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PREFACE TO FOURTH EDITION 
The present volume is based upon the section of the author’s book, 
Automobile and Aircraft Engines, entitled Mechanics of The High 
Speed Internal Combustion Engines.” The original combined volume, 
published over thirty years ago and subsequently appearing in succes¬ 
sive revised editions, had become rather unwieldy in size, so the 
decision was taken to issue it in two separate volumes, of which this 
is the first. In this edition the original matter has been revised and 
extended considerably, much of the earlier material being either 
deleted or rewritten. 

Additional sections included relate to the subjects of engine vibra¬ 
tions, engine mountings, t«Monal vibrations, balancing of rotating 
members, modem balancing machines and valve cams and followers. 

It is hoped that the information^nd data given will prove useful 
to internal combustion engine students, designers, engineers and others 
concerned with the mechanical design aspects of petrol and Diesel 
engines, whilst to those desiring to study the subjects dealt with more 
fully, the various footnote and other references given throughout the 
book will be found helpful. 

The author takes this opportunity of acknowledging the help and 
advice offered by Mr. R. G. Manley in the preparation of the present 
edition and for his contribution of the chapter entitled “Torsional 
Oscillations in Engines.” Acknowledgment is also gratefully accorded 
to certain firms in connexion with the provision of information and 
illustrations of their products; in particular to Messrs. Edward G. 
Herbert, Ltd., W. and T. Avery, Ltd., Metalastik, Ltd., Andr6 Rubber 
Co., Ltd., Benrath Machine Tools, Ltd., Westinghouse Electric Inter¬ 
national Company (U.S.A.), and Tinius Olsen Testing Machine Com¬ 
pany (U.S.A.). In concluding these prefatory remarks, the author 
would mention that any suggestions for the improvement or extension 
of the material of this book, in its next edition, will be welcomed. 

A. W. JUDGE. 
Farnham, Surrey. 

1946. 
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AUTOMOBILE AND 

AIRCRAFT ENGINES 

CHAPTER I 

PISTON DISPLACEMENT, VELOCITY, AND ACCELERATION 

General Considerations 

It is proposed in this opening chapter to consider the conversion into 

useful mechanical work of the heat energy of a mixture of air and fuel, 
burnt in the combustion chamber of a petrol or high-speed Diesel 
engine. 

In the past there have been many suggestions for mechanical devices 
to obtain continuous rotary motion from the combustion and expansion 
of the explosive charge, but the only methods that have survived are 
the reciprocating engine, swash-plate and cam engines, and the gas 
turbine. It is with the former type of engine, with its trunk piston, 
connecting rod, and crank method of converting reciprocating into 

circular motion, that this book is concerned, since by far the greatest 
proportion of all internal combustion engines operate on this principle. 

It is, however, realized that the reciprocating engine, with its 
numerous sliding and rubbing surfaces, its difficulties of engine-balance 

and vibration problems, is by no means ideal and may eventually 
be displaced to a greater or less extent by the efficient gas turbine 

where continuous rotary motion, uniform torque, and accurate balance 
are readily attainable. 

Although convenient and comparatively simple in its conception, 

the application of the piston-connecting-rod-crank mechanism to 
high-speed engines involves a certain amount of advanced mathematics 
concerning the position, velocity and acceleration of the piston when 
a uniform crankshaft speed is the object. If it were possible to use 
very long connecting rods for relatively short cranks the problems 
would be simplified to those associated with a piston having a simple 
harmonic motion, the formulae for which are comparatively easy to 

apply. With the enforced use of relatively short connecting rods, or 
small connecting rod-to-crank ratios, the motion of the piston is more 
complex, and it is necessary to analyse this motion in order to 
obtain formulae that can be employed in the actual design of the 

piston, connecting rod add crankshaft; and also in connexion with 

connecting rod and main crankshaft bearings design. 

l 
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The method adopted in the present chapter is first to obtain ex¬ 
pressions for the piston displacement, from which the corresponding 

velocity can be derived by mathematics or graphical methods. The 
piston’s acceleration can then be deduced and the,results applied to 
the determination of the inertia of the reciprocating parts and the 

resultant forces due to inertia and cylinder gas pressures. From these 
resultant forces the value of the torque on the crankshaft at any 
position can be determined. The results can then be applied to the 

design of the moving parts and the engine bearings. 

Fig. 1 

Piston Position and Crank Angle 

It is of importance to the designer to know the exact piston position 
corresponding to any given crank angle. 

This can be obtained either mathematically or graphically. 
Dealing with the former method first, let P represent the position 

of the piston (which replaces the crosshead and piston rod of steam- 
engine practice) along its stroke AB (= 2r), Fig. 1. 

Let r = radius of crank pin circle 

l = connecting rod length 

0 — angle of crank with line of stroke 

and x = displacement AP of piston. 

We then have x = AP = A'E 

where E is the point in which an arc of radius PC = Z, from P as 
centre, cuts th% line of stroke. 

A'E = A'D + DE 

= (A'O - DO) + DE 

= (r — r cos 6) + l — V(l2 — r2 sin2 6) 

= r(l — cos 6) + l i'-fi — sin* 0 j 

And 
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, connecting rod l 
If n = the ratio---= - 

crank r 

[ / sin2 0) 
then x = r(l — cos 6) + 111 — J I — ' J 

This may be written— 

x — r(l — cos 0) + l jl — ^1 — approximately 

r(l — cos 6) + — (1 — cos 26) 

The above expression is very nearly true, since the other terms of 
the series on the right-hand side 

become very small. 

If the motion of the piston were 
a simple harmonic one (S.H.M.), 
that is, if the connecting rod were 
of infinite length, then the piston 

displacement would be given by 

x — r(l — cos 6) 

so that the effect of a finite length 

of connecting rod is to introduce 
the second term, and the resulting piston displacement may be regarded 

as due to an initial S.H.M. due to the revolution of a point of radius r 

and a superimposed S.H.M. due to the revolution of a point in a 
r 

circle of radius —, and with an angular velocity double that of the 

original one. ,J 
Further, the “error” introduced in the piston’s position, due to 

the obliquity of the connecting rod, is represented by the term 

4:71 
(1 — cos 26) 

dy 
This is a maximum when ~ 0, that is, when 6 — 90° or 270°, 

au 
, . l 2r the piston stroke 

and its value then becomes —, that is--- 
4 n 4 n 

It is a minimum when 6 ■= 0° or 180°, and is therefore zero at the 
two ends of the piston stroke. 

r 
When 6 — 45°, the value of y is —. 

4:71 
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More Accurate Expression for Piston Position 

The expression for the piston displacement x previously given, 

namely. 

x — r( 1 — cos 0) + l 

can be written as 

x = l -f- r — r cos 0 — l 
/ sin2 0\* 

(‘-H 
Now the right-hand expression in the brackets can be expanded by 

the aid of the binomial theorem, thus— 

sin2 0y sin20 sin4 0 

n2 ) 1 2w2 8nA 

sin6 0 

16W®" 

(and so on) 

Thus the more accurate relation for the piston displacement may 

be written as follows— 

x ~ r( 1 — cos 0) -f 
l sin2 6 l sin4 6 l sin6 6 

2 n2 8 nx 16/i6 
+ (and so on) 

The error due to the approximation x = r(l — cos 0) + g—, which 

r 
is the same as x — r( 1 — cos 0) + {1 — cos 20), is therefore represented 

471 

by the terms 

l sin4 0 

’ 8n* + 
l sin6 0 

16n« + 

In actual applications these terms are extremely small. Thus, if 

n = 5 the value is and for it is equal to 

so that for all practical purposes these higher order terms may be 

neglected. 

Piston Displacement for Offset Cylinder 

It is important in dealing with questions of balance, etc., to be able 

to determine the piston position at any crank angle. In several 

examples of petrol engines the line of stroke of the piston is displaced" 

at right angles to its normal position by a small amount, for certain 

reasons which will be dealt with later. 

In the diagram, Fig. 3, let b = the amount of offset and, for con¬ 

venience, the distance PA = x the piston position, and the distance 

OP — a. 
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With the notation given in the diagram (Fig. 3), and considering 

the triangle POC, we have— 

Z2 = a2 + r2 — 2ar cos 0 . (1) ___  

Also 0 = 0--oc . . (2) “ « ft 
i I il \ x o * i \ 

and cos a = and sin oc = - . (3) • i \ 
a! a v \ WI \ 

+ = . . (4) f \ 

Further from (2)— fli ) XL 
cos 0 = cos (0 — a) = cos 0 . cos a ^ I 1 1 \ 

+ sin 0 . sin a . (5) l 1 1 \ 

Substituting for 0 and a in Equation _j J i \ 

(1), the values given in (3), (4), and (5), ^ | >' 

it becomes— {* \ Q 

a;2-(2rcos0) .x+ (b2 X 4 
+ r2 — 26r sin 0 — l2) = 0 / r | j 

which is a quadratic equation in x. 1 01 <4 , 1 
The solution of this equation by the \ 1 ! ' 

usual algebraic rule is— \ ; i / 

x = r cos 0 ^ ^ j ^ S 

± Vr2 cos2 0 + l2 — b2 — r2 + 2br sin 0 11 
Fig. 3 

It will be evident from the figure that 

the negative root is inadmissible, and so, in terms of the cosine only, 
we get, since sin2 0=1 — cos2 0, 

x = r cos 0 + Vl2 — 62 — r2 + r2 cos2 0 + 26r(Vl — cos2 0) 

The second expression under the root sign can be expressed as a 

series for 

, , cos20 cos4 0 cos e0 
(1 - cosV)* = 1 - --f —r - TT - <■*«■ 

and we have 

/ 6r 
a; = r cos 0 + a/ (£2 — 02 + 26r — r2) + (r2 — 6r) cos2 0 — -j cos4 0 

(1 — cos2 0)1 = 1 

+ etc. 

This" expression can be further simplified by neglecting higher 

powers of cos 0, and expanding out as a series the expression under 

the surd sign, and we have, after substituting A = l2 — 62 + 2br — r2 

and B = r(b — r), 

A4 A$ 
a = r cos 0 + A* -f cos2 0 + cos4 0 + etc. 
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This expression represents the position of the piston for any given 

crank angle /? very approximately, and can be employed for differen¬ 

tiation purposes in connexion with the velocity and acceleration. 

Stroke of Offset Piston 

The principal object of offsetting is to diminish the obliquity of 

the connecting rod during the firing stroke and hence reduce the mean 

Fig. 4 

piston thrust on the cylinder walls. 

The motion of the piston is also 
slower at the commencement of the 

firing stroke, which is advantageous 

from the combustion point of view. 

In practice, the amount of offset 
varies from + to l of the cylinder 

bore. 

The effect of offsetting the cylinder 

axis by a small amount can be 

readily understood if two diagrams 

of the normal and offset types be 

drawn, and the piston position found, in the usual manner, for 

different crank angles. 

It will be found that for the same crank angle position, the offset 

piston is behind the other one during the downstrokes, that is, the 

firing and suction strokes; whilst during the upstrokes, namely, the 

compression and exhaust ones, the offset piston is ahead of the normal 

one. 
Further, the stroke of the offset piston is rather greater than that 

of the normal type, although the total distance between the piston 

at the top of its stroke and the crank centre is actually a little less, 

so that the offset cylinder can be made slightly shorter. 
Fig. 218 on page 284 illustrates the corresponding piston jiositions for 

the normal engine (as shown by the dotted lines) and the offset engine 

(as shown by the full line); the above-mentioned points will be 

readily followed from this diagram. 
It can be shown, in a simple manner, that the length of stroke of 

the offset piston V is given by the following expression— 

r = 2r i+7 very nearly 

where l = connecting-rod length, r = crank radius, and 6 = the 

amount of offset. 

For a connecting-rod crank ratio of 4, the ordinary offset piston 

stroke is about 0*15 per cent greater. 
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Graphical Method for Piston Displacement 

If the connecting rod be regarded as of infinite length, it is a simple 

matter to obtain the position of the piston corresponding to any 
crank angle. 

Thus if the crank be in the position OC (see Fig. 4), and a perpen¬ 

dicular be dropped from C to the line of stroke at D, then A'D repre¬ 

sents the distance of piston from the outer end of its stroke. 

For A'D = r(l — cos 6) where d = Angle A'OC 

Fig. 5, Muller’s Circles for Piston Displacement 

From this it is evident that the piston displacement plotted against 

crank angle will give a sine curve. 
Next, consider the connecting rod of finite length PC (Fig. 1). 

The position P of the piston for any crank angle 6 is obtained by 

sweeping an arc of radius CP = l from C as centre, the corresponding 

piston position P being where this arc cuts the line of stroke. 

If it is required to find the piston position corresponding with each 

position of the crank, this operation is repeated for each crank position. 

Muller’s Circles 
A somewhat more convenient method of obtaining, in an easy 

manner, the piston displacement for any crank position, due to Miiller, 

is as follows— 
Let ABE be the line of stroke (Fig. 5) and Oc the crank radius^ cP 

being the connecting rod. 
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With centre O and radius 01(— r) describe the ciroJe Icl 

„ „ O „ OA(=M-r) „ „ X 

„ „ 0 „ OB(= l — r) „ „ Z 

Now with radius l and centre I describe the circle Y. 

The piston displacement for any crank angle IOc is given by the 

intercept ab on the crank arm, between the circles X and Y. 
In order to prove this, join 61, 6P and Ic respectively. Then in the 

triangles Ic6 and IcP we have the sides 61 and cP both equal to l, 

and cl is common to both, and 

Z bcl = Z Pic 

So that the triangles are equal in all respects 

and c6 = PI 

Also ca — IA = l 

Hence ab = AP the piston displacement. 

Curves of Piston Displacement 

It is often convenient, in the case of any given engine, to be able to 

find quickly the position of the piston for a given crank angle, and 

vice versa. 
The polar curve is very suitable for this purpose. 
The principle of the use of this curve is that the intercept of the 

crank arm on the curve represents the distance of the piston from 
its mid-position. 

The curves are constructed graphically by first finding the point E, 

corresponding to the piston’s position, and then intercepting the 

distance OE upon the crank arm, thus obtaining a point R. 
The locus of It for all crank angles gives the polar curve. 

An example of a polar displacement curve is shown in Fig. 6, and 

it will be evident that the intercept of the crank OR represents the 
corresponding piston position from the mid-point of its stroke, or CR 
its distance from the extreme point qf its stroke. 

For an infinite connecting rod this polar curve becomes a pair 

of circles of diameter equal to the crank radius, and with their 
centres on the line of stroke, and the greater the obliquity of the 
connecting rod, the more distorted do these initially circular curves 
become. 

Another method of representing conveniently the piston dis¬ 

placement for different crank positions is to plot upon a crank 
angle base the distances of the piston from the centre of its stroke 
as ordinates. 
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Angular Velocity Relationships 
Referring to Fig. 4, if the crank OC rotates around the oentre 0 

and if the angle A'OC — Q 

_L dB 
Then angular velocity of OC = ^ 

If w =5 angular velocity of OC in radians per second, r — radius in 

feet, N = revolutions per minute of OC and v = linear velocity of C 

in feet per second. 

2ttN 
Then w = ^r- = 0 10472N radians per second 

60 

v — wr — 0*10472N feet per second 

60 w 
Also N — - 9*5493w 

277 

Piston Velocity 
It is required to obtain an expression for the velocity of the piston 

at any moment in terms of the crank angle, stroke, and connecting- 

rod length. 
Dealing with the case where the connecting rod is very long, so 

that the motion of the piston follows a simple harmonic law, we have, 

with the notation in tjxe diagram, Fig. 2— 
The piston displacement from the centre x = r cos 6. 

The velocity = — r sin 6 
d6* 

dt 

* As the direction of rotation is of no significance, the negative sign can be 
ignored. 
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But is the rate of change of the angle 0, that is, its angular 

dd 
velocity, and the linear velocity of the crank pin C == r ^ = V0. 

Hence \P = Vc sin 0 

So that the velocity of the point P varies according to the law of 

sines, and is a maximum when 0 — 90°, it is then equal to the velocity 

of the crank pin, and the velocity is zero at the two extreme ends of its 

path of travel. 

Effect of Connecting-rod Obliquity 
Consider next, the case for a finite length of connecting rod l. 

Referring again to Fig. 1, we have already obtained an expression 

for the position of the piston in terms of the crank angle, and in order 

to obtain the velocity it is necessary to differentiate this expression 

in regard to the time. 

Thus we have given x — r(l — cos 0) + l jl — y V^2 — r2 sin2 

, dx d0 r2 2 sin 0 cos 0 dO 
Then Vp — -j- = r sin 0 - H-- . — 

dt dt 2 \/Z2 — r2 sin2 0 dt 

dd 
Writing Vc = r — and simplifying, we have for the velocity of the 

ctz 
piston 

\ = V, 8in e (l + 
r cos 0 

Vl2 - r2 sin2 6 

It will be seen that the effect of the obliquity of the connecting rod 

is to introduce the second term 

r sin 20 

2 c «s/ii — r2 gjn2 Q 

The velocity is a maximum at a position which can be determined 

from the above expression by substituting actual numerical values, 

or by differentiating the expression. 

Thus by differentiating the expression for Vv we obtain 

dVv I rl2 cos 26 + r8 sin4 01 

Tf = ” (C°8 6 + J 
and by equating to zero, and simplifying, the expression for the values 

of the crank angle at which the velocity is a maximum is obtained, 
and we then have 
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The solution of this cubic equation gives the values of the crank 

angle for maximum velocity. 

As an example of the application of this expression to practical 

purposes, the following values for connecting rod to crank ratios 

occurring in practice have been calculated. 

TABLE I 

l 
Ratio - 

r 

Crank Angle (in degrees) from top dead centre at 
which the velocity of the piston is a maximum 

• 3 

1 

73*18 
4 76*71 
5 79*11 
6 80*60 

From thcjse results it will be evident that the greater the obliquity 

of the connecting rod, the earlier in the stroke is the velocity of the 
piston a maximum; and the longer the connecting rod in relation to 

the crank, the nearer to its mid-position does the maximum velocity 

of the piston occur—that is, the motion of the piston approaches a 
simple harmonic one. 

In a similar manner the velocity at any point of the stroke of the 

piston having an offset or “desax6” cylinder can be obtained. 

It is only necessary to differentiate the expression for the piston 

displacement in order to arrive at an expression for the piston’s 

velocity at any crank angle. 

Approximate Method for Piston Velocity 
It has been shown that the piston displacement may be expressed 

approximately by the following relation— 

x = r(l — cos 6) + (1 — cos 26) 

Since 6 is the angle of rotation of the crank in time t from its outer 
dead-centre position, then 6 = wt where w — angular velocity of the 
crankshaft. 

r 
Thus, x — r( 1 — cos wt) + 7— (1 — cos 2wt). 

4 n 

The velocity of the piston is given by 

V 
dx wr 
— = wr sin wt + — sin 2wt 
dt 2 n 

. wr . 
= wsm0 + r sm 

2 n 
26 
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The velocity is a maximum when 

Thus, max. Vp is given by the angle 6 in the following equation, 
which is obtained by differentiating the velocity expression and equat¬ 

ing to zero— 
n cos 6 + cos 26 = 0 

Substituting cos 26 = 2 cos2 6 — 1, we get 

2 cos2 6 + ft cos 0 — 1=0 

From which the crank angle 6 for maximum piston velocity for any 
ratio of connecting rod to crank n can be computed. 

Graphical Method for Piston Velocity 
With the notation employed in Fig. 7, let Yp represent the piston’s 

velocity at any point P, and Vc the uniform crank pin linear velocity. 

It will be evident that at the crank pin C its direction of motion 

will be tangential to the crank pin circle. 

Further, the resolute of the piston’s velocity along the connecting 
rod must be equal to the resolute of the crank pin’s velocity along this 

rod, since it is a rigid mass. 

We thus have V^, cos cf> = Vc cos /? 

V,, cos /? sin OCT OT sin (<f> + 6) 

Vc cos <f> sin OTC OC cos (f> 

Hence the intercept OT of the connecting rod upon the vertical 
diameter of the crank pin circle at once gives a measure of the piston 

velocity for this position of the crank (the radius of the crank pin 

circle being proportional to the uniform crank pin velocity). 

It will be evident from this that the piston velocity is a maximum 
when the angle OCT is 90° on either side of the line of stroke, and is 

equal in value to 
Vc 

sin OTC 
or 

Vc 

cos <f> 
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This will be seen to occur before the crank is perpendicular to the 

line of stroke, as was shown previously mathematically# 

Velocity Curves 
If the method of intercepts be employed to obtain the piston velocity, 

relative to the crank pin, and if, further, the intercept OT be marked 

off upon the crank arm, for all positions of the crank, then the locus 

Fici. 8. Pol Ait Curves of Piston Velocity 

of all such points on the crank arm will give a polar curve of piston 
velocity. 

The method of construction is indicated and an example of the 

curves for a connecting-rod crank ratio of 4 given in Fig. 8. 

To obtain the velocity of the piston for any crank angle from these 

curves, it is only necessary to measure the length of the crank pin 

intercept OR, then, if OC represents the crank pin velocity to scale, 

OR will to a similar scale represent the piston's velocity. 

If the connecting rod is very long, the two polar curves will approach 

true circles having diameters equal to the crank pin radius, and their 

centres upon a diameter of the crank pin circle perpendicular to the 
line of stroke. 

A general method of construction of the velocity curve upon a 

piston stroke base, due to Unwin, is given in Fig. 9; the polar velocity 

curve has been described from this, and is also given in the same figure. 

In this figure, Od represents the crank length r, and dc the connecting 

rod l. m 

Produce Od to /, making df equal to the crank pin velocity Vc. 

Draw fg parallel to the connecting rod to cut the perpendicular from 

cing. 
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Then eg represents the piston velocity when the piston is at c. 

For all positions of the crank ordinates such as eg can be determined, 

and a curve of piston velocity upon the piston stroke base obtained. 

When the connecting rod is very long, this curve approaches an 

ellipse. 

Angular Velocity of the Connecting Rod 
It is required to obtain an expression for the angular motion of the 

connecting rod about the gudgeon pin, as this at once gives a measure 

of the rubbing velocity at the bearing surfaces of the latter. 

Fig. 9. Curves of Piston Velocity 

Using the diagram of Fig. 7, we have 

l sin <f) -- r sin 6 — CD 

or l cos (f>. dxf) = r cos 0 . dd 

So that 
d<l> r cos 0 DO 

Id ^ / cos ~<j> ^ DP 

CT 

CP 

Hence the ratio of the connecting rod to crank pin angular velocities 

is given by the segments into which the crank pin C divides the line PT. 

It follows from this that the angular velocity of the connecting rod 

will be zero when CT — 0, that is, when the crank is perpendicular to 
the line of centres. 

The angular motion of the rod will be a maximum when CT — r, that 

is, when the crank is on the dead centres, and its value will then be 

W R 

Wc 
n 

where WR and Wc represent the angular velocities of the connecting 

rod and crank respectively. 

Rubbing Velocity of Gudgeon and Crank Pins 
The maximum rubbing velocity of the sm^Jl end upon the 

gudgeon pin is then given by 
w 

VG = WR.a = a.—c 
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where VG is the rubbing velocity, a the radius of the gudgeon pin, 
and W0 the angular velocity of the crank. 

Expressed in a more convenient form, in terms of the revolutions 
a 

per minute N of the crankpin, we have VG = - . 27tN. 

Similarly, the crank pin rubbing velocity at any moment is VN 
= angular velocity of OCP X 6, where b = radius of crank pin. 

We thus have: Angular velocity of OC relative to PC given by 

d(<f> + 0) PC + CT PT 

dd CT CT 
(Fig: 7) 

Then rubbing velocity of orank pin 
PT 

*-crwc- 
This is a maximum when CT = r, that is, when the crank is in the 

dead centre position. 
Expressed in terms of the revolutions per minute, the maximum 

l -f- r 
rubbing velocity of crank pin = b . - . 27rN. 

If the lengths be expressed in feet, the rubbing velocity will be in 
feet per minute. 

Mean Piston Velocity 
If the crank pin velocity be Vc and the crank pin radius r, then the 

crank pin moves through a distance 2itv, whilst the piston moves 
through 4r (twice the stroke). 2 

Hence the mean piston velocity Vw = -— . Vc — — Vc. 
ZttY 7T 

Oil the polar curves this mean velocity can be represented by a 
2 

circle of radius — Vc drawn with 0 as centre, and in the case of linear 
77 2 

curves by a straight line of height Vc. 
7T 

A more convenient expression for the mean piston velocity, readily 
deduced from the above relation, is as follows— 

Mean piston velocity = 4rN ft. per min. 

where N = r.p.m. of crankshaft and r is in feet. This may be written as 

Mean piston velocity — 2 (stroke) N 

It follows from this that for a limiting rubbing speed of the piston 
the r.p.m, of any engine will vary inversely as the piston stroke, so that 
engines with shorter strokes will operate at higher r.p.m. than those 
with longer strokes. 

The present average piston speeds at r.p.m. corresponding to full 
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output vary from 2000 to 2800 ft. per min., so that if an average value 

of 2400 ft. per min. is taken, it follows that ‘an engine of 6 in. stroke 

will run at a maximum of 2400 r.p.m. and one of 3 in. stroke at 

4800 r.p.m. 

Piston Acceleration 
For approximate purposes the piston acceleration can be obtained 

from the piston displacement relation, previously given,* namely 

r 
a; = r(l~ cos wt) + — (l — cos 2wt) 

By differentiating twice we obtain 

d2x w2r 
- — - cos 2wt -f w2r cos wt 
at2, n 

or, since wt = 0, this can be written as follows— 

Piston acceleration 
d2x w2r 
— -eos 26 -L whr cos 6 
at2 n 

The maximum value -of the acceleration occurs when 6 =■= 

is given by 
w2r 

Maximum acceleration == — + w2r or w2r 
n 

0°, and 

When 6 = 180°, the value of the acceleration at the other, or inner, 
end of the piston stroke is as follows 

Acceleration = — wh 

The negative value here denotes a deceleration or retardation. 

The zero value of the acceleration, corresponding to the maximum 

piston velocity, occurs at an angle 0, obtained from the expressionf 

2 cos2 6 n cos 0—1=0 

For example, in the case of an engine of 4 in. stroke with connecting 

rod*8 in. long and speed of 3000 r.p.m., n = 4 and maximum accelera¬ 

tion is given by 
w2.2 5 

~i 2~{l + i)==UW 

The angular velocity w = 

Then 

per see 

3000 x 277 

60 
5 

314*16 radians per sec. 

Thence, max. acceleration = — x (314-16)2 = 20,560 ft. per sec. 

* Vide page 3. f For solution of this, see page 18. 
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For more exact purposes the complete expression for the piston 
displacement must be employed. Thus— 

VZ2 — r2 sin2 6) _ x = r (1 — cos 0) + l {l 

Then piston velocity 

dx 

dt 
jr si sin 0 + - 

r2 2 sin 0 . cos 0 \ dd 

2 \/Z2 - r2 sin2 6) dt 

dd . 
Since = w, the angular velocity, this may be written as 

r cos 6 dx 

dt 
■ tor sm 

/ r cos 6 \ 
(in 6 ( 1 + ——tv :======= ) 

\ VZ2 — r2 sin 20/ 

It may be noted that wr is the linear velocity of the crank pin, 
namely, the term Vc previously employed in this chapter. 

The acceleration is 

rl% cos 20 + r8 sin4 01 

(Z2 ~ r2 sin2" 0)§ J 

If this expression be compared with the approximation given on 
whr 

page 16, it will be observed that the harmonic term — cos 20 is 

replaced by the right-hand expression in the brackets of the above 

formula, but multiplied by n. 
The effect of using the approximate formula* is to cause a small error 

which increases rapidly as the ratio of connecting rod to crank dimin¬ 

ishes. This error is zero for crank angles 0 of 0°, 180°, 360°, etc., and 
is also zero at angles of about 60°, 120°, 240°, and 300°. 

The greatest error occurs when 0 = 90° and 270°. The usual magni¬ 

tude of the greatest error, for values of n = 3*5 to 4*5, is of the order 

of less than 1 per cent, namely, 0*7 to 0*3 per cent. 
\ 

Accelerations at Ends of Stroke 

d?x 

dZ2 
wh |cos 0 -f 

When the crank angle 0 = 0°, the value of the expression given for 

the acceleration of the piston, obtained by substituting cos 0° = 1 

and sin 0° = 0, is as follows— * 

Max. acceleration (top dead centre) = w2r 

where N = r.p.m. and r and Z are in feet. 

/2irNy 
\ » ) 

H) 
.r. 

♦ “Piston Acceleration. Graphic Representation of the Error Involved in the 
Usual Formulae.” A. W. Newman, Automobile Engineer, January, 1944. 
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Similarly, the acceleration at bottom dead centre is given by 

Max. acceleration (bottom dead centre) = — f.s.s. 

The effect of connecting rod obliquity is to increase the acceleration 

at the top dead centre over that of a simple harmonic motion by the 

r 1 
fraction - or and to reduce it at the bottom dead centre by a like 

t 71 

* 1 
amount. Further, the smaller the value of i.e. the longer the con- 

n ° 

necting rod for a given crank radius, the more nearly does the piston’s 

motion approximate to a simple harmonic one. 

Acceleration when Crank is at 90° 
The value of the acceleration for the piston position corresponding 

to the crank being at right angles to the cylinder axis produced is 

obtained by substituting 0 — 90° in the general expression for the 

piston acceleration. Thus, substituting sin 90° = 1 and cos 90° = 0, 

we get 

Acceleration — w2r 

w;2r4 

(il2 - r2j* 

l 
This expression can be reduced to a function of thus showing that 

the acceleration at 0 = 90° depends only upon the angular speed and 

ratio of connecting rod to crank. 

Position of Crank for Zero Acceleration 
When the velocity is a maximum^ the acceleration is zero, and, as 

shown previously, this occurs when the values of 0 are given by the 

following relation— 

l2 l4 l* 
sin6 0-1 sin4 0-- sin2 0 H—r — 0 y* 

This expression is obtained by equating that for the piston acceleration 

to zero. If this is done for various connecting-rod-to-crank ratios, n, 

from 3 : 1 to 5 : 1 the results given in Fig. 10* will be obtained. 

As would be expected, the larger the value of n the nearer to a right 

angle does 0 become; at n = infinity, corresponding to a simple 

harmonic motion, 0 = 90°. 

♦ Vide footnote on page 17. 
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Graphical Method for Piston Acceleration 
If the velocity of the piston be known at different positions of the 

stroke, the corresponding values for the acceleration can be deduced, 
since acceleration is the time rate of change of velocity. 

l/r- yfc - conn rod/crank ratio 
Fia. 10. Ckank Positions for Zero Acceleration 

In the case of the polar curve of piston velocity, consider a number 

of radial vectors drawn at equal time intervals, that is, imagine the 
crank pin circle to be divided up 

into a number of equal parts (since ^ 
the crank pin velocity is uniform). T s?7 

Then consider three consecutive y / 

radius vectors drawn in this manner. Y jS 

Let OA, OB, and OC, Fig. 11, repre- / 

sent the velocities for these positions / 
of the crank (that is the intercepts 

upon the polar velocity curve). 0^ Fig 1L 

If now V,. V2> and V8 represent 
the magnitudes of these respective velocities, we have— 

Average acceleration between) V2 — Vj At = the time 

crank positions OA and OB ] ~ At interval 

v3-v2 
and between OB and OC = 
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Now in the limit when the time interval is exceedingly small the 

points A, B, and C will be very close together. The acceleration at 

the point B will be represented by the slope of the tangent to the curve 

at that point. 
Similarly, in the case of the linear velocity curve upon a crank angle 

base, the ordinates at equal intervals will represent equal time intervals, 

and the difference in height of consecutive ordinates will represent 
the average acceleration over the intermediate time interval. 

Thus, referring to Fig. 12, if the time intervals be dt, then the average 

f acceleration between A and A' will be repre- 

sented by and by erecting an ordi- 

j I ^ nate midway between A and Av proportional 
to — y, a curve of acceleration upon a crank 

' angle base is obtained. Alternatively, if a 

* | series of tangents are drawn to the velocity 

y 1 V\ | Vz curve at the points B, B', B", etc., the values 

1 I of the tangents of the angles made with the 

I | base line AA" will be proportional to the 

I i accelerations at these points. 

1 » If the base line represents piston displace- 
" a1——£/; - ment, it should be divided into equal time 

pIO j 2 interval positions, the divisions, of course, 

being unequal in this case. 

The above general method for obtaining the acceleration graphically 

can be applied to the velocity curves of any mechanism, but it is only 

approximate in practice, since it is difficult to draw a tangent at a 

point accurately, and the time intervals, necessarily, have to be finite. 

The method usually adopted, in the case of the engine mechanism, is 

to plot the acceleration of the piston upon a piston-stroke base. 

The values of the acceleration can be calculated at the two extreme 

ends of the stroke, and the position of no acceleration obtained by 

methods already considered. 

By calculating values of the acceleration from the general expression 
for one or two other intermediate positions, sufficient points are 

obtained to enable the curve of acceleration to be drawn with fair 
accuracy. 

An example of a piston acceleration curve is given in Fig. 13, and 

it will be observed that the acceleration is a maximum at the beginning 

of the downward stroke of the piston (that is, towards the crankshaft), 

and gradually diminishes to zero before half of the stroke is accom¬ 

plished, after which a negative acceleration (or retardation) of 

increasing magnitude occurs, finally attaining a maximum value at the 

inner end of the stroke. 
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The dotted line shows the corresponding acceleration curve for an 
infinitely long connecting rod, i.e. simple harmonic motion. 

The greater the obliquity of the connecting rod, the greater will 

Fig. 13. Ctxrye of Piston Acceleration on Stroke Base 

be the value of the initial maximum acceleration, and the difference 
between the maximum positive and negative accelerations. 

It should be mentioned that it is the initial value of the piston 

Fig, 14. Klein's Construction for Piston Acceleration 

acceleration which determines the maximum magnitude of the inertia 

stresses due to the piston's weight, etc., to which the moving parts 

are subjected. 

Klein’s Piston Acceleration Method 
A graphic method for finding the acceleration of the piston for any 

position is shown in Fig. 14. 
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The connecting rod PC produced cuts the vertical diameter in N. 

With C as centre and ON as radius, a circle, is described. 

Bisect the connecting rod in E and sweep out the arc FG to cut the 
smaller circle at these points, the radius of the arc being EC. 

Join FG, and, if necessary, produce it to cut the line of stroke in H. 

Then the acceleration of the) ___ /angular velocity)2 
piston at P ) *“* X [ of crank ] 

The proof of this method is arrived at by dropping a perpendicular 

OM on CN and drawing HK parallel to LM. 

It has previously been shown that if V' be the crank pin velocity, 

and WR and Wc the angular velocities of the connecting rod and crank, 

respectively, 

CN 
Then WB=WC.^ 

The acceleration of C along CO is Wc2CO, and the resolute of this 

acceleration along the connecting rod is Wc2CM. 

The acceleration of C along the connecting rod, due to the com¬ 

ponent of the connecting rod’s angular acceleration, is WR2CP. 

Now WR2CP 
Wc2 • CN2 We2CF2 

PC PC 
WC2L C 

The total acceleration of the piston along the connecting rod is 

made up of the resolute of the crank’s acceleration in its direction, 

and of its own acceleration in the direction of its length. 

Hence acceleration of piston along PC = Wc2(LC + CM) 

= Wc2. LM - WcmK 

Resolving this acceleration along the line of stroke PO we finally 

obtain the acceleration of the piston in its direction of motion as 

HO 
WfBK. m Wc2 HO. 

Inertia of Reciprocating Parts 
It has already been shown that the piston experiences an acceleration 

during the earlier period of its inward movement, and a retardation 

towards the latter end of the stroke. 
In order to accelerate the mass of the piston, a certain force is 

required. 
Thus, if M be the mass of the piston in pounds and / the acceleration 

in feet per second per second, then the force F required to accelerate 

it is given by 

M/ 
F = —, where g is the acceleration due to gravity (= 32*19 

^ feet per sec.2) 
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Now it is possible to calculate / for any position of the piston, and 

therefore the corresponding value of F can be ascertained. 
Evidently, since M and g are constant, F will vary directly as /, 

and the diagram of piston acceleration is also, to a suitable scale, a 

diagram of piston accelerating force F. 

Fig. 15. Piston Pressures Corrected for Inertia 

[1000 REVS. PER MIN.] 

Hence the inertia force at the beginning of the down-stroke (that 

is, for the in-centre crank position) is given by 

F, == 
Mo)2r 

(*+ $ where n — 
l 

and for the out-centre— 

F0 
Mfo2r/ 1\ 

T\ ~ n) 
This may be expressed in terms of the engine revolutions per minute 

by writing— 
M 4tt2N2 / , 1\ 

<F<>~ g • 3600 ’’A ^ »/ 

By reference to Fig. 13, which may now be regarded as a diagram 

of accelerating force, it will be seen that whereas the initial acceleration 

is equivalent to a reduction in the effective pressure upon the piston 

during the earlier part of its stroke, yet during the latter portion this 

pressure is enhanced by the retardation occurring. 
This effect during the working (or firing) stroke of the piston can be 

more clearly understood by reference to the diagram of piston pressures 

upon a piston stroke base, as plotted from an indicator diagram, and 

shown in Fig. 15. 
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The shaded curve shows the resultant effective pressure per sq. in. 

upon the piston when corrected for the piston inertia effect. 

Inertia Pressures 
In order to obtain the real correction for the inertia efleet, the 

accelerating force F at any point must be divided by the area of 
the piston. 

Using the previous notation, if d = diameter of cylinder (ins.). 

Then piston area A 

Denoting the piston stroke by s = 2r, then— 

. „ . _ _ M 4tt2N2 ^ 
Inertia force at top of stroke F2 = —. ——. - g oOw ^ 

, , F, M ttN2 a 
t:_^ i.— .a_1 Inertia pressure at top of stroke 

g ' 450 * d2 

0-0002168 

riK) 
+1) 

1 + 
MN2s 

Inertia pressure at bottom of stroke = 0-0002168 

Note. Acceleration due to gravity g = 32-19 ft. per sec.2 

Further, in the case of vertical engines the weight, W, of the piston 

itself has to be added to the force causing acceleration, during the 

downward motion, and subtracted during the upward motion. 

This is equivalent to adding or subtracting a small constant pressure 

4W 
—^ to the effective explosion pressure. Since, however, in most car 

and aircraft engines the dead weight of the piston is only a matter 

of a pound or two, and the area of the piston several square inches, 

the dead weight equivalent pressure will only be a fraction of 

a pound per square inch as compared with explosion and inertia 

pressures (at high speeds) of one or two hundred pounds per square inch. 

It will be observed from Fig. 15, which illustrates an actual example, 

to scale, that one effect of piston inertia is to tend to render the effective 

explosion pressure more uniform during the firing stroke; also during 

the compression stroke the effect of the retardation of the piston towards 

the end of the stroke is to diminish the actual effort due to the energy 

stored in the flywheel upon the compressed gas. 
This retardation force, called into play, actually diminishes the 

pressure between the small end of the connecting rod and the gudgeon 

pin. 
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In order to reduce these inertia pressures, for a given maximum 
speed, the reciprocating parts have, necessarily, to be made as light 
as possible, since at any given speed the inertia force due to the 
acceleration or retardation of the piston varies as the mass of the 

accelerated or retarded parts. 
It must also be remembered that whatever energy is absorbed or 

used up in accelerating the reciprocating parts is not lost, since an 
equal amount of energy is given back during the ensuing retardation 

This will be evident from the curve of piston inertia given, for the 
areas for the acceleration and retardation periods are equal. 

Lightness of reciprocating parts is an invaluable aid in reducing 

the bearing pressures between the working surfaces, for with heavy 

pistons and rods these pressures may become excessive, and since 
friction is an irreversible process, the loss of power is continuous for 
both acceleration and retardation. At high speeds, with heavy parts, 
the lubrication tends to become ineffective, since the lubricant 
becomes squeezed out of the bearings. 

Further, as will be shown later, that the degree of vibration due to 

unbalanced parts varies directly as the mass of the reciprocating parts, 

and is a source of inefficiency, wear and tear, and discomfort. 
In high-speed engines the inertia pressures often become so great 

that they sometimes exceed the explosion pressures and cause a marked 

change in the distribution of resultant pressure and torque. 
At speeds of 2500 r.p.m. and over in the case of car and motor-cycle 

engines, the inertia pressures may begin to equal or exceed the explosion 

pressures, and the actual wearing effect of the explosion pressures 

becomes insignificant in comparison writh inertia wearing effects; in 
fact, practical experience in the case of high-speed engines shows that 

the side of the crank pin remote from the piston during the firing stroke 
(i.e. nearest to the crankshaft centre) wears the most. 

Fig. 16 represents to scale the piston pressure corrected for inertia 
effects for a speed of 2500 r.p.m., the reciprocating mass being 31b. 

per cylinder as before. 
It will be observed that the inertia pressures are very high, and 

that they completely alter the character and shape of indicator diagram 

(shown on a stroke base). 
In the diagram, areas above the base line represent work done by the 

piston, whilst areas belowr this line represent work done upon the piston 

either to accelerate the reciprocating mass or to compress the gas. 

It will be noticed that a considerable amount of inertia energy is 
given back towards the end of the compression stroke, greatly in 

excess of that needed for compression purposes. 
This diagram may also be taken to represent the force on the gudgeon 

pin (to a suitable scale, that is, by multiplying by the piston area). 

a—(T.3078) 
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The ordinates of the shaded areas above the zero pressure line 
represent positive forces towards the crankshaft, whilst those below 

the line correspond to forces away from the crankshaft, along the 

cylinder axis in both instances. 
Sudden changes from downward to upward pressures on the piston 

at the ends of the compression strokes indicate a reversal of load on 

Fra. 1(5. Piston Pressures Corrected for Inertia 

[2500 REVS. PER MIN-l 

the gudgeon pin bearing. Tf there is any appreciable clearance between 

the gudgeon pin and small end bearing this will give rise to a knock. 

Inertia Pressure Data 
The inertia pressures, expressed in lb. per sq. in. of piston area, it 

has been shown, will depend upon (a) the weight of the reciprocating 

parts; and (6) the acceleration and retardation forces which, in turn, 

depend upon the connecting-rod-to-crank ratio and the maximum 
crankshaft speed. 

In the case of a six-cylinder 260 h.p. aircraft engine, the weight of 

the complete piston per sq. in. of piston area was 0*344 lb.; whilst 

the total reciprocating weight per cylinder was 0*424 lb. 

At a speed of 1400 r.p.m., the following were the inertia pressure 
values in terms of piston area— 

Top centre ..... 106*70 lb. sq. in. 

Bottom centre .... 60*50 ,, 

Mean ...... 83*60 ,, 
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In this case the inertia pressure, at its maximum value, was equal to 

0*9 of the brake M.E.P. 

By employing short length aluminium pistons, as in aircraft practice, 

it is possible to reduce the total reciprocating mass weight to about 

0*18 to 0*2^ lb. per sq. in. of piston area. 

When aluminium pistons of the slipper type are employed, this 

value is reduced to about 0*17 to 0*18 lb. per sq. in. of piston area. 

In the case of a high-speed petrol engine of 4-in. bore by 6 in. stroke, 

the compression ratio was 5, and the indicated M.E.P. 132 lb. per sq. in. 

The maximum explosion pressure was about 420 lb. sq. in. 

The weight of the reciprocating masses wras 2*5 lb , that is, 0*20 lb. 

per sq. in. of piston area. 

The average gas pressure over a complete four-stroke cycle (720°) 

at 3000 r.p.m. is approximately given by— 

Aver, press. = ^{Useful mean pressure -f twice mean compression 

pressure 4* the fluid pumping pressure} 

132 + 52 + 6 

4 
= 47-5 lb. sq. in. 

The average inertia pressure is given by— 

0*00017 X 0-2 x (3000)2 x 0*5 

* ^ - 

— 70*5 lb. sq. in. 

Of this inertia pressure, about one-third is assumed to be balanced 

by fluid pressure, as viewed from the standpoint of piston-friction, so 

that the net effective inertia pressure is given by— 

Fi — | X 76-5 — 51 lb. sq. in. 

It wdll be seen that the average values of the inertia and gas pressures 

are approximately equal, dining parts of the cycle they act together, 
whilst at other intervals they almost cancel out. 

Inertia Forces in Aircraft Engine 
In order to illustrate the method of working out inertia forces, in 

practice, it is proposed to consider in some detail the case of the inertia 

forces and bearing pressures in the case of a twelve-cylinder Vee-engine 

of 400 h.p., with an included angle of 45°. 

The following are the chief particulars of the engine which concern 

the present considerations— 

Bore ■= 5 in. 

Stroke — 7 in. 
Stroke-bore ratio — 1*4 in. 

Total piston-swept volume per cylinder — 137*445 cub. in. 
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Compression ratios: (a) Low = 5*0; (b) High = 5*4 

Normal b.h.p.: 400 at 1750 r.p.m. 
Approximate weight = 806 lb. 

Weight of aluminium piston and rings = 3-8 lb. 

„ upper end of connecting rod = 1*225 lb. , 
,, gudgeon pin and retainers = 1*038 lb. 

,, reciprocating parts = 6*063 lb. 

Length of connecting rod = 12 in. 

Crankshaft diameter at main bearings — 2*625 in. 

„ ,, crank pin = 2*375 in. 
,, bearing, intermediate, length = 1*75 in. 

,, „ front length — 4*375 in. 

,, „ rear length = 1*875 in. 
Number of bearings = 7 

1. Indicator Diagram. The cylinder pressure diagram is given 

in Fig. 17; this diagram of pressures will be used in the following 

considerations. 

2. Inertia Forces. The inertia forces seriously modify the forces 

due to the cylinder pressures, and therefore also modify the torque 

diagram. 
In order to consider the resultant effect due to the pressure and 

inertia forces, the best method probably is to construct separate 
diagrams of each force on a ^piston-stroke, or crank-angle base, and 

then to combine, algebraically, the two sets of forces. 

The inertia forces may be fairly accurately estimated from a formula 

which takes the fundamental and the first harmonic forces only into 

account, namely— 

F = 0*00034 W . N2r . (cos 0 + - cos 20) lb. 
V 

where W = weight of reciprocating parts (= 6*063 lb. in this case) 

and N = 1700 r.p.m. for the normal speed at which the rated output 
is given. 

The other notation is the same as that employed before. 

It is now a simple matter to work out corresponding values of F 

for different crank angles 0, and to plot values of F on a crank-angle 

base for a total period of 720°. 

The modified formula, obtained by substituting values for W, N, 

r, and l becomes— 
F = 1738 (cos 0 + 0*2917 cos 20) lb. 

Values of F have been calculated from this formula, and are shown 

plotted on a crank-angle base in Fig. 18, together with the pressure 

diagram obtained from the indicator diagram. The signs of the forces 
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PtVTon Txmcl. m Incut* 

Fig. 17. Assumption Indicator Diagram 

R 405 485 565 645 5 65 165 245 325 405 R 
Crank Angle in Degrees, 

Fig. 18. Resultant Forces along Cylinder Axis of 

12-Cylini>er Vee-Engine 
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are so arranged here that downward-acting forces lie below the zero 

line, whilst upward-acting forces are above the zero line: it should 

be remembered also that these forces act in a direction along the 

cylinder axis in all cases, and refer to one cylinder only. 

An examination of the diagrams in Fig. IK will show that the result 

of algebraically adding the inertia forces of curve B to the pressure 
forces of curve A, gives the resultant axial force diagram of curve C\ 

During the first part of the piston stroke up to the point where 

the crank and connecting rod are at right angles, the piston-pressure 

forces are modified by the inertia forces; from this position to bottom 

dead centre the absorbed inertia effect is restored, less a certain amount 

lost in the frictional losses. After the crank passes the dead centre 

position, the inertia forces are considerably greater than those due 

to the pressure, and act against the turning direction of the crank 

until the crank and connecting rod are at right angles on the upward 

exhaust stroke; from this point to the top-dead centre, the inertia 

forces (or absorbed crank-turning moment) are given back as it were, 
and act in the direction of rotation as useful crank effort. 

During the idle suction stroke (i.e. from 360° to 540°) the inertia 

forces entirely predominate, and in the following compression stroke 

they predominate as a resisting torque during the first period of 540° 

to about 630°, and thereafter the compression pressure forces are 

practically balanced by them. 

The maximum value of the inertia forces during the initial accelera¬ 

tion periods is about equal to the mean pressure force on the piston, 

namely, 2400 lb. per sq. in., and is about one-half of the maximum 

resultant pressure value. 

3. Estimation of Bearing Pressures. In order to estimate the 

bearing pressures on the crank pin, it is necessary to know the values 

at any angle of— 

(a) The gas pressure forces along the cylinder axis. 

(b) The inertia forces along the cylinder axis. 

(c) The centrifugal forces along the crank radius. 

The combined effect of (a) and (6), as given by the ordinates of 
curve C (Fig. 18), may be more conveniently employed for this purpose. 

The centrifugal forces are due to the rotating part of the connecting- 

rod big end, are constant, and always act radially along the crank. 

The centrifugal force is given by— 

Fc - 0 00034 WN2r 

where W — weight of lower end of connecting rod (that is, 6-8 lb. for 
the engine rods of the present engine), 

N = r.p.m. (1700 in the present example), 

r = crank radius in feet. 
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In order to find the resultant force due to the combined influence of 

(a), (6), and (c).above, and to both of the inclined cylinders, since their 

connecting rods act on a common crank, it is necessary to combine 
each of these forces as shown in Fig. 19. 

In this diagram, the centre lines of the pair of cylinders are marked 

L and R respectively, and are at 45° to each other. The main crank 

is shown at 60° past the 

top dead centre of the LA jR 
L.H. cylinder, that is, 15° ' * ' 

past that of the R.H. 

cylinder ; in this position 

the turning-moment for 

the former is nearly a 

maximum. 

It will be seen that, 

there are three forces act¬ 

ing, namely— 

(1) The resultant of the 

gas and inertig. forces for 

the L.H. cylinder, which 

is indicated by FL; 

(2) The resultant of the 

gas and inertia forces for 

the R.H. cylinder, as 

shown by FR; and 

(3) The centrifugal 

force Fc acting along the \ 

crank. Fig. 19. Resistant Force on Crank 

It is now a straight¬ 

forward matter to find (by the parallelogram of forces) the resultant- 

Fr + l FR and Fl, and then to find in a similar manner the resultant 

of this resultant FR+L and Fc; the total resultant is shown by FR+L+C 

and, in the position of the main crank chosen, acts at an angle a ahead 

of the main crank. The value of this angle a varies continuously during 

the complete cycle of operations of 720° of engine crank rotation. 

If, now, the resultant FR + L + C be computed for all positions of the 

main crank, and vectors be drawn in the direction of the resultant 

and proportional, in length, to the value of FR+L + C, then a polar 

diagram of resultant forces will be obtained similar to that shown in 

Fig. 20. 

The direction and magnitude of the resultant force on the crank pin 

bearing for any crank angle is given by the direction and length of a 

line joining the crank-angular position marked on the polar curve 

to the origin or crank pin centre. 
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An examination of the polar diagram shows that maximum bearing 

pressures occur at crank angles of 15° to 30°, 160° to 180°, 420° to 

450°, and 540° to 585°. 
The minimum values occur at 0°, 300°, and 405°. 
The actual maximum bearing force is 4980 lb., and occurs at 435°. 

The projected area of the crank pin is given by*— 

A = 2-375 X 2-25 = 6-34 sq. in. 

The value of the maximum bearing 

pressure on the crank pin is then 

given by— 

4980 
P = —- = 932 lb. sq. in. 

0-34 

The mean resultant force on the 

crank pin is 3426 lb., and the mean 
crank pin pressure, 

3426 
Pm = gTgJ = 642 lb. sq. in. 

The mean rubbing velocity on the 

crank pin is 17-7 ft. per sec., so that 

the mean rubbing factor is 17-7 X 

642 = 13,500 lb. per sq in.-fb. per sec. 

It is this latter value that deter¬ 

mines the behaviour of the bearing, 

and which is limited by the coeffici¬ 
ent of friction and the viscosity of 

the oil. 

Position of Bearing-cap Split. It 
may be of interest to mention that the results given in Fig. 20 may 

be employed to indicate the line along which the ’bearing-cap split 

should occur. This should obviously be the line corresponding to the 
least pressure, and in the present example would be at 45° to the 

length of the connecting rod; actually, for manufacturing reasons, it 
is made at 90°. 

It should be noted that the resultant forces on the connecting rod 

are obtained, for each crank-angle position, by resolving the resultant 

crank pin force along and at right angles to the rod, and by plotting 
on a polar diagram the former forces. 

4. Forces on Main Bearings. The total load on any of the main 
bearings is made up of the following forces, namely— 

(1) The centrifugal force due to two webs (one on each side). 

♦ See p. 28 for dimensions of bearings. 

Fig. 20. Diagram of Resultant 

Pressures on Crank Pin 
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(2) The centrifugal force due to one-half of each crank pin. 
(3) One-half of the total load on each crank pin. 

In the case of the centre main bearing of the engine, the webs on 

each side of the bearing are in line. The resultant pressures on the 

crank pins are 360° apart as regards the four-cycle phases, but are in 
phase with each other as regards the dynamic stresses, and the polar 
diagram (Fig 21) is com¬ 
pleted by 360° of crank¬ 

shaft rotation. 

In the consecutive 
plottings of any feature 

of the polar diagram 

given in Fig. 21, the ^ 
members on one crank 

pin create a vector during 
the first 360°, whilst the 
same members create the 

vectors tracing during the 

second 360°. 
The diagram itself will 

serve to indicate the 
method of obtaining the 

resultant vector. 
It will be noticed that 

there is a discontinuity 

between the points 360° 
and 0°, and at 45° and 

45°, on the curve, indi- 0 1000 3000 5000 7000 
eating that there is a loss hAniintl I I 1 i i i \ 

of bearing pressure at the Scale in lb. 
centre main bearing when Fl°- 2}; PoLAR Diagram of Forces on 

° , Crankshaft Main Bearing 
the crank moves past the 
top dead centre line of either line of cylinders; this is due to the 

inertia pressure of two sets of reciprocating parts coming on the 

bearing as a reversed, or negative, loading. The evenness of the polar 

diagram indicates a fairly uniform bearing pressure throughout each 

cycle. 
The maximum load on the centre main bearing is 7700 lb. 

The projected area — 2-625 X 1-75 in. = 4-59 sq. in., so that the 
maximum bearing pressure is given by— 

as 

Scale in lb. 
Fig. 21. Polar Diagram of Forces on 

Crankshaft Main Bearing 

= 1675 lb. sq. in. 

The average load on the bearing as given by the mean radius vector 
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of the polar curve in Fig. 21 is 5810 lb., so that the mean bearing 

pressure is given by 

5810 

4*59 
1265 lb. sq. in. 

The rubbing velocity at this bearing is 19*5 ft. per sec., and therefore 

the mean load factor is— 

/ = 1265 X 19*5 = 24,670 lb. per sq. in., ft. per sec. 

5. Side Thrust of Piston. It is a fairly simple matter to estimate 

the piston side thrust forces for all crank angles, from a knowledge 

of the resultant of the cylinder pressure and inertia forces, and from 

the crank to connecting rod ratio. 

The former factor is given in curve C (Fig. 18), whilst the piston 
thrust is given by the relation— 

Also 

so that 

R s=r Q sin <f> 

r r 
Q . r . sm 0, since . -- 

l sm (f> sin 0 

Q 

R 

cos <f> Vl — sin2 <f, 

Pr sin 0 

Vi2 — r2 sin2 0 

Msin2 6 

(a) 

The piston thrust R is then given in terms of the resultant pressure 

P and the crank angle 0. 

In the case under consideration, the maximum value of the piston 

thrust is given when the crank arm and connecting rod are at right 
angles; in this position the value of <f> is given by— 

, r 3-5 

tan * =1 = 12 0-29166 

so that <f> = 16° 16' 

The corresponding crank angle 0 is given by*— 

r 12 
sin 0 =-7 sin <£ = ™rrsin 16° 16' 

l 3-5 

whence 0 = 73° 44' 

Values of R, the piston thrust, have been estimated for various crank 

angles 0, using values of P given by the ordinates of curve A (Fig. 21). 

* 0 is the complement of <f>> 
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These values are shown plotted on a crank angle base in Fig. 22 

for the 720° complete cycle period. 
It will be seen that the side thrust is a maximum at about 35°, 

and during the firing stroke it is always in the same direction. 
During the idle exhaust and suction strokes, owing principally to 

inertia effects, the piston thrust changes from side to side, being first 
on the side opposite to the initial thrust, then on the same side for 
the interval 282° to 360°, then opposite for 360° to 437°, and so on. 

9 

1 

i 

I 
I 

Fig. 22. Piston-thrust Diagram 

It is noticeable that the compression stroke hardly gives any side 
thrust as shown by the low ordinates of the curve for the period 540° 

to 720°, and is almost zero towards the end of the stroke. 
On the same diagram (Fig. 22), a dotted curve of piston velocity is 

also shown, so that the load-velocity product can be at once obtained 

for any crank position. 
The curve shows that the maximum piston thrust is about 930 lb., 

this pressure may be considered as being carried by the portion of the 

piston below the rings. 
The projected area of this portion is given by— 

A = 3*625 X 5*0 in. = 18*125 sq. in. 

Hence the maximum pressure between the piston and cylinder walls 

is— 
930 

P ~ 1*125 ~ 512 lb‘ Sq'in' 

The mean piston velocity is given by- 

2 
Vp = - . Vc where Yc = crank pin velocity 

71 

4N. r 
6or where N = r.p.m. 

4 x 1700 X 3-5 

60 X 12 
331 f.s. 
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Hence the load factor on the side walls is given by 

L = 51-2 x 331 

= 1690 lb. sq. in. ft. per sec. 

The relative movement in this case is one of sliding. 

Knowing the forces in the various members, it is possible to obtain 

the stresses in these parts. 



CHAPTER II 

ENGINE TORQUE AND TORQUE DIAGRAMS 

Crank Effort or Torque 
It is necessary for the purposes of crankshaft design and in connexion 
with considerations of torsional vibrations in engine-driven systems 

to know the value of the engine torque for any given crank angle. 
Referring to Fig. 23, P denotes the total pressure or load on the 

piston, Q the resultant connecting rod thrust, and R the normal thrust 

between the piston and cylinder wall. From the fact that the triangles 

pnO and 0»w» are similar, it follows that 

P = Q cos <j) 
Op _ Om 

Q W = Q On 

The crank effort is P . On, which has been shown to be equal to 

Q . Om. 
Referring to Fig. 24, the value of On, in terms of Z, r, and 0, is 

obtained as follows— 

Also 

On = Oq + qn = CD + qn = r sin & + qn 

qn CD 
= —=r, whence qn 

Cq pD 

Cg.CD 

pi) 

37 
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Substituting in this latter expression Cq = r cos 0, CD ~ r sin 6 

.and pD = Vlz — r2 sin2 9, we get 

r2 cos 0 . sin 6 
qn =r 

Vl2 ~ r2 sin2 0 

Hence the crank effort P . On = P(0q + qn) 

Pr sin 
/ r cos 6 \ 

in 6 H-7====== ) 
V Vl2 - r2 sin2 0) 

It will be observed that this expression is similar to that for the 

velocity of the piston, given on page 17, for in each case the multiplying 

factor is a term proportional to the intercept of the connecting rod 

on the vertical diameter of the crank pin circle. 

The total pressure P, which is the resultant of the gas and inertia 

pressure loads, varies throughout the cycle of operations. Its value 

can be obtained by the method given in the previous chapter. A 

diagram of crank effort or torque can then be drawn by multiplying 

corresponding values of P and the intercept 0?? (Fig. 23) together and 

plotting the result on a piston or crank angle base. 

The area of this diagram to a suitable scale of units will represent 

the work done per cycle, since the area of the torque curve on a crank 
rm) 

angle base (or polar diagram) is equal to T . dO where 0 is the 

crank angle. Another expression for the torque, which can readily 

be obtained from Fig. 23, is as follows— 

Torque — 
Pr sin (6 + </>) 

cos </> 

It should be noted that in the preceding calculations it is the theor¬ 

etical torque on the crankshaft that has been considered. The effective 

or actual torque will be less than this owing to engine fractional losses 

between the cylinder and crankshaft, which have the effect of reducing 

the value of the cylinder gas pressure as given by the indicator diagram. 

Mean Torque 
The mean torque at the crankshaft can be obtained from the brake 

horse power and corresponding engine speed as follows— 

Torque X angle of rotation (radians per min.) = b.h.p. x 33,000 

where the torque is in lb.-ft. 

If N = r.p.m. of engine, angle of rotation per min. = 27tN. 

Thus Torque 
33,000 b.h.p. 

2tr * N 
=r 5252 

b.h.p 

~N~~ 
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Torque and M.E.P. Relationship 
It is useful to note that since the b.h.p. of an engine is proportional 

to the product of the brake mean effective pressure (b.m.e.p.) and 
the engine speed N, it follows that the engine torque will vary as 

the b.m.e.p., so that a curve representing b.m.e.p. values on a 

speed base will also represent engine mean torque values, but to a 

different scale. 

Brake Horse Power Calculation 
Although it is usual to measure the brake horse power of a petrol 

or Diesel engine with some type of dynamo¬ 

meter it is useful to be able to calculate the 
probable value of the b.h.p. from the engine 
dimensions and other factors. If N = r.p.tn., 

d = diameter of cylinder in inches, l = length 

of stroke in inches, n = number of cylinders, 
and p — b.m.e.p. at the speed N, 

l rrd2 N 

Then b.h.p. 
j,xii X 

2 
X n 

33,000 

= 9-91664 x 10“7 pld2Nn 

N 

Fig 25. Single 

Cylinder Engine 

The reason for using — in this formula is 

because there is one firing stroke per two engine 
revolutions for a four-cycle engine. In the case 

of a two-cycle engine the value N would be 

used so that the constant of the preceding 

formula must then be doubled. 

The value of p, the b.m.e.p., is usually deduced from the indicated 
rn.e.p. by multiplying the latter by the mechanical efficiency. For 

modern high-speed internal combustion engines the value of the 
mechanical efficiency varies from 80 to 90 per cent. 

The value of the indicated m.e.p. can also be worked out from the 

theoretical indicator diagram, arrived at by thermodynamical con¬ 
siderations of the particular conditions, such as compression ratio, 
cooling losses, mixture ratio, etc. 

t 

Torque Diagrams for Different Types of Engine 
It is now proposed to consider a few of the more important cases 

of the application of crank effort or torque curves to examples occurring 
in practice. 

For the purposes of comparison, it will be more convenient to 
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assume that all the types of engine have the same size of cylinder, the 
engine speed being constant in each case. 

In the examples considered, the bore and stroke have been 
taken as 3 and 4 inches respectively, and the engine as running at 
1000 r.p.m. 

Crank Angle. 

Fig. 26 Single cylinder Engine Torque Curve 

Further, a connecting-rod-crank ratio of 4 ( = n) has been assumed, 
and the weight of the reciprocating parts taken to be 4 lb. 

A standard example of indicator diagram has been taken, plotted 
out on a crank angle base, and corrected for inertia effects in the 
manner previously explained. 

The equivalent inertia pressures, in lb. per sq. in., have been 
estimated to be 59 and 36 for the in- and out-centres respectively. 

In each case the mean value of the torque for one complete cycle 
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of operations of a single cylinder or two crank revolutions has been 

obtained from the mean height of the torque diagram, and, further, 

the ratio of the maximum to the mean torque is given in each case. 

Case I. The single-cylinder type, as illustrated diagrammatically 
in Fig. 25, gives a torque diagram as illustrated in Fig. 26. 

It will be noticed that the variation in the crank effort during the 

firing stroke is very marked in this case, the ratio of maximum to 
mean torque being 8*6. 

Fig 28 Two cylinder Vertical Engine Torque Diagram 

It will be seen later that such a high value of this ratio necessitates 

relatively larger sizes of the torque transmission parts and a heavier 
flywheel than in the succeeding cases. 

Case II The diagrams given in Fig. 28 illustrate the torque curves 

for a twin-cylinder side-by-side type of engine with cranks at 180°, 

and firing alternately, shown in Fig. 27. 
The dotted curve in the diagram represents the resultant torque 

due to the combination of the two separate torques of the respective 

cylinders 
In this case the maximum torque is just four times the mean, 

which is represented by the dotted horizontal line. 
Further, it will be seen that twTo explosions follow each other con¬ 

secutively, and then there is an idle period of one revolution, and two 

more firing strokes during the next revolution, and so on. 
Case III. Two opposed cylinders, with cranks at 180°. The crank 

efifQrt curves for this type of engine, which is illustrated in Figs. 198 

and 199, are shown in Fig. 29. 



42 AUTOMOBILE AND AIRCRAFT ENGINES 

It is noticeable that the frequency of occurrence of the firing strokes 
is quite regular, so that the maximum torque periods will also be 
regular. 

Crank Antfe. 

Fig 29. Two-cylinder Opposed FJngine Torque Diagram 

The ratio of maximum to mean torque during two revolutions in 
this case is 3*9. 

Cose IV. Next in consideration is the Fee type of engine, commonly 
employed in motor-cycle practice. * J 

The diagrams in Figs. 30 and 31 relate to cylinders set at 90° and 
firing alternately. 
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Cr mk Angle. 

Fig 31 90° Twin Engine Torque Diagram 

Crank Angle. 
Fig. 32. Four-cylinder Engine Torque Diagram 
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The interval between consecutive explosions is not quite regular, 

the intervals being alternately f and £ of a revolution. 

Fig. 33 Sjx-(ylinder Vertical Engine 
Crank Arrangement 

The ratio of maximum to mean torque is 4-0. 

It will be apparent that the smaller the angle between the cylinders, 
the nearer does the total or combined torque curve approach that 

Crank Angie. 

Fig. 34. Six-cylinder Torque Diagram 

of a two-cylinder engine with one crank only, and the more irregular 
do the firing periods become, that is, the less uniform the periods of 

maximum crank effort. 
Case V. Four cylinders with cranks in pairs at 180°, as shown in 

Fig. 32, the order of firing being 1, 2, 4, 3—this being an ordinary 

motor-car engine arrangement. 

The crank effort diagram indicates that the filing periods are quite 

regular and follow on consecutively with no irregular intervals. 
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There are four periods of firing or useful crank effort during every 

two revolutions, and consequently four peaks to the combined torque 
curve. 

The ratio of the maximum to the mean torque in this case is 2-0 
approximately. 

Case VL The six-cylinder type with cranks at 120°, the firing order 
being 1, 4, 2, 6, 3, 5, and representing an ordinary type of six-cylinder 
car engine. 

There are now six firing periods during every two revolutions, 

and consequently six maximum torque peaks, as shown in Figs. 33 
and 34. 

The ratio of maximum to the mean torque in this case is 1-4, so 
that one effect of cylinder duplication is evidently to raise the height 

of the mean torque line, and to cause it to approach more nearly the 
maximum torque height. 

From the examples considered, it should be a simple matter to 
determine the resultant crank effort curve for any other arrangement 

of cylinders. 

Polar Torque Diagrams 

An alternative method of plotting torque diagrams is the polar one, 

in which the instantaneous torque values are plotted as radii vectors 

at angles to the zero radius line, equal to the crank angles. 

A typical polar torque curve* is shown m Fig. 35. 

This curve refers to an engine of the four-cylinder vertical type, 

with the following characteristics— 

Bore = 5*046-in. Stroke — 6 in. 

Connecting rod length = 12 m. 

Indicated m.e.p. = 100 lb. sq. in. 
Engine speed — 1909*9 r.p.m., or 200 radians per sec. 

Reciprocating weight = 3-22 lb. per cylr. = 0*162 lb. per sq. in. 

of piston area. 

The maximum explosion pressure was 330 lb. sq. in., and the compres¬ 

sion ratio about 5:1. The expansion and compression curves were of 

the form PV1*33 = const. 
The torque values given include both pressure and inertia effects. 
The torque curve for the single cylinder must be drawn first, and, 

as in the preceding cases, the torque curve for any other number 
of cylinders, or cylinder arrangements, can then be obtained by 

0 

* See 44Unbalanced Forces in Reciprocating Engines,’’ by J. L, Napier: The 
Autom, Engineer (Feb. and Mar.), ]920. 



F
ig

. 
3
5
. 

P
o

l
a
r
 
T

o
r
q
u
e
 
C

u
r
v
e
s
 
f
o
r
 
S

in
g

le
-
 
a
n
d
 

F
ig

. 
3
6
. 

P
o

l
a
r
 
T

o
r
q

u
e
 
C

u
r
v

e
 
f
o
r
 
E

i
g
h
t
-
c
y
l
i
n
d
e
r

 

F
o
u
r
-
c
y
l
i
n
d
e
r
 
E

n
g

in
e
 

V
e
e
-
ty

p
e
 
E

n
g
in

e
 

g 

pm 
mm mm mm m w 

S 



ENGINE TORQUE AND TORQUE DIAGRAMS 47 

replotting the torque curves in their proper phase relations, and alge¬ 
braically summing the ordinates, or radii vectors. 

The dotted curve in Fig. 35 gives the torque curve for a single 
cylinder; the radii vectors are drawn at intervals of 15°. 

The maximum torque value due to both gas pressure and inertia 

360° 

Fig. 37. Polar Torque Curves for Twelve-cylinder 

Vee and Arrow Types of Engine 

forces is about 570 lb.-ft., whilst the mean torque value is about 
79-6 lb.-ft. 

maximum torque 
The ratio =-— = 7-15 

mean torque 

In the case of the four-cylinder vertical engine with cranks at 180°, 
as in normal practice, the values of the maximum and mean torques 

are 526-6 and 318-6 lb.-ft. respectively, giving a maximum to mean 
ratio of 1-653. 

The following table shows the values of the maximum torque 

variation,* and mean torques for other well-known petrol engine 

* The greater fluctuation of torque due to the gas pressure in this case is 
balanced by the opposite greater inertia fluctuations. 
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cylinder arrangements, each cylinder having the same characteristics 

as the one mentioned on page 45; the m.e.p. and engine speed are 

the same as in the previous case— 

TABLE II 

Torque Relations for Different Engines (Napier) 

(a) 

Type of Engine 

(b) 

Load 

(c) 
Con¬ 

necting 
Rods 
Crank 
Ratio 

(d) 
Maxi-J 
mum 

Torque 
Vari¬ 
ation 

(0 

Mean 
Torque 

(/) 

Ratio 
(d) 

(e) 

Smgle cylinder Full 4 
lb.-ft. 

750 
lb.-ft. 
79-6 9-3 

Four-cylinder vertical ,, 4 526-6 318-6 1-653 
Six-cylinder Vertical . >> 4 475-6 474 0-990 
Cranks at 120° standard 

arrangement. One-half 4 359-9 239 1-502 
)) One-quartor 4 398-1 119-5 3-331 

Eight-cylinder standard 
No Load 4 576-24 0 Infinity 

■ 
Vee-type engine Full Load 4 583-72 637-2 1 0-916 

* »» ft tt 3 584 637 0-916 
Twelve-cylinder Broad 

Arrow engine (four per i 
line) .... tt 4 398 956 0-407 

Twelve-cylinder Vee-type 
(six per line)f Full Load 4 398 956 0-407 

* The greater fluctuation of torque due to the gas pressure in this case is 
balanced by the opposite greater inertia fluctuations. 

f Both types fire at equal intervals of 60° each, and the complete torque 
diagram is the same for each type. 

(Examples of the eight- and twelve-cylinder polar torque diagrams are given 
in Figs. 36 and 37 from Napier’s results.) 

J Note that the maximum torque variation — max.-min. torque, and is not 
the same as the max. torque. 

Twelve-cylinder Vee-type Engine Torque 
In the case of the twelve-cylinder Vee-type engine referred to on 

page 27, using the same pressure and inertia data, the torque curves 

for each pair of Vee cylinders may be separately drawn upon a crank- 

angle base diagram, and the ordinates algebraically summed in the 
usual manner. 

Fig. 38 shows the combined torque diagram for this engine for a 

720° period, the dotted lines referring to the separate torque curves 

for six pairs of cylinders; the full-line diagram gives the resultant 

curves for the six pairs of cylinders, and the horizontal line cutting 
the peaks of this diagram shows the mean torque curve. 

The maximum torque peak occurs at an angle of 73° 44' from the 
top position, and at every 120° thereafter. 
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The minimum torque peak occurs at 48° 44' and at every 120° 
thereafter. 

The maximum peak occurs at the crank position at which the crank 

and connecting rod are at right angles during the explosion stroke of 

the left-hand cylinder of a pair; a simultaneous explosion also occurs 

0 90 180 270 360 450 540 630 720 
Crank onqle in deqrees 

Fig. 38. Torque Curves for Twelve-cylinder Vee Engine 

on a right-hand cylinder elsewhere, but the crank in this case is only 
28° 44' past top dead centre. 

The maximum value of the engine torque, corresponding to 123 lb. 
m.e.p., is given by— 

T max — 

123 X 19-6 x 7 x 6 

12 x 2n 
1345 lb. ft. 

which is equivalent to a force of 5760 lb. acting tangentially at crank 
pin radius. 

The ratio of the maximum to the mean torque value in this case 
is 1-25. 

The ratio of the maximum torque variation to the mean torque is 
about 0-35. 
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Bearing Loads of Six- and Twelve-cylinder Engines 

An interesting comparison has been made between the bearing 

loads of a six-cylinder engine and a twelve-cylinder Vee-type one.* 

The former engine, of the usual vertical type, had a bore of 81*5 mm. 

and stroke of 114 pnn., giving a cylinder capacity of 3568 c.c. and 

an R.A.C. horse-power rating of 24*7. The compression ratio was 

5-3 : 1. The reciprocating weight per cylinder was 2-625 lb. and the 

rotating weight of the big end 1-735 lb. The big-end bearing area was 

2-52 sq. in. 

Fig. 39. Big-end Bearing Loads for Six-cylinder Engine 

In the case of the twelve-cylinder engine the bore was 65 mm. and 

stroke 94 mm., giving a cylinder capacity of 3744 c.c. and an R.A.C 

horse-power rating of 31*4. The compression ratio was 6*2 : 1. The 

reciprocating weight per cylinder was 1-34 lb., and the rotating weight 

of the big end was 2-06 lb. on the near side and 0-99 lb. on the off side. 

It should be mentioned that the connecting rods on opposite pairs of 

cylinders wrorked on the same crank pin. 

Fig. 39 shows the actual big-end bearing load of the six-cylinder 

engine at 4000r.p.m. under full load conditions for a complete 

cycle of two crankshaft revolutions. It will be observed that the 

maximum load acting on the big-end bearing occurs at the top of the 

exhaust stroke and is about 5000 lb. The average load over the complete 

cycle is 3140 lb. The maximum bearing pressure is equal to the 

maximum load divided by the big-end bearing area, and works out 

at 2000 lb. per sq. in. The mean bearing pressure, P, is 1245 lb. per 

sq. in. The diameter of the crankshaft is 1-89 in., so that the rubbing 

* “The Double-six Engine,” L. H. Pomeroy, Proc. Inst, Autom, Engrs., 1930. 



ENGINE TORQTJE AND TORQUE DIAGRAMS 51 

velocity V is 33 ft. per sec. at 4000r.p.m. The product of bearing 
pressure and rubbing velocity, known as the PV factor, is 41,0001b. 

per sq. in., ft. sec. at 4000r.p.m. 
Fig. 40 (upper diagram) shows how the big-end bearing load of the 

twelve-cylinder engine varies during a complete cycle under the same 

running conditions. This graph represents the combined loads of the 

two connecting rods and pistons on the main big-end bearing. It 
commences at the point where the crank for the near-side piston is 60r 

Movement of crankshaft m deq. 

Fio. 40. Big-end Blaring Loads hor Twelve-cylinder Vee t\pe 
Engine 

after the top of the combustion stroke. The maximum load on the 

big-end bearing is 4950 lb., and the average load is 3600 lb. The maxi¬ 

mum and mean bearing pressures corresponding to these loads work out 

at 2000 and 1465 lb. per sq. in., respectively. The crank-pin diameter is 

1*73 in., giving a rubbing velocity of 30 ft. per sec. 
The average PV factor for the big-end bearing is therefore 44,000 lb. 

per sq. in., ft. sec. 
The lower curve in Fig. 40 represents the load on the big-end of the 

oscillating rod. This rod is located in the off side cylinder bank, and 

takes its bearing on the outside of the main-bearing shell in the centre 

of the forked rod, to which the shell is fixed. The ipaximum load on 

this bearing is 22001b., and the mean load 14001b. The effective 

projected area of the bearing is 1*64 sq. in., so that the maximum 

bearing pressure is 1340 lb. per sq. in. and the mean pressure 850 lb. 

per sq, in. The relative movement between this rod and the forked 
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rod is 24°. The diameter of the bearing is 2*00 in. The mean PV 

factor for this bearing is 4370 lb. per sq. in., ft. sec. 

Although the PV factors for the two engines are very similar at 

4000r.p.m., tests upon these engines revealed the fact that the six- 

cylinder engine would not operate for any appreciable period at this 

speed owing to bearing trouble, whereas the twelve-cylinder engine 

gave no trouble. The explanation appears to be that the polar diagram 

of bearing loading for the latter engine approximated to that of a circle, 

whereas that of the six-cylinder engine was distinctly elliptical, the 

major axis being about 2*7 times the mean axis. 

Torque Variation of Similar Capacity Engines 
The previous considerations have been confined to the comparisons 

of engines having a different number of cylinders, each of the latter 

being of the same size. 

An important case occasionally occurring in practice, when the 
advisability of changing from one design to another is being considered, 

is that of engines having the same total cylinder capacity but a different 

number of cylinders; each of the latter will, therefore, be smaller as 

the number of cylinders is increased. 
An interesting comparison that has been made in the case of 4, 

6, 8, and 12 cylinder automobile four-stroke engines is given in the 

table below. The torque valuer refer to engines of equal total cylinder 

capacity. 
One is thus able to compare the merits of engines in the same cubical 

capacity class— 
TABLE III 

Torque Variations for Equal Cubic Capacities 

No. of Cylinders 
Variation of Torque from 

Mean Value (per cent) 
Relative Variation 

of Torque 

4 125 100 
6 45 36 
8 20 16 

12 10 8 

Effect of Speed Variations on Torque Values 
From the designer's point of view it is important to be able to 

examine the mode of variation of the torque values at different 
engine speeds, and to consider not only the mean, but also the maximum 
working speeds. 

Hitherto the ratio of the maximum to mean torque at some inter¬ 
mediate engine speed only, has been considered, whereas at the 
highest working speed a much higher ratio occurs. 
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The following tabulated values refer to a specific example* of a 

four-cylinder petrol engine of 3-in. bore and 5-in. stroke with recipro¬ 
cating parts weighing 2 lb. per cylinder— 

TABLE IV 

Effect of Speed on Torque 

Revs, per minute 2000 2500 3000 3500 
Max. torque lb.-ft. 230 355 516 712 
Min. torque lb.-ft. 0 - 119 ~ 273 - 466 
Mean torque lb.-ft. 103*7 103-7 103-7 103-7 
_ Max. 
Ratio ,7- .... 

Mean 
2*23 3-44 5-01 6-29 

Fig. 41. Showing Effect of Speed Variations on Torque Values 

The manner in which the torque varies during the stroke is shown 
in Fig. 41 for the four cases tabulated above. These diagrams show 
in a very striking manner the important effect of speed on torque. In 

another typical case the torque values were worked out for speeds of 

1500r.p,m. and 3000r.p.m. respectively, in the case of a similar 
foiir-cylinder petrol engine with 3 lb. weight for the reciprocating 

parts per cylinder. 
At 3000r.p.m. the range of torque was 6*75 times as great as at 

1500 r.p.m., and the ratio of maximum to mean torque was 4*0 times 

the value at the lower speed. 

* “Torque Calculations,” H. A. Golding, Proc. Inst. Autom. Engrs. (1925-26). 
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Another interesting comparison between the torque curves of a 

certain design of engines of equal cylinder capacity, but with 6, 8, 

and 12 cylinders, respectively, is shown in Figs. 42 and 43.* In the 

former case the torque curves have been taken at a crankshaft speed 

of 200 r.p.m., at which speed the inertia forces are practically negligible, 

so that the torque variations are due to gas pressure effects. The graphs 

Fig. 42. Torque Curves for Thule Types of Engines a.t 200 r.p.m. 

shown in Fig. 43 are for the same three engines but for a speed of 
3000 r.p.m. 

The following values indicate the variations of torque in the two 
cases mentioned. 

TABLE V 

Torque Comparisons for Different Engines 

1 

Engine Speed, Ratio of Maximum to Mean Torque 

r.p.m. 
Six-cylinder Eight-cylmder Twelve-cylinder 

200 1 -92 1-58 1-20 

3000 1*95 1-37 1-20 

* “The Double-six Engine,’' L. H. Pomeroy, Proc. Inst. Autom. Engrs., 1930. 
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Thrust on Cylinder Walls 
Case I. The obliquity of the connecting rod produces a side thrust 

l 
on the cylinder walls. The value of this thrust increases as - = n 

decreases, assuming a definite value for the motor couple or torque. 

Let T be the side thrust, 

F the force at the gudgeon pm, 

and R the force exerted along the conneding rod. 

By taking moments about 0, Fig. 44— 

* T . OB = it. OC 

= Torque of engine 

The investigation may be proceeded with analytically. Considering 

the equilibrium of the three forces at B 

T 
p -= tan <j> 

Putting <f> in terms of Z, r, and 0; since r sin 0 = l sin <f> 

r 

tan <f) — 

. , -sin 0 . 
sm (p i r sm 0 

That is 

Vl — sin2 (p 

T 

F ' 

/ r2 
sin2 0 

Vl* - r2 sm* 0 

r sin 0 

Vl2 - r* sill2 0 

Case II. When the engine is offset by an amount b, Fig. 45 the 

balance of the moments about 0 is 

T . OB' + F . b - R . 0Cr 

As before, the alternative consideration of the forces at B gives 

T 

F 
- tan (f)1 

Determining <p1 in terms of 0.1. r . b from l sin cp1 =. r sin 0 — b, we 

get 

tan (p1 ~ 
r sin 0 - - b 

Vl2 — (r sin 6 — bj2 

Now the numerator is less and the denominator greater in Case II 

T 
as compared with Case /, so that the value of ^ is less. Hence for a 
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given value of F, the thrust T is smaller, so long as sin 6 has a positive 

value, that is, during down strokes. When sin 6 is negative—corre- 

T 
sponding with up strokes—the value ^ is greater; but as the real 

Jb 

value of F for compression or exhaust strokes is small the increase in 

T is not of great moment. The diminution of T on the firing stroke 

when F is large, is, however, quite appreciable. It is to this factor 

that the adoption of offsetting may be put down. 

The piston-thrust diagram for the offset cylinder may be readily 

obtained graphically. 

The procedure consists in first obtaining graphically a diagram of 

crank angles and corresponding piston positions,* similar to that 

shown by the full lines in Fig. 46. All that it is necessary to do is to 

divide the piston stroke into a number of parts and, using these points 
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as centres and the connecting-rod length as radius, to mark off the 

corresponding crank positions on the crank circles. 
Next, it is necessary to obtain the corresponding connecting-rod 

angles (made with the cylinder axis) either by the above graphical 
method or by calculation from the above relation between <f>x and 0. 

The piston pressure diagram, corrected for inertia, gives the corre¬ 
sponding values of F, the axial force on the gudgeon pin for different 

points along the stroke, the corresponding connecting-rod angles to 
which are now known. 

The piston thrust on the cylinder walls is then given by the relation— 

T - F tan <f>1 

If values of T be plotted upon a piston-stroke base, a diagram (B> Fig. 
46) will be obtained similar to that shown in Fig* 47, which is drawn 
for the case of an offset engine, with an offset equal to one-sixth of the 

Cylinder diameter and a connecting rod to crank ratio of 4. 
The dotted line A shows the corresponding normal cylinder diagram. 
The relative values of the two maximum and mean piston thrusts 

are as follows— 

Maximum thrust (normal engine) 

Maximum thrust (offset engine) ~~ 

Mean thrust (normal engine) ^ 

Mean thrust (offset engine) 

The compression-stroke piston-thrust diagram has been drawn upon 
the same side as the firing stroke diagram, for convenience, although 
actually it should have been drawn below. 

The present considerations are only concerned, however, with 

quantitative values, so that the curves shown fulfil these requirements. 
The only difference, then, between the firing and the compression- 
stroke piston-thrusts is that, in the former case, the explosion pressure 
causes the thrust against one side of the cylinder wall, whereas, in 
the latter case, the momentum of the engine causes the thrust whilst 

compressing the charge, and it occurs upon the opposite side of the 
cylinder wall. 

An examination of Fig. 47 shows that the firing period piston-thrust 
is reduced by about 35 per cent, due to the smaller connecting-rod 

obliquity; but during the compression period, when the obliquity 
is greater than in the normal type, the piston thrust is increased by 

about 30 to 40 per cent. This increase, as the previous results show, 
is considerably outweighed by the firing period gain. 

It may here be mentioned that in the case of the slipper or short 

skirt type piston the relative surface areas of the firing and compression 

3—(T 5078) 
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Fig. 47. Piston Thrust Curves for Normal and Offset Engines 
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sides may be estimated from the mean areas of the piston-thrust 

diagrams for these two periods. The ratio in the present examples 
is 2*8 : 1. 

Radial Engines. Master Connecting Rods 
A problem confronting the designer of radial engines is that of 

finding the turning moment exerted on the master connecting rod 

by gas pressure on the articulated rods. In this connexion a graphical 

analysis has been made by Y. Hara and N. Kanzo* on the torques 

due to gas forces on a seven-cylinder radial engine of 4*63 in. bore 

and 4*63 in. stroke. The length of the master connecting rod was 

8*8 in. and the average radius of the articulated connecting rod hinge 

pins was 2*2 in. Ap assumed typical indicator diagram of cylinder 

pressures was used. 

The results of this analysis are shown in Fig, 48, for turning moments 

on a crank angle base. The master rod cylinder is considered as 
cylinder No. 1. From these results it is apparent that No. 6 cylinder 

provides the maximum torque. The resultant torque curve is shown 

by the full black lines. 

An approximate formula, due to R. K. Mueller, for the torque 

exerted by an articulated connecting rod on a master connecting rod 

when the articulated rod hinge pin angle is equal to the cylinder angle, 

as is usually the case with radial engines, is as follows— 

^ sin 0 [ sin(a—0) . . . (1) 

where M = torque in lb. in. 

P — total gas pressure force on piston in lb. 

r — crank radius in inches 

rx -=- distance of the articulated connecting rod hinge pin centre 

from the crank pin centre, in inches 

l — length of master connecting rod, in inches 

0 — crank angle from master connecting rod top dead centre, 

in degrees, and 

a “ angle between master cylinder axis and articulated cylin¬ 

der, in degrees 

The results given by this approximate formula agree very closely 

with those from the graphical method, illustrated in Fig. 48, and the 

formula is recommended for torque calculations as being less compli¬ 

cated and less liable to error than the graphical method. 

* “Master Connecting Rods,” Prof. C. F. Taylor, Jour*. Society Automotive 
Engineers, 1933. 
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An approximation to the maximum torque for any seven-cylinder, 

or double-row fourteen-cylinder, radial engine with articulated rod 
hinge pin angles equal to cylinder angles, which is sufficiently accurate 

for most engineering purposes, is as follows— 

Mroa* = l-23PmM-62^4) 

where PTOaa. = maximum cylinder pressure in lb. per sq. in. and 
b = cylinder diameter, in inches. 

For a nine-cylinder engine the corresponding relation is— 

M =M4P —b2( I XTAma® — 4 max — u l ^_ / I 

It has also been shown that in any radial engine with articulated 
connecting rod hinge pin angles equal to cylinder angles, and with 

normal spark tim&ig (maximum pressure at 10 to 15° after top dead 
centre), the maximum moment due to gas pressure will occur when 
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the crank is at the maximum pressure position of a cylinder whose 
axis is near 270° from the master connecting rod cylinder axis. This 
“critical” crank position for various numbers of engine cylinders is 
as follows— 

TABLE VI 

Critical Crank Positions 

Degrees After Top Dead Centre No. of Cylinders 

250 to 255 9 
267 to 272 7 
298 to 303 5 
250 to 255 3 

Measurement of Engine Torque 
It has been shown how the actual torque at any part of the engine 

cycle can be' estimated from a knowledge of the engine dimensions and 
the indicator diagram pressures, so that a theoretical diagram of torque 

values during a cycle can be obtained. Further, a simple formula has 

been given for calculating the mean engine torque during a cycle. 
It is often necessary to be able to measure the engine torque, both 

in regard to instantaneous and also mean values. For the former 

purpose an instrument, known as a torsiograph * is employed to give 
actual records of torque values during the cycle. The mean torque 
values can be obtained by three principal methods, namely, as follows. 

(1) From b.h.p. Measurements. If the b.h.p. values are measured 
at various speeds, the mean torques at these speeds can be computed 
from the formula given on page 38. 

(2) From Dynamometer Measurements. Most of the modern engine 

brakes or dynamometers belong to the torque-reaction type in which 
the framework of the power-absorbing member is not bolted down 

to the ground but is mounted in trunnions so that, unless restrained, 
it can rock or rotate about the axis of the dynamometer. The frame¬ 
work is, however, provided with a lever-arm, upon the end of which 
is a scale-pan or spring balance. During a b.h.p. test the end of the 

weighing lever-arm is loaded so that it “floats” between a pair of 

fixed stops. Under these circumstances the mean torque exerted by 
the engine can be measured by noting the balancing load on the lever- 

arm and multiplying this by the effective length of the lever-arm. 

Thus, it is the mean torque at each speed which is measured in 

these b.h.p. tests.t 
(3) From Torsiometer Readings. In this method an instrument, 

* Vide page 38. 
f For a fuller account vide Testing of High-speed Internal Combustion Engines, 

A. W. Judge (Chapman & Hall, Ltd.), Third Edition. 
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known as a torsiometer or torquemeter, is employed to measure the 
torque. The principle of most torsiometers is that of measuring the 

difference between the angles of twist of a short shaft member coupled 
between the engine and the unit which it has to drive. The twist angle 
in question measured over a given length of shaft, enables the corre¬ 
sponding mean torque to be calculated from the elastic properties of 
the shaft, or obtained by applying a torque of known amount and 

Fig 49. The Baldwin Southwark SR~4 Electric Strain Gat ge 

Type Torsiometer 

measuring the angle of twist between the two reference planes, at 

right angles to the axis of shaft. 
In one well-known torsiometer mirrors are fixed to the shaft at a 

given distance apart. These rotate with the shaft, but once every 

revolution pick up and reflect beams of light on to a semi-transparent 
scale. Any difference in the angle of twist is at once revealed by the 

relative displacements of the two fight spots on the scale. 

It is not possible, for space reasons, to describe these instruments,* 

but in passing mention may be made of the use of electric strain 
gauges on the surface of the shaft, to measure the angle of twist. 

A typical example is that of the SR-4 torsiometer* (Fig. 49), consisting 
of a short length of shaft built into the power transmission system 
containing the strain gauges and electrical pick-up cables, etc. From 

electrical measurements taken during runs the mean torque is readily 

ascertained. The instantaneous torque values can also be recorded 
on a strip chart pen-and-ink recorder. Readings can be obtained at 
speeds up to 60 ft. per sec. (surface) and torsional stresses up to 

8000 lb. per sq. in. 

* Baldwin Southwark Div. Philadelphia, U.S.A. 



CHAPTER III 

VALVE CAMS AND FOLLOWERS 

Valve Acceleration 
In connexion with the design of poppet valves for high-speed petrol 
engines, the question of the inertia forces due to the weight and 
acceleration (or deceleration) is of much importance in valve-spring 
and cam design. 

Consider, first, the acceleration forces acting on the valve during 
the opening period. The rate of acceleration, other things being the 
same, will depend upon the design of the valve operating cam, as is 
shown later. 

A form of cam which is much used is of harmonic or sine curve 
shape, this gives a fairly uniform acceleration. 

If the lift pf the valve be denoted by h ft., and the valve period be 

0°, then for an engine speed of N r.p.m. the time of valve opening 
is given by— 

0 60 0 

1 ~ 360 X N _ 6N 8e°- ’ ‘ - (o) 

The time taken for the valve to be lifted through its height h will be 

e 
one-half of this amount, that is sec. 

12N 
For a uniform acceleration through its lift h ft., the acceleration / 

is given by— 
h=ift* 

or 
r 2h n AN2 
f = — - 2 x 122 - 

t2 * A • 02 

— 288. -gg- ft. sec.2 . . . (6) 

For example, if the valve lift h = \ in. = ~ ft., N = 2400 r.p.m. and 

0 = 180°. 48 
1 /2400\2 3300 

Then / = 288 X X (J = -g- = 1066-6 ft. sec.2 

From this typical example of a high-speed engine valve, it will be 
seen that the mean acceleration is considerable. 

Further, the greater the valve lift, the greater will be the acceleration 
for a given engine speed, also the longer the opening period, the 
smaller the acceleration. 

63 
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CoiHider next the forces required to accelerate the valve, which 

must be provided by the cam. 

If W = the weight of the valve with its collar, and cotter, including 

the push rod from the cam, in lb. 

w = the weight of the valve spring in lb. 

w 
then W + — — weight to be accelerated (approximately). 

u 

Hence, mean force F required to lift valve = /. 

288 x h x N2 (w + i) 

w 
W+-3 

9 

lb. (c) 
32-19 x 62 

/ w\ 
For example, in the case previously considered, the weight W + -] 
was 0-8 lb. V / 

Then 
0-8 3200 

K = 3Tl9><-3- = 2c'5,b- 

The valve spring, which controls this acceleration force by preventing 

the valve from jumping off the cam during the acceleration period, 

should have a rather greater* strength than the acceleration force, 

moreover, it should ideally give a rather greater compression strength 

at each part of the lift than the actual acceleration force at this lift. 

In other words, the curve of acceleration force-lift should really be the 

spring compression-lift curve. 

During the deceleration period the spring must keep the valve 

parts in contact with the cam, and for this reason also the spring 

should be stronger than the acceleration force value. 

The rate of acceleration in many cam designs is not uniform, so 

that the maximum value may be appreciably higher than that given 

by the constant acceleration method ; this is another reason in favour 

of stronger springs. 
From the results given in Equation (c) above, it will be evident that, 

in order to keep the acceleration and deceleration forces down to a 

minimum to reduce wear, noise, and power loss, it is necessary to keep 

the weight of the valves down as much as possible, and to increase 

the opening period defined by 6. 

It is not possible to vary 6 very much in practice, owing to considera¬ 

tions of volumetric efficiency and power output, but the weight should 

be minimized. The lift h can be kept down by utilizing larger diameter 

valves of small lift. 
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Some General Considerations 
In the preceding example, the average acceleration only has been 

dealt with. If, however, the motion of a poppet valve be considered 
in detail, it will be seen that during the lifting period of the valve 
its velocity is increased from zero to some maximum value, the velocity 
then diminishing to zero when the valve reaches its fully-opened 
position, so that the valve is first accelerated to its maximum axial 
velocity and then decelerated to zero velocity. After passage through 
the full-lift position the valve 
is again accelerated and then 
decelerated to its zero or rest 
position. 

The nature of the upward or 
lifting accelerations is deter¬ 
mined by the shape of the cam 
and the lifting gear, e.g. whether 
direct, with a roller-ended tap¬ 
pet, or by me&ns of a flat-faced 
or mushroom tappet. 

Direct Lift Tappet. The sim¬ 
plest case is %at of a tappet Flo> 50 Fiq 51 
giving point contact, as in Fig 
50, in which the cam is shown after having rotated through an angle 
0 from the cam base circle or no-lift position 

If r = radius OA of cam base circle and x — OP — — 
cos 0 

Then velocity of P =» 
dx 

dt 

r sm 0 dO 

cos2 0 ' dt 

sin 0 

cos2 0 

_ . _ d2x (cos3 0 + 2 cos 0. sin2 0\ 
and acceleration of P — ~~ urr (-—-1 

at v cos* (/ j 

(2 — 

~ w2r (- 
\ co 

The actual lift of the valve ~ PQ = r 

In these considerations it has been assumed that the face and flank 
of the cam are flat and tangential to the cam base and top or nose 
circles. 

Roller-ended Tappet. In the case of a ^roller-ended tappet arrange¬ 
ment as shown in Fig. 51, the method of treatment,,, is as follows— 

With the notation shown, let r = radius OA of cam base circle and 

* “Experiments on Cams and Ppppet Valves,” G. E. Scholes, Proc. Inst. 
Autom. Engre.f Vol. 16, p. 516. 
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a ?= radius of roller on tappet. It will be evident that the point of 

contact of the roller on the tappet and the cam face is not in line with 

the axis of the tappet and subtends an angle of (6 + /?) on the cam 

shaft axis. 

Then distance x = OOj — OB + OjB 

r a r + a 

cos 6 

cos 6 \ 

cos 6 cos 6 

The valve lift = x — (r + a) 

= (r + a) 
/I — cos 6\ 

\ cos 0 ) 

It will be seen on comparison of this result with that of the previous 

example that the effect of the roller is to give (r + «) instead of r, 

so that the expressions for the valve velocity and acceleration become— 

sin 6 
Valve velocity == w(r + a) . 

= w(r + a) 
sin 6 

1 — sin2 0 

and Valve acceleration — w2(r + a) 
/2~co£9\ 

\ cos8 0 ) 

Flat-faced or Mushroom Tappet The valve lift, velocity, and acceler¬ 

ation characteristics are quite different if a flat-faced tappet is used 

instead of a roller one. Referring to Fig. 52, which shows a cam having 

a face and flank of radius R and a base circle of radius r, if the lift 

be denoted by x. 

Then x = DH = OH — OD = EP — OD 

and 

= 02P - OjE - OD 

= (R — r) (1 — cos 0) 

dx 
The valve velocity = w(R — r) sin 0 

dfx 
acceleration = w2(R — r) cos 0 

When the tappet is on the round nose of the cam— 

Lift = (r + l — rx) cos Bx — (r — rx) 

Velocity I w(r -f* l — rx) sin 

Acceleration = — wz(r + l —rx) cos 6± 

There 0* = angular displacement of the tappet axis from the centre 

line of the cam. 
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Constant Velocity Cams 
It is a comparatively simple matter to ascertain the shape of a 

cam to give any desired motion to the cam follower or tappet during 

the valve opening and closing periods. 
One common type of cam is that which gives a uniform velocity of 

lift to the follower. Its shape can be determined graphically, assuming 

a constant velocity of rotation of the camshaft. Thus, for equal 
angular intervals of the cam, during the lifting curve the distance 

Fig 52 Mushroom Tappet Fig 53. Constant Velocity 
Heart-shaped Cam 

from the centre of the cam base circle to the point of contact of the 

follower or roller-ended tappet will increase by equal increments 
so that the shape of the cam will be that of an Archimedean spiral, 

a polar curve giving equal increments in radii for corresponding equal 

increments in angle. The general shape of this cam is shown in 
Fig. 53; this is often referred to as a “heart-shaped” cam, and as 

illustrated gives a uniform velocity of lift and descent to the tappet; 

the latter may be either of the direct or roller-ended type. 

Constant Acceleration Cams 
In this type, the velocity must increase by equal amounts for equal 

time intervals. Since the cam rotates at a uniform rate, equal time 
intervals correspond to equal angles of rotation. 

The cam radius on the lift portion or face must increase as the velo¬ 
city and as the time, since distance = velocity X time. 

Also, since with constant acceleration the velocity varies as the 
time, it follows that the lift or cam radius of the face will vary as the 

square of the time or square of the angle of rotation. 

The curves of the cam face must therefore be of parabolic shape 
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for the acceleration and also the deceleration portions of the lifting 

face of the cam. Thus, if the cam face for the lifting portion be plotted 
on a linear cam circle base (Fig. 54), it consists of two parabolas AB 
and BC for the acceleration and deceleration periods, respectively, 
assuming equal acceleration and deceleration. One parabola is concave 
upwards, for acceleration, and the other concave downwards, for 

deceleration. 
The constant acceleration cam has certain specific advantages for 

petrol engine valves, more particularly where maximum power outputs 
at high engine speeds are required, 
since the valve is lifted to its 

maximum position as quickly as 
possible. As compared with the 
usual flat and round-faced cams 

it- gives a greater lift with* the 
same diameter of base circle and 
same total angle of engagement; 
thus, for a given valve lift the 

camshaft dimensions can be re¬ 
duced to a minimum. 

The accelerating forces on the 

tappet are apt to be high with this 

type of cam, but the deceleration is a function of the valve spring 
force and the equivalent mass of the valve system 

As an instance of the high accelerations experienced,* in one par¬ 

ticular example of a valve with a lift of £ in., the acceleration of the 
valve and tappet with the camshaft running at 1000 r.p.m. was about 

3700 ft.-sec.2, whilst the deceleration was 1600 ft.-sec.2 
The equivalent mass of the valve system was 1 lb., and the spring 

pressure required to maintain contact with the cam worked out at 

3600 
_- =112 lb. It is, however, necessary to arrange for a somewhat 

higher spring pressure than this in order to take into account valve 
stem friction in the guide. 

The acceleration of the valve during the first portion of its lift is 

greater than the deceleration during the second portion. If the former 
value be taken as being K times the latter, and if the total cam opera¬ 

tion angle be denoted by 2A, then 

A 
Angular movement of cam during acceleration = ----- 

a + 1 

, , t . ka 
and ,, „ „ „ deceleration = - 

A -j- 1 

Fig. 54. Constant Acceleration 

Cam Shape 

Vvde footnote page 65. 
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As the mean velocity is the same during acceleration and deceleration, 

the lift of the valve during these periods will be proportional to the 

time, i e. to the angle turned through by the camshaft. Thus, for a 
total valve lift l 

l 
Lift during acceleration period — -r——- 

A -f 1 

99 deceleration 
Kl 

~ if+l 

The mean effective lift ratio can be shown to be equal to 
2 K+ 1 

3(^+1)’ 
Thus, for equal acceleration and deceleration periods K ^ 1 and the 

mean effective lift ratio is 0-5 If K — 2, 3, 4, or infinity, the corre¬ 

sponding values for this ratio are 0*555, 0*583, 0*600, and 0*666, respec¬ 

tively, a result which indicates the small gain for values of K greater 

than about 3. 

Harmonic Motion Cams 
As distinct from the constant velocity and constant acceleration 

types of cam there is another which gives a somewhat similar motion 

to that of a petrol engine piston, namely, a maximum acceleration 

at the beginning and end of the movement. The cam follower starts 

gradually, the velocity increasing to a maximum about midway in its 
stroke and thereafter decreasing to zero at the end of the lift, before 

again accelerating on the downward or return stroke and repeating 

the first half of the motion but in the reverse direction. 

The shape of the harmonic motion cam lift curve is readily found 

by projection from the constant speed circle Acf (Fig. 55), in which 

Af represents the lift of the cam follower. The half-circle Acf is divided 

into an equal number of parts, say, six, at a, b, c, d, and e, and these 
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are projected on to the diameter A/at a', b\ c', d\ and e', respectively. 
Each of the lifts Aa\ a'b\ b'c/, etc., represents the distances moved 

through by the cam follower in equal intervals. If, therefore, the 
base line AC be divided into six equal intervals Aay a161, bxcv etc., and 

ordinates be erected on these equal to the cam follower lifts, Aa', 

Ab', Ac', etc., the shape of the harmonic motion cam curve for the 
lifting portion is obtained on a linear base. The latter is readily con¬ 

vertible into a cam base-circle base, in order to obtain the true shape of 

the cam. The curve shown in Fig. 55 is for the lift portion of the cam ; 

that of the return part will be of similar or “looking-glass ” image shape. 

With this shape of cam the angular movements of the cam during 

acceleration and deceleration, from A to B, will be equal. 

If the cam rotates through an angle a whilst the follower is lifted 
through its complete rise, i.e. from A to / (Fig. 55), and the constant 

cam velocity is N r.p.m. 

m 360ttN i 
Then, Angular velocity w -- —radians per sec. 

6ttN 

a 
wH 

The maximum acceleration at A or / is equal to , 

lift of the follower. 

Thus, Maximum acceleration - - 7T~~ ft. sec 
2or 

where l is total 

2 

If W is the weight, in pounds, of the valve components which are 

accelerated, then 

W 
Maximum force on follower — — X max. acceleration 

9 

W(6ttN)2 . I „ 

2gx2 

This force, which occurs at the end of the lift, must be less than 

the sum of the valve component’s weight* and the spring forces, 
or the follower will leave the cam. Actually, the force in question is 

a retarding one, corresponding to a negative acceleration, or decelera¬ 

tion, and it is the value of the force that must be exerted by the 

follower, valve weight and the spring pressure to maintain the 

follower on the cam. 

Forces on Cam and Follower 
When a cam operates the valve tappet or cam follower, with the aid 

of a roller, as shown in Fig. 56, the force exerted by the cam is normal 

* Assuming the valve axis to be vertical. 
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to its surface at the point of contact A. If this force is denoted by F, 

then the vertical component will be F cos <f> and the horizontal one 
F sin <f>. The force F cos <£ will be equal to the resultant of the vertical 

forces due to (1) the acceleration of the valve components, (2) the 

weight of the latter, and (3) the valve spring pressure. This resultant 

force induces a compressive stress in the cam follower. 

The force F sin ^ tends to cause a Bending action on the cam follower 

and a side thrust on the guide in which the follower reciprocates. 

In considerations of valve-actuating 
cams it is usual to refer to the 

angle <f> (Fig. 56) as the pressure 

angle; the latter varies in value 

according to the position of the cam. 

Notes on Cams and Followers 
The pressure angle cf> (Fig. 56) 

should not, at its maximum value, 

exceed about 30°, although in special 

circumstances 40° is permissible. If 

these values are exceeded excessive 

bending action on the cam follower 

is liable to occur. By making the 

cam base circle as large as possible, 

the value of the pressure angle can be reduced to a minimum, but the 

size of the cam will be increased accordingly. 

In regard to the use of rollers on cam followers the smaller the 

diameter of the roller the closer will the actual cam profile approach 

to the theoretical one for a direct-lift or pointed end follower. 

An important consideration in connexion with the roller is that it 

must have a smaller radius of curvature than any part of the cam 

contour. If larger than this, it will not follow the cam and will bridge 

over the region of smaller radius of curvature. For a similar reason 

the cam curve should not have any abrupt changes of direction, since 

it may not be possible for the roller to follow these, i.e. to maintain 

line contact with the cam all the time. The roller diameter should 

be kept as small as practical requirements dictate and the base circle 

as large as expedient in order to obtain a motion of the follower 

approximating to that of the direct lift one on the theoretical cam 

curve. 
Although the subject of cam layouts is outside the scope of the 

present considerations, it may be mentioned that in cam design it is 

usual to imagine the cam to be stationary and to consider the follower 

to rotate about the cam as it moves in and out. The cam base circle 

is divided into a number of equal parts, e.g. 8 or 12, which are 

Roller 

Fig. 56 Forces on Cams and 

Followers 
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numbered consecutively, and the corresponding numbered positions of 

the follower are then obtained by means of arcs about the cam circle 

centre. Alternatively, if the positions of the follower are given, the 

shape of the cam can be obtained by the reverse process. Examples of 

these methods are given in books on mechanism and in some books 
on geometry. 

Experimental Determination of Valve Motion 
Although the general characteristics of valve operating mechanisms 

can be determined by mathematical methods on the lines of those 

previously considered, the actual results are often found to differ 

somewhat from the theoretical ones. This is due mainly to the elas¬ 

ticity of the components other than the valve spring under high-speed 

operating conditions in the engine. In order to check the results of 

valve train calculations it is desirable to make accurate measurements 

of the valve’s motion in the engine itself when running under its own 

power. In this way the lift of the valve, plotted on a crankshaft or 

camshaft angle or a time base, can be compared with the theoretical 

lift curve obtained from geometrical considerations of the cam itself. 

A satisfactory method of studying the problem of valve motion is 

to employ an electrical pick-up mounted on the valve stem as shown 

in Fig. 57.* Movements of the pick-up moving member are translated 

into electric potentials which can be applied across one pair of electrodes 

* #tRecent Research in Poppet Valve Tram Design,” C. Voorhies, Autom. 
and Aviation Industries, 1st October, 1944. 
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of a cathode ray tube so as to produce diagrams on the cathode ray 

tube or oscillograph screen. The magnetic type of pick-up used con¬ 

sists of a permanent magnet and a coil of fine wire forming the armature 

or moving member. In moving up and down with the valve’s motion 

between the magnet poles the armature generates an electric current 

which is proportional to the velocity of the valve. From the velocity 

diagram both the lift and acceleration diagrams can be obtained. 

Permanent records of the velocity curves are made photographically. 

The strain gauge is another type of pick-up for use with an oscillo¬ 

scope. It is based on the principle of passing a current through a 

length of fine steel wire which is fixed to the valve stem or its extension. 

The actual deflection, or strain of the valve member, is then determined 

from measurements of the resistance of the wire, whilst changes of 

length during the valve motion cycle can be studied from changes of 

potential on the oscillograph. By calibrating the particular set-up 

with known loads the loads occurring during valve operation can be 

measured. 

Another method employed for the study of valve motion is that 

of the high-speed cinematograph camera, operating at 2000 pictures 

or more per second. 

An apparatus for measuring the positions of the valve at selected 

positions of the valve cam, known as a stroborometer, is shown diagram- 

matically in Fig. 58. It employs a contact breaker on the camshaft 

or crankshaft which serves to give flashes to the neon light tube at 

the precise camshaft position selected to measure the valve stem 

position , this is effected with the aid of the eyepiece, reflecting mirror, 
slits in the fixed and moving (valve stem extension “flag”) parts, 

the neon tube behind the slit and the micrometer. 

The neon light is always obstructed except at the instant when the 

slot in the valve stem extension flag is aligned with the two fixed slots. 
The position of the light flash is altered by means of the hand crank 

shown on the left in Fig. 58. When a flash occurs at the disc (on left), 

a corresponding flash occurs in the neon tube on the valve unit. The 

slots in the housing are then adjusted up or down by means of the 

micrometer until the light passes through all three slots. The micro¬ 

meter reading then gives a measure of the valve position for the corre¬ 

sponding position of the cam as determined from the graduated disc 

on the left in Fig. 58. Valve position micrometer readings are obtained 

in this manner from different settings of the graduated disc or cam 

angle, so that a valve position-cam angle graph can be plotted, with 

lift readings correct to within one-thousandth of an inch. 

Fig. 59* is a reproduction of an actual valve motion curve obtained 

in this maimer. Curve A is the theoretical or slow speed graph 

* Vide footnote page 72. 
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obtained at 600 r.p.m., it is identical with the original valve lift design 

curve. Curve J9, obtained at a speed of 3000 r.p.m., indicates certain 
variations of the actual from the theoretical curve. It shows that the 
valve opening is delayed at the higher speed, owing to deflection 

effects. Further, the valve attains its full opening about 10° after 

the theoretical period and closes before the estimated time (as shown 
at (3) ) with a series of “ bounces ” or deflections (4) instead of smoothly 

as at low speeds. 

The valve velocity graph for Curve A, shown below, indicates the 
cam positions for maximum and zero valve speeds. 

Among the other interesting facts revealed by experimental investi¬ 

gations of valve gear operation under actual working conditions are 

those relating to valve accelerations. Thus, it has been shown that the 
acceleration may attain a value as high as 18,000 ft. sec.2 at the maxi¬ 

mum over-speed for a side-valve engine and 8000 ft. sec.2 for an over¬ 

head valve one. 
The stresses in the valve tappet or follower, for various shapes of cam 

nose (maximum lift part of cam), have been measured, and it has been 

found that unless the radius of the nose exceeds a certain value there 

are excessive stresses between the cam and follower. Thus, as the 
nose radius is reduced the stress for a given spring load increases; 



VALVE CAMS AND FOLLOWERS 75 

many causes of tappet and cam failure have been traced to the cam 
nose having too small a radius. 

Fig. 60 illustrates the manner in which the valve tappet face 

stress changes with the valve cam nose radius and also the corres¬ 

ponding values of the valve open spring loads. The variation of the 

valve tappet face stress with the eccentricity of the nose is also 
indicated in the same diagram. 

In regard to the effect of acceleration, the stress at maximum 

acceleration is usually low, failure occurs on the nose, since the lower 

the acceleration the higher the stress on the nose for a given lift. In 

the original article referred to at the foot of page 72, charts for deter¬ 

mining the cam nose stresses, spring loads, tappet face stresses, etc,, 

for most design purposes are given. 

Another fact revealed by the experimental method is that if the 

axis of the camshaft (or the face-width of cam) is not exactly per¬ 

pendicular to the axis of the follower, the actual face stress is increased; 

a small angular misalignment usually causes the face stress to become 

doubled or even trebled in value. 

In the case of flat-faced tappets errors due to angular misalignment 

or deflection can be. obviated by making the cam contact face of the 

tappet of spherical instead of flat shape. 
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Notes on Poppet Valves 
In modem high-speed petrol and Diesel engines the performance is 

governed largely by the area of the valves and their lifts, one function 

of the valves and their operating cams being to afford the maximum 
possible breathing capacity to the engine, i.e. the highest value for 

the volumetric efficiency. 

The cam design determines both the period of valve opening during 

the working cycle and the effective valve lift over this period. 

The area of the valve and its lift govern the quantity of gas or charge 

flowing out of or into the engine during the exhaust and inlet operations. 

In practice the area of the valve is limited by cylinder dimensions, 

so that it cannot exceed more than a certain percentage of the piston 

area, unless special shapes of combustion head are employed. 

In the case of overhead valve engines designed for maximum output, 

e.g. aircraft engines, it is usual to employ two inlet and two exhaust 

valves. The reason for this will be apparent from Fig. 61, which 

represents a plan view of a circular cylinder head, of the overhead 

valve pattern. If a single inlet and single exhaust valve are employed, 
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the maximum permissible diameter D is less than one-half the cylinder 

diameter; usually it lies between 0*43 and 0*45 of the cylinder bore. 

If, however, instead of a single valve D, two valves of diameter d, 
giving the same marginal clearances be used, then it can readily be 

shown that the total valve area can be increased by about 33 per cent; 

the diameter d is about 80 per cent of D. Thus, for the same engine 
speed, the velocity of the gases through the valve ports can be reduced 
appreciably and the volumetric efficiency increased. 

The period of valve opening should be as long as possible, relatively 
to the cycle period, but it 

is necessary for practical 

reasons to effect a compro¬ 
mise between several factors, 

although the ultimate aims 

are (1) to obtain the maxi¬ 

mum weight of fresh charge 
into the cylinder, and (2) to 

expel the maximum quantity 

of burnt gases before the 

inlet valve opens again. 
The exhaust gases, by 

virtue of their momentum, 

will continue to leave the 

exhaust port when the piston 

has reached the end of its 

scavenging stroke, so that it 

is advantageous to leave the 
port open for some appreciable time after the dead centre has been 

reached. 
Again, when the inlet valve is opened, in the case of a high-speed 

engine, it requires a definite small interval before the fresh charge 

can be given its proper speed of flow, on account of its inertia, so that 

instead of opening the inlet valve on its top dead centre it is better to 

commence at some position before the piston reaches its top centre. 
Thus, for maximum charging and exhausting effegt, it is necessary 

for both the exhaust and inlet valves to be open together; this is 

termed valve overlap. In the case of two-cycle engines, with inlet and 

exhaust ports at opposite ends of the cylinder, the overlap is often 
arranged to produce a negative pressure in the exhaust port, thus 

ensuring improved scavenging of the burnt gases. 
Fig. 62 illustrates the valve timing diagram of a British poppet- 

valve aircraft engine of high efficiency and perforihance. In this 

example the exhaust valve closes at 40° of crank angle after top dead 

centre (T.D.C.), whilst the inlet valve opens at 29° before T.D.C., so 

Fig. 61. Comparison of Two and Four 

Valves per Cylinder 
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that the overlap period is 69°. It will be noted that the inlet valves, 
of which there are two per cylinder, have a total opening period of 

256°, whilst the two exhaust valves are both open for 296°; this 

longer period ensures the best possible clearance of the exhaust gases 

and results in a cooler cylinder and less dilution of the fresh charge. 

Valve and Performance Data 
In regard to the valve head dimensions, these are limited in overhead 

valve engines by the cylinder bore to a maximum of about 0*45 of 

qvRCCt>on of *otATiq^ 

1 

BD.C 

Fig. 62. Valve Timing Diagram for Overhead Valve Aircraft 

Engine 

the cylinder bore for two valves per cylinder. In the case of side-valve 

engines an examination of a large number of American car engines 

—which favour the side valve—of recent date shows that the ratio of 

valve head diameter to cylinder bore lies between 0*410 and 0*510; 

as mentioned previously, it is possible to employ valves of larger 

diameter with special shapes of combustion chamber, of which those 

used in side-valve engines are examples. 

The average ratio for twenty-five different makes of car engine was 

0*442. 

The mean gas velocity through the valve ports ranged from 250 to 

370 ft. per sec. for the maximum engine speeds, namely, 3000 to 4000 

r.p.m. 

The valve area per square inch of piston area was from 0*100 to 0*130, 

the average being about 1*20. 
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The vahe area per cubic inch of piston displacement was from 0*029 
to 0*037, the average being about 0-033. 

The h.p. per cubic inch of piston displacement ranged from 0*385 

to 0-505, the average being about 0-450. 

It should be pointed out that in comparing engine performances on 

a basis of valve or piston area, some allowance should be made for the 

stroke-bore ratio, since for the same piston displacement or cylinder 

capacity the stroke-bore ratio of an automobile engine may vary 

considerably. In practice it is found that this ratio, for modem engines, 

varies from 1*00 to 1-35. 
To take this factor into account it has been suggested that the 

results should be corrected to a standard stroke-bore ratio, that of 

unity being a convenient one.* 

Thus, if d — bore and s = stroke, then the piston displacement, V, 

is given by— 

V « 0*7854^* * 

and if d = s V = 0*7854rf3 

or d — WmV 

If x is the diameter of any engine part under consideration and d' 

the bore, then 

x x 

d’ ~ $/\ 273V 

Thus, the formula for average (side) valve diameter becomes 

x = 0-442 ^ll73V 

To ascertain the valve diameter for any new engine it is only necessary 

to multiply the piston displacement of one cylinder by 1*273 and find 

the cube root of the product. This value, multiplied by 0-442, gives 

the valve diameter required. The range of cylinder bores to which 
this formula applies is from 2-5 in. to 3*5 in. 

Effective Valve Area 
In the case of poppet valves having flat faces and seatings, it can 

readily be shown that for the effective area of the lifted valve to be 

equal to the port area or diameter of the valve head, the lift must be 

equal to one-quarter of the valve head diameter. 
With poppet valves having the usual 45° face angle, the effective 

valve area, with the inlet valve fully opened, is taken as the area of 

the truncated conical surface of which a line from the small diameter 

of the valve to the seat is the generatrix. * 

* “Engine Comparisons,” E. G. Ingram, Automotive Industries, 1st August, 
1940. 
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The area in question can readily be shown to be as follows 

_ /m W 
Effective area = n + —7=: 

W2 2V2 

= 3-1416 (0-707DA + 0-3635A2) sq. in. 

where D — port diameter in in. and h = valve lift in in. 
The effective area ranges from about 0*70 sq. in. for a valve of 

1*28 in. head diameter to about 1-43 sq. in. for one of 1*72 in. diameter. 

A valve of If in. to 1£ in. head diameter would have an effective area 

of 1*00 to 1*200 sq. in., respectively, in the case of a modem automobile 
engine. 

The following formula represents the average valve area for twenty- 
five different makes of modem car engine— 

A = 0 093 (^1-273V)* sq. in. 

The average valve head diameter D ~ 0-460 1-273V. 



CHAPTER IV 

VIBRATIONS IN ENGINES 

One of the most important subjects with which the engine designer 
is concerned is that of vibrations, their causes, types, and magnitudes. 
With a fairly complete knowledge of the fundamental principles of 
engine vibrations it is then possible to minimize their effects or to 
obviate these altogether. 

In the case of high-speed internal combustion engines of the recip¬ 
rocating type, the origin of the vibrations that are experienced is 
the exploding charges in the cylinders, which in turn produce variations 
of engine torque; reciprocating forces due to the pistons and connecting 
rods, valves and their springs; and centrifugal forces of the rotating 
parts. 

Unbalanced forces in an engine may give rise to (1) direct or linear 
type vibrations (2) those caused by rocking couples or (3) rotating 
unbalanced forces, e.g. centrifugal forces. 

In general, engine vibrations tend to produce stresses (or increased 
stresses) in the engine components concerned; fatigue effects due 
to the alternating stresses set up; audible effects, i.e. engine noises; 
transmitted vibrational effects to the engine supports, and increased 
bearing loads in the case of shafts experiencing centrifugal effects. 
Other minor effects of engine vibrations include the tendency of nuts to 
unscrew, oil and fuel pipes or their connexions to fracture, exhaust pipes 
to crack, and electrical cables or their connexions to chafe or break. 

In the present chapter the subject of vibrations of engines and 
machines in general is dealt with from the viewpoint of the basic 
principles involved and the various conclusions obtained from an 
analysis of the results are considered from the practical application 
aspect. 

Some Considerations on Vibrations 
In engineering practice, vibrations are associated with periodic 

changes of force due to various causes, including unbalance of rotating 
or reciprocating members. Usually, the changes consist of similar 
cycles of force fluctuation, repeated regularly. The amplitude of the 
movement paused by the force variation during a cycle is usually 
defined as one-half the range, although some authorities consider the 
whole range of movement* 

The commonest type of vibration occurring in engineering is the 
simple harmonic one, and corresponds to the movement of the piston 
in a petrol-type engine, with connecting rod of infinite length. 

81 
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Referring to Fig. 63, a particle P is shown rotating about a fixed 

centre 0, with uniform velocity V. If a perpendicular PQ be dropped 

on to the horizontal line AB, then the motion of the point Q along AB 

will be a simple harmonic one of amplitude* OA = OB = r, and the 

frequency will equal that of the rotation of P. 

Using the notation given in Fig. 63, and denoting the distance of 

Q from the centre 0 by x at any time t after commencement from O, 
then 

x --= r sin 6 . . (l) 

J e 
and t 

2ttN 

Hence x — r sin 277-Ntf = 
where n ~ 27rN. 

r sin nt, 

Also, since V = 2rrNr, n =■ —. 
r 

it follows that x is 

when 6 = 90° and 
From (1) 

a maximum 

equals r. 
If the displacements of Q from the 

centre are plotted on a time, i.e. crank-angle, base, the resulting curve 

will be as shown in Fig. 64 (A), where displacements above the base 

line are positive and correspond to those to the left of 0, whilst nega¬ 
tive values are to the right. 

The velocity of Q at any time t is given by differentiation of the 
displacement expression (1). 

Thus, 
dx dO dO 

- = r cos 0.-7- = r cos nt . — 
(tt d/t at 

do 
But r . — = V, the linear velocity of P, so that 

Vc V cos nt (2) 

This expression shows that the maximum velocity occurs when 

6 = 0°, i.e. when Q is passing through the centre O, and zero velocity, 

corresponding to 6 = 90°, at the extremes of the path, i.e. at A and B. 
The velocity-time curve therefore takes the form shown in Fig. 64 (B). 
The acceleration of Q is obtained by differentiation of the velocity in 
respect to t. 

Thus,' 
d2x 

dt2 

dd 
Vsin 0.-5J 

dt 

* It is now usual to define the amplitude OA as the semi-range and the full 
range AB as the double-amplitude. 
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de 
but r . ^ = V, so that 

/- 
V2 
— . sin 0 
r (3) 

By substituting for V the value V = nr, the expression becomes 

/ = — n2 . r sin n£ . (4) 

In this expression, r sin nt repre¬ 

sents the distance of the point Q from 
the centre O, i.e. the distance x, so 

that the acceleration of the particle 

moving in simple harmonic motion is 
proportional to its distance from the 

centre O, being a maximum at the 

extremes of its amplitude and zero at 

the centre of its path. The accelera¬ 
tion-time curve is given in Fig. 64 (0). 

In general, the vibrations that occur 

in engineering practice can usually be 

expressed as a simple harmonic motion 

as follows— 

x = r sin (nt + c) 

where c is a term that takes account 

of the phase or moment at which the 

vibration commences. 

Most complex vibration systems* 
met with by the engineer can be re¬ 

solved into a series of simple harmonic 

motions of the following form— 

x = a0 + ax sin (nt + cx) 

+ a2 sin (2nt + c2) 
+ a3 sin (3nt + c3) 

etc. 

Fig. 64. Simple Harmonic 

Motion Displacement, Velocity 

and Acceleration Curves 

where a0, av a2, %, etc., and cv c2, c3, etc., are constants and, as before, 

n = 2ttN, where N is the cycle frequency. 
It will be observed that the complete vibration consists of a funda¬ 

mental one of frequency N, together with a series of vibrations of 

frequencies 2N, 3N, etc., occurring with different amplitudes and at 
different phases. The displacement curve ordinates qf all these simple 

* This subject is dealt with fully in Waveform Analysis (“Interpretation 
of Periodic Waves, including Vibration Records”), R. G. Manley (Chapman <fc 
Hall, Ltd., London). 



84 AUTOMOBILE AND AIRCRAFT ENGINES 

harmonic vibrations, when added algebraically, give the ordinates of 

the complex vibration displacement curve. 

Free Vibration Frequencies 
When an engineering part possesses elasticity it is theoretically 

capable of performing natural vibrations in at least one direction. TThus a bar of steel, suspended at one end 
and struck a lateral blow at the other will 
vibrate transversely; or if struck in an 

axial direction it will tend to vibrate longi¬ 
tudinally. 

The simplest example of a freely-vibrating 

body is that of a helical spring fixed at its 
upper end and loaded with a weight W 
(Fig. 65) at its other end. If the weight is 

depressed a little below its mean stationary 
position 00 and then released, the spring 
and weight combination will vibrate in a 

vertical sense. In this case the restoring 
force exercised by the spring is propor- 

i-* tional to the displacement of the weight, 

A±rJJL\ a as measured from the mean or stationary 
frv-7--i- position, so that the weight performs simple 

_harmonic vibrations, in the absence of any 
g other influencing factors, e.g. damping 

Fig. 65. Vibration of effects. 
Loaded Spring If x denotes the displacement at any time 

Th<" extreme positions of the t from the mean position, then 
bottom of weight are denoted 
by A A and BB, the amplitude 

being r. r sin nt 

The velocity, = rn cos nt 

and the acceleration — ==/== — n2r sin nt . . (6) 

Eliminating sin nt from (5) and (6), the following relation is obtained 

displacement (#) 1 

acceleration (/) n2 

The negative sign may here be neglected, and since n = 27tN, this 

reduces to the form 

1 / acceleration 

2ff V displacement = - P 2,r\ x 
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This expression gives the free vibration frequency or frequency constant 
of an elastic member vibrating without any restraint. 

Stiffness and Vibration Frequency 
In engineering considerations it is usual to define the stiffness of 

an elastic member as the force required to cause unit displacement, or, 

for angular applications, the value of the torque that will produce unit 

angular displacement. In general, the stiffness of a part is calculated 

from its shape, dimensions, and the mechanical properties of the 

material of which it is composed. 

If the stiffness for linear displacements be denoted by k, then the 

force F necessary to cause a displacement x will be kx. 

Since the force F necessary to produce an acceleration / in a mass 

M is given by 

then the acceleration 

and 

F 

/ 

i 
x 

MIf 

k . x 

M 
k 

M 

/ 
Substituting this value for ~ in (7), the vibration frequency becomes 

1 k 1 /stiffness 

277 V M 277 V mass 
(8) 

Here, N — vibrations per second, where the stiffness k is in poundals 
per foot deflection and the mass M in pounds. 

Energy Considerations 

The maximum energy of vibration occurs when the velocity is a 

maximum, and in a simple harmonic motion, this has been shown 

to occur, when the body is passing through its mean position. Since 

the velocity at any time t is given by rn cos nt the maximum value, 

for nt = Q, will be rn, and the kinetic energy is then given by 

K.E 
M r2n2 

2 

When the velocity is Ztero the strain energy is a maximum, and when 

a maximum, namely, at the mean position of vibration, this energy 

falls to zero. 

The velocity is zero when cos nt is zero, i.e. when nt is 90° and 

x = r. The value of the strain energy is then equal to -, the kinetic 

energy then being zero. 
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Since these two energy values must be the same, it follows that 

r2Ic M r2n2 

T = ~T 

from which 

and 

or 

n2 1 
M 

n 

N 
_1_ 
2tt 

, as before. 

Static Deflection Formulae 
In place of the mass M in the preceding formula (8) can be written 

W 

g 
where W is the weight in lb. and g the acceleration due to gravity, 

i.e. 32*2 ft. sec.2 or 386-4 in. sec.2 

Substituting for M in formula (8)- 

1 jg.k 1 /386-4A* 

~ 27tV w “ 2^V ~~W~~ 

Since, when a weight of W lb. is suspended from an elastic member 

W 
it will cause a deflection of d — —, then 

N 
1 /386*4 

2<T 
(inch-second units) 

A convenient practical formula derived from the above is as follows- 

188 
N' ~ -"7= vibrations per min., where d =- static deflection in in 

Vd 

Effect of Damping 
In the previous considerations it has been assumed that the body 

was free to vibrate without any restraining influences; it will therefore 
perform simple harmonic motions indefinitely 

In practice, however, the movements are resisted by internal and 
external effects, such as mechanical hysteresis, friction, air, or other 

fluid resistance, etc. Thus, during each vibration from the initial 
one, some of the energy of vibration is absorbed, with the result that 
the amplitudes diminish progressively and, eventually, the vibration 
dies out in the manner indicated in Fig. 66. By introducing artificial 
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damping effects, e.g. fluid dashpots, the vibrations can be reduced in 

amplitude very quickly or may be prevented altogether, if desired. 
The critical degree of damping, by artificial or natural means, occurs 

when the initially displaced elastic body just returns to its zero or 
mean position, without passing beyond it, as indicated by time- 
displacement line ABC in Fig. 66. This type of damping is of par¬ 
ticular importance in certain types of needle-indicating instruments. 
Jt should, however, be pointed out that the subject of critical damping 

is a somewhat controversial one, for the elastic body may just return 
to the mean position without passing beyond it if the damping is far 
greater than the critical degree. Further, if the damping is critical 
the body may, according to the initial conditions, i.e. displacement 
and velocity at t = zero, pass beyond the mean position. When 
metallic members are set into vibration by external influences the 
principal damping factor is that due to the internal friction of the 
metal itself. 

In the case of undamped simple harmonic vibrations, for the example 
of the vertically oscillating spiral spring shown in Fig. 65, the force 

W d2x 
causing the acceleration at any displacement a; is — . —, and if, as 

g dt 
before, the stiffness is k, i.e. a force of k lb. extends the spring by 
1 in., then the fQrce at x will be kx, and since these two forces are 
equal and opposite the equation of motion may be written as 

W 

9 * dt2 
+ fee = 0 (9) 

In most common instances of damping the restraining or damping 
foyce is proportional to the velocity of the vibrating body, i.e. the 

dx 
damping force may be represented by 6 . — where 6 is a constant. 

at 
The equation of motion for damped oscillations is therefore of the 
following form— 

W d2x dx 
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If the motion is an angular one, it takes the corresponding form of 

I. 
<m 

w+c 
dd 

dt 
+ d. e = o . (11) 

where I = moment of inertia, 0 — angular displacement, and c and 

d are constants. 

The general solution of equation (10) is of the following form— 

x =- Ae~eU -i Be-?1 .... (12) 

where / • 
2W ’ 

gk 

W’ 
and a and /3 are the roots of the following 

auxiliary equation— 

m2 + 2/m -f- n2 == 0, the roots being as follows— 

m = — / ± Vf2 - n2 . . . (13) 

If / is greater than n, damping is greater than critical and there is 

therefore no vibration. 
If/ is less than n, then the quantity under the root sign is negative 

and the values of m are complex. The exponentials are then expressible 

in terms of real sines and cosines. 

If/i8 equal to n, the condition of critical damping occurs. 

In the case of a damped simple harmonic motion, if x = 0 when 

t = 0, it can be shown that the solution of the equation takes the 

following form— 

x =*- Ae~ft sin yf n2ZTp . t . (14) 

The effect of damping has therefore been to introduce the multiplier 

e~ft into the expression for simple harmonic vibration displacement. 
If the undamped frequency is Nx cycles per sec. and the damped 

frequency is N, the following relation holds— 

N!-N'a~£? • • ■ • OS) 

For small degrees of damping the value of / is less than unity and 

the damped and undamped frequencies are very nearly equal, but 

for higher degrees of damping, such as those of oil dashpots, / is appreci¬ 

ably higher than unity and the undamped frequency Nx is greater than 

N, i.e. the damped period of vibration is greater than the undamped one. 

It should be pointed out that the actual solution of the equation 

(12) depends upon the values and signs of the roots of the auxiliary 

equation (13), so that it is necessary to consider each example of 

damped vibration on its own merits. 

Forced Vibrations 
In connexion with the study of engines and rqachines that are 

subject to vibrations the general problem to be considered involves: 
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(1) The natural vibrational frequency and amplitude of the vibrating 

member; (2) the existing damping effects upon this frequency and - 
amplitude; and (3) the effect of superposed, or forced, vibrations 
due to operational causes, upon the behaviour of the vibrating 

member. 
A typical instance of this problem is that of a petrol engine crank¬ 

shaft which has its own natural period of angular vibration, the latter 
being subjected to damping influences due principally 
to internal friction or mechanical hysteresis effects, but 
also to coupling members and other causes. The crank¬ 
shaft is, in addition, given a series of periodic torque 
impulses due to the firing of the charges in the indivi¬ 

dual cylinders, so that it may be regarded as an elastic 
member subjected to forced vibrations of an angular 
kind about the axis of the shaft. 

The analogous linear example to this is that of a 
vertical spiral spring having a weight at its lower end, 
but instead of being fixed at its upper end it is con¬ 
nected to a vibrating member. Fig. 67 shows a spring 
having a weight W in the form of a disc (for air or fluid 
damping purposes) at its lower end B and with its 
upper end A connected to a rotating crank Q which can 
be operated at various speeds, corresponding to different 
forced vibration frequencies. By varying the speed of 
the shaft S the effects of the relative frequencies of the 
impulses due to S and of the spring itself can be studied. 

The equation of motion for a vertical spring with 
damping is deducible from equation (10), by considering 
that when the weight is displaced downwards by the || g 
distance x the point of support is also displaced down- | W 
wards by a distance y, where y is a function of the time. 
Thus, if the point of support is given a simple harmonic 
motion of frequency Q, then 

y = a sin qt, where q — 2ttQ 

Fig. 67 
Forced 

Linear 

Vibrations 

The equation of motion (10) then becomes modified as follows— 

W d2x , dx 
— ' ~r 0 • "77 + fCX 
g dt2 dt 

ky ] (16) 

Thus, if y = 0 the original damped simple harmonic motion remains. 
« dx 

If the effects of damping are disregarded, the term b . — can be 
dt 

omitted, and this will enable the results of forced vibrations to be 

4—(T.3078) 
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studied in a more simple manner, without affecting the general con¬ 
clusions arrived at, and Equation (16) then becomes 

S + w-^-w-* • • • (17) 
If the upper spring support be given a simple harmonic motion fn 
phase with that of the loaded spring, such that y = a sin qt, where a 
and q are constants, then (17) can be written in the following manner. 

where n 
jg± 

"Vw 

n2a sin qt 

But the natural vibration period of the spring has 

been shown to be given by the relation N _ ± M 
2ttV W’ 

from which 

4tt2 . N2. W 

and since n2 = 

From (19) and (20) it follows that n — 27tN. 
The solution of Equation (18) is as follows— 

n*a 
x == nT~q2 * sm (9* + a) • • • (21) 

This result shows that the effect of imposing a simple harmonic vibra¬ 
tion upon the upper end of the spring is to produce a forced vibration 
of the weight W having a frequency equal to that of the imposed 
vibration and an amplitude c which is given by 

that is, the amplitude is times that of the imposed vibration. 

It will be observed that the forced vibration amplitude depends 
upon the ratio of q to n or, since n = 2ir times the natural frequency 
N of the spring, i.e. upon the ratio of the imposed vibration frequency 
to the natural frequency. 



VIBRATIONS IN ENGINES 91 

Fig. 68 illustrates the manner in which the amplitude of the forced 

vibration depends upon the ratio of the impressed frequency — to 
n n 

the natural frequency N i.a. -. it follows from Equation (22) 

that when q — n the value of the amplitude a is infinitely great 
and we have a natural resonance effect, whereby a small imposed 

Fig. 68. Illustrating Resonance Effect due to Forced Vibrations 
on an Elastic Member 

vibration of a frequency equal to the natural frequency of a vibrat¬ 

ing member can, theoretically, produce an amplitude of infinite 
amount. 

In practice, the effect of damping influences limits the maximum 
value of the resonant amplitude, but, nevertheless, the resonant 

amplitudes in certain engineering parts or structures are apt to produce 

stresses well above the safe working values. Typical instances are 
those of steel bridges (more particularly the suspension type) where 

periodic vibrations due to traffic or troops on the march may cause 
serious ^resonant movements. Another example is that of the crank¬ 

shafts of multi-cylinder engines, in which the resonance effects of 
torsional vibrations have caused fracture; further reference to this 

subject is made in Chapter V. The effect of sea Waves of certain 

frequencies upon the rolling4 motion of ships may become serious if 
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resonance between the wave and rolling frequencies occurs. Numerous 

other instances of possible resonance effects in engineering applications 

might be cited. 

In every practical case of forced and natural vibrations, the general 

rule for engineering structures and components is, by a suitable choice 

of stiffness, to arrange the natural frequency so that the working 

or impressed frequency is remote from either the natural frequency 
or a harmonic of the natural frequency. If the engineering part has 

to pass through resonant conditions in attaining its normal working 

speed or frequency, the passage through the resonant frequencies 
should be as brief as possible. 

Some General Considerations on Forced Vibrations 
From the results obtained by the particular solution of Equation 

(18) for the case of the resultant vibrations produced by an external 

force having a simple harmonic motion, certain general conclusions 

may be deduced. 

Referring to Fig. 68, which is drawn to scale for the example con¬ 

sidered, it will be observed that when the forced or impressed frequency 

is a small fraction of the natural frequency, i.e. when the ratio ~ is less 

than about 0-4, the forced vibration of the weight W is very nearly 
q 

the same as that of the point of support A. Thus, for ratios of - 

increasing from zero to 0*5 the amplitude of the forced vibration 

increases from 1*0 to 1*3. 
The most rapid increase in the forced vibration amplitude occurs 

q 
close to the value of — — 1, when resonance conditions result. Beyond 

the resonant frequency == 1^ the amplitude magnification curve 

is not symmetrical with the portion before the resonant frequency 

as shown by the inset graph in Fig. 68, in which the amplitude 

amplification scale is enlarged ten times. 

When q2 — 2n2> the expression (22) shows that the resultant and 
q 

impressed amplitudes are equal, i.e. - = V2, as shown in Fig. 68. 
Tl 

As the impressed frequency increases beyond this value the amplitude 

of the forced vibration diminishes rapidly, until when the impressed 

frequency is many times the natural frequency the motion of the 

weight W (Fig. 67) is very small. If damping occurs the weight W 

remains practically undisturbed. 

The effect of damping in the case'of forced vibrations is to reduce the 
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amplitude of the forced vibration over the whole range of impressed 

vibration frequencies as indicated by the dotted line graph in Fig, 69. 

As mentioned previously, the presence of damping effects results in 

a definite limitation of the resonant amplitude; *this is indicated by 

the peaked portion of the dotted curve in Fig. 69. 

Fig. 69. Effect of Damping in Forced Vibrations 

Phase of Forced Vibrations 
As the impressed frequency given to the support A of the spring 

(Fig. 67) increases, progressively, in value from zero the forced vibra- 
q 

tion is at first in phase with it, but for values of — up to unity the 

forced vibration gradually tends to lag behind the impressed one, 
q 

until when ~ equals unity, i.e. for resonant conditions, it is 90° behind, 

i.e. in quadrature. There is a fairly rapid increase in the phase lag 

on either side of the resonant position, after which the lag slowly 
increases, until for high multiples of the natural frequency, the forced 
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vibrations lag 180° behind the impressed ones. It follows that the 

forced vibration can be represented by the equation 

x = A sin (qt — a) . . . . (23) 

where a is the phase lag; or if the external force is denoted by 

/ = B sin qt, then the value of the force in the spring is 

fx = B . m . sin (qt — a) . . . (24) 

where m is the magnification factor, i.e. the ratios of the amplitude of 

the force in the spring to that of the external force. 

Fig. 70. Phase Relationship between Natural and Forced 

Vibrations of a Body 

(See also Fig 68 ) 

It can be shown that the value of the phase lag angle a is given by 

tan a 
mn n* ry2 * 

(25) 

where m0 is the magnification when q =- n for damped vibrations and 

is taken as a measure of the damping effect in the system. In this 

expression n is 2n times the natural frequency for the undamped 

system and q is 2n times the frequency of the impressed vibration. 

In these considerations it has been assumed that the equation of 

motion is similar to that given in (16), for a damping force proportional 

dx 
to the velocitv as represented by the term 6 . -y- in (16). 

at 
If the damping loss is known for any given amplitude of vibration, 

the value of m0 is deducible from the following relation < 

mn==:2lT'Wd.(26) 

where Eg is the maximum strain energy of the system and Ed is^ the 
energy loss by damping for a cycle. 
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Application of Results to Vibrating Spring 

If the results of this analytical study be applied to the vibrating 

system shown in Fig. 67 it will be seen that lor small impressed fre¬ 

quencies at the point of support A of the spring, the movements of W 

are very nearly the same as A, but as the frequency of A is slowly 

increased the weight W tends to lag a little behind A until at the 

resonant frequency, i.e. when q =■= n, it is 90° behind, so that the 

weight W is in its middle position when the external force is a maxi¬ 

mum. As the frequency of A is still further increased the weight W 

lags further behind until at higher frequencies it is nearly at its top 

position when the external force is at its maximum value in the down¬ 

ward sense. 

The manner in which the phase of the forced vibration of W changes 

as the frequency of A is increased is illustrated in Fig. 70, from which 

it will be noticed that the greatest change in phase occurs in the 

vicinity of the resonant position. At low frequencies the displacement 

and force are in phase, whilst for high frequencies they are out of phase. 



CHAPTER V 

TORSIONAL OSCILLATIONS IN ENGINES 

Inertial Stiffness S 

The fact that there are fluctuations in the torque output of the engine, 

and indeed of each cylinder, is responsible for several distinct vibration 
effects to which designers must perforce give consideration, in the 
interests of safety and efficiency. 

The most important of these effects are those due to torsional 
oscillations of the crankshaft and connected systems. In these oscilla¬ 

tions the various parts of the shaft 

system suffer periodic displacements 
relative to each other. As a result, 
the crankshaft, transmission, etc., are 

subjected to alternating stresses; the 
propeller (in the case of aircraft en¬ 
gines) has fluctuations imposed upon 

its otherwise uniform rotation, these 
fluctuations setting up alternating 

bending stresses in the blades, and in reduction gears there is the 

possibility of severe stressing due to the combined action of actual 

torque reversal and backlash. 
Of recent years the theory of’vibration, and the practical technique 

of vibration engineering, have been developed so extensively that it 

is not possible here to treat the subject in very great detail. A brief 

account of the salient features has been included, however, and refer¬ 

ences to the literature have been given so that the reader may pursue 

the subject in greater detail. 

-3 

Fig. 71. Torsional Pendulum 

The Torsional Pendulum 

The diagram, Fig. 71, depicts one of the simplest types of torsional 

vibrating system. A body, capable of rotation about the fixed line 
AB, is carried at one end of a light circular shaft, the other end of 

which is fixed rigidly. 
If the body is rotated through a small angle about AB, and then 

released, it performs a twisting or torsional vibration about the original 

position, in just the same way as the mass in Fig. 67, page 89, vibrates 

when it is pulled downwards and then released. 

The periodic time of this vibration is given by 

where I is the moment of inertia of the body about AB, and S is the 
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torsional stiffness of the shaft, which is the torque required to be 

applied at the free end to produce a deflection of one radian there. 

The periodic time can be expressed in terms of the constants of the 

shaft; in practical units the formula is then 

j 1*040/1 

V ~~#C 

where t -- periodic time in seconds, 

d =- diameter of shaft in inches, 

C = modulus of rigidity of the material of the shaft, in lb./in.2, 

I = length of shaft in inches, 

and I — moment of inertia of body, in lb. in.2 

The reciprocal of the periodic time is the natural frequency of 

torsional vibration. 

If an alternating torque T sin qt, i.e. a torque with maximum magni¬ 

tude T and frequency q/2tt vibrations per second, is applied to the 

body, it is found that the amplitude of vibration depends upon the 

ratio of the impressed frequency and the natural frequency, just as 

in the case of the linear vibration discussed on page 89. 

If the impressed frequency is small in comparison with the natural 

frequency, the amplitude of vibration is practically the same as that 

which would be obtained if the heavy body were absent and the torque 

acted solely on the shaft, and the displacement is in phase with the 

applied torque. 

For impressed frequencies which are very great in comparison 

with the natural frequency, the resulting vibration is very small, 

and is anti-phased with respect to the torque, so that it is a maxi¬ 

mum in one direction when the torque is a maximum in the other 

direction. 

As the frequency of the applied torque is gradually increased from 

a small value, the amplitude of vibration increases, at first slowly and 

then more rapidly, until as the natural frequency is approached the 
amplitude increases very rapidly and the resonance effect is seen 

(Fig. 68, page 91). The amplitude diminishes as the frequency is 

increased beyond the natural frequency, as can be seen from the 

diagram. 

The variation of the phase-lag of the resulting displacement behind 

the applied torque is exactly the same as in Fig. 70, page 94. 

It will be seen that there is a precise analogy betweep the behaviour 

of this simple torsional pendulum under the action of an applied 

alternating torque and that of the system in Fig. 67 under the action 
of an applied alternating force. 
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Extension of System 
The actual torsional systems encountered in practice, and consisting 

of the engine crankshaft and transmission or propeller, are more 

complicated than the torsional pendulum, and they are acted upon 

by a more complicated set of torques. 

Disregarding for the moment‘the possible existence of reduction 

gears, flexible propellers, and similar special units, the torsional system 

may be idealized mto a set of rigid inertias (usually visualized as 

Flywheel 

Fig 72. Equivalent System Representing Engine 

flywheels) connected by sections of light, flexible shafting. Thus a 

normal four-cylinder automobile engine with flywheel is represented 

as shown in the diagram, Fig. 72. Each inertia represents the polar 

inertia of a crank or of the flywheel, the crank inertias being calculated 

to allow for the effects of accelerations in the connecting rods and 

pistons, and the stiffnesses of the connecting shafts are calculated 

from their physical dimensions. (Detailed accounts of the methods 

of calculating these quantities are given by Ker Wilson, see reference 

1 on page 138.) In place of one inertia mounted on one shaft, the 

other end of which is rigidly fixed, there are five inertias joined by four 
connecting shafts. 

Acting upon this system there are a number of alternating torques 

at various frequencies; these are the fundamental components and 

harmonics of the torque output of each cylinder, the frequencies of 

which are multiples of the firing frequency, i.e. multiples of half the 

rotational speed of the crankshaft in the case of four-stroke engines. 

Certain of these harmonics, as will be seen later, are particularly 

important. 

Instead of one natural frequency, the shaft system has many, and 

if the relation between the operating speed of the engine and the 

natural frequencies is such that the frequency of one of the important 
harmonics is the same, or nearly the same, as one of the natural 

frequencies, the magnification effects of resonance are experienced, 

and severe torsional vibrations are set up. 
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The avoidance of resonance is the keynote of vibration engineering. 

While it is true that serious vibrations can and do occur in off-resonance 

conditions, the great majority of dangerous vibrations are rendered 
dangerous by the resonant magnification effect. 

In order to be able to avoid resonance, it is clearly necessary to 

know the natural frequencies of the system, and also the frequencies 
of any large alternating torques acting upon it. 

Determination of Natural Frequencies 
Unfortunately, simple formulae, such as that given on page 96 

for the torsional pendulum, cannot be given for the more complicated 

systems corresponding to actual engines. An entirely different method 
of approach, which is still however completely practical in conception, 

has been adopted by the leading manufacturers. 
Another reason for the adoption of this method, in the case of 

aircraft engines, is the fact that the flexibility of the propeller blades 
has a very profound effect upon the natural frequencies. This matter 
is discussed later, here it is sufficient to note that it is extremely 

desirable to have a method of calculating a certain characteristic 

function* for the engine, and of calculating or determining experi¬ 
mentally a similar function for the propeller, and to be able to deter¬ 
mine the natural frequencies of the combination by a study of the 

relation between these two functions. 

Dynamic Stiffness and Effective Inertia 
Neglecting the effects of hysteresis in the shaft and other damping 

agencies, the amplitude of the alternating torque at any frequency 
that must be applied to the outer end of the shaft in the diagram, 

Fig. 71, page 96, in order to produce a torsional oscillation of unit 
amplitude at that frequency, is S. That is to say, the dynamic stiffness 

of the shaft is the same as its static stiffness. 
Considering now the effect of the inertia of the body, let its angular 

displacement from the mean position be 6. For a vibration at the 
frequency of q/27T cycles per second, this displacement can be expressed 

in the form 
d = a sin qt 

where a is the amplitude. The acceleration of the body is obtained 

by differentiating this expression twice, and is found to be 

d*6 

di2 
= — aq2 sin qt 

Consequently, the amplitude of the torque that must be applied in 

order to maintain unit amplitude of vibration of the body is — I 
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the minus sign indicating that the vibration is anti-phased with respect 

to the applied torque. 
Since the stiffness of the shaft and the inertia of the body operate 

simultaneously, in order to maintain the complete system in a state 

of torsional oscillation of unit amplitude it is necessary to apply a 

torque of amplitude S — Iq2. Thus if the applied torque has an 

amplitude T and a frequency 
2n’ 

the amplitude of the resulting 

vibration of the body is given by 

T T/S 
- s~z iq2 - fz^i/s (i) 

(Compare with Equation 22, page 90.) 

When q equals \/S/I the formula indicates an infinite amplitude of 

response, which is, however, limited in practice by the action of 
damping forces, as in the case of linear vibrations. 

The quantity 

Z = S — Ig2 (2) 

is termed the “dynamic stiffness” of the torsional pendulum, with 
respect to torques applied at the outer end. It is precisely analogous 

to a static stiffness, since it is the amplitude of applied torque required 

to produce unit amplitude of torsional displacement. 

Two important properties of'the dynamic stiffness must be noted. 

First, it is a function of the frequency of the applied torque, since 

the expression contains q. Secondly, it refers to torques applied at 

a definite part of the system, and to displacements at that point. 

The natural frequency of the system is determined by the value of 

q} which gives zero value to Z; this corresponds to an infinite response 

(neglecting damping) to a finite applied torque. 

The “ effective inertia ” of the pendulum is the amplitude of alter¬ 

nating torque that must be applied in order to maintain a vibration 

with unit amplitude of acceleration, since Torque is Inertia x Accelera- 

lion. Since for the frequency — vibrations per second the amplitude 
LIT 

of acceleration is the product of the amplitude of displacement and 

the factor (— g2), it follows that the effective inertia I6 is given by 

le (3) 

The effective inertia of the pendulum may be interpreted as the 

inertia of a flywheel (regarded as mounted on a short shaft which 

runs freely in bearings), the response of which to an applied alternating 

torque m the same as the response of the pendulum to the same torque* 
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The curves in the diagram, Fig. 73, show how these quantities 

vary with the frequency, for the particular case in which I — 386 lb. in.2 
or 1 lb. in. sec.2, and S = 1 X 106 lb. in./radian. It can be seen that 
at very low frequencies the dynamic stiffness Z is nearly the same as 

the stiflhess of the shaft, and that at very high frequencies the effective 

inertia Ie is nearly the same as the inertia of the body. In other words, 

at very low frequencies the stiffness of the shaft is the main controlling 
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Fig. 73. Dynamic Stiffness and Effective Inertia Curves for 

Torsional Pendulum 

influence on the magnitude of vibration, while at very high frequencies 

this function is taken over by the inertia of the body. 

Tuning Inertia and Stiffness 
For a frequency of 5730 vibrations per minute the effective inertia 

in this particular case is — 686 lb. in.2 Thus, if the inertia of the body 

is increased by 686 lb. in.2, the effective inertia of the modified pen¬ 
dulum would be zero at this frequency ; in other words, 686 lb. in.2 is 

the value of the inertia wrhich must be added in order to tune the 
system to resonance at 5730 vibrations per minute. This value is 

known as the “tuning inertia” for that frequency, and in general the 
tuning inertia is equal in magnitude, but opposite in sign, to the 

effective inertia. For frequencies greater than the natural frequency 

(9550 v.p.m.) the tuning inertia will Evidently be negative, so that 

the inertia of the body must be decreased in order to increase the 

natural frequency. 
Similarly, the dynamic stiffness at 5730 v.p.m. is 0-64 X 106 

lb. in./radian. If the stiffness of the shaft is decreased by this amount, 

the modified pendulum will have zero dynamic stiffness at 5730 v.p.m., 
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so that this will be the new natural frequency. The amount by which 

the stiffness must be altered in order to tune the system to reson¬ 

ance at any frequency is termed the '‘tuning stiffness*’ for that 

frequency. 

From graphs such as those in the diagram it is very easy to ascertain 

the effects of varying either the inertia of the body or the stiffness of 

the shaft, or both. 

Owing to the close relation between dynamic stiffness and effective 

inertia, expressed in Equation (3), it is only nefcessary in any particular 

calculation to consider one of these quantities The choice depends 

largely upon the Mature of the problem. 

Application to Practical Cases 
The general methods outlined above can easily be extended to the 

more complicated systems. Consider the four-cylinder automobile 

engine and flywheel represented in Fig. 72, page 98. The natural 
frequencies are the frequencies for which (neglecting the action of 

damping forces) the dynamic stiffness is zero, that is to say, if the 

system is caused to vibrate torsionally by the application of an alter¬ 

nating torque at any point, the resulting amplitudes of vibration will 

be infinitely great (neglecting damping) when the frequency of the 

applied torque equals any one of the natural frequencies. 

It can be shown* that, provided the damping forces are comparatively 

small, as they normally are in engines, their influence upon the natural 

frequencies can be ignored, and also that their influence upon the 
amplitudes of vibration is negligible except in the immediate* vicinity 

of a resonant condition, where the infinite amplitudes are limited to 
finite values. For practical purposes it is therefore permissible to 

t neglect damping forces in the calculation of natural frequencies and 

vibration amplitudes, a procedure which greatly simplifies the 

calculations. 

Denoting the inertias and shaft stiffnesses as in the diagram, suppose 

that a torque T6 sin qt is applied to the flywheel I6. The calculation 

aims at determining the resulting amplitude a5 of torsional vibration 

T5 
at the flywheel; thence the ratio —, or the dynamic stiffness at the 

ab 

flywheel, is obtained, and the natural frequencies are determined by 

the values of q for which the value of this ratio is zero. 
Assume that the amplitude at Ix is av Then the amplitude of torque, 

T1? that must be applied there to maintain this vibration of the inertia 
is — Iltfa1 (see page 99). Since this torque is in fact applied via the 

shaft Sj, the amplitude a2 of the inertia I2 can be found in terms of ax; 
* 

* R. G. Manley, Fundamentals of Vibration Study (Chapman & Hall, 1942), p. M. 
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for the torque transmitted by the shaft is the product of the twist in 
the shaft and its stiffness, i.e. 

whence (4) 

The amplitude of torque, T* which must be applied at cylinder 2 
to maintain the vibration of amplitude a2 there, is given by 

whence 

T2 = Tj — l2q2a2 = S2(a3 — a2) 

q2 

a3 ” a2 (Iiai 4~ -^2^2) (5) 

Proceeding in this manner, the relations are obtained— 

T3 = T2 — = Sg(&4 #3) 

T4 = T3 — 14$f2a4 = S4(a6 — a4) 

T6 — T4 — I5g2a6 
q2 ► 

a4 = a3 (Ix®x + ^2a2 4“ ^S^s) g~ 

q2 
a5 = a4 (^Iai 4“ 4" lsa3 4* I4G4) gT 

(6) 

The calculations are conveniently performed by means of a tabu¬ 

lation. For any frequency, a table is constructed as follows— 

Column (1): 

« (2): 

„ (3): 

„ W: 

„ (5): 

„ (6): 
„ (7): 

the inertias Ix-I5 are listed in order, 

each inertia is multiplied by the value of q2 corre¬ 
sponding to the frequency and the product entered 

in this column. 

the amplitudes of vibration of each inertia are entered 
as calculated; in the first line an arbitrary value 

of unity is entered. 

the entries in columns (2) and (3) are multiplied 
together, and the product entered here, 

the entry in each line is the sum of the entry in column 

(4) and the preceding entry in column (5); thus, 
entries here form a running total of the entries in 

column (4). 

the stiffnesses Sx“S4 are listed in order, 

the entry in column (5) is divided by the stiffness in 
column (6), and the quotient entered here. 

In all lines after the first, the amplitude in column (3) is found by 
subtracting the entry in column (7), in the preceding line, from the 

preceding amplitude. 
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Column (4) gives the inertia torques* corresponding to the ampli¬ 

tudes in column (3). Column (5) gives for each inertia the amplitude* 

of the applied torque necessary to maintain that inertia, and all parts 

of the system to the left of it, in vibration with the amplitudes specified. 

Column (7) gives the twists in the respective shafts. 

Table VII shows a specimen calculation for an actual engine, in 

which the constants are— 

Inertias: Cyl. 1-Cyl. 4 0-1249) 

Flywheel 1-943 j1D' ' 8ec' 

Stiffnesses: Inter-cylinder 4*7) . , .. 
Engine/Flywheel 3 3/ X M>‘lb. in./radian 

The table gives the working for a frequency of 20,200 v.p.m. 

TABLE VII 

Torque Summation for 20,200 v.p.m. (q2 - 45 X 10a) 

1 2 3 4 5 6 7 

Cyl. 1 0-1249 0-5621 1-0000 0-5621 0 5621 4-7 0-1196 
Cyl. 2 0-1249 0-5621 0 8804 0 4949 1-0570 4-7 1 0 2248 
Cyl. 3 0-1249 0-5621 0-6556 0-3685 1 -4255 4-7 0 3033 
Cyl. 4 0-1249 0-5621 0-3523 0 1980 1-6235 3-3 0-4920 
Flywheel . 1-9430 8 7435 - 0-1397 !- 1-2215 0-4020 __ — 

Z = — X lb. m./radian 

Ie - - Z/g2 - - 0-640 lb. m. sec.2 

There are several important points to be noted. First, it is essential 

to express the inertias and stiffnesses in the correct units. Inertias 

must be in lb. in. sec.2 units, the value being obtained by dividing 

the value in lb. in.2 by g — 386 in./sec.2 Stiffnesses must be expressed 

as lb. in./radian. It is convenient, however, to make a simplification 

in entering values in the table : the factor 106 is omitted from columns 

(2), (4), (5), and (6). For this purpose some authorities recommend 

expressing the stiffnesses as lb.-in./micro-radian, and mentally *6 drop¬ 

ping ” the factor 106 from the value of q2. 

Secondly, signs must be taken into account throughout. Thus, a 

negative amplitude in column (3) results in a negative entry in column 

(4), so that the total in column (5) is diminished instead of increased. 

Similarly, if at any stage the total in column (5) is negative, so is the 
corresponding twist in column (7), so that the amplitude in the next 

line is greater instead of less. 

* With a reversal of sign for convenience. 
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The dynamic stiffness Z is obtained by dividing the final torque 
total (column (5)) by the final amplitude (column (3)), and reversing 
the sign. 

The effective inertia le is obtained by dividing the dynamic stiffness 

(a) 

•1249 1-943 Lb In. Sec.2 

Wri 
le 

Engine (a.) 

Lb In/Micro-Radn. 0^04 

I'e 
Transmission (b) 

Fig. 74. Effective Inertia Curves for Automobile System: (a) Engine 

(6) Transmission 

Z by the value of q2, and reversing the sign again; or more directly 
by dividing the final torque by the product of the final amplitude and 
the value of q2. 

The diagram, Fig. 74, (a) shows the variation in effective inertia I, 
of this system over the frequency range 10,000-25,000 v.p.m. From 
zero frequency to 10,000 v.p.m. the effective inertia increases very 
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slowly, from 2*443 (at zero) to 2*608 (9550 v.p.m.). It will be seen 

that the effective inertia is zero at about 20,700 v.p.m., and this 
is the lowest natural frequency of the system. Natural frequencies 
higher than 25,000 v.p.m. can normally be disregarded. 

Effect of Coupled Transmission 
In actual fact, of course, the system does not end at the flywheel. 

Coupled to the flywheel is another system, comprising the gearbox, 

propeller shaft, rear axle, and road wheels. Of these, the most important 
item is the propeller shaft. The inertias of the gears are small in 

comparison with that of the flywheel and they are practically rigidly 

connected to this much larger inertia; and, as will shortly be seen, 
the actual value assumed for the inertia of the road wheels does not 
affect the result to any appreciable extent. 

This coupled system can be taken into account by adding a further 

line to the torque summation table, and this procedure would enable 
a curve to be plotted showing the variation of the effective inertia at 
the-road wheels. To demonstrate the peculiar advantages of the general 

method (dynamic stiffnesses and effective inertias), however, and also 
to illustrate more easily the effect of the gear ratios in the gearbox, 
another procedure is here adopted. 

Taking a value of 0*004 x 106 lb. in./radian for the stiffness of the 

transmission shaft, and assuming a value of 50 lb. in. sec.2 for the 
equivalent inertia of the road wheels, with an allowance for the gear 

reduction at the rear axle (see page 108), the graph in Fig. 74 (6) shows 

the variation in effective inertia of this coupled system, the reference 
point being the forward end of the shaft. 

Given the curves for the engine system and for the transmission, 

the natural frequencies of the complete system can easily be obtained. 
Let the effective inertias, referred to the coupling point (i.e. the forward 
end of the transmission shaft, to which the curves illustrated refer) 

be Ie and Ie' respectively. Suppose that at some frequency these 
inertias are equal in magnitude, but opposite in sign, so that Ie + 1/ 

= 0. Suppose further that the system is performing torsional vibra¬ 
tions at this frequency, with an amplitude a at the coupling point. 

The amplitude of torque that must be applied at this point to maintain 

this amplitude is I*a + I/a, which sum is zero. The effective inertia 
of the combination is therefore zero at this frequency; so this is a 

natural frequency. 
The general condition for natural frequencies is therefore 

I« + V = 0 . . . . (7) 

In practical applications, the equation is rewritten in the form 

i.'—1« 
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By plotting the two curves on the same axes, first reversing the sign 

of one of them, the natural frequencies are easily obtained as the 

values corresponding to the intersections of the two curves. 
This procedure is illustrated in Fig. 75. In this diagram, the sign 

of the curye for the engine has been reversed. It has been necessary 
to alter the scales somewhat to show up the intersections. It will be 

Fig. 75. Effective Inertia Curves for Automobile System of Fig. 74 

seen that within the frequency range plotted there are two natural 

frequencies, one at about 390 v.p.m. and the other at 20,700 v.p.m. 

These two frequencies deserve further consideration. 

Natural Frequencies of Automobile System 
As will be seen later, when the forcing torques have been considered, 

the lower natural frequency is too small to be of importance. Since, 
however, developments in automobile engineering may possibly bring 

about considerable changes in the transmission system, the existence 

of this frequency should not be disregarded. 
The formula on page 96 for the periodic time for the torsional 

pendulum can be rewritten in the form 
/ g 

Natural frequency — 9*55^ j v.p.m. . . (8a) 

where the stiffness is in lb. in./radian and the inertia in lb. in. sec.2; or 

if the stiffness is expressed in lb. in./micro-radian, 

Natural frequency - 9550 v.p.m. m 

If therefore the inertia of the road wheels, etc., is supposed to be 

infinite, and the natural frequency is calculated for the system com¬ 
prising the flywheel and crankshaft inertias, all lumped together into 
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one inertia, mounted on the transmission shaft (thus forming a torsional 

pendulum), this frequency is found to be 

/6~004 

9650V 2443 = 386 v P m- 

This is, for all practical purposes, the same as the true value found 
above for the lowest natural frequency of the complete engine/trans¬ 

mission system. This frequency can, in fact, always be found approxi¬ 

mately in this fashion, provided the transmission shaft is very flexible 

in comparison with the crankshaft. 

As calculated, this frequency refers to the case where the transmission 

shaft runs at crankshaft speed, i.e. in top gear. To allow for the 

different gear-ratios in the gearbox, the value of the transmission 

dynamic stiffness must be multiplied by the square of the ratio 

(transmission r.p.m./crankshaft r.p m.). The value of the frequency 

can be obtained by the method of intersections, the ordinates of the 

curve for 1J being divided by 62 = 36, if the reduction is 1 : 6, in 

accordance with the general rule, which may be stated thus— 

“To calculate the dynamic stiffness or effective inertia of a shaft 

system running at N r.p.m., referred to a gear-connected shaft 

running at NR r.p.m., divide the value referred to the first shaft 

by R2.” 

(See also page 111.) 

The lowest natural frequency in direct drive, then, can usually be 

determined quite accurately by considering a torsional pendulum 

and using formulae (8), in which S is the stiffness of the transmission 

shaft, and I is the sum of the flywheel and crank inertias. 

In order to appreciate the reason for the validity of this simplification, 

the curves for dynamic stiffness may be studied. Relevant parts of 

these curves are shown in the diagram, Fig. 76. It will be seen that 

for frequencies above about 200 v.p.m. the dynamic stiffness of the 

transmission hardly varies, and is approximately the same as the 

stiffness S of the shaft; while for the frequency range plotted (and, 

in fact, for frequencies below about 6000 v.p.m.) the dynamic stiffness 

of the engine system is very nearly — 2*443g2, i.e. the same as the 

dynamic stiffness of a plain inertia equal to the sum of the flywheel 

and crank inertias. From these facts the conclusions set out above 

follow. 

It will now be apparent that the effective inertia of the transmission 

is extremely small at high frequencies. At 20,000 v.p.m. the value is 

less than 0*001. Consequently, the second intersection in the diagram, 

Fig. 75, occurs at practically the same frequency as that for which 

the effective inertia of the engine system is zero. In other words, the 
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transmission has no appreciable effect on the second natural frequency. 
Implicit in this result is the conclusion that this natural frequency is 
not affected by the gear-ratio. * 

An approximate value for this second natural frequency can be 

found as follows. Let If be the mertia of the flywheel, and lc half the 
sum of the crank inertias. Let S' be the stiffness of the complete 
crankshaft, found from the formula 

1 __ I I 1 1 
S' ~ s,+ s2 + s3 + s4 

Fig. 76. Lowest Natural Frequency of Automobile System 

where Sjl — S4 are the stiffnesses of the separate lengths of the crank¬ 

shaft. Then 

Second natural frequency = 9550 (9) 

if the inertias are in Jb. in. sec.2 and the stiffness is in lb. in./micro¬ 

radian. 

In the example quoted, If — 1*943, Ic = 0*250, and S' = 1*062, 
and the frequency is found to be 20,900 v.p.m. This is, in this case, 
a remarkably good approximation to the true value (20,700 v.p.m.). 

A result correct to within five per cent may be expected, provided 
that the flywheel inertia is large in comparison to the crank inertias, 

and that the stiffnesses of all four parts of the crankshaft are very 

approximately equal. 

Summary—Frequencies in Automobile Systems 
In the range of frequencies which are of practical importance, there 

is only one natural frequency of torsional vibration of the crankshaft/ 

transmission system likely to require serious consideration. 
Ker Wilson gives typical values of this frequency as follows— 

Four-cylinder engines 17,000-24,000 v.p.m. 

Six-cylinder engines 12,000-17,000 v.p.m. 

Eight-cylinder engines 9,000-13,000 v.p.m. 
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Alterations in any part of the system to the rear of the flywheel have 

no appreciable effect on the value of the frequency. 

There is a lower natural frequency, in the region of 400v.p,m., 

which is, however, too small to be of significance. 

It must be emphasized that these general conclusions Tefer to the 

orthodox type of installation, involving a long and relatively flexible 
transmission shaft. The general method of analysis described in the 

foregoing sections can, however, be used to determine the natural 

a 

Tt Za 

Zb 

X*) 

B S A 

Za 

(b> 

pZs 

Wheel, 
Radius nr 

Pinion, 
irf Radius r 

(C) 
Fio. 77. Transference of Reference Point 

frequency of any torsional system, and can therefore be applied to the 

study of the vibration characteristics of new developments. 

Other Types of Coupled Systems 
Equation (7) can be used to determine the natural frequencies of 

coupled systems of various types, including those linked by flexible 
units and gearing. 

It is in this connexion that it is important to emphasize the point 

mentioned previously, that dynamic stiffnesses and effective inertias 

are quantities which refer to some definite part of the system. Thus, 

in calculating the natural frequencies of the complete automobile 

engine/transmission system by means of superimposed graphs relating 

each to one part, it was necessary to draw the graphs of dynamic 

stiffness or effective inertia at the point common to both parts. 

It is often convenient to make use of formulae for transferring the 

reference point; these are formulae expressing the relation between 

the dynamic stiffness of a system to one side of a unit (inertia, flexible 

shaft, or gear-step) and that of the same system as viewed from the 

other side of the unit, and similar formulae for effective inertias. 

Referring to the diagram, Fig. 77 (a), let ZA and ZB be the dynamic 

stiffnesses of the systems to the right of the points A and B immediately 
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each side of the inertia I; that is, ZA refers to the system to the right 

of I, and ZB refers to the combination of I and this system. Then 

ZB — ZA — Tg2 .... (10a) 

Similarly, for transference of the reference point through the shaft 
in Fig. 77 (6), 

11 _1_ 

z;= s4 zi 
. (106) 

Finally, for the gear-step illustrated at (c), let ZA refer to the system 

to the right of, and including, the pinion, and let ZB refer to the system 

to the right of, but excluding, the wheel. Then 

ZB = 7i*ZA / • (10c) 

(For proofs of these formulae, see references (2) and (3) on page 138.) 

Suppose now that ZB' i$ the dynamic stiffness of a system coupled 

directly to the left-hand side of the unit in each case. The equation 

for determining the natural frequencies is 

ZB -b ZB — 0 

and on substituting from Equations (10), the following formulae are 

obtained— 

ZA + ZB' = I?2 \ 

1. J__i 
ZA + Z'B - s 
Zb “ w2Za / 

. (ID 

In terms of effective inertias instead of dynamic stiffnesses, the for¬ 

mulae become— 

ia + ib' = -i \ 

1 1 q2 

Ia + fb _ S 

I'b = - n2IA 

• (12) 

By suitable manipulation of these formulae it is possible to see at 

a glance what will be the effect of altering the inertia, stiffness, or 

gear-ratio, of the linking unit. Thus, for changes in the inertia I, the 

quantity — (IA + IB') is plotted against frequency; for any chosen 

value of I, a line corresponding to this value intersects the curve at 

the natural frequencies. For changes in the shaft stiffness S, the 

quantity —- ( + ^—7) is plotted, and the frequencies for which 
\za ZB / j 

this quantity has the value g are the natural frequencies. Finally, 
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in the case of the gear-step, the quantity plotted is the ratio —=—, 
aa 

and for any gear-ratio n : 1 the natural frequencies are those for 

which this ratio equals n. 

.Gear-steps in Torque Summation Tables 
The presence of reduction gears in the system is easily allowed for 

in the tabulation method of calculating dynamic stiffnesses and 

To Transmission 
or Propeller 

h 

Radius r 

i+~To Engine 
- Radius pr 

(CL) (b) 

Fig. 78. (a) Spur Reduction Gear; (6) Epicycljc Reduction Gear 

effective inertias. Referring to the diagram, Fig. 78 (a), which illus¬ 

trates the case of a simple spur reduction gear, I& is the inertia of the 

pinion on the crankshaft and Ic is the inertia of the meshing gearwheel; 

the gear-ratio is p : 1, so that when the crankshaft speed is N r.p.m. 

the speed of the driven shaft is* pN. 

The tabulation is carried through in the usual way as far as the 

line for I6. In this line there is no stiffness S entered, as the pinion 

is directly coupled to the wheel. The amplitude of the wheel is the 

product of the amplitude of the pinion and the gear-ratio p, the torque 

total at the pinion (column (5) ) must, however, be divided by p 

before the inertia torque due to the wheel is added. The tabulation 

is then continued. It is convenient to insert an extra line for the 

purposes of recording the modified total torque. 

As an example, suppose that the diagram refers to the case of a 

single-row radial aircraft engine installation, in which the numerical 

constants are as follows— 

Engine inertia = 5-0 

Pinion inertia Ih = 0-4 

propeller r.p.m. 
p —-;- = 0*6 

engine r.p.m. 

Gearwheel inertia Ic = 0*6 

Crankshaft stiffness = 2-5 

Propeller shaft stiffness ~ 6*0 
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(inertias in lb. in. sec.2, stiffnesses in lb. in./miero-radian). Then, at a 
frequency of 2865 v.p.m., the table is as follows— 

TABLE VIII 

Tohqite Summation for 2865 v.f.m. {qz =*- 90,000) 

I o 3 4 5 6. 7 

Engine . 50 0*45 1-0000 0*4500 0*4500 2*5 0-1800 
Pinion 0-4 0*036 0*8200 00295 0 4795 

0*7992 , 
Wheel . 0-6 0*054 0 4920 0-0266 0*8258 6*0 0*1376 
Propeller end . 0*3544 

1 

The total torque at the pinion, 0-4795, is divided by p = 0*6, the 

quotient 0-7992 being entered in the extra line. The amplitude 0-8200 
at the pinion is multiplied by p, and the product 0-4920 is the amplitude 
at the wheel. The dynamic stiffness at the propeller end of the pro¬ 

peller shaft is thus found to be 

— 0-8258/0-3544 — — 2-330 lb. in./micro-radian 

and the effective inertia is 

2-330 X 106/?2 - 25-9 lb. in. sec.2 

The procedure is of course applicable to any type of torsional system 
involving gear-steps. 

Reduction gears other than of the simple spur type can be treated 
by first deriving an equivalent spur gear which is dynamically similar. 

A common type of gear in aircraft installations is illustrated in Fig. 
78 (6). A bevel wheel C attached to the crankshaft meshes with a set 

of planet bevels P, carried on a spider mounted on the propeller shaft. 
The planets also mesh with a sun wheel S fixed rigidly to the gear¬ 
housing. The crankshaft and propeller shaft are collinear, the axis 

of rotation being AB. 

Let u = inertia of crankshaft bevel about AB, 

v = inertia of each planet about its bearing axis, 

w = inertia of spider about AB, 

m = mass of each planet, 

n = number of planets. 

Then it can be shown* that the inertias of the pinion and gearwheel 

♦ R. G. Manley, “Torsional Vibration Analysis of Systems connected by 
Flexibly-mounted Epicyclic Gearing,” Journal of the R.Ae.SJuly, 1944. 



114 AUTOMOBILE AND AIRCRAFT ENGINES 

in the equivalent simple spur gear are— 

h = m + 

If - I- \n(m- (C 4 S)2 

where C, S, and P denote the numbers of teeth in the bevels similarly 

lettered. 

Aircraft Propellers 
Although, as has been seen, the transmission in automobile systems 

does not greatly influence the important natural frequencies of the 
crankshaft and associated masses, in the case of aircraft engines the 

torsional vibration characteristics of the engine are profoundly modified 
by the presence of the propeller. 

Originally the propeller was regarded in the same manner as a 
marine propeller, viz. as a rigid inertia appended to the engine system. 

Calculations based on this conception were not very successful, and 

in 1936 it was realized that the flexibility of the propeller blades must 
be taken into account. 

The shape of the blades is such that the calculation of the vibration 

characteristics of the propeller is an exceedingly complicated and 
tedious matter. Fortunately/ however, it is possible to obtain the 
necessary data by experimental means, the details of which fall outside 

the scope of this book. Here it is sufficient to note that by such methods 

can be derived a graph showing the variation with frequency of the 

torsional dynamic stiffness or effective inertia of the propeller; super¬ 

position of this curve upon a similar curve for the engine, the sign of 
one curve being reversed, will indicate the natural frequencies of the 

combination. 
Fig. 79 shows very approximately the type of diagram that is 

obtained. It will be noted that the propeller curve has many more 
branches than has the engine curve in the same range of frequencies, 

and consequently there are likely to be several natural frequencies 

within the operating range. In the case illustrated the engine is a 
single-row radial, and there are seven intersections in the range of 

the graph (from zero to 25,000 v.p.m.); if the propeller were a rigid 
body there would be only one intersection as marked at P. The 

magnitude of the errors involved in the assumption of a rigid propeller 

will be evident. 
A further complication which must be taken into account is the 

effect of centrifugal forces upon the propeller curve. These forces 
tend to stiffen the blades, so increasing their natural frequencies and 



TORSIONAL OSCILLATIONS IN ENGINES 115 

shifting the curve somewhat to the right (i.e. in the direction of in¬ 
creasing frequency), the greater the rotational speed the greater is* 
the stiffening effect. As a result, for extreme accuracy a separate 
curve should be drawn for each rotational speed, but in practice it is 
found to be sufficient merely to indicate a series of bands, the bounds 
of which are the branches of the curve for the lowest and for the 
highest rotational speeds In place of each simple intersection in 
Fig. 79 there is therefore a comparatively small range of frequencies, 

Frequency 

-Engine 
-pr0pe//er 

-Propeller 

Fig 79. Dynamic Stiffness Curves for Aircraft Engine and 
Propeller System 

and the natural frequencies for any particular rotational speed can be 
estimated with sufficient accuracy for practical purposes. The method 
of calculating the effects of centrifugal forces has been described by 
Morris (see list of references on page 138). 

Helical Gearing 
Helical gearing, the use of which in transport power plant is being 

developed (particularly in multi-crankshaft aircraft engines), introduces 
another complication. If one shaft of a single helical gear unit is fixed 
rigidly, torsional vibrations can take place in the other shaft if a small 
relative motion between the two gear wheels in the axial direction 
is possible. Consequently, the extent to which axial motion is restrained 
has an important influence upon the torsional vibrations of the shaft 
systems. Even if axial motion is supposed to be prevented by the 
provision of adequate thrust bearings, it must be remembered that 
the housing to which the bearings are fixed cannot be infinitely rigid, 
and may indeed be comparatively flexible. The subject is too complex 
to be given a detailed treatment here; the application of the dynamic 
stiffness method to this problem has been described elsewhere (see 
reference (3) on page 138). 
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Nodes 
The torque summation table, besides being used for determining 

natural frequencies, enables the “swinging forms” of the shaft system 

to be obtained. If a table is completed for one of the natural frequencies 

of the system, the entries in column (3) are proportional to the ampli¬ 

tudes of vibration at each inertia, for a free vibration of the system 

at that frequency. 
It will be found that the various natural frequencies are distinguished 

by the number of points in the shafting whereat there is zero amplitude. 

These points are called nodes. At the lowest natural frequency, there 

is one node ; at the second lowest, two nodes , and so on. 

The position of the nodes has an important effect on the distribution 

of stresses due to torsional vibration. Briefly it may be said that 
portions of shaft containing nodes are more highly stressed than those 

not containing nodes. For further details, the reader should consult 

the standard textbooks. Furthermore, the position of the nodes has 
a controlling influence on the response of the shaft system to the 

various harmonics of the applied torques (see page 119). 

Table IX shows the distribution of amplitudes through the engine/ 

transmission system of Fig. 74, at the first two natural frequencies. 

It will be seen that at the lowest frequency there is a node in the 

transmission, near the road-wheels ; and that at the second frequency 

the two nodes are near the road-wheels and flywheel. 

TABLE IX 

Amplitude Distributions at First Two Natural Frequencies 

(System of Fig. 74) 

Frequency 

1 

Relative Amplitudes 

Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4 Flywheel Road-wheels 

390 v.p.m. 1-00 1-00 1-00 1 00 1-00 - 0-049 

20,700 v.p.m. . 100 0-88 0-64 0*33 - 0-18 less than 
+ 1/300,000 

The actual amplitudes of vibration at any frequency except a 

natural frequency can be found by means of the torque summation 

table, modified by the inclusion of terms to represent the forcing 

torques at the various cylinders. 

Forcing Torques 
The periodic torques responsible for the initiation and maintenance 

of torsional vibrations in the engine system are the harmonic com¬ 

ponents of the torque output from each cylinder. As has already been 
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described (pages 39-49), this torque output is by no means uniform. 

It fluctuates periodically, the duration of the cycle of variation being 
the same as the firing interval (i.e. the time taken for the crankshaft 
to rotate once, in the case of two-stroke engines, and twice in the case 
of four-stroke engines). 

Torsional vibrations with corresponding periods may therefore be 

expected; but the situation is also complicated by the fact that the 
torque output from each cylinder does not vary in the manner of a 

sine-wave, but contains higher harmonics. 

The output can be regarded as the sum of a number of terms, of 
which one represents the steady (or mean) torque, while the others 

are sine-wave variations at frequencies which are multiples of the 

firing frequency. 
In a single-cylinder engine all these harmonics are present, although 

it is true that the magnitudes of the higher harmonics are negligible. 

In a multi-cylinder engine, advantage is taken of the possibility of 
suitably disposing the cranks and the firing sequence of the cylinders, 

so as to minimize the effects of the harmonics. 

Ker Wilson gives a very comprehensive treatment of this subject 

(see references on page 138). A simple example will here suffice to 
illustrate the method of determining which of the harmonics are 

important. 
It is customary to refer to the various harmonics by their “order 

numbers.” The order number of a harmonic is the number of 

cycles which occur during one revolution of the crankshaft. In two- 
stroke engines, the order numbers are necessarily all integers, the 

first harmonic (or “fundamental”) being referred to as the 1st or 

IX order. 
The notation typified by “ IX ” is useful, as it indicates the frequency 

of the harmonic as a multiple of crankshaft speed Thus, in the case 
of the 3X order, with a crankshaft speed of 3500 r.p.m., the frequency 

is 3 X 3500 = 10,500 v.p.m. In four-stroke engines, since the firing 

cycle extends over two engine revolutions, order numbers such as 

JX, 1£X, 2|X, etc., occur, as well as the integers. 

Vector Summation 
It can be shown that the severity of the effects due to any harmonic 

in the torque output from each cylinder is directly proportional to a 

certain vector sum, which is calculated in the following manner. 

This vector sum is, in effect, a measure of the vibrational energy 

input, and is determined by considering the work done by the har¬ 

monics of each cylinder during the vibration, account being taken of 
the fact that, since the cylinders fire at different times, there are 
phase-differences between the harmonics from different cylinders. 
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A diagram termed a “IX order phase diagram ” is first prepared. 

Fig. 80 (a) shows such a diagram for the case of a six-cylinder, four- 

stroke engine with conventional crankshaft arrangement, and with 
the firing order l-5-3-6~2~4. The cylinders fire at even intervals over 

the 360° of camshaft revolution, and this disposition is shown in the 

diagram In engines which have uneven firing, the vectors will be 

Fig 80. Vector Diagrams 

similarly spaced unevenly round the circle. In all cases, cylinder 1 

is4represented by a vector pointing upwards, and the other cylinders 

by vectors spaced at angles corresponding to the camshaft angles of 

the firing sequence. 

Phase diagrams for the other orders are obtained by doubling, 

trebling, etc., the angular intervals. Thus, the angular intervals for 

the IX order are double those for the \X order; those for the I|X 

order are treble those for the £X order, and so on. The diagram, 

Fig. 80 (b) shows the result for the six-cylinder engine which is being 

considered. 
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It will be observed that there are only six possible diagrams, several 

orders having the same diagram, as follows— 

(a) 4, 3£, 6£, etc. (c) 1|, 4J, 7|, etc. (e) 2£, 5£, 8£, etc. 
(b) 1, 4, 7, etc. (d) 2, 5, 8, etc. (/) 3, 6, 9, etc. 

and also that the types (d) and (e) are mirror images of the types 

(6) and (a) respectively. 
Assuming that (as is normally the case) the indicator diagram for 

each engine cylinder is the same, vectors proportional to the ampli¬ 

tudes of vibration at the various cylinders are plotted in the directions 
indicated. The relative amplitudes are obtained by means of the 

torque summation tables, calculated for the particular natural fre¬ 

quency considered. 
The severity of any harmonic at that frequency is indicated by the 

length of the vector sum of these vectors in the corresponding phase 

diagram. 
If the amplitude of any cylinder is negative, indicating that its 

vibration is anti-phased with respect to that of cylinder 1, the corre¬ 

sponding vector is of course reversed in direction. 

Significance of Nodes 
The position of the nodes, and generally the shape of the “swinging 

form,” profoundly affect this vector summation, since they determine 

the lengths of the various vectors plotted. 

,The foliowmg amplitude distributions are typical cases for a six- 

cylinder engine— 
(a) Node remote from crankshaft (e.g. lowest natural frequency in 

automobile system). 
Cylinders 1 2 3 4 5 6 
Amplitudes . 1 00 0 99 0 97 0*94 0*90 0-85 

(b) Node just beyond cylinder 6 (e.g. second natural frequency in 

automobile system). 
Cylinders . . 1 2 3 4 5 6 
Amplitudes . . 1 00 0 95 0 84 0-69 0 51 0-29 

(c) Node between cylinders 3 and 4 (e.g. one of the higher natural 

frequencies in aircraft system). 
Cylinders . . 1 2 3 4 5 6 
Amplitudes ! . 1*00 0 75 0-40 - 0 20 - 0 60 - 0-90 , 

If the vector summations are performed, it will be found that the 
lengths of the resultant vectors are as follows— 

Orders: b 2i. 3i, 5b 1, 2, 4, 5, 7, H, 7i, 3, 6, 9, 

Case: 
6£, etc. etc. etc, * etc.’ 

(a) 0-11 0*06 0*27 5*65 
(b) 0-48 0*22 1*30 4-28 

(0) 1*17 0*09 3*85 0*46 
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The orders 1£, 3, 4|, (i, etc., give appreciable vector sums in the 

various cases. With the node remote from the crankshaft, Case (a), 

the only orders giving large vector sums are the 3, 6, etc., orders. 

These are sometimes termed the “major orders,” such orders being 

readily distinguished by the fact that their order numbers are multiples 

of half the number of cylinders (in four-stroke engines). In two-stroke 
engines the corresponding major orders are those whose order numbers 

are multiples of the number of cylinders. 

Severity of Resonances 
The vector summation described in the preceding section indicates 

the degree in which the system is susceptible to vibrations caused by 

the various harmonics, at the natural frequency for which the sum¬ 
mation is calculated. Clearly, the severity of the resulting vibration 

depends also upon the magnitude of the torque harmonics at each 

cylinder. These magnitudes are determined by a harmonic analysis 

of the torque output curve, which can be calculated from the indicator 

diagram and then corrected to allow for inertia effects, as described 

on pages 22 to 27. 

The standard textbooks give curves showing the typical relative 

magnitudes of the various torque harmonics. It is found that these 

vary somewhat with I.M.E.P Since in general this pressure is not 

constant over the full operating speed range of the engine, the engine 

speed corresponding to the particular resonance involved must be 

determined, and the corresponding I.M.E.P. used for calculating the 

torque harmonics. 

In Case (6), if the system is that of an automobile engine/transmission 

and the frequency is 12,600 v.p.m., the engine speeds corresponding 

to the important orders 3, 6, 9, etc., are respectively 4200, 2100, 1400, 

etc., r.p.m. The first of these is likely to require serious attention, 

as it might correspond to, say, cruising at 40 m.p.h. in top gear. 

These speeds, whereat the major orders give resonance with a natural 

frequency of the system, are termed “major critical speeds.” 

Single-row Radial Engines 
In single-row radial aircraft engines, since all the pistons are con¬ 

nected to the same crank the amplitudes of vibration for all cylinders 

are the same, except for the effect of articulating all but one of the 

connecting rods on to the master rod. Disregarding this effect for 

the moment, it will be seen that the vector summations are all zero 

except those for the major orders, i.e. for the orders 3£, 7, 10|, etc., 

in a seven-cylinder four-stroke engine, or 7, 14, etc., in a seven-cylinder 

two-stroke engine. 

* At first it appears, therefore, as if the problem of avoiding resonances 
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is far easier to solve in the case of radial engines than with in-line 

engines. In actual fact, however, the existence of a large number of 
natural frequencies within the operating range, occasioned by the 
flexibility of the propeller blades (see page 114), has the effect of ren¬ 

dering this simplification less significant, as the number of critical 
speeds is still large. 

The principal effect of articulation of the connecting rods is to 
introduce a IX order surge into the torque output from the engine. 

In general, therefore, the critical speeds of single-row radial engine 
installations are determined by dividing each natural frequency of 
the engine/propeller system by the order numbers 1 and \kn, where 
k is any integer and n is the number of cylinders. 

Other Types of Engine 
Two- and three-row radial engines, and the more complicated in-line 

engines (Vee, X, H, Fan, etc.) can be studied by an extension of the 
methods described. In all cases it is possible to derive phase diagrams 
for the various orders, and to determine the important orders by 

vector summation. It is not possible to give general expression to 
the results to be expected, as each case must be treated on its merits, 
and with these engines there are many different possibilities for firing- 
order. 

Avoidance of Vibration Troubles 
There are three general methods of decreasing the unwanted effects 

of torque fluctuations— 
(1) Avoidance of resonanoe, by adjustment either of the natural 

frequencies or of the forcing frequencies, or of both. 

(2) Suppression of the excitation, as for example by altering the 

firing order suitably. 
(3) Absorption of the vibrational energy. 
In practice, some or all of these methods may be utilized at the 

same time, and the first and last are frequently combined together in 
the technique of applying vibration “dampers’’ and “absorbers.” 

Avoidance of Resonance 
Any alteration made to the dynamic constants of the system (i.e. 

to the inertias or the stiffnesses of the shafts) will affect the natural 

frequencies. Thus, it is frequently possible to avoid the destructive 
effects of vibration merely by so adjusting the stiffness of the principal 
shaft, or the inertia of a flywheel, as to bring all the natural frequencies 
outside the operating range of frequencies. The critical speeds are 

then outside the operating speed range. 
From time to time, various proposals have been made to provide 

5—(T.5078) 
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an easier method of adjusting the natural frequencies by means of 

added masses. The rubber/metal bonded damper, which is now under¬ 

going extensive development, acts partly in this manner. For the 
purposes of this section, such a damper can be regarded as an additional 

flexible shaft attached to the engine system, and carrying at its end 

an additional inertia. In practice the flexible element is a rubber 
ring which is bonded to the metal of the inertia. 

The action of a damper of this type can be partly understood by a 

study of the dynamic stiffness or effective inertia characteristics, 

from which the effect on natural frequencies of fitting the damper can 
readily be ascertained. This is not the orily effect, however. The 

damper can also influence the vibration characteristics by absorption 

of the vibrational energy, as will be discussed below. 

Alterations in the firing order may have virtually the effect of 

avoiding resonance by changing the forcing frequencies, if the altera¬ 

tions are such that the vector summations for the previously important 
orders become very small, while the vector summations for some 

previously unimportant orders become appreciable. It is indeed 

seldom that it is possible to avoid all resonances within the running 
range by this means; usually a compromise is necessary, one or two 
(or even more) comparatively unimportant resonances being tolerated 

for the sake of avoiding a very serious one. 

Suppression of Excitatioh 
In general, the effect of changing the firing order is to increase the 

severity of some orders (as judged by their vector summations for 

each relevant natural frequency), to decrease that of others, and to 

leave the remainder practically unaltered. It may be possible to 

reduce a troublesome order to such an extent that the resulting stresses 

are tolerable, without eliminating it completely. 

In the more complicated types of aircraft engines, particularly 

those with more than one crankshaft, there is a great number of 

possible firing orders from which a choice can be made. There are, 
of course, other factors besides torsional vibrations to be considered 

in making the selection. Bearing pressures are greatly influenced by 

the firing order; and a firing order which is excellent from the point 

of view of torsional vibration may be exceedingly awkward to accom¬ 

modate owing to difficulties in the lay-out of the induction manifold. 

Considering only those arrangements in which the firing impulses 

are evenly spaced over the firing cycle, a six-cylinder in-line, four-stroke 

engine has only one balanced crankshaft arrangement, and four possible 

firing orders. An eight-cylinder in-line engine has three crankshaft 

arrangements and a total of 24 firing orders; a ten-cylinder engine 

would have 12 crankshaft arrangements and a total of 192 firing orders. 
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With more than six cylinders, the tendency is to arrange them in more 

than one bank; and when it is recollected that there are many-different 

Vee-angles in use, besides other more complicated dispositions, it will 
be appreciated that there is practically no limit to the number of 

different firing orders and cylinder arrangements. 

Absorption of Energy 
Vibrational energy can be absorbed in two ways: by dissipation, 

and by what may be termed “forcing of nodes.” 

The conversion, under closely controlled conditions, of vibrational 

energy into heat is utilized in the rubber damper. From a knowledge 

of the dimensions and physical properties of the rubber element it is 

possible to calculate the amount of energy dissipated per second for 

any given amplitude of vibration in the damper at any given frequency. 

The details of the calculation are given by Zdanowich and Moyal (see 

reference (0) page 138). It is, however, exceedingly difficult to incor¬ 

porate such calculations in a general survey of the vibration properties 

of an engine, as the nature and extent of the damping already present 

in the engine are largely indeterminate. 

Various other types of dissipative devices have been used success¬ 

fully, including those relying on solid friction and hydraulic turbulence. 

The basic principle of this method of damping is that arrangements 

are made whereby torsional vibration in the shaft system causes 
relative motion between tU'o members of the damper. This relative 

motion is resisted by frictional forces in such a way that a constant 

input of energy is required to maintain the vibration. The only source 

of such energy is the vibrating crankshaft, and consequently the 

vibrations in the shaft system are diminished by the withdrawal of 

part of the available energy. 

The normal rubber damper, as already stated, acts both as a dissi¬ 

pative device and as a re-tuning device. In both capacities it is most 

effective at a particular frequency determined by the design of the 

damper. This frequency is the natural frequency of the damper as a 

torsional pendulum when the point of attachment to the crankshaft 

is held rigidly. The damper tends to vibrate most readily at this 

frequency, and so tends to absorb most energy when the point of 

attachment is itself vibrating at this frequency. Furthermore, it is 
found that the re-tuning effect (i.e. the alteration of natural frequencies 

of the shaft system) is greatest in the neighbourhood of this natural 
frequency of the damper as a one-mass torsional pendulum. 

While such a damper often has a useful application to automobile 

engines, in cases where there is oqly one important critical speed, 

corresponding to a large vector summation for one order in particular 

at one natural frequency, the normal aircraft installation has a so 
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much more complicated series of natural frequencies that an entirely 

different type of absorber has had to be developed. This is the ‘‘pen¬ 

dulum absorber,” which has of recent years been applied to many 
different types of aircraft installation. 

Examples of Vibration Dampers 
The vibration dampers employed upon earlier model automobile 

engines were of the fluid-friction or hydraulic type, a typical example 

of which is the Lanchester design shown in Fig. 81. It consists of two 

principal members, namely, a set of metal discs or plates attached to 

a unit keyed to the end of the crankshaft and another set of discs 

secured to the belt pulley for the radiator fan drive. The two sets of 

discs were separated by small spaces and the interior of the pulley 

was filled with a somewhat viscous grade of oil. Normally, the whole 

damper would rotate as a more or less rigid unit but at any critical 

speeds the fluid friction between the oil and the plates would damp 

out the crankshaft vibrations. 

In connexion with the fitting of a damper of this and analogous 

types to the crankshaft of any engine care must be exercised to ensure 

that there is not a node (zero amplitude and maximum stress) at the 

fixing plane, or the damper will be rendered ineffective. 

The hydraulic type of damper has been to a large extent supplanted 

by the bonded rubber type, for the latter possesses certain advantages. 



TORSIONAL OSCILLATIONS IN ENGINES 125 

Thus, it contains no rubbing parts, so that the question of wear does 
not arise. It has fewer parts and is therefore cheaper to manufacture. 

For this reason it is preferable to the hydraulic and also the mechanical 
friction type of damper. In the latter form the initial friction or 

“sticktion” is much higher than the “moving condition’’ friction, so 

that the damper is rendered somewhat 
insensitive. The exceptionally high 

energy absorption per unit weight of 
rubber renders it particularly suitable 

for use in light designs of vibration 
damper. 

Fig. 83. Another Rubber-type 

Torsional Vibration Damper 

Fig. 82 illustrates the Metalastik 

torsional vibration damper, consisting 

of the fan drive Vee-belt pulley P, 
which is keyed to the front end of the 

crankshaft C. Attached to P is a flanged 
steel disc D, which is bonded to a rubber 

unit E; the latter is also bonded to the 

metal inertia disc F. This neat and effective system is available in a 

range of different designs for various types of petrol and Diesel engine. 

Another type of rubber damper, providing complete insulation 

between the crankshaft and belt pulley, is shown in Fig. 83. The 
crankshaft member A has a flange into which a series of bolts B are 

screwed to secure the steel disc C compressing the two rubber discs 

shewn supporting the relatively heavy belt pulley and disc D. In this 

example the drive to the belt pulley is taken through the rubber, 

thereby causing torsional stress, whereas in the design shown in Fig. 82 

Fig. 82. Tboe Metalastik 

Torsional Vibration Damper 
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the rubber is passive in so far as the fan drive is concerned and acts 

purely for the purpose of damping-out engine torsional vibrations. 

Pendulum Absorbers 
The diagram, Fig. 84 (a), shows a simple “two-mass” system of 

masses and springs. It can be shown that if a vertical vibratory force 
is applied to the upper mass A, there is one particular frequency of 

vibration for which there will be a node 

at A, all the motion taking place in the 
lower spring/mass system. It is found 
further that this frequency is the natural 

frequency of the lower mass on its 

spring, when the upper end of the spring 

is held rigidly. 
It will be noted that this result is 

analogous to the action of an attached 

torsional damper, as described in the 

preceding section. 

If the effective inertia of the whole 

system is calculated, taking A as the 
reference point, it will be found that 

this effective inertia is infinite at this 

particular frequency. 

A series of torsional dampers, applied one to each of the cranks of 

the crankshaft, would have the effect of preventing the crankshaft 

from vibrating at one particular frequency, this frequency being the 

natural frequency of each damper as a torsional pendulum swinging 

about its point of attachment. Thus, vibration would be prevented 

by “forcing nodes” at all cranks. 

The pendulum absorber, however, utilizes a true pendulum instead 

of a torsional pendulum. A simple representation is given at (6), 

Fig. 84. A mass m carried on a light arm of length L forms a pendulum, 

which is attached to the crankshaft at a point distant R from the 

axis of rotation. 

The constancy of the natural frequency of an ordinary pendulum 

depends upon the constancy of the gravitational field in which it is 

suspended. In this case, however, the significant field of force is not 

the gravitational field but the centrifugal field due to the mean rota¬ 

tional speed of the crankshaft, and the natural frequency of the 

pendulum is proportional to the rotational speed. 

By a rather involved but straightforward mechanical analysis the 
effective inertia of the pendulum can be calculated. Terming i^hat 

part of the crankshaft to which the pendulum is attached the “carrier,” 

this effective inertia is the amplitude of alternating torque that must 

Fig. 84. (a) Two-mass Linear 
System; (b) Simple Pendu¬ 

lum Absorber 



TORSIONAL OSCILLATIONS IN ENGINES 127 

be applied to the carrier in order to maintain a torsional vibration of 

unit amplitude at the carrier, the effect of the pendulum only being 

taken into account, and it is found to be 

I. m(R + L)2 
- (13) 

where n is the order number of the vibration frequency, i.e (frequency 

of vibration/crankshaft speed). 

When the order number n is equal to the effective inertia of 

the pendulum is infinite. In consequence, the carrier is prevented 

from vibrating at a frequency equal to the product of V! and the 

crankshaft speed; a node is forced at that part of the system. 

If similar pendulums are fitted to all the cranks in an in-line engine, 

the vibrational energy of the order corresponding to the value of 

/r 
J j- is absorbed in the pendulums, and the crankshaft as a whole is 

free from the influence of that order. 

In practice, a simple pendulum cannot be employed, and various 

equivalent assemblies have been devised. For in-line engines, a 

common design based on Salomon patents has a pendular mass con¬ 

sisting of two steel rings. These rings roll on a steel pin, which is 

itself free to roll in a bush fitted to a balance-arm opposite the crank¬ 

web. The effective length of the pendulum, i.e. the length of the 

equivalent simple pendulum, is a function of the various diameters 

of rings, pin, and bush. Such pendulums have been fitted to a number 

of different engines, including the de Havilland Gipsy Six. 
It is not essential to make all the pendulums of the same dimensions, 

in fact, in some cases it is more convenient to fit pendulums designed 

to eliminate two or three orders. 

Another type of pendulum which has been used on radial engines 
consists merely of a heavy steel ball rolling in a groove. 

In the simple statement of the theory given above, account has 

not been taken of several limiting factors. Most important of these 

is the fact that for true rolling action, such that the suspended mass 

acts correctly as a pendulum, the amplitude of vibration of the pen¬ 

dulum must not exceed a value dependent upon the dimensions. 

Since the amount of energy absorbed is proportional to this amplitude, 
it is evident that the absorbing power of the pendulum is restricted. 

For this reason it is advisable to make the pendular mass as substantial 

as possible, since the energy absorbed is proportional also to this mass. 
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The design illustrated in Fig. 87 is excellent in this respect, particularly 

as there is no actual added mass, part of the balance-weight being 

utilized for the pendulum. 
It is not possible here to describe in greater detail the theory and 

application of pendulum absorbers. Very complete accounts are given 

in the works of Ker Wilson, and of Zdanowich and Wilson (see list of 
references at end of this chapter). It must, however, be stated that 

modem practice favours tuning the absorber so that it has a large but 

Fig. 85. Principle of Pendulum- Fig. 86. Pendulum Damper 

type Vibration Damper Applied to Kadial Engine 

not infinite inertia for the order it is designed to eliminate. Tuning for 

infinite inertia requires adherence to very close manufacturing limits, 

which are liable to be upset by wear. The modem technique enables 

'much wider limits to be used. 

The Wright Pendulum Damper 
The principle of the pendulum damper used on the Wright radial 

engines can be understood more clearly, by reference to Fig. 85, in 
which diagram (^4) represents a simple pendulum with its own natural 

period of oscillation, whilst diagram (B) illustrates how the oscillations 

of {A) can be brought to rest by providing a second pendulum of equal 

weight and length, i.e. of equal oscillation frequency. If it is assumed 

that the pendulum in (^4) is set into vibration as the result of a reson¬ 

ance effect, analogous to the torsional vibrations set up in a crankshaft 

in tune with the natural torsional vibrations, then the additional 

pendulum shown in (JS) may be regarded as a vibration damper. 

Referring to Fig. 86, which shows the principle applied to a radial 
engine crankshaft, a short pendulum is hung on to the crankshaft 
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and tuned to the normal speed power impulses so that the vibrations 

are damped out in an analogous manner to that shown in diagram 
(B), Pig. 85. 

In the nine-cylinder Wright radial engine, torsional vibration im¬ 

pulses due to the firing strokes occur times per revolution, and to 

absorb the resulting vibrations the rear crankshaft counterweight is 

suspended on the crank cheek as described previously. The restoring 
force of this pendulum is the centrifugal force due to the crankshaft 

rotation. As the centrifugal 

force and also the power im¬ 
pulses causing the torsional vi¬ 

brations are both functions of 

the engine speed, the damping 

action of the pendulum is 
effective over the whole range 

of engine speeds. 

In regard to the construction 

of the Wright pendulum dam¬ 
per (Fig. 87) the slotted steel 

counterweight is movably sus¬ 

pended from the crank cheek 

which extends down to the slot, 

by means of two spool-shaped 

steel pins passing through over¬ 

sized holes in both the counter¬ 

weight and crank cheek. The 

pendulum length is determined by the difference in diameter between 

the pins and holes, whilst the two-point suspension causes the weight 

to swing through the same degree of arc without rotation about its 

mass centre. A special feature of this construction is that it utilizes 

part of the actual balance weight and thus adds no more to the weight 

of the engine. This form of damper is practically frictionless, so that 

there is no energy dissipated through friction as with other mechanical 

and hydraulic friction dampers. The, movement of the weight is so 

small that there is no measurable wear. 

The Double Pendulum Damper 
In the case of certain engines, of which the Lycoming four-cylinder 

opposed is an example, trouble is sometimes experienced on account 

of torsional vibrations occurring at critical speeds within the working 

speed range. Thus, in the example mentioned it was found,that there 

were two marked critical speeds due to harmonics of two and four 

times crankshaft speed frequency. As the ordinary friction damper 

did not prove effective it was decided to use a pair of double-pendulum 

Clamping Bolt. 
Crank 

Pm 

Crankshaft 
Combined Balance 
Weights Sc Torsional 
Vibration 

Fig. 87. Crankshaft of Wright 

Radial Engine with Pendulum-type 

Torsional Vibration Damper. 
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dampers, namely, a pair of 4th order pendulum dampers on the second 

crank arm and a pair of 2nd order dampers on the fifth arm. Without 

these dampers the reduction gear was very noisy in operation, and 
in one instance pinion failure occurred, but after fitting the dampers 

SECTION A "A. 

Fig. 88. Lycoming Four-cylinder Crankshaft Double Pendulum 

Damper * 

the gears ran quietly and no failures occurred. The manner in which 

the double damper reduces the maximum stress in the case of an 

aircraft propeller over that associated with a single damper is illus¬ 

trated in the examples shown in Fig. 89. It will be noted that whilst 

1400 1600 1800 2000 2200 2400 2600 , 
Engine R.PM 

Fig. 89. Effect of Double Damper in Reducing Maximum Stress 

over the Speed Range 

reducing the value of the stress factor it also greatly ^xtends the 

effective range of engine speeds over which it is effective. 

Torsiographs 
For various reasons which will be apparent, it is convenient for 

designers and manufacturers of engines to have at hand reliable 

experimental means of determining the severity of torsional vibrations 
actually present in their products. 

Torsiographs, i.e. instruments for recording torsional vibrations, are 
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available in several distinct patterns. They may be divided into two 

fundamentally different classes: (a) those which measure the alter¬ 

nating twist in a section of the shafting of the engine system, and 

(b) those which measure the alternating deviation from steady rotation 

at some point in the system. * 

The effect of this difference in technique will be most readily com¬ 

prehended by reference to a simple example. If a system comprising 

two similar flywheels coupled by a shaft is acted upon by two equal 

in-phase alternating torques applied to the flywheels, so that the 

whole system rocks bodily backwards and forwards without any twist 
in the shaft, a torsiograph of type (a) recording the twist in the shaft- 

will not register, while a torsiograph of type (6) applied at either 

flywheel will indicate the movement at the point of attachment. 

One of the best-known types of twist-recording torsiograph is that 

developed by the Royal Aircraft Establishment at Famborough, and 

known as the R.A.E. Torsiograph. A very full description of this 

instrument is given by Ker Wilson (reference 1). Briefly, the relative 

motion between the two ends of the reference shaft (which in the case 

of aircraft engines is the propeller shaft) is used to deflect a small 

mirror, as a result of which deflection a photographic record is obtained 

by means of a reflected ray of light. The instrument is so arranged 

that when there is no alternating twist in the shaft the photographic 

record consists of a circular trace. Torsional vibrations twisting the 

shaft register as radial deviations from this base circle, and the order- 

number of the vibration is easily determined by coimting the number 

of lobes in the figure. Thus, a polar diagram is obtained. The amplitude 

of twist is proportional to the deviation from the base circle, so that 

the instrument supplies a good deal of useful information 

1 Such an instrument is, however, fairly bulky and cumbersome, and 

necessitates the provision of a special hollow shaft for its installation. 

Small torsiographs of the seismic type are much more convenient 

from this point of view. A typical and well-known seismic instrument 

is the Sperry-M.I.T. Torsiograph, which also is described in detail by 
Ker Wilson. An inertia member is driven from the crankshaft by 
means of very light springs (or, in a modification described by Stans- 

field, reference 11, by means of grease packing), and rotates steadily 

at the mean speed of the crankshaft. Relative movement between the 

crankshaft and the steadily rotating inertia member is converted into 

alternating electric potential by means of the relative movement 

between a magnet and a coil, one of which is attached to the crankshaft 

and the other to the inertia member. The voltage developed is propor¬ 

tional to the velocity of the relative motion, and after amplification 

can be recorded by means of either an electromagnetic or a cathode-ray 

tube oscillograph. If desired, the electrical apparatus can incorporate 
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an integrating unit, which has the effect of rendering the final record 

indicative directly of displacement instead of velocity. 

From careful study of torsiograph records much information regard¬ 
ing the torsional vibration of the crankshaft system can be obtained. 

Unfortunately, however, recent work has shown that the results 

require extremely careful interpretation if the instrument is of the 

seismic pattern. A recent paper by Ker Wilson (reference 12) draws 

attention to the difficulties, which are due to the fact that both twisting 

and rolling motions may be present. Measurements of displacements 

at certain parts of the system, as for example at the free end of the 

crankshaft, are not necessarily truly indicative of twisting stresses. 

The type of experimental technique most favourable from the 

theoretical point of view involves the measurements of torsional 

stresses directly by means of strain gauges. Practical difficulties 

include the problems of affixing strain gauges to important bearing 

surfaces, such as those of the crank pins, without too greatly modifying 

the system by the machining of recesses to accommodate the strain 

gauges, and the provision of slip-rings to enable the necessary electrical 

connexions to be made to the gauges. A very useful introduction to 

the strain gauge technique, with particular reference to the measure¬ 

ment of torsional stresses, is given in the paper referred to. 

Fig. 90 illustrates some typical torsiograph polar records taken from 

an eight-cylinder in-line Diesel engine at speeds of 450, 750, 850, and 

950 r.p.m. with its coupling. These records show that there is a 

marked resonance effect in regard to the torsional vibrations at the 

highest speed, namely, 950 r.p.m. The magnitude is such that there is 

a variation of plus and minus 30 times the mean torque. The usual 

order of the torque variation at speeds other than resonant ones was# 

about 0-75 times the mean torque. As the resonant speed, in the 
present example, was close to the normal operating speed of the engine, 

it was necessary to fit a spring coupling of special design to increase 

the resonant speed well above the normal speed of this engine. 

Calculation of Crankshaft Stiffness 
It is necessary to know the torsional stiffness of a crankshaft in 

order to determine its torsional synchronous speeds, but at the time 

of writing the analytical method of estimating this quantity is rather 
a complex one. There are several important factors, many of a 

practical nature, which have to be taken into account, making it a 

difficult matter to arrive at any reliable formulae by purely 
analytical "methods. 

Most of the data now employed in crankshaft calculations have 

been derived from experimental results, the formulae in consequence 

being empirical in nature. 
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It is not possible, owing to space and other considerations, to give 
a fuller account of the methods employed, but references are given on 
pages 138 and 139 for those wishing to pursue this subject more fully. 

Fia 90 Torsiograph Records Showing Crankshaft 

Vibrational Amplitudes. Eight-cylinder Diesel 

Engine 

A—450 r p m , B—750 rpra , C—850 r p m , D—950 r p m 

Carter’s Formula 
An * empirical formula partly based upon rational assumptions, 

and partly evolved from the results of stiffness tests in regard to 

the values of the constants which appears to give fairly accurate results 
when applied to small petrol engines, aircraft engines, and marine 
engines, is that due to Maj. B. C. Carter. It expresses the length l of 

shaft, having the journal cross-section, that has the equivalent 
stiffness of the crankshaft under consideration. 

Referring to Fig. 91 the formula for the equivalentklength consists of 

three terms as follows— 

l = {2b ~f~ 0*8h) -f~ 
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The first term gives the equivalent length of the journals them¬ 

selves, with the addition of a term to allow for the effects of junctions 

with the webs. 

The second term represents the equivalent length of the crank- 

pin portion of the shaft. 

Fig. 91. Illustrating Notation Employed in Formula for 

Crankshaft Stiffness 

The third term gives the allowance to be made for the bending 
effects of the webs in their own planes. 

The coefficients preceding these three bracketed terms were 
obtained by trial and error, to give the best average agreement 
with the test results for shafts subject to torque in their own 
bearings. 

Application of this formula to practical results has shown that it 
gives the stiffness of aero engine crankshafts to within 10 per cent 
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on either side; it also gives results within the same degree of error 

in the case of a number of marine shafts. 

Other formulae that have been proposed for expressing the 

equivalent stiffness length l include those of Geiger and Evans; 

references to the original Papers are given on pages 138 and 139. 

Constant’s Method for Crankshaft Stiffnesses 
Constant* has developed a formula which, while it is based on 

the results of torsion tests, yet gives an insight into the factors affecting 
the stiffness of a shaft and its stress distribution. 

He obtains first a formula for the stiffness of a shaft when unre¬ 

strained by bearings; then the ratio of the stiffness in its bearings to 
its stiffness out of its bearings—known as the stiffening ratio—is 
considered. Finally these two quantities are combined together to 

give a semi-empirical formula for the stiffness of the shaft in its bearings. 

For this purpose a number of crankshafts were subjected to static 
torsional tests out of bearings, and a formula evolved. Then, from the 

results of torsion tests on crankshafts in their bearings, the above 

mentioned ratio was obtained. The conditions affecting this stiffening 

ratio were then investigated, and a formula giving this ratio in terms 
of crankshaft dimensions was developed. Finally, the application of 

this formula to the determination of torisonal resonance speeds was 

briefly considered. 
The formula for in-bearings stiffness gives results which do not 

diverge from experimental results by more than 7 per cent for shafts 

of reasonable dimensions. 

Reference should be made to the original paper for the various 

formulae evolved from static tests, and to the example of a typical 

calculation of stiffness in and out of bearings. 
The formula for in-bearing stiffness of a multi-throw crankshaft 

under the conditions of static test is given by Constant as follows— 

Stiffness = 

( A wt* \ 

U4- v + B)(1 ~k) 
12b a 2~r\ 

( +ioo)(c, + cc + BJ 
Where Cs = Torsional Rigidity of Journal 

Cc = Torsional Rigidity of Pin 

B^= Flexural Rigidity of Web 

Z is a factor, expressed as a percentage, for taking into 

* “ On the Stiffness of Crankshafts,” H. Constant. Aer. Res. Comm. 
R. and M. No. 1201 (Oct., 1928). 
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account the increase in twist in estimating the out-of- 

bearing stiffness. 

A is a constant = 0-29 for marine shafts 

= 1*00 for car and aircraft engine shafts 

B is another constant — 91-0 for marine shafts 

— 83*6 for car and aircraft engine 

shafts 

The other quantities in the above formula are shown in the standard 

notation diagram m Fig. 91. 

/ A thv \ 
Fig. 92 shows the stiffening ratio ( —-— + B ) in the above 

formula, expressed as a percentage, for marine, car, and aircraft engines. 

The agreement between the theoretical and actual test results as shown 

by the plotted points is very good. 

In applying the results of static torsional tests to actual cases of 

crankshafts in engines, allowances must be made for the following 

factors— 

(1) Bearing Clearances. If there is any slackness the stiff¬ 

ness will be reduced. On the other hand, if too tight it will be 

increased. 

(2) Dynamic Stiffness. When the engine is running under its 

own power it has a certain mean effective, or dynamic stiffness which, 

together with the mass system, determines the resonance speed of the 

crankshaft. The dynamic stiffness is not always the same as the static 

stiffness due to various influences which occur, namely, the fluctuating 
torque reaction at the different crankpins, the torque reaction of the 

airscrew or flywheel and driven members, and the effect of the pressure- 

supplied lubricating oil. 

It is interesting to note, however, that in a few cases where a direct 

check has been obtained by experimental observation of the syn¬ 

chronous speed, it has been found that the static stiffness in bearings 

(using pin thrust reaction) and the dynamical stiffness are identical, in 

the sense that the experimental resonance speed agreed closely with 

the value calculated on the basis of this static stiffness. 

Theory of Thin Rods Method 
Another method of estimating the stresses and deflections of crank¬ 

shafts, in connexion with torsional vibrations is that employed by 

Prof. Timoshenko and later modified and extended by Southwell. 

The theory treats the crank throw as in all respects equivalent to a 

bar mnpqet (Fig. 93) of which the cross-sectional dimensions are small 
in comparison with the lengths mn> np, pq, qs, and st. 
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Southwell has shown that by suitable allowances, by means of 

empirical constants, it is possible to obtain an expression for the 

effective stiffness of an encastre shaft, in terms of known quantities. 

Fig. 93. Illustrating Theory of Thin Rods 
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CHAPTER VI 

ENGINE MOUNTINGS 

It is frequently impossible in commercial engines to avoid certain 
imperfections in engine balance or torque fluctuation effects so that 
the resultant vibrations will, in the case of solid engine mountings, 
be transmitted to the chassis frame or, in the case of aircraft engines, 
to the machine framework. In order to reduce or nullify the effects 
of these vibrations flexible engine mountings utilizing the energy- 
absorption or damping properties of steel springs or rubber are now 
widely used. In considerations of the design of flexible mountings the 
primary object is to obtain a natural vibration frequency of the engine 
and its mounting well below the engine vibration frequency. 

It has been shown in Chapter IV that for a magnification 

factor of unity the natural frequency must be -~= (= 0*707) times 

the impressed, or engine vibration, frequency. The more the natural 
frequency can be reduced below this value the better will be th6 
elastic mounting in preventing the transmission of engine vibrations 
to the supporting frame. Thus, if a particular engine when operating 
at its normal speed has a vibration, due to unbalance, of 2000 per sec., 
then the natural frequency of the engine and its support should be 
less than 1400 per sec., but for reducing the amplitudes of the vibrations 
sufficiently for most practical purposes a much lower natural frequency, 
namely, of the order of 300 to 400 per sec., would be aimed at. 

It will be evident that as the engine is accelerated from its idling 
speed to the normal one, the unbalanced forces will increase in fre¬ 
quency through the natural value of 300 to 400 per sec., and at the 
latter frequency resonance will occur. If, however, the engine is 
accelerated at the usual rate it will pass through the resonance 
frequency speed with sufficient rapidity to prevent the vibrations from 
becoming appreciable. It is important also, that the engine vibration 
frequency at its normal running speed should not be a harmonic of 
the natural frequency of the engine and its mounting. In connexion 
with the transmission of force due to engine vibration through the 
flexible mounting to the engine frame or, in the case of stationary 
engines, to the ground or foundations, it can be shown from the formula 
on page 90 that the ratio of the transmitted to the disturbing or engine 
force is the same as the ratio of the (natural .frequency)2 to (engine 
vibration frequency)2, so that if the natural frequency is one-third of 
the engine frequency only one-ninth of the force causing the engine 
vibrations will be transmitted to the frame or ground. 

140 
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Engine Mounting Requirements 
The general requirements of a petrol or Diesel engine mounting on 

any type of framework or foundation are,*briefly, as follows— 
(1) It must carry the static or dead weight W (Fig. 94) of the engine 

unit. 

(2) It must withstand the torque-reaction T under maximum torque 
conditions and variations. This torque gives rise to an upward and a 
downward force F on the 

engine mounting, tending to 

place it in tension and com¬ 
pression, respectively. 

(3) It must be “stiff” 

enough to lower the natural 
frequency of the engine and 

mounting to well below 0-707 
times the engine frequency 

in whatever direction this 

occurs. Since the vibrations 

due to the imbalance of 

reciprocating and rotating 
engine components may, ac¬ 

cording to the engine type, 

occur in various directions, 

the mounting must be de¬ 

signed accordingly. Thus, 

there may be unbalanced 

vertical forces / occurring at 

engine frequency or some fig. Forces on Engine Mounting 
multiple of it; or horizontal 

forces /'; or rocking couples t, tending 4o oscillate the engine in a 

fore-and-aft sense. 
If the engine were bolted down rigidly to its framework or foundation 

unit, it would greatly simplify the problem, but owing to the necessity 
in automobiles and aircraft to insulate the framework from the engine 

vibrations, the use of flexible mountings is essential, and it follows 

from the preceding considerations that such mountings should be 

carefully designed for their special purposes. 

Materials for Flexible Mountings 
The most suitable materials for the flexible mountings of engines 

are those which combine the necessary mechanical strength properties 

with internal friction damping qualities. In addition, it is desirable 

that the material employed should have good sound insulating pro¬ 
perties, and be strongly resistant to the effects of corrosive agents 
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and abrasion. Thus, in the case of an automobile engine mounting, 

sound insulation is necessary from the viewpoint of the occupants. 

Moreover, since the engine mounting material is liable to be exposed 
to the action of petrol, oil,#water, and the atmosphere, it must offer 

satisfactory resistance to deterioration under these influences; further, 

it must be unaffected by engine mounting temperature effects. 

For some requirements the mounting material is required to afford 
good electrical insulation, although in the case of the modern auto¬ 

mobile, with its single-pole (earth-return) electrical system, this is 

apt to be a drawback, for rubber-mounted engines must then have a 
separate flexible earthing conductor to the chassis frame. Among 

the available engine mounting materials are plain carbon and alloy 
spring steels, rubber, felt, cork, and certain flexible plastics. 

Although compression springs have been used in the past for 
stationary engine and machine mountings, they have not been found 

suitable for aircraft and automobile engines, since they do not act as 
sound insulators, are less effective than the organic materials mentioned 

and are, in general, more complicated in design and costly. 

Of the other available materials, whilst both cork and felt are 

excellent for absorbing vibrational effects of certain components and 

are much used for instrument mountings and lighter units subject 

to vibrational effects, they are ruled out for petrol engine purposes 

chiefly by mechanical strength considerations. 
From all points of view, rubber appears to be the best of the available 

materials, since not only has it the desirable strength and damping 

qualities, but it can now be bonded very firmly to metals, such as 

steels. 

Rubber for Engine Mountings 
Rubber, of the natural or artificial grades, possesses satisfactory 

tensile, shear, and compressive strength, combined with exceptional 

elastic strain and a high hysteresis. The mechanical properties of 

rubber vary considerably with the grade, i.e. the proportions of rubber, 

fillers, accelerators, and other ingredients, but for a good quality auto¬ 

mobile black rubber, a tensile strength of 3500 to 4200 lb. per sq. in., 

with an elongation of 500 to 700 per cent, i.e. an ultimate stretch 

before fracture of five to seven times the original length, is obtained. 
The shear stress is about the same as the tensile strength, whilst the 

compressive strength is several times greater than its tepsile strength. 

The elastic modulus of rubber is a variable quantity, since there is 

no straight portion in the stress-strain curve, but for ordinary engin¬ 

eering purposes it is usual to take the mean slope of the stress-strain 

curve for a limited extension of about 200 to 300 per cent and to 

estimate the elastic modulus from this. 
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The value of the elastic modulus, obtained in this way, for high- 
grade rubbers, is from 300 to 400 lb. per sq. in. 

The hardness of rubber on the Shore scale varies from 25° for the 
softest rubber to 100° for the hardest, e.g ebonite. The engineering 

rubbers have hardnesses between about 35° and 75° Shore. 

In regard to the hysteresis factor, from the point of view of engine 

mountings and also automobile springing in general, rubber absorbs 
a far greater amount of energy for its weight than other common 

materials, on account of its greater stretching properties. In other 

words, the area of the loop on the stress-strain loading and unloading 
diagram is, relatively, very large. Thus, a high grade of rubber can 

absorb from 500 to 1000 ft.-lb. of energy per pound weight, whereas 

spring steel is capable of absorbing from 10 to 20 ft.-lb. per pound, 

only. The work lost in hysteresis in low-grade rubber may be as much 
as 70 per cent of the work done in the first extension; for high-grade 

rubbers the hysteresis loss varies from 35 to 40 per cent. 

It has been possible to give a very brief account only of the more 
important properties of natural rubbers,'insofar as they concern the 

subject of engine mountings. For a much fuller account the reader 

should consult the reference given in the footnote.* 

It may here be mentioned that some of the synthetic rubbers, such 

as Neoprene, Buna, and Perbunan, possess good mechanical properties 

and are much more resistant to the action of sunlight, petrol, oil, and 

grease, and to oxidizing and temperature effects. Usually, however, 

they have appreciably higher permanent sets and are not so good as 

natural rubbers in regard to torsional loads. 

Bonded Rubber Mountings 
Rubber can be used in tension, shear, or compression in flexible 

mountings. Of these alternatives, the former is seldom employed, 

since the effect of surface cuts, more readily made in stretched rubber, 

is to cause a rapid breakdown throughout t^e section under stress. 

The most favoured applications are those of shear and compression, 

and in order to apply these methods it is necessary to unite or bond 

the rubber to the metal stress-transmitting supports of the engine 

and also to the framework mounting member. 

It has been demonstrated that if the surfaces of the metal are brass- 

plated and then coated with a protective layer of rubber paint and a 

thin covering of specially-prepared rubber, the main bulk of the rubber 

compound can be vulcanized to these prepared surfaces. Usually the 

rubber mountings are heated to 120° to 150° C. between steam-heated 

platens, iand pressure of £ to 2 tons per sq. in. is applied in special 

* “Rubber and Its Compounds,” A. W. Judge, Engineering Materials, Vol. II, 
Chapter XII. Pitman, London. 
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hydraulic presses for a period of about 30 min., when the rubber be¬ 

comes so firmly bonded to the metal that it will give ultimate bond 

strengths, in tension, of 800 to 1300 lb. per sq. in. Under compression 
loading the bond strength is much higher, and loadings of about 

10,000 lb. per sq. in. can be applied to a high-grade rubber-metal 

unit without ill effect; in compression loading the limiting factor 

appears to be the degree of permanent set rather than bond failure. 

External Vim 

(A) (B) 

Fig. 95. (A) Sandwich Mounting. (B) Multi-ply Type Mounting 

In torsion a relatively large angle of twist can be given before the 

bond is affected. Thus, in the case of one coupling* of about 3 in. 

internal diameter and 6 in. extefnal diameter, with an average length 

of 3 in., the rubber was repeatedly stressed under a torque of over 

3000 lb. ft., and an angular deflection of over 300° was obtained. 

In regard to temperature effects, natural rubber bonds offer a good 
resistance, and up to 150° C. the type of failure is the same as that 

obtained at normal air temperatures, above this temperature the 

properties of the rubber are affected, e.g. the tensile strength and tearing 

resistance are reduced, progressively. With certain synthetic rubbers, 

appreciably higher temperatures are attained before ultimate failure. 

Types of Bonded Rubber Mountings 
There is now a wide range of bonded rubber mountings for various 

purposes from those for light delicate instruments to others applicable 

to heavy machinery and large engines. In the lighter applications of 

such mountings the rubber is used in shear, as they have a greater 

resilience for the same load-carrying capacity than the compression 

type. 

Perhaps the simplest design of shear mounting is the sandwich type, 

consisting of two metal plates with one or more studs rigidly affixed 

* “Bonding of Bubber to Metals,” S. Buchan, Trans. Inst. Rub. Industry, 
Vol. 19, No. 1. 
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B 

* 1L. 

Jutai/i \ 
'^1. t;S», 

' 21 f '4 

Fig. 96. Aircraft Engine 
Trunnion Type Mounting 

A—trunnion, B—frame mounting, 
( —engine flange coupling (Metalastik) 

to each, with the rubber element between, as shown in Fig. 95. One 

plate is bolted to the vibrating member and the other to the frame; 
alternatively, when it is desired to insulate a member such as an in¬ 
strument against panel vibrations, 

the same type of mounting could 

be used, although there are now 
improved designs for this purpose. 

The sandwich type mounting can 

also be used as a compression unit, 

but where greater stiffness is re¬ 

quired the multi-ply form is em¬ 

ployed. Another type of shear 

mounting is the concentric cylinder- 

disc pattern shown in Fig. 96. 

This has been used for aircraft 

engines, special trunnions A being 

bolted to the sides of the engines 

to take the elastic mounting units, 

whilst the outer members of the 

latter are held in split bearings in 

the aircraft engine frame; usually, 

there are four of these mountings, namely, two on either side of the 

engine. Variations of the engine mounting shown in Fig. 96 are 
obtained by dishing the bond¬ 

ing discs in order to obtain 

progressive deflection or to 
restrict longitudinal vibra¬ 

tions. (Fig. 97.) 

For compression-type 

mountings, which usually 
give a higher natural fre¬ 

quency to the unit and 

mounting than shear mount¬ 

ings, the single or multiple 

plate sandwich patters are 

also applicable. The cone- 

form shown in Fig. 98* has 

almost equal resilience in all 

directions and is compara¬ 

tively simple to apply to light 

engines and machines. 
The designs of bonded rubber mountings used for automobile engines 

vary considerably, but the more widely employed types are of the 

♦ By courtesy of The Oil Engine and Andr6 Rubber Co., Ltd. 

Fig. 97. Progressive Deelection Type 
Engine Mounting 
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shear, compression, or shear-compression classes, and are often more 

complicated than the simple compression and shear types shown in 
Figs. 95 (A) and (B). The angle-bracket type of mounting shown in Fig 

99* has been much used for mounting vertical petrol and Diesel 

Fig. 98. Cone Compression type Fig 9(). Angle bracket 
Engine Mounting Type or Mounting 

engines. There, the engine bearers or base plate are bolted down to 

the upper plate member, whilst the angle unit is secured to the frame¬ 

work or foundation. 

Another type of flexible mounting, known as the horseshoe type, 

Fig. 100 Horse-shoe Type Fig. 101 Austin Engine 

Mounting Mounting 

is depicted in Fig. 100. In this application the upper metal bracket is 

bolted to the side of,the engine, whilst the lower one is secured to the 

framework or foundation. Several of these units—usually four—are 

employed for the ordinary “in-line ” engine. 

The Austin car engine has a four-point flexible mounting consisting of 

two angle blocks similar to those shown in Fig. 101 at the front and two 

* Vide footnote, page 145. 
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at the rear of the engine-gearbox unit in front of the propeller shaft. The 

more recent engines have a rear mounting consisting of a short metal 

frame at each side, with rubber blocks at both the gearbox unit and 

chassis frame ends, so that the earlier single flat block is now replaced 

Fig. 102. Hear Double 
Mounting of Austin Engine 

Fig. 103. Austin Qearbox 
Mounting 

by two separate blocks, one at either end of the metal frame connecting 

member. Fig. 103 illustrates the rear double-mounting of another Austin 

engine and gearbox unit, this mounting consists of two sandwich 

shear members between the gearbox and chassis frame. (Fig. 104.) 

A method of flexible mounting 

used on Vauxhall cars shown in 

Fig. 105 employs* rubber blocks 

with “Z ’’-shaped slots. Normally, 

the block has the shape shown at 

A, but under torque or inclined 

loads the slot tends to close up, as 

shown at B, and the resistance 

then increases with the side load. 

The Chrysler “ Floating 
Power ” Method 
A method known as the 

“centre-of-gravity ” support, that 

has been employed with very 

satisfactory results for the Chrysler car engines, aims at arranging 

the supports so that the effect is that of a centre-of-gravity support. 

The supports are so positioned and the vertical and horizontal 
stiffnesses selected to give the desired result under the combined 

weight, torque, and any unbalanced engine-derived vibrations. The 

method of attaining the results, illustrated in Fig. 106, is to 

provide suitable flexible supports at A, B, and C, to ensure that the 

Fig. ]04. Concentric Type Car 

Engine Mounting 
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rocking axis passes through the centre of gravity and universal joint 

centre. The front mounting A (Fig. 107) consists of a Metalastik 

rubber-bonded metal unit of the compression type, attached to a 

channel-shaped engine cross-bearer which is in turn affixed to the 

chassis frame. The mounting B consists of two pairs of rubber 

compression members, each pair arranged on either side of a radial 

metal lug on the gearbox. Only one of the two mountings is shown 

in Fig. 107, the other similar symmetrical unit is on the other side of 

A B 

Engine in Silhouette 
showing Front Mounting. 

Fig 105. Vauxhall Engine Mounping 

the gearbox. The rear mounting C is a curved compression-shear unit 

mounted to a channel-section cross member of the chassis frame. 

Three-point Engine Mounting 
Although both three- and four-point engine flexible mountings are 

employed for automobiles, the former method has certain advantages 

In this method the engine torque is taken by the two rear members 

and a trunnion mounting is used at the front end of the engine. With 

the three-pointed method of mounting it is impossible to set up a 

strain in the engine unit due to chassis frame distortion, whilst the 

arrangement gives a low torsional natural frequency and therefore an 

efficient means of insulating the chassis from engine vibrations. 

Flexible Connexions to Engine 
, An important point to remember when installing engines on flexible 

mountings is that engine connexions to the fixed framework must 
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also be made flexible in order to prevent fracture and to avoid any 

restraint or interference in the vibration damping system. Thus, in 

the case of car engines, the exhaust pipe must be flexibly supported 

to the chassis frame, whilst the petrol piping from the fuel tank to the 

Fro. 106. Chrysler “Floating Power” Method of Engine Mounting 

carburettor must have a flexible section. Usually, this is effected by 

mounting the fuel pump on the engine side of the dashboard and using 
a flexible braided-rubber connexion to the carburettor. Mention has 

already been made of the necessity for earthing the engine unit to the 

Fig. 107. Bonded Rubber Supports for Chrysler Engine Mounting 

chassis frame in ‘‘earth-return” electrical systems with flexible rubber 
mountings. 

* 

Aircraft Engine Flexible Mountings 
As mentioned previously, the trunnion type flexible mounting shown 

in Figs. 96 and 97 is employed for “in-line ” (and also Vee-type) engines, 

and has the merits of effective vibration insulation combined with ease 

of installation. 
In the case of radial engines, an analysis of the unbalanced forces 

and vibrations caused is necessary in order to determine the best 

method of engine mounting. In this connexion the reader is referred 
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to the paper mentioned in the footnote,* which gives an analysis of 

the problem of radial engine vibrations and an account of a dynamic 
suspension method using rubber mountings of the Metalastik type. 

The flexible mounting employed for certain Bristol radial engines 

is shown in Fig. 108f. The mounting consists of nine rubber shear 

Fig. 108. Bbistol Radial Engine Flexible Mounting 

mountings spaced equidistantly between light alloy support brackets 

of long channel section. This ring is attached to the front face of a 

conical pressed metal mounting which is secured to the fuselage frame. 

The nine studs from the rubber mounting units protrude rearwards 

through clearance holes provided in the cone mounting flange for 

this purpose. These studs are used for the attachment of the engine 

to the flexible mounting ring. The rubber blocks effectively damp out 

* “Dynamic Suspension—A Method of Aircraft Engine Mounting,” K. A. 
Brown, S.A.E. Journal, May, 1939 (Reprint by Messrs. Metalastik, Ltd., Leicester, 
available). 

t Aircraft Engines, Vol. 2, A. W. Judge (Chapman & Hall. Ltd.). 
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engine torque vibrations, whilst ensuring the requisite stiffness against 

the inertia effects due to the engine’s weight; the mounting is not 
affected by gyroscopic torque. 

Typical Aircraft Engine Vibration Investigation 
The following outline of the method employed successfully to 

ascertain the nature of the engine vibrations* and to effect a cure 

may serve as an example of the application of experimental methods 
in solving vibration problems. 

RUBBER BUSHINGS^ MOUNTING RING 

TUBULAR FRAME ^—** 

Fio. 109. Radial Engine Mounting Investigation 

The engine in question^ a five-cylinder air-cooled radial, was prone 
to excessive vibrations at its normal operating speed range, causing 

structural failure of the airframe, cracking of the fuselage skin, and 

shearing of rivet heads. In a few instances crankshaft failure occurred 

during flight. 

The original lay-out of the engine mounting is shown in Fig. 109. 

The engine was supported in a cantilever manner by three metal tubes 

from the mounting ring of the engine to three rubber bushings on the 

fuselage firewall bulkhead. The bushings were arranged radially at 

120° apart. 
To determine the source of the trouble electrical pick-up units (to 

measure the vibrations) were mounted on the engine in such a way 

that they could detect and record vibrations in any of the six 

degrees of freedom which are existent in the case of a body suspended 

in space (Fig. 110). The pick-ups were located, as shown, in pairs, 

equidistant from the centre of gravity of the engine. The outputs of 

* “Combating Vibration in Aircraft Power Plants and Their Mountings,” 
T. D. Copeland and G. Getline, Autorn. and Aviation Indutitr., 1st July, 1944. 
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these piok-ups were fed through an integrating amplifier to obtain a 

measure of the amplitude and then to a vibration wave separator 

which added and subtracted the alternating voltages from the pick-ups. 

These were then transmitted to a recording oscillograph, which gave 

a permanent record of the vibrations. Readings were obtained from 

Fig 110 Degrees of Freedom in Radial Engine 

each pair of pick-ups to determine the following movements in the six 

degrees of freedom, namely, (I) roll, about the thrust axis, (2) pitch, 
about the lateral axis, (3) yaw, about the vertical axis (4) lateral 

translation; (5) vertical translation. 

Fig. 111. Results of Radial Engine Vibration Tests 

In addition, a forsiograph was attached to the rear end of the 

crankshaft to study its vibration characteristics, and these movements 

were also recorded on the oscillograph chart. 
The aircraft was then flown horizontally, at various speeds, and a 

record was made on the oscillograph at each different engine speed. 

The vibration records were subsequently analysed harmonically and 

graphs of harmonic motion and engine speed were then made; one 

of these is shown in Fig. 111. It will be observed that with the original 
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mounting engine resonance at crankshaft speed frequency occurred 

within the operating range, thus indicating the cause of the vibration 
trouble. To remedy this, the bushings were removed from the firewall 

bulkhead and placed at the mounting ring as the original was a highly- 

coupled system. The bushings were arranged to support effectively 
the power plant at its centre of gravity, and at the same time the stiffness 
of the bushings was reduced in order to make the natural frequency 
of the engine plus mounting occur at a lower speed, as shown by the 
left-hand graph in Fig. 111. The Crankshaft was fitted with a pendulum- 
type damper, tuned to the 7|th order, so that the vibration forces 
previously occurring in the crankshaft were absorbed by the damper. 

As a result of these changes the earlier vibration troubles were elimin¬ 
ated and the engines proved quite satisfactory in their aircraft. 

In connexion with the five-cylinder radial engine it is known that 

this produces forcing functions of \, 1, 2, and 2| times engine speed. 
Further, the propeller generates forces due to its own static, dynamic 
and aerodynamic unbalance as well as the forces that result from the 

resistance of the air about points of obstruction of the engine, cowling, 
and other items. As a four-cycle five-cylinder engine fires every 
second revolution for each cylinder, the forces due to the gas pressure 
torque cycle are \ order functions. The inertia forces and couples 
due to unbalance of the rotating parts are of the 1st and 2nd order. 

It was from a consideration of these forcing functions that the records 
obtained, in the example quoted, were analysed, and from the results 
it was shown that 1st order engine resonance occurred within the 

operating range of the engine and also that the crankshaft had a 
critical Bpeed within the same range due to 7Jth order excitation. 

6—(T.5078) 



CHAPTER VII 

THE BALANCING OF ROTATING PARTS 

The balance of the working parts of an engine is a very important 
factor in engine design. A perfectly-balanced engine is one in which 
the relative motions of the component parts have no tendency to 
make the engine vibrate as a whole. 

The elimination of vibration, especially in automobile and aero¬ 
nautical practice, should be one of the chief objects of every designer 
of high-speed internal combustion engines. 

An engine, if properly balanced, would, if suspended perfectly freely 
in space, exhibit no vibratory or other movements. In connexion 
with this method of regarding engine balance, mention might here 
be made of an experimental apparatus due to the late Prof. Perry, 
consisting of four discs keyed to a shaft driven by means of a belt from 
an electric motor. 

The discs can be made to be out-of-balance to any extent; and 
since the whole frame carrying the motor and shaft bearings is sus¬ 
pended by wires from an external support, any out-of-balance effect 
of the discs when rotating causes the whole frame to vibrate or move. 

If an engine be perfectly in ^balance, it will, theoretically, require 
no foundation bolts or means of holding it to the ground, but if 
unbalanced, the reactions of the movements of the unbalanced parts 
will be transmitted to the foundations or frame, through the bedplate 
or supporting arms. 

Contributory Causes of Engine Vibrations 
There are three principal sources of vibrations that may occur in 

high-speed petrol and compression engines, namely— 
(1) The cyclical changes of torque upon the crankshaft assembly 

due to varying piston loads and connecting-rod obliquity. The effects 
of these torque fluctuations have already been considered. 

(2) The unbalanced effects of centrifugal forces on rotating members, 
such as the crankshaft and camshaft. 

(3) The imbalanced effects caused by the reciprocating members of 
the engine, such as the pistons and upper parts of the connecting rods, 
the valves, and springs. 

It is proposed in the present chapter to deal exclusively with the 
second contributory cause, namely, the centrifugal force effects on 
unbalanced rotating members, and methods of balancing these. The 
effects of the forces due to the reciprocating masses is considered in 
the chapter that follows. 

154 
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Effects of Vibrations 

In the case of vibrations caused by unbalanced centrifugal forces, 
the magnitudes of the latter increase as the square of the speed of 

rotation, so that at the high operating speeds of engines their effects 

Fig. 112 Centrifugal Forcjs at Various Speeds for 1 oz Wfight 
at Radii s of 1 in 

are apt to become serious. Thus the increased amplitudes of vibration, 
apart from causing noisy operation, tend to loosen the connexions of 

components, . 'its, and screws. In addition, the high frequency alter¬ 

nating loads associated with such vibrations may result in fatigue 

stresses in some of the members. Further, in the case of unbalanced 

rotating members, the loads on the bearings are increased, with greater 

wear effects and resultant power loss. Moreover, should the period 
of vibration happen to coincide with the natural vibration period of 

any component—or of the engine unit as a whole—excessive and 

possibly dangerous vibrations will be set up. 

Masking Effects of Mass 
In the case of slow speed machines the external effects of unbalanpe 

are not usually serious, more especially if relatively massive foundations 



156 AUTOMOBILE AND AIRCRAFT ENGINES 

are employed, but the absence of any appreciable vibrations must not 

be taken as an indication of satisfactory balance of the machine 

components, nor does a massive foundation and heavy construction 

of a machine remove the harmful effects of internal vibrations upon 

the bearings and other related parts. It follows, therefore, that the 

method of testing the balance of a machine or engine at slow speeds 

by noting the absence of vibration is unreliable. The only satisfactory 

method is to check the balance of the rotating or reciprocating members 

independently and, if necessary, at the maximum operating speeds. 

Centrifugal Force 
If a mass M be rotated about a fixed centre, with an angular velocity 

co, and if R be the radius of the circular path described, then the body 

will experience a radial force F acting outwards given by F = M . co2 . R, 

or writing co = 27tN, where N = the number of revolutions per second, 

F = M . 4tt2N2 . R 

If R is in feet and M in pounds, then the value of the force in 

pounds weight is given by 

F' — ~ . 4tt2N2 . R 
9 

Taking the value of tt = .3-141593 and g = 32-19 ft. per sec. per sec. 

F = 1-2264MN2. R lb. 

If the velocity of the rotating body be V ft. per sec. then the centrifugal 

force may be written as 

F = 
MV2 

w 
In regard to quantitative values, it is useful for balancing compu¬ 

tations to be able to express the centrifugal force in terms of ounce- 

inches for various speeds expressed in terms of revolutions per minute. 

Thus, if m = weight in ounces and r = radius in inches, the 

centrifugal force is given by : 

F* = 
m 4tt2N2 . r 

12gr 
oz. 

this reduces to the following form, namely, 

F1 = 0-1022 mN2r . oz. 

The values of F and N are shown plotted in Fig. 112,* in which the 

* Balancing Machines, T. Olsen. 
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Curve A shows the centrifugal force in pounds for speeds up to 5300 

r.p.m. and Curve B the centrifugal force in ounces for speeds up to 

600 r.p.m., for a weight of 1 oz. rotating at a radius of 1 in. 

General Case 

As a general case, consider a body of mass w, whose centre of gravity 

is moving in any path whatever Let r be the radius of curvature, 
Fig. 113, of the path of the C.G. at 

any instant. Then the centrifugal 
force acting upon the body is 

/ = marr 

and / will be a function of both co 
and r. 

Proceeding from this general case, 

imagine a number of particles of 
masses, mli m2, m3, . . . revolving Fig. 113 

about a common centre in the same 

plane at different radii rv r2, r3, . . . and each moving with an angular 

velocity co, as if attached to the same rotating disc. Then the axis of 

rotation of the disc will be subjected to a number of pulls of magnitude 

mxio2rx, m2co2r2, m3 . w2. r3, . . .in the respective directions of the 

radii rv r2, r3, . . . . 
The resultant pull upon the axis will be represented by the resultant 

of all the component pulls, that is, by vector sum of 

co2 (mpq + w2r2 + m3rz + . . .) 

The resultant, as given by the force diagram, will represent the 

single centrifugal force equivalent to the component forces, and an 

equal and opposite force to this will completely balance the system 

of component pulls. 
Thus, if the vector sum of the forces be a single force of magnitude 

X, the forces may be balanced by a mass M, at a distance R from the 

axis, and in a direction diametrically opposite to the single resultant, 

provided that M . R = X. 
It is obvious that any mass M, or any radius R, can be chosen to 

suit other conditions, provided that the product fulfils the above 

condition. 
As an example, consider the case of two masses Mx and M2 at radii 

Rx and R2 respectively (Fig. 114). 
It is required to balance these by a single mass* placed at a 

radius R. 
Draw AB parallel to the radius Rx and proportional to MjRj, and 

AC parallel to the radius R2 and proportional to M„Rft. Then BC will 
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represent in magnitude and direction the resultant single centrifugal 

force, say, F. j? 
Hence the two masses M, and M2 may be balanced by a mass = ^ 

placed as shown. 
This procedure may be followed m a simple application. The weight 

Fig 114. Vector Method for Resultant Forces 

of the webs and crank pin of a single crank are assumed to be of 
value M, and it is required to balance this by two webs, such as is 
diagrammatically shown in Fig. 115, upon the other side of the 
crankshaft (i.e. extensions of the crank webs). 

Let R — distance of C.G. of main 
crank from the axis of rotation and 
Mj = mass of each web balance 

weight, the C.G. of which is at R2 
from centre. 

Then Ma>2r — 2M1co2Rl 

™ Mr 

01 Ml " 2 R j 

Centrifugal Couples 
If a shaft AB of length a be provided with arms of equal length r 

at its ends, and equal weights M be attached to these arms (Fig. 116), 

then the centrifugal force upon each arm when the shaft is rotating 
will be M . co2. r, and the shaft will experience a couple of moment 
M . co2 . r . a tending to rotate or twist it in the manner indicated by 
the arrow, that is, about an axis perpendicular to the direction of 

rotation and of the centrifugal forces themselves. It is important to 
notice that this couple will be of constant magnitude, but of varying 
direction—the axis of the couple rotating in a plane perpendicular 

to the axis of the shaft and at the same angular velocity. 
Such a couple would occur in the case of a two-cylinder engine 

with cranks at 180°, and would remain unbalanced. 
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The Balancing of Crank Webs 
It has been shown that each crank pin and its webs, which give 

rise to radially acting centrifugal forces, can be balanced by means 
of a pair of balanoe weights upon the opposite side of the crankshaft. 
In practice, however, this is not always done—in fact, it is the excep¬ 
tion rather than the rule. In multi-cylinder 
car engines the difficulty of obtaining uniform- M \ 
ity in manufacture and the cost of providing 

such weights, which is considered out of pro¬ 
portion to the results obtained, are the main 
reasons given for dispensing with balance 
weights, except in the more expensive cars. ^ 

The result of leaving these cranks unbalanced 
is to increase the bearing pressures upon the 
main bearings, and to cause severe bending 
actions to occur upon the crank case. 

Taking the case of a four-cylinder crankshaft 
(Fig. 117) of the three-bearing type, with a Fig 116 

cylinder bore and stroke of 4 in. and Bin. re¬ 
spectively, at a speed of 1500r.p.m., there is a resultant centrifugal 
force of 1700 lb. at each crank pii). These unbalanced forces cause 

additional pressures upon the mam bearings of 700 lb. each for the 

end and 1400 lb. for the central bearings. 

B 

1400 

Fig. 117. Balance of Four-cylinder Engine 

These forces rotate with the direction of the plane of the webs, 

that is, at crankshaft speed, and give rise to an alternating bending 
action upon the crank case, which may cause appreciable distortion, 
the magnitude of this bending moment in the example given being 
8500 lb.-in., which is equivalent to half a ton acting at the centre of 

the crank case, if it is taken as supported at the ends. 

Balance of a Single Mass 
The next consideration involves the balancing of both forces and 

couples due to a single weight of mass M. The possible solution by 
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using two balance weights is represented in Fig. 118, in which the 

conditions for balance are— 

(1) That the resultant centrifugal force must be zero. For this, 

M . R - MjRj f M2R2 

(2) That the resultant centrifugal couple must be zero. For this, 

=- MgRjj?/ 

Fig. 118 

(3) The weights M, Mj, and M2 must be in the same plane, containing 

AB. 
It will thus be evident that the rotating parts can be perfectly 

balanced by suitably disposed weights, and that the balance of the 

cranks of any type of engine is only a matter of the application of the 

foregoing methods. 

General Case of Rotary Parts Balance 
A number of rotating masses in different transverse planes are to 

be balanced by two masses in two given transverse planes, the magni¬ 

tudes of these masses to be found. 

(1) Graphical Method. Consider the crankshaft OZ as shown in 

Fig. 119. Let A and B be the given transverse planes of the balance 

weights whose masses are to be found. We are given the mass m, 

radius r, and angular direction a, and also the distance x, from 

reference plane A for each of the rotating masses, so that the position 

of any mass can be determined by xmra. 

First consider the centrifugal forces acting, then every centrifugal 

force like m . r (unit angular velocity of 1 radian per second being 

assumed throughout) can be replaced by a force mr in th,e reference 

plane A and a centrifugal couple of moment mrx perpendicular to 
the direction of the force in the plane A. The direction of the axis 

of such a couple is indicated in the figure by the broad lines parallel 
to the arrow. All of the centrifugal forces can therefore be replaced 

by equivalent forces in the reference plane A and couples. 
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We can now proceed to find the resultant of all the couples referred 

to the plane A. 

A “couple’’ polygon is drawn, the sides of which, being drawn in the 

proper order, are proportional to the magnitudes of the couples, and 

in the same direction as the axes of the couples. The closing side of 

this polygon gives the magnitude MRX and direction aB of the resultant 

couple. 

Since X is given, we know MR, and can choose either M or R for 

Fig. ]19 

convenience, so long as the product is constant, and we also know 

the direction of the arm of the balance weight M, namely, (aB + 180°). 

This gives the position of balance weight, and its value, in plane B. 

The resultant of all the centrifugal forces (including MR) referred 

to the plane A is similarly obtained by a diagram of forces, and the 

closing side gives the magnitude M0R0 and direction aA of the resultant 

force in plane A. 

An equal force M0R0 in an opposite direction (aA + 180°) gives the 

magnitude and direction of the equilibrant, and the position of the 
balance weight in plane A is now known. 

This graphical method is equivalent to solving the vector equations— 

(a) wwcKort+w) + + etc. + M . R . X(o,B+90) = 0 

and (6) -f m2r^ + etc. + McRoaA + MRaB = 0 

(2) The Analytical Method. In order to obtain an analytical solu¬ 

tion, the couples and forces are referred to the plane A, as before. 



162 AUTOMOBILE AND AIRCRAFT ENGINES 

A pair of convenient axes OX, OY at right angles is taken, and the 

couples and forces resolved along them. 

Since the resolute of any number of forces in a given direction is 

equal to the resolute of their resultant in the same direction, we get 

the following relations— 

MRX sin (aB + 90) = sin (a2 + 90) + m2r2x2 sin (a2 + 90) 
+ etc. 

MRX cos (aB + 90) =■ 'Lm1r1x1 cos (<xx + 90) + m2r2x2 cos (a2 + 90) 
-f etc. 

from which MR and aB are obtainable. 

Also for the resultant of the forces in plane A we have 

M0R0 sin aA — MR sin aB + Zmxrx sin + m2r2 sin a2 -(■ etc. 

M0R0 cos aA = MR cos aB -f Sm1r1 cos clx + m2r2 cos a2 + etc. 

from which M0R0 and aA are obtainable, so that a complete solution 

is thus effected, analytically. 

Principles of Centrifugal Balancing 
It is now customary to balance all high-speed rotating parts in 

order to obtain smooth running and freedom from harmful vibration 

effects. Typical instances of such components include the crankshafts 

of petrol and compression-ignition engines, the flywheels for these 

engines, high-speed gear-wheels, supercharger, and exhaust turbine 

impellers or rotors, electric motor and dynamo armatures, centrifugal 

pump impellers, high-speed shafting and couplings, etc. 

Although, as mentioned previously, the presence of unbalanced 

centrifugal masses may not affect the stability of a complete engine 

or machine, owing to the damping effects of the relatively heavy 

mass of these units, the direct effects on the bearings and, possibly, 

on the components themselves, may become serious in regard to wear 

and fatigue results. It is therefore considered advisable to balance 

all high-speed rotating members in engineering members. 

There are two different methods of balancing a rotary component, 

depending upon whether it is at rest or in motion, and known, respec¬ 
tively, as static balance and dynamic balance. 

Static Balance 
A body capable of rotating about a fixed axis is said to be in static 

balance when its centre of gravity lies on the axis of rotation. 

Referring to Fig. 120, which shows a cylindrical body having a shaft 

mounted in bearings XY, the body has an unbalanced mass A at a 

distance m from the axis. Assuming frictionless bearings, the body 

will rotate until A is at the lowest position. 
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Static balance of a rotating member having parallel shaft bearings 
is usually determined by mounting it with the end shafts on parallel 

knife-edges or flat-topped runways located both level and horizontal 
(Fig. 121). The body is displaced on these ways, when it rolls along 
until the heavier portion is lowest. If, on the other hand, the body, 

M 

Fig. 120. Static Unbalance 

after displacements, comes to rest in different positions each time it 
can be assumed to be very nearly in static balance. If the end shafts 

can be mounted on rollers, which are themselves located on ball or 

roller bearings (Fig. 122), the friction of the bearings is reduced; more 

Fig. 121. Principle of Static 
Balance Testing 

Fig. 122. Method of 
Reducing Friction in 
Static Balancing Test 

especially if both rollers and bearings are lubricated and greater 

accuracy is obtained. 
In modem balancing machines, static unbalance is usually detected 

by rotating the body slowly and utilizing the centrifugal effect due 
to the unbalance to provide an indication of the unbalance. Referring 

again to Fig. 120, the body may be balanced statically by adding a 
weight A' at a distance n from the axis such that the moments of 

A and A' about the axis are equal. Thus, 

Am — An' 
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Alternatively, material of weight A' may be removed from the side of 
A, such that the weight of A' multiplied by the distance of its C.G. 

from the axis equals the product Am. 

It is not always possible to add or remove weight from the per¬ 
pendicular plane to the axis through the unbalanced weight A, as, 
for example, in the case of a solid mass or an electrical armature, so 

that the balancing weight must be applied in some other plane, as 
indicated in Fig. 123 at B, where 

Am = Bp 

It is here assumed that both A and B are in the same diametral plane. 

Dynamic Balance 
A rotating body is said to be yi dynamic balance when the couples 

set up by the centrifugal forces are in balance, i.e. the algebraic sum 
of the moments is zero. 

Referring to Fig. 123, it will be seen that, although the system is in 

static balance, when it is rotating the centrifugal forces due to A 
and B give rise to an unbalanced couple of moment equal to the 
centrifugal force on A multiplied by the distance d. Thus 

Moment of unbalanced couple =- X d . . (i) 

where A = weight of A; co = angular velocity =-— where N == r.p.m. 

and g = 32-19. b0 
Since Am = Bp the moment (1) can also be written as 

Bco2p 

9 
X d (2) 

The values given in (1) and (2) represent the absolute ones, but in 

many balancing considerations it is unnecessary to take the speed co 

into consideration, since it is constant for all the masses; neither 
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need the masses themselves be considered, so that the unbalanced 
couples can be represented by the product of weight x distance of C.G. 
from axis of rotation X distance from given plane about which moments 
are taken. Thus, if A and B be the weights in Fig. 123, the moment of 

the unbalanced couple can be represented by Arad or Bpd, in balancing 
problems. 

It should here be mentioned that when a rotating body is dynamically 
balanced it is also statically balanced, but, as has previously been 
demonstrated, a statically balanced body is not necessarily in dynamic 
balance. In the example shown in Fig. 120, the body is actually in 
dynamic and static balance, since the centrifugal forces due to A 
and A' are equal and opposite. 

In the arrangement shown in Fig. 123, however, whilst th0 body is 
in static balance, it is not in dynamic balance. 

A body which is not balanced dynamically—and numerous examples 
occur in practice of such bodies, e.g. flywheels, 
crankshafts, armatures, etc.—can be properly 
balanced by the addition of a pair of balancing 
weights in two different planes; alternately, 
material may be removed from the body at 
two different places to restore balance. 

Fig. 124 shows a similar example to that of 
Fig. 123, but with the addition of balancing 
weights C and E at the ends of the body— 
for it is here assumed that weight cannot be 
added to or taken from the interior. 

For perfect dynamic balance the moment of 
the couple due to C and E must be equal and 
opposite to that due to A and B. It is also 
necessary for equality of the centrifugal forces due to C and E that 
the product O = E*. 

Thus, for dynamic balance OD = Arad, as indicated in Fig. 125. 
When thus balanced there will be no additional loads on the bearings 

Fig. 125 
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due to centrifugal forces, although if weights C and E are added for 
balancing purposes there will be a greater static load on the bearings. 

It is for this reason that whenever possible it is a better plan to remove 

material from the same aide as that of the unbalanced mass or masses; 
the static load on the bearings is then reduced. Thus in the example 

shown in Fig. 124 it would be more advantageous to remove material 

M 
Fig. 126 

of weights C and E from the same sides of the body as A and B, 

respectively. The total weight of the body would therefore be reduced. 

Combined Static and Dynamic Unbalance 
Cases occasionally occur in which a body as fabricated or machined 

has both static and dynamic unbalance. These conditions result when 

the amounts of unbalance at the ends of the body are different and in 

cases where the angles of unbalance at each end of a rotating body 

differ, although the amounts at each end are the same. If, however, 

the angles differ by 180° and the amounts are the same, the unbalance 

is dynamic <?nly. 

An example of static and dynamic unbalance is shown in Fig. 126, 

in which there are two masses at A and B representing uneven distri¬ 

bution of material giving rise to an unbalanced dynamic couple equal 

to Amd or Bpd. In addition, there is an unbalanced mass at M causing 

static unbalance, for A and B are actually in static balance. There 

are two alternative methods that are employed in balancing practice 

for effecting proper balance in such cases, namely— 

(1) To add another balancing mass M' on the opposite side to M 

to restore static balance and then to balance A and B dynamically— 

as before—by masses C and E. 

(2) To add or remove weight at two places, C and E, in order to 

provide a balancing couple for M and also A and B, i.e. to correct 

both static and dynamic unbalance by balancing weights in two planes 

only. 
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It is not always possible or convenient to correct static unbalance 

at M (Fig. 126) by an equal and opposite balance weight M', but most 

modern balancing machines, e.g. the Olsen-Lungren Type S or Vibro- 

Electric Type E-O, enable combined static and dynamic unbalance 

to be corrected by the addition of weight or its removal from two given 

planes, with no more trouble than for ordinary dynamic balancing. 

As is described later, in balancing machine 'practice the body is 

arranged alternately to oscillate about a pair of pivots which can be 

adjusted along the axis of rotation. If these pivots can be arranged 

in the required correction planes, the process is much simplified. In 

certain types of balancing machines and in other instances where the 

shape and size of the body render it difficult to arrange the pivots 

under the balancing planes, the effects of unbalance may be measured 

at the centres of the bearings, as shown in Fig. 127, namely, at X and 

Y. Using the notation of this diagram, and taking moments about 

one of the correction planes through E, then 

, MJ+M^A-CrD 

from which C = 
MJ+ M2h 

Dr 

where and M2 are the measured moments, due to unbalance at the 

centres of the bearings. 

Again, by taking moments about the correction plane through C, 

+ M2e — E«sD 

from which 
M tg + M2e 

~ Ds 

From these two formulae, the values of the balancing weights C and 

E can be obtained. 
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Unbalanced Centrifugal Forces in Different Angular Planes 
In the cases of all the preceding examples of static and dynamic 

unbalance it has been assumed that the unbalanced forces were in 

the same diametral plane, such as MN in Fig. 120. It is now proposed 
to consider the principles of balancing, dynamically, masses in different 

angular planes. Here it may be mentioned that provision is made in 

certain types of balancing machines to measure the magnitudes of 

Fig. 128 Balancing of Masses A and B in Two Different 
DrAMETRAL PLANES 

the unbalanced forces and their angular positions, usually by reference 

to two given datum planes. 

Referring to Fig. 119 on page 161, the method of balancing masses 

in different angular positions but in the same plane, i.e. perpendicular 

to the axis of rotation, was described and it was there shown that any 

two centrifugal forces could be balanced by a single force, using the 

vector method for obtaining the magnitude of the force, or equivalent 
mass at a given radius, and its direction. 

An example that occurs frequently in balancing considerations is 

that of an equivalent rotating cylinder (Fig. 128), which has a couple 

due to two centrifugal forces which are not in the same diametral or 

transverse plane. The balancing machine, when the pivots are at 

the centres of the bearings, gives readings of the amounts and angles 

of the unbalance forces P and Q, as shown in Fig. 128. 
It is usual to correct for these forces in given planes at the ends of 

the cylinder, such as by masses A and B in the planes indicated in 

Fig. 128 through A and B. 

In order to determine the amount and angular locations of the 

corrections that must be employed in the planes A and B for dynamic 

balance, it is first necessary to transfer the amount and angle of the 

forces at P and Q to one resultant force in the right-hand plane B, 

assuming the part to be held by a fixed pivot at the plane.* 

Static and Dynamic Balancing Machines, T. Olsen. 
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Next, the amount and angle of forces at P and Q are transferred to 
one resultant force in the left-hand plane A, assuming the part to be 

held by a fixed pivot at the plane B, 

If, then, these two resultant forces are neutralized by the addition 

or removal of material at two points only, the part ydll be in perfect 

static and dynamic balance. 

It follows that if the pivots of the balancing machine cradle were 

Fig. 129 Example of Balancing Computation 

actually located in the planes A and B, one pivot being locked and 

readings taken in the other plane, the reading thus obtained would be 

the resultant of all the forces due to unbalance outside the plane 

containing the locked pivot. All unbalanced forces in the actual plane 

of the locked pivot would have no moment about the pivot and need 

not, therefore, be taken into account. 

It may here be mentioned that it is possible to lock the pivots in 

the planes selected for correction in balancing machines of the Olsen- 

Lundgren (Type S) and Olsen Vibro-Electric (Type E-O). 

Example of Balancing Computations 
As an example of the general method used in machines in which the 

pivots cannot be located in the planes K and L, but in the central 

bearing planes H and J (Fig. 129), it is assumed that after run¬ 

ning the body in the balancing machine, the following results* are 

obtained— 

(1) At the plane J, holding H as a pivot, a centrifugal force of 

— 4 oz.-in. at 140°. 
(2) At the plane H, holding J as a pivot, a centrifugal force of 

— 6 oz.-in. at 210°. % 

* The component of the centrifugal force is here represented by the product 
of weight by radius, for the reaeon explained on page 165. 
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The following dimensions refer to the notation given in Pig. 129— 

E = 4 in.; distance between centre of bearing J and correction 

plane K ; 

D = 12 in.; ^istance between correction planes K and L; 

E'= 3 in.; distance between centre of bearing H and correction 

plane L; 

q = 3 in.; radius at which correction is to be made in plane L; 

p = 4 in.; radius at which correction is to be made in plane K. 
* 

It is first necessary to find the force which, if acting in the plane 

L and with the body pivoted on its axis at the intersection of the other 

/ 
/ 

correction plane K, will have the same disturbing effect as the readings 

of H and J taken from the balancing machine. 



THE BALANCING OF ROTATING PARTS 171 

Taking moments about the other correction plane K, obtain the 
amounts of the forces at H and J as they would be if working in the 

plane L where one of the corrections is to be made. Thus— 

The equivalent force at plane 
L to H — 6 oz.-in. X 

D + E' 

i) 
= 6 
ra 

— 7*5 oz.-in. at L and at the same 
angle of 210° as H. 

Similarly, equivalent force at 

plane L to J — 4 oz.-in. 

— 1*33 oz.-in. at the opposite angle 

to J 

- 140° + 180° - 320° 

Note. This angle is taken as opposite to J, since L and J are on 

opposite side&of the neutral plane K about vhich moments are taken. 

Fig. 131. Resultant Correction Force for Plane K 

The resultant of 7-5 oz.-in. at 210° and 1-33 oz.-in. at 320°, by the 
parallelogram of forces (Fig. 130), is found to be 718 oz.-in. at 220°. 

This result indicates that if the body to be balanced were pivoted 

at the centre of the shaft where it is intersected by the plane K, a 
single force of 7*18 oz.-in. at an angle of 220° will have the same effect 

as the combined forces 7*5 oz.-in. at 210° in plane J and 1-33 oz.-in. 

in plane H# 
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To apply the correction a force of 7*18 oz.-in. applied by adding 
material at the opposite angle (220°— 180°) = 40° will balance. If, 
however, the correction is to be made by drilling or removing metal, 
7*18 oz.-in. should be removed at the same angle 220°. 

If the place at which the correction is to be made is at a radius 
7*18 

q = 3 in., then the weight to be removed will be = 2*39 oz. If 
U ' 

the balance is to be made by adding weight at 3 in. radius on the 
opposite side, namely, 40°, the weight will be 2*39 oz. 

The amount and angle of correction at the correction plane K 
is determined by a similar method, the results being shown 
graphically in Fig. 131. The resultant force is one of 5*1 oz.-in. 
at 124°, and if the correction is made at a radius of 4 in. the 
amount to be added on the opposite side (124° + 180°) = 304° 

5*1 
will be — = 1*275 oz. If weight is to be removed by drilling, the 

amount will be the same, namely, 1*275 oz. at the same angle 124°, 
and radius 4 in. 



CHAPTER VIII 

BALANCING MACHINES 

Static Balancing Machines 

In the case of engineering components, such as circular discs, flywheels, 
clutches, impeller rotors, and similar parts of relatively small thicknesses 

in relation to their diameters, it is usually necessary only to balance 
these statically. 

The reason for this is that it is generally possible to add or remove 

weight for balancing purposes very nearly, if not entirely, in the same 

plane as that containing the C.G. of the unbalanced mass. Referring 

to Fig. 132 (1), which shows a rotating disc with’equivalent unbalanced 

weight A at a distance r from the axis, this can be balanced, very nearly, 

by means of a weight Bata distance s from the axis (Fig. 132) (2) ), 

such that Ar = Bs. 
Aco2rt 

The unbalanced centrifugal couple will be of moment - — where 

o = angular velocity, t — distance shown in Fig. 132 (2), and g — 32*2. 

Since t is very small in regard to the other quantities the magnitude 

of the unbalanced couple will be very small and in most practical 

examples can be disregarded. When, however, it is possible to apply 

the balance weight B in the same plane as the unbalanced mass A, 

the centrifugal couple becomes zero and if the disc is in correct static 

balance it will also be in dynamic balance. 

Balancing Flywheels 
Flywheels of petrol and high-speed Diesel engines’ can usually be 

balanced in this manner by drilling holes right through their rims on 

173 
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the same side as the unbalanced mass; but even if drilled only part 

of the way through, the balance is generally satisfactory. If the 

flywheel is held by a key, the latter should be inserted in the flywheel 

boss and balancing shaft, so that its effect may be included in the 

complete balance of the flywheel. If the shaft to which the flywheel 

Fig. 133. A Flywheel-type Static Balancing Machine 

is attached is a long one, with bearings on one side of the flywheel 

and at the other end of the shaft, the effect of the small dynamic 

unbalance shown in Fig. 132 (2) will be still further reduced. 

Narrow flywheels, lathe face-plates and similar parts, can be balanced 

statically by means of level ways of the Olsen-Lundgren type shown 

in Fig. 133. These are levelled up with the aid of a spirit level applied 

along and across the ways in turn, by means of the screw adjustments 
provided for the purpose. 

In using this method the operator usually judges the degree of 

static unbalance by the speed with which the heavier portion of the 



BALANCING MACHINES 176 

disc or rim tends to turn to the bottom after displacement. A method 

sometimes used for correction purposes is to place a piece of plastic 

modelling clay or putty on the opposite side to the unbalanced part 

and to adjust its amount and radius until the part is properly balanced, 

i.e. will stay in any position on the ways. The product of the weight 

of the clay or putty and the distance of its C.G. from the axis gives the 

imbalanced moment. From this it is a simple matter to work out the 

Fig 134. The Olsen-Lundgken Static Balancing Machine 

A—motor switch, B—scale beam, C—oil dashpot; I>—levelling Screws, E—anvil 
for knife-edge pivot, F—balancing frame, G—poise w eights for calibrating machine, 
H—counterweight to compensate tor weight of part, I—angular unbalance pointer, 
J—calibrating weight to adjust CG of balancing frame, K—indicating dial, 
L—dashpot paddle rod, M—extended mandrel for mounting part to be balanced, 
N—locking handle, O—motor drive unit, K—knife edge pivots, S—rocking beam 

connecting bar, T—stops to control maximum suing of balancing frame. 

weight of metal to be drilled, at a given radius, from the heavier side, 

in order to obtain static balance. 
Machines of the type illustrated in Fig. 133 are available in the 

following ranges: 0*5-15 lb.; 10-300 lb., and 250-7000 lb. 

In the ease of comparatively short parts, with respect to their 

diameters, a type of automatic weighing machine designed for static 
balancing is shown in Fig. 134. Its chief advantage is that it provides 

quick and accurate unbalance indications with much greater sensitivity 

than is possible in the level ways method. The principle of operation 

is illustrated in Figs. 135 and 136. This type of static balancing machine 

runs at a very low speed, namely, 3 or 4 r.p.m., so that the centrifugal 
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forces do not have any disturbing effects. The mandrel M on which 

the part G, to be balanced, is mounted is driven by a small motor. 

All of the parts are mounted on the balancing frame F, which is sup¬ 

ported at the front and back on hardened and ground knife edges R 
which rest on anvils E. The counterweight H is adjustable to suit 

the weight of the part being balanced and keeps the balancing frame 

assembly horizontal. The dial indicator K is secured to the main 

frame of the machine and its stem is actuated by the balancing frame, 

so that very small oscillations can be registered. 

The action is as follows: Assuming the part G has a static unbalance 

A, the C.G. of the part is not at its geometrical centre but is somewhere 

on the radial line through A. Thus, as the part rotates its C.G. describes 

a circle about the geometrical centre of rotation. When A is in the posi¬ 

tion shown in Fig. 135 (A), where it lies directly between the mandrel 

M and the pivot R, the part will apparently weigh least; this is shown 
by the indicator scale minimum reading. When A is in the extreme 

outward position shown in Fig. 135 (A), the maximum apparent weight 

reading will be obtained. The total movement of the dial indicator 

pointer from maximum to minimum is therefore a measure of the 
amount of the unbalance A. The scale of the indicator K can be 

calibrated in equivalent ounce-inches, so that the imbalance due to 

A can be read off. The position of this imbalance is readily determined 

by the position shown in Fig. 135 (A) or (B), of least and greatest 
indicator readings. 

It is therefore a comparatively simple matter to remove metal from 

the side A or add it to the diametrically-opposite side in order to 
effect the correct static balance. Thus, if the machine shows an un¬ 

balance reading of x ounce-inches and it is desired to remove metal, 
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by drilling on the radial line through A, at a distance, or radius, r in., 

x 
the amount of metal to be removed is given by - oz. 

Use of Dynamic Balancing Machines 
It will be apparent that the static balancing machines described do 

not show the location of the unbalance in the axial direction, but only 
in a radial sense. Since these considerations have been confined to 

the balancing of parts of small thickness-to-diameter ratio, the axial 

unbalance position is not usually important. In cases, however, 

where it is necessary to locate the static unbalance, in order to correct 

for it in its own plane, as in the instance of parts that have to rotate 

at very high speeds, it is usual to employ a dynamic balancing machine 
to ascertain the amount of the unbalance, its angular and also axial 

location. 
Some dynamic balancing machines cannot be used to show the 

axial position of the unbalance for narrow parts, owing to their design, 

so that in selecting a machine that is intended for both narrow and 
long cylindrical components this point should not be overlooked. 

Propeller Balancing Machines 
Propellers belong to the class of component having a small width- 

to-length ratio, so that any unbalance of the usual order due to 

variations in density of the material or small manufacturing irregu¬ 

larities can be allowed for by the static balancing method ; usually, 

the amount of unbalance is such that the corresponding dynamic 

unbalance of the subsequently static balanced propeller is negligible. 

It is necessary for static balance tests of propellers to provide a suitable 

hub, with hub flanges, bolts, nuts, washers? and other parts identical 

to those of the engine upon which the propeller is to be used. 

The static balancing of propellers is effected on special machines 

designed for the purpose, of which the Avery and the Olsen types are 

well-known examples. 

A static balancing machine for small propellers and spinners is 

made by Messrs. W. & T. Avery, Ltd., and another model (Fig. 136*) 

for the blades of variable pitch propellers, whereby the centre of 

gravity or predetermined turning moment of the propeller blade can 

be ascertained in comparison with a standard blade. A frame a has 

a pair of bearing mountings c for a rotatable carrier block d, which is 

secured on one side to a counterbalancing arm e provided with slidable 
poise-weights e1. The other side of the carrier block has provision 

for the reception of a hub adapted to receive the butt of a propeller 
blade /, the arrangement being such that the deadweight of the 

* Engineering, 21st July, 1944. 
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propeller blade can be counterbalanced on the arm e by setting the 

poise-weights about a fulcrum knife edge, the face line of which is 

co-axial with the axis of the bearings in the brackets c. 

The knife edge fulcrum forms part of a horizontal spindle on which 

the carrier block d and the parts associated with it are mounted. 

The carrier block can be clamped to the spindle by the friction between 

a fibre shoe and the periphery of the spindle so that when required 

the carrier block can be rocked with the spindle or the block can be 

Fig. 136. Machine fob Static Balancing of Smael Propellers and 
Spinners 

rotated about the spindle. The amount of the friction between the 

carrier block and the spindle is determined by the adjustment of a 

loading screw j in relation to a coil spring which determines the fric¬ 

tional pressure exerted by the fibre shoe so as to permit the independent 

rotation of the carrier block d about the spindle to effect a resetting 

of the propeller blade / from the horizontal to the vertical position. 

The knife edge spindle is extended at right angles at one end by means 

of the lever k to form a torsion lever which is connected by a connecting 

rod l to the lever system m of a weighing apparatus. The lever system 

also incorporates pendulum mechanism embodying an index pointer. 

For counterbalancing the adaptor hub, an adjustable balance weight 

e1 is provided. 

After the apparatus has been accurately calibrated and a standard 

propeller blade tested by the requisite setting and locking of the 
poise-weights e1 on the counterbalancing arm e, the standard propeller 

is replaced by the blade / which is to be tested, the butt of this blade 

being mounted in the adapter hub in the carrier block d. The weighing 

lever system is freed and an observation is made to ascertain whether 

there is any departure from the balance position of the indicator in 



BALANCING MACHINES 179 

either direction which wili indicate a plus or minus error. If an error 
is indicated, corrections are effected on the blade / and after the 

necessary correction has been made in the horizontal plane, the carrier 

block d, wTith the counterbalancing arm e and the blade mounted in 

the block, are turned through 90° about the knife edge spindle and 

a further test is effected. 

The Rotol propeller balancing machine, the principle of which is 

shown in Fig. 137, can also be used for other engineering parts of small 

thickness-to-diameter, e.g. flywheels and rotors. It consists of a 

hollow cylinder which has on its outside cone, supports that locate 

upon the front and rear cone seats of the propeller hub, the rear cone 

being made removable for fitting the propeller. Inside the cylinder 

a spherical joint is fixed in relation to the cone seats but adjustable 

vertically to bring the point of support as near as possible to the 

C.G. of the assembly. An indicator plate located off. the suspending 

rod slides over a scale plate inscribed with a concentric ring just a 
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little larger in diameter than the former and gives a relative reading 

showing by eccentricity the heavy side of the propeller. The propeller 

blades are first set at approximately the same angle. 

In operation, an unbalanced propeller will come to rest after the 

oscillation with the scale plate, the point of greatest eccentricity 

showing the heavy side. Balance shims, one of which is shown in the 

process of insertion, in Fig. 137, are placed as near as possible to the 
shim housing of the blade or blades which are “light,” so as to bring 
the scale plate concentric with the indicator plate. For practical 

purposes the concentric ring has been calibrated in such a way that, 

provided the indicator plate is visually within the confines of the 
inscribed line on the scale plate, the propeller will be within the 

specified limits of balance. 

With this method the propeller can be properly balanced without 

the necessity of more complicated apparatus and a draught-proof 

room. For checking the balance of propellers at aerodromes a portable 

form of this balancing machine, mounted on a road trailer designed 
especially for this purpose, is available. 

Propellers can also be statically balanced on a special machine of 

the Olsen weighing static balancing type, based upon the same prin¬ 

ciple as that used in the machine shown in Fig. 134. The chief modifica¬ 

tion when this machine is used for propellers is in the type of adapter 

for mounting the propeller and in the installation of the machine. 

A splined-type adapter is usually supplied and is provided with har¬ 

dened and ground tapered rings which fit the tapered seats in either 
end of the propeller hub. One machine of this pattern will deal with 

propeller assemblies up to 600 lb. weight; the maximum diameter 
is limited only by the height of the machine above the floor level, or 

the depth of pit provided. 

Blade Traction Balancing Machine 
Apart from the static balance requirement, which ensures that 

there is no resultant centrifugal force that would cause vibrations, it 

is necessary, also, to check the propeller for uniformity of thrust or 

traction, i.e. equality of thrust in the axial direction of each blade, 
since any inequality will result in a rotating centrifugal couple that 

will tend to promote vibrational effects on the engine unit. 

A special machine, known as the Olsen blade-traction balancing 
type for propellers (Fig. 138) is based upon the principle of locating and 

measuring the dynamic couple of the rotating propeller in a somewhat 

similar manner to that of the Olsen-Carwen static-dynamic balancing 
machine, described later in this chapter. The machine is, however, 

modified by shortening the vibrating bed in order to locate the pivots as 

closely as possible to the propeller. The static pivots on the bed and 
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the static compensator on the spindle have been dispensed with. A 
splined adapter with tapered seating rings is used on this machine. 

The machine runs at a comparatively low speed and operates in the 

“critical” or natural period of vibration of the bed. 
In operating the machine the propeller is placed 

on the adapter in the same manner as it would be 
placed on the engine shaft, so that the tendency is 
for the propeller to pull away from the machine when 
running. The machine is then started and the speed 
adjusted until it is in synchronism with the natural 
period of vibration of the bed. When this “critical” 

speed is reached the bed will vibrate with a uniform 
rocking motion, giving maximum amplitude of vibra¬ 

tion as seen on the dial indicator. Assuming that 
the propeller is in static balance, as it should be 

Fig. 138. Propeller Traction Balancing Machine 

when checking for variation in blade traction, the vibration is caused 
by the unequal tractive effort occurring alternately above and below 

the axis of the propeller, which acts upon the bed, causing it to 

oscillate about the pivots located near the left end. 
When the compensating blocks have been adjusted to the proper 

angle and amount to counteract exactly the variation in blade traction, 

the bed will cease vibrating. The machine is then stopped and turned 
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by hand until the scribed line marked ‘‘Light Traction Front/' on 

the angle reference disc at the top of the headstock assembly, aligns 

with the index. The light traction plane is then in the horizontal 

plane through the hub of the propeller and toward the front or 
operating side of the machine. 

In a two-blade propeller this plane will generally come on or near 

the centre line of one of the blades, but in a three- or four-blade 

propeller, it is likely to come between the blades, requiring correction 

in the two adjacent blades. 

Correction for uneven traction depends upon the particular type of 

propeller being checked. If it is the adjustable blade type, it is usually 

possible to turn the individual blades independently, in which case 

the blade or blades on the light traction side can be turned as necessary 

to increase the traction. In the case of the adjustable pitch type of 

propeller, with automatically or mechanically operated blades adjust¬ 
able during flight, the blades may be set at a fixed pitch when readings 

are taken, but it is advisable to take readings for different blade settings, 

to see that the blade turning device functions properly. 
In propellers with fixed blades, where the traction cannot be altered 

by turning the individual blades on their axes, correction for variation 

in traction becomes more difficult. It is usually necessary to remove 

metal at the most efficient place to reduce the traction of one or more 

blades, but it may be necessary to recheck and correct again for static 

balance, correcting for static where it will not affect blade traction. 

Accuracy of Static Balance Tests 
Of the two general methods of making static balance tests, namely, 

(1) the stationary one, in which the part is mounted on level ways or 

in bearings and allowed to roll or rotate until the heavier portion 

reaches its lower position, and (2) the rotation method, the former is 

open to the objection that friction between the body and the ways 

or bearings tends to reduce the accuracy of the results. In order to 

minimize the effect of friction the shaft of the part to be balanced 

may be mounted on friction reducing bearings or on “wheel” bearings. 

In the case of the Losenhausenwerk static balancing machine,* frictional 

effects are minimized by mounting the balancing spindle on two sets 

of ball bearings situated at some distance apart within a sleeve which 

is itself mounted in ball bearings in the main casting of the machine. 

The sleeve is given a small oscillation by means of a crank and con¬ 

necting rod mechanism, from a small electric motor, in order to over¬ 

come the static friction or “sticktion” of the spindle in the bearing. 

It is possible, in this way, to obtain a more accurate reading of the 

angular position of the out-of-balance portion. 

* Machinery, 23rd December, 1937. 
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In the rotary types of static balancing machines, the degree of 

measuring accuracy is usually higher, since the frictional effects 

mentioned previously do not affect the results. The greatest accuracy 

is obtained in machines which enable the leverage or the centrifugal 

effects of the out-of-balance to be magnified appreciably. It is neces¬ 

sary, also, that the balancing machine should be suitable for the size 

and weight of the part to be balanced, statically. Thus, if the latter 

is much smaller than the average size for which the machine is designed 

Fig. 139. Showing Principle of Dynamic Balancing 
Machines 

Wh and WR denote out-of-balam e, A and B positions of referenee planes 

both the sensitivity and accuracy of measurement will be reduced; 

if too large, or heavy, the accuracy may also be lessened. 

Dynamic Balancing Machines 
From earlier considerations in this chapter the general principles 

of dynamic balancing will have become apparent to the reader. In 

this connexion it has been shown that dynamic unbalance causes 

centrifugal couples, giving rise to vibration effects, and that these 

may be balanced by means of suitable counterweights in two given 

planes. The amounts, radial distances and angular positions of 
these counterweights are determined in special balancing machines, 

so that the parts under test can be suitably balanced. Alterna¬ 

tively, the method of removing weight in the two balancing planes, 

by drilling, can be employed. 

The method generally adopted in commercial balancing machines 

is to mount the part to be balanced in bearings on the machine and 

to rotate the part at a given speed. The out-of-balance then causes 

vibrations of the frame or mounting—which is usually provided with 

flexible supports to amplify the effect. (Fig. 139.) In order to locate 

and measure the out-of-balance the machine is provided with a parallel, 

or axial, extension shaft driven at the same speed as that of the 

rotating part. This shaft has an out-of-balance weight the radius and 
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angular position of which can be varied during the test. Since it runs 

at the same speed as the part to be balanced it tends to set up vibra¬ 

tions of the frame. If the angular position of the weight on the shaft 

is varied a position will be found at which the centrifugal force on the 
weight is opposite in phase to that of the out-of-balance part under 

test. If, in addition, the radius of the C.G. of the weight is correctly 

adjusted the centrifugal forces will be equal, and the moments due to 
the unbalance of the rotating part and the compensating weight will 

be equal upon the machine frame, so that the vibrations will cease. 

Means are provided in balancing machines to vary the positions of the 

pivots of the mounting or frame, so that they lie in the planes of the part 

under test in which balancing is to be effected by weight addition or 

removal, i.e. in the selected correction planes. 

Balancing machines are provided with dials, the moving pointers 

of which show the amount of out-of-balance (usually in ounce-inches) 

and the angular position for each correction plane. The vibrations 

set up by the unbalanced part under test are amplified and indicated 
on special instruments, or vibration meters, which are located at the 

two shaft bearings of the part. During the test the operator manipu¬ 

lates the balancing machine controls so as to reduce the amplitudes 

of the vibrations to zero. 

In tests of this type, the pivots are first adjusted to the correction 

planes and one of them is then locked and readings are taken in the 

plane of the other pivot. In this way any unbalance in the plane of 

the locked pivot has no effect on the free end and the readings of the 

amount and angular position of the correction apply direct to the 

plane of the free pivot. The fixed pivot is then released, the free one 

locked in position and the readings taken in the former plane in order 

to ascertain the amount and angular position of the correction in the 

second correction plane. 
Instead of using a vibration meter to amplify and indicate the 

vibrations of the machine during balancing tests it is possible to 

employ the electrical method, based upon the use of electrical vibration 

pick-ups mounted in two selected axial planes. These generate voltages 

which are proportional to the amplitudes of the mechanical vibrations. 

The voltages are amplified and indicated on a large voltmeter. The 

process of balancing consists in noting the “amounts ” on the voltmeter 

and the angular positions, by means of a stroboscopic device. From 

this information the unbalance can be corrected. The Gisholt balancing 

machine of the Westinghouse Company, U.S.A., operates on this 

principle. Another balancing machine that employs an electrical 

method is the Olsen “E-0 ” machine. In this example, small per¬ 

manent magnets and coils are used at each end of the balancing cradle. 

Vibrations, due to out-of-balance, cause alternating currents to be 
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generated, the amount and phase of which indicate the amount and 
angle of unbalance. 

Balancing Machine Selection Factors 
Before proceeding to describe some typical modern balancing 

machines it is proposed to consider certain factors that may affect 

the choice of the balancing machine and results obtained therefrom. 
One of the most important items in this connexion is the speed at 

which the balancing test is carried out. Whilst, theoretically, a 

rotating part which has been correctly balanced at one speed will 
also be in perfect balance at any other speed, the selection of the 
speed of test may influence the results in several ways. 

Thus, if too low a speed is chosen, the magnitude of the unbalanced 
centrifugal force may be too small to be indicated accurately on the 
vibration meter. On the other hand, if too high a speed is selected, 
the centrifugal force may cause excessive vibration and wear effects 

on the machine, for which it is not designed. 
Again, if certain parts such as crankshafts and plain cylindrical 

members of relatively high length-to-diameter ratio are operated at 
high speeds in balancing machines, deformation, due to lateral bending 
caused by the unbalanced centrifugal forces, may—and sometimes 
does—occur. If, therefore, the part is balanced correctly at one high 

speed, the results may not apply at other speeds, owing to changes in 

the distortion of the part. It is necessary, therefore, to select a balancing 
machine that is designed to effect balancing of such “slender ” rotating 
parts, at speeds well below those causing lateral bending distortion. 

This is important, since certain balancing machines are designed to 

operate at high resonance speeds and others at much higher speeds 
than these. 

Since many balancing machines make use of the presence of mechan¬ 
ical vibrations as the indication of unbalance, and effect proper balance 
by adjustments of the components until these vibrations cease, one 

class of machine that is in current use arranges for the operating speed 
to synchronize with the “critical” or resonance speed of the machine 

itself, so that the natural period of the vibration of the vibratory 
support corresponds with the rotational speed of the balancing machine. 

As the maximum amplitude of vibration occurs at this speed, the 

out-of-balance indication is well defined, so that an accurate means 
exists for measuring and correcting out-of-balance. 

Fig. 140 shows a typical curve of vibration amplitudes on a frequency 
or speed base, with a well-pronounced resonance increase in the 
amplitude at a speed of about 1038 r.p.m. At this critical speed the 
amplitude of vibration is 15 times as great as that at 040 r.p.m. The 
angle of phase or lag of the vibrations is denoted by the dotted curve, 

7—(T.3078) 
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and it indicates that between about 970 and 1020r.p.m. there is a 
change of phase of 160°, with the most rapid rate of phase lag occurring 

at the critical speed of the machine. Owing to this wide variation in 

angle lag, it is difficult to obtain accurate angle measurements around 

the critical speed, but in certain balancing machines, e.g. the Olsen- 

Lundgren Type “S,” the lag has no effect on angle indication, since 

Fig. 140. Dynamic Balancing Machine Amplitudes and Frequencies, 
Showing Resonance and Phase Lag Conditions 

the unbalance angle is determined from the position of the compen¬ 

sating weight which is subject to the same lag conditions as the 

unbalance that is to be determined. 

The Carwen Balancing Machine 
The Carwen static-dynamic machine, as originally manufactured 

by the Carlson-Wenstrom Co., America, is shown, schematically, in 
Fig. 141. The object to be balanced, A, is supported in bearings on a 

bed B, which is fixed at one end E but is spring-supported at its other 

end F. Underneath the bed and with its axis parallel to that of the 

axis of rotation of A is another shaft C, which is suspended from the 

same bed. A motor G drives the shaft H of A and the shaft C at the 

same speed and in the same direction. 
Compensating weights D are adjustably mounted on the shaft C, 

such that their axial distance can be varied, as well as their angular 

relation. The axial distance N can be varied by means of the right- 

and left-handed tumbuckle shown in Fig, 141. The method of using 
this machine is to vary the angular and axial distances of the weights 

D, whilst the machine is operating until the out-of-balance vibrations 
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of the bed B cease entirely. The angular position of the weights D 

can be varied by means of the differential gear K by means of a hand 

control worm and wheel device J. 

The value of the compensating moment of the centrifugal forces 
due to the weights D is given by the following relation— 

„ Dco2R . N 
Compensating moment -=-__ 

where D — compensating weight, 

co = angular velocity, 

It —- radius of C.G. of 1), 

y - 3219, 

and N ~ distance between weights 1). 

In the Carwen machine co is the same for both shafts and R is 

constant (since the weights I) are fixed at a given radius), so that 

the compensating moment is proportional to the product DN. As 
D is constant also, the moment is therefore proportional to the 

distance N. 

Balance may therefore be effected by adding or removing weight 
equal to m at two places at equal radii r and distance apart d, such 

that the moment m . r . d = D . R . N. 

It is necessary that the angular positions of m should correspond 

with the positions indicated by the balance weights I). In the original 
Carwen machine scales were provided to read the amount of the out- 

of-balance in ounce-inches, at a given speed, and charts were available 

to show the exact amount of metal to be added or removed at a given 

radius to effect correct balance of the member under test. 

The Carwen machine is particularly suitable for instruction and 

demonstration purposes in engineering institutions, as various prin¬ 
ciples of balancing can be investigated and both static and dynamic 

methods dealt with separately or in combination. 

The more recent version of this machine, known as the Olsen-Carwen 

(Type “C”) has several improvements on the original model. It is 
shown schematically in Figs. 142 and 143, and in external view in Fig. 

144. In the latter illustration the various components are described in 

the caption. It should here be mentioned that the compensating 
weight system in this design forms an extension of the shaft driving 

the out-of-balance member under test; both are therefore driven at 

the same speed, without gears. They are mounted on the top of a 

common bed which is provided with flexible supports ’at its two ends. 
In reference to Fig. 144, the rigid bed J carries adjustable bearing 

brackets N in which the part to be balanced is supported. At the 
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right end the headstock assembly R is secured, with the driving motor 

mounted to the rear of this assembly and connected to a pulley on 

the main spindle by means of an endless woven belt. One of the 
flexible supports for the bed J is shown at K , there is a similar support 

Fig. M2. Illustrating Principle of Qlsen-Carwen Type C 
Balancing Machine 

at the other end of the bed. Alternatively, the bed can be supported 

on “dynamic” pivots L at the front and back of the bed (see also 

Figs. 142 and 143), this changeover is effected by means of the shifting 
mechanism O. 

The rigid bed with its spring supports, in use, has a certain natural 

vibration frequency, and in tests on this machine the speed is chosen 

1/ T A Si? r actual locati&v or* This screw 
, / / / / / /is tri em HOJe/eofirai Ar'ee 

Fig. 143. The Olsen-Oarwen Type 0 Balancing Machine 

so that the critical conditions are obtained; all unbalance readings 

are taken finder these critical speed conditions. A variable speed control 

is provided on the electric motor driving the rotatable members to 

produce the critical speed during each test. 
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The amount of unbalance of the compensating weights is controlled 
by the handwheel C, which adjusts the separation of the compensating 
blocks on the vertical spindle in the headstock. The angular relation 
of these blocks with respect to the work is varied by means of the 
handwheel D. Adjustment of both amount and angle is made whilst 
the machine is running at the critical speed. The dial F indicates 
the amount of created unbalance and the dial E the angular position 
of the compensating weights. 

With regard to Figs. 142 and 143, the part U to be balanced contains 
a static imbalance weight M and a dynamic unbalance couple WW'. 
By turning the capstan 0 in an anti-dockwise direction the pivot- 
shifting mechanism operates to release the anvils for the pivots L 
and the bed or vibrating unit will rest on the static pivots K. The 
springs adjacent to the pivots L support the bed flexibly and allow 
it to vibrate crosswise on the static pivots K. These springs have a 
screw adjustment for proper tension. 

The compensating blocks P and Q, shown in Fig. 143, are located 
diametrically opposite on the vertical spindle 1 in the headstock of 
the machine. Both blocks are of the same weight and their centres 
of gravity are the same distance from the centre of spindle I. Block 
P is fixed vertically, but block Q may be adjusted vertically along the 
spindle, by manipulation of handwheel C, shown in Fig. 144. When the 
blocks are together, their centres of gravity are in the same plane 
normal to the axis of the vertical spindle, hence as they rotate no 
dynamic couple is present. ^ 

When block Q is moved away from block P a dynamic unbalance 
, couple is introduced which acts as a static unbalance on pivots K, 
or as a counteracting dynamic couple on dynamic pivots L, depending 
upon which pivots are engaged. 

For the compensating blocks exactly to counteract either static or 
dynamic unbalance in the part, they must rotate in the proper angle, 
or phase relation, to the part being balanced. Handwheel D, Fig. 144, 
permits variation of this angular relation, by moving, longitudinally, 
a splined sleeve on the main spindle in the headstock. This sleeve is 
actually a wide-faced helical gear meshing with a gear on the vertical 
block spindle, so that any longitudinal movement of the sleeve will 
change the angular relation between the two shafts. Now, as the part 
U is rotated the centrifugal force due to static unbalance M will cause 
the bed J to vibrate about pivots K. The dynamic couple WW', 
however, will not cause any vibration onr these pivots, since the 
moments of each element of the couple about the pivot axis KK are 
equal and opposite. Therefore, if the compensating blocks in the 
headstock are adjusted, as shown in Fig. 142, until they create 
a couple equal in moment to the moment of the static unbalance M 
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and opposite in direction, the bed will cease to vibrate. As previously 
mentioned, dials record the amount and angle of the compensating 

unbalance, thus determining the unbalance in the work. 

The static compensator A, Fig. 144, on the main spindle may be 

adjusted to create an artificial static unbalance, equal and opposite 

Fig. 144. The Olsen-Car wen Type C Balancing Machine 

A—static unbalance compensator, B—dial indicating an\ \ibration due to unbalance, 
(- handwheel for regulating amount of compensating weight applied to balance 
1)—handwheel to adjust angular position of compensating weights E—-dial 
indicating angular position of unbalance, V—dial indicating amount of unbalan< e, 
G—angle reference disc, H--tool compartment ,1—rigid bed with inverted ‘ V’’wa\ 
to align bearing supports, K—static pivot, L—dynamic pivot N—any number of 
bearings may be used to support the body being balanced Two furnished as standard 
equipment, O—pivot shifting mechanism R—headstock, TJ—spider for moving, 
longitudinally along the bed, the part to be balanctd and all its bearing supports 

to the static unbalance in the work, when taking readings for dynamic 

unbalance. It may be set to any angle and amount of static unbalance 
within the limits of the machine. 

To determine the dynamic unbalance in the work, the shifting spider 

O is turned clockwise, releasing the static pivots K and allowing the 

bed to rest on dynamic pivots L, as shown by Fig. 143. The bed will 

then vibrate about pivots L due to the moment of the dynamic couple 

WW' about the pivot axis. If the compensating blocks P and Q are 

now separated sufficiently to set up a dynamic couple equal in amount 

to the couple in thd work, and are adjusted angularly so that the 

couple acts opposite in direction to that in the work, the bed will 

cease vibrating. The amount and angle of the couple are recorded on 

dials on the headstock, thus enabling the determination6 of the amount 
and location of unbalance in the work. 
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The Avery Rapid Dynamic Balancing Machine 
This machine, which is made in different models for light and medium 

size members, has been designed to determine the magnitude and 

position of the out-of-balance in the member under test in order to 

show, automatically, by means of a chart the amount of the out-of¬ 

balance in ounce-inches, and on an angular disc the angular position 

Fig 145. The Avery Raped Dynamic Balancing Machine for Lighi 
Rotors, Armatures, and Similar Parts 

A—bdUnce indicator knob, B— self adjusting indicator, ('—measuring chart for 
balance results, JL> —knurled regulation wheel for axial movement of compensating 
disc, E—angle position locator F—supporting springs, G—mechanical vibration 
indicator, H—drive coupling for test bodv, J—bearing traverses for test body, 
K—optical vibration indicator, L—oscillating cradle , M—fulcrum support, N— 
graduated ruler for use with measuring cord O and chart C, P—speed control for 
attaining resonance, Q—angular position of compensating disc control, R—angular 

position locating control, used in conjunction with red-and-white disc E 

of the out-of-balance force. The machine has been constructed so 

that the procedure of balancing can be carried out with facility and 

speed by non-technical operators, as in mass-production balancing of 

similar parts, such as armatures, rotors, crankshafts, etc. 

The smaller machine, Type 3001/A00, with a capacity of 3| oz. 

to 10 lb., is illustrated externally in Fig. 145 with the various lettered 

parts explained in the caption below. 

The principle upon which the machine is based is shown schematically 

in Fig. 146, from which it will be observed that the member to be 

balanced, termed the “test body/’ is mounted on bearing traverses 

on a frame or “oscillating cradle” having supporting springs at either 

end. The lower ends of the springs are attached to “ground ” members 
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before the balancing operation, can be set to the pre-selected position 
of the vertical compensating plane and* to its diameter. A measuring 

cord 0 is used for locating the compensating plane by an adjustable 

graduated ruler N, which is set along the base The various parts of 

l 

Fig 147. Enlarged View of Measuring Chart and Self adjusting 

Indicator 

the balancing machme are lettered in Fig 145, and a key to these 

letters is given in the caption. 
After the test body has been measured for out-of-balance with the 

fulcrum support M beneath one vertical compensating plane it is 

moved along so as to lie in the second vertical compensating plane 
and the procedure repeated. In this manner the dynamic unbalance 

is measured, and the results show the required counterbalance weights 
or moments and their respective angles in the compensating planes 

of the test member. * 
Fig. 149 illustrates a larger model of the Avery rapid dynamic bal¬ 

ancing machine, intended for crankshafts, medium size rotors, and 
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armatures. It utilizes the same principle of the compensating disc 

with its out-of-balance weight, provided with axial and angular 

adjustments, as that employed in the smaller model shown in Fig. 145. 

It is only necessary to operate two handwheels, L, L for actuating 

the compensating disc, in order to measure the out-of-balance amount 

and angular position. As in the smaller model, balancing is effected 

after adjusting the speed to the critical value. 

Fig 148. Illustrating the Principle o* Aver* Dynamic 

Balancing Machine 

A refinement in the larger model is the provision of a rocking bar 

at the front of the machine, which is held in position by two adjustable 

fulcrum points. These are set to positions relative to the distance 

between the two compensation planes of the test body (Fig. 150)—a 

crankshaft in the present example—previously selected for removal or 

addition of material for balancing purposes. Referring .to the diagram 

given in Fig. 148, it will be seen that the actual test body a, with its 

compensation planes at dx and d2, and flexible end supports B, as shown 

in the upper left-hand diagram, is reproduced to a reduced scale on the 

rocking bar between the adjustable fulcrum points, coincident with 

its compensation planes, as shown by the lower right-hand diagram. 

In this case the fulcrum points are indicated at J alid Jv the com¬ 

pensating disc, with its out-of-balance weight at U, and the actual 



Fig. 149. The A\ery Larger Model Dynamic Balancing Machine 

for Crankshafts, Armatures, Etc 

('—bearing roller tension spring adjuster, J, L—fulcra K,—measuring cords, 
L—control handwheels, M—telescopic disc coupling N—hand brake 0—clutch 
lover, G—measuring table, S, S,—slides loi cord K,, W—measuring chart 

Z—rule r 

Fig. 150 The Avery Dynamic Balancing Machine, showing 

Crankshaft under Test 

B—bearing supports, 0—bearing supports tensioning adjuster, D—open bearing 
rollers, E, Er—dial gauges, F—scale ruler, G—measuring table, K, Kx—measur¬ 
ing cords, L—control wheel for compensating “ out-of-balance ” disc, M—telescopic 
disc coupling, N—hand brake, R—aligning screws for test body and coupling M 
alignment, S, St—slides for cord Kj, O—clutch lever, J, —fulcrum points, 

T—bed scale 
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out-of-balance measuring device with its inclined cord, held by the 

sliders S and Sj^ and scale W. This arrangement Kj is a smaller scale 

replica of that shown at K in the upper left-hand illustration. 

For the balancing of a large number of similar test members, as in 

mass-production testing, an exact scale drawing of the test member 

Fig. 151. Chart Setting Dp:vice, showing Scale Drawing of Body 
to be Balanced Fixed to Top of Machine Housing 

can be attached to the measuring table G (Fig. 151) of the machine 

and used for setting the machine to the correct compensation plane 

without reference to the test body itself, namely, by the position of 

the indicator Sx (Fig. 149). 

With regard to Fig. 150, the two bearing uprights B each contain a 

spring C, which is adjustable to support the open bearing rollers for 

accommodating the test body (crankshaft), and a device R for adjusting 

the height of the bearing rollers to suit the shaft diameter under test. 

Two dial gauges, E and E1? are provided for vibration indication 

purposes, when the test object is being set, prior to balancing. The 

measuring device comprises an adjustable ruler F engraved with a 

double scale, which is set to the selected vertical compensation plane 

of the test body; a measuring table G; a rocking bar H positioned 
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by two adjustable fulcrum points J and J1 which can be locked or 

released, individually ; two measuring cords K and Kx between the 

machine base and across the measuring table G, respectively, and 

two slides S and S1 for adjusting the inclination of the cord Kj to 
correspond with the values indicated by the adjustable ruler F and its 
intercepting cord K. 

The compensating device (Fig. 152) consistsof an oscillating shaft with 

differential gear, synchronously driven with the test body by electric 

Fig. 152. The Compelssating System on Avery Balancing 
Machine 

A—regulation wheel, 15—angular disc, C—differential gear, D—compensating disc, 
E—knurled knob, F—driving motor, G—variable resistance 

motor and coupled with the rocking bar H in front of the table G to 

obtain synchronous oscillations of the test body, compensating device, 

and rocking bar. The oscillations of the bearings D are transmitted to 

the oscillating shaft and rocking bar by two hexagonal shafts T running 

inside the machine base. The out-of-balance compensating disc is set 

in angular relation to the test body by the hand wheel L. There is a 

telescopic disc coupling M with coupling belt and centring pin to 

connect with the driver of the test body, a hand-brake N to stop 

the rotation of the test body; and a clutch O for disconnecting the 

test body and compensating device for checking the balance of the 

test member after correction. 

After certain initial adjustments of the test body and fulcrum 

points, slides, etc., the fulcrum point in one of the two selected com¬ 

pensating planes is locked, the other fulcrum point remaining “open.” 

This causes the test body and rocking bar to oscillate about the locked 

fulcrum point and the appropriate dial (E or E1? Fig. 150) will indicate 
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the vibrations. The handwheels L (Figs. 149 and 150) are then adjusted 

to bring the amplitudes of the vibrations to zero, and the amount of 

unbalance and its angular position for the selected compensation 

plane are read off. The procedure is then repeated with the other 
fulcrum “open’’ and the former “open"’ one locked, in order to 

effect balance in the other compensation plane. The machine is 

arranged to indicate the positions for adding weight to correct the 

unbalance or for removing weight on the opposite side, for the same 
purpose. 

After the test body has been corrected in the two compensating 

planes it should be given a test run, preferably over its normal operating 

speed range to check the accuracy of the balancing, on the machine 

itself. 

The Lundgren Balancing Machine 
This type of machine is widely used for the commercial balancing 

of similar production components in the automobile and electrical 

industries and for many other engineering parts. It has been developed 

to a high degree of measuring accuracy and at the same time its 

manipulation has been simplified by the Tinius Olsen Co., in their more 

recent Model “S” balancing machines. 

The Olsen-Lundgren machine operates at a speed considerably lower 

than the critical speed, as in this type the amplitude of vibration is not 

relied upon for the determination of unbalance. Further, the phase 

angle or lag effect of the induced vibrations has no influence whatever 

on the unbalance angle determination, as the latter is obtained from 

the position of the compensating weight, which is subject to the same 

lag conditions as the unbalance to be determined. 
The Lundgren machine utilizes the principle of a created unbalance 

in the compensating portion of the machine to counteract the un¬ 

balance of the test body. Fig. 153 is a schematic drawing, to show the 

principle of the machine. Essentially, the test body is supported on 

rollers on a vibratory table or cradle, and is driven by the same drive 

and at the same speed as the compensator, shown at the right-hand 

side in Fig. 153. The two correction planes are selected in the test 

body and the cradle locking pivots or fulcrum points adjusted along 

the bed in each of these planes. The resultant dynamic unbalance in 

the test body can be represented by the weight WR and WL in the 

planes selected for correction, as indicated in Fig. 153. When the 

compensator Wc is set at zero unbalance, it can have no effect upon 

the vibration of the cradle; further, the unbalance weight which lies 

in the plane of the locked pivot cannot cause vibration of the cradle. 
Thus, the only vibration is that due to the centrifugal force of the 

resultant unbalance weight in the plane of the open pivot. This is, 
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of course, the same principle as that described previously in this 
chapter. 

Since the unbalance-weight WL, when the right-hand pivot is locked, 
is that causing vibration of the cradle, its moment about the right 

pivot is given by WL . RL . B where RL is the radius of C.G. of the 

unbalance weight and B is the distance between the pivots. The 

compensator weight Wc at radius Rc is then adjusted so that its 

opposing couple is equal and opposite to the unbalance WL. Thus, 

WCRC . C = WlRl . B 

where C is the distance between the plane of the compensating weight 

Wc and the fixed right-hand fulcrum. The value W0RC is known for 

the machine, as also are the distances B and C, so that the unbalance, 

expressed in ounce-inches, in the left-hand plane, is therefore directly 

determinable. If the left-hand fulcrum is then locked and the 
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right-hand one freed, the amount of unbalance WrRr in the right- 
hand correction plane can be determined in a similar manner. 

Thus WrRr = 
WCRC x A _ 

where A = B + C. 

Fig. 154 illustrates the Olsen-Lundgren Type “S” machine, the 
various parts indicated by the letters being described in the caption. 

Fig. 154. The Olsen-Lundgren Type “S” Balancing Machine 

A—compensator; B—work support rollers; C—support roller brackets, D— 
vibratory cradle, E—flexible support rods for D; F—floating type driving pins, 
G—cradle pivot brackets, H—pivot locking stands, I—mechanism for adjusting 
pivot positions, J—driving pulley connected to motor by an endless belt, 
K—locking pivots, L—pivot locking handles, M—spark dial pointer, N—high 
tension spark dial: 0—headstock cover; P—dial indicator for unbalance amount, 
Q—switchboard, B—spark contact adjusting screws for cradle contacts, ft—contact 

screw supporting bracket, T—machine base 

The two pivot locking stands H are adjustable along the length of the 
base by a rack and pinion actuated by the capstan arm unit I. The 
four flexible cradle support rods E are located at the ends of the base, 
two at each end; these support the cradle and restrain it to vibrate 
in the horizontal plane. The two cradle pivot brackets G are adjustable 
along the cradle to the selected correction planes. Two support roller 
brackets for the journals of the test body are shown at C; these are 
adjustable along the cradle to suit different lengths of the test body. 
The support rollers are shown at B; they consist of hardened and 
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ground steel rollers mounted on ball bearings and are adjustable to 

suit different diameters of the test body journals. The test body shaft 

or journal is driven by an adapter by driving pins F in the driving 

pulley J, the latter is belt-driven from the electric motor which is 

mounted on the rear of the headstock bracket. The spindle on J 

drives a pointer M on a high-tension spark dial N, in synchronism 

with the test body. This spindle also connects through a magnetic 

Fig. lr)5. Close-up View of Headstock Unit 

A—pulley, B—spark dial, C—angle indicator pointer, D—electric motor, 
E—compensator angle shifting clutch F—driving member, G—driven member, 
H—compensator, J—friction discs, K—single spark cam, L—spark contactor, 
M—dial indicator, N—magnets for shifting compensator weight, 0—angle 

shifting clutch rollers 

release friction clutch with the compensator, so as to drive the latter 

in synchronism with the test body. 
A close-up view of the headstock unit is given in Fig. 155 to show the 

various components more clearly. In particular the clutch for altering 

the angle of the compensator weight arm with relation to the test 

body is illustrated. It is controlled by means of two buttons which 

are marked “Angle” on the switchboard; one advances and the other 

retards the weight arm. The actual angle of the weight arm is shown 

by the spark dial. The single spark cam on the end of the compensator 

shaft makes contact once every revolution and causes a single spark 

to show on the dial as it rotates; the corresponding angle at which the 
spark occurs is then read off. The compensator weight is controlled 

from the operator’s switchboard by two buttons marked “ Unbalance 
Pressing one of these buttons causes the created unbalance to be 
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increased, whilst the other button decreases it. The compensator, as 
shown in Fig. 155, is cylindrical in shape and has a screw running 

through it. One projecting end of the screw carries a friction disc and 

the other end a graduated cap for reading the finer limits of unbalance. 
As the screw is turned the weight moves along inside the barrel, which 

has a graduated slot showing the unbalance in ounce-inches; the 

cap acts as a kind of micrometer for the finer reading. The compensator 
screw is caused to move by two bevelled friction discs concentric with 

the compensator spindle. These discs are free to slide in an endwise 
direction on the compensator spindle. They are rigidly attached to a 

yoke which carries a small armature at its lower extremity. On either 

side of the armature are electromagnets which are controlled by the 

unbalance buttons. 
A spring centres the yoke so that normally neither friction disc on 

the yoke contacts the friction disc on the compensator screw. However, 

when either of the unbalance control buttons is pressed, the magnets 
move the yoke in an endwise direction, causing one or the other of the 

friction discs on the yoke to contact the compensator screw friction 

disc. The yoke discs are stationary; hence as the compensator 

assembly rotates, the planetary action of the friction disc on the 

compensator screw, rolling around the stationary yoke disc, causes 

the screw to turn, which moves the compensator weight radially, 

thus changing the compensator unbalance. The weight will continue 

to move only so long as the button is held down by the operator. 

The compensator weight has a wedge-shaped piece on one side. 

This acts against a plunger extending through the centre of the com¬ 

pensator shaft which carries the single-spark cam. Acting through a 

lever, this plunger actuates a dial indicator which moves simultaneously 

with the compensator weight, and enables reading the compensator 

unbalance without stopping the machine to be effected if so desired. 

The vibrations of the cradle are amplified and indicated by an 

electrical method, utilizing platinum-iridium alloy contacts which are 

adjusted so that the slightest motion of the cradle, due to unbalance 

vibrations, causes the cradle contacts to “make” an electrical circuit 

at one extreme of the forced vibration and to cause a spark on the 
same spark dial N (Fig. 154) as is used for angle indications. 

During the length of time this contact is closed, the pointer had 

made a partial rotation around the spark dial, and the spark over 

the gap between the end of the pointer and the annular ring on the 

dial gives the appearance of a blue arc of sparks, denoting the position 

of the imbalance. 
Fig. 156 shows how this may appear on the dial. The heavy arc 

extending from 265° to 15° on the dial represents the arc of sparks 

set up by the unbalance. The single spark denotes the angular position 
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of the compensator. It is shown in the sketch at 140°, or diametrically 
opposite the centre of the arc, indicating that the compensator has 

been adjusted to oppose the unbalance. Owing to persistence of 

vision, both the arc and the single spark appear to occur at the same 

time, making it a simple matter to adjust the position of the single 

spark accurately by eye, without it being necessary actually to note 

the angular values. 
The Balancing Procedure. The angular position of the compensator 

is shown by the position of the 

single spark on the dial as pre¬ 

viously explained. This angular 
position is adjusted, by the two 

angle buttons on the switchboard, 

until the single spark appears 

diametrically opposite the centre 

of the unbalance spark arc. This 

means that the compensator has 

been placed in the same angular 

plane as the unbalance. The 

unbalance to be set up in the 

compensator will now be oppo¬ 
site in moment to the unbalance 

in the part. Moments, of course, 

are taken about the locked pivot. 

The weight in the compensator is then adjusted by the two un¬ 
balance buttons on the switchboard, until the unbalance spark arc 

on the dial either entirely disappears or shows up as a scattered spark 

around the dial. This indicates that the cradle has come to rest and 

that the moment of the created unbalance in the compensator is 

exactly equal and opposite to the moment of the unbalance in the 

part. The machine is then stopped and the amount of the compensator 

unbalance can be read directly in ounce-inches, or other units, on the 

compensator barrel. The angular location of the unbalance is obtained 

from the location of the compensator, since both must be in the same 
plane. 

The part may then be marked for the location and amount of un¬ 

balance in the one correction plane, the pivots interchanged, and the 

process repeated for the other correction plane. 

The simplicity of the method of operating this machine is such 

that no special skill is needed and balancing can be done on parts such 

as automobile crankshafts at a rate as high as 16 to 20 per hour; this 

time includes the making of corrections by drilling or otherwise re¬ 

moving metal. The machines are made in fourteen different sizes, 

from the smallest for parts of 16 to 100 lb. weight up to the largest 

Fig 1.56. The Spark Dial (B, Fig. 

155) showing “Arc” in Black 
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for 500 to 10,000 lb.; the latter type would be used for steam turbine 

rotors, printing rolls, large electric motor armatures, etc. 

The Benrath Balancing Machines 
An entirely different principle from those previously described for 

the mechanical type balancing machines is employed in the Benrath 

type “NUA” and “RJN” machines. In these the test object is 

mounted on a spring-supported work cradle and the latter is subjected 
to forced oscillations at the same frequency as those caused by the 

unbalance of the test object. These forced oscillations are imparted 

to the cradle by means of an eccentric and connecting rod ; the eccentric 

operates at the same speed as the test object is driven. The amount 

and the phase of the oscillations can be varied by means of controls 

on the machine so as to oppose the vibrations of the test object and 

thus to cause the vibrations to cease. 

The usual method adopted in these machines is to arrange for the 

fulcrum points to coincide with the correction planes, so that only two 
individual balancing operations are necessary, namely, one in each 

plane. 

Fig. 157* illustrates the principle of the “RJN” type machine for 

production combined static and dynamic balancing of test objects such 

as crankshafts, impellers, armatures, gyroscope wheels, etc. It is made 

in several models, ranging from one for maximum and minimum test 

object weights of 31b. and }lb., respectively, to that for weights of 

100 lb. and 5 lb., respectively. 
The electric motor drives the test object driving spindle through a 

pair of gears A and B. There is a differential gear unit C which drives 

the bevel gear D connected to the flexible coupling shown, which in 

its turn drives the test object. The flexible coupling and the test 

object can be adjusted by means of the hand wheel, shown on the 

upper right-hand side, so as to alter its angular relation to the drive 

shaft of B, by any amount up to 360°. The shaft to which B is attached 

drives an eccentric and sheath E, connected by a hinged rod J to a 

lever F having a fulcrum point G. The rod is thus oscillated at the 

test object drive frequency. A roller H can be moved along the lever 

F by means of the hand wheel shown below, through a nut and screw 

arrangement. This roller H imparts the oscillations to the lever R 

with its fulcrum at K in varying amounts from zero to maximum, 

according to its position in relation to the lever F. The two levers 

R and F are maintained in contact by means of the spring shown on 

the right. The lever M, with a fixed weight at its right end, is coupled 

to the cradle N, in which the test object is placed, by means of a 

Machinery, 16th December, 1937. 



206 AUTOMOBILE AND AIRCRAFT ENGINES 

connecting rod. The cradle N is supported by the balancing spring 

on one end and its fulcrum at the other. 

As long as the lever R is stationary the cradle N readily oscillates 

the lever M with its weight. As soon, however, as the lever R oscillates 

with consequent movement of the fulcrum point L of the lever M, 

the weighty on account of its inertia, has a tendency to act as a fulcrum 

point for M, thereby causing the oscillations of the cradle N, due to 

Fig. 157. Principle of Benrath Type “RTN” Balancing Machine 

the unbalance of the test object, to cease. The lever F has an extension 

beyond G and is thence connected with an indicator needle O. The 

machine cradle N operates a similar indicator needle P on the same 

axis. The movements of the two vibrating needles are observed by 

means of a stroboscopic device, having a “creep” arrangement which 

enables the motions of the needles to appear to be slowed right down, 

thus making it possible accurately to synchronize the movements of 
the two needles. 

The procedure for balancing the test object is to run the machine 

at the given test speed and observe the vibrations of the two needles 

by means of the stroboscope. The “direction” handwheel (Fig. 157) 

is then operated so as to bring the vibrations due to the test object 

and the eccentric mechanism into synchronism—and at the same time 

to measure the phase difference or angle. Next, with the two needles 

vibrating synchronously, the handwheel for “amount” (Fig. 157) is 

adjusted in order to bring the amplitude of the vibrations of 0 and 
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P down to zero. Thus, both the angular position and amount of 

unbalance in one correction plane can be read off the scales provided 

for the purpose. The procedure is then repeated for the fulcrum 

adjusted so as to coincide with the second correction plane. 

Another model Benrath balancing machine, known as the “HAK” 

type and used for high production dynamic balancing, measures the 

unbalance by means of a pair of counterweights, revolving synchron¬ 

ously with the test object and controlled for amount and angular 

direction by stationary-type hand wheels, so as to stop the resonance 

vibrations of the machine cradle, as shown by a precision dial type 
indicator. 

The Olsen Electric-type Balancing Machine 
In principle the Olsen type “E-0 ” machine operates in a somewhat 

similar manner to the Lundgren machine, but, instead of observing 

the amount of unbalance and its angular position by mechanical 

vibration indicators, it utilizes an electrical method. The machine has 

the usual cradle and drive for the test object and two axially adjustable 

pivots which can be set in the correction planes of the test object. 

Each pivot is locked in turn and the amount and angle of the unbalance 

measured electrically. The method employed is to utilize the vibrations 

of the free pivot to actuate magnetic pick-ups which produce an alter¬ 

nating current proportional to and in phase with the vibration. Means 

for rectifying the alternating current output of the pick-ups and 

obtaining its phase relation to the rotation of the test object are 

provided. 

For this purpose the magnetic pick-up is attached by means of a 

push-rod to each end of the cradle; this converts the vibrations of 

the latter into alternating current, proportional to the amplitude of 

vibration. The pick-up consists of a coil actuated by the push-rod, 

which moves in the magnetic field set up by a heavy permanent magnet, 

secured to the base of the machine. The alternating current is propor¬ 

tional to the vibration amplitude, and this, in turn, varies with the 

out-of-balance amount, so that the alternating current value is propor¬ 

tional to the latter. Further, the phase relation of the alternating 

current output of the pick-up to the rotation of the part being balanced 

is an indication of the angle of unbalance. 

A mechanical type rectifier is employed. It consists of a special 

cam type of commutator located in the headstock of the machine. 

The cam for actuating the contacts in this commutator rotates in 

synchronism with the test object. The cam has two dwells, each 

180° in length and at slightly different radii. The cam followers and 

contacts are sa arranged that one set of contacts remains closed for 
180° or one-half turn of the cam; then this set opens and the other 
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set opens for the next 180°, and so on. As there are two contact 

assemblies located on this commutator, spaced 180° apart, full wave 

rectification is obtained. The commutator block which carries all of 

the contacts and cam followers is arranged so that it can be turned 
about the axis of the cam by turning a knob at the front end of the 

machine. This knob has a graduated dial to indicate its relative 

position. The commutator contacts are so connected with each other 

Fig. 158. Contact Type Commutator Used on Olsen Type “E-O” 

Electrical Balancing Machine 

and with the current meter that for a given setting of the commutator 

the direction of the current from the pick-up to the meter A (Fig. 160) 

is reversed every half-turn of the cam and, therefore, of the part being 

balanced. 
The principle employed is illustrated by the alternating current 

output graphs of the pick-up coils shown in Fig. 159, A, B, and C. 

In Graph A, the solid line shows a simple harmonic variation current 

curve on an angle base. Assume that the commutator is set so that 

contact change takes place at a, 6, c, etc., i.e. at the points where the 

curve crosses the axis. 

For such a setting the direct contacts are closed from a to 6 and the 

reverse contacts are open for the same period. From b to c the direct 
contacts are open and the reverse contacts closed. This has the effect 

of throwing the negative part of the curve between 6 and c up into 
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the position shown by the dotted line. Hence the meter, which is a 

D.C. microammeter, receives two direct-current impulses for every 

revolution or cycle from a to c, and will show maximum reading for 

this particular setting of the commu¬ 

tator. If, how, it is assumed that the 

setting of the commutator is moved 

by a slight amount as shown in Graph 

By the solid line will still represent 

the output from the pick-up coils and 

the dotted line the reversed output 

part. From this setting of the com¬ 

mutator the meter will receive two 

direct current impulses per revolution 

equivalent to the shaded positive area 

minus the shaded negative area. Hence 

the meter will show a lower reading 

than the maximum of the Graph A, 

the actual reading depending upon 

how far the commutator has been 

shifted from the position of the maxi¬ 

mum reading (Graph A). 

If the commutator is moved 90° 

from the position for maximum move¬ 

ment as shown by Graph C, the posi¬ 

tive and negative areas will be equal 

and the D.C. meter A (Fig 160) will 

read zero. Any further movement, in 

the same direction would result in a 

negative D.C. reading but for the fact 

that there is a zero stop pin slightly 

below the zerp graduation, so that the 

meter will not register. 

The angle of unbalance can be read 

from the commutator dial opposite the 

angle marked “Angle” when the com¬ 

mutator setting is such as to give a 

zero reading with the meter pointer 

moving in the same direction as the 

commutator is turned. The angle be¬ 

tween the “Angle” and “Amount” indices is 90°, and the pointer 

over the commutator dial serves to indicate the angle and also the 
amount of unbalance. In obtaining the latter the knob is turned to 

the right (Fig. 161), carrying the angle indicating pointer with it until 

the assembly is turned 90°, which will be indicated when the pointer 

m lilik/ Jyi 

■ 
HU mm 

- 
OHl irtroluTlOH CF THM KOTO* 

Fig. 159. Illustrating Prin¬ 
ciple of Electrical Method 

Used for Type “E-O” 
Balancing Machine 
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is opposite the “ Amount” index located at the top of the dial. The 

electrical system is provided with four different sensitivity positions, 

numbered 1, 2, 10, and 20. 
After the angle of unbalance on the commutator dial and the amount 

on the meter have been read, the machine is stopped and’the actual 

location of unbalance of the test object is found by turning it around 

Fig. 100. The Olsen Electrical Type “E-O” Horizontal 

Dynamic Balancing Machine 

A—microarnmeter to show unbalance; II—pick-up unit; C—vibratory cradle ; 
D—work support rollers; E —retaining rollers; F—part to be balanced; O—drive 
adapter; H~~driver; I—work support brackets; J—pivot brackets; K—pivot 
control knob; L—angle reference disc; M—commutator control; N—spindle 

hand wheel; 0 —control panel; P—machine base. % 

by means of the hand wheel N (Fig. 160), until the index on the head- 

stock cover indicates the same angle on the graduated disc on the 

spindle as that on the commutator dial. The unbalance angle on the 

test object then lies in the horizontal plane through the axis. 

In addition to the horizontal type machine shown in Fig. 160, there 

is a special vertical model designed for the convenient and quick 

static balancing of parts of relatively small width in relation to their 

diameter, such as petrol engine flywheels, clutch discs and other 

rotating parts, rotors, and supercharger impellers. In this machine 

the vibratory frame carries a vertical spindle and is so arranged that 
it is restrained to vibrate in a horizontal plane about a vertical axis. 

This design enables a convenient grouping of the controls and meter 
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on a sloping panel The same electrical principle is employed as in 
the horizontal dynamic balancing machine Type “E~0 ” 

The Dynetic Balancing Machine 
The Dynetic machine, of which the Gisholt type developed bv the 

Jig 161 Thf Commutator Di^l from which Readings of 
Out of Balance Amouni and Phase Angle are obtainfd 

Westmghouse Co of America* is a good example, is based upon a 
somewhat similar electrical principle to the Olsen “E-O” type, 

namely, in its use of magnetic pick-ups although it differs essentially m 

the balancing procedure and method of ascertaining the angle of 

unbalance 
The mechanical analogue of the electrical method is indicated at 

(1), (2), and (3) m Fig 163, which shows an unbalanced test object 

* “Balancing Rotating Machinery,” F 0 Rushing, Westmghouse Research 
Laboratories, The Machinist, 1943. 
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In Diagram (1), an unbalance of WL is shown causing amplitudes of 
vibration A and cA at the two places on the axis indicated, the place 

of zero vibration being to the right of cA. The factor c represents an 

assumed constant relationship between vibrations at these places, 

produced by any unbalance weight in the transverse plane of WL. 

Fig. 162. Vertical Model Static Balancing Machine for Flywheels, 
Ftc. 

This machine operates on the electrical principle 

Similarly, as shown ih Diagram (2), an unbalance WR on the right 

will cause vibrations &B and B at the positions indicated. 

If these vibrations are added together, as shown in Diagram (3), 

the result will be vibrations (A + kB) and (cA + B) at the positions 

shown. 
If these vibrations are combined in certain proportions, so as to 

eliminate B, then (A + fcB) — k(cA B) = (1 — ck)A, which is 

proportional to WL. 
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Similarly, — c(A + &B) + (cA + B) = (1~ ck)B, which is propor¬ 

tional to WR. 

Referring next to Fig, 164, which illustrates the electrical equivalent 

of the mechanical arrangement shown in Fig. 163, Diagram (3), the 
pick-ups PL and PR are indicated at the two pedestals, and the electrioal 

circuit shown enables the generated voltages proportional to A (or WL) 

Wi 

0) 

Fig 163. Mechanical Analogue of Gtsholt Electrical Balancing 

Principle 

and B (or WR) to be obtained, thus giving measurements of the un¬ 

balance WL and WR in the two chosen correction planes. 

The electrical circuit setting can be determined experimentally by 

a rotor with a zero value of WL but with a definite value for WR; 

the adjustment needed to give zero voltage across the network output 

is the required one. A similar treatment of another electrical network 

switched across the same pick-ups gives an adjustment to indicate 

WL but to cancel out WR, so that voltages proportional to the un¬ 

balances in each of the two correction planes can be obtained by 
electrically measuring vibration at two arbitrary points along the 

axis of rotation if C and k are constant, and, further, if the vibrations 
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produced by each unbalance have either a 0° or 180° phase relationship. 

The Dynetic balancing machine is provided with the usual means 

for supporting and driving the test object and the electrical apparatus 

required to effect the measurements of voltage of the pick-up circuits, 

indicated previously. 
The Gisholt Type “S” Dynetic balancing machine for combined 

static and dynamic balancing is shown, schematically, in Fig. 165. 

WL Wr 

-C(A+kB) (2) 
<? 9 

r 
(l-ck) 8 ssMfc 

Fig. 164. Electrical Equivalent to Arrangement shown in 

Fig. 163 

The test object is represented as a cylinder carried on flexible supports 

at A and B. Attached to supports A and B are coils which are in the 

field of powerful permanent magnets. The vibration of the supports 

A and B due to unbalance causes voltages a2 and b2 to be generated 

in the coils. The voltages thus generated are proportional to the 

vibrations of supports A and B. 
Assume that the only unbalance in the workpiece is the unbalance 

W2. When the work is rotated, the unbalance W2 will cause a large 

motion of the support B and will cause to be generated a correspond¬ 

ingly large voltage b2 by the coil in the field of the permanent piagnet 

connected to support B. The lesser motion of the support A will 

cause a smaller voltage a2 to be generated at the left-hand coil. By 

means of the voltage divider K, a portion of b2 may be chosen which 



BALANCING MACHINES 215 

will be equ&l to az, but opposite in value so that the resultant voltage 
V will be zero due to unbalances of any magnitude in plane 2. 

An unbalance Wx in plane 1 will cause a large motion of support A 
and a correspondingly large voltage a2, and will cause a small nfotion 
of support B and a small voltage &2. Now, if the voltage a2 and a 
small part of the small voltage b2 be added, there will be a definite 

Fig, 165. Schematic Layout of Gisholt Type “S” Electrical 
Balancing Machine 

voltage V due to unbalance Wx with no effect from unbalance W2. 
This voltage V may be amplified as much as 1,600,000 times by means 
of transformers, radio valves, or other devices at M. This voltage, or 
any desired portion, is supplied to the amount meter which will indicate 
the amount of unbalance in the work. The portion of voltage selected 
will be determined by the practical correction method selected so 
that the meter reading will indicate the depth in in. for a given 
size of drill or the number of -gV in- °f length of J in. wire solder, etc. 

The angular location of the unbalance Wx is determined by means 
of a Stroboglow lamp L. This lamp is caused to flash for ten millionths 
of a second each time the voltage generated in the pick-up coils changes 
from* negative to positive. The flashing of the lamp at each revolution 
of the work-piece will cause one point on the periphery apparently to 
stand still. If numerals are placed on the work-piece, the numeral 
which apparently stands still in front of the lamp will indicate the 
angular location of the unbalance correction. 
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In another model of the Gisholt Dynetic balancing machine, namely 
Model “U,” which is used for heavier test objects such as turbine 
rotors, heavy armatures, aircraft and Diesel engines, crankshafts, 
blower and fan rotors, etc., a different method is employed for indi¬ 
cating the amount and angle of the unbalance. Referring to the 
schematic drawing given in Fig. 166, the general arrangement of the 

Fig. 166. The Gisholt Type “U” Dynetic Balancing Machine, 

(Schematic Diagram) 

supports and pick-ups is similar to that of Fig. 166. The voltage V 
due to the unbalance W, which can be amplified as desired, is used to 
supply the voltage coil of a wattmeter T. 

The current coil of the wattmeter is supplied by means of voltages 
generated in the coils of the sine wave generator R. The rotor of this 
generator consists of a permanent magnet driven at the same speed 
as shaft S. The angularly adjustable stator of the generator carries 
two coils spaced 90° apart. When the stator is angularly adjusted 
until the voltage in one of the coils is 90° out of phase with the amplified 
voltage V, the wattmeter T will read zero. Then the angular location 
of the stator will indicate angular position of the unbalance. 
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The other coil in the generator R is used to supply current to the 
wattmeter, and the wattmeter T will indicate on its scale the amount 

of unbalance in the work-piece. 
In regard to the performance of the Westinghouse-Gisholt balancing 

machine, it is claimed that the unbalance in test objects, such as 

Fig 167. The Gisholt Type ‘ U” Balancing Machine, showing 

Control Panel, Test Object (on right) anjj> Portable 

Electric Drill (below) 

armatures, can be located in about one-eighth of the time required 
for the mechanical type balancing machine It is also stated to be 
possible to precision balance armatures for 50 h.p. to 200 h.p motors 

torfroirff in- linear measurement. 

Notes on Crankshaft Balancing 
Usually, for production purposes, a special design of balancing 

machine is provided for crankshafts of a given design. The crankshafts 
are generally supported on two end bearings of the roller-assembly 

type and a simple drive coupling is employed. Typical machines for 
this purpose are the Avery rapid dynamic and the Olsen-Lundgren 
Type “S” machines. As mentioned previously in this Chapter, special 

cai^ is necessary when balancing relatively long crankshafts, namely, 

8—(T.5078) 
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those for certain six- and eight-cylinder in-line engines, to prevent 
any “whip” or deflection occurring between the supports, due to weight 

or unbalanced centrifugal force when rotating at moderate speeds. 

It is therefore necessary to eliminate any sag or “whip” by the pro¬ 

vision of an additional intermediate roller bearing support, namely, 

at the centre iournal bearing. The rollers require careful adjustment 

in regard to vertical height in order to ensure that the weight of the 
crankshaft is borne equally well by all three bearings; otherwise, 

when rotated it will tend to lift at the ends or at the centre. 

Another precaution necessary when mounting a crankshaft on its 
support rollers is that the rollers should be adjusted So that they clear 

all oil holes in the bearing surfaces of 

the crankshaft journals. Even run¬ 

ning too close to an oil hole may 
cause an error in unbalance readings, 

since the bearing surface immediately 

adjacent to an oil hole may not be a 

truly cylindrical surface due to the 

polishing operation over the hole. It 

is usual to correct the measured un¬ 

balance in automobile and similar 

types of crankshaft by drilling either iij the ends of the counter¬ 

weights or in the ends of the crank pins; and sometimes at both 

ends of the crankshaft. In designing crankshafts for production 

engines it is therefore important, in order to facilitate and expedite 

their balancing, to arrange for the necessary corrections to be made 

as nearly as possible in two particular planes normal to the axis of 

the shaft. With such correction planes it is possible to provide special 

charts showing the size and depth of drill to remove unbalance at a 

given radius. 
In many instances, the counterweights on the crankshaft are forged 

integrally with the cranks, each throw being individually counter¬ 

balanced in this manner. This tends to minimize local unbalance 

and reduces the time required for balancing the crankshaft. With 

mass-produced crankshafts it is now customary to drop forge these 

to a fair degree of balance so that for final balancing purposes only a 

small amount of metal has to be removed at each of the two correction 

planes. In this connexion it is found that with a suitable drilling 

correction chart only a single drilling operation is necessary to effect 

balance within the prescribed limits for the job. 
In regard to crankshafts having inclined surfaces on their webs, as 

shown in Fig. 168, it is not convenient—and often impossible—to drijl 

dither normal or longitudinally so that the correction hole must be 

made at an angle, as shown in Fig. 168. This design of crankshaft, 

COG BBC TtON 



BALANCING MACHINES 219 

therefore, requires a special drilling chart for correcting measured 
unbalance. 

When a crankshaft and its flywheel have been balanced separately, 

it will sometimes be found that on assembly the combination is not 

quite in correct dynamic balance. The most probable causes of this 

are: (1) Eccentricity of fit between the shaft and flywheel boss. 

(2) Additive balancing errors, bringing the total outside the prescribed 

limits for the assembly. (3) Effect of the key and keyway that may 

not have been taken into account on the balancing machines. 

In this connexion, whilst it may be quicker to balance the complete 

assembly, instead of the crankshaft and flywheel, separately, if there 
is any possibility of having to replace one or the other component 

Fig. 169. Balancing Four-throw Crankshafts 

alone after a period of service, it is better to have each part balanced, 
individually, so as to obviate re-balancing the assembly. 

When balancing four-throw crankshafts of the type represented by 

weights A, B, C, and D in the positions indicated in Fig. 169, using the 

electrical method of the Gisholm dynetic balancing machine (Fig. 165), 

it is possible to arrange the controls so that the unbalances, due to 

B, C, and D, when A is to be indicated, can be reduced to zero meter 

readings. For this purpose the effect of unbalance at D is eliminated 

by an electrical circuit network similar to that shown in Fig. 165. 

Further, the effects of B and C, which are in a common axial plane 

in a different angular position to that of A and D, are eliminated by 

setting a sine wave generator stator at such an angle that the readings 

for the weights at B and C are zero. Then the unbalance at A is the 

only one that causes a meter reading. Three similar arrangements 

must then be used for determining the unbalance at B, C, and D, 
respectively. 

In a special crankshaft balancing machine operating on this principle, 

two sine wave generators are provided, one for B and C, and the other 

for A and D; four electrical networks are also required. For metering 

purposes, special potentiometers are employed so that the meter 

readings can be brought down to zero when necessary. In operating 

this type of crankshaft balancing mechanism after the .crankshaft is 

mounted on its roller bearings the position A is first selected and its 

potentiometer adjusted so as to read zero. This procedure is then 
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repeated for B# C, and D, with the aid of their own potentiometers. 

The angular positions of these potentiometers are then an indication 

of the amounts of unbalance in each of the four determined positions. 

It is then possible to employ special “synchrotic ” electric motors 

to couple each of these metering potentiometer shafts to a stop on a 

special drilling machine, thus causing the latter to be set up auto- 

Fig. 170 The Gisholt T\pp “C 1 Dynltk Balancing Machhne, 

WITH At TOMOBTLE CRANKSHAFT TTNDFR TLST 

matically so that when the crankshaft is placed m it the correct 

amounts will be drilled from each of the four locations. 

Electric Type Crankshaft Balancing Machine 
Fig. 170 shows a special crankshaft balancing machine, known as 

the Gisholt Type “C” Dynetic machine, which enables corrections 

to be made at four places It is applicable to four-, six-, and eight- 

throw crankshafts in wdiich it is usually not possible to find two 

transverse planes where corrections can be made through 360°. In 

this connexion it may be pointed out that in all crankshafts it is 

possible to select two radial planes and in each of these planes there 

will be provided on each end of the shaft a permissible correction 

point. For example, in a six-cylinder crankshaft (Fig. 171), one radial 
plane could contain No. 1 and No. 6 crank pins (one on either end of the 

shaft) and correction could be made by drilling in these two pins. 

The second radial plane would contain No. 2 and No, 5 crank pins, 

which would permit drilling corrections. Therefore, there are actually 



F
ig
 

1
7

1
 

T
h

e
 
G

is
h

o
e
t 

T
a
p

e
 

‘C
 

D
y
n
e
tic

 
B

a
la

n
c
in

g
 
"
M

a
c
h

in
e
, 

s
h
o
e
in

g
 

a
 
S

ix
 th

r
o

w
 

L
r
a
n
k
s
h
a
f
t 

in
d

e
e
 
T

e
s
t 

T
h
e tim

e
 ta

k
e
n
 to

 co
m

p
lete h

 
balanc<

 
tu

irh
 v c

ra
n
k
sh

a
ft i« 

U
 o

u
t 1? m

m
 



222 AUTOMOBILE AND AIRCRAFT ENGINES 

four correction points in the six-cylinder crankshaft where corrections 

could be made, namely: in Nos. 1, 2, 5, and 6 pins. (No. 3 and No. 4 

crank pins are normally made light, making it certain that unbalance 

will fall in the other four pins.) Likewise, the two radial planes may 

be so selected that corrections can be made at four points in the 

counterweights or cheeks at each end of the shaft, if desired. 

The operating procedure, by which these four readings are obtained, 

is both simple and rapid. The crankshaft is placed in the balancing 

Fig. 172. Controls of Gisholt Crankshaft Balancing Machine 

machine in plain half-bearings which correspond to the regular bearing 
liners in the motor block. The coupling to drive the work is then 

connected and the machine is started by a push-button, which starts 

the work rotating. 

With the work rotating in the balancing machine, the four-position 

selector switch S at the left-hand side of the cabinet (Fig. 172) is moved 

to the first or A position, and the first knob, marked A', is turned clock¬ 

wise until the indicating needle of the meter reads zero. The four- 

position switch is then moved to the next, or B position, and knob on 

dial B' similarly adjusted; and the same procedure is repeated for C 

and D and C' and D', after which the machine is then stopped by the 

push button. The four knobs A', B', O', and D' have pointers and 

there are flat circular dials over which these pointers move. When 

the machine is stopped, the pointer A' will show a reading on this 

dial indicating exactly what depth of hole to drill in the first crank 
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pin A (No. 1 crank pin) and the other three pointers will likewise 

show the depth of correction hole required in each of the other crank 
pins (No. 2, No. 5, and No. 6 crank pins). 

The average operator requires approximately 20 seconds to take 
these four readings and mark the work for correction. 

If desired, the reading of dials A', B', C', D' may be transmitted to 

the individual spindles of a special four-spindle drilling machine so 

Fig. 173. The Olsen Horizontal Balancing Machine for Supercharger 

Impellers, Fans, Propellers, Etc. 

that the depth of each spindle may be set directly and automatically 

from the dial positions. That is, dial A' controls the depth of hole 

drilled by the spindle entering No. 1 pin, etc. This arrangement 

reduces the likelihood of errors due to the human element and permits 

one man to operate both the balancing and the drilling machines. 

Balancing Supercharger Impellers 

As the impellers or rotors of centrifugal compressors and also those 

of exhaust-turbines are of small width-to-diameter ratio and of more 

or less symmetrical design, their balancing is a comparatively simple 

procedure on a modern balancing machine, and, for paost purposes, 
only one correction plane need be considered. 

One difficulty that arises, however, is the effect of any air streams, 
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due to the high-speed of rotation of the impeller, upon the balancing 

machine’s indicating mechanism. If run at fairly low speeds the effect 

is generally unimportant. 
In balancing machines, such as the Olsen horizontal static-dynamic 

type (Fig. 173), giving their indications of unbalance by horizontal 

movement of the rotor, the effects of a horizontal air flow due to the 

rotor are the only ones to consider, and if the balancing machine is to be 

used chiefly for impellers it should be located so that there are no walls 

or other large obstructions near the ends of the machine. Further, the 

operator should stand well away from the impeller when the latter is 
being tested for dynamic balance. 

Many centrifugal impellers and also exhaust turbine rotors—both 

of which types have to operate at speeds of 15,000 to 25,000 r.p.m. 
and above—require very careful balancing. If possible, they should 

be balanced on their own spindles or shafts, instead of on special 

mandrels, since slight errors due to eccentricity of fit on their spindles 

can be balanced out on the machine; further, the unbalance of keys 

and key ways can also be corrected for. 

Impellers and other parts of relatively small width-to-diameter 

ratio may very conveniently be balanced on a machine of the Gisholt 

Type “E” static balancing type, shown in Fig. 174; this is made in 

several models for parts such as impellers, clutch plates, clutch assem¬ 

blies, flywheels, automobile road wheels, aircraft propellers, fans, and 

pulleys. The operation of the machine is as follows. 

The part to be balanced is mounted with its axis in a vertical position 

on an adapter carried on a spindle, which in turn is carried on a cradle 

hung from two vertical flat springs which act as pivots. The pivots 
allow the adapter to rock in one plane only. 

The heavy side of the piece throws the cradle out of level as indicated 

on the sensitive level C. This out-of-level condition is corrected by 

turning the dial D until the bubble in the level is central. The reading 
on the dial is then noted. (Fig. 175.) ♦ 

The vertical scale G on the “ cutmeter ” (Fig. 176) is then set so that 

this reading of the dial D is indicated on the horizontal scale H. 

The table, with the part being balanced, is then turned 90° about 

its axis as indicated by the graduations E on the table. With the 

part in this position, the bubble in the level is again brought to a 
central position by turning the dial D. 

The protractor scale K is then moved until the lower edge intersects 

on the vertical scale G, the number as shown on the second reading 

from the dial D. 

The table E with the work is then turned to the angular position 
indicated on the protractor M. 

With the table locked in this position the correction is made by 



Fig. 174 Gisholt Static Balancing Machines, shown Testing 
Balance of Impeller 



226 AUTOMOBILE AND AIRCRAFT ENGINES 

drilling according to the depth and number of holes shown on the flat 

portion of protractor scale K 

Fig 175 The Cradli, Pivots, Level and Tablf of the Gisholt 

Vertical Static Balancing Machinf 

Fig 176 Cutmeter of Cisholt Static Balancing Machine 

After the correction has been drilled in the piece, the work may be 
checked before it is removed from the machine. 

Dynamic Balance CheckingJVlachines 
The machines previously described have been concerned with the 

location and amount of dynamic unbalance, with the object of applying 
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corrections in two selected planes to enable the balance to be restored. 
In mass production balancing, it is not always convenient to re-mount 
the balanced test object in the balancing machine for checking pur¬ 
poses, after adding or removing weight, since the machine is usually 
employed exclusively for balancing purposes. When the errors of 
balance have been indicated the test object is removed, the corrections 
made, and the object is then checked on a simple dynamic balancing 
machine. This has a cradle supported on adjustable pivots which are 
set to the same correction planes as the test object. The latter is 
then rotated by a. #self-contained electric motor, first with one pivot 
locked and then the other, and the vibrations of the free pivot are 
observed with a vibration meter or other suitable means. If the 
amplitudes exceed the allowable limits for the particular test object, 
the latter is returned to the original balancing machine for further 
examination. Usually a satisfactorily balanced standard test object 
is first placed in the cradle of the checking machine and its vibrations 
observed. The mass-produced objects should then give vibration 

amplitudes within the prescribed tolerances. 



CHAPTER IX 

THE BALANCING OF ENGINES 

Any reciprocating type of engine has two possible main sources of un¬ 
balance, namely (1) the rotating masses, and (2) the reciprocating 
masses. 

The principles of balancing the rotating masses of an engine, e.g. 
the crankshaft and flywheel, have already been discussed, and it now 
remains to consider the balancing of the reciprocating masses of 
typical automobile and aircraft engines. In this connexion it may be 
mentioned that whilst it is usually possible to effect almost perfect 
balance in the case of the rotating parts, it is more difficult and some¬ 
times impossible, in practice, to balance the reciprocating masses of 
many types of engines. 

The engine components having a reciprocating motion include the 
piston unit and to a lesser extent the valves (poppet or sleeve). The 
connecting rod has a combination of a reciprocating and rotating or 
rocking motion, which will now be considered. 

The Connecting Rod 
The general motion of a petrol engine connecting rod may con¬ 

veniently be regarded as being due to a purely reciprocating movement 
at its small end and one of rotation, the same as that of the crank pin, 
at its big end. 

Considering the movement of the centre of gravity G of the con¬ 
necting rod in Fig. 177, this has a motion of translation together with 
one of angular oscillation about an axis through G and perpendicular 
to the connecting rod-crank plane. 

Of the forces necessary to produce these motions, that which is 
required to give the translation of the connecting rod mass at G is 
identical with that needed for two masses mp at P and mc at C such 
that their total metes must equal that of the connecting rod, say, 
mti9 and their two moments about G must be identical. 

Thus, 

and 

or 

mP + ™c = mo 

mv . PG = mrCG 

CG 

PG 

PG 

PC * 

228 

ma 

CG 

PC ’ 
mg 

and 
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Hence, the translatory movement of the connecting rod may be 

, 3 , . „ , CG 
regarded as being the same as a mass mv of magnitude -y times the 

connecting rod’s weight (where 1 — length of connecting rod); having 

the same motion as the piston; and a rotating mass mc of magnitude 
PG 
— times the connecting rod s weight at the crank pin, which can be 

balanced in the manner previously considered. The mass m,v is added 

to the mass of the piston and the whole is treated as a reciprocating 
mass. 

J'he angular oscillation of the connecting rod, and transverse couple, 

involves the acceleration of the rod in the angular sense, and it can 

be shown* that when the crank is at an angle 0 the angular acceleration 

is given by the following expression— 

ac -= — oj2(Cj sin 0 ( sin 30 \ C5 sin 50 b ■ . . .) 

where a> = angular velocity and Cx >c3, C6, etc., are constants. 

r 
If the ratio j of the crank to connecting rod be denoted by q, then 

this expression reduces to the following form, which although not a 

complete solution, is sufficiently accurate for all practical purposes— 

ac == — co2(q sin 0 — f^3 sin 30 b r¥s g'5 sin 50 etc.) 

The transverse couple causing this acceleration is obtained by substi¬ 

tuting the value of ac in the following well-known relation— 

Torque or couple — moment of inertia X angular acceleration 

l 
= - X QCr 

9 

where I — moment of inertia of the connecting rod about an axis 

through its centre of gravity parallel to the crankshaft^ and g — acceler- < 

ation due to gravity. 

♦ Balancing of Enginesf A. Sharp (Longmans, Green, Ltd.). 
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Alternative Method. For an exact solution of the motion of the rod, 

it is necessary to consider the whole of the separate motions to which 

it is subjected. 

The motion of the rod may be analysed as consisting of— 

(а) A translation of its C.G. with the velocity and acceleration of 

the piston at any instant — /. 

(б) An angular acceleration about P, the gudgeon pin (see Fig. 177) 

d26 
of where <p is the angle CPO. 

And (c) an angular velocity 
(dd> 
[ —, at any instant ) about P. 

It will be apparent that the rod will be under the influence of three 

separate forces acting as shown in Fig. 177, and consisting of— 

(1) A force Fx acting at the C.G. of rod, causing it to accelerate 

similar to the piston, the magnitude of this force being given by 

m f 
F, — - 9 , where ma — mass of rod 

9 

(2) A force F2 which acts through the centre of percussion, and 

which may be arrived at as follows : The angular acceleration 

of the rod about P may be considered as being due to a 

torque T such that 

I d2<j> 
T = —r-r, where I — moment of inertia of rod about P 

9 dt2 

mg d2d> 
= — k2 -j-g, where k is the radius of gyration of rod about P 

g at 

k2 
The distance of the centre of percussion from P is rr— (the 

X (jr 

same as the length of the simple equivalent pendulum). 

Hence the force F2 acting at L, the centre of percussion, is 

given by 

(3) 

F2 x PL 

whence F2 = 

9 

m, 

dt2 

— • PG • 
g dt8 

The other remaining force acting upon the rod consists of the 

centrifugal force towards P, and which is given by 
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The methods for obtaining the values of angular velocities and 

accelerations of the connecting rod in terms of the crank angle are 
given on page 229. 

Knowing now the magnitude, direction, and points of application 
of these forces acting upon the rod, the resultant force R may be 

obtained by the ordinary graphical (or analytical) methods. 

The resolute of the resultant force along the line of stroke will give 
the connecting rod inertia force at any instant in this direction. 

Also, by resolving R along the rod and perpendicular to it, the 

resultant thrust due to the inertia effect of the rod can be obtained, 

and the thrust due to the 'piston pressure must be corrected for this inertia 
effect, e&actly as the piston pressure was corrected for piston inertia. 

In obtaining the torque of the engine at any instant, the resultant 

of the piston thrust and inertia effect of the connecting rod resolved 
along itself is obtained, as indicated above, and multiplied by the 

perpendicular distance of the rod (or its prolongation) from the crank¬ 

shaft centre. 

The torque curves should therefore be corrected both for piston 

and connecting rod inertia, in order lo obtain accurate results, for 

these two latter effects become of great importance at high engine 

speeds. 
The weight of the rod itself should be taken into account by treating 

it as an additional force to Fx, F2, and F3 in finding the resultant force 

R, if greater accuracy is required, but in relation to these three forces 

it is generally negligible. 

Balancing the Reciprocating Parts 
In the case of the reciprocating parts, of which the piston assembly is 

a good example, the inertia forces to which the motion of these parts 

gives rise will, if unbalanced, occasion rocking and vibration in the 

engine framing and its supports. 

It has been shown that if in the case of the single-cylinder engine the 

obliquity of the connecting rod be neglected, then the periodical 

variation of velocity and direction of the moving parts give rise to 

inertia forces which are equal in magnitude, but opposite in direction, 

at the two ends of the piston stroke. If, however, the obliquity of the 

connecting rod be allowed for, then the inertia forces at the two ends 

of the stroke are unequal, and this factor/s of considerable importance 

in connexion with the balancing of the reciprocating parts. 

It will be shown later that the motion of the piston can be repre¬ 

sented by the displacement (or component along the line of stroke) 

of a number of simple harmonic motions, of different amplitudes and 

of different periods. 
The harmonics of the same period as the piston can be allowed for 
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and balanced, but the secondary, tertiary, and higher orders of har¬ 

monics either have to be arranged to balance themselves in different 

types of engine or left unbalanced. The secondary forces, due to the 

second harmonic of the piston’s motion, may, in some cases, be of 

appreciable importance. 

Ofteri the secondary forces in an engine are, by a suitable choice of 

crank positions, made to balance themselves, and the higher harmonics 

reduced to negligible proportions. 

The balance of a mass having a reciprocating motion can only be 

effected perfectly by the introduction of 

an equal and opposite reciprocating mass, 
in the proper phase and same line of 

motion as the original. 

An interesting method of balancing, 
approximately, the reciprocating forces due 

to the mass of the piston, and part of the 

connecting rod, is illustrated in Fig. 178, 

and is due to Lanchester.* Taking the 

example illustrated of a single cylinder 

engine, two flywheels of equal moments 

of inertia were provided with balance 

weights placed opposite to the cranks on 

each flywheel, and were geared together 

so as to rotate in opposite directions, as 

indicated by the arrows. 

It will be seen that the C.G. of the two 
balance weights has a simple harmonic 

motion along the centre line of stroke of 
the piston, but opposite in direction. 

Thus the primary reciprocating forces can be balanced by this means. 

A perfectly balanced engine is obtained by having the cylinders 
upon opposite sides of the crankshafts, as shown in Fig. 179, which 

represents the arrangement of the old Lanchester type of engine of 

1896 to 1903. 

Fig. 178. Method of Bal¬ 
ancing Single-cylinder 

Engine 

The two opposed cylinders were arranged symmetrically upon 

opposite sides of the crank axes, and the connecting rods formed a 

symmetrical parallelogram system in all positions. The balance weights 

A and B were made to balance the rotating portions of the cranks, 

and also the reciprocating parts of the engine. It will be noticed that 

the whole system of pistons and connecting rods is symmetrical about 

the point C along the line of strokes, and that the motion of this 
system is strictly simple harmonic, and can be balanced by oppositely 

rotating weights on the crankshaft at A and B. 

♦ Vide “Engine Balancing,” F. W. Lanchester, Proc. 1914. 
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The higher harmonics balance themselves, provided that they 
all lie in the same plane, and therefore do not introduce rocking 

couples. In this particular type of engine this was actually the case, 

for, as Lanchester remarks, “the engine was not troubled with any 

rocking moment owing to the fact that the whole of its reciprocating 

parts had ‘looking-glass symmetry’ about the transverse vertical 
plane/’ 

Approximate Method for Balancing Problems 

The following method, wdiich may be employed for most practical 
balancing problems, takes account of the primary and secondary 

Fie, 179 Lanchester s Earl\ Two -1 ylinder Engine 

harmonics only, and is based upon a close approximation being used 

in place of the expression for the piston’s acceleration corresponding 

to that given upon page 17, namely— 

cos 0 -f 
rl2 cos 20 4 r3 sin4 0 

(l2 r2 sin2 0)^ 

The position of the piston in its stroke is given by— 

r(l — cos 0) 1 l l 

or putting n — , 

x — r(] - COS 6) \ nr (1 — V1 

If now, as an approximation, to the quantity under the surd sign, 

sin4 0 . , p , 
there be added the term - r> it becomes a perfect square. 
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/ sin2 0 sin4 0 sin2 0 

Thus V 1 ~ n2~ + = 1 ” ~2vF 

The term added is of the second order, and is therefore very small in 
value, so that no appreciable error is introduced. 

Then the expression for the piston’s position becomes— 

( sin2 6) 
x ~ r( 1 — cos 0) + nr {l - 1 |- 1 . . (a) 

r I1 — cos 0 + 

The piston velocity V 
dx r 

p ~ ~dt T [_S1 

dO sin 0 cos 0 d0~ 

sin9~dt 

For — may be written the angular velocity, namely ^ radians per 

sec., where N is the crankshaft revs, per min., which are assumed to 
be constant. 

Hence 

The piston acceleration Av 

sin 20 

~2*r 

dV j» 7rNr 

dt 30 
cos 0 + 

cos 201 dO 

The inertia force at any angle 0 is then given by- 

M /ttN\2 

9 A 30 
cos 0 + 

These approximate expressions for the position, velocity, accelera¬ 
tion, and inertia of the piston or reciprocating parts .may be used in 
place of the exact expressions given later. 

The Single-cylinder Engine 
The expression (e) given above can be directly applied to the case 

of a single cylinder engine, and may be regarded as being made up 
of two parts, namely— * 

M/77N\2 

\ 30/ • 
r cos 0, and 

M/2ttN\2 r 

9\ 30 ) 'n' 
cos 20 

The former reciprocating force is the primary force, which follows a 
complete cosine * curve of variation per engine revolution. 

* That is, a sine curve displaced ^ in phase. 
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The latter reciprocating force is a secondary or octave force, 
which has a cosine* curve of variation of twice the frequency of 
the primary; the maximum values and the variations of the 
secondary forces are smaller than in the case of the primary forces, 
however. 

Fig. 180 shows the relative phases and magnitudes of these forces 
for one complete revolution of the crankshaft. 

Fig. 180. Harmonic Curves for Single-cylinder Engine 

Consider the cftse of an engine of 4-in. bore by 5-in. stroke with a 
connecting rod-to-crank ratio of 4. The piston and reciprocating parts 

are assumed to weigh 4*5 lb. 
For an engine speed of 2000 r.p.m., the maximum value of the 

primary force will be given when 0 = 0, so that cos 0 — 1. 

4*5 / 7T . 2000\2 5 „ 
Its value will then be: lb. 

' That is, a sine curve displaced - in phase. 

that is, 1285 lb. 
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The maximum value of the secondary force is given by— 

1 1285 
- x primary force — — 321*2 lb. 

Expressed in terms of piston area, the above values are as follows— 

Maximum primary force — 102*2 lb. per sq. in. 

„ secondary force — 25*6 ,, ,, 

These forces, in the ordinary way, are unbalanced ones and give rise 
to vibrations. As will be shown later, the primary force may be 
partially balanced, but it is not usually practicable to balance the 
secondary force; in any case, the latter is comparatively small in 
value. 

The Four-cylinder Vertical Engine 
The approximate method previously outlined affords a convenient 

one for examining the balance of the ordinary four-cylinder vertical 
engine, similar to that shown in Fig. 205. 

Here the two outside pistons work in the same plane, the cranks 
being in the same positions, whilst the two inner pistons move oppo¬ 

sitely to the outer ones; tlie centre lines of the two sets of pistons 

coincide. 
Considering the inertia forces due to the two outer piston assemblies, 

then, using the same notation as before— 

Total reciprocating force duel __ ^ f”M /77N\2 ^ j cos 201 "1 

to outer pistons, etc. j ‘ [_ g \ 30 / V ' \C0S ' n j J 

For the two inner pistons, the crank angle becomes 0 -)- 180°, so 
that— 

Total reciprocating 
force due to inner ~ 
pistons, etc. 

2M / 7tN\2 r „ cos 2(180° + 0)1 
(so) *1C08(,8° +0) +- 

2M /7tN\2 r . cos 261 7(i«)'r"‘+T J 
Since the plane of the forces is the same, they may be added, alge¬ 

braically ; the resultant force acting vertically can be written as— 

Fk 
M 42wN\*r cos 2d 

4 - g l 30 ) 4n 

This result shows that the primary forces are balanced, but that 
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there is an unbalanced secondary force of the above magnitude of 
frequency equal to twice the engine speed 

The same result might have been obtained from the inertia diagrams 

for the four cylinders by algebraically adding the ordinates at corre¬ 
sponding crank angles. The resultant diagram obtained would be a 

curve similar to that shown in Fig. 180 by dotted k, cos 20 line ; it will 

be seen that it has twice the frequency of the primary forces (i.e. the 
engine speed). 

The maximum values of the unbalanced secondary forces occur 

when cos 20 - -4 1 or - l, that is, at 0°, 90°, 180°, 270°, 360°, etc , 
and the values are given by— 

_M r(2nm* 

™a* ' ng V 30 / 

For a four-cylinder engine having cylinders of the same dimensions 

as the single-cylinder engine example considered on page 235, the 

maximum total unbalanced secondary force w ill be 1285 lb , or 102*2 lb 

per sq. in. of single piston area. 

The Six-cylinder Vertical Type Engine 
The cranks in this engine are arranged at 120° to each other, with 

the two centre cranks in the same plane, as shown in Fig 211. 

Considering the three pairs of cranks in the same plane, these 

reciprocating masses of cylinders (Nos 1 and 6) can be regarded as 

being on a single crank, whilst those of Nos 2 and 5, and of 3 and 4 

respectively, are also on single cranks 

Employing the same notation as before, the primary forces for the 

three pairs are given by— 

Fj = 2k . r cos 0 

F2 - 2kr cos (0 + 120°) 

F3 - 2kr cos (0 + 240°) 

Now cos (0 + 120°) — cos 0 . cos 120° — sin 0 sin 120° 

V3 
= — £ cos 0 -+ ~2~ sin 0 

And cos (0 f 240°) -=■ cos 0 . cos 240° — sin 0 sin 240° 

= — \ cos 0 + sin 0 

The primary forces may be added, since the cylinders are all in 

the same line. 
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Hence Fj 4 F2 + F3 = 2kr £coe 0 - ^ cob 0 + ~ sin 0 - ^ 

V3 
cos 6-- sin 6 

so that the primary forces are in perfect balance. 

The secondary forces are given by— 

2 kr 
f =r - . COS 20 

- n 

fi = cos 2(0-| ]20°) 

2/cr 
h - — cos 2(0 H 240°) 

These may be added in the same way as before and, if this is done, 
the result will be found to be zero, so that the secondary forces are 

also in perfect balance. 
It can be readily shown that the twelve-cylinder Vee-type engine 

is also in perfect balance, for the primary and secondary forces, since 
it consists of two systems of six-cylinder engines. 

The Eight-cylinder V-type Engine 
One common eight-cylinder arrangement consists of two sets of 

ordinary four-cylinder engines placed at right angles to each other, 
with a common crankshaft. As in the case of the four-cylinder engine, 

the primary reciprocating forces balance themselves in each four- 
cylinder set. 

Using the same notation as before, and the arrangement shown in 
Fig. 213, there is then left an unbalanced secondary force of amount* 
equal to— 

_ cos 26 
Ak .r .- 

n 

where k acting in the plane of the left-hand cylinder 
M/rffy 
g\ 30/ 

block, and for the right-hand cylinder block there is an unbalanced 
secondary force of the following value, namely— 

4k . r cos 2(0 + 90°) = — 4k . r cos 20 

* This force always acts in the plane of reciprocation, i.e. the plane of the 
cylinder block considered. 
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These two unbalanced forces do not act along the same line; the 
left-hand force acts downwards along the line of the cylinder axis, 
whilst the right-hand force acts upwards along the line of its cylinder 
axis. The two forces are, therefore, mutually at right angles, and by 
the parallelogram of forces are equivalent to a single resultant of 
amount equal to— 

cos 201 
! 4kr . — 

L * J 
. cos 45° 

4V2kr . cos 20 5-656&r . cos 26 

v n 

which acts in a horizontal plane (i.e. at 45° to the cylinder block axial 
planes), and has a frequency equal to twice engine speed. Its maximum 

value is 1-414 times the unbalanced secondary force of a four-cylinder 

engine of the same dimensions. 

The General Case of Engine Balance 
It is proposed to consider the general case for the motion of the 

piston in the case of the single-cylinder engine, and for this purpose 
both analytical and graphical methods will be employed. The results 

of a detailed study of the above primary example will then be used 

in considering the balance of types of engine. 
It will be necessary to consider the expressions for the displacement, 

velocity, and acceleration of the piston somewhat more fully than in 
the earlier portion of this chapter. Let OC be the crank arm of length 

r, PC the connecting rod of length l (Fig. 181). 

r 1 
Assume - = m = . 

I n 
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Let x =~ ON — piston displacement from equivalent stroke centre O. 

Then ON — OP — PN 

- OM + MP - PN 

where PN -- PC - L 

— r sin 0 + l cos </> — / 

But 

and 

Hence 

sin cf> r 
= - = m 

cos 6 l 

cos <f) — Vl — rti2 cos2 0 

or x =r- r sin 0 ] l 

-- r (sin 0 

x r sin 0 + ZV1 — tw2 cos2 0 - Z 

- w2 cos2 0~-m* cos4 0 — — m6 cos6 0 — etc. 
2 S 16 

m cos2 0 — “ m3 cos4 0 — — rw5 cos6 0 — 
5 

128 v 2 8 10 

w7 cos8 0 — etc. 

Now, for any index 

2n _1 cos?i 0*— cos wfl -f n cos (n — 2)0 -f 
J. . 2 

cos (n - 4)0 f etc. 

And substituting in the general expression definite values for n 

cos2 0 — - (cos 20 4 1) 

cos4 0 = - (cos 40 + 4 cos 20 + 3) 
8 

cos6 0 - — (cos 60 + 6 cos 40 + 15 cos 20 + 10) 
o2 

cos8 0 — etc. 

Hence, we may express the displacement of the piston by a “ Fourier 
Series, ”by substituting the multiple angle cosine terms for the powers 
of the cosine terms obtained. 

The most convenient method is to write the displacement as 

x — r{sin 0 — (k + p2 cos 20 + p4 cos 40 + p6 cos 60 + etc.)} 

* When n is even, the last term is 
n(n- I)(n- 2).(in + 1) 

that this^s one-half the apparent value given above. 
2 fi» 

note 
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Then the values of the constants are obtained by substituting for 
the cosine power terms, and are— 

™ |- — m3 + OK_ m6 
64 

1 

256 

15 
P2 - a™ + J^™3 + *iom5 + 

175 

(121 )2 

35 

Pi 

P* 

P 8 

16 

1 

64 

0 - 3 B 35 , 
™' + “f KAO™" 256 

1 

512 
m5 -f 

642 

25 

2048 

6 

(128)2 

m' 

rrv 

Pio ■=■ etc. 

In order to afford some idea as to the values of these constants for 
certain cases occurring in practice the following table has been pre¬ 
pared— 

TABLE X 

Table of Fourier Constants 

Crank -— ffi 
Connecting Rod 

I i 

5 1 
i 

H 

1 

5 

k. 00632 0 0561 0 0504 
Pi. 00635 0 0563 0 0505 
Pi. 0-000261 0 000177 0-000140 
P« 0-00000205 0 00000112 0-0000065 
Ps • 0 00000000 — — 

It will be found that the analysis of the piston displacement gives 
very accurate results if taken to four terms only, as the higher harmonics 
die away very rapidly after the fourth term. 

Hence we can express the piston’s displacement as 

x — r j& + sin 0 + p2 sin ^20 — + p4 sin ^40 — ^ + ete.j 

It will be noticed that after the first term only the even harmonics 

are present. 
From the above expression it will be seen that the displacement of 
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the piston may be regarded as being due to the component displace¬ 
ments upon the line of stroke of— 

(а) a constant displacement rk 
(б) a crank of radius r, moving at crank velocity 

(c) a crank of radius rp2, moving at twice crank velocity and out 
of phase by 90° 

(d) a crank of radius rp4, moving at four times crank velocity and 
out of phase by 90° 

and so on. 
The total displacement x may be expressed by means of a number 

of sine curves of different amplitudes and periods, somewhat as illus¬ 

trated in Fig. 183; here the dotted line shows the resultant piston 
displacement curve. 



THE BALANCING OF ENGINES 243 

Piston Acceleration 
By differentiating the expression for the piston displacement twice, 

with respect to the time, we obtain the acceleration ; thus we have— 

— =_ aflr jsin (6 + 77) + 4p2 sin (^20 4 ^ 16p4 sin ^40 ( 

4 36p6 sin ^60 } ^ -| . . .j 

The harmonics here become of greater importance as they are 

magnified, 4, 16, 36, etc., times respectively, and these harmonics 

become important in engine balancing problems, since the inertia 

forces are proportional to the above acceleration. 

Corresponding to the table previously given, a similar one has been 

prepared for the values of the acceleration amplitudes. 

TABLE XI 

Table of Accelehatiom Amplitudes 

Connecting Rod 

Crank 
3* 

: 

i 

4 41 5 

I 

4 />«•••• 
16p« • 
36p, • 

0-2918 
0-0062 
0-0001 

0-254 
0-0041 
0-000074 

0-225 
0-0028 j 
0-000040 

0-202 
0-0021 
0 000023 

The results of the preceding investigation can now be applied to 

obtain the piston acceleration effect, in which the obliquity of the 

connecting rod is taken into account. 

The acceleration may be considered to be due to the displacement 

of— 

(а) a crank of radius co2r, rotating at crank velocity, and out of 

phase by 4- w 

(б) a crank of radius 4to2rp2) rotating at twice crank velocity, and 
77 

out of phase by 4- - 

(c) a crank of radius 16co2rp4, rotating at four times crank velocity, 
77 

and out of phase by + ^ 

(d) a crank of radius 36a>Vp6, rotating at six times crank velocity, 
77 

and out of phase by + -= 

etc. 
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This is represented graphically (Fig. 184) by a vector 01, propor¬ 
tional in magnitude to a>2r and 180° in advance of the main crank, 

Fio. 184 Fig. 185 

and vectors 02, 04, 06, etc., proportional to 4oj2rp2, 16&>Vp4, 3^co2rp^ 
etc., respectively, and rotating at twice, four, six, etc., times the 

crank velocity. 
For any position 0 of the main crank, 

the first, second, third, etc., vectors go 
through angles 0, 20, 40, etc., respec¬ 
tively (Fig. 185), and the resultant 
acceleration may be determined graphi¬ 

cally by finding the displacement ON 
due to separate displacements, that is, 

by algebraically summing the respective 
ordinates or projections upon the base 
line (Fig. 186). 

Applications to Balancing 
Problems 

The expression for the acceleration 

force in the case of a single-cylinder 
Fig. 186 engine is— 

F = M(x)2r sin (0 + tt) +• 4/^ sin + 16p4sin 

+ 36p6 sin 

where M = mass of reciprocating parts. 
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connecting rod 
If the-——k-ratio be denoted by n, then by substituting 

JL __ i_ 1 
Pi ~ 4n’ pi ' 64w3’ “ 512W1’ etC' 

we have 

F- M«>*rjsin(0 + w) 1 4 ^ . sin ^20 4 + 16 • ^ sin(40 + 

+36-5iL3Sin(604 2)4 etc] 
„ M 

The first harmonic may be represented by a mass of — at the 

crank radius r rotating vith velocity 2o> for the accelerating force 
M Mo)V 

■=■ — (2co)2r — . Similarly, for the second harmonic we have 
4 n n 

M 
an equivalent mass at crank radius, and so on. 

Single-cylinder Engine 
In the case of the single-cylinder, in so far as the crank and crank 

pin are concerned, these may be balanced by means of suitable counter¬ 

balance weights upon the opposite side of the shaft. 

In the balancing of the connecting rod as before stated, it is usual to 

consider the big end of the rod as a rotating part, and to balance it 

by an additional counterbalance weight; the small end of the rod is 

treated as a reciprocating part, and a corresponding addition is made to 

the weight of the piston and its component parts.* 

For a single cylinder, the balance of the reciprocating parts in 

respect to the initial simple harmonic component is usually effected 

by introducing a counterbalance weight equivalent to a portion of 

this mass, not to the whole of the reciprocating mass. 

This is an important point, for if a rotating balance weight equal 

to that of the reciprocating parts be employed to effect a balance for 

"the latter, then resultant unbalanced forces will be introduced having 

a reciprocation at right angles to the line of stroke, and equal in 

magnitude to the original unbalanced forces. 

This will be evident from Fig. 187, from which it will be seen that 

whilst the resolute along the line of stroke balances the initial harmonic 

movement of the reciprocating parts, yet the perpendicular resolute 

is unbalanced. 
In some cases, the construction of the engine is such that it is better 

* See p. 228. 
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able to resist vibration forces in the direction perpendicular to the 

line of stroke ; but, generally speaking, a compromise has to be adopted 

between wholly balancing the reciprocating parts by an equal rotating 

Ftg 187 Fig. 188 

mass on the opposite side of the crankshaft and not balancing them 

at all. 
The usual compromise is to balance half of the reciprocating weight 

by a rotating counterbalance weight, in which case the unbalanced 

force is that due to a mass equal to the added balance weight rotating 

in the direction opposite to the engine’s motion. 

A proof of this statement may be obtained by assuming the primary 

harmonic motion as equivalent to two masses 

of half the reciprocating weight revolving at 

crankshaft velocity, one in the direction of, 

and the other in a reverse direction to, the 

main crank, as illustrated in Fig. 188. 

The mass moving in the direction of the 

main crank can be balanced by an equal and 

opposite counterbalance weight, and we are 

left with an unbalanced effect due to tha 

mass rotating in a reverse direction. 

The degree of compromise in attempting 

to obtain the balance of the reciprocating 

Fig. 189. The Gobhon- masse.s is entirely a question of the con- 
Briule Engine ditions of mounting, usage, etc., of the 

engine. 
An interesting arrangement for balancing the reciprocating forces 

in a single-cylinder engine is that of the Gobron-Brille, once used in 

both car and aircraft engines (Fig. 189). There are twb pistons 

Eillli 
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A and B working in the same cylinder, but in opposite directions, the 

compression and combustion space being between the two. The top 

piston is arranged to work by means of an overhead crosspiece and 

long side connecting rods, on to a pair of cranks symmetrically disposed 

in relation with and at 180° to the main crank. 

This is an example of balancing a reciprocating mass by a similar 

one, moving in an opposite direction. 

The engine, necessarily, occupies a greater vertical height than 

Fig. 190. Earlier Fig. 191. Later Model Junker’s 

Type of Junker’s Engine with Balanced Piston and 

Engine Rod Motions* 

normal types, but otherwise it possesses advantages over other types, 

in the matter of balance. 
In the case of the Junkers opposed-piston Diesel engines, the recipro¬ 

cating forces on the pistons are in balance, but certain unbalanced 

forces due to the coupling rods between the crosshead used in the 
earlier design of engine (Fig. 190) and the crankshaft were introduced. 

In a later design there are two identical crankshafts, one above and the* 

other below, as shown diagrammatically in Fig. 191. Thus, the two 

pistons A and B, when in their nearest positions, were separated by 

a compression space forming the combustion chamber. Each piston 

was connected to its crankshaft at C and D by its own connecting rod 
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Y. The upper crankshaft ECF was connected by long connecting rods 

X to the lower crankshaft GDH, so that both crankshafts rotated at 

the same speed and in the same direction. 

In another alternative arrangement (Fig. 192), the upper and lower 

crankshafts are connected by helical gears, and the second gear 

from the top of the engine drives the propeller. It is thus possible to 

Fig. 192. Geared Drive Model Junker’s Aircraft Engine 

obtain proper dynamic balance of the engine, with its single cylinder 

double piston units. 
Other variations of the two-piston single-cylinder type engine have 

been made in the past, the main object in each case being to balance 

the inertia forces of the two pistons, by arranging for these to move 

symmetrically in opposite directions at all times. 

Two-cylinder Engine, Cranks at 180° 
The line diagram shown in Fig. 193 illustrates the arrangement of 

this type. 
Dealing with the fundamental motion effect first, there will be 

jseen to be two forces of magnitude Mco2r acting in the directions (1) 

M<n2r . b 
shown. These constitute a disturbing couple of magnitude -, 

*f 
with its axis at C, the direction of the latter being normal to the 

crankshaft axis. 
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There will, therefore, be no resultant vertical force, but a resultant 
couple tending to act about an axis perpendicular to the line of stroke 
and centre of crank axis, the magnitude of the couple at any instant 

about this axis being the resolved part of the main rotating couple 
in this direction. 

The maximum value of the resolved couple T 

Fig. 193. The Two-cyeindek Engine (Ckanks at 180°) 

The axis of this couple is always perpendicular to the plane of the 

cylinders. 

Effect of the Harmonics 

The octave harmonic effect is illustrated in the same diagram in 

Fig. 193. 
M 

This harmonic is such that the mass — at equivalent crank radius 

for the two cranks will have moved through twice the crank angle 
(being of double the fundamental period) and will thus be as shown at 

(2), (4) in the diagram, in their relative positions. 
7T 

These harmonics lag by — behind the fundamental, which for con¬ 

venience is taken in phase with the main cranks. 
The net effect of the octave components is equivalent to two forces 

McoV 
—— acting at right angles to the respective cranks in the same 

direction, and revolving at twice crankshaft speed, giving rise to a 

hammering action of twice the fundamental frequency. 
Similarly, the effect of the next, or 40 component, can be studied 

and will be seen to be equivalent to two forces at right angles to the 

q—(I.*078) 
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respective cranks, in the same direction, and revolving at four times 

engine speed. These harmonics also give rise to a hammering action, 

but of four times the fundamental frequency. 

Two-cylinder Engine, Cranks at 90° 
In this type of engine, which is illustrated diagrammatically in 

Fig. 194, the fundamental component of the pistons’ motion is repre- 

Ma>2r ...... . 
sen ted by forces-acting in the directions shown. 

Fig. 194. The Two-cylinder Vertical Engine 

(Cranks at 90°) 

If a point C midway between the centre lines of engine cylinders 

be chosen, the force at A may be replaced by an equal force at C, 

i Mco2r b 
and a couple of transference- . -. 

9 2 
Similarly for the replacement of the force acting at B. 

Then we have two equal couples, whose axes are represented in 

' McoV b 
direction by the barred lines, of magnitudes —~~ and two forces 

of magnitude Mco2r acting parallel to the original forces upon the 

cranks at A and B. 

MouV.6\/2 
The two couples may be replaced by a couple of magnitude-—- 
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acting at 45° with the crank arms whose axis is also perpendicular 

to the resultant force---— of the two separate forces actmg at C. 

The resultant force due to the combined inertia effects of the two 

pistons, and their parts, will be the resolute of the above force in the 

directions of the cylinder axes and will be a maximum when the 

cranks are symmetrical with the plane of the lines of stroke, and its 

i , Mft)VV2 
value will then be ---. At any other moment its value is 

Ma>2r\/2 cos (6 — 45°) 

g 
, where 6 is the angle made by the leading crank 

with line of stroke. 

Similarly, the resolved part of the resultant couple in a plane per¬ 

pendicular to the resultant force will give the resultant inertia couple 

effect due to the unbalanced reciprocating parts. 

The unbalanced force gives rise to vertical vibrations of a frequency 
equal to the piston’s frequency, whilst the unbalanced couple effect 

will tend to rock the engine about a horizontal axis, from side to side, 

the frequency of the angular oscillation being the same as that of 

the piston. 

M afirbV 2 
The maximum value of the unbalanced couple is -—-, and 

occurs wrhen the resolved part of the resultant force in the cylinder 

axes direction is a minimum, or when the leading crank has gone 

through 135° from its inner dead centre. 

The Harmonics 

The position of the second, fourth, and sixth harmonics is shown in 

the lower part of the figure, from which it will be seen that the octave 

or secondary harmonics are equivalent to a couple of magnitude 

M co2rb 
——— rotating at twice engine speed, the resolved part of which in 

the plane perpendicular to cylinder axes will represent the resultant 

effect. 

This couple sometimes enhances and sometimes detracts from the 

effect of the primary couple. 

Thus these two couples may be compounded into a single resultant 

couple rotating at engine speed, the resolute of which in the per¬ 

pendicular plane to cylinder axes will give the resultant oouple 

effect, i * 

A good exercise for the student would be to find the resultant couple 

due to the primary and octave harmonics,.and to plot the magnitude 
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of this resultant as a radius vector, the vectorial angle representing 

the direction of the axis of couple (not the crank angle). 

The fourth harmonics give rise to a hammering action of four times 

Ma>V 
the fundamental frequency, and of maximum magnitude The 

sixth harmonics will give rise to a couple rotating at six times crank- 

shaft speed, and of maximum value ^ which will sometimes 

7 2 

rzfit- Crank Pm 

nS 
Crankshaft 

~T Eccentric 

Guide Pin 
p7 'Trunnion 

Fig. 196. Method of Balancing 

Reciprocating Forces in Single- 

or Two-cylinder Engine 

oppose and sometimes enhance the resultant of the primary and octave 

couples. 

The octave couple may become very appreciable for small connecting 

rod crank ratios; this is a point that is occasionally overlooked. 

M wzr . b 
Thus, for n — 4, its maximum value is —-, whilst that of the 

M orrfj 4rj 
primary is so that the octave effect is about half that of the 

fundamental couple. 

A Method of Balancing a Two-cylinder Vertical Engine 
The two-cylinder vertical engine, with a single crank upon which 

both connecting rods operate, so that the pistons move up aiid down 

together (Fig. 195), possesses the advantage over a single-cylinder 

engine of equal capacity of giving twice the number of firing strokes, 

and these occur at equal intervals, so that the value of the maximum 

torque is reduced and a smoother performance results. The engine 
balance, however, is no better than that of the single-cylinder engine. 

In order to overcome this drawback a method of balancing the 

reciprocating forces, used by H. Ricardo on a petrol engine, was to 
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provide on either side of the crank webs an eccentric secured to the 

crankshaft with its “throw” arranged in the opposite direction from 

that of the crank, as depicted in Fig. 196. The eccentrics engaged with 

weights of suitable magnitude, so that as the main crank moved down, 
these two weights moved up, and vice versa. Thus, the reciprocating 

force due to the piston could be balanced by the pair of weights at 

all times. In order to allow for the sideways tilting of the balance 
weights as they were driven by their eccentrics an internal rocking 

Fio. 107. The Two-cylinder 00° Engine 

trunnion working on a pin fixed to the crankcase was provided in 

each case. In this arrangement the ratio of the length of the link of 

the balance weight to its vertical movement is equal to the connecting 

rod to crank ratio. 

Two-cylinder V Engine, Axes at 90° 
In this arrangement the two pistons drive one crank, as shown in 

Fig. 197. 

The relation of the inertia forces in this type can best be studied 

by the principle of reverse cranks, in which a simple harmonic recipro¬ 

cating motion can be represented by two equal rotating masses, of 
one-half the reciprocating weight, rotating in opposite directions as 

indicated in Fig. 197. The C.G. of these weights oscillates with a S.H.M. 

along the line of piston stroke and in the same phase as the piston, 

and exactly represents the piston's motion and inertia forces, for the 
fundamental harmonic. 

For the secondary or octave components, the equivalent masses at 

crank radii will rotate (in proper phase relative to the fundamental 
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harmonic) at twice crankshaft speed, and so on for the higher 

harmonics. 
Referring to Fig, 197, it will be evident that the primary reciprocating 

M ’ M 
motion may be represented by a mass -- at A and one ~ at B for 

Z z 

each cylinder, revolving in opposite directions. Now the two masses 

M M 
2* at AAj balance, whilst the two masses — may be regarded as a 

total mass M always at the crank pin B. 

This may be balanced by a mass M' at a radius R' upon the opposite 
side of the crankshaft, such that 

M'R' = MR 

The Secondary Harmonics 

A little consideration will show that when the crank is in the direc¬ 

tion OC, the direct and reverse cranks for cylinder 1 will be at C, 

whilst those for cylinder 2, having rotated through twice the crank 

angle, will both be at D', and hence the octave forces will not be in 

balance, in fact the C.G. of the two secondary forces oscillates in a 

S.H.M. along AA\ This can be easily understood if the positions of 
the direct and reverse cranks be taken for several main crank angles. 

The effect of these unbalanced octaves is to give to the engine a 

horizontal vibration of twice the frequency of the main harmonic. 

The maximum value of the imbalanced secondary force will be the 
M 

resultant of the two separate maximum forces . co2R each at 90° 
ng 

M n 
to the other, that is, a resultant maximum force of — co2R . V 2 acting 

along AA\ 

Two-cylinder 180° Opposed Type 
This type of engine, which is illustrated in Fig 198, has the cylinders 

placed upon opposite sides of the crankshaft, and the cranks are at 

180° with each other The firing strokes are evenly spaced, thus 

yielding a torque of regular character. 

By arranging the cylinders so that the two lines of stroke coincide, 

which can be accomplished in practice by employing a pair of con¬ 
necting rods for one cylinder symmetrically placed upon either side 

of the other, then the fundamental and octave motions, etc., of the 

two cylinders balance each other, and no rocking moments occur. 

The balance is, in fact, as nearly perfect as it is possible to get in 
any type of engine. The only unbalanced factors that occur are those 

due to the variation in torque owing to piston inertia and to the 

explosion impulses. With,this type of engine, owing to its excellent 
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balance, petrol-engine speedi of over 8000 r.p.m. have been attained at 

the time of writing, although the actual working speeds are appreciably 
lower. 

It is often impossible to arrange the cylinders co-axially for manu¬ 

facturing reasons, so that the axis of each cylinder is situated opposite 

to its own crank, the two axles being out of line, as shown in Fig. 199. 

Fig. 199. The 180° Two-cylinder Opposed Engine, Offset Type 

* 

In this case there will exist rocking couples of moment equal to 

McoV . b 
the primary force multiplied by the axial separation, i.e. —- 

Q 
and similarly for the secondary and higher harmonics. 

Four-cylinder Opposed Engine 
In this favoured arrangement for aircraft engines used on light 

planes, perfect balance of the primary inertia forces can be obtained 
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by the use of a four-throw crankshaft, as shown in Fig. 200. In this 

manner the out-of-balance rocking couple (Fig. 199) is exactly balanced 
by that due to the other pair of opposed cylinders. The secondary 
inertia forces can be shown to be in balance, but there is an unbalanced 

secondary couple.* 
Other arrangements of opposed cylinder engines with four, eight, 

Fig. 200 Fig. 201. The Three-cylinder Radial 

Engine 

in the case of low-powered aeroplane engines, such as the 35 h.p. 
Anzani Y-type. 

The principle of reverse cranks here provides a simple means of 
examining the engine balance. 

Referring to the diagram given in Fig. 201, it will be seen that the 

three fundamental direct cranks will all be in the top vertical position, 
whilst the three reverse cranks balance each other. 

Hence, the fundamental harmonic forces may be balanced by a 
3M 

mass at an equal radius, but in a direction opposite to the main 

crank, as shown by the dotted circle. 

* Vide Table XIII on page 280. 
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The Secondary Harmonica 

Referring to Pig. 202, it will be seen that the three direct octave 
cranks will be in positions OA, OB, and OC respectively, and will 

therefore balance each other, whilst the reverse cranks will all be in 

the position OA (shown on the right in Fig. 202), and can only be 

3 _M_ 
2 4tv 

'V 

Octaves. 
.A 

Fourths. 

Direct Reverse 
Crank. Crank. 

Fig 202 Balance of Radial Engine (Six-c\ linder Type) 

balanced by a mass - . — placed opposite to OA (Fig. 202) and 

revolving counter-clockwise at twice engine speed. 

The Fourth Harmonics 

Similarly, it will be found that the three reverse cranks for the 

fourth harmonics all balance, whilst the direct cranks are all in position 

3 M 
OA, and are only capable of balance by a mass - — 3 placed opposite, 

and rotating at four times engine speed. n 

The higher harmonics are of much less importance, since they give 

rise to unbalanced forces of proportionately smaller magnitude, but 

higher frequency. « 

The same method^of analysing the inertia forces in other unicrank 

multi-cylinder type of radial engine applies. 
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Five-cylinder Radial Engine 
Assuming that the inter-cylinder angles are equal and the,five 

connecting rods act on a single crank—this being the maximum 

number of cylinders for such an arrangement—then it can readily be 

dempnstrated by employing the same method as that used for the 

three-cylinder radial that the direct cranks are all in the top position 

(Fig. 203), whilst the reverse cranks are balanced. The out-of-balance 

Fig 203. Five-cylinder Radial Engine 

5M 
force is equal to —, and can be balanced by a weight of equal amount 

A 

and radius of action on the opposite side, as indicated by the dotted 

circle in Fig. 203. 

The secondary harmonics can be shown to be balanced, both for 

the direct and reverse cranks, but the reverse fourth harmonic is 
out of balance. The value of this unbalanced force, which rotates at 

four times engine speed in the reverse direction to that of the engine 

crankshaft, is given by— 

5 M co2r m3 5 Mw2m3 

unbalanced fourth harmonic = - - - — — 7- .- 
2 £ 4 8 g 

where M = mass of one reciprocating unit, 

(o = angular velocity ^ where N = r.p.m.^, 

r = crank radius in ft., 

m ratio of crank to connecting rod, 

and g — acceleration due to gravity = 32*19 f.s.s. 

Radial Engines. General Case of Balance. Odd Cylinders 
(1) When all the connecting rods are assumed to operate on a single 

crank pin, if the number of cylinders be denoted by ri and the mass 
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of each cylinder’s reciprocating weight by M, then it can be demon¬ 

strated by a similar method to that employed for the three- and five- 

cylinder radial engine that there will be an unbalanced primary direct 

n' Meo2r 
force ecfual to ~ . ~ which can be balanced by a counterweight on 

the opposite side of the crankshaft to the single crank. The secondary 

harmonics are in balance. 

(2) For a double row radial engine, with n' cylinders per row and 

two cranks at 180°, with a phase angle between the rows of 
360° 

2W7’ 

there will be a total of 2n cylinders. The primary forces are out-of- 

r\J 1VI exfir 
balance by an amount equal to — — for each row, and each of 

these unbalanced forces can be balanced by a counterweight on the 

opposite side to its crank equal to the value stated and acting at the 

same radius. If the C.G. of the balance weight is to be at any other 

radius the moment about the crankshaft axis must be equal to that 

of the out-of-balance forces on the crank pin. 

The secondary harmonics are in balance. 

(3) For a radial engine with a master rod and link rods acting on a 
single crank pin, if n' — no. of cylinders, r — distance of crank pin 

to knuckle pin, l — length of link rod, L — length of master rod, then, 

assuming r is constant, L — r -f /, and that the angle between the 

knuckle pins is the same as the angle between the cylinders, it can 

be shown that the primary forces or fundamental forces can be balanced 

nf M corr 
by a counterweight equal to — .-at a radius r, on the opposite 

side to the crank pin. - ^ 

r Ma>V 
There is an unbalanced secondary force equal to n' . j . m —-— on 

the same side as the crankpin when the master rod is on its top dead 

centre position. Here m — ratio of crank to connecting rod (L). 

There are no unbalanced rocking couples for any of the three general 

examples of radial engirfe that have here been considered. 

Higher Harmonics in Radial Engines 

Although, in general, any harmonics above the octave are unlikely 

to have any appreciable significance in practice, it may be of interest to 

note that in the case of a single crank radial engine having n' cylinders 

arranged at equal radial angles and with equal reciprocating masses 

for the respective cylinders, the following harmonics are unbalanced— 

(1) Direct. Harmonics denoted by (n' + 1), (Sn* + 1), (5nf + 1), etc. 

(2) Reverse. Harmonics denoted by (n' —• 1), (3n’ — 1), (5n' — 1), etc. 
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Thus, in the case of a three-cylinder engine the unbalanced direct 

harmonics are the 4th, 10th, 16th, etc., and reversed harmonics the 

2nd (or octave), 8th, 14th, etc. 
For the five-cylinder engine the unbalanced direct harmonics are 

the 6th, 16th, 26th, etc., and reversed the 4th, 14th, 24th, etc. 

It follows th.it with the increase in the number of cylinders, the 

lower harmonics die out progressively, so that for the more common 
seven and nine-cylinder radial engines, even with the master con¬ 

necting rod arrangement, the effects are practically negligible. 

Radial Type Engines, Even Number of Cylinders 
In the case of engines with four cylinders the axes of which are in 

one plane and at 90°, it will be found that the fundamental harmonics 
require balancing by a mass at crank radius 2M. The direct and reverse 

cranks for the secondary or octave masses are each in perfect balance. 

Similarly, the fourth harmonics are also perfectly balanced in 
themselves. 

By multiplying the number of cylinders in radial types of engine 

similar to the preceding examples, the unbalanced harmonics can 

frequently be made to neutralize each other, but if the cylinder axes 
are not in the same plane (as in many multi-cylinder aircraft engines), 

rocking couples are introduced even when the hammering actions 

are avoided. 

It will generally be found that in cases of radial engines with an 
even number of cylinders, spaced at equal intervals, the harmonics 

are all in perfect balance and that the fundamental harmonics can 

all be balanced by means of a suitable balance-weight placed opposite 
the single crank. 

The firing intervals of even cylinder radial engines being unequal, 

this type is not now employed for single-crank engines. 

Radial Engine Firing Intervals 

With the usual four-cycle system, giving one firing stroke in every 

two revolutions, it will readily be seen that £ he firing order of a four- 

cylinder radial, assuming equal cylinder axis angles, and numbering 
the cylinders, clockwise, 1, 2, 3, and 4 (Fig. 204 (^4) are: 1, 3, 2, 4, 1, 

and the corresponding angular intervals, 180°, 270°, 180°, and 90°. 
For a six-cylinder single crank radial (Fig. 204 (B) ), the firing order 

would be 1, 3, 5, 2, 4, 6, and the firing intervals 120°, 120°, 180°, 120°, 
120°, and 60°. In general, it can thus be deduced that for a radial engine 

with any even number n' cylinders there will be three different firing 

, , 720° 1080° , 360° , „ 
intervals, namely, —, and -—, , and that the first will occur 

n n n 

{n* — 2) times per complete cycle, and the other two once each. 
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It follows, therefore, that it is impossible to obtain equal firing inter¬ 

vals with a single-row radial engine having an even number of cylinders. 

If, however, the even number of cylinders be split into two odd numbers 

and arranged as a two-row radial with cranks at 180°—as in the case 

of the six-cylinder engine considered below, then equal firing 

intervals can be arranged, but the engine balance will not be very 

good. In general, modern radial engines of the single-row pattern 

for automobile and aircraft purposes have an odd number of cylinders, 

e.g. 3, 5, 7, or 9, and the firing intervals are always equal, so that 

the torsional impulses occur regularly. 

For a radial engine having n cylinders in single-row arrangement 
720° 

when n' is odd, the firing intervals will all be equal to - . The firing 

orders for the cylinders numbered consecutively from I to n (Fig. 204 

(C) ) will be 1, 3, f), 7, and so on to n' for the first revolution of the single 

crank, and 2, 4, 6, 8, and so on to (nf — 1) for the second revolution. 

For example, a seven-cylinder radial will have the following firing 

order, namely, 1, 3, 5, 7, 2, 4, 6, and a nine-cylinder one, 1, 3, 5, 7, 9, 

2, 4, 6, 8. 

Six-cylinder Radial Engine 
In the case of this once popular type of aircraft engine, the usual 

arrangement is to split the engine up into two pairs of three cylinders 

each; each set is similar to that shown in Fig. 202, namely, with its 

cylinders at 120°; but one of the sets is arranged to have its cylinder 

lines at 60° to the other set, so as to fill in the gaps, as it were, and 

give a symmetrical radial arrangement. 

Each of these three cylinder sets has its own crank, the two cranks 

being at 180°. 

In effect, then, if Fig. 202 represents one set, the position of the 

second set is obtained by rotating the first through 180°. 
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Considering the balance of this type, it will at once be evident 

from the preceding example that the primary harmonic forces of one 

3M 
set which produce an unbalanced force of magnitude will be 

JL 

exactly balanced by those of the second set, since they occur in mutually 

opposite directions. Owing, however, to the non-axiality of the two 
sets due to the double crank, there will be a primary rocking couple 

3M 
of magnitude — . 6, where b is the perpendicular distance between 

the centre lines of the two sets. 

Similarly, in the case of the secondary harmonics for the two sets, 

there is balance of the forces, but a rocking couple of magnitude 

3 M r 
•z . — . b occurs, which changes in direction at the rate of twice the 
z 471- 

engine speed, but in the reverse direction. 

The fourth harmonics also balance, except for a small rocking couple 

3 M 
of magnitude - 3 • ^ rotating at four times engine speed, but in the 

reverse direction. 

Six-cylinder Radial Firing Order 
If only one crank is employed, the firing intervals cannot be made 

equal, as previously mentioned. 

In the usual arrangement of two sets of three cylinders, viz. 1, 3, 

5, and 2, 4, 6, with a separate crank for each set and the two cranks 

at 180°, it is possible to obtain equal firing intervals of 120°. In this 
case, numbering the cylinders clockwise, 1,2,3, 4, 5, and 6, there will 

be 60° angular intervals between the consecutive cylinder axes. The 

firing order will be 1, 3, 5, 4, 6, 2, and the firing intervals will all be 

120°. 
This arrangement of 180° cranks has been used on radial six- 

cylinder engines. 

Four-cylinder In-line Engine 
This is the ordinary type of motor-car engine with cranks arranged 

as shown in Fig. 205. 

It will be seen later that the chief advantages of this type of engine 

consist in the regular firing intervals, and in the fundamental 

forces and couples being perfectly in balance. 

However, it should be remembered that all of the secondary har¬ 
monics synchronize, and therefore give rise to an unbalanced vibration 

of twice the frequency of the Engine revolutions. 

If the connecting rods of this four-cylinder type wen? of infinite 
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length, the engine would be in perfect balance as regards the whole 

of the harmonics. Since, however, on account of the angularity or 

obliquity of the connecting rod the inertia forces are greater for the 

top-centre crank positions than for the bottom positions, it follows 
that when two pistons are passing through the upper dead centre 

positions, the two other pistons will be moving through the lower 

centre crank positions, with the net result that there will be an upward 

(A). Fundamental. (B). harmonics 

Fig. 205. Foitr.cylinder Vertical Engine 

resultant force due to the difference between the inertias of the pistons 

at the top and bottom positions. 

Further, this upward force will occur every half-revolution of the 

crankshaft, with similarly occurring downward forces at intermediate 

positions. The net result is that the engine will experience a vibration 

of twice the frequency of the engine revolutions, as previously stated. 

There is also another method of considering the balance of the 

four-cylinder engine, which is due to Lanchester.* 

The effect of the angularity of the connecting rod is to cause each 

piston to reach its mid-position before the crank has moved through 

90° from its top-centre position, or, stated in another manner, when 

* “Engine Balancing,” F. W. Lanchester, Proc. 1914. 



264 AUTOMOBILE AND AIRCRAFT ENGINES 

the crank pin is at 90° from the top or in-centre, all four pistons are 

somewhat below their mid-stroke positions. 

In the case of a 20 h.p. rating engine, the position error a (Fig. 206), 
due to angularity, amounts to about a quarter of an inch. 

Further, the pistons will be symmetrical with regard to the mid¬ 

stroke positions twice every revolution at the dead centres, and 
unsymmetrical by the downward position error twice every revolution 

for the 90° crank positions. The effect of this is that the displacement 

of the whole equivalent reciprocating mass 

occurs twice every revolution and gives rise to 
vibrations of the same periodicity, which are 

really the same thing as the octave vibrations. 

Generally, the position error is approxi¬ 
mately equal to the crank throw divided by 

r 1 
the connecting rod length or that is, —. 

It has further been shown that for a 20 h.p. 

rating engine with a connecting rod over crank 

ratio of 4|, the octave amplitude is fa of the 

stroke; and since the disturbing force is pro¬ 

portional to the square of the periodic speed, 

then in the case of the octave harmonics, the 

forces called into play will be of that due 

to the main component of each piston. 
Hence, considering the whole four pistons, 

the unbalanced force due to the octave har¬ 
monic'will be of the unbalanced funda¬ 

mental piston force for a single-cylinder engine, 
and, of course, gives rise to vibrations of twice the frequency of 

those occurring in the case of the single cylinder. 

In the case of a four-cylinder engine of 4 in. bore and stroke, the 

weight of the piston being 4| lb. and the connecting rod 4 lb., and for 

a ratio of n = 4, the maximum value of the unbalanced vibrating 

forces at 1000 r.p.m. is about 320 lb. 

At higher speeds, the forces will be very much greater, since they 

vary as the square of the speed. It will, therefore, be evident that 

the secondary forces in a four-cylinder engine are quite appreciable; 
although, as mentioned later, a method for absorbing these vibrations 
is possible. 

The matter of the balance of this type of engine can also be dealt 
with by the same method as in the preceding examples. Examining 

first the fundamentals of the piston’s motion, it will be evident that 

at all times the two outer crank harmonic forces balance in direction 

and magnitude the two inner crank forces, and further that the 

Fig. 206 
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moments of the primary couples for the two left-Jaand cranks always 
balance those due to the right-hand cranks, so that the primary balance 
is perfect. 

Dealing next with the secondary or octave components* of the 
piston’s motion, a little consideration will show that the whole of 
the octave components for the crank position shown synchronize and 
act vertically upwards. When the main crank has turned through 
90°, these octave components will have moved relatively through 
180°, and will always be in synchronism They will, therefore, give 
rise to vibrations along the line of stroke of twice the main harmonic’s 
frequency. Further, the value of the maximum octave unbalanced 

4M . co2 . r 
force will be F9 

g ,n 

The Higher Harmonics 

As regards the fourth harmonics, it will be noted that these all 
synchronize and give rise to vibrations of four times the frequency 
of the primary harmonic; the maximum value of the fourth harmonic’s 
unbalanced force will be 

Mco2r 
F4 = 

gn* 
Similarly, it can be shown that the sixth and higher harmonics each 

synchronize for the four pistons, and give rise to vibrations of higher 
frequencies and with correspondingly smaller maximum forces. 

Further, it should be mentioned that since each of the harmonics 
synchronize for all the pistons, and act in the same direction, there 
will be no resultant unbalanced couples for these harmonics. 

In practice, the effects of the unbalanced octave and fourth har¬ 
monics are noticeable—it is quite possible to observe in some car 
engines the vibrations due to the former, since it synchronizes in 
frequency with the explosions. In addition, when a four-cylinder 
engine of this type is raced under no-load conditions since the torque 
vibrations are practically negligible, the higher period vibrations are 
quite apparent. When it is remembered that in the case of a 25 h.p. 
engine the maximum value of the unbalanced secondary force may be 
as much as half a ton alternately acting in an upward and downward 
direction, it will be seen that the effects must become of serious magni¬ 
tude at high speeds. It is also a fact that at certain speeds of a motor¬ 
car engine the resonance, or sympathetic vibration effect between it 
and the body of the car itself, more especially limousines and lan- 
daulettes, accentuates this secondary vibration effect. By using 
rubber engine mountings, however, this effect can be eliminated, in 
practice. 

* See also page 23$. 



266 AUTOMOBILE AND AIRCRAFT ENGINES 

Method of Balancing Secondary Forces 

Lanchester has devised, and applied to four-cylinder car ehgines, 
an interesting piece of mechanism termed an 4‘Anti-Vibrator,” for 
the purpose of balancing the secondary harmonic effects. The principle 

Fig 207. Principle of Balancing the Secondary Harmonics in 
Four-cylinder-in-line Engine 

of this arrangement consists in the introduction of an equivalent 
harmonic effect, but opposed in direction, to the secondary harmonic 

effect, as indicated, schematically, m Fig. 207. 
The mechanism employed, which is illustrated in Fig. 208, employs 

two cranks, driven at twice crankshaft speed, and each rotating m 

Fig 208. The Lanchester Method of Balancing Secondary Forces 

opposite directions. In reality, it is the practical application of reverse 
crank method, suitable balance weights being caused to give an exactly 

equal and opposite force at all times to the secondary forces due to 

the pistons’ motion. 
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In the diagram, the balance weights A are attached to shafts B1? 

B2, which are driven by means of helical gearing Gv C2 from the mam 

crankshaft. The phase of these balance weights is the same, and it 

follows that a vertical harmonic reciprocating ma'ss effect is obtained, 

opposed to the secondary piston reciprocating effect. The apparatus 

has been fitted successfully to certain British car engines. 

Another design of Lanchester secondary harmonic balancer is shown 
in Fig. 209, the various items being described in the caption below. 

Fig. 209. Another Variation of the Lanchester Method of 

Balancing Secondary Forces in Four-cylinder Engines 

A—helical gear; B—driven helical gear, 0—out-of-balance driven wheel; 
D— sumilar geared out^of-balance wheel, E—bracket mounting for C and D, 
G—lubrication pipe to driven wheel bearings, J—mounting of A to web of 

crankshaft. 

Other methods of attempting to balance the octave component 

have employed reciprocating masses of suitable frequency, but their 

non-success is attributable to the heavy stresses and consequent wear 

and tear involved. 
Obviously in the method described, the energy of the balancing 

mechanism system remains constant for constant engine speed, and 

no appreciable stresses are introduced : but the c®ntrifugal component 

due to each revolving weight will naturally result in a corresponding 

load being thrown upon the balance shaft bearings, the direction of 

which is continually changing as the weight revolves. 
The reduction in the weight of the reciprocating parts, such as the 

piston and connecting rod will tend to reduce the magnitude of the 

unbalanced harmonic forces. 

Another Method of Balancing Secondary Forces 
A method proposed and used by W. Pilcher* for balancing a recip¬ 

rocating engine consists in extending the connecting rod beyond the 

crank pin and so arranging the weight of the overhung portion that 

* Balancing of Engines, A. Sharp, p. 167 (Longmans, Green, Ltd.). 



268 AUTOMOBILE AND AIRCRAFT ENGINES 

the C.G. of the whole rod is on the crank pin centre (Fig, 210). For a 
single-cylinder engine there is perfect balance of the translational 

forces, but not in regard to the transverse couple,* which is actually 
increased by this method. In the case of a two-cylinder vertical engine 

Fig. 210. Method of Balancing Secondary Forces 

with cranks at 180°, the transverse couples will be in perfect balance 

and the engine is then mathematically in perfect balance with the 
Pilcher arrangement. 

In a four-cylinder vertical engine, also, the secondary and higher 
harmonic forces and transverse couples will also be in balance. A 

% 

proof of this statement is given in Appendix II in the paper referred 

to in the footnote, f 

Six-cylinder Engine, Cranks at 120° 
The general arrangement of the six-cylinder engine, as used in car 

practice, is shown in Fig. 211, 

♦ Vide page 229. 
f “The Four-cylinder Engine,” G. F. Gibson, Proc. Inst. Autom. Engrs 

January, 1937. 
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It will be noticed that if the crankshaft be bisected by a plane 

perpendicular to the axis, the two halves of the crankshaft, each 

consisting of three cranks at 120°, will be symmetrically disposed with 

reference to this plane, and it is by viewing the matter by this method 

that it is proposed to investigate the problem. 

Dealing first with the fundamental forces as represented by the 

components of rotating masses M upon the cranks, the three primary 
forces upon one side of the imaginary central plane will exactly 
balance the three primary 

forces upon the other side, 

pr, stated in another man¬ 

ner, each set of three will 

be in balance so far as 

direction is concerned. 
And again, the moments 

of the primary forces about/ 

the central plane of the 
two sets of three cranks 

each, upon either side, will 

balance each other, so that 

the natural balance of the 

primary or fundamentals 

is perfect. 

Secondary Harmonics 

Reference to the dia¬ 

gram shown in Fig. 212, 

the upper circle of which 
represents the crank 

arrangement referred to, a 

transverse perpendicular plane, will explain the position of the equiva¬ 
lent rotating masses, revolving at twice crankshaft speed for the octave 

harmonics indicated. These octave components will be seen to be in per¬ 

fect balance. Similarly the fourth harmonics can be shown to be in per¬ 

fect balance, both for magnitude and direction, and also moments. If 

the same method be applied to obtain the arrangement of the equiva¬ 

lent cranks for the sixth harmonics (that is, the 6fr term in the general 

expression for the acceleration force), it will be found that for the 

given crank position shown in Fig. 212, the arrangement of the sixth 

harmonic cranks will be as shown in the lower circle in Fig. 212, 

that is, the whole of these six harmonics of the piston’s motion will 

synchronize and give rise to forces, the maximum valpe of which 

36 McoV 27 MorV M . 
will be 6 . - -or — . , this causes a vibration of frequency 

512n5 g 64 nhg 

Fio. 212. Harmonics of Six-cylinder 

Engine 
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six times that of the primary, that is, occurring six times per revolution. 

There is, however, no resultant couple brought into play. 

The practical effect of this rapidly occurring vibration is negligible 
as the magnitude of the maximum forces occurring due to this harmonic 

is very small indeed. 

Three-cylinder Engine, Cranks at 120° 
Resulting from this analysis of the balance of the forces occurring 

in the case of the six-cylinder engine, it will be apparent that if one-half 

of the crankshaft, as divided by the transverse central plane, be con¬ 

sidered alone, then, so far 

as the primary, octave, 

/ ^ s' * and fourth harmonics are 

concerned, the forces are 

in perfect balance, but 

that owing to their lines 

of action being separated, 
unbalanced couples will 

occur in each of these 

Ftg. 213. The Eight-cylinder 90” V-typk oases, giving rise to a. 
Engine “rocking” or “plunging” 

vibration. 

The sixth harmonic is unbalanced both as regards the forces and the 

couples, due to axial separation of the cylinders. 

Eight-cylinder V Engine 
This type of engine is of interest both as regards its torque and 

balance. 

In passing, it is not out of place to note that it possesses marked 

advantages for motor-car use over other arrangements for the same 

number of cylinders. It enables one to get twice the power compared 

with a four-cylinder engine for a similar longitudinal dimension, that 

is, for a definite available length of bonnet space. It is lighter than a 
vertical in-line engine of the same number of cylinders and same size of 

bore and stroke; it is also lighter in proportion than a six-cylinder 

engine and, in addition, since the length of the crankshaft is less, the 

latter is relatively* stiffer and less subject to whip and torsional 
vibrations. 

Reverting to the question of engine balance, the arrangement of 

this type of engine is exactly similar in transverse view to that of the 

90° twin-cylinder type already discussed, and in longitudinal view to 

that of the four-cylinder vertical engine. For the sake of simplicity, 

then, the eight-cylinder type may be considered to be made up of four 
sets of twin engines, cylinders being set at 90°, as shown in Fig. 213. 
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: or 0*707 times that of 

It has already been shown that in the case of a single 90° twin 
engine, the primary forces can be balanced by means of a counter¬ 

balance weight upon the opposite side of the crankshaft to the crank 

pin, but that the secondary forces are unbalanced, and give rise to a 
horizontal vibration. If now we consider the second set of twin engines 

with the crank at 180° to the first set, it will be seen that the unbalanced 

forces of the secondary harmonics synchronize with those of the first 

set. Hence for the whole set of four pairs of 90° twin cylinders with 

cranks arranged as in the four-cylinder vertical car engine, there will 

be four unbalanced secondary forces acting together or in synchronism. 
The maximum value 

of the total unbalanced 

secondary forces will be 

1 

a four-cylkider engine 

having the same recipro¬ 

cating mass. 

An alternative method 
of arranging the cranks 

of an eight-cylinder V-type engine is given in Fig. 214, the two 

centre cranks being at 180° with each other instead of together as 

before, and at 90° to the outer cranks. 

In this case the unbalanced secondary forces of the second crank 

are twice 90°, or 180°, out of phase with those of the first crank, or 

opposed to them. Similarly, for the third and fourth cranks the 

secondary forces will be opposed, the net result being that the four 

secondary forces are in perfect balance, and that there is no resultant 

couple. In respect of the fourth harmonics, these will be seen to be 

in synchronism, since they are at four times 90° to each other, or 

360°, and hence it will give rise to unbalanced forces of four times the 

frequency of the fundamental, but their magnitude being equal to 

Fig. 214. Alternative Arrangement for 

Eight-cylinder V-type Engine 

/Meo2R\ Mco2R J 
8 . u*“r~o— V2 or 2 —r— V2 is very small compared with the 

V / nzg 
unbalanced secondary forces in the other arrangements of crank. 

The primary forces, it will be observed, are 90° out of phase and 

can be balanced by suitable counter-weights in order to avoid rocking 

couples. The centrifugal forces can also be balanced in a similar 

manner. 
It has t>e6n estimated that the unbalanced forces of .the fourth 

order in this case constitute only one-eightieth part of those of the 

unbalanced secondary forces in the ordinary type of eight-cylinder 

V-engine, 
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The Straight Eight Engine 

This type of eight-cylinder engine was once popular for automobiles 
and is still employed in certain makes. It is here proposed to consider 

the question of engine balance from the point of view of selecting the 

best arrangement of cranks. 

Unfortunately for the designer, there are several possible arrange¬ 
ments of crankshaft for this type of engine to investigate ; for example, 

no fewer than nine different crankshaft schemes have been used or 

shown to be possible. Before considering any particular arrangement, 
it is proposed to examine the requirements of successful designs. 

Firstly, it is necessary for satisfactory torque conditions that the 

firing intervals be equal. In the eight-cylinder engine there are eight 

explosions every two revolutions, i.e. four per revolution. This means 

that the cranks must be at 90° to one another for even firing intervals. 

A little consideration will show that there is a number of different 

crank arrangements that comply with this requirement. 

Secondly, for proper engine balance it is necessary that the primary 

forces and secondary forces shall be in balance. 

With certain eight-cylinder 90° crank arrangements these conditions 

can be fulfilled. 

Thirdly, it is essential that primary or secondary force rocking 

couples shall not occur, as these give rise to unpleasant vibrations at 

high speeds. It is this requirement that actually reduces the possible 

crank arrangements to a small number. 

In order to obtain freedom from inertia couples of the first and 

second order, it is a condition that the resultant of the inertia forces of 

all the reciprocating parts moving downward at any instant shall be 

equal and opposite in direction to the resultant of the inertia forces 

due to the reciprocating parts moving upwards at the same instant. 

As we have already seen, this condition is only obtained when the 

two halves of the crankshaft have “looking-glass” symmetry, i.e. when 

one-half is the reflected image of the other, as seen in a looking-glass. 

Another way of expressing this condition is that the crank pins 

equally spaced from the ends of the crankshaft shall be in the s&me 

line and direction. 
Figs, 215 and 216 show seven different eight-throw crankshaft 

arrangements which fulfil the three sets of conditions that we have 

enumerated. 

The actual choice from these alternatives is largely a question of 

ease of manufacture, and of the number of main bearings that are 

to be employed. From the manufacturing viewpoint, the arrangements 

shown in Nos. 5 and 6 are the cheapest, since, in the usual method of 

making the crankshaft by twisting the cranks from a flat stamping, 
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it is only necessary to make two twists, as against four for types 
Nos. 3 and 4, -and six for No. 2. 

From the point of view of the light eight-cylinder engine with five 
main bearings, the arrangements shown in Nos. 5 and 6 are the most 

suitable ones; these have also a further advantage from the point of 

view of the centrifugal forces on the bearings. 

The ideal arrangement is, of course, to have a bearing between each 

Fig. 215. Two Possible Crank Arrangements, with 

Alternative Firing Orders for Straight-eight Engine 

pair of cranks, i.e. nine in all. It may bo mentioned, here, that the 

crank arrangements Nos. 5 and 6 represent those which have been 

the most used. 

Alternative Crank Arrangements 
The crank arrangements shown in Fig. 215 are seldom used, on 

acoount of their lack of “looking-glass” symmetry, and therefore of 

proper balance. 

It will be evident, from the lack of “looking-glass” symmetry that, 

although these arrangements give equal firing intervals, the inertia 

force couples will not be in balance. If the two halves of the crankshaft 

be regarded as two four-cylinder vertical engine crankshafts, it will 

at once be seen that there will be a rocking couple in the longitudinal 

plane due to the secondary forces. 

The crankshaft arrangements are therefore inferior to those shown 

in Fig. 216, but they are easier to manufacture, and when two car¬ 

burettors are fitted to the engine give a better gas distribution. 
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CYLINDER FIRING ORDERS 
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Fig 216 Some Other Alternative Crank Arrangements 

for Straight-eight Enginfs 
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Narrow Angle Vee-eight Engine 

In order to effect a kind of compromise between the shorter Vee-eight 

and the in-line * eight-cylinder engines, an engine has been proposed 
which consists of two sets of four cylinders staggered slightly in relation 
to each other, each set being at a narrow angle, namely 20°, to the other. 

The advantages of such an arrangement are that a single monobloc 

casting of much lighter constructional weight than the eight cylinders 
(or two monoblocs of four cylinders each) of the two alternatives 

mentioned can be employed. Moreover, the overall length is little 

more than that of a Vee-eight engine, whilst the overall width is far 

Fig. 217. Crank Arrangement for Narrow Angle Vee-eight 

Monobloc Cylinder Engine 

less. The use of a relatively short stiff crankshaft, less prone to torsional 

vibrations, is an added advantage. 
It can be shown that with the eight-throw crankshaft shown in 

Fig. 217, with the webs and crank pins suitably balanced for centrifugal 

force effects, the primary and secondary forces are in proper balance. 

If the left bank of cylinders viewed from the radiator end (for a car 
engine) is numbered 1, 3, 6, and 8, and the right hank 2, 4, 5, and 7, 

then the appropriate firing order is 1, 3, 2, 4, 8, 6, 7, 5. 
The only slight disadvantage of this engine lies in the fact that the 

firing intervals are not quite the same, the intervals being 90°, 70°, 

90°, 110°, 90°, 70°, 90°, 110°, etc. 

Firing Order of Straight-eight Engines 
For each of the different arrangements of cranks shown in Figs. 

215 and 216, there are eight different firing orders. It is not necessary 

to give a list of these, 4s they are simple to work out, but it may be 

mentioned that the best firing order is that giving uniform spacing 

between the firing strokes. # 4 
A careful examination of the crankshaft and engine firing orders 

of the majority of straight-eight automobile engines reveals that the 
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most popular crankshaft arrangements are those shown in Fig. 216, 

and that the most favoured firing order is as follows— 

1, 6, 2, 5, 8, 3, 7, 4 

In about 80 per cent of the eight-cylinder engines in question, the 

above crank arrangement and firing orders were adopted. 

Comparison of Eight-cylinder Engines 
The two most commonly used types of eight-cylinder engines are 

the V-type and the “straight-eight.’’ Each of these has certain 

theoretical and practical advantages, which may be enumerated, 

briefly as follows. 

The V-type Engine 

Advantages— 

(1) More compact design, and therefore takes up less room fore- 

and-aft under the bonnet of a car or small aircraft. 

(2) Shorter and therefore stiffer crankshaft. 

(3) Fewer main bearings required. 

(4) Torsional vibrational effects not so pronounced. 

Disadvantages— 

(1) Heavy loading of crank-pin bearings due to big-end bearings of 

two rods on one pin, unless a master rod and articulated link is used. 

(2) Inaccessibility of valves, tappets, and carburettor parts. 

(3) Duplication of certain parts, e.g. exhaust water pipes and hose 

connexions. 

(4) Much greater overall width of engine, bringing cylinder heads 

close to bonnet, or cowling. 

The Straight-eight Engine 

Disadvantages— 

(1) Overall length nearly twice that of V-type engine. 

(2) Greater number of main bearings. 

(3) Heavier in weight than V-type. 

(4) Greater torsional vibrational tendency. 

(5) More difficult to obtain uniform gas distribution. 

(6) Crankshaft more complex and costly. 

Advantages— 

(1) Better wearing properties in regard to main and big-end bearings. 

(2) Better accessibility of parts requiring attention. 

(3) Smaller number of parts, and simpler design of many, e.g. 

exhaust and water connexions. 

(4) Design of complete engine more straightforward. 
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In regard to the principal disadvantage of the straight-eight engine, 
namely, that of torsional vibrations due to the relatively long shaft, 

this was the cause of several cases of crankshaft fractures in the heavier 
types of internal combustion engine, but with a better knowledge of 
design requirements and with the introduction of vibration dampers 

or flexible couplings between the engine and the driven member, e.g. 

the propeller in the case of aircraft, and the gearbox in the case of 
cars, this trouble has been largely overcome. 

Balancing of Other Types 
It has been possible only to deal in the present chapter with a few 

of the more important types of engine, in respect to balancing; having 

become acquainted with the methods employed in the foregoing 

considerations, there should be no difficulty in applying these to any 

type of engine. 

A necessary course to pursue is to consider both the torque curves 

and engine balance for any particular type of engine under in¬ 

vestigation, and then it is possible to form a fairly definite opinion 

as to the suitability or otherwise of this given type for the purposes 

required. 
For more detailed treatment, with wider scope, of the subject of 

engine balance, reference should be had to textbooks on the subject, 

such as Engine Balancing, by Prof. A. Sharp, Dalby’s Balancing of 

Engines, etc., the “Proceedings of the Institute of Automobile 

Engineers,” and to the papers referred to in the footnotes. 

Classified Examples of Engine Balance 
As it is not possible, owing to space considerations, to deal in detail 

with each and every example of engine balance for cylinder arrange¬ 

ments applicable to automobile and aircraft engines, a useful series 

of classified results* is given in tabular form on the following pages, 

so that the balance of any particular type of engine can at once be 

analysed in so far as the primary and secondary (shaking) forces and 

the primary and secondary rocking couples are concerned. 

The general types of engines considered include: (A) Vertical In-line 

with 1 to 8 Cylinders. (B) Opposed Engines with 2 to 16 Cylinders. 

(C) Vee-type Engines with 2 to 16 Cylinders. (D) W-type Engines with 

3 to 16 Cylinders. The radial type engines have already been dealt 

with in this chapter and are therefore omitted here. 

The firing intervals, which should all be equal in actual engines, are 

given in the tables that follow. , 

* Based on information given in the Society of Automotive Engineers’ Journal, 
October, 1934 (A. J. Meyer). 
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Notation Used. The following symbols and notation have been used 

in connexion with the tables— 

C = Centrifugal force, in lb., that would result from the rotation 

of the reciprocating mass (M) of a single-cylinder unit with 

crankshaft speed at crank radius (r). 

, f 27tN 
where a> ~ angular velocity in radians — where 

N = r.p.m., r is in feet, and g = 32*19 ft. per sec.2 

W = Value of the centrifugal force produced by the counterweight 
necessary to cancel all or part of the inertia forces. The 

primary weight is supposed to run with the same speed 

and in the same direction as the crankshaft. The secondary 

weight runs twice as fast and in the same direction, unless 

otherwise noted. The angular position of the weights with 

respect to the crank pin is indicated in the diagram by P 

and by S, respectively. 

H = The horizontal unbalanced inertia resultant after the counter¬ 

weight indicated has been incorporated. 

V = The vertical unbalanced inertia resultant after the counter¬ 

weight indicated has Keen incorporated. 

@ = Crank angle, measured from the crank position as shown, in 

a clockwise direction. 

a = Distance in inches as shown. 

b = Distance in inches as shown. 

c ~ Distance in inches as shown. 

Mv — Rocking couple, in lb.-in., in the vertical plane. A positive 
couple turns clockwise in the top view or the side view, 

as shown. 

MA = Rocking couple, in lb.-in., in the horizontal plane. A positive 

couple turns clockwise in the top view or the side view, as 

shown. 

A = Ratio of crank radius divided by connecting-rod length, i.e. 
is the same as m (or q) used in the previous calculations 

given in this chapter. 

In regard to the results given in the tables, the best arrangements 

of the cylinders are those corresponding to zero values for the primary 
and secondary shaking forces and couples, with equal firing intervals. 
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The engines given in Table (Xll) which fulfil these conditions are the 

six-cylinder vertical and the first of the two eight-cylinder arrange¬ 
ments. In the other examples, unbalanced rocking couples or shaking 
forces occur. 

TABLE XII 

Fotjk-cycle In-line Engines 
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In the case of the opposed engines the only two instances of perfect 
balance given are those of the eight-cylinder with four cranks in the 
same plane and the twelve-cylinder arrangement shown. The former 
engine, however, has the disadvantage that two cylinders must fire 
simultaneously so that the firing intervals are 180° instead of the 
(possible) 90° with the second arrangement. 
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It may here be mentioned that it is possible to balance a six-cylinder 
opposed engine, using a six-throw crankshaft with consecutive pairs 

at 180°, the three pairs being 120° apart. 

TABLE XIII 

Four-cycle Opposed Engines 

ARRANGEMENT OF 

CRANKSHAFT ANO CYLINDERS 

INERTIA BALANCE AND FIRING INTERVALS 
SECONDARY FIRING 
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Of the V-type engines, there are four examples giving perfect 

engine balance, in so far as the primary and secondary factors are 
concerned, combined with equal firing intervals. These include 

the second of the three eight-cylinder arrangements, with suitable 
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counterweight, the first of the two twelve-cylinder ones and both 

sixteen-cylinder ones. 

It may be mentioned that there are two different twenty-four 

cylinder aircraft engines, namely, the Rolls Royee Vulture and the 

Allison V-3420, which utilize two sets of twelve-cylinder V-engine 

units geared together to drive the propeller shaft in a common crank- 

TABLE XV 
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case unit. Each of the two V-engine units in such arrangements 
can be perfectly balanced 

Of the engine arrangements shown in Table XV only the sixteen 

one gives perfect balance with equal firing intervals. 

Elimination of Rocking Moments in Engines 
As pointed out originally by LanChester, the rocking moment which 

occurs, due to the axial separation of the cylinders in different types 

of engine may be eliminated in multi-cylinder types by the method 
of “looking-glass” symmetry. The meaning of this phrase can be 

made quite clear by considering a particular case. It is known that 

in the two-cylinder vertical type with cranks at 180° there is a primary 

rocking couple. If now we imagine a transversely situated mirror at 
the end of crankshaft, then the reflected image of the crankshaft 

represents an arrangement of cranks, which with the original cranks 

will give no rocking couple—or in other words, the rocking couple of 
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the original type exactly balances that of the reflected type. This com¬ 

bination of object and image is, of course, the ordinary four-cylinder 

arrangement. 

Again, the six-cylinder 120° vertical engine can be divided by a 

central transverse plane, one half of the crankshaft being an exact 

reflection of the other half—and it is known that there is no resultant 

rocking couple in this type. Similarly the two-cylinder 180° opposed 
type represents a direct and reflected image of the single-cylinder 

type, and no rocking moment occurs. 

Generally speaking, then, if there exists in any arrangement of 
cylinders an optical symmetry about a symmetrical plane, there will 

be no rocking couples. 

Another way of expressing this result is that whatever rocking couple 
is set up by the direct or object half of the engine will be neutralized or 

balanced by the reflected image half. 

The Effect of Cylinder Offset upon Engine Balance 
The practice of offsetting the crank* in the direction of rotation 

has been adopted in the past by several makers of car, cycle, and air¬ 

craft engines, with a view to reducing the thrust upon the cylinder 

walls during the earlier part of the explosion stroke when such a 

thrust is a maximum. 
This arrangement will cause a modification in the torque diagram, 

and also affect the balance of the engine. 

It is not proposed here to deal with the question of offset in relation 

to engine balance in detail, as this would involve a tedious mathe¬ 

matical analysis out of proportion to the value resulting, but to indicate 

briefly the actual results of this practice, and to point out the lines 

along which to deal with problems relating to offsetting the crankshaft. 

The matter has been treated in detail in articles by Prof. A. Sharp 

in The Automobile Engineer, November, 1910, and April, 1912, and 

F. W. Lanchester in a paper read before the Institution of Automobile 

Engineers, February, 1914, entitled “Engine Balancing,” and it is 

to the latter that we owe the following treatment. 
Referring to Fig. 218, the line of stroke for an offset engine is repre¬ 

sented by OAl5 and of a normal type by CS. When the crank is per¬ 

pendicular to the line of stroke, the connecting rod is in the positions 

PA2 and P^ respectively for the offset type and PC and PjC for the 

normal type, so that in the former case the points A} and Ag correspond 

to the point C in the latter case. 
Further, since the angle AjCA2 is equal to the angle PCPj, and this 

latter angle is a maximum for the crank positions shown, it will be 

evident that the distance A^2 is a maximum as shown. 

* Known as the demxe arrangement. 
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Hence the motion of the offset piston may be considered to be 

equivalent to the normal piston motion and an approximately har¬ 

monic motion superimposed of maximum amplitude AA1, or alter¬ 

natively the offset piston’s motion may be represented approximately 

by the motion of the small end of the connecting rod driven by an 

imaginary crank OD with offset centre 0, and it will be seen to be 

equivalent to an alteration in the phase of the normal type by an 

amount DjOD. 

The effect of offset then is equivalent to a retardation of the phase 

by a small angle, both for the finite and infinite connecting rods ; but 

in the latter case the piston’s motion will be strictly simple harmonic. 

In the case of the finite connecting rod length, it can be shown that 

the secondary vibration is out of phase with the main vibration by 
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the offset, angle, and in such a direction as to oppose or counteract 

the effect of the offset angle, that is, in advance of the fundamental 

harmonic. Hence the secondary vibration will be in the same phase 

and in the same direction as in the normal type of engine. 

Analytical Method 

The question of the influence of offset upon engine balance can also 

be considered analytically, and the general method adopted consists 

in obtaining an expression for the offset piston’s position in terms of 

the crank angle, and by double differentiation deducing the acceleration 

expression. 

The expression demonstrates that the offset piston’s motion is due 

to a number of harmonic motions of different frequencies, the ampli¬ 

tudes and maximum values being dependent upon the connecting rod 

crank ratio and upon the degree of offset. 
The expression for the acceleration force in the normal type engine 

is given by 

M d2x M T "I 
—= - — a>2r cos 0 + C2 cos 20 4 04 cos 40 + C6 cos 60 + . . . 
g dt* g L J 

and in the offset type of engine by 

M d2x MT 1 
- 1 ~ — a>2r cos 0 -f Afy cos 26 f A4 cos 46 + Ae cos 60 + etc 
<J dt2 g L J 

M 
■ £sir H— co2r sin 0 |- B3 sin 30 + B5 sin 50 + etc, 

9 ] 
where C2, C4, C6, etc., are constants depending upon the crank con¬ 

necting rod ratio, and A2, A4, Ae, etc., B3, B6, B7, etc , are constants 

depending upon both the crank connecting rod ratio and the amount 

of offset, which can generally each be expressed as an algebraic series 

in n, the crank-connecting-rod ratio, and a the offset. 

The effect of offset is to introduce odd harmonics into the piston’s 

motion, so that for symmetrical crank positions the piston’s position 

is not the same (as in the normal type). 
The quantitative effect of offset upon engine balance will be rendered 

more intelligible if a concrete example be given. 
Taking the connecting rod crank ratio n = 5, and the amount of 

offset a = crank radius, the expression for the offset piston displace¬ 

ment is 

* - r cos 0 + l {0-9700 + 0-0106 cos 20 - 0-00001 cos 40 + . . . 

+ 0-0415 sin 0 0-0002 sin 30 + . . .} 
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and the accelerating force by 

M d2x M 
-—r — - co2r i cos 6 + 0*0424 cos 26 — 0*0001 cos 40 -f . . 

9 dtz g 
\ 0*0415 sin 0 — 0*0018 sin 36 f . 

the higher harmonies becoming of less importance. 
i « 

Fig. 219 

It has been shown that in the case of a single cylinder with a con¬ 

necting rod crank ratio of 5 and an offset equal to half the crank 

radius that the increase in the fundamental unbalanced force is only 

0*0002 of its normal value, and in the case of a four-cylinder offset 

engine that the secondary unbalanced force is about 1*5 per cent 

greater than in the normal four-cylinder type. Generally speaking, 

with the degree of offset employed in practice the effect upon engine 

balance is practically negligible. 
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Approximate Method for Offset Cylinder Engine 

The following method is an approximate one but giving fairly 

accurate results. It consists in finding an expression for the piston’s 
displacement, and by the addition of a small quantity to the expression 

which is under the surd sign, so as to make it a perfect square, in 

simplifying the expression so that it can be readily differentiated in 
order to obtain the piston acceleration. 

Referring to Fig. 219, and employing the notation shown thereon, 
the following relations are obtained— 

Piston displacement x = l cos <f> A r cos 0 . . (1) 

and r sin 0 =• l sin <f> •+ b . . (2) 

, r sin 0 — b x— r cos 0 
from which sm <f> ■= ---and cos <p -=--- 

The term <f> can now be eliminated by using the relation— 

. . /rsin0—6\2 (x— r cos 0\2 
sm2 0 + cos2 cf> ^ 1 =- (---j + (-j-J 

This expression simplifies to the following— 

x2 - 2xr cos 0 + (b2 + r2 — l2 — 2hr sin 0) — 0 

which is a quadratic ill x 

The real solution of this equation is 

x = r cos 0 . f l 
J^ sm 0 — b\2 

(3) 

To make the surd expression a perfect square, add to it the small 

1 (r sin 0 — 6\4 . . 
quantity -(---1 . No appreciable error is introduced by this 

addition of a second order term. Then Equation (3) becomes 

f" 1 f r sin 6 — 6\2"1 
x — r cos 0 + ql — 2\-7-) J 

(r sin 6 — bf 
— r cos 0 --^- -f I 

21 

This expression simplifies to- 

r2 br 
x -- r cos 6 — ~ . sin2 0 + y sin 0 

Differentiating for the velocity, wre get 

Vp * 
dt ■[- 

r b 
sin 6 4 "j 008 20 — j cos 0 

dd 

dt 
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^ dO t , 2ttN ?tN 
hor 37, the anguJar velocity o> — — 337 may be written 

at 60 30 

Then VP 
ttN r 

■ 30 r 

sin 6 4 - sin 26 
l 

[)s 

The piston acceleration is now obtained by differentiating the 

velocity with respect to the time. 

Thus, AP 
tfVp d*x 

At dt2 

17rN\2r r „ 6 1 
• ( ) (*oa A ~f ^ cos 26 -f y sin 6 

This expression is almost identical with that given on page 234 for 

the engine with no offset, but there is an additional term 

b /ttN y 

V 30 / ' 
sin 6 

The normal engine acceleration can be obtained by putting b =- 0 

in the above expression. 

The reciprocating force acting in the ease of the offset engine is 

given by— 
M Mr /7rN\2r r b 1 

rAp" (30j Lcose f ]cos2M I8ineJ 
If M is in lb., and r and l are in ft., F will be in lb. 

It will be seen that the reciprocating force may be considered as 

being made up of a primary force k cos 6, with another smaller super¬ 

imposed one k1 sin 6y both following the same kind of variation, and 

a harmonic of the form k2 cos 26. 

The additional harmonic kl sin 6 modifies the inertia force diagram. 

It has the effect of increasing the inertia force during the first part of 

the downstroke, then reducing it during the second part of the stroke. 

It then increases the inertia force during the first part of the upstroke, 

and finally diminishes it again during the second part. 

The Four-cylinder Offset Engine 
In the case of the four-cylinder vertical engine, the effect of the 

offset upon the inertia forces can be conveniently studied by considering 

the expression for the reciprocating force given above, namely— 

„ Mr / 7tN\2 f „ b . „ r 
9 ho) [cos e + JBm 6 + jCOB 29 

where r, l, and b are the crank radius, connecting-rod length, and 

amount of offset respectively; 6, the crank angle; and M, the mass 

of the reciprocating parts. 
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Referring to Fig. 205, it will be seen that the two outer cranks can 

be treated as one, and also the two inner cranks. # 

The total primary force for the two sets will then be given by— 

__ 2Mr/7rN\*f /k b n n b 
^ (~3Q ) V008 ® b ~i sm 0 -f cos (180 \ 6) + - sin (180° + 6) 

Since cos (180 + 6) — — sin 6, the above expression becomes zero, 
so that the primary forces are in perfect balance. 

The total secondary forces for the two sets of cranks is given by 

2Mr2 / 7tNV ( „ ) 

F, - “?r (3o j ros 20 4 008 2(180 + 6)1 
4 . Mr2 

91 

so that, as in the case of the normal four-cylinder engine, the secondary 

forces are unbalanced, and by the same amount 
It will also be observed that the amount of the offset, b, does not 

enter into the result, so that the balance of the offset engine is identical 

with that of the normal type. This result can also be readily shown 
graphically from the inertia diagrams, by super-position for the two 

sets of parallel crank forces. 



CHAPTER X 

SOME MISCELLANEOUS CONSIDERATIONS 

The Flywheel 

The function of the flywheel is to minimize the fluctuation of engine 
speed caused by the variation of the crank effort and by the variation 
in load upon the engine. 

The actual crank effort at any moment, in the case of an internal 
combustion engine, depends upon the piston position, connecting rod- 
to-crank ratio, number of cylinders, etc., and is always varying, 
sometimes the energy imparted to the flywheel and crankshaft is in 
excess of the mean requirements of the engine, and sometimes below 
it, so that the speed of the flywheel will tend to undergo corresponding 
fluctuations. 

Alternatively, the actual load upon the engine may vary periodically, 
but this condition does not often occur in the case of petrol engines, 
unless they be employed for driving pumps or compressing air. 

Thus, in the former mode of variation of output energy during a 
revolution, if the line MN (Fig. 220) represents the mean height of 
the torque diagram, this line may be regarded as the mean torque 
equivalent to the steady load, or resistance, imposed upon the 
engine. 

Then the shaded area above the line MN will represent the excess 
of energy obtained during the explosion stroke and imparted to the 
flywheel, thereby causing an increase in its speed. 

Similarly, the shaded area below the line MN shows the energy 
obtained at the expense of the kinetic energy of rotation of the flywheel 
and required for the idle strokes (exhaust, suction, and compression) 
of the engine. 

This absorption of energy from the flywheel will cause a reduction 
in the speed of the flywheel. 

Further, at the points A and B the rates at which work is being 
done on and by the crankshaft is the same, and hence the flywheel's 
speed will be neither increasing nor decreasing at these points. 

At A the flywheel will just have ceased to supply energy to the crank¬ 
shaft, and therefore its speed will be a minimum at this point, as 
indicated by the lower diagram in Fig. 220, which represents the speed 
fluctuation curve for a working cycle. 

Similarly, at B the flywheel will have just finished receiving surplus 
energy from the crankshaft, and so its speed will be maximum here, 
as shown in the lower diagram. 

Obviously, the excesses and deficiencies of energy are equal for a 

290 
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cycle of operations, or, in other words, the algebraic sum of the positive 
and negative areas for a complete cycle is zero. 

If the area of the torque curve for one complete cycle of operations 
(for any type of engine) be denoted by E, and the greatest of the 
separate areas above or below the mean torque line be denoted by 

<5E 
£E, then the ratio ^ is termed the Coefficient of Fluctuation of Energy. 

hi 

The following table gives some actual values for the energy fluctua¬ 
tion coefficient in different types of petrol engines. 

TABLE XVI 

Type of Engine Energy Coefficient 

1 
Per cent 

Single-cylinder 97 
Two-cylinder, vertical cranks at 180° .... 60 
Two-cylinder, 90° twin ...... 74 
Four-cylinder vertical ...... 6 
Six-cylinder vertical ....... 2-4 
Seven-cylinder radial ....... 2-6 

We have assumed the load upon the engine, until npw, to be constant 

during a revolution, but more generally if this load be regarded as 
variable, such as when the engine drives a pump (hydraulic or pneu¬ 

matic) or either the clutch or tyres slip during a cycle of operations, 
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etc., then the curve of load torque would be no longer represented by 

a line such as MN in Fig. 220, but by a curve such as M'N' as shown 
in Fig. 221, then the fluctuation of energy will be represented by the 

shaded areas, and the points A and B will still represent the places of 

minimum and maximum speeds, respectively, of the flywheel, but their 

actual maximum values will not be the same. 

The ratio of the extreme range of speed to the mean speed of the 
flywheel, resulting from the variation in the engine effort and load 

“ effort,’’ is termed the Coefficient of Speed Fluctuation, and it is the func¬ 

tion of the flywheel to keep this coefficient down to an assigned limit. 
Since the energy which can be stored in a flywheel is proportional 

to its moment of inertia and to the square of its angular velocity, 
there is considerable latitude in which to design an appropriate fly¬ 

wheel to fulfil its functions, for the mass, diameter, and disposition of 

the material can be varied, as desired, so as to obtain an appropriate 

moment of inertia. 
As an illustration of the values of the speed fluctuation coefficient 

(expressed as a percentage) employed in practice the following list is 

given— 
TABLE XVII 

Type of Engine 
Coefficient of Speed 

Fluctuation 

Single-cylinder petrol engine 5 to 10 
Four-cylinder petrol engine . . 1 to 2 
Six-cylinder petrol engine ..... 0-5 to 1 0 
Seven-cylinder radial engine 0*1 to 0-4 
Steam engine driving machine tools .... 28 
Steam engine driving pump ..... 5 
Steam engine driving electrical machinery 0-6 
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Determination of Flywheel Proportions 
It is required to find the size of flywheel which will give a certain 

limiting speed variation under working conditions. 

Let the mean speed of the flywheel, expressed as an angular velocity, 

be o>0, and q the coefficient of speed fluctuation given. 

If coj and o>2 be the maximum and minimum speeds, then q =■ 

If I be the moment of inertia of the flywheel and E0 the energy of 

rotation at its mean speed of the flywheel 

Then E0 = - Ico02 

and the fluctuation of energy <JE will be given by 

<5E =- ~ T(mj2 — ea,2) *= - l(a)x — a>2) (co, + oj2) 

- T(^i - 

- 2E0q 

ro2) (o0 2E0 

Whence E0 = — 
2 q 

From this result the energy E0 of the flywheel necessary to keep 

the speed variation within the assigned limits is known, since the 

fluctuation <5E is known from the torque diagram. 

If the mean speed co0 be known, we have 

, 2E„ <5E 

and since I = MP, where M is the mass and k the radius of gyration 

of the flywheel, either of these quantities may be variable in choosing 

an appropriate size of flywheel. 
Example. If the flywheel be made up of an annular rim connected 

to the central boss by arms, then if WR and Ws be their respective 
weights, and kr and kg their respective polar radii of gyration, we have 

I = WRfcr2 H Ws*a* 
If the rim of flywheel be of rectangular section, and of internal and 

Ri2 + Ro2 _ 
external radii Rx and R2, then we have kr2 =--^- — R approxi¬ 

mately in practice. 

, . R2 
Usually k* — — 

so that WR + ->=) 
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Hence it will be, evident that in order to make qy the speed variation, 

a minimum for a given energy fluctuation, the weight and radius of 

the flywheel rim should be as large as conveniently possible. 

Peripheral Stresses 

The radius of the flywheel is limited in practice by the centrifugal 

tension or stresses produced in the material of the flywheel itself by 

the centrifugal force due to rotation. 

Thus it can readily be shown that the centrifugal tension in the 
0)V2 

rim of a flywheel is-lb. per sq. in., where v is the peripheral velocity 

in feet per second and a) the weight per foot of a bar l sq. in. in section. 
Now, for plain cast-iron, such as is used in flywheels, co — 3-37 lb. 

per ft. per sq in. section, and the ultimate tensile strength is about 

8 tons to the square inch, or about 18,000 lb. per sq in , i.e. / 

= 0-1024*;2. 

3’3w» 

9 

The bursting speed is then given by 

0 32-2 x 18,000 
v- — —- 

3-37 

from which v ~ 415 ft. per sec. 

The safe working peripheral speed is usually obtained with a factor 

of safety allowance for ordinary cast iron of about 18, and will be seen 

to be equivalent to a peripheral speed, in cast-iron, of 97 ft. per sec. 

Much, however, depends upon the actual design of the flywheel, 

and upon the frequency and magnitude of the energy fluctuations, 

etc., and it has been found, in practice, inadvisable to exceed a peri¬ 

pheral speed, in plain cast-iron, of 80 ft. per sec. and 120 for alloy 

cast-iron flywheels. 
Numerous cases of “burst flywheels” have resulted from employing 

peripheral speeds exceeding this figure. 

Another factor concerned in flywheel strength is that due to initial 

casting stresses, which may very appreciably weaken the rims and 

their supports. 
Further, with cast iron, the metal is not usually homogeneous, 

air-bubbles being often interspersed with the metal, and the balance 

may be thereby impaired, thus causing additional stresses on the 
flywheel rim. Centrifugally cast-iron wheels are not, however, subject 

to this drawback. 
The adoption of forged steel and cast steel, for flywheels, is becoming 

the practice for high-speed engines and machinery, and in certain 

cases steel rims have been shrunk on to the rims of cast-iron flywheels, 
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and even cast-steel wire rope has been employed with cast-iron fly¬ 

wheels, enabling the working speed with the latter material to be 
trebled. 

With special alloy-steel flywheels the working peripheral speed 

should not exceed 200 to 250 ft. per sec., and for forged or stamped 
mild steel or iron wheels, 140 ft. per sec. 

For any other material, the safe working rim speed will vary as the 

square root of its ultimate tensile strength, and inversely as the square 

root of its density or weight per linear foot. 

Thus, if/, =- tensile strength in lb. per sq. in.; w, - weight of the 

metal per cubic in., in lb., k — factor of safety and v ~= safe rim speed 

in feet per sec., then— 

v 
/2-6835/, 

V tr . k 

Inertia Forces producing Bending Action on Connecting 
Rod 

Let the connecting rod be situated as shown in Fig. 222, so that it 

is at right angles to the crank. 

Then the resultant acceleration of the whole connecting rod in a 

direction parallel to OC will cause an inwardly-acting inertia force 

F upon the rod, acting at some point /, and causing a bending action 

to occur. 
Let m1 be the weight per unit volume of the rod, then, assuming 

the section of the rod to be constant throughout its length, the weight 

per unit length is given by m = m1 A, where A is the sectional area 

of the rod and 1 = PC. 

(1) Dealing with this simplest case of a uniform section rod first, 

the inward acceleration at C is given by co2r, where w is the crank pin 

angular velocity. 
At any poiht X situated at a distance x from P the normal acceleration 

x x 
wifi be j . w2r, and hence the acceleration is proportional to the distance 
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from P, and can therefore be represented by the triangle PCE, whose 

breadth at any part represents the normal acceleration at that place. 

The resultant force normal to the rod is evidently the integral of 
all the component accelerations similar to the elementary length dx 

at x from P. 
The force causing acceleration of such an element is 

<5F 
m x 
— co2r . ox 7- 
9 1 

Hence the resultant force F 

and acts at - l from P 
o 

»l 

x - O 

m 

m (o2r 

9 T 
xdx 

u)2lr 

F 
The reactions at P and C are therefore — and ~ F respectively. 

u O 
The rod, may now be treated as a beam supported at the ends and 

loaded with a force or weight F 
The bending moment at any given point such as X is then given by 

or 

M 

M 

3 

ma)2r 

6lg 

m x' 
- a)2r . 
g 61 

(l2x - x2) 

3 

(1) 

It will be seen from this that the bending moment varies not as 

the distance x from B, but as x(l2 — x2), and that the curve of bending 
moment has the equation y — kx(l2 — x2), where y is the B M and 

1c a constant . 
dy 

The maximum B M. occurs where — =- 0 
dx 

that is 

or 

l2 - Sx2 = 0 

x — 
l 

V3 (2) 

Substituting this value of # in (1) we have 

ma)2r l2 

m"~9V3'9 

For the purposes of design it is necessary to be able to compute 

Mwaa. in this way, in order to determine the maximum bending stress 
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in the rod. Thus, if Z be the “strength modulus’9 of the section of 
the rod, the maximum stress is given by 

M ^2M 
For a round rod / - = —3^, d - diameter of rod at 

tt d3 7rd3 ' 

32" 

maximum B.M. place, and for a rectangular rod of breadth b and 
depth d 

6MTOrtr 

J ~~bd2~ % 
(2) If the section of the rod be not uniform, but varies all along 

the rod, as in Fig. 223, according to some law of sectional variation 

K “ <t>(x), where x is the distance from P. 

\\^^Resuitant Centrif Loading 

of Sectional Area 
or Weight. 

Fig. 223. Bending of Irregular Section Connecting Kod 

Then the centrifugal force upon an elementary length dx at distance x 

from P is given by 

(xfr x 
<5F = m1. — . (f>(x)dx . y 

where l —- PC. 

The resultant force F upon the rod will then be given by 

mlojb . , 
F = —-— I 6(x) .x.dx 

9l J*- or 
the value of which will depend upon the law of variation of the section. 

Thus, if the section increases uniformly from P toC (neglecting the 

big and small ends) 

then K = a . x, where a is a constant 
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mxcu2r Cx~l 
i _ —— ax2 _ dx 

gi Jx-o 
m1w2r alz 

~ gl ' 3 

For more complex variations of section it is simpler to perform the 
integration graphically by dividing the rod up into a number of parts 

by parallel planes to the crank OC, and finding first the mass of each 

part from the average sectional area, and then the resultant force 

upon each mass due to its acceleration in the direction parallel to OC. 
The resultant of all of these component forces can be then easily 

obtained. 

km 

and 

The Connecting-rod as a Strut 
Besides being subjected to inertia bending forces, the connecting 

rod is also subject to axial thrust due to the piston and piston inertia 
pressures, which will create budoling stresses quite apart from the 

inertia stresses 
The rod may be treated as a strut hinged at each end and loaded 

with a load equal to the greatest thrust which can occur, due to the 
piston pressure corrected for inertia effects 

Thus, if T be the maximum axial thrust m rod, 

T = 
1 

COS <f> 

Mo)2r 
P_- 

L 9 

where P is the total piston load and M the reciprocating mass, </> being 

the angle CPO (Fig. 222) and n = ratio of connecting rod to crank, 

r = crank radius. 

The maximum value of this expression can easily be determined 

by foregoing methods 
Knowing T, then the stress to which the rod is subjected, as a strut, 

is given by* 
_T^ tt2EI 

'c~ K . A + l2 

where K = the factor of safety, usually lying between 6 and 10, under 

the above conditions oi load application, 

A = the sectional area (assumed uniform at the centre), 

* E = modulus of elasticity of material of rod, 

* Where ~ is greater than 60 or 70, h being the least radius of gyration. For 
k i 

smaller values of r* the Rankine, Gordon, or similar type of formula must be 
employed* * 
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I = least moment of inertia of cross-section iat middle of 

rod, about an axis through its C.G. 

T 
The value of the working stress fc = can thus be calculated. 

Resultant Connecting Rod Stress 
In order to determine the strength of the connecting rod under 

the combined influence of bending and end thrust, it is necessary to 

calculate the stresses due to these two causes separately, and to add. 
them together for the resultant stress.* 

Thus Resultant stress /r — / + /c 

and from this value /R the dimensions of the rod are determined, 

knowing the properties of the material employed. 

Thus if the rod be made of mild steel, fn should not exceed 7000 lb. 

per sq. in., more ^specially on account of the alternating action of 
the loading, which is compressive for the firing, exhaust apd com¬ 

pression strokes, and tensile for the suction and any misfiring or idle 

strokes. 

For cast-steel rods, /R should not be greater than about 12,000 lb. 

per sq. in., whilst for the alloy steels, such as nickel steel, nickel chrome, 

chrome vanadium, etc., the value of the permissible working stresses 
will in general be much higher, and will depend upon the ultimate 

breaking stress, elastic limit, and fatigue-resisting properties of these 

materials. 

Connecting Rod Stress in Aircraft Engine 
In the case of the twelve-cylinder V-engine, particulars of the 

inertia and pressure forces of which are considered on page 27, the 

connecting rod is treated as a strut in direct compression under a 

load due to the maximum explosive pressure, which is equivalent to 

a total load of 8830 lb. 
The section of the rod is an I-beam, of area 0*3529 sq. in., so that 

the unit compression stress is given by— 

8830 

Pc== 0^627 = 25’°00,b- 8q' 

The Rankine formula for hinged struts may be written— 

F = FC + 
c . P . L2 

I 

* This approximate method is usuaUy sufficiently accurate for most purpose^, 
but it does not take account of eccentricity of loading, non-uniformity of material, 
etc. 



TABLE XVIII* 

The Firing Order of Various Types of Petrol Engines 

No of 
Explo 
sions m 
2 revs 

Maximum Minimum 

Type of Engine Firing Order 
Explosion 
Interval 

in 
degrees 

Explosion 
Interval 

in 
degrees 

1. Single cylinder 
2 Two-cylinder vertical opp 

1-1-1, etc 1 720° 720° 

cranks 1 2-1-2, etc 2 860° 360c 
3. Two-cylinder vertical 

cranks at right angles l-2-1-2, etc 2 450° 270° 
4. Two-cylinder 90° V-type 

‘ 5 Two-cylinder horizontal 
1-2 1-2, etc 2 450° 270° 

opp , with cranks opp 1-2-1-2, etc 2 360° 360° 
6 Three-cylinder Y type, rad 1-3-2-1, etc 3 240° 240° 
7. Five-cylinder radial type 1—3—5—2—4—1, etc 5 144° 144° 
8 Six-cylinder radial type 1 -3-5-2-4-6-1, etc At 180° 60° 
9 Seven-cylinder radial type 1-3-6-7-2-4- 

6-1, etc 7 102° 102?° 
10. Eight-cylinder radial type 1-3 5-7-2-4 

6-8-1, etc 135° 45° 
11 Nine-cylinder radial type 1 3 S-7-9-2- 9 80° 80° 

4 6-8 1 
12 n-cylinder radial type, 1-3-5-7-9, etc , to 

3 720° 1 720° 

l n 
where n is even (n- 1 )-2-4-6 8, n 

etc. , to n 2 n 

n cylinder radial type. 1-3-5-7-9,etc to 
720° where n is odd ti — 2—4—6—8, etc , n \ 720° 

to (n — 1) n n 
13. Four cylinder vertical r 1-3-4-2-1 i 

:( 1-2-4-3 1 ) 
4$ ! 180° 180° 

14 Six-cylinder vertical 7 1-4-2-6-3-5 \ 6 120° 120° 
(cranks in 3 pairs — 120°) 1-5-3-6-2 4 6 120° 120° 

\ 1-3-2-6-4-5- ) 6 120° 120° 
15. Eight-cylinder V-type 1R-4L-3R-2L 

(two sets of four cyldrs ) 4R-1L-2R-3L f 
Alternative 

8§ 90° 90° 

1R-4L-2R-3L 
. 4R-1L-3R-2L 

8 90° 90° 

16. Twelve-cylinder V type 
cranks — 120° 
(two sets of six cyldrs ) 

1R-6L-4R-3L- 
2R-5L-6R-1L- 
3R-4L-5R-2L 

12 60° 60° 

Alternative 
1R-6L-5R-2L- \ 
3R-4L-6R-1L- } 
2R-5L-4R-3L J 

Another Altern 

12 60° 60° 

1R-6L-3R-4L 
2R-5L-6R-1L- 
4R-3L-5R-2L 
Propeller end 

12 60° 60° 

17 Twelve-cylinder Arrow type 7 2 & 
(four cylinders m three 4 11 6 

12 rows) 10 5 12 
1 8 3j 

* See also Tables XII, XIII, XIV and XV {Mean, interval for other periods, 120°. 
Mean interval for other periods, 90°. 

§ This is the usual order adopted m practice. 
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where P = the total end load in lb. = 8830 lb., 

L = length between hinge centres in inches = 12 in , 

I = least moment of inertia of I-beam = 0*1038 in 5, 

c -= a constant = 0*000526 for hinged struts. 

Hence F =- 25,000 4 
0*000526 x 8830 X 144 

0*1038 

- 25,000 + 6450 

= 31,4501b. 

The connecting rods are of high tensile strength alloy steel, namely, 

heat-treated nickel chrome or chrome-vanadium steel. 
With an ultimate compressive strength of 65 tons per sq. in., the 

above stress corresponds to a factor of safety of about 9*25. 
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Roller-ended valve tappet, 65, 66, 67 
Rotol propeller balancing machine, 179 
Rubber for engine mountings, 142 et 

seq. 
-, properties of, 142 
-, vibration dampness, 123 
Rubbing factor PV, 32, 50, 51 
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Trunnion-type engine mounting, 145 
Tuning inertia, 101 
Twelve-cylinder arrow-type engine 
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| Two-cylinder vertical engine torqUe 
I diagrams, 41, 42, 43 
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