 
aginary part of the resulting solutions and obtain sinusoidal or cosinu¬ 
soidal functions of time. These solutions will be particular solutions 
of the equations for any specified frequency / = w/27r. Since these 
equations are linear and homogeneous, the solutions for different fre¬ 
quencies are additive, and the complete solution is the sum of the par¬ 
ticular solutions. Now any periodic function of time may be developed 
in a Fomier series of sines and cosines of harmonically related frequen¬ 
cies. Hence, by proper summation, our equations will apply wherever 
E and H are periodic functions of time, even though the requirement 
that time appear only in the factor is imposed. Accordingly, as far 
as time is concerned, 

E = E'V"‘ [5-5] 

H = H'V"‘ [5-6] 

where E^' and H" are the maximum values of the time variations of 
the intensity vectors. Substituting these values for E and H into 
equations*5*3 and 5*4, and dividing through by we obtain 

BHj' 
Bx 

BH'J 

By 

BH'/ 

Bx 

dy 
= {ir 3<^)Eft 

[57] 

bEf: 

dy 
bEj' 

bx 
= -j<^yH'y' 

bWy' 

bx 

bE[ 

dy 

[5-8] 

We shall show that these equations represent two basically different 
modes of transmission. We may choose B in the Z direction and 
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obtain from these relations the components of the H vector, or we may 
choose H in the Z direction and obtain the components of the E vector. 

S<3 Transmission Modes; E and H Waves 

If we choose the electric intensity vector E in the Z direction, we 
obtain what is known as the transverse electric or TE mode of trans¬ 
mission. Waves satisfying this mode are also called H waves.* Under 
these conditions E — E„ and Ex = Ey = 0. Substituting these values 
for Ex and Ey into equations 5*7 and 5*8, we obtain: 

Z 

Fig. 5-2 Transverse electric or TE mode of transmission {H waves). 

Prom 5* 10c it is evident that H” = 0. The remaining components 
with this type of transmission may be represented shown in Ilg. 6*2. 
It is evident that the H vector does not lie entirely in the YOZ plane. 

If we choose the magnetic intensity vector H in the Z direction, that 
is, at light angles to the direction of propagation, we obtain what is 
known as the transverse magnetic or TM mode of transmission. Waves 

* Tbe deaignatuMU TE and H toe synonymous symbols. 
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satisfying this mode are also called E waves.* Under these conditions, 
H « Hg, and Hx ^ Hy - 0. Substituting these values for Hg and Hy 
into equations 5*7 and 5*8, we obtain: 

^ = (a +M)E'J (o) 

ciH** 
- = (a +M)E'y' (6) > 

ox 

0 ^ {a + ju>€)E'g' (c) 

[5 11] 

(a) 

dx 

BE” 
dx 

dEx 

0 (5) ► 

(c) 

[612] 

From equation 5*llc it is evident that JS'' - 0. The remaining 
components with this type of transmission may be represented as shown 
in Fig. 6*3. It is evident here, also, that the E vector does not lie en¬ 
tirely in the YOZ plane. 

y 

Fig. 5-3 Transverse magnetic or TM mode of transmission (E waves). 

The equations defining these two modes may be collected as follows: 

dHy dHx 
dx dy 

(o- 

dEg 

dx 

Ex 

-ju>nHy 

Ey^Hx^O^ 

TE <xt H 
waves 
(6-131 

dH'/ 

_ dHg 
dx 

dEy dEx 

dx dy 

(v ^j(a%)Ey 

--jtanHt 

TMotS 
waves 
1514) 

Hx-^Uy^Bx^O J 
* The designations TJIi and E are eynonymotis symbols and may be used inter¬ 

changeably. 
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Iliese equations for the two types of transmission modes are ex¬ 
pressed in terms of the maximum values of the time variation of the 
E and H vectors. We will now investigate the properties of these 
vectors as they are propagated in the X direction. Let us assume 
that the functional relation between E" or "H!' and distance is given by 

E" = E'e-1'* [5-15] 
and 

H" = [5-16] 

where E^ and are the maximum values of the intensity vectors in 
distance and time, and 7 is a constant whose value remains to be de¬ 
termined. This constant, called the propagation constant, will be 
discussed in detail later. 

Thus from equations 5-15 and 6"16 the E and H vectors are now 
functionally related to distance and time by the expressions 

E = EV"'e"'^* = [6.17] 
and 

H = [6-18] 

Substituting the relations 5-15 and 516 into 5-13 and 5'14 and dividing 
through by we obtain 

ia) 
oy 

— = V>) 
oy 

yEg = —j<afxHy (c) ^ 

TE or H 
waves 
15-19) 

bH' 
(a) 

= (6) 

(c) 
oy 

TMotE 
waves 
I5-20] 

5*4 Transmission Properties of E Waves 

We may obtain from equations 5-20 an equation in alone. Differen¬ 
tiate 6-20a with respect to y. This gives 

From 5‘20c 

dy^ 

dy 

(<r + jui) 
dEL 

juftHi — yEy 

Substituting for By from 5-205 we have 

dy <r + JUS 
h: 

[5-21] 

[5-22] 

[5-23] 

dEi 
Replacing in equation 5-21 with its value as given in 5-23, and 

dy 
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rearranging terms, we obtain 

= -b^ - +jue)]Hi [5-24] 

Let /Ai, ei, and ai refer to the dielectric between the plates, and At2> 
62, 0-2 to the conductor. Now in the dielectric 0*1, wei, so that 
5*24 becomes 

—2 = - (7® + [5-26] 

The solution of this equation is well known.* It may be written as 

J?' = Cl sin (^7^ + + C2 cos ('^7^ + "^£1)2/ [5*26] 

where Ci and C2 are arbitrary constants depending upon the amplitude 
of the original excitation. We may obtain jB' from equation 5*23. In 
the dielectriQi^ neglecting cri equation 5-23 may be written 

_(7^ + a?Vi6i) , 
dy jo)ti 

[6-27] 

Substituting for Hg from 5.26 and integrating, 

E'g. = ——tLl |(7j cog ('s/y^ 4. wVisi)2/ ““ C2sin 
JW61 

[5-281 

where we have omitted the constant of integration since it is of no 
importance in wave propagation. 

The Ey component may be obtained from equation 5‘206. Thus, 
neglecting <ri, 

Ey « -7^ Hg « {Cl sin (“s/7^ + )2/ + ^2 cos (y^y^ + w^isi )y} 
jcazi jcoBi 

[5-291 

At the boundary E'x = 0 and y = ±yol2. Let us set 

(V'y® + «Vei)3/o 

2 “2 
where n is an ^integer, so that 

Vy2 + „V,ei - — [5-30] 
Vo 

*^866, for example, Burington and Torrance,^Higher MatkemoHcs, McGraw-HOl 
Book Company, page 355, equations 1 and 2. 
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Then 

El 
Vy'‘‘ + wViei 

1' 

Cl cos — C2 sin I5.3I] 

Now three distinct conditions arise, depending upon whether n is 
zero, odd, or even. Under these conditions Ci and C2 are alternately 
zero in order that the boundary conditions be satisfied. Thus, when 
y = :±:yol2 and n is even, i.e., n = 2, 4, 6 • • • 

cos 
fnir y^\ ( tt\ 
I ] = cos I n “ ) = 
\ yo 2 / \ 2/ 

dll and = 0 

This will give 

El 
V..2 7 + <«> MlSi 

Cl [5-32] 

But El must be zero when j/ = ± 2/o/2. Therefore Ci must be zero if n 
is even. Similarly, when n is odd, i.e., n = 1, 3, 5, • • ■ 

El = ± 
^-2 72 + 

jusi 
C2 [5-33] 

when y = ± yo/2. Therefore C2 must be zero when n is odd. Finally, 
when n = 0, El ia given by 6-32 at j/ = ± yo/2 and Ci must be zero. 
Thus we have at 

n — 0, Cl = 0 
(B waves) 71 odd, C2 = 0 

71 even, Ci = 0 
[5-34] 

We see, therefore, that we may have different E waves characterized 
by the given value of the integer n. We may refer to these as En 
waves in g^eral or, specifically, as Eq, Ei, Ez, etc., waves, or as TAfo, 
TMi, TMz, etc., waves. 

With the aid of 6-30 and subject to the restrictions of 5-34, we may 
write, since H = hV"*"'*'* and E = eV"*""''® 

E, 

Ey 

Cl sin ^ yj + Cs cos e^'"‘ 

Vy^+u' 

7 

jcoei 

^ . /nw 
Cl sm l — y 

\yo 

IEn^TMn 
waves in 
the di- 
eleotric 
16-361 
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5*5 Transmission Properties of H Waves 

In a manner similar to that employed in section 54, we may obtain 
from equations 6-19 an equation in E[ alone. It is 

= - (7^ + [5‘36] 

The solution of this equation is 

Cz sin + C^4 cos + co^Miei)^ [5*37] ♦ 

where C3 and C4 are arbitrary constants depending on the amplitude 
of the original excitation. To satisfy the boundary conditions for a 
perfect conductor Eg must be zero at!/ = ±1/0/2. Again, let 

(V^7* + wVn) ^ = Y 

where n is an integer, so that 

Then 

■v/ 2 I 2 
V 7^ + a)>i6i = — 

2/0 

« Ca sm I — 2/1 + C4 cos ( — y) 
\yo / \2/o / 

[5-37a] 

[6-376] 

As for the E waves, three distinct conditions arise, depending on 
whether n is zero, odd, or even. Under these conditions, the constants 
C3 and C4 must be alternately zero to satisfy the boundary require¬ 
ments. Thus, if at 2/ = dzyQl2, 

n = 0 Eg - C4 and hence C4 must be zero 

n « 1, 3, 5, etc. Eg = =tCs and hence C3 must be zero 

n « 2, 4, 6, etc. Eg = ±C4 and hence C4 must be zero 

These requirements may be tabulated as follows: 

n = 0 C4 - 0 

(H waves) n odd Cs = 0 [5*38] 

n even C4 = 0 

Equations for ff' and Hy may be obtained from equations 5-19 and 
5-37. 

Thus from 6*196 

rr/ 1 Vy® + wViei -2-X 
Hi - ~ ■:-— ----\Cz cos (V72 + <a^niti)y 

jum (ty juiii 
— Ct sin (V72 + wViei)l/} [5-39] 
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and from 5-19c 

{Ca sin (Vy^ + o>Wi)y 
jam jufti _ 

H- C4 cos (Vy^ + w^niei)y} [6-40] 

Since H = Hand E = E'gi “‘-7*^ may write, for the equations 
of the transverse electric mode of transmission in the dielectric: 

E, - 

Hy = - (Ca'sb (- 2/) + C4 cos (- 2/)} 
I \yo / \yo /] J s 

Hn or TBn 
waves in the 

dieleotrio 
[6-41]* 

These equations are of course subject to the restrictions imposed by 
equation 5-38. 

S«6 Conditions for Wave Propagation 

The constant y appearing in equations 5-35 and 5*41 is^own as the 
propagation constant. It is customary to set 

y = a+jp 

where a is the attenuation constant and p is the phase constant. Thus 

_ ^ax—3^x _ oXg—y/3x [5-42] 

The term the attenuation factor, determines the rate at which 
the amplitude of the wave is reduced as it progresses in the X direction. 
The term determines the phase properties of the wave. 

We may determine y from equation 5*30. Thus 

and 

[543] 

[6^44]t 

So long as 7n lias no real part and an = 0. The attenu- 

• In writing these equations, + «Viei has been replaced by nv/yo according 
to 6-370. 

t We take only the positive sign of the radical since we" are interested only in 
propagation in the X direction. Also, since y depends on the value of n chosen, 
it may be written 7n* Thus yi corresponds to the value of y when n * 1, 72 for 
n 2, etc. This procedure wfll be followed in similar cases where convenient. 
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ation is therefore zero, and y„ = 7“ = — giving 

[645] 

Equations 5-35 for the transverse magnetic mode of transmission, and 
equations 541 for the transverse electric mode of transmission, may 
now be expressed in the following form,* subject, of course, to the restric¬ 
tions of the relations 5-34 for the TMn mode, and to the restrictions 
of relations 5-38 for the TEn mode: 

Hg « |ci sin ^ + C2 cos j 

E, = -^(-){Cl 
wei \2/o/l 

/nr \ 
cosi—y] 

\yo / 
- C2sin^^j/^je^<“‘-?-*) 

Ey 
fin L . f nr 

= —■^C'l sm I — ^ + Co cos 
toei 1 \yo / \yo /j 

E, 
' . (nr \ 

= ^Casm 1 — y) + C4 COS ( 
1 Vl^o / V .yo /] 

_ J— (7 cos (—y') - C4 sin 
«w\j/o/l \yo } \yo /] 

Hy = —— jca sin ( 
«jUl 1 \ 

-y)+C, 
yo / 

\ COS 

IEnOtTMn 
waves m the 

dielectric 
[6-461 

IHn or TEn 
waves m the 

dielectno 
[5-471 

These may also be expressed in the sinusoidal or cosinusoidal form 
instead of the exponential by taking the real part. Thus 

Ht = |Ci sin + C2 cos cos (w< - j8„x) 

co8(«<—/S„a;) Ey 

E, 

H. 

(dSl . 
Cl sin + Cs cos < 

\yo‘ 

{c.8m(^v) + C.coe(^»)} COS (ut — 

-M 

En or TMn 
waves m the 

dielectric 
16-481 

Hn or TEn 
waves m the 

didleotnc 
[6-491 

* In writing these relations m has been replaced by j/?», Vy\ + «Vif i by nx/yo* 
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If < (nir/yo)^, 7n has no imaginary part, fin * 0, and the 
exponential term involving 7n reduces to the hyperbolic sine or cosine. 

Under these conditions, there is ■ no propagation at all. We can, 
therefore, define a critical fre¬ 
quency /o * wo/27r at which 

coViSi -(-T \yo/ 

ao)n = (i) 
For frequencies above this value 
yn is imaginary and propagation 

_ without attenuation takes place. 
^ ^4^/1 / For frequencies below this value, 

Fig 5*4 High-pass filter action of parallel f-hcre is no propagation. Hence 
plates. (Ideal case of perfect conductors) the parallel planes act as a high- 

pass wave filter having the char¬ 
acteristic indicated in Fig. 54. This is true, of course, only if the 
planes are perfect conductors. 

Even if the conductivity of the bounding plates is infinite it must not 
be assumed that a physical source and receiver between the plates will 
not be coupled. The TEM mode discussed below has no cutoff 
frequency, and some power will be propagated in this way or by the 
familiar induction fields of low frequency. What is meant is that no 
wave in the particular TE or TM mode is propagated. 

5*7 The Principal or TEM Transmission Mode (Perfect Conductors) 

(Special case when n ~ 0) 

When n * 0, Cl « 0, and fin reduces to 

« 0) y/iiiti 

Equations 548 then become 

Hz * C2 cos (a>< — fi^) 

JE?. «0 

\ 
cos («< — ft)®) 

Since Eg 0, both E and H vectors are at right angles to the direc¬ 
tion of propagation. Thus both E and H are transverse, and we have 
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what might be called a transverse electromagnetic (TEM) mode of 
transmission. Under these conditions the critical frequency /o as given 
by equation 5-51 reduces to zero, so that there is no filter action. All 
frequencies will be transmitted without attenuation, and the waves 
will be guided between the plates without loss. The field distribution 
is shown in Fig. 5-5. 

y 

X 

Side view of TEM wave when time is held fixed at t = zero. 

Z 

End view of TEM wave when time is held fixed at t » zero. 

Fig. 6-5 

The situation may be visualized in another way. Suppose that a 
system of plane waves in free space impinges edgewise upon a pair of 
parallel plane conducting sheets in such a way that the electric vector 
is perpendicular to the sheets. Since the electric intensity has no 
component m the plane of the sheet there is no reflection and the wave 
continues without any change of form. Evidently part of the wave 
with its associated energy is propagated in the space between the i^eets 
while the remainder contmues outside them. The important point. 
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however, is that the wave is a true transverse electromagnetic ’wave, and 
that the guiding sheets serve only to limit the area of the wave front. 

The familiar dissipationless parallel wire transmission line is closely 
similar to this case. The electric and magnetic lines or vectors are 
everywhere perpendicular to each other and to the direction of propa¬ 
gation. Energy of any frequency from zero upward may be trans¬ 
mitted, and the characteristic impedance is a pure resistance inde¬ 
pendent of frequency. If two pairs of wires are used as a transmission 
system, results are similar but the fields are relatively more confined. 
In fact, it may be shown that the plane case here discussed is merely 
the limit approached as more and more pairs of wires are added to the 
transmission system. 

The velocity with which equiphase surfaces of this wave are propa¬ 
gated is given by the relation 

i‘^p)n ~ [5»53] 
Pn 

Hence, for n = 0, equation 545 reduces to j9o = and equation 
5-53 may be written 

(t;p)o = —^ = —= [5-54] 
wV jttiei V jxizi 

giving the phase velocity i;^ for the TEM mode. For air 

m = no and = ep 

so that 

Wo = c = —4= = 3 X 10* meters per second [5-55] 

5'8 Velocities of Propagation’" 

The term phase velocity, already used, is only one of three basically 
important velocities associated with wave motion. The others are 
group velocity and signal velocity. It is an unfortunate fact that the 
signal velocity, the most important of the three since it delines the 
effective time of signaling, is also the most obscure. Let us consider 
these various concepts. 

The phase velocity is defined by the relation Vp = /X, where X is the 
distance between equiphase points of two successive waves in a steady- 
state system. Such waves we have typically repres^ted by the fimction 

/(«< - fix) [6-56] 

*For an excellent disouseion of group and phase velocity see FvndamgntaU qf 

EUdrie Wwu, by H. H. Skilling, John Wiley it Sons, pages 184-168. 
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The surfaces of equal phase are characterized by. the relation/(cui — fix) 
« constant or 

o)t — fix = constant 

These equiphase surfaces are propagated with a velocity 

dx w 2r/ 27r 
A 

[5-67] 

[6-58] 

It will be shown later that this phase velocity may approach infinity 
or that it may be very low. Since energy is never propagated with a 
velocity exceeding that of light it is certain that such a quantity does 
not represent the propagation of energy or intelligence. Moreover, 
this definition for the phase velocity as given in 5 58 is based upon 
steady-state conditions and has nothing to do with the rate at which 
the wave system is initially built up. 

Another important velocity concept is that designated group velocity. 
As its name implies, group velocity is associated with the velocity of 
more than one wave. It is defined by the relation 

1 

dw 

[5-59] 

and is the velocity with which the envelope of an amplitude-modulated 
wave is propagated when the modulation frequency is very low com¬ 
pared to the carrier. 

Let us consider an amplitude-modulated wave in which the function 
cos (o)t — fix) describes the high-frequency or carrier wave and the 
function cos (8o)t — dfix)* describes the low modulation-frequency wave. 
The amplitude-modulated wave may be expressed in the form 

E = jS' [(1 + m cos {dojt — 5j8aj)] cos (cot — fix) [5-60] 

where E' is the maximum value of the intensity E in distance and time 
and m is the modulation factor, which may have any value from zero to 
unity. Expanding 5-60, we obtain 

E « E'{cos {(at — fix) + m cos (Scat ~ dfix) cos {o)t — 

as E^ {cos {(at — fix) + — cos [(w + B(a)t — (iS + 8fi)7^ + 
A 

— cos [(« — 6u)t — (/3 — 5/3)05]} [5*61] 

* The symbol 8 is used here to represent a small non-vanishing number. Thus 
8(a/2v represents the audio frequency, which is small in comparison to the carrier 
frequency <i»/27r. 



134 PARALLEL PLANE WAVE GUIDES 

It is seen that the wave of 5-61 evidently contains three component 
waves, including the original carrier and two others, one having a fre¬ 
quency slightly greater and the other a frequency slightly less than the 
carrier frequency. 

Equation 6-61, when m is unity, may be written as 

E 
ET, 

[6-62] 

[cos(cu^ — fix) -j- cos "f* do))t — (j^ “1“ ^fi)x]} 

+ {cos (ut — fix) -I- cos [(w — 6w)< — (fi — 5j8)a;]} J 

Let us consider the first term in the brackets of equation 5-62. By 
means of the trigonometric identity 

cos -|- cos J5 = 2 cos\iA — B) cos -f B) 

it may be expressed as 

2 cos ^(dfix — Swt) cos t — + [5-63] 

This expression is recognizable as that of the familiar phenomenon of 
beats illustrated in Fig. 5-6. It must be remembered that this figure 
represents only a part of the transmitted wave of equation 5'62. The 

Fig. 6-6 Beats propagated with a velocity equal to the group velocity. 

actual electric field oscillates at a frequency negligibly different from 
u/2ir, and the amplitude varies slowly according to the envelope relation 

cos ^(8 fix — Swt) [5-64] 

from zero to a maximum value given by the sum of the amplitudes of 
the carrier and modulation frequencies. Consideration of the second 
term of 5-62 will yield the same result. Evidently constancy of the 
envelope demands 

xSfi — tSw = constant [5*65] 

Accordingly the beats or groups are propagated with a velocity. 

X Sw .1 
or in the limit • -- • 

" t Sfi ^ 

dw 

[6*66] 
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From our definition of group velocity it is clear that it applies to all 
frequencies l3dng within a narrow band of some mean frequency. Evi¬ 
dently this is exactly the case of a wave modulated with a pure sine 
wave or any superimposed array of sinusoidals such as speech, pro¬ 
vided only that the total band width of the signal is small compared to 
the carrier frequency. 

The group velocity is of considerable practical significance in that it 
defines the velocity at which low-frequency signals are propagated over 
a high-frequency carrier system. Thus speech or television signals in 
ordinary carrier practice are propagated at the group velocity of the 
transmission system. 

From the definition of phase velocity, we have 

0) 
Vp = - or w = Vpp [6*58] 

p 

If Vp is independent of « we have, taking the derivative, 

l-,,g or [5^7] 

dcf) 

A medium in which Vp is independent of w is called non-dispersive. It 
is seen that in such media the phase and group velocities are equal. 
Other media, in which Vp is dependent upon w, are called dispersive. 

The concept of signal velocity becomes necessary only in dispersive 
media, that is, media in which the phase and group velocities are differ¬ 
ent. Since information can be transmitted only by some form of 
transient disturbance and since transients often occupy wide regions 
of the frequency spectrum, the problem is far from simple. Let us 
assume a specific example in which a sinusoidal voltage is apphed to 
an antenna in a wave-guide system. Let the frequency be somewhat 
higher than the cut-off value of the system but low enough so that the 
phase velocity is not independent of frequency. Under these condi¬ 
tions the phase velocity is larger than c, the velocity of light, and the 
group velocity is less than c. 

If the antenna is energized at a time < = 0, we wish to determine at 
what time an effect is first observed at a distance d away. Evidently 
the phase and group velocity concepts are not directly applicable since 
no form of steady state exists. Accordingly we must examine the 
problem carefully from a fundamental viewpoint. Fortunately the 
problem has much in common with that of a voltage suddenly applied 
to a lumped electric circuit. 

When an alternating voltage is suddenly applied to a lumped net- 
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work, the O3q)ression for the resulting current is quite complex even 
for simple networks. In general, however, two terms serve to express 
the current function. The first of these terms, the so-called steady- 
state term, begins at the instant that the switch is closed and continues 
without any change until the circuit is again modified. The second 
term expresses the transient current which flows only for a limited time 
after the switch is closed. With unimportant exceptions the transient 
current is always of such a form as to cancel the steady-state current 
at time t = 0. Accordingly the total current builds up at a finite rate 
and in a more or less complex fashion from zero to the steady-state 
value. 

It is thus impossible to say exactly when the current commences 
to flow, for at any finite value of time there is some finite value of 
current, and mathematically the steady state is never reached. De¬ 
pending upon how sensitive a device we use to record the presence or 
absence of current, we can make the interval as short or as long as 
we choose. 

In wave propagation the situation is similar but even more complex. 
The first impulse reaches the point d with the velocity c regardless of 
the nature of the medium, but the amplitude of this first impulse or 
wave is zero. This first impulse is a wave train of very high frequency 
which first grows and then diminishes in amplitude with the passage 
of time. This first wave train or precursor, as it is called, may be fol¬ 
lowed by a second precursor of lower frequency and larger amplitude 
before the final wave train of the steady state arrives. The strength V 
of the received signal is plotted against time for a typical case in Fig. 5*7. 

It is thus clear that no definite arrival time can be specified under 

*A]i excellent account of this subject is given by Brillouin, Congrhi iriJUrncAional 
^4lectiriciU, Vol. II, Paris, 1932. 
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these conditions. At all times greater than d/c some power is present 
at the point d. In general this power increases continuously with the 
passage of time, reaching a final value only after an infinite length of 
time. Accordingly, our determination of the velocity must depend 
entirely upon the sensitivity of the detector used to judge the arrival 
of the waves. In practice, the portion of the disturbance designated 
signal and associated with the steady state is often much larger than 
the precursors and arrives with a reasonably sharp wave front. Ac¬ 
cordingly detectors of a considerable range of sensitivity may give 
essentially the same result for the signal velocity. 

In coaxial cables or other wave guides which have no low-frequency 
cut-off, the phase and group velocities are essentially the same and are 
equal to the signal velocity. 

5*9 Voltage, Current, and Power Relations in the TEM Mode 

We may determine the maximum value of the voltage V' between the 
upper and lower plate in the OY direction, Fig. 5*5, by taking the line 
integral of the electric intensity between the upper and lower plates. 
Integrating along a line of constant electric intensity, we obtain: 

E'cosedl^ I E'ydy 
I -»o/2 

Substituting for Ey its value as given in equation 6-52, we obtain 

V' = C2 J- dy = C2 J- yo [5-68] 

Also, the longitudinal current, per unit width, along the upper or 
lower plate. Fig. 5*5, may be found to be 

V H' Qosddl^ ril'dz+ f\dy+ rOdz+ f^Ody 
J l ^d V a ^c 

Substituting for its value C2 as given in equation 6-52 we have 

r = j^Cidz^Cieo [5-69] 

where the path of integration is shown in Fig. 5-5. 
By means of the complex Poynting vector, we may calculate the 

average power flowing across unit area in the X direction. From 
equations 3*87 

p. = - E'yH'y) [5-70] 

Since E', and Hy are eero 

P. - WyHi) 
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From equations 5-52 

Hence 

K and Hi C2 

[5‘71] 

giving the average power flowing across unit area. The average power 
flowing across an area Zo centimeters in the Z direction and yo centi¬ 
meters in the Y direction is 

[5-72] 

We may define a characteristic impedance on a voltage or power basis 
thus: 

On a voltage-current basis 

Zo [5.73] 

On a power basis 

We may also define a quantity tj which is characteristic of the par¬ 
ticular wave type and is somewhat like an impedance. This quantity 
defined in terms of the intensity vectors is 

V El [6-74] 

If the dielectric between the plates is free space, mi 
then 

Vo = 377 0 

no and «i •• eo, 

[5-76] 

giving the so-called intrinsic impedance of free space. 
The concept of the impedance of free space is* not a familiar one. 

Nor is it particularly easy to visualize such a concept. If, however, 
we evaluate the ratio of ^ to J7 in the TEM mode in air between guides 
or in the plane wave in free space we always secure the number 120ir » 
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377 ohms. If a specified electric intensity is impressed in the medium 
by some source, then the larger £ becomes the more power is radiated 
from the source. Conversely the larger ju becomes the less power is 
radiated. This behavior is directly analogous to that observed when a 
long coaxial cable is connected to a generator. A large dielectric con¬ 
stant is associated with a low characteristic impedance and a large 
power input. 

5*10 The TMn Transmission Mode (£„ Waves) n 0 

The E waves in the dielectric may be conveniently classified into 
two groups depending on whether n is odd or even. We have from 
equations 5-48, subject to restrictions imposed by 6*34, 

n odd, C2 *= 0 n even, Ci = 0 

Hg « Cisin^^y^cos = (72 cos ( ~ y ) cos (cot— 
\yo / 

«ei\2/o/ \2/o / 
^[5-76] 

wei\2/0/ \2/o / 

sin(w^->/3na;) sin(a><—/Sno;) 

„ ^ . /wir \ 
Ey — — Cisinl — y jcos(wi— 

(Ml \2/o / 

„ /nr \ , 
Ey = —C2Cos( —y Jcos(w^--/9na!) 

wn \2/o / 

where the phase constant is given by 

and the critical frequency from equation 5«51 is 

(Jo) 
- 1 / n \ nvi 

Wo/ 2j/o 
[6.79] 

where vi = is the velocity of a free wave in a medium of 
dielectric constant ei and permeability m. 

The critical wavelength is 

(Xo)n = 
fi 

(fo)n 

2yo 
n 

The wavelength between plates is 

[6.80] 
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The phase velocity is 

Mn - f 
Pn 

The group velocity is 

, V 1 ^ Pn ^ 

*#„* Wl (Vp)« 

[5-82] 

[5-83] 

It is seen that the product of the phase and group velocity is equal 
to the square of the free wave velocity vi. That is, 

In air 

v\ — (Vp)n(Vg)n 
1 

Ml2l 

i^p)n(^g)n — 
1 

MoSq 
[5.84] 

where c is the velocity of light. 
The value of the integer n is taken to define the order of the wave. 

For the lowest-order wave, n = 1, the critical frequency is lowest; 
it increases as the order of the wave is increased. It also increases as 
the distance yo between the plates decreases. It is decreased as the 
dielectric constant ei of the medium between the plates is increased. 

5*11 The TMi Transmission Mode {Ei Waves) (n = 1) 

The amplitude of the components of the first-order En wave, i.e., the 
El wave, may be written from equations 5*76 when n = 1 as 

Ei^-CiCosl-y) 
(osiVo \2/o / 

E'y = — Cl sin J/) 
w5i \yo / 

TMi or Bi 
wave 
[5.85] 

The propagation properties of this wave are: 

[5'86] 

Cfo)i 
IL. 
2yo 

[5-87] 
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(Xo)i = 2^/0 [5.88] 

[5-89] 

{Vg)l = 

ivp)l 

»1 

[5-90] 

[5-91] 

[5-92] 

The field distribution at any instant of time may be obtained by 
setting t == constant = 0 in equations 5-76. Then, from Fig. 5-8 

5^ = tan ^ [5-93] 
Ex dx 

and 

^ tan {—y') cot (—fta:) [5-94] 
Ex V \yo / 

Y 

This equation may be solved by analytical or graphical methods 
and leads to the field distribution shown in Fig. 5-9. The side view of 
Fig 5-9 is propagated in the X direction between the plates at a velocity 
given by (op)i in equation 5-90. 
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If we fa«tor {u/v{f from equation 5-90 and replace fi/2j/o by (/o)i, 
we obtain: 

also 

Wi = 
»i Vl 

Mm 
[5-95] 

[5-96] 

Side View 

iy 

Distribution 
of ffz in 

y direction 
between 

plates 

End View 

Fia. 5*9 Instantaneous field configuration for an Bi or TMi wave in the dielectric 
medium between two parallel conducting planes of infinite extent. This field 

structure is propagated in the X direction between the plates. 

These equations may be plotted as shown in Fig. 6*10. As the fre¬ 
quency / of the wave is increased without limits its velocity Pp or Vg 
approaches the velocity vi of a free wave traveling in an infinite dielectric 
medium having the same properties as the medium between the plates. 
If the dielectric is free space, the velocity that is approached is c, the 
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velocity of light. As the frequency of the wave approaches the critical 
frequency, the phase velocity (vp)i increases without limit. This will be 
explained in section 5*15 by decomposing the waves of Fig. 5-9 into 
two sets of ordinary plane waves that are reflected back and forth 
between the upper and lower 
plates. It will be shown that, 
as the critical frequency is ap¬ 
proached, the direction of propa¬ 
gation of the elementary waves 
approaches the Y direction and 
there is no transmission of the Vp 
waves between the plates in the 
X direction. Since the equiphase ^ 
surfaces of the waves are infinite 
in extent, the equiphase surfaces 
of the elementary plane waves 
extend throughout the region be- Vi 
tween the plates when their direc¬ 
tion of propagation is normal to 
the surface of the plates. Thus, 
as the direction of propagation 
approaches the Y direction, the 
phase velocity, i.e., the velocity of o 
propagation of the equiphase sur¬ 
faces, approaches infinity. To say Variation of phase and group 

that the phase velocity is infinite 
is simply stating that it takes no time at all for a wave to travel be¬ 
tween two points both of which lie in an equiphase surface of the 
wave. 

5*12 The TM2 Transmission Mode {E2 Waves) n = 2 
The ainplitude of the second-order En wave, i.e., the E2 wave, may 

be written from equation 5*77 when n « 2, as 
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The propagation properties of this wave are 

n. 7^^ I7a 
P2 - </<*> MlSl ^ 

(/o)2=^ 
Vo 

(^0)2 = Vo 

jer-©' 
[6*99] 

[5*100] 

Distribution of 
Electric Intensity Vectors 

in the Y direction between 
plates at particular 

values of X indicated 

Direction of 
propagation of 
field structure 

*1 

® Z 

Distribution 
of H vector 

J in y direction 

Fig. 5-11 Instantaneous field configuration for an or TM2 wave in the dielectric 
medium between two parallel conducting planes of infinite extent. 

(X)2 = 

’ (»y 

« wei - 

2t 

P / \yo) 

CO 

p f—Y 
/ ' \yo/ 

[51011 

[5102] 
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(vo)2 = 7^ [5-103] 
W2 

[5-104] 
V MiSi 

In this case we may substitute vi = yo(fo)2 from 5*99 in 5*102 after 
multiplying numerator and denominator by vi/<a. The expression for 
(vp)2 may then be written 

The field distribution may be obtained as for the Ei wave; it is shown 
in Fig. 5*11. 

5*13 The TEq Transmission Mode {Ho Waves) n = 0 

When n = 0, it is seen from the relations 5*38 for the transverse 
electric transmission mode that C4 = 0. When the conditions n = 0 
and C4 =* 0 are applied to the general equations 6*49 for the Hn wave 
we have 

E, =0, H* = 0, 

Thus no wave of this type is possible between the plane parallel 
conductors. More accurately, the TEM wave discussed in section 
5.7 replaces the Ho wave. When the order of the TE wave is reduced 
to zero the longitudinal component of H becomes zero and a TEM 
wave results. 

5*14 The TEn Transmission Mode {H Waves) 0 
The H waves in the dielectric may also be classified into two groups. 

For one of these groups n is odd, and for the other n is even. In either 
case n is not equal to zero. From the general equation for the trans¬ 
verse electric mode of transmission as given in equations 5*49, we have, 
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subject to the restrictions imposed by the relations 5*38, 

w odd, Cs * 0 n even, C4 ~ 0 

Et = Ci coal ^ y )cos (cot~/3n-c) 
\2/o / 

Ez = Cs sin ( ^ 2/ )cos (cot —jSna;) 
\2/o / 

Hz = —^ C4 sin ^ 
«mi\2/o/ \2/o / 

sin (cot — 

> [5-105] Hz^-- —Cz cos^ 

sin (cot — 

rr ^ ^ 
// =-C4 COS ( — y ] 

«/ii \yo / 

cos (cot - 

Tj fin ^ . /nir \ 
Hy--C3 sin( —y j 

\yo / 

cos (cot - /3nir), 

Distribution of H, and Hy 
in the Y direction 

between plates 
as given by 

equations 5.107 

This distribution is 
propagated through 

space with velocity v 

Z 

^MZ/Zn//Z^^Zn7ZZZZZi 

Distribution of Ey 
in y direction 
between plates 

Fig. 5-12 Instantaneous field configuration for an B.\ or TE\ wave in the dielectric 
medium between two parallel conducting planes of infinite extent. 

The expressions for /3„, (/o)n, (Xo)», (X)n, and (»„)„ for the 
E. waves are the same as those already given for the E waves in equations 
5-78 to 5-83 inclusive. The transmission properties are identical tor 
E and H waves of the same ordar. 
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The TEi transmission mode (Hi waves) 7i = 1 

The amplitudes of the first-order Hn wave, i.e., the Hi wave, may 
be written from equations 5*105 when n = 1. Thus 

= —(-)c4 8m(-2/) 

— — C4 cos ^ 
"Ml V/0 / 

The transmission properties of this wave are given in equations 5*86 
through 5.92. The field distribution is shown in Fig. 5*12. 

Distribution of and 
between plates as given 

by equation 5.108 

This distribution is 
—► propagated through 

space with velocity v 

Fig. 5*13 Instantaneous field configuration for an H2 or TE2 wave in the dielectric 
medium between two parallel conducting planes of infinite extent. 
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The TE2 transmission mode {H2 wave) n — 2 

The amplitude of the second-order Hn wave may be written from 
equations 5* 106 when n = 2. Thus for the H2 wave 

Ez = C3 sin 

Hi 

W/Xi 

A 
coMi 

> 

J 

[5-108] 

The transmission properties of the H2 wave are given in equations 
5-98 to 5-104, and the field distribution is shown in Fig. 5-13. 

5*15 The El Wave: Resolution into Elementary Waves* 

Let us change the expressions 5-85-5-92 for the Ei wave into an 
equivalent form in which this wave appears as the superposition of two 
ordinary plane waves. We may then deduce the direction of propaga¬ 
tion of these waves and explain the transmission of the Ei wave in 
terms of its more elementary or component parts. From equations 
5-46 with n = 1 and C2 = 0 we may write in exponential form 

H, 

-Cl COB (— y) > 

«sij/o \yo / 

Ey^—Ci sin (- 
wei \yo / J 

El or TMi 
wave 

[6-109] 

Let us consider first the expression for Hg. Since 

we may write 

9 \ Vo / — g \ Vo . 

'1 
[6-110] 

Thus ffg is separated into two components and defined hy 

16-nii 

* Thk type of resolution was first suggested by BriUoum. 
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and 

= [6-112] 

where 
H -f Hf [5-113] 

These vector components may be interpreted as two component 
waves traveling in different directions. The direction of the wave 
may be found from the exponent (fiix ~ {Tr/yo)y) whose geometrical 
representation is given in Fig. 5* 14. 

Y 

Thus equation 5*111 represents a vector component wave traveling 
in the direction at an angle 6 = tan”"^ (—Tr/fiiyo) with the X axis. 
Similarly equation 5-112 represents a wave traveling in the direc¬ 
tion at an angle d == tan“^ {^/fiiyo) with the X axis. Hence the Hg 
component is expressed in terms of two component waves, and 

which are traveling in the X^^^ and X^^^ directions, respectively. 
To analyze these components it is convenient to express in terms 
of the new axes X^^^ and in terms of the new axes X^^^ 

Let us consider first the H^g^ component. To make the required 
transformation to the new axes it is necessary to find an expression 
for X and y in terms of and To do this set up the axes of 
Pig. 5-15 and consider the coordinates of any point x^yin terms of the 
coordinates y^^^ of the new axes. From the geometry of the prob- 
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lem we see that the required analytic transformation is 

y s cos 6 — sin d [5-114] 

X = x^^^ cos 6 + sin 0 [6-116] 

Therefore 

jSjX — —y = jSi (x^*^ cos 6 + sinO) — — (y^^^ cos 0 — x^^^ sin 0) 
yo 2/0 

Fio. 6-15 

Now from Fig. 6-14 

W 
am --===== and cos = , 

Also, from equation 6-86 

Pi * 

where vi is Ihe velocity of a free wave in a medium of dieleckic constant 

<1 and permeability mi> and fi 1/V^in- Substitating for fit .in 
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equations 6*117 we obtain 

• /» ^ sin 0 = - 
Vo 

and cos $ - Pi (— [5*118] 

Replacing the sin 6 and cos 6 in equation 5* 116 by their equivalents 
as given in 5*118, we have 

Pix-—y = - U+(iY[ k--/3i4-2/''>=(- 
2/0 L \yo/ J w l 2/0 2/oJ « V '1/ to 

or 
TT 

Six-y = "a-d) [5-119] 
Vo t'l 

Hence 

H :”=Ci-e ** = Ci-e ^ [5-120] 

By carrying through a similar transformation for the wave, we 

obtain 

^ 1 juft---—^ 
= -Ci-e V .. J 

2j 2j 
[5*121] 

where is expressed in terms of the propagation along the 
axis of Fig. 5* 14. 

Hz is the sum of equations 5*120 and 5*121. By resolving the Ey 
and Ex components in a similar way, we may obtain the following 
expressions for the Ei wave: 

^Ci K'"v) 
* 2j 2j 

„ ttCi Ut-^) , ttCi Ut-^—) 

2j«ei2/o 2ju)zyo 

£ Ml _ Mi v) 
2jwei 2jmi 

15-122] 

Bi Wave 
Group 1 

El Wave 
Group II 

The El wave may therefore be divided into two groups, one of which 
represents a wave traveling in the direction and the other a wave 
traveling in the direction. In both these groups H is transverse 
to the direction of propagation, being in the Z direction, which is normal 
to the XOY, or planes. It can be shown that the 
E vector in each wave is normal to its direction of propagation. Let us 
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resolve ^ and of the first group into conaponents along the normal 
to the direction. The graphical resolution of these vectors is 
shown in Fig. 5-16. The amplitude of the component of (indicated 
by the notation (X®)' along the direction is 

cos 0 —-cos 0 
2jweij/o 

Substituting for cos 0 from 6-118 we have 

Fia. 6-16 Resolution of the elementary vector components and E^^^ along 
and at right angles to the direction of propagation of the elementary wave of Group I. 

Instantaneous amphtudes are indicated. 

Also the amplitude of the component of Ej,^^ along the direction is 

(X®)'sm« 

Substituting sin 0 from 5-118 we have 

Thus it is seen that 

(X<,”)'sintf 
2jo)ei yo \w/ 

(JSj^^ysinff - (X<«/oo8fl 

Fkhu Fig. 5-16 it is clear that these two componoits are directed opposite 
to each other. Hence ibere is no X^^^ component of electric intmsity. 
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To obtain the component of normal to the direction of propagation, 
we see from Fig. 5-16 that 

sin 9 + cos e [5-123] 

Thus 

from equation 5-86. Hence 

j2ei vi 
[5-125] 

From the first group we may now write the final expressions for the 
elementary waves as 

rr(l) 
. t !t(«\ 

j2ei 
Ey(X) 

elementary 
V wave in 

direction 
[5*1261 

It can readily be shown by division that the ratio Ej^jl)/If% == 
the value previously obtained for plane waves. 

In a similar manner we may write for the second group 

J2 

Cl 1 
— — e \ n/ 

j2e Vi 

E, 
elementary 

wave in 
direction 

15*1271 

Thus these elementaiy waves are plane waves having the electric 
and magnetic vectors at right angles to each other and to their direction 
of propagation, and having the velocity vi of a free wave in a medium 
of dielectric constant ei and permeability m. Figure 5-17 shows the 
direction which these waves take as they progress in the medium between 
the plates. 

The equations 5-126 and 5-127 for the elementary waves are fflitirely 
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equivalent to equations 5*109 for the Ei wave, from which they were 
obtained. We see, therefore, that the Ei wave consists of the superposi¬ 
tion of two elementary plane waves, which are reflected back and forth 
by the metal surfaces of the conducting bounding plates. Equations 
5*126 may be considered to represent a wave striking the lower plate 
at y = — t/o/2 at an angle 0, and equation 5*127 may be considered to 

Fio. 5*17 Direction of propagation of elementary waves. 

represent a wave being reflected from this lower surface at an angle B 
and traveling toward the upper plate. At the upper plate, at v = 2/o/2, 

the roles of the waves are interchanged. The angle B which determines 
the directions and may be expressed as a function of the 
frequency of the waves. From Fig. 5*14, 

* From equation 5*86 
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Thus, as the frequency/approaches the critical frequency (/o)i tan 0 
approaches « and 0 approaches 90®. At = 90°, there is no transmis¬ 
sion in the X direction and the waves bounce back and forth between 
the upper and lower plates. Thus the group velocity = 0 at 
6 = 90° while the phase velocity is infinite since the plane of the wave 

Fig. 5-18 Path of elementary waves when / is slightly larger than (/o)i. 

is parallel to the surfaces of the plates, and two points an infinite dis¬ 
tance from each other between the plates are in the equiphase surface 
of the waves. When / is slightly greater than (/o)i, there is a slow 
progression of the wave in the X direction (see Fig. 5*18). Thus the 
group velocity of the wave is low. Figure 5-19 shows the path of the 
elementary waves when / is several times larger then (fo). 

Fig. 5-19 Path of elementary waves when / is large in comparison to (/o)i. 

The phase velocity, however, is quite high since equiphase surfaces 
of the wave progress along the plates at a much more rapid pace than 
the equiphase surfaces move in the or X^^^ directions. This is a 
kind of shear action. Consider, for example, the velocity Va of a point 
a on the blade of a paper-cutting machine (Fig. 5*20), compared to the 
velocity of the point of contact b of the cutting edges. As 0 ap- 

We may write 
«yo ^ 2irfyo f 

irvi TV\ 

2yo 
But »i/2yo ** (/o)i (equation 6-87). Hence 

V 1 
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proaches 90°, the velocity Vb approaches infinity while the velocity Va 
may be quite small. The velocity Vb is analogous to the phase velocity, 
and increases without limit as 4> approaches 90°. 

Returning to wave propagation between the plates, we can see that 
as/is increased without limit tan 6 approaches infinity and 0 approaches 
zero. Thus the phase and group velocity approach the free wave ve¬ 
locity Vi. 

5-16 Imperfectly Conducting Plates 

As was previously stated, the conductivity of practical metals, al¬ 
though quite high, is never infinite. See Table 2-1, page 31, for a com¬ 
parison of the conductivity of some common metals and other media. 
The problem of obtaining an exact solution of the wave equations in a 
region bounded by a metal of finite conductivity is extremely difficult, 
and as yet no complete solution has been found. By making certain 
assumptions, however, we can obtain quite satisfactory approximate 
values for the attenuation. It has been found, fortunately, that the 
results obtained by making these assumptions apply for most values of 
conductivity and frequency that are of practical importance. 

Where the bounding plates are perfectly conducting the condition 
required at the surface of the plates is that the tangential component 
of the electric intensity vector E be zero there. All the waves so far 
discussed in this chapter meet this condition in that their derivation is 
based upon it. Further, when these waves are transmitted through the 
dielectric medium betwera the plates they suffer no attmuation; i.e.. 
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a = 0. We can readily show that this is consistent with our concept 
of energy flow as obtained from the Poynting vector. 

Let us recall the conditions set forth for the flow of energy by Poynt- 
ing’s concept. First, we know that the flow of energy in the electro¬ 
magnetic field is directed at right angles to the plane in which the E and 
H vectors lie. Next, we know that the energy flows in the same direc¬ 
tion that a right-hand screw would progress when we turn E into H. 
See Fig. 5*21. Further, if we reverse one or the other of these vectors, 

Fio. 5-21 The energy flow as given by the Poynting vector is in the same direction 
that a right-hand screw would progress when we turn E into H. 

the direction of flow is reversed; if both are reversed, the direction of 

flow is the same. Finally, we know that the magnitude of the energy 
flowing across a unit area of surface per second is the product of the 
magnitude of the E and H vectors at the surface times the sine of the 
angle between them, this surface being parallel to the plane in which the 
E and H vectors lie. 

Now, for the waves discussed in the previous sections, only the 
tang^tial component of the H vector exists at the surface of the bound¬ 
ing plates, i.e., 0 at y = ± yoJ% while in every case = 0 
at y ■- ± yo/2. Therefore there can be no energy flow into the bound¬ 
ary plates, and all the energy is transmitted through the dielectric 
between the plates, without loss. In practice, where the conductivity 
is high but finite, a small tangential component of E will exist at the 
surface of the plates where y = ± yo/2. Under these circumstances 
mergy will flow into the bounding plates, given by the relation 

as shown in Chapter 3. This energy will be subtracted from the wave 
in the dielectric. Thus in the practical example the wave will suffer 
a diminution of energy as it is transmitted through the dielectric. This 
loss of energy may be expressed in terms of the attenuation factor 
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appearing in equation 642, where a is given by the relation 

- ^ Power loss per meter of length * 

2 Power transmitted through the dielectric 

In the previous examples we have solved the wave equations subject 
to the boundary conditions that E tangential is equal to zero at the 
boundary, this being a necessary condition when c is infinite. If we 
attempt to.solve them for the condition that E tangential is equal to 
some finite but small value at the boundary, and in this way determine 
a, the problem becomes extremely difficult. A method for obtaining a 
which we shall use here is based upon certain simplifying assumptions 
which are sufficiently accurate for practical purposes and which lead to 
a result that has been confirmed experimentally. 

Let us assume that the distribution of the field vectors when the 
plates are imperfect conductors is not materially changed from that 
which is obtained when the boundary plates are perfectly conducting. 
The imperfect conductivity permits a finite dissipation of energy m the 
metal. The current which flows is accompanied by the presence of a 
component of electric intensity in the direction of the current. We 
will assume that this is the only change in the field distribution in the 
dielectric. The existence of this component results in a tipping for¬ 
ward of the electric vector in the neighborhood of the boundary and 
therefore in the presence of an electric vector i?tan at the boundary. 
We do not know the magnitude of this vector component, but we may 
estimate it in the following way. First, we know the value of the 
tangential component of H, i.e., J¥tan at the boundary, and we know that 
it is continuous at the boundary. From a solution of the wave equa¬ 
tions m a metallic medium we may obtain a relation between the E 
and H vectors which must hold wherever a we. Since our metallic 
boundaries do meet this condition, and since we know jfftan at the surface 
of the metal, we may establish from this relation the value of JJ^an at 
the surface of the metal. Then by means of the Poynting vector we 
may calculate the flow of energy across the surface formed by the 
dielectric and the metal, and thus deduce the attenuation constant a. 
Let us first solve the wave equations in an infinite metallic medium of 
conductivity a and obtain a relation between E and H in this medium, 

5*17 Wave Propagation in a Metal 

Let us consider the propagation of a plane wave in the V direction 
in a metallic medium of infinite extent having a finite conductivity 
IfCt us choose H in the Z direction so that H ^ Hz and ^ Hy «« 0. 

* A derivation of this relation is given on page 165. 
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Further 

dz dx 

since we are dealing with a plane wave in a medium of infinite extent. 
Then the wave equations 

dH, BHy 

dy dz 

dHx dHx 

dz dx 

dHy dHx 

dx dy 

reduce to 

and 

where Ey * 

= crEx “1“ 6' 

=s cEy + e - 

= aEz + e “ 

dEg dEy I 1 ^
 

dy ~~dz dt 

dEx dEx dHy 
dz dx ^ dt 

dEy dEx dHx 

dx dy ^ dt 

*= a^Ex + 62 [5*130] 

dy 

where ^ E, — 0 and E - —Ej. The subscript 2 refers to the 
constants of the metallic medium. The geometrical configuration of 
this wave is shown in Fig. 5-22. 

Let 
[5-132] 

E^ = Eie>'‘*-^^ [6-133] 

where 7 = a + Substituting Ht and Ex in equations 5-130 and 
5‘131 and dividing by we obtain 

- 7^,' = (<^2 +i«e2)£l' [5-134] 

- fK = 3<»t^2Hx [5-135] 

The propagation constant 7 may be obtained directly by substituting 
for Ht in equation 6-134 its value as obtained from equation 6-135. 
Thus 

•p— Ex =»> {v2 + joX2)Ex 

7® =iw^2(<r2 +iwe2) 

— Ex =“ (<r2 + iw*2)-®» [6-136] 

giving 
7® =7w^2(<r2+iwe2) [6-137] 

* The value of a given in this equation defines the attenuation of the wave in the 
metal in the F direction. It is not the same as that of equation 5*129. 
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If ff2 ^ “«a 

7 = Vjw/taffa “ (1 + j) = (1 + i)Vir//t2<ra [6-138] 

since 

(i+jr-2,- o, 
y 

Fio. 5-22 Propagation of a wave into metal 

Now 
7 •« a -t- j/S = ■'^x/uacra -f j ''^x/i«a<r2 

Hence 
Of 8* ss V irfti2cr2 [5-139] 

Thus, in the metal 

H = HgC “ *“ [5-140] 

JS? as [5-141] 

and therefore the amplitude, of the E and H waves is decreased at 
a rate determined by the attenuation factor as the wave 
progresses in the Y directum. This factor is plotted in Fig. 5-23 
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as a function of y. It is assumed in the graph that jji2 and (r2 are con¬ 
stant as the frequency is varied. This is not true in general but holds 
well up to frequencies of the order of 10^*^ cycles per second. 

Fio. 5*23 Reduction of the amplitude of the wave as it penetrates the metal in 
the Y direction. 

A convenient measure of the penetrating power of the wave is the 
value of y which reduces the exponent ay to unity. Let us call this 
value yi. Then ayi = 1 and yi = 1/a. Thus at a distance yi the 
wave amplitude will be reduced to or 1/e = 0.368 of its value at 
2/ = 0. 

The phase velocity Vp in the metal is given as 

Values of a, j/i, and Vp are given as functions of frequency in Table 54 

for copper. 

TABLE 5 1 

Frequency, cycles a « ^ = 
yi meters 

Vp, meters 
per second per second 

0 0 0 
1 15.13 0.066 0.416 

10* 151.3 0.0066 4.16 
10® 15,130 0.000066 416 

The intrinsic impedance i| defined in terms of the intensity vectors 
is « E/H. Hence from 6435 

Hi “ 7 
1? [5443] 
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From 5* 138 

when cr2 cce2- Hence 

V = 

^jo)H2<T2 

giving 

[5-144] 

[5-145] 

Since E = rjH, this indicates that E and H are 45® out of time and 
space phase in a metal in which a2 ^ we2. Since this condition is met 
in our boundary-value problem involving the infinite metal planes 
separated by a dielectric, we may use this value of ?? in establishing 
the electric intensity at the surface of the plates. Let us consider first 
the attenuation associated with the transverse electromagnetic wave. 

5*18 The Transverse Electromagnetic Mode (TEM) Imperfect Con¬ 
ductor 

The equations defining the transverse electromagnetic transmission 
mode may be written from equations 5-35 subject to the restrictions 
imposed by relations 5-34; i.e., Ci = 0, n = 0. 

Eyi = C2 

These equations have already been discussed in section 5-7 for the 
case of perfect conductivity (<t2 = «>), where a = 0. We will now 
determine the attenuation constant a in the case of imperfect con¬ 
ductivity. 

Consider the conditions represented diagrammatically in Fig. 5-24, 
where t is held constant. The magnetic intensity is constant in the Y 
direction, and therefore its value at the surface of either upper or lower 
plate is given in equation 5-146. If a value of — JE* exists at the upper 
surface of the metal, so that enei^ will flow into the metal, then the 
value of — will be given by 5-145. Thus at the surface of the upper 

* It will now be desirable to distinguish between waves in the metal and waves in 
the dielectric. To do this we may write Hti and Eyi for the waves in the dielectric 
material. Then etc., will refer to waves in the metal. 
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plate 

-^,2 = nHz2 = g-algiC-t-Uo*) 

\ 0-2 

rJSAT 
wave at 

surface of 
upper plate 

t5-147] 

And at the surface of the lower plate 

H,2 = = C2«-“V("‘-^»*5 

= riH^i = C2*^e"“V("'“'^> 
\ <72 

yjFilf 
wave at 

> surface of 
lower plate 

15*1481 

Fig. 5*24 Electric intensity vectors at the surface of a guide of imperfect 
conductivity. TEM wave. 

We may now calculate the power flow associated with this wave. 
Let us call the power flowing into the upper plate, per second per square 
meter of surface, py, and that flowing into the lower plate py. Then 

Vv “ h^{E,i^t2 - E^A) - \^{-EaEa) (5-149] 
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Substituting for Exi and from equations 5-147 we have 

[5-150]* 

The power loss over an area of the metal surface 1 meter wide in the 
X direction and zo meters long in the Z direction is Py times zq or 

PyZO 
^0 ^ -2 ax [5-151] 

In a similar manner we may calculate the power loss over the same 
area of the lower plate. It likewise is 

[5-152] 

The power loss Py over the same area of both plates is then 

Py 2o(P» + V'y) = Cizo 
g-2a» [5-153] 

This power is a function of the distance the wave has progressed between 
the plates in the X direction. This we would expect since the ampli¬ 
tude of the E and H vectors in the dielectric are being continuously 
reduced as the wave progresses. Hence the power which the wave 
delivers to the plates in its progress between them is decreased with 
distance. 

Now let us calculate the flow of power across a surface in the dielectric 
normal to the plane of the wave. It is given by 

Vz = WyiHix - «j) = HK.H'a) [6-154] 

where Px is the power flow per second per square meter of surface. 
Hmce 

p,[5.155J 

and the power passing through a surface of the dielectric Zq meters 
in the Z direction and po meters in the Y direction is PifioVo- Thus 

Pz = iCizoVo ^ [5-156] 

Now the power loss in the metal boundary is equal to the rate of diminu¬ 
tion of the power flowing through the dielectric. Since P* is the power 
flowing through an area zoVo normal to the Poynting vector, —dPxiBx 

* Only the real part of the radical as given in equation 6-144 ia used as indicated 
by the aymbol 9i in equation 6-149. 
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is the rate of decrease of the power. See Fig. 5-25. This must be 
equal to Py, the power lost by the wave in the upper and lower plates. 
Thus 

dP 
= [5167] 

Differentiating equation 5-156 with respect to x 

dx 
= -2aP* [5-158] 

Hence 

giving 

Thus 

or 

Y 
n 

■ 

1 
ji 

—dx 

Direction of 
Propagation Between 

Plates 
V 

z 

^_ 

I 

_'L I 1 

Fio. 5-25 Development of the attenuation constant a. 

Py = 2aPy 

a 

[5-159] 

[5-160] 

[5-161] 

[5-162] 
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5*19 The El Wave (TMi Mode) Imperfect Conductor 

The equations for the first-order transverse magnetic mode of trans¬ 
mission, as obtained from the general equations 5-35 subjected to the 
restrictions of 5*34, i.e., n = 1, C2 = 0, are: 

Exl 

Eyl 

E\ waves 
TM\ mode in the 

dielectric 
[6*1631 

The geometric configuration of the Hzi vector between a section of 
the parallel planes is shown in Fig. 5 26, where t is held constant. The 
magnetic intensity vector varies sinusoidally in the Y direction and has 
its maximum value at the upper and lower metal surfaces. The value 
of Ex2 at the surface of the metal is given by 

--Ex2 = riHzi = riHz2 

since the tangential component of the magnetic intensity is continuous 
at the boundary. Hence 

[5-164] 

[5-165] 

The power flow into the metal per second per square meter of surface 
of the upper plate is 

Pv = • [6.167] 

At the upper surface y = yo/2, so that 
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Flo. 5-26 FSectric intensity vectors at the surface of a guide of imperfect 
conductivity. TMi wave. 

The power flowing into an area zq meters long in the Z direction and 
1 meter wide in the X direction is zq times py. Hence the power flowing 
into this area is 

[6-170] 
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In a similar way we may calculate the power pj flowing into a unit 
area in the lower plate. These are equal, so that the total power 
flowing into the upper and lower plates over a surface area 1 meter wide 
and Zo meters long in each is 

Py ^oiPy "f“ Pp) ~ (^1^0 
\ " 

[6-171] 

The power flowing through a square meter of surface per second in 
the dielectric normal to the direction of propagation of the wave is 

p, = HKiftii - KiB 
Now 

A'l« C\ 

Hence 

Px - 

-J«Vi - 
"T /o/ 

coei 

yo/ 
W6l 

sm'* 

sm^ 

[5-172] 

[6-173] 

[5-174] 

giving the power flow per square meter per second. The power flowing 
across a surface zq meters in the Z direction and yo meters in the Y 
direction may be expressed as 

^* 2 
I sin= 

z « —«o/2 1/ * —2/o/2 

V“*/o/2 

coei 
(— y') dy dz 
\yo / 

[6-175] 

Cl 

“ 4 

This gives 

w^iei 

■j yazo- 

(-Y 
\yo/ 

USi 

lEi 
2P* 

-2 ax 

Clzo /^,-2ax 
If <7-2 _ 

Cl 

4 

MlSi - 

[5^176f 

[5*177] 

wei 

z^zii/2 JfzmgQ/2 py^yo/2 /_ \ /»«-*o/2 

/ sinM-»)<?»* = / -dz 
.--V2 \Vo/ J.--../2 2 

Vozo 
2 
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Hence for the Ei wave 

5>20 The Hi Wave (7£i Mode) Imperfect Condiictor 
The equations for the first order-transverse electric mode of trans¬ 

mission as obtained from the general equation 5-41 subject to the restric- 

* If we multiply numerator and denominator of this equation by Vthe 
numerator becomes 

2/0 

But the critical frequency (/o)i = vi/2yo for the Ei wave. Hence we may write 
5.178a as 

I 7rM2 / f \ ^ 1 f f 

\ 2i^12/0<^2M1 \(/o)i/ ° \ \(/o)l/ 
16-1786] 

The denominator becomes 
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Fig. 6*27 Electric intensity vectors at the surface of a guide of imperfect 
conductivity. TEi wave. 

A Study of the geometric configuration of this wave between-the 
plates, when time is held fixed, shows ihe existence cX. a component of 
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Htim, i.e., at the boundary. See Fig. 6*27. The Hyi component is 
zero there. The value of Ez2 that must exist at the boundary is given by 

or 
Ez2 = 

ITT jj^M2 rj 
= \ -“*1 

\ cr2 

[5-181] 

But at the boundaries y = 2/o/2 and sin t/2 = 1. Accordingly 

Ez2 — 
g—aaJgiCwi—j8i») 

Hx2 

Hi or TEi 
wave at the 
metal surface 

[5-182] 

The power flow into the metal per second per square meter of surface 

of the upper plate is 

Py - ^9.{E,2H*2 - E,2H*2) = i3(.(E,2H*2) [5-183] 

Now 

e.2h:2 

Since = (1+ j) the real part of is 

and 

[5-184] 

[6-185] 

[5-186] 

The power entering a rectangular area in the upper plate of length Zo 
in the Z direction and 1 meter in the X direction is zq times The 
power p'y entering the lower plate across an equal area directly below this 
one may be calculated in a similar manner. This power is also equal 
to ZoPy. Thus the total power loss is 

*o(P» + P») “ 22oP|( 

or 

Pv = e“*“* [S-187] 
ff2 \yo/ 

The power flowing per second throu^ a square meter of surface of the 
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didectric normal to the direction of propagation of the wave is 

Vx = [5*188] 

Hence 

Vx — 

^2 
-^“VlSl - 

- L4 
cuMi 

r 9 / 
v" VlSl ~ { ~ ) '2 j!_ Woj f 2 — cos*" (-A 

\2/o / 

g-2«» [5.189] 

[6190] 

The power flowing across an area zo meters in the Z direction and yo 
meters in the Y direction may be expressed as 

iSi ( \ f,V-V0/2 /_ \ 

iC|-r f cos^(—j/)dydz 
“Ml •^2--zi)/2«^j/=.-1,11/2 \yo / 

Px = ivo^oCi- 
g“"2a* 

[5191] 

[5-192] 

pV=yo/2 / \ pi-tt/2 
7 cos^ l — y)dydz= I 

a=-zo/2«^l/»-Vo/2 \yo / «/«=-zo/2 

The attenuation factor fo" the Hi wave is then 

Vo . _ ^oVo 

2 2 

1^_1_ co^/xf \ 0-2 \yo / 

,55* , (,y 

“Ml > \J/o/ 

[5-193] 

ypw'^ACi \ 0-2 \yo/ 
nepers per meter [6*194]* 

* If we multiply numerator and denominator of equation 5*194 by Mi/ei the equa¬ 
tion may be written _ 

JL jUiltl. 

^ / 2 
W«i\f \yo/ 

1/0/ wVtflJ 
[5*194a] 
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a - I 
'\vicr2M1 

V(/o)i/ 

MF 

nepers per 
meters 

5'21 Attenuation of the Hn Wave (7£n Mode) Imperfect Conductor 
The equations for the nth order (n odd) transverse electric mode of 

transmission give, for the power lost in the upper and lower plates per 
square meter of surface, 

v(n odd) 

The power flowing across an area 1 meter wide in the Z direction and 
yo meters in the Y direction, in the dielectric, is 

12 ~ I—I 
p ^ lp2j[_-2ax r 
^a;(n odd) = 2^4 ^ J 

?/*l/o/2 

"Ml 
COS' 

-Vo/2 

15.197] 

Vo ^2 

12 \h» Misi - I — I 

Since 

Thus 

(am 

Jnir y 
I cos^I — y)dy = — 
J — Vll/2 Vvo / 2 

16.198] 

[5-199] 

«(nodd) 
1^1! 
2P. 

/ir/j«2/nvY 
yo^Vf\ \yo/ 

- - (-Y 
»>Mi \ \yo/ 

nepers per meter [5*200] 

It is seen that the first term of this relation is the same as equation 6* 178 obtained 
for the E\ wave. The second term may be written 

The critical frequency (/o)i = t>i/2yo for the Hi wave- Thus 

Vyo/ V / / no/ ■ V > ^ 

Hence equation 6*194 may be written as equation 6*179 multiplied by (//(/o)i)*®. 
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It may be shown that the attenuation for the nth order Hn wave, n 
even, is the same as given by equation 5*200. 

After algebraic manipulation similar to that employed previously, 
the attenuation constant for the Hn wave may be expressed as 

nepers pw meter [5*201] 

where the critical frequency (Jo)n = nvi/2yo for the nth order magnetic 
wave. 

5*22 The Attenuation of the £„ Wave (7Af„ Mode) Imperfect Con¬ 
ductor 

The attenuation constant for the nth order transverse magnetic 
mode of transmission may be obtained in a manner similar to that em¬ 
ployed in the general transverse electric case, of the previous section; 
it is 

nepers per meter [5*202] 

where the critical frequency (/o)n = nt'i/2yo for the nth order electric 
wave. 

5*23 The Attenuation Constants 

The attenuation constants given in the preceding sections are: 

aTEM - (/)^ nepers per meter [5*162] 
B-O yo \ 021^1 

aTE 
npdO 

aTM 
n><0 

Vo 

Vo n^Ks/n 

JMl 

^/SiF 
(JLf 

.oiyr 

nepers per meter [5*201] 

2 nepers per meter [5*202] 
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where 

\ <r2Vifii 

The factor K depends on the material of which the bounding plates 
and dielectric are constructed, and on the velocity vi. If the dielectric 
material between the plates is air, vi = c. It is seen that the attenua¬ 
tion is proportional to the minus three-halves power of the separation 
2/0 between the plates. Except where n = 0, the attenuation is infinite 
at / ~ (/o)n. In the case of the TM mode, the attenuation has a 

minimum at //(/o)n = and then rises as the frequency is increased. 
For large values of //(/o)n the attenuation increases as the square root 
of the frequency. In the case of the TE mode, the attenuation has 
no minimum but continues to decrease with increased frequency. For 
large values of //(/o)n, the decrease in attenuation is proportional to 
the minus three halves power of the frequency. Figure 5-28 illustrates 
the variation of the attenuation as the function of frequency for the 
TEiy TMi, and TEM modes. 

Fig. 5«28 Variation of the attenuation with frequency for various modes of 
transmission. 

PROBLEMS 

5*1 In the TEM wave in free space or between parallel plane guides the wave 
front is plane and perpendicular to the direction of propagation. The wave front 
is readily defined by the fact that both E and H are at one instant equal to aero 
over the entire surface. Examine critically the wave front of the TEi and TMt 
waves in terms of this definition. Consider E and H separately. What condasions 
may be drawn? 

5*2 Sketch the field distributiona E and H, in the TE^ and TM« modes of propa^* 
gation. 
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5*3 Sketch the field distributions, E and /f, in the TE^ and TMa modes of 
propagation. 

5*4 Indicate qualitatively how a complex traveling wave might be built up by 
the superposition of several simple modes. What requirements on relative velocity 
and phase exist? Compare with elliptically polarized fight waves. 

5«5 Develop equation 5-36 from equations 6-19. 

5*6 Is air a dispersive or a non-dispersive medium for the propagation of sound 
waves? By what simple experiment may this be proved? Is the surface of a pond 
of water a dispersive or a non-dispersive medium to ordinary water waves? How 
may this statement be tested? 

5*7 In electric wave filters composed of lumped inductances and capacitances 
the transition between the region of free transmission and that of attenuation is 
always smooth. Discuss Fig. 6-4 in the fight of this fact. Is it likely that a 
curve such as that of Fig. 5*4 would be observed experimentally? 

5*8 Evaluate the characteristic impedance of a wave guide to the TMi mode 
of transmission on the basis of voltage and current. 

5*9 Evaluate the characteristic impedance of a wave guide to the TMi mode 
of transmission on the basis of the Poynting vector and the current. 

5*10 Discuss qualitatively the performance to be expected if a section curved 
in the direction of propagation is introduced between two sections of plane wave 
guide. Consider the TEM^ TEi^ and TM\ modes of transmission. 

5*11 Consider the possibility of resolving the TM2 mode of transmission into 
plane waves by the method of section 5-15. 

5*12 By the use of a standard reference work compare the velocity of electric 
and acoustic (mechanical) waves in copper at 60 cycles per second. 

5*13 Examine critically the development of equation 6-160. Explain why a 
correct answer is obtained in spite of the fact that a appears to be assumed in the 
initial equation. 

5*14 A wave of the TEM mode is propagated between two parallel copper sheets 
spaced 0.1 meter apart in air. Evaluate the attenuation at frequencies of 10^, 
10®, and 10® cycles per second. Interpret these results in terms of the distance 
required for the wave to fall to 1/e of its initial value. 

5*15 Repeat problem 5-14 for the TEi mode of propagation and frequencies of 
3 X 10®, 10^®, and 3 X 10^® cycles per second. 

5«16 Repeat problem 5*15 for the TMi mode of propagation. 

5tl7 Discuss the form of equations 5’162, 6’201, and 5*202. Why should the 
attenuation be a function of frequency for any of these waves? 

5*18 A wave guide is formed of two parallel sheets of copper spaced 20 cm in 
air. The frequency is 10® cycles per second. Determine the ^ect, upon the cut-off 
frequency, velocity of propagation, and attenuation, of substituting a loss-free 
insulator of dielectric constant 4 for the air. 

5*19 What effect upon the attenuation of a wave guide is to be expected if the 
medium between the plates has a finite conductivity 0*? 

$•20 Discuss the practical application of plane parallel wave guides. What 
limitations do they suffer? 

5*21 X>oes it seem probable that no modes of transmission other than those 
here described exist between parallel planes? What others may exist? 



CHAPTER 6 

RECTANGULAR WAVE GUIDES 

This chapter is concerned with the propagation of electromagnetic 
waves in metallic tubes of rectangular cross section, filled with a dielec¬ 
tric material. The method of presentation is similar to that developed 
originally by Chu and Barrow.* As in Chapter 5, we shall consider 
first that the conductivity of the metal is infinite, and later discuss the 
practical case of imperfect conductivity. 

6*1 Waves Guided by a Rectangular Metallic Tube 

Let us consider the propagation of electromagnetic waves traveling 
in the X direction in a homogeneous isotropic medium which fills the 
interior of a rectangular metal tube of infinite length. A cross section 
of the tube is shown in Fig. 6*1. The inside edges of the upper and 

Fig. 6*1 Rectangular wave guide. 

lower sides of the tube cut the Y axis at the points y = 0 and y « po; 
the inside edges of the two side walls cut the Z axis at 2 » 0 and z » zq. 
Thus the interior dimensions of the cross section are Zq wide and j/o high. 

As in Chapter 5 we shall introduce here the restrictions that the 

* Chu and Barrow, Electromagoetic Waves in Hollow Metal Tubes of Rec¬ 
tangular Cross Section,’’ JREf 26,1520,1038. 
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electric intensity E and the magnetic intensity H involve time only in 
the form e^"‘ and distance only in the form e~^® so that 

E = [6-1] 

H = [6-2] 

In the final solution we will, as before, take only the real part. Thus 

E = 

and 

The factor represents a wave traveling in the +X direction. 
The frequency of the wave is given by / = a>/27r, and the propagation 
constant is 7. As before, 7 = a + jp, where a is the attenuation 
constant and the phase constant of the system. Substituting the 
relations 6*1 and 6-2 into the wave equations 

dH^ dHy 

dy dz 

dz dx 

dHy dHx 
dz dy 

(tEx "h 6 

aEy + 6 

ffEz “I” s 

dEx 
dt 

dEy 

dt 

dEz 

dt 

[6-3] 

BEt BEy _ BHy 
By Bz ^ Bt 

BE:, BEy BHy 
Bz Bx 

BEy BEy _ BHy 
Bx By 

We obtain 

dH^ 
+ 7^» = (v + jus)Ey 

^Tlf 

BE', BEl . 

dE^ 
[6-5] 

dJP^ 

> [6-6] 

There are two types of waves which satisfy these equations, and 
which may exist independently. These waves, known as the E or 
TM wave and the H or TE wave, respectively, are characterized by 
two types of transmission modes, depending on the presence or absence 
of the X component of the electric or magnetic-intensity. 

6-2 Transmission Modes. E and H Waves 

Solutions which have a component of electric intensity in the direc¬ 
tion of propagation but no component of magnetic intensity in the 
direction of propagation are wOed E waves. Where propagation in 
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the X direction is considered, we may state this more briefly as fl* » 0, 
Ex ^ 0. Since Hx == 0, the magnetic intensity is normal to the direc¬ 
tion of propagation. Hence this mode of transmission may also be 
described as a transverse magnetic mode, or TM mode. This wave 
is sometimes called longitudinal electric, since there is a component of E 
in the direction of propagation. 

Solutions which have a component of magnetic intensity but no com¬ 
ponent of electric intensity in the direction of propagation are called H 
waves. More briefly, when propagation is in the X direction, H waves 
are those in which Ex = 0 and Hx 0. Since Ex * 0, the electric 
intensity is normal to the direction of propagation. Hence this mode 
of transmission may be characterized as a transverse electric mode or 
TE mode. This wave is sometimes called longitudinal magnetic, since 
there is a component of H in the direction of propagation. 

6*3 Transverse Electric (TE Mode) H Waves 

With the restriction that Ex = 0, equations 6*5 and 6-6 become 

« 0 
dy 

dz 

-yHi 

dz 
(a) 

+ yH't = (<r+j(ae)Ey (b) 

ay 

BE', dE'„ , ' 

[6-7] yE', = (b) 

yE'y -junH', (c) 

[6-8] 

We may obtain from equation 6-7 and 6-8 an equation in H* alone, 
as follows: 

Differentiate 6-7l> with respect to z, obtaining 

dw bh: ...be' 

Differentiate 6*7c with respect to y, obtaining 

BH'y B^Hi be: 
-y-— - “TT "= (a +jwe)' 

By BjT By 

Subtract 6’10 from 6-9 to give 

B^Hj B^H: 
^ By^ 

' (dff: 
By dz dy 

[6-9] 

[6-10] 

[611] 

Next differmtiate 6<8b with respect to y and obtain 

be: . bh: 
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Similarly differentiating 6-8c with respect to z gives 

dH', dEl 

The difference between these equations is 

\dlft _ dEy 

dy dz ~z: ~ TT = dy dz 
[6-12] 

From 6*8a the term in the brackets on the left side of equation 6-12 is 
—jufiHx. Hence 

dHi , dH'. 

dy dz 

Thus using 6 8o equation 6-11 becomes 

. d^H'^ 

or 
dz^ 

d^H’ 

dz^ 

+ = (<r + jus)juiiH'. 

d^H'. 
+ 

dy^ 
— (<r + jwe)ju/i}Hx 

[6-13] 

1614] 

[6-15] 

In the dielectric <ri -C wsi. Therefore, in the dielectric, equation 6'15 
becomes 

d^H'. 
dz^ dy^ 

[6-16] 

Equation 6-16 could have been obtained directly from the wave equa¬ 
tion 3-46, where, in the dielectric. 

d^H. , , d^H. d^H. 
(6171 

Substituting Hx 
we obtain 

or 

= H'.e’"* ■''* into 6-17 and dividing throu^ by 

= - (7» + • [6.16] 

6>4 Solution by the Method of Separation of Variables 

Equation 6*16 may be solved by the method of separation of variables. 
Tbia method is extremely useful in the solution of partial differential 
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equations of this type. To apply this method to the solution of 6*16 
we attempt to find a solution which will consist of the product of a 
function of y alone and a function of z alone. Let Y(y) and Z (z) be 
these functions so that our solution k = Y{y)Ziz), or, expressed 
more briefly 

Hi = YZ [6-18] 

Let us substitute this solution into 6-16. The required partial deriva¬ 
tives are 

f(r 
dy 

— (Y 
dz ^ 

Thus 

^dY „a=*F li 

* ^ df 

dZ a® , B^Z 

II 

<i>
 1

; 11 =. Y—~ 
az® 

a2y 

2-^ + 7^ = -(7" + /tieico2)rZ 

Dividing through by YZ we obtain 

1 3^7 1 02^ 

Y dy^ Z bj? 
[6-19] 

The first term of equation 6-19 is a function of y alone, say F{y)-, the 
second term is a function of z alone, say F (z). Then from 6-19 

F(y) + F(z) = C [6-20] 

where C is a constant equal to — (7* + The equation therefore 
states that a function of y plus a function of z is equal to a constant, 
no matter what values y and z may have. This is surely not possible 
in general, for, if we keep y fixed and vary z, F{z) would change while 
F(y) remained the same. Thus the equation would not be satisfied. 
The only exception would, of course, occur where F(y) and F(z) are 
each constant and independent of y and z. If we impose these conditions, 
we have 

[6-21] 

and 

1 a*z 
[6.22] 

wh»e Ai and A2 are constants and 

+ ^2 = (7® + "Viei) [6.23] 
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We may rewrite 6-21 as 

0 + 4ir - 0 [6-24] 

and 6*22 as 

-^ + AaZ «= 0 [6-25] 

Equation 6*16 is thus reduced to the ordinary differential equations 
6-^ and 6*25. The solution of 6-24 is well known in the theory of 
differmtial equations and may be written down directly. It is 

r = ± [6-26] 

» Cl sin gy or C2 cos gy [6-27] 

where Ci, C2, and g are constants. 
Since Ci sin gy and C2 cos gy are each solutions of 6*24 their sum is 

also a solution. Thus F = Ci sin ffj/ + C2 cos gy. The constant g 
naay be determined by substitution of 6-27 in 6*24. Carrying out this 
substitution we obtain 

g = ^ 
Hence 

F = Cl sin y + C2 cos Vili y [6*28] 

Similarly, the solution of 6.25 is 

Z = e’** ± e-^** [6-29] 

= C3 sin /u! or C4 cos hz [6*30] 
where • 

h = 

and C3 and C4 are arbitrary constants. 
Thus 

Z = C3 sin a + C4 cos z [6-31] 

Since the solution of 6* 16 is » FZ, we may choose, as the final 
solution, 

Hg ■= A cos vCi7 y cos z [6*32] 

where A - C2C4. 
Other solutions may be chosen from 6’28 and 6*31, as, for example, 

the product of the sines, or products of sines and cosines, but 6-32 
is the me we want, since, as will be evident later, it alone will satisfy l^e 
boundary conditions of the problem. 
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Since we have now determined Hi we may readily determine the 
remaining amplitudes of the components of the H wave from equations 
6*7 and 6*8. For example, we may obtain an equation relating H'y 
and Hi by eliminating E[ from equations 6*7c and 6*86. Substituting 
for j&i, in equation 6*7c, its value in terms of Hi as given in 6*86, we 
have 

B SHI Si b 
yHl--^ ^-^Hl 

dy y 
[6*33] 

where ai has been neglected in comparison to «ei in the dielectric. 
Thus, 

7 dHt 

From 6-32 

Therefore 

= -aVa, sin vci; y cos 

= A 2 , - 2-"/aT sin y cos z 
y + w>iei 

Since equation 6-86 expresses E, in terms of Hy we have for E', 

[6-34] 

[6-35] 

[6-36] 

E'-^^H'y-A 2 —vX’sinVZTycosV^g [6-37] 
7 " 7'“ + w>iei 

From equations 6-76 and 6-8c we may get a relation between Hy and Hy. 
Again n^lecting <r in comparison to wei in the dielectric, we obtain 

^ + yHi = - ^^^H' 16-38] 

so that 

ta
 

<1
 

II 1 

+
 [6-39] 

From equation 6-32 

dz 
- —A VaI cos Va7 y sin VA2 z [6-40] 

Therefore 

H', A 3 ; "-2— cos y sin z 16-41] 
7-' + 
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Finally we may obtain Ey from equation 6*8c 

E'y = — 

7 
= A 

Y + W Ml6l 
VT, COS y sin z [6*42] 

6*5 Boundary Conditions for H Waves 

We have now obtained all the components of the H wave in the 
dielectric. Let us apply the boundary conditions of the rectangular 
tube to the amplitude of the Ey and Ez components. 

Since the tangential component of an electric vector must vanish 
at the surface of a perfect conductor, E^ must equal zero at z = 0 or 

Zq. Let = mirlzQ, where m is an integer. Then from 6*42 

K ^ ^ -f—cos '^Ai y sin z') [643] 

Now, at z = 0, sin z^ = 0; and at z = zq it reduces to sin (mTr). 

The latter is zero for any integral value of m. Thus E'' == 0 at z = 0 
or Zo, and the boundary conditions are satisfied in the Z direction. 

Likewise Ei must be zero aty = 0 or yo. Let 

V^ = 
riT 

2/0 

where n is an integer. Then from 6-37 

Ei = ~A 
00)1^1 

+ w>isi 

and the boundary conditions are satisfied in the Y direction as well as 
in the Z direction. Also from 6-23 

so that 

* Since 7 depends on the particular values of m and n chosen, it may be written 
7n«. Thus, when n « 2, m « 3,« 72a. 
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6’6 Hmt Waves in the Dielectric 

Let U8 collect the various components of the H wave in the dielectric 
which we have obtained. They are 

Hx = A cos cos 2^ 

« /nir\ . fnv \ /ntv \ , 
-5-1 — ) sm (— y I cos (— 2) e^' 
wVieiVVo/ \Vo / \zo / 

rr A ynm 

Hx 

Ex =0 

ynm /mTr\ /nw \ . /rriT \ . 
— ) cos I — 2/ J sm I — z I 
Zo/ \yo / \zo / tL + "ViSi \ 

TIT ^ fmTr\ (uT \ . fniTT \ . 
^ “2—;—2-1— Jcosl—2/)sml—z]e^ 

ynm + MlSl \Zq / \^0 / \ Zq / 

Ml /^A . \ /mir \ . 
—o-1 — ) sm I —y ] cos I —z ) 
<w>iei\2/o/ \yo / \2:o / 

J?, = 
JMMI 

7nm + ' 

J"*—Yni.* 

■f/nw or TEfim 
waves in the 

dielectric 
10-47] 

The constant A depends only upon the original excitation creating 
the wave and denotes absolute magnitude only. 

The use of subscripts to indicate the order of the wave in each coor¬ 
dinate is convenient. Thus two are necessary here, whereas in the 
previous study of parallel planes only one was required. The sub¬ 
script n refers to the number of half sinusoids or maxima of field inten¬ 
sity in the Y direction from y ^ Otoy = yo- The subscript m similarly 
indicates the number of half sinusoids occurring in the Z direction from 
z — 0 to z — zq. We can therefore refer to Hnm waves in general, 
the particular wave being designated by replacing n or m with the 
order of the wave under discussion. Thus, if n = 0 and m = 0, the 
condition existing may be designated Hqo- If n = 1, m = 0, the wave 
is designated Hiq, In this way the Hnm wave stands for an infinite 
number'of specific waves. All these waves are not possible, however; 
for example, the Hqo wave is not possible since, when n = 0 and m = 0, 
all the components in equations 6*47 vanish. If n = 0 and m 0, 
Ex ^ Eg - Hy - 0 and three components of the ffom wave remain. 
Hence all waves of the Hom type are possible. It is seen that in this 
wave, since E *= Ey, the electric intensity is normal to the direction 
of the propagation, and the wave may be characterized as transverse 
electric. Waves of the type Hu and higher-order waves are also 
theoretically possible. In the case of waves having complementary 
indices, Hu or H21, His or H31, etc., the field distributions are afi alike 
except for their orientation in the pipe. Thus it is sufficient to con- 
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aider one orientation only. The other orientation is obtained simply 
by interchanging the yo and zo dimensions of the guide. Because of 
the extremely high frequencies required by the higher-order waves in 
guides of moderate size, their practical importance at this time is 
questionable. 

6*7 Transmission Characteristics of Hnm Waves 

In equation 6-46 it is seen that the propagation constant is given by 
the relation 

ynm 

A critical analysis of this constant leads to three distinct cases, which 
we shall now consider. 

Case I. Propagation 
If 

7nm is imaginary. Since ynm = “nm + jPnm, it is seen that under these 
circumstances = 0 and = jfinm- Thus, 

and we may write from equations 6-1 and 6-2 

= E' {c08 (ut — finmX) + j sin (ut — finmX) } [649] 

= ff' {cos (w« - Pnmx) + j sin {(at — p„„x)} [6-50] 

Since in the final result we take only the real part of E and H as the 
solution, we have 

E = E' cos (cat — PnmX) [6-51] 

H = H' cos {(at — finmX) t6'52] 

if the amplitudes of E and H are real. If the amplitudes are imaginary 
and therefore equal to jE' and jH', then the real part of 649 and 6'60 is 

E « -iS' sin (orf — (6-53] 

H - — £r' sin («f — jSnm*) [6*54] 
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giving the solution. The amplitudes of Ey and Et as given in equation 
6-47 are imaginary, and this condition will apply to them. If the 
amplitudes are complex, a phase angle may be introduced so that 

E ^E'COB (id - PnmX + 0i) [6-55] 

ff = If' cos («< - j8„„* + 83) [6-56] 

where 6i and 62 are angles whose tangents are the imaginary part of 
the amplitude, divided by the real part of the amplitude of the respective 
vectors. When and 62 are 90 degrees, i.e., when the amplitudes of E 
and H are purely imaginary, equations 6-55 and 6*56 reduce to equations 
6-53 and 6-54. 

From the above we see that, as long as the propagation constant is 
imaginary, E and H are periodic functions of distance and hence wave 
propagation in the X direction takes place with no attenuation. This 
is, of course, strictly true only in the ideal case where the conductivity 
is infinite. 

Case II, No propagation 

If (nv/yo)^ + (mx/20)® > «Vi8i,7nmisreal,j9„„ = 0,and7„„ = a„„. 
Thus 

and we may write from equations 6-1 and 6-2 

E = = E'e^ {cos «< + jsinwt} 

H = {cos ut + j sin 

Since in the final result we take only the real part of E and H as the 
solution, we have 

E = COB at [6-68] 

H = .ff'e-“* cos at [6-59] 

if the amplitude of E and H are real. If these amplitudes are compile, 
then a phase angle is introduced as in Case I. 

The expressions 6'58 and 6-59 indicate that the wave is no longer a 
periodic Wetion of distance. Propagation does not take place, but 
instead there is only attenuation. The attenuation factor deter¬ 
mines the rate at which the maximum amplitudes E' and ' are reduced 
as the distance x increases away from the excitation source creating 
the wave. Furthermore, the magnitude of « is such that practically 
complete extinction of the wave occurs in a distance corresponding 
to a few wavelengths in free space. 
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Case III. 

If 

Critical case 

a critical case is defined, which represents the intermediate condition 
between Cases I and II. The critical frequency (/o)nm = de¬ 
fined by this condition is thus 

For values of frequency greater than (/o)nm, transmission of the wave 
takes place. This corresponds to Case I. For values of frequency 
less than (/o)nm, the wave is attenuated and no propagation takes place. 
This condition corresponds to Case II. 

The quantity I/V^misi has been shown in Chapter 3 to be the velocity 
of a free wave* in a medium of dielectric constant ei and permeability 

Ml. In terms of this velocity, we may define a critical wavelength 
(Xo) nw> i«e., (X«m) (/nm) = SO that from equation 6.60 we have 

(Critical wavelength) (Xo)nm 

It is seen under Case I that so long as ynm is imaginary (finm real) 
the E and H vectors vary periodically with both distance and time, 

and transmission through the dielectric 
takes place without attenuation. The 
velocity at which the wave is propa¬ 
gated may be determined as before, 
by finding the conditions imder which 
the argument wt — ffnm^ remains un¬ 
changed when the time t is increased a 
finite amount. Thus when ^ is in¬ 
creased by an amount t', the equiphase 
surface of the wave will travel a dis¬ 
tance x\ The argument then becomes 

(f>(f + t') — 

If these two arguments are the same, the phase of the wave will be 
the same at a; -f x' as it was at x. See Fig. 6*2. Hence we wish to 
determine the conditions under which 

0>t - Pnm^ « «(< + t') - + a?') [6-62] 

By free wave is meant a wave traveling in free space, in which there are no 
boundary conditions to be met. 
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These conditions, as obtained from equation 6*62, are that 

<»t' - PnmX' = 0 

or that 

^ Pnm 

Now x'/t' is the average velocity with which the equiphase surface 
of the wave moves a distance x' in a time Let us call this velocity 
the phase velocity Vp. Then 

(pp)nin ~ T [6*®^] 

The group velocity Vg has been defined as 

(Vg)nm = * 
^Pnm 

dca 

From equation 6*48 

Hence, 
/ \ Pnm 
\Po)nm “ 

where 
1 

Vi - /- 
V^iei 

Hmce 
— (Vt)nm(Vp)nm [6*69] 

In the pipe the wavelength X, is given by the relation \pf = (vp)nm, 
where / is the frequency of the excitation and is equal to «/2ir. From 
equation 6*65, (vp)„m = <a/Pnm- Hence 

V iVp)nm “ _ ^ ffi 7nl 
(Xplnm = . ~ o f ~ a [6*70] 

/ PnmJ Pnm 

The wavelength Xi may be defined from the relation \if = vi, where/, 
the frequency of excitation, is a/2ir, and Xi and vi are the free wave¬ 
length and velocity in a medium having the constants m and ei. Thus 

» 2ir 
Ai * = 2ir — = —T== [6*70o] 
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The quantities defining the transmission properties of the Hnm waves 

are collected below. 

Phase constant 

Critical frequency 

Critical wavelength 

Wavelength in pipe 

Phase velocity 

Group velocity 

Free wave velocity 

(/o)nm “ 

(^o)nm = 

mir^ 

20/ 

<zo 

(Xp)„« = — 

(Vp)nm “ 

2ir 

finm 

(a 

finm 

> [6-71]* 

v! 

Vi = 
1 

'Miei 

Wavelength in free space Xi 2,^! - a 
» 1 

6‘8 The Hoi or TEqi Wave 

It was pointed out in section 6-6 that all waves of the type Hom are 
possible modes of transmission, except the Hoo wave. All waves of 
the Hom type are transverse electric waves and may also be characterized 
by the designation TEom waves, m 0. Let us investigate the i^ial 
case where n = 0, m =• 1, i.e., the Hoi wave. Equations 6-47 reduce to 

jff. •» A cos Jut—yoix 

A 701 

7oi + wViSl 
gy<o/-70ia? 

Ey - A - g.— (-) sin (-z) 
7oi + w w«i \*o/ V«o / 

^01 or TE^i 
^ waves in the 

didlectrilo 
16-72] 

Hy « Ex ■* Eg *» 0 

It is later shown that these equations also apply to the E^m waves. 
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Since the propagation constant 701 is given by 

and since 

7oi = J/3oi 

the final solution may be written 

Hg = A COB ~ 

Hf = —A ~ - sin ^ — a') sin (ut — fioix) HnoiTEn 
dielectric 

<oui2o /tt \ 
Ey = —A-^ sin { ~ — /^oia^) 

Hy = E, = E,=‘Q 

The quantities defining the transmission properties of the Hoi wave 

Phase constant /3oi = */wVisi - (-^ = \/f—f’"Y 
\W 

Critical frequency (fo)oi = —7=— = 77“ 
SvAneiZo 

Critical wavelength (Xo)oi = 2ao 

Wavelength in pipe (\p)oi = "^ = ' ■ 

- (^)’ 
[e-TB]" 

Phase velocity (f}>)oi = 
^ xi y 

Group velocity (t;i,)oi = ; \ = vi^/l 
\Vp)oi M 

^ Xi Y 



192 RECTANGULAR WAVE GUIDES 

Distribution of Hx and 
Vectors in the Z direction 
between the side walls of 

the guide Fig 6.1 
(Top View) 

Magnetic Field 
Configuration 

(Top View) 

Electric Field 
Configuration 
(Side View) 

Z 

Y 

Electric and Magnetic 
Field Configuration 

(End View) 

Pia. 6*3 The instantaneous field configuration for an Hqi or TEqi wave in the 
dielectric medium which fills a rectangular wave guide. This field is propagated in 

the X direction through the guide. 
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The field configuration in the Hoi wave may be found as in section 
6*11. The lines of electric and magnetic intensity are shown in Fig. 6-3. 
Since the critical wavelength is independent of the yo dimension, either 
of the pipes whose cross sections are shown in Fig. 64 will transmit the 
Hoi wave. Further discussion of this wave will be taken up in a later 
section. 

Fig. 64 Both pipes have the same critical frequency 
(Xo)oi = 220* 

6-9 The Hq2 or TE02 Wave 

By setting n = 0 and m = 2 we may obtain, from the general equa¬ 
tions 647, the components of the H02 wave. They are: 

Hx ^ A cos I J<at—yQ2Pc 

or TJE02 
^ waves in the 

dielectric 

S')*" 

TT A ^02 • /^TT \ . 

Hg = A -2—;—2-I — ) I — 
7o2 + \zo/ \2:o / 

7o2 + MlSl \ Zo/ / 

The propagation constant 702 is given by 

2 /^ttV 2 

j - » 

and ance 702 “ j0o2 the final solution for the H02 wave may be written as 

/2ir \ 
Ha A cos zj cos (at — 1802®) 

Ha = —A sin 2^ sin (ut — /3o2®) 

Ea 
U/tiZo 

-A —— sm 
2ir 

ml — 2 Jsi: 
\*o / 

sin (w< — j8o2®) 

II02 or TE(y2 

waves in the 
dielectric 

[6-77] 
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Distribution of Hx and 
Vectors in the Z direction 
between the side walls of 
the guide, as indicated 

by equation 6.77 

Magnetic Field 
Configuration 

(Top View) 

Electric Field 
Configuration 
(Side View) 

Electric and Magnetic 
Field Configuration 

(End View) 

Fio. 6*5 The instantaneous field configuration for an ETos or TEo2 wave in a reo« 
tangular wave guide. 
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The quantities defining the transmission properties of the H02 wave are: 

Phase constant 

Critical frequency 

Critical wavelength 

Wavelength in pipe 

Phase velocity 

(/o)o2 

(^0)02 

(^p)02 

(Pp)02 

Vmei Zo 

= *0 

2ir 

P02 

ijt> 

P02 

Group velocity (*^f^)02 
{‘^p)02 

«0 

> [6*78] 

The field configuration for the Hq2 wave is shown in Fig. 6-5. Here 
again the critical wavelength is independent of the yo dimension. 

6*10 The Hit and H12 Waves 

By setting n *= 1, m « 1 in equations 647 we may obtain the expres¬ 
sions for the components of the Hn wave. The process is similar 
to that employed in the previous sections and will not be repeated here. 
The Hn wave configuration is more complicated than the Hoi and Hq2 

Top View on Section a-a' 

N 

i' ■' I » » IMI * I 

/ / fr. i \ \ 
_ 

'» / * I'M / 
! Illl 
• /1 I < ^ 

-Electric Intensity -Magnetic Intensity 

iChu and Barrow^ courtesy of IRE) 

Fig. 6-6 Instantaneous field distribution for an Hu or TEn wave in a hollow 
rectangular pipe. 

waves. It is shown in Fig. 6*6. The quantities definii^ the transmis¬ 
sion properties of this wave may be obtained from the general equa¬ 
tions 6-71 sdien n » m = 1. 

When n - 1, m => 2, the wave configuration is as shown in Fig. 6'7. 
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It may be noted that the wave pattern for the Hoi wave serves as a 
fundamentalconstructionunit for thehigher-order ifomwaves. Similarly, 
the Hii wave serves as a basic unit for the construction of the higher- 
order Him wave patterns. The transmission properties are always 
obtainable from the general expressions 6-71. The critical frequency 

—Electric Intensity -Magnetic Intensity 

{Chu and Barrow, courtesy of IRE) 

Fig. 6*7 Instantaneous field distribution for an Hn or TE12 wave in a hollow rec¬ 
tangular pipe. 

(/o)nm and the critical wavelength (Xo)nw for the lower-order Hnm 
waves in a square pipe are given in Table 6-1. These data were pre¬ 
pared by Chu and Barrow during their original experimental work on 
the propagation of waves in tubes. 

TABLE 61 

Cbitical Values for an Air-Filled Square Pipe (yo == ^o) 

(20 measured in centimeters) 

Wave Tjrpe 
Critical Frequency 

fo in Cycles 
Critical Wavelength 

in Centimeters 

Hoi 1.60 X 10i®Ao 2.000 X «0 
Hii and En 2.12 X 10W/*o 1.414 X20 
Hoi 3 00 X IQW/ao 1.000 X 20 
Hi2 and E12 3.36 X 10W/*o 0.894 X zo 
H22 and E22 4.24 X 10W/«o 0.707 X Zo 

Ho3 4 60 X 10‘“Ao 0.666 X Zo 
H13 and Eis 4.74 X 10‘®/*o 0.632 X Zo 

H2Z and E2Z 6.41 X 10W/*o 0.664 X Zo 

Hoi 6.00 X 10‘®/2o 0 600 X zo 

{Chu and Barrow, cowteeycif IBS) 
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6‘11 Transverse Magnetic {TM Mode) E Waves 

With the restriction that = 0, the field equations 6-5 and 6.6 reduce 
to 

dHi dH'y 

yHi = (a + i«eX 

-yH'y = {<T+jo>e)Ei 

dy dz 

[6-79] = 
oz 

dEl 
yE', + -^=jccpLHi 

[6-80] 

By an elimination process similar to that employed in section 6*3 
we may obtain an equation in E^ alone from equations 6*79 and 6*80. 
This equation, in the dielectric, may be written 

dy^ dz^ 
== “ (ylm + [6.81] 

The solution of this equation may be substituted into relations 6-79 
and 6-80 to obtain the components of the Enm waves in a manner similar 
to that employed in sections 64 and 6-5. These components may be 
written as 

^ ^ \ \ 
Egf = JB Sin (— y] sin [ — z) 

\yo / \2o / 
/n7r\ /riTT \ . /^tt \ 

-o-( —] cosi —ylsinl—z] 
\yo / \zo / 

(nw \ /mw \ . 
—y 1 cosi —z ]e^ 
yo / \zo / 

jp _ p_ 

tnm I 

E, = -B 
/mtr\ . 
(—Ism jut—y^x 

Tnm ^ \ ^0 / 

= 0 

TT 71 • /mir\ . /nx \ (mir \ ■ 
Hy = B-2—;—2— {—) sin (—y) cos (— z]e^ 

77 D /nA /nx \ . /wix \ 
Ht = —B-2—;—2-( — )cos(—j/)sm(—zjei 

Tnm + \J/o/ \yo / \20 / 

Enm or 

waves in 
the 

dielectric 
16*82] 

The constant B depends only upon the original excitation creating 
the wave and denotes an absolute magnitude only. As in the case of 
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the Hnm waves, the subscript n refers to the number of half sinusoids 

or maxima of field intensity in the Y direction from y = 0 to j/ = j/o- 
Also the subscript m indicates the number of half sinusoids occurring 
in the Z direction from 2 = 0 to 2 = zq. 

The expressions for (/o)„„, (Xo)„„, (Xp)„„, («,)„„, and 
for the E waves are the same as those already given for the H waves in 
equations 6-71. Hence the transmission expressions are identical for 
E and H waves of the same order. 

From equations 6'82 it may be seen that, if n = 0 or to = 0, all 
components vanish. Therefore, no wave of the type Eqo is possible. 
By setting n = 0, to = 1, or n = 1, to = 0 it may be seen that waves 
of the type Eio or Eoi are also not possible. The lowest-order wave 
which is possible is the En wave. Waves of higher order, such as E12, 
Ei3, etc., are all theoretically possible. Like the H waves, E waves 
which have complementary indices, for example, E12 and E21, are iden¬ 
tical except for their orientation in the tube. It is therefore sufficient 
to consider only one ordering of indices; for example, E12, E21, etc., 
will give the same field distribution except that the yo and 20 fliTni»ngmna 
are interchanged. 

6'12 The Ell or TMn Wave 

The equations for the components of the En wave may be obtained 
from equations 6-82 by substituting n = 1, to = 1 therein. We obtain 

Ex == B sin ^ sin 2^ 

Ey = —B 2 ^ cos j/^ sin (— z') 

Ex ^ -B 2 2“ 2-v) cos (- z) 
7ii + Misi \Zo/ Vvo / \Zo / 

= 0 

5 2 ^'2— (-) sin (- y) cos (- 2) 
7ll + \2o/ \yo ) \Zo / 

•ff, = — B 2 f %-(~^ cos f— y) sin (— z^ 
7ii + w^Ausi \yo/ \yo } \«o / 

[6-83] 

The propagation constant 711, as obtained from equation 646 when 
n = TO - 1, is 
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Since 711 = jPn, the final solution for this wave may be written 

COS {(at—finx) 

~^(zyl(zy 

H, = B 
cosi 

©'H0 

(—) cos(—2/ )sin(—z) sin (&)< - j3i lic) 
\yo/ \yo / Vo / 

jE?ii or TAfii 
waves in the 

dielectric 
(6-86] 

The quantities defining the transmission properties of the wave 
are, from equation 6-71, 

Phase constant ft. - - Q - Q 

Critical frequency 

Critical wavelaigth 

[6-86] 

2t 

Wavelength in tube (Xp)ii = — 
Pii 

Phase velocity il 

Group velocity 
<'•>“ - fe>.. 

where vi = 1/Vmzi. * 
The fidd configuration for the Eu wave is shown in Fig. 6-8. It 

was shown in section 6-8 that the critical frequency of the lowest-order 



RECTANGULAR WAVE GUIDES m 

H wave, the Hoi wave, is (/o)oi = vil2zo. This critical frequency is 
lower than that for the lowest-order E wave as given in equation 6-86. 
For higher-order waves, the critical frequency is higher. Since the 
smallest possible guide for a given frequency is usually desirable, the 
Hoi has the greater practical significance. 

-Electric Intensity -Magnetic Intensity 
{Chu and Barrow, courtesy of IRE) 

Fig. 6*8 Instantaneous field configuration for the Ew or TMw wave in a hollow 
rectangular pipe. 

6*13 The JEi2 or TM12 Wave 

The components of the E12 wave may be obtained in a similar manner 
from equations 6*82 by substituting = 1, m = 2. The wave con¬ 
figuration is shown in Fig. 6*9. The propagation properties are given 
by the general equations 6-7L The diagram, Fig. 6*8, showing the con- 

-Electric Intensity -Magnetic Intensity 

{Chu and Barrow, courtesy of IRE) 

Fw. 6-9 iDstantaneous field configuration for the E12 or TMu wave. 

figuration of the En wave may be regarded as a fundamental unit, from 
which wave configurations for the Eim waves are made up. The E12 

wave includes two such units; the Eis wave inclildes three, etc. Like 
the higher-order H waves, the higher-order E waves involve such ex¬ 
tremely high frequencies in guides of reasonable size that their practical 
importance is doubtful. The critical frequencies and wavelengths of 
the lower-order E waves in square pipes are included in Table 6.1. 
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6*14 Tenninal Devices 

In exciting and receiving Hnm and Enm waves in rectangular tubes, 
terminal devices may be used such as illustrated in Fig. 6*10. These 
devices originally suggested by Barrow and Chu serve to establish the 

//ji Wave ifi2 Wave 
{Chu and Barrow^ courtesy of IRE) 

Fig. 6-10 Tenninal devices designed by Chu and Barrow for exciting the various 
wave types in rectangular wave guides. 

various wave configurations which have been illustrated in the figures 
of the chapter; they will also act as receivers of energy for the various 
transmission modes indicated. 

It will be noted, by comparison of the particular terminating device 
with the wave configuration which it is designed to excite, that the 
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conductors injected into the pipes coincide with the lines of electric 
intensity E of the field pattern. This is the basic principle involved in 
the construction. The injected conductors are simply extensions of the 
central conductor of the coaxial line which connects the pipe to the 
exciting source or to the receiver. It will also be observed from these 
figures that the phase of the currents delivered to the rods, or antennas 
as they might be called, must be taken into consideration. By referring 
again to the field configuration desired we may determine the relative 
direction of the currents required at any given instant. This direction 
is indicated in the figure with small arrows shown near the antennas. 
In order that the antennas be excited in the proper phase, sections of 
coaxial line of suitable length are inserted. The length of the sections 
required are indicated in the figure. In a later chapter the reasons 
for the choice of these lengths will be explained. 

In the case of the Hnm waves it will be seen that the antennas are at 
right angles to the direction in which the waves will be propagated! 
The antennas for exciting the Enm waves are in the direction of wave 
propagation. The length of the antennas inside the pipe is an important 
consideration, and it is desirable to make provision for their adjustment. 
The distance from the end of the pipe to the antenna should also be 
adjustable, so that the exact position for best operation may be ob¬ 
tained easily. Other types of feeding than that employing concentric 
lines may be satisfactory and will be discussed later. Also, in connec¬ 
tion with reception, it is sometimes desirable to employ a crystal detector 
or vacuum tube, mounted in the antenna itself inside the guide. Devices 
of this type will be discussed in Chapter 8. 

6*15 Further Discussion of the Hqi Wave 

The Ho\ wave has received considerable attention by Chu and 
Barrow, who first called attention to its outstanding characteristics. 
The following discussion is based upon their research. 

It may be observed by comparison of the fiToi wave pattern shown in 
Fig. 6-3 with other Hnm and Enm wave patterns that the simplest wave 
configuration is obtained with the ifoi wave. This simplification is due 
to the absence of all the components of electric intensity except Ey, 
Also, this wave has the lowest critical frequency of all the possible trans¬ 
mission modes, and in addition has the lowest attenuation, as will be 
shown later. 

A plot of the electric intensity vector Ey of equation 6*76 of the Hoi 
wave is shown isometrically in Pig. 6*11, where the magnitude of the 
vector is represented by the vertical distance from a plane through the 
pipe, to the curved surface. This vector is independent of y but is shown 
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to vary sinusoidally in the X and Z directions. Time is held constant 

in the diagram. 
We obtained in equation 6-76 a relation between the wavelength of the 

ifoi wave in the pipe, (Xp)oi, and the wavelength Xi of a free wave in a 

{Chu and Barrow^ courtesy of IRE) 

Fia. 6*11 Instantaneous distribution of the Ey vector of the //oi wave in a rec¬ 
tangular wave guide. The magnitude of the vector is represented by the vertical 
distance from a plane through the pii>e to the curved surface. This vector is inde¬ 

pendent of y but varies sinusoidally in both the X and Z directions. 

medium of dielectric constant ei and permeability /xi* 
given by 

(^p)oi 

This relation is 

[6-87] 

and is shown graphically in Fig. 6*12. It is seen that, as the wavelength 
Xi approaches the critical wavelength, the wavelength in the pipe 
approaches infinity. Further, as the wavelength Xi is decreased, the 
wavelength in the pipe approaches the free-space wavelength. From 
{v^Qi in equation 6-76 it is seen that the phase velocity of the wave is 
always greater in the pipe than the velocity of light. It is commonly 
believed that no velocities in nature can exceed the velocity of light. 
This paradox is referred to in optics as anomalous dispersion. A correct 
statement of the above idea is that energy is never propagated with a 
velocity greater than that of light. In free waves, the equiphase sur¬ 
faces are normal to the direction of propagation, and hence the phase 
velocity is the velocity with which the energy 6f the wave is propagated. 
Also, with free waves, the phase velocity is the velocity of light. With 
bounded waves, however, the situation is entirely different, for the 
phase velocity no longer indicates the velocity at which the energy of 
the wave is propagated. If we assume the existence of a wave in a 
bounded medium, the equiphase surfaces of the wave will no longer 
be perpendicular to the direction of propagation. Thus if we are dis- 
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cussing the phase velocity of bounded waves, we cannot think of the 
energy being propagated to the point where we have already assumed 
it to be. This matter may be further clarified by reference to section 
5*8. 

{Chu and Barrow^ courtesy of IRE) 

Fig. 6-12 Relation between the wavelength in air and the wavelength in a rectan¬ 
gular pipe for the Hoi wave. (The solid curve is the theoretically derived relation 
equation 6-87. The dots correspond to experimental points obtained by Chu 

and Barrow.) 

6*16 Voltage, Current, and Power in Perfectly Conducting Wave 
Guides {Hoi Wave) 

We may, with the aid of our definition of voltage and current in terms 
of line integrals, obtain expressions for voltage and current in the wave¬ 
guide ^stem. The potential V between two points P and Q is defined as 

F = J EcmOdl [6<88] 

If we choose the path of integration to coincide with the direction of the 
electric intensity Ey, then e = 0 and cos 0 «= 1. This is true when P 
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and Q lie on a vertical line in the Y direction of Fig. 6-13. Let us choose 
P and Q to lie on a line cutting the Z axis at Zo/2, and parallel to the Y 
axis. Then the potential difference between the two points which are 
on the inside surface of the pipe is 

-Eydy [6*89] 
I/»0 

Substituting for Ey from equations 6-75 

V = 
jr»l/=2/0 

l/=0 

A sin 
TT 

sin(co^ — Poix) dy [6-90] 

Since in this case z = zq/2 

we obtain 

V z=: A-sm(co^ — 

[6-911 

Thus the potential difference 
between the inside surface of the 
top and bottom walls of the pipe 
varies sinusoidally in theXdirec¬ 
tion down the center of the pipe. 
Its maximum value is given by 

y 

Fig. 6-13 Paths of integration for obtain¬ 
ing voltage and current relations in wave 

guide. 

y/ ^ ^ 

TT 

[6-92]* 

and this value in turn varies sinusoidally in the Z direction. 

* We may obtain any value between zero and the value defined by equation 6*91 
by other choices of the path of integration. Integrating along the surface of the 
metal (path POyoQ) we ^d the electric intensity in the direction of the path every¬ 
where zero, since the tangential component of E is zero at the boundary. As we 
shorten the path of integration between P and Q we steadily increase the value of 
the integral. 

This situation may at first be rather startling, but it is perfectly correct. The 
system is a dynamic rather than a static one, and the line integral of the electric 
intensity is never independent of the path in such a system. In particular, the 
voltage found by integrating around any closed loop is equal to the rate of change of 
magnetic flux tliough the loop. This is merely Faraday's law, expressed by Maxwell 
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We may calculate the longitudinal current flowing along the surface 
of the top or bottom walls of the pipe by taking the line integral of the 
magnetic intensity along a closed path like the dotted path 1234 in Fig. 
6-13. Since H is the intensity in the Z direction, the product H cos B 
is zero along the 14 and 23 sections of the path. This follows from 
the fact that the angle 6 between H and the path is 90°. Along the 
path 12, the product H cos B is zero since H is zero in the interior of a 
perfect conductor. The discontinuity in H at the surface is explained 
by the existence of the current on the surface. The only contribution 
to the line integral around the closed path 1234 is made along the path 43. 
Hence 

-H. 
2=0 

dz 

Substituting for Hg from equations 6-75 we obtain: 

I - f A sin sin(a>^ — dz 

= A mn{o)t — Poix) Zo \ 
— cos z] 
^ \^0 / 2 *=20 

^2 

= 2i4.j8oi sm (ut — 0oix) 
T 

The maximum value of the current is therefore 

I' = 2A0O1 -2 
T 

[6-93] 

[6-94] 

[6-95] 

and this amplitude varies sinusoidally in the X direction. The current 
along the inside surface of the bottom of the pipe is at any instant 
moving in the opposite direction to that on the inside surface of the 
top of the pipe.* That is, the two currents are in opposite directions, 
and they are also of equal magnitude for any given value of x. 

We may calculate the average power flowing through the pipe by 
means of the Poynting vector. The power px streaming through a 
square meter of surface parallel to the YOZ plane as given by equation 
3-87 is 

p. = ^{E'yH', - EiH',) [3-87] 

Since, in the case of the Hqi wave, Ei = Hg == 0, this reduce to 

[6-96] 

*This may readily be verified by inspection of Fig. 6-13. For example, if we 
integrate around a path 4365, in the eame eenee as before, work b done on the field, 
whereaa in the former case the field does work on the imaginary esqdoring charge. 
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Substituting for Ey and from equation 6-75, we have 

7>trf — A 2 E^' = 

so that px = ^A^ ^ ^ 

The average power P* flowing through the pipe is 

Px = ^A -2— I I sm"^ I — zidzdy 
r Jy^o «/»-o \2o / 

p 1 , 
i^x — 2 2/0^0 

[6-97] 

[6-98] 

[6-99] 

It is seen that the transmitted power is directly proportional to the 
cross-sectional area yoZo of the pipe. 

A characteristic impedance, Zo, may be defined in several different 
ways by the use of relations for I, V, and P* which we have obtained. 
Thus, on a voltage-current basis it becomes 

7 _ 

“ " ■ 2/3oi2o 

and on a power basis it is 
« 

7 _ _ n 7aK 

" " (Im.r (/')" 8^0120 2PoiZo 

[6-100] 

[6-101] 

We may also define an intrinsic impedance ij by the relation 

Ey com 

" if* " /3oi 
[6-102] 

When the dielectric in the pipe is air it may be shown that 17 ap¬ 
proaches the value ijo for the intrinsic impedance of free space, i.e., 
rjo = 377S1, as j/o and zq are made very large in comparison to the wave¬ 
length Xi of the wave in free space. 

6-17 Resolution of the ^01 Wave into Elementary Waves 

In order to obtain a better physical picture of the Hoi wave, it is 
convenient to change the expressions for this wave as given in equation 
6-76 to an equivalent form in which the wave appears as a sup^position 
of two ordinary plane waves. The procedure is similar to that em¬ 
ployed in section 5-15, for the Ei wave between parallel planes, and 
will not be repeated here in detail. It will be shown that the two ele- 
m^taiy waves are repeatedly refiected back and forth between the 

side walls of the pipe. 
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It is necessary first to express the Hoi wave in terms of an X axis 
down the center of the pipe as shown in Fig. 6* 14. To do this we must 
go back to equation 6*32 and choose as our solution 

Hx — A cos vTx ysin VaIz 

Fig. 6-14 Choice of axes in rectangular wave guide for analysis of 
elementary waves. 

in place of the cosine solution. This is necessary since the previous 
solution was selected because we knew from experience that it would 
satisfy the required boundary conditions. We might have written 
down the general solution in the first place, but the extra complication 
of carrying the useless terms would have added unnecessary difliculty. 
With this choice, the general equation for the Hnm waves will be the 
same as given in equations 6-47 if, in the periodic term involving z, 
the sine replaces the cosine, and vice versa, and the polarity of Ey and 
Ef is reversed. The wave that results when n = 0, m = 1 is then 

H. = 4 sin 

.A 001^0 
—J-A- COS 

TT 

—jA-cos 

(s')"" 
Hot wave in the 
dielectric when 

** X axis is chosen 
in center of tube 

[6U03] 
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Let us consider first the Ey component. We may replace the 

cos (— z ) with its equivalent exponential form 
Vo / 

+ e 0 
and obtain 

+ [6.104] 
27r 

Thus Ey is separated into two elementary components E^y^ and E^y^ 

defined by 

27r 27r 
[6-105] 

p(2)_,-4 f^l2p .. OJMlZo -^^^+^o 

~ 2t ^ ~2^~ ® 

where 
= Ei^^ -f 

[6-106] 

[6-107] 

As in the parallel-plane case discussed in the previous chapter, it 
can be shown that these vector components may be interpreted as two 
elementary component waves traveling in different directions. This 
may be conveniently done by comparing the equations for the elemen¬ 
tary components with the general equation of a plane wave, i.e., 

C(s — vt) 

where C is the amplitude of the wave and s lx + my + 1, m, and 
n being the direction cosines of s. Thus by comparison with equation 

6-105 we see that 
TT 

5 = X — “-Z 
PoiZo 

TT 
and hence J == 1, m = 0, and n ~ --- The geometrical interpreta- 

P0l2^0 

TT , 
tion of the exponent x — -— z is shown in Fig. 6-15. Therefore equa- 

P0l20 

tion 6-105 represents a component wave traveling in the direction 

at an angle 

flO) =: tan 1 
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with the X axis. Similarly, it may be shown that equation 6*106 repre¬ 
sents a component wave traveling in the direction at an angle 

= tan-i (— 
\PoiZo 

pressed in terms of two component plane waves and which 
are traveling in the and X^^^ directions, respectively. For pur- 

Fig. 6-15 The elementary components of the Hoi wave are resolved along the new 
axes and which are rotated an angle 0 from the old axes. The 

Y axis remains the same. 

with the X axis. Hence the Ey component is ex¬ 

poses of analysis, we may express in terms of a new system of axes 
and Ejj^^ in terms of the new axes The analytic pro¬ 

cedure required has been explained in detail for a similar case in section 
5-15. Briefly, the procedure in this case is as follows: 

Let us first consider the Ey^ exponent. To make the required trans¬ 
formation, replace x and z in equation 6*105 with the values 

Then 

X = cos 6 + sin $ 

z == z^^^ cos 9 — x^^^ sin d 

PoiX-2? =» 1 
Zq 

^/Joi cos S ^ sin ^x^^^ + ^jSoi sin 6 

[6*108] 

—cos [6*109] 

Substitution for the sin 0 and cos d from Fig. 6*15 reduces this to 
{<a/vi)x^'^\ Carrying through a similar operation on equation 6*106 and 
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replacing x and 2 by the values 

X = x^^^ cos d + 2^^^ sin d 
z = 2^® cos 6 — x^^^ sin 6 

[6-110] 

we find that the exponent 0oix -f — 2 reduces to — a:®- Thus the 
2o Vi 

elementary components of and take the form 

£<8, - [6-111] 

El% = -jA 
~ wA 

-e / 

27r 
[6-112] 

A similar rearrangement and transformation may be carried out for 
the Hx and Hz components. In this manner we may obtain for the 
Hqi wave the expression 

i/01 Wave 
Group I 

//oi Wave 
Group II 

[6-113] 

The jEfoi wave may therefore be divided into two groups, one of which 
represents a plane wave traveling in the direction and the other a 
plane wave traveling in the direction. In both these groups, Ey 
is transverse to the direction of propagation, being in the Y direction. 
It can be shown that the H vector in each group of waves is normal to 
its direction of propagation. As this was proved in the analogous study 
of the E\ wave in section 5-15 in some detail, it will receive but brief 
treatment here. Consider the first group of elementary waves. Resolu¬ 
tion of the Hx and Hz components of this group along and at right angles 
to the direction of propagation X^^^ shows that the components of Hx 
and Hy along X^^^ cancel and components of Hx and Hy at right angles 
to X^^^ add. Thus, from Fig. 6-16 

H% = cos e ~ H[^^ sin e [6-114] 

and 
=■ Hi" sin » + Hi” cos 0 [6-116] 
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from equation 6-76. Hence 

sm B = — and [6-116] 

Z 

Fig. 6*16 Hesolution of the first group of elementary components along and 
at right angles to the direction of propagation of this group. 

Thus, from equations 6-115 and 6-113, 

^OtgQPl 

TTW 

. -Azpri 

^ 2tu 

25r« \t»i/ 

16-117] 
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The final expressions for the elementary wave represented by the first 
group may be written 

V-') 
" ZirVi 

Hoi 
elementary wave 

^ traveling in the 
direction 

16*118] 

In a similar manner we may obtain from the second group 

/ar(2> > 

E% = 
UK 

Hoi 
elementary wave 

^ traveling in the 
direction 

[6*119] 

Thus these elementary waves are plane waves having the electric 
and magnetic vectors at right angles to one another and to their direc¬ 
tion of propagation, and having a velocity vi of a free wave in a medimn 
of dielectric constant si and permeability The direction which these 
waves take as they progress in the dielectric medium within the tube is 
shown in Fig. 6*17. 

Equations 6*118 and 6*119 for the elementary waves are entirely 
equivalent to equations 6*103 for the Hoi wave from which they were 
obtained. We see, therefore, that the Hoi wave consists of the super¬ 
position of two elementary plane waves, which are reflected back and 
forth by the metal side walls of the tube. Equation 6118 may be con¬ 
sidered as a wave striking the left side wall at an angle 0, and equation 
6*119 may be considered as a wave being reflected from this side wall 
at an angle 0 and traveling from left to right along the direction 
At the right side wall the roles of the waves are interchanged. We may 
express the angle 0, which determines the and X^^^ directions as a 
function of the frequency of the waves. From Fig. 6*15 

Thus, as the frequency / approaches the critical frequency (fo)oi, 
tan 0 approaches « and 0 approaches 90®. At ^ ~ 90° there is no 
transmission in the X direction since the waves bounce back and forth 
between the side walls. Thus the group velocity = 0 at ^ « 90°, 
while the phase velocity is infinite since the plane of the wave is parallel 

* See footnote on page 154 for development of an analogous eiq>resBion. 
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to the side walls of the tube, and two points an infinite distance firona 
one another along the X axis are in the equiphase surface of the waves. 
When / is slightly greater than the critical value, 6 is less than 90° and 
there is a slow progression of the wave in the X direction as indicated 
in Fig. 5-18. The remarks made on page 165 in regard to the physical 
representation of the process taking place are equally applicable here. 

X 

Fig. 6-17 i. Direction taken by elementary waves as they progress through the 
rectangular pipe. 

6*18 Imperfectly Conducting Tubes 

It was pointed out in section 6-16 that the problem of obtaining an 
exact solution of the wave equations in a r^ion bounded by a metal 
of finite conductivity is extremely difficult, and as yet no complete 
solution has been found. The problem in the case of rectangular tubes 
can, however, be treated in a manner similar to that employed in Clmp- 
ter 5 for the parallel-plate problem. 

Again we will assume that the distribution of the field vectors in 
tubes of imperfect conductivity is not materially changed from that 
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which is obtained when the boundary walls are perfectly conducting. 
The imperfect conductivity permits a finite dissipation of energy in the 
metal. In order that energy flow from the dielectric into the metal we 
know from the Pointing theorem that there must be a component of 
electric intensity at the surface of the metal. We do not know the 
magnitude of this component, but we may estimate it in the following 
way. We know the tangential component of H at all four bounding 
surfaces, and we also know that these components are continuous at 
these boundaries. From the solution of the wave equations in an infinite 
metallic medium which was obtained in section 5-17 we obtained the 
relation E = rjH, which holds wherever a ^ we. 

The fact that the relation E - riH was derived for a medium of in¬ 
finite extent is no serious objection to our adopting it in this analysis, 
provided that the tube wall is sufiiciently thick that currents iii the 
metal do not reach the outside surface. Also most practical metals 
meet the requirement that we at physically realizable frequencies. 
We may, therefore, use the relation E = rjH, and in this way obtain 
each of the tangential components of E at the surface of the metal, 
from our knowledge of the tangential component of H there. Then by 
the use of the Poynting vector we may calculate the flow of energy or 
power across the surface formed by the dielectric and the metal. In 
this manner we may deduce the power lost from the wave as it is trans¬ 
mitted through the dielectric which fills the tube. Since rj is quite 
small, the E vector introduced will be small in comparison to the general 
field vectors, and the vector distribution in the tube is not materially 
disturbed. 

6*19 The Propagation of the Hqi Wave in an Imperfectly Conducting 
Tube 

Equations 6*75 for the Hqi wave in the dielectric, which were derived 
on the assumption of perfect conductivity, may be written in exponential 
form as 

4 cos ^ 

H, = 3A — sin f- 
T Vo / 

Ey = jA sin (- ^ 
’T \Z0 / 

If we assume that these expressions are not materially changed whai 
the tube is made of an imperfectly conducting material the only effect 

Bn 
wave in the 
dielectric 

[6-121] 
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which the metal boundary of finite conductivity will have will be a 
reduction in the amplitude of the component of the wave as it progresses 
in the X direction through the tube. The introduction of the attenua¬ 
tion factor into the amplitude of the various components will not 
affect the distribution of the wave, but will account for the loss of 
power during transmission. Thus for the components of the Hqi wave 
in the dielectric with imperfect conductivity we may write 

= A cos 

Hfi = jA sin (— 2^ 
IT \2o / 

Eyi = jA ^ sin (- 2^ 
*■ \zo ) 

\ 

Hoi 
waves in the 

dielectric when 
conductivity is 

finite 
16-122]* 

These equations were discussed in section 6-8 and subsequent sec¬ 
tions, for the case of perfect conductivity (0*2 = «>), where a = 0. We 
will now determine the attenuation factor in the case of imperfect con¬ 
ductivity. 

Consider the instantaneous conditions represented diagrammati- 
cally in Pig. 6-18. The tangential component of the magnetic intensity 
R at the upper and lower surfaces has both X and Z components. From 
equations 6-122 it is seen that the component Rx varies cosinusoidally 
in the Z direction, and the component Rz varies sinusoidally in the Z 
direction. Both are constant in the Y direction. Hence the R vector at 

either upper or lower surface is given by R^ = ^\Rx\\^ + where 
Rxi and Rzi have the values given in equations 6-122. If a component 
of electric intensity E2 exists at the upper or lower surface of the metal, 
so that energy will flow into the metal, the value of E2 will be given 
by E2 = vR2* At the surface of the upper plate the average power 
flowing through a square meter of surface, as given by equation 3*83, is 

p = ^gi(ExH*) [6-123] 

Hence 

Pu = igi(M) = [6.124]t 

Since we will now discuss waves in the metal as well as in the dielectric, we may 
write Hzit Hzh etc., for the waves in the dielectric, and HzZi etc., for the waves 
in the metal. 

t The vector product A x B « AB sin <f>, where <t> is the angle between A and B, 
If, as here, the angle 0 » 90°, A x B = AB, 
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From equations 6-122 

(H'z? = cos^ 2^ sin^ e-2“» [6-125]* 

Hence 

Py = i9l ^riA^ j^cos^ sin^ [6*126] 

Fig. 6* 18 Instantaneous distribution of magnetic intensity vectors of an J^oi wave 
within a section of a rectangular wave guide. The assumed tangential component 

of E at the imperfectly conducting surface is indicated in several places. 

From equation 5-144 

(sinceV^-= l+j) [6-127] 
\ 0-2 \ <r2 > ff2 

Taking only the real part of equation 6-126, we have 

*H2, the maximum value of H2 in distance and time, is given by H2 « 

V(h;i)» + (H;f)* 
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Hence the average power flowing into an area of surface of the upper 
side of the tube zq meters wide in the Z direction and 1 meter long in 
the X direction is 

1 

2 
^2g-2«» [6-129] 

or 

1 

4 
[6-130] 

Since H is constant in the Y direction, the power flowing into an equal 
area of the lower plate is also equal to 6-130. Hence P„, the average 
power lost in the upper and lower walls of the tube per unit length of 
the tube, is 

[6*131] 

Let us now consider the power lost in the side walls of the tube. 
The amplitude of the tangential component of H at the surface of the 
right wall is, from equation 6-122, when z = zq, 

HU = Hit = [6-132] 

The amplitude of-the required tangential E vector (Fig. 6-18) is 

E'yz = -vHU [6-133] 

The power flowing into a unit area of the right side wall of the tube is, 
therefore. 

p, = [6-134] 

1 

2 
[6-135] 

The power flowing into an area yo meters in the Y direction and 1 
meter in the X direction is poP.- The power flowing into an equal 
area in the left wall of the tube is also j/oP*- Hence the average power 
P* lost in the two side walls of the tube per unit length is 

P* “ 2p.j/o = J— A [6-136] 
\ 0*2 

The average power flowing through unit area in the X direction 
(down the pipe) is 

p. = iiEitHit) [6-137] 
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Substituting for from equation 6-122, we have 

Vx = ^ [6-138] 
Vo / 

Hence the average power P* flowing through the tube in the X direction 

is 
! ^oiwmi2!o 

Giving 

P^ ■2 ax r° r° Bin’^ (-z) dy de 
*^j/ssO ^z=»0 \^0 / 

2/Soi2o«M1 . -2a*'\ 
A yoZo e J 

[6-139] 

[6-1401 

Pa; may also be expressed as a function of (f/fo) by appropriate alge¬ 
braic manipulation.* Thus 

Now the power loss in the metal boundary is equal to the rate of 
diminution of the power flowing through the dielectric. Since Px is the 
power flowing through an area y^ZQ normal to the Poynting vector, 
—dPxIdx is the rate of decrease of this power. See Fig. 6-19. This 
must equal the power lost by the wave in the four bounding surfaces. 
Thus 

-~^Pv + Pz [6-141] 
ax 

But as shown in equation 6-158 

— = -2aP* [6-142] 

* JL ss—( ^ f ~ ^ ^ ^ 
49r* 4x^81 vi \4xei!ii/ \(/o)oi/ \4xeit;i/ 

Now 

/Soi 

Hence 

But 

- 1 

4x2 
/3oi 

gQCtfV/ilgl // / V ^ 

^TtlVl \\(fo)oi/ 

4x01^1 
Z62rf / f \ 1 

t>i4xfiri \(/o)oi/ 
/ 

4(/o)oi\ei 

giving equation 6-140a. 
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Hence 

2aFx =Py + P. or « = [6-143] 
Zt X 

Substituting for Py, P^, and Px from equations 6*131, 6*136, and 6*140, 
we have 

Fig. 6*19 Distribution of P«, Py, and P, in the imperfectly conducting 
wave guide. 

The attenuation constant may also be expressed as a function of 
(//(/o)oi) after certain algebraic manipulation. In this form it is 

a 

( ^ V 1 
2j/o\(/o)oi/ V(/o)oi/ 

/ 2*0 1 
i Vl<T2Atl 

•kB'-' \ / 

neperi 
per 

meter 
[6*146] 
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The attenuation constant as given in equation 6*146 is the sum of two 
parts, one arising from losses on the top and bottom walls of the tube, 
and the other from losses on the side walls of the tube. Let us denote 
the product of the first term within the brackets and the common factor 
by a'j and the product of the second term and the common factor by 

so that a = a a'. Both a and are infinite at the critical 
frequency. For frequencies just above the critical frequency, both 
factors decrease rapidly. To determine whether or not these factors 
have a minimum, we may differentiate them with respect to (//(/o)oi) 
and set the derivative equal to zero. The solution of the resulting 
equation will give the value of (// (/o)oi) at the minimum, if a minimum 
exists. Thus 

For a we see from equation 6*147 that the minimum exists at a value 

of / = Vs (/o)oi* For higher values of frequency, a increases. At 

large values of frequency where (//(/o)oi)^^ 1, a'constant {f/{fo)oi)^t 
and hence a increases as the square root of the frequency. Since a 

♦ If we let X = //(/o)oi in equation 6-146 we have 

where Ki is a constant dependent on the physical properties of the system. For a 

minimum = 0 = ifi{ (—-f 3x"”^)}. Hence x = Vl or 
ox __ 

X = Vs, giving//(/o)oi = ±1 or //(/o)oi = db Vs. For all values of/less than 
{/o)oi, the tube cannot support a wave. Also, at / = (/o)oi, a = ». Hence we are 
only concerned with values of //(/o)oi > !• In this case a minimum occurs at 

/ = + Vs (/o)oi. 

t When X = ttt* > .> I *= — x]”“^^ where is a constant de- 
(/o)oi \Va;2—1/ 

pendent on the physical properties of the system. For a minimum 

^ = 0 = (3®* - 1)] 
OX 

Hence x = VT or as = Vf, giving //(/o)oi = ±1 or //(/o)oi = ± V^. Since we 
are not concerned for values of//(/o)oi ^ 1| there is no mininmin. 



222 RECTANGULAR WAVE GUIDES 

is that part of the attenuation constant due to the upper and lower 
walls of the tube, these surfaces are responsible for the increased attenua¬ 
tion as the frequency increases. The term a' has no minimiiTn for 
//(/o)oi > 1 but continues to decrease as the frequency is increased. 
For large values of /, a" is proportional to (// (/o)oiFor frequencies 

exceeding Vs (/o)oi) the most important contribution to the attenuation 
arises from the a! term. Hence we see that for frequencies greater than 

(/o)oi most of the loss takes place at the top and bottom walls of 
the tube. This was first pointed out by Chu and Barrow. When 
operating a rectangular pipe under these circumstances they suggested 
the use of a material of highest conductivity for the top and bottom 
walls. 

(CAu and Barrow^ courUay of IRE) 

Fio. 6'20 Attenuation-frequency characteristics for an Hai wave in a rectangular 
copper wave guide filled with air. The guide periphery is constant and equal to 

0.4 meter. Different ratios of yo/so are shown. 

A comparison of rectangular pipes for various ratios of the yo/zo 
dimensions is shown in Fig. 6*20. The data for these curves were 
obtained by Chu ^and Barrow for air-filled copper pipes haying the 
same periphery. In this diagram Zo = 40 cm. In this manner 
they found that there is an optimum ratio of j/oAo = 1-18; that is, for 
a fixed perimeter and lowest attenuation the tube should be constructed 
so that 2/0 = I-18 zq. However, it may be noted from Fig. 6-20 that, for 
any ratio of t/o/^o between ^ and 2, the attenuation is very close to the 
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minimum value. There is another factor which may be important in 
the choice of the yo/^o ratio. It may be seen from Fig. 6-20 that, as 
j/o/ao is reduced, the required frequency is also reduced. It will be 
shown in a later chapter that, in the higher-frequency ranges, the eflB.- 
ciency of an oscillator is usually decreased as the frequency is increased. 
Hence it may be desirable to use values of yoAo = | or less owing to 

-Approx. 2zo-*■ 
vz. 

Fig. 6*21 Cross sections of two wave guides having the same periphery. 

the increased efficiency of the oscillator at the lower frequencies. For a 
square pipe having a periphery of 46 cm, the critical wavelength is 23 cm. 
If this pipe is flattened as indicated in Fig. 6*21 its critical wavelength 
will approach 46 cm. 

^0 “^0 

(Chu and Barrow, courtesy of IRE) 

Fig. 6*22 Minimum attenuation and wavelength as a function of periphery for 
an //oi wave in a rectangular copper wave guide of optimum 2/0/20 ratio = 1.18. 

A curve showing the variation of attenuation as a function of periphery 
for optimum j/oAo ratio is shown in Fig. 6-22. We may obtain a rela¬ 
tion between the critical wavelength (Xo)oi and the periphery p, for 
optimum yo/zo ratio. From equations 6*76, (Xo)oi ** 2«o. Since 
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2/oAo = 1-18, and 2{yo + 20) = P, we may write (Xo)oi *^4.36p. This 
relation is also plotted in Fig. 6-22. It may be seen from Fig. 6*20 
that the attenuation offered by the rectangular tubes is very nearly 
constant over an appreciable frequency range in the neighborhood of 
the frequency corresponding to minimum attenuation. 

Higher-^rder atteniuition 

The attenuation constant has been calculated for Enm and Hnm waves 
by Chu and Barrow. These calculations will not be given here, but 
the results may be expressed as: 

Ho,m wave: 

a nepers per 
meter 

Hn.m wave: 0 

nepers 
per 

meter 

En,m wave: 

a = KzS'^ 

where 

[ (^ T 

n 1 '( ’ Y-i 

K 
_ I 

\Vi<r2Mi 

nepers per meter 

Since the attenuation constant a for the H„m wave does not reduce to 
the correct value when n = 0, it is necessary to give a separate expression 
for waves of the £fom type. 

Figure 6-23 shows the attenuation-frequency curves for Hn, En, 
and Hoi waves in a square air-fiUed copper pipe. It is found that, for 
equal orders of harmonic variations, n = m, & square pipe gives the 
miniTniiTn attenuation. The Hoi wave has the lowest attenuation of all 
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EotH waves in a square pipe. Table 6*2 gives the critical and optimum 
conditions for the waves shown in Fig. 6-23. 

(^Chu and Barrow^ couHtty of IRB) 

Fig. 6*23 Comparison of the Eu^ and Hi\ wave attenuation characteristics 
for a square air-filled copper pipe, yo — ^ 0.10 meter. 

TABLE 6-2 

Critical and Optimum Conditions for ^Toi, flTu, Waves in a 

Square Air Filled Copper Pipe 10 cm on a Side 

Wave type Hoi Hit JS^ii 

Critical frequency in cycles 1.60 X 10" 2.12 X 10* 2.12 X 10® 

Frequency for minimum attenuation 
in cycles 4.44 X 10" 6.18 X 10" 3.67 X 10" 

Minimum attenuation in decibels 
per mile 8.65 18.1 14.6 

Chu and Barrow^ cowieay of IBB 

PROBLEMS 

6* 1 Obtain equation 6*81 from equations 6*79 and 6*80 by an elimination process 
similar to that employed in section 6-3. 

6*2 Obtain several solutions to equation 6*81, and show that the one involving 
the product of the sines wiU meet the boundary conditions Ey » 0 at s » 0, so, and 
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A’* = 0 at y = 0, yo for the E waves in the rectangular guide. Will other solutions 
meet these boundary conditions? 

6*3 Show that the components of the Enm waves are as given in equations 
6*82. 

6*4 Show that the propagation properties of the Hrm, waves as given in equations 
6-71 are the same as those for the Enm waves. 

6*5 Show by substitution of sin d and cos 0 from Fig. 6*15 that equation 6-109 re¬ 
duces to 

6-6 Show that equation 6-106 for the elementary component E'^y^ may be ex¬ 
pressed in terms of distance in the direction as given in equation 6-112. 

6*7 Show that the 11 x and IIz components of the //oi wave in the dielectric, as 
given in equation 6-103, may be expressed in terms of distance in the direction 
as given in equation 6-113. 

6*8 Show that resolution of the Hx and Hz components of the first group of ele- 
mentaiy waves given in equations 6-113, along the A'^^^ direction results in a zero 
longitudinal component of magnetic intensity. Repeat for the second group along 
the direction. 

6*9 Show that the intrinsic impedance ij for the .^oi wave in a rectangular pipe, 
as given in equation 6-102, will approach 377Q if the dimensions of the pipe are made 
very large in comparison to the wavelength of the wave and if the dielectric in the 
pipe is air. 

6*10 A general solution of equation 6-16 is IIx - YZy where Y and Z are given 

in equations 6-28 and 6-31. Thus Hx - CiCz sin sin VZ2^ -f C2C4 cos 

vCliy cos Va^z -f C1C4 sin cos Va^z + CzCz cos sin VAzz. Show 

that the solution Il'x = A cos VTiy sin VA2Z (where, in this case, A = C2C3) will 
satisfy the boundaiy conditions for the Hnm waves when the X axis is chosen down 
the center of the pipe. See Fig. 6-14. Will any other particular solution chosen 

from among these satisfy the boundaiy conditions for this choice of axes? 

6*11 Obtain the components for the Hnm waves based upon the choice of axes 
shown in Fig. 6-14. 

6»12 Show how equation 6-145 reduces to 6-146 by substitution of the relations 

2 1 
;==; and any other suitable relations from equa- 

anow now equation 0-1^ 

« / (/o)oiV . 
Poi 

tions 6-76. 

6* 13 A wave guide of metal is 10 cm square inside. Tabulate all the modes which 
may be propagated at 2000; 3000; and 5000 megacycles per second. 

6»14 Calculate the phase velocities of the several modes tabulated in problem 
6-13. 

6* 15 If the guide of problem 6-13 is of copper and at room temperature, calculate 
the attenuation at 4000 mc/sec for the Hoi and En modes of transmission. 

6*16 Repeat problem 6-15 for a guide of aluminum. 

6*17 Repeat problem 6-15 for a guide of soft iron for which Mm ® 1000. 

6*18 Plot the attenuation vs. frequency characteristic from (Jo) 01 up to a fre¬ 
quency of 50,000 me for an Hoi wave propagated in a copper wave guide 20 by 24 cm. 
The wave is oriented so as to produce the lowest possible loss. 
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6* 19 A rectangular wave guide must be divided into two separate guides by means 
of a sort of Y fitting. Considering only TE modes of low order, discuss the mechani¬ 
cal construction which should be employed and the nature of the wave behavior at 
the junction. Need a serious reflection result? How should the wave be polarized? 

6*20 A wave guide 3000 meters long must have an attenuation of only 0.6 neper. 
Assuming that the interior is silver-plated for highest possible conductivity, choose 
the mode of propagation and the dimensions of the guide to meet this requirement 
most compactly. 



CHAPTER 7 

CYLINDRICAL WAVE GUIDES 

In treating the problems of the previous chapters, it was found 
expedient to use the cartesian coordinate system. This was convenient 
since the equations of the boundaries of the parallel planes and rec¬ 
tangular tubes are most easily expressed in this system. 

We shall now take up problems in which there is axial symmetry, 
as in tubes of circular cross-section and concentric circular tubes. 
Under these circumstances it is most convenient to use the cylindrical 
coordinate system since the cylindrical boundaries are most easily ex¬ 
pressed in this system by the simple equation r = constant. 

7*1 Maxwell’s Equations in Cylindrical Coordinates 

The choice of axes in this system as related to the axes of the cartesian 
coordinate system which we have used is shown in Fig. 7-la. The 
circular cylindrical coordinates are r, 0, and x. These are related to 
the rectangular coordinates by the equations 

X ^ Xf 2/«rsin0, 2;«rcoB0 [7-1] 
228 
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The relation between the vectors in the two systems may be obtained 
in the following way. Consider a vector E, Fig. 7-16, lying in the YZ 
plane, making an angle 6 with the radius vector r through 0, and an 
angle d + <l> with the Z axis. From this diagram we may write 

Ey = E sin (6 + <l>) = E (cos 0 sin ^ + sin cos 4) 

Ez = E cos (B + 4) — E (cos 0 cos — sin sin <^) 

Also 

Er = E cos 0 and E^ = E sin 0 

Hence 

Ey = Er sin. 4 E,^ cos 4 
Eg = Er cos 4 — E^ sin 4 

Ex = Ex 

[7-2] 

Y 

Equations.7-2 may be solved to give Er, E^, and Ex in terms of Ex, Ey, 
and Ef They yield 

Er = sin + Eg cos 4 
E^ = Ey cos 4 — Eg sin 4 [7-3] 

Ex = Ex 

With the aid of relations 7-2 and 7-3, the components of a vector in 
cylindrical coordinates may be expressed in terms of the rectangular 
components, and vice versa. 

Maxwell’s equations, in cylindrical coordinates, may be obtained 
with the aid of the integral relations 3-1, 3-2, 3-3, and 34 by taking the 
appropriate line and surface integrals over a small element in cylindrical 
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coordinates. This may be done in a manner similar to that employed 
in the rectangular coordinate case of Chapter 2. Consider, for example, 
the volume element shown in Fig. 7-2, which is greatly enlarged for 
convenience. Let us imagine this volume element to be located in a 
homogeneous isotropic medium through which a current is flowing. 
We may resolve the current density i into three components. Let these 
components at the point (r, 0, x) be tr, and i*, in the directions 
of increasing r, 0, and x. The magnetic field H in the medium at this 

X 

point may similarly b^eso^ved into the components Hr, and Hx* 
Let H4, be the average value of the magnetic intensity along the side 1, 2, 
of the volume element. Then, assuming proper continuity, and neg¬ 
lecting second-order effects, the average value of the magnetic intensity 

dU — 
along the side 4, 3 is Ax. Similarly, if Hx is the average 

ox 
magnetic intensity along the side 1,4, that along the side 2, 3 is 

+ dHx 

rd^ 
rA<tt. Hence, the line integral of H around the path 1, 2, 

3,4, is 

^ H cos B (U — A<f> + 4" f Ax — H—Ax| 

HxAx = f 
dHx 

rd4> 
r A0 Ax 

T A0 

[74] 

But, by Ampfere’s law, this is equal to the surface integral of i over the 
surface enclosed by the path 2. If Ir is the average current density 
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over the surface r Aa:, normal to the surface, then 

X/ I ds = Irr A0 Ax 

and the other components Lx and contribute nothing to the surface 
integral. Hence 

cos 6 dl = IrV A0 Ax = |~ r A<f> Ax [7*6] 

Dividing through by r A</) Ax and taking the limit as A</> and Ax approach 
zero, we obtain 

r A4> Ax [7*6] 

{ <f H cosedl\ , 1 dHx dH^ 
Limit [ =cmlrH - --[7-7] 

J ’ 

where the average values of the magnetic intensity and current approach 
their values at the point x, r, <l> in the limit. 

By constructing similar mathematical areas Ar Ax and r A</> Ar, and 
equating the surface integral of i through these areas to the line integral 
of H around the areas, we obtain in the limit 

dHr dHx rm o1 

, 1 ld{rH^) dHr] r-rm 

r [ dr d<l> i 

Since i = rtr + K + [7-10] 

where r, <j), x, are unit vectors in the directions of increasing r, <t>, and x, 
we have 

fl dHx dHJ , . jdHr dHx\ ^ 1 jdW dHr\ 

, 1 dHx ^H^ 
= curl,H =- -T--r-^ = h 

r d<l> dx 

dHr dH: 1 \d{rH^) dHr 

If, in addition to the conduction current i, there is also a displacement 
current dD/dt, we may write 

IdHx dH^ ,dDr „ , dEr 

~ri^~ ~d^ 

dHr dHx _ , p 4.,^ . 17 121 

IdirH^,) IdHr ,dDx „ , dEx 
- -3= -|  — 3B 6 —-— 

r dr r d<f> dt dt 

which expresses one of Maxwell’s equations in cylindrical coordinates. 
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By taking the line integral of the electric intensity around a similar 
surface in cylindrical coordinates, and equating it to the surface integral 
of dBn/dt through the surface, wc obtain in the limit, as the surface 
approaches zero, the relations 

IdE. dE^ *4
 dHr 

r d<t> dx dt ^ dt 

dEr dE^ dB(f, dH^ 

dx dr dt ^ dt 

ld(rE^) IdEr dH, 

r dr r d<l> dt ^ dt 

giving another of MaxwedLs equations in cylindrical coordinates. The 
divergence equations in these coordinates are 

and 

r dr r d<t) dx 
= p or 0 

r dr ^ r d(t> dx 

[7*14] 

[7-15] 

They also may be obtained by taking the required volume integrals 
over an infinitesimal element in the cylindrical coordinate system. 

7*2 Waves Guided by Cylindrical Metallic Tubes 

As in the previous cases we are interested in the propagation of waves 
which vary periodically with distance and time in the positive X direc¬ 
tion. Wc therefore introduce the requirement that electric and mag¬ 
netic intensities involve time only in the form and distance in the 
form so that 

E = 17-16] 

H = [7-17] 

In the final solution we shall take only the real part of 7*16 and 7*17. 
Thus, in the final result 

E = and H = 

The factor represents a wave traveling in the positive X direction 
with a frequency / = w/27r and a propagation constant 7 = a + jp, 
a being the attenuation constant and p the phase constant. Sub¬ 
stituting 7*16 and 7*17 into 7*12 and 7*13, and dividing through by 
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yx obtain 

(а) 
r 60 

(б) 
or 

1 i (,^;) - i = (cr+ia,e)^i (f) 
r or r 0q> 

1^ 
r d<^ 

BE’ 

(a) 

[718] -yE'r-(b) [7-19] 

When applying these ecjuations to problems involving the propagation 
of electromagnetic waves inside long conducting cylinders in the axial 
X direction it is convenient to write them in another form, in which the 
field is expressed in terms of E and H components along the direction 
of propagation, i.e., the axial components Ex and Hx. To obtain this 
form from equations 7*18 and 7-19 we may proceed as follows: 

From equation 7-19& 

, _yE' 

joofi JOSH dr 

Substituting this value of into 7* 18a we obtain 

IdH'x , , y dE'x , , . 
^ “IT ' Er + •:-— = (cr + j0)e)Er 
r d<f> Jon jofi or 

giving 

K = 
jon{(T + jot) — 7^ 

BE'x jj^ dHj 

dr r d<i> 
[7-20] 

Similarly, substituting for H' from equation 719a into 7-186 we obtain 

1 

-l-iws) 

7 dEl 

r d4> 
jon 

dr 

Also substituting E'^ from equation 7-186 into 7-19o gives 

1 
H' 

joni<T + jot) — 7^ 

and Er from 7-18a, substituted into 7-196, gives 

1 

<r + jot dE'x , dH!c 
-h 7 — 

r d<i> dr 

jon{<r -f jot) — -f 

, , . .dE'ydH[^ 
(a -f jot) — H-— 

dr r d4> 

[7-21] 

[7-22] 

[7-23] 

The equations 7-20, 7-21, 7-22, and 7-23 express E', E'^, H', and 
as functions of the longitudinal or axial components Ei and H'x. By 
elimination among the equations 7-18 and 7-19 we may obtain an equa¬ 
tion in E'x alone or H'x alone. These equations, together with equations 
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7-20-7-23, completely determine the field distribution. The elimination 
process to obtain the equations in E^. or Hi will not be carried through 
here, but it is similar to that employed in Chapters 5 and 6 to obtain 
similar relations in rectangular coordinates. The equation we seek is 
the wave equation; expressed in cylindrical coordinates it is 

dr^ r dr 
= [jwnia +i«e) - -flEl [7-24] 

Similarly, 

d^Hl IdH'l d^Hl 

r dr d4>^ 
= [ju>ii{(r +jo)e) — [7-25] 

The solution of these equations may be obtained by the method of 
separation of variables discussed in section 64. The first step toward 
the solution of 7-25 is to set 

Hi = Ri> [7-26] 

where B is & function of r alone, Rir), and 4> is a function of 4> alone, 
$(<^). The required partial derivatives are 

dHl dR 
— = ^ (R^) = 4> 

dr dr^ ' dr 

and 

d'^Hl 

dr^ 

d^Hl 

d<l>^ 
R 

d^R 

dr^ 

dH 

d<f>^ 

^d^R ,1 dR , I „ d^^ 

Hence equation 7-25 becomes 

[ju(i{a + j«e) — y^\R^ 

Dividing through by R^/r^ and rearranging 

i^d^R 

R dr^ 
r* d^/e r 8i2 ^ 2r 2 • / i • m , 1 ; T3 + D — + - W(<r + J«e)] + - ^ 

R dr 

[7-27] 

[7-28] 

The first three terms of equation 7-28 are a function of r only, say F(r); 
the fourth term is a fimction of <j> only, say m that 

Fir) + Fi<t>) = 0 [7-29] 

The equation therefore states that a function of r plus a function of (j> 
is equal to zero, no matter what values r and ^ may have. This is 
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Burdy not possible in general, for, if we keep r fixed and vary 0, 
would change while F{r) remained the same. Thus the equation would 
not be satisfied. The only exception would, of course, occur where 
F(r) and F(<l>) are each constant and independent of r and <t>. Let us 
impose this condition and set 

F(r) = and F(<j>) = —pf 

where p and pi are constants. Substituting for F(r) and F{<l>) in 
7-29 we obtain p* — pf = 0, giving p = pi. Thus, from the last term 
of equation 7-28, 

0 + pf# = 0 [7-30] 

an ordinary differential equation in #. Its solution may be written as 

# = Cl sin pi# + C2 cos pi# 

where Ci and C2 are arbitrary constants. Also, since p = pi 

# = Cl sin p4> + C2 cos p# [7-31] 

We obtain from the first three terms of equation 7-28 

^ ^ ^ ^ - jun{<r + jwe)] - p^ = 0 [7-32] 

Multiplying through by R/r^ we obtain 

^ r ¥ ~ - 7] ^ “ 0 f7-33] 

This is a form of Bessel’s differential equation; its general solution 

may be written 

R - CzJ'plfs/— jwni<T + jue)) + CiYp(rVy^ —jup{a + jm)) [7-34] 

where Jp and Yp are Bessel functions of order p, of the first and second 
kind, and Ca and C4 are arbitrary constants. 

The general solution of 7-25 may, from equation 7-26, be written as 
the product of 7-31 and 7-34. 

Thus 

“ B# = (Cl sin p<^ + C2 cos p4>)[CzJp(f\/7® —jupic +ywe)) 

+ C4Tp(rV'y® — jup{a +iwe))] [7-34a] 

Before considering this solution further, we shall digress to discuss 

equation 7-33 briefly. 
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7*3 Bessel’s Differential Equation and Bessel Functions* 

In practice, BesseFs equation generally appears in the form 7-33. 
If we set 

it may be written 

= 7^ — iw/i((r + jcoe) 

^ 1 ^ 

r dr 
= 0 

[7.35] 

[7.36] 

This equation is readily reducible to the standard form of BesseFs 
equation by a change of variable. For example, let p = kr. Then 

r 
P 

k 
and 

dR ^ dR d^R ^2 

dr dp ^ dr^ dp^ 
[7-37] 

so that equation 7-36 becomes 

or 

dp p dp \ '2 

d^R . I dR 
dp^ p dp (>-?>-» [7-38] 

Equation 7-38 is the standard form of BesseFs differential equation, 
Each value of the parameter p is associated with a pair of fundamental 
solutions called Bessel functions of order p. One of these solutions 
is called a Bessel function of the first kind. It is finite at= 0. The 
other fundamental solution is called a Bessel function of the second 
kind. Linear combinations of these solutions are sometimes called 
Bessel functions of the third kind or Hankel functions. 

Let us consider first a special case for a Bessel function of the first 
kind where p - 0. Equation 7*38 reduces to 

d^R 

p ^P 
[7-39] 

This equation is known as BesseFs equation of zero order. One of the 
solutions of this equation, Jo(p), is given by the infinite series 

Jo(p) = 1 - ^2+ ~ 22-42.62 "*- 

* For a more complete discussion of BesseFs equation see pages 47-68, K4rm4n 
and Biot, Maikemaiical Methods in Engineering^ McGraw-Hill Book Company, 
New York, N. Y. 
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and is known as the Bessel function of the first kind of zero order. 
Another solution of equation 7-39, Fo(p), is given by the relation 

^o(p)* = - 
TT 

^(p)(loge^ + c') + (0 

(3!)^ 
’ (1 + I + i) — [741] 

where the constant c\ called Euler’s constant, has the value 
c = 0.57721 * • •. The solution F()(p) is known as the Bessel function of 
the second kind of zero order. We may therefore write the general 
solution of 7*39 in the form 

R = CMp) + C'4Fo(p) [742] 

where C3 and (74 are arbitrary constants. The zero-order Bessel func¬ 
tions Jo(p) and Fo(p) are plotted in Fig. 7-3a, and their derivatives 
with respect to p in Fig. 7*36. It is seen that they are oscillatory func- 

Fig. 7'3a Bessel function of zero order of the first and second kind. 

tions, resembling damped sinusoidal and cosinusoidal functions, except 
that Fo(p) approaches — « for small values of p. 

The apprehension with which some engineers approach these func¬ 
tions is scarcely justified in view of the close relation the functions 
bear to trigonometric expressions. Roots of the trigonometric functions 

* The solution Fo(p) as given here may be found in any textbook on Bessel func¬ 
tions such as Bessel Functions for Engineers, McLachlan, Oxford Press, 1934, page 69. 
In German textbooks and tables the notation NoCp) is generally used instead of 
FoW- 
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are evenly spaced at intervals of t. This is also true for the roots of 
higher rank in Bessel functions. 

It can be shown either by an asymptotic expansion or by transforma¬ 
tion to circular functions that, for large values of p, Jq(p) and Yo{p) are 

given by the expressions 

Fig. 7-36 The derivative of Bessel functions of zero order, of the first and 
second kind, with respect to their arguments. 

The approximations are excellent, for at p = 10 the error is of the order 
of 1 per cent and steadily decreases as p increases. By the same expan¬ 
sion it could be established that lower-rank roots depart from this 
periodicity. Reference to Fig. 7*4 will make this immediately evident. 

Bessel functions of the third kind, of zero order, are linear combina¬ 

tions of Jq{p) and Fo(p)« Thus: 

- Mp) + jYoip) [743] 

H^^\p) = Mp) - jTo(p) [7-44] 

where Ho\p) and Ho^{p) are called Hankel functions of zero order. 
Such combinations are necessary in some problems in order that re¬ 
quired boundary conditions be satisfied. Their presence in this Section 
is in the interest of generality, for the special cases requiring their use 

will not be treated. 
For large values of p, the asymptotic approximations of the zero- 

order Hankel functions are given by substitution of equations 742a 
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into 7-43 and 7-44. 

Fig. 74 Bessel functions of the first kind, of order zero, one, and two. 

BesseFs equation of order p, as given in equation 7*38, is 

d^R IdR 

dp^ p dp 
= 0 17-38] 

A solution of this equation, Jp(p), is called the Bessel function of order p 

defined by the infinite series 

1 

2*’r(p+i) l!(p+l)22 2!(p+l)(p+2)2« 

where r(p + 1) is the gamma* or factorial function defining the factorial 
p,i.e.,r(p + 1) = p(p — l)(p — 2) • • • « p! Jp(p) is sometimes ex- 

* Numerical values of gamma functions have been computed and tabulated in 
several reference works. See B. O. Pierce, A, Short Table o/ IrUegralSf page 140, 
Ginn and Co. 
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pressed more compactly by the summation 

Jpip) = 

”•£“ (-ir 
m-o ml T{p + m + 1) (r“ [747] 

Relation 7 46 or its equivalent 747 holds for integral or fractional 
values of p. If p is not an integer,* we may replace p by — p and obtain 
another fundamental solution, J_p(p), which is called a Bessel function 

of negative order. 
If p is an integer, say n, then the gamma function r(p + 1) may 

be replaced by n! in equation 746, or r(p + m + 1) may be replaced 

by (n + m)! in 747. Thus 

m\{m + n)l (2) 
0, 1, 2,3, •••) [7-48] 

This expression is plotted in Fig. 7-4. 

For suflSciently large values of p, Jpip) is given by the asymptotic 
expansion 

Jpip) ^ - _ 
4 2/ 

for largep [7-49] 

Another solution of equation 7-38 which is independent of Jp(p) is 
given by 

Ypip) = — {Jp(p) cos Pit — J_p(p)} [7-50] 
sin pjT 

where Yp(p) is a Bessel function of the second kind of order p. When 
p is an integer, this relation becomes indeterminate, Yp(p) = 0/0, but 
can be evaluated by the usual methods. Since Fp(p) approaches — <» 
as p approaches zero, this function cannot be used to express physically 
finite fields in the neighborhood of the origin. See Fig. 7-5. We are 
therefore interested primarily in the assmptotic value of Yp{p), which 
is given by 

Bessel functions of the thirji kind of order p, or Hankel functions of 

* The jEamma functicm is not finite for native integral values of p. 
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order p as they are called, are defined by the relations 

H!^\p) = JM + jyp(.P) [7-52] 

Hf\p) = Up) - jY^{p) [7-53] 

Thus the Hankel functions represent linear combinations of the first- 
and second-order Bessel functions just as represents a linear com¬ 
bination of cosine and sine functions; i.e., 

= cos p + j sin p 
and 

Fig. 7-5 Bessel functions of the second kind of order zero, one, and two. 

For large values of the argument p, 

[7-56] 

For convenience we may arrange the values of the various Bessel 
functions as p approaches zero or infinity as in Table 7-1. 
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TABLE 71 

For Large Values of p For Small Values of p 

- -m’ 

\7rp J’r j2 

\irp 3Tr 2 

It is seen from Table 7-1 that, as p —► 0, only the Bessel function 
the first kind is finite, the others approaching infinity. When we attempt 
to satisfy the boundary conditions inside circular tubes or concentric 
cylinders it is generally necessary to use Jp(p). For this reason Jp{p) 
is sometimes called the internal Bessel function. 

7*4 Electromagnetic Waves in the Dielectric within a Conducthig 
Cylinder 

Let us consider the propagation of electromagnetic waves through 
the homogeneous isotropic dielectric which fills the interior of a hollow 
metal cylinder. Let us take the X axis as the axis of the cylinder and 
consider propagation in the X direction. Let the inside radius of the 
cylinder be a, as indicated in Fig. 7*6, 

We have seen in the previous section that the solution Yp{p) of 
Bessel’s equation becomes infinite as p approaches zero. It is therefore 
not suitable for defining the field in the dielectric when the radius r is 
restricted by the relations 0 < r < a and <r Cjcue. Recalling the 
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development earlier in the chapter and in particular equations 7-26,7-31, 
and 7-34, it will be clear that equation 7*34o for the axial component of 
the magnetic intensity Hx may be written 

Hx = {{A' cos p<l> + J5'sinp<^) Jp(r Vt^TIoV)}[7-56]* 

where enters as the function of distance and time, and where 

Ci = 0. 
A similar operation may be effected giving a solution for Ex in the 

dielectric. Thus 

Ex ^ {(A cos p<l> + B sin p<t>) Jp (r Vy^ + wV)} [7-57] 

In these equations, A, B, A', and B' are constants to be determined. 
Equations 7-20-7-23, expressing the remaining components of the 

field in terms of Ex and Hx, become in the dielectric 

K = 
'' + w V 

dEx 

dr r d<t> j 

EL = 

H' = 

y SEj 

y^ + [ r 
+ i"M 

dr 

-y* + w^i 

1 
-4- 

(jMS dEl, 
'/xej r d<l) 

djHx 
dr 

— j(j)Z 
BE' 

Waves 
in the 

dielectric 

[7-58] 

[7-59] 

[7-60] 

17-61] 

Equations 7-58 through 7-61 define the electromagnetic field in the 
dielectric within the pipe. When the constants of equations 7-56 and 
7-57 are chosen to fit the boundary conditions of the problem, the re¬ 
maining components are determined by substituting Ex and H'x in 
equations 7-68 through 7-61. 

7*5 Transmission Modes in a Perfectly Conducting Pipe 

When tbe metal wall ^the tube is a perfect conductor, the tangential 
components of the elecIRc intensity, Ex and must vanish there. 
Two types of waves can fulfill this condition, the H and the E type 
waves. As in the previous cases considered, the H tsrpe wave is one in 
which the longitudinal component of E vanishes everywhere, and the 
E type is one in which the longitudinal component of H vanishes every- 

* Eqtiation 7’34a is the general solution of the differential equation 7-26. Since 
the constants C4, Ct of 7-34a are arbitrary, C4 is set • 0, yielding a particular solu¬ 
tion which is more useful since Fp(p) is inoperative. Obviously equatum 7-66 still 
satisfies equation 7*26. 
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where. Where the conducting wall is not a perfect conductor, it can 
be shown that E and H waves cannot exist alone unless the wave is 
circularly symmetrical. This will be discussed in a later section. 

The equations for the two modes of transmission may be collected 

as follows: 

E Waves in the Dielectric 

F, = 0 

Ex = {(A cos + .B sin p4>)Jp(r [7-57j 

y dEi] 
Er = - ^jut—yx 

[y^ + dr 

^ \r{y^ + d<i> J 

- {: 

dK\ 

r(,y^ + d<t> i 

Jus ^jut—yx 

Hi - _ I_Jat-fx 

\y^ + u^pes dr 

H Waves in the Dielectric 

[7-62] 

Ex =0 

Hx = {(A' cos p<t> + B' sin p<j>)Jp(,r Vy^ + 

Er = 

E^ = 

Hr = 

Ju/i dH'x 

ir(y^ + <0^, 

f jufi 

lie) d<l> 

dH'x] 

[(7^ + w^/xe) dr 1 

f y 
[y* + wV : drr 

f y 

¥
1

 1 

T(y* + w^MS) dit> 

^Ut—yx 

giat~yx 

giat—yx 

[7-56] 

[7-63] 

7 *6 Boundary Conditions for E Waves 

Let us examine the solution for Ex as given in equation 7*67. It is 
clear that in any circular structure a reference of angular position is 
necessarily arbitrary. Accordingly, we are free to choose a reference in 
such a way as to make the mathematical analysis as simple as possible. 
In the present case the matiiematical analysis is aimplifi^ if choose 
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the reference so that B = 0. Our solution then becomes 

= {A cos p(t>)Jp{rVy^ + 40V) [7-64] 

Let us consider the term involving 0. It is evident from physical con¬ 
siderations that the electric intensity E has one and only one value at 
each point within the tube. Thus, when r and x are held constant, we 
may increase </> by 360® without changing the value of E. 

The function cos satisfies this condition if and only if p is an 
integer. The situation is similar to that existing in Fourier analysis. 
Only harmonics of the fundamental frequency return to their proper 
relative position when 360° is added to the fundamental angle. Thus, 
in order that our solution be single valued, p must be an integer. Let 
us set p = n = 0, 1, 2, 3 • • • , so that 7.64 becomes 

Ex == A cos n<t> Jn(r + wV) (n = 0,1,2,3 • • •) [7*65] 

Let us consider, now, the Bessel function J„ (r ^y^ + under 
the restriction that n is an integer. At the inside surface of the pipe 
r ^ a, and, since Ex is zero there, we must have 

Jnia V72 + uWi) = 0 (7-66] 

From Fig. 7*4 it is evident that Jn is zero only for certain definite 
values of the argument, called the roots of Jn- There are an infinite 
number of such roots, a few of which are given in Table 7-2. 

TABLE 7-2 

Roots of /„(p) = 0 

Rank (m) w = 0 w = 1 n = 2 n = 3 n = 4 n = 6 

1 2.405 3.832 5.135 6.379 7.586 8.780 
2 6.520 7.016 8.417 9.760 11.064 12.339 
3 . 8.654 10.173 11.620 13.017 14.373 15.700 
4 11.792 13.323 14.796 16.224 17.616 18.982 
5 14.931 16.470 17.960 19.410 20.827 22.220 
6 18.071 19.616 21.117 22.583 24.018 25.431 

Let fnm represent the roots of where n refers to the order of the 
Bessel function and m refers to the rank of the root. Thus roi = 2.405, 
r23 = 11.620, etc. Hence in order that 7-66 be satisfied 

a V-y2 + = Tnm 

giving 
17-67] 
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or Tnm ~ (7-69] 

Since 7nm must be imaginary in order that propagation take place, it 
is necessary that (rnm/o)^ < wVisi. It is therefore more convenient to 
write 

2 

[7-70] 7nm = - (^) 

The propagation constant ynm = «nm + jPnm> where anm is the attenua¬ 
tion constant and finm the phase constant. Hence 

^nm *4" j^nm [7.71] 

giving ^nm — 0 

^nm — 
4 

"VlSl — [7-72] 

Thus we find that for perfectly conducting tubes anm - 0 and there is no 
attenuation. If fi^m is real, i.e., if wVisi > (’'nm/a)^, the wave will be 
transmitted down the tube. If < {I'nm/o)^, finm as defined by 
equation 7-72 is imaginary and there is no transmission at all. This sets 
a lower limit on the frequency at which transmission will take place. 
As in the previous cases we can define a critical frequency /o = wo/27r, 
where ci^isi = (r„m/a)*. Hence 

(/o) nm 
1 

2ir 
[7-73] 

For frequencies greater than (/o)nm, Pnm is real and the wave will be 
propagated down the tube. For a wave whose frequency is less than 
(/o)nm, Pnm is imaginary and there is no transmission. We may define 
a critical wavelength (Xo)nm by the relation (Xo)nm (fo)nm = Vi, where 

vi = l/''^juiei is the velocity of a free wave in a medium of dielectric 
constant si and permeability jki. Thus 

(Xo) nm *” 

27ra 

^nm 
[7-74] 

The phase velocity which has been defined previously is 

(*^p)nm 
0) it) 

4 

[7-7S] 
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and the group velocity ivg)nm is 

nm 
1 

do) 

COMlSl 
(7-76] 

7*7 Enm Waves in the Dielectric 

From equation 7-67 we may write = rnm/a- Replacing 
the radical in equation 7-65 we obtain for the amplitude of the axial 
component of the electric intensity 

Ei = A cos n4>Jn {n,m = 0, 1, 2, 3, • • •) [7-77] 

To obtain the remaining components we need the following derivatives 

= —An sin 7ut> Jn (r —^ [7*78] 
d(l> \ a / 

and 

dr 
= A cos n<t) I 

in j / r„„\ 
|7'791* 

* The derivative of the Bessel function JnQcx) with respect to a? is 

= - Jn(kz) - kJ^iikx) = kj'nikx), 
OX X 

where Jn(kx) is the derivative with respect to x. This follows directly from differ¬ 
entiation of equation 7-47 with p - kx and p = n, an integer. From equation 7*47 

and 

Jn(kx) = 

Jn+l(kx) = 

m «oo 

m-0 w!r(n + w + 1) \ 2 / 

^ «00 

rn\T{n + m + 2) \2/ 

Differentiating Jn (kx) with respect to x, we obtain 

dJnikx) 

dx 

9n«oo ( — 1)*” 

'2) 

»»lr(« + TO + 1) ”\2/\2/ 

“A*_(-1)" /k\ /te\"+®“-‘ 
^0 - l)!r(n+ m + 1) ”*\2/\2/ 



248 CYLINDRICAL WAVE GUIDES 

We may now write the complete equations for the Enm waves in the 
dielectric by substituting 7-78 and 7-79 in equations 7*62. It is con¬ 

venient to replace tL + "Visi with (rnm/a)^ and 7nm with jfinm- 
Thus the following equations result: 

A cos n<l> J /3nmX) 

aV 
Er — J j ^nm ( ) Tl<f) X 

I \^ntn/ 

E, = j %m n<^. (r ) 

= 0 

Hr = —j l^wei ^ 6^^“'-^"”**^ 

= —j |a<o6i ^^ cos ruj> X 

[7-80] 

Multiplying both sides by x and rearranging terms, we obtain 

(-ir dJnikx) 
X —::-= ^ 2-f 

dx n m!r(n + m + 

tn*QO 
+ A;x 2 

T5( 

^y+2m 

(-ir 
m^o (m “ l)!r(n + w + 1) ^ 

r- 
- nJ„(^x) - kx Z {j) 

where m — 1 = g. Hence 

X — nJn(Jcx') — hxJn-^i{hx') 
dx 

Dividing through by x 

—= -Jnikx) - kJ,^i(kx) = kJn(kx) 
OX X 
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The propagation properties of Enm waves are given by the following 
relationships: 

Propagation constant ^nm = 

-JO'-fi 

)2 

Critical frequency ifo)nm II £1
^ 

Critical wavelength (^)nm 
\rnm/ 

Wavelength in pipe 
27r 

^nm 

Free wavelength Xi 

Phase velocity (Pp')nm 
0) 

^nm 

Group velocity (Vg)nin 
i^p)nm 

Free wave velocity- Vl 
1 

Vmsi 

[7-81] 

There is no root roo of the Bessel function Jq-, hence no wave of the 
type Eoo exists. Waves of the type J?om exist, however, and W. L, 
Barrow has made an exhaustive study of the Eqi mode of transmission. 
This wave is usually referred to as the Eo wave. Waves of the type 
En are referred to as .Ej waves, E21 waves as Ez waves, etc. Here as 
in the plane and rectangular wave guides the designation TE is equiv¬ 
alent to H. Similarly the designations TM and E are equivalent. 
To be exact it is necessary to use double subscripts to identify any of 
these wave types. 
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7*8 The £o Wave. Perfect Conductivity 
It may be seen from equations 7*80 that, for n = 0, m == 1, the com¬ 

ponents and Hr reduce to zero. The remaining components become 

II 

T-or 
r — \ gjX- -Poix) 

a > / 

Er 
^01 

aJij 
{ Tox\ 

^01 \ a ) 
f 

H4, - jA 
OJSi 

aJi\ 
i roi> 
r — ^ j3oix) 

^01 ^ a } r 

Eq wave 
in the 

dielectric 
[7-82] 

where roi = 2.405 and jSoi = 

If the dielectric is air, then /xi = very nearly, and 

Vi = 1/ V/xqSo ^ c = 3 X 10® meters per second. Then 

Since the critical frequency is inversely proportional to the tube 
radius a, the smaller the tube, the higher the frequency required for 
transmission. A plot of the critical frequency and the critical ^wave¬ 
length as a function of tube radius is shown in Fig. 7*7 for an air dielectric. 
The corresponding wavelength in free space is also shown as a function 
of tube radius. It can be seen that tube radii less than 10 cm require 
frequencies in excess of 10® cycles per second. 

The quantities given in equation 7*83 are plotted as a function of 
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frequency in Fig 7-8. Although in this diagram the tube radius is 
held constant at 5 cm, the curves shown are typical for tubes of any 

ifiarrow, courtesy of IRE) 

Fio. 7-7 Cnticd frequency and critical wavelength as a function of tube radius 
for Eo waves in perfectly conducting circular pipes. 

radus. As for the rectangular pipe, the phase velocity is infinite at the 
cntical frequency and approaches the velocity of light as the frequraicy 
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is increased. The group velocity, on the other hand, is zero at the 
critical frequency, but also approaches the velocity of light with in¬ 
creased frequency. It is seen, also, that the wavelength in the pipe 
approaches the wavelength in free space as the frequency is increased. 

A plot of /3bi as a function of frequency for various tube radii is 
shown in Fig, 7-9. As the radius of the pipe is increased so that a ^ X®, 
Poi approaches the value 27r//c. 

X 2 3 4 5 6 7 
Frequency f in Cps x 10^ 

(BarroWt courtesy of IRE) 

Fia. 7*9 Variation of the phase constant /Soi with the radius of a circular guide. 

As for the pipe of rectangular cross section, we may obtain a plot of 
the electric intensity inside the pipe by setting t equal to zero in equa¬ 
tions for Ex and E,. in 7-82. Thus, 

1J5*1 = AJq cos jSoi X [7-84] 

1^,1 = A Jx(r —^ sin jSoiX [7-85] 
^01 \ a / 

The differential equation of the lines of electric intensity is thus 

d (Soix) ^ ^ ^ xpi 
[7-86] 

Barrow solved this equation by graphical means and obtained the dis¬ 
tribution shown in Fig. 7-10. The picture shows the field structure 
at any instant of time. The propagation of the wave down the tube 
may be thought of as a movement of this distribution through the tube 
at a velocity (Pp)oi given in equations 7-83. 

We may calculate the transverse electromotive force in volts between 
the tube axis and the inside surface of the tube by taking the line integral 
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of the electric intensity between these points. Thus, 

V' = [“e' dr = jA ^ rVi (r^) dr = jA 
«'o roi Jo \ a / (»’oir \ a /[ 

Hence 

V' =jAfioi (-)’ Voi/ 
volts 

[7-87]* 

[7-88] 

instantaneous 

(Barrow, courtesy of IRE) 

Fig. 7*10 iostaiitaiieous field configuration of an j&oi wave (7Woi) in a circular 
wave guide. 

The longitudinal current in amperes along the inside surface of the 
tube may be calculated by taking the line integral of H4, around this 
surface. Since there is a surface layer of current on the conductor, the 
tangential component of magnetic intensity is discontinuous at the 

since /o(0) * +1 and /ofroi) = 0, for roi is by definition the first root of the 
zero-order Bessel function. 
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surface and is zero inside the surface. Hence the only contribution to 
the line integral is given by the integral of taken at r = o. Thus, 

I' = <f H^d<l> ^jA^Mroi) <f (U [7-89] 
•'r-a ^01 

. . weia _ , - ^ 
= jA-J1 (roi) 27ra 

^01 
amperes [7-90] 

We may define a characteristic impedance in ohms as the ratio of this 
transverse voltage and the longitudinal current Thus, 

27ra)6iroit/i(roi) 

For air dielectric, this becomes 

{Barrow, courtesy of IRE) 

Fig. 7*11 Characteristic impedance vs. frequency for a 6-cm radius, perfectly 
conducting air-iilled tube. 

The characteristic impedance Zq is plotted in Fig. 7*11 for a, pipe of 
6-cm radius. Since jSoi is zero at the critical frequency, Zq is zero at 
this frequency. As/increases above (/o)ol increases and approaches 
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48 ohms as / approaches infinity. Similar results are obtained for 
other radii. On the basis of this definition it is seen that the hollow-pipe 
transmission system is essentially a low-impedance device. 

The characteristic impedance, defined on a power basis,* is found to be 

Zo ■= 30 

when the dielectric is air. 

7*9 The El Wave. Perfect Conductivity 

The equations for the Ex wave in the dielectric may be written from 
equations 7*80 by setting n = 1, m = 1. The wave structure for this 
mode of transmission, which is much more complicated than that for 
the Eo wave, is shown in Fig. 7*12. 

-Lines of Electric Force -Lines of Magnetic Force 

Fig. 7*12 Instantaneous field configuration of Ei wave in cylindrical wave guide. 

The critical frequency for the En wave is given by the relation 

where rn ^ 3.83. (See Table 7*2.) Thus this transmission mode is 
possible for all frequencies greater than (/o)ii as given in 7-92. The 
higher-order E waves are also possible theoretically but will not be con¬ 
sidered here. The frequencies required for this transmission become so 
high as to be of little practical importance at this time. 

7*10 Boundary Conditions for H Waves 
By our choice of the reference of angular position we may take B' 

in equation 7*56 equal to zero so that our solution for H becomes 

if' « il' cos v<^Jp{r + cuViSi) [7-93] 

* Carson, Mead, and Schelkunofi, Bdl System Tech, /., 15, 2, p. 310, 1936. 
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In order that this solution be single valued, p must be an integer, n. 
Thus, 

Hi = A' cos V-y® + toVisi) (n = 0, 1, 2, 3 • • •) [7-94] 

The amplitude of the tangential component of the electric intensity from 
equation 7'63 is 

+ wViSi 
A' 

JWH 
2 2 COS n<t> — [Jnir'^y^ + «Viei)] 

+ £o>iei ar 

[7-95] 

But must be zero at the surface of the conductor at r = a. This 
requires that 

"T =0 SLtr=^a [7*96] 
dr 

or 

aVy^ + = rL 17-97]* 

where r^n is the mth root of — Jn(r^y^ + coVisi) at r = a. Several 

* As shown for equation 7*79, 

di/n{kr) ^ nJnjkr) krJn^i(kT) 
dr r 

or 

fc7;(A.r) = - Jn(kr) - kJ,^ i(kr) 
r 

Then 

~ /w (r7^ “h n (r7^ + wVi8i) "" + «Viei n+i(r7^ + «Viei) 
or r 

This must be zero at r = a. Hence 

r + «Viei) — ifl'^y^ + w^/xiei) = 0 
a 

This requires that 

nJnifly/y^ + «Vl«l) = oV^T^ + + w^m) 

When n = 0 

Ji(fl\/y^ + Aiei) = 0 

and 

ay/y^ + «Viei = ri,„ 

where rim is the mth root of the first-order Bessel function. 
Thus, if m » 1, r^i ~ rn «= 3.83; if m *= 2, rj2 = ria * 7.02, etc. 
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of the lower order roots arc: 

Thus 

^oii ^02 • • • — 3.83, 7.02 • • • 

r[u r'n--- = 1.84, 5.33 • • • 

[7-98] 

[7-99] 

Equation 7-98 can be satisfied only by values of < coViSi- Hence 
we may write 

2 

[7-100] Tnm 

As in the case of the E waves we may write 

ynm ^nm “f" j^nm MlEl “■ [7-101] 

which leads to the conclusion that anm = 0 where the metal of the tube 
is a perfect conductor, and 

/? nm "VlSl — [7-102] 

Since finm must be real if propagation is to take place, 
and we can define a critical frequency, wo/2ir, below which there can be 
no transmission.* Thus 

(fo) nm 
C«?0 
2t 

[7-103] 

When n = 1, 

J1 Viei “ aV^7^ + wViei + wVi«i) 

or 

J1 toViei) 

J2(a V7^ «Vi«i) 
ay/7^ + <»> Vici [7‘97a] 

If the lowest value of ay/y^ + wVi«i that will satisfy this equation is aV7® + w*/xiei 
= 1.84, then we call this the first root or rjj ~ 1.84. The next highest root to 
satisfy 7-97a may be checked by reference to Fig. 7-4. 

* The qualifying remarks given in Chapter 6 also apply here. 
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The remaining propagation quantities (Xo)„m, (hp)„m, Xi, (vp)nm, Mnm 

may now be written for the H wave in a similar way to that employed 
for the E waves discussed in section 7*7. 

7*11 Hjmt Waves in the Dielectric 

The equations for the Hnm waves may be written from equations 7*63 
by substituting the required partial derivatives, dH'x/d(t> and dH'xjdr, 

From equation 7-97 we may write = (r'„,/a). Replac¬ 
ing the radical in equation 7*94 we obtain, for the axial component of 
the magnetic intensity 

= a' cos n^Jn ^ (n, m = 0,1, 2, 3, • • •) 

Hence 

= —A'n sin n<t>Jn (r ^ 
d<l> \ O' / 

and 

Substituting these derivatives into equations 7‘63 and replacing + 
w^iS] with (r^m/o)^ and y with jfi, we obtain 

E,=0 

Er 'u/ii ~ sin n<^ 

“ (^) ('■ ^)]l 

- Jn+l (r 

= J (£)"” sin mf, J„ (r 

ffnm waves 
in the 

dideotrio 
IM04] 
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The propagation properties are given by: 

Propagation constant 
Pnm \ d J 

Critical wavelength (Xo)»m = Stt ^ 
\^nm/ 

Critical frequency 

Wavelength in pipe (\) K^pjnm — Q 

Pnm 

Free wavelength >
' II 

Phase velocity 
Pnm 

Group velocity {^g)nm — . v 
\^p)nm 

Free wave velocity 
1 

Vi = /- 
V/ijEl 

Since there is no root of the type r^, no wave of the type Hoo exists. 
Waves of higher order all exist theoretically, but owing to the extremely 
high frequencies involved we will consider only the lower-order Hoi 
and Hu waves. These waves are usually referred to as the Hq and Hi 
waves, respectively. 

7-12 The Ho Wave. Perfect Conductivity 

Substituting n = 0, m = 1 into the general equations 7-104 for the 
Hnm waves, the components Er and H^ vanish and we obtain 

j3oia:) = —j j-^Wi ^ 

= {aVo 

Hr - 3 {a'/Joi Jl (r 

17-106] 

where r^i 3.83 and fioi •= — (3.83/a) If the dielectric is 

air, Ml * Mo and ei ■= eo, very nearly, and v » 1/v^Moeo = c = 3 X 10® 
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meters per second. Then the propagation properties become 

[MO/j 

The distribution of the field intensity vectors for this type of wave 
is shown in Fig. 7*13. Equations defining this distribution may be 
obtained in a manner similar to that employed in section 7-8, from the 
relations 

\Hg\ = A'Jo cos 

li?r| • [7-108j 

= A'um Ji ^ sin ^oi* 

where t = 0. 
The characteristic impedance for the Ho wave, defined on a power 

basis, has been found to be 

when the dielectric is air. On comparison of this equation with that 
of Zo for the Ho wave (equation 7*91), it is seen that at frequencies 
large in comparison to the critical frequency the characteristic im- 

*J. R. Carson, S. P. Mead, and S. A. Schelkunoff, Hyper-Frequency Wave 
Guides — Mathematical Theory,” BeU System Tech. 15, 2, p. 310, 1936. 



THE Hi WAVE. PERFECT CONDUCTIVITY 261 

pedance of the Ho wave is proportional to the square of the frequency, 
whereas with the Eo wave it approaches a constant value. 

Axis of Tube 

<fZZZZZZ2Z;y^ 

|w>«s«»!ig«w»age«»aa^ 

■ Lines of Electric Intensity 

Section through r- r' 

Lines of Magnetic Intensity 

Fig. 7*13 Instantaneous field configuration for J/o wave {TEqi) in a cylindrical 
wave guide. 

Hi Wave 

l^ggggggjgggjggggggggggggggg^^ 

Lines of Electric Force •Lines of Magnetic Force 
(Soiithworth^ courtesy of BSTJ) 

Fig. 7*14 Instantaneous field configuration for Hi wave (TEu) in a cylindrical 
wave guide. 

7*13 The Hi Wave. Perfect Conductivity 

The equations for the Hi wave in the dielectric may be written from 
equations 7-104 by setting n = 1, m = 1. The wave structure for 
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this mode of transmission, at any instant of time, is shown in Fig. 7-14. 
For the higher-order E and H waves, the currents vary as cos around 
the periphery of the inside surface of the conducting tube. 

Wave Type Bessel Function 

TABLE 7-3 

Root 

Cut-off 
Wavelength 

meters 

27raV^ 

X 

Cut-off 
Frequency 
megacycles 

m 

2ira'\/ Kg 

Eo X - 2.41 2.62 aV7, 
1 

116 X*^ 
aV Kg 

El Jl(x) X = 3.83 1.64 aV7, 
1 

183 X~7= 
aV Kg 

Ho JoM X = 3.83 1.64 oV^ 
1 

183 X—7= 
aV Kg 

Hi x = lM 3.42 oV^ 88 
aV Kg 

where Kg is the dielectric constant, and a is the radius of the guide in meters. 

The critical frequency for the Hi wave is given by the relation 

where rji = 1.84. It may be seen by comparing this critical frequency 
with that of the Eoj J?i, and Hq waves that this one represents the lowest 
frequency for a given dielectric material and given tube radius. See 
Table 7-3. From this point of view it might seem to be the most 
desirable mode of transmission. It will be seen, however, that when 
the attenuation is considered this advantage of the Hn wave may be 
of secondary importance. 

7 • 14 Imperfectly Conductmg Pipes 

The solution to the problem when the walls of the pipe are imperfect 
conductors may be obtained in a manner similar to that employed in 
sections 5-18 and 6-18. In these sections it was assumed that the general 
field structure was not appreciably changed from its form when the 
boundary surfaces were perfectly conducting. As was pointed out 
before, this assumption is valid for metals of high conductivity such as 
copper and aluminum. It is not valid for poor conductors, or for 
extremely high frequencies of the order of visible light. The degree of 
validity is indeed dependent upon how well the inequality <r ^ «e is 
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met. Since in practice metals of high conductivity are available, and 
it is in general desirable to keep the losses as low as possible, the attenua¬ 
tion calculated under the above assumption is entirely satisfactory. 

In order that energy flow into the metal, we know from Poynting's 
theorem that there must be a tangential component of both electric 
and magnetic intensity at the surface of the metal. In the perfectly 
conducting case there is a component of magnetic intensity at the sur¬ 
face, but the tangential component of electric intensity is zero there. 
Since we know physically that the metal can support a small component 
of E along the surface, we may use the concept of the intrinsic impedance 
of a metal, 77, to determine the value of £tan at the surface. Thus 

•®tan ~ [7*HI] 

and the direction of i/tan is chosen in such a way that the computed 
Poynting vector is directed into the metal. The component £'tan is 
assumed to be at right angles to the component if tan- The average 
power absorbed by the tube per square meter of surface is given by the 

Poynting theorem as 

Pr ~ i^(Etan X Htan) ~ 2^(^Htan X Htan) 

where jfftan = -^tan In this case of practical conductors, all 
of the amplitude terms H' and E' contain the attenuation factor 

The average power Pr absorbed by the pipe per unit length is 

Pr 
1 
2 

1 
2 

fl surface of pipe 

Pr ds 

«/o 
[7*113] 

Also the average power transmitted in the X direction through the 
tube per square meter of surface normal to the axis of the tube is 

p, = - E'^i) 

The average power transmitted through the tube, Px, is then 

Pxds 

tc 

-i/.-. X 
surface normal 
to axis of tube 

{E'rHi - E'^H'r)r dr d4> [7*114] 

Now the power loss in the metal boundary is equal to the rate of 
diminution of power flowing through the dielectric. Since P* Is the 
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power flowing through the dielectric —dPx/dx is the rate of decrease of 
this power. See Fig. 7-15. This must equal the power loss P, in the 
radial direction into the metal. Thus, 

Pr = 
dPx 

dx 

In Chapter 5 it is shown that 

Hence 

[7-116] 

a 

2Px 

Fig. 7-15 

Substituting for P, and P* from equations 7-113 and 7-114 we obtain 

91 (vHZ) 
--nzr J- [7-116] 

2/ / - E'^'r)r dr d4 

Since the factor e~“* which is contained in the amplitudes E' and 
H' in the imperfectly conducting case cancels out upon substitution in 
7-116, we may substitute directly into this equation from the general 
equations 7-80 and 7-104. 
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In the transverse magnetic case (E waves), we obtain upon substitu¬ 
tion in 7*116 from 7*80 

(£ wav«) “ [7.117] 

For the transverse electric case {H waves) we obtain, upon substitution 
in 7-116 from 7-104 

[7*118] 

For the Eq, J^i, Hq, and Hi waves these expressions take the following 
form 

J5/o wave aoi = 0.438a~^^Jg . - . ^ nepers per meter [7*119] 

El wave an = 0.552ap. nepers per meter [7*120] El wave an = 0.552a nepers per meter [7 * 120] 

Ho wave aoi = 0.552a 
((/o)o3 

' Hi wave 

ail =0.382a~^X 

.av --r 

ijih) I 

nepers per meter [7*121] 

nepers per meter [7*122] 

where K = ^ -2 nepers per meter. Also the critical frequency 
\ Vi<r2Mi 

(fo)nm in the various expressions refers to the particular wave under 
consideration. 

The attenuation factor e"’"® is plotted as a function of frequency in 
Fig. 7*16 for each of the above waves existing in a 5-inch copper tube 
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filled with air. As the cut-off frequency is approached, the attenuation, 
as given by equations 7-119-7*122, increases without limit. Actu¬ 
ally, this is not the case, since these equations are not valid for fre¬ 
quencies less than or equal to the critical frequency. The attenuation 
does, however, increase to a very high value as the frequency approaches 

Frequency in Megacycles per Second 

iSouthrvorth, courtesy of BSTJ) 

Fig. 7-16 Attenuation characteristic of the Eot Hof Ei^ and Hi waves in an air-filled 
circular wave guide 5 inches in diameter. 

the critical value. Linder* has shown that the attenuation is over 
ten thousand times greater than the minimum attenuation for fre¬ 
quencies 1 per cent less than the critical frequency, for waves of the JJoi 
type. He has obtained expressions for the propagation constant which 

E. G. Linder, ** Attenuation of Electromagnetic Fields in Pipes Smaller Than 
the Critical Size,’* Proe. IRE^ Vol, 30, pp. 664-*556, December, 1942. 
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apply for frequencies equal to, and less than, the critical frequency of 
the guide. 

For each of the E waves, the attenuation reaches a minimum at a 

frequency equal to \/3 times the cut-off frequency.* For frcx^uencies 
greater than the minimum the attenuation rises again and approaches 
a linear relation with frequency as the frequency continues to increase. 
In this respect the hollow conductor behaves like ordinary conductors. 

The minimum for the Hi wave occurs at a frequency equal to 2.6\/3 
times the cut-off frequency. This wave has the lowest cut-off fre¬ 
quency, and over a band width of 4000 megacycles the attenuation is 
constant within f db per mile. Above the critical frequency the attenu¬ 
ation again increases normally, linear with frequency. The properties 
of the Hq wave are indeed unique in that the attenuation decreases 
with increased frequency for all values of frequency. This Ls the 
anomaly referred to in connection with hollow-pipe transmission. It 
means that we can achieve extremely low attenuation by the simple 
expedient of increasing the frequency. Unfortunately, however, the 
frequencies required to reduce the attenuation appreciably are extremely 
high with pipes having small physical dimensions. The stability of the 
various wave types is discussed later in this chapter. 

7*15 Characteristic Impedance of Hollow Pipes 

By integrating the Poynting vector over the cross-sectional area of the 
pipes and dividing by the square of the effective current, (Parson, Mead, 
and Schelkunofff have obtained the following expression for the charac¬ 
teristic impedance of hollow pipes. 

E waves 

H waves 

Zo = i2Ta)^ - ohms [7-123] 

ohms [7-124] 

These values of characteristic impedance were obtained neglecting 
attenuation. The critical frequency in each expression refers to the 
particular wave under consideration. 

* This value may be obtained from equations 7-11^7-120 by differentiating and 

noting the condition for minimum to be/ » 
t J. R. Carson, S. P. Mead, and S. A. Schelkunoff, ** H5q)er-Frequency Wave 

Guides — Mathematical Theory,*^ Bell System TecK Jour., Vol. 15, pp. 310-333, 
April. 1930 
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The characteristic impedance for the Eq, Ei, Hq, and Hi waves is 
plotted as a function of frequency in Fig. 7* 17. These curves were 
calculated for air-filled copper pipe having a diameter of 4 inches. It 
is seen that the characteristic impedance of all except the Hq wave 
approaches a constant value asymptotically as the frequency is in¬ 
creased. By terminating these pipes with the appropriate character¬ 
istic impedance no standing waves result and a maximum of power 

Frequency in Megacyles Per Second 

(SoiUhworth, courtesy of BSTJ) 

Fig. 7*17 Calculated values of the characteristic impedance of a 4:-inch air-filled 

pipe for the Eq, Ho, Ei, and Hi waves. 

transfer takes place. Methods for obtaining the required impedance 
follow conventional procedures employed with parallel wires. A method 
suggested by Southworth to avoid standing waves in a line is to place 
a thin film of resistance material across the tube at right angles to the 
tube axis, and behind the film a suitable distance, a metal reflector. 
This reflector may take the form of a movable piston. Other methods 
employ some form of resistance material in a resonant chamber. Ex¬ 
perimental methods for obtaining the required impedance may be 
easily devised on a trial-and-error basis. A typical set of data obtained 
by Southworth is shown in Fig. 7-18. 
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Resistivity of Film in Arbitrary Units 

{Southworthf courtesy of BSTJ) 

P"iG. 7-18 Typical set of experimental data as various degrees of impedance match 
are obtained. 

7-16 Dielectric Wave Guides 

If the conducting wall which constitutes the metallic guide is removed 
from the dielectric material which it contains, the lines of electric 
and magnetic intensity which were previously confined inside the metal 
surface will in general extend into the surrounding space. Thus the 
waves are propagated partly through the dielectric and partly through 
the surrounding space. Theoretical calculations pertaining to this 
phenomenon have been made recently by Carson, Mead, and Schel- 
kunoff and by others. Experimental data on this problem have been 
obtained by Southworth* who has found excellent agreement with 
theoretical results. Using a cylindrical dielectric wire, having a di¬ 
electric constant of 81, he obtained the results shown graphically in 
Fig. 7-19. In these curves X is the freo-space wavelength. 

* G. C. Southworth, ** Hyper-Frequency Wave Guides — General Considera-^ 
tions and Experimental Results,” Bell System Tech, Jour.f Vol. 16, pp. 284-309, 
April, 1936. 
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Fig. 7*19 Relative intensities of electric and magnetic fields inside and outside 
a dielectric wire while propagating the Eq wave. A dielectric constant of 81 is 

»T<I__ 2-J-1-i*-AS- .fc/T 
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With materials having a large dielectric constant and using fre¬ 
quencies well above cut-oflf frequency, it is seen that the power is propa¬ 
gated largely within the guide. Conversely, with low dielectric mate¬ 
rials, and with frequencies just above critical, it is found that a large 
^jortion of the power travels outside the guide. The relative intensities 
of the electric and magnetic vectors inside and outside the guides are 
indicated in the figure. It is seen in the case of the highest frequencies, 
that the guide substantially shields the energy which is propagated. 
The critical frequency as applied to dielectric guides indicates the 

Ratio of Wavelength to Diameter (~) 

{Southworthf courtesy of BSTJ) 

Fig. 7-20. Curve A. Velocity ratio for the Eq wave in a dielectric wire having a 
dielectric constant = 81. Curve B. Velocity ratio for the Eo wave in a metal 
pipe, the interior of which is filled with the same dielectric material («« — 81). 

It is seen that as X approaches zero the velocity ratio approaches a/sI = 9. If 
the dielectric constant of the material were progressively reduced curve B would 
shrink to the dotted curve shown in the lower left comer. 

frequency at which the most rapid transition takes place between 
propagation inside and outside the guide. 

A comparison of the velocity of the Eq wave in the dielectric guide 
with its velocity when a metal sheath surrounds the dielectric is shown 
in Fig. 7*20. As the wavelength approaches zero, i.e., as the fre¬ 
quency becomes infinite, it is seen that the velocity of the wave in 
either case approaches the free wave velocity in a medium having the 
same dielectric constant as that of the material used. When the metal 
sheath surrounds the dielectric, the velocity of the wave approaches 
infinity at X/d « 11,6, When the sheath is removed, however, the 
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velocity in the guide approaches the velocity in free space as the wave¬ 

length is increased. 

7*17 Coaxial Lines 

From the preceding sections it has been found that, for hollow-tube 
transmission systems, wavelengths of the order of the tube cross- 
sectional dimensions are required in order that propagation take place. 
In Table 7*3, page 262, are shown the minimum or cut-off wavelengths 
associated with several types of waves in circular pipes. 

Since the hollow-tube transmission systems require such extremely 
high frequencies their practical applications are quite limited. The 
frequency limitations of the hollow-tube transmission systems are 
attributed to the lack of a principal mode of transmission. This mode, 
which is characterized by the TEM transmission mode, is not possible 
with the hollow tube, since, as has been shown, no wave can exist with 
both longitudinal components zero. The plane parallel plates permit 
the existence of a principal mode, and hence all frequencies are trans¬ 
mitted through the dielectric between them. The principal mode may 
also exist in coaxial cylindrical conductors. In fact, by extending 
the respective radii of the coaxial system to infinity it may be shown 
that the plane parallel plates are but a special case of coaxial con¬ 
ductors. 

Wave guides of the hollow-tube and coaxial types have a common 
advantage in that the outside conductor serves both as a conductor 
and a shield. At the lower frequencies used in telephone work, the 
field may penetrate the outside conductor and cause interference in 
other cables and wires in the neighborhood of the cable. Such inter¬ 
ference, known as cross-talk, represents a very important problem in 
low-frequency communications. At higher frequencies the field pene¬ 
tration into the conductor is reduced and no appreciable field reaches 
the outside. The cable wall is then said to be electrically thick. 

Losses in coaxial conductors tend to be larger than the losses in 
hollow wave guides. This may be attributed to skin effect in the 
central conductor and to losses in the insulating supports provided for it. 

We shall be concerned here with frequencies greater than a mega¬ 
cycle, in which case the penetration of the field into the metal is quite 
small. See Table 5*1. Under these circumstances we may consider 
the outside conductor of the guide to have infinite thickness. By 
the same reasoning, the radius of the inner conductor is also elec¬ 
trically thick. In many types of coaxial lines now in use the inner 
conductor is supported at intervals along the line, whereas in others a 
dielectric material completely fills the space between the two conductors. 
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We shall consider the latter case, with the radius of the inner conductor 
a and the inner radius of the outer conductor 6. Where necessary we 
shall distinguish between the properties of the two media with the 
subscripts 1 and 2, See Fig. 7*21. 

Where high-frequency waves are to be transmitted it may be desir¬ 
able to exclude low-frequency components. The hollow wave guide 
is a logical choice since its filtering action removes any undesirable 
components. In other applications the coaxial transmission line 
excited in its principal mode is usually a more compact and satisfactory 
structure. Moreover, a small coaxial structure provides low losses 
at frequencies for which hollow guides are physically prohibitively 
large. Inspection of the field equations as modified by the appropriate 
boundary conditions shows that a variety of transmission modes is 
possible'in the coaxial structure. 

In addition to the principal mode of transmission many other modes 
are theoretically possible in coaxial lines. The critical wavelength 
required with the higher-order modes is of the order of the difference 
in radii, 6 — a. Thus the frequency requirements for transmission 
are at least higher than those of a hollow guide having the same outside 
radius. Since the frequency requirements for exciting the higher-order 
modes are in general less favorable and the losses higher, we shall limit 
our discussion entirely to circularly symmetrical transverse magnetic 
fields. This will result in considerable simplification of the analysis. 
We shall assume here, as before, that the media with which we deal are 
homogeneous and isotropic. 
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When the electromagnetic field is circularly symmetrical, that is, 
when the components of electric and magnetic intensity are independent 
of 0, all partial derivatives with respect to 0 vanish. Under these 
conditions the field equations 7-18 and 7-19 reduce to 

7//^= (<r+icoe)£'^ (a) (a) 

-yH'r-~ = {<T+iut)E't (B) _ j7,i25j yEr+~ = jatiH^ (B) 

Id Id 
r ^ ~ (<r-\-ju)e)Ex (c) - ~ (rE^) = (c) 

These equations define two separate transmission modes. If we 
choose H entirely in the 0 direction we obtain the circular magnetic or 
transverse magnetic transmission mode. Waves satisfying this mode 
are also called E waves. Setting Hr == == 0 we obtain 

= (<T +jo)e) Ef (a)' 

0 = joit) Elf, (b) ^j7.j27] 

r "dr (c) 

yE^^ = 0 (a) 

yK + = join (B) 

i I (rE^) = 0 (c) 

E waves 
in the 

dielectric 
[7-128] 

Fig. 7-22 Circular magnetic or transverse magnetic transmission mode in a 

coaxial guide. E waves. 

It is evident from these relations that = 0 in this type of transmis¬ 
sion. Figure 7-22 shows the orientation of the TM or E wave field 
vectors in the dielectric. 

If we choose E entirely in the 4> direction, the circular electric or 
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transverse electric transmission mode results. Waves satisfying this 
mode are also called H waves. Substituting Er = = 0 into equa¬ 
tions 7-125 and 7*126 we obtain 

= 0 (o)’ 

-yHr-^= (<r+»E; (6) 
or 

11 (rHi.) = 0 (c) 
T or ^ 

yE^ — 

I ^(rEi) = 
T or 

(o) 

0) 

(C) 

IH waves 
in the 

dielectric 

[7-130] 

Hence = 0. The orientation of the field vectors in the dielectric 
in this type of transmission are shown in Fig. 7*23. 

Fig. 7*23 Circular electric or transverse electric transmission mode in a 

coaxial wave guide. H waves. 

Equations 7*127, 7*128, 7*129, and 7*130 for the two transmission 
modes are expressed in terms of the maximum values of the E and H 
vectors in distance and time. With the H waves the lines of electric 
intensity form a system of concentric circles about the X axis in the 
dielectric. This is associated with uniform current flow in the 4> direc¬ 
tion on the surface of the perfect conductors. With the E waves the 
lines of magnetic intensity form concentric circles about the X axis in 
the dielectric. The associated current flow, therefore, is in the longi¬ 
tudinal direction on the conductor surface. It is thus seen that the 
transverse magnetic mode of transmission corresponds to the conditions 
under which coaxial transmission lines are usually excited in practice. 
To obtain a solution to the differential equations describing this mode, 
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it is necessary to obtain an equation in one of the vector components 
alone. To do this, let us first obtain an equation relating and Ei by 
substituting El from 7'127o into 7-1286. This gives 

or 

* join((r + jus) ■ 
dEi 

Y dr 

[7-131] 

[7-132] 

Differentiating partially with respect to r we have 

dHl v + jW d^El 

dr jun(<7 + jox) — 7^ dr^ 

But from 7-127c 

1 djrHl) 
r dr 

[7-133] 

[7-134] 

Substituting for from 7-132 and for dHt^/dr from 7-133 into 7-134, 
we have 

^ - j<^t^{<r + iwe)) El =0 [7-135] 

We may have obtained this equation directly from equation 7-24, 
setting d/d<l) = 0. This is a form of Bessel's equation of zero order. 
Its solution is 

Ex = AJo(rVy^ ~ jo)fJL{<r + jfwe)) + BYo{r^y^ - + jcos)) 

where Jo and Fq are Bessel functions of zero order of the first and 
second kinds, respectively, and A and B are constants to be determined. 
If in the dielectric o- jwe we may write 

El = AJo(ry/y^ + «V) + BYoirVy^ + ^V) [7-136] 

Since .B* = 0 at the surface of the perfectly conducting cylinders it is 
necessary that 

AJoiaVy^ + „V) + BYoiaVy^ + u^^) = 0 [7-137] 
and 

AJoih^-r^ + toV) + BYoibVy^ + «V) = 0 • [7-138] 

Solving these equations for A/B we obtain 

_ d = ypCa^Y^ + coV) ^ 70(6^7^ + toV) 

B Jo (®^Y* + w®Ate) Jo 
[7-139] 
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This equation has an infinite number of roots, the approximate values 
of which may be obtained if we replace the Bessel functions with their 
approximate values for large values of the argument. Making this 
substitution, we obtain 

8in{ (b - a)V-y2 + «V} = 0 [7-1401* 

This is true if 

(6 — + oy^jjL^ - nw n = 1, 2, 3, • • * [7*141] 

giving 

[7*142] 

This is an excellent approximation for all roots of equation 7*139 if 
h < 3a. Also, the larger the value of n, the better the approximation. 

Squaring both sides and solving for 7 we have 

[7*143] 

If coV > 7n is imaginary, and the wave is propagated without 

* This relation is obtained as follows: The equation for Jp and Yp for large values 
of the argument are given in Table 7'1, page 242. Setting 7; - 0 we have 

G ■ s) ("" 0 
Hence 

sin ^ay/y^ + sin ^y/y^ + wV “ 

cos (^y/y^ + cos ^y/y^ + 

sin ( 6V y^ -f* -0cos(a y/y^ + 

4* cos ^y/y^ Hh = 0 

sin A cos J5 — sin B cos A = sin (A — B) 

sin {(6 — a)y/y^ -|- - 0 
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attenuation. Thus 

Yn = «n +j^n = j — {^Z~^ [7-144] 

^ving «» = 0 and 

But if (; ) > w^Ms, 7n is real and there is no propagation at all. 
\b - a/ 

We may define a critical frequency (/o)n as in the' hollow-tube system. 
Setting = 0 

n 
(/o)n = “ ^ 7= 

2(6 “ a) VfjLs 

and the critical wavelength is 

2 
(^o)n == “" (6 a) 

n 

[7-146] 

[7-147] 

Since in most coaxial conductors 6 — a is less than a centimeter, the 
higher-order En waves require such enormous frequencies that they 
represent impractical modes of transmission. These remarks are 
equally applicable to Hn waves in coaxial lines. 

There is another solution of equations 7-137 and 7-138 which is very 
important, but which appears at first glance to be trivial. This solution, 
which corresponds to the principal mode of transmission, is obtained by 
setting A and B equal to zero. From equation 7-136 we see that this 
requires that Ex vanish identically. Now, when (t < ws, equation 7-132 
becomes 

Tjf _ Jws dEl 
~ "" ”2 i-2 "T— « /ie + 7 dr 

and replacing H'^ in 7-127a we have 

K' = _ 'y ^ 
*' w^/te + dr 

Hence and E'r also vanish if Ex is zero unless 

7* + = 0 

giving 

7 “ at + j/3 a= jw V/ie 

[7-148] 

[7-149] 

[7-150] 

[7-151] 
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Hence 

a = 0, /3 = « V^/is [7-152] 

This value of P indicates that propagation in the principal mode has no 
restrictions in regard to frequency. Since = 0, equation 7-1266 
becomes 

yE', = jWH' [7-153] 

Replacing y from 7-151, 

[7-154] 

Also equation 7-127c becomes 

d(rK) 
dr 

[7-155] 

giving rH'^ = 0 or a constant, C, independent of r. Taking it as C, 

r 
[7-156] 

We may evaluate the constant C by Ampere^s law. Let us take the line 
integral of around the surface of the inner conductor. This is 
2TaH'^ and is equal to the longitudinal current I carried by the inner 
conductor. Hence 

7' = 27ra7ir; [7-157] 

But, at r = a, equation 7-156 gives 

c = oh; 

Hence 

[7-158] 

7' = 27rC or C = — 
27r 

[7-159] 

and from 7-156 the equation for the magnetic intensity may be written 

f T 
H.= — = — [7-160] 

2irr 2rr 

and from 7-154 the electric intensity becomes 

[7-161] 
2irr\e 2rry 6 

The field distribution for the principal mode defined by equations 7-160 
and 7*161 is shown in Fig. 7-24a. Since J?* and Hx are zero, this mode 
is sometimes referred to as the transverse electromagnetic (TEM) mode. 
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It will be noted that the wave configuration of Fig. 7*24a is similar to 
that shown in Fig. 7-10 for the Eq wave in a hollow circular tube. 

For purposes of comparison the field distribution for a pair of con¬ 
ductors enclosed in a circular shield is shown in Fig. 7*246. The mathe¬ 
matical theory for this configuration of conductors will not be considered 

Coaxial Conductor 

-Lines of Electric Force -Lines of Magnetic Force 

iSouthworth, courtesy of BSTJ) 

Fia. 7*24 Instantaneous field configuration of the lines of electric and magnetic 
field intensity in a coaxial conductor and also in a shielded pair of conductors. Note 

similarity to Eq and Ei waves of Fig. 7*10 and 7*12. 

here. It may be seen, however, that this field structure is very similar 
to that of the Ei wave shown in Fig. 7*12. The propagation properties 
of these waves and of the hollow-tube waves are quite different. In par¬ 
ticular, there is no low-frequency cut-off for the modes shown in Fig. 7*24. 

We may calculate the potential difference between the inner and outer 
cylinders of the coaxial transmission line by taking the line integral of 
Er along a radius vector. 

V [7-162] 
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Hence 

[7-163] 

The characteristic impedance of the coaxial cylinders may then be 
expressed as 

^0 
V 1 [Hh 

I 27r \ e a 
[7-164] 

which may be written 

1 b 
Zq = —K loge - ohms 

27r a 
[7-165] 

where K = VmA is the characteristic impedance of an infinite medium 
of dielectric constant s and permeability n. 

Let us differentiate equation 7-163 with respect to a:. Then 

aF _ 1 /6\ W 
dx ~ 2iryl \a) dx 

Now I = hence 

^ = -j0l 

[7-166] 

giving, when P is replaced by w V/ie 

dx 
I [7-167] 

It is shown in Chapter 9 that, when we have a line with distributed 
parameters, the equations governing the transverse voltage V and 
current 1. along the line are 

dV 
--ZI [7-168] 
dx 

and 

^ = -FF [7-169] 

where Z - R + jb>L and Y - G + jwC, L and R are the series induc¬ 
tance and resistance, respectively, and G and C are the shunt conductance 
and capacitance, respectively. The values of R, L, (?, and C in these 
relations are expressed per unit length of line. 

The telegrapher^s differential equation is obtained by eliminating 1 
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from equations 7-168 and 7-169; it is 

d^V 
-7-2 =YVV 
dx^ 

[7-170] 

The solution of this equation is of the form e'^, as 
show. Thus the propagation constant is 

substitution will 

7 = [7-171] 

On comparing equations 7-167 and 7*168 we see that 

Z = R + jdilj = jo3 ~ loge “ 
2ir a 

[7-172] 

Since with perfect conductivity jB = 0, we have 

fjL b 
L = — loge ” henrys per meter 

ZTT a 
[7-173] 

^ving the series inductance per unit length of coaxial line. 
We may calculate the admittance Y with the aid of 7-171, The 

propagation constant y, when a is not neglected, is 

7 = (<7 -f jut) 

Setting this equal to 7 in 7-171 we obtain 

. ^ + iwe)] 

2x 
Y = - ■ [<r + jux\ = G -f jtoC [7-174] 

loge- 
a 

Thus the shunt capacity and conductance are 

0 a- mhos/meter and 

log,^ 
a 

C = farads/meter [7-174a] 

log*- 
a 

7.I8 Coaxial Lines — Finite Conductivity 

The average power P* flowing through the dielectric between the 
cylinders may be calculated from the Poynting theorem as 

P* = r f [Pr'^>d^dr ’[7-176] 

Substituting for Er and from equations 7-160 and 7-161 

[7-176] 
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Thus 

[7.177] 

Where the conductivity is not infinite we may calculate the average 
power loss into the outer and inner cylinders by the method employed 
previously. Thus the average power absorbed by the inner conductor 
per unit length is 

P« = r [7-178] 

Substituting for fro™ equation 7-160 at r = a, we have 

p _i ffib 
" 2\ Jo a ~\\ < 

r/M (I'f 
o’2 / 4ira 

But 

Pa = i(iyR. 

[7-179] 

[7-180] 

when Ra is the resistance per imit length of the inner conductor. Hence 

2P„ ^ 

2jra’ 
Ra = /\2 

(n 

1 

Jjra \ ff2 
[7-181] 

In a similar manner we may show that the resistance of the outer con¬ 
ductor Rb per unit length is 

**-2S 
^fM2 
as 

[7-182] 

The total resistance per unit length, i.e., the loop unit resistance, 
R = Ra + Rb- Thus 

[7-183] 

The total average power lost in the inner and outer cylinders per unit 
length is thus 

Pr = ^R(I')^ [7-184] 

As in equation 7-115 we may write 

dPg 
dx 

Pr 2oiPm [7-186] 
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Hence 

[7-187] 

Substituting for Px and Pr we obtain for the attenuation constant 

,StIi 
, b 
loge- 

a 

nepers per meter [7-188] 

It is possible to determine, for a given frequency, the optimum ratio 
for minimum attenuation by differentiating equation 7-188 with respect 
to h/a and setting this differential equal to zero. This gives for the 
optimum ratio 

- = 3.6 [7-189] 
a 

This is considered in more detail in Chapter 9. 

7*19 Elliptic Wave Guides and Stability 

The problem of the propagation of electromagnetic waves in hollow 
metal pipes of elliptic cross section has been investigated theoretically 
by Chu.* Since some deformation of the pipes of circular cross section 
into a slightly elliptic form is almost unavoidable, this problem has 
important practical applications. In his investigation Chu obtained 
significant information relative to the stability of waves in pipes of cir¬ 
cular cross section. The mathematical argument associated with this 
problem will not be given here, although the method will be discussed 
briefly. 

The procedure followed by Chu is similar to that employed in the 
preceding sections for the circular pipe except that it is far more com¬ 
plicated. The use of the elliptic coordinate system is necessary, and 
the first step toward the solution is to set'up Maxwell’s equations in this 
system. The general equations for the E and H waves are obtained as 
before and are expressed in terms of Mathieuf functions. Since the 

* Lan Jen Chu, “ Electromagnetic Waves in Hollow Elliptic Pipes of^ Metal,*' 
J. Applied Phys.f Vol. 9, No. 9, September, 1938. 

t Mathieu functions are the solutions to Mathieu equations, just as Bessel func¬ 
tions are solutions to Bessel's equations. Mathieu equations arise in this case from 
the expression of the wave equation in elliptic coordinates. For discussion of these 
functions see E. T. Whittaker and G. N. Watson, A Course of Modem AnaXym^ 
1927, S. Goldstein, Tram, Camb. Phil, Soc,, Vol. 23, No. 11,1927. 
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E and H waves in the elliptic pipe are described in both even and odd 
Mathieu functions, the prefix c or o is used. Thus eH or eE indicates 
that the wave is described by even Mathieu functions; oH or oE indi¬ 
cates that the wave is described by odd functions. Also in elliptic pipes 
it is convenient to use the double subscript n, m, where n refers to the 
order of the Mathieu function and m denotes the rank of the root. Since 
the present discussion is entirely limited to the first root, m = 1, this 
distinguishing subscript may be omitted. Only the six lowest-order 
waves were studied by Chu. These are the eHo, eHi, oHi, cEq, eEiy 
and oEi waves. 

The waves which we have studied in circular pipes are closely related 
to those in the elliptic pipes. When the distance between the foci 
approaches zero, the elliptic cylinder degenerates to a circular cylinder. 
Thus the Mathieu functions degenerate into circular functions. Elliptic 
and circular waves of similar types are compared in Table 74. 

TABLE 7 4 

Waves in elliptic pipe eEo eEn 
oEn 

eHo eHn 
oHn 

Corresponding waves in circular pipe Eo E„ Ho H„ 

Odd Waves Even Waves 

1.0 .6 .2 .2 .6 1.0 
Eccentricity 

{Chu, courtesy of Journal of Applied Physics) 

Pig. 7*25 Critical wavelengths of waves in elliptic pipes. 

In Fig. 7*25 the ratio of the critical wavelength Xq to the periphery S 
of the elliptic pipe is plotted as a function of the eccentricity of the 
pipe. Curves on the left side of this figure are for odd waves; curves 
on the right side, for even waves. When the eccentricity is zero, 
corresponding to a circle, the critical wavelengths indicated in the figure 
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correspond to those for the circular wave guides. As a tube of elliptic 
cross section is deformed along its major axis into a circle, and again 
elongated into an ellipse along an axis making an angle x/2n radians 
with the original axis, the critical wavelengths vary in the manner 
shown. Since only even waves of the zero order exist, the curves for 
the eHo and eE^ waves have zero slope at zero eccentricity and turn 

-Electric Lines -Magnetic Lines 
{Chu, courtesy of Journal of Applied Physics) 

Fiq. 7*26 Field configuratiozis of waves in elliptic pipe having eccentricity of 0.75. 

back on themselves. For the higher-order waves (n 0) the curves 
are not symmetrical about the line corresponding to an eccentricity of 
zero. 

'nie field distribution for the six waves considered by Chu are shown 
in Fig. 7-26. In these figures, as in the previous cross-sectional con¬ 
figurations shown for the various types of guides, the lines which seem 
to converge toward certain points actually bend in the longitudinal direo- 



ELLIPTIC WAVE GUIDES AND STABILITY 287 

tion along the axis of the elliptical cylinder. The diagrams illustrating 
the configuration in the longitudinal direction are not shown. 

For the circular pipe the solution for the Ex or Hx components may 
be written 

Ex 

Hx. 
[A cos(n4>) + -Bsin (n<l>)]Jn(kr) [7*190] 

where k = and A and B are constants. 
Let us assume that the pipe of circular cross section is deformed into 

an ellipse whose major axis is the = 0 axis. A wave in which Ex or 
Hx is proportional to cos ml), i.e., 5=0, becomes an even wave in the 
elliptic pipe. On the other hand, a wave with Ex or Hx proportional 
to sin ?K/>, i.e., A = 0, becomes an odd wave in the elliptic pipe. When 
jS = 0, waves cannot be propagated through the pipe. This condition, 
as before, defines the critical frequency. We may consider that the two 
terms, cos n<l> and sin mj), in the general solution 7-190 represent two 
distinct components of the wave having the same phase constants and 
hence traveling with the same phase velocity in the circular pipe. When 
the circular pipe is deformed by shortening the diameter along the 
<#> = 7r/2 axis, the circular cross section becomes elliptical. Under this 
condition the component wave containing the cos mj) term becomes an 
even wave and that containing the sin n0 term becomes an odd wave. 
But the odd and even waves do not have the same critical wavelengths, 
since the phase constants differ for the odd and even waves. Hence one 
wave travels with a higher phase velocity than the other, and the two 
cannot remain together. Under these circumstances, as was pointed 
out by Chu, all waves, in circular pipes (except for two important cases) 
tend to be unstable under slight deformation of cross section. The 
two exceptions are stable for small deformations. The first case is 
obtained when either A or 5 in equation 7*190 is zero. Then, if the 
deformation takes place along one of the axes of symmetry, the deformed 
wave will be entirely even or odd, and there will be nothing to divide. 
The second case is obtained if n = 0, A 0. Under this condition 
the field distribution in any circular cross section is independent of </>, 
that is, the field is circularly symmetrical. Since there is only one type 
of elliptic pipe wave into which such a field distribution can be deformed, 
there can be no splitting. Thus we may conclude that for a slight 
deformation of the physical shape of a circular pipe the Hq and Eq 
waves are stable, and all other waves are unstable except when the 
deformation occurs along an axis of symmetry. 

The treatment of imperfectly conducting pipes of elliptical cross 
section is analogous to the treatment of imperfectly conducting circular 



288 CYLINDRICAL WAVE GUIDES 

pipes. It requires that the physical conductors have a high conduc¬ 
tivity (T cos so that the wave shape in the practical metal pipes is not 
materially changed from the wave configuration in the perfectly con¬ 
ducting pipes. The attenuation constants for the various waves ob- 

8 16 24 32 40 48 /■ 2 4 6 8 10 12 / 

2 4 6 8 10 12 2 4 6 8 10 12 / 

2 4 6 8 10 12 f 2 4 6 8 10 12 / 
iPhu, courtesy oS Journal of Applied Physics) 

Fig. 7*27 Attenuation of waves in air-fiUed copper pipes with periphery of 40 cm. 
Abscissas — frequency in 10® cycles per second. Ordinates — attenuation in 

decibeb per mile. 

tained by Chu are given as a function of frequency in Fig. 7-27. These 
curves are for air-filled pipes having several values of eccentricity e 
and equal peripheries (S - 40 cm). In all cases except one, representing 
the eHo wave with e « 0 the attenuation rises with increasing frequency. 
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Chu points out that the curve for cHq with e = 0.256 will rise for fre¬ 
quencies beyond the range of the figure. If the eccentricity is increased, 
the frequency being held constant, the attenuation constant for the cEq 
and eHo waves always increases. On the other hand the attenuation 
constants for the oHi and eEi waves are not appreciably affected by a 
change in eccentricity. In the slightly deformed circular pipe the Eq 
and Hq waves have higher attenuations than when the pipe is perfectly 
circular. It is seen in Fig. 7-27 that the Hq wave loses its anomalous 
attenuation characteristic when the circular pipe is deformed. 

The'minimum attenuation constants for different waves, independent 
of frequency, are plotted in Fig. 7-28 as a function of eccentricity. These 
curves represent elliptic pipes of equal peripheries {S = 40 cm). It is 

1.0 .6 .2 .2 .6 1.0 

Eccentricity 

(Cftu, courtesy of Journal of Applied Physics) 

Fia. 7-28 Minimum attenuation of waves in air-filled copper pipes with periphery 
of* 40 cm. Ordinates — minimum attenuation in decibels per mile. 

seen that the lowest attenuation for the oHi wave occurs for a value 
of eccentricity equal to 0.5, whereas the lowest for the eEi occurs for an 
eccentricity of approximately 0.2. 

The following general conclusions were reached by Chu as a result 
t)f his work on elliptic pipes. In regard to stability: (1) When pipes of 
circular cross section are slightly deformed along one of the axes of 
symmetry, all waves are stable. (2) For any slight deformation of the 
cross section of a circular pipe, waves of the type Ho and Eq are stable. 
(3) Except for these two types, all waves in circular pipes are unstable 
when the cross section is deformed. 
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In regard to critical wavelength for waves in elliptic pipes; (1) The 
eHi wave possesses the longest critical wavelength for a given length 
of periphery. This wavelength increases with increased eccentricity 
and approaches the value Xq = 0.83S for unit eccentricity. (2) For the 
other five types of waves investigated, the critical wavelength either 
remains unchanged or decreases with increased eccentricity. 

In regard to attenuation: (1) The anomalous attenuation charac¬ 
teristic of the Ho wave in circular pipes is lost under small deformation. 
Also its attenuation is always increased by such deformation. (2) The 
wave having the next lowest attenuation to that of the eHo wave is the 
oHi wave. For a given periphery the minimum attenuation for this 
wave occurs, not in the circular pipe, but in an elliptic pipe having an 
eccentricity of 0.5, as is seen in Fig. 7*27 or Fig. 7*28. 

In this work the eccentricity e is related to iV, the ratio of the minor 
to the major axis of the ellipse, by the equation 

N = tanh (sech~^ e) 

Thus if e = 0.5, sech"-^ e = 1.320, and N = 0.867. For N = 0.99, 
representative of relatively poor commercial circular tubing, 
e = 0.140. 

PROBLEMS 

7« 1 By constructing mathematical areas Ar Ax and rA^ Ar, and equating the 
surface integral of the current density i through these areas to the line integral of H 
around these areas, obtain equations 7-8 and 7-9. 

7*2 What assumptions are necessary in order to obtain the curl components in the 
manner described in problem 7*1? Are these assumptions consistent with those made 
when Taylor's theorem for the expansion of a function about a point is applied? 

7*3 Obtain equation 7*24 by an elimination process among equations 7*18 and 
7*19 similar to that employed in Chapter 6 to obtain the wave equation in rectangular 
coordinates. 

7*4 Obtain the attenuation constant for E waves as given in equation 7*117 by 
substituting the appropriate field vectors. 

7*5 Obtain equation 7*118 for the attenuation constant for H waves. 

7*6 Evaluate Fo(p) for p « 0.6 accurate to three decimal places by use of equa¬ 
tion 7*41. 

7*7 Evaluate /qCp) for p » 2.0 accurate to three decimal places by use of equar 
tion 7*40. . ♦ 

7*8 Evaluate to slide-rule accuracy all roots (zeros) lying between 30 and 100 of 
the function Jp(p) for p « 5 using equation 7*49. 

7*9 Evaluate to slide-rule accuracy all roots (zeros) lying between 30 and 100 of 
the function Fp(p) for p « 7 using equation 7*61. 

7* 10 We have shown in Chapters 5 and 6 how guided waves may be analyzed into 
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components which are interpreted as transverse electromagnetic waves reflected re¬ 
peatedly by the conducting guides. Examine the possibility of applying a similar 
analysis to cylindrical guides. 

7*11 A copper tube has an inside diameter of 3 inches. Evaluate the cut-off fre¬ 
quencies of J^o» and Hi waves in such a guide if the dielectric is air. 

7*12 A wave of 5 X 10® cycles per second is propagated through the guide of 
problem 7-11. Evaluate the attentuation in decibels per mile for each of the four 
modes listed (1 neper = 8.7 db). 

7* 13 A copper pipe has a perimeter of 30 cm and may be deformed into an ellipse 
if desired. At what frequency and with what deformation does the Hi wave show a 
minimum of attenuation? What is this attenuation? 

7*14 What assumptions are made in deriving the equations for L, (r, and C as 
given in equations 7-173 and 7-174a? 

7*15 Prove that equation 7-189 giving the optimum ratio of h/a for a coaxial line 
is correct. Does this optimum hold for all frequencies, or is it correct only for hyper¬ 
frequencies? 

7*16 A high-quality dielectric has negligible conductivity and a dielectric con¬ 
stant of Ke = 5. A rod of this material is 15 cm in diameter and serves as a wave 
guide at a frequency of 6 X 10® cycles per second. (No metal tube is used.) Eval¬ 
uate the ratio of the velocity of the wave in the guide to the free-space velocity. 

7*17 Evaluate the dielectric constant Kg necessary if a wave of 500-mc frequency 
is to be propagated within a metal guide of radius 2 cm in the TEqi mode. Repeat 
for the TMqi mode. Are such dielectrics now common? 

7*18 An air-filled pipe is formed from relatively thin sheet copper. The perim¬ 
eter is 50 cm and the frequency 3 X 10® cycles per second. Compare the attenua¬ 
tion constants of the most favorable modes if the pipe is made round or square. 

7*19 Repeat problem 7-18, but generalize by considering the most favorable 
rectangular and elliptic shapes. 

7*20 An air-filled coaxial line is made of copper. The radii a and 5 are 1 and 3.6 
cm respectively. Evaluate the attenuation constant for this line and the compo¬ 
nents of R contributed by the inner and outer conductors separately. 



CHAPTER 8 

WAVE GUIDE EXPERIMENTAL APPARATUS 

8*1 Introduction 

It was seen in the preceding sections that there are a great many types 
of waves that may be transmitted through wave guides. Each of these 
waves is characterized by the orientation of the lines of electric and mag¬ 
netic intensity within the guide. Each is also characterized by a critical 

(Clavier, courtesy of Electrical Communication) 

Fiq. 8'1 Guide diameter as a function of the critical wavelength for circular pipes 
having air dielectric. 

wavelength above which a particular type may not be transmitted. A 

comparison of the cut-off wavelengths for several wave types as a func¬ 
tion of the guide diameter is shown in Fig. 8-1 for-circular pipes. Since 
the guide diameter is of the order of the magnitude of the critical wave¬ 

length required for transmission, the practical application of wave guides 

is restricted to the use of hyper frequencies. C!onsider, for example, the 
transmission of the Hi wave in a hollow circular pipe filled with air. 
From Fig. 8-1 we see that for a frequency of 3000 megacycles, corre- 
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spending to a wavelength of 10 cm, the critical pipe diameter required is 
5.85 cm. Since the critical diameter is inversely proportional to the 
square root of the dielectric constant of the medium within the pipe, 
the choice of a medium of high dielectric constant reduces the guide 
diameter appreciably. However, we must remember that the choice of 
the dielectric is important from another point of view, namely, attenua¬ 
tion. Materials are available which have a dielectric constant of 4 and 
over, and at the same time introduce no serious loss. In this way 
the critical diameter may be reduced, for this 3000-megacycle wave, to 
approximately 3.0 cm or 1.2 inches. For higher frequencies, or for 
materials having still higher dielectric constants, the required diameter 
may be further reduced. In this way the hollow wave guide may 
require dimensions of the same order of magnitude as are required for 
conventional coaxial conductors. For waves of the J?o and Hq types, 
and for higher-order waves, the critical dimensions are larger. 

At relatively low frequencies, filters, equalizers, resonators, and 
impedance transformers are readily constructed from lumped circuit 
elements according to well-known design methods. At higher frequen¬ 
cies these techniques fail in various ways. The hollow conducting wave 
guide is of great importance in that it performs the functions of these 
various devices at the highest frequencies now of interest for communi¬ 
cation work. 

Fig. 8*2 A convenient probe for exploring the field around a source of electro¬ 
magnetic radiation. The insulating shaft between the crystal and meter should 

be a foot or more in length. 

8*2 Probes and Detectors 

The field configuration of the lower-order E and H waves may readily 
be explored by means of a probe detector. One of the simplest of these 
is the hand probe shown in Fig. 8*2. This consists of a small crystal 
detector to which are attached two short antennas. When dealing 
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with waves of the order of 3000 megacycles, the length of each antenna 
should be less than an inch, in order that the field configuration be 
disturbed as little as possible. The detector and antennas are mounted, 
in the figure, on a strip of Bakelite a foot or so in length. The wires 
from the crystal detector run down the strip to a meter which is 
mounted just above the handle on the strip. If desired, the meter may 
be placed on a table, connected to the antennas through a twisted pair 
of flexible leads. Figure 8*3 shows a detail of the crystal mounting. A 

Fig. 8-3 A crystal detector mounting suggested by Barrow. The polystyrene rod 
may be approximately a half inch long. 

fragment of silicon crystal is mounted in a small hole drilled in the end of 
an 8-32 screw. A tungsten cat-whisker is mounted in the upper screw. 
Contact between cat-whisker and crystal is made by adjusting one or 
the other of the screws until a sensitive spot is found. The holder 
for the two screws is a small polystyrene rod drilled and tapped for the 
correct screw size. The crystal detector makes a very satisfactory and 
convenient unit .for laboratory work. Thermocouples, diodes, and 
triodes may also be used as detectors for waves of these frequencies. 

In determining the configuration of the wave pattern at any point 
in the field, the antennas of the probe are rotated until a maximum 
reading is obtained on the meter. The axis of the two antennas then 
defines the direction of the lines of electric intensity in the neighborhood 
of the point. The relative intensity of the field at different points is 
indicated by the amplitude of the meter indications. Hand probes are 
useful generally for detecting the presence of a field and for determining 
its relative amplitude. When carefully constructed they will respond 
to a few milliwatts of power. It is usually desirable to use a micro¬ 
ammeter as the indicating device. A shunt may be provided to keep 
the meter on scale ” in the presence of strong fields. The hand probe 
may be mounted in a fixed position at an appropriate spot when various 
tuning adjustments are being made on concentriciine stubs or’oscilla- 
tors, etc. Under these circumstances it serves as a tuning indicator. 

A very serviceable piece of laboratory apparatus is known as a travel¬ 
ing detector. With its aid, wavelengths and field configuration of waves 
inside a pipe may be determined experimentally. Such a unit is shown 
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in Fig. 84. It is similar to designs suggested by Barrow and South- 
worth, in which a probe similar to that described in the preceding para¬ 
graph is mounted on a slider which may be moved along a longitudinal 
slot cut in a section of a wave guide. The slotted section of wave guide 
telescopes the adjoining sections and is free to turn 360® about a hori¬ 
zontal axis. In this way the probe may be carried longitudinally along 
the wave guide or transversely around it. Adjustment for radial 
motion of the probe may be made by extending the probe into the pipe 
any desired distance. A very enlightening diagram illustrating the 
orientation of the field vectors inside a circular pipe has been prepared 
by Clavier and Altovsky; it is 
shown in Fig. 8*5a and b. Figure 
8-5a illustrates the orientation for 
the Eo wave, and Fig. 8-56 that for 
the Ho* These field distributions 
represent an instantaneous orienta¬ 
tion of the field structure, and the 
patterns shown are, of course, 
propagated through the tube with 
the velocity Vp. If, however, a 
conducting plane perpendicular to 
the axis is placed across the guide 
the electrical intensity tangential 
to this plane is reduced to zero at 
the surface. A reflected wave simi¬ 
lar to the initial or incident wave 
results, and standing waves are 
produced. At surfaces parallel to 
the reflecting plane the electric in¬ 
tensity in the plane is again zero if 
these planes are separated by one- 
half of the wavelength in the guide. The field distribution observed 
with a probe in terms of steady meter readings is similar to that shown 
as an instantaneous distribution in Fig. 8-5. 

By the appropriate design of the antennas of the probe, E ox H vectors 
may be identified. For example, if the antenna is arranged to coincide 
with a line of electric intensity, a maximum deflection due to the E 
vector may be indicated. On the other hand if the antenna is arranged 
in the form of a small loop (see Fig. 8-6) and is adjusted so that the 
plane of the loop is normal to the H vector, then a maximum current 
will be induced in the loop circuit indicating the presence of a maximum 
H vector. 

Fig. 8-4 A traveling detector arrange¬ 
ment used at the Illinois Institute of 
Technology for exploring the wave pat¬ 
terns of waves in circular guides. Simi¬ 
lar detectors for use with rectangular or 
other forms of wave guide are readily 
constructed. 
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By sliding the probe along the slot in the longitudinal direction, curves 
such as those shown in Fig. 8-7 may be obtained. The field intensity as 
indicated by the rectified current is plotted as a function of longitudinal 
displacement of the probe in Fig. 8*7a. Figure 8-76 is obtained by leav¬ 
ing the detector probe fixed and moving the reflector or piston, as it is 
usually called, along the tube. The sharpness of resonance or high 

Fzg. 8*6 Probe and detector arrangement for determination of field distribution in 
wave guides. 

selectivity, is evident from the sharp peaks that are obtained. The 
resonant points or peaks determine guide lengths that are an integral 
number of half wavelengths apart. Since the maximum deflections are 
more sharply indicated in Fig. 8*76, it is evident that by leaving the 
probe fixed and moving the piston, the wavelength in the pipe may be 
determined with greater accuracy than in the reverse process indicated 
in Fig, 8'7a. The selectivity of the system is reduced if a receiver or 
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other absorber of energy is placed in the resonant chamber. Evidence 
of the simultaneous existence of two different wave configurations 
within the guide is presented in Fig. 8-8, due to Clavier.* An axial 
probe in a traveling piston served as a receiver for the Eq wave. The 
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Fig. 8*7 Probe detector current in arbitrary units as a function of: (a) displacement 
of the probe along the tube in millimeters; (b) displacement of the piston along the 

tube in millimeters. The wavelength in the pipe is represented by Xp. 

rectified current in this axial probe is plotted as receiver current in the 
upper half of Fig. 8-8. The broad character of the maxima indicates 
that this probe was relatively tightly coupled to the Eo field so that 
the resulting resonance was of low selectivity. 

The rectified current observed by a radial probe inserted a small 
distance through the side of the tube is plotted in the lower half of 

* A. G. Clavier and V. Altovsky, “ Experimental Researches on the Propagation 
of Electromagnetic Waves in Dielectric Guides/’ Electrical Communication^ 18, 81, 
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Fig. 8*8. The sharpness of these curves is evidence of the fact that the 
axial probe or receiver does not affect the selectivity for this mode of 
transmission. The mode is identified as the Hi by the frecjuency of 
2370 me and the wavelength X == 157 mm in the guide. 

(Clavier, courtesy of Electrical Communication) 

Fig. 8*8 

Indication of the simultaneous presence of two different wave types in a circular 
resonant chamber. The upper curve shows the current rectified from an axial probe 
mounted in the piston. The lower curve repres^ts the current rectified from a small 
radial probe fixed in the side of the guide. Displacements measured in millimeters. 

The wavelength in the pipe is represented by Xp. 
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The guide was energized by an axial probe similar to that mounted in 
the piston, and under ideal conditions only the Eq wave would be 
excited. Slight dissymmetry in the system suffices to explain the 
establishment of a small component of the Hi wave. Because the axial 
probes do not serve as loading to such a mode the resonant selectivity is 
quite high and a considerable field is established with only small excita¬ 
tion. Accordingly energy is propagated along the guide from the 
source to the receiving piston in the So mode with a relatively small 
standing wave i*atio. Simultaneously a standing wave pattern of H\ 
mode of considerable amplitude is established for each favorable position 
of the piston. 

8*3 Wave Filters in Guides 

In 1888 Hertz described an experiment with plane-polarized electro¬ 
magnetic waves.* He used a frame of insulating material which sup¬ 
ported a large number of separate parallel wires. It was found that this 

Transmitting 
Antenna 

Fig. 8*9 A vertically polarized wave is changed to one having a horizontal com¬ 
ponent by the action of the parallel conducting wires in the frame. 

frame produces no effect upon a wave system when the wires are at 
right angles to the electric intensity but that it acts as a solid con¬ 
ducting sheet when the wires are parallel to the electric intensity. Such 
a screen may be used as a filter to produce a plane-polarized wave, the 
component of electric intensity along the wires being reflected, the com- 

* H. Hertz, Electric WaveSt p. 179, Macmillan Company, 1893. 
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ponent of intensity perpendicular to the wires being transmitted freely. 
Hertz also used the screen as a wave converter. He observed that a 

vertically polarized wave, established by a vertical radiating conductor, 
produced no effect upon a particular horizontal antenna. The frame 
was then inserted between radiator and detector, the wires being inclined 
at 45°. See Fig. 8-9. A strong signal in the horizontal receiving antenna 
was observed. This effect is explained by the method of resolution of 
vectors. The electric intensity at the we frame is resolved into two 

Fig. 8*10 Filter for the elimination of an Eo wave in a circular wave guide. 

components at 45° from the vertical, one parallel and one perpendicular 
to the wires. The perpendicular component is freely transmitted and 
arrives at the receiving antenna. The receiving antenna makes an 
angle of 45° with this wave and thus receives a considerable signal. In 
this case each resolution is at 45° and the factor which applies is 
cos 45° = .707. Since two successive resolutions are necessary the 
voltage delivered to the receiving antenna is .707^ = ^ as great as it 
would be if the two antennas were parallel and no screen were present. 

The effect may also be explained on a somewhat more physical basis. 
The wires have a component of length along the incident electric field, 
and a current is established in each wire by its action. In turn the wires 
have a component of their length along the receiving antenna, and the 
currents produced in the wires are thus able to produce a voltage in that 
antenna. 

More recently Clavier* and Brillouinf have described several devices 

* A. G. Clavier and V. Altovsky. “ Experimental Researches on the Propaga¬ 
tion of Electromagnetic Waves in Dielectric (Cylindrical) Guides,” Rev. g6n. ilec,^ 
May 27 and June 3, 1939. 

t Leon Brillouin, “ Hyperfrequency Waves and Their Practical Use,” Electrical 
Communicaliont 19, 18, 1941. 
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for use in wave guides which utilize the principle described by Hertz. 
Perhaps the simplest of these is the radial wire structure of Fig. 8*10. 
Such a structure, serving as a virtually perfect reflector to the wave 
in a circular wave guide because the conductors are everywhere parallel 
to the electric intensity, prevents the propagation of such a wave. If 
one of these filters is not adequate to produce the required attenuation 
two or more may be used, A spacing of approximately a quarter wave¬ 
length is appropriate. 

The filter just described produces negligible attenuation to the Hq 
wave since the conductors are everywhere normal to the electric inten- 

Fig. 811 Filter for the elimination of an Hq wave in a circular wave guide. 

sity of such a wave. Appreciable but not extremely large attenuations 
to waves of the Ei, Hi, and other modes are produced by this filter. 
Since the action is reflection rather than absorption it is feasible to trans¬ 
mit power in these modes through the filter by a suitable readjustment 
of the impedance of the transmitting antenna. 

A filter similar to the above is shown in Fig. 8*11. Here, however, 
the conductors take the form of concentric circles each insulated from 
the others. Such a filter passes the Eq wave with negligible effect but 
strongly attenuates the Ho wave because the conductors are everywhere 
parallel to the electric intensity of such a wave. Again, waves of 
higher order like the Ei and Hi are partially reflected and are distorted 
in passing through such a structure. 

A third device, shown in Fig. 8*12, may well be called a wave trans¬ 
ducer. In the presence of an Eq wave the electric intensity along the 
radial portions of the conductors produces a current in each conciuctor. 
This current, flowing in the angular portion of the conductors, simulates 
a continuous ring of current flow. Such a current distribution is favor¬ 
able to the establishment of an Ho wave. Accordingly this device serves 
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as an excellent transducer of Eq into Hq waves. The converse action is 
equally well performed. The circular electric field of the Hq wave 

current in the wires by its action on the angular portion ab, 
and t.hia current, which also flows in the radial portion of the conductors, 

establishes an Eo wave in the pipe. 
A complete wave filter and transducer ^stem is shown in Fig. 8*13. 

It is seen that two radial filters, a wave transducer, and two circular 

aad transducer system installed in a 

Fig. 8-12 Wave transducer. circular wave guide. 

filters are employed. Small slats of polystyrene or other low-loss dielec¬ 
tric are required to support the circular rings of the second filter. An 
Eq wave generated at the transmitter end of the system is freely propa¬ 
gated through the circular filters and strikes the transducer where it is 
partially reflected, partially transformed, and partially transmitted. 
The reflected portion is returned to the sending device and so is not lost. 
The transformed portion establishes an Ho wave, the principal function 
of the device. The transmitted wave is reflected by the radial filter and, 
if the adjustment is appropriate, returns to the transducer in phase with 
the incident wave. The Ho wave established at the transducer is radi¬ 
ated in both directions. The forward-propagated component passes 
freely through the radial filter and travels down the guide; that which is 
propagated backward is reflected by the circular filter and reinforces the 
forward, useful, wave. The operation is clarified by reference to Fig. 

8-14. 
The operation of such a wave transducer is quite eflScient, only a small 

portion of the Supplied power being lost. Also, the waves produced 
are quite pure. Tlie ability to convert one form of wave into the other 
is of considerable importance, particularly because it is difficult to excite 



304 WAVE GUIDE EXPERIMENTAL APPARATUS 

the Ho mode directly from an oscillator. With this device an Eo wave 
which is readily produced is converted into a pure Ho wave. 

Any wave configuration in a conducting guide system may be reflected 
by an arrangement of wire conductors which coincide with the lines of 
electric intensity. Such an arrangement constitutes a filter for the 
elimination of that particular wave type. Similarly various forms of 

Fig. 8*14 Detail of the location and action of the filters and transducer in the 
system shown in Fig. 8* 13. 

wire transducers may be devised by applying the principle that each 
conductor must have part of its length along the electric field of the inci¬ 
dent wave and part along the field to be produced. By suitable combi¬ 
nations of these filters other transformations similar to the Eo — Ho 
just described may be worked out. 

8*4 Use of Wave Guides 
Wave guides have at least three properties which are of practical 

importance. Most basic of these is the property of transmitting power 
from one point to another with low loss. This property is fundamental 
in that the other properties depend upon it. A suitable wave guide 
transmits power with considerably less loss than is associated with con¬ 
ventional parallel wires or coaxial lines. This property is not of great 
practical importance at the moment because of the expense of suitable 
guides and because the inflexible nature of guides introduces much 
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mechanical difficulty. W. L. Barrow has, however, demonstrated the 
transmission properties of wave guides made of flexible tubing similar 
in construction to standard BX cable used for house wiring. 

The second property and perhaps the most significant one is resonance. 
This results from the fact that waves are propagated with small values 
of attenuation in suitable guides and that very complete reflections occur 
if a guide is bounded by a metal barrier. For convenience in tuning this 
reflecting barrier is often made in the form of a moving metal piston 
which makes a dependable contact to the guide at many distinct points. 
A useful resonant chamber results if a short section of a wave guide is 
bounded at one end by a fixed metallic plate with a circular hole or iris 
and at the other end is fitted with a movable piston. The iris allows 
the entrance of a certain amount of power and at the same time offers 
a relatively complete reflection to waves within the chamber. Such a 
chamber resonates strongly whenever the length is effectively an inte¬ 
gral number of half wavelengths. The iris affects the relation some¬ 
what, because the reflection produced is not exactly at the plane of the 
iris surface. 

Such a resonant chamber may be made to serve any of the functions 
which at lower frequencies are performed by a simple tuned circuit con¬ 
sisting of a coil and a condenser. The motion of the piston may be cali¬ 
brated in frequency or wavelength so that the device serves as a wave- 
meter. Even more important, a resonant chamber may be used as an 
impedance transformer in a variety of applications. By its use two 
wave guides of different characteristic impedance may be matched to 
each other, or a load or generator of arbitrary impedance may be matched 
to a guide. 

The third property is radiation. A portion of the power in a wave 
which reaches the open end of a metallic guide is radiated into the air 
beyond and is lost. If the end of the guide, either round or rectangular, 
is flared in a suitable fashion this radiation is rendered highly direc¬ 
tional arid the reflection back into the guide becomes small. Such a 
flared conductor is referred to as an electromagnetic horn; it is dis¬ 
cussed further in Chapter 11. It may be thought of as a device which 
matches the characteristic impedance of the guide to that of free space. 

8'S The Wave Guide as a Filter 
One of the most fundamental properties of the hollow conducting 

wave guide is that frequencies below some critical value are not trans¬ 
mitted. Accordingly every wave-guide section is intrinsically a high- 
pass filter. In the case of perfectly conducting wave guides, the equa¬ 
tions indicate that all frequencies above the critical value are trans- 
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mitted without loss and all frequencies below that value are completely 
attenuated. 

Actually the transmission between two suitable antennas in a wave 
guide of reasonable length does not show this idealized form. Some 
coupling due to the familiar induction field exists at frequencies below 
the cut-off, and the measured characteristic is somewhat rounded. 
Nevertheless, the cut-off produced by a section only a few wavelengths 
long is satisfactory for most purposes. 

Filters having band-pass and band-elimination characteristics may be 
constructed by combining wave-guide sections in suitable combinations. 
The method is quite similar to that used in the design of acoustical filters. 
Eesonant cavities as series and shunt elements are employed in such a 

combination to achieve the desired result. No considerable amount 
of work in this particular field has yet been published, but great possi¬ 
bilities exist. 

The high-pass characteristic of a circular guide is readily demon¬ 
strated by varying the frequency of the transmitted wave and observing 
the deflection of a detector several wavelengths distant. A very sharp 
decrease in the deflection occurs when the frequency passes the cut-off 
value. 

It is not always practical to vary the transmitted frequency in this 
way. An alternative procedure is to leave the frequency fixed and to 
vary the diameter of the tube. If a small transmitting antenna and the 
antenna of a hand probe, as previously described, are separated by a 
distance of a few feet the signal received at the probe may be quite small. 
When a wave-guide section is inserted between the two a strong signal is 
received, indicating that the transmission is largely through the guide. 
If the diameter of the guide is now gradually reduced a point is reached 
at which the received signal drops sharply. This is the cut-off diameter 
for the frequency in question as given by Fig. 8*1. Such a tube is read¬ 
ily constructed by rolling up a sheet of metal some 2 feet square into the 
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form of a cylinder. The diameter is then adjusted by varying the degree 
of overlap at the edges. Experience shows that such a guide is electri¬ 
cally tight even though no special effort is made to secure contact where 
the edges overlap. If the Hi wave is used with the electric lines along a 
diameter which includes the inner edge of the rolled sheet no current 
need flow at the overlap and the behavior is accordingly regular. Al¬ 
though the experiment as here described is scarcely quantitative it does 
illustrate very clearly the principle involved. 

8*6 Experiments with a Resonant Chamber 

Figure 8*16 shows a resonant chamber as constructed at the Illinois 
Institute of Technology. A brass tube approximately 3 inches in diame¬ 
ter and 10 inches long is closed at one end by a brass plate having a cen¬ 
tral opening or iris approximately an inch in diameter. A movable 
brass piston provided with a large number of spring brass fingers or con- 

Fzg. 8 16a Cylindrical resonant cham¬ 
ber followmg the design of Barrow and 
Southworth. The piston, shown m 
Fig. 8‘166, is displaced by means of 

the rack-and-pmion arrangement. 

Fig 8 1Gb End view of the resonant 
chamber of Fig. 8* 16a, with metal 
plug removed The spring contacts 
between the piston and inside wall of 

the guide are shown. 

tactors closes the other end of this cavity. The position of the piston 
is adjustable by means of a rack-and-pinion arrangement as shown. 
The large number of contact springs is necessary in order to obtain good 
contact with the walls of the tube. If a secure contact is not provided 
the piston does not act as a true closure of the cavity and various unde¬ 
sirable effects occur. In particular a loss of power results, and the 
observations become variable, depending upon the exact degree of 
contact existing at the moment. 
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The operation of such a variable cavity resonator is most simply 
demonstrated by bringing it close to a suitable probe-detector. Now if 
a high-frequency field is produced in the region a considerable deflection 
of the detector is observed. This deflection is markedly decreased by 
tuning the cavity to resonance with the field, indicating a strong absorp¬ 
tion of energy. (This is analogous to shunting a series resonant circuit 
across some form of load fed from a high-impedance lumped circuit.) 
With the unit described it is possible to obtain two or more positions of 
the piston which give minimum deflection of the meter associated with 
the detector. These positions differ by a half wavelength of the wave 
within the guide, as specified by the phase velocity for the particular 
wave and the dimensions of the guide. 

A more precise study of the resonance is made by replacing the exter¬ 
nal detector with a suitable internal probe. A small wire extending into 
the guide a centimeter or so serves as an antenna to operate a crystal 
detector mounted just outside the conductor. In this case the deflection 
of the meter is a maximum when the piston is in the resonant position. 

This detecting system serves as a high-impedance shunt across the cir¬ 
cuit and should therefore be located approximately a quarter wavelength 
from the iris. With this arrangement two successive positions of the 
piston may be located with quite high accuracy and the wavelength 
determined to a few tenths of a per cent. Knowing the diameter of the 
guide and the wave pattern involved (usually Hi) we may calculate the 
frequency to the same accuracy. 

Such a resonator has a relatively high Q. The Q or sharpness of 
resonance is decreased as the iris is made larger, as the power required to 
operate the detector is increased, and as the resistivity of the material is 
increased. Values of Q greater than 1000 are readily obtained. Values 
in the order of 10,000 are obtained if the conductor is copper and if other 
losses are held to a minimum. Usually it is simpler to build the resonant 
chamber from circular material, but comparable results are obtained with 
rectangular units. 

A number of very significant experiments may be performed with such 
a resonant chamber. Resonance curves may be plotted for various sizes 
of iris openings, illustrating the increase of selectivity which results 
when the opening is small. Holding the iris opening and other con¬ 
ditions constant we may compare the properties of various dielectric 
materials by placing them at a point of voltage maximum within the 
chamber and comparing the sharpness of the selectivity curves pro¬ 
duced. The superiority of polystyrene and a few other materials over 
other familiar dielectrics is evident from such a test. 
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8*7 Impedance Matching 

The traveling detector described in section 8-2 is an extremely valu¬ 
able tool for the adjustment of wave-guide systems. Where tubular 
guides are to be used for the transmission of power from one point to 
another it is usually desirable to avoid the presence of standing waves. 
Such standing wave patterns are readily investigated by means of the 
traveling detector. When no variation in deflection is observed as the 
probe is moved lengthwise along the guide it is safe to assume that no 
appreciable reflection exists. 

The simplest possible means of absorbing energy in a wave guide so 
that no reflection occurs is to close the cross section of the guide with a 
sheet of material having suitable resistivity. (This is equivalent to 
terminating a low-frequency transmission line with a resistor equal to 
the characteristic impedance of the line.) A sheet of dielectric coated 
with a thin film of graphite is a practical device for this purpose. A 
sheet of carbon paper may serve as an approximately correct termination. 

The cavity resonator using an iris opening, as described in the previ¬ 
ous section, may also be used as a non-reflecting termination. Some 
dissipative material such as a block of Bakelite or a sponge of slightly 
moistened cotton in the chamber absorbs the energy as the waves are 
successively reflected past it. By appropriate tuning of the piston the 
effective characteristic impedance of this unit is made equal to that of the 
guide proper. A flared section of guide, referred to as an electromag¬ 
netic horn, also serves as a termination which propagates rather than 
absorbs the power supplied. No appreciable reflection within the guide 
results if the horn design is correct. 

8*8 Terminal Devices 

In their extensive research on hollow-tube elements Barrow and 
Southworth have devised suitable terminal devices for exciting and 
receiving the various types of wave configurations. These devices 
make it possible to connect conventional lines and networks to the 
hollow tubes and to utilize the attenuation and phase-shift properties of 
these devices for band-pass, corrective, or other functions. 

The mathematical analysis of these terminal devices is extremely 
complex, and as yet no analytical solution is available. Hence, they 
cannot be discussed in the same exact and quantitative manner as the 
wave guides themselves. In order to verify the anticipated behavior 
of a given terminal device it is necessary to check it experimentally. 

Terminal devices that have been devised by Barrow for exciting 

waves of the Eq type or transverse magnetic (Tilfoi) waves are shown in 



20 
D in Cm. 

(jBaaroWt eourteaj/ of IRE) 

Fig. 8-17 Tenninal devices designed by Barrow for exciting E waves in hollow 
pipes, together with their respective characteristics. Xiiese show the variation of 
the field intensity at the far end of the tube as a function of the length D of the coaxial 
rod projected into the tube. The curves illustrate the adjustment of the terminal 
for maximum energy transfer, and also show the resonant properties of the different 

terminals. 
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Coaxial Tube 
Wave 

Transition 
Region 

Hollow Tube 
Wave 

Fia. 8*18 Probable shape of the lines of electric intensity at a coaxial line terminal. 

transmission line it is possible to propagate only one kind of wave, 
whereas in the hollow-tube system several distinct types of waves are 
possible. Terminal devices may be designed in such a way as to excite 



312 WAVE GUIDE EXPERIMENTAL APPARATUS 

one type of wave to the exclusion of other types. In general it is founc^ 
that for best operation both transmitter and receiver terminals should 
transmit and receive waves of a single type only. 

All the terminal devices shown in Fig. 8-17 employ a coaxial line. 
The curves associated with the various devices show the variation of the 
field intensity at the far end of the tube as a function of the length D of 
the coaxial rod. It is seen that these various terminals have sharp reso¬ 
nant properties, and that for a maximum energy transfer it is desirable 
to adjust the length D carefully. The probable shape of the lines of 
electric intensity at a coaxial line terminal as suggested by Barrow is 
shown in Fig. 8-18. The velocity of propagation of equiphase surfaces is 

(€) 
{Barrowt courtesy of IRE) 

Fig. 8*19 Several types of terminal devices for exciting waves of the Hi type in 
hollow pipes. 

greater in the hollow tube than in the coaxial line. Hence, as the waves 
break away from the coaxial terminal we may expect that the field will 
be distorted to allow the formation of closed loops. The wavelength 
of a wave in the coaxial section is very nearly that of a wave in free space, 
whereas in the hollow tube the wavelength is always greater than in free 
space. 

It is seen in Fig. 8-17 that the second terminal arrangement employ¬ 
ing radial wires at the end of the coaxial line gives a very sharp r^onance 
phenomenon and a higher intensity amplitude at the end of the line. 
This may be considered as a better impedance match between the 
coaxial section and the hollow-tube section. This arrangement allows 
reflection from the closed end of the tube to reinforce the forward radia- 
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tion in the same way that a reflector acts in a directive radiating system. 
The lower terminal in Fig. 8*17 is simply a metal disk attached to the 
end of the coaxial rod. 

In Fig. 8*19 are shown terminal devices suggested by Barrow for 
exciting waves of the Hi type in hollow tubes. It is seen that these are 
fundamentally different in construction from those for the Eq waves 
shown in Fig. 8-17. As in the previous case, the field configuration of 
the wave determines the terminal design. Since the electric intensity 
vector of the Hi wave is directed across the center of the pipe, the termi¬ 
nal antenna is oriented so as to coincide with these lines: in Fig. 

8-19a a coaxial pair or open wire pair may 
be used to excite the rod. In Fig. 8*196 a 
coaxial line is used. Figure 8* 19c shows the 
correct orientation of a configuration of 
parasitic antennas which may be used to re¬ 
inforce the radiation. A parabolic reflector 
as in Fig. 8* 19c? may be used successfully 
externally or internally to the hollow-pipe 
system. In each of these cases it is neces¬ 
sary to provide tuning arrangements, that 
is, to provide facilities for the adjustment 
of the distance between the closed end of 
the pipe and the antenna. In Fig. 8* 19c a 
cylindrical resonator is employed to excite 
the Hi wave. The subject of resonators 
will be taken up in a later chapter. 

Figure 8*20 shows Southworth's arrange¬ 
ment of conductors for exciting the various 

Generator wave types indicated. The wave configura- 
(^outhworth, courtesy of IRE) tions excited are shown in cross-sectional 

Fig. 8-21 Suggested field con- view to the left of the terminal devices, 
figuration in the neighbor- A. suggested field configuration in the neigh- 
hood of the exciter of Eq exciter of th6 Eo wave is 

W3iV©S ^ 

shown in Fig. 8*21. It is seen from these 
figures that the arrangement of the exciting system is adaptable to 
parallel lines, coaxial lines, or shielded pairs. 

If possible, it is desirable to mount the exciting vacuum-tube oscillator 
directly in the hollow pipe. Such an arrangement as suggested by 
Southworth is shown in Fig. 8*22. The tube shown here is a spiral grid 
retarding field oscillator, not commercially available. Its operating 
principles are discussed in a later chapter, where information regarding 
design requirements is presented. 

Galvanometer 
and Crystal 

Detector 
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The primary consideration in the design of these terminal devices is to 
achieve a suitable impedance match between the coaxial or parallel wire 
line and the wave guide excited in the appropriate mode. Often it is 

Fig. 8-22 Vacuum tube mounted directly in wave guide following Southworth's 
technique. 

expedient to use a resonant section of coaxial line between the guide and 
the feeding line or to use a tuned coaxial structure as a variable shunt 
impedance. The exactness of this impedance match is readily tested by 
means of a traveling detector in the wave-guide system. 

8-9 Multiplex Transmission 

It was pointed out by Barrow* that multiplex transmission of waves 
in hollow pipes is possible. With the Hi wave it may be demonstrated 
experimentally that when the orientation of the receiving terminal is at 
right angles to the sending terminal, and ideal conditions prevail, no 
voltage will be induced in the receiving antenna. When the receiving 
and transmitting antennas are parallel, a maximum voltage will be 
induced in the receiving rod. This is illustrated in Fig. 8-23, where the 
relative intensity of the induced voltage is plotted as a function of angular 
position, of the receiving antenna relative to the transmitting antenna. 
The plane of rotation of the antenna is perpendicular to the axis of the 
tube. It is seen that the induced voltage is a maximum in the ^ * 0 
or 180® positions and zero in the 90® or 270® position. 

It will also be observed, when the constructional symmetry is suffi¬ 
ciently good, that a receiving terminal for Hq waves will not respond to 
Eo waves, and vice versa. Since both types of waves may be excited 
and transmitted simultaneously, and since they are mutually inde¬ 
pendent and may be received independently, Barrow has pointed out 

* W. L. Barrow, " Transmission of Electromagnetic Waves in Hollow Tubes of 
Metal/' /JB.E., 24, 1298,1936. 



Fig. 8-24 Terminal device for multiplex operation of a hollow-tube transmission 
system. Terminal 1 excites or receives E waves, and terminals 2 and 3 excite and 
receive H waves. Terminals 1 and 2 are at right angles to each other. This system 

provides three communication channels in the same pipe. 

Antenna 2 uses vertical polarization, and the antenna 3 uses horizontal 
polarization. Thus antennas 2 and 3 utilize the features brought out in 
Fig. 8-23. Such a multiplex system adds another unique feature to the 

practical applications of hollow-tube systems. 
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PROBLEMS 

8*1 A section of round copper pipe of 10-cm inside diameter is to be used as a 
resonant chamber by closing both ends with plane copper sheets. From the phase 
velocity relations of Chapter 7 calculate several suitable lengths. The frequency is 
2500 me, and the interior dielectric is air. The oscillatory mode is Hi. 

8-2 Repeat problem 8-1 for the Fo mode. 

8*3 The meter used on a certain hand probe has 1000 ohms resistance and a full- 
scale deflection of 100 microamperes. Assuming that the antenna and detector sys¬ 
tem is 20 per cent efficient, calculate the high-frequency power required to produce 
full-scale deflection. 

8*4 A loop probe similar to that of Fig. 8-6 is used with a traveling detector. 
The wire of the loop is very slender and forms an area equivalent to a circle of 2-mm 
radius. Assuming the field to be practically uniform over the area of the loop, eval¬ 
uate jFf', the maximum instantaneous magnetic intensity in that region, if the emf 
induced in the loop is 1 volt rms. 

8*5 A circular wave guide is 20 cm in diameter and propagates an Hi wave of 
4 X 10® cycles per second. A straight probe 0.5 cm long is inserted radially into this 
guide from the outer surface in such a way as to correspond to the internal electric 
field. If the emf induced in the probe is 1 volt rms, calculate the power being propa¬ 
gated along the guide. Assume that no reflections exist. 

8*6 A closed chamber is formed from a circular wave guide, and a probe is in¬ 
serted in a fixed location. The piston which forms one end of the chamber is then 
moved so as to produce several successive maxima of deflection of the associated 
meter. What is the distance between the successive positions of the piston in terms 
of the wave propagation factors? Will the precision be relatively high, or will im¬ 
portant second-order effects be present? 

8*7 An Eo to JTo transducing system similar to that of Fig. 8*14 is to be designed. 
The frequency is 3500 me; the guide diameter, 12 cm. Only one circular and one 
radial filter are to be used. Determine the optimum spacing each should have from 
the transducer. 

8*8 Will the wave transducer system of Fig. 8-14 produce an appreciable output 
of either Eq or Hq from an incident Hi wave? Why? 

8*9 Sketch a filter and transducer system for producing Hq from Ei waves, and 
vice versa. Refer to Fig. 8-20. How does this unit illustrate the principles stated in 
section 8*3? 

8*10 Sketch a filter and transducer system for producing Hi from Ei waves, and 
vice versa. 

8*11 Sketch the probable field configuration of an Hq wave in the vicinity of an 
iris in a circular wave guide. The wave guide has an inner diameter of 3 inches, and 
the iris is thin and has an axial hole 1^ inches in diameter. 

8*12 Design a pinch pipe” similar to that of Fig. 8*15 to illustrate the high- 
pass filter characteristics of the wave guide. Show sufficient detail to make the unit 
a practical laboratory device. 

8*13 Design a wave filter and transducer system for shifting the orientation of 
an Hoi wave by 90° in a square metal wave guide. Express spacing in terms of the 
pipe wavelength. 
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8»14 Compare the theory of impedance matching in hollow wave guides with 
that which applies to lumped circuits at lower frequencies. 

8-15 Consider the possibility of employing other systems of multiplex transmis¬ 
sion similar to that of section 8*9. 

8*16 Sketch terminal devices suitable for exciting the Foi, H02, -^11, and J&12 

modes in rectangular wave guides. 

8*17 Sketch terminal devices suitable for exciting TE and TM modes in the 
plane-parallel wave guides of Chapter 5. 

8*18 Sketch terminal devices suitable for exciting E waves corresponding to 
equations 7-127 and 7-128 in a coaxial wave guide. 

8*19 Sketch terminal devices suitable for exciting H waves corresponding to 
equations 7-129 and 7-130 in a coaxial wave guide. 



CHAPTER 9 

TRANSMISSION LINE THEORY 

9*1 Introduction 

Long uniform transmission lines, especially the transatlantic telegraph 
cables, presented a baffling problem to early communication engineers. 
The difficulty lay in the fact that the electrical constants of such trans¬ 
mission lines are distributed in space rather than lumped at one point. 
Accordingly the situation could not be dealt with by familiar circuit- 
analysis methods. Only when the brilliant minds of Heaviside, Pupin, 
and Kelvin were brought to bear upon the problem was a satisfactory 
solution reached. Fortunately the result is complete and highly accu¬ 
rate. We shall present such a solution in the following sections. The 
development is based upon the assumption of low-frequency circuit 
theory, but the same results may be developed directly from Maxwell's 
equations. 

The operation of a transmission line, such as that formed by a pair of 
parallel round wires, may be explained in several ways. At low fre¬ 
quencies it is simplest to think of a current flowing out in one wire and 
back in the other. The product of the current and the potential differ¬ 
ence at the sending end then defines the power delivered to the line. 

It is more correct, if less convenient, to think of the parallel wire line 
as a special form of wave guide in which the guiding conductors are of 
relatively small size and the extent of the wave in the dielectric surround¬ 
ing the conductors is not limited. The propagation of a wave down 
such a guide is illustrated in Fig. 9-1. It is assumed that the line extends 
indefinitely to the right or that such a termination is applied that no 
wave is reflected from the end of the line. The effects of reflection will 

be studied later. 
The sectional view of Fig. 9-1 shows the distribution of the electric 

and magnetic fields. It may be shown that both magnetic and electric 
lines form systems of circles, called dipolar circles. The lines of electric 
and magnetic fiux lie in planes perpendicular to the direction of the trans¬ 
mission line and are everywhere perpendicular to each other. Such a 
distribution represents a plane transverse electromagnetic wave propa¬ 
gating power in the direction of the line. Integration of the Po3mting 
vector over any plane perpendicular to the direction of the line yields a 

319 
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power transmitted along the line equal to F/, where V is the potential 
between the wires in that plane and I is the current in each wire at the 
plane. The conclusion necessarily drawn from this equality is that all 
the power is transmitted in the dielectric surrounding the conductors and 
that the conductors themselves serve only to guide the wave in the 
desired direction. 

Voltage and Current Distribution at 
One Instant Along Transmission Line 

Fig. 9*1 Propagation of a wave down a pair of wires. 

9*2 The Line Constants 
Any form of two-conductor transmission line has four fundamental 

electrical constants or parameters. They are R, the series resistance; 
L, the series inductance; (7, the shunt conductance; and C, the shunt 
capacitance. In general these are expressed in terms of a loop or pair 
of conductors of fixed length. Other constants, such as shunt inductance 
or series capacitance, may be shown to be unimportant. For, example, 
any series capacitance is shunted by the conductor itself and is rendered 

essentially ineffective. 
The significance of these parameters may be clarified by an explana¬ 

tion of how they may be determined. Let us consider a pair of parallel 
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wires a mile long supported in air on insulators. A Wheatstone bridge 
connected to the two wires at one end will indicate a high resistance if 
the other ends of the wires are open. This observation gives the shunt 
conductance per mile. The shunt capacitance is measured at some low 
frequency with the far end of the line open-circuited. In this measure¬ 
ment the effect of the shunt conductance must be eliminated by means 
of a suitable technique. The scries inductance and series resistance 
are measured by short-circuiting the far end of the line. 

It will immediately be recognized that the procedure just described 
is not exact. The shunt conductance of the line causes the observation 
of series resistance to be low and the series resistance causes the observa¬ 
tion of shunt conductance to be too low. Similarly, the inductance of 
the line affects the capacitance observation, and vice versa. In normal 
lines, however, the conductance is so small compared to the series resist¬ 
ance that the error is negligible. And the observations on inductance 
and capacitance are less and less interdependent as the frequency is 
lowered. In any event the errors approach zero as the length of the line 
under measurement approaches zero. It is then possible to express 
these parameters in terms of a mile length even though they are measured 
on a specimen much shorter than one mile. It may be shown that these 
measurements of impedance mth the far end alternately open- and short- 
circuited suffice to determine the transmission properties of any network. 

9*3 Derivation of the Telegrapher’s Equations 

Let us examine the behavior of an infinitesimal length, dZ, of an infi¬ 
nitely long transmission line. It will be assumed that the basic line 
parameters, R, L, (?, and C, are known and specified in terms of some 
unit length such as the meter. The length dl is then referred to this 
same unit. For convenience we may break the line down into a succes¬ 
sion of these equal infinitesimal lengths and in turn separate the resistive 
and reactive components of the impedance in each unit length. The 
resulting structure is shown in Fig. 9*2. 

The sections, which are all alike, are characterized by a shunt con¬ 
ductance dG - Gdl and a shunt capacitance dC = C dl. The series 
elements apply to the pair of wires. That is, dL = Ldl and dR - R dl. 

The behavior of the line may be deduced from the behavior of any one 
elementary section. Some definite input current and voltage are 
assumed, and the output current and voltage are deduced from the con¬ 
stants of the section. Since the line sections are already reduced to 
infinitesimal sections we may neglect the shunt elements in the compu¬ 
tation of the effect of the series elements, and vice versa. Since we shall 
confine our attention to sinusoidal waves we may replace the series 
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elements by the impedance Z dl and the shunt elements by the admit¬ 
tance Y dl. The behavior of a line when the impressed voltage is non- 
sinusoidal may be calculated by separating the voltage wave into a series 
of sinusoidal waves by Fourier analysis. The total effect produced is 
then the sum of the effects produced by these sinusoidal components. 

Fig. 9-2 Infinitesimal section of a transmission line expressed in terms of lumped 

parameters. 

In each section of the line the voltage is decreased because of the 
series impedance, and the current is decreased by the action of the shunt 
admittance. Accordingly we may write 

dl = -VYdl [9-1] 

and dV = -IZdl [9-2] 

where Z = R jX and Y = G + jB 
Expressed as derivatives these become 

II 1 19-3] 

dV 
— = -IZ 
dl 

[94] 

Differentiating 9-3 and 94 with respect to 1 

dJ^I dV 

df ~ J dl 
[9.5] 

dPV dl 
dl^ ■ ^dl 

[9-6] 

Substitution of 9*3 and 94 in 9-5 and 9-6 gives the synvnetricaJ 
equations 

d^I 
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9'4 Solution of the Telegrapher’s Equations 

Equations 9-7 and 9-8 are commonly referred to as the telegrapher’s 
equations since they were first developed in connection with long¬ 
distance telegraphy over cables. Because of their symmetry it is evi¬ 
dent that these equations have solutions of the same form. Therefore 
the solution of only one will be sought, the solution of the other being 
written down from similarity. 

Here, as in most differential equations of electricity, we assume a 
solution of exponential form. That is, the form of the solution is 
assumed, and the appropriate constants are developed. Let 

I = 

then 

- - 

and 

To satisfy 9-7 it is necessary that 

= ZYAe"*^ [9-12] 

Or merely that 

7® = ZY, giving 7 = [9-13] 

The complete solution of equations 9*7 and 9*8 may bo written 

I = [9*14] 

V = A2e^^ + 826-^^ [9-15] 

where 7 is now defined as the positive square root of ZY, 
The parameters Ai, A2, Biy B2 are constants of integration. They 

may be evaluated by differentiating 9-14 and 9-15. 

g = yAie^^ - [9-16] 

^ = 7^2e^* - yBse-^^ [9-17] 

[9-9] 

[9-10] 

[9-11] 

Application of the basic equations 9*3 and 94 to 946 and 947 gives 

-FT - 7Aie^' - 7Bie-^' [948] 

-IZ - 7^26“’* - yBse-^^ [949] 
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Equations 9*18 and 9-19 express the behavior of any line subject to 
existing boundary conditions. It is convenient to consider the line 
connected to a physical generator at the sending end and to measure 
the distance from the generator. At the sending end of the line we 
have Z = 0, F = F*, and I - /«. Equations 944, 945, 948, and 949, 
respectively, give us 

7, = [9*20] 

Fa = A2 + B2 [9*21] 

-FaF = yAx - yBx [9*22] 

—‘laZ = 7A2 — 7^2 [9*23] 

Solving for Ai, A2, Bx, and B2 in terms of F, Z, 7s, Fs, and 7, we obtain 

^1=1 (is (l. - Vsyl^ [9-24] 

Bt = I (/. + F. = I (j, + F. 19-25] 

^2 = ^ (f. - ^ (f. 19-26] 

£2 =|(f, + 7.^) + [9-27] 

We have already defined 7 = VZF, Let us introduce the additional 

definition Zq = ^Z/Y, 
In terms of this definition 

[9-28] 

Bi=h (is + 0 [9-29] 

A2 = |(F. - J.Zo) [9-30] 

B2 = |(F, + I,Zo) [9-31] 

Substituting 9*30 and 9*31 in 944 and 945, 

/ = ^ ^ ^ 1 p ^-yi f9.32j 

V - |F.e^' - f F.e-T" + [9-33] 
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Rearranging terms and introducing the standard definitions 

c* 4- e-* 

and 

- cosh X 
£i 

e* - e“® 

[9-34] 

we obtain 

■ ■ = sinh a; 
jL 

[9-35] 

y 
1 = 1, cosh yl — sinh yl 

Zo 
[9-36] 

F = F, cosh yl — I,Zo sinh yl [9-37] 

where I is measured from the sending end of the line, y = VZF, and 

Zq = Vz/F. These equations, which are perfectly general within 
the limits of the original assumptions, contain a wealth of information. 
They apply to any transmission-line system propagating transverse 
electromagnetic waves. Since at the present time no other transmission 
modes are of practical significance we may regard these equations as 
descriptive of all the phenomena of transmission lines. 

A similar and equally basic pair of equations are developed from 
equations 9-14, 9-15, 9-18, and 9-19 by considering the receiving end of 
an infinite transmission line. The subscript r will be used to designate 
voltages and currents at the receiving end. The constants are evaluated 
by the same process, and a similar mathematical procedure leads us to 
the following: 

y 
I = Ir cosh 7? + ^ sinh yl [9*38] 

V = Vr cosh yl + IrZo sinh yl [9-39] 

where Z is measured from the receiving end of the line, y = VZF, and 

Zo = 

9‘5 Impedance of the Infinite Line 

Equation 9-37 may be interpreted to define the input impedance of 
an infinitely long line. 

Dividing through by cosh yl we have 

V 

cosh yl 
= F.- sinh yl 

* ° cosh yl 
19-40] 

Referring to equation 9-34 we see that cosh yl approaches « as Z 
approaches infinity. FrOm equation 9-35 we see that sinh yl also 
approaches » as I approaches infinity. The ratio sinh yZ/cosh yl ap- 
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proaches unity, however; and therefore we have 

0 = F. - I,Zo [9-41] 

^ = Zo = V^/F [9-42j 

That is, a finite impedance known as the characteristic impedance of the 
line is observed at the end of an infinitely long line regardless of the con¬ 
ditions at the other end of the line. This same conclusion is reached by 
appropriate manipulation of equations 9*36, 9*38, or 9*39. 

With the qualification that the line is very long and using the equality 
of 942 we may rewrite 9*36 and 9*37 in the form 

I = Is (cosh yl — sinh yl) = [943] 

and V = Vs (cosh yl — sinh yl) = Vse~'^^ [944] 

again referring to equations 9*34 and 9*35 for the relation of the hyper¬ 
bolic functions. 

The symbol Zq is variously referred to as the characteristic imped¬ 
ance, surge impedance, image impedance, and iterative impedance of 
the line. The symbol y is universally referred to as the propagation 
constant because it describes the propagation of a wave along the line. 
Both are essentially complex numbers although it happens that Zo is 
nearly a pure real and y nearly a pure imaginary for many important 
practical cases. 

9*6 The Propagation Constant 

We have defined y = VZF. We have in addition Z == i? + jX and 
Y = G + jBj and we may define y = a + where a and are respec¬ 
tively the attenuation and phase constants of the line. The resulting 
equation is 

« + ii8 = T = \^{R+jX){G+jB) [9-45] 

Squaring and collecting real and imaginary terms, 

+ 2jafi ^RG-BX + j(RB + GX) [9-46] 

Such an equation is correct only if the real and imaginary terms are 
separately equal. That is 

0^-0^ ^RG- BX [9-47] 

2a(S = RB + GX [9*48] 

Solving 9-48 for a we have 

RB + GX 
a 

20 
[9-49] 
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Substituting 9-49 in 9-47, 

[9-50] 

giving 
(M + OT)- 

[9-51] 

or 

[9-52] 

Solving for jS® by the quadratic formula and extracting the root 

= V^[\/(ii;2 + X2)(G2 + B2) _ _ 5^)] 

By a similar development 

a = V^[V(i22 + X^)((^^ + B^) + {RQ - BX)] 

Substituting X = wL and B = coC, these equations become 

(3 = Vi[V(/22 + „2l2)((?2 + - (G/e - co^LC)] [9-53] 

a = Vl[V(ii!2 + JL^){(P + + (G/2 - w^LC)] [9-54] 

In general, the dissipation associated with physical lines is small. 
In most physical lines R is small compared with wL and G is small com¬ 
pared with (jjC. Under these circumstances, it is convenient to write 
equation 945 as 

«+j? - Vic (i+i)* (i+ 
R G 

Expanding the latter terms in powers of -rr according to the 
jeoL jo)C 

binomial theorem,* we obtain 

{R R^ 

\ G 

r ^ ~ sjvc^ ■*■■■■ 

The binomial theorem may be expressed as 

(a -h &)” = ^(1 + = fc ^1 -f wa; H—^ -f • • 

where the series is rapidly convergent for |x| 1. A complete discussion of this 
theorem may be found in any advanced algebra book. 
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or, neglecting squared terms and transferring j inside the parentheses 

Equating real and imaginaiy parts 

and 

[9-55] 

[9-56] 

In these equations all quantities must be expressed in terms of the same 
unit distance. If the line constants are expressed per loop mile the 
constants a and will be in terms of nepers per mile and radians per 
mile, respectively. 

Equations 9-43 and 9-44 are now rewritten 

I = [9-57] 

V = [9-58] 

If we substitute Vs = where Vi is the maximum time variation 
of Vsf in equation 9*58, we obtain 

V = [9.59] 

Equation 9*59 is recognized as a wave equation, very similar to those 
previously considered. The attenuation constant a is simply a multi¬ 
plying factor which acts to diminish the magnitude of the wave as it 
progresses. The term cot — pi establishes the wave motion and also 
that it is sinusoidal in both time and space variation. 

If the applied voltage is non-sinusoidal it is resolved into sinusoidal 
components by Fourier analysis. The separate voltage waves which 
result establish these separate traveling waves on the line, the actual 
wave being the sum of these separate components by the principle of 
superposition. 

Figure 9*3 shows the wave motion on a line for two successive instants. 
At time < = 0 the input voltage is zero and a certain definite wave 
system exists along the wire. At a time corresponding to a quarter of a 
cycle later the input voltage has reached a negative maximum and the 
entire wave system has moved to the right a distance X/4. 

The velocity of propagation is obtained by setting (cot — pi) equal to 
a constant. Then 

(cot - pi) « (o(t + AO - p(l + Al) [9*60] 
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or 
0 = - PAl [9*61] 

giving 
0) Al 

"At 
[9*62] 

Evidently equation 9*53 expressing the phase constant in terms of co 
can be combined with 9-62 to give an explicit solution for the velocity. 
It should be noted that the velocity given by 9-62 is a phase velocity. 

Fig. 9*3 Wave motion on a line having attenuation. (Two successive instants of 
time shown.) 

For most radio transmission lines, however, v is independent of w, 
and therefore the signal and group velocities are equal to the phase 
velocity. 

The wavelength is given by the basic equation 

V [9*63] 

Combining with 9-62 to eliminate v we obtain 

0) 2irf ^ ^ 
- = [9-64] 

or 

X = J [9-65] 

9*7 Lines of Finite Length 

We have already seen that an infinite transmission line presents a finite 
impedance equal to Zq to the generator at the sending end. This 
impedance will not be altered if a finite amount of line is inserted between 
the generator and the infinite line since a finite addition does not affect 
an infinite quantity. From this we must conclude that the finite section 
of a line if terminated in a lumped impedance equal to Zq has an input 
impedance again equal to Zq. 
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In Fig. 94 the behavior is very simple and regular. The wave sent 
out from the generator arrives at the receiving termination somewhat 
later and is completely absorbed. If, however, the termination is 
unequal to the characteristic impedance the behavior is much more 
complex. 

Zf, Infinite Line 

Lumped Element 
Termination 

Fig. 9*4 Equivalence of finite terminated line to an infinite line. 

Let us consider an example in which the receiving terminals are short- 
circuited; that is, the receiving impedance is equal to zero. Under these 
conditions we may most conveniently set = 0 in equations 9*38 
and 9*39. The current and voltage at any distance I from the receiving 
end are then 

I ^ Ir cosh yl [9-66] 

V = IrZo sinh yl [9-67] 

The sending end impedance for any particular section of line is simply 
the ratio of these two quantities evaluated for the appropriate length L 

Zsc ^ — Zq = ^0 tanh yl [9*68] 
I cosh yl 

An alternative condition of equal interest is that in which the receiving 
terminals are open-circuited. Here Ir = 0, and equations 9*38 and 
9*39 become 

II [9-69] 

V = Vr cosh yl [9-70] 

The sending end impedance is now 

V 
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9*8 Reflection 

We saw in Chapter 4 that a plane electromagnetic wave is reflected, 
at least in part, at any discontinuity of the medium through which it is 
propagated. Sometimes the entire incident energy is reflected. In 
extreme cases virtually none is reflected, and all intermediate degrees 
are possible. A very similar situation exists in respect to waves on 
lines. If the transmission line is perfectly uniform or smooth there is no 
reflection and the entire energy is propagated normally. If some 
irregularity exists, as for example a high-resistance splice or a change of 
mechanical dimension, a reflection of smaller or larger magnitude occurs. 
Part of the incident energy is returned toward the sending end, the 
remainder proceeding along the line. 

Complete discontinuity exists if the line is open-circuited or short- 
circuited. The open-circuit case is somewhat analogous to total inter¬ 
nal reflection previously discussed; the short-circuit case is very similar 
to reflection of a wave in air by a metal surface. In both, the entire 
incident energy is reflected. 

Reflection from a short circuit is most easily treated if we consider a 
line of infinite extent with a short circuit applied at some finite length 
from the sending end. By definition the voltage at the short circuit is 
zero. This condition is satisfied if we assume a voltage equal and 
opposite to the incident voltage wave. The conditions are shown in 
Fig. 9-5. A wave traveling to the left in the figure having such a 
magnitude and phase as to cancel the incident wave at the short circuit 
is assumed. Since the line has attenuation this wave becomes smaller 
as it travels to the left, just as the original wave is attenuated as it 
travels to the right. The auxiliary waves assumed to the right of the 
short circuit have no physical significance and are shown for geometrical 
purposes. In fact the reflection is not altered if the line to the right of 
the short circuit is removed. 

The sketches of Fig. 9-5 are all in terms of instantaneous voltages and 
therefore do not represent readings of meters. Figure 9-6 is drawn in 
terms of effective voltage and currents. It therefore represents a 
phenomenon which may be observed with instruments. 

The curves of Fig. 9*6 are readily developed by a rigorous mathemati¬ 
cal argument. From equation 9*39 we have 

F « Fr cosh yl + IrZo sinh yl [9*39] 

where I is measured from the receiving end of the line, in this case, the 
short-circuited end. Accordingly the resulting equation will be ex¬ 
pressed in terms of distance from the short circuit. 

For a short-circuited line Fr « 0. In section 9*7 we have shown that 
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Fio. 0'6 Voltage and curtent distribution of line having attenuation. 
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the voltage at any distance I from a short circuit may be expressed in 
terms of the receiving current through the short circuit by the relation 

V = IrZo sinh yl [9-67] 

Substituting y = a+jp 

V = IfZo sinh (od + jpl) 

or 

But 

Hence 

V = JrZo (sinh od cosh jpi + cosh od sinh jpi) 

coshjjSZ = cos 01 and sinhjpi = jsin/Si 

V = IfZo (sinh al cos 01 + j cosh al sin 01) 

The voltage V is seen to have a real part, sinh al cos 01, and an 
imaginary part, IrZo cosh al sin 01. The absolute magnitude of V is 
thus the square root of the sum of the squares of the real and imaginary 
parts. 

1F| = al cos^ 01 + cosh* al sin^ 01 

We now use the identities 

and 

cosh^ 0 = sinh^ ^ + 1 

cos^ Z + sin^ Z = 1 

givii^ 
If] = IrZo^smh^ al + sin^ 01 

This function is zero for i = 0 as required, and is never negative. As I 
is incre^ed the first tenn steadily increases in size, whereas the second 
term oscillates with constant magnitude. 

The effect of the undulations diminishes rapidly with distance because 
of the effect of extracting the square root. For sinhaZ = 10 and 

sin 01 = ±1 (its maximum value) the deviation is only from ViOl to 

a matter of ± one-half of one per cent. 
The curves of Fig. 9‘6 are considerably more general than has so far 

been stated. Curve A is a simple exponential, representing equation 
9*57 or 9*58, and applies to the voltage or current in a line terminated 
in its characteristic impedance. Curve B represents the relation just 
developed and applies to the voltage on a short-circuit line or the 
current in an open-circuit line. Curve C represents the function 
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Vsinh^ al + cos^ and applies to the voltage on an open-ciruit line 
or the current in a short-circuit line. 

Current Vectors 
Representing Instan* Direction of Progression 

taneous Current of Wave Tram Direction of 
Distribution Along Line ^ Clock-diagram Rotation 

Side View End View 

Fig. 9*7 Sketch of a physical model of wave propagation on a transmission line. 

An excellent concept of the propagation of waves on a transmission 
line is gained by study of a circuit-vector model in three dimensions. 
Figure 9*7 is a sketch of such a model. Figure 9*8 is a perspective 
drawing of the same model. 

Fig. 9*8 Sketch of a physical model of wave propagation on a transmission line. 

9*9 Dissipationless Lines 

At radio frequencies suitable lines have the property that < L 
and <? C. Such lines have very low attenuation and may be used as 
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resonators, to good advantage. Let us examine the general equations 
as simplified by the approximation R = G == 0. Referring to equa¬ 
tions 9-55 and 9-56 we find 

fi = [9-72] 

and a = 0 [9-73] 

Substituting in equations 9*38 and 9-39 
Y 

I ^ Ir cosh jffl + ^ sinh jfil [9*74] 

F = 7r cosh jfil + IrZo siuh j^l [9-75] 

But* cosh jX = cos X and sinh jX = j sin X. Accordingly we write 

I - Ir cos sin fil [9*76] 

V = Vr COS fil + jlfZo sin [9-77] 

The characteristic impedance ^ZjY takes the simple form 

= -Jl [9-78] 

The input impedance of a section of dissipationless line terminated in an 
arbitrary receiving impedance Z^ is of great interest since it is readily 
simplified to yield all the familiar special cases. Given the receiving 
impedance Zr, we have 

hZr = Yr [9*79] 

where Zr, the receiving impedance, may have any magnitude and phase 
angle. Accordingly 9*76 and 9-77 become 

I - If cos + j sin [9*80] 

Y = IfZf cos + flfZ^ sin [9*81] 

The ratio Y/I defines the input impedance of a section of line of length Z. 
This ratio is 

V 

I Zin = 

Zf cos jSZ + jZp sin gZ 

Zf 
cos + j — sin pi 

Zq 

[9-82] 

• These identities follow from the definitions of the functions 

oosh:!^ 
e* + e""® 

: cos X 
e 

; sinh x ^ 
e® - e-* 

; and sin x 
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which is more symmetrical in the form 

_ Zr cos jSZ + sin flZ 

~ Zo cos pi + jZr sin pi 
19-83] 

Fig. 9-9 Input impedance of a finite short-circuited dissipationloss line. 

With the special case for Zr = 0, a short circuit 

Zja = jZ^ tan fil [9-84] 
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And if Zr = 00 corresponding to an open circuit 

Zin = --jZo cot pi [9-85] 

Equations 9-84 and 9*85 are plotted in Figs. 9*9 and 9-10. 
The abscissa of Figs. 9-9 and 9-10 may be interpreted equally well as 

length of line or as frequency since the two enter as a product in the 
expression pi. It is the similarity of these curves to curves of reactance 
vs. frequency of lumped reactive networks which permits us to use 
sections of transmission lines as resonators. 

9-10 Equivalence of Dissipationless Lines to Resonant Circuits 

It is well known that an open-circuited line a quarter wavelength long 
is approximately equivalent to a single coil and condenser in series. Let 
us examine the conditions under which this is true and the degree of the 
approximation which results. Referring again to equation 9*85 and 
using the identity of equation 9-62 the input impedance of the line is a 
pure reactance given by 

A^in ~ —Zq cot CO- [9*86] 
V 

From Fig. 9*10 it is seen that Xi^ is zero for an indefinite number of 
values of o)l/v. The first zero, which corresponds to o)l/v = 7r/2, is 
the one of greatest interest to us. We may define the resonant angular 
velocity for the line from the relation 

w = "0 = ^ [9*87] 

The impedance of a coil L in series with a condenser C is a pure react¬ 
ance given by the expression 

X = «L - 4; [9-88]* 
coG 

We wish to choose L and C in terms of the line properties Z, v, and Zq so 
that the two impedances are closely equal, at least in the region of 
resonance. The resonant frequencies are made to correspond if 

The two curves will cross the axis with the same slope if dX/du) is the 
same for the two. From equation 9*86 which applies to the trans- 

* The symbols L and C here refer to a lumped network equivalent to the line and 
must not be confused with the basic line constants. 
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mission line we have 

1 „ 2 
—r— = - Zo csc"^ — 

a(t3 V V 
[9-90] 

which at w == wq = Trv/2l reduces to 

It
s'

 

(1 [9-91] 

For the lumped resonant circuit 

^ = 1, + 
do) 

19-92] 

which at w = coq = X/y/Uc reduces to 
II [9-93] 

Using the equalities of the resonant frequency and the slope we may write 

TtO 1 
[9-89] 

and 

II 11 [9-94] 

Let us again introduce the relation v = /X, which in this case isv — /oXq, 
where/o and Xq are the resonant frequency and wavelength, respectively. 
From 9*87 we have 

Wo = 27r/o = [9-95] 

which reduces to 

I = ^ [996] 

Equation 9*96 establishes the fact that the transmission line is resonant 
when its length is one-fourth of a wavelength. Equation 9*94 may be 
written 

2v 2/oXo 4wo 

Substituting 9*97 in 9*89 we find 

4 s; 
t(»>oZq frvZo 

Equivalence of 
open>circuit line 

and series 
resonant circuit 

[9-97] 

[9-98] 
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Equations 9*97 and 9*98 define the values of a coil L and a condenser C 
which, when connected in series, are equivalent to a line that is open- 
circuited and one-fourth wavelength long. The impedance curves result¬ 
ing in the two cases are plotted in Fig. 911. It is seen that the approxi¬ 
mation is excellent in the region of resonance but fails at higher or 
lower frequencies. 

Fig. 9*11 Equivalence of resonant circuit to an open-circuited line. 

In a similar way we may evaluate the constants of an anti-resonant cir¬ 
cuit which approximates a short-circuited line one-fourth wavelength 
long. The mathematical development is facilitated here by the use of 
admittances, because the impedance becomes infinite at the critical 
frequency. 

From equation 9-84 the input reactance of a short-circuited line is 
given by Xin = Zq tan fflf and the admittance becomes 

1 1 . ..T 1 WZ 
5in “ - cot pi = - — cot — [9*99] 

Ain "0 ^0 ^ 

This expression reduces to zero when (d/v » w/2, defining the resonant 
angular velocity as before 

« « a?o 
wv 

21 
[9-87] 
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Hence 2irfo = Tfo\)/2l, which reduces to Z = Xo/4. That is, the line is 
one-fourth of a wavelength long for parallel resonance. Substituting 
this value of I into equation 9-87, wq = 2irv/\o. 

The admittance curve from 9-99 has the slope 

dBjn 

dta 
1 ^ 2 

— • - CSC-* 
Zo V 

ul 
V 

[9100] 

which reduces to 

dBi„ 
db) ZqV 

for u «o [9-101] 

The admittance of the parallel L, C circuit is given by 

[9-102] 

which is zero if 

II f
 

11 3 [9-103] 

and has the slope 

db> ^ 
[9-104] 

which becomes 

du 
= 2C for 0) = coo [9-105] 

Equating 9-105 and 9-101 we have 

2C = 

or using 9-87 

C = 
I _ 

2ZoV iZoUo 

giving with 9-103 

L = 
AZq 8lZo 
iruo r^v 

Equivalence of 
ehort>oircuit line 
and anti-reeonant 

circuit 

[9-106] 

[9-107] 

[9-108] 

Equations 9-107 and 9-108 define the values of a coil L and condenser C 
which, when connected in parallel, are equivalent to a dissipationless 
line that is short-circuited and one-fourth wavelength long. These 
equations, together with equations 9-97 and 9-98, are extremely us^ul 
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since they permit us to design simple lumped networks which are 
equivalent, in the region of resonance, to transmission lines. 

The equations may be arranged in the reverse order so as to give 
explicit equations for the line constants Zq, Z, and v in terms of the 
equivalent lumped elements L and C. In the series resonant case we 
divide 9*97 by 9*98, giving 

L ^ ] 
C “■ 16 

or 

and from 9*89 

Equivalence of 
open-circuit line 

and series resonant 
circuit 

[9109] 

In the anti-resonant case we divide 9-108 by 9-107, obtaining 

or 

and again 

L 16Zg 

C ~ 

Zo I Ik 
4Va 

I Equivalence of 
I short-circuit line 

f and anti-resonant 
I circuit 

V 2 

[9-110] 

Equations 9-109 and 9-110 are of great practical importance in that 
calculations of amplifiers, oscillators, etc., are most conveniently carried 
out in terms of lumped elements. These equations permit a direct 
transfer of such designs into systems employing transmission lines. 

9*11 Practical Considerations in the Choice of Transmission Lines 
If a source of power or voltage is connected to a transmission line 

at one end, and a load or receiver of power is connected to the other 
end, there is a flow of energy along the direction of the line. The line 
serves as a/cmr-ZeminaZ network and is truly a transmission line in that 
its function is to convey or transmit power from one point to another. 

In an alternative arrangement the receiver is either an open circuit 
or a short circuit. In either event no power is absorbed by the receiver. 
Our interest is confined to the relation of the current and the voltage 
at the sending end of the line. The line now serves as a reactor, or 
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more exactly as a two-terminal network having both resistance and 
reactance. The term two-terminal network signifies that external 
connections to the network are made to only two separate terminals. 

The form taken by a transmission line depends upon the functions 
which it must perform. Factors which must be considered in choosing 
a transmission fine include the frequency or frequencies of operation, 
the amount of power to be conveyed, the current which must be de¬ 
livered, the highest voltage which may be encountered, the amount of 
room available, allowable coupling with other circuits, and cost. 

Electric power in large amounts is usually transmitted at 60 cycles 
per second over three wires arranged in a more or less symmetrical 
fashion. Often the diameter of the conductors is artificially increased 
by making them hollow, not because of skin effect, but in order to 
decrease the corona loss caused by the voltage gradient at the surface. 

Power at radio frequencies is seldom propagated over wires for great 
distances. An interesting exception is the so-called coaxial system used 
for the transmission of speech and television signals over distances of 
many hundreds of miles. Frequencies as high as 3 megacycles are now 
in use, and higher frequencies are under consideration. Because of the 
relatively high attenuation of these signals it is necessary to provide 
repeaters or amplifiers at intervals of only a few miles. 

Parallel wires in air give results comparable to those achieved by 
coaxial systems. In general a smaller-weight conductor serves to pro¬ 
duce a given transmission efficiency in the parallel line. However, the 
risk of undesired coupling with other systems is much greater than in 
coaxial lines. Also the total space occupied by the line is greater than 
for the coaxial conductors. 

The following sections discuss some relations which are particularly 
helpful in the choice of transmission lines for many practical applica¬ 
tions. It should be borne in mind that the problem is one of design 
and that a compromise between several conflicting requirements must 
usually be made, 

9*12 Design of Coaxial Lines for Maximum Dielectric Strength 

If the diameter of the outer conductor of a coaxial line is fixed by 
economic or other considerations there is a certain diameter of inner 
conductor which gives maximum dielectric strength. That is, one 
specific design will lead to the highest voltage required for breakdown. 
If the central conductor is made larger the length of the dielectric 
path is unduly shortened and breakdown is made easier. If the central 
conductor is made smaller the electric gradient at its surface becomes 
excessive owing to the high concentration of electric flux there. 
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Let us consider a unit length of the very long coaxial structure of 
Fig. 9*12. If a charge q per unit length is applied to the inner conductor 
the electric intensity produced between the two conductors is radial and 
the total flux per unit length is 

^ = q [9-111] 

The flux density at any distance r from the axis 
is equal to 

^ _ q 
27rr 27rr 

[9-112] 

The associated electric intensity is given by the 
equation 

[9-113] 
Fig. 9*12 Coaxial 

ductor. 
con- 

where s = /Cgeo and E is the intensity in volts per meter. The poten¬ 
tial dijfference between inner and outer conductors is given by the 
integral 

V = [9-114] 

which, when evaluated, yields 

V [9-115] 

The capacitance per unit length is defined as the ratio of charge to volt¬ 
age; it is given by the expression 

farads per 
meter 

[9-116]* 

The maximum value of electric intensity, Ei, occurs at the surface of the 
inner conductor because the electric flux density is greatest there. Its 
value is 

El = 
g 

2?rea 
[9-117] 

If V and h are fixed we find that Ei varies as a varies. Eliminating g 

* This relation was developed by a somewhat different method in Chapter 7 as 
equation 7-174a. 
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between equations 9‘115 and 9'117 we have 

Et 19118] 

Differentiating Ei with respect to a so as to obtain a minimum value for 
this quantity, we have 

da 
[9119] 

For a minimum the derivative must be zero, requiring 

0 - loge - - 1 
a 

or 
b 
- = e = 2.718 • • • 
a 

[9120] 

That is, the ratio of radii of outer and inner conductors must be equal to 
e if the greatest dielectric strength is to be achieved for a given outer 
radius. 

9*13 Design of Coaxial Lines for Minimum Attenuation 

The high-frequency resistance of coaxial lines depends not only upon 
the resistivity and size of the conductors but also upon the frequency and 
permeability. In the limiting case the current flows only in a thin sur¬ 
face layer, and the resistance depends not only upon the volume but 
upon the surface area of the conductor. The resistance, as given in 
equation 7*183 is 

R ohms per loop meter [9-121] 

where a is the conductivity in mhos per meter. 
fjL is the permeability. 
/ is the frequency in cycles per second. 
a is the outer radius of the inner conductor in meters. 
h is the inner radius of the outer conductor in meters. 

For pure copper at ordinary temperatures c == 5.8 X 10^, n — 1.25 X 
lOT^j and the expression reduces to 

R = 4.16V[f Q + 0 lOr® ohms per loop meter [9-122] 
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The capacitance of a coaxial line as given in equation 7’174a is 

^ _ 27re_Ke 

^ h h 
loge ~ 1.8 X 10^® loge - 

a a 

farads per meter [9*123] 

The inductance as given in equation 7^173 is* 

L = ~ loge - = 2 X 10““Vm loge ~ henries per meter [9* 124] 
27r a a 

The characteristic impedance thus becomes 

J^=Zo = V3.6 X Uy^log,- 
\ C \ Ke a 

In all dielectrics Mm = 1, and in air #Ce = 1, giving 

Zq = 60 loge- ohms [9*125] 
a 

The attenuation, as given in equation 7*188 is 

. 
a = —. "' ' nepers per meter [9-126] 

log,^ 
a 

where the conductors are of copper and the dielectric is air. Again 
assuming h fixed, and differentiating with respect to a for a minimum 
attenuation. 

which requires 

[9*127] 

[9*128] 

This equation may be evaluated graphically, yielding h = 3.6a. 
That is, a coaxial system whose outer conductor is fixed in size has 

minimum attenuation when the radius of the outer conductor is 3.6 
times as large as that of the inner conductor. 

* The inductance defined by this equation includes only the flux external to the 
conductors. It is correct at hyper frequencies but too low at lower frequencies. 
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9'14 Parallel Wire Lines 

Equations similar to those obtained in the preceding section apply to 
the transmission line composed of two parallel round wires in air. In 
this case the resistance for copper conductors is given by the formula 

R = 8.32 — X 10 * ohms per meter 
a 

The capacitance is 

C = - 
1 

3.6 X 10^° log, 
b — a 

farads per meter 

[9129] 

19-130] 

The inductance is 

1/ = 4 X 10 ^ log* ^—- henries per meter [9-131]* 

The characteristic impedance 

(l b - a 
^0 = \h; = 120 log*- ohms 

\G a 

The attenuation, from equation 9-55 when (? = 0, is 

R 

[9-132] 

2Zo 
[9-133] 

Substituting for R and Zo from equations 9-129 and 9-132, we obtain 

nepers per meter [9-134] 
, 6 — a 

a loge- 

where a is the radius of each conductor and b is the distance between the 
centers of the conductors, expressed in meters. 

Except for the resistance these results are very nearly the same as those 
that would be obtained if two similar coaxial lines with very thin outer 
conductors were arranged parallel to and touching each other. Upon 

Equation 9-130 is valid at all frequencies provided that h is relativdy large in 
comparison to a. Equations 9-129 and 9-131 have the additional qualification that 
the frequency is high so that current flows only in a thin skin upon the conductor. 
Equation 9-129 follows directly from the development of Chapter 7 on the assump¬ 
tion that current flows uniformly over the conductor surface. Equations 9-130 and 
9-131 appear in most books on electrical power transmissions, for example, E. A. 
Loew, Electrical Power Tranamimonf McGraw-Hill Book Company, New York. 
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the special assumption of a fixed spacing b, therefore, it is to be expected 
that maximum dielectric strength will occur for 

b 
-csi2ei^ 5.4 approximately 
a 

or twice that for the single line. 
The attenuation is a minimum when 

-i^4.6 [9135] 
a 

9'IS Effective Q of Lines as Resonators 

We have already shown that sections of line an integral number of 
quarter wavelengths long may serve as resonant or anti-resonant cir¬ 
cuits. In the development of these basic properties it was convenient to 
consider both lines and lumped circuits as free from the effects of dissi¬ 
pation. Let us now determine the effective Q of such a system. 

Consider an open-circuited line which is approximately a quarter 
wavelength long. The sending-end impedance is, from equation 9-71, 

Zoe = Zo coth (yl) = Zo coth (al H- jfil) [9-136] 

But 

coth (A -|- B) 

Accordingly 

Zoe 

1 -f tanh A tanh B 

tanh A -|- tanh B 
and tanh jX = j tan X 

= Zc 
1 +j tanh gf tan 

tanh od +j tan pi 
[9-137] 

or, dividing by tan fil, 

_ cot pi -f j tanh al 

“ ° cot |8Z tanh al + j 
' [9-138] 

For the resonant frequency, /o, 01 = 5r/2, cot 01 = 0, and the input 
impedance becomes a relatively low pure resistance 

Zoe - Zo tanh al [9-139] 

At two frequencies near/o the impedance is larger and has a phase angle 
of 45°. We shall determine one of these frequencies, designating it /i. 
We are dealing with a high Q system in which a ■«: /3. Moreover, in 
general tanh X < tan X. Accordingly the first term in the denomina¬ 
tor of 9-137 is negligible in comparison to the second. If the phase angle 
of the input impedance of equation 9-137 is to be 45° it is necessary that 

tanh od tan 01 = ±1 [9-140] 
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Since al is small we may write tanh al — od. In general, /3 = 2vf/c, 
where c is the velocity of light in meters per second.* Arbitrarily 
choosing the positive sign of 9*140 and making the above substitutions 
of P and tanh al in it, we obtain, on dividing through by tan 01, 

cot—/i=aZ [9141] 
c 

For angles near v/2 we may write cot Z = ir/2 — X. Hence 

IT 2-irl 2tI / c .\ , 

From equation 9*87, the resonant frequency /o isjgiven by 

41 41 

when the dielectric medium is air. Thus 

-ifo-fi) =«1 
c 

For the standard series resonant circuit where Q = coL/Rf in the notation 
of the present development it may be shown that 

/o-/l 

/o 2Q 

We shall define the Q of a resonant line by this equation. Multiplying 
both terms of 9*142 by the factor c/{2irlfo), we have 

• /o - Si ^ ^ J_ 

/o 2x/o 2Q 
or 

I9*141o] 

[9*142] 

[9*143] 

[9*144] 

ac 

B 
Substituting a ~ from equation 9-133 

2Zo 

Q = 

2wfoZo 

Rc 

[9-145] 

[9-146] 

where /o is the frequency at which the line becomes series resonant, 
Zo is the characteristic impedance, R is the distributed resistance of the 
line, and c is the velocity of light. 

* This substitution requires that the dielectric constant ic« be equal to 1. This is 
ordinarily true because few solid dielectrics are known which have low enough losses 
to make satisfactory resonators. 
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From equation 9-145 it is clear that the Q is a maximum for the line 
proportions that give minimum attenuation. That is, maximiun Q 
calls for h/a = 3.6 in coaxial structures and 4.0 for parallel wire systems. 

6/a 
{Terman, courtesy of Electrical Engineering) 

Fig. 9*13 Selectivity or attenuation of lines. 

Figure 9-13 shows the degradation of Q or increase of a that results if 
other ratios are used. 

When reduced to actual line constants the equations become 

For coaxial lines Q = 8.39 V/bff [9-147] 

For parallel wire lines Q = 8.87 V7 hJ [9-148] 

where 6 is in meters and H and J are shown in Fig. 9-13, 

9*16 Impedance of Resonant Lines 

A short-circuited line of any arbitrary length shows an impedance 
given by equation 9-68. 

Zse = Zq tanh yl [9-149] 

By a process similar to that used in the development of equation 9-137 
we may show that if 01 = 7r/2 corresponding to a quarter wavelength 
the input impedance at anti-resonance reduces to 

tanh al ’ 
a pure resistance [9-160] 
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Since a is small we may write tanh oH = cd, so that 

if = I 
al 2 

[9-151] 

Referring to equation 9-125 and 9-126, we see that the ratio b/a 
enters into both numerator and denominator of this expression. Ter- 
man* shows that the input impedance becomes a maximum for 6/a = 8.0 
in parallel wire lines and 9.2 for coaxial lines. The results for other 
ratios are shown in Fig. 9-14. For coaxial lines 

imVfhF 
n 

19-152] 

For parallel wire lines 

^ m5VfbG 
Zgo — ■ 

n 
[9-153] 

b/a 
(Termarit courtesy of Electrical Engineering) 

Fiq. 914 Input impedances of resonant lines. 

where 6 is in meters, n is the number of quarter wavelengths in the 
line, and F and G depend upon b/a as shown in Fig. 9*14, 

9*17 Quarter Wave Line as Impedance Inverter 

A very interesting and useful property of lines may be developed from 
equation 9-83. Substituting pi *= t/2, the condition for a quarter wave- 

* F. E. Terman, “ Resonant Lines in Radio Circuits,” Electrical Engineering, 53, 
1046, July, 1934. 
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length, the input impedance of a dissipationless line becomes 

^ [9-164] 

That is, the input impedance of a section of line varies inversely with 
the load impedance Zr. And, as always, the input impedance is equal 
to Zo if the load impedance is equal to Zq. In dissipationless lines the 
characteristic impedance is always a pure resistance. In many practical 
cases Zr is also a pure resistance and accordingly Zin is a pure resistance 
as defined by 9-154. 

It is an important fact that any dissipationless network which pro¬ 
duces 90*^ phase shift shows this property of impedance inversion. 
Accordingly the choice between a distributed line and a network of 
lumped reactances will depend upon the conditions of the problem, 
principally the frequency involved. At high frequencies the line is 
generally preferable. At low frequencies the reverse is true. 

A 

Fig. 9-15 Voltage and current distribution on short circuited line one-fourth wave¬ 
length long. 

9*18 Use of Transmission Lines as Transformers 

lines which are an odd number of quarter wavelengths long may be 
used as transformers to increase or decrease voltage or current. The 
operation is very similar to that of resonant or anti-resonant circuits. 
Again it is simplest to explain the operation in terms of a line that has no 
loss, and later to extend the analysis to dissipative Unes. Consider the 
arrangement of Fig. 9-15. 

It is seen that the voltage between the conductors varies according to 
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a cosine relation, being zero at the location of the short circuit. Under 
the conditions assumed the input or exciting current of the system is 
zero, corresponding to those in an ideal transformer. If some load 
impedance Z is connected between the points A, A' it will be subjected 
to a voltage less than the input voltage depending upon the location of 
the load tap. Ordinarily the load added is a pure resistance, in which 
case the input current of the system is nearly in phase with the input 
voltage unless. Z is very low in comparison with the characteristic 
impedance of the line. That is, the dissipationless line acts almost as an 
ideal transformer, delivering a load current magnified by the same 
ratio that the load voltage is decreased. 

The operation is closely analogous to that of the lumped circuit shown 
in Fig. 9-16. A condenser and coil of finite values are anti-resonant at 

Fig. 9*16 Lumped circuit transformer equivalent to Fig. 9*15. 

the operating frequency. The load is then tapped across some part of 
the coil. If the turns of the coil are closely coupled to each other the 
leakage flux is small and the system closely approximates an ideal trans¬ 
former. 

If dissipation is present in either the line system or the lumped circuit 
just described its effect can be accounted for to a good approximation by 
a«uming a resistor shunted across the high-impedance terminals. For 
the lumped-circuit case this resistor must be equal to QX, where X is 
the reactance of either element and Q is the selectivity factor of the en¬ 
tire system.* For the line this value has already been shown, from 
equation 9‘151, to be 

Evidently lines may be used as step-up transformers by interchanging 
the position of generator and load. A limiting case of some interest 
arises when a generator of low voltage and low internal impedance is 
connected to one end of a quarter wave line and a high impedance, 
such as the input of a vacuftm tube, is connected to the other end. 

* It should be recalled that Q = Rl^aL for the selectivity of a loss-free coil shunted 
by a resistor, whereas Q u>LIR for the familiar case of a loss-free coil in series with 
a resistor. 
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Recalling that at resonance ffl = jr/2 and cot fl-/2 = 0 it is seen from 
equation 9-85 that the input impedance of a quarter wave line is zero 
if the far end is open-circuited and dissipation is negligible. Theoreti¬ 
cally, therefore, an infinite voltage step-up is possible, exactly as with a 
loss-free series-resonant circuit. 

When dissipation is present in the line its effect is best accounted for by 
assuming a lumped resistor equal to 

Rq = 
£o 
al [9-155] 

at the open-circuit end as in Fig. 9-17. Since the dissipation of the line 
has been accounted for we may now calculate the behavior as if the ijuBs 

h-^4-H 

Fig. 9-17 Quarter wave line with dissipation, as step-up transformer. 

were free from loss. Using equation 9-154, the impedance seen by the 
generator is 

Z=f [9-156] 

Combining these two equations the input impedance is 

Z = Zoal, a pure resistance [9-157] 

Since all the energy drawn from the generator is expended in the dis¬ 
sipation of the line and since the effect of this dissipation is equivalent 
to that of the lumped resistor Rq we may apply the principle of conserva¬ 
tion of energy to Fig. 9-17 yielding 

72 
Ro 

[9-158] 
E^~ Z 

But Ro •= Zo/cd and Z == Zoal. Accordingly 

Zo 1 1 
[9-159] 

~ al Zoal ~ («0“ 

and the voltage step-up is 

V 1 
[9-160] 

E’‘d 
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But a ^ jB/2Zo from equation 9-133, and the resonant frequency 
fo = c/U, from equation 9-141a. 

The voltage step-up becomes 

V _ SZpfo 
E cR 

[9-161] 

where c is the velocity of light. 
The form of 9-161 is very interesting since it shows that the step-up 

ratio is proportional to the frequency and to the characteristic imped¬ 
ance and is inversely proportional to the line resistance. 

It has been shown that the conditions for maximum Q do not permit 
flexible adjustment of the impedance level of lines as anti-resonant 
circuits.* By means of the device illustrated in Fig. 9-15 it is possible to 
design the line for maximum selectivity and then to adjust the effective 
impedance by tapping on to the line. This is imavailing, of course, if 
the required impedance is higher than that offered by a quarter wave 
line of maximum Q, Fortunately such is seldom the case. Figure 9-18 
shows resonant lines operating in an oscillator on this basis. 

—1— 

n 

1 1 

Fig. 9 18 Resonant line oscillator. 

9*19 Impedance Transformation by Means of Stubs 

By the use of a separate section of transmission line, referred to as a 
stub line or stub, it is possible to secure the most general form of imped¬ 
ance transformation. In practice the method is most frequently applied 
to antennas. By a proper choice of the line lengths involved it is possi¬ 
ble to secure a true impedance match between the feeding line and an 
antenna of arbitrary impedance. The arrangement is shown in Fig. 
9-18a. 

The antenna or other load is represented by the general impedance Zr. 
It may have any phase angle and any impedance whatever. Line 3 is 
usually relatively long and must have a low attenuation Constant in 
order to deliver power efficiently from the generator to the antenna. 
Lines of low attenuation are characterized by small values of series 
resistance and shunt conductance, and therefore have a characteristic 

* Section 9-15 equations 9-147 and 9-148. 
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impedance, Zq, which is nearly a pure resistance. For the sake of 
simplicity it will be assumed that all three sections of line have the same 
characteristic impedance and that it is a pure resistance. An analysis 
of the more general case is not extremely diflBicult but does not yield 
results which are much more useful than these. 

The length Li is first chosen so that the impedance presented to the 
junction by line 1 is equivalent to a pure resistance equal to Zq shunted 
by some value of reactance. The value of Li depends upon the magni¬ 
tude and phase angle of Zr. The reactance presented to the junction 
depends, in turn, upon the value of Li. The important fact, however, is 

Line 3 Junction Line 1 

that there is always a value of Li for which the resistive component of 
the impedance does match Zq. The length L2 is then adjusted so that 
the impedance presented to the junction by line 2 is a pure reactance 
equal and opposite to the reactive component of the parallel impedance 
of line 1. 

Under these conditions line 3 is perfectly matched by the combined 
actions of lines 1 and 2. Accordingly no standing waves exist in line 3, 
and energy is transmitted with maximum eflBiciency from the generator 
to the load. Line 1 produces all the resistance transformation, and line 
2 produces the reactance which is necessary to cancel the undesired 
reactance which unavoidably accompanies the action of line 1. We may 
think of the operation as a sort of complex parallel resonance in which 
the stub line cancels the reactive charging current of the load which 
comprises Zr and line 1. 

In practice lines 1 and 3 are usually continuous, and line 2, the stub, 
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is at right angles to the main line. It is sometimes more convenient, and 
it is equally correct, to make lines 2 and 3 continuous and to apply the 
load to the right-angle branch. The length Li is usually approximately 
a quarter of a wavelength. The stub line is usually short-circuited for 
greatest mechanical convenience and is then approximately a quarter 
wavelength long. If for some reason the stub line must be open-circuited 
it should be approximately a half wavelength long. 

If the impedance of Zr is not in the same order of magnitude as Zq it 
may be found that appreciable losses occur owing to excessive currents 
in the matching lines. Under these conditions it may prove desirable to 
adjust the characteristic impedance of line 1 or line 2 or both so as to 
minimize this loss. 

9*20 Use of Transmission Lines in Filters 

Low-pass filters are structures which transmit freely all frequencies 
from direct current to some limiting frequency called the cut-off fre¬ 
quency. All frequencies above the cut-off value are attenuated. Such 
a filter necessarily has coils for the series elements and condensers for 
the shunt elements. 

Band-pass filters, perhaps the most important of all in communica¬ 
tion systems, attenuate both high and low frequencies and pass freely 
only frequencies lying between two definite values. Such a filter uses a 
series-resonant circuit wherever a simple coil appears in the low-pass 
filter and an anti-resonant circuit wherever a condenser appears in the 
low-pass design.* 

We have already shown that transmission lines of suitable length 
may serve to simulate resonant or anti-resonant combinations of high Q. 

Input 

T 

-4 
Output 

Equivalent Circuit 
O—vJ^ULrll t IKMiLr-o 

Fig. 9-19 Prototype band-pass filter using resonant lines. 

This statement applies with equal force over a wide range of frequencies 
At the lower frequencies, transmission lines afe relatively bulky, and 
lumped coils and condensers are used. At frequencies above a few 
megacycles, however, the situation is reversed and transmission lines 

♦ These statements apply rigorously only to the so-called prototype filter. How¬ 
ever, they are indicative of the general mode of operation of all filters. 
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offer the most satisfactory filter networks now known. In the hyper- 
frequency region, hollow tubes may be employed to advantage. 

Although parallel wire lines may be used, coaxial structures are 

t±rj 
^ __ 

1 1 
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Fig. 9-20 Band-pass filter using coaxial line structure. 

generally more convenient. The mechanical stability is usually highe'r, 
and the risk of undesired coupling between the several lines and neighbor¬ 
ing circuits is reduced. 

{Mason and Sykea, courtesy of BSTJ) 

FiQ. 9*21 Measured insertion loss of filter used on Green Ilarbour-Provincetown 
radio link. 

The arrangement of Fig. 9*19 has been successful as a band-pass filter. 
The two open-circuited lines are identical and serve as series resonant 
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circuits. The short-circuited line, which serves as the shunt anti¬ 
resonant combination, may need to have a different characteristic im¬ 
pedance in order to satisfy the filter design equations. 

A rather different arrangement is shown in Fig. 9-20. Here the trans¬ 
mission lines serve as four-terminal rather than as two-terminal net¬ 
works. The physical arrangement, however, is simpler to construct 
than that of Fig. 9 19. The electrical performances are comparable. 

Although suitable high-Q coils are not available at these frequencies 
it is possible to construct excellent condensers of appropriate capacitance. 
Accordingly an important class of filters exists in which resonant lines 
and condensers serve as the elements. Mason and Sykes have published 
a very complete account of such filters.* The necessary theoretical 
background and design formulas are included. Figure 9-21 is a measured 
characteristic reproduced from their paper. 

9*21 Radiation from Transmission Lines 

Let us first consider a coaxial line at relatively high frequencies. 
We have shown that with perfect conductivity both electric and mag¬ 
netic fields are normal to the direction of propagation. In other words, 
a true transverse electromagnetic wave system exists. Energy evidently 
is not dispersed laterally from such a system. It is clear that even 
with finite conductivity of the guiding conductors no appreciable amount 
of power can be transmitted through the outer conductor to be radiated 
from it. Therefore we may conclude that no significant amount of 
power is radiated from a coaxial line at high frequency except from the 
open ends. This conclusion Ls supported by the fact that experimental 
data accurately checks the attenuation as calculated from equation 9*126. 

With the parallel wire line the situation is more involved. Here the 
electric and magnetic fields have no finite boundary and accordingly the 
wave system extends to infinity. Again, however, we may simplify 
the problem by assuming the wires to have infinite conductivity. The 
electric and magnetic vectors are everywhere perpendicular to each other 
and to the direction of propagation. The resulting system is very simi¬ 
lar to the simple plane-polarized wave dealt with in earlier chapters. 
The only significant difference is that the lines of electric and magnetic 
intensity are closed curves rather than infinite straight lines. Both 
wave systems share the important property that they are propagated 
with the speed of light and without attenuation. In particular the 
wave system is guided along the conductors with a wave front that is 

• W. P. Mason and R. A. Sykes, “ The Use of Coaxial and Balanced Transmission 
Lines in Filters and Wide Band Transformers for High Radio Frequencies,” Bell 
System Tech, Z., 16, 275, June, 1937. 
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perpendicular to the wires. Thus the Poynting vector shows no com¬ 
ponent except in the direction of the guides, and accordingly there is no 
radiation loss from a very long parallel wire line. 

The conditions which exist at the ends of a finite line require separate 
investigation. From our previous study of wave guides we may con¬ 
clude that no energy can be radiated from the end of a coaxial line if 
the end is closed with a solid conducting plug as shown in Fig. 9-22. 

Fig. 9-22 Coaxial line short-circuited by bars and a disk. 

Accordingly such a plug is a perfect short circuit and reflects all the 
incident energy back into the line. In the principal mode of coaxial 
transmission the electric field is radial, and the wire grid structure of 
Fig. 9-22 forms an entirely satisfactory short circuit. 

The parallel wire line is commonly regarded as short-circuited if the 
two'conductors are joined by a portion of a similar conductor. From 
the previous paragraphs it is clear that such an arrangement can, at 
best, reflect only a portion of the unbounded wave propagated down the 
line. For perfect reflection of the wave system an infinite conducting 
sheet is necessary, but very satisfactory results are obtained if a circular 
disk a few times as large in diameter as the line spacing is used. 

A system comprising a large number of wires designed to coincide 
with the electric field configuration serves as an excellent reflector or 
short-circuit and may require less material and weight than the solid 
sheet. 

If only the single wire is used as a short circuit, the electromagnetic 
field is distorted at the end of the line. A considerable portion of the 
power continues in the general direction of the line as radiation in free 
space and is lost. Thus the effective Q of the line as a resonator is 
diminished. 

In making measurement on parallel lines, it is usually convenient to 
provide an adjustable shorting device which may be placed in any 
desired position along the line. A conducting disk illustrated in Fig. 
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9*236 may be used. To aid in making good electrical connection the 
edges of the disk in contact with the wires may be filed to a sharp edge. 
Often the section of the line beyond the short circuit may be excited by 

Fig. 9-23 Parallel wire line short-circuited by wire, by a circular disk and by an 
infinite conducting sheet. 

induction from the section in use. This auxiliary or secondary circuit 
may react upon the primary section or circuit, providing a coupled 
circuit phenomenon. The amplitude characteristics of such coupled 
circuits have been studied by King.* In order to avoid this reaction, he 

Slots Cut 'for Lines of Different Spacing 

Fig. 9*24 Shorting bars in tandem arrangement devised by King. This device 
provides decoupling between used and unused sections of line. 

has designed a tandem shorting device shown in Fig. 9*24. Two wires 
are mounted in insulating supports which are separated from each other 
by a dielectric rod of adjustable length. In operation, the length bf this 
rod is made equal to approximately one-quarter the wavelength of the 
voltage being used in the primary circuit. In this way the section of 

* Ronald King, Amplitude Characteristics of Coupled Circuits Having Dis¬ 
tributed Constants,’’ Proc, IRE^ Vol. 21, August, 1933. 
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line directly behind the short circuit is detuned, and thus any reaction 
on the primary circuit is reduced. 

It is often desirable to terminate a finite line section in a lumped resist¬ 
ance equal to the characteristic impedance. When the line spacing is 
very small compared to the wavelength, that is, at relatively low fre¬ 
quencies, a normal two-terminal resistor serves admirably. At higher 
frequencies, however, the concept of a guided wave becomes necessary. 
As in the short-circuited line, satisfactory results are attained only if the 
termination is distributed. In the coaxial line a small disk of material 
of suitable resistivity serves as a perfect termination to very high fre¬ 
quencies. In the open-wire line it is again necessary to employ a rela¬ 
tively large sheet if the radiated energy is to be held to a very low value. 
In practice these distributed terminations are usually made by spray¬ 
ing some form of carbon on a dielectric support. Under certain con¬ 
ditions a piece of carbon-coated paper serves as a perfect resistive 
termination. 

The open-circuited line is difficult to achieve in practice. The reason 
for this is made clear if we examine a coaxial structure in which the 
outer conductor is largo enough to serve as a circular wave guide for the 
frequency being transmitted. Now if we cut off the central conductor 
in the effort to achieve an open-circuited line, we merely obtain a par¬ 
tial reflection, and an Eq wave is propagated along the guide. If the 
outer conductor is cut off, leaving the inner conductor extending, we 
meet a similar difficulty. Part of the energy is reflected, but again 
much of it is radiated and lost. If both are cut at the same point we 
are, perhaps, better off, but certainly significant radiation losses exist. 
For frequencies below the cut-off of the outer conductor it is possible to 
achieve nearly perfect reflection if the outer conductor extends some¬ 
what beyond the inner one. 

In the parallel wire line it is again difficult to achieve anything closely 
approximating open circuit unless the wavelength is great compared to 
the line spacing. For these reasons it is usually desirable to use short- 
circuited lines for resonators whenever possible. 

PROBLEMS 

9*1 A common form of telephone circuit consists of two hard-drawn copper 
wires, 12 gage, spaced 8 in. on center. Calculate the line constants R, L, and C per 
loop meter. Ignore the effect of insulators and the conductance of the air. 

9*2 A particular cable composed of 22-gage wires has the line parameters per 
loop mile R = 171 ohms, L = 0.001 henry, C = 0.073 microfarad, Q = 1.76 mi- 
cromhoB. Calculate the characteristic impedance of this line at frequencies of 30 
and 300 cycles per second. 
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9*3 Calculate the characteristic impedance of the line of problem 9*2 at fre¬ 
quencies of 3000 and 30,000 cycles per second. 

9*4 Calculate the propagation constant of the line of problem 9-2 at frequencies 
of 30 and 300 cycles per second. 

9*5 Calculate the propagation constant of the line of problem 9-2 at frequencies 
of 3000 and 30,000 cycles per second. 

9*6 A particular cable has a characteristic impedance of 100 -f ^30 ohms and a 
propagation constant of 0.0001 + yO.0025 (nepers and radians per meter) at a fre¬ 
quency of 1 million cycles per second. A generator having a terminal potential of 
10 volts at this frequency is connected to a very long line of this sort. Calculate the 
input current and the current at distances of 1000 and 10,000 meters from the gener¬ 
ator. Make a vector diagram of the currents and voltages involved. 

9*7 A cable 1000 meters long having the constants given in problem 9*6 is termin¬ 
ated in a lumped impedance of 20 ~ ^30 ohms at 1 million cycles per second. What 
is the input impedance of the cable? 

9*8 The center-to-center spacing of a parallel wire transmission line is fixed at 
the value D. Determine the conductor diameter d for which the breakdown voltage 
will be greatest. 

9*9 A particular line has the constants R — 0.009 ohm, L ~ 2 microhenries, 
C «= Sma*!, 0-0 per meter. Calculate the characteristic impedance at a frequency 
of 2 megacycles per second. 

9*10 Calculate the effective Q of a quarter-wave resonator for 2 megacycles per 
second formed from the line of problem 9-9. 

9‘11 A coaxial line of copper 3 meters long is short-circuited and serves as a 
quarter-wave resonator equivalent to a parallel resonant circuit. If the inner 
radius of the outer conductor is 3 cm and the radius of the inner conductor is 0.8 cm, 
calculate the resonant frequency and the impedance at the resonant frequency. 

9«12 Calculate the Q of the above resonator. 

9*13 Design a parallel wire open-circuit resonator to operate at 12 megacycles. 
The material is copper, and the line must not be unnecessarily long. Choose con¬ 
stants for which the input impedance is approximately 20,000 ohms. 

9*14 A resonant line has a characteristic impedance of 75.0 ohms, a velocity of 
propagation of 3 X 10^ meters per second, and is 4 meters long. It is short- 
circuited. Calculate the constants of the parallel resonant circuit equivalent to 
this resonator. 

9*15 The line of problem 9*14 is open-circuited. Determine the constants of 
the equivalent series resonant circuit. 

9«16 At a point near a coaxial conductor the magnetic field may be thought of 
as a superposition of two fields, one due to the inner conductor, one due to the outer 
conductor. The currents in inner and outer conductors are in phase at any particular 
point along the line. Because of the unequal distances of the point from the various 
current elements, the fields due to these elements at the point are not in tin^e phase. 
It thus appears that a net field at the point results and that energy is radiated from 
the line. Discuss this concept. 

9*17 A portion of a transmission line is | wavelength long and has negligible 
attenuation. That is, » 0, » 45^. If such a line is terminated in a pure resist¬ 
ance R equal to the characteristic iinpedance Zq the input impedance is also equal 
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to R. Demonstrate that the input impedance is modified by an increment of 
reactance numerically equal to Ai2 if the terminal resistor R is increased by a small 
increment of resistance A22. 

9*18 Determine the effect upon the input impedance of the line of problem 9-17 
if the terminating resistance is modified by the addition of a small reactance AZ. 

9*19 A section 1 meter long of the line of problem 9-9 is used as a quarter-wave 
line to couple a low-impedance generator to a very high-impedance load (vacuum- 
tube grid). Assuming the velocity of propagation to be that of light, calculate the 

voltage step-up. 

9*20 When resonant parallel wire lines (lecher lines) are used for laboratory 
measurement it is common practice to short-circuit the line with a narrow bar or 
wire. Why is it desirable, as is usually done, to short-circuit the line with a second 
conductor located approximately wavelength beyond the other? Consider in 
terms of pure circuit theory and in terms of a propagated electromagnetic wave. 

9*21 A condenser is formed from two strips of aluminum foil separated by a sheet 
of paper. The electrical connections are made at one end of the system. The 
aluminum sheets are 10 cm wide and 100 meters long, and each has a resistance of 
10 ohms per meter of length. The paper, which has become wet, has a conduc¬ 
tivity of lO""* mho per meter and is 0.01 cm thick. Calculate the net resistance of 
this system. 

9*22 Two round copper wires 0.1 cm in diameter are spaced a distance of 1 meter 
apart and are immersed in sea water for a length of 1000 meters. The conductivity 
of the copper is 5.8 X 10^ mhos per meter. The conductivity of the water is 5 mhos 
per meter. Calculate the resistance observed between the two wires, neglecting 

end effects. 



CHAPTER 10 

CAVITY RESONATORS 

10*1 Introduction 

This chapter is concerned with resonant electric circuit elements of 
the cavity or enclosed chamber tjrpe in which a dielectric medium is 
enclosed by a conducting material. Physicists have often postulated 
enclosures of this type and have given them the name ‘‘ hohlraums.”* 

The principle of cavity resonators has been used for some time in 
communication circuits in the form of the familiar concentric line 
resonator. More recently other hollow-cavity t5^cs have been proposed. 
These resonators are approximately equivalent to a conventional reso¬ 
nant circuit consisting of inductance and capacity. In general the 
mathematical problem involved in obtaining a complete solution of these 
elements is extremely complex, and only the simplest structures have 
been solved completely. In the following sections a few of the more 
elementary structures will be considered. 

It has been known for some time that solutions satisfying Maxwell^s 
equations may be obtained which establish the possibility of electromag¬ 
netic waves in the dielectric medium of the cavity. These solutions 
have a definite frequency and vanishing tangential component of electric 
intensity at the conducting surface. The requirement that the tangen¬ 
tial electric intensity be zero at the boundary between the dielectric and 
the metal restricts the allowable frequencies. Thus only certain definite 
frequencies have associated with them electromagnetic fields which 
meet the required boundary conditions. The value of these definite 
or resonant frequencies is determined by the size and shape of the con¬ 
ducting surface. Since the hohlraum can contain an electromagnetic 
field, which varies periodically when and only when the frequency of 
the field has certain definite values, it is appropriately called a resonator. 
Because of the oscillations existing inside the enclosure, the name 
rhumbic enclosure or Rhumbatronf has been used to identify these 
electrical structures. 

* It is assumed that these hohlraums are surrounded by a conducting medium df 
infinite extent. At the frequencies with which we are concerned here, the ptoetra- 
tion of the waves into the metal conducting surface is extremely small. Hence for 
all practical purposes the thickness of the metal enclosure may be physically thin, 
yet electrically it may be infinitely thick. 

t The word ** Rhumbatronis a trademark owned by the Sperry Gyroscope 
Company, Inc. 

364 
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10*2 Resonance in a Rectangular Cavity (Perfect Conductivity) 

In the discussion of the rectangular wave guide it was shown that 
there is no propagation in the X direction through the guide at the 
critical frequency. At this frequency, the angle 0 defining the direction 
of the elementary waves becomes 90°, and the electromagnetic wave 
may be thought of as traveling back and forth between the conducting 
surfaces, in a direction normal to the axis of the tube. This is one form 
of the cavity-resonance principle. 

The phenomenon of resonance is associated with the production of 
standing waves. If we insert a conducting boundary into the rectangu¬ 
lar pipe of Fig. 6-1, the waves striking this boundary will be reflected. 
If the reflected magnetic and electric components are in proper phase 
to reinforce those of the direct wave, standing waves will be set up. 
If some means is provided for exciting waves in a pipe closed at both 
ends by conducting surfaces which are adjusted for reflection in proper 

7 

phase, the waves will travel back and forth within the metal enclosure 
between the reflecting surfaces. Adjustment of the reflecting surfaces 
to give the correct phase relations is called tuning in the same sense 
that this word is used with reference to series or parallel resonant IrC 
circuits. 

Let us consider the conditions for resonance in the rectangular cavity 
shown in Fig. 10-1, having the dimensions Xq, yo, and Zq as indicated in 
the figure. This cavity may be considered as a section of the rectangu¬ 
lar pipe of Fig. 6-1, Xq units in length. We have already developed, in 
Chapter 6, expressions for traveling waves in a pipe of infinite length. 
Let us determine imder what conditions these waves will be reflected 
from a conducting boundary surface inserted in the pipe. 

Let us consider, in particular, waves of the Homy or transverse electric 
type. The equations for these waves may be obtained from the general 
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equations 647. Thus, when n = 0, they may be written 

*= A cos 

Ht+ = jA /Son, sin 

te)"« ™ 

J/om waves 
traveling in 
the plus X 
direction 

llO-l]* 

The fact that these waves are traveling in the plus X direction is indi¬ 
cated by the subscript +. Components striking the conducting bound¬ 
ary will undergo certain changes in phase and direction as indicated in 
Fig. 10*2. The subscript — indicates the reflected component traveling 
in the —X direction. 

Forward Moving (Incident) 

Fig. 10-2 Orientation of the sectors in an wave before and after striking the 

reflecting wall inserted in the rectangular pipe. 

It is seen that Ey and Hx are changed in phase 180° after striking the 
conducting surface, whereas Hz maintains its same relative phase 
position. The relationships are 

Hx^ = 
Hz^ = +Hz^ [10-2] 

Ey^ = —EyJ^ 

The standing wave developed is the sum of the direct and reflected 
waves. Using the subscript s to refer to the standing wave produced, 

Hx9 “ Hx+ + 

Hzs ^Hz+ + Hz^ ’ [10 3] 
Eyz = Ey^ + Ey^ 

where addition is in a vector sense, since distance enters in the general 

* In writing these equations, when the dielectric is air, fii » /io> <1 ^ <0* Also 

70W has been replaced by j/Som and 4* wV by mir/zo from equation 6‘45, 
when n 0. 
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wave equations as an exponential function. Substituting 10-1 in 10-3 
and using 10*2 we have 

= A COB (^2) 
= jA Pom sin z) {e**" > [10-4]* 

Ey, = jA "Mo sin z^ { 

Hx, = —j2A cos z^ sin (^oma5)e^"‘ 

Hx, = i2A (—') i8om sin (— z') cos iPomX)i 
\mir/ \ Zq / 

Eyt = 2a(—) COMO sin (— z) sin {Pomx)e’ 
\mir/ \ Zo / 

I //omwBvea 
./(Df I Standing in 

“■ 2A sin {Pomx)e^'‘ 

It may be noted that, in the case of traveling waves, Hz and Ey are in 
phase in both time and space, whereas for standing waves Hz$ and 
Eya are 90° out of phase in both time and space. This is indicated in 
Fig. 10*3. Equations 10*5 are general forms for the standing-wave 
phenomena in a tube and are subject to the boundary conditions of the 
resonator which will now be imposed. 

At the boundary planes, x = 0 and x = xq, Eya must be zero. Let us 
set 

Pom =- [10-6] 
^0 

where I is an integer; Z = 1, 2, 3, etc. Then equations 10*5 become 

Hxr = ~ j2A cos 2^ sin 

«■'=fe) s *) «"■ ■ 
Eyr = 2A "Mo sin 2^ sin c^"‘ 

where the subscript r indicates the resonant wave. 

* It will be recalled, in writing these equations, that a wave moving in the 
direction is represented by the function C(co< — fix) whereas one moving in the —X 
direction is represented by the function (7(wi + fix). 

t Equations 10*5 are deduced immediately with the well-known equalities 

-r-- —i sin fix and -::- » cos fis; 
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Hence, when x = 0 or Xq, the boundary conditions are satisfied, no 
matter what integral value I may have. This particular wave may be 
designated Ilomil it represents a special case of the general Hnmi mode. 
These equations completely define the standing waves of the rectangular 
cavity and as such establish mathematical conditions of resonance for 

Traveling Waves 

Fig. 10*3 Comparison of time and space phase relations between £ and H vectors 

of the Hom wave in a rectangular wave guide and in a rectangular cavity resonator. 

the three components of the Homi mode. When the frequency and 
dimensions of the cavity satisfy these conditions, equations 10-7 apply, 
and the structure is said to be in resonance. The presence of such reso¬ 
nant oscillations may be indicated by methods described in Chapter 8. 

The phase constant in the general case, Pnmy is given in equations 6-71, 
and when the dielectric is air, we may replace Vi with c, giving 

[10^8] 

For the Hoi wave, n = 0, m = 1, giving 

[10.9] 

The critical frequency, /o, for the propagation of the Hqi wave in a 
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rectaxigular guide is obtained by setting fioi = 0. Thus 

[10-10] 

Since the critical wavelength (Xo)oi is defined by the relation 

(Xo)oi(/o)oi = c, we have 

(Xo)oi = = 2t = 2za [10.11] 
(/o)oi 

The resonant frequency of the cavity operating in the Hqu mode is 
readily obtained by equating 10*9 and 10*6. Thus 

72 

Squaring both sides and transposing 

Multiplying by and extracting the square root 

[10-12] 

[10-13] 

[10-14] 

Equation 10-14 defines the resonant frequency/ou of any rectangular 
cavity resonator operating in the Hou mode in terms of the dimensions 
a:o and Zo and the index number 1. It is independent of yo because the 
field does not vary in the Y direction, just as the critical frequency of 
the traveling Hoi wave in a guide is independent of yo. 

Let us determine the resonant frequency of a perfect cube. This is 
accomplished by setting xq = 2/o = Zo in equation 10-14. The resulting 
equation is 

foil — c [10-15] 

= /-VF+l [10-16] 

The lowest of all resonant frequencies associated with a cube is ob¬ 
tained by setting I = 1.* Then 

foil 
e 

V2eo 
[10-17] 

* Equations 10-7 show that H„ and Eyr are zero if 1 - 0 and zg is finite. Thus 
the wave cannot exist and Htr is necessarily zero. 
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or 

foil = V2(U)oi [10-181 

where (/o)oi; associated with the traveling wave, is given in equation 
10*10. 

In the case of the Hqh mode, for m = 1 and 1=1, equations 10*7 
reduce to 

Electric Intensity Vector pistribution Magnetic Intensity Vector Distribution 
in Plane 1234 or 567 8 in Horizontal Plane 

Ho,J Wave Top View 

Fig. 10*4 Instantaneous distribution of the intensity vectors in a rectangulajr 
cavity resonator when excited in the Hqh mode. 



RESONANCE IN A RECTANGULAR CAVITY 371 

The distribution of Hon wave vectors in the rectangular cavity is shown 
in Fig. 104; higher-order Homi waves may be determined directly from 
equations 10-7. The distribution of the vectors inside the cavity may 
be determined directly since the number for the indices of the Hnmi 
wave indicate immediately the number of half wavelengths along the 
respective directions. As an example, the H023 wave distribution for 
the Eyr vector is given in Fig. 10*5. 

Fig. 10*5 H023 wave resonance in a rectangular cavity. 

The general equations for the Enmi or Hnmi modes may be obtained 
from the equations of Chapter 6, and will not be given here. 

It is seen from the preceding that, if a section of rectangular pipe of 
length Xq is made into a resonant chamber by closing both ends with con¬ 
ducting plates, the boundary conditions can, in the general case, be 
satisfied by a proper choice of frequency. 

The resonant frequency of the waves which exist in the general Hnmi 
case is obtained by equating equations 10-8 and 10* 16; thus 

' A£) + (5) + fe) 
where n, m, and I are integers. A distinct resonance will exist for each 
combination of n, m, and Z, with the qualification that only one of these 
integers may be zero for H modes and none may be zero for E modes. 
Hence an infinite number of oscillatory modes is theoretically possible. 
Usually only the lowest modes are of practical interest in view of the 
extremely high frequencies involved. To distinguish between the vari¬ 
ous resonant modes, the notation TEnmi or Hnmi for the transverse 
electric modes, and TMnmi or Enmi lor the transverse magnetic modes, 



372 CAVITY HESONATORS 

may be used. The subscripts n, w, and I refer to the number of half¬ 
period variations of the intensity components in the y, and x directions, 
respectively. 

10*3 Power Relations in a Rectangular Cavity (Imperfect Conduc¬ 
tivity) 
The energy stored in electric and magnetic fields per unit volume as 

determined in Chapter 1 is given by the expressions 

^££2 and [10-21] 

respectively. In air, the quantities become and By in- 
tegrating these relations over the volume of the cavity we may determine 
the energy stored in the electric and magnetic fields within the cavity. 
Thus 

r r r wdxdydz [10-22] 
2 t/a:=o *^*“0 

and 

/ / Wdxdydz [10-23] 

where We and Wm represent respectively the maximum electric or mag¬ 
netic energy stored in the cavity. In the case of the H^rni wave con¬ 
sidered in the previous section, the electric vector E = Eyr, and by sub¬ 
stitution in 10-22 the maximum value of the energy stored in the electric 
field becomes . 

Wb =5r2A(-^')iU0«0«jT 
2 L \mir/ J 

pxo put pit /mir \ .2(1^ j j* 
III sm'‘ I — z] sm^ \ — x]dsdydz^ 

Jo Jo Jo \2o / \Xo / 

■ I ^ (2) (!)] 
From Chapter 3 

SOMO 
Then, 

MoyoZoasoA* /"omA? 

«0 
2 
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From 10-20 with n = 0, we have: 

Therefore 

A^^MoVo^o^' 

^ ~ 2mV 

giving the maximum instantaneous value of electrical energy stored 
in the cavity. 

The magnetic intensity vector is given in magnitude by 

1^1 = V|ff„|2 + |H„|2 

Hence the maximum value of the energy stored in the magnetic field is 

“ fX*' fo° So (? ^ 

+1 (£} * 
[10-25] 

By an evaluation similar to that used in 10*24 with m and I as integers, 
the-first term of the right member of 10-25 reduces to 

2^’(t)(f) '“'^1 
and the second term, using 10-6 becomes 

©(!)(?) 

[10-25a] 

[10-26] 

Collecting, the maximum instantaneous value of magnetic energy 
stored in the cavity is 

[10-27] 

which, it will be observed, is identical with 10*24, thus satisfying the 
basic requirement for the equality of the magnetic and electric energies. 
The energy within the cavity oscillates from the electric to the magnetic 
form. At the instant when the magnetic energy is maximum the electric 
energy is zero, and vice versa. Thus the energy at any instant is the 
sum of instantaneous electric and instantaneous magnetic energies. 

We may calculate the average power lost in the side walls of the cav¬ 
ity by means of the Poynting vector. Let us designate the power 
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flowing into the respective surfaces, Fig. 10*6, as follows: 

{Px = loss at both ends 
Py - loss at top and bottom [10-28] 
Pz “ loss at both sides 

From the Poynting theorem we know that the power loss into a 
metal surface* may be defined as 

1 

2 
[10-29] 

Fia. 10*6 Components of the average power flowing into the walls of a rectangular 
cavity resonator. 

From equations 5-128, 5-129, and 5-130, 

E = nH ^ H 

where is the intrinsic impedance of the metal. Since = (1 + i) V^, and 
only the real part is considered, 

The power flowing (equation 5-153) into the metal per square meter df surface is 

V “ XHij] - XH[^ - 

and for the entire surface 

wl\ere Hua is the amplitude of the tangential component of H at the surface. 
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It will be observed from this definition that only tangential components 
in the particular face being studied are those contributing to the inte¬ 
gral. These components in the positive directions are shown in 
Fig. 10'7. Their magnitude upon reflection is the same, and twice the 
power computed for one face will then be the power dissipation for both. 

Fio. 10-7 Instantaneous distribution of the vectors of an Ilnm wave just inside the 
various surfaces of a rectangular cavity. 

Therefore with Ht as the tangential component to the YZ surface, we 
have for both faces the power loss,using equation 10-7 for the Homi modes, 

Integrating, and substituting for /So™ its value as given in equation 

10-6, 

or, cancelling and rearranging 

P* = (2A2yo2o) [10-30] 
\ <r2 \XQm/ 

' Cos^ e*)- 1, since at either face when a; » 0, or xq, and 1 is an integer, the 

result is unity. 
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Since Hx is the only component tangential to the XY surface, we have, 
for the power loss in these surfaces for the modes, 

= yj^ i4A^) (l) (1) (yo) = yj^ (A^2yoXo) [10-31] 

The tangential component of /f in the XZ surfaces is the resultant of 
Hx and Hz. Power dissipated in the total Y surface is 

> V^O / \Xo / 

+ r f" iA‘w,‘(’^z)Ai‘(!^,)d.dz\ 
\ ^0 / \^0 / J 

3 _ Mtl 
\ <T2 [-©Tl 

<r2 iLW 

A^ZqXo [10-32] 

The total loss P is therefore given by the sum of P*, P„, and P*. Thus 

«oiY, 
) -f- 2oa;o ^xom/ +(-Tl L \^0W J 

+ 22/0X0 [10-33] 

The selectivity or Q of the resonator is defined in an analogous way to 
that of the normal series resonant circuit. The Q of a coil may be 
expressed as 

Thus 

[10-34] 

Q T P 
[10-35] 

where R and L are the resistance and inductance of the coil, I is the max> 
imum instantaneous value of current, Wu is the maximum energy 
stored during the cycle, P is the power loss, and T » 1// is the period. 
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Now PT is the energy loss in one period, and hence in general 

Q = 27r 

Maximum energy stored in 
electric 

or 
magnetic 

field 

Energy loss in one period 
[10-36] 

Applying this definition of Q to the rectangular-cavity resonator we have 

27r Wm 
Q = 

T Px "h Py -h Pz 

Replacing Wm by its value in equation 10-27 and Px, PyyPz by equation 
10-33, Q becomes for any resonance of type ffomi 

o 27r — fioyoZoXQ ['+(-T L \xom/ ] 
7^ 

1 
1 ( / 2oZ r 

22/0^0 1-) + 2yo^o + L \xom/ L ‘ (^) 1 
[10-37] 

which upon cancellation and rearrangement becomes 

I 
V7 

L \xom/ J 

22/oZo fjoLy 
\xom/ 

+ 2yoXo + ZoXi) r>+(-yi L \xom/ J J 

[10-38] 

In the case of the ffoii mode, for Z = m = 1, and in the particular case 
for zo = Xo, 10-30 reduces to 

Vozoxo 

Q = 
/’rMoO’2 

M2 
V7 

2j/o2o + 2yoXo + 22oa;o 

Volume 

Surface area 

At the critical frequency for the Hon mode of oscillation 

1 
foil — 

[10-39] 

[10-40] 

[10-41] 

At this critical frequency, Q may be expressed as 

Qo - 28.9V^, ° *0 •" *0 and m = IM) [10-42] 
22/0 T *0 
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A plot of Qo as & function of yo and of zq is shown in Fig. 10-8 for a rec¬ 
tangular cavity of copper. 

10-4 Resonance in Cylindrical Cavities 

Resonance in cylindrical cavities may be treated in a manner similar 
to that employed for rectangular cavities in the preceding sections. Let 
us consider waves of the ifom mode in the cylindrical cavity. Equations 
for these waves may be obtained from the general equations 7-104 for 
the Hnm waves in the dielectric. Setting n = 0, m = fio, and ei = eo, 
we obtain, for the components of the traveling waves in the positive X 

direction, the relations 

Hr+ 

^ /5oiaj) 

BfA 
traveling 

waves 
[10.431 
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Let us insert in the pipe the circular conducting plugs shown in Fig. 
10-9, at a; * 0 and x = xq. Then, by virtue of reflection, we have at 
the conducting surface of these plugs the relations 

Disks 

Fig. 10*9 Cylindrical cavity resonator. 

The standing waves that result are, on a vector basis, 

Hx8 = Hx+ + Hx^ 

Hrs ^Hr^ + Hr^ [1045] 

== + E^ 

Hence substituting equation 10-43 in 10*44 and using 10*45 we obtainf 

= -j2A'Jo (r sin 

= j2A%i Ji (r cos 

= — 2A'ci)mo 

Hoi 
Btanding 

waves 
[10*46] 

At the boundary plates, x * 0 or and « 0. Let us set poi “ 
It/xo, where i « 1, 2, 3, • • Then the equation for E^a is satisfied at 
the boundary since sin (Poi^) is zero there, and we may write the equar 

* Subscripts + and -- indicate components traveling in and —2 directions 
respectively. 

t Equations 10-46 are obtained as were those of 10*5 with proper substitution and 
with aid of the equalities given in the footnote on page 367. 



380 CAVITY RESONATORS 

tions for the resonant waves as 

= -32A'Jo (r sin e^"‘ 

a„ . +iu'^i j, (r '-f) cos .) 
Hoil 

^<at I resonant 

The phase constant in the general case for waves of the Hnm type, as 
given in equation 7*105, is 

For the Hqi wave, w = 0, m = 1, and 

(o>y 

[10-48] 

[10-48o] 

The critical frequency fo for the cylindrical Hqi wave is obtained, as 
before, by setting Poi - 0. Then 

2ir \ o / 
[10-49] 

The critical wavelength Xq is given by the relation Xq/o = c. Hence 

[10*50] 

The wavelength X of a wave in free space of frequency / is X = c/f 
Hence \/2t = c/w, and with the aid of 10*50, equation 1048a may be 
written 

’ >/(?/ - iw - 

where Xq is the critical wavelength and X is the wavelength in free 
space. From the boundary condition at the end disks closing the cylin¬ 
der, /3oi >• Itt/xq. Equating this and 10-51, 

Solving for / we obtain 

foil = \ (fo)oi + AY ® //^ivTirr^ 
2X0/ 2\\jra/ \irb> 

[10-52] 
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For the more general case of the Hnmi mode, the waves at the boundary 
require that 

It 

Equating this to 1048, 

Solving for w we obtain 

©'“©’-(If/ '““1 
ing for (0 we obtain _ 

Wnml = C, [10-64] 

where 

-H-) i 2ir \ a / 
in the general n,m, case [10-56] 

Equation 10-55 is readily converted to a form very convenient for calcu¬ 
lation or graphic representation 

110.57] 

10-5 Power Relations in a Cylindrical Cavity 

Let us calculate the maximum energy We stored in the electric field 

in the Hqu case. 
g pa pxo 

We=^ / / lKl^rd<l>drdx [10-58] 

From 10-47 we substitute E^r and obtain, when I = 1 

W‘ - (’■© 

Writing moso = evaluating / d4> as 2t, and writing the integral 
«/0-O 

for sin® (-^x) as shown, we have 
\*o / 

-“-•©'©'-JT"’©)* 
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Now 

which for r = a becomes 

Butt 

kJn{kx) == -Jn(kx) — Jn^ik{kx) 

= ;;r Mr'ox) - ^2(4) [10-586] 

Then, 

X”('■ + JtiKx) 

'(s) I 
But} Ji (rox) = 0; then, since only the second-order function is not zero, 
the evaluation of the integral becomes 

X” (’• = 1^ [10-68c] 

Substituting 10*58c for the integral in 10»58a, 

We = xxo [l 4(r^i)] 

= A'^txo [Ji(4)] 

* This evaluation is a special fonn of the Lommel integral and is vahd for an order 
of the Bessel function not less than — 1. For further reference see McLachlan, 
BesBd Functxom Jot Engvneero^ Oxford Press, 1934, Chapter VI, pages fl^97 

t Cf. page 247, footnote. 
t From above footnote, when n = 0 and with A; * 1 and x »*roi we have 

J'o (rSi) » 

But from page 266, footnote, foils a root of/oCroi)- Hence/oCroi) “ — ~ 
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Now Joir'oi) = -J2(roi)* so that 

Wm = w'JoC^-oi) 

Since ir^axo is the volume V of the cylindrical cavity 

Wb = (£j^ VA'^no Joir'oi) [10-59] 

giving an expression for the maximum energy stored in the electric field. 
Let us now calculate, with the aid of the Pointing vector, the average 

power entering the various walls of the tube. Let Px be the power 
entering the two end conductors, and Pr the power entering the cylindri¬ 
cal surface. Then P, the total power lost in the cavity, is 

P ^Px + Pr 

Now 

Pr = h f f l^tonl^ ad4>dx [10-60]t 

where the intrinsic impedance rj = for the metal, and a d<t> dx 

is the element of surface of the cylindrical wall. The maximum value 
of the tangential component at the surface may be found from equations 
1047. Setting Z = 1 and r = a, l-fftanl becomes in this case 

IffLI = l^^rl = 2A' sin x) Jo(r^i) 

♦ From footnote on page 248 with jb = 1 and x = 

~ T" /tt(^oi) •Ah-i (tqi) (a) 
% 

In like manner it can be shown that 

--T •^nfroi) +(rji) (&) 
^01 

Subtracting (a) and (6) and rearranging 

2n 
“•^nfroi) “ /n+i (roi) ”1" 1 (rJi) 
^01 

Whenn *« 0 this reduces to /2 (roi) = 
t See footnote on page 374. 



384 CAVITY RESONATORS 

Hence 

Pr = i^^[2-4Vo(roi)]^a C C d4> 
\^0 / 

= ■nA'^(2Taxo)Jl(r'oi) [10-60a] 

Since the cylindrical surface area Ar = 27raxo, we may write 

Pr = vA'^ArJl(r(yy) [10-606] 

Also, for P-c, we write for both surfaces 

P* = 2 {i, \H'rrYr drj [10-61] 

where Hlr is the amplitude of the tangential component of the magnetic 
intensity at the surface of the conducting end disks. From equa¬ 
tions 10*47 

Hrr = flA'poi cos [10*62] 

At the end disks rc = 0 or xq, and the amplitude may be written 

iH^rl = 2A%1 J^ [10-63]* 

Hence equation 10*61 becomes 

P* = (2)i„ [24'^01 (^)]* rJf (r dr d4> [10-64] 

= u |^2A'/3oi 2x rJf (r ^ dr [10-66] 

= „ ^2A'poi (^)]" rra’‘Jl(r^i) [10-66]t 

' Since cos 
(S’) 

±1 for 3? = 0 or xq. 

t Since J* rjf^r ^ as given in equation 10-58c and preced¬ 

ing development. 
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Writing Ax as the area iro^ of the circular end disks, we have 

Px = AxJlir^i) [10-67] 

= „4A'2/3g, -7- AxHir^i) [lo-es]* 

We may now calculate the Q of the cylindrical cavity. Using the 
definition of 10-35 we have 

uWs wWE 

~P~ ° Pr + P» 
[10-69] 

Hence from 10-59,10-605, and 10-68* the selectivity for the Hqh mode is 

[10-70] 

Writing 1? as in the footnote on page 374, equation 10-70, becomes, after 
cancellation, 

[10-71] 
J;;"© fe))’' 

Further combination may be effected. 1/rj together with cojuo gives 

9 ri 
[10-72] 

also, fronfi 10-48a 

givmg 

Now/ = — *-7= 
iSTT 27r V fjiQSo 

»■ (9' 

©•-©'-(S' 
1 /(A 

( - 1, so that, together with the above two rela- 

roi 
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tions, 10*71 becomes 

C =2. 
M2 

ifQ’>(aif(aii 
[©'©II 

>7 [10-74] 

Ar + 44; 

1 /oS\ 
And from the preceding we write for / =-y== (- ) 

\c/ 

2TV^eo^\xo/ \a/ 

Finally, observing that 

] r/ ira Y ©fe) LK^oroi/ 
+ 1 

the expression 

[10-75] 

[10-76] 

we obtain, after these substitutions are made, a general form for the Q 
of a cylindrical cavity oscillating in the Hqh mode. It is 

Ar + 44a 
air 

la^roi 

[10.77] 

It is seen from the above discussion that the resonant phenomena 
existing in cylindrical tubes may be thought of as produced by multiple 
reflections of traveling waves. The general equations for the transverse 
electric (H waves) and transverse magnetic (E waves) may be obtained 
in a similar manner to that employed in section 10-4. 

The critical frequencies for the transmission of the E at H waves as 
given in Chapter 7 are different for the different transmission modes. 
Thus for the two classes of waves 

TMnm or Enm waves [10-78] 

TEnm or Hnm waves [10-79] 

The quantities r„m and are the roots of the equations. 

Jn(rnm) = 0 TMnm OT E„m waves [10-80] 

•l^»(^nm) *“ 9 TEnm or Hnm waves [10-81] 

(fo)n 
2ira 

(/o)nm - 2^^ 
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is a Bessel function of the first kind of order n, and Jn is its deriva¬ 
tive with respect to the argument. 

When a section of hollow tube having a length Xo is closed at both 
ends by conducting surfaces, standing waves may be excited in the tube 
when their wavelength in the tube is given by equation 10-57. 

X 
2x0 

I 
[10-57] 

where I is an integer and denotes the number of half-period variations 
of the intensity vectors along the axial x direction. The critical or 
resonant frequencies are given by equation 10-55 as 

where the value of /o is given in equation 10-78 or 10-79, depending upon 
the type of wave being considered. As in the rectangular resonator, 
there Avill be a definite resonant frequency for each value of n, m, or 1. 
Because of practical considerations only the lower-order modes of 
oscillation are important at the present time, although all are theoreti¬ 
cally possible. In distinguishing between the different modes the nota¬ 

tion TEnmi or Hnmi and TMnmi or Hnmi may be used, where n represents 
the number of full-period variations of the radial electric field along the 
<f> direction, m represents the numbers of half-period variations of the 
angular component of the electric field in the radial r direction, and 
I represents the number of half-period variations of the radial component 
of electric field in the axial x direction. Since the TEoo or TAfoo modes 
of transmission corresponding to a principal mode are not possible in 
cylindrical tubes, no resonant modes of the TE^ or TM(^ type exist. 

10-6 Resonance in Coaxial Cylindrical Cavities 

As was shown in Chapter 7, the principal mode of transmission, the 
TEM mode, is possible in coaxial transmission lines. Resonance 
phenomena associated with this mode were discussed in Chapter 9. 
Other modes, corresponding to the transverse electric and transverse 
magnetic, are also possible modes of transmission. Resonance phenom¬ 
ena in coaxial cylindrical lines are similar in many respects to those of the 
hollow cylindrical type discussed in the preceding section and may be 
described in terms of standing-wave systems. The standing waves pro¬ 
duced within the coaxial transmission line are also described by variations 
of the field intensities along the axial, radial, and angular coordinates. 
The three indices n, m, and I are required to distinguish between the 
various resonant modes. The expression for the frequency/nmi in the 
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coaxial system is identical with 10*55 for the hollow-pipe system. The 
critical frequency /o depends on the radii of the inner and outer con¬ 
ductors a and 6, respectively, as well as on the order of the particular 
mode. As in the hollow-tube case, it also differs for waves of the TE 
and TM modes and is given by 

(/o)nm ““ 2iTrb 01* ^nm WaveS 

cfr' 1 
(Jo)nm = TEnm OT IInm WaVCS 

The quantities [rnrn\ and [r'J arc roots of the equations 

TMntn or Enm wavcs 

TEnm or Hrtm wavcs 

Jn and Yn are Bessel functions of order n of the first and second kinds, 
respectively, and and 7' are their derivatives with respect to the 
arguments. It may be shown that the expressions 10*84 and 10*85 
reduce to 10*80 and 10*81, when a/h approaches zero. 

The resonant frequency of the ordinary coaxial mode (principal 
mode) is obtained by setting n = 0 = m. Then/o reduces to 0, and we 
obtain from 10*55 

Sm = 4- TEM mode [10-86] 
2xq 

Thus the resonant frequency/ooi is seen to be independent of the trans¬ 
verse dimensions of the resonator. 

A special case pointed out by Barrow arises when the integer I is set 
equal to zero in the transverse magnetic case. From equation 10*55 
we have 

Uo = (/o)™„ = ’ [10-87] 

* Barrow has pointed out that, for convenience in using tables, equations 10 S4 
and 10 86 are best rewritten with the substitution [rnm] = bxnn/a and [r[ml ba^/a. 
The new roots sfnm and are then found from the tables. 

[10-82] 

[10-83] 

[10-84)* 

[10-85]* 
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and the wavelength as given in equation 10-57 approaches infinity. 
From the differential equations describing this mode it can be shown that 
the transverse component of the electric field vanishes, leaving only the 
longitudinal component. Therefore no tangential component of electric 
intensity exists at the metal surfaces of the line section terminations. 
Hence their position does not affect the resonant frequency. Therefore 
it is independent of the length Xq of the section. It appears that this 
mode is formed by transverse reflections of the waves between the 
cylindrical surfaces of the resonator. This degenerate case cannot 
apply to the transverse electric mode, since the vanishing of the trans¬ 
verse electric vector annihilates the field. 

The configurations of the field structure for a number of associated 
modes in perfectly conducting hollow cylindrical and coaxial resonators 
as prepared by Barrow and Mieher* are shown in Fig. 10-10. These 
associated modes have been grouped together in the figure for ready 
comparison. 

10-7 Spherical Cavity Resonators 

Another type of resonator which lends itself to comparatively simple 
mathematical analysis is the spherical cavity. The solution of Max- 
welPs equations in the dielectric medium inside such a cavity has been 
known for some time.f It can be shown that oscillations of either the 
transverse electric (H waves) or transverse magnetic (E waves) can 
existJn the cavity. A critical frequency fo exists which depends upon 
the radius of the sphere as well as on the order of the particular wave 
type. As in the previous cases considered, we may write 

(/o)nm = TMnm OT Enm WaveS [10*88] 

rfi/' 1 
(fo)nm = TEnm OT Hnm WaveS [10*89] 

2xa 

The quantities [unm] and [w'm] are roots of the equations 

inKm] = 0 TMnm OT Enm WaveS [10*90] 

fnWnm] = 0 TEnm OT Hnm WaveS [10*91] 

* W. L. Barrow and W. W. Mieher, Natural Oscillations of Electrical Cavity 
Resonators/’ Proc, IRE, 28, 184, 1940. 

t G. Mie, Ann, Phyaik, 25, 377, 1908; H. Bateman, Electrical and Optical Wave 
Motion; M. Bom, Optik, p. 274 et seq.; G. Wolfsohn, Handhuch der Phyeik, 20, 307 
et seq.; W. W. Hansen, Phys, Rev, 47,129,1935; W. W. Hansen and J. G. Beckerley, 
Proc. IRE, 24, 1694, 1936. 



ASSOCIATED TE MODES 

(fiarrow and courUty of IRE) 

Fig. 10-10 (Part I) Sketches of the configuration of the electric field for the asso* 
ciated transverse electric inodes in perfect cylindrical and perfect coaxial resonators. 

390 
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(Barrow and Mieher, courtesy of IRS) 

Pia. 10*10 (Part II) Sketches of the configuration of the electric field for the asso¬ 
ciated transverse magnetic modes in perfect cylindrical and perfect coaxial resonators. 
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where i„(p) = Vir^7„+i/2(p) is a spherical Bessel function and j'M 
is the derivative with respect to the argument. It may be seen on 
comparison of 10*88 and 10*89 with 10*78 and 10*79 that these relations 
are very similar to those for the hollow cylindrical cavity. 

In the transverse electric mode, the wavelength in free space of the 
wave corresponding to the critical frequency (/o)nm of equation 10-88 is 

2Ta 

[Wnm] 

[10*92] 

{Hansent courtesy of J. Applied Phys,) 

Fig. 10-11 The, drawing on the 
right represents a possible field in¬ 
side a spherical conducting shell at 
a time when E — 0. The two upper 
drawings are cross sections of the 
sphere; the two lower ones show the 
variation with r of the fields in the 
equatorial plane. The drawing on 
the left represents the situation 
cycle later when the magnetic field 
has disappeared and all the energy 
exists in the electric field. Dots in 
the upper left figure represent ends 
of lines of E which is entirely in the 

<t> direction. 

Fig. 1012 The drawing on the left repre¬ 
sents a possible field inside a spherical con¬ 
ducting shell at a time when = 0. The 
upper picture is a cross section of the 
sphere; the lower is a graph showing the 
variation with r of the electric field in the 
equatorial plane. The right-hand draw¬ 
ing shows the situation cycle later when 
the electric field has disappeared and the 
magnetic field has taken up the energy. 
The vector H is entirely in the 0 direction, 
and its variation with r is shown in the 

graph below. 

A few of the lower-order roots [unm] are: un = 4.60, 5*8, and 
ui2 *= 7.64. Hence the longest allowable Hnm wave has a wavelength 
given by 

2ira 

1l6 ^11 1.4a [10-03] 
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where a is the radius of the spherical cavity. The only components of 
the field that exist with this mode of oscillation are E<i>^ Hr, and H$, 
having the directions of the spherical coordinates <t>j t, and B. Thus the 
charges on the conducting surface of the sphere flow along parallels of 
latitude. The field structure for this mode is shown in Fig. 10-11. 
The dots in the left side of the figure represent the electric intensity lines 
for the vector which is entirely in the <t> direction. 

The free wavelength of the fundamental electric mode for the spheri¬ 
cal cavity is given by the relation 

C = [10-94] 
l^nml 

The lowest-order root [Unm] is [wn] = 2.75, giving for the longest wave¬ 
length of the transverse magnetic mode En 

X'l = = 2.28a [10-95] 

This is the lowest of all possible modes of oscillation, and represents the 
movement of charges along meridian lines. The field distribution in a 
meridian plane is shown in Fig. 10-12. The components of the field that 
exist in this mode of oscillation are En E^, and H^. 

10-8 Coupling to Cavity Resonator 

In making connections to external circuits for exciting electromagnetic 
waves in cavity resonators, and for absorbing energy from them, small 
coupling probes may be inserted through holes cut in the metal enclosure. 
Since energy will be radiated through these holes it is desirable to keep 
them as small as physically possible. 

In general, two alternative types of coupling probes may be used. 
One of these consists of a loop which may be considered to provide 
coupling mainly with the magnetic field within the cavity. The other 
consists of a straight or curved rod which, acting as a small antenna, 
may be considered to provide coupling primarily with the electric field 
The connections between the probes and external apparatus is conven¬ 
iently made through coaxial lines. Illustrations of the two types of 
probes are shown in Fig. 10-13. 

To obtain maximum coupling with the electric field, the probe of 
Fig. 10-13a should be made to coincide with the line of electric intensity. 
If this line is curved, the probe should be curved so as to coincide with it. 
The orientation of the electric field, for the particular mode used, may 
be obtained from a study of the field pattern. To obtain maximum 
coupling with the magnetic field, the plane of the loop probe of Fig. 
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10-136 must be orthogonal to the magnetic intensity vectors. To obtain 
a TnairiTnnm linkage of magnetic hux with the loop, the correct position 
for the probe can be obtained as before, by a study of the field configura- 

i'lQ. 10-13a Probe designed to provide ooupling with an electric field. 

Fig. 10'136 Probe designed to provide coupling with a magnetic field. 

tion within the cavity resonator. Actually, the field distribution in 
the resonator will be influenced somewhat by the presence of the probe. 
This effect can be lessened by making the probe small in comparison 
with the wavelength of the waves in the cavity. The crystal detectors 
described in Chapter 8 may be employed as detecting devices. 

Probes of the type shown in Fig. 10-13 may be employed in studying 
the field distribution in the cavity. By suitably locating and orienting 
these probes, the field structure may be mapped. This process is the 
same as that described in Chapter 8 for mapping the field configurer 
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tions in the various wave guides. On the other hand, when the field 
configuration is known, it is possible to design the probes so that they 
respond to one mode of oscillation and reject other modes. In 
Chapter 17 coupling between an electron stream and cavity resonators is 

described. 

10*9 Equivalent Lumped Constant Circuits 

The cavity resonator is equivalent in many respects to the conven¬ 
tional resonant circuit consisting of a coil and condenser in parallel. 
W. W. Hansen* has obtained expressions for the equivalent lumped 
circuit constants of cavity resonators when oscillating at some low- 
order mode. These expressions are given in Table 10*1. It is assumed 
in calculating this table that the loop is small compared to the wave¬ 
length and that the field and current distributions in the resonator are 
unaffected by the presence of the loop, and conversely. These assump- 

M 

3 
Li 

(Hanserit courtesy of J. Applied Phys.) 

Fig. 10-14 Resonator with coupling loop and lumped constant 
circuit which is equivalent. 

tions are not independent, of course, but they may all be satisfied pro¬ 
vided that the loop is very small in comparison to the size of the resona¬ 
tor and the wavelength. In Fig. 10-14 is shown a resonator with cou¬ 
pling loop and the equivalent lumped constant circuit. The mutual 
inductance M in Table 10*1 refers to the mutual coupling between the 
cavity and the loop. 

10*10 Comparison of Cavity Resonators 
Hansen has found that a cylinder gives about 8 per cent higher Q 

than a square working at the same wavelength. Also a cylinder having 
a height equal to its diameter gives a slightly lower Q than a sphere, 
although a very long cylinder is better than a sphere. It may be seen 
from Table 10*1 that Q is inversely proportional to S for each of the 

ca'vities. Since d is inversely proportional to Q varies as in 
each case. 

It is not possible to state definitely at this time the most desirable 

* W. W. Hansen, J. AppUed Phyrica, 9, 664, 1938. 
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TABLE 10-1 

Comparison op Various Forms of Cavity Resonators 

Cylinder (i^oio) Square {Em) Sphere (^u) 

Longest wavelength = %ccV(f£) 2 62 o 2 83a 2 28a 

Equivalent VL/C 4 81^“c 
a 

4 29—c 
a 

2 66c 

Selectivity Q 
bb Sb 

a 
1 024- 

b 

Equivalent L 47r(0 159oo) 4r(0 164oo) 4ir{0 0768a) 

Equivalent C 
' M' “£) 

Equivalent series^E 0 460^^ 
aJb 

0.435 5522-^ 
Ob 

0 300- 
S 

Equivalent shunt R 6 07^ 
bb 

ac 
2.72- 

b 

M 

L 
1.272 — 

aao ' 
2.08^ 

Coupling impedance 

= {milyqVlJc 
6 

\aao/ hb 
9 87^^)^ 

\(iao/ bb ”4 
(Hansen, courtesy of J Applied Phys ) 

a — radius of cylinder or sphere or one-half the side of the square, in meters 
ao « one-half the height of cylinder or square, in meters, 
p «= resistivity of conducting material, ohms per cubic meter. 
6 * depth of penetration of the waves into the metal enclosure, in meters. 

8 “ y/p/7r<a 
u a 23r/ 3S 2ir times the frequency of the waves 
c » velocity of light, in meters per second 
5 « area of surface of probe loop in square meters See Fig 10-14, 

6 1 4- a/2ao 
L, C, R in henrys, farads, and ohms respectively 
M * equivalent mutual inductance in henrys 

shape for cavity resonators, although Hansen has given some useful 
qualitative information in this connection. Let us deform a long circu¬ 
lar cylinder in various manners and analyze the effects of each deforma¬ 
tion. Any deformation toward a non-circular cylinder will make the 
current distribution on the inside surface non-uniform. Since the losses 
are proportional to the square of the current, the losses will thereby be 
increased. On the other hand, the field inside would not be greatly 
disturbed and hence the energy stored in the cavity would remain 
approximately the same. Thus the Q would be decreased. Now, if we 
deform the cylinder by converting it into a surface of revolution like an 
hour glass, there will again be a concentration of current in the con¬ 
stricted section which, it seems, would decrease the Q. Again, if one of 
the closed ends were indented in such a way as to form a concentric 
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closed tube, the Q would be decreased. This follows from the fact that 
it would be necessary to reduce the diameter in order to keep the wave¬ 
length constant, and also the length of the section could not exceed 
X/4. Thus the volume-to-surface ratio would be reduced, reducing the 
selectivity. Now, as pointed out above, the sphere has a higher Q than 
that of a cylinder of approximately equal size. Hence, Hansen argues, 
it appears to be a good idea to round the ends of the cylinder. Quanti¬ 
tative arguments similar to those above substantiate this suggestion. 
Thus it appears that a long prolate spheroid is a most efficient possible 
shape. Hansen finds this type of cavity to have a selectivity 1.2 times 
better than that of a cylinder of the same length and resonant frequency. 
Whether the spheroid is the most desirable shape is extremely difficult 
to prove. If, however, the material and wavelength are fixed, it appears 
that no cavity resonator can operate with a Q greater than X/6 at its 
lowest frecjuency. At higher modes of oscillation it may be shown that 
arbitrarily high values of Q may be obtained. 

{Hansen, courtesy of J. Applied Phys.) 

Fig. 10*15 Values of Q for various shap>es of resonators are plotted against X. The 
resonator material is copper, = 5.7 X 10^ mhos per meter. 

In Fig. 10* 15, values of Q are plotted as functions of X for copper 
cavities. For prismatic and cylindrical cavities it has been assumed 
that ao ^ a. Where this condition is not met the value of Q indicated 

should be divided by the factor 6 = (1 + —) • 
\ 2ao/ 

PROBLEMS 

10*1 A rectangular cavity resonator when excited in the mode is to have only 
one resonant frequency of 2000 megacycles. What dimensions must the cavity 
have? 
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10*2 A rectangular cavity resonator when excited in the -ffom mode is to have 
two possible resonant frequencies of 2000 and 3000 megacycles. What dimensions 
mi^^ the cavity have? (Two possible answers.) 

A ^ A rectangular cavity resonator when excited in the Hom mode is to have 
thre^^lj^ossible resonant frequencies of 2000, 2500, and 3000 megacycles. What 
dimensions must the cavity have? 

10*4 A rectangular chamber is 3 by 4 by 5 cm. Calculate at least eight resonant 
frequencies. Identify the mode of oscillation in each case. 

I0»5 A rectangular chamber is 3 by 3 by 14 cm. It is divided into two identical 
chambers 3 by 3 by 7 cm by a thin metallic diaphragm pierced by a small hole. 
What sort of performance is to be expected of tliib sj^stem? 

10*6 A hollow ball, resembling a tennis ball, is made of copper and is placed within 
a one-tum coil which carries a heavy direct current. A magnetic field within as 
well as without the ball results from this current. If the electric current is very 
quickly interrupted what behavior withm the ball is to be expected? 

10*7 If the chamber of problem 10 5 is made of copper, how high a Q is to be 
expected of each of the two separate resonators so formed? (Consider the principal 
mode only.) 

10*8 The ball of problem lO G has an inside diameter of 6 cm. What is its Q at 
the principal mode of oscillation? How long will an initial oscillation persist before 
H decreases to l/e of its origmal magnitude? 

10*9 Two identical resonators are made of copper and are 2 by 2 by 3 cm. They 
are adjacent to each other and are coupled by means of a closed conducting link. 
Using the ordinary definitions of low-frequency coupled-circuit theory, calculate the 
area of the loop required in each resonator in order to produce critical coupling. 

10*10 A cylindrical cavity resonator is 10 cm in diameter and 20 cm long. Com¬ 
pare its principal resonant frequency with that which results if it is converted into a 
coaxial resonator by the addition of a central conductor. 

10*11 If the material is of copper, compare the values of Q obtained in the two 
cases of problem 10-10. 

10*12 The resonant cavity of problem 10-4 is oriented as shown in Fig. 10-1. 
If Horn waves of the resonant frequency exist within the cavity, determine the 
point at which the greatest electrical intensity occurs. 

10*13 If the greatest field intensity in problem 10-12 is 10 volts per centimeter, 
calculate the total stored electrical energy within the cavity. 

10*14 A cylindrical cavity resonator in its principal mode is to have an equiva¬ 
lent inductance of 0.1 henry and a capacitance of 0.01 ju/if. Determine the dimen¬ 
sions. 

10*15 Calculate a square cavity resonator equivalent to the cylindrical resonator 
of problem 10-14. 

10*16 Calculate the selectivity Q and equivalent shunt resistance of the resonator 
of problem 10-14. 

10* 17 Calculate the selectivity Q and equivalent series resistance of the resonator 
of problem 10-16. 

10*18 Consider the possibility of using a cavity resonator with a thin elastic end 
as a microphone for the production of frequency-modulated waves 

10*19 A cavity in the form of an annular torus is to serve as a resonator. Sketch 
the electric and magnetic lines of one possible mode of oscillation. 
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10'20 Obtain from the general equation 6*47, for the Hnm waves in a rectar ^ar 
wave guide, the resonant Hnmi waves for a rectangular cavity, in a manner sim ar to 
that employed in section 10-2. 

10*21 Repeat problem 10-20 for the general^nmz mode. The general equat in for 
Erm waves in rectangular wave guides are given in equations 6*82. 

10*22 Obtain, from the general equations for TMnm waves in a cylindrical wave 
guide, the resonant TM^^i waves for a cjdindrical cavity. 

10*23 Repeat problem 10-22 for TEnmi waves in a cylindrical cavity. 

10*24 Determine the selectivity Q for the general TEnmi waves in a rectangular 
cavity. 

10*25 Obtain an expression for the selectivity of a rectangular cavity, oscillating 

in the TMnmi mode. 

10*26 Repeat problem 10-25 for the TEnmi mode in a cylindrical cavity. 

10*27 Repeat problem 10-25 for the TMnmi mode in a cylindrical cavity. 



CHAPTER 11 

RADIATION FROM HORNS AND REFLECTORS 

IM Introduction 

The hollow conducting wave guide has been found a convenient means 
of transmitting energy at frequencies above about 1000 megacycles. 
Closely allied to the wave guide is the electromagnetic horn, which 
serves as a sort of antenna to produce electromagnetic radiation in free 
space. At the present time, the horn finds its greatest application in 
the production of relatively narrow beams of high intensity; however, 
wide patterns for broadcast purposes may also be obtained. 

Relatively narrow beams may be produced by means of metallic 
reflectors associated with a single antenna element of conventional 
form, or by the use of antenna arrays. The reflector is usually of para¬ 
bolic form, either cylindrical or of the usual rotated form familiar in 
searchlamps. Antenna arrays are composed of a relatively large number 
of elementary antennas, 10 to 20 being a typical figure, arranged in a 
definite geometrical fashion and excited in suitable time phase. 

At frequencies between about 100 and 1000 megacycles the array is 
of convenient mechanical size and is readily adjusted, whereas the horn 
or reflector becomes inconveniently large and expensive. At the higher 
frequencies, however, the situation may be reversed. The array is more 
diSicult to manage and to adjust, while the horn reflector is of most 
convenient proportions. 

In the hollow conducting wave guides, discussed in Chapters 6 and 7, 
electromagnetic radiation is emitted from an open end in much the same 
way as sound waves from a hollow tube. Barrow and Southworth 
suggested the possibility of flaring the ends of the tube into a horn- 
shaped radiator. It is found that such horns increase the directivity 
of the radiation and provide a good termination for the tube. In this 
respect the analogy with the acoustical horn is quite close. The wave¬ 
lengths employed in acoustics, however, are long in comparison with the 
throat diameter of the horn, whereas the throat of the electroniagnetic 
horn is of the same order of magnitude as the wavelength. The con¬ 
ducting horn and guide to which it is connected are, in general, many 
wavelengths long. The closed end is generally adjustable for tuning 
purposes. A piston arrangement such as that described in Chapter 8 

400 
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is ordinarily used. Electromagnetic waves are excited by some form 
of antenna near the closed end. These waves are propagated along the 
tube and horn surfaces, emerging from the horn mouth to be propagated 
through space as free waves. Several types of electromagnetic horns 
first suggested by Barrow are shown in Fig. 11-1. A and B are designed 

(Barrowf courtesy of IRE) 

Fig. 1M Electromagnetic horns. A, R, and C — hollow tube feed; 
D — coaxial tube feed. 

for connection to circular pipes, C for rectangular pipes, and D for a 
coaxial line. Both A and C are suitable for beam radiation of trans¬ 
verse electric {H\) waves, while B and D are adaptable to broadcast 
radiation with longitudinal electric (J?o) waves. It may be pointed out 
that radiators of this type are in no sense restricted to hollow-pipe sys¬ 
tems, fgr any of these horns may be fed directly by coaxial lines or by 
other means. 

11*2 Radiation from Tube End 

Radiation patterns from the open end of a circular wave guide are 
shown in Fig. 11*2. The electromagnetic energy propagated down the 
tube flows from the tube end and is distributed in the pattern shown. 
Because of reflections from the end of the tube, not all the energy is 
radiated, and standing waves are set up in the pipe. These reflections 
result from the mismatch between the impedance of the tube and that of 
free space. The shape of the pattern is a function of Xa/a, where \a is 
the wavelength of the guided wave in free space and a is the radius of 
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the tube. The free-space patterns are symmetrical about the axis of 
the tube. Figure ll*2a shows the radiation pattern from the open end 
of a pipe in which Eq waves have been set up. When Hi waves are 
employed, the radiation pattern has a maximum value in front of the 
tube opening. The Hi wave thus appears to be best suited for producing 
a beam type of pattern. The directivity of the Hi wave is improved as 
the ratio of guide diameter to wavelength is increased. 

» 
Cm.y AS 80 Cm. a X 

L3^60* 
-90* 

Horizontal Radiation Pattern 
Coaxial Wire Exciter 

(a) E’-Waves 

-90® 

Horizontal Radiation Pattern 
Vertical Wire Exciter 

Solid Curve sl5 cos $ 
o = Measured Points 

(b)H-Waves 

{Barrow, courtesy of IRE) 

Fig. 112 Radiation patterns for the open end of circular pipes. 

Radiation patterns from the open end of a rectangular tube are shown 
in Fig. 11-3 for an J?oi wave. Although the maximum radiation is pro¬ 
duced along the forward axis of the tube, it is seen that a considerable 
backward radiation also exists, which may be attributed to diffraction 
around the mouth of the pipe. When the frequency of operation is near 
the critical frequency of the pipe, the backward and forward radiations 
are approximately equal. As the frequency is increased, the backward 
radiation is appreciably reduced, and the forward radiation pattern 
considerably sharpened. Backward radiation may be thought of as a 
flow of current out of the tube mouth and back along the outer surface. 

11*3 Rectangular Homs 

A theoretical analysis of the operation of the electromagnetic horn 
** antenna ** has been developed by Barrow and Chu from Maxwell's 
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equations. This analysis leads directly to design formulas which 
have been confirmed experimentally by Barrow and Lewis.f The type 
of horn used in this work is shown in Fig. 11-4. By appropriate choice 

180° 
Horizontal Pattern 

-Measured •Calculated 
V98Cni. W*=0.51 

L=4.78M 
{Barrowt courttay of IRE) 

Fig. 11*3 Radiation pattern for Hqi wave from the open end of a 
rectangular hollow-pipe radiator. 

of the flare angle, 0, the impedance of the pipe is very nearly matched 
to that of free space and hence standing waves are largely suppressed. 
This results in a great increase in the radiated energy. The approxi¬ 
mate distribution of the field in a typical horn is shown in Figs. 11°5 
and 11*6 for an Foi wave of the two possible orientations. 

♦ W. L. Barrow and L. J. Chu, “ Theory of the Electromagnetic Horn,'' Proc. 
JRE, 27, 61, 1939, 

t W. L. Barrow and F. D. Lewis, “ The Sectoral Electromagnetic Horn," Proc, 
IRE, Z7, 41,1939. See also Chu and Barrow, Trans, AIEE, 58, 333, 1939. 
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{Barrow and Lewis, courtesy of IRE) 

Fig. 11 *4 Experimental hom used by Barrow and Lewis. 

{Barrow and Lewie, courtesy of IRE) 

Pig. 11*5 Approximate field distribution for an Hoi wave in the hom of Fig. 11-4 
when the magnetic intensity is parallel to the base of the hom. 
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As the flare angle of the horn is changed, the radiation patterns that 
result take the various forms shown in Fig. 11-7. At smaller flare angles 
the radiant energy is in a rather broad beam along the axis of the tube, 

Vertical Section 
(Barrow and LewiSf courtesy of IRE) 

Fia. 11*6 Approximate field distribution for an //oi wave in the horn of Fig. 114 
when the electric intensity is parallel to the base of the horn. 

(Barrow and Lewis, courtesy of IRE) 

Fig. 11*7 Radiation pattern for a rectangular horn having various flare angles. 

and a marked back-radiation pattern exists. The back radiation 
becomes smaller for larger values of <i> and increases again as approaches 
90®. In the interval between 40® and 60®, the radiation pattern is quite 
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sharp, increasing in breadth for larger values of <l>. It is seen from these 
patterns that the electromagnetic horn can produce beams substantially 
free from secondary lobes in one plane. 

It should be noted that the horn under discussion is flared in only one 
direction. Such a horn gives much the same radiation pattern regardless 
of whether the electric vector of the wave system is along, or at right 
angles to, the long dimension of the horn aperture. Neither distribu¬ 
tion, however, is symmetrical. The beam is wide in the direction in 
which the aperture is narrow, and vice versa. This behavior is to be 
expected since the end of a simple square guide of small dimensions gives 
a beam that is wide in both directions. 

Such an asymmetrical form is potentially useful since it is often desir¬ 
able to establish a beam that is narrow in one direction and wide in the 
other. 

Unless the flare angle is large the equiphase surface at the mouth of 
the horn is essentially a plane. Under this condition the radiation is 
exactly the same as that which would result from a rectangular wave 

guide having a cross section equal to 
the aperture of the horn. This is an 
excellent approximation for flare angles 
up to 50®, and the error introduced for 
60® is not usually serious. 

If a beam of the searchlight type, 
narrow in both directions, is to be pro¬ 
duced the horn must be flared in both 
directions so as to achieve a nearly 
square aperture. The data of Fig. 11*7 
are not exactly applicable here since 
the patterns are altered somewhat by 
the polarization of the waves in the 
guide. In practice, however, the dif¬ 
ference is not important, and a square 
horn of approximately 50® flare is very 
satisfactory. The length of the horn 
may be determined from the required 

beam width by means of Fig. 11-8. 
Figure 11*8 is a calculated curve giving the angle between the two 

points of zero intensity which define the principal beam. For many 
purposes the beam is effectively much narrower than this value. The 
actual calculation is based on a long rectangular guide whose aperture 
is expressed in terms of the ratios = a/K and Wh = 6/Xa, where 
is the vertical aperture, 6 is the horizontal aperture, and \a is the wave- 

1 2 5 10 20 50 
or 

{Barrow and Lewis, courtesy of IRE) 

Fig. 11*8 Calculated curves giving 
the angle between two points of 
zero intensity defining the principal 

beam. 
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length of the wave in free space. Two curves are given, the one desig¬ 
nated Bh applying when the electric field is parallel to the flared sides as 
in Kg. 11-5. Bv applies when the electric field joins the flared sides as in 
Fig. 11*6. For a wavelength of 10 cm and a beam angle of 5® an aper¬ 
ture about 2.6 meters square is indicated. 

11*4 Circular Homs 
A very complete experimental study of the properties of electro¬ 

magnetic horns of circular cross section has been made by Southworth 
and King.* Their work was confined to the Hi wave associated with a 

(Southworth and King, courtesy of IRE) 

Fig. 11*9 Experimental circular horn used by Southworth and Kmg 

(SoxUhworth and Ktngt courtesy of IRE) 

Fig. 11'10 Photograph of the electromagnetic horn used by Southworth and King. 

circular guide and to wavelengths between 10 and 20 cm. The study 
was so conducted that the effects of flare angle, horn length, aperture, 
and wavelength are readily identified. 

* G. C. Southworth and A. P. King, “ Metal Homs as Directive Receivers of 
Ultra-Short Waves,” Proc, IRE, 27, 96, February, 1939. 
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The properties of any antenna may be determined equally well by 
testing it as a transmitter or as a receiver. In their research Southworth 
and King found it expedient to use the various horns as receivers. A 
fixed directional transmitter similar to the receiver was used, and the 
response of the receiving horn as it was turned to various angles about 
vertical and horizontal axes was determined. The arrangement is shown 
schematically in Fig. ^1*9 and by photograph in Fig. 11-10. By appro¬ 
priate adjustment of the piston and the coaxial tuner it is possible to 
match the impedance of the crystal detector and associated meter to 
that of the wave guide, thus assuring that all the incident energy is 
absorbed and that no spurious results are obtained. 

Results of one series of tests are plotted in Fig. 11-11. The term horn 
is scarcely applicable here since the unit actually consists of two cylindri¬ 
cal sections joined together. Very considerable directive effects arc 
achieved, and considerable power gain is indicated. However, the 
irregularity of the pattern, particularly the marked spurious lobes, 
renders this form undesirable. In these and the following figures the 
solid curves represent measurements made in the plane containing the 
electric vector; the dotted curves represent measurements made in the 
plane containing the magnetic vector. Since the two curves are similar 
the complete directional pattern may be thought of as an ellipsoid of 
which these two curves arc perpendicular sections. 

The power gain associated with each horn is most simply expressed 
in terms of the horn as a radiator. The fundamental although impracti¬ 
cal reference of comparison is a point source which radiates equally in 
all directions. For example, the radiation intensity along the axis of 
horn of Fig. 11-llc is 16 times (12 db)* as high on a power basis as it 
would be if the given power were radiated equally in all directions. 
The simple dipole or half-wave antenna gives a gain of 2.15 db on this 
basis. Similarly the elementary dipole of vanishing length, sometimes 
used as a^standard of reference in radio work, gives a gain of 1.76 db. 

Results of a second series of tests arc plotted in Fig. 11-12. Here the 
length of the horn was held essentially constant, the variable being the 
angle of flare. A maximum power gain of 100 (20 db) is secured with 
an angle of 50°, and a remarkably clean radiation pattern is secured. 
Larger angles of flare seem to offer very little advantage, but smaller ones 
may be useful where beams of appreciable width are required. 

A third series of tests is presented in Fig. 11-13. Here a fixed angle 
of 40° is used and the horn length is the variable. Increase of the horn 
length shows a steady improvement in the gain and directivity. The 
material required for the horn also increases very rapidly, and the 

* See page 455 for definition of the decibel. 
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regularity of the figure begins to suffer as the horn is made very long, so 
that some practical limit exists in this case. The small improvement 
from d to 6 in Fig. 11 13 is ascribed to the fact that the optimum flare 
angle is different for long and for short horns. 
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{Southworth and King, courtesy of IRE) 

Fio. 11*12 Radiation patterns for circular wave guides when circular horns having 
various flare angles are added. The length of the various horns is held fixed. 

An important property of antennas in general atid of horns iff particu¬ 
lar is that the directional pattern and power gain are unaffected if the 
wavelength and all dimensions of the horn are modified by some given 
factor. This is true since all dimensions, when expressed in terms of 
the wavelength, are constant. 
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Fio. 11*13 Badiation patterns for circular wave guides when circular horns having 
a fixed flare angle of 40 degrees are used. The length of the horn is varied. 
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Important experimental results are presented in Fig. 11-14. A given 
horn was tested at four different frequencies involving virtually a 

Angle m Degrees 
+90 +60+45 +30 

^^=20 2 Centimeters 
Area of Aperture = 

3 Square Wavelengths 

(a) 

0 0.4 0 6 0.8 1.0 
Relative Field 

-. Electric-Plane Characteristic 
-Magnetic-Plane Characteristic 

{Southworth and King, courtesy of IRE) 

Fig. 1114 Radiation patterns for a given circular horn as a function of 
the wavelength. 

2 :1 frequency range and an actual frequency band that is 1400 mega¬ 
cycles wide. The gain and directivity are steadily improved as the 
frequency is raised, but the change is regular and not particularly rapid. 
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11*5 Summary on Single Homs 
Square or conical metallic horns give strictly comparable results, 

the choice depending primarily on practical construction considerations. 
The optimum angle is approximately 50°, although somewhat smaller 
angles are better if very large horns are to be built. The adjustment is 
not critical, in marked contrast to high-frequency antenna array systems. 

The beam produced may be made as narrow as necessary, and it is 
very free from spurious lobes. This is believed to be the most outstand- 

Fig. 11*15 Array of electromagnetic horns used by Barrow and Shulman. 

ing of all the features of the horn. The fact that the horn works almost 
equally well over |i wide band of frequencies is again markedly in its 

favor. 
Since horns are seldom of great length the attenuation constant is 

unimportant and materials of relatively low conductivity may be used. 
Galvanized iron has been widely used for experimental units. 

Experimental data shows that the efficiency and directivity of a horn 
are improved if the edges are somewhat curved rather than straight. 
The exponential curve, widely used for the flaring of acoustic horns, 
does not appear to be the best solution, but some curve which reduces 
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the discontinuity at the throat is desirable. The construction of such 
homS; particularly in circular sections, is relatively difficult, however, 
and the advantage to be gained by the curvature may hardly be worth 
the added expense. 

11 *6 Multiple Homs 
Arrays of electromagnetic horns have been studied by Barrow and 

Shulman.* A photograph of one of their arrays is shown in Fig. 11*15. 
A classification of arrays in terms of application is given in Fig. 1146. 

The outstanding conclusion derived from the theoretical work and 

Output 
Group A Group B 

Group C 

{Barrow and Shvlmant oourUay of IRE) 

Fig. 1116 Electromagnetic horn arrays studied by Barrow and Shulman. 

verified by experiment is that adjacent horns do nof interact with each 
other to any appreciable extent. Only when they are so rotated as 
actually to point toward each other do they show appreciable coupling. 
This is significant in that the coupling between the horns and the driv¬ 
ing unit may be designed purely on the basis of the characteristic imped¬ 
ance of each. The overall results are then given by a linear superposi- 

*W. L. Barrow and Caxl Shulman, ** Multiunit Eiectromagnetio Homs,** 
Proc. IRE, 28, 130, 1940. 
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tion of the individual effects. This is true even though the outer edges 
of the horns actually touch. 

If four identical square horns are arranged so that their apertures form 
a larger single square, the directional characteristic and power gain are 
those of a single longer horn having that value of aperture. The bulk 
and weight of the four horns are, however, much less than those corre- 

Upper Member 

Lower Member |J 

A B 

D 

{Barrow, Chu, and Janom, courtesy of IRE) 

Fia. 11*17 Biconical horns used by Barrow, Chu, and Jansen. 

spending to the single large horn. Arrays in which the edges of adjacent 
horns do not coincide are subject to marked spurious lobes but show 
extremely sharp principal characteristics. 

The directional characteristic of a horn array may be controlled or 
steered over a considerable angle by proper adjustment of the phase 
relation between the individual horns of the array and the common 
circuit. Techniques of phase control which have been worked out for 
antenna arra3rB at lower frequencies have proved very useful. 

The independence of adjacent horns is of great importance in that a 
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transmitter and receiver may be located together and may operate on 
the same frequency band without excessive interference. Other appli¬ 
cations of this principle will undoubtedly be developed. 

TBo.! WAVE T£, i WAVE 

{Barrowf ChUy and Jansen^ courtesy of IRE) 

Fig. 1148 Typical field configurations within the biconical 
horn shown in Fig. 1147i>. 

11*7 The Biconical Horn 

The biconical hom is an electromagnetic radiating system which 
concentrates all its power in or near one plane but which radiates equally 
in all directions in that plane. It is ideally suited for broadcasting since 
it loses very little energy to the ground or in a useless sky wave. Several 
basic forms of this hom are shown in Fig. 11*17. 

Several types of field configurations which may be obtained in biconi¬ 
cal horns are shown in Fig. 11*18. The simplest field configuration is a 
portion of a spherical transverse-electromagnetic wave. This is shown 
in Fig. 11* 18a. The spherical configuration is probably of the greatest 
practical importance since the field which results at a distance from the 
antenna is simply a vertically polarized transverse electromagnetic wave. 
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The schematic construction of such a horn is illustrated in Mg. 11*19. 
The corresponding physical apparatus is shown in the photograph of 

\*-34.6- 
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Iron . ’ Long 
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Length Adjustment 

1—— 
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^ router Dia. 

Connectionjo Magnetron 

-1 
Rectangular Hollow 

Pipe Ifx ir 

(Barrow, Chu, and Jansen, courtesy of IRE) 

Fio. 1119 Constructional data for the bicomcal horn shown m Fig 1V17D 

Fio. 11'20 Biconical bom used by Barrow, Chu, and Jansen. 

Fig. 11*20. The radiation pattern at a considerable distance from this 
structure is illustrated in Mgs. 11-21 and 11-22. The vertical directivity 
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as indicated in Fig. 11-22 is excellent, nearly all the energy being confined 
to the horizontal plane. The uniformity in this horizontal plane is 
good, observed ripples being traceable to the fact that the upper horn 

Post 

(JBarroWt Chu, and Jansen^ courtesy of IRE) 

Fig. 11*21 Radiation pattern in the horizontal direction for the biconical horn of 
Fig. 11*20. 

element is supported on three wooden posts. An extremely uniform 
characteristic may be achieved by replacing these three supports by a 
uniform cylindrical structure of dielectric. 

(JBarrow^ ChUt and Janterit courtesy of IRE) 

Fig. 11-22 Radiation pattern in the vertical direction for the biconical horn of 
Fig. 11-20. 

11-8 'Hie Parabolic Reflector 

If a half-wave antenna is placed at the focal point of a parabolic metal 
sheet which is large in comparison with the length of the antenna, the 
waves radiated from the antenna are reflected from the parabola accord¬ 
ing to the simple laws of geometrical optics. That is, the reflected radi¬ 
ation has the characteristics of a parallel beam similar to that familiar in 
li^t. Since a straight-line antenna can never have zero length it is 
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evidently impossible for all the radiation to come from exactly the focal 
point of the parabola. Therefore, a perfect beam may not be obtained 
in this way, and it is necessary that the reflector be many times larger 
than the antenna if the beam is to be at all narrow. 

Y 

Let us review the properties of the parabola to see how it is able to 
produce a parallel beam by reflection from a point source. The parab¬ 
ola is defined as the locus of points equidistant from a point called the 
focus and a straight line called the directrix. Let the focus be the 
origin, 0, and the directrix the line y = —2k. Expressing the geomet¬ 
rical definition of the parabola in algebraic form we write for Fig. 
11-23 

^*2 -f- = y-\-2k [11-1] 

or squaring 

which gives 

3^ « 4ky -f- 

y 
a^-4k^ 

4k 

[11-2] 

[11-3] 

That is, the parabola is the locus of all points which satisfy equation 
11‘3. The slope of the straight line which is tangent to the parabola at 
any point N, having coordinates (x,y), is foimd by taking the deriva- 
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tive of 11-3 with respect to x. Thus 

dy X 
dx 2k 

[114] 

We assume that radiation emanates from the focal point, 0, and is 
reflected from the metal surface accordmg to the familiar law of equal 
angles. The beam reflected from every point on the parabola will be 
parallel to the Y axis provided that 

0 = ^ = e' [11-5] 

that is, if the line ON and the vertical line MN make equal angles with 
the tangent. The lengths ON and MN are equal by the defining equa¬ 
tion 11*1. We shall now show that the tangent to the curve at point N 
intersects the Y axis at a point P such that 

OP = OW = NM = MP 

The slope of the tangent line from equation 114 is 

dy X 

dx 2k 

[116] 

[114] 

The horizontal distance between N and the Y axis is equal to x, and the 
corresponding vertical displacement between N and P is 

dy x^ 

dx * 2k [11-7] 

At point N 
x^ — Yk^ 

4it 
[11-3] 

Accordingly, the length of the line OP is 

x^ x^ — 4fc^ x^ + 

2k 4A/ 4k [11-8] 

The length of the line MN is given by the expression 

o, , 07 . *^-4*2 x2 + 4fc2 
2k + y.a+ ^ ^ [119] 

It is seen from equations ll-S and 11-9 that lengths MN and OP are 
numerically equal. Since the figure MNOP is a parallelo^am and 
since ilfW = NO = OP it is also necessary that ikfP = MN. 

Thus we have shown that the tangent to the parabola at any point is 
the angle bisector of the equilateral trapezoid and, therefore, makes 
equal angles with the incident and vertical rays. From this fact we 
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conclude that all radiation which leaves the origin and meets the parar 
bolic reflecting surface is reflected parallel to the Y axis. 

(Clavier, courtesy of Electrical Communication) 

Fig. 11-24 French terminal of the hyper-frequency link across the English 
Channel. 

Let US now suppose that an antenna lies along the X axis and extends 
a short distance to each side of the origin. Radiation from the ends of 
such an antenna does not strike the parabolic reflector in such a direction 
as to be reflected in the Y direction. Part of the reflected radiation 
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crosses the Y axis, suggesting a converging beam, but the general effect 

is one of divergence. 
Fortunately most of the radiation from a dipole is near its midpoint 

and is propagated at right angles from the middle. Thus a dipole 
antenna produces a beam reflected from a paraboloid which is con¬ 
siderably sharper than would be expected from the above reasoning. 

(Clavier, courtevy of Electrical Communication) 

Fia. 11'25 Schematic arrangement of the apparatus used in the reception of hyper¬ 
frequency waves. 

11*9 Application of Parabolic Reflector 

One of the most interesting applications of the parabolic reflector is in 
connection with the hyper-frequency link across the English Channel 
from St. Inglevert in France to Lymphne, England.* This system was 
put into commercial use in 1934. The distance covered is 66 kilome¬ 
ters; the frequency, 1600 megacycles; the transmitted power, f watt. 
The terminal sites were so chosen that a line-of-sight operation is assured 
and the transmitting and receiving parabolas were placed on high towers 
well out of the way of normal obstructions. 

The French terminal is shown in Fig. 11-24. The schematic arrange- 

* A. G. Clavier, Electrical CommunicaUon, 12, 3, 1933; A. O. Clavier, and L. C. 
Gallent, Electrical Commimiealion, 12,222,1934. 
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ment is shown in Fig. 11-25, and the actual unit is shown in Fig. 11-26. 
The reflector is approximately 8 feet in diameter, very large in compari¬ 
son to the antenna, which is only a few inches long. The parabola 
gives a power gain of approximately 28 db above that of the dipole 
antenna alone. This figure must be raised to 30 db for comparison 
with figures given for horns. The hemispherical reflector with center 
at the antenna was added to return to the parabola radiation otherwise 

(Clavtcr, courtesy of Electrical Communication) 

Fig. 11*26 A parabolic reflector used for the creation of a hyper-frequency 
beam. 

lost from the front of the antenna. The returned radiation passes by 
the antenna wire and strikes the parabola as if it came directly from the 
wire. An additional 5 db was achieved in this way, bringing the total 
gain to 36 db. 

It should be mentioned, however, that these results were obtained with 
large reflectors quite carefully adjusted. A horn of comparable size 
would give comparable results and would probably require much less 
precision in the final adjustment. The horn was not generally known 
at the time of this installation. 

PROBLEMS 

11*1 A rectangular hom with an aperture 30 by 60 cm is fitted to a wave guide 
10 cm square. The tapered section is 40 cm long measured in the direction of the 
axis. Calculate the vertical and horizontal directivity of this hom for the Hoi wave 
with electric field parallel to the long side of the aperture. The frequency is 3000 
megacycles. 
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11*2 Repeat problem 11-1 with the electric field parallel to the short side of 
the aperture. 

11‘3 Repeat problem IM if the aperture is increased to 60 by 100 cm and the 
tapered section is 80 cm long. 

11*4 Repeat problem ILS using the electric field parallel to the short side of 
the aperture. 

11*5 A circular horn has an aperture 60 cm in diameter. It is fitted to a 
circular wave guide 8 cm in diameter. The axial length of the tapered section is 80 
cm. From the data of Figs. 11-13 and 11-14 estimate the gain of this horn over a 
non-directive radiator. 

11*6 Sketch the expected directional characteristics of the horn of problem 
11-6. 

11*7 A certain biconical horn such as that of Fig. 11-19 radiates uniformly in 
all horizontal directions. The radiation is essentially uniform within ±6° from the 
horizontal plane and is negligible elsewhere. Calculate the power gain. 

11*8 A particular circular horn has a radiation characteristic which is essen¬ 
tially uniform within 5° of the axis and is negligible elsewhere. Calculate the 
power gain. 

11*9 Discuss the statement that the directional pattern of a horn as a trans¬ 
mitter is the same as that of the same horn as a receiver. Why is it more conven¬ 
ient to test a horn as a receiver than as a transmitter? 

11*10 Discuss the relative advantages of the horn and the parabolic antenna. 
Consider area of aperture, ease of adjustment, weight, etc. 

11*11 A parabolic reflector is 1 meter in diameter and is excited by a half-wave 
dipole antenna 5 cm long. The center of the antenna is placed at the focal point 
of the parabola, which lies in the plane of the rim. Deduce the greatest possible 
width of the beam produced. 

11*12 Estimate the directional characteristic of the system of problem ll-ll- 
Assume that the antenna is vertical, and deduce the radiation pattern in both vertical 
and horizontal planes. 

11*13 A rectangular horn radiator is flared in only one direction. It is excited 
by waves of the H02 mode. Sketch the wave distribution corresponding to Fig. 11-6. 

11*14 Repeat problem 11-13 using the reversed orientation corresponding to 
Fig. 11-6. 

11*15 Radiation is to be produced in the form of a thin sheet having the shape of 
the surface of a cone. Sketch a suitable horn arrangement. 

11*16 Estimate the power gain of the horn of problem 11-1 at a frequency of 
3000 megacycles. 

11*17 Estimate the power gain of the horn of problem 11-3 at a frequency of 
3000 megacycles. 

11*18 Repeat problem 11*16 for a frequency of 5000 megacycles. 

11*19 Repeat problem 11*17 for a frequency of 5000 megacycles. 



CHAPTER 12 

THE BEHAVIOR OF VACUUM TUBES AT HIGH FREQUENCIES 

12*1 Introduction 

The history of physical science makes it clear that significant progress 
results only from a combination of theoretical and experimental develop¬ 
ment. Throughout the middle ages the experimental approach was 
almost completely neglected and progress was slow. Since that time, 
experimental work has assumed an ever-increasing importance. Elec¬ 
tronics is fairly typical of the physical sciences. The high-vacuum 
diode, a product of the experimental genius of Edison, found neither 
application nor explanation until about 1900 when J. J. Thomson stated 
the so-called electron theory. Shortly thereafter Fleming used the 
diode as a rectifier of radio signals and DeForest created the triode by 
the addition of the grid. The triode found immediate acceptance as an 
improved detector of radio signals. Application as an amplifier, oscil¬ 
lator, and control element followed in rapid succession. 

Although many of the early workers had an excellent physical picture 
of the operation of the triode and although much valuable work was 
done, the scientific application of thermionic tubes in reliable circuits 
dates from the statement of the equivalent plate circuit theorem by 
van der Bijl* and others. Later this theorem was extended to multi¬ 
element tubes, permitting accurate solution of a variety of problems. 
Innumerable engineering designs are based on results derived from this 
theoren;. The importance of this concept, even at the present time, can 
hardly be overemphasized. 

For some time after its introduction, the simple equivalent plate cir¬ 
cuit theorem served to explain all the observed phenomena. As the 
technology of radio advanced, however, and higher and higher fre¬ 
quencies were used, it became apparent that this explanation of tube 
behavior was inadequate. The difficulty was found to lie in the inter¬ 
electrode capacitances, which, although negligible at low frequencies, 
play an important part in the performance of vacuum tubes at frequen¬ 
cies in the order of a megacycle. It was felt that the analysis of the 
vacuum tube should be kept distinct from that of the associated net- 

* H. L. van der Bijl, Phya, Beo.^ 12,180,1918* 
425 
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work, and modified equivalent plate circuit theorems were developed on 
this basis.* Unfortunately, the coefficients developed in this way are 
extremely complicated. 

As more complex circuits were used and a better understanding of the 
action of vacuum tubes was gained it became apparent that this complex 
equivalent plate circuit theorem was impractical. The interelectrode 
capacitances within the tube are usually shimted by comparable capaci¬ 
tances due to the external circuit, which arc not accounted for by the 
theorem. The mathematical treatment of the entire circuit is simplified 
by taking the sum of all the capacitances which are in parallel in each 
branch before setting up the equations. The procedure which is now 
most widely used is to lump the interelectrode capacitances with those 
of the corresponding external circuit and to express only the thermionic 
action by the equivalent plate circuit theorem. With typical tubes this 
method of analysis gives results which are correct for all frequencies 
below about 30 megacycles. 

Two distinctly different effects manifest themselves as the frequency 
rises still further. When the time required for an electron to travel 
from cathode to anode becomes comparable to the period of a cycle the 
behavior of the tube is modified in a fundamental way and the entire 
performance must be re-examined from basic considerations. At these 
frequencies the effective input and output impedances are also greatly 
affected by the self and mutual inductance of the leads which join the 
tube to the external circuit. The following pages will be devoted to a 
consideration of these effects. 

12*2 Review of Equivalent Plate Circuit Theorem 

The equivalent plate circuit theorem results from the separation of 
total voltages and currents into components. For example, the total 
plate current is divided into a constant or direct current and an alter¬ 
nating current. Plate and grid voltages and grid current, if one exists, 
are similarly resolved into constant and alternating components. The 
constant or direct voltages are known from the applied potentials, or are 
readily deduced by a simple application of Ohm^s law. Accordingly we 
need spend only a little time in determination of the direct currents and 
voltages and may reserve most of our effort for solution of the alternating 
currents and voltages. 

Figure 124 shows a triode and the equivalent plate circuit theorem 
which applies at low frequencies. It is seen that this theorem considers 
only the alternating components of current and voltage. The direct 
currents and voltages are important only so far as they affect the incre- 

* E. L. Chaffee, Theory of Thermionic Vacuum Tvhee, page 274 ff., for example. 
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mental dynamic coefficients which are defined by the partial derivatives, 

M 
dSp 

dCg 
Qm 

dip 

dCa 
[12.1] 

where /x is the dynamic amplification factor. 

Tp is the dynamic plate resistance. 

Qra, is the dynamic transconductance. 

ip is the instantaneous plate current. 

ig is the instantaneous grid current. 

ep is the instantaneous plate voltage. 

eg is the instantaneous grid voltage. 

The validity of the equivalent plate circuit theorem depends upon a 
more general network theorem due to Th6venin. The theorem proved 
by Th6venin states that a complex linear electrical network may be 

Fig. 12-1 Equivalent plate circuit theorem in constant-voltage form. 

replaced by a single generator in scries with a single impedance. The 
correctness of the equality indicated in Fig. 12*1 may be shown by allow¬ 
ing the load impedance Z to assume certain special values. If Z = oo 
the voltage developed across Z is equal to ixeg^ which is equivalent to the 
definition of /x in equation 12*1. If Z = 0 the current which flows 
through Z is equal to ixCg/rp = Accordingly the current delivered to 
an impedance Z = 0 is Qm^g as required by the last definition of equa¬ 
tion 12*1. The equality between the two arrangements of Fig. 121 is 
valid for other values of Z. This follows directly from the assumption of 
small applied voltages and of linear behavior throughout. 

A modified form of the equivalent plate circuit theorem, frequently 
convenient, is shown in Fig. 12-2. Its validity may be proved by appli¬ 
cation of a general network theorem due to Norton or directly by an 
argument similar to the one presented for the series form of the theorem. 
This form of the theorem is often superior to that of Fig. 12*1 because 
the dynamic plate resistance is directly in parallel with the load imped¬ 
ance and with any plate-to-cathode capacitance which may exist. It 
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requires the concept of a constant-current generator whose output volt¬ 
age is directly proportional to the total impedance connected to it. 
This concept is just as basic as that of the constant-voltage generator 
but is rather less familiar. 

The theorems as illustrated in Figs. 12*1 and 12*2 are special in the 
sense that they neglect the effect of any inductance or capacitance within 
the tube and that the reaction of the plate circuit upon the grid circuit 
is not considered. When the grid is biased negative with respect to the 
cathode there is no electronic current to the grid and the direct action 
of the plate circuit upon the grid circuit is insignificant. The effects of 
internal capacitance and of internal mductance will now be considered. 

12*3 Effect of Lead Inductances and Internal Capacitances 

It must be realized from the outset that both inductance and capaci¬ 
tance in a vacuum tube are essentially distributed elements. At times 
it is necessary to use the theory of distributed circuits in the solution of 
the tube behavior. In the present section, however, we shall consider 
the first approximation case, in which both inductance and capacitance 
are assumed lumped. A triode may conveniently be thought of as 
having lumped capacitances between each pair of elements and a lumped 
inductance in series with each lead. This inductance corresponds to 
that which exists between the region of thermionic action and the avail¬ 
able external terminal. This approximation is illustrated in Fig. 12*3. 

In Fig. 12*3 the capacitances C^, C*, and Cp are the capacitances 
which exist within the tube between grid and plate, grid and cathode, 
and plate and cathode, respectively. These capacitances are in the 
order of 5 micro-microfarads in typical receiving triodes and are mainly 
concentrated at the actual region where electrons move. The induc¬ 
tances Lkf Lg, and Lp are the effective inductances between the internal 
electrodes and the closest available external terminals. 
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A general equivalent plate circuit theorem consistent with these 
assumptions may be developed by means of the simple equivalent plate 
circuit theorem and appropriate network equations. Unfortunately 
the complicated nature of the equa- _ 
tions which result tends to confuse 
rather than clarify the situation. 

/ 

/ 
/ C, 

f 

11' 
' h- 

kl 
-T J- 

‘-p \ 
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/ 

Input condiLctance due to grid-plate 

capacitance 

Of the various parasitic elements 
shown in Fig. 12*3 the grid-plate 
capacitance Cg is the most important 
at low frequencies. Let us deter¬ 
mine the effective input impedance 
of a triode due to this capacitance. 
The actual circuit and the equiva¬ 
lent circuit developed from the con¬ 
stant-current form of the equivalent 
plate circuit theorem are shown in Fig. 12-4. It is assumed that Cg 
is a lumped capacitance and that the inductances shown in Fig. 12*3 
are negligible. The plate load is replaced by the admittance and 
Cg is replaced by the admittance Y4. 

Pig. 12-3 Approximate network for 
triode at moderately high frequencies. 

Bt 

Fig. 12-4 The actual circuit and the equivalent circuits developed from the constant 
current form of the equivalent plate circuit theorem. It is assumed that the in¬ 

ductances of Fig. 12*3 are negligible and that F4 = jwCg. 

Let US introduce the substitution 

^6 = Fs H— 
Tp 

[12-2] 

The equations which apply to the resulting network are 

h - (El - Ei)Yi [12-3] 
And 

II = E2Y5 + EiQn I12-3a] 
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Eliminating E2, 

h = (ex - I^) + Eig„, [12-4] 

which reduces to 

+ =E,(F5 + gJ [12-6] 

The input admittance Y becomes 

Substituting, 

Yi = jwCg [12-71 

Evidently the input admittance is infinite if Fs = —jo>Cg. For values 
near this one the input conductance is large and positive or negative, 
depending upon whether 

Fs < F4 or Ffi > F4 

In the special case Fs = <», corresponding to a short circuit in the plate 
circuit, the admittance reduces correctly to F = jwCg. 

Thus we have seen that a grid-to-plate capacitance may produce an 
input conductance that is relatively large and either positive or nega¬ 
tive. Oscillations are likely to occur if the conductance is negative, 
depending upon the magnitude of associated positive conductances. 
Moreover, this dfect is quite pronounced even at low frequencies. It 

was the primary factor in the development of tetrode and pentode types 
of tubes. The electrostatic shielding produced by these additional grids 
greatly reduces the direct grid-plate capacitance. 

Inpvi conductance due to cathode lead inductance 

In modem tetrodes and pentodes the effective grid-plate capacitance 
is negligibly small, even at the highest frequencies. An input con¬ 
ductance which is positive and which may be relatively large results 
from the combined action of the grid-cathode capacitance and cathode 
inductance. The behavior, which is quite different from that just inves¬ 

tigated, is studied with reference to Pig. 12-5. The elements L* and 
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Cjfc are replaced by the general impedances Zi and Z2 for simplicity. 
The effective input impedance of the triode as affected by these impei 
ances will be developed under the assumption that transit time is still 
negligibly short in comparison to the period of the applied signal. 
Either of the two standard forms of the normal equivalent plate circuit 
theorem may be applied, but the series form is more convenient here. 
The plate load is represented by the impedance Z3. 

Fig. 12-6 Arrangement for calculation 
of the input impedance of a triode. 

Fig. 12*6 Circuit equivalent to 
Fig. 12-5. 

The actual circuit of Fig. 12-6 is replaced by the equivalent circuit of 
Fig. 12-6 for calculation. Consistent assumptions of current and volt¬ 
age are indicated, and the familiar methods of mesh analysis are applied. 
The effective input impedance is Zin = E/L The value of this imped¬ 
ance may be determined by a relatively simple solution. The equations 
required are: 

e, -Z2I =0 [12‘9] 

HCg - ZJ - (rp + Z3 + Zi)/p = 0 [12-10] 

(Z2 + Zi)I + Zi/p = E [12.11] 

These equations have been so arranged as to provide a convenient deter¬ 
minant expression for I in teims of E: 

1 0 0 

0 - (rp + Z3 + Zi) 

0 E Zx 

1 — Z2 0 

At -Zx — (Tp + Z3 + Zx) 

0 (Zi + Zi) Zx 

Minoring the numerator along the second column and the denominator 
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along the third column 

M —(rp + Za + Zi) 

1 —Z2 1 — Z2 
Zi + (rp + Z3 + Zi) 

n —Zi 0 iZ2 + Zi) 

[12-13] 

Thus, the input admittance becomes 

J ^_(rp + Z3 + Zi)_ 
jEJ fiZiZ2 + + Z2Z3 + Z1Z2 + Zirp + Z1Z3 

[12-14] 

giving for the input impedance 

„ _ _ Zt(nZ2 + ^3 + + Z2{rp + Z3 + Zi) 
" "*/ rp + Z3 + Z^ 

In order to interpret 12 15, it is necessary to substitute the values 
1 

Zi == jo)L and Z2 = —7-, whereupon* 
jo)C 

Zm = 

i + Z,+r.) + J^Z. + ^Z,) 

Tp + Z3 + jo)L 
[12-16] 

Let us set Z3 -f rp = iJ, impljdng a pure resistance load. The resulting 
equation is simplified to 

j(joL 

R -4“ jcoL 
[12-17] 

Rationalizing: 

2m = 

fe + ®) +®) - i <* 
+ 0,^1/^ 

[12-18] 

"'The subscripts previously used are dropped for simplicity in writing the equa¬ 

tions No ambigui^ arises because xmly one capacitance and xme inductance am 

involved. 
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Separating real and imaginary components in the numerator, 

^ T w ^ li. T jwxjo, T .^T JU> ^ 

[1219] 

Equation 12-19 shows two pure real terms. That is, two components 
of the expression for the input impedance are pure resistance. The 
expression for the input resistance is: 

Rin 
C_R nL + (jTUC 
R^ + u^L^ ~C R^ + u^L^ 

[12-20] 

As w approaches zero the input resistance approaches the constant value 

Rn 
CR 

[12-21] 

As ctf approaches infinity, the input resistance approaches the constant 
and relatively large value 

Rin^R = rj, + Z3 [12-210] 

Let us examine equations 12-21 and 12-21a in terms of a practical 
ultra-high-frequency tube, the 955. The constants of this tube are 

closely, in our notation. 

M = 25 

rp = 12,500 ohms 

C = 1.0 ^juf 

L = 0.01 Mh 

[12-22]* 

Assuming a load impedance of 7500 ohms plus rp = 12,500 ohms, we 
have R — 20,000 ohms. At low frequencies, from equation 12-21 

25 V 

At high frequencies, the input resistance would be 20,000 ohms if no 
other limiting effects occurred. At a frequency somewhat above 600 
megacycles, w = 4 X 10®. For this frequency equation 12-20 yields 

* Ba43ed upon the inductance of a straight wire 1.5 cm long and 0.1 mm in diame¬ 
ter. Bureau of Standards Handbook 274, p. 243. 
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20,000 25 X 10~^ + 16 X 100 X 2 X 10^ X 25 X KT^ 
m= 10-12 X 4 X 10* + 1600 ~ 4 X 10-^ 

= 12.5 ohms 

The input reactance defined by the imaginary components of equation 
12*19 is 

_ .c c c 
~ ie" ^ ^ ^ 

At w = 4 X 10®, this reactance becomes 

= 

40 X 4 X 10* 
4 X 10® 4 X10® X 10-^®X 25 4 X10® X 

4 X 10' r-i 10' 
1—12 lU 1—12 

Zto 
16 X 10® - 10” 

4 X 10* + 1600 

10^ - 4 X 10® ■10 ill 

4 X 10* 4 X 10* 
= —250 ohms 

The effective input impedance defined by equation 12*19 is thus 12.5 
ohms resistance in series with 250 ohms of capacitive reactance at 
approximately 600 megacycles. This is equivalent to a resistance of 
5000 ohms shunting a capacitive reactance of 250 ohms. 

Although this is not an extremely low shunting resistance, it must 
be remembered that the tube in question was especially designed to have 
minimum values of inductance and capacitance. 

Examination of equations 12*20 and 12*24 shows that for the lower 
values of <a the input resistance is directly proportional to L and m and is 
inversely proportional to R and C. The input reactance is closely equal 
to 1/wC. Combining these two equations the input impedance is given 
approximately by 

Z ^ "in - 

CR jwC 
[12-25] 

As long as the resistance is low compared to the reactance, we may write 

R 
X 

9. c-9^ 
B’ X ’ 

and [12-26] 

where G is equivalent conductance, and B is the susceptance. Substi¬ 
tuting the values of R and X from equation 12-25 
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~X^ CR ~ R 
[12-27] 

In the limiting case of no external load impedance or in most cases 
involving pentodes = ii/R, and the input conductance becomes 

= «2fl(,„LC [12-28] 

Since 12*28 varies as the square of the frequency, it is readily seen 
that moderate extensions of operating frequencies may greatly increase 
the input conductance. Experimental data on the input conductance 
of high-frequency pentodc^s due to cathode inductance are shown in 
Fig. 12*7. In this case, transit time effects are negligible. The term 
input loading is appropriate because the conductance from grid to 
cathode serves to load the circuit which feeds the grid. 

Fiq. 12*7 Experimental data showing the effect of cathode inductance on 
the input conductance of several high-frequency pentodes. 

OiUjmt (mdiictance 

By a process similar to that employed in the development of the input 
conductance it may be shown that the output conductance of triodes 
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and pentodes is increased by the effects of lead inductance. Usually 
this effect is much less important than that of input conductance, and 
often it is negligible. Strutt and van der Ziel* have made a very 
thorough study of the effects of lead inductance and of interelectrode 
capacitance. They present experimental data and a very complete 
set of equations for calculating the performance of screen-grid and more 
complex tube structures. In particular, they conclude that multiele¬ 
ment tubes are, in general, more subject to these effects than triodes. 
The upper frequency limit for satisfactory operation of the multielec¬ 
trode tubes is generally set by lead effects, whereas the upper limit for 
triodes is set by transit time. 

12*4 Transit Time Effects in Diodes 

An electron emitted from the cathode of a radio tube requires a finite 
length of time to arrive at the plate. In tubes of ordinary size and 
operating at normal potentials, this is a very short time, in the order of 
10”® second. Such a short time would ordinarily be regarded as entirely 
negligible, and in very many applications it is truly insignificant. When 
we deal with very high frequencies, however, we find it impossible to 
neglect the time of flight of the electrons. In fact, most of the important 
generators of high frequencies base their entire operation upon transit 
time effects. We must, therefore, carefully investigate such effects to 

see how they limit the operation of ordinary 
tubes and how they may be used to advantage 
in special tubes. 

Two important considerations pertaining to 
transit time may be developed by reference to 
Fig, 12 8. A plane parallel structure is assumed 
in which the left-hand plate is a cathode emit¬ 
ting electrons and the right-hand plate is the 
anode. As in the familiar calculations of the 
parallel plate condenser, it will be assumed that 
the plates are large in comparison to the spac¬ 

ing so that the electric intensity is uniform between the plates. 

Fia. 12-8 Plane parallel 
diode. 

Calculation of transit time 
From the arrangement of Fig. 12-8, we may write E — F/d, where B 

is the electric intensity, d is the distance, and V is the applied voltage. If 
emission velocity and contact potential are negligible the electrons which 

* M. J. 0. Strutt and A. van der Ziel, ** The Ca\ises for the Increase of the Admit¬ 
tances of Modem High-Frequency Amplifier Tubes on Short Waves,” Froc, IRE, 24, 
1011, August, 1938. 
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reach the anode have a velocity given by 

eV *= ^rru^ [12-29] 

where e is the electron charge, m is the electron mass, and v is the velocity 
with which the electrons reach the plate. Equation 12-29 when solved 

for V gives _ 

v=yj2^V [12-30] 

Using e/m and V in practical units we obtain 

V = 6 X 10®V^ meters/sec [12*31] 

Since the electric intensity E between the plates is constant, the force 
accelerating the electron is constant and the velocity is directly pro¬ 
portional to the length of time that the electron has experienced the 
force. This is one form of uniformly accelerated motion. For these 
conditions the average velocity over the interval is half of the final 

velocity. 
Accordingly we may write for the average velocity 

V ^ 3 X IO^v'f meters/sec [12*32] 

The total transit time is calculated from the basic relation d = or 
t = d/v. Thus 

d ^ 3.3 X 10"“^^ 

3 X 10«vV “ Vv 
second [12-33] 

Assuming values leading to a relatively short transit time, namely, 
7 « 100 volts, d = 0,1 cm (10“"^ meter), 

t = 
3.3 X 10“® X 10“^ 

10 
= 3.3 X 10“^® second [12*34] 

corresponding to one full cycle of a wave of 3000-megacycle frequency. 

Condition of current flow 
When we deal with low-frequency systems we seldom need to know 

the exact interval during which an electron is active in carrying current. 
A very large number of electrons pass from cathode to anode during 
the period of the alternating current, and it is therefore necessary only 
to multiply this number by the electronic charge in order to determine 
the electric charge transferred and hence the current. 

When the period of the wave is comparable to the transit time, how- 
ever, the situation is more complex. It is necessary to know over what 
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interval the current flow associated with an individual electron motion 
exists. The result may be developed directly by an appropriate inter¬ 
pretation of Maxwell's equations. A development based on the con¬ 
servation of energy is presented here. 

Referring to Fig. 12*8 the instantaneous power supplied by the 
external circuit is equal to iV where V is the constant potential differ¬ 
ence and i is the instantaneous current. A single electron existing in 
the cathode-anode space is accelerated by the electric field, and the 
power supplied by the external circuit is converted into kinetic energy 
by this process. The mechanical power is given by the product Fv, 
where F is the mechanical force acting and v is the electron velocity. In 
the electric field the force is equal to eE, and we may write 

Vi = eEv [12r35] 
or 

Equation 12*36 indicates that a current flows during the entire inter¬ 
val that the electron is in motion and that the current is proportional 
to the instantaneous velocity of the electron. That the current is also 
proportional to the electronic charge e is clear from basic definitions of 
current. The inverse proportionality to d may be argued from the 
fact that a definite charge is transferred in less and less time as d ap¬ 

proaches zero. Figure 12*9 shows 
the current flow in the external cir¬ 
cuit which results if electrons are 
freed from the cathode at two dif¬ 
ferent regular intervals. In Fig. 
12-9a the emission rate is slow 
enough so that one electron reaches 
the plate before the next electron 
leaves the cathode. In Fig. 12*9b 
the rate is such that two electrons 
exist in the cathode-anode space at 
one time. The sharp comers on 

these wave forms are of great interest because they constitute the basis 
of tube or shot noise. 

Although the preceding development is based on the assumption of a 
plane parallel diode the results are correct for cylindrical and other 
structures. Accordingly, we may accept them as generally applicable. 
In actual tubes large numbers of electrons are always present and the 
current never falls to zero. The actual electronic current is therefore 

-t /I /I /I 
(a) Slow Rate 

(b) Fast Rate ' 

Fig. 12*9 Currents due to regular elec¬ 
tron emission in Fig. 12*8. 
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the stun of the currents due to the individual electrons, as defined by 
equation 12*36. To this must be added the displacement current. The 
total current is therefore the familiar expression 

where pt? is the average of the product of charge density by velocity in 
the space, dD/dt is the average displacement current density, and A is 
the area of the plates. 

Certain assumptions, not immediately apparent, were made in the 
foregoing development. It is necessary to examine all such assumptions 
with great care if we are to assure ourselves that the resulting concept is 
correct. First we assumed that the current i was the same everywhere 
in the circuit external to the tube. Second, we assumed that the electric 
intensity was uniform throughout the space between the plates. Actu¬ 
ally these two assumptions are very closely linked, the second necessarily 
being true if the first is true, but not conversely. The first assumption 
cannot be satisfied if the external circuit is allowed to expand without 
limit. For the purposes of the development, however, the physical 
length of the external circuit need be only enough to connect the two 
plates. In this case the two assumptions become practically synony¬ 

mous. 
We found the time of electron flight to be 3.3 X second for the 

condition chosen above. Let us now calculate the time required for an 
electromagnetic wave to be propagated from one plate to the other. 
Using the basic equation d = d, where c is the velocity of light, we have 

- 3 X or ^ = 3.3 X 10“"^^ second. That is, the wave travels 
the distance d in 1 per cent of the time required for the electron to travel 
the same distance. Thus the current in the two leads is indeed practi¬ 
cally equal and is equal to the current defined by 12*37. The following 
sections will be devoted to a study of conditions in which this situation 

exists. 

Graphical development of current flow 

Important qualitative concepts with respect to transit time effects 
may be gained by reference to Fig. 12*10. A plane diode such as that 
shown in Fig. 12*8, is subjected to a square voltage wave. The assump¬ 
tion of a square wave simplifies the analysis and gives results that are 
qualitatively correct. Again the motion of single electrons is studied; 
that is, the effects of space charge are neglected. 

It will be recalled that the distance traveled by a body under uniform 
acceleration is proportional to the square of the elapsed time. Accord- 
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ingly the distance curves of Fig. 12-10 are parabolic. Likewise the 
kinetic energy of each electron is directly proportional to the distance 
traveled. It is readily seen that electrons which leave the cathode just 
before the reversal of voltage are unable to reach the plate, but must 
return to the cathode. Since the accelerating force is equal in both 

Plate 

Cathode 

•>-1 

Fig. 12-10 Time-distance curves for individual electrons in a diode. The effect 
of space charge is neglected. 

halves of the wave but is opposite in direction it is evident that the 
distance the electron has traveled from the cathode at the time of the 
revei-sal is exactly doubled before the electron turns back to the cathode. 
Therefore, electrons which are already more than half way to the plate 
at the time of the reversal of the voltage reach the plate. Those which 
are less than half way to the plate are reversed and return to the cathode. 

A current wave corresponding to Fig. 12* 10 may be deduced if we 
assume that a relatively large number of electrons are emitted at a uni¬ 
form time rate but that space charge is still negligible. We must now 
consider the number of electrons in motion and their average velocity. 
The development is shown in Fig. 12-11. To this electronic current is 
added the displacement current. Because of our assumption of a square 
voltage wave the displacement current takes the form of sharp impulses 
iSowing only at the time of voltage reversal. 

The negative electronic current which flows during part of each cycle 
is due to the electrons which nearly reach the plate and return to the 
cathode with considerable velocity only after a relatively long time 
interval. 

Figure 12-12 shows a similar condition in which the transit time is a 
considerably larger portion of a cycle. Curves of distance, voltage, and 
current are developed by the methods used in Figs. 12-10 and 12-11. 

The above development shows that the current wave form need not 
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resemble the voltage wave form. It suffers, however, from three rather 
important limitations. The square wave form assumed is neither 

r"iG. 12*11 Development of current in a diode having finite transit time, when a 
large number of electrons is considered. Again the effect of space charge is neglected. 

desirable nor readily realized in practice. The effect of space charge is 
neglected, and no direct-current bias is assumed. That is, the present 

Plate 

Fig. 12*12 Development of electron current at still higher frequency than that of 
Fig. 12*11. 

development is based upon the so-called large signal theory. We shall 
now consider mathematically a case in which these limitations are 
removed. 
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12*5 Transit Time Effects in Triodes 
We have already shown that the current density in the space between 

two parallel plates is uniform and equal to the Maxwellian form 

dD 
i = pt; + — [12.37] 

dt 

Under direct-current conditions of a constant applied voltage the 
current i is constant and dD/dt is equal to zero. The product p!? is uni¬ 
form over the volume, and regions of high charge density correspond to 
regions of low velocity, and conversely. That is, in the neighborhood 
of the plate where the velocity is high the charge density is low, and in 
the neighborhood of the cathode the velocity is low and the charge 
density high. 

It is next appropriate to consider a plane parallel triode such as is 
shown in Fig. 12* 13. The grid mesh is assumed to form an effective 

Directions are of Electronic Motion 

Fig. 12* 13 Negative grid triode at high frequency. 

equipotential plane, and the current from cathode to plate must be 
considered in two components. One current equal to pv + (dD/dt) 
flows in the grid-cathode space, and a current of the same form flows 
in the grid-plate space. Under direct-current conditions dD/dt is equal 
to zero, and if the grid is biased negatively the net current to the grid 
is zero. Accordingly the product pv is the same in the grid-plate region 
as it is in the grid-cathode region. 

Now let us consider such a triode in which no alternating voltage 
exists betwfeen plate and cathode, but a small voltage of very high fre¬ 
quency is applied to the grid. The bias voltages are within the normal 
linear operating range of the tube so that all conditions are typical of 
class A amplification except that the frequency is very high. 
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Again it is necessary to consider the grid current as the sum of the 
grid-cathode and the grid-plate currents. Thus the effective grid current 
is zero only if these two currents are equal and opposite in phase. The 
displacement current obeys the ordinary relationship and so may be 
calculated from the low-frequency capacitance. Our primary interest 
must be focused upon the electronic or conduction current which may 
have components both in phase and in quadrature with the voltage. 

During the time that the grid voltage is swinging in the positive direc¬ 
tion the current leaving the cathode is increasing. The additional 
electron flow which comprises the grid-cathode current Ik does not reach 
its maximum value until somewhat later than the maximum value of Eg 
This is similar to the cases of Figs. 12*11 and 12*12. Moreover, the 
grid-plate current does not reach its maximum until a still later time, 
owing to the finite velocity of the electron cloud. The grid current, 
which is the difference between the grid-cathode and gride-plate currents, 
is shown as Ig in Fig. 12*13. It is seen to have a considerable component 
in phase with the voltage. The main component of the current is such 
as would flow in a capacitive reactance. 

The physical situation may be condensed into this simplified state¬ 
ment. During the time the grid is more positive than normal, the 
number of electrons approaching the grid is greater than the number 
leaving, and work is required. During the next half cycle when the 
grid is more negative than normal, the number of electrons leaving the 
grid toward the plate is greater than the number approaching from the 
cathode, and again work is required. It can be shown that the power 
absorbed from the grid circuit appears as heat at the plate owing to 
the fact that the electron velocities are increased by the action of the 
grid. 

Ferris* presents a very simple and ingenious method for developing 
the magnitude of the input conductance. He argues that the total 
grid current is proportional to the frequency / and to the transit time t 
since these things determine the existence of a grid current. Further, 
the grid current must be proportional to the grid voltage Eg and to the 
transconductance Using an undetermined coefficient Ki to express 
the magnitude of the effect we write 

Ig = KiEgOmft [12*38] 

and 

~ [12*39] 

* W. R. Ferris, ** Input Resistance of Vacuum Tubes as Ultra-High-Frequency 
Amplifiers,” Proc. IRE, 24,81, January, 1936. 
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From Fig. 12*13 it is seen that the grid current arises as a diiference 
between two sinusoidal waves which are almost but not quite in time 
phase. As the frequency becomes higher this deviation from phase 
opposition becomes greater and the effective current Is proportional 
to frequency as shown by equation 12*39. As the two components 
of current become more and more out of phase with the applied volt¬ 
age the resultant current ig deviates more and more from its quadra¬ 
ture relation with the voltage. This angle of deviation, designated B 
in Fig. 12*13, is also proportional to frequency. Because B is small we 
are justified in the approximation 

^ sin ^ [12*40] 

We may therefore write (? = F^sin^ps^ YJB = FfliiL2/orfinally 

Q = [12.41] 

where K = K\K2 and G is the effective input conductance. 
In the development of equation 12*41 no definite assumption was 

made as to the division of the transit time in the grid-cathode and grid- 
anode spaces. Accordingly K may depend upon this factor as well as 
upon the geometry and size of the tube, and the applied voltage. In 
common with equation 12*28 it gives the input conductance proportional 
to the square of the frequency. Thus it is impossible to segregate con¬ 
ductance due to transit time from that due to lead inductances by any 
simple experimental method. 

North* develops an equation of the same form as 12*41 with numerical 
coefficients by a comprehensive mathematical treatment. 

The mathematical difficulties which arise in a complete solution of 
problems involving transit time are very great. Llewellynf has pub¬ 
lished solutions to a number of problems concerning vacuum tubes 
at high frequencies, but the results achieved are extremely complicated. 
He finds it necessary to resolve the space charge, electron velocity, elec¬ 
tric intensity, and current density into direct and alternating components 
as was previously done for the total current and voltage. 

A number of interesting conclusions result from these solutions. One 
of the most startling is that a plane parallel diode shows a negative 

* D. O. North, “ Analysis of the Effects of Space Charge on Grid Impedance, 
Proc. IRE, 24, 108, January, 1936. 

t “ Vacuum Tubes Electronics at Ultra-High Frequencies,^' IRE, 21, 1532; 
Phase Angle of Vacuum Tube Transconductance at Very High Frequencies, IRE, 

22, 947; “ Note on Vacuum Tube Electronics at Ultra-High Frequencies," IRE, 23, 
112; " Operation of Ultra-High-Frequency Vacuum Tubes,” Bell System Tech, J,, 
14, 632; ” Equivalent Networks of Negative Grid Vacuum Tubes at Ultra-High 
Frequencies,” ibid., 15,575. 
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conductance or resistance for certain values of frequency. The most 
favorable is that for which the transit angle is approximately 450®. 
That is, the time of flight is equal to the time required for 1-^ full cycles 
of the wave. Negative resistances are also achieved for higher frequen¬ 
cies corresponding to 2^f 3^, etc., cycles, but conditions for oscillation 
are less favorable. An oscillator applying this principle is described in 
Chapter 15. 

Another rather surprising result of these analyses is that the alter¬ 
nating plate current is non-siniLsoidal even though the grid voltage is 
sinusoidal; no electrons arc captured by the grid, and all conditions 
are favorable for linear operation at low frequency. This result comes 
about because of the variable velocity with which electrons reach the 
plate. The square-wave analysis of a diode previously presented leads 
to a similar conclusion. 

Benham* has carried out studies similar to those of Llewellyn. In 
addition to the equation for the resistance of the plane parallel, space- 
charge-limited diode, he prcisents formulas 
for the input and output impedance of 
triodes at high frequencies. lie also de¬ 
velops precise coefficients for the trans¬ 
conductance and amplification factor of 
cylindrical triodes at low frequencies. 
These results are deduced by a direct ap¬ 
plication of equations published by Max- 

well.f 
The results obtained by Llewellyn and 

Benham are complicated and difficult to 
interpret. They are, however, of funda¬ 
mental importance, and it is expected that 

Fig. 12-14 Circuit equivalent 
. . . - Ml 1 1 vacuum tube for moderately 

sunpler approximation forms will be de- high frequencies. 
veloped which will find wide application. 
The results are important in that they establish definite limits of low- 
frequency technique. 

A step toward the simplification of the results of transit time calcula¬ 
tions has been taken by Llewellyn. | He presents a modified equivalent 
plate circuit theorem which includes the effects of interelectrode capaci¬ 
tances and of transit angles not exceeding 30°. The effects of lead 
inductance are neglected. The circuit diagram is shown in Fig. 12*14, 

♦ W, E. Benham, “ A Contribution to Tube and Amplifier Theory,” Proc, IRE, 
26, 1093, September, 1938. 

t Clerk Maxwell, Electricity and Mctgnetism, Oxford University Press, 1891. 
t F. B. Llewellyn, “ Equivalent Networks of Negative Grid Vacuum Tubes at 

Ultra High Frequencies,” BeU System Tech, J,, 15, 575. 
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and the co^cients which apply are presented in Table 12*1. These 
expressions are considerably simplified if the ratio of grid-plate to cath¬ 
ode-grid transit time approaches zero. The coefficients which apply 
in this case are given in Table 12*2. Usually this approximation is 
sufficiently accurate in practice. 

TABLE 12*1 

Let ^cg^f OgpffCcp^ = capacitances of cold tube. 

y = ~ = ratio of grid-plate to grid-cathode spacing. 
Xo 

Tp 

Tc 
= ratio of grid-plate to grid-cathode transit time. 

Then 

M = -iCy - h^)(l + /i) - 2h^ + 

-AT = (y - (9 + 44/i + 45/i2) - 51^2 _ jqS/i® - 27h^ + 27h\ 

I Moy 

‘+*'•*'7^ r. ,, 3 1 
. l-i-Af+Ao JL 2v-h^\ ’ Cep — ^Cept I t _l_ I 

^ M + MO 

Tp - same as at low frequencies. 

Ccgi 
i + y+^3 

. 1+Af + MoJy 

= r ^p(y - 
L46mo(1+M + mo)M2, ][ 

CJgp *“ Cgpt 

fgp “ j^; 

I , Moy " 

. 1+M + mo J' 
rp(v - h^) 

,46mo(1 +M+m) :][- iSMoftn 
y - ft’J 

iLUweUyn^ courtesy of BeXl System TecK •/'•) 

I2'6 Noise in Vacuum Tubes 

Maxwell’s equations are derived on the assumption that electricity is 
infinitely divisible. They apply to a majority of the problems wffich 
are important to electrical engineers but fail where diipensions of atomic 
order are of importance. Specifically, results involving very small 
distances or very small electrical quantities are not generally valid. 

Faraday’s experiments with electrolysis led him to the conviction that 
there is a smallest possible electrical quantity. Later Sir J. J. lliomson 
identified this quantity with the charge of the electron and determined 
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TABLE 12-2 

Let Cea>, Cgpi, Ccpi = capacitances of cold tube. 

y = « ratio oi g — pio c ^ g spacing. 
Xo 
T 

= ratio of g — ptoc — g transit time. 

Then, when h-*0: 

Cev 
+ y + MO 1 

+ il/ + MoJ 
Tp = same as at low frequencies. 

r, r 1 +y + mq1 . 
Li+iy + Md 

rce = r_i 
80 MO Ll + 

[r 
Cgpt 

P_11? 
5 MO 

+ iv + i 

±£2_’|. 
+ iy + MoJ 

+ y+ Mo~j ^ 

+ iy + MoJ 

Ll + + MoJ 
(Llewellyut courtesy of Bell System Tech. J.) 

the ratio of the electronic charge to mass. The electronic charge was 
determined by Millikan and others and is now regarded as one of the 
basic physical constants. 

We have seen in Fig. 12-9 that a uniform stream of electrons from 
cathode to plate in a diode does not constitute a steady current. Each 
individual electron constitutes a component of current which increases 
with time as the electron travels from cathode to plate and suddenly 
falls to zero when the electron strikes the plate. Accordingly we are not 
surprised to discover that vacuum tubes which have no input signal 
give a small output consisting of equal voltages over a wide band of 
frequencies. The magnitude of this output may be calculated from 
fundamental considerations and is accurately verified experimentally. 

Closely associated with this unwanted or noise output from vacuum 
tubes is the noise produced by all passive elements, such as wire coils, 
which have resistance. The electrons within such conductors are 
stated by the Brownian or thermal agitation of the molecules. This 
random vibration of the electrons within the metal is closely analogous 
to the vibration of gas molecules within a closed chamber. The force 
acting on a unit area of such a container is not constant but varies in a 
perfectly haphazard fashion with time, depending upon the number of 
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molecules which chance to strike it in some short interval of time. 
Similarly the potential difference between the ends of a resistor is not 
zero but varies from instant to instant depending upon the motion of the 
electrons within. 

The magnitude of this effect due to thermal agitation of the electrons 
may be calculated by at least two basic methods which yield the same 
result. One development conceives a resistor connected to an ideal 
capacitance microphone which is subjected to the molecular bombard¬ 
ment of the air. This bombardment of the microphone produces a 
voltage which dissipates power in the resistor. Since the laws of thermo¬ 
dynamics forbid one portion of a passive system to be heated at the 
expense of another it is necessary that the resistor generate a voltage 
equivalent to that of the microphone. This may be thought of as a 
force which actuates the microphone as a loud speaker and so dissipates 
power. 

The second development employs a long dissipationloss transmission 
line terminated at either end in its characteristic impedance. Standing 
waves of the familiar form are postulated, and the limiting case as the line 
approaches infinite length is taken. 

In either event a definite power output is deduced. This may be 
expressed in a variety of ways, but one of the most convenient is the 
statement that any resistor delivers to an equal resistor a power of 

P =,1-36T' X 10“^^ watt per degree Kelvin per cycle of 
band width [12*42] 

For a temperature of 300° K (27° C), approximately normal room 
temperature, this expression becomes 

P == 4.1 X 10“^^ watt per cycle of band width [12*43] 

The effects of thermal noise may also be expressed in terms of the 
equivalent rms voltage Vt produced by a single resistor. This may 
be written for a temperature of 27° C 

?! - 1.64^5 X l(r20 [12-44] 

where R is the resistance over a frequency band F cycles wide. 
The factor of 4 which seems to have disappeared between equations 

1243 and 12-44 is explained by the fact’ that a voltage in series with a 
resistor R delivers a maximum power to another resistor also equal to R, 
and the power is e^/4ij. 

Equation 12-44 is plotted in Fig. 12-15 for the ordinary condition of 
300® K or 27° C. la practice deviations of temperature from this 



NOISE IN VACUUM TUBES 449 

average figure are seldom large enough to warrant the use of a correction 
factor with these curves. 

It is convenient to express the noise produced by vacuum tubes in 
terms of the resistor in its grid circuit which would give the same noise 
output power. Since noise consists of a random distribution of all fre¬ 
quencies, addition is always carried out on a power basis. The above 
definition is equivalent to saying that tube noise is expressed in terms of 
the resistor in the grid circuit which will double the noise output power. 

Fig. 12-16 Thermal noise level as a function of input resistance and 
frequency range. 

It is well known that tubes which operate with complete space-charge 
limitation of plate current are less noisy, that is, produce less random 
output power, than tubes which operate with less copious emission. It 
is also true that the equivalent noise resistance of a tube is reduced as the 
ratio of transconductance to plate current is increased. This last fact 
is explained on the basis that the noise due to a given resistor in the grid 
circuit is amplified more as the transconductance is increased and that 
the noise due to the plate current in the tube is therefore less important. 
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In low-frequency apparatus the input signal may be presented to the 
grid of the first tube of the system by means of a step-up transformer. 
The impedance presented to the grid of the first tube is thus made high 
across the band of frequencies in question, which is another way of say¬ 
ing that the useful signal or its associated thermal noise is made to 
override the effects of tube noise. Any signal which is appreciably more 
powerful than thermal noise is then capable of reception by the applica¬ 
tion ot a sufficient amount of amplification. A signal which is weaker 
than thermal noise is useless. 

At higher frequencies the required band widths are often large. In 
the following chapter it will be shown that low impedances are unavoid¬ 
ably required if wide frequency bands are to be transmitted. It is 
therefore difficult if not impossible to make the effects of tube noise 
negligible in comparison to those of thermal noise. Tubes having high 
transconductance and especially designed to reduce the effects of noise 
must be used if the best possible results are to be obtained. 

The Klystron, discussed in Chapter 17, presents problems of tube 
noise that are quite different from those associated with ordinary tube 
structures. At the present time the Klystron is appreciably more noisy 
than a low-frequency tube of comparable performance. Accordingly 
the Klystron, in its present form, is not desirable as an amplifier of 
very small signals. 

PROBLEMS 

12«1 Calculate the equivalent rms terminal voltage due to thermal noise of a 
600-ohm resistor at 27° C over a frequency band 3500 cycles wide. 

12*2 Calculate the equivalent rms terminal voltage due to thermal noise of a 
600-ohm resistor at —73° C over a frequency band 7000 cycles wide. 

12*3 Calculate directly the power delivered by the resistor of problem 12*1 to a 
similar resistor at the same temperature. Verify by application of equation 12-43. 

12*4 Calculate the power delivered by the resistor of problem 12-1 to a 200-ohm 
resistor at the same temperature. Verify the result by calculating the power de¬ 
livered to the 600-ohm resistor by the 200-ohm one. 

12*5 A vacuum-tube amplifier transmits a band 100,000 cycles wide. It delivers 
a power output of 0.001 watt with the grid of the first tube short-circuited, 0.0015 
watt with 1000 ohms in the first grid circuit, and 0.0025 watt with 3000 ohms in the 
first grid circuit. Express the noise rating of the first tube. 

12*6 A particular vacuum tube operates with a fixed plate potential which is 
500 volts more positive than the cathode. ‘Calculate the velocity in meters per 
second with which an electron reaches the plate. 

12*7 How large a discontinuity in the plate current occurs at the instant an 
electron reaches the plate in problem 12-6? 

12*8 A high gain broad-band amplifier having considerable noise output is con¬ 
nected to the vertical plates of a cathode-ray oscfiloscope. The swe^ circuit which 
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provides the horizontal deflection is adjusted to a very low frequency so that only one 
trace at a time is visible on the screen. What sort of trace is to be expected? Sketch 
roughly. 

12*9 Repeat problem 12-8 with the exception that the amplifier is sharply tuned. 

12*10 Repeat problem 12*8 except that the horizontal deflecting sweep is fairly 
rapid so that many traces are superimposed upon the screen at one time. 

12*11 Assume a diode subjected to a square voltage wave such as is shown in 
Fig. 12-12. Let the electron transit time be ij cycles. Assume a uniform rate of 
electron emission, and sketch a curve covering several complete cycles so as to 
approximate the steady state of current flow. Estimate the phase relation of the 
fundamental components of voltage and current waves. Is the equivalent resistance 
positive or negative? 

12*12 Show that the two forms of the equivalent plate circuit theorem shown in 
Figs. 12-1 and 12-2 deliver the same current to the load impedance Z provided that 
the normal identity /a = is valid. 

12*13 A certain triode has a grid-to-plate capacitance Cq and an impedance Z 
between grid and cathode terminals. Develop the effective plate-to-cathode imped¬ 
ance of this tube in terms of these constants and the vacuum-tube parameters. 

12*14 A coil and condenser having negligible loss form a parallel resonant circuit 
at 50 megacycles. They serve to feed the grid of a pentode 1851 (see Fig. 12-7). 
If the Q of the combination is to be 50, determine the constants of the coil and con¬ 
denser. (In such a parallel combination Q = E/«L = RuC), 

12*15 Two radio frequency tetrodes are used as small signal amplifiers. They 
differ only in the distance from the screen grid to the plate, all other dimensions 
being the same. The plate and screen grid voltages are equal to each other and are 
the same for both tubes. How will transit time affect the comparative performances 
of these two tubes? 

12*16 A triode operates with no alternating plate voltage and with a voltage of 
very high frequency applied to the grid. What becomes of the power transferred to 
the electron stream by the grid? Why? 



CHAPTER 13 

AMPLIFIERS 

13*1 Introduction 

One of the first and probably still the most important application 
of vacuum tubes is amplification. In spite of innumerable other appli¬ 
cations, more tubes are used in amplifiers than in any other way. The 
theory and design of amplifiers, particularly those for low- and inter¬ 
mediate-frequency ranges, is better understood than the high-frequency 
applications. It is, therefore, important that we consider the subject 
carefully. 

It will be assumed that the reader has an elementary knowledge of 
the general subject since space does not permit a complete review of the 
topic here. We shall review the operation of the audiofrequency ampli¬ 
fier first, since this analysis is basic to a discussion of high-frequency 
amplifiers. 

The subject of amplification may be approached advantageously from 
the standpoint of the requirements to be met. Typical design require¬ 
ments include: 

Efficiency 
Output voltage 
Output current 
Input impedance 
Output impedance 
Highest frequency to be amplified 
Lowest frequency to be amplified 
Allowable harmonic distortion 
Allowable frequency distortion 
Allowable phase distortion 
Allowable noise output 
Necessary constancy of gain 
Method of gain control 
Stability with respect to mechanical shock 
Stability with respect to temperature 
Power consumption 
Size 
Weight 
Cost 

From the above list it is clear that the design of an amplifier is not 
simply a matter of substituting in a formula. Even when an electrical 



AUDIOFREQUENCY VOLTAGE AMPLIFIER 453 

design is complete and satisfactory, the engineer has only begun his 
problem. When the circuit elements and tubes have been chosen 
and a mechanical design is evolved, then the job may be considered 
complete. 

In amplifiers for low-frequency application it is usually possible to 
make the mechanical design with little consideration for the schematic 
diagram, and vice versa. At these frequencies the effect of leads is not 
vital, and the mechanical design should be for maximum convenience 
and ease of service. In high-frequency amplifiers, however, such is not 
the case. The success or failure of a unit depends at least as much upon 
the mechanical arrangement as upon circuit design. In particular, 
problems of shielding and of connections to the chassis or panel are of 
paramount importance. Although no method is known at the present 
time which will guarantee the success of an amplifier, there are a number 
of precautions which greatly reduce the hazard of failure. By success 
is meant an amplifier which meets the design requirements. An ampli¬ 
fier is unsuccessful if it oscillates or is otherwise unable to satisfy the 
necessary requirements. 

13-2 Audiofrequency Voltage Amplifier 

Sound waves having frequencies between 20 and 20,000 cycles per 
second are audible to a majority of human ears. Accordingly, this fre- 
(juency range has come to be known as the audiofrequency band, and 
apparatus for transmission of electrical currents of these frequencies is 
referred to as audiofrequency apparatus. The terms voice frequency 
and speech frequency are used to designate the same or a somewhat nar¬ 
rower frequency band. 

The requirements placed upon an audiofrequency amplifier are seldom 
severe. Ordinarily the harmonic distortion introduced may be a few 
per cent of the fundamental signal. Frequency distortion must be con¬ 
trolled but usually may be as much as 10 per cent in the total band, and 
near the edges of the band is seldom important. Phase distortion may 
be audibly detected only if present in large amounts and is consequently 
seldom written as a design requirement. An amplifier satisfying the 
normal requirements on frequency distortion produces a phase distortion 
that is negligible from an audio standpoint. 

Almost any type of tube will serve as an audiofrequency amplifier. 
Triodes, tetrodes, and pentodes are all in wide use, although the tetrode 
is now assuming a relatively insignificant position. The dual tubes 
consisting of two independent high-mu triodes in a single envelope are 
extremely convenient for many applications, since they permit the 
assembly of a high-gain amplifier in a minimum of space. 
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13*3 Coupling Methods for Audiofrequencies 

It is possible by means of rather elaborate voltage supply arrange¬ 
ments to connect the plate of each tube to the grid of the following 
tube. The resulting system responds to signals of zero frequency. 
That is, the direct-coupled amplifier is also a direct-current amplifier. 
Aside from the difficulty of achieving this result it is often an undesirable 
one. In a high-gain amplifier some smaU change in the cathode condi¬ 
tions of the first tube may result in such a large effective voltage in 
that gKd circuit as to overload the last tube. 

The coupling methods in ordinary use are the transformer, the 
resistance-capacitance combination, and the choke-capacitance com¬ 
bination. Of these the resistance-capacitance combination is by far the 
most common, with the transformer coupling still of considerable im¬ 
portance. The so-called impedance coupling using a choke and con¬ 
denser is largely obsolete. 

C C 

Fig. 13*1 Conventional three-stage resistance coupled amplifier. 

C is the plate-grid coupling condenser. 
Co is the cathode by-pass condenser. 
Cd is the plate by-pass condenser. 
Ro is the cathode bias resistance. 
Rd is the plate voltage dropping resistance. 
Rg is the grid leak resistance. 
Rl is the plate load resistance. 

Figure 13*1 shows a conventional three-stage resistance-capacitance 
coupled audiofrequency amplifier. Hie operation of the various 
components of this circuit will be discussed in connection with this 
schematic diagram. At the frequencies involved the effects of induc¬ 
tance and of interelectrode capacitance are essentially negligible. The 
plate current in flowing through the cathode resistor Rg makes the 
cathode more positive than the grid with the result that no electrons 
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reach the grid. Accordingly, we are justified in calculating the per¬ 
formance of the circuit on the basis of zero grid current. The plate 
current in turn is controlled by the voltage which exists between grid 
and cathode. 

Over most of the band of frequencies to be amplified, i.e., the mid¬ 
band range, the reactances of all condensers are negligible. That is, 
from the a-c standpoint all cathodes are grounded, all plate load resistors 
return to ground, and each plate is connected directly to the following 
grid. 

At high frequencies the amplification falls off from the value at the 
middle of the band because of the effect of stray capacitances not shown 
in Fig. 13*1. A capacitance in the order of 50 ixixl due to wiring, sockets, 
tube capacitances, etc., is effectively in shunt with the load resistor Rl. 
At these higher frequencies the effective load impedance is the parallel 
combination of these two impedances and falls off approximately 
inversely with frequency. 

At low frequencies the reactance of the coupling condenser is no 
longer negligible in comparison to the grid leak resistance Rg. Thus 
only a fraction of the voltage developed at the plate of one tube appears 
across the grid leak of the following tube. At lower and lower fre¬ 
quencies this voltage-divider action becomes more and more pro¬ 
nounced. Two additional effects are observed. The cathode by-pass 
condenser Cc no longer has negligible impedance so that the grid-cathode 
voltage no longer equals the voltage across the grid leak. This cor¬ 
responds to a reduction in amplification. However, the plate decoupling 
filter Cd acting in the plate circuit may offer appreciable impedance 
tending to compensate the other two effects which produced a reduction 
in gain. 

13-4 The Decibel 

The performance of amplifiers is most readily stated in terms of the 
decibel* Originally the term was reserved as a measure of power ratios. 
The power at two points in a system is defined to differ by 10 db if the 
ratio of the two powers is 10. Specifically 

101ogxo^=Ar (db) [131] 

The decibel was originally evolved in connection with lines and other 
constant-resistance networks. In such networks the resistance across 
which voltage is measured or through which current flows is everywhere 

* Pronounced I b6ll, abbreviated db. The decibel is related to the neper by 
the equation iV(db) * 8.7 n (nepers). 
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the same. In a transmission line, for example, a certain percentage 
reduction in the current is necessarily associated with an equal per¬ 
centage reduction in the voltage, and vice versa. Accordingly the 
power varies as the square of either current or voltage. Under these 
conditions it is seen that equation 13*1 is equivalent to 

20 logic ^ =iV db [13-2] 

20 logic ^ db [13-3] 

In the voltage amplifier we are no longer interested in power, and the 
impedances involved are all high and more or less indefinite. It is con¬ 
venient, therefore, to use the definition of equation 13*2 without any 
qualification as to the impedance involved. This definition will be used 
throughout the remainder of the chapter. 

For convenience a brief table of equivalents between voltage ratio 
and decibels is presented below. 

TABLE 13*1 

Voltage Ratio Decibels 

1.12 1.0 
1.41 3.0 
2.0 6.0 
5.0 14.0 

10.0 20.0 

From this table the voltage ratio corresponding to any number of 
decibels may easily be calculated mentally. If two voltage ratios are 
to be multiplied, as is necessary to determine the overall amplification 
of two stages, the decibel figures corresponding are added. Division is 
accomplished by subtraction of the decibel equivalents. For example, 
a voltage ratio of 5 is equal to 10/2 and, therefore, corresponds to 
20 minus 6 or 14 db. The voltage ratio corresponding to 31 db is 
evaluated by setting 31 = 20 + 20 — 6 — 3 db. The corresponding 

,, . 10X10 
voltage ratio is 

Z X 1.4X 
= 35. 

It is thus unnecessary to use tables or slide rule for any except the 
most exact computations. A little practice with the above method 
makes possible rapid mental calculations which are accurate to ^ db. 

The term gain has been used up to this point as being practically 
synonymous with amplification. Hereafter it will be xised to represent 
the ratio of output to input voltage when expressed in decibels. The 
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gain is thus zero if the output is equal to the input voltage. If the 
output is less than the input, the gain is negative; if greater, the gain 
is positive. 

Fig. 13-2 A reactance-frequency chart. 

13*5 Reactance Charts 

Logarithmic charts of reactance versus frequency have been available 
for some time. Their use, however, is by no means so general as it 
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should be. Figure 13-2 shows a typical chart of this type. The ab¬ 
scissa is universally scaled in frequency. The ordinate is usually scaled 
in ohms reactance, although it is sometimes scaled in micromhos sus- 
ceptance. The equation Xl - (*>L appears as a straight line on a graph 
of this kind, the location of the line depending upon the value of in¬ 
ductance L. Similarly, the equation Xc = l/a>(7 appears as a straight 
line. Since the exponent of w is +1 in the first case and —1 in the 
second, it follows that the slope of the lines for inductance is +1 and 
the slope of the capacitance lines is —1. 

The design of amplifiers is greatly facilitated by the use of such charts. 
The coupling condenser and grid leak combinations necessary to obtain 
a prescribed low-frequency response are readily obtained directly from 
the chart. Similarly, the lowest frequency at which the shunting 
capacitance seriously decreases the amplification is easily found. Cal¬ 
culation of the other elements Cc and Cd is similarly facilitated. 

13*6 Consideration of a Single Stage 
Figure 13 3 shows a single-stage amplifier isolated from Fig. 13-1 with 

the added simplification that Cd is indefinitely large. In practice this 
result is often achieved by replacing the condenser Cd by a glow dis¬ 
charge tube such as the VR-150. Such tubes act substantially as 
infinite condensers and so satisfy our requirement. The value of Cc is 
also assumed to be very large. 

Let ys develop the gain and phase shift characteristic of the amplifier 
of Fig. 13 3 at various frequencies.* We shall find it enlightening to 
extend the results of certain calculations to frequency regions in which 
they are incorrect. That is, we shall investigate first the several 
asymptotic relations that exist and shall fiU in the details of this charac¬ 
teristic later. 

Consider first Fig. 13 *3^, which holds for the mid-band frequency 
range. The output voltage is 

and 

but 

72 
R^iRg 

Rq -j- Rg 

72 R{yRg 

Vt'’^”^Ro + Ro 

/2o 
Rl^p 

Rl + Tp 

[134] 

[13-5] 

* The equivalent plate circuit theorem as used here is in the form of a constant- 
current generator ^m7i in shunt with the dynamic plate resistance fp. 



CONSIDERATION OF A SINGLE STAGE 469 

(a) One Stage of Resistance Coupled Amplifier 
Using a Triode 

"TTT_ 
- T rr 

r? 
(b) Exact Equivalent Circuit 

- r- 

5 L 1*. 1 1 (' 

^ 14 r t‘ 

(c) Modified Exact Equivalent 

Circuit 

(d) Circuit Correct for Mid-Band 

Frequencies 

(e) Circuit Correct for Upper Edge 

of Band 

(f) Circuit Correct for Lower Edge (g) Modified Circuit for Low 

of Band Frequency Calculation 

Fig. 13-3 Development of performance of a one-stage resistance-coupled amplifier. 

Fi is input voltage. 
F2 is output voltage. 
C is coupling capacitance. 

Tp is plate resistance of the tube. 
gm is transconductance of the tube.. 
Rl is the plate load resistance. 

Rg is grid leak resistance. Rq = -r—• 
Rl + Tp 

CpiB the effective capacitance to ground of plate plus socket and wiring. 
Cg is the effective capacitance to ground of grid plus socket and wiring. 
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SO 

z? 
Vi 

Qm 

RjjTpRg 

Rl + Tp 
RiXp 

Rl + 
+ Rg 

_QmRh'^pRg_ 
Rl'^'p + Rg'^^p + RhRg 

[13-6] 

Equation 13-6 indicates a gain that is independent of frequency and 
depends only upon the transconductance of the tube and the various 
resistances present. Thus, on a gain vs. frequency diagram such as 
that shown in Fig. 134, equation 13*6 appears as a straight line. Gain 
at higher or lower frequencies will be less than that indicated by equa¬ 
tion 134. It is convenient to consider the gain at mid-band frequencies 

00 0) o 

(O 
JZ Q. 

Fig. 134 Universal gain and phase characteristic for a one-stage resistance- 
coupled amplifier. 

At the frequency/i 

At the frequency /2 

1 ___ R^jiRg 
Rq -|- Rg 

where Ct ^ Cg-{■ Cp. 

as a reference level of zero decibels. Hence equation 13-6 is the hori¬ 
zontal line drawn through zero decibels in Fig. 134. The gain at other 
frequencies outside the mid-band range will then be below this line 
on the diagram. 

Consider now Fig. 13*3e, which represents the equivalent circuit 
which applies at high frequencies. Let 

RqRq 
Rq + Rg 

and 
1 

ju)Ci 
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Then 

or 

As the frequency is indefinitely increased, the impedance Z of the 
shunting condenser Ct becomes very low in comparison to the resistance 
R. Thus, at extremely high frequencies, 

Z<^R 

and equation 13*7 becomes 

^2 y Qm 
[13-7a] 

Accordingly, the output voltage varies inversely with frequency. 
This condition is represented by the line of 45° slope at the right-hand 
side of Fig. 13*4. 

The correctness of this construction is best established by reference 
to Fig. 13*2. It is seen that the impedance vs. frequency curve of a 
condenser, plotted on logarithmic paper, is a straight line of slope — 1. 
In Fig. 134 a logarithmic frequency scale is used. The ordinate is 
also logarithmic as shown by equation 13-2. The actual slope of the 
line in Fig. 13*4 depends upon the scale chosen for ordinates. In the 
present case 20 db corresponds to a frequency interval of 10:1. From 
Table 13*1 it is seen that 20 db corresponds to a 10:1 ratio of voltage. 

At some particular frequency designated /2 the reactance of the 
shunting capacitance is equal to the impedance of the various resistances 
in parallel. This is indicated by the intersection of the line of 45° 
slope and the horizontal line of equation 13*6. Under this condition 
we know that the gain is reduced by 3 db from the mid-band value 
and that the phase shift is 45°.* At higher frequencies the gain curve 
rapidly approaches the asymptote just drawn, and the phase shift 
approaches 90°. At lower frequencies the gain curve rapidly approaches 
the horizontal asymptote and the phase shift approaches 0°. 

* If a resistance R and a reactance X=R are connected in parallel, the current pro¬ 
duced by a given voltage is 1 + jl times as great as that which would flow in the 

resistance alone. Thus the total current is 45° out of phase with, and is V2 times 
as great as, the current which would flow in the absence of the reactance. But in 
this case the voltage gain is proportional to the total impedance and therefore is 

I/V2 of its mid-band value. From Table 13*1 it is seen that a gain reduction of 
3 db must result. 
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Consider next Fig. 13-3/, which represents the equivalent circuit at 
low frequencies. Here 

or 

^2 = 
RoRg 

Yi RqRq 
[13-81 

As the frequency approaches zero the reactance of the coupling con¬ 
denser C becomes very high compared to the resistances Ro and Bg. 

Thus at very low frequencies Rq + Rg'^ and equation 13-8 becomes 
jut 

h 
Vi 

g^RoReijoiC) [13.8a] 

These same results may be obtained directly from Fig. 13*3g which is 
derived from Fig. 13‘3/ by application of Th4venin’s theorem. This 
condition is represented by the straight line of 46° slope at the left 
side of the diagram. A rise of 20 db corresponding to 10:1 voltage 
ratio is drawn for a frequency ratio of 10:1. 

At some particular frequency fi the reactance of the coupling con¬ 
denser C is equal to the sum of the resistances Ro and Rg. It is seen 
that this is the point at which the slanting asymptote meets the hori¬ 
zontal line. Again the gain is 3 db less than the maximum value, and 
again the phase shift is 45°, The behavior of the phase curve and the 
manner in which the gain curve approaches the asymptotes is identical 
with that at the upper frequency /j. 

The band width of an amplifier or other network is usually stated in 
terms of the frequencies/i and/a at which the gain falls or loss rises by 
3 db. A familiar and notable example of this is the series-resonant 
circuit in which the band Avidth is defined as fo/Q on the basis of a 
3 db reduction of current for a fixed value of voltage. 

The merit of the construction of Fig. 134 is that it is universally 
applicable to amplifiers in which the upper frequency /a exceeds the 
lower frequency fi by a ratio of 100 or more. Even if the ratio is only 
10 :1, the construction applies with very slight correction. 

llie upper and lower cut-off frequencies are readily calculated by the 
relations already stated. That is, the upper cut-off frequency /a is 
that one for which the reactance of the total shunting capacitance Ct is 
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equal to the combined resistance of Rq and Rg in parallel. The lower 
cut-off frequency fi is that one for which the reactance of the coupling 
condenser C is equal to the combined resistance of Rq and Rg in series. 

13*7 Effect of the Cathode Condenser 

The situation which exists when the reactance of Cc is not negligible 
is best regarded as simple negative feedback. Consider the circuit of 

---- 
(a) Actual Circuit (b) Equivalent Circuit 

Fig. 13-5 Circuit for analyzing the effective transconductance of a triode. An 
a-c voltage E is introduced in the grid circuit, and the plate is by-passed to ground. 

Fig. 13-Sa. A triode in which the plate is by-passed to ground is analyzed 
for its effective transconductance. From Fig. 13*56 we may write 

and 

which give 

or 

Ip = gm(E - Ek) 

Ek = IpZk 

Ip ^ QviE QmlpZk 

h. -- _ f 
E (1 + QmZk) 

[139] 

[13*10] 

Thus we see that the effective transconductance of the tube is reduced 
from its normal value by the ratio 1/(1 + gmZk)y where gm is the trans- 
conductance and Zk is the impedance in the cathode circuit. If no 
by-pass condenser is used so that Zk is simply the resistance giving 
suitable self-bias for linear operation, gmZk is often equal to unity. This 
is true for a large number of tubes, but is not a fundamental relation, 
and many pronounced exceptions exist. It is, however, a convenient 
approximation, for under these circumstances equation 13*10 tells us 
that the effective transconductance is half its normal value when no 
cathode by-pass condenser is used. 

The effective plate resistance is deduced in a similar fashion by refer¬ 
ence to Fig. 13*6, in which the grid is assumed short-circuited. Again 
it is seen that plate current flowing in the cathode impedance results in 
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a voltage in the grid circuit and so affects the result. The equations 
applying to Fig. 13-66 are 

4 = - - [13-11] 
rp 

and 

Eh = /pZfc [13-12] 

which gives, * 

/p = ~ [13-13] 

Y = rp(l + Zngm) = r' [13-14] 

Fig. 13*6 Circuit for analyzing the effective plate resistance of a triode. The grid 
is short-circuited, and an a-c voltage E is introduced in the plate circuit. 

That is, the effective plate resistance is increased in exactly the same 
ratio that the transconductance is reduced. This leads us to a very 
interesting general proposition. If the resistances R l and Rg are large 
compared to the normal plate resistance Vp of the tube, no significant 
loss of amplication results from the feedback of the ordinary self¬ 
biasing resistance. This is verified by reference to equation 13*6. 
When Rl'^Tp and Rg Vp, equation 13-6 takes the form 

Yl 
Vi 

gmTp = gLr'p = 

In the event that the load resistance is not large enough to satisfy 
the above condition the gain of the amplifier is reduced by the feedback 
action. A gain reduction anywhere between 0 and J.0 db may result, 
depending upon the particular conditions that exist. 

Since Rc is a relatively low resistance, usually in the order of 1000 
ohms, a very large capacitance Cc is required if the reactance is to 
be small compared to the resistance. Paper condensers are hardly 



EFFECT OF THE CATHODE CONDENSER 465 

practical for this application, but modem electrolytic condensers 
provide the required capacitance at moderate expense and in small 

size. 
The small amount of negative feedback which results from omission of 

the cathode condenser serves somewhat to stabilize the amplifier and 
to improve the linearity. When it is permissible to tolerate the rela¬ 
tively small reduction of gain, the omission is to be recommended. 
The weight, bulk, and expense of the amplifier are reduced and the 
possibility of failure of the condenser is removed. 

Fig. 13*7 Gain and phase characteristics due to a cathode by-pass condenser. 

Universal characteristic appl5dng to feedback produced by the cathode resistor 
Rc and the condenser Co. This characteristic is directly additive to Fig. 134. At 
the frequency /a, 

2'irf^Cc 

When a cathode by-pass condenser is used there is, over some band 
of frequencies, a transition region in which the amplification is reduced 
and a phase shift is introduced. At higher frequencies the reactance 
of Cc is negligible, and the full transconductance of the tube is effective. 
At lower frequencies the admittance of Cc is negligible and the gain is 
constant at the reduced value, which depends upon the cathode resistor. 
In many cases this transition region may be made lower in frequency 
than the low-frequency cut-off, /i, shown in Fig. 134. In any event 
the effect illustrated in Fig. 13*7 is applicable to Fig. 134 as a direct 
addition. 

The magnitude of the phase shift is proportional to the magnitude of 
the gain change. The values shown in Fig. 13-7 are correct for the 
special case of 6 db change. The frequency fs is practically equal to 
that at which the reactance of the condenser Cc is equal to the associated 
resistance Re. 
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13*8 Effect of the Plate Condenser Cd 
The plate-circuit condenser Ca serves two functions which are distinct 

although related. Its primary function is to return the alternating 
component of the plate current to the common ground through a short 
and direct path. In this application it need only have an impedance 
low compared to that of the B supply, for all frequencies to be amplified. 
If the impedance of Ca is not low, appreciable currents flow in the B 
supply and other associated circuits. See Fig. 13*1. 

The second function of the plate by-pass condenser is as a decoupling 
element. That is, the resistors Rd and the condensers Cd serve as a kind 
of low-pass filter to prevent coupling of the output and input stages 
through the B battery supply. It is common to specify these elements 
purely by rule of thumb. This procedure is unwise and entirely un¬ 
necessary since reasonably accurate calculations of the required values 
may be made without difficulty. 

Let us examine the circuit of Fig. 13-1. There is a tendency for 
part of the alternating current in the plate circuit of the last tube to flow 
through the two decoupling resistors producing a voltage in the grid 
circuit of the second tube. This voltage is amplified and, if it is of 
appreciable magnitude, produces in the last tube a plate current com¬ 
parable to that originally present. If the effect is large enough the 
last two tubes may act together as an oscillator. Even if the coupling 
is reduced considerably from the value which causes oscillation it may 
contribute undesirable undulations or ripples in the overall curve of 
gain V8, frequency. 

In Fig. 13-1 let us assume that the cathode by-pass condensers are 
fully effective and that the B supply has a high internal impedance. 
Let each stage have a voltage amplification ratio equal to N, Accord¬ 
ingly some voltage v impressed upon the grid of the second tube results 
in a voltage Nv upon the grid of the last tube and a voltage across 
the final load resistor Rl. The resulting current in the final load resistor 
is therefore N^v/Rl- This is the current delivered to the decoupling 
filter of Fig. 134 which is drawn more simply in Fig. 13*8. 

To avoid the possibility of oscillation it is necessary that v', the output 
of this equivalent filter, be less than v, the assumed voltage. Safe 
design calls for a value of v' some ten times smaller than v, and conserva¬ 
tive design calls for a reduction in the order of 100 :1. 

Let us calculate the voltage attenuation of this network on the assump¬ 
tion that Xy the reactance of each condenser, is small in comparison 
with the associated resistance i2d. This is a necessary condition if the 
loss is to be sufficiently high, and it greatly facilitates the calculation 
which may be made on the basis of a sequence of voltage dividers. 
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Here, as often happens, it is simplest to develop the input voltage re¬ 
quired. We find 

Fig. 13*8 Elements effective in the decoupling network of the B supply in Fig. 
13*1. It is assumed that the cathode by-pass condensers are fully effective and that 

the internal resistance of the B supply is infinite. A current flows through the 

plate load resistance Rl of the last tube of Fig. 13-1 and delivers a voltage to the plate 
load resistance Rl of the first tube through the decoupling filter above. The 
effective admittance of the second tube in comparison to that of Cd is neglected. 

Combining the first three and equating to the fourth, 

EL + rp , vN^X —--£: -s- 

X^ rp Rl 
[13-19] 

Solving 
1 RIRl Rl + rp j 

[13-20] 

For conservative design we set v' = t>/100, or 

V - lOOr' [13-21] 

living 

inn ^ [13-22] 
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For a reasonable practical case using the triode 6F5 we have 

N = 50, Rl = 250,000 ohms, Vp = 50,000 ohms 

Let us set Rd = 25,000 ohms, a reasonable value here. Then equation 
13-22 becomes 

1 25® • 10® • 25 • 10^ 3 10® 

^ ® ■ 2500 X® 5 • 10^ 
[13-23] 

X® = 3.75 X 10® [13-24] 

X = 1.6 X 10® [13-25] 

That is, if the reactance of the condensers Cd is less than 1600 ohms, 
the loss of the filter is such that the voltage v' returned to the grid of 
the second tube is less than 1 per cent of the voltage assumed at that 
point. This condition is readily maintained to quite low frequencies. 
At such frequencies the situation is relieved by the action of the coupling 
condensers C which reduces the gain N, The magnitude of this gain 
reduction may be calculated by reference to Figs. 13-4 and 13-7. 

In amplifiers employing many stages, the filter network is sometimes 
more complicated, but the manner of making the calculations is the 
same. The importance of such calculations in amplifier design can 
scarcely be overemphasized. 

13*9 Variation of the Shunting Capacitance 

The' total shunting capacitance Ct used in Fig. 13*3e is composed of 
the plate-cathode capacitance of one tube plus the effective grid-cathode 
capacitance of the following tube. The effective plate-cathode capaci¬ 
tance is usually small and is closely equal to the value measured with 
the cathode cold. The effective grid-cathode capacitance, as shown in 
Chapter 12, is considerably greater than that observed on the cold 
tube. At low frequencies the grid-cathode capacitance Is modified by 
the action of the grid-plate capacitance. This action may readily be ex¬ 
plained in terms of the example just discussed. If the grid of the last 
tube in Fig. 13-1 is made more positive by 1 volt the plate is driven 
negative by 50 volts. Thus the potential difference of 50 -f 1 = 51 
volts exists across the grid-plate capacitance. A charging current 
N + 1 times as great as that required in the cold tube is thus required 
when the tube operates as an amplifier.. Thus the eflEective input capa¬ 
citance = (AT -f l)C0f NCgf for large values of N. In the 6F5 tube 
the gride-plate capacitance Cg/ is 2.5 mm/- With iV « 50 the effective 
input capacitance is approximately NCg/ « 125 MMf- 

Near the upper edge of the frequency band this effect is complicated 
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by the fact that the plate load on each tube becomes reactive and the 
input impedance of each tube becomes complex.* In general no tend¬ 
ency to oscillate exists, and the frequency at which this effect occurs is 
high enough so as to be well above the audio band. In amplifiers 
designed to amplify wider frequency bands it is the universal practice 
to employ tetrodes or pentodes. In these tubes the grid-plate capaci¬ 
tance is very low, and the input capacitance is therefore not affected 
in this way. 

13*10 The Video Amplifier 

In current television practice the so-called frame-repetition rate is 
30 cycles per second. That is, the entire scene is scanned 30 complete 
times in each second. Accordingly 30 cycles per second is the lowest 
frequency of importance in the video signal. The resolution of the 
system continues to improve as the upper frequency of the signal is 
increased without limit. Very satisfactory images are obtained, how¬ 
ever, if frequencies up to 3 or 4 megacycles arc transmitted. Thus we 
require that the entire band of frequencies from 30 cycles to 4 mega¬ 
cycles per second be transmitted equally well. In particular, the gain 
frequency characteristic of the video amplifier must be flat over this 
range. 

In practical amplifiers consisting of tubes coupled by complex net¬ 
works of resistances, inductances, and capacitances there is a finite time 
interval between application of a signal to the input and its appearance 
at the output. A complex wave such as those typical of television 
systems becomes distorted if the various frecjuency components which 
constitute the wave are delayed by unequal amounts. This phenomenon 
is well known as phase distortion and has already been discussed as 
trivial in audiofrequency amplifiers. In video amplifiers, however, it 
is of the greatest importance. The effect is readily shown by inspection 
of Fig. 13-9. 

The square wave of input voltage V is typical of television and certain 
other signals. In Fig. IS'% this square wave is analyzed into its fun¬ 
damental and a few harmonic components. It may be shown that 
only odd harmonics exist, that all cross the axis at a common point, 
and that the amplitude of each harmonic is inversely proportional to 
its frequency. 

Let us determine the effect of the circuit of Fig. 13‘Oa upon the square 
wave. This is most conveniently accomplished by determining the 
transmission of each separate component of the input wave, and then 

* For a very complete discussion of this topic see E. L. Chaffee, Theory of Thermr> 
ionic Tubes, p. 261 ff., 1933, McGraw-Hill Book Company, New York. 
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adding the resultant components to secure the total output wave. 
Significant results are obtained if the fundamental frequency is such 
that the reactance of C is approximately 20 per cent of The re¬ 
actance of C to the third harmonic wave is then only 7 per cent of ft. 
The reactance of C to higher harmonics is negligible. Harmonics higher 
than the fifth are omitted from the figure for clarity. The gain reduc¬ 
tion and phase shift applying to each component of the wave are deter¬ 
mined by reference to Fig. 134. It is seen that appreciable phase 
shifts exist at frequencies where the gain reduction is negligible. 

u 

Fig. 13-9 Phase distortion resulting from shift of fundamental with respect to 
harmonic frequencies. Seventh and higher order harmonics are not shown. 

In Fig. 13’9c the various component waves are plotted in approxi¬ 
mately their correct relative position, and the resultant wave is derived 
by summation. It is seen that the primary effect of a small amount of 
phase shift is to tip the top of the wave. In many applications the 
relatively small amount of distortion indicated is intolerable. 

It is clear that no phase distortion will result if aU components of the 
wave are delayed by an equal amount, since this merely displaces the 
wave by a finite lateral distance along the time scale. A time delay 
that is independent of frequency requires a phase shift that is directly 
proportional to frequency. This proposition may be proved rigorously 
but is most easily visualized by inspection of Fig. 13*^. U the fundar 
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mental is shifted by one full cycle, the third harmonic by three cycles, 
the fifth by five, etc., it is seen that we merely displace the wave by 
the time required for a cycle of the square wave. Consequently we 
add the requirement that the phase shift must be proportional to fre¬ 
quency over the same range of 30 cycles to 4 megacycles, in which we 
have already specified that the gain must be constant. Of course no 
practical amplifier meets either requirement perfectly but in many 
amplifiers the deviations from this ideal are quite small. 

Power output, as such, is not required from video amplifiers. The 
output stage delivers a voltage to the intensity-controlling electrode 
of the kineoscope, a special form of cathode-ray tube. Amplifiers which 
differ from video amplifiers in no important detail of design or construc¬ 
tion are now being widely used to amplify signals to the deflection plates 
of cathode-ray tubes for measurement and research applications. In 
such amplifiers it is necessary to deliver outputs in the order of 100 
volts. At the high frequencies involved the impedance of irreducible 
shunting capacitances is quite low, and it is therefore necessary to em¬ 
ploy tubes having large current ratings in order to develop the required 
voltage. 

The requirements on harmonic distortion are not severe. In general 
the output stage is most likely to cause distortion although the stage 
immediately preceding the output may give trouble if the output tube 
requires a relatively large voltage to excite its grid. In general a 
distortion of less than 2 per cent is a desirable goal. 

13*11 General Considerations 

The requirement that the gain be constant down to 30 cycles per 
second is readily met by most audiofrequency amplifiers. The accom- 
pan5dng reqmrement that the phase shift be linear with frequency is not 
so easily attained. In general some form of phase compensation is em¬ 
ployed to reduce the phase distortion in the low-frequency region. In 
amplifiers for oscilloscope applications this requirement is often even 
more severe than in video amplifiers and carefully designed circuits are 
sometimes necessary. 

The requirement that the amplification be constant up to frequencies 
in the region of 4 megacycles is not approached by any audio ampli¬ 
fier. Indeed, this extension of the upper frequency limit by a factor 
of 100 seems almost insurmountable at first glance. Fortunately 
the combination of improved tubes and improved circuit design has 
rendered the goal relatively easily reached and has made possible the 
construction of special amplifiers having much wider frequency bands. 

Since tjiodes are unsuitable for this sort of work owing to the effect 
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of the grid-plate capacitance, and since tetrodes are becoming rela¬ 
tively obsolete, the following discussion will be confined to pentode 
types. 

13'12 Consideration of Tjrpical Circuit 

The relatively complex circuit of Fig. 13-10 may be arrived at as a 
logical result of the requirements placed upon the video amplifier. 
Careful comparison will show that it differs from Fig. 13*1 in only a few 
important details. The suppressor grid, characteristic of the pentode, is 

Fig. 13*10 Typical three-stage video amplifier employing series and shunt com¬ 
pensation for high frequencies and conventional low-frequency compensation. 

grounded in all tubes. Essentially the same results are obtained if the 
suppressor is connected to the cathode, but experience has shown that 
it is more convenient to use the direct ground connection and that certain 
parasitic effects, sometimes troublesome, are thus avoided. The drop¬ 
ping resistor Rs reduces the screen-grid voltage from that supplied to a 
value suitable for the tube in question. In some applications it is 
practical to make the supply voltage appropriate for direct application 
to the screen grids, but this is seldom desirable since the presence of 
Ra tends to stabilize the current drawn by each tube. The condenser 
serves to return the alternating component of the screen current to the 
common ground. In conjunction with the dropping resistors Rg the 
screen condensers form an auxiliary decoupling filter network which 
prevents undesired coupling between stages through the B supply 
and the screen grids. This is an important function, for otherwise the 
screen grid of the first tube may readily serve as a control grid causing 
oscillation or undesired feedback from the plate circuits of the following 
tubes. 

The elements so far discussed are characteristic of pentode ^unplifier 
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circuits and are not identified explicitly with the video amplifier. The 
elements which are truly characteristic of the video amplifier are the 
added coils Lp and Lg. These coils are approximately in resonance with 
the shunt capacitances Cp and Cg at the upper frequency limit of the 
amplifier. By careful control of these resonances it is possible to hold 
the amplification constant to a considerably higher frequency than would 
be obtained otherwise. The elements Ra and Ca serve again as a de¬ 
coupling filter. In this case they must also serve to improve the con¬ 
stancy of gain at low frequencies. Because each decoupling combina¬ 
tion serves to compensate for the effect of the following grid leak the 
compensating network is omitted in the plate circuit of the last tube. 
Instead a relatively large condc^nser is used, which may serve to 
satisfy the requirements on overall decoupling even if Ra and Cd are 
modified by the requirements for low-frequency compensation. 

13'13 Analysis of a Typical Circuit 

The behavior of the circuit of Fig. 13-10 is analyzed on the basis of a 
single stage exactly as was that of the audio amplifier. Again it is prac¬ 
tical to divide the analysis into three distinct parts. A very wide 
band of frequencies exists over which the gain is constant at the value 
determined by the transconductance and the various resistances of the 
circuit. At low frequencies the several condensers begin to offer appre¬ 
ciable reactances tending to reduce the amplification. At high fre¬ 
quencies the shunting capacitances become effective and the compensat¬ 
ing inductances operate to compensate their effect over a considerable 
region. These various conditions are shown in Fig. 13-11, analogous 
to Fig. 13-3. 

The gain over the broad mid-band region is readily calculated. To 
acliieve the desired low-frequency behavior Rg is always high, usually 
greater than 500,000 ohms. The plate resistance of a typical pentode 
is also high, in the order of a megohm. To achieve the desired con¬ 
stancy of gain to high frequencies the value oi Rl is always held low, 
in the order of 3000 ohms. Accordingly, it is seen that a negligible 
error results if the mid-band amplification is calculated only on the 
basis of the load resistor itself. Thus from Fig. 1341&, neglecting 
Tp and Rgj we have 

I = [13-26] 
and 

72 = IRl [13-27] 
givmg 

“ QraRh 
Vl 

[13-28] 
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Assuming that Rl may not be raised, it is seen that a high value of 
transconductance Qm is desirable in order to achieve a high gain per stage. 

(b) Equivalent Circuit for 
Mid-Band Frequencies 

I 
Vt 

1 
(c) Equivalent Circuit for 

Low Frequencies 

Vi 
^ nr>ncir\ 

I 
1 

^ 1/ 

pi. 

mm r J 

(d) Equivalent Circuit for 
High Frequencies 

Fig. 13‘11 Analysis of one-stage video amplifier neglecting effects of cathode and 
screen by-pass condensers. 

13*14 Low-Frequency Performance 

The behavior at low frequencies may be explained on the approximate 
basis that Rd » Rl- As the frequency is made lower and lower the 
reactance of C becomes appreciable with respect to Rg. Accordingly, 
only a portion of the voltage developed in the plate circuit appears as 
output voltage V2» Now if Ca has the proper size its impedance, al¬ 
though very small in comparison to 72^, is appreciable compared to 
Rhf and the voltage developed in the plate circuit is increased. Exact 
compensation occurs if RLCd RgC, In practice, of course, Rd is not 
infinite and the amplification does finally fall off. It is quite practicable, 
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however, to extend the low-frequency cut-off by a factor of 10 in this 
way. 

The mathematical proof is greatly facihtated by the assumption 
that Rd ^ Rl} which is a legitimate approximation. Moreover, we 
know that Rg Rl so we may write in terms of Fig. 13-llc 

and 

giving 

Ro 
Vi 

r, - juCRg 1 j(j)CdRL 
l+jid^Rg QmVl 

joiCd 

[13-29] 

[13-30] 

[13-31] 

Introducing 

RgC = RLCd [13-32] 

for equality of the time constants in the plate and grid circuits 

Vj _ joRiCd 1 -b jwCdRt _ „ 

jwCdRL ■ j^Cd ~ 
[13-33] 

That is, the gain and phase are absolutely independent of frequency 
under the assumption that Rd is very large. In practice the gain and 
phase behave exactly in the fashion shown in Pig. 13-4, where/i is that 
frequency for which the reactance of Cd is equal to Rd. Thus the 
dropping resistor Rd provides a nearly perfect compensation for the 
loss due to the coupling condenser. If the condenser Cd is made larger 
or smaller than the value defined above, the compensation is imperfect. 
If Cd is larger than (fig/Rt) C, the low-frequency amplification is some¬ 
what less than that existing across the main band. The behavior is 
very similar to, but not identical with, that shown in Fig. 13-7. Similarly, 
if Ctf is smaller than (fig/Rh) C, the low-frequency gain is above the 
mid-band value. This suggests the possibility of compensating the 
effect of the cathode by-pass condenser as well as that of the coupling 
condenser by a proper choice of Cd and Cg. The necessary conditions 
are shown in Fig. 13-12. 

The compensation illustrated in Fig. 13*12 is best explained in terms 
of a design procedure. The following is one of the many possible pro¬ 
cedures. Choose Rg as the maximum resistance recommended by the 
tube manufacturer. Choose C as large as is consistent with physical 
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considerations or d-c leakage requirements. These values determine/i 
as explained in section 13-6. The magnitude of the loss due to the 
action of Rc at very low frequencies is calculated from equation 13'10 
which applies accurately because Ri,^rp, The decoupling condenser 
is next chosen from the relationship 

RgC = (1 + gMRLCd 

in terms of Fig. 13*10 where it is assumed that Rc and Rl have already 
been fixed by other requirements. This relation is such that the sloping 
asymptotes to gain due to action of Cd ” and to 'Moss due to action of 

Fig. 13-12 Compensation in plate circuit for effects of coupling and of cathode 
condensers. 

Summation of gain characteristics to produce characteristic shown in lower part 
of figure. Frequency /i is determined by the grid leak, Rgy and coupling condenser 
C. Frequency /a is determined by the cathode resistor Rc and condenser Cc. 
Frequency fi is determined by the decoupling resistor Rd and condenser Cd. 

differ by the amount of the horizontal asymptote to "loss due to 
action of Cc/' all referring to Fig. 13*12. FinaUy Cc is so chosen that 

Try'n’ R'c where /a has the mean value indicated in the figure. 

Under the above conditions the gain is independent of frequency 
to some lower frequency at which the reactance of Cd becomes com¬ 
parable to Rd* The curve of ‘^gain due to the action of Cd^^ then 
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ceases to rise and the resultant gain falls because of the continued 
action of the coupling condenser C. The frequency at which this 
final drop in gain occurs is defined approximately by the relation 

■yr = Rd if Rd ^ Rl- 
2irf4Cd 

It is still necessary to examine the behavior of the screen by-pass con¬ 
denser Cs- If Cs is removed it will be found that a rather large loss, in 
the order of 10 db, results. The exact value depends upon the value of 
Rs and upon the properties of the tube. The effect may be explained in 
two steps. The alternating screen current in flowing through the 
resistor Rs produces an alternating voltage at the screen grid. This 
alternating voltage acts through the effective screen grid-to-plate trans¬ 
conductance to decrease the alternating plate current. 

Because the impedance of a typical screen-grid circuit is relatively 
high, a condenser of moderate size serves as an adequate by-pass at the 
lowest frequencies which are ordinarily of interest. In view of the diffi¬ 
culty in compensating the loss due to imperfect by-passing in the screen 
circuit and the fact that adequate by-pass condensers are not unduly 
large or expensive it is usually expedient to provide an adequate capaci¬ 
tance. 

13*15 High-Frequency Performance 

Inspection of Fig. 13-lid reveals that the behavior is not simple. 
The circuit shown may be explained as a parallel resonant circuit of low 
Qj shunted by a series-resonant voltage divider. Since the circuit shown 
is complex it will be most convenient to analyze several simpler circuits, 
thereby developing the one shown in Figs. 13*10 and 13*11. 

Let us refer back to Fig. 13*4, in which the upper cut-off frequency was 
defined as that for which the reactance of the total shunting capacitance 
equals the load resistance. Evidently this frequency may be raised 
either by decreasing the shimting capacitance or by decreasing the 
load resistance. In practice both of these steps are taken. The capaci¬ 
tance is reduced as far as possible by the choice of tubes having low 
input and output capacitances and by careful wiring and assembly. 
The plate load resistance is then lowered as far as is necessary to achieve 
the desired cut-off frequency. 

Everything else being fixed the amplification of each stage is directly 
proportional to the transconductance of the tube. Since we have al¬ 
ready shown that the allowable load resistance is inversely proportional 
to the total capacitance it follows that the most desirable tube for such 
circuits is one having the highest possible ratio of transconductance to 
capacitance. If, however, the tube capacitances are small, the effect 
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of socket and wiring capacitances must be considered in order to obtain 
a true comparison of the merits of two given tubes. 

The input (grid-to-cathode) capacitance of vacuum tubes is usually 
greater when the cathode is normally heated than when it is cold. This 
increase is due to the action of space charge which reduces the effective 
spacing from grid to cathode. The effective capacitance, although 
affected by the conditions of space charge, is essentially independent of 
frequency. 

It should be emphasized that the only practical limitation on the 
upper frequency which may be amplified by a video amplifier is set by 
the shunting capacitances. If it were somehow possible either to 
remove or to anntd these capacitances it would be possible to obtain a 
very large amplification per stage and to extend the amplification to fre¬ 
quencies at which lead inductance or transit time effects become im¬ 
portant. The following material deals entirely with ways of mmimizing 
the effect of this shunting capacitance and concludes in a statement of 
the best results that may be obtained. 

13-16 Shunt Compensation 

The simplest form of compensation, and one that has many good 
features, is illustrated in Fig. 13*13. It is seen that the interstage net¬ 

work differs from the conventional resist¬ 
ance-coupled interstage only in that a coil 
L has been added in series with the plate 
load resistance. From the equivalent cir¬ 
cuit of Fig. 13*136 it is seen that the out¬ 
put voltage and therefore the amplification 
of the stage is directly proportional to the 
impedance presented by the combination 
shown. Figure 13 • 14 shows the impedance 
characteristics for several values of R when 
L « 0 and C = 40^^!, a reasonable value. 
Figure 13*15 shows the impedance char¬ 
acteristics for several values of L where R 
= 2000 ohms and C * 40 MAtf. 

It is seen that a very great improvement 
in the constancy of Z and therefore in the 

Fig. 13-13 Shunt compensated constancy of gain results from the addition 
video mter^age network. ^ moderate inductance. Too small an 

< * Ca + p. inductance gives much the same result as if 

none were used. Too large an inductance produces a pronoimced peak 
in the characteristic. The curves of Fig. 13*16, reduced to a universal 

(a) Actual Circuit 

(b) Equivalent Circuit 
at High Frequencies 
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Fig. 13*14 Impedance of a parallel circuit of resistance and capacitance. 

Fia. 13*15 Impedance of a parallel oiroiiit. 
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basis by an appropriate choice of coejficients, are plotted in Fig. 13-16. 
The phase shift associated is plotted in terms of the same coefficients 
BO that design is reduced to a relatively simple basis. 

The curves of Fig. 13-16 are veiy convenient for the rapid design of 
simple video interstage networks. They are universal in the sense that 
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all the parameters are expressed in terms of a critical frequency /o, and 
unit resistance. It should be noted that /o, as used here, is equivalent 
to /a in Fig. 134 and associated discussion. 

If each impedance in Fig. 13*16 is multiplied by some factor JK, the 
impedance of the complete network will change by the same ratio, 
but the phase angle will not change, and the variation of impedance with 
frequency will not change. Using this fact, and comparing Figs. 13*16 
and 13*136, it is seen that 

Rl^R 

jo^L = jRK^ 
fo 

j 
c^Ct 

These equations when rearranged give 

L = R^K^Ct 
and 

^irfoR 

The critical frequency, /o, is defined by the highest frequency which 
must be transmitted and the shape of the transmission curve desired. 
The shunting capacity Ct is fixed by the tubes and assembly. The 
value of K is chosen to produce the desired shape of transmission charac¬ 
teristic. Finally the load resistance Rl and the compensating induc¬ 
tance L are successively chosen. 

13*17 Modified Shunt Compensation 

Careful inspection of Fig. 13*16 shows that the value of inductance 
which gives best compensation below/o is considerably smaller than the 
one which gives best compensation above /q. Therefore, we could im¬ 
prove the performance still more if we had an inductance whose value in¬ 
creased with increase of frequency. Such inductances are not readily 
obtained. However, a parallel resonant circuit of high Q behaves at 
frequencies below its resonance in much this way. That is, the re¬ 
actance of a parallel LC combination increases with frequency at a 
rate that is higher than the first power. 

Figure 13*17 shows an interstage network using this principle and a 
tsqjical response curve. It is seen that the gain curve is very flat to a 
frequency about 1.4 fo. At higher frequencies the gain falls off rapidly 
to the value given by the capacitance alone. 
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We have seen that the performance of the interstage network has been 
improved by the successive addition of two compensating elements. The 
question immediately arises whether or not this process may be con¬ 
tinued indefinitely. Wheeler* has considered the problem from the 

•54 fo 24 

Fig. 1317 Modified shunt compensation. 

standpoint of normal filter theory; he concludes that a very definite 
limit does exist and that the network of Fig. 13-17 approaches it fairly 
closely. The limiting curve is shown to be exactly the attenuation 
characteristic of a prototype filter and is associated with a phase shift 
that is 90° to all frequencies outside the trasmission band. The 
situation is best explained by the comparative curves of Fig. 13-18. 
The values of the parameters plotted were necessarily chosen somewhat 
arbitrarily but are satisfactory in that they show t3q)ical behavior. 
It is seen that the relatively simple networks III and IV approach the 
ideal curve very closely indeed. Since the ideal curve requires an in¬ 
finite number of elements for its construction it is clear that the princi¬ 
ple of diminishing returns has begun to apply. The values in Fig. 13-18 
refer to the impedance of the element in question in comparison to the 
load resistance Rl for the particular frequency/q. From these constants 
it is relatively easy to deduce numerical designs as the occasion demands. 

The circuits of Fig. 13-18 are drawn in such a way as to be recognizable 
as half sections of several low-pass filters of varjdng degrees of com¬ 
plexity. 

Hie interstage networks so far discussed are referred to as two- 
terminal networks because the entire performance of the stage is charao- 

*H. A. Wheder, “Wide Band Amplifiers for Tdevision,” Proe. IRE, 27, 429, 
July, 1939. 
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terized by the impedance as measured between two points. Such net¬ 
works are characterized by the fact that the phase shift cannot exceed 
90^ and that the impedance always approaches the impedance of the 
shunting condenser alone as the frequency is raised. 

IV 08 
o-»— rppQQi .. 

4 ii 
Fio. 13-18 Comparison of several two-terminal interstage networks. 

•13*18 Four-Terminal Interstage Networks 
It will be recalled that the interstage network represented in Fig. 

13'lld is of such a nature that the capacitances Cp and Cg are separated 
by the inductance Lg. Such a design is the logical outcome of a con¬ 
sideration of the two-terminal network. It was observed that the 
frequency band could be doubled if the shunting capacitance were cut 
in Imlf. Since the capacitances Cp and Cg are comparable if not actually 
equal, it appears possible to deal with them separately by use of the coil 
Lg. This procedure is sometimes referred to as splitting the capacitances. 

The amplest possible four-terminal mterstage network is shown in 
Fig. 13*19. It is seen to resemble Fig. 13*13 but to differ in that the 
coil is in series with the blocking condenser rather than with the load 
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resistance. The calculation of the performance is by no means so 
simple as is that for Fig. 13-13 because the input and output terminals 
are separate. 

at High Frequencies 

Fig. 13* 19 Series compensated video amplifier stage. 

The equations that apply are 

and 

V2 
juLg 

Eliminating Vq and introducing I = Vigm 

[13-34] 

[13-35] 

[13-36] 

or 

Yl 

h 
Vi 

__ 
(1 - </LgCg){BL +ju>Lg - C^^RtCplg) - 

[13-37] 

[13-38] 

The calculation of equation 13-38 is difficult but perfectly possible. 
However, it is impossible to tabulate the results on a single sheet like 
Mg. 13-16 since both Lg and Cg may be varied for any chosen values of 
Rz, and Cp. 

The interstage network of Fig. 13*19 is commonly referred to as series 
compensated or series peaked. The performance of a typical interstage of 
this sort is plotted in Fig. 13*20. Here as in Fig. 13*16 the resistance 
value is made equal to unity. The two-to-one ratio of the shunting 
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capacitances is typical of modem video amplifier tubes. The ordinate 
is equivalent to equation 13-38 because / = gmVi. The critical fre¬ 
quency is that at which 
the sum of the shunting 
capacitances would have a 
reactance equal to the load 
resistance. 

The series-compensated 
interstage of Fig. 13-19 pro¬ 
duces a somewhat greater 
band width than the shunt 
circuit of Fig. 13-13, and 
the phase characteristic 
is more linear. However, 
the ultimate phase shift 
reached at very high fre¬ 
quencies is 270° instead of 
90°, a point of great im¬ 
portance if feedback is con- 

Vl ^--V... 1 
1 ^ 

= 2C* = II 

Fig. 13*20 Performance of a series compensated 
video interstage. 

templated, and the behavior under transient conditions is hardly as 
favorable. 

The doubly compensated interstage shown in Figs. 13-10 and 13-11 
combines the features of the series and shunt circuits. With proper 

Fig. 13-21 Comparison between various ideal and physical interstage networks. 
Based upon a definite resistance and two equal capacitances. C ^ Cp — Cg - C</2. 

design the amplification is nearly constant to a frequency 4/o where 
R 

fo “ 7r~F?l—rTTT ■ theoretical performance of this network is 
2w(Cp **r 

still further unproved by addition of a suitable condenser in shunt with 
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Lj^j but the practical difficulties of adjustment make this addition of 
doubtful importance. The calculated performance of a particular 
doubly compensated four-terminal interstage network is shown in Fig. 
13-21. The calculations, which are relatively lengthy and laborious, 
are omitted. 

We have observed that the extension from two-terminal to four- 
terminal interstage networks allows us to extend the band of constant 
amplification to approximately twice its former value. Since it appears 
highly improbable that this proc^ can be continued indefinitely we 
again seek some ideal limiting value by which the performance of 
actual networks may be judged. Wheeler* considers this case also, 
applying the methods of standard filter theory. He concludes that the 
ideal four-terminal interstage gives, for a constant total shunting capaci¬ 
tance, a band of given constant amplification which is exactly twice as 
wide as that for the ideal two-terminal interstage with the same total 
capacitance. This conclusion is derived by a consideration of networks 
from the standpoint of ordinary filter theory. 

Unpublished work of more recent date approaches the problem 
through contour integration in the complex plane. This work, which 
is believed to be absolutely general, gives a figure equal to 2.5 for the 
advantage of the ideal four-terminal network over the ideal two- 
terminal network. Again the number of elements required is infinite in 
order to achieve the ideal response. Even worse, the phase shift at the 
upper edge of the band must be infinite. The situation is illustrated in 
Fig. 13-21. 

The network shown in Fig. 13*21 may be designed on the basis of 
standard filter theory. This derivation requires that the capacitance 
associated with the resistance R be twice as large as the other capaci¬ 
tance. In order to meet the two-to-one ratio of capacitance a number 
of experimenters have recommended the addition of a suitable shunt 
condenser. Actually the frequency /o is always lowered by this pro¬ 
cedure, sometimes seriously. Even more important, the concept of 
separating the total capacitance into two parts suggests that an equality 
of the two capacitances is an optimum situation. Careful calculations 
of a variety of conditions show that the ratio is not critical, curves 
similar to Fig. 13*21 being obtained over a considerable range of the 
variables. The addition of shunt capacitance is therefore to be resorted 
to only after a very careful consideration. 

In multistage video amplifiers it is common practice to make all the 
interstage networks as similar as possible. This practice is admirable 
from the standpoint of manufacturing economy but leaves much to be 
desired in the way of performance. If several identical stages are used 

* Loc. cU, 
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in tandem the distortions of phase and of amplitude both add up directly 
so that the individual stages must be very good indeed if the sum is to 
be tolerable. 

It is desirable whenever possible to make some of the interstage de¬ 
signs rather different from the others. By a careful choice of the com¬ 
bination of designs it is possible to reduce the overall distortions to 
somewhat less than that of any one stage. By this procedure it is 
often possible to increase the gain per stage by a considerable amount 
without sacrificing overall performance. 

13*19 Principle of Conservation of Band Width 

The results of the foregoing work may now be summarized in a com¬ 
pact and useful way that is easily remembered. The voltage ampli¬ 
fication of each stage Ls directly proportional to the load resistance R l 
as shown in equation 13*33. The critical frequency/o is inversely pro¬ 
portional toJf^L, according to the relation l/27r/oCt = and the greatest 
band over which uniform constant amplification may be maintained 
is 6/o. Accordingly the product of voltage amplification in numerical 
ratio, and band width in cycles per second, is a constant independent of 

0 Frequency / 

Fig. 13‘22 Principle of conservation of band width. The four areas are equal 
as required by the fact that the product of voltage amplification and band width 

is constant. 

Rl, This constant is proportional to the transconductance of the tube 
and is inversely proportional to the total shunting capacitance. The 
ratio of the transconductance to the capacitance of the tube is referred 
to as the figure of merit. This is expressed in micromhos per micro¬ 
microfarad. 

For a given tube with fixed transconductance and capacitance the 
plot of voltage amplification against frequency has a definite area as 
seen in Fig. 13*22. For example, half as large an amplification is 
chosen in B as in A, but the frequency over which it is constant is 



488 AMPLIFIERS 

doubled. In the contour integration which establishes the fact that 
the ideal four-terminal network produces a gain which is constant up 
to a frequency / = 5/o, it is also proved that the same product of ampli¬ 
fication by band width holds when the band of frequencies does not 
extend to zero, as in C. This is conveniently expressed by the statement 
that the gain area is constant. It is also proved that the area concept 
applies unchanged in cases such as D where the amplification is not held 
constant. The figure of merit of a tube Qm/Cl may therefore be as well 
expressed in terms of the gain area represented. Gain area, the product 
of a ratio by a frequency, is a most convenient parameter by which to 
compare tubes for video-amplifier applications. Expressed in terms of 
voltage amplification and frequency in megacycles the approximate gain 
areas of some tubes are shown in Table 13 *2. The gain area of a tube is 
numerically equal to the highest frequency to which a video-amplifier 
stage employing that tube can be made to produce a constant amplifica¬ 
tion of unity. 

TABLE 13-2 

Gain Areas of Various Tubes 

Cg Cp 

Gain Area 
Amplification X 

Frequency in 
Type Micromhos MMf fifii Megacycles 

6AC7~1862 9000 11 5 440 
6AG7 . 8000 13 7.5 300 
6AB7-1853 5000 8 5 300 
6SH7 5000 8.5 7.0 250 
6SG7 4500 8.5 7.0 225 
954 1400 3 3 180 
6SJ7 1650 6.0 7.0 100 

13*20 The Intermediate-Frequency Amplifier 

The principle of conservation of band width is of great value in the 
design of amplifiers for a definite band of frequencies, such as the so- 
called intermediate-frequency or band-pass amplifier. It is convenient 
to use the term band-pass amplifier because the interstage networks re¬ 
duce to more or less complex forms of band-pass filters. Similarly, it is 
common to refer to video or audio amplifiers as low-pass amplifiers, 
since their interstage networks are essentially low-pass filters. 

Several practical features combine to make the actual construction 
of the band-pass amplifier more difficult than that of the comparable 
low-pass unit. First of these is the fact that a band-pass filter requires 
twice as many elements for a given type of performance as the com¬ 
parable low-pass filter. Typically a series-resonant circuit in the band- 
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pass filter replaces a coil in the low-pass equivalent, and a parallel 
or anti-resonant circuit replaces each condenser. Thus there is a 
band-pass network which exactly corresponds to each low-pass structure, 
but the converse is not true. In Chart 13-1 the equivalence of a number 
of networks is illustrated. 

Inspection of Chart 13-1 shows that even relatively simple low-pass 
structures require relatively complex structures for the equivalent band¬ 
pass unit. In view of the difficulty of adjusting elements, particularly 
the small elements required in high-frequency units, it is seldom prac¬ 
ticable to use any but the simplest of the band-pass designs. 

The second great difficulty in construction of band-pass units is the 
precision required of the elements. Let us suppose that elements 
accurate to 5 per cent are acceptable in a certain low-pass amplifier 
covering the range of 0-2 megacycles. From the conservation of band 
width we expect to be able to use the same tubes to cover the band of 
20-22 megacycles with a comparable gain per stage. Now, however, 
a coil and condenser both 5 per cent high would shift their resonance 
from mid band to the edge of the band. Similarly a pair of elements 
whose values were low would shift the resonance to the other edge of 
the band. In this case the elements would have to be held to 0.5 
per cent in order to obtain as consistent results as those obtained in the 
low-pass case. 

This is an example of the general proposition that the accuracy 
required of the elements increases directly with the ratio of mid-band 
frequency to band width. More explicitly, the allowable tolerance of 
the elements is proportional to the band width over the mid-band 
frequency. In commercial radio receivers this fact has led to the uni¬ 
versal use of individually adjusted units. At higher frequencies where 
wide bands are often necessary the problems resulting from the necessity 
of holding capacitances to a minimum as well as providing adjustment 
of the resonances are very difficult to solve. 

In view of the difficulties just outlined it is universal practice to 
use only the simplest of the networks shown in Chart I and to provide 
manual adjustment for obtaining the exact characteristic desired. Cir¬ 
cuit o is a two-terminal network and obeys the familiar laws of the 
resonant circuit. Dissipation in the coil and condenser is lumped with 
any physical load resistor to form the single shunt conductance. Pro¬ 
vided that the effective conductance is essentially independent of fre¬ 
quency the gain characteristic is symmetrical against frequency plotted 
on a logarithmic scale. For values of Q above 25 the significant portion 
of the curve occurs in such a narrow frequency interval that the loga¬ 
rithmic scale is practically equivalent to a linear scale. A imiversal 
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plot, based on a linear scale, is presented in Fig. 13*23. A phase 
shift of 45° and a 3-db reduction in gain are associated with the two 

Below Resonance Above Resonance 
Frequency Deviation 

(F. E, Termariy Courtesy of McGraw-Hill Book Company) 

Fig. 13-23 Characteristics of a tuned band-pass amplifier. 

frequencies /i and /2 at which the reactance of the coil-condenser com¬ 
bination equals the resistance. The difference between these two fre¬ 
quencies is given by the relation 

/2-/1 _ 1 

/2+/1 2Q 

where 
R 

"2tV^L 

[13-39] 

[13-40] 

a definition slightly more general than that of equation 13-43. If the 
band is relatively narrow we may write 

/o [13*41] 
so that 

/2-/l^l 

/o Q 
[13*42] 
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and 
R 

2ir/oZ/ 
[13-431 

These are seen to be the normal equations of a resonant system except 
for the change in the definition of Q necessitated by the fact that the 
dissipation is assumed in parallel with the coil rather than in series 
with it. 

The network designated e in Chart 13-1 is probably the most used of all 
the band-pass amplifier interstage circuits. It is a four-terminal net¬ 
work having no low'-pass equivalent. It is seen to differ only slightly 
from network d above it, however, and this one does have a low-pass 
equivalent in the form of the series-compensated circuit. We have 
already shown* that d gives about half the useful gain area of the ideal 

Fia. 13-24 Design and behavior of double tuned band-pass amplifier stage. 

four-terminal network, and it can be shown that e is slightly superior. 
Thus we see that a sacrifice of approximately 50 per cent of the available 
gain area is ordinarily made in the interest of simplicity. 

Development of design constants for network e may be carried out 
from either of two viewpoints. Standard filter theory may be used 
throughout, or the problem may be approached from the standpoint of 
coupled circuits. The results, of coimse, are identical. The choice will 
depend primarily upon the experience of the individual and the reference 
material at hand. 

In the limiting case where the maximum possible gain area is to be 
obtained the two shunting capacitances may be reduced very nearly 
to the internal capacitances of the tube. In order to bring the two 

* By comparison of Figs. 13*^ and 13-21. 
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circuits into resonance at the same frequency it is necessary, therefore, 
to use unequal inductances. If the two circuits are to have the same 
value of Q, the two resistors must likewise be unequal. 

It should be noted that the two peaks of gain indicated in Fig. 13*24 
are equally high only if the resistors Bp and Rg are independent of fre¬ 
quency. If the band is relatively narrow the approximation achieved is 
usually satisfactory, but if the band is relatively wide, difficulty may be 
experienced. This may occur at relatively high frequencies if part of 
the conductance in the grid circuit is due to the action of cathode in¬ 
ductance or transit time effects, since these conductances vary as the 
square of the frequency. A similar situation arises if a fixed resistor 
is used in series with either coil since the equivalent shunt resistance 
varies inversely with frequency. Explicitly, the total effective shunting 
conductance must be independent of frequency if the gain peaks are to 
be equally high. 

13*21 Decoupling Circuits 

The by-pass condensers shown in the video amplifier of Fig. 13*10 
should all be used in the band-pass amplifier. Since band-pass ampli¬ 
fiers seldom operate at a frequency lower than 100 kilocycles, however, 
there is no difficulty in obtaining the desired low reactance in these con¬ 
densers. At the higher intermediate frequencies it happens that the 
most compact available condensers present a reactance which is in¬ 
ductive rather than capacitive. This difficulty is relieved by extreme 
care in mechanical design to achieve the shortest possible leads. Occa¬ 
sionally it is practical to choose a relatively small capacitance so that the 
capacitative reactance is equal to that of the unavoidable inductive 
reactance of the condenser and the combination is series resonant. 

At intermediate frequencies it is relatively easy to avoid undesired 
coupling of input and output circuits through the B supply. The re¬ 
actance of available condensers is quite low, and the impedance of 
ordinary resistors does not fall seriously at these frequencies.* Serious 
problems do exist, however, in the form of electromagnetic and electro¬ 
static coupling of circuits through the air and in conduction currents 
through the chassis or panel. 

Placing closed metallic shield cans around each stage or in conjunction 

*The resistors in common use are either of a carbon composition or are wire 
wound. Both types have some direct capacitance between the terminals, and the 
wire-woxmd resistors show an inductive ^ect as well. At a sufficiently high fre¬ 
quency both types of resistor become a low capacitive impedance, whose value 
depends upon the exact construction and material of the resistor. Wire-wound 
resistors are generally unreliable at frequencies above 10 megacycles. Many carbon 
resistors fail at frequencies in the order of 100 megacycles. 
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with groups of stages serves to solve the problem of coupling through the 
air. Awkward mechanical problems sometimes arise, and imder these 
circumstances the designer must act primarily as a mechanical rather 
than an electrical engineer. 

The problem of conductive coupling between output and input circuits 
is not so well understood. It is alwa3n3 true, however, that the highest 
possible conductivity in the panel or chassis is to be desired. In general 
the greatest difficulty is caused by currents in the plate circuit of the 
last tube inducing voltages in the grid circuit of the first tube. 

If the plate, screen, and cathode condensers of the last tube are all 
returned to the same point on the panel where the suppressor grid is 
grounded, the difficulty is greatly relieved since the tendency to cause in¬ 
duction in the panel is thereby minimized. 

Similarly, returning all the elements of the first grid circuit to a single 
point on the panel is helpful in that a given currei^ flow in the panel 
induces a minimum voltage in such a circuit. 

13*22 Power Amplifiers for High Frequencies 
The foregoing discussion has applied primarily to low-power amplifiers 

for reception, although many of the remarks apply equally to higher- 

(Cwrteay o/BCA Radwtron Company,) 

Fig. 13 25 High-frequency push-pull power tube. 

power devices. The technique of high-power amplifiers for trans- 
misaon at high frequencies is somewhat behind that of low-power 
amplifiers because of the difiiculty of producing suitable tubes. The 
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medium- and high-power tubes that have served so well in the past 
become unsatisfactory at frequencies in the order of 20 megacycles. 
The same effects are operative here 
that set the limit on the perform¬ 
ance of smaller tubes at somewhat ^l^ctron 
higher frequencies. Interelectrode 
capacitances limit the attainable 
impedances. A relatively large 
part of the circuit capacitance re¬ 
sides inside the tube envelope, and 
the resulting capacitative currents 
in the leads are heavy and cause 
heating. Internal inductances Beam 

make it difficult to control the con- forming Plates 

stants of the circuit|^ 
In receiving tubes it has been 

found possible to reduce the mag¬ 
nitude of these difficulties by re¬ 
ducing the size of the structures. 
For high-power transmitting tubes 
this technique is seriously hmited 
by difficulties with dissipation of 
heat. Refined triode designs using 
air or water cooling and carefully 
chosen materials now give power 
outputs in the order of 100 watts 
at frequencies between 100 and 
200 megacycles. In such tubes 
transit time effects are not ordi¬ 
narily of importance because of 

the relatively high voltages and yio. 13-26 Arrangement of electrodes in 
because the tubes are used in class rCA 832. 
C circuits. In such circuits the 
grid is highly positive dtuing the time that the major portion of the 
plate current flows. 

The beam tetrode design has proved to be extremely desirable at 
moderate powers and frequencies. The 832 type illustrated in Fig. 
13-25 is an excellent example of such a tube. This tube consists of two 
identical units in the same envelope. The two plate leads are brought 
out at one end of the tube while the grid and associated leads are brought 
out at the other. By using the two units in a balanced or push-pull 
fashion, it is possible to balance out all high-frequency currents in 



496 AMPLIFIERS 

S25|20 

UNMODULATED CLASS 
C AMPLIFIER 

'.""I"' —r-1- 
Efficiency 

"Power input 

Plate 

‘ Power 

cathode, heater, and screen-grid leads. Thus the problems of by-passing 
and of lead inductance are reduced to a minimum. This tube operates 

with practically no loss of effi- 
UNMODULATED CLASS ciency up to frequencies of 150 

gQ C AMPLIFIER megacycles and is still usable at 
& Efficiency 300 megacycles. Figure 13*26 
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^ ’ cycles as copstructed by Samuel 
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g 50^ 40 "Plate Voltage /N ' 5003 jg similar to the 832 just 
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Fig. 13*27 Variations of efficiency and shown in Fig. 13.29u. 
power output of 832 with frequency. Characteristics are shown in 

Fig. 13-30. 
The techniques required for neutralization, shielding, etc., of these 

special triodes differ only in degree from those required at lower fre¬ 
quencies. As in all high-frequency work it is necessary to avoid any 
unnecessary lead inductance and to use extreme care »in coniSning con¬ 
duction currents in the shields, etc., to regions where they do no harm. 

* A. L. Samuel and N. E. Sowers, “ A Power Amplifier for Ultra High Frequencies/’ 
Proc, IRE, 24, 1464, November, 1936. 
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{Samuels and Soreerst courtesy of IRE) 

Fig. 13 28 Two-etage amplifier for wavelength of 1 meter. 

{Courtesy of RCA RadwAron 
Company) 

Fig. 13*29a A high* 
power high-frequency 

wateiHsooled triode. 

□□ 
Fig. 13*29& Cross sec¬ 
tion of RCA type 888. 
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13*23 Suimiuu7 

The design of audio- and video-frequency amplifiers is well understood. 
The various basic limitations are known, and methods are available 
for producing amplifiers which approach these limitations very closely. 
The design of intermediate-frequency amplifiers is also well understood, 
and again the basic limitations are known. Here, however, the prac- 
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Fio. 13 30 High-frequency performance and input ratings of RCA type 888. 

tical difficulties of approaching the ideal performance are so great that 
inferior results are ordinarily accepted. In intermediate-frequency 
amplifiers in the region from 20 to 100 megacycles it is necessary to 
exercise the greatest care in details of grounding, shielding, and by¬ 
passing, if large stable gains are to be obtained. Input conductance 
of the tubes produce serious loading, and the problem is a difficult one. 

Whereas the principal difficulty with low-power amplifiers lies in 
circuit design, the greatest difficulty with high-power amplifiers lies 
in the construction of suitable tubes. At the present time no negative 
grid tube giving as much as 100 watts output at frequencies above 300 
megacycles is commercially available. We shall see in a later chapter 
how a compromise solution of this problem is achieved by other means. 
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PROBLEMS 

13*1 Calculate by the exact and by the approximate method the decibel equiva- 
lents of the following voltage ratios: 4.0; 8.0; 11.0; 20.0; 28.0; 50.0; 100; 600; 
1400; 1,000,000. 

13*2 Calculate by the exact and approximate method the voltage ratios corre> 
sponding to the following numbers of decibels: 2.0; 4.0; 5.0; 8.0; 12.0; 21.0; 37.0; 
66.0; 94.0; 128. 

13*3 Draw the circuit of a two-stage direct-coupled voltage amplifier using 
triodes with separately heated cathodes. Show the necessary battery coimections, 
and indicate reasonable values for the voltages used. 

13*4 A particular triode has the following parameters at a normal operating 
point: Qm == 2000 micromhos; Vp = 10,000 ohms; Rc = 600 ohms. This tube 
operates as an amplifier, and no cathode-bypass condenser Cc is provided. What are 
the equivalent values of transconductance, plate resistance, and amplification factor 
which exist under these conditions? 

13.5 A cathode by-pass condenser is added to the system of problem 13*4. What 
are the equivalent values of transconductance, plate resistance, and amplification 
factor at the frequency at which the reactance of the condenser is 600 ohms? 

13*6 In the amplifier circuit of Fig. 13-3 let = 2000 micromhos, fp = 10,000 
ohms, Rl = 100,000 ohms, C « 0.01 /if, Rg — \ megohm, Ct = 100 /t/tf. Calci^te 
the midband (maximum) amplification per stage and the two frequencies at which 
the amplification is reduced to 0.707 of its maximum value. 

13*7 In the amplifier of problem 13*6 the actual plate-to-cathode direct voltage 
of the first tube is 100 volts. The coupling condenser is known to have an appre¬ 
ciable leakage of direct current. How high must the resistance of this condenser be 
if the bias of the second tube is not to be shifted by more than 1 volt? 

13*8 In the three-stage amplifier shown in Fig. 13*1 assume the constants of 
problem 13*6. Determine the smallest value for the decoupling condenser Cd which 
gives a net loss of 100 at 10 cycles per second. See Fig. 13*8. 

13*9 Discuss the effects upon a video amplifier which result if the screen-grid 
by-pass condenser is too small; if the cathode by-pass condenser is too small: 

13*10 Develop the exact formula for the impedance of the network of Fig. 13-13. 
Rationalize and separate real and imaginary components. Sketch each against the 
variable cp. 

13*11 Develop the exact formula for the impedance of the network of Fig. 13-17. 
Outline a method and tabular form for calculating the impedance curves shown in 
the same figure. 

13*12 Given a tube having a transconductance of 6000 micromhos and capaci¬ 
tances such that Ct » 30 /i/tf, design an interstage network having an amplification 
constant to 1 db up to 4 megacycles. Use the curves of Fig. 13-16 and the net¬ 
work associated. (Consider only high-frequency performance.) 

13*13 Using fij « 600,000 ohms and Rd * 20,000 w, choose values of Cd and C 
so that the amplification is at least 0.707 of its midband value for all frequencies above 
2 cycles per second. (Refer to problem 13-12.) 
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13*14 Develop the transfer impedance (ratio of output voltage to input current) 
of the network of Fig. 13-21. 

13*15 Repeat the development of problem 13-14 but interchange input and out¬ 
put terminals. (The identity of these results checks a general network theorem 
which is a form of the reciprocity theorem.) 

13* 16 Show that the difference between the two frequencies at which the absolute 
impedance of network (a) is 0.707/2 is equal to the frequency at which the impedance 
of network (6) is 0.707R. Interpret this result in terms of the principle of conserva¬ 
tion of band width. 

13*17 By use of an ideal four-terminal interstage network a particular tube gives 
a constant amplification of 40 up to 3 megacycles. What amplification will it give 
if the band of uniform amplification must be extended to 10 megacycles? What 
constant amplification will it give across the band 20 to 25 megacycles? 

13*18 The tube of problem 13-17 is to be used in a special amplifier in which the 
voltage amplification is directly proportional to the frequency and is 10 at 10 mega¬ 
cycles- Again assuming an ideal four-terminal network, what is the highest fre¬ 
quency to which this procedure may be extended? 

13*19 Referring to Fig. 13-10, make a sketch showing how input and output 
stages of an amplifier may be coupled together by a chassis of finite conductivity if 
suitable grounding precautions are not observed. 

13*20 Consider a voltage amplifier in which the effective impedance of the first 
grid circuit is 500,000 ohms and the voltage amplification is 2 million. At a fre¬ 
quency of 10 kc, how large a direct capacitance between the output terminal and the 
first grid terminal may exist without causing spontaneous oscillation? (Assume 
most unfavorable phase relations.) 

13*21 In a particular high-frequency timed amplifier the input and output cir¬ 
cuits have the same impedance. If the gain of the amplifier is 100 db, how large a 
coefficient of coupling may the input and output transformers have? Express this 
as a mutual inductance, given the fact that the primary and secondary of each trans¬ 
former has an inductance of 1 milhhenry. 

13*22 Sketch an arrangement employing resonant lines as a tuned interstage net¬ 
work for a high-frequency amplifier. Show the equivalent low-frequency circuit. 

13*23 The push-pull arrangement of two identical tubes in one envelope is quite 
advantageous for high-frequency amplifiers. Are comparable advantages to be ex¬ 
pected of push-pull tubes as high-frequency oscillators? 



CHAPTER 14 

THE NEGATIVE GRID OSCILLATOR 

14*1 Introduction 
The term negative grid oscillator is used to denote the oi^nary 

vacuum-tube oscillator when modified for ultra-high-frequency opera¬ 
tion. The term negative is necessary to distinguish it from the positive 
grid or Barkhausen oscillator. The mechanism of oscillation at low 
frequencies is now well understood, and circuits which operate as virtu¬ 
ally perfect oscillators are in use. That is, existing oscillators give an 
output approaching a perfect sinusoid which is constant in frequency and 
amplitude.* 

At frequencies of a few megacycles or less it is common to use tetrodes 
or pentodes as oscillators. The large values of plate resistance and the 
low grid-plate capacitance which are characteristic of these tubes are 
favorable to the production of stable high-gain amplifiers. Because 
amplification is essential to the ordinary forms of oscillators the same 
features which make a tube desirable as an amplifier make it desirable 
as an oscillator. 

At higher frequencies the triode is favored above all other types of 
oscillator tubes. The grid-plate capacitance is always undesirable in 
amplifiers but may be made to serve as part of the resonant circuit of an 
oscillator. The extra grids of the pentode structure decrease the effec¬ 
tive grid-plate capacitance only at the expense of increasing both grid- 
cathode and plate-cathode capacitances. This modification serves 
only to decrease the maximum possible frequency of oscillation. More¬ 
over, difficulties of by-passing, etc., are presented by these grids. 

14*2 Basic Oscillator Theory 

The most characteiistic feature of an amplifier is that the power out¬ 
put, which is delivered to some sort of load impedance, is greater than 
the input power required. Because of this fact it is possible to return 
a fraction of the output power to the input, and, if the conditions are 
favorable, stable oscillations are produced. The output which for- 

* L. A. Meacham, The Bridge Stabilized Oscillator/’ Bell Syetem Tech, 17,574, 
1938. 
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merly resulted from the action of a separate input now is generated 
8f>ontaneously. In order for the output to be unaltered when the 
change from separate excitation to self-excitation is made, it is neces¬ 
sary that the voltage returned to the input be exactly equal to, and in 
phase with, the voltage which originally existed. If an attempt is 
made to increase the output by returning a larger fraction of the output 
power to the input, it will ordinarily be found that the increase produced 
is small. A limiting action in the vacuum tube has taken place so that 
the output is not increased appreciably when the input is increased. 
It may be shown in general for any kind of oscillator that the returned 
voltage is always equal to the voltage required at the point in question. 

We may readily show that three distinct functions must be simul¬ 
taneously performed in any system which is to produce steady periodic 
oscillations. A functional block diagram illustrating the situation is 
shown in Fig. 14*1. The unit designated amplifier ordinarily consists 
of a single vacuum tube, particularly at high frequencies. At lower 

Fig. 14-1 Functional block diagram of an oscillator. 

frequencies it is possible, and often advantageous, to use two or more 
tub^ in this unit. In this analysis the amplification is independent of 
frequency or the magnitude of the signal. It may be a fimction of 
battery voltage or of tube properties. The unit designated frequency 
control consists of some kind of passive network in which the phase shift 
and the transmission are functions of frequency. Ordinarily the fre¬ 
quency-control unit consists of a single tuned circuit, but resistance- 
capacitance combinations or bridge circuits may also be used. 

We have tacitly assumed in the above that both amplifier and fre¬ 
quency-control units are linear, that is, that the output of each is directly 
proportional to the input and that a sine wave is not distorted by 
either. It is not practical to build units in which the amplification or 
attenuation is absolutely constant. Accordingly, the two units so far 
mentioned do not satisfy the basic requirement that the voltage 
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returned to the input after one round trip is equal to the voltage initially 
assumed. Hence the function of the limiter is necessary. 

If the gain of the amplifier is increased by some disturbance, such as a 
change of battery voltage, the oscillation level tends to rise without 
bound. The limiter is a device in which an increase of the oscillation 
voltage increases the loss, thus compensating the assumed increase of 
amplifier gain. The limiter is assumed to have no phase shift but may 
have attenuation. 

In the operating condition the gain of the amplifier is exactly equal 
to the sum of the losses of the limiter and of the frequency-control units. 
This is necessary in order that the voltage returned to the input of the 
amplifier around the loop be equal to the voltage assumed at the input. 
Since the limiter is assumed to have no phase shift, and the ampli¬ 
fier phase shift is assumed to be either 0 or 180°, the phase shift in the 
frequency-control unit must be either 0 or 180°. This condition is 
necessary, since the returned voltage must be in phase with the input 
voltage for stable oscillation. 

The limiting function may be accomplished in several different ways. 
Of these, three are relatively important. The most common method is 
to allow the vacuum tube, which also serves as amplifier, to overload. 
Under these conditions a decrease of attenuation in the frequency- 
control unit increases the input voltage to the tube, but the increase of 
the output voltage is negligible because of overload. This mode of 
operation always results in the generation of harmonic voltages and 
currents, which may be shown to affect the operating frequency.* 
The oscillators discussed in this chapter employ limiting by overload. 

A tungsten lamp or other resistive element which has a marked 
temperature coefficient of resistance may be used as a limiter. As the 
oscillation level rises, the resistance of the lamp rises. If the lamp is 
used in a suitable bridge circuit, a considerable increase of attenuation 
in the limiter may be made to result from a small change in the oscilla¬ 
tion voltage. It is obviously necessary to use lamps of very low power 
rating if the output of an ordinary tube is to produce an appreciable 
heating. 

A portion of the oscillatory voltage may be amplified, rectified, 
filtered, and fed back as a bias voltage to the oscillating tube. Under 
favorable circumstances the resulting system, which is referred to as the 
automatic volume-control oscillator, gives an output that is accurately 
constant and virtually free from harmonics. This system, however, is 
not very practical at ultra-high frequencies. 

* Groazkowski, ** The Interdependence of Frequency Variation and Harmonic 
Content, and the Problema of Constant Frequency Oscillators,’' Proc. IRE, 21, 068, 
1933. 
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14*3 Requirements 
For laboratory purposes, the ideal oscillator is one in which the out¬ 

put frequency may be set at any desired value and will remain fixed at 
that value. The wave form is perfectly sinusoidal, and the output is 
equivalent to a known constant voltage in series with a known constant 

impedance. 
The ideal oscillator for communication purposes must meet slightly 

different requirements. The output frequency must be as constant as 
possible. The wave form need not be perfect but should be good. The 
constancy of output voltage is less important, and the output imped¬ 
ance is relatively unimportant. It is important, however, that an 
oscillator for communication at ultra-high frequencies be capable of 
direct modulation, since modulated amplifiers are not yet practical at 
these frequencies. It is very desirable that pure amplitude modulation 
or pure frequency modulation be achieved separately, but this is seldom 
possible. Ordinarily both frequency and amplitude modulation occur 
in significant proportions. 

Of all the requirements, however, that of frequency stability is most 
important. At a frequency of 1000 megacycles a deviation of 1 part in a 
million, long regarded as an unattainable goal, amounts to a shift of 
1000 cycles. Deviations as large as 100 parts per million occur unless 
extreme precautions are taken, and such deviations lead to great practi¬ 
cal difficulties. Because of its importance a large amount of effort has 
been devoted to improvement of frequency stability. 

Frequency deviations may be traced to two primary causes, changes 
of the applied voltage and changes of the circuit elements. The applied 
voltages affect the amplification of the vacuum tube and thereby affect 
the limiting action. The distribution of harmonics is thus disturbed, 
and the equivalent reactance of the circuit is modified by the intermodu- 
lation produced. Moreover, the changes of heat produced in the tube 
affect the internal inductance and the internal capacitance, as well as 
modify the temperature of the external elements. 

Probably the most serious problem at the present time is the con¬ 
struction of frequency-control (tank) circuits in which the natural 
frequency is adequately independent of temperature, humidity, vibra¬ 
tion, and aging. This is a fundamentally difficult problem in that the 
conditions of operation are often quite unfavorable, and the stability 
requirements are high. The effects of vibration are minimized by the 
choice of stable mechanical designs and by the use of vibration-absorb- 
ing supports for critical components. The effects of humidity are often 
eliminated by sealing the circuit elements into an airtight or evacuated 
container. The effects of aging are avoided by the use of materials 
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having great permanence. Ceramic materials and most of the familiar 
metals have this required permanence; that is, their mechanical proper¬ 
ties or dimensions do not change appreciably with the passage of time. 

The problem of temperature is best illustrated by an example. Many 
modem ultra-high-frequency applications require that the apparatus 
operate successfully over the temperature range —40° to +60° C. Over 
this range an unrestrained copper wire changes its length by 1020 parts 
per million and its resistance by nearly 50 per cent. Evidently a very 
considerable amount of refinement is necessary if a tank circuit is to be 
produced in which the resonant frequency changes by only a few parts 
per million for the same temperature range. 

The natural frequency of a resonant transmission line varies inversely 
with its length. A frequency variation of 1620 parts per million for a 
temperature change of 100° C is to be expected from a copper trans¬ 
mission line used as an oscillator tank. The variation, in common with 
most temperature coefficients of frequency, is negative. That is, an 
increase in temperature results in a decrease in frequency. 

The inductance of a coil of fixed proportions and a fixed number of 
turns is directly proportional to its linear dimensions. Accordingly the 
temperature coefficient of inductance for a coil which expands without 
constraint is equal to the linear coeffici^t of thermal expansion. This 
relation has been tested carefully and holds rather accurately at low 
frequencies. At high frequencies, however, the observed coefficient is 
considerably larger than the value predicted above. Groszkowski 
explains this observation on the basis of skin effect.* At low frequen¬ 
cies the current flows over the entire section of the wire, and the behav¬ 
ior is uniform. At higher frequencies the current flows only in a thin 
surface skin of the wire, the thickness of the skin decreasing as the 
frequency and conductivity are increased. Accordingly the inductance 
observed at high frequencies is lower than that at low frequencies 
because the magnetic energy stored within the conductor is reduced. 
At some given frequency the inductance varies with temperature be¬ 
cause of the change of conductivity, even though no change of dimen¬ 
sions occurs. A rise of temperature causes a decrease in the conductiv¬ 
ity and a corresponding increase in the thickness of the skin which is 
effective in conducting the current. Therefore more magnetic energy 
is stored within the conductor and the inductance is increased. 

The temperature coefficient of typical copper coils is about twice as 
large as the linear expansion coefficient. Coils having much lower 
coefficients may be constructed by using fine wires or ribbon-shaped 

Groszkowidd, ^^The Temperature CoeflEicient of Inductance,” Proc, IRE^ 25, 
448, 1937. 



506 THE NEGATIVE GRID OSCILLATOR 

conductors wound on ceramic forms. The construction of coils and con¬ 
densers for low temperature coefficient of frequency is a highly special¬ 
ized and rather difficult problem. The associated references are recom¬ 
mended.* 

14*4 The Power Oscillator as a Class C Amplifier 

Let us consider the operation of a triode as a low-frequency power 
amplifier or oscillator. This review is profitable because many design 
features are the same at all frequencies. The term power oscillator 
indicates that the tube carries plate current only in short pulses and 
that the C bias is relatively large. Under these conditions the tube 
operates essentially as a class C amplifier, and the efficiency of power 
conversion in the plate circuit is relatively high. 

In order to obtain the maximum possible power output from a triode 
as a class C amplifier it is necessary to have a relatively low value of 
plate load impedance and to use large plate currents. Maximum 
efficiency in the plate circuit necessitates a higher plate load impedance 
and a reduction of the plate current and power output. In general 
the frequency stability of an oscillator is improved by increasing the 
plate load impedance to relatively high values. Thus the couditions 
for optimum frequency stability lead to a high plate circuit efficiency 
but a relatively low output power. 

In the oscillator, a portion of the output power is required to drive 
the grid, whereas in the amplifier this power is supplied by a previous 
tube.. Accordingly it is desirable to have somewhat smaller values of 
grid bias and of grid excitation in the oscillator than in the amplifier so 
as to minimize this driving power, which is subtracted from the useful 
output power. 

In the design of class C amplifiers it is common to set the C bias at 
approximately twice the value which reduces the plate current to zero. 
Extensive tests of a variety of typical commercial tubes indicate that 
this value is somewhat too high for best operation. A bias approxi¬ 
mately 1.7 times as large as the cut-off value is more nearly optimum 
for almost all tubes. This relation is expressed by the equation 

[14-1] 

where m is the amplification factor of the tube and Epi, and See are plate 
and grid polarizing or bias voltages, respectively. 

* H. A. Thomas, ** The Stability of Inductance Coils for Radio Frequencies,’’ 
Jour, lEEf 77, 702,1936; “ The Electrical Stability of Condensers,” 79, 297, 
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In a well-adjusted class C amplifier the maximiun value of the alter¬ 
nating voltage in the plate circuit is nearly equal to the plate biasing 
voltage. The maximum value of the alternating voltage in the grid 
circuit is somewhat larger than the value of the grid biasing voltage so 
that the grid goes positive by an appreciable amount during each cycle. 
This condition may be expressed in terms of equation 14-1 by the 
approximation 

[14-2] 

where and Eg denote the maximum values of the alternating volt¬ 
ages in plate and grid circuits respectively. 

Relations similar to those of equations 14*1 and 14-2 evidently apply 
to the power oscillator. In this case, however, the grid driving power is 

H li m H 

HUH 
(a) 

Fig. 14-2 Actual and equivalent circuit of a triode oscillator. 

abstracted from the tank circuit, reducing the output, and smaller values 
of grid bias and grid excitation are desirable. The conditions for opti¬ 
mum operation may be described approximately by the relations 

and 

[14-3] 

[14-4] 

The ratio Ep /Eg, called the excitation ratio of an oscillator, is of con¬ 
siderable importance. It is fixed by the circuit which provides the 
feedback from plate circuit to grid circuit. In the circuit of Fig. 14-2, 
the oscillatory current which circulates throu^ the coil Lt and the con- 
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densers Ci and C2 is large compared to the pulses of plate current which 
flow only through Ci. Accordingly we may write to an excellent ap¬ 
proximation. 

K Cl 
[14*5] 

Combining equations 14*4 and 
voltages, 

2 

14-5 

£2 
Cl 

to eliminate the alternating 

[14-6]* 

This equation must not be regarded as exact or infallible, but it does 
serve as a general guide in design. Experimental work with a variety 
of small triodes at low frequencies indicates that this relation is essen¬ 
tially correct. Optimum frequency stability and excellent constancy 
of output are observed when equation 14-6 is satisfied. 

14*5 Frequency Limits of Triodes 

It is generally known that there is a highest frequency at which any 
particular tube may be made to generate spontaneous oscillations. 
This may not exceed the frequency which results when the external 
terminals are connected in the most direct fashion possible. Usually, 
however, tubes fail to oscillate in such a short-circuit condition and 
require an appreciable external inductance. Two effects contribute 
to this failure. Electron transit time causes the effective grid- 
cathode conductance to rise to relatively high values, decreasing the 
effective Q of the resonant circuit and absorbing power. This con¬ 
ductance varies as the square of frequency and, therefore, changes from 
a magnitude which is negligible, to one which is of controlling im¬ 
portance, in a relatively small frequency ratio. Transit time also 
affects the phase angle of the transconductance, the plate current no 
longer being 180® out of phase with the grid voltage at high frequencies. 
In some cases this effect limits the band over which oscillations are pro¬ 
duced even more severely than does input conductance. It is possible 
to extend the range of oscillation in these cases by introducing a suitable 
phase shift in the circuit which couples the grid to the plate. Fortu- 

* The approximation expressed in equation 14-1 is accurate within 10 per cent 
for practically all the tubes now available commercially. The relation of 14*2 is 
much less exact in that it depends upon a choice between high efBciency and high 
power output as well as upon the tube. Equation 14*3 is of intermediate accuracy, 
seldom being in error by as much as 25 per cent. Equation 14*5 is quite exact if 
the Q of the circuit is moderately high so that 14*4 and 14*6 are of equal accuracy, 
of the order of 50 per cent. 
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nately, the phase shift which results from the grid conductance in typi¬ 
cal circuits is in such a direction as partially to compensate for the effects 
of transit time upon the phase of the transconductance. 

The validity of this statement is established by reference to Fig. 14*3. 
The elements shown represent the tuning coil, the capacitances Ci and 
C2, and the grid-cathode conductance. The vector diagram of this 

i 

Fig. 14*3 Phase relations which result from grid-cathode conductance. 

system is drawn, using the circulating current as the reference. The 
voltage across Ci then lags the current by 90°, whereas the voltage 
across C2 lags by a smaller angle. Accordingly the voltage V2 reaches 
its maximum at an earlier time than Fi, and the delay between the time 
of maximum grid voltage and maximum plate current flow is partially 
compensated. 

14*6 Effects of Tube Geometry 

Figure 14-4 shows the variation with wavelength of the output power 
available from a number of commercial triodes. These curves are quite 
similar, suggesting that the same mechanism of limitation is active in all. 
Moreover, a number of these curves are tangent to a common straight 
line or asymptote shown dotted in the figure. This common asymptote 
is substantial evidence that some common physical limitation exists. 
Large tubes produce larger power outputs at low frequencies than small 
tubes, but the reduction of output begins at lower frequencies for large 
tubes. 

The question immediately arises whether this line is fixed by some 
unchangeable physical limit. If so, the negative grid triode must be 
abandoned for wavelengths below about 20 cm because the output 
power, less than watt, is insignificant. If, on the other hand, the 
position of the asymptote depends upon the structure of the tube rather 
than upon its operating principle, we are far better off. 

That the position of the dotted line does depend upon the structure 
and lead arrangement is shown by Fig. 14*5. Three special tubes of 
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Frequency in Megacycles per Second 

(Samttdt cowtuu of J, Applied Phyeica,) 

Fia. 144 Output vs. frequency curves fof some commercially available three- 
element tubes operating as oscillators. 
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similar double-ended construction but different sizes are compared with 
two similar tubes of single-ended construction. It is seen that the 
double-ended construction illustrated in Fig. 14*6 leads to approximately 
twice as high a limiting frequency for any particular power output as 
does the single-ended construction. Also, the dotted line associated with 

100 200 300 500 1000 2000 3000 5000 
Frequency in Megacycles per Second 

(Samuel, courtesy of J. Applied Phyaice) 

Fia. 14-5 Output characteristics of three experimental double-ended tubes 
compared with two modem single-ended tubes. 

304A and 316A tubes is more favorable than is that of Fig. 14*4. The 
single-ended tubes of Fig. 14*5 are illustrated in Figs. 14*7 and 14*8. 
The advantage of double-ended operation is made clear by the charac¬ 
teristics of Fig. 14*9. Here a particular tube was used first in single-end 
and then in double-end connection. 

The tube illustrated in Fig. 14*6a is an experimental hand-made 
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model. Figure 14*66 is the Western Electric 368A which is the com¬ 
mercial form of the same tube. The unusual construction of this tube 
deserves attention because of the excellent performance which results. 
In an appropriate circuit the 368A will oscillate to a maximum fre¬ 
quency of 1700 megacycles and it gives a power output of the order of 

Plate Lead^ 

Grid Lead 
Filament 

Leads V 

Plate, Triangular 
Block 

^Plate Lead 

Filament Wire 
n^Grid Lead 

Grid Structure 

Fig. 14*6a Experimental model of double-ended high-frequency oscillator tube. 

(Cawrto«y of Bell System Tech J.) 

Fig. 14*66 Photograph of the W. E. 368A double-ended tube. 

1 watt at 1500 megacycles. By the u§e of a suitable cavity resonator a 
considerable power output at the second harmonic frequency may be 
secured. No triode commercially available at this time gives com¬ 
parable performance. 

From the preceding work we conclude that the performance of nega- 
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tive grid triodes as oscillators is limited at least in part by the nature of 
the construction. Accordingly, wc may expect to produce larger 
amounts of power and at higher frequencies by continued refinement of 
triode design. 

riCourteay of Bell System Tech J,) 

Fig 14 7 A high-frequency triode. 

14*7 Practical Oscillator Circuits 
Let us consider the circuit of a practical ultra-high-frequency oscilla¬ 

tor as -shown in Fig. 14-2. The simplified equivalent diagram of Fig. 
14*26 is a conventional Colpitts circuit except for the addition of the 
capacitance C3. In the limiting case Ci, C2, and C3 are the plate- 
cathode, grid-cathode, and grid-plate capacitances of the tube itself. 

C1C2 
The effective capacitance across the coil is thus C3 + , and the 

C1 + C2 

oscillatory frequency is that for which the reactance of this effective 
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capacitance is equal to that of the inductance. The inductance in this 
case is the total inductance between the active portions of grid and plate, 
including the inductance of the internal leads as well as that of the con- 

^ * T\ 

(Courtesy of Bell System Tech. J.) 

Fig. 14-8 The Western Electric 316A single-ended '^doorknob^' tube. 

'40 

Frequency in Megacycles per Second 
(Samuelt courtesy of J. Applifid Physics) 

Fig. 14*9 Comparison plot showing effect of double-end operation. 

ductors external to the tube. If the limiting frequency is to be high, it is 
necessary that both inductance and capacitance be held to minimum 

practical values. The short leads required are achieved only by placing 
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the internal elements close to the envelope of the tube. The low capaci¬ 
tances required are achieved by making the elements of the smallest 
practical size and by careful proportioning of the structure. These 
steps tend toward a marked decrease in the ability of the tube to dissi¬ 
pate heat and, therefore, tend to decrease the available power output. 
It is only by the use of materials capable of operating at very high tem¬ 
peratures and by refined design procedure that the power outputs now 
available at these high frequencies have been achieved. At best these 
power outputs are objectionably small. 

When a tube is operating at its highest possible frequency the capaci¬ 
tances Cl and C2 are the plate-cathode and grid-cathode capacitances 
of the tube itself. The user of the tube is thus able to satisfy equation 
14*6 only by adding capacitance in parallel with C\ or C2 as required. 
This is not a desirable procedure in that it increases the total shunting 
capacitance. Moreover, the unavoidable stray inductances make it 
difficult, if not impossible, to add a capacitance which is effectively in 
parallel with either grid-cathode or plate-cathode capacitance. 

The magnitude and phase relations of the grid and plate voltages 
may be controlled by suitable coupled transmission lines. The neces¬ 
sary adjustments are difficult to make, and their relation depends upon 
the frequency required. Accordingly the resulting complication is 
seldom justified in practice. 

Equation 14*6 should, whenever possible, be satisfied by the tube 
designer, A given grid mesh produces a greater grid-cathode capaci¬ 
tance and a greater transconductance as the mesh is moved closer and 
closer to the cathode. The plate-cathode capacitance is not greatly 
changed and the m is somewhat reduced by this modification. Accord¬ 
ingly it is generally possible to approach or satisfy the desired relation, 
the principal difficulty being in the control of the small grid-cathode 
spacing required. 

14*8 Practical Oscillator Construction 

Ordinarily ultra-high-frequency oscillators employ resonant lines 
rather than lumped circuits as frequency-stabilizing elements. As 
previously mentioned, lines have the advantage of high Q and high 
intrinsic mechanical stability. At frequencies above 200 megacycles 
they are almost exclusively used. 

A practical oscillator must utilize a suitable tube in conjunction with 
a resonant line system in such a way as to satisfy the conditions of the 
schematic circuit. Ordinarily the grid and plate of the tube are con¬ 
nected to the ends of the resonant line system, the other end of the line 
being open- or short-circuited as the conditions dictate. In the circuit 
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of Fig. 14-10 a Western Electric 316A is tuned by an open-circuited line 
one-half wavelength long. The filament is isolated by means of small 
high-impedance choke coils so that the high-frequency currents are con¬ 
fined to the resonant line and the interelectrode capacitances. 

0-15 Ma. 

Fig. 14-10 A 400-inc negative grid oscillator with WE-316-A tube. 

The physical arrangement of the 316A oscillator is shown in Fig. 14-11. 
The resonant line consists of two copper rods 6 mm in diameter and 
12 mm apart on centers. The filament chokes, of relatively heavy wire 
as dictated by the large filament current, consist of approximately 30 

{Courtesy of Badio) 

Fig. 14-11 View of an experimental 400-mc oscillator. 

turns. This particular unit gives a power output of 5 watts at 400 
megacycles. The plate circuit eflficiency exceeds 50 per cent, and the 
frequency stability is good. 
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An interesting oscillator construction is illustrated in Fig, 14’12. 
The tubes employed have both grid and plate leads brought out at the 
top of the tube. Only the filaments are connected to the conventional 
tube base pins. The plates are connected by a small coil which is tuned 

{C<nirte»y of Radio) 

Fia 14 12 A push-pull oscillator for 224 me employmg HY-75 tubes. 

to the operating frequency by the interelectrode capacitances. The 
grid circuit provides the pnncipal frequency-stabilizing element in the 
form of a short-circuited half-wavelength line. The grids are tapped 
at points near but not at the geometrical centers of the bars, thereby 
decreasing the effect of the conductance added by the grids. Figure 
14*13 is a semi-schematic diagram illustrating the connections. The 
circuit is recognized as a symmetrical balanced, or push-pull, oscillator. 
Accordingly the grid-cathode impedances of the two tubes are in series 
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and the effective impedance is thus doubled. The necessary coupling 
between grid and plate circuits is provided through the grid-plate capaci¬ 
tances of the two tubes. Accordingly this circuit is merely a symmetri¬ 
cal form of the tuned-grid tuned-plate or Meissner oscillator. This 

Fig. 14*13 Semi-schematic of a push pull 224-mc. oscillator. 

Cl—0.003 Atf midget mica. —2 turns % in. dia., 1 in. long. 
Ri—5000 U 10 w. RFC—6 turns in. dia. 
Li—Half-wave parallel rod line. 

particular unit is designed to operate at 224 megacycles, but by proper 
choice of tubes considerably higher frequencies may be produced. At 
higher frequencies it is usually desirable to use a resonant line for the 
plate circuit as well as for the grid circuit. 

iSamuelt courtesy of /. Apfiied Fhysia) 

Fig. 14-14 Photo of oscillator using a double-ended tube. 

An oscillator for use with the Western Electric 368A or rimilar double- 
ended tubes is shown in Fig. 14-14. Here the tube is located at the 
middle of a half-wavelengthjine, the tube leads themselves forming a 
significant portion of the total length of line. In this assembly the 
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filament leads are contained within metal sleeves, the structure being so 
adjusted that each operates as a line one-fourth wavelength long and so 
offers a high impedance to the oscillatory frequency. This particular 
unit may be made to oscillate at frequencies as high as 1700 megacycles, 
the limitation being due to the tube and not to the oscillator structure 
itself. 

At frequencies above about 500 megacycles the radiation of power 
from open resonant line systems is so great that some refinement is 
necessary. The use of large plates as short-circuiting elements is help¬ 
ful but mechanically awkward. The most satisfactory solution to this 
difficulty is to enclose the entire oscillator and resonant line system 
within a metal container. The resonant lines now operate as a shielded 
pair rather than as a coaxial or simple parallel wire pair. Radiation is 
thus entirely eliminated. 

Several difficulties arise when an oscillator is completely enclosed in 
this fashion. The heat liberated by the tube is not readily dissipated, 
and the power input must, therefore, be reduced. The mechanical con¬ 
struction and assembly are necessarily complicated by the addition of 
the enclosure. Sometimes the mechanical problems which arise are 
very serious. Finally, the enclosure must not be too large, or it may 
function as a cavity resonator, greatly complicating the operation of the 
circuit. In view of these difficulties the design of such enclosures must 
be carried out with considerable caution. 

PROBLEMS 

14*1 The receiving triode 7A4 may be made to oscillate at relatively high fre¬ 
quencies. Compare the constants of this tube with those called for by equation 
14-6. What change in the value of C2 is indicated if the other two values are re¬ 
garded as fixed? 

7A4 6SF6 

Transconductance 
Plate resistance 
Amplification factor 
Capacitances 
Grid to plate 
Grid to cathode 
Plate to cathode 

2500 micromhos 
8000 ohms 
20 

40 /xni 
3-4 fi^f 
3*0 fjtfjtf 

1600 micromhos 
67,000 ohms 
100 

2*4 fifjti 
4-0 M^f 
3*6 fifjLi 

14*2 Repeat problem 14*1 for the high-mu triode 6SF6. 

14*3 If the triode of problem 14*1 has an effective grid-cathode conductance 
of 300 micromhos due to electron transit time at a frequency of 200 megacycles, 
calculate the phase angle between grid-cathode and plate-cathode voltages. Assume 
that transit time effects do not appreciably affect the plate resistance as given. 

14*4 Repeat problem 14'3 for the 6SF5 of problem 14*2. 

14*5 Calculate the inductance required to tune the interelectrode capaci¬ 
tances of the 7A4 to a frequency of 500 megacycles. Using standard formulas^ 
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calculate the approximate size of a one-tum coil of No. 20 wire which produces 
this inductance. 

14*6 Repeat problem 14-5 for the 6SF6. 

14*7 For a particular lamp the resistance is given approximately by the rela¬ 
tion r == 100 + 207, where 7 is the current in milliamperea. A Wheatstone bridge 
uses two of these lamps as diagonally opposite arms; the other two arms being fixed 
resistors of 200 ohms. A galvanometer of negligible impedance is used with this 
bridge. Calculate and plot the galvanometer current as a function of the voltage 
applied to the bridge. (Consider such a bridge as a liimter in an oscillator.) 

14*8 Repeait problem 14-7 using a galvanometer of very high impedance. 
Plot galvanometer voltage versus applied voltage. 

14*9 In a dynatron oscillator the only tuning elements are the coil and con¬ 
denser of a parallel resonant circuit. These are connected to the tube, which acts 
as a non-linear negative resistance. Explain the observed fact that the frequency 
of oscillation is not exactly the natural frequency of the tank circuit. 

14* 10 In problem 14-9 the frequency stability may be improved by shunting 
across the tank series-resonant LC circuits tuned to the harmonics of the oscillating 
frequency. Explain. 

14*11 It has been suggested that a cylindrical triode be built as part of a coaxial 
line resonator. Sketch such an arrangement, and mention some of the practical 
difficulties that would have to be overcome. Consider the advantages of this ar¬ 
rangement in terms of transit time, internal capacitances and inductances, and 
phase shifts. 

14*12 Consider the use of a screen-grid tetrode as a high-frequency oscillator. 
Will transit time of the electrons from screen grid to plate affect the operation? 
How may the required feedback be seemed in such an oscillator? 

14*13 A particular cylindrical triode has a straight filamentary cathode, a small 
circular grid, and a plate whose diameter is several times that of the grid. A screen 
grid of relatively fine mesh is to be inserted between grid and plate. What effect 
upon this tube as an oscillator will the addition of such a grid have if it is thoroughly 
by-passed to the cathode? 

14*14 A tetrode is built in which both grids are of the conventional helical form, 
one being slightly larger in diameter than the other. If the inner grid is biased some¬ 
what positive it is found that the outer grid has a relatively large value of trans¬ 
conductance. Consider transit time and other features of this tube as a high- 
frequency oscillator. 

14*15 If the various grids of a normal pentode form true equipotential planes, 
a single electron in its motion from cathode to plate constitutes, successively, cur¬ 
rents between cathode and control grid, control grid and screen grid, screen grid 
and suppressor grid, and suppressor grid and plate. Which of these several transit 
times are important in affecting the input conductance of the tube? Which af¬ 
fects the total phase shift between input and output? 

14*16 High frequencies are sometimes generated by using a harmonic of an 
oscillator. A particular oscillator of the class’ C variety operates with the grid 
excitation voltage of frequency / and the plate a-c voltage largely of frequency 2f, 
Sketch curves of plate and grid voltage and current. What are the advantages of 
such operation? 

14*17 Repeat problem 14-16 for third harmonic operation. Suggest a net¬ 
work suitable for producing the operation shown. 



CHAPTER 15 

THE POSITIVE-GRID OR RETARDING-FIELD OSCILLATOR 

15*1 Introduction 

Perhaps the most commonly available generator of ultra-high- 
frequency oscillations is the positive grid triode. Many commercial 
triodes will generate these oscillations provided that the electrodes are 
cylindrical and that suitable voltages are applied. Satisfactory oscilla¬ 
tions may also be produced with other electrode arrangements, but 
suitable proportions are seldom found in commercial tubes. Unfor¬ 
tunately the efficiency is never high, and the design features which lead 
to high frequencies also lead to low power outputs. Nevertheless this 
generator is one of considerable practical importance. When used in 
this connection a triode is referred to as a retarding field generator or 
oscillator. 

The technology of positive grid tubes dates from 1920 when Bark- 
hausen and Kurz* published the results of certain experiments with 
high-power triodes. They discovered the existence of strong oscilla¬ 
tions of very high frequency which are maintained so long as the grid 
voltage is relatively large and positive and the plate voltage zero or 
negative. Their work indicated that the frequency was dependent only 
on the transit time of the electrons, as determined by the geometry of 
the tube and the applied voltages. The external circuit seemed to 
produce no effect upon the frequency. 

Two years later Gill and Morrellf published the results of further 
work on positive grid or retarding field oscillators. Their work indi¬ 
cated that the frequency was dependent primarily upon the constants 
of the external circuit and was essentially independent of the electron 
transit time. It was therefore assumed that an entirely different 
phenomenon had been discovered. The distinction in terminology con¬ 
tinues to the present time, in spite of conclusive evidence that the two 
forms of oscillation are reducible to the same cause. 

* H. Barkhausen and K. Kurz, The Shortest Waves Producible by Means of 
Vacuum Tubes,” Physik, Zeit.y 21, 1, 1920. 

tE. W. B. Gill and J. H. Morrell, “ Short Electric Waves Obtained by Valves,” 
PM. May,, 44, 161, 1922. 

521 
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15*2 Electron Transit Time in a Plane Triode 

Let us first examine the motion of a single electron under the action 
of the electrostatic fields present in a vacuum tube. The distances and 
time intervals will be determined for a typical case. In a later section 
it will be shown how electrons form themselves into groups that oscillate 
together and how they transfer power to an external circuit. 

Consider the plane-parallel arrangement shown in Pig. 15-1. Assume 
that no appreciable space charge exists, that electrons are emitted from 
the cathode with zero velocity, that no contact potentials are present, 
and that the grid mesh defines an effective equipotential plane. Elec- 

Anode 
Electron Paths 
Grid 

Cathode 

Fig. 15-1 Arrangement of a retarding field oscillator. 

trons emitted from the cathode find themselves in a relatively strong 
electric field and are accelerated toward the positive grid. Some of 
the electrons strike the grid wires and give up their kinetic energy as 
heat. In general, however, electrons pass through openings of the grid 
structure with the velocity acquired in the grid-cathode transit. In the 
grid-plate region the electric field is in the opposite direction and tends 
to slow down the electrons, hence the term retarding field. 

If the voltage Va is greater than Vk the electrons come to rest some¬ 
where between the grid and plate and return toward the grid. Those 
which again miss the grid structure are once more slowed down in the 
retarding field of the cathode and come to rest at the cathode surface, 
returning toward the grid again. If F® is less than 7* the electrons 
are not returned to the grid but strike the plate and are lost. Therefore 
we must devote our attention to values of 7® ^ 7*. if we are to produce 
effective electronic oscillations. 

Figure 15‘2 illustrates the potential distribution existing in the tube 
of Fig. 15*1. Unequal spacings and voltages are taken in the interest of 
generality. An electron freed from the cathode arrives at the grid with 
a velocity v as deduced by equating the electrical work done to the 
kinetic energy,* 

« 7jfc6 [15*1] 

* It can be riiown that the inorease of znasB predicted by the theory of relativity is 
negligible for the cases in question here. 



ELECTRON TRANSIT TIME IN A PLANE TRIODE 523 

which gives for v 

where m and e are the electronic mass and charge, respectively. Using 

Cathode Grid Anode 

the value e/m = 5.30 X 10^^ esu per gram, and Vk in esu, equation 16-2 
becomes 

V = 1.03 X 10® cm/sec [15*3] 

which when converted to practical imits gives 

v = 6.0 X 10® meters/sec [15.4] 

Fig. 15*3 Relation between the final electron velocity v and the applied voltage Vk- 

where v is the velocity with which electrons reach the grid and 7* is in 
volts. This relation is plotted in Fig. 15-3. 

Since the potential distribution curve of Fig. 15*2 is linear it is possible 
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to deduce the electron velocity at any point by means of equation 15-4. 
The resulting parabolic curve is shown in Fig. 15-26. 

Because the electric field is uniform the force on the electron is con¬ 
stant and the motion that results is one of uniform acceleration. In 
such a case we may write 

V 

2 
[15-5] 

where v is the average velocity from cathode to grid and v is the final 
velocity as given by equation 15-4. The time required for an electron 
to pass from cathode to grid is expressed by the equality 

dk or ^ ^ 

Using equations 15-4, 15-5, and 15*6 in combination we have 

t = --;i-7= = 3.33 X 10“® sec [15-7] 
3 X 10® \/vl Vvl 

where t is the time required for an electron to pass from cathode to 
grid, dh is the grid cathode spacing in meters, and is the grid-cathode 
potential in volts. 

Evidently this value applies equally well to the time required for 
an electron to be accelerated from cathode to grid or to be retarded to 
rest at the cathode after returning through the grid. 

Conditions in the anode space are not appreciably more complicated. 
An electron which passes through the grid is retarded to rest at a point 
da distant from the grid where the potential is equal to that at the 
cathode. The linear potential distribution permits us to write the equa¬ 
tion 

da Va 
[15-8] 

where da and da are the distances shown in Fig. 15*2. This relation 
may be used only if 7^: < Fa. 

The time required for an electron to leave the grid and come to rest 
at a point da distant is given from the above relations 

jf 

3.33 -7^ X l(r® = 3.33 
d^yVk 

X l(r«sec [16.9] 

We are now in a position to tabulate three time intervals which are of 
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fundamental importance: 

ta *= 6,67 X l(r«sec 

dk 
tk = 6.67 X 10“® sec 

VFfc 

t a on ^ttdk "I" Vkda 6 
It = 6.67-7=— X 10 ® sec 

Va^k 

[1610] 

[15-11] 

[15-12] 

where ta is the time required for an electron to pass from the grid to the 
zero potential plane near the plate and return to the grid; 4 is the time 
required for an electron to pass from the grid to the cathode surface 
and return to the grid; and it ta + tk is the time required for one 
entire transit from cathode to plate and back. The distances are ex¬ 
pressed in meters and the potentials in volts. Under the conditions 
assumed the above equations are exact, and these assumptions are 
generally met in practice. 

15*3 Electron Transit Time in a Cylindrical Triode 

In the cylindrical structure of Fig. 154 the potential with respect to 
the grid at any point r in the grid-cathode region is a logarithmic function 
given by the expression* 

where r*) fl'Ild Ta are the PJQ 15.4 Potential and velocity distribution 
radii of cathode, grid, and in a cylindrical retarding field oscillator, 

plate, respectively. Because 
of the high field strength in the region of the cathode an electron 

* This expression is readily derived by assuming a fixed charge on a cylindrical con¬ 
denser and integrating the resulting field, which varies inversely with r. 
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is strongly accelerated, and the average velocity of the transit from 
cathode to grid is greater than half the final velocity. In the grid- 
anode region the potential distribution is less distorted, but an electron 
returning from the plate region to the grid has an average velocity 
which is less than Itolf the final velocity.' The computation of the 
transit times involved is a rather lengthy process. It has been carried 
out by Scheibe,* who has obtained the following relations: 

4 = —7=^— G(i/) sec [1515] 

J-Vt 
\ m 

ft = —7=--PCa:) sec 

J^Vt 
\ m 

[15-16] 

U = [F(a:) + G(y)] sec [15-17] 

J-v, 
\ m 

where ta is the time required for an electron to pass from the grid to 
the zero potential region near the plate and return to the grid; 4 is the 
time required for an electron to pass from the grid to the cathode sur¬ 
face and return to the grid; and U - ta + 4 is the time required for one 
complete transit from cathode to plate and back. The quantities may 
be expressed in any system of units. The functions F{x) and G{y) are 
defined by the relations 

X = ,J\oge — 
\ rt 

[15-18] 

IVi, r. 
[15-19] 

F(x) = X - f e“* du [15-20] 

G(y) = y • f e~“’ du 
VO 

[15-21] 

where u is any variable whatever, since it disappears in taking the 
definite integral. 

* A. Scheibe, “ The Generation of Ultra Short Waves with Hot Cathode Tubeeb” 
Ann, Phygik., 73, 64,1924, 
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These functions are not readily calculated directly but may be derived 
[rom the curves of Fig. 15-5 provided that Va = Fj. 

116-24] 
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where Vg is the radius of the grid in meters, Va = Vk^is the applied 
voltage, and F{x) and G(y) have the values shown above. 

The strongest oscillations result if V'o = and ta = 4- This requires 
that F{x) - G(y). Reasonable conditions which satisfy this require¬ 
ment are 

= 1.6 and — = 50 [15-25] 
Tk 

Under these conditions 

F{x) = G{y) = 0.6 [15-26] 
and 

ta = 4 = X l(r® sec. [15-27] 

If, for example, we choose Vg = 0.001 meters (0.1 cm), a reasonable 
figure, and if Fa: = 100 volts, we find 

0.004 

For one particular mode of oscillation we shall show later that the 
corresponding frequency is 2500 megacycles. 

15*4 Frequency and Wavelength of Oscillation 

The frequency of an alternating current is the number of complete 
cycles described per second and is therefore equal to the reciprocal of 
the time required for one cycle. This time, called the period, is usually 
designated T. Thus 

/ = 1 [15-29] 

The length of the wave produced in free space by a given frequency is 
often useful. It is understood in the following that the wavelength in 
free space is meant whenever the term wavelength is used. The wave 
length is defined by the identity. 

c=/X [15-30] 

where c is the velocity of light in meters per second and X is the free- 
space wavelength in meters. Combining the two Wjs have 

X » j = cT [15-31] 

It will be shown that oscillations may exist corresponding to any 



REQUIREMENTS FOR SUSTAINED OSCILLATIONS 529 

of the three transit times previously discussed. Accordingly it is 
useful to tabulate the frequencies and wavelengths which correspond 
to these three modes for the plane and cylindrical structures. The 
values presented in Table 15-1 are deduced from equations 15-10, 15-11, 
15-12, 15-22, 15-23, and 15-24 by means of equations 15-2 and 15-3. 
Since G(y) and F{x) are less than 1 for typical cases it is seen that the 
wavelengths for cylindrical electrodes are typically less than those for 
plane electrodes of comparable spacing. 

TABLE 161 

Frequencies and Waveiengths of Barkhausen Oscillators 

Plane Structvre 

daVyl 
Xa = 2000 —;;— meters 

Cylindrical Str'uctwe 

Xa = 2000 -—p= G(y) meters 
Wk 

\t = 2000 
dh 

meters Xt = 2000 F{x) meters 

.V^dk + Vkda 
\t = 2000-— meters 

/a = 0.15 

/* = 0.15 

ft =0.16 

FaVy* 
Va 

dk 

vyVk 
V^k + Vkda 

megacycles/sec 

megacycles/sec 

megacycles/sec Jt - 0.15 

X, = 2000 [Gly) -y F(a:)] meters 
vy* 

1 
fa = 0.16-777— megacycles/sec 

To G{y) 

Sk = 0.15 —^megacycles/sec 
rg F(x) 

1_mega- 
G{y) + F{x) cycles/sec 

where 7* = grid-cathode potential in Vk - grid-cathode potential in volts, 
volts. 

Va — grid-anode potential in volts. Tg = grid radius in meters. 

dk = grid-cathode distance in G{y) = given in equation 16-21. 
meters. 

da = grid-anode distance in F{x) ^ given in equation 15-20. 
meters. 

15*5 Requirements for Sustained Oscillations 
Retarding field oscillators usually operate with negligible space 

charge. Consequently, the emission of electrons from the cathode is 
random with respect to time and does not vary in synchronism with 
the period of electronic oscillation about the grid. Thus, though it is 
true that electronic oscillations occur in any tube with a positive grid 
and negative plate, it is also true that no effect on an outside circuit is 
produced unless the random electronic oscillation is somehow turned 
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into a synchronous oscillation. The mechanism for rendering these 
oscillations synchronous and thus supplying power to an outside circuit 

will now be discussed. 
Consider the circuit of Fig. 15*6. A physical tuned circuit having a 

positive value of resistance and a definite value of Q is connected to 
some device which acts as a negative resistance. It is convenient here 

r 1 

Physical Tuned Circuit 

Fig. 15*6 Oscillatory circuit. The resistance represents all sources of loss in 
the coil and condenser. The resistance Ri is negative and represents the action 

of the vacuum tube. Oscillation builds up if l/2i| < |i?2|. 

to assume that the combined power dissipation of the coil and con¬ 
denser is lumped in a single parallel resistance. We are interested in 
the behavior of the circuit only near the resonant frequency, and there¬ 
fore no appreciable error need result from this assumption. 

The effective resistance Re in parallel with the coil and condenser is 
given by the familiar relation 

R1R2 

Ri + R2 
[15-32] 

The denominator of this equation becomes zero and Re approaches 
infinity if iZi =» — 222- The effective resistance is positive if \Ri\ > 1/221 
and is negative ii \Ri\ < \R2\ , Ri being negative in both cases. 

A small transient disturbance disappears as an exponentially decaying 
sine wave if /2e is positive but increases exponentially if Re is negative. 
If all the elements of Fig. 15-6 were linear and Re negative the oscillatory 
voltage resulting from an initial transient disturbance would continue 
to increase exponentially without limit.. Linear negative resistances do 
not exist, however, and Re ceases to be negative for some particular 
l^vel of oscillation. This is the normal oscillating condition. 

A negative resistance is a device in which the voltage and current 
are 180® out of phase. Power is delivered from, rather than received by, 
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such a device. Thus a negative resistance is able to deliver power to the 
oscillatory circuit. Accordingly we may expect oscillations to result 
if a suitable tuned circuit is connected to it. 

We shall show that at a suitable frequency the current which flows 
to the electrodes of a positive grid tube has a component which is 180° 
out of phase with the voltage. That is, the positive grid tube functions 
as a negative resistance at this frequency and is therefore capable of 
producing oscillations. 

15*6 Oscillations in the Grid Circuit 

Refer to Fig. 15*1, in which the distances da and die are equal, and 
assume that no potential difference, alternating or direct, exists between 
anode and cathode. Let us assume that an alternating voltage of per¬ 
haps a few volts is impressed upon the grid (with respect to anode and 
cathode) and that the frequency is such that one full cycle is described 
in the time required for an electron to travel from cathode to anode. 

Consider an electron which leaves the cathode when the alternating 
component of the grid voltage is zero and is going from negative to 
positive. During the entire time that the electron is traveling from 
cathode to grid the accelerating field is stronger than normal so that 
the electron arrives at the grid with a velocity higher than that corre¬ 
sponding to the steady voltage F*;. Assuming that the electron does 
not strike a grid wire it proceeds into the retarding field of the grid-anode 
space. At the same time the grid voltage reverses so that the retarding 
field is now of less than normal intensity. As a result this electron will 
not come to rest before reaching the plate but will strike the plate with 
some velocity depending upon the alternating voltage applied to the 
grid. Evidently this energy, which was supplied by the alternating 
voltage, is dissipated as heat. This electron has then absorbed power 
from the applied voltage. 

Now consider an electron which leaves the cathode one-half cycle later. 
Because the accelerating field is weaker than normal, it arrives at the 
grid with less energy than that corresponding to Vie, Again the alter¬ 
nating voltage reverses as the electron passes through the grid plane, 
so that the retarding field is stronger than normal during the transit 
toward the plate. The electron is then brought to rest somewhat in 
front of the plate and returns once more toward the grid. Again, how¬ 
ever, the voltage has reversed, sathat the field accelerating the electron 
is less than normal, and the electron returns to the grid with less energy 

than it had upon leaving it. 
With each successive oscillation the electron returns to the grid with 

a lower energy and moves a shorter distance away from the grid. The 
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kinetic energy originally derived from the direct voltage is converted 
into power at high frequency and delivered to the external circuit. 
Ultimately, of course, the electron strikes a grid wire and is lost. But 
on the average those electrons which deliver power to the external 
circuit execute several oscillations while those which absorb power 
travel only once from cathode to plate. Thus a net positive power 
output is available. Refer to Fig. 15-7. 

This mechanism is known as amplitude selection. Those electrons 
with unsuitable phase are rejected from the system by the excess of 
velocity which they acquire in one transit. Those electrons with 

I 

Fig. 15*7 Velocities and transit distances of electrons emitted at various phase 
angles in a retarding-held tube with a small alternating voltage superimposed upon 

the steady direct grid voltage. 

suitable phase are retained in the system for several oscillations. So 
far only two specific phase angles have been considered, but it is easy 
to show that all electrons emitted over one half-cycle produce, to varying 
degrees, loss of power, and that they are ejected after one transit. 
Likewise all electrons emitted during the other half-cycle deliver useful 
output and are retained in the system until captured by the grid. 

The frequency specified in this development is such that one full 
cycle corresponds to the transit time from cathode to plate or from 
grid to plate to grid. This corresponds to 

Xfc ~ Xa ~ 2000 
dk 

meters [X6-33] 

from Table 15*1. If, for example, d* = 0.001 meter (0.1 cm) and 
Tfc s 100 volts, the generated wavelength is approximately 0.2 meters 
(20 cm), a very short wave. 
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15*7 Mechanical Analogy 

Figure 15*8 shows a mechanical device which illustrates many of the 
characteristics of the positive grid oscillations just described. Let us 
assume that marbles are discharged at a uniform rate from the hopper 
and roll down the inclined side, across the flexible section, and up the 
other side. Suppose that the unit is driven as shown so that the driving 

Fig. 15*8 Model illustrating the operation of a positive-grid oscillator. 

bar makes one full cycle up and down in the time required for a marble 
to roll down from the hopper and up the other side. Marbles may be 
lost from this system either by rolling over the edge into the catcher 
trough or by falling through a hole in the flexible section. 

A marble which emerges from the hopper when the system is as 
shown by the solid lines, and when the edges are rising, rolls down 
an incline that is always steeper than normal. During the time that it 
crosses the flexible section the displacement is reversed and the marble 
finds the second incline less steep than normal. It is thus able to roll 
over the edge and escape to the catcher. 

A marble which enters the system half a mechanical cycle later finds 
its original incline always less steep than normal and arrives at the 
flexible section with a velocity below normal. The second incline is 
now steeper than normal and the marble is thus unable to reach the 
far edge. The displacement of the system from normal again passes 
through zero as the marble reverses and the velocity with % which it 
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again reaches the bottom is still further reduced. This marble oscillates 
back and forth in the system, losing more and more energy with each 
cycle. It ultimately is lost through a hole in the flexible section. 

The similarity of this device to the electronic one just described is 
very great. Marbles or electrons which enter the system at times of 
unfavorable phase are ejected after one full transit. Marbles or electrons 
which enter the system at times of favorable phase give up energy to 
the system and remain for several cycles of oscillation. Since as many 
electrons or marbles enter in favorable as in unfavorable phase the 
power contributed by those in favorable phase outweighs that absorbed 
by those of unfavorable phase. 

15*8 Phase Selection 

The mechanism sometimes called phase selection remains to be con¬ 
sidered. Figure 15-7 shows that electrons of favorable phase con¬ 
tinually lose velocity because they do work on the external circuit. 
Accordingly they are able to reach only shorter and shorter distances 
from the grid. The time required for each oscillation is thereby reduced 
according to equation 15-11, which may be written 

t = 6.67 ^ X l(r® sec [15-34] 

This relation is now only approximate since it does not include the 
effect' of the alternating voltage. It is a good approximation, however. 
The potential gradient is still uniform, and therefore d and V in equation 
15-34 are reduced by the same factor, as the amplitude of the motion 
decreases. Accordingly the transit time is proportional to the square 
root of d. 

This shortening of the transit time with each successive oscillation 
is a serious limitation of the operation of the positive grid oscillator. 
Electrons making their first oscillation require a lower frequency for 
optimum performance than is suitable for electrons which have executed 
several oscillations. The actual output frequency is at best a com¬ 
promise. Electrons in their first transit lag in phase; electrons which 
have made several vibrations lead in phase. 

The phase shift which results if the alternating component of the 
grid voltage is large is so great that electrons a,^e transferred from 
favorable to unfavorable phase in only one or two cycles. This diffi¬ 
culty, fundamental to positive grid oscillators, is an important one. 
A high efficiency is possible only if the electrons have come almost to 
rest before they reach the grid and so dissipate very little energy as 
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heat. Unfortunately the effects of phase selection are such that this 
condition can never be approached in practice. 

The increase of oscillation frequency incident to delivery of external 
power as indicated by the progressive phase shift is of the greatest 
interest, both practically and theoretically: practically, because we 
usually wish to abstract the greatest possible power output from the 
oscillator; theoretically because it explains the Barkhausen-Kurz, and 
Gill-Morrell modes of oscillation previously discussed and shows why 
many of the observed phenomena occur. 

The optimum output voltage and therefore the optimum load im¬ 
pedance is something of a compromise. Too high a voltage shifts 
the oscillation amplitude and therefore the electronic phase too rapidly 
for best results. Too low a voltage does not allow a sufficient abstrac¬ 
tion of energy from each electron before it strikes a grid wire and is lost. 

Fig. 15*9 Effect of the load circuit in determining the mode of oscillation of a 
positive grid tube. 

It is worthy of mention that the mechanical model described in sec¬ 
tion 15-7 shows the effect of phase selection. Marbles of favorable 
phase remain in the system for several cycles and roll through succes¬ 
sively smaller distances. As the distances traveled becomes less, the 
time required for each roimd trip is also decreased. 

In the preceding discussion it was assumed only that an alternating 
voltage exists in the grid circuit, and it was shown that the alternating 
current which results is more than 90° out of phase with the voltage. 
The external conditions are satisfied by any form of impedance since 
the reference voltage is reversed and the phase shift is therefore less than 
90°, Accordingly, power is delivered to any external impedance which 
is connected to the tube. Oscillations whose frequency is independent 



536 THE POSITIVE-GRID OR RETARDING-FIELD OSCILLATOR 

of the load are then produced as originally described by Barkhausen 
and Kurz. 

If, however, the external load is a tuned circuit of suitable impedance 
the power delivered is considerably increased. The frequency tends 
to be increased by the process of phase selection and depends upon the 
tuning of the external circuit. Th^e are the oscillations described by 
Gill and Morrell. 

Figure 15*9 is characteristic of the performance of a practical positive 
grid tube. When the lines are of such a length as to simulate a parallel 
resonant circuit the impedance is high and a considerable output voltage 
and power result. The wavelength is modified as shown, and the oscilla¬ 
tions are of the Gill-Morrell mode. When the lines are detuned the 
impedance and voltage are low and Barkhausen-Kurz oscillations 
result. 

15*9 Oscillations in the Plate-Cathode Circuit 

In section 15-6 it was shown that oscillations can exist in a plane 
parallel triode having equal spacings and no cathode-anode voltage. 
The oscillations appear from grid to cathode (or anode) and are of 
quite high frequency. It is clear in reviewing the performance that the 
success of the arrangement depends upon the fact that cathode and 
anode are at the same potential and that the transit times from grid 
to cathode and from grid to anode are equal. Serious failure of the 
equality of transit times is fatal to this mode of oscillation since the 
impulses cannot become synchronized. Equality of plate and cathode 
voltage, although very desirable, is not essential since the amplitude 
selection mentioned before can take place at the cathode after one full 
cycle of electron oscillation. Electrons which leave the cathode in 
unfavorable phase are accelerated during one full excursion from cathode 
to plate and back, and are then lost at the cathode. Electrons which 
leave the cathode in favorable phase continue in their oscillation, as 
shown above, until they strike a grid wire and are lost. 

Reference to Fig. 15-2a shows that the grid-cathode and grid-anode 
transit times are equal in the plane parallel case if d^Va = dk/Vk» 
Many experimenters have reported strong oscillations with large nega¬ 
tive plate voltages, probably in fulfillment of essentially this condition. 
Such oscillations exist provided only that some impedance is present in 
the grid lead to cause a voltage drop and that the transit times are 
suitable. Power is delivered to the external circuit if an appropriate 
resistive load such as a tuned circuit is applied. 

A different sort of oscillation results if the load is applied between 
cathode and plate. An electron moving from cathode towards the 
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plate constitutes an elementary electric current whose direction is 
opposite to the motion because of our convention as to current flow. 
Evidently the motion from cathode toward the plate causes the plate 
to become momentarily negative and the cathode positive with respect 
to the bias values. This effect is greatest when the electron is in mid 
flight, that Ls, in the grid plane.* 

Let us assume that the grid is grounded; that is, we use it as our 
reference of potential. Further, let the load impedance be connected 
directly between cathode and plate so that an increment of grid-cathode 
voltage is matched by an equal and opposite increment of grid-plate 
voltage. 

This oscillation is explained in much the same way as the other. 
Assume equal alternating voltages 180° out of phase to be connected 
from grid to cathode and from grid to plate as shown in Fig. 15-10a. 
Let the frequency be such that one cycle corresponds to a full round 
trip of the electron, half as high as the frequency previously assumed. 
Consider an electron which leaves the cathode at an instant when the 
applied alternating voltage is zero and when the cathode potential is 
changing in a positive direction. This electron will reach the grid 90° 
later when the cathode potential is a maximum (grid to cathode potential 
a minimum), and its velocity will be correspondingly reduced. During 
the following quarter cycle the electron will be decelerated by the 
retarding field of the plate, which is by our assumption at a maximum, 
because the plate voltage is now a minimum or the grid-plate voltage a 
maximum. The third quarter cycle finds the electron returning toward 
the grid with the plate at its positive maximum so that the electron is 
again slowed down. During the last quarter cycle the electron ap¬ 
proaches the cathode against a retarding field that is again above its 
normal value. This electron does work upon the external system and 
will continue to do so through several oscillations. This is summarized 
graphically in Figs. 15*106, c, d. 

Now consider an electron which leaves the cathode 180° later. This 
electron arrives at the grid with greater than normal velocity. Since 
the plate is now swinging in a positive direction the additional velocity 
will help the electron to follow through to the plate and remove itself 

from the system. 
Again we generalize to say that all electrons emitted over one half 

cycle are able to do work upon the external circuit until they are cap¬ 
tured by the grid. The electrons emitted during the other half cycle are 
quickly removed from the system at the grid or plate. 

It is important to note that the frequency generated in this case 

* Refer to Chapter 12. 
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is only half as great as that developed when the grid voltage is allowed 
to oscillate. This disadvantage is often compensated for by superior 
stability and power output. 

•s 

Fig. IS-10 Behavior of an electron of favorable phase in a refaiding-field oscillator. 
Load circuit connected between plate and cathode. 

The mechanical model previously described is easily modified to suit 
this condition. The two inclined sides now bear a fixed angle to each 
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other, and the trough so formed is merely tipped from side to side at 
half the frequency previously used. 

Marbles which emerge from the hopper when the trough is level 
and the hopper is moving upward are in unfavorable phase and arrive 
at the bottom of the trough with relatively large speeds by means of 
which they overrun the far edge and escape to the catcher. 

Marbles which emerge from the hopper a half cycle later give up work 
to the system and remain for several cycles. 

It is interesting to note that both mechanical models show the effect 
of phase selection. As the amplitude of the mechanical oscillation 
becomes smaller the natural period becomes shorter and the marbles 
originally in favorable phase have a tendency to advance into an un¬ 
favorable phase. This behavior is in marked distinction to that of the 
pendulum and most electrical oscillations, where the very nature of the 
system makes the period essentially independent of the amplitude. 

15*10 Oscillations in Plate Circuit or Cathode Circuit 

Oscillations may also be produced if the grid and cathode have no 
alternating voltage and the anode is allowed to swing. The demon¬ 
stration that such oscillations are self-sustaining is similar to the previous 
ones. All electrons which leave the cathode and pass through the grid 
have the same velocity at the grid plane since no alternating field exists 
in the grid-cathode space. Let us assume that the plate voltage oscil¬ 
lates at a frequency such that one full cycle is executed in the time re¬ 
quired for the electron to travel from grid to plate and return. 

An electron which leaves the grid mesh at a time when the alter¬ 
nating plate voltage is zero and going positive is retarded by a less than 
normal field during its transit to the plate, and therefore strikes the 
plate and is lost. An electron which leaves the grid mesh a half cycle 
later is retarded by a more than normal force and therefore is unable 
to reach the plate and comes to rest somewhere near the plate. The 
alternating component of the plate voltage now reverses so that the 
electron is less than normally accelerated in the return to the grid. 
The operation outlined above is adequate to support stable oscilla¬ 
tion, provided that virtually all the electrons returned to the grid arc 
lost, for the electrons of favorable phase react upon the plate twice as 
long as those of unfavorable phase. 

Actually, however, a considerable number of the electrons returned 
from plate to grid pass into the grid-cathode region and again return 
through the grid mesh toward the plate. These will be in a phase to aid 
the oscillation if the grid-cathode transit time is equal to, or is an in¬ 
tegral multiple of, the grid-anode transit time. If this relation is not 
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approximately correct the number of electrons in unfavorable phase at 
the plate is increased and the chance of oscillation is greatly diminished. 

Here, as before, it is desirable but not absolutely necessary that no 
steady voltage difference shall exist from cathode to anode. The selec¬ 
tion of favorable vs. unfavorable phase is much better effected at the 
plate than at the cathode. The generated wavelength is given by the 
equation of Table 15*1, when Vk = Va 

d'/x 

“ [15-35] Xo = 2000 

with the provision that 

meters 

Xt = 2000-^= n\a [15-36] 

where n is some small integer. 
An oscillation extremely similar to the one just described may be 

produced by allowing only the cathode voltage to oscillate. Again 
electrons of unfavorable phase are best eliminated at the plate. The 
wavelength is now given by the relation 

dk 
\k = 2000—7= meters 

^k 

with the provision that 
j 

\a = 2000-7^ = nXfc 

[15-37] 

[15-38] 

where n is again a small integer and Vk = Va- 
It is seen that all these different modes of oscillation may exist in 

either cylindrical or planar tubes. The processes of amplitude selection 
and phase selection are not essentially affected, and the wavelengths 
are not greatly different. In general the cylindrical arrangement is 
more convenient in manufacture, and the fact that it jdelds somewhat 
higher frequencies than the plane structure for given spadngs is in its 
favor. 

The mode of oscillation in which only the plate voltage swings is 
attractive in that a small grid plate spacing may be achieved without 
severe restriction of the grid area. Avery high resulting frequency is in¬ 
dicated. For d = 0.0005 meter (0.5 mm) and V = ioo volts the value 
of X is approximately 0.1 meter (10 cm). 

The mechanical model corresponding to these last two modes of 
oscillation has one side permanently fixed. The swinging side oscillates 
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at the frequency given in the initial description of the model. The 
process of eliminating the marbles which are introduced in unfavorable 
phase is accomplished as before, and the entire operation is very similar 
to that previously described. 

15*11 Diode Oscillations 

It has been known for some time that an electronic diode, under 
appropriate conditions, can generate oscillations. Probably the first 
to point out this possibility was W. E. Benham.* As with triodes the 
oscillation may exist in either cylindrical or plane structures, and again, 
at least two modes of oscillation can exist. 

Llewellyn and Bowenf in a very interesting article describe a plane- 
parallel diode which generates approximately 300 milliwatts of power at 
X = 10 cm. The maximum efficiency is 0.23 per cent. The possi¬ 
bility of such oscillations in a space-charge-saturated diode is of the 
greatest interest. Unfortunately the mechanical structure is relatively 
difficult, and the low efficiency achieved does not make this an attractive 
generator for practical applications. 

The diode of Llewellyn and Bowen employs an oxide-coated plane 
cathode of the separately heated variety. The average current is 
limited by anode voltage rather than by cathode temperature, and the 
oscillation comes about purely as the result of electron transit time. 
There is, however, no such vibration of free electrons as constitutes 
the electron dance of the Barkhausen oscillator. Each electron 
passes directly from cathode to anode, and the negative resistance 
which causes the oscillation arises from the fact that any superimposed 
alternating voltage results in an alternating component of current which 
is more than 90° out of phase with the voltage. The greatest effective 
series negative resistance exists when the frequency is such as to cause 
a transit angle of approximately 1J cycles, although negative resistances 
also occur for 2|, 3|, etc., cycles. 

Mr. J. S. MePetrieJ describes a very different kind of diode in which 
the anode is a relatively small rod concentric with a larger cylindrical 
cathode. This closely resembles a Barkhausen oscillator since electrons 
leaving the cathode may easily miss the slender anode and oscillate 
about it. This construction lends itself well to a shielded structure hav- 

* W. E. Benham, Theory of the Internal Action of Thermionic System at Moder¬ 
ately High Frequencies,'' Phil, Mag., March, 1928, and Phil. Mag. Supji^^ement, 
Vol. II, February, 1931. 

t F. B. Llewellyn and A. E. Bowen, " The Production of Ultra-High-Frequency 
Oscillations by Means of Diodes," Bdl System Tech. /., 18, 280, April, 1939. 

t J. S. MePetrie, " Experiments with Inverted Diodes Having Various Filament 
Cathodes," Phil. Mag., 19, 501,1936. 
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ing low radiation loss, a feature of the greatest importance at these 
frequencies. It seems probable that some such generator could be built 
as part of a coaxial transmission line, a very desirable arrangement. 

15*12 The Spiral Grid Tube 

The Barkhausen oscillator as ordinarily constructed is not satis¬ 
factory for frequencies much above 600 megacycles per second. In 
order to obtain higher frequencies the spacings must be reduced and the 
voltages increased. Both steps are disadvantageous in that a smaller 
structure is called upon to dissipate a larger amount of power. The 
spiral-grid tube as described by A. G. Clavier* is useful to much higher 
frequencies, in the order of 5000 megacycles. 

In this tube the grid takes the form of an open (unshorted) helix 
surrounding an axial filament. The plate, a concentric cylinder, is 

ordinarily supported at the middle and 
is maintained at a high negative volt¬ 
age with respect to the filament. The 
output is taken from the two ends of 
the grid, which is maintained at the 
usual high positive potential. The gen¬ 
erated frequency is much higher than 
that predicted by the simple theory 
of free electron oscillations. Experi¬ 
ment shows that it is dependent upon 
the resonant properties of the grid 
and associated load, as well as upon 

Fig. 15* 11 Electrode configura- the applied voltages. Apparently the 
tion of a spird grid retarding field exciting mechanism is dependent upon 

oscillator tube. transit time as in the diode proposed 

by Benham and described by Llewellyn and Bowen. 
Figure 15*11 shows the construction of one of these tubes. The 

filament, usually of pure tungsten, is supported in tension between two 
end supports. The grid, formed of tantalum or some other highly 
refractory metal, is an open spiral concentric with the filament. The 
ends of the grid are supported by two relatively heavy rods which form 
the output terminals. They pass directly through the hard-glass en¬ 
velope to the load circuit, which is usually a parallel-wire or Lecher sys¬ 
tem. These rods, then, are themselves part of the output line. The 
plate, which forms no part of the high-frequency circuit, is supported at 
the middle by a single rod or bar. Thus the entire structure is very 

* A. G. Clavier,'' The Production and Utilization of Micro-Rays,’* Eledrical Cwnr 

municailiony 12, 3, 1933. 
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symmetrical and simple in comparison with conventional receiving tubes. 
Fay and Samuel* describe extensive tests on some seventy different 

experimental tubes of this type. The frequency range from 500 to 2000 
megacycles was covered. The most significant result of this work is a 
relation between the expanded length of the grid coil and the frequency 

{Fay and Samuel, courtesy of IRS) 

Fio. 15*12 Spiral grid retarding field oscillator tubes. 

at which optimum oscillating conditions exist. The ratio of expanded 
length of the grid to the wavelength of optimum performance was found 
to be closely equal to 1.25 with few significant deviations. The ratio 
of plate diameter to grid diameter was approximately 2.5. In all 
tests a rather high negative voltage was applied to the plate. And in all 
cases the efiiciency was low, in the order of 0.5 to 1 per cent. Three of 
their tubes are shown in Fig. 15-12. 

Spiral-grid Barkhausen oscillators are subject to a certain amount of 
trouble due to parasitic oscillations. That is, undesired oscillations of a 
frequency far removed from that of the desired oscillation may result 

♦ C. E. Fay and A. L. Samuel, “ Vacuum Tubes for Generating Frequencies above 
One Hundred Megacycles,’’ Proc, IRE, 23, 199, 1935. 
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if the load tuning or applied voltages are disturbed by a small amount. 
Data illustrating this behavior in a typical spiral-grid tube are presented 
in Table 15‘2. Here Vg is the voltage between grid and cathode. The 
voltage between cathode and plate is designated Vp. The wavelength 
of oscillation is designated X, and the current to the grid Ig, Because 
the plate is biased negative with respect to the cathode it draws no 
current. 

TABLE 15-2 

A (cm) Vg (volts) Ig (ma) Vp (volts) \^Vg X 10-4 

22.6 470 70 -75 24 0 
22.8 450 70 -76 23.4 
32.1 320 100 -15 32.9 
34.5 280 100 -20 33.3 
36.0 220 65 -17 28.6 
88.1 155 60 -10 120.5 
94.7 135 50 -2.5 121.0 
97.0 125 50 -2.5 117.5 

If operation occurred in a single mode the numbers in the last column 
would all be equal, as shown by the wavelength equations of Table 15«1. 
Actually the numbers group around 24, 32, and 120, indicating at least 
three modes of operation. The particular mode at which oscillation 
occurs depends upon the applied voltages and the circuit tuning. 

Fig. 15*13 Section through an ordinary triode having a V type wire 
filament. Approximate electron paths are indicated. 

15*13 The Backing Plate Tube 

Many workers have noted that electronic oscillations are not pro¬ 
duced in filamentary tubes of the ordinary “fiat-type'' construction. 
The behavior of such tubes is readily investigated by means of Fig. 15*13. 
It is seen that electrons which succeed in passing through the grid mesh 
and are returned by a slightly negative plate potential must pass twice 
more through the grid before they again experience a strong retarding 
field. This is true because the filamentary cathode is of such small 
area that it cannot produce a zero potential region of substantial size 
in the center of the grid rectangle. Consequently the times of flight 
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are rather different from any that have been computed. It is clear that 
oscillations in such a structure could exist only if the plate were run 
at a slightly negative bias so as to capture only electrons of unfavorable 
phase, and if the spacings of the tube were rather critically chosen. The 
required transit through both sides of the grid mesh is particularly un¬ 
favorable to oscillation of electrons since it more than doubles the chance 
of their capture by the grid. 

Backing Plate 

(Negative) 

Distribution 

Fig. 15*14 Arrangement of a retarding field oscillator employing directly heated 
filaments and a backing plate. 

Thompson and Zottu* describe retarding field oscillations in a plane 
tube configuration shown in Fig. 15*14. This construction offers several 
interesting features. One of the most notable of these is the possibility 
of operation with normal filament temperature. This is accomplished 
by applying a somewhat larger negative potential to the backing plate 
than is indicated in Fig. 15*14. The potential in the plane of the fila¬ 
ment is now negative so that a field exists at each filament wire which 
opposes the emission of electrons. The filament is operated at normal 
temperature, exactly as in conventional negative grid tubes, and the 
total current flow is controlled by the potential of the backing plate. 
The normal plate is operated at zero or a slightly negative potential and 
serves to capture electrons which leave the filament in a phase unfavor¬ 
able to oscillation. 

An experimental tube of this design consisted of backing plate, two- 
strand thoriated tungsten filament, parallel-wire grid, and plate. Each 
of the three electrode spacings was 1.3 mm. The oscillation occurred 
at a wavelength of 45 to 49 cm for a positive grid voltage of 250 volts 
and a negative bias of 10 volts on the two plates. The output was taken 
from the two flat plates, the grid and filament electrodes being fed 
through high-frequency choke coils. The wavelength observed for this 
mode of oscillation is in excellent accord with the equation for in 

♦ B. J. Thompson and P. D. Zottu, “An Electron Oscillator with Plane Electrodes,'^ 
Proc. IRE, 22, 1374, 1934. 
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Table 16-1. Under the above conditions the output power was 0,08 
watt; the input current 120 milliamperes, the efficiency 0.37 per cent. 

With 10 volts negative bias applied to the backing plate it was found 
that the operation was virtually independent of the filament voltage, 
indicating a conditioh of complete space-charge saturation. 

Another tube of this general type is illustrated in Fig. 15.16. In this 
structure the backing plate and filament lie in the same plane and the 
grid and plate appear on both sides. This construction has certain 
mechanical advantages but does not lend itself quite so well to simple 
calculation. 

Fig. 15*15 Section through a triode having directly heated filament 
and backing plates. 

It is clear that these plane-parallel tubes are capable of oscillating 
in any of the modes that have been discussed. The connection used in 
the experiment described (backing plate to plate) gives rise to only one 
frequency as was verified by Thompson and Zottu. No parasitic or har¬ 
monic modes were discovered in their work with these tubes. Thompson 
and Zottu report a tube which oscillates at a wavelength of 9.5 cm 
with 150 volts applied. The total spacing from plate to backing plate 
in this tube is less than 1 mm. Because of the simplicity of the operation 
and because of the relatively large grid surface offered by these plane 
tubes they appear quite suitable for hyper-frequency work. 

15*14 Multigrid Tubes 

The dynatron oscillator first became a practical engineering tool with 
the introduction of the screen-grid tube, in spite of the fact that the 
basic principle had been known for years. The addition of the second 
grid made it possible to control the total cathode current by means of a 
control bias rather than by the filament temperature. 

The retarding field osciUator bears a considerable resemblance to the 
dynatron in that both tubes operate with high positive grid bias and 
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current. The desirability of a grid to control the space current is at 
least as great in this tube as in the dynatron. A cylindrical tetrode offers 
several attractive possibilities as a positive-grid oscillator. The inner 
grid readily controls the total space current, thereby offering easy means 
of modulation. The cathode structure may be conventional since 
operation is in the normal space-charge condition. Close electrode 
spacing may be achieved without making the grid excessively small. 
Therefore, considerable power output may be expected at high fre- 

Potential Distribution 

quencies. Figure 15*16 shows the cross section of such a tube together 
with a potential distribution curve. Because the radius of curvature is 
large the field distributions are almost uniform and the electrode spacings 
may be equal. 

l^idently the tetrode may function as a spiral-grid oscillator as well 
as in the conventional manner. In this case the inner or control grid 
should be carefully shorted so that it will not contribute a tendency 
to operate at other, undesired frequencies. The divided plate arrange¬ 
ment, described below, is likewise possible. 

Hamburger* describes experiments performed upon a commercial 
triple-grid power tube of cylindrical structure. He used a type 89 tube 
and produced wavelengths in the order of 140 cm. Relatively good 
efficiencies and freedom from parasitic modes of oscillation were ob¬ 
served. Unfortunately the nature of his tuning elements and of the 
applied voltages makes it difficult to interpret the exact mode of oscilla¬ 
tion achieved. It is seen, however, that osciUations of Barkhausen- 
Kurz type are not confined to triodes. 

♦ F. L. Hamburger, ** Electron Oscillations with a Triple Grid Tube,” Proc. IRE^ 
22, 79,1934. 
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15*15 The Divided Plate Oscillator 

An interesting and important variant of the spiral-grid tube is pre¬ 
sented by W. D. Hershberger.* This tube, which is illustrated in 
Fig. 15*17, differs from the normal spiral-grid tube only in that the plate 
is divided into three equal sections by transverse cuts. Two important 
advantages are made possible by this division. The various sections 
of the plate may be operated at different direct potentials, thereby 
improving the efficiency. Also resonant circuits may be connected 
between them, improving the frequency stability. 

Fig. 15*17 Spiral grid oscillator tube with divided plate. The spacing between 
the plate sections is shown magnified for the sake of clarity. 

The operation of this tube is not essentially different from that of the 
normal spiral-grid tube; in fact, it is essentially an idealization of that 
behavior. The central portion of the grid and plate contribute little 
to the operation, while the end sections oscillate in a pure push-pull or 
symmetrical fashion at or very near the natural frequency of the grid 
spiral. Since the central section of the structure does not contribute 
to the useful operation it should be rendered inactive in order to avoid 
unnecessary power dissipation. This is accomplished by applying a 
suitable negative bias to the central portion of the plate. When this 
voltage is properly chosen the central grid section draws little or no 
current. The electrostatic field pattern which results tends to crowd 
the current toward the outer portions of the end sections where it is 
most effective. 

* W. D. Hershberger, ** Modes of Oscillation in Barkhausen-Kurz Tubes,Proc. 
IRE, 24, 964, 1936. 
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A very marked improvement in performance results if suitable 
resonant lines are connected to the two plate sections as well as to the 
grid ends and if these lines are coupled together. It is found that the 
plate line is several times as effective as the grid line in setting the fre¬ 
quency of oscillation and that the frequency is virtually independent of 
the grid voltage. In one test, the frequency was observed to change by 
only 0.1 per cent for a 10 per cent change of grid voltage. Since high- 
frequency stability is very important and is generally difficult to achieve 
at these frequencies this feature is of great interest. 

Another feature of this arrangement is the freedom from parasitic 
or spurious modes of oscillation. With the grid and plate circuits prop¬ 
erly tuned only one frequency of oscillation is produced. Wide devia¬ 
tions of grid, plate, or filament voltages affect the output but do not 
introduce new frequencies or seriously affect the frequency in question. 
This again is in sharp contrast to ordinary Barkhausen oscillators, 
which are relatively sensitive to the electrode voltages. 

The efficiency to be expected from this arrangement is somewhat 
better than that characteristic of the standard spiral-grid tube. The 
improved efficiency results from the large negative bias applied to the 
central portion of the plate. Thus the electron current is concentrated 
at the ends of the tubes where the maximum voltage swings exist. An 
efficiency of 1 to 2 per cent is characteristic of well-built tubes of this 

design. 

PROBLEMS 

15*1 A plane parallel triode is to be used as a positive grid oscillator. The grid- 
cathode spacing is equal to the grid-plate spacing and is 8 mm. The cathode and 
plate are at the same potential, and the grid is biased positive by 150 volts. Calcu¬ 
late the frequencies which may be generated by this tube oscillating in the several 
modes described. 

15*2 A plane parallel triode is to be used as a positive grid oscillator. The grid- 
cathode spacing is 8 mm; the grid-plate spacing is 16 mm. The cathode and plate 
are at the same potential, and the grid is biased positive by 150 volts. Calculate 
the frequencies which may be generated by this tube oscillating in the several modes 
in which oscillation is possible. 

15*3 The tube of problem 15*2 must be used in the mode described in section 
15-6. If the grid-cathode voltage is 150 volts, what grid-plate voltage is required? 
Calculate the frequency to be expected, and explain the mechanism of amplitude 
selection. 

15*4 A cylindrical triode is to serve as a positive grid oscillator. The cathode 
radius is 0.6 mm, the grid radius is 2 mm, and the plate radius is 3 mm. The plate 
and cathode are at the same potential, which is 200 volts negative with respect 
to the grid. Calculate the frequencies which may be produced in the various modes 
of OBciUation which are possible. 
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15*5 How large must the radius of the plate be made if the grid-cathode and 
grid-plate transit times of the tube of problem 16'4 are to be equal? 

15*6 In the so-called beam power tube the wires of the screen grid are aligned 
with those of the control grid so that electrons tend to pass between the screen-grid 
wires rather than striking them. In some cases more than 90 per cent of the electrons 
pass through the screen grid, less than 10 per cent being captured. Discuss a tetrode 
built in this way as a positive grid oscillator. 

15*7 Two similar positive grid oscillators are to be connected in parallel so as to 
secure additional power output. Is such a mode of operation likely to be successful, 
and if not why not? What if any precautions as to phase relation need be taken? 

15*8 The grid of a spiral grid oscillator consists of 12 turns of wire. The helix 
so formed has a mean radius of 3 mm and a pitch of 2 mm per turn. At what fre¬ 
quency is optimum performance to be expected? 

15*9 Discuss the production of oscillations in a diode due to transit time effects. 
Does it seem probable that such oscillators will be of commercial importance? 

15'10 A plane parallel backing plate oscillator tube has a plate 3 mm from the 
grid. The grid is 2 mm from the plane in which the filament wires lie, and the back¬ 
ing plate is 1 mm from the filament plane. The filament and normal plate are 
directly connected, and the grid is 100 volts positive with respect to these. At 
what potential should the backing plate be operated? What frequencies may be 
generated by the tube with these potentials applied? 

15* 11 It is desired to bias the plate of the tube of problem 15-10 negatively so as to 
secure equality of grid-cathode and grid-anode transit times. Discuss the problem 
of amplitude selection under these conditions. Are oscillations likely to occur? 

15*12 It is possible, within limits, to produce amplitude modulation of a positive 
grid oscillator by applying the signal voltage in series with the anode. Sketch a 
curve of output versus plate voltage which corresponds to linear modulation. Ex¬ 
plain how this curve might occiu in terms of amplitude selection. 

15*13 There is a considerable tendency for the amplitude modulation produced 
as described in problem 15-12 to be accompanied by undesired frequency modulation. 
Discuss the cause of this effect in terms of transit time. How may this effect be 
eliminated or balanced out? 

15*14 In the tube of problem 15-1 plot the electron velocity as a function of time 
and of distance, assuming that no oscillation exists. Also consider an electron 
of most unfavorable phase and a tank circuit in series with the grid across which 
an oscillation of 5 volts peak exists. How much energy does such an electron absorb 
from the tank in its passage from cathode to anode? 

15*15 In problem 16-14 assume that each electron of favorable phase makes 
3| complete transits from cathode to plate while those of unfavorable phase make 
oily one. If the total emission current is 5 milliamperes, calculate the power output, 
flfwnmmg that electrons emitted in phase intermediate between most favorable and 
least favorable give or absorb power according to the cosine df the angle of deviation 
from the angle of most favorable phase. 

15*16 Using the result of problem 15*14, calculate the amplitude of and time 
required for each of the first four complete cathode-plate or plate-cathode transits. 
Interpret in terms of frequency. 
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15*17 Explain in terms of phase selection how a given tube with fixed voltages 
and tuning may oscillate in either a Barkhausen-Kurz or Gill-Morrell mode. Which 
is associated with the higher frequency? The higher output? The natural period 
of the tank? The natural period of the free electronic oscillation? 

15*18 Is it possible to secure the advantages of the divided-plate, spiral-grid 
oscillator without using the spiral-grid structure? Discuss. 

15*19 The positive grid oscillator has been employed as a special kind of high- 
frequency detector. Explain this operation in general terms and in terms of actual 
voltages and currents. Assume that the tank circuit is in series with the incoming 
modulated voltage and the bias battery. 



CHAPTER 16 

THE MAGNETRON 

16*1 Introduction 

A vacuum tube in which the behavior is dependent upon a mag¬ 
netic as well as an electric field is known as a magnetron.* The magne¬ 

tron as usually constructed is a diode consisting of a 
cylindrical anode and an axial filamentary cathode. 
The magnetic field is relatively strong and is directed 
parallel or nearly parallel to the filament. The elec¬ 
tric field is radial and is therefore everywhere nor¬ 
mal to the magnetic field. If the plate is divided 
by planes parallel to the filament, the resulting tube 
is referred to as a split-anode magnetron. See 
Fig. 161. 

Hull in 1921 first published a mathematical 
analysis of such an arrangement, presenting ex¬ 
perimental curves in confirmation of liis results.f 
Since that time a vast store of experimental data 
has been accumulated, and much discussion of the 
theory has ensued. Although certain details of the 
performance remain obscure, the general operation 
of the magnetron is now well understood. 

The magnetron is important chiefly as a generator 
of powerful oscillations at hyper and ultra-high fre¬ 
quencies. The tube itself is of simple and compact 
structure, and the overall efficiency is better than 

{Kilgore, Courtesy of j, that of Comparable generators. The shortest con- 

Fia^^ieT^Fwleg- waves yet recorded, in the order of several 
ment split anode ^ilhmetcrs, have been produced with a magnetron 

magnetron. of the split-anode type. 

16-2 The Magnetic Field 

A relatively strong magnetic field is necessary for proper operation of 
the magnetron, particularly if very high frequencies are to be produced. 

* Actually the electron motion is controlled by the magnetic induction rather 
than the magnetic field. Since the permeability is necessarily /toi that of free space, 
no numerical errors are likely to arise. 

t A. W. Hull, Phya, Rev,, 18, 31, July, 1921. 

552 



THE ELECTRON MOTION WITH STEADY FIELDS 653 

Approximately 100,000 ampere-turns per meter (1200 gauss) is appro¬ 
priate for a wavelength of 0.1 meter (10 cm). For field strengths up to 
about 10,000 ampere-turns per meter it is practical to use simple air- 
core solenoids of one or several layers of wire. A coil 2 to 3 inches in 
diameter and 6 to 10 inches long creates a very uniform magnetic field 
at its central portion and is light and easy to construct. The heat which 
may be dissipated by such a structure sets an upper limit to the field 
that can be obtained in this way. 

Fig. 16-2 Electromagnet for use with a magnetron. 

For small tubes in applications requiring fixed tuning it is convenient 
and practical to use permanent magnets. Some modern magnetic 
materials such as Alnico have a high coercive force so that a strong 
field may be maintained across a relatively long gap without an exces¬ 
sively heavy or large magnet. 

For the highest field strengths or for convenience in experimental 
work it is usually best to use some form of electromagnet. An electro¬ 
magnet having a cross section of approximately 4 square inches, an air 
gap of 2 inches, and a total winding of 2000 turns is appropriate. With 
5 amperes current, such a magnet (Fig. 16*2) produces a field of approxi¬ 
mately 200,000 ampere-tums per meter in the air gap. 

16*3 The Electron Motion with Steady Fields 

Consider the structure of Fig. 16-3 in which the magnetic induction B 
is directed out of the paper. Let Va be the potential difference between 
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cathode and anode and V the potential existing at some point a dis¬ 
tance r from the common axis. It is assumed that the electrons leave 

Magnetic Induction B Directed 
Out of Paper. Applied Potential 

Difference 

Fig. 16*3 Section of a cylindrical 
magnetron. 

by three separate forces. The 

the cathode with zero velocity. 
An electron emitted from the 

cathode finds itself in a strong elec¬ 
tric field and is accelerated radially 
toward the plate. A chain of such 
electrons, however, is equivalent to 
an electric current flowing inward 
from the plate and, as such, experi¬ 
ences a force in the magnetic field. 
It may be shown that each individ¬ 
ual electron experiences a force equal 
to veB, where v is the velocity, e 
is the electronic charge, and B is 
the magnetic induction. 

Because of the symmetry of the 
structure the space-charge density 
and the potential V are functions 
only of the radius r. The electron 
velocity is a function only of r and L 
An electron in flight is acted upon 
ectric field E = —dV/dr exerts a 

Fig. 16-4 Forces acting upon an electron in a cylindrical magnetron. 

radial force outward toward the plate. The magnetic induction exerts 
a force veB at right angles to the direction of motion. Inertia exerts a 
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force opposite to the instantaneous acceleration produced by the other 
two forces which is equal to tn(dv/dt), where m is the mass of the electron. 
The equations which express the equilibrium of these forces in terms of 
rectangular coordinates are, from Fig. 16-4, 

m 
djx 

d(^ 

d^y 

-e--eVyB 
dx * 

[161] 

[16-2] 

The left member of equation 16-1 represents a force of inertia directed 
to the left which is matched by the sum of two forces directed to the 
right. The negative sign is due to the fact that the electronic charge e 
is intrinsically negative. 

Similarly the left member of equation 16*2 is directed downward and 
is matched by two upward forces. These equations are readily con¬ 

verted to the form 

m 

m 

d^x 

dt^ 

ex dV 

r dr dt 
(161a] 

eydV dx 
ss-1- e — 25 

r dr dt 
[16-2o] 

by use of the relations 

dt 

and 

= 

dx 

Jt 
velocities 

dV xdV dV ydV . . 1 ^ 
— s-, — = - — components of electric intensity. 
dx r dr dy r dr 

Multiplying equations 16-la by y and 16-2a by x, and subtracting the 

upper from the lower, we have 

a2-. d^y d^x 
- my 

„ dx , „ dy 
Bex-+ Bey- 

which upon integration yields the relation 

dy dx 
rr^--my- Y I/® + Y »* + Cm 

[16-3] 

[16-4] 

This integration may be readily verified by differentiating equation 164 
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with respect to t. Dividing both sides of equation 164 by m gives 

where C is a constant of integration yet to be determined. Substitut¬ 
ing the following trigonometric identities 

X = r cos y = r sin $, and sin^ 6 + cos^ 6 = 1 [16-6] 

into the left side of equation 16-5 we obtain 

„ • , 2 2 r COS d sin ^ — + r"' cos 0 — 
at at 

, 2 ■ 2.30 
—r sin 0 cos 0-}- sm 0 — 

dt dt 

,00 
= [16-7] 

dt 

Equating this to the right side of equation 16*5, and using the relation 
we have 

ode Be ^ _ 
r T = — r + C 

dt 2m 

which is a fundamental differential equation of motion. 
The identities of ecj. 16-6 define 6 as the angle between the X axis 

and the radius vector r to the point x, y at which the electron is located. 
The derivatives dr/dt and dd/dt express the velocity of the electron in 
polar coordinates. At the surface of the cathode r = b and the electron 
velocity is zero. We may therefore evaluate the constant C by setting 
r = b and dd/dt = 0 in equation 16-8. Using this value, we have 

^dS Ber^ . Beh^ . . . 
r"- 

dt -7.--- 0 2m 2m 

dt 2m 

Conservation of energy permits us to write the relation: 

^mv^ = eV \J 
But 

which with 16*11 gives 

116-10] 

[16-11] 

[16 12] 

[16-13] 
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Combining 16'13 and 16*10 so as to eliminate dB/dt, we have 

eV 

Equation 16-14 is a completely general equation describing the motion 
of an electron under any condition of space charge for a fixed applied 
voltage. In view of the difficulty of a general solution we shall con¬ 
sider only a special case. 

16*4 Cut-off 

If dr/dt, the radial velocity, is set equal to zero for r = a, or more 
properly r just less than a, the plate current becomes zero. The motion 
of each electron becomes tangential to the plate, and no electrons are 
collected. This condition is referred to as cut-off and is prescribed by 

the equation ^ 

\2m/ \ or/ m 
[16-15] 

or explicitly 

[16-16] 
8w \ av \ 

defining the cut-off voltage T^. 
Since b -C a in most practical cases 

y . 
8m 

[16-17] 

or 

a \ e 
[16-18] 

This expression was first derived by Hull, and his derivation has been 
checked by other investigators. Unfortunately the experimental veri¬ 
fication is not so gratifying. Many painstaking tests by Dr. A. F. 
Harvey* indicate that a field nearly 10 per cent stronger than that calcu¬ 
lated is required for cut-off. Moreover, the cut-off curve is not sharp 
but rounded, and a relatively large increase in the magnetic field is 
necessaiy to reduce the plate current to zero. A typical characteristic 

is illustrated in Fig. 16-5. 
A large number of factors influence the cut-off and might be expected 

^ to explain the observed curves. The behavior of several of these factors 

will be discussed. 

♦ A. F. Harvey, High Frequency Thermionic Tubes,” John Wiley & Sons, 
1943. 
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16'5 Voltage Drop along the Filament 

Oidinarily the magnetron employs a filamentary cathode heated by a 
direct current. There is a potential drop of several volts in the length 
of the filament and accordingly several volts’ difference in the plate 
voltage effective at the two ends of the tube. By means of a mechanical 
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Fig. 16*5 Cut-off characteristic of a magnetron having limited emission. 

switching arrangement it is possible to heat the filament by intermittent 
pulses of direct current and to measure the plate current during the 
intervals when the filament current is zero. The results of such tests 
indicate that the rounded comers of Fig. 16-5 do not result from voltage 
drop along the filament. 

16*6 Mechanical Dissymmetry 

In a device so small and delicate as a vacuum tube it is difiicult, if not 
impossible, to achieve a mechanical stmcture that is accurately round, 
and coaxial. Any deviation from the geometry assumed in the mathe¬ 
matical development should tend to round off the sharp comers of the 
theoretical curve. Careful tests indicate that the accuracy ordinarily 
achieved is such that further refinement would not appreciably alter 
the shape of the cut-off curve. 

16*7 Tilt of Magnetic Held 

It is impossible to produce a magnetic field that is perfectly uniform 
or parallel to the axis of the tube elements. However, a long solenoid 
produces a field near its center which is paralld and uniform to within 
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0.1 per cent. Experiments involving deliberate introduction of an 
angle between field and tube axis indicate that a tilt of one or two degrees 
is not adequate to explain the observed phenomena. 

16*8 End Effects 

In practical tubes the ratio of axial length to plate diameter is never 
large. Accordingly, it is proper to consider the effect upon the cut-off 
produced by divergence or fringing of the field at the ends of the struc¬ 
ture. Evidently electrons emitted from the filament outside the ends 
of the plate will have an axial component of velocity toward the center 
of symmetry. It can be shown, however, that they should obey the same 
cut-off relation as electrons emitted near the center of the tube, and ex¬ 
periments with tubes employing guard rings verify the fact that end 
effects do not appreciably change the cut-off characteristic. 

16*9 Space Charge 
Since the equation of cut-off was derived in such a way that space 

charge and potential distribution do not appear, it is clear that they 
should not affect the observed cut-off. Careful experiments indicate, 
however, that the space charge does affect the results, at least to some 
extent. 

16* 10 Emission Velocity 
In ordinary tubes an average emission velocity of about ^ volt is pre¬ 

dicted from theoretical considerations and is verified by experiment. 
That is, the total kinetic energy of a large number of emitted electrons 
is such that, if it were divided equally, each electron would receive as 
much as if it had been accelerated through a potential difference of 
I volt. The kinetic theory of gases, as modified to suit the present 
conditions, indicates that a few electrons of much higher velocity are 
present as well as some of very low velocity. But the number of elec¬ 
trons having velocities in excess of 5 volts should be negligible. 

An interesting experiment to test this point is performed with nega¬ 
tive plate potentials. For a particular magnetron, a plate current of 
60 microamperes flowed with zero applied potential and was reduced to 
1 microampere with —3 volts applied. The magnetic field was zero. 
In order to reduce the plate current to 1 microampere by means of the 
magnetic field with zero plate voltage it was necessary to set the mag¬ 
netic field at a value equivalent to cut-off for an applied potential of 
15 volts. That is, the equivalent velocity of many of the electrons 
IS now comparable to 15 volts. Thus experiment indicates that the 
number of high-velocity electrons is greatly increased by the application 
of the magnetic field. This effect may be explained upon the basis of 
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collisions between electrons, an explanation originally advanced by Hull 
but largely neglected in recent years. We shall use the term collision 
to designate the close approach of two electrons and shall consider the 
action by analogy with elastic spheres. Actually, of course, no true 
collision occurs, but the strong forces of electrostatic repulsion at short 
distances give much the same effect. 

Fig. 16-6 Possible electron paths and collisions in a magnetron. 

Let us consider the electron paths indicated in Fig. 16-6 for a cylindri¬ 
cal magnetron with the magnetic field intensity somewhat above the 
cut-off value. Electrons which are emitted from one side of the cathode 
follow an approximately circular path and are returned to the opposite 
side of the cathode. Electrons emitted from a near-by point on the 
cathode follow a similar path which may cross the path of the others as 
shown in Fig. 16-6a. From equation 16*11 it follows that the speeds of 
the two electrons are the same at the point where the paths cross. Let 
us assume that the electrons do collide and that the electron paths cross 
at right angles to each other. 

For convenience the velocities are resolved into X and Y components. 
Each path crosses the Y axis at an angle of 45°, and accordingly the 
z and y velocities of each electron are numerically equal. The x veloci¬ 
ties of the two electrons in question are therefore equal and in the same 
direction, whereas the y velocities are equal in magnitude but opposite 
in direction. The equivalent collision is therefore entirely in terms of y 
velocity, the x velocity serving merely to translate the motion with 
respect to a stationary observer. 

Figure 16*66, c, d shows three typical collisions between elastic spheres 
having equal velocities. It is seen that an exact return along the 
original direction is possible but that some angular deviation is more 
probable. Part d is particularly interesting. Here the vertical com¬ 
ponents of velocity are converted entirely into horizontal velocity. 
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Because the action is entirely elastic there is no change in the magnitude 
of the velocity. We find by superposition of velocities in the x direction 
that one electron is brought to rest and that the other electron proceeds 

in the x direction with a velocity twice its original x velocity (V^ times 
its total original velocity). That is, all the kinetic energy of one elec¬ 
tron is transferred to the other. 

The electron which was instantaneously brought to rest is again 
accelerated toward the plate, reaching it easily since the magnetic field 
has small effect upon its motion owing to the low velocity acquired. 
The electron with the high angular velocity describes a more or less 
circular orbit around the cathode until another collision alters its path. 

Although the idealized form of collision just described is extremely 
improbable it is clear that comparable effects result from any similar 
type of collision. In the example taken it was assumed that space 
charge exerts only a small effect, and accordingly few collisions are to be 
expected. In practical tubes the emission of electrons is large and 
space charge is important. Actually the statement that space charge is 
significant automatically implies that many collisions or close encounters 
between electrons occur. 

It should be noted that the magnetron is the only familiar form of 
vacuum tube in which two electrons which are near each other may be 
going in quite different directions. In other tubes, electrons move in 
essentially parallel paths and nothing resembling collision occurs. It 
is therefore reasonable to expect that the behavior of the magnetron is 
quite different from that of other types of tubes. 

From the above considerations we are led to look with suspicion 
upon any equations which treat the magnetron solely from the stand¬ 
point of potential and space charge. Here we are dealing with dis¬ 
tances of atomic order and the field equations of Maxwell are known to be 
inapplicable. Some statistical method such as that used in the study 
of gases is necessary. We have, however, given a qualitative explana¬ 
tion of the rounded cut-off characteristic. Also we have shown the 
possibility of electrons moving in circular orbits concentric with the 

plate. 

16*11 Modes of Oscillation 

At least three distinct modes of oscillation in the magnetron are well 
known, and several significant subdivisions of these exist. Oscillations 
in the audio frequency region may be produced by coupling the winding 
of the magnet to the plate circuit of the tube. An increasing magnetic 
field decreases the plate current, much as an increasing negative grid 
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bias in an ordinary triode decreases its plate current. Oscillations of 
this type are called feedback oscillations. 

Oscillations over a very wide range of frequencies may be produced 
in a magnetron having the anode ^t into similar half-cylinders. The 
term dyncUron is used to refer to this type of oscillation. Secondary 
emission plays no part in the performance. Habann* was probably the 
first to discuss this sort of operation, and this oscillator is sometimes 
called the Habann oscillator. 

Very high-frequency oscillations may be produced in single-anode or 
split-anode magnetrons by a mechanism similar to that of the positive 
grid or retarding field oscillator. The operation depends primarily 
upon electron transit time, and the frequency is, therefore, relatively 
independent of the external circuit elements. 

Fig. 16*7 Circuit of feedback magnetron oscillator. Suitable only for 
low-frequency operation. 

16*12 Feedback Oscillations 

A feedback circuit for the production of oscillations with a simple 
magnetron is shown in Fig. 16*7. A relatively small change in the 
magnetic field produces a large change in plate current. It is necessary 
only that the connections are such as to deliver a maximum plate current 
at a minimum plate voltage. This is possible only if the magnetic field 
is reduced by the flow of plate current. Here, as in triode circuits, 
best results are achieved if a fixed bias, in this case a magnetic bias^ is 
applied. - 

With this circuit and a relatively large tube, a power output of 8 kw 
•at an eflSciency of 69 per cent was reported by Elder.f The operating 

*E. Habann, Zeitachrift fUr Hochfreqtienziechnikj 24, 115, 1924. 
t F. R. Elder, ‘‘ The Magnetron Amplifier and Power Oscillator,’* Free. JRE, 13, 

159, 1925. 
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fiequency was 30 kc. HVith a smaller tube of anode diameter f inch 
and length inches, he produced a few watts output at 1500 ko. 

This circuit finds little application at hi^ frequencies because of the 
rdatively large size of the field coils. The large inductance which results 
prevents the generation of very high frequencies. Triode oscillators 
give superior performance with less size, weight, and expense. 

16*13 Dynatron Oscillations 

The static characteristic of a split-anode magnetron has a negative 
slope in one r^on; that is, the device acts as a simple n^ative resistance. 
Consequently, oscillations are produced if a suitable tuned circuit is 
connected to it. Here, as in conventional triode oscillators, the opera- 

Fio. 16-8 Circuit and waveforms of a split anode magnetron oscillator.’ 
(Dynatron mode.) 

tion is independent of frequency up to the region in which the electron 
transit time becomes comparable to the period of a cycle. At somewhat 
higher frequencies the device continues to operate, but at reduced 
efficiency. At still higher frequencies satisfactory oscillations are pro¬ 
duced only by taking advantage of the electron inertia. The funda¬ 
mental circuit of this oscillator and certain typical wave forms are 
shown in Fig. 16*8. 

From the static characteristics, Fig. 16*9, it is seen that the anode 
at the lower potential draws the larger current and that the anode at 
the higher potential draws no current until A becomes approximately 
I as large as E. For A = ^ the current 4 necessarily falls to zero. 

The static characteristic is readily determined, and the oscillator is 
easy to assemble and to operate. It is not obvious, however, why the 
static characteristic takes this particular form. Were it not for the 
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excellent pictures of true electron paths due to Kilgore* there might 
well remain some uncertainty as to the operation of this device. 

Figure 16-10 shows the potential distribution in a split-anode magne¬ 
tron when the field is somewhat above the cut-off value and the two 
plates are at equal potential. The emitted electrons regardless of their 
direction describe essentially circular orbits and return to the cathode. 
The current to each portion of the anode is zero. 

Fig. 16-9 Static characteristics of a split-anode magnetron. 
(Dynatron mode.) 

Figure 16-11 shows the potential distribution when equal and oppo¬ 
site potentials are applied to the two anodes. 

Figure 16-12 shows the potential existing in a split-anode magnetron 
in an operating condition with equal increments of voltage superim¬ 
posed upon' a fixed bias voltage. The potential at any point in this 
figure is the sum of the potentials corresponding to that point in the two 
previous figures. 

Figures 16-13 and 16-14 show the paths of two electrons emitted in 
opposite directions imder the bias condition of Fig. 16-12. It is seen 
that both electrons are drawn to the plate having the lower potential. 

Figure 16-15, a photograph of an actual magnetron, shows clearly the 
electron path. A somewhat enlarged model of a normal tube was fitted 
with a cathode which emitted electrons at only one spbt and was capable 
of being rotated. Argon gas at a pressure of a few microns made the 
electron trace visible without seriously affecting the operation. The 

*G. R. Kilgore, ** Magnetron Oscillators for the Generation of Frequencies 
between 300 and 600 Megacycles,” Free. IRE, 24, 1140, 1936, 
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actual path followed by electrons was then studied for various directions 
of emission and for a variety of applied potentials. As many as ten 
loops in the path from cathode to anode were sometimes observed. 

+100 Electron 

Fia. 16-10 Electron path and electric 
potential distribution when the two 
anodes are at equal potential and the 
magnetic field is somewhat above the 

cut-off value. 

+150 

Fig. 16-12 Electric potential distribu¬ 
tion when equal increments of voltage 
are superimposed upon a fixed bias 

voltage. 

+ 50 

Fig. 16*11 Electric potential distribu¬ 
tion when equal and opposite voltages 

are applied to the two anodes. 

+ 150 

Fig. 16-13 Path taken by an electron 
when emitted from the filament toward 

the more positive anode. 

The static characteristics of Fig. 16-9 may be explained qualitatively 
in terms of the electron motion just described. For small values of A 
the electric field distribution within the tube is not greatly affected and 
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no electrons reach either anode. For A = j5o/4 the field distribution 
is considerably distorted from that of Fig. 16*10, and electrons are able 
to reach the anode having the lower potential. It is probable that elec¬ 
trons from only certain regions of the cathode reach the plate, all others 

+150 

+50 
{Kilgore^ courtesy of IRE) 

Fig. 16-14 Path taken by an elertron Fig. 16-15 Photograph of an electron 
when emitted from the filament toward beam in an experimental magnetron. 

. the less positive anode. 

being returned to the cathode. For a rather larger value of A most of 
the electrons from all parts of the cathode reach the anode of lower 
potential. However, a few electrons reach the other anode. When A 
becomes still larger the two anodes draw comparable currents and the 
n^ative resistance property disappears. 

The dynatron type of magnetron oscillator is capable of excellent per¬ 
formance for frequencies up to about 600 megacycles. The frequency 
stability is good because the frequency is controlled almost entirely by 
the properties of the resonant circuit. At low frequencies the coil and 
condenser combination of Fig 16-8 is very satisfactory, and the load is 
readily coupled to the coil by simple mutual induction. At higher fre¬ 
quencies the use of a resonant transmission line for the tank is preferred. 
The relatively low capacitance present between thd plates of the tube 
guarantees that the resonance of the line is not greatly affected by the 
presence of the tube. 

Generation of harmonics is minimized in the circuit of Fig. 16-8, 
and frequency stabilityis improved by decreasing the value of inductance 
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and increasmg the value of capacitance as far as possible. The per* 
formance and calculation of this circuit are very similar to those of a 
push-pull class C triode amplifier. 

16'14 Motion of an Electron in Plane-Parallel Magnetron 

Consider a pair of parallel conducting plates between which a difference 
of potential exists. A uniform magnetic field is parallel to the plates 
and is, therefore, perpendicular to the electric field which results from 
the assumed potential difference. A single electron moving perpendicu¬ 
lar to the magnetic field experiences a force Bev due to the magnetic 
field. The force is perpendicular to the motion and to the magnetic 
field. If the electron motion is perpendicular to the electric field, the 
force eE acting upon the electron due to the electric field is also per¬ 
pendicular to the motion. 

If an electron moves with a suitable velocity and direction between the 
parallel plates, the two forces just described are equal and opposite. 

eE = Bev or E = Bv [16-19] 

An electron whose motion satisfies equation 16-19 moves perpendicularly 
to both fields and, therefore, parallel to the two bounding planes. Such 
an electron experiences no net accelerating force and accordingly moves 
with uniform velocity. 

An electron which is freed in a region of zero electric field with some 
definite velocity v at right angles to a uniform magnetic field describes a 
circular path. The centrifugal force is exactly matched by the mag¬ 
netic force according to the equation Bev «= rm^/r. Hence the radius 
of the path is given by 

mv 

Be 
[16*20] 

and the uniform angular velocity by 

V Be 
[16-20a] 

r 771 

Thus we see that the radius of the circular path described is directly 
proportional to the initial velocity, which is maintained unchanged as 
long as no additional forces cbme into play. The time required for one 
revolution is inversely proportional to B and is independent of r or v. 

Consider an electron having a velociiy component perpendicular to 
both fields, which satisfies equation 16-19, and an additional small com¬ 
ponent of velocity parallel to the electric field. The velocity com¬ 
ponent satisfying equation 16*19 completely annuls the effect of the 
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electric field. The second component of velocity results in a circular 
motion superimposed upon the linear one. The path in space which 
results from such a superposition of velocities is a cycloid. 

Fig. 16*16 Cycloidal curves. 

Several typical cycloidal curves are shown in Fig. 16*16. The path 
designated c is that traced by a point on the periphery of a rolling wheel. 
It is a particular case which results when the velocity components of 
equations 16*19 and 16*20 are equal. In this event the electron comes 

Plate 

Cathode 

Fig. 16*17 Cycloidal path of an electron in a plane-parallel magnetron. The 
magnetic field is directed into the page. 

to rest at one instant during each revolution of the circular motion. 
This case is of import^ance in that electrons emitted from the cathode are 
at rest, a boundary or initial condition which must be satisfied by any 
proposed path of motion.* In view of the above we may conclude that 
electrons in a plane-parallel magnetron describe cycloidal paths as shown 
in Fig. 16*17. The dimensions of the cycloid depend’upon the strength 

^ This statement is based upon the assumption that electrons are emitted from 
the cathode with zero velocity and that contact potentials are negligible. These 
assumptions are justified in ordinary cases, where the applied voltages are large in 
comparison to the contact potential. 
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of the electric and magnetic fields, a stronger magnetic field or a weaker 
electric field resulting in a path of smaller dimensions. 

The previous development has assumed that no space-charge effects 
are present and that no collisions between electrons occur. In an actual 
tube the emission of electrons takes place over the cathode surface, and 
accordingly the resulting cycloidal paths cross at all angles. The col¬ 
lisions or near-collisions which necessarily result appreciably affect the 
performance and allow a considerable number of electrons, which would 
otherwise return to the filament, to reach the plate. 

16*15 Electronic Oscillations in Plane-Parallel Magnetron 

The electronic motions just described are very favorable to the pro¬ 
duction of high-frequency oscillations. An individual electron oscil¬ 
lates back and forth between cathode and plate with a velocity and 
frequency determined by the dimensions of the structure and the electric 
and magnetic fields applied. This oscillation is comparable to that 
which exists in the positive grid oscillator studied in the previous chap¬ 
ter. In the positive grid tube, however, oscillations are produced by 
the action of electric fields alone, and the grid necessarily collects a large 
fraction of the emitted electrons. In the magnetron no such grid is 
required, and relatively high efficiencies are possible. 

In the magnetron, as in the positive grid tube, electrons are emitted 
from the cathode at a uniform time rate. A useful power output may be 
derived from the tube only if the electronic oscillations are somehow 
brought into synchronism. This is accomplished in both devices by 
removing electrons of unfavorable phase from the system after only one 
oscillation, allowing the electrons of favorable phase to remain for many 
cycles or oscillations. This amplitude selection is accomplished in the 
magnetron exactly as it is in the positive grid tube. Refer to Fig. 16-18. 
A plane-parallel magnetron is subjected to a small alternating voltage 
in series with the direct plate voltage. The magnetic field is adjusted 
to a value somewhat above that for cut-off. Let the frequency of the 
alternating voltage be such that one full cycle is described in the time 
required for an electron to travel one full loop of the cycloidal curve. 

Let us first consider an electron which leaves the cathode at an instant 
when the alternating voltage is zero and is swinging in such a phase as to 
aid the direct voltage. During the entire interval that the electron is 
moving toward the plate the accelerating voltage is above normal and 
the velocity acquired is above normal. During the following half cycle 
the electric field is below normal and the large velocity acquired by the 
electron permits it to strike the cathode with a finite velocity, removing 
itself from the system. Such an electron is of unfavorable phase 
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because it moves in the direction of the alternating component of the 
electric field. 

Consider now an electron which leaves the cathode 180® later, that is, 
when the alternating voltage is zero and is swinging in such a phase as to 
oppose the direct voltage. During the interval that the electron is 
moving toward the plate the accelerating field is below normal, and the 
velocity acquired is less than normal. During the following half cycle 

Favorable 
Phase 

Neutral 
Phase 

Unfavorable 
Phase 

Fio. 16-18 Amplitude selection in a plane-parallel magnetron. 

the electric field is above normal and the electron is unable to reach the 
cathode in its return motion. As a result, it makes several oscillations, 
the motion being always in the opposite direction to the alternating com¬ 
ponent of the electric field. Such an electron is of favorable phase. 

Here, as in the positive grid tube, we have considered only the most 
favorable and most unfavorable phase angles. Actually all electrons 
which are emitted over half the cycle are more or less favorable, whereas 
those emitted during the other half cycle are more or less unfavorable. 

The electronic oscillations in the magnetron differ from those in the 
positive grid tube in one important respect. In the positive grid tube 
the time required for the oscillation varies with the amplitude of the 
motion; the smaller the motion the higher the frequency. In the 
magnetron the time required for the oscillation is independent of the 
amplitude of the motion. This fact is verified by application of equa¬ 
tion 16*20 to the equality T = 2Tr/t>, where T is the period of the wave. 
Hence 

T 
2bt 

V 

2irm 
[16*21] 

Thus it is possible to achieve relativdy high efiSciency in magnetrons 
employing electronic oscillations, but not in positive grid oscillators. 
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The frequency of oscillation is readily calculated from equation 
16-21 by means of the equality / = l/T. Thus 

/ 
Be 

2irm 
116-22] 

It is seen to depend only upon the magnetic induction and certain basic 
physical constants. Reduced to a numerical form 

/ = 2.8 X 10®R [16-23] 

where B is measured in gauss and / is in cycles per second. Or 

/ = 2.23 X 10*if [16-24] 

where H is measured in ampere-turns per meter and / is in cycles per 
second. 

Thus we have shown that the magnetron acts as a two-terminal nega¬ 
tive resistance at a frequency depending only upon the strength of the 
applied magnetic field. It is necessary, then, only to provide a suitable 
resistive load impedance in order to derive a useftd power output. In 
practice it is universal to emnlov some form of tuned transmiRaion lina 

as this loa^ The tuning of the line somewhat affects the frequency 
as well as the load impedance. By the use of a suitable line the fre¬ 
quency stability of a magnetron may be made somewhat better than 
the stability of the magnetic field. 

16-16 Practical Magnetron Oscillators 

The plane-parallel structure is undesirable for various practical rea¬ 
sons. It is tmiversal practice to construct tubes of this sort in a cylin¬ 
drical form. The operation is not greatly different, although the electron 
paths are now approximately circular, as shown in Fig. 16-6, rather than 
cycloidal. Electrons oscillate between cathode and anode at a fre¬ 
quency comparable to that defined by equation 16-24, and the process 
of amplitude selection operates as it does in the plane-parallel tube. 
The operation is essentially similar to that just outlined. This cylin¬ 
drical construction, although perfectly practical, is not ordinarily used. 
The dissjunmetry between filament and plate makes it difficult to 
achieve the operation desired. 

The split-anode construction shown in Fig. 16-19 is used in practi¬ 
cally all high-frequency msignetrons, the load being a symmetrical 
Lecher wire system connected to the two halves of the plate. The 
apparent short circuit within the tube is actually a quarter-wave reso¬ 
nant line. In the split-anode tube the high-frequency currents are bal¬ 
anced out in the filament circuit and complete ^munetry prevails. 
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The electronic oscillations are essentially the same as before. It 
remains only to show that the phase relations which are favorable for 
one half of the tube are also favorable for the other half. 

Fig. 16-19 Split-anode structure for a magnetron. 

The behavior of the cylindrical split-anode magnetron may be ex¬ 
plained directly by reference to Fig. 16*20. Electrons which pass the 
slit between the anodes when the voltage is a maximum, in such a 

way as to accelerate their motion, 
quickly strike the plate and are re- 

j \ moved from the system. Electrons 
/ \ I \ which pass the slit when the voltage 

/ \ j \ is in the opposite polarity give up 
/ >*-—^ V N. \ energy to the external circuit and 

* f ^ \ 1 are decelerated. These electrons are 
1 V > V J \ favorable phase and make a num- 
\ j ber of complete oscillatory motions 
\ j I / about the system. On this basis 
\ I y / the cathode plays very little part 

y in the operation, the field between 
the edges of the anode being the 
primary factor. 

Fig 16-^ Electron orbit in a four^g- ^ ^ expeiimentaUy that 
meat split-anode magnetron. The de- .i. x* i? i_ x • 
creaaingvibrationofanelectronoffavor. ^eoperation of such a magnetron 18 

able phase is shown. improved by tUting the magnetic 
field approximately 5® from the axis 

of the structure. The electric and magnetic fields are no longer per¬ 
pendicular, and the electrons proceed lengthwise along the axis of the 
tube in a sort of helical path. Electrons which have given up much 
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of their initial energy in useful output are thus enabled to reach the 
plate and reduce the space charge which tends to collect. Somewhat 
the same effect is achieved by the use of end plates which are at ap¬ 
proximately the same potential as the anode. These end plates, one of 
which is shown in Fig. 16-19, contribute an axial component to the elec¬ 
tric field, again causing electrons to drift along the length of the tube 
and remove themselves from the system. 

16*17 Electronic Oscillations of Higher Order 

The mode of oscillation just described is usually referred to as that 
of the first order, where the order of oscillation is defined by the relation 

n == 

In this expression n is not necessarily an integer and com is defined by 
equation 16-20a; w/2x is the frequency of the oscillations produced. 
The magnetic field is greater 
than the cut-off value for the 
voltage applied, and the fre¬ 
quency is directly proportional 
to the magnetic field. Other 
modes, referred to as electronic 
oscillations of higher order, 
n > 1, may be produced in 
the same tube structure. These 
oscillations are of a still higher 
frequency, which is not simply 
related to the tube structure or 
field intensity. In general the 

{Courtesy of Electronics) 

Fig. 16-21 EfRciency of two magnetrons as a 
function of the order n of oscillation. 

efficiency is relatively high, as indicated in Fig. 16-21. 
' The operation may be thought of as analogous to that existing in the 
class C frequency multiplier. Pulses of current flow when the alternat¬ 
ing component of the voltage opposes the flow. The voltage may 
describe two, three, or even more complete cycles between the pulses 
of current. It is necessary only that the voltage oppose the passage of 
each successive pulse of current. In the magnetron, electrons of un¬ 
favorable phase are accelerated in their first passage across the slit 
between the anode segments. They accordingly describe a circle of 
increased radius and are lost to the anode after one revolution. Elec¬ 
trons of favorable phase are decelerated at each successive slit they 
pass, the voltage alternating two or more full cycles in the time required 
for an electron to travel from one slit to the next. 
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These higher-ordef inodes of oscillation are largely used in the com¬ 
mercial production of hyper frequencies. Frequencies between 1000 
and 10,000 megacycles are readily produced in this way, and higher as 
weU as lower frequencies may be generated without great diflSculty. 
The wavelength produced is given approxi¬ 
mately by the empirical relation 

[16 25] 

where r is the anode radius in centimeters, H 
is the field strength in gauss, P is the number 
of pairs of anode segments, jF is the applied 
potential in volts, and X is the wavelength in 
centimeters. For best operation the field must 
have the value given approximately by the 
equation 

(Linder, courtesy qflHB) 

Fig. 16*22 An anode-tank-circiut for Fig. 16*23 An experi* 
magnetron. The split-plate structure, mental anode-tank-cir- 
which is closed at one end, forms a cuit magnetron, 

parallel line system. 

where n is the order of the oscillation, P is the number of pairs of anode 
s^ments, and He is the magnetic field for cut-off with the applied 
voltage V. Figure 16*21 shows an experimental curve of efficiency for 
magnetrons of two- and four-segment construction and for various 
orders of oscillation. It is seen that good efficiency is to be expected 
if proper precautions are taken. 
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In the magnetron ae in other high-frequency generatora it is often 
advantageous to construct a resonant line as part of the electrode 
system. In the magnetron this is very readily done, the split anodes 
themselves forming the line or tank circuit.* In Fig. 16*22 the tank 
circuit of such a magnetron is drawn. The anode is split except for a 
small supporting ring at one end, and the load is connected by a pair 
of wires attached near the other end. The complete structure is shown 
in Fig. 16*23. 

A particular magnetron of this sort had the following characteristics. 

Plate potential 
Magnetic field 
Plate current 
Tilt of magnetic field 
Wavelength 
Load resistance 
Output power 
Efficiency 
Anode diameter 
Length of anode slot 
Width of anode slot 

3300 volts 
1500 gauss 

20 ma 
0~10 degrees 
8-9 cm 

80-140 ohms 
13 watts 
20 per cent 

0.7 cm 
2.3 cm 

0.063 cm 

The advantages of joining the tank circuit with the active electrodes 
is equally pronounced at lower frequencies. Kilgoref describes a 

Internal Circuit 

Water Jacket / | Load Leads 

Water-Cooled | Glass 
Insulator 

IFio. 16-24 Cross section of a water-cooled magnetron having tank circuit 
integral with the anodes. 

magnetron for operation at 600 megacycles in the dynatron mode 
which produces an output of 100 watts at an efficiency of about 25 per 
cent. The large power output is achieved by means of water cooling. 
A relatively large metal “ hairpin ” forms the resonant circuit as well as 
the active electrodes. The general arrangement is shown in Fig. 16-24. 
The physical appearance of the working tube is shown by Fig. 16-25. 

* E. G. Linder, “ Anode-Tank-Cirouit Magnetron,” Proc. IRE, 27,732,1939. 
t See footnote on page 564. 
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{Ktigore, courtesy of JRE) 

Fig. 16 25 Experimental water-cooled magnetron for operation in the dynatron 
mode at 600 megacycles, 

PROBLEMS 

16*1 A plane-parallel magnetron employs a uniform magnetic field parallel to 
the plates. A smgle electron describes a circular orbit between the plates, gener¬ 
ating a current in the circuit connected to the plates, (the effect of any fixed 
electric field is neglected.) If the frequency is 1000 megacycles, how strong is the 
magnetic field? 

16*2 In problem 16-1 is the current wave produced by the electron motion sinus¬ 
oidal? Why? Assuming the plates are 6 mm apart, how great a current may be 
produced in this way? 
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16«3 An electron describes a circular orbit concentric with the axis of an ordinary 
two>section split-anode magnetron. Sketch the current wave which results in the 
external circuit. 

16*4 Discuss the use of a simple magnetron as a class C power amplifier at rel¬ 
atively low frequencies. What sort of efficiency is to be expected, and what factors 
are likely to limit the efficiency? What factors tend to limit the frequency range of 
the device? Consider the magnetic bias ” and the exciting field. Is the adjust¬ 
ment likely to be critical? 

16*5 Discuss the split-anode magnetron as a dynatron oscillator in terms of the 
general theory presented in Chapter 14. What elements contribute the limiter and 
frequency control functions? Is the amplifier function the same here as it is in other 
oscillators? 

16»6 A split-anode magnetron serves as a transit-time oscillator. Discuss this 
operation in terms of the general oscillator theory presented in Chapter 14. 

16*7 It is sometimes observed in a magnetron operating as a transit-time oscil¬ 
lator that the filament is much hotter than it would be if the tube were not oscil¬ 
lating. Discuss this observation in terms of the collision of electrons. 

16*8 Write the differential equations which apply to the motion of an electron 
in a plane-parallel magnetron. Let the electron motion be always perpendicular to 
the magnetic field which itself is parallel to the plates. 

16*9 Solve the equations of problem 16-8. Look for a parametric equation in 
which the rectangular coordinates, as, y, z, are expressed in terms of some separate 
angular variable such as 0. 

16*10 A certain split-anode magnetron oscillator is unable to supply sufficient 
power for the desired application. Will it be possible to utilize two or more iden¬ 
tical tubes in parallel for this purpose? What precautions are likely to be neces¬ 
sary? Consider a relatively low-frequency case and one in which the conducting 
leads are of a length comparable to the wavelength. 

16*11 Two four-segment split-anode magnetrons are available. Under what 
conditions will it be possible to connect both tubes to a common load so as to double 
the power output produced by a single tube? Consider the case of high-frequency 
electronic oscillations. 

16*12 A magnetron consists of a cylindrical anode concentric with a slender 
straight wire filament. The magnetic field is above the cut-off value. Show how 
electrons may reach the anode if the magnetic field is tilted slightly with respect 
to the axis. 

16*13 Assuming negligible space charge and no alternating voltages in the system 
of problem 16-12, consider the energy of the electron in terms of potential and 
kinetic energy. With what velocity does the electron strike the plate? 

16*14 In the magnetron of problem 16*12 an alternating voltage syiichronous 
with the rotational period of the electron is superimposed upon the direct voltage. 
With what velocity will electrons now reach the plate? Consider several values of 
phase angle. Show how the paths of problem 16-12 are modified. 

16*15 A four-segment split-anode magnetron is available in which all four seg¬ 
ments are brought out to separate terminals. It is desired to produce oscillations 
of approximately 100-megacycle frequency in the dynatron mode. Show a possible 
circuit arrangement. 



578 THE MAGNETRON 

16*16 For a special application it is desired to produce a dynatron oscillation of 
a two-phase nature. Can the tube of problem 16’15 be used for this purpose? How? 

16*17 In a magnetron the useful output power comes from the direct-current 
supply. E3q)lain in detail how this conversion comes about in terms of individual 
electrons. 

16*18 In terms of the conversion discussed in problem 16*17, what features of 
magnetron design are necessary to secure high operating efficiency? Suggest a me¬ 
chanical design which satisfies these requirements. 

16*19 It has been suggested that a cylindrical magnetron be modified by the 
addition of some kind of grid structure. Consider the possibilities of such an 
arrangement using grids fonned of circular wire. The grid may take the form of 
wires parallel to the filament or the usual helical form. 

16*20 Extend the consideration of problem 16* 19 to a grid made of thin slats of 
metal formed so as to correspond to the curved paths of the electrons. Consider 
such a tube as a low-frequency amplifier employing either electric or magnetic con¬ 
trol. What sort of characteristic curves might such a tube have? 



CHAPTER 17 

TUBES EMPLOYING VELOCITY MODULATION* 

17*1 Introduction 

It was shown in Chapter 12 how the transit time of the electron in 
the interelectrode space affects and limits the performance of conven¬ 
tional vacuum-tube structures at high frequencies. In particular 
we have found that the power required to drive the control grid of 
ordinary tubes becomes comparable to the output power and that 
amplification is, therefore, impossible. We shall now describe several 
devices in which these difficulties are more or less completely overcome. 

Although the transconductance of ordinary vacuum tubes becomes 
complex, and its magnitude decreases at very high frequencies, this 
effect seldom proves to be the real limit of operation. At considerably 
lower frequencies the effective conductance of the grid circuit becomes 
so high that it is impractical to operate the tube. The power supplied 
at radio frequencies by the grid circuit serves to increase the average 
velocity of the electrons which roach the plate and so is lost as heat at 
the plate. 

In the ordinary vacuum tubes the grid is successful in controlling 
the plate current only if a considerable space charge exists in the grid- 
cathode region. The variation of electronic current must therefore 
exist in the entire cathode-anode space. In Chapter 12 it was shown 
that the cathode-grid current must properly be considered to be the 
sum or difference of a grid-cathode current and a grid-anode current. 
At low frequencies in negative grid tubes these two currents are identical 
and the effective grid impedance is infinite. At high frequencies, how¬ 
ever, the two currents are out of phase with each other and with the 
grid voltage. For this reason both a grid conductance and a grid sus- 
ceptance are developed. The losses that result may be reduced by 
reduction of the transit time since they vary as the square of this time, 
but this process has rather definite limitations. A more profitable 
approach is through utilization of velocity modulation which is a by¬ 
product of our efforts to modulate the density or strength of the electron 
current. It has been found possible to produce satisfactory velocity 

* The tenn ** to modulate ” as used in communication engineering means to vary. 
Thus velocity modulation means velocity variation. 

679 
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modulation in practical vacuum tubes, without reducing the effective 
grid impedance below 50,000 ohms, even at frequencies of 5000 mega¬ 
cycles. Several methods of producing and utilizing this type of modula¬ 
tion will now be described. 

17*2 Velocity Modulation 

The operation of velocity-modulated tubes is probably no more 
complicated than that of some forms of low-frequency tubes. However, 
the principles involved in velocity modulation tubes are relatively un¬ 
familiar to most engineers and we shall consider them in some detail. 
Just as the operation of triodes is greatly clarified by a separate con¬ 
sideration of the direct and alternating components of voltage, current, 
etc., so is the operation of the velocity-modulated tubes clarified in the 
same way. The most characteristic property of velocity-modulated 
tubes is that the current leaving the cathode is constant. Space charge 
is therefore unnecessary to the successful operation of such devices, 
though it usually exists for reasons of cathode design. 

Let us consider for a moment the motion of electrons at some small 
region in a conventional vacuum tube. Provided that all the electrons 
in this region have the same velocity at a given instant we can resolve 
the velocity into two components, one constant, the other alternating. 
The steady velocity component is due to some direct accelerating volt¬ 
age; the alternating component is due to some alternating or modulating 
voltage. Such a condition exists in the region of the electrode system 
which produces the velocity modulation. 

At other points in the tube the number of electrons passing in a given 
unit of time may vary and the electrons may have different velocities. 
Such a condition exists if a velocity-modulated stream of electrons is 
allowed to “ drift for an appreciable distance. Here it may be more 
appropriate to consider only the variation in number of electrons with 
respect to time, neglecting the effect of velocity. 

Modulation of the current density as carried out in ordinary tubes is 
readily expressed in terms of the total current since it is the same at all 
points in the system. The degree of velocity modulation, however, is 
not so simply expressed, for, although it may be expressed in percentage 
of the steady velocity at a given point, a different result obtains if the 
observation is made at a point where the steady velocity is different. 
It is commonly expedient to express the velocity modulation directly 
in terms of volts, a figure which is constant at all points in the tube. 

17*3 Production of Velocity Modulation 

Two adjacent grid structures form the simplest device for producing 
velocity modulation. Such a device in conjunction with other elec- 
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trodes is shown in Kg. 17-1. Let us assume that the direct accelerating 
voltage Vi is large in comparison to the alternating voltage F. Also 
let the velocity of the electrons reaching the first grid, Gi, be high 
enough, owing to the action of 
Fi, so that the interval of time 
spent in traveling between the 
grids is short compared to the 
period of the applied alternating- 
voltage wave. Under these con¬ 
ditions the electrons which pass 
through the second grid have a 
velocity which depends upon the 
instantaneous sum of Fi and F. 
All the electrons which pass 
through the grid structure con¬ 
tinue on to the plate or collector. 
Since V2 is lower than F1 the elec¬ 
trons are decelerated before reaching the plate and dissipate only a rela¬ 
tively small amount of power there. 

The electric field in the space between the cathode and Gi is fixed 
because Fi is constant, and accordingly the velocity and number of 
electrons which reach Gi per unit time are fixed.* Since Fi F and 
since the transit time between the grids is short it follows that the 
number emerging from G2 per second is also virtually constant. This 
statement is of great importance since it permits us to estimate the 
power required of the generator F. That is, we may deduce the effec¬ 
tive input grid conductance in this way. 

It was shown in Chapter 12 that the effective current density due to 
the motion of the electrons between Gi and G2 is equal to pr, where p 
is the volume density of electronic charge and v is the electron velocity. 
During the time that F is positive, therefore, the electron velocity is in 
the same direction as the electric field and energy is drawn from the 
source F. During the next half cycle the voltage is opposite to the 
electron velocity and an equal amount of energy is returned to the 
source. The situation is equivalent to a low-frequency system in which 
direct current flows through an alternator. The power flow is reversed 
with each half cycle, and the net power integrated over a cycle is zero. 

Actually the input conductance is not identically zero as indicated 
above. An analysis too lengthy to include here is necessary in order 
to obtain the exact result. Such an analysis shows that the conductance, 
although finite, is ordinarily too small to be of practical importance. 

* Except for small variations due to the random character of emission. 

Collector 

Fig. 17*1 Structure for producing velocity 
modulation. The maximum value of the 
alternating voltage of frequency/ is repre¬ 

sented by V, 
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The resonators or other circuits which supply the excitation V ordinarily 
have inherent losses large in comparison to this active loss. 

Thus it is seen that velocity modulation may be produced by a pair 
of grids similar to those employed at low frequencies. The success of 
the grids in producing velocity modulation is independent of space 
charge near the cathode so that any form of cathode may be used. 
The power required for the production of velocity modulation is in¬ 
trinsically low and decreases as the accelerating voltage Fi is increased 
and as the spacing between the grids is decreased. 

17<4 Velocity Modulation Produced in Two Steps 

The structure of Fig. 17-2 may be used for the production of velocity 
modulation. It is twice as eifective as that of Fig. 17-1 in that the 

same voltage acts twice upon each 
electron. Let us first consider the 
action of this device when the alter¬ 
nating voltage is zero. Electrons which 
leave the cathode are accelerated to a 
relatively high velocity as they approach 
(?i. In the space between Gi and the 
sleeve electrode they are somewhat 
decelerated so that they travel the 
length of the sleeve at the uniform 
velocity corresponding to Vg. In the 
region between the sleeve and Gg they 
are again accelerated to the velocity 
corresponding to Vi, and finally they 
are decelerated toward the plate to a 
velocity corresponding to F2. 

By an appropriate choice of Fi and Vg and the dimensions, the time 
required for an electron to travel from Gi to Gg can be made equal to 
that of a half cycle of a given alternating voltage V. If this voltage is 
applied as is indicated in Fig. 17'2, the same electrons which experience 
a Tiiinimiitn of deceleration in passing from Gi to the sleeve experience a 
maximum of re-acceleration between the sleeve and Gg and thus leave 
Gg with a velocity corresponding to the voltage Vi -|- 2V. Electrons 
which come throu^ the system a half cycle later experience a maximum 
deceleration and a minimum re-acceleration and leav6 Gg with a velocity 
corresponding to Fi — 2F. Electrons arriving at intermediate times 
experifflice intermediate values of acceleration or deceleration relative to 
the velocity corresponding to F = 0. 

Since F C Fi it is still true that the stream of dectrons leaving 

Sleeve Electrode 

Fig. 17-2 Alternative structure 
for producing velocity modula¬ 
tion. The maximum value of 
the alternating voltage of fre¬ 
quency / is represented by V, 
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the second grid 62 is practically unifonn. Actually, of course, the elec¬ 
trons which are accelerated at the first grid-sleeve transit tend to come 
out of the second grid a little ahead of their normal time. Similarly, 
electrons which are retarded at the first grid-sleeve transit tend to come 
out of the second grid somewhat behind normal. So far as these effects 
are small the power required to produce velocity modulation in this 
device also is negligible. 

17*5 Utilization of Velocity Modulation 

The electrode arrangements so far described have been useless in the 
sense that no output signal is derived from the electron beam even 
thoiigh velocity modulation has been achieved. In order to be of prac¬ 
tical use, the velocity-modulated beam must first be converted into an 
intensity-modulated beam.* There are at least three ways to accom¬ 
plish this: 

(1) by deflection method; (2) by the use of a retarding field; and (3) 
by the drift tube. 

Conversion hy deflection 

If a beam of electrons is deflected by means of a transverse field, either 
electric or magnetic, the path de¬ 
scribed depends upon the velocity of 
the electrons. Accordingly, by the 
use of an appropriate field it is pos¬ 
sible to separate a velocity-modu¬ 
lated beam into two beams which 
are modulated in intensity. The 
two beam currents are necessarily 
out of time phase by 180® so that a 
natural push-pull system results. 

, One possible arrangement for utiliz¬ 
ing this effect is shown in Fig. 17-3. 
Electrons which leave the velocity- 
modulating grids with maximum 
velocity are least deflected and reach the further anode Pi. Electrons 
with minimum velocity are most deflected and strike P2. 

Actually the arrangement shown in Fig. 17*3 is not particularly prac¬ 
tical. The voltages must be controlled rather accurately, and the 
operation is quite sensitive to stray electric or magnetic fields. More¬ 
over, it is fundamentally nonlinear, since a finite division between the 

* Intensity-modulated beams are those in which the convection current pv at a 
given point is a function of time. 

Fig. 17-3 Tube employing fixed electric 
field to separate velocity modulated beam 

into two intensity-modulated beams. 
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plates Pi and P^ must exist. Accordingly, very small alternating 
voltages at V may be unable to excite any finite output in the tank 
circuit. At high levels of input the beam is completely separated and 
no further increase of output is possible. 

Conversion hy retarding field 

If in Fig. 17-1 the auxiliary voltage V2 is made equal to zero we find 
that electrons which leave the grids with velocity above normal reach 
the collector or plate but that electrons which leave the grid with 
lower velocity are turned back and ultimately return toward the grid 
or other positive structure. Thus a true conduction current exists in 
the plate lead of the tube. Fairly efficient operation is possible with 
such a tube provided that suitable steps are taken to prevent the return 
of electrons to the exciting grids. This precaution is necessary because 
the distance traveled to and from the plate permits the faster electrons 
to overtake the slower ones, producing an intensity-modulated beam. 
Such a beam causes the input impedance to have a large resistive 
component which m<ay be either positive or negative. If the resistance 
is positive a large driving power may be required. If it is negative an 
undesired mode of oscillation may occur. 

A rather different process takes place if the voltage of V2 in Fig. 
17-1 is made sufficiently negative so that no electrons reach the plate. 
Now we find that the faster electrons approach the plate very closely 
while the slower ones are turned back somewhat farther away. The 
charge induced in the plate circuit by these moving electrons is thus 
controlled by the potential of the velocity-modulating electrodes. 
Again, suitable precautions must be taken if the electrons are not to 
return to the grid with undesirable consequences. 

Successful tubes have been constructed upon this principle, and 
reasonably satisfactory results are obtained. It appears, however, 
that certain other designs are fundamentally better, and we shall 
therefore give this one only brief consideration. 

Conversion by drift 

An electron beam that is velocity modulated will convert itself 
into one that is intensity modulated if given sufficient time. That 
is, a uniform velocity-modulated beam will automatically gather itself 
into clumps if allowed to drift freely in an equipotential region. Such 
a region is known as a drift space, and the resulting clumped or bunched 
beams may be partly or completely intensity modulated. 

The most familiar device for utilization of this principle is the 
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Klystron.* Although a number of other workers, notably Hahn and 
Metcalf of the General Electric Company, produced similar devices 
at about the same time, the brothers S. F. and R. H. Varian are gen¬ 
erally credited with its development, f Figure 174 is a photograph 
of an early experimental model (1939). Figure 17-5 shows the in¬ 
ternal arrangement of two typical Klystrons suitable for ampMca- 

(J£. H. and S. F, Varian, courteay of J, Applied Phynea) 

Fig. 174 Experimental model of the Klystron. 

tion, detection, or oscillation. The cathode is plane and relatively 
large. The grid indicated is actually a beam-forming electrode which 
operates at a small positive bias and serves to control the total cathode 
current. The principal structure is of copper and comprises two 
cavity resonators coupled mechanically and at the same direct po¬ 
tential. Each cavity resonator includes two gridlike structures close 
together and operating in much the same way as the double grid 

of Fig. 17-1. 

♦ The word Klystron is a trademark owned by the Sperry Gyroscope Company, 
Inc. The term is denved from the Greek and means “ waves breaking on a beach.” 

t R. H. and S. F. Varian, ” A High-Frequency Oscillator and Amplifier,” /. Applied 
Physics, 10, 321, May, 1939. 
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In operation the electrons emitted by the cathode are formed into 
a relatively narrow circular beam by the grid and are accelerated 
toward the metallic structure. Some of them strike the grid mesh, 
but a majority pass through the first cavity resonator into the equi- 
potential drift space. They proceed through this space with essen- 

{B, H, and S. F. Variant courtety 0/ J, Applied Phyeice) 

17 5 Schematic representations of two modem Klystrons. 

tially uniform velocity to the grids of the second resonator; again a 
portion of the electrons strike the mesh but a majority pass through 
and are decelerated, finally being captured by the plate or collector. 
By applying a moderate potential to the plate of Fig. 17'5&, it is pos¬ 
sible to capture most of the electrons without the dissipation of a large 
amount of power as heat. 

The situation is appreciably altered if some alternating voltage 
exists across the first two grids (the buncher) due to oscillations fed 
into the resonator. Now the electrons which pass into the equipo- 
tential or drift space are velocity modulated. Electrons of hi^er 
velocity may overtake slower electrons which preceded them in time. 
That is, the electrons which arrive at the second pair of grids (the 
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catcher) are in clumps or bxmches. The development of this con¬ 
dition is shown in Pig. 17-6. To simplify the picture it is assumed 
that the space between the two grids of the buncher is negligible. 

h h h U tg tg tj tg tg tjj tji t,2 <1 

Emitter y - J “f 1 “ V 

(R. H. and S F Varian, courtesy of J Applied Physics) 

Fig. 17*6 Conversion of an electron beam from velocity-modulated to intensity- 
modulated by drift. Sequence of diagrams showing, for 12 times equally spaced 
throughout one cycle (30® intervals), the positions of chosen typical electrons (dots) 
in the beam. As to phase, the first vertical row of dots shows the positions of the 
electrons at a time when the field m the buncher is zero and is coming to be in the 
direction to increase the speeds of the electrons. Horizontal lines show the positions 
of the cathod and the buncher Ilhumbatrons. A suitable place for the catcher is 

designated in the figure. 

Also, it is assumed that the voltage fed to the buncher is of such a 
value as to produce maximum intensity modulation of the beam at the 
catcher, an optimum condition. 

17*6 The Applegate Diagram 

Further clarification of the action of the buncher may be obtained 
from a study of the Applegate diagram. Fig. 17-7. The straight lines 
in this diagram represent the positions of individual electrons after 
they leave the buncher, as a function of time. The slope of these lines 
is made proportional to the electron velocities, i.e,, proportional to the 
a**c and d-c components of the buncher voltages. In drawing this 
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Center of 

Catcher 

Center of 

Buncher 

Cathode-T—r 
Potential I ! K ; 
Voltage on 

Buncher 

f sin wt) 
where A is chosen 

arbitrarily in construct- 

— ing this diagram 

Fig. 17*7 The Applegate diagram of the Klystron. 

diagram reference is made to Fig. 17-8 and the following assumptions 
are made: 

1. All electrons have the same velocity before passing through the 
buncher. 

2. Electrons pass through buncher at equal time intervals. 
3. The velocity vi sin ojti due to the a-c voltage component Vi sin cati 

is small compared to the velocity vq due to the voltage Vq, 
4. The change in velocity of the electron in the buncher is Vi sin (di. 

All these conditions are met to a fair degree in the practical Klystron. 
The d-c component of the voltage Fo is always large in comparison to 
Fi so that Vo is always much greater than If only a small number of 
electrons strike the grid mesh of the buncher, it is evident that practically 
as many electrons leave the buncher as come to it. ’ Further, the cur¬ 
rents induced in the buncher by the electrons approaching and leaving 
it are of opposite sign. Hence the current in the external circuit of 
the buncher is quite small, and power losses in the buncher are likewise 
small. 
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The variation of current with respect to time at any particular 
distance from the buncher is represented in Fig. 17-7 by the inter¬ 
sections of the sloping lines with a horizontal line at that location. At 

Vi sin wt Vj cos ■ 

Zero Voltage ■ 

! *'0 I 
Cathode 

Si 

lOi 

Buncher Drift Space Catcher 
(Webster, courtesy of Applied Physics) 

Fig. 17*8 Calculation of electron bunching in a Klystron. 

the buncher the intersections are uniform, indicating a uniform or con¬ 
stant current. At the catcher a large number of intersections are 
grouped together, indicating a pulse of current at one part of the cycle. 

17*7 Kinematic Bunching* 

Let us now consider in some detail the qualitative relations which 
apply in the bunching of electrons by the first resonator of a Klystron. 
This treatment is approximate in that the debunching caused by space 
charge is neglected. It is also assumed that all electrons leave the 
cathode with zero velocity and proceed parallel to the axis of the struc¬ 
ture. The grids of the buncher are taken to define true equipotential 
planes perpendicular to the axis of the tube, and the loss of electrons 
by collision with the metal of the grid structure is ignored. 

The result of such an analysis may be affected by the focusing action 
of actual grid structures, by loss of electrons at the grids, and by elec¬ 
trons which stray from the beam. However, it is found that the results 
of this analysis describe the observed behavior to a good approximation. 

The diagram of Fig. 17-8 is convenient for the calculation of kinematic 
bunching. Velocities are designated by the small v with suitable sub- 

* This treatment follows closely the work of D. L. Webster, Cathode Ray Bimch- 
ing,^' J, Applied Physics^ 10, 501, 864, July, 1939. The authors are indebted to 
Dr. Webster for a very gracious personal letter in which he clarified certain details of 
the original paper. 

The word kinematic is used to signify the fact that the calculation treats the elec¬ 
trons as solid bodies, projected into the drift space with various velocities. 
Kinematics is the study of the motions of bodies. 
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scripts. Applied voltages are designated by the capital V, again with 
appropriate subscripts. To be explicit we shall assume that no alter¬ 
nating potential difference exists between the first grid, Gi, and the 
cathode. Further, no potential difference of any kind is assumed in the 
drift space between G2 and G3. The alternating voltage Vi sin o)ti is 
supplied from some external source to excite the buncher. The useful 
output is derived from the voltage cos (w<2 ““ P)- The constant 0 
is required to account for the time which electrons spend in traversing 
the drift space. The separate subscripts on the time variable help to 
simplify the mathematical procedure. 

The velocity vq with which electrons leave the first grid is defined 
by the familiar equation 

\mvl = c7o [17-1] 

where m is the mass and e the charge of the electron. Under our assump¬ 
tions that Si is small compared to the wavelength of the voltages in 
question and that the electron velocity is small compared to that of 
light we may state that the number of electrons which leave the second 
grid is uniform with respect to time and that their velocity is given by 
the relation 

V - Vo + vi sin coti [17-2] 

where the magnitude of vi is determined by a process analogous to that 
used in equation 17*1. We have: 

^m(vo + vi)^ = 6(Fo + Fi) [17*3] 

Subtracting equation 17-1 from 17*3 and neglecting the term in vj, 

mvovi = eFi [17*4] 

This equation is taken to define the velocity Vi which is the maximum 
value of the velocity contributed to the electrons by the bimcher. 

Because the acceleration in the bimcher and the deceleration in the 
catcher are essentially linearly distributed it is appropriate to compute 
the transit time as if the velocity changes were discontinuous at the 
centers of these spaces. This approximation is consistent with Fig. 17*8, 
where s is drawn from the center of the buncher to the center of the 
catcher. Accordingly we modify our previous statements slightly so 
that the velocity at the middle of the buncher space $i is given by 

V ^ Vq + vi sin [17*5] 

where vi and vq are determined by equations 17*4 and 17*1, respectively. 
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17*8 Current Relations in the Klystron 

Let us consider an electron which passes the center of the buncher 
at a time h and arrives at the center of the catcher at some later time t^. 
This time is expressed by the relation 

4 = + 
s 

Vo + sin uti 
[17-6] 

where s/ (t>o + wi sin wti) is the time required for the electron to travel 
the distance s when its velocity is »o + t»i sin wlj. If we introduce the 
approximation 

-4— 1 - a if a < 1 [17-7] 
1 + a 

we have 

S SVi 
= ti -I-2 sm coll [17-8] 

t>o fo 
<2 = <1 + 

»0 

1 

. 
1 H— sin (ail 

Vn 

Differentiating with respect to ti we have 

SDi 
—sr CO COS coti 
Vo 

[17*9] 

The current represented by the modulated beam as it reaches the 
catcher may be deduced from the continuity of the electron stream. 
If we designate to, ti, and t2 as currents at the input of the buncher, 
middle of buncher, and middle of catcher, respectively, we have 
ioOiii at all times. The continuity relation thus becomes 

ti(<i) dii = dfe [17"10] 

where the first term represents ti evaluated at h multiplied by the in¬ 
cremental time dti. The second term represents t2 evaluated at <2 

multiplied by the incremental time dfe. Replacing I'l by io, which is in¬ 
dependent of time, we have, upon substitution of equation 17-9 

^ ^ = 4(<2) {1 - ^ « cos co<i| 117-11] 

or 
io 

SViO) 
1-0“ cos cot 1 

Vo 

[17*12] 

This equation 17*11 defines the current at the catcher, as a function 
of the time electrons pass through the buncher. If is small in 
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comparison to 1 we may reintroduce the approximation of 17*7 to write 

^2(^2) ~ ^'0 H—^ if ^ ^ 1 [17*13] 

which is a sinusoidal function. 
Equation 17*12 requires careful consideration. At first glance it 

appears that the current is negative over part of each cycle for svico/vq > 1. 
Such a negative current is contrary to fact, because the direction of the 
motion of electrons through the catcher never reverses. The apparent 
discrepancy is clarified by reference to Fig. 17*7 or 17*6. It is seen that 
fast electrons are able to overtake slower ones which preceded them 
before reaching the catcher. The wave of current which results when 
12 is plotted with respect to time is thus doubly peaked in each cycle. 

The situation is further clarified by reference to equation 17*9 which 
shows that dt2/dti is also negative over part of each cycle for the condi¬ 
tions in question. A sort of folding back or overlapping process takes 
place so that electrons which left the buncher over three separate in¬ 
tervals of dti pass through the catcher in the same time interval. 

We are therefore correct in using the magnitude of current repre¬ 
sented by equation 17*12 but in taking it as always positive. If 
sviuj/vf) = 1, the current value indicated is infinite once per cycle. For 
sviw/vq > 1, the current value indicated is infinite twice during each 
cycle. In the physical tube, of course, these peaks of current are lowered 
and spread out in time by the action of space change. The peaks are 
relatively sharp and the presence of the double peak is particularly 
interesting in that it suggests efficient operation as a high order fre¬ 
quency multiplier. 

17*9 Phase Shift in the Klystron 

The Klystron differs from all conventional types of tubes in that it 
operates with an intrinsically large amount of phase shift. This phase 
shift is fundamental to the operation of the tube itself and, therefore, 
may not be removed by any ordinary correction method. For most 
purposes it is not objectionable, but a number of unusual phenomena 
result from its presence. 

The phase shift with which we are dealing is caused by a time delay 
and is most readily calculated on that basis. Electrons require an 
appreciable time to travel from the buncher to the catcher. A signal 
which is suddenly applied to the buncher is thus able to affect the 
catcher only when the electrons controlled by the signal arrive at the 
catcher. 

The time required for electrons to travel from buncher to catcher is 
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readily calculated because the voltage applied to the buncher grid is 
usually small compared to the applied direct potential. Accordingly 
the velocity with which electrons travel the drift space may be taken as 

Vo [17-14] 

from equation 17-1. In practical units (equation 16-4), 

Vo = 6.0 X 10® VFo meters/sec [17-15] 

The time required for electrons to cross the drift space is, in terms of 
1712, 

t = — = X 10~®second [17-16] 
Vo VFo ® 

where t is the time in seconds, s is the distance in meters, and Fo is 
the applied potential in volts. 

For a typical commercial Klystron, s = 0.03 m. Accordingly 

t = -4= •- X KT^ = -4= KT® second [17-17] 
VFo 6 VFo 

The time delay just calculated is readily converted to a phase shift, $, 
by means of the formula 

e [17-18] 

For a typical Klystron such as we are considering the operating fre¬ 
quency may be taken as / = 3 X 10^ and w = br X 10®. Using th(\se 
relations we write 

SOOtt 
6 = —7= radians [17*19] 

VFo 

For an operating voltage of 900 volts, a reasonable value, = 30 and 

6 = lOr radians [17-20] 

This is recognized as 5 complete cycles or 1800°. 
An additional phase shift of 90° may be explained in terms of the 

mechanism of bunching. Let us consider three electrons that pass 
through the buncher at three successive histants of time corresponding 
to minimum, zero, and maximum acceleration respectively. The elec¬ 
tron which passed through the buncher at zero alternating voltage will 
arrive at the catcher at the same instant as the decelerated electron 
which preceded it and the accelerated electron which followed it. That 
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is, the current peak at the catcher is associated with zero field in the 
buncher. Since the voltage maximum of the catcher must coincide with 
the current peak there for best operation, we conclude that a 90° phase 
shift between the two resonators must exist in addition to the phase 

shift of delay. 
When the Klystron serves as an amplifier the phase shift is relatively 

unimportant. The output signal is delayed a small fraction of a micro¬ 
second with respect to the input, but no other effect is observed. Even 
if negative feedback is to be applied the situation is not serious because 
the phase shift is largely a function of the applied direct voltage rather 
than of frequency. 

17*10 The Klystron as an Oscillator 

The Klystron oscillator is in some ways considerably more complex 
than any oscillator so far discussed. A typical circuit is shown in 
Fig. 17*9. Its operation is best analyzed in terms of the fimctionaJ 

Pia. 17-9 Circuit diagram for Klystron oscillator with plate collector terminal 
brought out. 

block diagram of Fig. 17-10, originally presented in Chapter 14. The 
amplification is provided by the electron beam as previously discussed. 
The limiter action takes place as a result of the mechanism of bunching. 
When the voltage at the buncher exceeds a certain value the current 
at the catcher forms a double rather than single peak, and the effective 
transconductance is decreased.* 

The frequency-control mechanism is complicated by the fact that 
there are two separate resonators and that they are’coupled relatively 
tightly together. The behavior is best explained in terms of low- 

* Strictly speaking, the best operation occurs when the catcher current just begins 
to show a double peak. The above statement refers to an excessive broadening of 
the peaks. 
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frequency coupled-circuit theory. It will be recalled that the trans¬ 
mission characteristic of two identical tuned circuits shows a double 

Fig. 17-10 Functional block dia^'ram of a Klystron oscillator. 

Fio. 17-11 Properties of identical coupled tuned circuits. 

hump provided that the coupling exceeds a certain value known as the 
critical value. See Fig. 17-11. Associated with this transmission 
characteristic is a curve of phase shift which is zero at three different 
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frequencies. Oscillations are readily produced at the two frequencies 
of peak transmission. The reduced transmission associated with the 
midpoint is relatively unfavorable to oscillation. 

In any oscillator it is necessary that the total phase shift around the 
loop be zero or an integral multiple of 27r at the operating frequency 
and that the voltage amplification of the entire system be unity. In the 
ordinary oscillator the phase shift of the system is relatively independent 
of applied voltages. Accordingly the conditions for oscillation are 
relatively independent of the applied voltage. The frequency of such 
an oscillator then adjusts itself until the total loop phase shift is zero. 

Ill the Klystron oscillator the total phase shift is the sum of three 
components. These are 

TT . . ] 
= “ due to inherent buncher-catcher relationship I 

$2 = —= X 10 ^ due to transit time in drift tube > 
qVVo I [17-21] 

Os — due to feed back cable 
Vc j 

where « is the operating angular velocity, s is the drift distance, I is 
the effective length of the feedback cable, Fq is the applied direct voltage, 
and Vc is the velocity of transmission of the feedback cable. Because 
only one of these terms involves the applied voltage, it is to be expected 
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Fig. 17*12 Oscillation characteristic of a Klystron showing critical operating 

potentials. 

that only certain values of this voltage will produce oscillation. Such is 
actually the case, and it is usually possible to identify two distinct sets 
of these values. One set of voltages reduces the total net phase shift 
of the system to a multiple of 2t for the frequency/i of Fig. 17*11; the 
second set reduces the phase shift to a multiple of 2ir for the frequency /2. 

A typical plot of oscillation output vs, applied voltage is shown in 
Fig. 17*12. The oscillations are in general somewhat more powerful 
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as the applied voltage is raised, and the voltage increments between 
successive points of oscillation are increased. 

The above relationships may be put into numerical form. The total 
phase shift must equal 2mr where n is an integer.* Accordingly we 
write 

or 

cos 

6>/Fo 
X KT® = 2n7r - ^ 

Iw 

Vc 

Dividing by 2ir we have 

fs 
eVF, 

= X i(r® = 

[17-23] 

[17-24] 

Fig. 17* 13 Critical voltages for oscillation of a Klystron. 

If the left member of the equation is evaluated for the various voltages 
at which oscillation occurs and if these values are plotted against a 
suitable series of integers, a straight line results. In this plot the 
larger values of voltage are associated with the smaller integers. That 
two such lines are often observed is evidence that oscillation occurs at 
two separate frequencies. Such a plot is shown in Fig. 17*13. It is not 

* An ambiguity of v radians may easily arise in this work. In order to avoid such 
an error it is necessary to know the orientation of the coupling loops within the reso¬ 
nators so as to relate the field across buncher and catcher grids to the current flow in 
the feedback cable. Because the effective length of the feedback cable is seldom 
known exactly, the error is not of great importance. 
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always possible to make Fq large enough to obtain the point n « 1. 

The intercept on the horizontal axis is the value Q + ^ • Accord¬ 

ingly a means is at hand for evaluating the total phase shift of the 
circuit which couples the two resonators. 

17-11 The Cavity Resonator 

We have now shown how the process of velocity modulation takes 
place and how the electrons gather themselves into an intensity-modu¬ 
lated wave of bunches. It remains to show how the output resonator or 
catcher derives power from the rhythmic passage of these bunches of 
electrons. From our previous work it is clear that the passage of these 
clumps of electrons across the space between the two grids is equivalent 
to the passage of a succession of pulses of electric current. It is neces¬ 
sary only that a potential difference exist across the grids in such a time 
phase as to oppose the passage of these electrons in order to derive a 
power output. Such a voltage will automatically result if the second 
resonator is timed to the frequency of the input signal. 

The situation is remarkably similar to that existing in a class C 
amplifier at lower frequencies. The grid produces a current in the 
plate-cathode circuit that flows in periodic short pulses. These pulses 
act upon the tuned tank circuit to build up a large voltage which opposes 
the flow of current and so produces the useful power output. 

It iff apparent that the flexibility of the Klystron is seriously limited 
by the fact that cavity resonators are permanently attached to the 
grids and thus form an integral part of the tube itself. By their very 
nature these resonators are adjustable over only a narrow frequency 
range, and accordingly the entire tube is limited to this particular 
narrow, band for which the resonators are designed. Ordinary triodes 
and pentodes, on the other hand, are not so limited and therefore 
operate over a wide ratio of frequencies as controlled by the external 
oscillatory circuits or resonators which are attached. 

A pair of grids suitable for producing a velocity-modulated beam in a 
Kl3rstron have an area in the order of 1 sq cm and a spacing of approxi¬ 
mately 1 mm. The net capacitance of such a pair is in the order of 
l/ild (KT^® farad). If the wavelength to be produced is approxi¬ 
mately 9 cm the frequency is 3.3 X 10^ cycles per second and the natural 
angular velocity is 2 X Using the basic relation 
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we have 

4 X 102° ^ 

or 

L = iX 10“* = 0.0025 Mh [17-27] 

It is immediately evident that such a low value of inductance is not 
readily achieved and that the simultaneous achievement of a liigh Q 
is not possible by ordinary methods. It is rather illluminating to see 
how one form of cavity resonator results as a logical extension of a low- 
frequency oscillatory circuit. This process is illustrated in Fig. 17-14. 

Fig. 17-14 Development of toroidal cavity resonator from parallel-plate condenser 
and single-loop coil. 

The simple circuit of Fig. 17-14a is well known as the Hertzian oscilla¬ 
tor and is readily recognized as a lumped capacitance associated with a 
single-turn inductor. At frequencies up to several hundreds of mega¬ 
cycles such a resonator is quite practical. At higher frequencies, how¬ 
ever, the coil is necessarily small and the Q is degraded by radiation loss. 
The arrangement of Fig. 17* 146 is capable of operation at somewhat 
higher frequencies because the two coils are essentially in parallel and 
the effective inductance is halved. Also radiation loss is reduced 
because each coil tends to cancel the field of the other. 

In Fig. 17-14c two more loops of wire are added with an additional 
improvement in Q and reduction of inductance. The limit which is 
approached as more and more loops of wire are added is the cavity 
resonator in the form described by the Varians in their original paper. 
In such a resonator the electric current may still be thought of as 
flowing along the direction of the wires of the original structure. The 
magnetic field produced is confined entirely within the resonator, and 
accordingly no radiation loss exists. Typical field distributions are 
shown in Fig. 17*16. The Q of such systems is therefore limited only 
by the conductivity of the metal and is readily made quite high. The 
Q of a resonator without external loading is in the order of 10,000, and 
the external load is typically adjusted to such a value as to reduce this 
to about 1000. 
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The conclusion to be drawn from the foregoing is that the use of 
the cavity resonator is necessary in order to achieve a satisfactory tuned 
circuit at the desired frequency. Moreover, the frequency range over 
which any particular Klystron is operative depends to some extent 
upon the spacing between the two pairs of grids. If the frequency is 

Fia. 17-16 Sections of a form of cavity resonator showing electric and magnetic lines. 

relatively low the process of conversion from velocity modulation to 
intensity modulation requires a length that is excessive. Finally, the 
use of the cavity resonator is advantageous in that the high values of Q 
serve to give good frequency stability when the unit is used as an oscil¬ 
lator. 

The resonators shown in Fig. 17*5 differ in form from those just shown, 
and the effective Q is probably reduced by this alteration. The mechan¬ 
ical structure, however, is improved thereby, and the modification of 
the electrical performance is not serious. Evidently the basic nature 
of the resonance as illustrated in Fig. 17*15 is not changed. 
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17-12 Design and Applications of the Klystron 

Since the Klystron is probably the most flexible and the most im- 
portant of the velocity-modulated tubes, it is well to consider its prac¬ 
tical operation in more detail. In particular there is no other device 
available at the present time which successfully replaces the Klystron 
as an amplifier of weak signals at hyper frequencies. Let us examine 
this operation with a consideration of the design features involved, f 

The past discussion dealt primarily with electron beams in which the 
velocity modulation was relatively large. Such beams upon drifting 
only a short distance are converted into beams which are fully intensity 
modulated. This condition corresponds to maximum power output 
and is desirable in the oscillator or power amplifier. 

In the low-power amplifier a very small signal is applied to the grids 
of the buncher and relatively small velocity modulation results. For 
any moderate length of drift tube such a condition results in a beam 
having relatively small, nearly sinusoidal, intensity modulation. As the 
degree of velocity modulation is increased the corresponding intensity 
modulation becomes less sinusoidal and of greater amplitude. This 
deviation from a sinusoidal current wave is of great interest since it 
leads to the possibility of frequency multiplication or of certain forms of 
modulation. It may be shown that the Klystron as a frequency doubler 
suffers somewhat less severe drawbacks than the ordinary class C 
triode doubler at lower frequency. When the Klystron is operating 
under ordinary conditions as an amplifier or oscillator, the buncher 
and catcher rhumbatrons are tuned to the same frequency. In fre¬ 
quency multiplier applications, however, the catcher is tuned to some 
harmonic of the buncher frequency. 

A rigorous mathematical treatment of the action of the Klystron is 
very difficult since the action becomes non-linear at relatively small 
signal strengths. Also space charge and a variety of other effects 
greatly complicate the problem. Space charge is particularly im¬ 
portant in two ways. It tends to spread any form of electron beam 
because each electron repels those beside it. This action causes elec¬ 
trons to deviate from the main path and to be lost on the inner surface 
of the drift space. The use of a longitudinal uniform magnetic field 
causes the electrons to move in helical paths and renders this effect 
unimportant. 

Electrons also exert repulsive forces upon those electrons which 
precede and follow them in the beam. This action cancels to zero in a 
uniform beam and so tends to reduce an intensity-modulated beam 
into a uniform one. In a drift tube, therefore, the tendency of a small 
velocity modulation to produce an intensity-modulated beam is opposed 
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by the action of space charge. Hahn* treats this problem in great 
detail, and his work is recommended to the serious student of velocity- 
modulated devices. 

Two major limitations on the performance of these units are set by 
the effects of space charge. The intensity modulation produced by a 
given small signal may not be indefinitely increased by increasing the 
length of the drift tube since loss by space charge presently exceeds 
the gain by drift. The current density in the electron beams may not 
be increased above a certain definite value so that a specific maximum 
power output is obtainable with a structure of given size. 

In the Klystron tubes at present commercially available the catcher 
and buncher Rhumbatrons are made slightly adjustable by corrugating 
their side walls. Adjustment screws are provided to expand or con¬ 
tract these walls, thus changing the volume and shape of the cavities. 
The Rhumbatrons are thus exposed and subject to adjustment while 
operating, and since they are at a high positive potential with respect 
to the cathode it is customary to ground the positive terminal of the 
voltage supply. If good frequency stability is desired it is necessary 
to regulate both the plate and filament voltages. The grid bias may be 
obtained from a voltage dropping resistor connected across the plate 
voltage supply when the operating plate voltages are under 1000 volts. 
At higher operating voltages it is better to employ a separate source. 

Before a Klystron oscillator can be set in operation it is necessary 
to tune both buncher and catcher to the same frequency. In view of 
the high selectivity of these elements, this may be quite difficult to do, 
because the correct operating voltage is not known until the system is 
in oscillation. The problem may be greatly simplified by inserting an 
alternating voltage in series with the direct voltage plate supply. The 
amplitude of this voltage should be sufficient to insure that the range 
of variation of the pulsations covers one of the operating potentials. 
See Fig. 17-12. 

17*13 The Reflex Klystron Oscillator 

The reflex Klystron oscillator shown in Fig. 17-16 employs a single 
Rhumbatron which performs the functions of both buncher and catcher. 
The electrons emerging from the buncher are turned back into the 
buncher by the plate which is held at a negative potential. When the 
system is properly adjusted so that the electrons returning to the cavity 

♦ W. C. Hahn, ** Small Signal Theoxy of Velocity-Modulated Electron Beams,*' 
Oen, Eke, Rev,, 42, 268, 1939; “ Wave Energy and Transconductance of Velocity 
Modulated Beams," Oen, Elec, Rev,, 42, 497,1939. 
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resonator deliver their energy to it in the correct phase, oscillations are 
sustained. In many respects the reflex Klystron is similar to the posi¬ 
tive grid oscillators discussed in Chapter 12. 

17*14 The Inductive Output Amplifier* 

We shall now describe another tube which resembles the Klystron in 
some respects, but in other respects is quite different. It appears to 
promise considerable commercial importance in the band of frequencies 
between 100 and 1000 megacycles. It is not a velocity-modulated 
tube in the same sense as the Klystron because the cathode current is 
controlled directly by a grid of the ordinary type. An electron beam 
is used, however, and the output is derived from a cavity resonator in a 
manner very similar to that in the Klystron. Because of the relatively 
long path used it has been found necessary to provide a certain amount 
of magnetic focusing to prevent undue spreading of the electron beam. 

Figure 17*17 shows the basic elements of the system, and Fig. 17*18 
illustrates the additional features embodied in the practical tube. The 
number of electrons which leave the cathode is controlled by the grid. 
After leaving the grid the electrons are formed into a beam and acceler¬ 
ated by the high voltage applied to the electrodes c and d. This high- 
velocity beam which is intensity modulated by the control grid moves 

♦ A. V. Haeff and L. S. Neygaard, “ A Wide-Band Inductive Output Amplifier,'* 
Proc. IRE, 28, 126, March, 1940; A. V. Haeff, ** An UltrarHigh-Frequency Power 
Amplifier of Novel Design," Electronics, 12, 30, March, 1939. 
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past the aperture or slot in the output resonator. This resonator differs 
somewhat in form from that of the Klystron and in particular lacks the 
capacitance formed by the parallel-grid structure. Accordingly, it has 
a Idgher effective L/C ratio and therefore a higher impedance than that 
of the Klystron resonator. The mechanism of excitation is the same in 

Tank Focusing 
CircuiV^KCoil 

Control 
Grid 

Cathode! 

Collector 
jL^ 

illi ;ll 

To Load 

Fig. 17*17 Essential elements 
of the inductive output tube. 

Fig. 17*18 Experimental form 
of the inductive output tube. 

both. The potential difference existing across the gap creates a field 
which retards the electrons, thus absorbing power from them. Electrons 
which pass through the resonator’ structure are somewhat decelerated 
before being captured by the final anode or collector. Thus the plate 
dissipation is reduced and the overall efiSciency is improved. 

Fig. 17-19 Control grid and cathode structure of the inductive output tube. 

Figure 17-19 shows the arrangement of cathode, grid, and accelerating 
electrodes with equipotential lines expressed in per cent of the potential 
applied. The control grid is of relatively fine mesh and is placed very 
close to the cathode so that a large value of transconductance is ob- 
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tained. The high value of the accelerating field and the email spacings 
result in a very short transit time and therefore reduce the effective 
input conductance to a reasonable value. Figure 17-20 shows the com¬ 
mercial model of this tube. 

It is appropriate to investigate the exact source of the output power 
in this tube, for the result is not obvious. Electrons are emitted from 

{Courtesy of RCA Radwtron Company) 

Fig. 17-20 Commercial form of the mductive output tube. 

the cathode in bunches under tiie action of the control grid. These 
bunches are accelerated to a high velocity by the action of the accelerat¬ 
ing electrodes, but a negligible number reach these electrodes. The 
electrons are decelerated by the relatively high voltage avisting across 
the gap of the resonator and are finally collected by the plate. If the 
accelerating voltage is designated Va and the voltage across the output 
resonator is Vo, then electrons which leave the resonator have a velocity 
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corresponding to an applied voltage of Va — Fq. They are, however, 
still in a region of potential equal to Va, and therefore a plate or collector 
voltage at least Fo above the cathode voltage is necessary if the electrons 
are to be captured at the plate. Thus we conclude that the output 
power is taken directly from the plate supply voltage and that a good 
conversion efficiency is at least theoretically possible. 

To Load 

Fia. 17-21 Circuit for use of the 825 inductive output tube. 

The arrangement of Fig. 17*21 using the 825 tube shown in Fig. 17*20 
gives the following experimental results: 

Accelerating potential 3000 volts 
Beam current 40 ma 
Transcouductance 6000 micromhoa 
Input capacitance 6 fifxt 
Frequency 500 me 
Effective band width 10 me 
Equivalent shunt capacitance of 

output resonator 2/xfd 
Input of power 1 watt 
Output of power 10 watts 
Efficiency 25 per cent 

Similar tubes under other conditions give larger power outputs 
and somewhat larger values of high-frequency power amphhcation. 

The low equivalent shunt capacitance of the output resonator men¬ 
tioned previously has an important practical significance. In the sec¬ 
tion on video amplifiers it was shown that a low shunting capacitance 
is necessary if high amplification is to be> obtained over wide bands of 
frequencies. This proposition is a perfectly general one, equally appli¬ 
cable here. At these frequencies, however, it is seldom practical to 
use the relatively elaborate compensating networks discussed under 
video amplifiers. Accordingly wide-band amplification is achieved most 
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directly by reduction of the capacitance. In the present instance a 
band width of 10 megacycles was achieved by reduction of the eiBfective 
load impedance. An important property of this particular tube is that 
the efficiency is not seriously affected by such an adjustment of the 
impedance. 

17*15 Associated Tubes 

A variety of tubes more or less similar to the Klystron are described by 
Hahn and Metcalf.* They use grid structures such as are shown in 
Figs. 17*1 and 17-2 and utilize drift and retarding field methods of con¬ 
verting velocity modulation into intensity modulation. These tubes 
are used as oscillators, amplifiers, and modulators at frequencies from 
60 to 6000 megacycles. Certain of the tubes give large power outputs, 
good efficiency, and excellent stability. 

One of the first to publish on the subject of velocity modulation tubes 
was Heil.t His arrangement is not greatly dissimilar to the Klystron. 
Two pairs of grids are used and a drift space between the two transforms 
velocity modulation into intensity modulation. Only one resonator 
rather than two is used, however, and the device serves only as an 
oscillator and not as an amplifier or modulator. 

17*16 Summary 

The velocity-modulated tube, in common with the positive-grid and 
magnetron oscillators, depends for its operation upon electron transit 
time. The positive-grid tube serves only as an oscillator, no practical 
arrangements for producing amplification being known. As an oscil¬ 
lator the efficiency is low because the transit time is affected by the 
existence of an output voltage. The undesired phenomenon of phase 
selection sets in to limit the output and efficiency. Moreover, the 
output frequency depends upon the applied voltage and the tube struc- 
tiure as well as upon the tuning of the resonant circuit. 

The magnetron as a transit time oscillator has two major advantages 
over the positive-grid generator. The direct and important loss of 
electrons to the grid mesh does not exist, and the process of phase selec¬ 
tion is absent. Accordingly, the magnetron is ideally capable of 100 
per cent efficiency. Although this ideal is not closely approached in 
practice, the efficiencies of commercial magnetrons are high in com¬ 
parison to the efficiencies of positive-grid tubes. In the magnetron the 

* W. C. Hahn and G. F. Metcalf, ‘‘ Velocity Modulated Tubes,” Proc, IRE, 27, 
106, February, 1939. 

to. Heil and H. Arsenjewa>Heil, “A New Method of Producing Short Un¬ 
damped Waves of Great Intensity,” Z. Physik, 95, 762, 1936. 
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frequency depends primarily upon the tube structure and the magnetic 
field and only secondarily upon the tuning of the resonant circuit. 
Relatively good frequency stability is achieved in practice, particularly 
if permanent magnets are used to produce the required field. N<j 
practical arrangement for the amplification of h3T)er frequencies by 
means of the magnetron has yet been disclosed. 

Thus the Klystron, in common with similar velocity-modulated 
tubes, has the distinction of being the only known device for the ampli¬ 
fication of hyper frequencies. This success may be attributed to the 
fact that transit time, although essential to the operation of the tube, 
does not contribute any critical time interval equivalent to a resonance. 
The two cavity resonators function in a manner which is essentially 
independent of the electron beam. Because of this independence of the 
resonators and the electron stream it is possible to excite one resonator 
with a small signal and to abstract a large signal from the second 
resonator. 

In many respects the Klystron is simpler than other widely accepted 
types of tubes. No magnetic field is required, and no extremely high 
voltage is required. Relatively strong oscillations are produced with 
an applied potential of only a few hundred volts. With improvements 
comparable to those which have been made in other tubes there seems 
no reason to doubt that maximum ratings below 1000 volts will soon 
be available. 

At the present time the most severe drawback of the Klystron is the 
high cost of the tube and the associated tuner. Because the tube itself 
is not essentially more complex than other available t3q)es it seems 
probable that mass-production methods will reduce the cost to a value 
well within the reach of all. The tuner design now employed requires 
machine work of high precision. It is thus intrinsically expensive. 
Past experience, a relatively trustworthy guide, indicates that modified 
designs will be produced which accomplish the same results less expen¬ 

sively. 
In the Klystron we find a device capable of oscillation, amplification, 

modulation, and detection. Accordingly the situation at hyper fre¬ 
quencies now is closely comparable to that which existed at lower fre¬ 
quencies some twenty-five years ago when the triode was relatively new. 
The developments in communication, navigation, aviation, and industry 
which will result are beyond the power of any prophet to predict. We 
may be sure, however, that the steadily accelerating advance in the 
knowledge and use of electronic devices will not halt and that hyper 
frequencies will play a leading part in this advance. 



PROBLEMS 609 

PROBLEMS 

17*1 A certain Klystron operates with an accelerating voltage of 2000. The 
effective pacing of the grids of the resonator is 2 mm, and the operating frequency is 
2600 megacycles. Calculate the velocity with which electrons reach the grid, the 
lansit time between the grids in seconds, and the transit angle in degrees. 

17*2 The grids of a Klystron resonator have an effective spacing of 2 mm and 
an effective area of 3 cm^. Calculate the capacitance due to this portion of the 
resonator. What effective inductance must be contributed by the rest of the reso¬ 
nator if the natural frequency is 2600 megacycles? 

17*3 The resonator of problem 17*2 has the annular shape shown in Fig. 17-15. 
Assuming that the grids are essentially equipotential surfaces and that the maximum 
voltage across the grids is 100 volts, calculate the peak current in the equivalent 
parallel resonant circuit. Calculate the total magnetic flux which must exist within 
the annular portion of the resonator. 

17*4 An annular cavity resonator such as that shown in Fig. 17-15 operates with 
a peak voltage of 250 across the grids. The radius of the circular sections viewed 
normally in Fig. 17-15a is 1 cm. A loop of wire is inserted to couple the resonator to 
a coaxial line. If the output voltage is to be approximately 5 volts, calculate the 
radius of the coupling loop. 

17*5 A Klystron is to be used as a frequency doubling amplifier. Discuss the 
tuning of the resonators, current and voltage wave shapes, and magnitudes of voltage 
for high-efl5ciency operation. 

17*6 Consider the possibility of using a Klystron oscillator in which oscillation 
occurs at one frequency but the major power output is taken at some harmonic of this 
frequency. What special adjustments are necessary? Is this likely to be a desirable 
kind of operation? 

17*7 In a normal Klystron the electrons which approach the catcher all have 
essentially the same velocity as defined by the accelerating voltage. If the bunching 
action were perfect, how large an eflScieney could be produced, and what voltage 
swing across the catcher would be necessary? Compare with a class C amplifier. 

17*8 In the so-called reflex Klystron the bunching and catching functions are 
performed by the same resonator. Discuss phase relations and potentials necessary 
for high efficiency. May the efficiency of this device be made as high as that of the 
normal Klystron? 

17*9 A Klystron oscillator may, to a considerable extent, be amplitude-modu¬ 
lated by supplying the signal voltage in series with the grid which controls the average 
beam current. Consider the operation in terms of efficiency and linearity of mod¬ 
ulation. 

17*10 A Klystron oscillator may be frequency-modulated by applying the signal 
voltage in series with the accelerating voltage. The transit time is thus varied and 
the frequency must vary so as to compensate the resulting phase shift. Is a high or 
low Q desirable in the resonators for this application? Is amplitude modulation 
likely to result? 

17*11 Discuss the possibility of producing pure amplitude modulation and pure 
frequency modulation by a combination of the arrangements of problems 17*9 and 
17-10. 
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17*12 The resonators of a certain Klystron have the shape shown in Fig. 17*16. 
The operating frequency ia 2700 megacycles when the grids are separated by 2.0 mm. 
How widely must the grids be spaced for a frequency of 3000 megacycles? Refer to 
the simple analysis of Fig. 17-14. 

17*13 In the Klystron it is not even theoretically possible to achieve 100 per cent 
eflBciency. Is this statement applicable to the inductive output tube? Why? 

17*14 The Klystron is the only known device which serves as a practical amplifier 
at frequencies above 1000 megacycles. Discuss the use of a Klystron as a modulated 
amplifier. 

17*15 A Klystron is to be used as a master oscillator for an application in which 
high frequency stability is important. Discuss the construction of the tube and the 
design of associated circuits to produce this result. 

17*16 A longitudinal magnetic field is sometimes used to prevent the spreading 
of an electron beam. Sketch the motion of electrons which tend to diverge, as in¬ 
fluenced by this sort of field. 

17*17 Discuss the possibility of applying negative feedback to a Iflystron ampli¬ 
fier in order to improve the linearity and the constancy of amplification. What diflS- 
culties are likely to be serious? 

17*18 At moderate frequencies it has become common practice to combine two 
electrically distinct tubes in a common envelope. Discuss the possibility of extending 
this practice to Klystrons. 

17* IP At moderate frequencies the push-pull amplifier is often used to eliminate 
even harmonics and other undesired effects. Discuss the possibility of using two 
Klystrons in push pull. What difficulties are likely to be encountered? 

17*20 Consider the possibility of securing push-pull operation in a single Klystron 
employing special resonators and divided grids. 



APPENDIX I 

FUNDAMENTAL CONSTANTS 

Electronic charge e 

e = (1.600 zb 0.002) X 10“^® coulomb 

Electronic mass m 

m = (9.156 zb 0.018) X 10“"®^ kilogram 

Electronic charge to mass ratio ejm 

— - (1.7571 ± 0.0015) X 10^^ coulomb per kilogram 
m 

The constant eo 

eo = 8.854 X 10”^^ ^ X 10^”® farad per meter 
36ir 

The constant mo 

MO = 4ir X 10~’' 1.257 X 10""® henry per meter 

The velocity of light c 

1 
= 2.998 X 10® 3 X 10® meter per second 

Moeo 

eo 
= 1.129 X 10^^ meter per farad 

— = 7.958 X 10® meter per henry 
MO 

= 376.7 
\ eo 

.2,. 
^MO 

ohm 

1.654 X 10“® mho 
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Hq wave, 259, 296 
Hi wave, 261 
imperfectly conducting tubes, 262 
orientation of vectors of and 

wave, 296 
transmission properties, in a dielectric 

cylinder, 265 
in a perfectly conducting pipe, 243 

voltage and current relations, 252 

Decibel, table of values, 455, 456 
Debunching in velocity-modulated tubes, 

589 
Decoupling action of plate bypass con¬ 

densers, 466 
calculation of, 467 

Decoupling circuits, 493 
Derivative of Bessel function, 247, 257 
Diamagnetic material, 4 
Differential equations of transmission 

line, 322 
Dielectric constants, 2, 3 
Dielectric wave guides, 269 
Dimensional relations, table of, 56 

635 

Dimensions of electrical and magnetic 
quantities, 53 

Diode oscillations, 541 
Dipolar circles, 319 
Dipole, electric, 17 

magnetic, 17 
Direction cosines, 76 
Directivity of electromagnetic horns, 

402-418 
Discontinuity, surface of, 96 
Dispersive medium, 135 
Displacement current, 42 
Dissipationless transmission line, 334 
Distortion in amplifiers, phase, fre¬ 

quency, amplitude, 453 
Divergence, 16 
Door-knob tubes, 514 
Drift space, 584 
Dynatron oscillations in magnetron, 563 

E waves, coaxial wave guide, 274, 388 
cylindrical wave guides, boundary 

conditions, 244 
equations for, 244 
transmission modes, 243 

parallel plane wave guides, equations 
for, 129 

transmission modes, 122 
transmission properties, 139-140 

rectangular wave guides, attenuation 
of, 224 

equations for, 196 
transmission modes, 178 

E or TM waves, 64 
En waves, parallel plane wave guides, 

139, 174 
Eq waves, cylindrical wave guide, 250, 

270, 296 
El waves, cylindrical wave guide, 255 

parallel plane wave guides, 140, ?48, 
166 

Ei waves, parallel plane wave guides, 143 
Enm waves, cylindrical wave guides, 247, 

386 
spherical cavity, 389 

J^ii waves, rectangular wave guides, 198 
Ei2 waves, rectangular wave guides, 200 
Enmi resonant waves, coaxial cavity, 391 

cylindrical cavity, 391 
eEo waves, 285 
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eEn waves, 285 
oEn waves, 285 
Elder, F. R., 562 
Electric current, definition of unit, 33 
Electric intensity, defined, 5 
Electrical conductivity table, 31 
Electromagnetic field representation, 72 
Electromagnetic horn, biconical, 416 

circular, 407 
rectangular, 402 

Electromagnetic waves, general discus¬ 
sion, 71 

Electromotive force, 39 
Electron collisions in magnetron, 560 
Electron motion, in a cylindrical magne¬ 

tron, 554, 564 
in a plane-parallel magnetron, 567 

Electron theory of the electric current, 27 
Electronic oscillations in plane-parallel 

magnetron, 569 
Electrostatic flux, 11 
Electrostatic induction, 11 
Electrostatic potential, 7 
Electrostatic potential gradient, 10 
Electrostatics, 1 
Elliptic wave guides, 284 

attenuation, 288 
critical wavelengths, 285 
field configuration, 286 

Energy in the electrostatic and magneto¬ 
static field, 21 

Energy lost, in cylindrical cavity reso¬ 
nator, 384 

in rectangular cavity resonator, 374 
Energy propagated in the plane electro¬ 

magnetic wave, 73 
Energy stored, in cylindrical cavity 

resonator, 383 
in rectangular cavity resonator, 373 
in static fields, 21 

Envelope of modulated wave, 134 
Equivalence of a transmission line to a 

resonant current, 337 
Equivalent plate circuit, for high fre¬ 

quencies, 445 
theorem of vacuum tube, 425 

Euler’s constant, 237 
Excitation ratio of oscillator, 507 
Exponential form in wave guide prob¬ 

lems, 121 

Faraday’s law, 39 
deductions from, 40 

Fay, C. E., 543 
Ferris, W. R., 443 
Ferromagnetic material, 4 
Field, electrostatic, 5 

magnetostatic, 5 
Field configuration in wave guides, 

Field distribution 
Field distribution, cavity resonators, 

cylindrical, Enmi or TM^mi 
wave, 391 

Hnmi or TEnmi wave, 390 
coaxial, Enmi or TMnmi wave, 391 

Hnmi or JPEnmi wave, ?90 
rectangular, 368, 375 

Foil or TEoii wave, 370 
Fo23 or TEo2z wave, 371 

special “ doughnut,” 600 
spherical, 392 

coaxial wave guide, 280 
cylindrical wave guide, Eqi or TMoi 

(Eo) wave, 253, 296, 313 
Ell or TMii (El) wave, 255, 313 
Hoi or TEoi (Ho) wave, 261, 296, 

313 
Hii or TEii (Hi) wave, 261, 313 

elliptic wave guide, 286 
parallel plane wave guide, Ei or TMi 

waves, 142, 167 
E2 or TM2 waves, 144 
Hi or TEi waves, 146, 170 
H2 or TE2 waves, 147 
TEM mode, 131, 163 

rectangular wave guide, Eu or TMn 
wave, 200 

Ei2 or TM12 wave, 200 
Foi or TEoi wave, 192, 217 
Fo2 or TEo2 wave, 194 
Hii or TEii wave, 195 
Fi2 or TE12 wave, 196 

representation, 72 
transmission line, 320 

Figure of merit of video amplifier tube, 
488 

Filter, in wave guide, 301 
low-pass action of guide, 306 

Flux, 11 
Four-terminal network, 341 

for video interstage, 483 
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Frequencies and wavelengths of Bark- 
hausen oscillators, 529 

Frequency limits of triodes, 508 
Frequency of wave, 69 
Frequency stability of oscillator, 504 
FresnePs equations, 107, 110 
Fresnel's rhomb, 116 
Functional block diagram of oscillator, 

502 

Gain, 456 
Gain area, 488 
GaUent, L. C., 422 
Gauss's law, 13 
Gauss's theorem, 85 
Gill, E. W. B., 521 
Gill-Morrell oscillations, 521 
Giorgi units, 57 
Groszkowski, J,, 503, 505 
Group velocity, 133 
Guided wave, 71, 113 

H - iy 91 
H or TE waves, 63 
11 waves, coaxial wave guides, 275 

cylindrical wave guides, boundary 
conditions, 255 

equations for, 244 
transmission modes, 243 

parallel plane wave guides, equations 
for, 129 

transmission modes, 122 
transmission properties, 127 

rectangular wave guides, attenuation 
of, 224 

boundary conditions, 184 
transmission characteristics, 186 
transmission modes, 178 

Hn waves, parallel plane wave guides, 
145, 173 

Ho waves, cylindrical wave guide, 259, 
296 

Hi waves, cylindrical wave guide, 261 
parallel plane wave guides, 147, 169 

H2 waves, parallel plane wave guides, 148 
Hoi waves, rectangular wave guides, 190, 

202, 207, 215 
Ho2 waves, rectangular wave guides, 193 
Hii waves, rectangular wave guides, 195 
Hi2 waves, rectangular wave guides, 195 

iyiom waves, rectangular wave guides, 224, 
367 

Hnm waves, cylindrical wave guides, 258, 
386 

rectangular wave guides, 185 
attenuation of, 224 
transmission characteristics, 186 

spherical cavity, 389 
Hnmi resonant waves, coaxial cavity, 390 

cylindrical cavity, 390 
Hoii resonant waves, cylindrical cavity, 

380 
Homi resonant waves, rectangular cav¬ 

ity, 367 
eHn wave, 285 
eHo wave, 285 
oHn wave, 285 
Habann, E., 562 
Hahn, W. C., 585, 607 
Hahn and Metc^alf, velocity-modulated 

tube, 607 
Hamburger, F. L., 547 
Hand probe for determining field orienta¬ 

tions, 293 
Hankel function, 236, 240 
Hansen, W. W., 389, 395 
Harvey, A. F., 557 
Heaviside, 0., 319 
Heaviside-Lorentz units, 57 
Heil, O., 607 
Hershberger, W. D., 548 
Hertz, H., 300 
High-frequency performance of resist¬ 

ance-coupled stage, 461 
High-pass filter action of wave guide, 130 
Hohlraum, 364 
Hollow pipes (wave guides), cylindrical, 

228-268 
elliptical, 284-290 
rectangular, 177-225 

Homogeneous medium, 61, 230, 273 
Horn, electromagnetic, biconical, 407 

circular, 407-412 
rectangular, 402-407 

HuU, A. W., 552 

Image impedance of transmission line, 
326 

Impedance, characteristic, see Charac¬ 
teristic impedance 
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Impedance inversion with transmission 
line, 350 

Impedance of transmission line as a res¬ 
onator, 349 

Incidence, angle of, 96 
Index of refraction, 104 
Inductance, equivalent, of cavity reso¬ 

nator, 396 
of resonant transmission line, 337 

unit length of coaxial line, 282 
Induction, electric and magnetic, 11 
Inductive output amplifier, 605 
Infinite line, impedance of, 325 

with lumped parameters, 322 
Input capacitance of vacuum tube, 478 
Integral, line, 7 

surface, 12 
volume, 59 

Intensity, electric, 5 
magnetic, 5 

Interelectrode capacitances, effect upon 
vacuum tube, 428 

Intermediate-frequency amplifier, 488 
Internal reflection, total, 113 
Interstage networks, four-terminal, 483 
Invariance of stage gain to effect of 

cathode condenser, 464 
Iris, 305 
Isotropic medium, 61,230, 273 
Iterative impedance of transmission 

line, 326 

/o(p), 236, 237 
Jp(p), 239, 240 
Up\ 392 
/n(p), 392 

Kelvin, L., 319 
Kilgore, G. R., 552, 564, 575 
Kinematic bunching in Klystron, 589 
King, A. P., 407 
King, R., 360 
Kirchhoff’s first law, 30 
Klystron, 585 

as amplifier, 601 
as oscillator, 594 

Klystron oscillator, initial adjustment, 
602 

Kurz, K., 521 

Laplace’s equation, 14 
Lead inductance, effect upon vacuum 

tube, 429 
Lewis, F. D., 403 
Limiter action in oscillator, 503 
Linder, E. G., 575 
Line, constants, 320 

differential equations for, 322 
dissipationless, 334 
integral, 205, 230 
of finite length, 329 
of force, 71 
open-circuited, 330 
short-circuited, 330 

Llewellyn, F. B., 444, 541 
Lobes, secondary in radiation pattern, 

406 
Longitudinal waves, 63 
Loop for coupling to cavity resonator, 

393 
Low-frequency compensation in video 

amplifier, 474 
Low-frequency performance of resist¬ 

ance-coupled stage, 462 

Magnetic field, for magnetron, 553 
used with electron beam, 603 

Magnetic induction, 11 
Magnetic intensity, defined, 5 
Magnetic shell, 32 
Magnetization Af, 19 
Magnetomotive force, 34 
Magnetostatic flux, 11 

induction, 11 
potential, 7 
potential gradient, 10 

Magnetron, 552-576 
cut-off, 557 
dynatron oscillations, 563 
electron motion with steady fields, 553 
electron paths, 565, 666 
electronic oscillations, in plane parallel 

magnetron, 569 
of higher order, 573 

feedback oscillations, 562 
magnetic field for, 552 
mechanical diss3rmmetry, 558 
modes of oscillation, 561 
motion of electron in plane parallel 

magnetron, 567 
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Magnetroni practical magnetron oscillar 
tors, 571 

static characteristics, 564 
tilt of magnetic field, 558 
voltage drop along filament, 558 

Mason, W. P., 358 
Mathieu functions, 284 
Maxwell, J. C., 1, 445 
Maxwell’s displacement current, 42 
Maxwell’s equations, differential form, 

44, 60 
general, 44 
integral form, 59 
quasi-steady state, 48 
static state, 46 
steady state, 47 

McPetrie, J. S., 541 
Meacham, L. A., 501 
Mead, S. P., 255, 267 
Metcalf, G. F., 585, 607 
Midband performance of resistance- 

coupled stage, 460 
Mieher, W. W., 389 
Mks units, 56 
Modified shunt compensation in video 

amplifier, 481 
Morrell, J. H,, 521 
Mu, definition of the constant m, 4 
Multiple electromagnetic horn, 416 
Multiplex transmission in hollow wave 

guides, 315 

Nabla, 11 
Negative feedback in one stage ampli¬ 

fier, 463 
Negative grid oscillator, 501-519 

basic theory, 501 
effect of tube geometry, 509 
frequency limits, 508 
power oscillator, 506 
practical circuits, 513 
practical construction, 515 
requirements, 504 

Negative resistance, 630 
Neper, 455 
Newton, 2 
Noise, thermal, 447 

tube, 446 
Non-steady state, defined, 30 
Normal form, equation of a plane, 76 

Normal incidence, reflection at, 105 
North, D. O., 444 

Oblique incidence, reflection at, 107 
Ohm's law. 30 
Order of electronic oscillators in magne> 

tron, 573 
Oscillator, Barkhausen, 521 

basic theory, 501 
ideal, 504 
Klystron, 594 
magnetron, 553; see also Magnetron 
negative grid, 501; see also Negative 

grid oscillator 
positive grid, 521; see also Positive grid 

oscillator 
power, 506 
requirements, 504 
spiral grid, 542 

Parabolic reflector, 418 
Parallel plane wave guides, 119 

attenuation constants, 174 
attenuation of Hn waves, 173 
attenuation of En waves, 174 
attenuation of TEn waves, 173 
attenuation of TMn waves, 174 
boundary conditions, 119 
conditions for wave propagation, 128 
El waves, 140 

imperfect conductivity, 166 
El waves, 143 
En^fSiyeSf 139 
Hq waves, 145 
III waves, imperfect conductivity, 169 
Hn waves, 145 
principal transmission mode, 130 
resolution of Ei wave into elementary 

waves, 148 
TEo transmission mode, 145 
TEi mode, imperfect conductivity, 169 
TEn transmission mode, 145 
TEM mode, imperfect conductivity, 

162 
TEM transmission mode, 130 
TMi mode, imperfect conductivity. 

166 
TMi transmission mode, 140 
TMi transmission mode, 143 
TMn transmission mode, 139 
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Parallel plane wave guides, transmission 
modes, E and H waves, 122 

transmission properties, of E waves, 
124 

of H waves, 127 
velocities of propagation, 132 
voltage, current, and power relation 

in the TEM mode, 137 
Parallel wire transmission lines, 346 
Paramagnetic material, 4 
Period of a wave, 69 
Permeability, table of, 4 
Phase constant (/i), 128 

coaxial cable, 278, 279 
cylindrical wave guide, 232 

Enm or TMnm wave, 246, 249 
or TMai wave (-&o wave), 250, 
251, 252 

Hnm or TEnm wave, 257, 259 
Hqi or TE(ii wave (^o wave), 260 

in a metal, 160 
parallel plane wave guide, 128, 129 

En or TMn wave, 139 
El or TMi wave, 140 
J^2 or TM2 wave, 144 
Hn or TEn wave, 146, 139 
Hi or TEi wave, 140, 146 
H2 or TE2 wave, 144, 148 
TEM wave, 130 

rectangular wave guide, definition, 
178 

Enm or TMnm waves, 186,190 
^11 or TMii waves, 199 
Hnm or TEnm waves, 186, 190 
Hoi or TEoi waves, 191 
15102 or TE02 waves, 195 

transmission line, 326, 327, 328 
Phase distortion, effect upon square 

wave, 470 
Phase relations, in wave in free space, 

71 
in wave in solid metal, 161 

Phase selection, in magnetron oscillator, 
570 

in positive grid oscillator, 534 
Phase shift in Klystron, 592 
Phase velocity, 133 

in a cylindrical wave guide, 246, 249, 
250, 251, 259, 260 

in an elliptic wave guide, 287 

Phase velocity, in a metal, 161 
in a parallel plane wave guide, 140, 

141, 142, 144, 146, 155 
in a rectangular wave guide, 189, 190, 

191, 195, 199 
Pinch pipe, 306 
Piston, 307 
Plane wave equation, 66 
Plate resistance of tube, defined, 427 
Poisson^s equation, 14 
Polarization P, 19 
Polarization of a wave, 101 

by reflection, 112 
circular, 102 
elliptic, 101 
plane, 101 

Positive grid oscillator, 521-549 
backing plate tube, 544 
diode oscillations, 541 
divided plate oscillator, 548 
electron transit time, in a cylindrical 

triode, 525 
in a plane triode, 522 

frequency and wavelength of oscilla¬ 
tion, 528 

mechanical analogy, 533 
multigrid tubes, 546 
oscillations, in the grid circuit, 531 

in the plate-cathode circuit, 636 
in the plate circuit or cathode cir¬ 

cuit, 539 
phase selection, 534 
requirements for sustained oscilla¬ 

tion, 529 
spiral grid tube, 542 

Potential, electrostatic, 7 
magnetostatic, 7 

Potential gradient, electrostatic, 10 
magnetostatic, 10 

Power amplifiers for high frequencies, 494 
Power relations, in plane parallel wave 

guide, 137 
in rectangular wave guide, 204 

Poynting vector, 83 
Precursor, 136 
Principal mode of transmission, 272 

in coaxial lines, 278 
in parallel planes, 130 

Probe for coupling to cavity resonator,^ 
393 



INDEX 641 

Propagation constant (y), 124, 128 
coaxial cable, 277, 278, 282 
cylindrical wave guide,or TM waves, 

232, 245, 246 
H or TE waves, 257 

in a metal, 159, 160, 162 
parallel plane wave guides, 128 
rectangular wave guide, 178, 184, 186 
transmission line, 323, 326, 372 

Propagation of a wave in solid metal, 158 
table of, 161 

Pupin, M., 319 

Energy lost 
of cylindrical cavity resonator, 385 
of parallel resonant circuit, 491 
of rectangular cavity resonator, 377 
of transmission line as a resonator, 347 

Radiation, from horns and reflectors, 
400-423 

application of parabolic reflector, 
422 

biconical horn, 416 
circular horns, 407 
multiple horns, 414 
parabolic reflector, 418 
radiation from tube end, 401 
rectangular horns, 402 
sununary of single horns, 413 

from transmission lines, 358 
Rationalized system, 2 
Rationalized units, 56, 57 
Ray, 63 
Reactance-frequency chart, 457 
Receiving end of line, 325 
Ilectangular cavity resonator, 365 
Rectangular electromagnetic horn, 402 
Rectangular wave guides, 177 

attenuation-frequency characteristics 
of an Hoi wave, 222 

attenuation of higher-order E and H 
waves, 224 

boundary conditions for H waves, 184 
Ell or TMii waves, 198 
Ei2 or TM 12 waves, 200 
Hiun waves in the dielectric, 186 
Hot or r^oi waves, 190, 202 
Hq2 or TEo2 waves, 193 

Rectangular wave guides, Hn or TEn 
waves, 195 

Hi2 or TE 12 waves, 196 • 
imperfectly conducting tubes, 214 
propagation of Hoi wave in an im¬ 

perfectly conducting tube, 215 
resolution of Hoi wave into elementary 

waves, 207 
terminal devices, 201 
transmission characteristics of Hnm 

waves, 186 
transmission modes, 178 
transverse electric (TE) 11 waves, 179 
transverse magnetic (TM) E waves, 

196 
voltage, current, and power relations, 

204 
Reflection, at normal incidence, 96, 105 

at oblique incidence, 107 
on transmission line, 331 
phase shift in, 115 
regular, 96 
total internal, 103, 113 

Reflex Klystron, 602 
Refraction, index of, 104 
Resistance, 31, 32 

unit length of coaxial line, 283 
Resolution of Ei wave in parallel plane 

guide into elementary waves, 
148 

Resolution of Hoi wave in rectangular 
guide into elementaiy waves, 
207 

Resonant chamber, 307; see also Cavity 
resonator 

Resonant frequencies, of cylindrical 
cavity resonators, 387 

of rectangular cavity resonators, 371 
Resonant transmission line used in oscil¬ 

lator, 618 
Retarding-field oscillator, 621-549 
Rhumbatron, 364, 587,595, 602 
Roots of Bessel equation tabulation, 245 

Samuel, A. L., 496, 643 
Scalar quantities, 9 
Scheibe, A., 526 
Scheibe functions, 526 
Schelkunoff, S. A., 265, 267 
Sending end of line, 324 
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Separation of variables, solution by, 180 
Series peaking of video amplifier, 485 
Shell, magnetic, 32 
Shulman, C., 414 
Shunt compensation of video ampli¬ 

fier, 478 
Signal velocity, 135 
Sine law of refraction, 104 
Skin effect, 161 
Southworth, G. C., 269, 295, 313, 400 
Sowers, N. E., 496 
Space charge in Klystron, 601 
Spherical Bessel function, 392 
Spherical cavity resonator, 389 
Spiral grid (positive grid) oscillator, 

542 
Splitting capacitances of video ampli¬ 

fier, 483 
Stability of waves in circular guides, 287, 

289 
Standing wave, 99, 100 
Static state, defined, 30 
Steady state, defined, 30 
Strutt, M. J. O., 436 
Stub lines for impedance matching, 354 
Surface integral, 231 
Surge impedance of transmission line, 

326 
Sykes, R; A., 358 

Taylor^s theorem, 14 
TE waves, coaxial wave guides, 275 

cylindrical wave guides, boundary 
conditions, 255 
equations for, 244 
transmission modes, 243 

parallel plane wave guides, equations 
for, 129 

transmission modes, 122 
transmission properties, 127 

rectangular wave guides, attenuation 
of, 224 

boundary conditions, 184 
transmission characteristics, 186 
transmission modes, 178 

TEn waves, parallel plane wave guides, 
145, 173 

TEq wave, cylindrical wave guide, 259, 
296 

parallel plane wave guides, 145 

TEi waves, cylindrical wave guide, 261 
parallel plane wave guides, 147, 169 

TE2 waves, parallel plane wave guides, 
148 

TEoi waves, rectangular wave guides, 
190, 202, 207, 215 

TE02 waves, rectangular wave guides, 
193 

TEn waves, rectangular wave guides, 
195 

TE12 waves, rectangular wave guides, 
195 

TE(^ waves, rectangular wave guides, 
224, 367 

TEnm waves, cylindrical wave guides, 
258, 386 

rectangular wave guides, 185 
attenuation of, 224 
transmission characteristics, 186 

spherical cavity, 389 
TEnmi resonant waves, coaxial cavity, 

390 
cylindrical cavity, 390 

TEoUf resonant waves, cylindrical cav¬ 
ity, 380 

TEomif resonant waves, rectangular cav¬ 
ity, 367 

Telegrapher’s equation, 321 
TEM mode, coaxial cavity, 388 

coaxial wave guide, 278 
parallel plane wave guide, 130, 162 

voltage, current, and power, 137 
Temperature coefficient of inductance 

and capacitance, 505 
Terman, F. E., 350 » 
Terminal devices, for cylindrical wave 

guides, 310-313 
Termination, of transmission lines, 360 

of wave guides, 268 
Thermal noise, 447 
Thomas, H. A., 506 
Thompson, B. J., 545 
Time of electron flight calculated, 437 
TM waves, coaxial wave guide, 274, 388 

cylindrical wave, guides, boundaiy 
conditions, 244 

equations for, 244 ' 
transmission modes, 243 

parallel plane wave guides, equations 
for, 129 
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TM waves, parallel plane wave guides, 
transmission modes, 122 

transmission properties, 139-140 
rectangular wave guides, attenuation 

of, 224 
equations for, 196 
transmission modes, 178 

TMn waves, parallel plane wave guides, 
139, 174 

TMq waves, cylindrical wave guide, 250, 
270, 296 

TMi waves, cylindrical wave guide, 255 
parallel plane wave guides, 140, 148, 

166 
TM2 waves, parallel plane wave guides, 

143 
TMnm waves, cylindrical wave guides, 

247,386 
spherical cavity, 389 

T'Af 11 waves, rectangular wave guides, 198 
TM12 waves, rectangular wave guides, 200 
TMnmi resonant waves, coaxial cavity, 

391 
cylindrical cavity, 391 

Total mtemal reflection, 113 
Transconductance of tube, defined, 427 
Transducer in wave guide, 303 
Transformer, ideal, 352 
Transformer action of transmission line, 

351 
Transit time effects, in diodes, 436 

in tiiodes, 442 
Transit times in positive grid triode, 522, 

525, 526 
Transmission lines, as filters, 356 

derivation of line equations, 321 
^ dissipationless lines, 334 

equivalence of dissipationless lines 
to resonant circuits, 337 

impedance, of infinite line, 325 
of resonant lines, 349 

impedance transformation by use of 
stubs, 354 

line constants, 320 
lines of finite length, 329 
parallel wires, 319, 342, 347 
practical considerations, 341 
propagation constant, 326 
quarter wave line as impedance in¬ 

verter, 350 
radiation from transmission lines, 358 

Transmission lines, reflection, 331 
selectivity of lines as resonators, 347 
shorting bars for use with lines, 360 
solution of line equations, 323 
use of lines, as filters, 356 

as transformers, 351 
Transmission modes, coaxial wave guide, 

272-284 
cylindrical wave guide, 243 
parallel plane wave guides, 122 
rectangidar wave guides, 178 

Transverse electric transmission mode, 
coaxial wave guide, 274, 275 

cylindrical wave guide, 243, 244 
parallel plane wave guide, 122 
rectangular wave guide, 179 

Transverse electromagnetic wave, in 
coaxial wave guide, 272 

in plane parallel wave guide, 130 
Transverse magnetic transmission mode, 

coaxial wave guide, 274 
cylindrical wave guide, 243, 244 
parallel plane wave guide, 122, 123 
rectangular wave guide, 179 

Transverse waves, 63 
Traveling detector for circular wave 

guide, 295 
Triboelectric effect, 27 
Tube noise, 446 
Two-terminal networks, 342 

for video amplifier, 483 

Unit, of electric charge, 5 
of electric force, 1 
of magnetic charge, 5 
of magnetic force, 1 

Units, 53, 57 
Giorgi, 57 
Heaviside-Lorentz, 57 
practical, 57 
rationalized, 57 

Vacuum tubes at high frequencies, 425^ 
450 

calculation of transit time, 436 
conditions for current flow, 437 
effect of lead inductances and internal 

capacities, 428 
graphical development of current flow, 

439 
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Vacuum tubes at high frequencies, input 
conductance due to lead induct¬ 
ance, 430 

noise in vacuum tubes, 446 
output conductance, 436 
transit time effects, in diodes, 436 

in triodes, 442 
van der Bijl, H. L., 425 
van der Ziel, A., 436 
Varian, R. H. and S. F., 586 
Variation of the shunting capacitance 

in triode amplifiers, 468 
Vector product, 38, 39 
Vector quantities, 9 
Velocity, of propagation, 132 

group, 133 
phase, 133 
signal, 135 

of wave, in free space, 70 
in solid metal, 161 

Velocity-modulated tubes, 579 
design and operation of aKlystron,601 
inductive output amplifier, 603 
Klystron as an oscillator, 694 
other types, 607 
reflex Klystron oscillator, 602 

Velocity modulation, 680 
Applegate diagram, 587 
conversion, by deflection, 583 

by drift, 684 
by retarding field, 584 

current relations in the Klystron, 591 
kinematic bunching, 589 
phase shift in the Klystron, 592 
production of, 580 

in two steps, 582 
utilization of, 583 

Video amplifier, 469 
analysis of, 473 
high-frequency compensation, 477 
loss due to screen-grid bypass con¬ 

denser, 477 
low-frequency compensation, 474 
requirements, 469 
tsrpical circuit, 472 

Voltage, equivalent in wave guide, 137 
Voltage relations, in circular wave 

guide, 252-253 
in parallel plane wave guide, 137 
in rectangular wave guide, ^ 

Wave, standing, 99, 100 
propagation in free space, 64 

Wave equation, in cylindrical guide, 
243, 244 

in general form, 76 
general solution, 79 

Wave filters, 300 
for elimination of Bo wave, 301 
for elimination of Ho wave, 302 

Wave form of current in Klystron, 591 
Wave front, 62 
Wave guide, 113 

coaxial, 272-284, 342-347 
cylindrical, 228-269 
dielectric, 269-272 
elliptical, 284r“290 
experimental apparatus, 292-316 

crystal detector, 294 
flexible, 305 
impedance matching, 309 
multiplex transmission, 315 
pinch-pipe, 306 
practical consideration, 304 
probes and detectors, 293 
resonant chambers, 307 
terminal devices, 309 
traveling detector, 295 
wave filters, 300 

parallel plane, 119-175 
parallel wires, 319-342, 347-361 
rectangular, 177-225 

Wavelength, in a cylindrical wave guide, 
249, 250, 259, 260, 296, 298, 299 

in a parallel plane wave guide, 139, 
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in free space, 69 
Wave penetration in a metal, 161 
Wave transducer, 303 
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