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Foreword 

The tremendous research and development effort that went into the 
development of radar and related techniques during World War II 

resulted not only in hundreds of radar sets for military (and some for 
possible peacetime) use but also in a great body of information and new 
techniques in the electronics and high-frequency fields. Because this 
basic material may be of great value to science and engineering, it seemed 
most important to publish it as soon as security permitted. 

The Radiation Laboratory of MIT, which operated under the super¬ 
vision erf the National Defense Research Committee, undertook the great 
task of preparing these volumes. The work described herein, however, is 
the collective result of work done at many laboratories. Army, Navy, 
university, and industrial, both in this country and in England, Canada, 
and other Dominions. 

The Radiation Laboratory, once its proposals were approved and 
finances provided by the Office of Scientific Research and Development, 
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire 
project. An editorial staff was then selected of those best qualified for 
this type of task. Finally the authors for the various volumes or chapters 
or sections were chosen from among those experts who were intimately 
familiar with the various fields, and who were able and willing to write 
the summaries of them This entire staff agreed to remain at work at 
MIT for six months or more after the work of the Radiation Laboratory 
was complete. These volumes stand as a monument to this group. 

These volumes serve as a memorial to the unnamed hundreds and 
thousands of other scientists, engineers, and others who actually carried 
on the research, development, and engineering work the results of which 
are herein described. There were so many involved in this work and they 
worked so closely together even though often in widely separated labora¬ 
tories that it is impossible to name or even to know those who contributed 
to a particular idea or development. Only certain ones who wrote reports 
or articles have even been mentioned. But to all those who contributed 
in any way to this great cooperative development enterprise, both in this 
country and in England, these volumes are dedicated. 

L. A. DuBRinoE. 
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Preface 

This volume of the Radiation Laboratory Series attempts to cover 
the basic principles underlying the operation of klystrons and planar 

grid tubes as oscillators and amplifiers. It has been the desire of the 
authors to present the technical and theoretical aspects of this field as 
completely and as rigorously as possible, even though this meant the 
exclusion of a great deal of descriptive material, and has certainly added 
to the difficulty of a first reading. Nevertheless it was felt that the 
greatest need for a book on this subject at the present time was for one 
from which the fundamental principles for the design and understanding 
of microwave vacuum tubes could be obtained. No attempt has been 
made to describe how a vacuum tube is actually constructed. Rather 
the emphasis has been placed on presenting the fundamental material 
which the tube designer or tube user must have at his command. 

Because the radio-frequency work of the Radiation Laboratory was 
concentrated almost entirely in the frequency region above 3000 Mc/sec, 
this book naturally tends to emphasize the operation of tubes in that 
region. However the basic principles are the same at lower frequencies 
although as a general rule the electrical and mechanical requirements 
become more difficult to attain as higher frequencies are approached. 
Certainly it is the authors^ hope that this is a book on the principles of 
operation of particular types of tubes, and not a treatise on the generation 
of oscillations in a particular frequency band. 

The wartime development of microwave radar and communications 
was based on three important types of amplifier and oscillator tubes: the 
multicavity magnetrons, the klystron family of tubes, and the planar 
grid tubes (also called lighthouse tubes and disk-seal tubes). The 
extraordinarily rapid engineering development of the multicavity magne¬ 
tron as a transmitting tube is certainly one of the great advances of the 
war and is discussed elsewhere in the Radiation Laboratory Series. The 
present volume attempts to complete the story, and to cover in particular 
the development of microwave receiving tubes, local oscillators, and 
signal amplifiers. The use of klystron and planar grid tubes as transh 
mitting oscillators, and in a few cases transmitting amplifiers, is noi 
neglected. But up to the present their greatest use has been in receivers. 
It seems hardly necessary to caution the reader that the future develop* 
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PREFACE viii ^ 

ment of microwave receiver tubes will hardly be limited to the two types 
discussed here. One need only recall the announcement in June of this 
year of the development first at Oxford University and later at the Bell 
Telephone Laboratories of the traveling-wave tube, which may well 
revolutionize our idea of amplifier design. 

This volume has been written in parts based on tube types and con¬ 
struction, a division in form rather than in use or purpose. Following 
four introductory chapters discussing tube types and functions and basic 
electronic and circuit phenomena common to all types of tubes there is a 
part on planar grid tubes and a part on klystrons. This division has 
seemed desirable to the authors since it has made the purely mathe¬ 
matical developments more logical than would have been the case if the 
division in function had been followed. This arrangement should reduce 
the number of cross references, and make the reading more straight¬ 
forward. Aside from a few special cases of r-f circuits which are used 
solely for microwave vacuum tubes, no attempt has been made in this 
book to discuss the general properties of distributed constant circuits, 
since these problems have been discussed thoroughly elsewhere in this 
series. 

Except for the important work of H. V. Neher and his group, most 
of the effort at Radiation T^aboratory on microwave receivers went into 
the design of circuits, and the corollary tube testing and specification. 
We have drawn freely upon the work of other organizations both in 
England and in this country, and in particular upon the work of the 
Bell Telephone Laboratories, the General Electric Company, and the 
Sperry Gyroscope Company. Since the bulk of the wartime work has 
just been declassified and remains unpublished, it has been necessary 
to refer to internal organization reports, which are not available generally. 

With the increasing awareness of engineers and physicists of the 
relative merits of various systems of units, it has become the duty of the 
preface writer to mention and defend the system chosen for the book at 
hand. The present volume uses the MKS system for reasons no more 
cogent than (1) this system is becoming more and more popular among 
engineers, and is making headway even among physicists; (2) amperes, 
ohms, and volts are units which the tube designer naturally uses. 

We should like to express our thanks to Professor Eugene Feenberg, 
now at Washington University in St. Louis, Mr. Edward Barlow, and 
Dr. Marvin Chodorow, of the Sperry Gyroscope Company for many 
helpful comments and criticism of the manuscript. We are indebted 
to our former colleagues Dr. Milton Gardner, now at the University 
of California, and Mr. M. C. Waltz, now at the Bell Telephone Lab¬ 
oratories, for a great deal of help in preparixig the information for 
this volume. In particular we wish to thank Dr. W. G. Shepherd, of 
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the Bell Telephone Laboratories, who has read the entire manuscript 
and has helped us greatly by his criticism. 

The publishers have agreed that ten years after the date on which 

each volume in this series is issued, the copsuight thereon shall be relin¬ 

quished, and the work shall become part of the public domain. 

Albert G. Hill. 
Cambridge, Mass., 

July, 1946. 
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CHAPTER I 

INTRODUCTION 

By J. B. H. Kuper 

During the last twenty years or so the development of radio communi¬ 
cation and of allied techniques such as radar and television has involved 
the use of higher and higher frequencies. During most of this period this 
trend has resulted from the need for more channels in the useful frequency 
spectrum; on the other hand, in such notable instances as the develop¬ 
ment of radar, the use of higher frequencies arises from the need for highly 
directional antenna systems of reasonable size. Whatever the reason 
behind the upward extension of frequencies in any particular case, the 
pace has been set by the progress achieved in development of electron 
tubes capable of generating higher frequencies efficiently and reliably. 

14. Electron Tubes at Very Frequencies.—In tubes of con¬ 
ventional design the upper limit of the useful frequency range is fixed 
by one or more of the following factors: (1) the inductance of the leads 
to the tube elements, (2) the transit time of the electrons in the space 
between electrodes, (3) the losses by radiation from the tube structure 
and connecting leads, and (4) the necessity for small structures with 
limited capabilities for heat dissipation. Careful attention to these 
points has permitted great progress in the design of conventional tubes 
for frequencies up to hundreds of megacycles per second. The micro- 
wave region has been exploited, however, primarily by the use of unortho¬ 
dox methods of vacuum tube construction and new principles of vacuum 
tube operation; these have mitigated or entirely eliminated the unde¬ 
sirable effects of the first three difficulties mentioned above, and the higher 
efficiencies resulting have tended to diminish the importance of the 
fourth. 

( The most universal difference between microwave tubes and those of 
conventional design is that the former incorporate cavity resonators (or 
at least are so constructed that they can form portions of cavities) and 
so avoid the effects of lead inductance and radiation losses. ^ The pr6p- 
erties of cavity resonators are considered in Sec. 1-3 and in more detail 
in Chap. 4. 

An additional point of comparison arises in connection with the elec¬ 
tronic principles that are utilized in microwave tubes. Since the same 
basic laws of electronic phenomena apply at aU frequencies, quite different 
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4 INTRODUCTION ISkc. 1-2 

aspects of these basic laws are utilized at high and at low frequencies. 
For one thing] the important interaction of an electron stream with a 
high-frequency circuit takes place not after the electron has been col¬ 
lected on an electrode, but rather when the electron is in an ‘interaction 
gap” between vacuum-tube electrodes of the high-frequency circuit; 
the interaction of electrons and electromagnetic fields is basic, the col¬ 
lection of electrons very minor. As a still more drastic departure in 
electronic behavior, the finite transit time of electrons—which has a 
deleterious effect as triode operating frequencies are increased—is 
actually utilized as an essential element in the generation of microwave 
power in the klystron and magnetron. ^ These and other features of elec¬ 
tronic phenomena at microw^ave frequencies are discussed in Chap. 3. 

The construction of most microwave tubes is so different from that 
of conventional radio tubes that the sole remaining point of similarity is 
the standard tube base used for the d-c connections of most klystrons 
and microwave triodes All in all, these methods of construction and 
the principles of operation of these new tubes have been so successful that 
during the wartime period the frequency spectrum available for radio 
communication and allied applications was multiplied to at least thirty 
times its prewar extent. Furthermore, this development made it possi¬ 
ble, for example, to direct radiated energy into a searchlight beam of the 
order of magnitude of one degree in width mth an antenna small enough 
to be installed in an aircraft. Before going into details of the relevant 
vacuum tube questions involved here, however, it will be necessary to 
discuss briefly some basic points about the microwave frequencies. 

1*2. Microwave Region. Frequency Range,—At the outset it is well 
to emphasize that the microwave region (or centimeter-wave region) is 
characterized by the techniques employed and does not have precise 
frequency limits. In a sense it is not so much a spectral band as a frame 
of mind. ^The distinctive characteristics are the use of distributed- 
constant circuits enclosed by conducting boundaries in contrast to the 
lumped-constant elements familiar in lower frequency applications. 
Ordinary circuit components (condensers, coils, and resistors) are useless 
as lumped elements in the microwave region since they are usually so 
large in comparison with the wavelength that they cannot be considered 
as purely capacitive, inductive, or resistive elements. ' 

In the official designations for portions of the radio frequency spec¬ 
trum, the ‘^very high frequencies” include the region from 300 to 8000 
Mc/sec (wavelength from one meter to 10 cm), and the teiim ‘^super 
high frequencies” is applied to the region above 3000 Mc/sec. llUs 
division is rather awkward since the boundary is artificial, but fortu¬ 
nately the term microwaves” has been left out of the definitions, and 
so can be used as suggested here. 
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Cavity resonators may be used at frequencies in the 100 Mc/sec 
region or lower, the only objection being their bulk; waveguides have 
been used below 600 Mc/sec. On the other hand, oscillators with unen¬ 
closed circuits employing more or less lumped elements have been built 
for frequencies exceeding 1000 Mc/sec. It is impossible, as these ex¬ 
amples show, to set a definite lower limit to the frequency range of the 
microwave region; nevertheless, in»any specific case, it is easy to tell at a 
glance whether microwave techniques are being employed. For prac¬ 
tical purposes, the microwave region, as defined by techniques, may be 
considered to( start at about 1000 Mc/sec and to extend indefinitely— 
to more than 30,000 Mc/sec, and preferably until it merges into the infra¬ 
red region.^ For most of the specific illustrative cases that occur at later 
points in tliis book, the frequencies lie between^lOOO Mc/sec and 30,000 
Mc/sec (wavelengths between 30 cm and one cm). 

Properties of Microwaves,—Second only to the obvious advantage of 
offering more room for services requiring wide frequency bandsj[the most 
important property of the microwaves is their short wavelengthg^^ It is a 
basic principle in physical optics that radiation in a directed beam can 
arise only from a structure that is large in comparison to the wavelength. 
Therefore, in order to get narrow beams without resorting to very large 
antennas, it is necessary to use short waves. 

The propagation of microwaves is practically limited to line-of-sight 
distances. Some energy, however, penetrates below the horizon because 
of scattering and diffraction effects. Under the right meteorological 
conditions, atmospheric refraction may be strong enough to guide micro- 
wave radiation along the surface of the earth to many times the horizon 
distance. 

Microwaves are reflected strongly from bodies of water or from most 
metaj structures, and are reflected to varying degrees by land masses 
and by other structures. Because of this fact, it is common to find a 
direct ray, and one or more reflected rays, at a given remote point. Such 
multipath transmission results in an interference pattern in space; any 
minor change in path lengths, amounting to a half wavelength or so, 
causes severe fading. 

Special Features of Microwme Receivers,—^As is explained in later 
chapters, satisfactory r-f amplifier tubes for the microwave region are not 
yet available; where the maximum sensitivity is required in a receiver 
it is necessary to use the superheterodyne principle. The nonlinear ele¬ 
ment (or mixer) is almost always a point-contact rectifier (usually a tung¬ 
sten point pressing on a silicon crystal); although crystal mixers always 
give a conversion loss they are preferable to existing vacuum tubes. 
With the multigrid tubes used as converters at lower frequencies, it is 
usual to get amplification as well as mixing; with the microwave con- 
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verters, on the other hand, the power at the *'beat'^ or difference fre¬ 
quency available for amplification in the i-f amplifier is less than the 
incoming signal power. Offsetting the conversion loss to some extent, the 
crystal mixer contributes remarkably little noise in itself. 

At moderately high frequencies the useful sensitivity of a radio 
receiver is ordinarily limited by extraneous noise that originates outside 
the receiver. The principal sources of extraneous noise are atmospheric 
electrical phenomena (such as distant thunderstorms) and discharges or 
transients in electrical machinery. In a ''noisy” location a receiver with 
high sensitivity will be useless for reception of very weak signals, but in 
a "quiet” location the full sensitivity may be useful. The situation is 
markedly different at very high frequencies, however. As the frequency 
is raised, the extraneous noise becomes less and less important for two 
reasons: (1) above the critical frequencies for ionospheric reflection only 
those sources of noise within (approximately) line-of-sight distances can 
be effective, and (2) the ordinary transients in electrical equipment do 
not contain components in the extreme high frequency range. On the 
other hand, as the frequency is raised the receiver itself tends to become 
"noisier,” that is, a larger portion of the total noise is generated in the 
early stages of the amplifier. In the microwave region (and to a large 
extent at frequencies in the ultrahigh-frequency range), it is no longer 
true that the environment limits the useful sensitivity of a receiver; 
rather the limit is set in the receiver itself by the noise generated therein. 

Noise Figure,—This generation of noise has led to the introduction of 
the concept of the noise figure,^ by means of which the performance of a 
real receiver is measured in terms of that of a theoretically perfect receiver. 
The concept is by no means limited in application to radio receivers at 
very high frequencies; analogous criteria could be applied to many other 
devices—^galvanometers, for example. 

In an ideal receiver the only source of noise (within the receiver) is 
the thermal agitation noise associated with the input impedance. ITie 
magnitude of this noise power can be calculated from thermodynamic 
reasoning, given the limiting bandwidth of the receiver, A/; the noise 
power is kT Af watts, where T is the absolute temperature of the input 
impedance and k is Boltzmann^s constant, 1.38 X 10^** watt-seconds per 
degree absolute. An actual receiver may have many additional sources 
of noise contributing to the total output noise. For any device it is, 
thus, easy to assign a "noise figure”—that is, the ratio of the actual 
noise output power to the noise that would have been obtained if only 
the input impedance were contributing noise. Alternatively, the noise 
figure is the ratio to kT Af of the minimum input signal for which the 

^ For a full discussion see H. T. Friis, "Noise Figures of Eadio Receivers/^ Proc, 
32, 418 (1044), and correction 83, 729 (1944). 
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output signal and noise are equal. When several noisy devices are 
cascaded, their contributions may always be referred to a common point 
(normally the input terminals) by making allowances for the gain. The 
noise figure is commonly expressed in decibels; for an ideal device the 
noise figure is unity, or zero db. 

In a straight superheterodyne receiver the noise figure is determined 
by the converter and the first (one or two) i-f amplifier stages. When an 
r-f amplifier is used before changing frequency, the amplifier noise figure 
is the controlling factor for the whole receiver, provided only that the 
gain of the amplifier is sufficient to swamp the noise of the converter. 

1*3. Microwave Techniques. Coaxial Lines and Waveguides,— 
Because of radiation losses, parallel wires and other open transmission 
lines are never used (except as antennas) in the miciowave region. 
Instead, coaxial lines and waveguides are universally employed. Although 
it may be said justly that a coaxial line is a waveguide, the use of the 
two terms in a restricted sense is well established an(i. also convenient 
where it is desired to call attention to the presence or absence of a center 
conductor. 

A coaxial line may contain a low-loss dielectric to support the center 
conductor; or instead of a solid dielectric it may have stub lines, short- 
circuited at a distance corresponding to i wavelength, to support the 
center conductor. The latter method is favored when it is necessary to 
handle large amounts of power over fairly long distances; where losses 
are unimportant, as in low-level work with short runs, the solid dielectric 
lines are convenient. A waveguide may be a hollow conductor of any 
cross-section, or even a solid rod of dielectric, provided the lateral dimen¬ 
sions are not too small compared with the wavelength in air of the radia¬ 
tion to be handled; a waveguide may be excited in many different 
transmission modes. With very few exceptions, however, practical wave¬ 
guides are metallic tubes of rectangular cross-section; the larger (inside) 
dimension lies between one-half and one air wavelength, w^hich means 
that the ^'dominant'' mode is the only one that can be propagated. 
Compared with coaxial lines, a waveguide has the tremendous advantage 
of requiring no support for a center conductor; it can handle much higher 
powers without insulation failures, but it is dispersive—^that is, the phase 
velocity depends on the frequency. This can be troublesome when wide 
frequency ranges are to be handled. 

Cavity Resonators,'^lt is a familiar fact that a piece of coaxial line or 
waveguide that is one-half wavelength lopg and is short-circuited at the 
ends will behave as a resonant circuit. As a result of the absence of 
radiation and dielectric losses, together with the relatively large areas of 
the conductors, the Q of such a r^nant circuit may be very high in 
comparison with typical coil-and-condenser combinations. It is possibly 
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less commonly realized that any region bounded by a conducting surface 
will be a resonant cavity, and will possess an infinite number of resonant 
frequencies corresponding to different modes of oscillation. Usually, 
only the mode with the lowest resonant frequency is of interest, but it is 
not safe to ignore the existence of the higher modes. 

In ordinary lumped-constant circuits the behavior is determined by 
the resistance, inductance, and capacitance. In the lumped-constant 
approximation an alternative specification in terms of the resonant fre¬ 
quency, the Q, and the shunt resistance is equally valid although less 
familiar. In microwave resonant circuits the latter representation is 
still possible, indeed it is generally the most useful; on the other hand, 
the Jt, L, and C picture is seldom, if ever, an accurate one. In general, 
it is not possible to define an inductance or capacitance associated with 
a part of a resonant cavity in an unambiguous manner; contradictions 
are sure to appear sooner or later. This difficulty, which is at the heart 
of the difference between lumped-constant and distributed-constant cir¬ 
cuits, is important mainly in pointing out the dangers in taking simple 
lumped-constant equivalent’^ circuits too seriously. Although often 
useful in qualitative discussions, and sometimes capable of yielding 
quantitative results, these equivalent” circuits for distributed-constant 
circuits must be used very carefully. 

Obviously, many types of resonant cavities are possible. For wave- 
meters, in particular, higher modes in round waveguides are often 
employed, since they may have higher Q’s than the simpler field con¬ 
figurations. In electron tubes, however, the cavities must satisfy two 
primary conditions: (1) the dimensions of the conducting walls must 
correspond to the desired resonant frequency, and (2) there must be a 
region in which there is strong interaction with an electron stream. 
This second condition commonly means that the cavity must have a 
region in which the electric field is relatively strong across a gap short 
enough to be traversed by an electron in a fraction of a cycle. Hence 
the resonators used in microwave tubes have regions (the interaction 
gaps) which resemble ordinary condensers. As a result of this fact it is 
often permissible to use the lumped-constant equivalent circuit repre¬ 
sentation in discussing these resonators. 

Reentrant Camty Resonators,—^The necessity for an efficient interac¬ 
tion gap—one with a high r-f field extending over a short distance which 
can be traversed by an electron beam—^has led to the use of a form of 
resonator (discussed in Chap. 4) consisting of a cylindrical box with a 
central post reaching almost across from top to bottom. Extreme forms 
of this resonator may be either a cylindrical pillbox with a vanishingly 
short center post, or a coaxial line short-circuited at one end and provided 
with an end plate close to the free end of the c^ter conductor. The 
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latter form may be considered as a short-circuited quarter-wavelength 
line loaded by a capacitance (the interaction gap) at the open end. In 
any case apertures or grids are provided at the interaction gap to permit 
passage of the electron beam. 

In the microwave region a tube can scarcely be considered apart from 
its cavity, so the properties of resonators, Q, shunt resistance, and length 
of interaction gap will be mentioned frequently in succeeding chapters. 
These four properties, with the resonant frequency, are determined by 
the dimensions of the resonator and by the conductivity of the material 
of which it is made. To a large extent microwave tube resonator design 
is a compromise between the requirements for a high shunt resistance 
and an efficient interaction gap. 

1*4. Principal Tube Types.—There are three principal types of vacuum 
tube that have been useful in the past in the microwave region: cavity 
magnetrons, specially designed space-charge control tubes (mostly 
triodes), and klystrons. (The latter are often called velocity-modulation 
or velocity-variation tubes.) 

C(wity Magnetrons.—The tremendous advance in microwave tech¬ 
niques during the war had as its most important ingredient the invention 
of the cavity magnetron. By the end of the war it was possible to build 
magnetrons to deliver pulse powers in excess of a megawatt in the 3000 
Mc/sec region or continuous powers approaching a kilowatt. The 
magnetron is treated elsewhere in this series,^ and this book is devoted 
to other types of tubes useful in applications where the power require¬ 
ments are more modest. 

Special Spcu>e-charge Control Tubes,—In view of the difficulties experi¬ 
enced with space-charge control tubes at high frequencies, the space- 
charge control tubes logically take the form of disk-seal triodes. ^ This 
class,of tube, the best-known members of which are popularly called 
‘lighthouse tubes’^ because of their shape, has a planar structure in 
contrast to the cylindrical forms common at lower frequencies. The 
leads to the electrodes are brought out of the vacuum envelope through 
disk seals (metal to glass) and the whole tube is designed for insertion in 
a resonator. In the lighthouse tubes an oxide-coated cathode is mounted 
on the end of a cylindrical post a few thousandths of an inch from a mesh 
grid, and the anode is the end of a similar cylindrical post on the other 
side of the grid. 

Two examples of the lighthouse type of microwave triode are shown 
(without the associated resonant circuits) in Fig. 1-1. In Fig. 1-2 one 
of these tubes, the 2C40, is shown in cross-section. The plate connection i 
is the top cap, the grid is brought out to the intermediate dbk, and the 

^ Bee Volume 6 of the Radiation Laboratory Seriea, 
* E. D. McArthur, Disk-Seal Tubes,” EleUronicSf 98, February 1945. 



10 INTRODUCTION [SlDC. 1.4 

base shell provides the r-f cathode connection. When these tubes are 
inserted in a coaxial-line resonator, the lead inductance is practically 
eliminated since the vacuum tube electrodes are integral parts of resonant 

Fig 11 —Typical lighthouse tubes (a) the 2C43 and (b) the 2C40 

Fig. 1 2.—Mechanical details of the 2C40 tube. 

eavities. At the same time this construction eliminates losses by radia* 
tion. In order to reduce transit-time effects as much as possible, the 
interelectrode spacings of microwave triodes must be made extremdy 
small; thus in the 2C40, one of the examples shown in the figure, the 
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cathode and plate have a diameter of 4.6 mm, the cathode-to-grid spacing 
is about 0.1 mm, and the grid-plate spacing is about 0.3 mm. 

Figure 1*3 shows the 2C43 (one of the tubes of Fig. M) mounted 
inside a coaxiaHine type of cavity resonator. 

Microwave triodes thus represent the logical development of the con¬ 
ventional triode to adapt it to operation at very high frequencies—a 
development that is limited mainly by purely mechanical difficulties 

, inherent in maintaining the necessary close spacings in manufacture. 
Klystrons.—Klystrons stand in sharp contrast to the lighthouse 

tubes, which are the logical adaptations of low frequency design princi¬ 
ples to microwave requirements; the klystrons^ are the result of the 

utilizing of, instead of minimizing, comparatively long transit times. In 
the two-resonator klystron amplifier, the simplest type for purposes of 
discussion, a beam of electrons from a gun is first accelerated to a high 
velocity. The beam then passes through the interaction gap of the input 
resonator (sometimes called the ^^buncher^^), where each electron receives 
an additional acceleration (positive or negative) depending on the phase 
and magnitude of the gap voltage during the passage of the electron. 
The beam, now containing electrons of various velocities, next traverses a 

drift space'' in which the variations in velocity of the electrons give rise 
to density modulation. Since the velocity of each electron depends on 
the instant at which it crossed the buncher gap, an electron which was 
accelerated will overtake one which started out earlier and was retarded, 

^ R. H. Varian and S. F. Varian, High-Frequency Oscillator and Amplifier/! 
/. App. Phy8.j 10, 321 (1939); D. L. Webster, ‘‘Cathode-ray Bunching,'' /. App. 
Phys., 10,401 (1939); D. L. Webster, “The Theory of Klystron Oscillations,'' /. App, 
Phys., 10, 864 (1939); A. E. Harrison, “Klystron Technical Manual," Sperry Gyro¬ 
scope Co., Inc., Great Neck, Long Island, N. Y. 1944 (contains a good bibliography of 
early papers); J. R. Pierce, “Reflex Oscillators," Proc, 38, 112 (1945); E. L. 
Ginzton and A. E, Harrison, “Reflex-Klystron Oscillators," Prac. 34. 97P. 
am). 
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and in this manner the electrons tend to form bunches in the beam. 
The bunched beam passes through the interaction gap of the output 
resonator (sometimes called the ''catcher^0; here the high freo/iency 
component of the beam curient, as represented by the bunches and 
intervening regions of low density, drives the output resonator into oscil¬ 
lation. This resonator and its output coupling act as a step-down trans¬ 
former to deliver useful power to the load. If a portion of the output 
power from such an amplifier is fed to the input resonator in the correct 
phase, self-sustained oscillations will be obtained. 

In the type of operation thus described, control over the density of 
the electron stream is exercised not by direct density modulation in a 
single cathode-grid control region, but rather by a more indirect process 
occurring in a control region composed of three parts: the region of d-c 
acceleration, the velocity-modulating input gap, and the drift space in 
which velocity modulation is converted to density modulation. The 
most basic advantage of this new method of modulation lies in the fact 
that the initial (velocity) modulation is applied after d-c acceleration, 
rather than before d-c acceleration as in the triode. Thus, although 
there must be somewhat less than one cycle transit time through either 
the cathode-grid region of the triode or the input gap of the klystron, 
in the latter case the transit is made at high velocity. The requirements 
on electrode spacings are thus greatly relaxed for the klystron, and the 
upper limit ,of attainable frequencies is increased by at least an order 
of magnitude. 

In the discussion of klystrons in Chap. 9 and subsequent chapters it 
will be seen that at first glance satisfactory klystron operation might be 
expected with a very small input-gap r-f voltage and a long drift space; 
more careful consideration shows that space-charge debunching forces 
become harmful with a long drift space. The resulting short drift spaces 
and sizable r-f gap voltages have as a consequence the need for cavity 
resonators with high shunt impedances. In a general way this means 
high-0 circuits, and the ensuing complications of keeping two or more 
such circuits in tune. 

This question of tuning contributes strongly to the fact that of all 
the various forms of klystrons by far the most common is the reflex 
klystron oscillator; this tube differs from the other forms mainly in the 
fact that a single resonator serves as both bunchenand catcher. Instead 
of traversing a straight drift space the beam is turned back on itself by 
a retarding field, produced by a reflector electrode maintained at a 
potential negative with respect to the cathode. The reflected beam 
contains bunches, which result from the variation of transit time with 
velocity in a process formally similar to that occurring in the two^reso^ 
nator Uystron. The end result of the process of bunching in a retarding 
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field differs by a phase factor of 180® from the field-free drift-space 
bunching mentioned in the discussion of the klystron amplifier. The 
faster electrons penetrate more deeply into the retarding field and there¬ 
fore take longer to make a round trip; hence the electrons which made 
their first transit through the interaction gap early and were accelerated 
are overtaken by those which came later and were retarded. Oscillations 
may be produced in the reflex klystron provided the bunches in the beam 
return to the interaction gap at the proper phase to deliver energy to the 

Fig. 1‘4.—Cross sections illustrating principal features of (a) the 2'Cavity klystron and 
(6) the reflex klystron. 

resonator. This requirement can be met by adjustment of reflector 
voltage or spacing. 

The general construction of the reflex klystron oscillator and a two- 
resonator klystron amplifier is indicated schematically in Fig. 1-4. 
Figure 1*5 shows several commercial klystrons which furnish many of 
the examples in later chapters. 

1*6. Points of Comparison between Low-power Microwave Tubes.— 
Althou^ differing in structure and in principle of operation, microwave 
triodes and klystrons have many characteristics in common. Among 
these are the fields of application, the use of similar tsrpes of cavity resona¬ 
tors, and t^ fact that the tubes usually have axial S3anmetry with one- 
dimensionwelectron flow. 
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AppUmtion,—By far the most common use of micro)imve triodes and 
reflex Jklystrons has been as local oscillators in microwave receivers. 
Other applications have been as signal generators or low-power trans¬ 
mitters. The microwave triodes lend themselves well to pulse opera¬ 
tion; but klystrons are also useful, particularly where the duty ratio is 
high. Reflex klystrons are well adapted as frequency-modulated trans¬ 
mitters, especially where large frequency deviations are required. 

Fig, 1 5—Representative commercial klystrons (o) the 417A reflex klystron; (6) the 
41 OR two-resonator klystron, (c) the 707B reflex klystron with external cavity, (<i) the 
707B reflex klystron without external cavity, (e) the 723A/B reflex klystron with internal 
cavity 

Klystrons and microwave triodes can be used as superregenerative 
neceivers, of course, but these receivers have not found wide application 
in the microwave region. 

Re8onc^$,*-^li should be noted, as a point of similarity between the 
klystrons and the microwave triod^, that the requirements of each of 
these types lead to the use of the reentrant resonator which is discussed 
in more detail in Chap. 4. For purely mechanical reasons, however, 
the microwave triodes are ordinarily used in cavities which resemble 
capacitance-loaded coa^l lines, usually not operated in the funda^ 
mental mode but in the three- or flve-quarter-wavelength mode. Host 
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at the klystrons have integral cavities of a simple form; the 707B, an 
external-cavity type, is sometimes used also in a coaxial line restmator. 

Symmetry.—^Almost all microwave triodes and klystrons have struc¬ 
tures that are figures of revolution about an axis.^ The electron beam 
is located on or near the axis of symmetry, and apart from focusing effects 
the paths of the electrons are essentially one-dimensional. This permits 
a considerable simplification of the theoretical treatment of the two 
classes of tubes. Extremely simple theories, in which only rectilinear 
motions in uniform fields are discussed, are able to furnish surprisingly 

useful results. 
Fundamental Differences.—On the other band there are deep funda¬ 

mental di^mrences between microwave triode^ and klysttbns; as discussed 
earlier, these are concerned mainly with th(9' maimer of production of 
density vari^-tions in the electron beam. This^differenoe is often empha¬ 
sized clas#ying‘^ two types as “space-charge control” tubes and 
“velooily-vwiation” <1: “vdocity-modulatiorj'” tubes respectiiirdy. In 
the space-charge control tubes, the field at a'^rtual cathode {potential 
minimum) is varied, usually by changing the potential of a grid; the 
electron density in the beam traversing the output circuit is varied 
correspondingly. Although there is, of course, a slight variation in 
velocity of the electrons as the grid potential is changed, this is of no 
practical consequence; the primary effect is density variation. In the 
velocity-variation tubes, on the other hand, there are space-charge effects 
which noticeably alter conclusions based on simple bunching theory; 
but here, in turn, these space-charge effects are secondary. •' * 

Partly as a result of this faet'.tj^t space-charge and velocitjhyariation 
effects often are present in the i^^e tube, it may be useful to employ a 
different classification scheme de^nding on the velocity of the electrons 
in the. control region. Thus the space-charge control tubes may be 
referred to as “low-velocity” types, since the control is applied to elec¬ 
trons that are at rest or moving only very slowly. In the velocity- 
modulation types the electrons are first accelerated to a high velocity 
and then enter the input interaction gap, so it is natural to call them 
“high-velocity” tubes. 

1*6. Han of This Book.—Attention is devoted primarily to those 
specific types that have been widely used during the war and are there¬ 
fore comparatively well understood. These types are the Hghthouse 
tubes and the reflex klystrons. The amounts of space devoted to these 
two types indicate very roughly their relative importance to wartime 
apiflications; this ratio will very likdy carry over into peacetime work. 

^ Eatoeptions are $ome British double-^ap 8mg;te resonator tubes that have not 
been widely used and therefore are not discussed in this book eatoept in Sec. 2-4. 
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The book is divided into three main parts. The first is devoted to 
general discussions of tube types and a survey of the fundamental prin¬ 
ciples of resonators and electronics applicable to both categories of tubes. 
The space-charge control or low-velocity types are discussed in the second 
part, with most of the illustrative material referring to the lighthouse 
tubes. The third part is concerned with the klystrons, with two chapters 
on multiresonator tubes and the balance devoted to the reflex klystrons. 



CHAPTER 2 

SUMMARY OF MICROWAVE TUBE TYPES AND FUNCTIONS 

By D. R. Hamilton 

As noted in the preceding chapter, the main emphasis of this book is 
upon reflex klystrons and microwave triodes. Numerous other types of 
microwave tubes exist, however, and in order to clarify the background 

and signiflcance of the microwave triodes and reflex klystrons it is neces¬ 
sary to discuss the principal features and characteristics of these other 
tube types. This is most easily done by considering the various func¬ 
tions which vacuum tubes might be expected to fulfill at microwave fre¬ 
quencies; in this chapter the discussion of these functions is therefore 
used as a means of introducing the subsidiary tube types, comparing 
them with the tubes with which most of the remainder of the book is 
concerned, and indicating why they are not of paramount importance. 
At the same time this procedure serves to provide a bird’s-eye view of the 
situation in the various possible microwave vacuum-tube applications, 
and provides some indication of future trends in this field. 

2’1. Mixers.—The type of mixer used in any microwave application 
depends strongly on the requirements placed on this mixer. Thus, in 
radar application the received signals are very weak and the noise prop¬ 

erties of the mixer are of prime importance. At frequencies of 2500 
Mc/sec and higher, crystal mixers have much lower noise than any 
vacuum-tube mixer; this fact has resulted in the practically exclusive use 
of crystal mixers in radar development in this frequency range. Such 
mixers are discussed in detail in Vol. 16 of this series. 

On the other hand, in the future there may well be applications in 
which noise questions lose the transcendent importance which they have 
in radar; this fact opens up the possibility of the use of thermionic mixers. 
The most promising of such mixers have been the diodes. In designing 

a diode mixer there apply the same considerations which have led to the 
“lighthouse” type of construction for triodes, as discussed in Chap. 1. 
The best diode so far developed has been the British CV58; at 3000 

Mc/sec this tube used as a mixer has a noise figure of about 18 db, as 

compared to 9 db for the better crystal mixers. The 2B22, an American 
lighthouse diode, and the 2C40 lighthouse triode, give noise figures of 
21-22 db when used as mixers at 3000 Mc/sec. 

17 
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Klystron mixers were constructed in the early days of microwave 
development, before measurement techniques were refined to the degree 
of giving accurate noise figures; they were found to be too noisy for radar 
application. 

Since thermionic microwave mixers have received very little attention 
in recent years, and since comparatively little is known about them, they 
will not be discussed further in this book. 

2*2. Amplifiers.—In the development of wartime microwave radar 
there was no great utilization or intensive development of microwave 
amplifiers. This was the result of two primary factors: the lack of a 
good low-noise r-f amplifier for receiver work, and the excellence of the 
cavity magnetron as a transmitter for pulse radar. The post-war broad¬ 
ening of the types of microwave applications and the fuller utilization 
of the available frequency ranges will result in a greatly increased need 
for and development of microwave amplifiers in both the signal-amplifier 
and power-amplifier categories. 

As an illustration of this lattfer point there may be noted the announce¬ 
ment, just as the manuscript for this book goes into final form, of the 
development at the Bell Telephone Laboratories of the ‘Hraveling-wave^’ 
amplifier, originally invented at the Clarendon Laboratory, Oxford, 
England. Typical data quoted for an initial sample of this tube are as 
follows: at a frequency of 3600 Mc/sec, a gain of 23 db, a bandwidth of 
800 Mc/sec, output power 200 milliwatts, beam voltage 1600 volts, beam 
current 10 ma. Thus, although it will be seen shortly that klystrons 
and microwave triodes provide amplification suitable for many purposes, 
it is apparent that current postwar development will markedly change 
the amplifier situation from that to be described here. 

In this postwar development, voltage or low-level amplifiers will be 
required for the same reasons that have made their utilization so wide¬ 
spread in receivers designed for the broadcast and familiar short wave 
bands. Among the important advantages gained by using an r-f ampli¬ 
fier at the input to a receiver are: reduction of local oscillator radiation 
and image sensitivity in superhyterodyne receivers; isolation of receiver 
circuits from detuning effects of an antenna (in microwave parlance this 
would be called pulling^'); and, especially where remote cut-off tubes 
are used, reduction of cross modulation by nearby powerful transmitters 
on neighboring channels. In radar receivers the greatest possible sen¬ 
sitivity, determined by the noise figure, is required; in this respect the 
amplifiers so far developed cannot compete with the crystal converter 
at frequencies above about 1000 Mc/sec. In addition, it has been found 
helpful in pulse radar to utilize automatic frequency control for keeping 
the receiver correctly tuned to the radar transmitter; this tuning process 
is tremendously complicated by an r-f amplifier. These considerations 
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clearly do not apply to a communication system where, for example, 
fixed frequency operation is necessary and the avoidance of interference 
may be more important even than the noise figure. It thus seems that 
the development of suitable amplifiers will be a major project in the 
postwar era. 

In transmitter practice the use of a master oscillator-power amplifier 
arrangement is standard except at microwave frequencies. In the latter 
instance, the cavity magnetron used as a self-excited osillator is capable 
of generating enough power to make an amplifier following the oscillator 
a rather undesirable complication. Although the frequency stability 
of this arrangement is sufficient for the wide bands needed in pulse radar 
it is not up to the standards customary in communication systems at 
lower frequencies; in addition, the master oscillator-power amplifier pos¬ 
sesses the advantage of providing clean modulation, that is, amplitude 
modulation free of frequency modulation, or vice versa. 

The further discussion of the requirements imposed upon amplifiers, 
and the prospects of meeting these requirements, is broken up into 
separate discussions of signal or voltage amplifiers, and power amplifiers. 

Signal Amplifiers.—The requirements placed upon a signal amplifier 
for a specific receiver use depend upon the relative importance of noise 
figure and amplifier gain. As the amplifier gain is increased, a point is 
reached where the noise from the input stage of the amplifier swamps 
the noise from any subsequent devices; beyond this point any additional 
amplifier gain is welcome but not required, since the noise figure of the 
r-f amplifier now determines the ultimate sensitivity of the entire receiver. 

In addition to the noise and gain requirements imposed on a signal 
amplifier, the requirements for bandwidth, stability, and ease of tuning 
should be noted. The bandwidth must be great enough to accept the 
desired modulation with a reasonable allowance for inexact tuning, and 
the tuning must not be unduly sensitive to variations in temperature or 
voltages. The device must be sufficiently free from regeneration to avoid 
loss of bandwidth, or radiation of local-oscillator power fed back from 
the output circuit. Relatively low gains, by usual radio engineering 
standards, would be preferable to instability and the need for neutraliza¬ 
tion of feedback. 

Among the klystrons and microwave triodes in the 3000 Mc/sec fre¬ 
quency range there are no commercially available amplifiers whose per¬ 
formance approaches these requirements. There seems, however, some 
promise of the eventual availability of such klystrons or triodes; hence 
the present performance and future possibilities will be discussed in some 
detail. 

The behavior of noicrowave triodes as low-level amplifiers is discussed 
in detail in Chap. 6. The most nearly appropriate microwave triode 
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for low-level use at 3000 Mc/sec is the 2C40 lighthouse tube. It is seen 
in Sec. 6*6 that typical noise figures for the 2C40 are 21 db at 3000 Mc/sec 
and 16 db at 2000 Mc/sec. This is to be compared with a typical figure 
of 10 db for a 3000 Mc/sec receiver with a good commercially obtainable 
crystal converter. It is immediately apparent that the 2C40 tube is not 
useful as an r-f amplifier. It is of some interest, nevertheless, to note the 
values of the gain-bandwidth product, for this amplifier. (Since gain 
and bandwidth are both commonly desirable features, and since for a 
given tube the gain-bandwidth product remains approximately constant 
when either of these quantities is changed, the gain-bandwidth product 
is often referred to as the ‘^figure of meritof the amplifier.) Measuring 
bandwidth, A/, in Mc/sec, and meaning by the gain G the power gain, 
G Af has a value of approximately 20; adjusting load for maximum gain 
gives, typically, (? = 5 and A/ = 4 Mc/sec for operation with plate 
voltage 250 volts, plate current 30 ma. The gain would be approxi¬ 
mately unity if no regenerative feedback were used. 

The performance just quoted has been considerably improved upon 
with experimental triode and tetrode amplifiers at 3000 Mc/sec. (See 
Sec. 6-3.) The best performance obtained gave a noise figure of 9 db 
with a power gain of 20, bandwidth 6 Mc/sec, or a figure of merit of 120. 
This performance involves refinements in construction which have so far 
prevented consistent production on a laboratory scale or any production 
at all on a commercial scale. 

Klystron amplifiers may be divided into two categories, the two- 
resonator or single-stage type, and the three-resonator or cascade type; 
in performance, the latter type is distinguished by its high gain. This 
distinction is discussed below in connection with power amplifiers, and 
in somewhat more detail in Chap. 10 (particularly in Sec. 10-8). Since 
the distinction involves mostly matters of gain and bandwidth, it is not 
basic to the present discussion. This comes about because klystrons 
normally have high-impedance input circuits, in comparison to microwave 
triodes; this in turn means that the important factor in klystron noise is 
the shot excitation of the input circuit and the subsequent amplification 
of this noise; any increase in gain merely increases signal and noise 
equally. Just as in triodes, excessive noise has always been the limiting 
factor which prevents the use of klystrons as r-f amplifiers; hence there 
isdittle value, at this point, in distinguishing between single-stage and 
cascade amplifiers. 

Data are presented in Sec. 10’4 for a typical klystron amplifier in 
which, just as in the 2C40 triode, no attempt has been made to design 
for low-noise operation. In this tube the noise figure showed a minimum 
value of 25 db at a beam voltage of 275 volts and beam current 2 ma; 
at the same time the power gain was 6 and the bandwidth about 1*6 
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Mc/sec. This low gain is not characteristic of klystron amplifiers of the 
cascade type, and resulted simply from the minimizing of noise figure 
with respect to beam voltage in this particular tube; at the expense of 
10 db in noise figure the gain was raised from 6 to 1000. As discussed in 
Sec. 10*4, it appears possible to design for r-f amplifier service a klystron 
in which noise is very greatly reduced below the above figure by a reduc¬ 
tion in current, while at the same time maintaining high gain by a reduc¬ 
tion in voltage. Such a tube would operate at less than 100 volts with 
several tens of microamperes beam current. As in the case of the triode, 
the prime difficulty to be overcome is the necessary refinement of con¬ 
structional technique to allow the use of the small dimensions which 
correspond to low voltages; but the klystron under discussion would not 
rely upon uniformity of the cathode emission properties and, as is usual, 
the constructional refinements are probably not as great as for the cor¬ 
responding triode. 

The fact that in the klystron there is a relatively large input r-f gap, 
and the fact that the input cavity is not subjected to certain loading by 
the presence of the cathode in this gap, contribute to giving the klystron 
a normally higher gain and smaller bandwidth than the triode amplifier. 
The gain-bandwidth product (as usual, a constant mth respect to load¬ 
ing changes) is, however, large under normal circumstances (1500 at 
one point in the above-quoted example); one would not expect this 
property to be changed too drastically in a low-noise amplifier. 

Power Amplifiers,—Noise, which is the most important feature in a 
signal amplifier for receiver use, becomes quite unimportant in a power 
amplifier intended for transmitter application. Bandwidth, ease of 
modulation, frequency stability, output power, gain become more impor¬ 
tant; the exact relative importance of these factors depends on the 
application. 

A number of lighthouse-like triodes are available as excellent power 
amplifiers at 1000 Mc/sec. The most nearly satisfactory tube at 
3000 Mc/sec has been the 2C43. This has been used primarily as a 
pulsed oscillator; in c-w amplifier service it would probably be limited by 
plate dissipation to powers of the order of one watt, which would not be 
very useful. Methods of modulating such triodes have not been given 
much study, primarily because of lack of urgent application. 

As already noted, klystron amplifiers exist in two forms. Historically, 
the earliest form of power-amplifier klystron was the two-cavity single- 
stage type typified by the 410R, the characteristics of which are dis¬ 
cussed in some detail in Sec. 10’7. This particular tube is characterized 
(in c-w operation at 3000 Mc/sec) by 10 per cent efficiency, 18 watte 
output power, power gain of 10 at maximum output, and power gain of 
25 at small-signal operation. The bandwidth corresponding to these 
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operating characteristics, as estimated from the circuit Q^s, is about 
2.5 Mc/sec. 

Such values of gain are, however, insufficient for such applications 
of the klystron power amplifier as the generation of microwave power at 
quartz-crystal-controlled frequencies. In these applications, the fre¬ 
quency of a crystal oscillator is multiplied in successive stages, the last 
one of which is a frequency-multiplier klystron. Since the output power 
of high multiplication frequency-multiplier klystrons is low (commonly, 
a few tens of milliwatts), it is necessary to have a rather large power gain 
in the klystron power amplifier which follows the frequency multiplier. 
It was primarily for this purpose that the high-gain cascade power- 
amplifier klystron was developed. The cascade amplifier which is 
directly comparable with the type 410R is the type 2K35; at a beam 
voltage of 2000 volts and with tuning and loading for maximum gain this 
amplifier has a power gain of 600 at maximum output power, small- 
signal power gain 1500, and bandAvidth (again, calculated from known 
Q^s) of 1.3 Mc/sec. 

Other klystron amplifiers (primarily cascade amplifiers) have been 
developed at frequencies from 1000 to 5000 Mc/sec with output powers 
ranging from 75 to 750 watts. Since there was no great wartime 
demand for such devices, none of them has been manufactured in quan¬ 
tity. The general characteristics of these tubes are quite similar to 
those quoted for the two specific examples given above. These two 
examples were cited primarily to indicate orders of magnitude and to 
illustrate the basic difference between the two-resonator amplifier, which 
has a figure of merit comparable to the triode (25 in this case), and the 
cascade amplifier with a figure of merit of 800. 

A price is paid, of course, for this increase in G A/; primarily, the price 
is a decrease in bandwidth and an increase in tuning inconvenience 
in adding an additional high-0 resonator. This same increase of tuning 
inconvenience occurs in going from the microwave triode, which has one 
low-Q circuit, to the two resonator klystron. In either case, the presence 
of more than one high-Q circuit makes a simultaneous tuning of these 
circuits difficult and makes tuning adjustments sensitive to changes in 
surroundings. This difficulty is greatly reduced if some gain is ^sacrificed 
by use of stagger-tuning or additional loading; and a sacrifice of gain is 
much more palatable in a cascade amplifier than in a single-stage ampli¬ 
fier. These considerations of tuning also suggest that klystron amplifiers 
are particularly adapted to fixed-frequency application. 

A klystron power amplifier may easily be amplitude modulated by 
modulation of the beam current, with no accompanying phase modula¬ 
tion, although no klystron amplifiers have been constructed with lugh-mu 
control grids for this purpose. Phase modulation may be obtained by 
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modulating the beam voltage and thus the time of transit of the bunches 
from the input circuit. If beam current modulation accompanies the 
voltage modulation, amplitude modulation is present in the output signal. 

2*3. Frequency Multipliers.—The ultimate standard of frequency at 
conventional wavelengths has long been the quartz-crystal oscillator, by 
means of which frequencies are referred bac.k to the mechanical vibration 
frequency of a quartz crystal. Much of the work that has been done on 
frequency multipliers at microwaves has been motivated by the need for 
microwave frequency standards, the output frequency of which is an 
integral multiple of a quartz-crystal frequency. Such an arrangement 
provides the best primary frequency standard at present; as a secondary 
standard, the frequency multiplier has strong competition in arrange¬ 
ments by which frequencies are controlled with reference to a standard 
cavity. 

A second and more transient application of frequency multipliers 
has been their use as a source of signal-generator power in the initial 
stages of exploring a new band of microwave frequencies. In several 
instances when oscillators have not been immediately available at new 
frequency bands, it has proved practical to obtain useful amounts of 
power by frequency doubling or tripling from previously established 
bands. 

Frequency multipliers with output frequencies up to 1000 Mc/sec 
have commonly utilized various combinations of triode doublers and 
triplers. Frequency multipliers at higher output frequencies have 
usually been either frequency-multiplier klystrons or arrangements 
utilizing the nonlinearities of detecting crystals; but in at least one instance 
the British have used a CV90 (planar triode), driven at 18 cm, to provide 
useful output power at 6 cm. As between klystrons and detecting crys¬ 
tals, the klystron is a more high-powered device which possesses the 
capability of electronic control and may be modulated advantageously. 
Multipliers using detecting crystals do not involve the development of a 
new vacuum tube, and hence are especially suited to use as emergency 
signal generators at new frequencies. 

Since very little work has been done on the use of microwave triodes 
as frequency multipliers with output frequencies at 3000 Mc/sec or 
above, further discussion will be confined to the utilization of klystrons 
and crystals for this purpose. 

Frequency Multiplication by Klystrons,—^As is discussed in Sec. 9*2, 
the basic feature that makes ^e klystron an excellent frequency multi¬ 
plier is the presence of a driving-current waveform which sharp dis¬ 
continuities and which is, therefore, very rich in harmonics; this is 
in marked contrast to the triode. The amplitude of the harmonic in 
the klystron driving current should drop off, theoretically, as nr^; in 



24 SUMMARY OF MICROWAVE TUBE TYPES [Sbc. 2-3 

one experimentally observed case, as noted in Sec. 11-2, it appears to 
decrease as for 10 m g 30. The harmonic content is high enough 
so that practical applications have utilized frequency-multiplier klystrons 
working on the twentieth harmonic. 

These applications have not, so far, involved quantity production. 
Most of the work done on multiplier klystrons has been aimed at the 
development of tubes which, in association with cascade-amplifier klys¬ 
trons, would provide tens of watts of crystal-controlled power for c-w 
transmitters. The nature of the kl3rstrons developed for this purpose is 
dependent on the gain of the amplifiers to which the output of the multi¬ 
plier is fed, and is dependent on the tubes which are available for the 
preceding stages of multiplication. In the present state of high-frequency 
triode development, the optimum input frequency for a klystron multi¬ 
plier is probably in the 750-1000 Mc/sec range; many of the earlier 
klystron multipliers have an input frequency in the vicinity of 300 Mc/sec. 
Such multipliers provide tens of milliwatts output power on the tenth to 
twentieth harmonics, at efficiencies of the order of one-half per cent. 
This output power provides sufficient drive for a high-gain cascade 
amplifier. 

The input r-f power required to drive a multiplier klystron is, how¬ 
ever, quite appreciable, and may be of the order of watts for the tubes in 
question. It has, therefore, been found economical in some cases to use 
a second cascade amplifier at the output frequency. This allows a large 
reduction in total d-c power consumption; it also allows loading and 
stagger-tuning for increased bandwidth and stability. 

Utilization of Reference Cavities as Freqiiency Standards.—While this 
subject does not strictly come under the heading of ‘^frequency multi¬ 
pliers,'^ it is nevertheless relevant as an alternative means of accurate 
frequency control. Reference cavities derive their absolute calibration 
from multiplied quartz-crystal frequencies as the primary standard; but 
they appear, in many cases, to be rather more convenient than the latter 
for use as practical secondary standards. This fact depends in large 
measure on the circuits that have been developed for controlling the fre¬ 
quency of an electronically-tuned oscillator with reference to a resonant 
cavity; for further details on this subject the reader is referred to Chap. 2 
of Vol. 11 of this series. 

Frequency Multiplication in Detector Crystals.—The rectified current 
that flows in a detector crystal possesses harmonics of the input frequency. 
With proper circuit arrangements these harmonic current components 
may be made to deliver appreciable power to a transmission line. A 
typical arrangement for accomplishing this is shown in Fig. 2-1. The 
input line to the crystal is so dimensioned that it supports only the low¬ 
est coaxial mode at the frequency in question; it is then fitted with chokes 
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which prevent any harmonic power from flowing into this line. The 
output line, on the other hand, is a waveguide which transmits the har¬ 
monic but does not transmit the 
fundamental frequency. The ad¬ 
justable shorts are necessary to adjust 
the standing waves in the vicinity of 
the crystal. Such an arrangement, 
with optimum adjustment, has given 
10 mw output power at 20,000 
Mc/sec with an input power of 100 
mw at 10,000 Mc/sec. 

In some instances—as for refer¬ 
ence frequency standards—a much 
smaller amount of output power is 
satisfactory. For such applications, silicon crystals have been used to 
generate a few microwatts of power at 5000 Mc/sec when driven by about 
one watt of power at 100 Mc/sec. 

2*4. Oscillators.—As has been already noted, the principal applica¬ 
tion of the tubes Avith which this book is primarily concerned has been 
as free-running oscillators. The various applications have placed rather 
varied requirements on oscillator performance; hence the discussion will 
be turned immediately to the tube types, without further generalization 
about oscillators as a class in themselves. 

Triode Oscillators.—One of the primary advantages of these oscil¬ 
lators is that they provide a signal which is stable in frequency without 
the necessity for complicated regulation of the power supply. The 
vacuum tube is in itself basically simple in form; but this fact is offset 
by a number of complications which arise in connection with the external 
circuit. Typical of microwave triodes which are adaptable for use up to 
3500 Mc/sec are the 2C40 and the 2C43 lighthouse tubes; numerical 
data for these two tubes will serve to indicate several characteristics of 
triode oscillators. 

Of the two tubes mentioned, the 2C40 has the smaller dimensions and 
therefore lends itself to low voltage applications such as a receiver local 
oscillator or a bench signal generator. At 3000 Mc/sec and 250 volts 
the 2C40 provides about 100 milliwatts output power at 2 per cent effi¬ 
ciency. It may also be pulsed to 1500 volts with a peak output power 
up to 150 watts. The 2C43 is intended primarily for higher-voltage 
operation; at 3000 Mc/sec it operates with 20 to 25 per cent efficiency 
when pulsed with a plate voltage of 3000 volts. These tubes are most 
commonly used in an external ‘^reentrantcircuit which is described in 
some detail in Chap. 7; this circuit provides a strong feedback from tank 
circuit to input r-f gap, as is made necessary by the fact that at 3000 
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Fig. 2*1.—R-f circuit for frequency dou¬ 
bling in crystal detector. 
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Mc/sec these triodes have a gain not much greater than unity when they 
are operated as amplifiers with no feedback. 

Little work has been done on the modulation of microwave triode 
oscillators, aside from pulse modulation. Sincje the phase of the elec¬ 
tronic transadmittance is determined by the finite electron transit time 
in the grid-cathode and grid-plate regions, this phase varies with plate 
voltage and a corresponding small variation of frequency with plate 
voltage is present; but since the total transit time is small (only about 
IT radians at 250 volts plate voltage in the 2C40), a large voltage ch6<nge 
is required for a small frequency change. This is, in fact, one of the great 
advantages of triode oscillators for many applications. Frequency modu¬ 
lation by means of reactance tubes seems to have possibilities, but this 
question has not been investigated in detail. Amplitude modulation of 
microwave triodes is even more an unknown field. It is to be expected 
that post-war applications will bring about a thorough exploration of 
these modulation questions. 

TwO’^^aviiy Klystron Oscillators,—These are a simple generalization of 
the klystron amplifier, with feedback provided from output to input 
circuit. Since klystron amplifier gain is sizable, a much weaker feedback 
is required than in triode oscillators, and the two circuits do not lose 
their identity. Both circuits possess an inherently high Q\ hence the 
adjustment of these two circuits to the same frequency, and their simul¬ 
taneous tracking in any subsequent tuning, present practical difficulties 
in tunable operation. 

Early in the development of pulse radar there was some development 
in Britain of two-resonator klystron oscillators as fixed-tuned pulsed 
transmitters. Efficiencies of 20 per cent and peak output powers of tens 
of kilowatts were obtained at 12 kv and 3000 Mc/sec; but further devel¬ 
opment was overshadowed by pulse magnetron development. Typical 
c-w operation at lower voltages is provided by the type 41 OR, a general- 
purpose tube which has external feedback and hence may be used also 
as an amplifier. This operates at 2000 volts and 3000 Mc/sec with 
16 watts output power and 8 per cent efficiency, when loaded and tuned 
for maximum efficiency. (See Chap. 11.) 

Klystron oscillators in general are characterized by the existence of 
discrete modes of oscillation^’; ‘‘mode” is used here not in th6 coupled 
circuit sense, but in the sense of denoting certain limited regions of elec¬ 
trode voltage within which oscillation occurs. (In a two-resonator 
oscillator this electrode voltage is the beam voltage.) Within a given 
mode the frequency of oscillation changes continuously from one end 
of the mode to the other as electrode voltage is changed; the total change 
in frequency thus available between the two half**maximum-power points 
of a mode is called the “electronic tuning range” for that mode. 
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This feature lends itself to frequency modulation; the only disad¬ 
vantage is that the modulation must be applied to a low-impedance elec¬ 
trode. By variation of relative resonator tuning and feedback a given 
oscillator may be adjusted either for maximum efficiency and minimum 
electronic tuning range (maximum stability) or for a lower efficiency and 
a larger electronic tuning range. There are enough adjustable param¬ 
eters available so that, in the latter case, the amplitude of oscillation 
may be made practically independent of frequency over most of the elec¬ 
tronic tuning range. Thus for the above example of the 410R, with 
adjustment for maximum output power, the electronic tuning range 
between half-power points is 6 Mc/sec; adjustment of feedback and rela¬ 
tive tuning of the resonators reduces the output power to 8^ watts but 
allows electronic tuning over a range of 11 Mc/sec with only a 15 per 
cent decrease in output power below maximum. 

Reflex Klysion Oscillators.—^The reflex klystron oscillator utilizes only 
one resonant circuit; in this feature, as already noted in Chap. 1, lies one 
of its greatest advantages. 

One consequence of this change to a single resonator is an efficiency 
which is inherently lower than ijt the two-resonator oscillator. Thus 
in the 723 family of reflex klystrons, the category manufactured in the 
largest quantity during the war, the output powers for the most commonly 
used mode at 300-volt operation range from 30 milliwatts at 9000 Mc/sec 
to 150 milliwatts at 3000 Mc/sec, corresponding to efficiencies of 0.5 and 
2.3 per cent respectively. These powers are, however, quite adequate 
for receiver local-oscillator operation; and the input d-c power is small 
enough so that the low efficiency is of no importance. 

An additional consequence of the change from two to one resonator, 
and one which is intimately related to the decrease in efficiency, is an 
incre^e in electronic tuning range. Furthermore, electronic tuning 
may now be accomplished by changing the voltage of the reflector, a 
high-impedance electrode which draws no current. To continue with 
numerical characteristics for the 723 family, electronic tuning ranges of 
approximately 46 and 30 Mc/sec are obtained at operating frequencies 
of 9000 and 3000 Mc/sec; these tuning ranges require reflector voltage 
changes of 20 and 33 volts respectively. 

This electronic tuning behavior is the second great advantage of the 
reflex klystron. Its most useful contribution in the past has been to 
make possible automatic frequency control in radar receivers; by means 
of continuous automatic control of the local oscillator frequency, the 
receiver is constantly tuned to the transmitter. The electronic tuning 
properties of the reflex klystron also make it very adaptable to frequency- 
modulation communications work at microwaves. The reflex klystrons 
which were developed for quantity production during the war were 
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intended to be used as local oscillators; progress on other types initiated 
at a later date has shown that performance with efficiencies of 6 or 8 per 
cent, output powers of 10 watts, and percentage electronic tuning ranges 
larger than those quoted above, is quite possible. This suggests strongly 
the future use of reflex klystrons as frequency-modulated communica¬ 

tions transmitters. 
Secondary-Remission Reflex Oscillators,—The reflex klystron will often 

operate with the reflector at voltages positive as well as negative with 
respect to the cathode. Under these conditions the normal process of 
bunching is interrupted and some or most of the electrons collide with 
the reflector instead of being reflected; any secondary electrons resulting 
from this process will form a secondary beam which returns to the 
resonator. The primary beam, when it strikes the reflector, will be 
already amplitude-modulated by the usual velocity-modulation and 
bunching action; and if the reflector is a strong secondary emitter, a 
similarly amplitude-modulated and much intensified secondary beam will 
be returned through the resonator. 

This principle has been utilized in developing an oscillator which 
operates at 3000 Mc/sec and 2000 vblts, with output powers from 5 to 
25 watts and efficiencies from 3 to 5 per cent.^ The primary current is 
controlled by a high-mu control grid; modulation of this grid voltage 
produces output modulation which may be largely amplitude or largely 
frequency modulation, depending on the particular operating point. 

In view of the fact that the properties of secondary emitters are not 
completely stable with respect to time, and since it appears that con¬ 
ventional reflex klystrons with similar output powers and efficiencies and 
cleaner modulation characteristics will shortly become available, it is 
not anticipated that these secondary-emission oscillators will receive 
extensive development. They will not be discussed further in this book. 

Oscillator-huffer Klystrons,—^As in low-frequency practice, it is often 
useful to have a free-running oscillator separated from the eventual load 
by an intermediate buffer stage; such an arrangement will, for example, 
prevent changes in the load from having any effect on the frequency of 
oscillation. Such isolation may be obtained with the two-resonator 
klystron oscillator by adding a third resonator through which the electron 
beam passes after leaving the two resonators which constitute' thfr free- 
running oscillator. Any detuning of the third resonator, which is not 
coupled to the first two, will have no effect on oscillation frequency. 
On the other hand, if the length of the drift space between second and 
third resonators is small, the harmonic content of the beam is not greatly 

1C. C. Wang, ^‘Velocity Modulation Oscillators with Secondary Emission 
Current,” Engineermg R^rt 185, Westinghotise Electric and Mfg. Corp., Bloomfield, 
N J., Oct. 10, 1944. 
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altered as the beam passes from second to third resonator; and with 
proper adjustment the maximum power obtainable by coupling a load 
to the third cavity is nearly as great as the maximum obtainable (with 
different adjustments!) from the second cavity. The prototype of the 
oscillator-buffer klystron is the type 2K34, which is derived from the 
type 410R in the manner described above. 

Because of its basic connection with the two-resonator klystron oscil¬ 
lator, the oscillator-buffer klystron is not further discussed in this book. 

Floating-drift-tube Klystron Oscillators,—By fusing into a single two- 
gap resonator the first and second resonators of a two-resonator klystron 
oscillator—as, for example, by removing the conducting walls that sepa¬ 
rate these two resonators—many of the circuit tuning problems which 
beset the two-resonator oscillator are dispensed with. The resulting 
oscillator should have the tuning convenience of the reflex klystron; at 
the same time, by choice of gap dimensions when the tube is designed, 
the ratio of input-gap to output-gap voltage may be adjusted to any 
desired value and the oscillator may thus be given the electrical charac¬ 
teristics of either the reflex or the two-resonator klystron. On the other 
hand, the drift-tube must still be provided with mechanical and thermal 
contact with the external tube envelope although there should be no 
r-f electrical connection. This latter point introduces difficulties, such 
as parasitic resonances in the various means used for supporting the 
drift tube. 

The most commonly known example of a floating-drift-tube oscillator 
is the 2K40, formerly the 1280CT, which utilizes an external cavity and 
is thus tunable over a wide frequency range up to 10,000 Mc/sec. 

While this category of oscillator seems to have many advantages, it 
has not received any extensive development; and since the operating 
principles are straightforward modifications of those used with reflex and 
two-resonator klystron oscillators, the floating-drift-tube oscillator will 
not be further discussed in this book. 

The Heil Tube,—This designation is applied to a klystron which is 
closely related to the floating-drift-tube oscillator. A ribbon-like elec¬ 
tron beam is maintained in this form by magnetic focussing and is passed 
through a coaxial line, the axis of which lies in the plane of the electron 
beam. The electrons of the beam thus enter the coaxial line in a direc¬ 
tion perpendicular to the axis, passing from outer to inner conductor; 
they then pass through the interior of the center conductor, during which 
time they are shielded from any r-f fields which exist in the coaxial line; 
and finally they pass from inner to outer conductor. The coaxial line 
thus serves as input and output gap, and the interior of the center con¬ 
ductor serves as field-free drift space. In one direction from the electron 
beam the coaxial line is short-circuited at a point approximately a 
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quarterwave away; in the other direction it leads, through appropriate 
transformer section of line, to the external load. 

When operated in the manner described, with a single one-way transit 
of the coaxial line, performance is obtained which is comparable to that 
of a reflex klystron operating at the same frequency, voltages, and transit 

time. The oscillator may, however, be operated with the electron beam 
reflected for multiple transits of the coaxial line. This gives rise, in a 
typical case, to an increase in efficiency by a factor of four; but it also adds 

considerable noise component to the output signal. 
The development of Heil tubes has been limited to Standard Tele¬ 

phones and Cables, Ltd., England; the initial tube type, from which many 
others have followed, is the Type S22A. Since these tubes have not 
been used at all in the United States, and since their principles of opera¬ 
tion are basically similar to those of other klystrons, the Ileil tubes will 
not be further discussed in this book. 

Monoirons.—This is a general name given to devices based upon the 
principle that a d-c electron beam, passed once through a single resonant 
cavity, may excite oscillations in this cavity.^ 

Oscillation may occur when the number of cycles transit time through 
the resonator is between n and (n + i) cycles, where n is an integer. 

The monotrons that have been constructed have had low efficiency; 

and although they have certain interesting theoretical aspects, including 
the possibility of high efliciency, no work has been done on them in 
recent years. They are not discussed further in this book. 

1 F. B. Llewellyn and A. E. Bowen, ** Ultra-high-frequency Oscillations by Means 
of Diodes/’ BeU System Tech. Jour., 18, 280 (1939). J Marcum, ^‘Interchange of , 
Energy between an Electron Beam and an Oscillating Electric Field,” /. App. Phys., 
17, 4 (1946). 



CHAPTER 3 

BASIC ELECTRONIC PHENOMENA AT HIGH FREQUENCIES 

By J. K. Knipp 

A simple electronic device is composed of several circuits coupled by 
an electron beam.( At microwave frequencies the circuits are cavity 
resonators. One part of each resonator is a gap that forms the capacitance 
of the circuit; the remainder is a space that provides the inductance and 
usually contains a loop, a probe, or a window for the introduction or 
removal of r-f power. ) 

Most microwave tubes have planar grid structure. In the usual 
triode or tetrode the gap of the input circuit is formed by a plane cathode 
and a parallel grid; the gap in the output circuit is formed by a plane 
grid and a parallel anode. In klystrons the gaps are constructed of 
parallel grids or of parallel plates containing one or more holes to allow 
for the transmission of the beam; a common grid is the radial fin grid 
illustrated in Fig. 4*1. 

In addition to gaps formed by closely spaced grids, which are integral 
parts of the circuits, the electronic portion of the tube can have regions 
that are relatively free from r-f fields. Thus the tetrode has a grid- 
separation region between input and output circuits; this region is formed 
by the grid of the input terminal and the grid of the output terminal 
and can serve to shield the input circuit from the output circuit. In the 
klystron an electron gun accelerates the electrons before they enter the 
first gap. Between the two gaps of a two-cavity klystron there is a 
drift space in which bunching occurs. A reflex oscillator has a reflector 
region where electrons are reflected by a negative field and in which 
bunching takes place. 

The gaps of all such planar tubes are lined up along the axis of the 
tube. The electron beam extends along the axis and passes through the 
various regions. {The resonator fields produce a number of effects in 
the gaps. (The gap voltage in the input terminal of a triode or tetrode 
generates an r-f beam current that can be used to excite the output 
circuit with a net gain of r-f power, the extra power being supplied by 
the d-c fields. An r-f field is introduced by feedback at the first gap of a 
two-cavity klystron oscillator, wl^ich modulates the high velocity of the 
electrons of the beam; in the drift region this velocity modulation gener¬ 
ates density modulation, and the resulting r-f current excites the output 

81 
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circuit. The net effect is that some of the d-c energy of the beam is 
converted into r-f energy of the output circuit. In a reflex oscillator the 
same effect is obtained with a single resonator by returning the electrons 
to the gap after the initial velocity modulation has had time to generate 
sufficient density modulation; feedback is unnecessary. 

Since the gaps are regions in which the electric fields are strong, a 
tube is so designed that the beam must pass through the gaps rather 
than elsewhere in the resonators; thus large coupling between beam and 
resonator is obtained. In addition, the use of narrow gaps shortens the 
time spent by the electrons in the r-f fields. This short transit time is 
desirable since a time of transit of any gap greater than half a cycle 
considerably reduces the coupling between beam and resonator. 

The basic phenomena occurring in circuits composed of cylindrical 
reentrant cavity resonators—the type used in klystrons and microwave 
triodes and tetrodes—are discussed in Chap. 4. One important char¬ 
acteristic of such a circuit is that the response of the resonator (as meas¬ 
ured, for instance, by the amplitude of the gap voltage) to the beam 
regarded as a driving current can be represented by the use of a circuit 
admittance, or impedance, which is determined by the nature of the 
cavity and its connections. Moreover, the beam current that is effective 
in driving the resonator is the current actually present in the gap. The 
circulating current in the cavity is the sum of the conduction and dis¬ 
placement currents in the gap. This sum of the electron current and the 
time rate of change of the electric flux in the gap is the total current; it is 
directly proportional to the magnetic field at the edge of the gap and 
thereby determines the degree of excitation of the resonator fields. 

The effect of the beam on the resonator has its counterpart in the 
action of the resonator on the beam. The beam currents generated by 
gap voltages are described with the use of electronic admittances and 
impedances. The gap fields are effective during the entire transit of 
the gap. The total current is space-constant in a uniform gap. The 
driving current bears a simple relation to the total current and the gap 
voltage. 

In addition, there are a number of purely electronic effects that enter 
into the description of the beam. The most striking of these a^e phe¬ 
nomena associated with finite times of passage and velocity modulation. 

34. Phenomena of Particular Importance at High Frequencies.— 
In microwave tubes the important electronic effects arising from the 
high frequencies used a^e all related in one way or another to the fact 
that the time of passage of the beam electrons through any part of the 
tube is at least comparable to, and in many cases much larger than, 
the period of oscillation of the tube. 

As examples, some possible three-centimeter tubes, with a frequency <rf 



Sec. 3*11 PHENOMENA AT HIGH FREQUENCIES 33 

10^® cycles/sec and a period of one ten-thousandth of a microsecond, might 
be considered. In the input terminal of an r-f amplifier a gap spacing 
of 2 X 10~* cm might be used. The average velocity of electrons reach¬ 
ing the grid would not be more than a few multiples of the mean thermal 
velocity of electrons from the cathode, which is 1.65 X 10^ cm/sec at 
1160® K. Hence the average time of transit is about the same as the 
period of the r-f oscillation. In the output terminal of the amplifier, 
the gap spacing might be 10“^ cm. The average velocity of the electrons 
while in the gap might correspond to an effective beam potential of 
300 volts, which is a velocity of 10® cm/sec. The time of transit of the 
output circuit would be one-tenth the period of oscillation. It is probable 
that a gap spacing which is somewhat larger would be desirable in order 
to reduce resonator losses. In klystrons effective gap spacings of 
6 X 10~^ cm are common, which at a beam potential of 300 volts have a 
time of transit of one-half cycle. The length of the drift tube between 
the gaps of a two-cavity klystron depends on the number of cycles of 
drift time needed to produce the desired bunching. At 300 volts the 
electrons drift iV cm per cycle. In the reflector region of the reflex 
oscillator the depth of penetration is about ^ cm per cycle spent in the 
region; the extra factor of -J- arises from the fact that the distance is 
covered twice and the average velocity is one-half the velocity at entry. 

Transit Angle.—It is customary to express transit-time effects in 
terms of the transit angle, 

e == 2tr/r = wT, 

where / is the frequency of the oscillation, T is the transit time under dis¬ 
cussion, and w = 27r/ is the angular frequency. If the transit time is one 
cycle, the transit angle is radians, or 360®. 

Density Modulation and Beam-coupling Coefficient.—beam composed 
of electrons, all of which have the same velocity, contains only a d-c 
current if the charge density is uniform. If, however, the charge density, 
at any instant of time, varies periodically down the beam, and if the 
electric forces tending to change the electron velocities are negligible, 
the entire periodic configuration of the beam moves along unchanged 
with the electrons. The current passing through any plane perpendic¬ 
ular to the axis undergoes periodic changes; the frequency is given by 
the rate at which density maxima pass that plane. The phase differ¬ 
ence between the currents at two parallel planes is the transit angle for 
the passage of the electrons from the first to the second plane. Such a 
beam is said to be ‘density-modulated.’^ 

Because of the finite gap transit time, the current of a density-modu¬ 
lated beam has a spread in phase in the gap equal to the transit angle of 
the gap. The driving current is the beam current that is effective in the 
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ijAteraction with the gap fields. In a uniform gap it is the average cur¬ 
rent in the gap at any instant, provided the resonator is excited in the 
principal mode; the average is a space average. Because of the phase 
difference of the contributions of the different elements of the current, 
partial cancellation takes place in the driving current. For a simple 
density-modulated beam the driving current has the effective phase of 
the current at the center of the gap and an amplitude reduced from the 
amplitude of the density modulation by the beam-coupling coefficient 

. e 
«in — 

2 

The beam-coupling coefficient is unity for zero transit angle, decreases 
to zero at ^ == 2t, becomes negative, and oscillates about zero with 
decreasing amplitude for increasing 6; see Fig. 3*3. The fact that the 
driving current is zero at 6 = 2t is understandable because, for this 
value of the transit angle, half the beam current in the gap is exactly 
out of phase with the other half. As the number of cycles of transit time 
is increased, there is a general trend such that less and less of the current 
is left uncanceled, causing the beam coupling to fall off inversely with the 
transit angle. In addition, the cancellation is periodically complete, and 
the driving current is periodically zero. 

Velocity Modulation,—Consideration is now given to the action of an 
oscillating gap field on a beam whose charge density is uniform and 
whose electrons initially (that is, on injection into the gap) have the 
same velocity. If the gap transit angle is negligibly small, the electrons 
make the transit in the instantaneous field, which is essentially static. 
They gain or lose energy in an amount equal to the electron charge 
times the instantaneous voltage across the gap. The beam emerges from 
the gap uniform in density but velocity-modulated; that is to say, the 
velocity of the electrons leaving the gap varies periodically with the fre¬ 
quency of the gap voltage above and below the velocity of the electrons 
on entering the gap. 

If, on the other hand, the transit angle is not negligible—that is, if 
the transit time of the electrons is comparable to the period of oscilla¬ 
tion of the gap field—the electrons of the beam no longer move in a field 
that is approximately static. Instead they move in a field that changes 
during the time of transit of the gap. The energy change on emerging 
from the gap is no longer given by an instantaneous potential difference. 
However, if extreme values of the energy change are small compared 
with the total energy of the electron, a voltage that is effective ia the 
energy change, and hence in the velocity modulation, has the phase of 
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the field when the electron is at the center of the gap and an amplitude 
sin {d/2) 

e/2 equal to the gap-voltage amplitude reduced by M that is, 

by the beam-coupling coefficient. Since this factor enters in the modula¬ 
tion of the beam, it is sometimes referred to as the '^modulation coeffi¬ 
cient.” That the same factor enters in the beam coupling as in the 
velocity modulation is not surprising, since in each case an average of a 
periodic quantity is effective. 

During the passage of an electron through the gap the phase of the 
gap voltage changes by an amount equal to the transit angle. If the 
energy change is small, the average of the gap voltage during the time 
of transit is effective. If the transit angle is 2nr, the electron spends one 
complete cycle in the gap and is decelerated by the gap field for the 
same length of time that is it accelerated; hence the effective gap voltage 
is Eero. As the number of cycles spent in the gap is increased, there is a 
general trend to leave a shorter and shorter time for the net acceleration 
or deceleration; in terms of voltages a smaller fraction of the total gap- 
voltage amplitude is effective, and the modulation falls off inversely with 
the transit angle. In addition it is periodically zero since the times of 
acceleration and deceleration are periodically equal. 

Generation of Density Modulation by Drift Action.—Two high-fre¬ 
quency effects arising from the finite transit angles occurring in micro- 
wave tubes have been described thus far: the reduction in coupling 
between beam and resonator caused by partial cancellation in phase of 
the gap current, and the reduction in modulation of the beam by the 
gap voltage because of the change in the acceleration of the electrons 
during their transit. 

A third effect, that is fundamental to all klystron operation, is the 
generation of density modulation within a beam that is velocity-modu¬ 
lated. The density modulation is produced through drift action. Such 
a process, which is called "bunching,” is based on the fact that a beam 
of electrons that are periodically slower and faster than the average will, 
during the passage of time, tend to undergo density changes. Bunches 
are formed about alternate groups of electrons having the average 
velocity. Those groups form the centers of the bunches for which the 
electrons in advance are moving more slowly than average and the elec¬ 
trons to the rear are moving more rapidly than average. The resulting 
density modulation has the periodicity of the velocity modulation; hence 
the density modulation gives an r-f current of frequency equal to the 
frequency of the voltage that produced the velocity modulation, as well 
as the harmonics of this frequency. It is significant that, except for 
complicating effects that are due to space charge, density modulation 
tends to persist down the stream and does not, in itself, produce velocity 
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modulation; it is significant also that velocity modulation tends to per¬ 
sist down the stream, though not unchanged, and generates density 
modulation. 

Influence of Electrons on Electrodes.—fourth effect—one that is also 
closely associated with the finite time of transit of electrons—is the effect 
that the electrons exert on the opposite grid or anode as soon as they 
enter the gap, and which continues as long as the electrons remain in 
the gap. It is entirely misleading to think of a grid current as being 
formed by the electrons collected by that grid, because a charge within a 
gap induces a charge on the grid in an amount that increases as it draws 
nearer to the grid. As it moves about in the gap the amount of induced 
charge changes; the rate of change is the current flowing to or from the 
grid. If the electron hits the grid, the current stops; if it passes through 
the grid, a charge is induced on the opposite side of the grid, the rate of 
change of which depends on the motion in the region where it now finds 
itself; the current to the grid reverses on passing through the grid. Also, 
if instead of reaching the grid the electron is reflected, the current to the 
grid is reversed. 

Displacement Current.—The rate of change of electric flux through 
any plane in the gap is called the ^^displacement current ^Mn the gap. If 
the gap is empty, the flux arises from the charges collected on the elec¬ 
trodes, and its rate of change is the current flowing to and from those 
electrodes. However, if there are electrons in the gap, some of the 
flux has its source in the additional charge induced on the electrodes, 
and lines flow from that charge to the charge in the gap. As the elec¬ 
trons move about in the gap, the total flux through any plane changes, 
as indeed does the division between the electrodes of the charge induced 
by the electrons. Hence the flux through any plane changes; this change 
is an additional contribution to the displacement current. 

Total Current.—The sum of the conduction current and displacement 
current through any plane in the gap is the total current through that 
plane. It has the remarkable property that in a narrow gap it is very 
nearly space-constant across the gap and is equal to the current that 
flows along the walls of the resonator to the electrodes. It is sometimes 
called the circulating current or the current in the outside circuit. Any 
deviation from constancy in the gap is due to fringing of the electric 
field at the edges of the gap, and corresponds to current flowing not to 
the gap but to areas on the walls of the cavity outside the gap. 

The total current has additional significance for a circuit formed of a 
cavity resonator in that, if the gap is narrow, the total current through 
the gap is equal in magnitude to the magnetic field at the edge of the 
gap. This follows from the field equations giving relations between the 
fields and the currents and charges in the resonator. From this relation 
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between total current and magnetic field, the cavity excitation is estab¬ 
lished, as is shown in Chap. 4. 

The total current density at any point of a vacuiun is 

J + 
dE 

where J is the conduction-current density in amp/meter^, co is 
(l/367r) X lO”*® farad/meter, and E is the electric field in volts/meter. 
It is of interest to compare the two current densities in a particular case. 
Suppose that an r-f current of 2 X 10~® amp flows in a uniform beam 
with a cross-sectional area of 5 X 10~^ cm^. The r-f conduction current 
density is 400 amp/meter^. Suppose also that the r-f gap voltage is 
36 volts and that the gap depth is 10~2 cm. The average field is 36 X 10^ 
volts/meter. Let the frequency be 10^® cps. Then the displacement- 
current density is 2 X 10*^ amp/meter^. It is very large compared with 
the electron current density because of the numbers chosen, and in 
particular because of the high frequency. 

Even if the total current in the gap is space-constant, the conduction 
and displacement currents separately need not be, for they can vary 
across the gap in such a manner that their sum is space-constant. 

3'2. Current Induced by a Moving Charge.—The presence of charge 
in a region between parallel conducting planes causes charge to be 

0 d 0 X d 

Q +Q -9 
(a) ® (6) ** 

Fig. 3*1.—Lines of electric flux in uniform gap containing (o) no charge and (b) in same gap 
containing uniform sheet of chaige of total amount — 

induced on those planes in total amount equal to the negative of the 
charge between the planes. Unless the charge is symmetrically distrib¬ 
uted on both sides of the midplane, the induced charge is not equally 
divided between the two planes. If the planes are connected through 
an outside circuit, the charge between the planes in moving about in the 
gap causes the induced charge to redistribute itself, and current flows 

throu^ the circuit. 
Charge an Electrodes.—If, for example, the potential between the planes 

is fixed and the gap is so narrow that fringing is negligible, and if —Q 
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and Q are the total charge on the plane electrodes in the absence of 
charge in the region (see Fig. 3*1), the total flux is Aco E *= —Q, where A 
is the area of the gap and E is the electric field. If a uniform sheet of 
total charge —q is introduced at the plane x and the gap voltage is the 
same as before introduction, additional charges qo and qa are induced on 
the two planes with q = qo qd- If Eo is the field to the left of the sheet, 
the total flux to the left is AeoEo = —Q + go) similarly, if Ed is the elec¬ 
tric field to the right, AeoEd = —Q — qa. The gap potential is 
—EoX — Ed{d — a:) = —Ed, where d is the separation distance of the 
electrodes. From these relations it follows that 

qo = (1) 

Thus, the charge induced is greater on the near plane and that on either 
plane is proportional to the distance to the other plane. 

If instead the charge in the gap is concen¬ 
trated in the neighborhood of a point a dis¬ 
tance X from the first electrode, the lines of 
flux are not parallel, as in the above case, but 
converge upon the point as illustrated in Fig. 
3-2 (in this figure the gap voltage is assumed 
to be zero). However, the distribution of 
induced charge between the two electrodes is 
unchanged, although the charge on either elec¬ 
trode is no longer uniformly distributed. In 
this case also the additional charges on the 
electrodes are given by Eqs. (1), as can be 

shown by the method of images. 
Current Induced in the Circuit,—Ks the charge in the gap moves, 

induced charge flows from one to the other of the electrodes through the 
circuit. The current in the circuit is 

/-ai-« + 5.i--|[o + «J--o-3?, (2) 

where v * dx/dt is the velocity of motion of the charge in the gap and Q 
is a current which is determined by the outside circuit and the initial 
conditions (the gap voltage is merely Qd/Ato). 

CcndiuAion and Displacement Currents in the Gap.—Consider first the 
displacement current in a plane to the left of the plane x, which is the 
plane containing either the sheet of charge or the point charge —q. The /dE 

dSfo , where the integration is over the 

Fio. 3*2.—^Lines of electric 
flux to point charge —5. 
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plane to the left of x and Ex is the component of the electric field per¬ 
pendicular to that plane. Now JdS€oEx is the electric flux through that 
plane; since the lines of flux either end up on the first electrode or return 
through the plane in passing to the second electrode, the total flux is 
just the charge on the first electrode. Hence the displacement current 

in a plane to the left of a* is — 0 — ^ (7, by Eqs. (1). Similarly, it 

can be shown that the displacement current to the right of x is also 

— Thus it is seen that, in any plane to the left or right of the 

charge, the displacement current is just the current in the circuit. 
The fixed plane through which the charge — g is moving at the moment 

is considered next. Suppose the charge moves a distance Ax in time 
At and is at the plane x — Ax/2 at time t — At/2, The average conduc¬ 
tion current, regarded as spread over a time A<, is —q/At. The change 
in flux through the plane x is 

^ Ax 

-AQ+-+ -AQ + (l-^'^q. 

Hence the average displacement current—that is, the rate of change 
of flux regarded as spread over a time At—is 

At ^ At 

The sum of the average conductiou current and average displacement 

current is — Q — ^ g, since the conduction current is just canceled by 

an opposite term in the displacement current, a term arising from the 
interception by the plane of all the lines of flux to the charge as it passes 
through the plane. 

Toted Current.—This simple example illustrates the proposition that 
the total current, whether it is the current in the circuit or the sum of 
the conduction and displacement currents in the gap, is space-constant 
across the gap and has the same value all the way around the circuit, 
with the gap as the closing element in the circuit. 

8»S. Modulation of the Beam.—The beam as it enters a gap has prop¬ 
erties that are dependent on the time, for it may have been modulated 
in passage through other resonators and, in any case, it contains fluctua¬ 
tions that are due to noise. Likewise, as it leaves a gap, its properties 
are dependent on the time. A description of the properties of the beam 
at any place in the gap is given by the distribution in the velocity of the 
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passing electrons. This distribution depends on the time. A discussion 
of the beam explicitly in terms of the velocity distribution is given in 

Chap. 5. 
The most important time-varying properties of a beam are its density 

modulation and its velocity modulation. Density modulation is the 
harmonic portion of the electron current; density modulation is current 
modulation. Velocity modulation is the harmonic portion of the average 
electron velocity. 

These two properties can change from place to place in the beam. 
As has been indicated in Sec. 31, a density-modulated beam contains 
bunches. If the velocities of the electrons are the same, these bunches 
move along with the electron velocity, undisturbed except by outside 
fields and spreading forces resulting from space charge. A velocity- 
modulated beam becomes bunched even though originally smooth 
because, in such a beam, the velocities vary periodically above and below 
the average velocity and, therefore, the electrons tend to gathej into 
bunches as they move down the stream. Hence a velocity-modulated 
beam becomes density-modulated by drift action alone. If the velocity 
spread is negligible and if the velocity modulation is but a small fraction 
of the average velocity, the velocity modulation tends to persist down the 
stream, disturbed only by outside fields and forces that are due to space 
charge. It is, however, accompanied by a changing density modulation. 
Thus, both density and velocity modulations tend to persist down the 
stream, and velocity modulation generates density modulation. 

In passing across a gap the time-varying properties of the beam change 
because of its initial velocity modulation and also because of the elec¬ 
tric field of the gap. In its effect on the momentum of the electrons, 
the r-f gap field produces velocity modulation and, in modulating the 
time of passage of the electrons, it bunches the electrons and in this 
manner produces density modulation. 

In a gap the sources of modulation are two-fold: (1) that present in 
the beam on entering the gap, and (2) that produced by the gap field. 
The density modulation results from (1) density modulation at injection, 
(2) velocity modulation at injection generating density modulation 
through drift action, and (3) modulation of the time of passage by the 
gap field producing density modulation. The velocity modulation results 
from (1) velocity modulation at injection, and (2) the periodic accelera¬ 
tion and deceleration of the electrons by the gap field. 

The coupling between the beam and the resonator takes place through 
the modulations of the beam, for the density—^that is, current—^modu¬ 
lation excites the resonator fields, and the resonator fields produce both 
the velocity and the density modulations. The modulation of the beam 
as it leaves the gap determines, at least in part, the modulation that it 
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has as it enters the next region, just as its modulation in the gap is deter¬ 
mined in part by that which existed in the beam at injection. 

Importance of Transit Angle,—The transit angle, B = 2firfT = coJT, 
is a small fraction of a radian if the transit time T is much smaller than 
the period of oscillation 1//. At microwave frequencies it is diflBicult to 
build tubes with small transit angles. Closely spaced grids and high 
beam potentials help to keep the transit angles small, but they are not 
always obtainable and other considerations sometimes make them unde¬ 
sirable. Large transit angles are therefore not uncommon in microwave 
tubes—for example a 3-cm reflex tube with a grid spacing of 1/20 cm 
and beam potential of 300 volts has a gap transit angle of ir radians. 

The importance of the transit angle is as follows. If it is very small, 
each electron moves through the gap in an essentially static field and its 
motion is easily described and is practically identical with the motion of 
all other electrons in the gap at the moment (unless there is more than 
one velocity group). On the other hand, if the transit angle is large, 
the field varies with time during the passage through the gap and the 
electron motion is greatly complicated; in particular the electron energy 
is no longer obtainable immediately from the gap potential, and the 
motion of some of the electrons can be completely out of phase with the 
motion of other electrons in the gap at the moment. 

Beam Coupling,—The beam excites the resonator through the har¬ 
monic components of the beam current that have frequencies near the 
resonant frequencies of the cavity resonator. All of the beam that is 
actually in the gap participates in this excitation, and equal elements 
are equally effective^if the r-f field in the absence of the beam is space- 
constant, which is approximately the case in most resonators operating 
in the principal mode (see Chap. 4). 

A,particular component of the beam current, having a given fre¬ 
quency of modulation, is simply constituted if it arises only from density 
modulation at injection and if the velocities are the same and space- 
charge spreading is negligible. At a plane a fixed distance down the 
stream from the plane of entry of the gap, the component differs only 
in phase from its value at the plane of entry for, since the current at the 
plane arises from electrons that earlier composed the injected current, 
by particle conservation their contribution to the flow of charge in cor¬ 
responding intervals of time is the same. The phase difference is the 
transit angle for the passage of the electrons from the plane of entry 
to the indicated plane down the stream. 

If the frequency is sufl5.ciently low—^that is, if the period of the modu¬ 
lation is long compared with the transit time of the gap—the transit 
angle is nearly aero, and the current elements within the gap arising 
from the injected current modulation are practically in phase. How- 
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ever, if the period is comparable to the transit time, the transit angle 
is not small and the current elements are not in phase. As has been 
pointed out in Sec. 3*1, a partial cancellation results and the coupling 
between beam and resonator is reduced. 

Suppose is the current modulation at the plane of injection 
and B' is the transit angle to a plane part w^ay across the gap; then 

is the current modulation at that plane arising from the injected 
current modulation under the conditions stated above. If the electrons 
are not accelerated, the driving current is the average over the phase 

Transit angle B 
Fiq. 3*3.—Bearn-couplinR coefficient At, beam-loadinR coefficient N, and the function 

sin d/2 24 / 0 0 0\ 
P plotted as functions of transit angle 0, M *= — ; -AT “ ^sin 2 ““ g 2) ’ 

P - j, (9 - sin 9). 

because in uniform motion space average and phase average are the 
same. Hence the driving current is 

i = 4(0) 

This is the current that is effective in the excitation of the resonator. 

The factor —= ilf is the beam-coupling coeflScient already men¬ 

tioned in the first section of this chapter, and is shoivn plotted as a func¬ 
tion of 6 in Pig. 3-3. It has the value unity for zero transit angle and 
oscillates about zero with decreasing amplitude as 6 increases, the zeros 
occurring at 2)r, 4ur, etc. It is seen that the driving current for such a 
density-modulated beam has the effective phase of the current at the 
center of the gap and an amplitude reduced from the amplitude of the 
density modulation by the beam-coupling coefficient. 
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Current Modulation Arising from Velocity Modulation.—The density 
modulation generated by the velocity modulation that is present in the 
beam at the time of injection also depends on the phase, and the effective 
current is a function of the transit angle of the gap. 

Let be the velocity modulation at the plane of injection and 
let be the transit angle to a plane part way across the gap. In Sec. 
3*5 it is shown that the component of the current at that plane arising 
through drift action from the initial velocity modulation, if the velocity 
modulation is small and the drift angle not large, is 

where — 7o is the direct current and v is the average velocity of the elec¬ 
trons. This expression merely states that the current generated is the 
product of the velocity modulation at the time of injection, the charge 
density per unit length of the beam, and the transit angle, and, in addi¬ 
tion, that it leads the velocity modulation by 90®. 

If the electrons are not being accelerated, the space average of the 
current is given by the average in phase. Hence the driving current 
from this source is 

\ j"de' 

When evaluated, this average becomes 

where N, the beam-loading coefficient, is a function of the transit angle $. 
The effective current here calculated is zero for zero transit angle, a fact 
that is understandable since little density modulation can develop in 
times that are short compared with the period of modulation. 

The beam-loading coefficient is an important factor in expressions 
for beam loading. It is defined by 

and is plotted in Fig. 3*3, together with M and a function P, which occurs 
in first-order bunching theory (see Chaps. 9 and 12). The beam-loading 
coefficient is unity for zero transit angle and does not become zero until 
6 is almost 3ir, after which it oscillates about zero with a period of about 
4t and with a rapidly decreasing amplitude. 

From the above expression for the driving current caused by velocity 
modulation at injection, it is seen that, for very small transit angles, 
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the effective current is the same as the actual current from this source 
at the center of the gap. However, for large transit angles, this value 
is modified by the factor {M — which affects both the magni¬ 
tude and the phase of the driving current. 

Current Modulation Arising from Gap Voltage,—In Sec. 3-6 it is shown 
that the density modulation arising from the action of the gap voltage is 
produced through the modulation of the time of passage of the electrons. 
Suppose that the d-c field is zero, the r-f field is space-constant, the 
velocity spread is negligible, and the velocity change produced by the 
field is small. Let be the potential across the gap, and let M' 
and N' be the beam-coupling coefficient and beam-loading coefficient 
for the transit angle 6' to a plane part way across the gap. It is found 
that the component of the current at that plane arising from the gap 
voltage is 

lo (jer 
2Voje 2 

where Vo = mv^/2e is the beam potential ( — c is the electron charge, 
— 1.6 X coulomb; m is its mass, 0.9 X kgm.) From this 
expression it is seen that the current generated for very small 6' is pro¬ 
portional to the square of the time of passage and follows the potential by 
ir/2 -f 6'/2, As 6' Increases, the magnitude and phase of the current 
are affected, in addition, by the factor (Af' — 

The driving current is again given by the average in phase 

1 

e 
V. lo (jer 

2Vo jO 2 

On carrying out the integration this expression becomes 

t'w 2 0 ® > 

where Go = lo/Vo is the beam conductance. Thus the driving current 
in the gap arising from the action of the gap voltage is proportional to 
the beam conductance and, for small gap transit angles, is proportional 
to the transit angle, lagging behind the potential by 7r/2 + $/2; as the 
transit angle increases the magnitude is affected by the additional factor JV. 

Beam Loading.—Since the current of the last paragraph is produced 
by the gap voltage, it has a definite phase relation to that voltage and 
gives rise to a subtraction or addition of energy from that stored in the 
resonator. The power in is one-half the real part of the product Of the 
driving current and it is 

Go ON . 
2 
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BN 6 
The combination ^ sin ^ is shown plotted in Fig. 3'4. It reaches 

a maximum of about 0.4 at a transit angle somewhat greater than 
drops to zero at 2t, and oscillates about zero with decreasing amplitude 
with a period of 2t, The negative intervals correspond to the addition 
of energy to the resonator fields. 

Fig. 3*4.—Real and imaginary parts of beam-loading admittance divided by Go/2 as 
functions of the transit angle. 

The coefficient of — in the driving current, 

is called the ‘^beam-loading admittance.^’ The real part of Fb is the 
G BN B 

beam-loading conductance, sin and the imaginary part, 

Go ON e 

is the beam-loading susceptance. The latter has the effect of changing 
the resonant frequency of the cavity resonator. The combination 

bn b 
cos ^ is also plotted in Fig. 3*4; it has a small maximum near ir/2, 

0 2 

is zero at n;, has an extreme negative value of about —0.35 before reaching 
27r, returns to zero and is very slightly positive before 3x, where it is 
zero again, after which it becomes negative and has very small intervals 

where it is positive just before Sir, 7ir, etc. 
One-half the product of and the beam-loading conductance is 

the average power absorbed by a smooth beam in passing through the 
gap. This quantity when positive has the effect of a load on the resonator 
and when negative can serve to drive the resonator, as in a monotron. 
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Velocity Modulation Arising from Gap Voltage,—The velocity modu¬ 
lation produced by a space-constant r-f field is easily calculated under 
the conditions of the preceding paragraphs. If d is the gap spacing, 
the force on an electron is {eV(a/d)e^*^K Suppose the electron enters the 
gap at time and leaves at time t] its change in momentum is 

eV eV / ^ [1 _ 
Jtf d jo)d ^ ' 

but o)(t — ^') is approximately the transit angle since the modulations are 
small; hence the velocity modulation on leaving the gap is approximately 

d/2 ^ 2Vo mv 

Thus, in the velocity modulation that is due to a space-constant r-f field, 
the effective gap voltage is roughly that which the electron experiences 
when it reaches the middle of the gap multiplied by the factor M, 

This effect is also easily seen from the energy of the electron. If the 
time of passage is negligible compared with the period of oscillation of 
the field, the energy change results from the field at the moment of pas¬ 
sage and is given by the product of the electron charge and the gap 
potential at that moment. However, if the time of passage is comparable 
to the period of oscillation, the energy change must be calculated from a 
field acting on the electron which varies in time during the transit. 
If the r-f field is weak, the work done by the field is approximately 

r dx^ ei (“‘"VO = eV„ /(““"O = e7„ ilfe"("‘"0. 
Jo d Q/2 

This work represents the energy change of the electron; hence this change 
can be calculated approximately from the gap voltage by using the gap 
voltage at the time of midpassage and reducing it by the factor M. 

Effects of D-c Gap Field,—The presence of a d-c field in the gap has 
the effect of making the electron motion nonuniform even in the absence 
of the r-f field. Transit angles are usually defined under d-c conditions 
by using time intervals calculated in the absence of all modulation; Ihese 
of course are affected by the d-c field present. Moreover, the beam 
potential, F* = mv^{x)/2ef and beam conductance, Gx — /o/F*, change 
across the gap. However, as long as the d-c field does not cause negative 
velocities or lead to high concentrations of space charge, the form of the 
r-f relations for the behavior of the gap is not greatly modified beyond 
introducing factors and adding certain acceleration terms. As is seen 
later in the chapter, these changes are often conveniently expressed in 
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tenns of the two parameters, 

_ v{x)T' , _ r _ 5 » 

where v{x) and T' are the d-c values of the velocity of an electron at the 
plane x and the time of passage to that plane from x — 0 and a(x) is the 
d-c value of its acceleration at the plane x. If the d-c field is everywhere 
zero in the gap, r' is unity and 5' is zero. 

If the d-c field causes the reflection of electrons, and if the current 
densities are so low that the effects of space charge are still negligible, 
the behavior of the gap is somewhat complicated by the two-way motion 
of the electrons, but it can be treated in a straight forward manner since 
the field is approximately space-constant. 

When the d-c fields are associated with high concentrations of space 
charge, as in the potential minimum outside a space-charge-limited 
cathode, the r-f problem becomes very complicated because the space 
charge affects the motion of the electrons, which in turn affects the space 
charge. Certain aspects of this phenomenon are treated in Chap. 5. 

3'4. General Relations in a Narrow Gap.—The electronic phenomena 
under discussion are governed by three fundamental laws. The first 
of these is the law of conservation of charge. Since the charge is carried 
by electrons, all having the specific charge — c, and the number of elec¬ 
trons is also conserved, conservation of charge is the same as particle 
conservation. From the conservation of charge is derived the continuity 
relation, which states that the divergence of the current density is equal 
to the negative of the time rate of change of the charge density. The 
second relation is the divergence relation for the electric flux, which 
states that the divergence of the electric flux is equal to the charge density; 
since the, electric flux is proportional to the electric field, the divergence 
of the electric field is proportional to the charge density. The third 
law is Newton^s law governing the motion of the electrons. The only 
force acting on the electrons which is considered is that due to the electric 
field; by Newton^s law the time rate of change of the momentum of an 
electron is equal to the product of the electron charge and the electric 
field. 

Assumption of Uniformity,—The tubes that are discussed in this book 
have simple geometry. The electron beam passes down the axis of a 
tube through a succession of regions separated by plane grids. Some 
of these are regions of acceleration, drift, and reflection, which are rela¬ 
tively free from r-f fields. Others are gaps forming the capacitive portions 
of the resonator circuits. These gaps have depths that are usually small 
compared with the diameters of the gap areas. Moreover, the excitation 
of the resonators is generally such that the electric fields in the gaps are 
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directed parallel to the axis of the tube and are nearly uniform over the 
gap areas. If, in addition, the beams are nearly uniform and fill the 
gaps, phenomena in the gaps are approximately one-dimensional. 

Tbe idealization of gap phenomena to uniform fields and a uniform 
beam composed of electrons moving parallel to the axis of the tube is a 
tremendous simplification to the analysis and discussion of tube behavior. 
It has considerable validity in all tubes discussed in this book. This 
simplification makes possible much of the theoretical treatment of these 

tubes. 
There are, of course, many limitations to a treatment of gap phe¬ 

nomena based on the assumption of uniformity. Since all gaps have 
finite areas and all beams have limited cross sections, there are edge 
effects. Uneven cathodes, fluctuations in emission, nonparallel grids, 
grid structure, and uneven reflector fields make the beams nonuniform. 
In addition, the conduction current is carried by the electrons, which are 
finite charges with local fields and hence contribute to the unevenness 
in the gap currents and fields. Electrons have transverse velocities, 
and the electron velocities must be well below the velocity of light if 
magnetic forces are to be neglected. Some of these effects are discussed 

in other chapters. 
Total Current—Consider such a gap, in which variations parallel to 

the grids are negligible. Let x be the distance from the first plane to a 
parallel plane within the gap and d the separation of the bounding planes; 
let t be the time. The current density and charge density are dependent 
on X and t alone and are related through the continuity equation. It is 
convenient to use the electron current i{Xjt) for the entire area of the 
gap; then the current density is i{x,t)fA, where A is the area of the gap; 
using the charge density p(x,0, the continuity equation becomes 

A 
dx A 

= 0. 

Now the electric field also depends only on x and t, and by the divergence 

relation 

Co ^ B(x,t) = p(x,t), 

where eo is (l/36ir) X 10~* farad/meter. 
The charge density can be eliminated between these two equations 

to ipve 

^ j =0- 
The quantity, 

+ =/«) (3) 
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is the total current, which depends only on the time. It is the sum of 
the electron and displacement currents in the gap*. Sometimes the total 
current is known from the rest of the circuit; if the electric field is also 
known, this expression gives the electron current. 

Circuit Representation of a Gap.—The total current can be written 
in terms of the gap voltage and the driving current by averaging Eq. (3) 
across the gap, for 

J{t) = ^ dx + Aeo ^ j; 
the gap voltage is 

V(i) = - j%xE(x,i)] 

and the driving current is the space average of the electron current, 

t(0 “ ^ 

Hence 

I{t)^i{t)-c^, (4) 

where C = A^^/d is the capacitance of the empty gap. This simple 
relation can be interpreted in terms of a 
circuit in which the current i{t) passes 
through the shunt combination of the 
capacitance and an external circuit across 
which the potential is y(0 and through 
which the current I (t) flows. Consider the 
components of these quantities that have 
the time dependence Let and 
lu be the amplitudes of the driving current, 
gap potential, and total current, respectively. From Eq. (4) it follows 
that 

4 = /« + iwCFc, (5) 

which is the equation for the circuit represented in Fig. 3*5. 
Shunt Formulation.—If all modulations are so small that quadratic 

and higher-order phenomena can be neglected, a clear-cut distinction 
can be made between effects that are produced by the gap voltage and 
effects arising from the condition of the beam as it enters the gap. Such 
a distinction has been made in defining the beam4oading admittance 
Yb. Suppose such is the case; let 

B *[“ 

c 

-.—-4-ci 
Fig. 3*6.—Circuit represen¬ 

tation of gap in terms of driving 
current, iw =* /« + ywCF^* 

(6) 
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where — is that part of the driving current which arises from the 
gap voltage and u is that part which comes from the condition of the 
beam as it enters the gap. The current im could contain terms resulting 
from density and velocity modulation in the injected beam. It might 
be called the transexcitation current, or simply the exciting current. 

As has been indicated in Sec. 3*3, it is possible to go further and carry 
out the separation for the density and velocity modulations at any place 
within the gap. Thus, if i^{x) is the density modulation and Vu{x) is the 
velocity modulation at the plane x, 

V„{x) = + v„,{x), 
(7a) 

where — Vjymix) is the density modulation arising from the gap voltage, 
im{x) is the density modulation due to modulations present in the beam 

at injection, -- fm{x) is the velocity modulation arising from 

the gap vftltage, and Vn,{x) is the velocity modulation that results from 
modulations present in the beam at injection. The coejficient ym{x) 
is an internal electronic transadmittance and fm{x) is a similar function 
for the velocity modulation. They are referred to as the density and 
velocity modulation admittances, respectively. On averaging the first 
of these equations across the gap and comparing the result with Eq. (6), 
it is seen that 

dx Vmix), (8) 

An equation that supplements Eqs. (7a) is obtained from Eqs. (5) 
and (6) by eliminating the driving current; it is 

““ FctfFjp “f“ (76) 

Iw—!*• 

where Yg = j<aC + is a quantity that will be called **the gap admit¬ 
tance.This equation suggests a circuit 
representation in terms of the exciting 
current as illustrated in Fig. 3*6. The 
exciting current im passes through the 
shunt combination of beam-loading admit¬ 
tance, capacitance, and external circuit 
across which the potential is ¥» and 
through which the current /„ flows. In 
this representation a current source im, 
having an internal admittance Yb, can 

Fig. 3*6.—Circuit representa¬ 
tion of gap in terms of exciting cur¬ 
rent. ■» + VftiCfwC 4* Fa), 

be regarded as exciting the resonator circuit. 
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Series Formulatian,—A series representation is obtained by writing 

itnZgf 

and hence 
= —luZg + 

A beam-loading impedance Zb can be defined from 

jccC jcC + Yb 

In the circuit for this representation (see Fig. 
3-7) an internal voltage source with internal 
impedance Zb causes the current /« to flow 
through the series combination of capacitance 
and external circuit across which the voltage is F„. 

The density and velocity modulations, 4(x) 
and can each be regarded as the sum of a 
term that is proportional to /„ and a term that 
is due to modulations at injection. These are 
written in the form 

iM = + ig{x)y \ 

fiix) + v,(x) 

Fig. 3*7.—Circuit rep¬ 
resentation of gap in terms 
of internal voltage source 
and internal impedance. 

On averaging the first of these across the gap and comparing the result 
with Eq. (9o), it is seen that 

+ ‘1’ "5^5 /. 
Relations between Shunt and Series Elements,—The shunt and series 

representations are, of course, equivalent. The following six equations 
give the relations between the elements of Eqs. (7) and Eqs. (9): 

YgZg = 1, 
a{x) = -ym(x)Zgy 

P(x) = ^fm{x)Zg 

— imZg 
u{x) = -Cgymix) + im(x)y 

fm{x) + Vn,{x), 

There is little to choose between the two representations except a 
possible convenience of expression in a particular problem. In most high- 
velocity gaps the driving current is easily calculated and from it the beam¬ 
loading admittance and exciting current; thus the shunt representation 
seems to be particularly convenient in the discussion of the high-velocity 
gap. In low-velocity gaps space charge is important; it usually is 
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necessary first to calculate the field by some self-consistent method in 
terms of the total current and the modulations at injection; from the 
field the gap voltage and other quantities are obtained in a form that is 
often most easily expressed in the series representation. 

A considerable portion of the theory of electron tubes is concerned 
with the calculation of elements of the shunt or series formulations for 
the conditions encountered. Of the six elements occurring in the shunt 
formulation, 

+»„(x), I (37) 

+\„, Y, = j«C + Yb, ) 

only four, ym{oc)j fm{x)j Vmix)^ are basic since Yb and tm are derived 
from the first two by integration [see Eqs. (8)]. In any particular prob¬ 
lem not all of these are of primary interest. For example, in the input 
of a small-signal amplifier the important quantity is ym(d) because it is 
the leading term of the transadmittance of the tube; however, some drift 
action may be present, requiring the knowledge of fm{d). In the output, 
ifn is the important quantity since it determines the excitation of the out¬ 
put and hence enters into the gain of the tube. Discussions of klystron 
theory usually consider the driving current, 

iu) = '^VojYb + irrii (3*6) 

which is calculated for the output circuit directly from the modulation 
produced by the input circuit. The effect of this modulation is expressed 
as an electronic transadmittance, for which the symbol Ye is usually 
employed. 

Electron Motion.—The electron motion is governed by Newton's law 
which, under the assumption of uniformity, takes the form 

= -eE{x,t), 

where m = 0.9 X 10“*® kgm is the mass of the electron and 

—e = —1.6 X 10~“ coulomb 

is its charge. The enei^ integral is obtained by multiplying by 

and integrating with respect to the time; 

^ [»(*,<)* - »(*',<')*] = f‘, dif' 
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If, for example, the electron is injected at the first grid and its motion 
is not reversed, the energy integral becomes 

^[vix,t)^ - dx" E{x",n. 

This integral is calculated from the instantaneous field experienced by 
the electron and is not, of course, the integral defining the electric potential 

V(x,t) = - j^dx" E(x'\i), 

since in the latter integral the field everywhere at the time t is used. 
The momentum integral is obtained by the direct integration of Newton^s 
law; 

m [v(Xyt) — v(x^jt')] ~ E{x"jt"). 

The energy and momentum integrals give the identity: 

dl" vix",nE(x'',n = i [v(x,f) + v{x',n] dt" E{x",if'). 

The integration of the momentum integral gives 

/t rt'" 
dr / Eix''/'). 

The velocity and the time of arrival at the plane x of an electron 
injected at a; = 0 at time t' with velocity v' are given, therefore, by the 
following formal expressions: 

^(Xyt) - ViOyt') ~ ~ / dr E{x"yn. 

t- <'+.77^ + 

, rt rr 

w /' I' v(Ojt') mv{0. 

An alternative expression for the second of these is 

dr E(x'%r). 

f -f- /: dx' 
v{x",t") 

The time rate of change oi t — t' is of interest in considering particle 
conservation.; it is 

~ (t - f) ■» - »(«'/) - (t - O I 
where a(pi/,t') = —eE(x',f)/in. 



54 BASIC ELECTRONIC PHENOMENA [Sec. 3*5 

S'6. High-velocity Gap.—If the electron velocities are very high, the 
effects of space-charge and thermal velocity spread are usually negligible. 
If the space charge is negligible, the field is approximately constant across 
the gap. The approximation is far from perfect, however, for if the 
field were completely space-constant, the electron current would be also 
—^which is certainly not the case in a modulated beam. 

In order to simplify the discussion, suppose that there is no d-c gap 
field. (A gap with a constant d-c field is considered briefly at the end 
of this section.) Let 

= (13) 

where is the amplitude of the gap voltage and d is the gap spacing. 
Under this assumption, the field at* any particular moment is the same 
everywhere within the gap. The gap fields in most klystron resonators 
are well represented by this formula. 

If the resonator is unexcited and the beam unmodulated, the electrons 
traverse the gap in the time, T = d/v, where v is the velocity of the 
electrons in the absence of all modulation. The beam potential is 
defined by Fo = mv^/2e and is constant across the gap, as is the electron 
velocity, because there is no d-c field. With — Jo as the d-c beam current, 
the beam conductance is Go == /o/Fo; and it, too, is constant across the 
gap. 

Suppose, however, that the beam as it enters the gap is both density- 
and velocity-modulated with the angular frequency w. Let the current 
and velocity at the plane of injection, x = 0, be 

i(0,^) = Jo "1“ I 
r(0,0 = r + 

4(0) is the amplitude of the modulation of the injected current and v„(0) 
is the amplitude of the velocity modulation at injection. If these ampli¬ 
tudes are small compared with the corresponding d-c quantities, if the 
transit angle is not too large, and if the gap voltage is a small fraction of 
the beam potential, the modulations everywhere in the gap are small. 
Such is assumed to be the case, and quadratic and higher-order terms in 
the modulation amplitudes are discarded. In particular, d-o values of 
the transit time are used in calculating r-f coefficients. 

Let T(x) be the transit time to the plane x from the plane of injection, 
calculated in the absence of all modulation. Suppose that an electron 
at the plane x at time t was injected at a; 0 at time t\ Because of the 
velocity modulation at injection and because of the action of the gap field, 
the time of passage, T{x,t) ^ t — t'^ is modulated. Let 

T{x,t) * T{x) + (16) 



SBC. 3*5] HIGH-^VELOCITY GAP 65 

where T^{x) is the amplitude of the modulation of the time of passage. 
For brevity, the abbreviations, T = T{x)^ T = d' = wiT', $ = «!r, 
are used. 

The current and velocity at the plane x can be written in the form 

i{x,t) = -/o + I 
v(x,t) == V + ) 

where iu,(x) and are the amplitudes of the density and velocity 
modulations, respectively. 

The quantities, v{Xjt) and T{x,t), are calculated from v(0,^') with the 
aid of Newton^s law. The current i(x,t) is obtained from particle con¬ 
servation by using 

iix,i) = 
dt 

Since 
di' __ . dT(Xft) 

di ““ ^ 

the expression for the current can be written in the form 

i(x,t) = [l - (17) 

The procedure is to calculate first v^(x) and Tu(x). From Eq. (17), 
i(a{x) is obtained in terms of fa,(0) and T^{x); 

i„{x) = + Iojo)T„{x). (18) 

The amplitude of the driving current 4 is found by averaging 4(x) over 
the gap. The results are conveniently expressed in terms of the six 
elements of the shunt formulation, 

ia,{x) = -V^ym(x) + im{x), ^ 

Kix) = - Ux) + vUx), 

/« = - + in,, Yo = >0 + Yb. , 

(37) 

These elements serve to characterize the gap to this approximation. 
Velocity Modulation.—The momentum integral, which follows from 

Newton’s law, is 

- ^(O/)] = ~ (e»"‘ - «'■“<') (19) 

(fe substituting t»(0,<') as given by Eq. (14) and comparing the result 
with Eq. (16), it follows that 

Kix) - + (20) 
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where Fo is the beam potential and M' 
sin (072) 

B'/2 
with 

Hence 
3^ 

Vm(x) = v„(0)e-^^. (21) 

The quantity fm(x) is the velocity-modulation admittance and Vm(x) is 
the velocity modulation arising from modulations at injection. It is seen 
that the velocity modulation at the plane x is the sum of the velocity 
modulation at the plane of injection at the time the electrons at x were 
injected and the modulation caused by the action of the gap field. In 
the latter the effective field is that experienced by the electrons when at 
x/2 reduced by the corresponding modulation coefficient. 

Modulation of the Time of Passage,—Integration of the momentum 
integral gives 

mx = - t') + 7^^ [c"" - - e'"7‘a)(< - <')]• (22) 
\jo3) a 

From this equation is obtained the following expression for the time of 
passage: 

n.,t) - f [1 - e-'V-] - [1 - - jVr.-K- (23) 

From a comparison with Eq. (15), it is seen that 

r„(x) = - [1 - (24) 

It is convenient to rewrite this expression by using the identity 

1 — 6“'*’ — je'e-’^ = 

Equation (24) becomes 

_ (jer 
2 

T.(^) - - ^ {m- - e-'', (26) 

The modulation of the time of passage to the plane x that is due to velocity 
modulation at injection is proportional to the transit time to the plane 
x; for smdll distances the modulation that is due to the held is propor¬ 
tional to the square of the transit time to the plane x and the phase of 
the effective gap voltage is that experienced by the electrons when th^ 
were at x/2', as the distance x increases, the magnitude and phase are 
altered by the additional factor (Af' — j0'N'/6). 



Sec. 3-5] HIOH-VELOCITY GAP 57 

The factor 

where 

^ ^ + ~W) ' 6M’ 

occurs frequently in transit-time phenomena. The quantities H and 
ri are shown as functions of 6 in Fig. 3*8. 

0 T 27r 37r ATT 57r 6T IT 
Transit angle $ 

Fig. 3-8.—H and i? as functions of 9, 

Density .Modulation.—The amplitude of the density modulation is 
obtained by substituting Eq. (25) in Eq. (18); there results 

io>{x) = z«(0)e~^^ + t;«(0) 

where Gq /o/Fo is the beam conductance. Hence 

Ux) = 4(0)e-#»' + »„(0) 

(26)- 

(27) 
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It is seen that the density modulation at the plane x is the sum of three 
terms: (1) modulation arising from density modulation at injection, (2) 
modulation generated through drift action from velocity modulation at 
injection, and (3) modulation caused by the action of the gap field. The 
third can be expressed in terms of the internal transadmittance, or density- 
modulation admittance ym{x), whereas the first two are contributions 
to the density modulation from the modulations in the beam as it enters 
the gap, 

The internal transadmittance at a; = d is of importance in triode and 
tetrode amplifiers because it is a factor in the transadmittance of these 
tubes. If the input has a high-velocity gap with zero gap bias, which is 
rarely the case, it is 

Driving Current, Beam-loading Admittance, Exciting Current—The 
driving current is the space average of the electron current. Since 
X = vT' and T = d/v, its amplitude is simply 

dB^ i(a{x). 

In calculating the three terms in the driving current, the following three 
integrals are used: 

de'e-’^=^Me 2, - r ejo 

These give 

4 = UO)Me~^ + »„(0) e~’^ 

(29) 

(30) 

Hence the beam-loading admittance and the exciting current amplitude 
*are, respectively, 

* 2 6’ 

and 

4 - + t>„(0) (ilf - e 

Theee quantities have already been discussed in Sec. 3-3. 

(31) 
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High-velocity Gap with Constant D-c Field,—The effects of a space- 
constant d-c gap field that does not produce slow electrons will be sum¬ 
marized briefly. If Fo is the beam potential at the injection plane and 
Vd is the beam potential at*the exit plane, the d-c field is — (Vd ^ Vo)/d 
and the gap field can be represented by 

E{x,t) = - i (Fd - Fo + F„e’“‘). 

Let v{x) be the velocity at the plane x in the absence of all modulation. 
The beam potential at the plane xmVx = mv{xy/2e and the beam con¬ 
ductance at that plane is Gx = /o/F*. Additional parameters are 

r — 
v{x)T' -, 

X 
r 

v{d)T 
d ' 

6 = r — 1 = 
oT* 
2d 

where a = e{Vd ~ V^lmd is the acceleration produced by the d-c field. 
In the limit of zero d-c field, r' and r become unity and 6' and 6 become 
zero. 

The details of the calculation are similar to those just given. The 
velocity modulation is 

= t-„(0) ; «v y -r 2 

The modulation of the time of passage is 

V^Vd T\ ^ C / 

i?.' 
■2. (32) 

F„ f'l 

The density modulation is 

Ux) = UO)e-i^ + p„(0) j 

(33) 

These expressions are to be compared wdth Eqs. (20), (25), and (26). 
The six elements of the shunt formulation are 

y/GJ}d ym{x) = — ^ rjw 
JT/2 

2r 
(m' - 

2 '•'“'22’ V 6 y 

‘Lix) = i„(0)r-^'' + v„(0) IjO'e- /W*'. 

Ux) VGj3, d rx 
v{x)T 

vM) = «»«(0) ^ 

(M' + S'^^y 
i«’ \ 

(36) 

(36) 
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Y„ = 

i. - <.(0) (jl/ - ) e-?+ ..(0) (j^) (jf - M) , “2 

(37) 

It must be emphasized that there is an inherent inconsistency in the 
treatment of the high-velocity gap by the methods of this section, which 
comes from the neglect of space charge. Because of the presence of 
space charge the field is not space-constant. If Eq. (3) had been used to 
find the density modulation, the result would have been 

By Eq. (5) the right member of this equation is just This result is not 
right, for the density modulation certainly is not space-constant. The 
equations of this section are essentially correct for a beam containing 
very low charge densities; however, their justification lies in a more care¬ 
ful analysis of the effects of space charge. Such an analysis is presented 
in the next section. It should be mentioned that the residual gas in an 
actual tube is positively ionized by the bombardment of the electrons. 
Because of their large mass the ions contribute only a static positive charge 
density and tend to reduce the over-all space-charge effects. 

3*6. Low-velocity Gap, Neglecting Velocity Spread.—It has been 
shown by Llewellyn^ that the effect of space charge on the small-signal 
behavior of a uniform gap can be easily included if there are no negative 
velocities and the velocity spread is negligible. Under such conditions 
all the electrons at a given plane at a given moment have the same 
velocity, and therefore the current and charge density bear the simple 
relation 

i{x,t) = v{Xyt)p{Xjt)Ay (38) 

where v{x^t) is the velocity of the electrons and A is the area of the gap. 
This relation begins to lose its validity when the thermal spread in 

velocity becomes comparable to the average velocity. Also, the rela¬ 
tion is not applicable for a region containing a modulated beam if the 
thermal spread is such that electrons entering at the same time arrive 
at the opposite side out of phase by an appreciable fraction of a radian. 
Suppose a spread in velocity At; gives a spread in transit time AT; cancel¬ 
lation in phase becomes appreciable unless « AT 1. In terms of the 
velocity, this condition is 0 Av/v 1, and in terms of the electron energy, 
E =* mv^/2y it is 6 AE/2E 1. Thermal energies are of the order of 
magnitude of ^ electron volt at cathode temperatures. The condition 
is well satisfied in the usual high-velocity gap and also in a high-velocity 

1F. B. Llewellyn, Electrimrinertia Effeda, Cambridge University Press, Cambridge, 
England, 1941. 
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drift region with a drift time of many cycles. For example, if ^ is 60 
radians and the beam voltage is 300 volts, 6 AE/2E is only xiir* If the 
thermal spread in energy is of the same order as the average energy, the 
condition is no longer satisfied in the usual high-frequency gap, and Eq, 
(38) is a poor approximation. Such is certainly the situation in a high- 
frequency space-charge-limited region, especially in the neighborhood of 
the cathode minimum. For this reason and also because of the presence 
of reflected electrons, the considerations of this section cannot be expected 
to apply to such a region. 

The theory of Llewelljoi gives an exact treatment of space charge in 
the uniform high-velocity gap. It also provides an account of electronic 
phenomena in the low-velocity gap that is valid to the extent that the 
velocity spread is negligible. A complete theory of the low-velocity 
gap must be formulated in terms of the velocity distribution of the beam; 
a partial account of velocity-distribution phenomena is presented in 
Chap. 5. In that chapter, as in this, only small-signal effects are dis¬ 
cussed. Large-signal theory introduces an entirely new set of complica¬ 
tions. The most important of these in klystron theory is the nonlinear 
nature of electron bunching. As may be seen in Chap. 9 and subsequent 
chapters, the bunching theory is successfully treated by the expansion 
of the phase of the bunched current in a series of Bessel functions, the 
argument of which contains the product of the drift angle and bunching 
voltage divided by the beam potential. 

Llewellyn^s Equation.—Equation (38) makes it possible to express the 
conduction current in terms of the electric field by the direct use of the 
divergence relation; 

i{x,t) = vix,t)A*o (39) 

When this relation is substituted in the expression for the total current, 
Eq. (3), the result is 

7(0 [.(*,«) ®+^]- (40) 

Llewellyn observed that, if x is regarded as the coordinate of a particu¬ 
lar electron, v(Xft) = dx/dt and the total current in Eq. (40) becomes 
equal to the total rate of change of electric flux through the plane moving 

with the electron 

lit) = Aio (41) 

This observation is particularly significant because /(O is independent 
of the position of the electron and because the field is itself the second 
total derivative of the position, for by Newton’s law 
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E{x,t) = - 
m d^x 
e dt^ 

Hence, by substitution in Eq. (41), there is obtained 

% = -•'W’ 
Jit) = eljt) (42) 

This is Llewellyn^s equation for the motion of the electrons in a uniform 
gap in which all electrons at a given plane at a given moment have the 
same velocity. 

The usual procedure in the discussion of phenomena in connection 
with Llewellyn's equation is to assume for the total current a known func¬ 
tion of the time, such as a constant, a constant plus harmonic terms, or a 
pulse of some sort; also, conditions that are consistent ^vith the nature 
of the problem are imposed on the velocity and acceleration at the plane 
of injection. If a{x,t) is the acceleration [a{Xyt) = —eE{x^i)/m,] Eq. (3) 
can be put in the form 

^ = -Jii) + m), (43) 

If it is desired to express the results in terms of currents alone, this equa¬ 
tion can be used to eliminate a(x,t). 

When only small signals are being considered, two sets of equations 
are obtained. One set is time-independent and gives the d-c conditions 
in the gap. The other is linear in the r-f amplitudes, which are functions 
of the d-c parameters, and this set describes the time-varying phenomena 
in the gap. 

D-c Relations.—The solution of the Llewellyn equation for a time- 
independent total current provides a very convenient description of d-c 
conditions in a gap in which the electrons at a given plane all have the 
same velocity. Let 

elo 
Jq ss ---, 

mA€o 

and suppose that the electrons enter at the plane a; = 0. Let T' be the 
transit time from the plane of injection to the plane x, and T the transit 
time across the gap. 

Successive integrations of Llewellyn's equation give the acceleration, 
velocity, and position of the electrons in terms of Jo, T', and the accelera¬ 
tion and velocity at injection: 

aix) 

viz) 

X 

JoT' + o(0), 

+ «(0)r + ti(0), 

W2 + 5(^ + „(0,p. i 
(44) 
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The third of these equations can be used to find IT'; but since it is a cubic 
in T', it is more convenient to regard T' as a parameter in terms of which 
d-c phenomena are expressed. 

On putting T — T and eliminating a(0) from the second and third 
relations, there is obtained 

, Hd) + K0)]r 
~ 12 2 

(45) 

This is a cubic equation for T as a function of For Jo = 0, it gives of 
course, T = 2d/[v{d) + y(0)]. Examination shows that Jo has a maxi¬ 
mum, 2[v{d) + at T — Zd/[v(d) + v(0)]. This is I the transit 
time for Jo = 0; at the maximum JaT^/M = 1. 

The discussion of solutions outside the range, 

_2d < T <__ 
lv{d) + t;(0)] = = lv{d) + vm' 

involves the possibility of the reflection of electrons and questions of the 
stability of the space-charge configuration. In fact, the question of 
stability arises for Jo greater than one-half the value at the maximum, 
and T > (\/3 — l)Zd/[v{d) -f t;(0)], if v{d) < t;(0), and arises for 

j ^ 2[v{d)^ + v{on^ 

and a somewhat larger value of T, if v{d) > 
At the current maximum, since JoT^/6d — 1, it is easily shown that 

a(0) •= — 2»(0)[t>(d) 4- v(0)]/3d and that the velocity in the gap has a 
minimum, which is r(0)v(d)/[v(d) + a(0)] and occurs at 

rn, Tv(0) 
[t;(d) + r(0)] 

Two d-c quantities that enter in the discussion of the r-f behavior of 
the gap are 

*0 

e 
= 1 JoT^ 

6d 
and 

2v{d)’ 
(46) 

As Jo goes from zero to its maximum, €o/e goes from unity to zero; 
simultaneously <r goes from unity to —v{0)/v{d) and is zero when 

*0 

c 

_1 

1 + 2v{d) 
3K0) 

* For details, see J. K. Knipp, "Space Charge Between Parallel Hane Grids,” 
BL Report 684, Mar. 22, 1944. 
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If the velocity of injection is zero, the maxinaum current occurs when 
the field at the first plane is zero. The current has the value given by 

_ 2v{dy 

This is Child’s law for a space-chargedimited diode, 
the a-c impedance, p = dVd/dh, is 

Po 
12^ €0* 

In such a diode 

(47) 

This is a useful combination of symbols, whether Child’s law is obeyed 
or not. 

The capacity, C = ^eo/d, the beam conductance, Gd = la/Vdi and 
po = JoTV12A€o are related as follows: 

2Cpo _ GdV^T _ JoT^ _ . €0 

T 12C 6d e 
(48) 

where r = v(d)T/d. 
/?-/ Relations.—In order to find the conditions for steady oscillations 

in the gap, let 

Jit) = - Ja + (49) 

where /„ is the r-f amplitude of the total current, 
becomes 

d^x 

dt^ 
= Jo — 

Llewellyn’s equation 

(50) 

This is integrated for a particular electron with the condition that at 
injection the acceleration is a(0,<') and the velocity is 2;(0,^'). 

The first integration gives 

0(1,0 - o(0,<') = Jo(< (6’“* - e’"*'). (51) 

The second integration gives 

v(x,t) - v(0,t') = Jo + a(0,n(,t - If) 

The third integration gives 

a; - Jo + a(0J0 + v(0,m - tf) 

~ (M* ~ (53) 
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Suppose that 

and 

From Eq. (43), 

a{x,t) = a{x) + atc{x)e^^\ 
v(x,t) = v{x) + v„ix)e?^\ 
T(x,f) = r' + !r«(a;)e»‘-S 

i(xyt) = —lo + iu{x)e^^K 

3(aa^{x) = — i«(^) = 
eiu{x) 

myteo 

(54) 

(55) 

On substituting from Eqs. (54) in Eq. (51) and writing for 
an expression is obtained from which the purely d-c terms can be elimi¬ 
nated by the use of the first of Eqs. (44). The result is 

a„{x) - a„(0)e-''«' = JoT„{x) “ (1 - (56) 

By using Eq. (55), the r-f acceleration amplitudes can be eliminated. 
Terms containing drop out. The resulting relation is 

ia,(:r) - j«(0)e-^^ = Jojo)T^{x), (3*18) 

which was found in Sec. 3*5 by assuming particle conservation. 
Substitution from Eqs. (54) in Eq, (52) gives, in a similar manner, 

v^{x) - t;«(0)e-^‘^ = a{x)T^{x) + a«(0)e~^‘^r 

“ w (1 -~ 
On eliminating the acceleration amplitude, this equation becomes 

- v„(P)e-i^ = a{x)T„{x) - (68) 

The last term in this expression should be noted for, together with con¬ 
tributions from To}(x), it gives a dependence of v^ix) on 4(0). 

Finally, substitution from Eqs. (54) in Eq. (53) gives 

0 = v{x)T^ix) + aa,(0)e~^*^^ + 

This equation determines the amplitude of the modulation of the time 
of passage. On eliminating the acceleration amplitude, it becomes 

- ^ e-»«' - »„(0) T'e-^*'. (60) 
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This expression is used to eliminate T^ix) from Eqs, (18) and (68). 
Llewellyn Electronic Equations.—The results of the foregoing calcu¬ 

lation are most easily given in terms of the series formulation: 

p{x) + v,[x), 

and 

Vta = --IciZg + Zg = + Zb. 

When the six elements of these three equations have the form given by 
the calculations of this section, they are known as the “Llewellyn elec¬ 
tronic equations.^’ 

A number of parameters are introduced in order to simplify the form 
and interpretation of the equations. The first of these are 

v(x)r ^ v(d)T ,, a(x)r^ , a(d)T^ 
r _ r = 8 = 8 = 

They come from the presence of a d-c field in the gap. If the d-c field 
were zero, r' and r would be unity and 5' and 5 would be zero. Additional 
but not independent parameters are 

II _ JoT'» €o ^ J oT^ 
Qx ’ e ~ ^ 6d’ 

JoT'^ , JoT^ = 1 
2v(xy ^ 2v(d) 

These come from the presence of current and space charge in the gap 
and would be unity if current and space charge were completely absent. 
The quantity € plays the role of a low-frequency dielectric constant that 
is due to the electron beam. It occurs in the equation for the velocity 
modulation of the beam as it leaves the gap and the equation for the gap 
voltage. The quantity a- is a smoothing factor. The smoothing, or 
debunching, comes from the spreading forces caused by the uneven dis¬ 
position of space charge in a density-modulated beam. This parameter 
occurs in the equations for the current and velocity modulations of the 
beam as it leaves the gap. For a high-velocity gap in which tlie space 
charge is small, both eoA and a are only slightly less than unity. How¬ 
ever, as the space charge becomes appreciable, these quantities become 
considerably less than unity. As Jo approaches 2{v{d) -h v(0)]V9d^ 
which is its maximum, €o/e approaches zero and a approaches — v(0)/v((i). 

The four parameters r', 6', eoA', </, are related as follows: 

1 - I? = 1 - r' + 8', 1 - <r' = (1 - r' + 8') p- 
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Similarly, 

1 _ 1“ = 1 _ r + S, 1 - <, = (1 _ r + 8) 5; 

also 

q(0) 
a(d) 

The first electronic equation follows from Eq. (18) after substituting 
for Tu(x) from Eq. (60). It is 

i.(x) - i„(0)c-»«' = /„(1 - c') (m' - 

- i„(0)(l - + t.„(0) jd'^r (61) 

Hence, by comparison with the first of Eqs. (9), 

a(.x) = (1 - «r0 (m' - 

i.(x) = UOVerO’ + r„(0) 

(62) 

It is significant that the presence of space charge magnifies a{d) and 
reduces the first term of i$(d), and that either can be made very small by 
the proper choice of cr. 

The second electronic equation follows from Eq. (58). It is 

^(0) y,—if _ 
»(a:) 

. j ^ •<.(0) 

jwC 2 \/7xFd T «■ 

Hence, by comparison with the second of Eqs. (9), 

«.) . -d - (? M' + .-T 
e.W - -i.(0) (1 - 

* ^ - t>„(0)(l - <r')r^*'. (63) 

(64) 

The beam-loading impedance and voltage source in the third elec¬ 
tronic equation are obtained from Eq. (62) by using the integrals of 
Eq. (11). It is found that 
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ji 
Ne 2, 

JfjoC \€ 
£(0) 
a{d) 

(65) 

+ 
K(0) (- 
juC 

The presence of space charge tends to magnify the beam-loading imped 
ance and to reduce that part of the voltage source which comes from the 
density modulation of the beam at injection. 

Exact Shunt Formulation.—The Idewellyn electronic equations can, 
of course, be written in shunt form by using the transformation of the 
elements given in Eqs. (12). The following two identities are of interest 
in this connection: 

. . r. 
JuC(l — <r ) = -2-I 

The gap admittance is 

Y„ = jo,C 1^1 - (l - (67) 

and therefore the beam-loading admittance is 

Yb = j^C Ne'^ j^l - ^1 - Ne~^^ *• (68) 

As €o/€ approaches unity, this expression becomes identical with the first 
of Eqs. (37). The exciting current is 

+{m) t) 
It goes over into the second of Eqs. (37) as eo/e approaches unity, 
since at the same time a(0) becomes equal to a(d). 

The internal electronic transadmittance, or density-modulation 
admittance, is 

y«(«) = ^.^(l - <r') {m' - j^l - ^1 _ ATe-'^j (70) 

On comparison with the first of Eqs. (36), it is seen that that equation is 
obtained by putting eoA = 1 in the above. The density modulation 
that is due to modulations in the beam at injection is 
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i.w - + ".(o) 

+ (1 - («' - e-’i [^(0) (fi il/ - 

+’■<“> im) ’■'K"’ - ‘-f) [‘ - (' - ?) "'‘T' <"*> 
By putting a' equal to unity, the second of Eqs. (35) is obtained. 

The coefficient of — v^^ix) is the velocity-modulation 

admittance 

Ux) = icoC(l - (t') 

WP (r-t) [' - 0 - t) '• ™ 
It takes the same form as the first of E(|S. (36) when eo/e' and eoA are 
unity. Finally, the velocity modulation that is due to modulations In 
the beam at injection is 

_2l, 
e'^ ■’.(*) - -i.(0) (^) (1 

+ ..(0) - 0 - I (? M> 

This expression reduces to the second of Eqs. (36) when a' is put equal to 
unity. 

It is thus seen that, in order to transform the elements of the exact 
shunt formulation into the elements calculated for the high-velocity gap 

with constant d-c field, jo)C ~ i"C'(l — <r') in Yb, ym(x)f 

fm(x) are first replaced by their equivalent expressions as given by 

Eqs. (66), and then ^ and ^ are put equal to unity in Ybj im, 2/m(x),/„t(a;), 

and a' is put equal to unity in im{x), Vm{x), Hence the effect of space 
charge in Fb, im, Vmix), fm(x) is essentially a dielectric effect while in 
im{x), Vfn{x) it is a debunching effect. However, the two effects are not 
completely separable. 



CHAPTER 4 

BASIC CIRCUIT PHENOMENA AT HIGH FREQUENCIES 

By J. K. Knipp 

Microwave circuits are built of resonators connected by waveguides 
and coaxial lines rather than of coils and condensers. Radiation losses 
are eliminated by the use of such closed elements and ohmic losses are 
reduced because of the large surface areas that are provided for the sur¬ 
face currents. Radio-frequency energy is stored in the resonator fields. 
The linear dimensions of the usual resonator are of the order of magnitude 
of the free-space wavelength X corresponding to the frequency of excita¬ 
tion, / = c/X, c = 3 X 10* m/sec. 

4*1. Cavity Resonators. Free Oscillations.—simple cavity com¬ 
pletely enclosed by metallic walls can oscillate in any one of an infinite 
number of field configurations. The free oscillations are characterized 
by an infinite number of resonant frequencies corresponding to specific 
field patterns or modes of oscillation. Among these frequencies there is 
a smallest one, /o; for it the free-space wavelength, 

. (3 X 10* m/sec) 
Ao =-Tf 

Jo 

is of the order of magnitude of the linear dimensions of the cavity, and 
the field pattern is unusually simple; for instance, there are no internal 
nodes in the electric field and only one surface node in the magnetic 
field. 

The free oscillations of such a cavity are damped by energy lost to 
the walls in the form of heat. This heat comes from the currents circu¬ 
lating in the walls and is due to the finite conductivity of the metal of 
the walls. The total energy of the oscillations is the integral over the 
volume of the cavity of the energy density, 

i(€oE^ + 

where E and H are the electric and magnetic field vectors, in volts/meter 

and ampere-tums/meter, respectively, and co = X 10^® farad/meter, 

Mo — 4ir X 10~^ henry/meter. The cavity has been assumed to be empty. 
The total energy u? in a particular mode decreases exponentially in time 

70 
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according t<^ the expression, 

w = Woe 
<aot 

“T 

where «o = 27r/o. In this formula Q is a quantity characteristic of the 
mode; it is defined by 

J. _ energy lost in one cycle 
Q ~ 2ir energy stored in the cavity 

iatl 

The fields and currents decrease in time with the factor e 
Reasons for Reentrant Cavities,—The cavities of most klystrons and 

microwave triodes and tetrodes are reentrant cylindrical structures with 
circular cross sections (see Fig. 44). They are reentrant for two reasons. 
When the cavity is excited, the gap, namely the region between the post 
and the opposite end-plate, is a region of high electric field. It is through 
this gap that the beam passes, the 
electrons moving parallel to the 
axis of the resonator and therefore 
normal to the defining planes of the 
gap. These planes are usually grids 
that allow the passage of electrons 
while serving to maintain a fairly 
uniform field in the region. A high 
electric field is desired for large 
interaction between the beam and 
the field. The second reason for a 
reentrant cavity is that the gap, 
being small, requires a relatively 
short time for the transit of elec¬ 
trons. Transit times greater than 
a fraction of a cycle are almost always undesirable because of the 
reduced effectiveness of the gap potential in modulating the beam and of 
the electron current in exciting the cavity. 

Principal Mode,—^The principal, or fundamental, mode of oscillation 
of such a cavity, and the one with the longest free-space wavelength Xo, 
has electric and magnetic fields that do not depend on the angle defining 
the half plane through both the axis and the point at which the fields are 
being considered (see Fig. 4-2). In addition, the electric field is zero 
only at the wall farthest removed from the gap and the magnetic field is 
zero only at the center of the gap. 

In this mode the magnetic field is everywhere perpendicular to the 
plane passing through the axis and the electric field lies in that plane. 
Lines of magnetic flux form circles about the axis and lines of electric 
flux pase from the inner to the outer surfaces. 

Fig. 4*1.—Cut away view of a reentrant 
resonator with radial fin grids and coaidal 
loop coupling. 
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Hi wmH 

The cavities that are used in microwave tubes almost always have 
a narrow gap, that is, the depth of the gap is small compared with the 
radius of the post (d «: a in Fig. 4*2). If the radius of the post is much 
less than one-quarter of the wavelength, and if the rest of the cavity is not 
small, the electric field in the gap is relatively strong and approximately 
uniform over the gap. It is directed parallel to the axis and falls off 

I only slightly as the edge of the gap 
is approached. On the other hand, 
the magnetic field increases from 
zero at the center of the gap in such 
a manner that it is nearly linear 
with the radius. 

The proportions of the toroidal 
region outside the gap vary widely 
in tubes of different design. It is 
convenient to distinguish two types 
of cavities. Radial-line cavities 
have the general shape of flat pill¬ 
boxes with a center post. In such 
a cavity the radial distance between 

Fio. 4-2.—Cylindrical coordinates and the inner and Outer walls IS larger 
resonator dimensions. ,i -t • 

than the height of the cavity 
(6 — a > A in Fig. 4*2). Coaxial-line cavities have the general shape 
of one tube within another. In such a cavity the radial distance be¬ 
tween the inner and outer walls is smaller than the height of the cavity 
(6 — a < A). 

In a radial-line cavity the electric field outside the gap tends to remain 
parallel to the axis, aside from some distortion of the field that is caused 
by fringing near the gap; it is weaker than in the gap and tends to become 
zero as the outer circular wall is approached. The magnetic field, on the 
other hand, increases from its value at the edge of the gap and has its 
maximum value at the outer circular wall. 

In a coaxial-line cavity the electric field outside the gap changes its 
direction in relation to the axis from parallel in the region near the gap 
to perpendicular on going away from that region. Thus, in the coaxial 
portion of the cavity, the electric field tends to be directed from the inner 
circular wall toward the outer circular wall. It is weaker than in the 
gap, and as the end wall away from the gap is approached it tends to 
become zero. The magnetic field, on the other hand, increases from its 
value at the edge of the gap on moving parallel to the axis away from the 
gap and has its maximum value at the end wall away from the gap. 

It is thus seen that, whereas the gap is a region of very large electric 
field and small magnetic field, the reentrant portion of the cavity is a 
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region of large magnetic field and small electric field. The gap is the 
capacitive region of the circuit, and the reentrant portion is the inductive 
region. The direction of surface currents lies in the plane through the 
axis. Charge flows from the inner to the outer conducting surface of 
the gap by passing along the inner wall, across the end, up the outer wall, 
and across the outer end. The current links the magnetic flux and the 
magnetic flux links the current, as required by the laws of Faraday, 
Biot and Savart. 

0 12 3 4 
k 

Fio. 4*3.—Curves for determining resonant wavelength Xo of fundamental mode of reentrant 
cylindrical resonator for b/a * 2.00 and h/a ^ 2.25, 

Resonant Wavelength for Principal Mode.—The resonant wavelength 
of a particular mode is found from a proper solution of Maxwells equa¬ 
tion, that is, one that satisfies the boundary conditions imposed by the 
cavity. When the walls of the cavity conduct perfectly, these conditions 
are that the electric field must be perpendicular to the walls and the 
magnetic field parallel to the walls over the* entire surface, where these 

fields are not zero. 
The resonant wavelength Xo has been calculated by W. W. Hansen* 

for the principal mode of the simple reentrant cavity illustrated in Fig. 
4*2. Results based on these calculations are given in Figs. 4*3 to 4*7 

* W. W. Hansen, Type of Electrical Resonator,” /. AppL Fhy$, 9, 664 (1938). 
The curves are from Microwave Tranemiaaion Doto, Sperry Gyroscope Co., New York, 
1944. 
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Fig. 4*4,—Curves for determining resonant wavelength Xo of fundamental mode of reentrant 
cylindrical resonator for h/a = 2.26 and h/a = 2.50. 

Fxg. 4*6.—Curves for determining resonant wavelength Xo of fundamental mode of reentrant 
cylindrical resonator for h/a 2.50 and h/a 2.75. 
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0 12 3 4 

Fig. 4*6.—Curves for determining resonant wavelength Xo of fundamental mode of reentrant 
cylindrical resonator 6/a = 2.75 and 6/a =* 3.00. 

Fio* 4*7.^Curve8 for determixung resonant wavelength Xo of fundamental mode of reentrant 
oylindrioal resonator for 6/a «■ 3.00 and 6/a ■* 3.50. 
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in the form of curves for particular values of the ratio of outer to inner 
radius, 6/a. The height of the resonator is h and the gap depth is d. 
Sets of curves for two values of 6/a are given in each figure; the larger is 
the same as the smaller in the next figure. Curves for d/a are plotted 
against h/a for particular values of ia, where k = 27r/Xo. By inter¬ 
polating between the curves, Xo can be determined if the four dimensions 
a, 6, d, h are ktiown; or if three dimensions and Xo are known, the fourth 
is obtainable. The curves are believed accurate to within a few per 

cent. 
In using these curves to determine the resonant wavelength of a 

cavity it must be remembered that the bounding conducting surfaces of 
the gap region have been assumed to be solid. It has been found, for 
example, that two coarse grids constructed of radial fins (as shown in 
Fig. 4*1) for the purposes of wavelength determination have an equivalent 
spacing some 30 per cent greater than the physical spacing and that two 
fine-mesh grids have an equivalent spacing some 10 per cent greater than 
the physical spacing. 

Unloaded Q and Shunt Conductance,—In a cavity undergoing free 
oscillations, the fields and surface currents all vary linearly with the 
degree of excitation, that is, a change in one quantity is accompanied 
by a proportional change in the others. The stored energy and the 
energy losses to the'walls vary quadratically with the degree of excita¬ 
tion. Since the Q of the resonator is the ratio of these two quantities, it 
is independent of the degree of excitation. 

The resonator losses per second, besides being proportional to the 
degree of excitation, are inversely proportional to the product of the 
effective depth of penetration of the fields and currents into the walls, 
the skin depth, and the conductivity of the metal of the walls. Since 
the skin depth is itself inversely proportional to the square root of the con¬ 
ductivity, the losses are inversely proportional to the square root of the 
conductivity [see Eqs. (20) and (21)]. The losses are also roughly pro¬ 
portional to the total internal surface area of the cavity; and this area 
is proportional to the square of the resonant wavelength for geometrically 
similar resonators. The skin depth is proportional to the square root 
of the wavelength, and hence the losses per second are proportional to 
the three-halves power of the resonant wavelength. 

The loss per cycle, which is the quantity that enters in Q, is propor¬ 
tional to the five-halves power of the resonant wavelength. Since the 
energy stored is roughly proportional to the volume, or the cube of the 
wavelength, the Q varies as the square root of the wavelength for geo¬ 
metrically similar cavities, a relationship that is exact if the mode is 
unchanged because the field patterns are the same [see Eq. (23)]. In 
general, large cavities, which have large resoziant wavelexigths in the 
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principal mode, have large values of Q. Cavities that have a surface 
area that is unusually high in proportion to the volume, such as reentrant 
cavities, have Q^s that are lower than those of cavities having a simpler 

geometry. 
The shunt conductance G as given by the expression, 

^ energy lost per second 

is defined only when the voltage V(t) is specified. In a reentrant cavity 
the potential across the gap varies only slightly over the gap if the gap 
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Fig. 4-8.—Shunt resistance R in ohms and Q for copper resonators having 3.2-cm resonant 
wavelength and 0.014n. gap depth. 

is narrow and the rest of the cavity is not small. A unique definition 
is obtained for G by using for V{t) the potential across the center of the 
gap. The gap voltage is proportional to the degree of excitation, and 
hence the shunt conductance is independent of the degree of excitation, 
as expected. 

For geometrically similar cavities the shunt conductance varies 
inversely as the square root of the resonant wavelength for the same mode 
of excitation. This relationship exists because for the same excitation 

is proportional to the square of the wavelength and the loss per 
second to the three-halves power of the wavelength. 

Both the unloaded Q and the reciprocal of the shunt conductance 
vary as the square root of the conductivity of the metal of the walls. 
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Approximate values of Q and R = l/G are given in Figs. 4*8 to 412 
for copper cylindrical resonators with circular cross sections having 
particular values of a, 6, d, All the resonators have a resonant 
wavelength of 3.2 cm. The gap depth is constant for all the resonators 
of a particular figure. The three resonators in any column have the same 
height. The first resonator in any row is a pillbox cylinder; the remain¬ 
ing four resonators in the row have the same inner radius. The outer 
radius required to give Xo — 3.2 cm is to be found in the table in each 
figure. The values of Q and R are believed accurate to 10 per cent for 
resonators that are highly reentrant and to 25 per cent for those that are 
less so. The values are exact, however, for the pillbox resonators. 
Cavities of similar proportions are obtained by scaling a, 6, d, h in propor¬ 
tion to the wavelength desired; Q and R are then proportional to the 
square root of the wavelength. Values for metals other than copper are 
in proportion to the square root of the conductivity. 

An examination of the values of R shows that R increases with d for 
fixed a and h, as expected because of the reduced current flow necessary 
to produce the same value of the gap voltage. 

Comparison with Lumped-constant Circuit.—In many respects the 
behavior of a resonant cavity resembles that of a low-frequency shunt 
LJ2C-circuit. For such a circuit, a)o = l/y/LC and Q = ojoCR. In a 
highly reentrant cavity the effective capacitance is given approximately 
by C = €o7ro*/d, and L can be assumed to be defined by wo and C, 

For the lumped-constant circuit. 

If this relation held for cavity resonators, Q/R should be constant for 
the rows (fixed d and a) and should vary as in the columns (fixed d) 
of the Figs. 4-8 to 4-12. The values of Q/R X 10^ mhos obtained from 
Fig. 4*11 are: 

2.2 1.1 0.79 0.61 0.46 
2.2 1.8 1.3 1.1 1.3 
2.2 2.7 3.0 2.2 1.5 

The lack of complete similarity in behavior to that of a low-frequency 
circuit is apparent and is the greatest with regard to the change with a 
in the columns; if the similarity were perfect, the numbers in the first, 
second, and third rows of any column would be in the proportion 1 to 
16 to 64. 

^ Diagrams are from Microwave Tranamieeion Data, Sperry Gyroscope C5o., New 
York, ld44, and are based on the calculations of W. W» ^nsen. 
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i(0- 

The main value of the analogy between resonators and lumped- 
constant circuits lies not in the extension of characteristic parameters to 
other geometries, in which the anal¬ 
ogy is not very reliable, but in the 
fact that the equations for the forced 
excitation of resonators and lumped-- 
constant circuits are of the same general 
form. 

If, for example, it is assumed that 
the current i{t) passes into the shunt 
combination of L, C, and conductance (7 (see Fig. 4*13), by KirchhofFs 
laws, 

V(l) 

I 
Fig. 4*13.—Lumped-constant circuit; 

0)0 = 1/VlC, Q « aoC/G. 

i(t) = C 
dV(t) 

dt y + f dtvit) + GV(t). 

On taking the derivative and eliminating L, 

di(t) 
dt 

’dW{t) 
dr- 

+ «SF(0 +G 
dV(t) 

dt (1) 

For forced oscillation with the frequency w, 

= [f? + y«»C j F„. 

Thus, there is defined the circuit admittance 

y = (? + jmC 
\ar5 w/ 

These equations describe the excitation of the lumped-constant 
circuit. Similar equations, with appro¬ 
priate parameters, are obtained in the 
description of the excitation of a particular 
mode of the resonator [see for example Eq. 
(43)]. The parameters are best evaluated 
by the investigation of the fields of the 
resonator. It is to be expected that they 
depend on the frequency. 

CoaxiaUline Resonator as Shortrdr-- 
cuited Line Terminated hy a Lumped 

Capacitance,—A cylindrical reentrant cavity having b -- a ^h can be 
represented approximately as a transmission line, of characteristic 
impedance Zo, short-circuited at one end and terminated at the other 
by a lumped capacitance C (see Fig. 4’14). This is a natural representa¬ 
tion since the reentrant portion of the cavity is shaped like a coaxial 
line and the capacitive region is well localized if the gap is narrow. 

-► ^-1-^ 

t 
F(«) C- Z ^0 

Fig. 4-14.—Short-circuited 
transmiesion line of length I and 
characteristic impedance Zo ter¬ 
minated by lumped capacitance C. 
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The input admittance of a short-circuited lossless transmission line of 
length I is 

“ jZo tan hi 

where k = %c/\ = a>/c, c = 3 X lO’* m/sec. Hence, the input admit¬ 
tance of the shunt combination of capacitance and line is 

Y == jo)C + 
1 

jZo tan kl (3) 

At resonance the total susceptance is zero. Therefore the resonant 
frequency is given by the expression, 

“ Zo tan (woi/c)' 

If ZowoC 1, as is possible if the capacitance is small, 

(4) 

c Xo 2 

(or 3ir/2, etc.) and the wavelength in the principal mode is very nearly 
four times the line length. Such a cavity is called a ‘^quarter-wave 
coaxial'^ resonator. If the characteristic impedance and length of 
line are not changed but the capacitance is increased, the resonant wave¬ 
length in the principal mode becomes greater than four times the line 
length, and consequently the resonant frequency is reduced. The charac¬ 
teristic impedance of a coaxial line of inner radius a and outer radius h is 
simply 

2ir 

where it has been assumed the line contains no dielectric material. 
The resonance condition can be used to eliminate the characteristic 

impedance in the expression for the input admittance of the resonator; 
thus is obtained the expression, 

„ • ri (^ "tan kj\ 
tSTET/ ® 

which for kd and kl<^\ reduces to 

Y - —V 
\wo «/ 

It is clear that a lumped conductance G at the same end as the capacitance 
would merely add O to this equation. Losses distributed along the line, 
and input or output con&e($tions at a particular point in the line, could 
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be introduced in terms of conductances and susceptances and treated by 
the methods usual to transmission line theory. 

In a similar manner, a cylindrical reentrant cavity having 6 — afe 
can be represented approximately as a transmission line, with a varying 
characteristic impedance, short-circuited at one end and terminated at 
the other by a lumped capacitance. The appropriate line is a radial 
transmission line. It is formed of parallel metal disks between which 
fields are established, which travel in and out from the center. The short 
circuit is a circular metal wall at the outer circumference of the disks 
and the lumped capacitance is a gap at the center between a post and 
one of the disks. The quantitative description of radial transmission 
lines is best given with the aid of a chart such as is found in the book 
by Ramo and Whinnery.^ 

4*2. Resonator Fields in Principal Mode. Fields, Currents, and Space 
Charge.—For a cavity containing no dielectric material Maxwell’s 
equations are the two divergence relations, 

Ho div H = 0, €o div E == p, (6) 

and the two laws of induction 

curl E = curl H = + J. (7) 

Rationalized mks units are used. The magnetic field H is in ampere 
turns/meter, electric field E in volts/meter, charge density p in coulombs/ 
meter®, current density J in amperes/meter^. The dielectric constant €o 
is (I/SGtt) X 10~^ farad/meter and the permeability po is 4t X 10~^ 
henry/meter. The magnetic flux density poH is in webers/meter®; 
magnetic flux changing at the rate of one weber/sec generates one volt. 
There is frequent use for the two relations: 

—= c = 3 X 10® meters/sec, \ ^ — ISOtt ohms. 
VcoMo 

The laws of electrodynamics can be expressed in differential form by 
Maxwell’s equations or in integral form by applying the divergence 
theorem and Stokes’s theorem to Maxwell’s equations. By the diver¬ 
gence theorem the volume integral of the divergence of a vector is equal 
to the integral over the surface of its outward normal component. By 
Stokes’s theorem the integral of the normal component of the curl of a 
vector over a surface bounded by a closed contour is equal to the integral 
around the contour of the tangential component of the vector, the direc- 

^ S. Ramo and J. R. Whinnery, Fields and Waves in Modem Radk>,’^ Wiley, 
New York, 1044. 
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tion of the integration corresponding to right-handed motion with regard 
to normals to the surface. 

When applied to MaxwelPs two divergence equations, the divergence 
theorem gives the result that the total magnetic flux passing through any 
closed surface is zero and the total electric flux is equal to the charge 
interior to the surface; these are forms of Gauss’s law. From Stokes’s 
theorem, when applied to the two induction equations, it follows that 
the line integral of the tangential component of the electric field about 
any closed path, that is, the induced voltage, is the negative of the 
rate of change of the magnetic flux that has been linked by the path, and 
that the line integral of the tangential component of the magnetic field 
about any closed path is equal to the rate of change of the electric flux 
that passes through any area bounded by the path plus the total con¬ 
duction current that passes through that area. These are Faraday’s 
law and the law of Biot and Savart modified to include the displacement 
current, which is the rate of change of electric flux through the area. 

The total current density is the sum of the displacement current 
density and the conduction current density, 

dE , - 
+ J; 

and, since the divergence of the curl of a vector is zero, the total current 
density is without divergence. The line integral of the tangential compo¬ 
nent of the magnetic field around any closed path is equal to the total 
current linked by the path. The continuity equation, 

+ div J = 0, (8) 

can be obtained by writing the divergence of the total current density 
equal to zero and replacing €o div E by the charge density. 

The fields E and H are zero in perfectly conducting walls. From 
the laws in integral form it follows that, at the surface of the cavity, E 
and H must be, respectively, normal and tangential to the walls where 
these* fields are not zero. Also it follows that there is on the walls a 
surface current equal in density to H at the surface and perpendicular 
to H and a surface charge density equal to eoE, 

Fields in Empty Coaxialrline Cavity,—Microwave tubes are built 
with cavities of both the radial-line and coaxial-line types. Most 
klystron cavities are radial-line cavities. The Neher r-f amplifier and 
most lighthouse tube circuits have coaxial-line cavities. 

It is possible to give for both types of cylindrical reentrant cavities a 
crude but instructive mathematical description in terms of approximate 
solutions of Maxweirs equations. In this chapter the coaxial-line cavity 
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is so treated. It is selected because the fields outside the gap can be 
approximately represented in terms of sines and cosines rather than Bessel 
functions. The difference in degi’ee of simplicity is just the greater 
simplicity of coaxial transmission lines over radial transmission lines. 

The mathematical analysis of this chapter is illustrative rather than 
exact. Formulas are derived that apply only to coaxial line cavities 
and are only approximate. They serve to illustrate, however, the kind 
of relation that might be expected for other less easily treated cavity 
types. 

In the principal mode of both radial-line and coaxial-line cavities 
only Exy Erj and are different from zero and these quantities are 
independent of <l> (see Fig. 4*2 for cylindrical coordinates and dimensions 
of the cavity). The magnetic field automatically satisfies the condition 
of having no normal component at the walls. If the cavity is empty, 
p and J are zero. 

If the gap is narrow, the electric field in the gap is practically space- 
constant. Thus 

E,= - Er = 0, (9) 

where V is the gap voltage. Since 2wrH^ is equal to the displacement 
current rrho dPJx/dtj 

rr _ —reodV 

^ ^ 2d di' 
(10) 

The magnetic field in a uniform gap is proportional to r. 
In a coaxial-line cavity. Ex is practically zero outside the gap except 

for the fringing field. Maxwell's equations are very simple. Of the 
two divergence equations there remains only 

- ~ irEr) = 0. 
r dr (11) 

The first curl equation gives 

dEr dH^, 
(12a) 

and the second gives 

^ ^ (rJI — 0 (126) 

It can be concluded at once that in the coaxial portion the electric and 
magnetic fields are proportional to 1/r. 

At the end of the cavity near the gap both Ex and Er are present and 
the field equations are more complicated. If both d and b — a are 
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small compared with Z, however, it can be assumed that the fields in the 
gap out to r = a, and in the coaxial portion of the cavity up to a; = Z, are 
given approximately by the preceding equations. 

In the coaxial portion there is the boundary condition that Er is 
zero at X = 0. If the form, 

= (13) 

where h{t) is an amplitude factor, is assumed, then from the first curl 
equation 

dEr cos kx dh 
dx r dt* 

and the condition is satisfied if 

Er 
juo sin kx dA ' 
k r dt 

(14) 

The second curl equation is satisfied if 

«oMo^ + A:*A = 0. (15) 

Hence, if h{t) is proportional to 

cahofio- (16) 

Resonant Frequency,—The condition at resonance is found by express¬ 
ing the potential between inner and outer circular walls at a; = Z in terms 
of the gap potential and matching the magnetic fields at a; = Z, r = a. 
The magnetic flux linked by the closed path across the center of the gap, 
along the metal end wall tor - b, down the side wall to a; = Z, and radially 
inward to the axis is neglected because both the magnetic field at this 
end of the cavity and the enclosed area db are small. Hence, the line 
integral of the tangential electric field around this path is approximately 
zero. Since the tangential electric field is zero on the walls, 

and therefore, using Eqs. (9) and (14), 

V Bin kiln-— (17) 
k am 

From Eqs. (10) and (13), 

—0€odF eoBkl, 
2d dt.’" a (18) 
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On eliminating V from the last two equations and using Eq. (15), 

ka tan kol In - = 1, (19) 
Zu d 

in which ko has been written for A. This is an approximate condition for 
ko from which the resonant frequency can be determined. On comparing 
with Eq. (4), it is seen that, with C = eowa^/d and 

the equation for resonance derived by considering the resonator as a short- 
circuited coaxial transmission line of characteristic impedance Zo termi¬ 
nated by the capacitance C is the same as that just derived from 
approximate field considerations. By using the exact solution of MaxwelFs 
equations, the resonant frequency can be determined exactly. A 
calculation based on a fairly exact solution was used in computing the 
curves of Figs. 4-3 to 4-7. 

Unloaded Q,—Because of the finite conductivity a of the metal of the 
walls, the fields penetrate to an average depth 

6 = J-- (20) 
\ W/LMT 

This distance is called the ^^skin depth.^^ The fields and currents fall 
off exponentially from the surface into the metal walls according to 

e where y is the perpendicular distance from the surface into the metal. 
The conductivity of copper is or = 5.7 X 10^ mhos/m; and, since copper 
is nonmagnetic, = mo. Hence, in copper, for X = 3 cm, 5 = 0.67 X 
cm. 

The surface current, which is equal in magnitude to at the wall, 
can be considered concentrated in a layer of resistive material of thick¬ 
ness 6. The instantaneous power lost per unit area is 

1 H% => H%. 

The total energy lost per cycle is the surface integral 

j dS'Hl (21) 

over the interior walls of the cavity. The quantity is the short-time 
average (average over one cycle) of the square of the magnetic field and 
is equal to one-half the square of the p^k value. 
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The energy stored in the resonator is the volume integral 

Hence the unloaded Q of the resonator, as defined in Sec. 4*1, is given by 

1 5 (dm 
5=1 r-(23) 

Since, in general, H has a loop at the surface, the mean surface value of 
HI might be thought to be roughly twice the mean value throughout the 
volume. In a reentrant cavity, however, it is probably a better approxi¬ 
mation to assume equal mean values, and to write 

I _bS 
Q ^ 2V' 

where S is the total interior surface and V is the total volume of the cavity. 
If the approximate fields derived in this section are used, the surface 

and volume integrals occurring in the unloaded Q are easily calculated. 
To simplify the result, the losses and magnetic energy stored in the gap 
are neglected, and in the integration over the inner post I is replaced by h. 
There is then obtained the expression. 

i = k5 F—-I- 1 (l , iV . 
Q + sin kh cos kh 2 In b/a \ka ^ kb/ j 

The terms in this formula are the relative contributions of the bottom 
and top, inner, and outer walls, respectively. 

If the resonator is approximately a quarter wavelength, kh » ir/2, 
the formula simplifies to 

i « 
Q ^ X 8 In b/a 

(25) 

For fixed 6, the highest Q is found for a = 0.286, for which 

1 46 
<3 " X (■ 

In the limit b/\ <K 1, l/Q = 1.885/6; the losses in the bottom are 
negligible. 

Shunt Conductance.—The gap potential can be expressed as a surface 
integral by taking the line integral of the electric held over a closed path 
that crosses the gap at the ans and links all the magnetic flux of the 
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cavity by remaining in the metal walls on the return path. Thus the 
following equation is obtained; 

F = -MO ^ j dS’H^,. 

The area over which the integration extends is one-half the cross-sec¬ 
tional area cut by a plane through the axis. 

The energy lost per second is 

f jcroT 
J 

and therefore the shunt conductance is given by the expression, 

dSM 

f dS'H^y (^j dS'H^y 
If the integrals are assumed proportional to the areas, 

^ a 
"" 47r \mo 

where S is the total interior surface of the cavity and S' is one-half its 
cross-sectional area defined by a plane through the axis. 

With the simplified fields used in calculating Q, the shunt conductance 
of the coaxial-line cavity is given by 

= rks h r_L±_£25iM 4- __1_ /_L 4. 
. \mo [sin^ kh In b/a ^ 2(ln b/ay \ka ^ kb/ \sin‘^ 

n 

The values of Q and J? in Figs. 4*8 to 4*12 were calculated from formulas 
similar to Eqs. (24) and (29). It is to be noted that Eqs. (4), (24), and 
(29) do not satisfy the lumped-constant circuit relation QG = cooC 
since in Eq. (4) C is defined as eA/d, 

If the resonator is approximately a quarter wavelength, Eq. (29) 
simplifies to 

® UTVa 8 In b/o (o ?)]' 

Damped Oscillations.—The cavity losses have the effect of introducing 
a damping factor into the equation governing the time variation of the 
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oscillations. Instead of Eq. (15) the equation for the amplitude hit) 
becomes 

g + + = (31) 

If the form h = is assumed, it is found that w is complex and is 
given by the expression, 

Therefore the fields have the time factors 

(33) 

Since any quantity linear in the fields contains h or its derivative, 
such a quantity obeys this amplitude equation because the equation 
is homogeneous. In particular, the gap voltage satisfies the amplitude 
equation, which can be written in the form 

where C is defined as QG/coo. 
4'3, Cavity Excitaltion in Principal Mode. Excitation by the Beam.— 

If a beam passes through the gap, conditions are altered by the presence 
of current and space charge in the cavity. Because of the space charge, 
the electric field is no longer constant in the gap. If the beam is uniform 
as assumed in Chap. 3, the electric field is still directed parallel to the 
axis and the gap voltage is the integral, 

V-j\xE^, (35) 

where Ex is a function of x as well as ty its space derivative being deter¬ 
mined by the charge density through the divergence equation. 

The total current I passing through a uniform gap is a function only 
of t because it is without divergence. But the total current is equal to 
the line integral of the magnetic field around the edge of the gap; t^us 

I = 2^aH^. (36) 

Because of the fringing of the field at the edge of the gap, neither I nor 
is completely constant across the edge of the gap; if the gap is narrow, 

however, the effect of fringing on both is small. 
The total current is the integral over the area of the gap of the sum 

of the displacement-current density and conduction-current density, 
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and is given by the expression, 
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J = j ds(^,o^ + jy (37) 

In a uniform gap the right side can be averaged across the gap and V 
introduced; thus 

where in this equation C = e^A/d and i/A is the average conduction- 
current density in the gap. This fundamental relation for the uniform 
gap was derived in Chap. 3 from the divergence relation and the con¬ 
tinuity equation. By combining Eq. (38) with Eq. (36), there is obtained 
the expression, 

i = + 2TaH^, (39) 

where H4, is the magnetic field at the edge of the gap. 
It is seen that the presence of the beam has two primary effects: 

the effect of space charge on the electric field, which is sometimes negligi¬ 
ble, and the addition of the conduction current to the displacement 
current. Outside the gap the fields are essentially unchanged except 
in amplitude. 

Just as in the empty cavity, the gap voltage and the magnetic field 
at the edge of the gap for a coaxial-line cavity are, respectively, 

Mo • 771 b dh 
K = sin kl In -jj) 

k a dt 
cos kl h Dd, — -- 

^ a 

Hence, at the edge of the gap 

dH^ _ Jc_1 y 
dt anotsm kllnb/a ^ 

(40) 

which can be substituted in the derivative of Eq. (39). 
the expression, 

dt dt^ "^Mo 
V. 

There is obtained 

(41) 

To take into account cavity losses, a term of the fonn GdV/dt should be 
added to the right member of this equation. The factor 2T/ln (b/a) can 
be eliminated by using the resonance condition, Eq. (19). When these 
changes are made. 
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di ^ (dW . wwo tan k^l ^ dV 
dt^^\dt^'^ tanfcZ 

(42) 

The equation just obtained serves to determine the excitation of the 
cavity by the beam. Consistent with the approximations made, 

it)o)Q tan kol 
tan kl 

can be replaced by wj. Hence 

di 
dt ‘■(If+“*>') + G 

dt 
(43) 

This equation has exactly the same form as Eq. (1), which was derived 
for a lumped-constant circuit. If i contains the component 4c'"‘, 

The response of the resonator to the driving current is that of a circuit 
with the admittance 

Y = jmC (~ ~ + G. 
\a)o CO / 

The Output.—The output lead of the resonator can be a metal loop 
or probe in the cavity connected to a coaxial line or directly to another 
cavity or a window looking into a waveguide or another cavity. The 
output contributes to the power losses and also affects the resonant fre¬ 
quency. The genera^ effect is to add terms of the form, 

Ah 
dW 
dt^ 

+ BlV + Gl 
dV 
dt' 

to the equation describing the excitation of the cavity. Such terms 
depend on the nature of the load and are frequency-dependent. For a 
particular frequency they add an admittance, ju>AL + {l/jo})BL + (?/., 
to the gap admittance, which then becomes an expression of the form, 

JccqC + Gbr + Gl- 
\o)o 0)/ 

In this expression, Wo is the new resonant frequency and C is the new 
effective capacitance and Gbr = Gb + Gr is the sum of conductances 
due to resonator and beam losses. The power output is GlV^- Because 
of the resonator losses and losses to the beam the power output is only a 
fraction of the total power produced; this fraction is called the circuit 
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A detailed description of the coupling between the output lead and 
the resonator is beyond the scope of this chapter and only a few qualita¬ 
tive remarks will be made on the subject.^ 

A simple example of coupling from a resonator is an output lead 
composed of a small loop on the side of the cavity connected to a coaxial 
line. The magnetic flux that passes through the loop induces in it a 
voltage, 

(44) 

In this formula, Ac is the effective area of the loop and is the magnetic 
field at the loop; the area is assumed small and the magnetic field constant 
over the area. If the disturbance introduced by the presence of the loop 
is small, the magnetic field at the loop is approximately 

rr cos kx , 
jj =-hj 

V r ^ 

where x and r are coordinates of the loop. Hence, if Eq. (17) is used, 

_ k cos kx_1 _ y 
di fxov sin kl In h/a ^ 

(45) 

and the voltage induced in the loop is simply related to the gap voltage 
as follows: 

Ack cos kx I y 
r sin kl In h/a 

(46) 

If the admittance looking into the line is a pure conductance Gc and the 
self-inductance of the loop is neglected, or regarded as part of the line 
admittance, the power delivered to the line is GcVl; since it is also GlY^, 

Gl = 
(Ack coskx 1 

r sin kl In b/aj 
Gc> (47) 

This expression gives the output conductance as measured at gap in 
terms of the conductance as measured at the loop for a coaxial-line 
cavity and the conditions stated. If the output is not a pure con¬ 
ductance, as is almost always the case unless very careful design require¬ 
ments are met and the load is matched to the tube, it is clear that the 
load contributes a susceptance in addition to a conductance at the gap. 
The prime significance of the above formula lies in the factor Al; this 

^ For extensive treatments of microwave circuits, the reader is referred to other 
books in the Radiation Laboratory Series, in particular: Waveguide Handbook,*' 
Vol, 10, edited by N. Marcuwitz; '^Principles of Microwave Circuits,** Vol. 8, by 
C. G, Montgomery, R. H, Dicke, and E. C. Purcell; "Microwave Magnetrons,** 
Vol, 6, edited by G. B. Collins. 
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factor indicates that, as the loop is turned, the gap conductance due to 
the load changes with the square of the cosine of the angle which it 
makes with the plane through the position of the loop and the axis. 
It is, of course, obvious that if the loop is placed in a part of the cavity 
where the magnetic field is small, the output coupling is weak. 

The presence of an output lead on the side of a circular cylindrical 
resonator destroys the axial symmetry that the fields have in the principal 
mode in the absence of the coupl ng device. Modes not having that 
symmetry are excited and contribute to the stored energy, the losses, and 
other general properties of the resonator. A discussion of these modes is 
essential to the description of the effect of the output and they are the 
basis of the exact calculation of the output characteristics. 

The effects of external connections on cavity excitation are important 
in the discussion of tube operation. Reference is made to the detailed 
treatment of load effects on the performance of reflex klystrons that is to 
be found in Chap. 15. 
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CHAPTER 5 

THEORY OF H-F SPACE-CHARGE DEVICES 

By J. K. Knipp 

A microwave tube of planar grid structure contains a succession 
of regions separated by parallel plane grids. The first of these regions 
has a cathode that emits electrons, and these electrons form a beam that 
passes through the other regions. In the absence of r-f fields, the motion 
of the electrons of the beam is controlled by the d-c voltages on the grids 
and the anode. If within a region of the tube the voltage relative to 
the cathode is zero or negative, some or all of the electrons are reflected; 
when such is the case, the beam contains a stream of oncoming electrons 
and a stream of reflected electrons. If the cathode emits uniformly, if 
the regions are shallow, and if the gi*ids are of fine mesh, the beam and 
the fields are fairly uniform and for most purposes can be described with¬ 
out considering variations parallel to the grid planes. 

The assumption of uniformity is made in this chapter. Hence the 
general relations of Sec. 3-4 apply to each of the several regions of the 
tube. It is also assumed that there is negligible penetration of electric 
fields through the grids. Thus the discussion is restricted to high-mu 
tubes. Since the grids are usually far from perfect transmitters of 
electrons, it is assumed that only a fraction of the electrons incident on a 
grid is transmitted by it. Although secondaries produced by the impact 
of electrons on the grids and the anode can produce many complicating 
effects, such effects are not discussed in this chapter. Finally, only low- 
level operation is considered; the small-signal approximation is made. 
All r-f amplitudes are assumed to be so small that quantities containing 
quadratic and higher-order factors can be neglected. The theory is 
linear in the r-f amplitudes. 

The electrons from the cathode have a spread in velocity correspond¬ 
ing to the temperature of the cathode. Because of velocity differences, 
electron trajectories are not identical. If there is a potential minimum 
outside the cathode, slow electrons are reflected and only those with 
sufficiently high initial velocities pass the minimum. Moreover the 
transit times of electrons traversing similar paths are different for elec¬ 
trons in different velocity groups. Therefore it is necessary to include 
the spread in velocity in a general theory of space-charge devices. The 
velocity spread is particularly important in a space-charge-limited 
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cathode-grid region in which the distance from the cathode to the poten¬ 
tial minimum is not a negligible fraction of the cathode-grid spacing. 
In most output regions, however, the velocity spread can be neglected 
because of the high voltages that are usually used. It can also be neg¬ 
lected in the grid-screen region of most tetrodes, except when that region 
contains a virtual <5athode. Also, an input region with a temperature- 
limited cathode can be treated by the single-velocity theory with a fair 
degree of accuracy. In fact the single-velocity theory has considerable 
validity with a space-chargc-limited cathode if the cathode emission 
is such that the potential minimum lies near the cathode surface. 

The different regions of a tube interact through the beam and through 
outside coupling devices that affect the gap voltages. The properties 
of the beam as it leaves one region, together with the nature of the sep¬ 
arating grid, determine the properties of the beam as it enters the 
next region. The number of electrons can be reduced by capture by the 
grid, but the velocities of the electrons that get through the grid are 
essentially unchanged. The initial conditions in each region are deter¬ 
mined by the final conditions in the preceding region. Hence the 
characteristics of the tube as a whole result from a synthesis of the 
characteristics of the individual regions. 

What is usually required is the driving current in the output region. 
This current contains contributions proportional to the input gap-voltage, 
the negative of the coefficient being the electronic transadmittance, and 
noise contributions arising from fluctuations in the cathode emission and 
fluctuations due to the random nature of the process of capture of elec¬ 
trons by the grids. If the velocity spread in the output region is negligi¬ 
ble, the driving current is a linear function of the r-f output voltage and 
the density and velocity modulations at injection. The latter two 
quantities are related to the density and velocity modulations at the 
plane of exit of the preceding region. A simple assumption is that the 
density modulation at injection into the output region that is not due to 
the action of the grid is a definite fraction of the density modulation at 
the plane of exit of the preceding region and that the two velocity modula¬ 
tions are the same. This assumption is certainly valid as long as the 
velocity spread of the incident electrons is a small fraction of the average 
velocity. When such is not the case, the velocity dependence of the 
capture mechanism can affect the relationship. In the input region 
the density and velocity modulations at the exit (grid) plane are the 
sums of contributions from the input gap voltage and from fluctua¬ 
tions in the cathode emission. If the tube is a tetrode, the grid-screen 
region is usually not a part of a resonant circuit and no r-f voltage devel¬ 
ops in this region. The density and velocity modulations at the exit 
(screen) plane of this region are linear''functions of the density and 
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velocity modulations at the entrance (grid) plane. The latter are simply 
related to the modulations at the exit plane of the input region, which in 
turn are sums of contributions from the input gap voltage and from 
fluctuations in the cathode emission. 

The characteristics of a single region are expressed in terms of quanti¬ 
ties that contain the frequency and depend only on the d-c properties 
of the beam. Three of these are coefficients of the r-f gap-voltage; they 
are the beam-loading admittance, the density-modulation admittance, 
and the velocity-modulation admittance. In addition there are excita¬ 
tion and modulation functions, which give the effects of the density 
modulation at injection of infinitesimal velocity groups. If the velocity 
spread is negligible, these functions reduce to excitation and modulation 
matrices. The elements of these matrices arc obtained from the 
Llewellyn theory, which is developed in Sec. 3-6. Only a beginning has 
been made in the solution of the problem of finding the admittances and 
excitation and modulation functions for a region having a spread in 
velocity. 

In the next section are to be found precise definitions of the quantities 
just introduced. In the section following are presented some general 
relations for the triode and tetrode. Next are four sections on the 
application of the single-velocity theory. In the remaining three sections 
some of the simpler problems of velocity-distribution phenomena are 
discussed. 

6*1. Characteristics of a Single Region.—As a beam passes through a 
region of a tube, its most important properties are the driving current 
and the density and velocity modulations at the plane of exit. These 
properties can be regarded as produced partly by the gap voltage and 
partly by the modulations present in the beam at injection. Thus in 
the shunt formulation of Sec. 3-4, 

ita 

ico(d) 

Vu,(d) 

The coefficient Tb is the beam-loading admittance, the coefficient ymid) is 
the density-modulation admittance at the exit plane, and the factor 
fm(d) is the velocity-modulation admittance at the exit plane. The 
quantity im is the exciting current, and the quantities im{d) and v^id) are 
the density modulation and velocity modulation, respectively, at the 
exit plane arising from modulations present in the beam at injection. 

The beam-loading admittance is conveniently combined with the 
resonator and load admittances (measured at the gap), and the total 

== — + imt 

^ V^ymid) "b iin(d)j 
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circuit admittance, Y = Yb + Yb + Yl, is introduced. The gap 
voltage arising from modulations in the beam at injection is then given by 
the simple relation, 

im = F«F. (2) 

In the input there is, in addition, the gap voltage caused by the signal. 
The signal, of course, has its own noise components. 

Velocity Distribution.—The velocity spread of the electrons of the 
beam is described with the use of a current distribution function i{x,v^t). 
The electron current at the plane x at time t due to electrons with veloci¬ 
ties in the range viov-{- dv is i(x,v,t)dv. The lowest (or most negative) 
velocity at the plane x at time t is v\Xyt). The electron current then is 

i{x,t) /■ dv i{x,v,t), (3) 

and, if v^^xd) ^ 0, the average velocity of the electrons passing through 
the plane x at time t is 

vix,t) (4) 

These quantities have their d-c and r-f components, i(x) = —/o, 4(a:), 
v{x), Va,(x), which can be expressed in terms of the d-c and r-f components 
of the distribution function, i(XfV), iu(x,v), and the d-c and r-f components 
of the lower limit in the velocity, v^(x), vLCa*). 

Excitation and Modulation Functions,—The exciting current and the 
density and velocity modulations at the plane x due to modulations at 
injection can be expressed in terms of the modulations in the distribu¬ 
tion function at injection. If electrons enter the region only at the first 
plane, as is assumed, any electrons with negative velocities have been 
reflected in the region and come originally from the first plane with posi¬ 
tive velocities. Hence if the lower limit of the total distribution at 
the first plane is negative or zero, as is the case when that plane is the 
cathode, the distribution of the injected electrons extends from zero 
upwards. The desired expressions are 

dv' i,a{QyV')y.t{x\v'), 

L dv' i.,(0,v')n,(x]v'). 

(5) 
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The quantity fXtiv') is the excitation function for modulations in the 
injected current due to electrons in the velocity range t;' to + dv\ 
The quantities and fiv(x;v') are the corresponding modulation 
functions for the density and velocity modulations at the plane x, respec¬ 
tively. If the lower limit of the total distribution at the first plane is 
positive, additional terms must be added to the above expressions to 
provide for the modulation of that lower limit. The excitation and 
modulation functions contain the frequency but depend only on the d-c 
properties of the beam. It is clear that n,{v') is the space average of 

Llewellyn Approximation.—If all the electrons at a given plane at a 
given time have the same velocity, which is the basic assumption of the 
single-velocity theory, is readily shown to be given by the 
expression 

4(0,vO == 4(0)5(t;' - v{0)) + - KO)) (fi) 

where 5(i;') and are the Dirac delta function and its derivative. 
These two functions have the property that for any function /(v') 

j dv' h{v')f{v') = m, 

/*' *'<■'«'') - - [-&% 
provided the integrations include the origin. Substitution of Eq. (6) in 
Eqs. (5) leads to the expressions 

'im = 4(0)/t.(y(0)) - Jo«J»(0) \ 

imix) i„i0)iu(x-^{0)) — / C^) 

Vv.(x) = {4(0)M.(a;;t»(0)) - IMO) 

It is convenient to rewrite these equations in the form 

im = + Va)(0) 

imix) = t«(0)/Xt«(x) “b t^«(0) y>ivix)j 

Vm(x) » i„(0) i^^ ttvi(x) + 

(8) 
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By comparison of the two sets of equations, 

Mu = ihv = v(d) 

= v(a-) 

y-vrix) = M.(a:;t'(0)), y^{x) = v{x) 

It is seen that 

»K0) 

Jt>(0) 

.ir djo 
dx fitt(x')j /Xtt) = 1 (“dx^-^ 

djo vix) 

(9) 

(10) 

Since im, im{x), and Vmi^) for the single-velocity theory are given explicitly 
as functions of ia»(0) and i;«(0) in Sec. 3-6, the six elements of Eqs. (9) are 
readily found from the formulas of that section. They can also be calcu¬ 
lated from the general theory of the low-velocity gap without reflections, 
by methods that are described in Sec. 8. 

Excitation and Modulation Matrices.—The coefficients of Eqs. (8) 
define two matrices that are useful in the single-velocity theory of space- 
charge devices. The first of these is the one-row two-column excitation 
matrix, 

/Xt == (/i,* ^,v) > 

and the second is the two-row two-column modulation matrix, 

ix{x) = 
r mx{^) 

The excitation matrix is 

I* aW 6 2 Jj_A io\ 
(11) 

as is seen from Eq. (3.69). The field parameter { is not to be confused 
with the Dirac delta function of Eq. 6. The modulation matrix at the 
exit plane is 

7) [7 ^ 

,4 7 [1 - 0 - 7) +<‘ - "> I (7 ^ 
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i41 - 
('-?) 

1 Ne 2 1 4- (1 _o-)r§ 
L 

[*>(0) 

L^d) 

J ^ 
1 r / \ 

e-i» 

(1 — a) 

,1<N 1 

1 -^1 

+ (1 - a) M+ 5^—^ He-‘^ 

(12) 

The elements of this matrix are obtained from Eq. (3.71) and Eq. (3.73) 
with X — d. 

Single-velocity Admittances.—The beam-loading admittance in the 
single-velocity theory is given by Eq. (3.68). It is 

Yb 

jo>C 

1 - 

Ne 2* 

Ne~^ 

(13) 

The density-modulation admittance at the exit plane is obtained from 
Eq. (3.70) with x — d. It is 

J/m(d) = 
jo>C{l - <T)He 

1 -i'-i) 
J1 

Ne 2 

(14) 

The velocity-modulation admittance at the exit plane is obtained from 
Eq. (3.72) with x — d. It is 

fm(d) = 

In these formulas 

1 - ^1 - Ne~^ 

v(d)T a{d)T^ 

and 

eo , JoT^ _ , 
7 “ ^ 6d ’ “ 2t»(d)' 

These parameters are not independent, since 

(15) 

l-r + B, (16) 
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Also it is to be noted that 

where Gd = h/Vd, and po = Jo^Vl2A€o. For zero direct current, co € 
and <7 are unity, 5 — r — 1, and a(0) = a{d). For maximum direct cur- 

3 
rent, coA is zero, <r = —v{0)/v{d), 5 = r = and a(0)/a(d) » £r. 

U "" O'; 
Cathode-^grid Region.—Velocity distribution phenomena are usually 

most important in the input region, because of the low injection velocities, 
wide thermal spread, and reflected electrons if there is a potential mini¬ 
mum. If the grid has a high positive voltage and the cathode emission 
is not too great, the current that reaches the grid plane is temperature 
limited and there is an accelerating field everywhere in the region. A 
potential minimum can be made to appear at the cathode by increasing 
the cathode emission or decreasing the grid voltage. As the potential 
minimum grows, electrons arc reflected and the current that reaches the 
grid plane is space-charge limited. There is a decelerating field between 
the cathode and the minimum and an accelerating field beyond. If the 
grid voltage is made sufficiently negative, the minimum reaches the 
grid and disappears. There is then a decelerating field everywhere within 
the region and only electrons with high velocities at injection reach the 
grid plane. 

The single-velocity theory can be used to give an approximate treat¬ 
ment of the input region if the grid a high positive voltage and the 
current is temperature limited, or space-charge limited with a cathode 
emission so large that the potential minimum is very near to the cathode. 
With sufficiently high grid voltage, the spread of the transit angles of the 
electrons which reach the grid plane is a small fraction of a radian. If 
there is a potential minimum and it is very near the cathode, the angles 
of the electrons that are reflected are all much less than one radian. 
Hence those electrons that are reflected have a negligible effect on the 
behavior of the gap and those that reach the grid plane can be regarded 
as having a single velocity. 

Temperature-limited cathodes are rarely used because of excessive 
noise and the tendency of the cathode surface to disintegrate. In micro- 
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wave tubes the cathode-grid spacing is often so small that the distance 
from the cathode to the potential minimum is a good fraction of the 
cathode-grid spacing. In fact with the currents used, the minimum 
often occurs at the grid or disappears into the grid. A very large fraction 
of the injected electrons is reflected and a good portion spends a large 
part of a cycle in the region. These electrons have an appreciable 
effect on the behavior of the gap. 

Consistent Theory,—A complete, consistent theory of the r-f behavior 
of a uniform region must take into account the distribution in velocity 
of the electrons and include the effects of space charge. The r-f phenom¬ 
ena are completely described in terms of the total r-f current (as deter¬ 
mined by the rest of the circuit), the injected r-f electron current 
distribution (as determined by the cathode or the preceding region), 
and certain impedance and transfer coefficients. A complete theory 
must provide these coefficients as functions of frequency. 

A starting point in the theory is the defining relation for the total 
current, Eq. (3-3). Rearranged and with the field replaced by the 
acceleration a(Xjt), it becomes 

where 

da(xj) 
dt 

-•/(O + K^yt). 

J(t) = 
c/(0^ 
mAeo 

ei(Xy{) 

mAeo 

(18) 

The quantities J{t) and j(Xjt) occur frequently in electronic theory and 
have the dimensions of meter/sec®. If the electron current is one 
amp/meter^, j{Xjt) is 2 X meters/sec^ 

If the beam is composed of a single stream of electrons, a stream 
being a single-velocity group, jiXyt) in Eq. (18) can be combined with 
the partial time derivative to give the total time derivative. The result 
is Llewellyn^s equation, derived in Sec. 3-6, 

Cut 

This is the fundamental relation of the single-velocity theory of a uni¬ 
form region. It serves to determine a(x,t), from which the electron 
current and other quantities can be derived by the use of Eq. (18). 

The problem is much more complex if the beam is composed of more 
than one stream. To begin with 

jix,t) = f dvj(x,v,t), (19) 
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where 

Kx,v,t) = 
ei{x,vfy 

rnAto 

It is to be observed that J{t) is determined by the resonator and load 
(the circuit) and that j(XfV,t) and v^(x t) are determined by the injected 
current distribution and the acceleration experienced by the electrons. 
Hence the acceleration enters on both sides of Eq. (18), which is in reality 
an integral equation for the acceleration. This integral equation must 
be satisfied by a consistent theory. In the small-signal approximation, 
it breaks up into two integral equations, one for the determination of the 
d-c characteristics and another for the determination of the r-f charac¬ 
teristics. Examples of such equations arc given later in the chapter. 

6*2. General Relations for Multi-grid Tubes.—The exciting current 
of the output of a multi-grid tube is the sum of a current proportional 
to the input voltage and a current arising from fluctuations in the cathode 
emission and fluctuations in the partition of the d-c current to the 
grids. The exciting current is therefore represented as follows: 

[^mjout = + (ijsr]out. (20) 

In this expression Ym is the electronic transadmittance of the tube and tV 
is that portion of the exciting current arising from cathode and partition 
fluctuations except for the noise current arising from the input noise 
voltage due to cathode fluctuations. The total output noise exciting 
current arising from cathode and partition fluctuations is 

where ti»/F]ta is the input noise voltage due to cathode fluctuations. 
The output power is l^i,|F„|*]out and, neglecting noise, 

[V.YUt = -[F„]in7„. 
Since the input power is where Gbb = (?« + G* is the beam 
loading and resonator conductance, the power gain of the tube is 

On the other hand, the noise power out due to cathode and partition 
fluctuations is 

+ UatIowI 

2 

9 
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and therefore the noise figure of the tube is 

107 

iNTF = 1 + 
2 [lypLI [A 

GkTo A/ 
(23) 

where k is Boltzmann^s constant, To is the temperature of the room, and 
A/ is the bandwidth of the detecting device. This formula includes 
the input noise due to cathode fluctuations, which is partially (‘oherent 
with the remaining noise, but does not contain noise contributions of the 
circuit. After the gain is substituted from Eq. (22), the formula for the 
noise figure becomes 

NF 1 + 

1 
5 

kToAf 

2 

(24) 

A reduction in the input loading increases the gain and reduces the noise 
figure. 

The net current flowing to a grid, the grid current, is a quantity that 
is sometimes of interest in circuit analysis. It is the difference in the 
total currents in the regions immediately preceding and following the 
grid, 

Ig i7w]|>reoediog l-f«]followiii** 

The grid current is the sum of a current proportional to the input voltage 
and a current arising from fluctuations in cathode emission and fluctua¬ 
tions in the partition of the d-c current to the grids. Hence it can be 
represented as follows: 

Ig = + iNgy (25) 

where Ymg is a grid transadmittance. The total grid noise current arising 
from cathode and partition fluctuations is 

““ Ymg + ing. (26) 

The electronic transadmittance Ym and the noise current liylout are 
calculated by combining the characteristics of the individual regions of 
the tube. In general, velocity spread is negligible in all but the input 
region. The density and velocity modulations at the exit plane of the 
input region are assumed to be known and the single-velocity theory used 
for the regions following. At each grid it is assumed that 

[t^(0)]£oUowiac CJ||il^*#(d)]preo«dlii« “f* 

[1^10(0) jfoUowing ** l^^«(d)]pr*oedia«» 
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In these formulas ag is the transmission coefficient of the grid and ig 
is the grid partition current. The grid partition current has the spectral 
density, 

= 2ea^;(l - ao)Io, 

where ~7o is the direct current in the region preceding the grid. 
High-mu Triode,—A triode containing a cathode-grid region (kg) 

which is completely isolated, except for the unidirectional beam, from 
the grid-anode region (ga) has an electronic transadmittance and output 
noise current which are given by the formulas 

+ [oid)U(d)ha 

lij\r]oul = On I "f" [ ^ | 

The electronic transadmittance is seen to be the sum of two terms. One 
term contains the density-modulation admittance at the exit plane of 
the cathode-grid region and the other contains the velocity-modulation 
admittance at that plane. Similarly, the output noise current has terms 
containing the density modulation and velocity modulation at the exit 
plane of the cathode-grid region; in addition it has a term proportional 
to the grid partition current. 

The grid transadmittance and the grid noise current are given by the 
formulas, 

(28) 

If the output circuit is tuned, {—Yg/Y + l]<;a « [—jcoC/Gflga and the 
displacement current far exceeds the electron current. 

The four expressions of Eqs. (27) and (28) are derived by the straight¬ 
forward application of the relations of the preceding paragraph to the 
two equations, 

l^]out = |^i«(0)/itt “H VwiO) f 

I, = [-V„Y, + 

and by the comparison of the results with Eqs. (20) and (25). 
Tetrode.—No appreciable r-f voltage develops in the grid-screen 

region (ga) of a tetrode if that region is not part of a resonant circuit. 
The formulas for the electronic transadmittance and output noise current 
are 
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= a^ag I [2/m(</)]itg [MnW]y*[MnU + [v(d)fmid)]ky ^ [Mt»La\ 

+ [ym(d)]kg[v(d)fiv^(d)]g, j / 

UVlout = Ot^ag ^[im(d)]kg[tlii{d)]oAy'tt]»a + j [M»i]«a ^ (29) 

“h b*m(^)]fc^l^(^)Mvt(<^)]a« ^ IoVm(d)]kg[fivv(d)]gs | | 

+ Otgig I tMtt(<^)]ff«lMtt]«o + [^{d)tJ-vt{d)]gg I “I” ^*s[M*i]«a. j 
In these expressions a* is the screen transmission (*oeffi(‘ient and 
is the screen partition current. The electronic transadmittance con¬ 
tains twice as many terms as for a triode because both the density 
modulation and velocity modulation from the input region can, through 
the action of the grid-screen region, lead to density modulation and 
velocity modulation at the injection plane of the output region. Simi¬ 
larly, there are twice as many terms from cathode fluctuations in the 
noise output current; in addition there are both density and velocity 
modulation contributions from the grid partition current as well as a 
density contribution from the screen partition current. 

The total current for the grid-screen region is just the exciting current. 
The exciting current is the sum of a current proportional to the input 
voltage and a current arising from cathode and grid partition fluctua¬ 
tions. Thus 

= — lF«]inF»' + (30) 

which is a relation similar to Eq. (20). In this equation 

yJ = {ly„(d)]*,[/x..]„ + 

— Otg I ”1" I I^m{d')\kg j | 

as is seen directly or by the use of Eqs. (27) for the triode. 
The grid transadmittance and grid noise current are 

Ymg = [YgU " YJ, 
^Ng ~ ““ I'fjvjfir*. 

The screen transadmittance and screen noise current are 

(31) 

(32) 

%N9 
(33) 
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Eqs. (29), (32), and (33) are derived from the three expressions 

= |^4(0)jU„ + t)„(0) > 

•ffl “ I ywy g "}■ fmlxri/ [fmjtf.j 

I, = [im]« - [^fm 

Similar relations are readily obtained for tubes containing four and more 
regions. 

5-3. Positive-grid Space-charge-limited Input with Minimum near 
Cathode.—If the rate of emission of electrons by the cathode is such 
that the potential minimum Ls very near to the cathode, the electrons 
that are reflected spend but a smalh part of a cycle in the region and 
their effect on the r-f behavior of the region is small. If in addition the 
voltage on the grid is high, the transit angles of the electrons that reach 
the grid are all approximately the same, since the spread in the velocities 
at injection gives only a small spread in the average velocities during 
the passage. Under these conditions the space-charge-limited cathode- 
grid region can be treated approximately by the single-velocity theory. 

In the single-velocity theory the maximum direct current occurs when 
€o/€ = 0. For this' current the smoothing parameter <r has the value 
—v(0)/v(d)f which is practically zero since, under the assumption of high 
grid voltage, v(d) » v(0). In addition r = 8 ^ 3y and a{0)/a{d) « 0. 

Gap Impedance and Admittance.—The beam-loading impedance is 
obtained from Eqs. (3*65); with €o/c == 0, it is 

Zb = 
N -4 
.-r,e 2, 

juC 

Therefore the gap impedance is 

Zg = 

However from Eq. (17) 1/wC - po2/d; hence the gap impedance can 
be written as 

Zg = poMN+^(l - N COS0, 

or alternatively as 

Zg = po - i I (l - iST cos !)]• (34) 

The real and imaginary parts of Zg/po are shown plotted in Fig. 5’1 
as functions of the transit angle. For zero transit angle the gap behaves 
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like a pure resistance. As 6 increases, the resistance becomes zero at 
27r and it oscillates about zero with a period of 27r and a very small 
decreasing amplitude. The reactance is everywhere negative, except 

at the origin where it is zero. For small angles Zg 

very large angles Zg which is the impedance of the 

empty gap. 

Transit angle B 
Fig. 5-1.—Dependence on transit angle of real and imaginary parts of diode gap impedance 

assuming negligible initial electron velocities and complete space charge. 

The reciprocal of Zg is the gap admittance 

(1 - Ne 2) 

It is conveniently written as the sum of a conductance and a susceptance 
as follows: 

The dependence on transit angle of the factors multiplying 1/po and 
in are shown in Fig. 5*2. The conductance has the value 1/po at 
zero transit angle, drops to zero at %c, becomes negative, and oscillates 
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about zero with a period of and decreasing amplitude. The suscept- 
ance, on the other hand, has the value 3w(7/5 for zero transit angle, is 
never greater than for any angle, but attains that value whenever 
iV = 0, at which times the conductance is zero. At very large transit 
angles, Yg « 

Excitation Matrix and Input Noise,—The excitation matrix is obtained 
from Eq. (11) with coA and a{G)/a{d) zero and r == 3. It is 

Transit angle B 

Fio. 6*2.—Dependence on transit angle of real and imaginary parts of diode gap 
admittance assuming negligible Initial electron velocities and complete space charge. 
Note that the coefficients of the two quantities plotted are not the same. 

Hence the noise exciting current of the input is 

(1 - Ne 2) 

Thus since the coefficient of i«(0) in im is practically zero, the input noise 
is almost entirely due to velocity fluctuations at the potential minimum. 
For small transit angles 

« (0 3)e '30^ (37) 

and for large transit angles 

M,- ^ (0 ~3)e-^^ (38) 

The time average of the square of the current at the cathode plane is 
related to the spectral density (?»(/) of that current through the formula 

mp - dfGiif). 



Sec. 6-31 POSITIVEJQRID SPACE-CHARGE-LIMITED INPUT 113 

Similarly 

JW = t^(O)^ + / d/(?.(/), 

where G^U) is the spectral density of the average velocity. For the pure 
shot effect 

GX/) = 2e/o, G.(/) = f F 
io 

In the noise exciting current y„(0) is the modulation of the average 
velocity of the electrons which reach the minimum. At the potential 

• * o' ' ' /rsX _ I • -Ti _ _» 1 i where k is Boltzmann’s constant minimum [v^ 0-i> 
and T is the absolute temperature of the cathode. These electrons are 
emitted by the cathode at random; and since the minimum is at the 
cathode, the spectral density of the average velocity at the minimum is 

“■w'-rro-j) 
The input noise can be regarded as coming from a voltage source in a 

series input circuit for which 

juC \v{d)/ 
3^ He ^(’'■^0. 

<6 

Therefore, since 

\v(d)J 

the spectral density of the voltage source is 

Ge. « G^pS2kT O-i) 9H* = po4kT3 
0-?)"■■ 

where po is the a-c diode resistance. The quantity 3 0-i) - .644. 

Since H is unity for zero transit angle, this formula expresses the familiar 
effect that at low frequencies a space-charge-limited diode with high 
positive anode behaves like a series voltage noise source with an equiva¬ 
lent resistance equal to the d-c diode resistance and at approximately 
i the cathode temperature.^ The spectrum depends on the frequency 
through the factor which behaves like i/0^ for very large values of 6. 

‘ Compare E. Spenke, Wi88. Ver. Siemem^ 16, 2, 19 (1937); A. J. Hack, Bell Sy8t 
Tech. 17, 592 (1938); D. O. North, RCA Rev., 4, 44 (1940). 
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Since im = the diode noise can also be regarded as coming from a 
shunt current source the spectral density of which is 

GUS) = \Yg\^GM)^ 
Density and Velocity Modulation Admittances.—With <7 « 0 and 

wC = ^/2po, Eq. (14) gives for the density-modulation admittance 
(internal transadmittance) at the exit plane (the grid) the expressidn 

Vfnid) « - 
Po je 

1 - 

(40) 

The magnitude and negative of the phase of poym{d) are shown plotted 
in Fig. 5*3 as functions of the transit angle. The magnitude of 2/m(d) 

Transit angle $ 

Fig. 5-3.—Dependence on transit angle of magnitude and phase of internal trans¬ 
admittance at the second plane of diode assuming negligible initial electron velocities and 
complete space charge. 

starts out at zero transit angle as 1/po and oscillates about that value 
with decreasing amplitude as 6 increases. It never deviates from 1/po 

1 - 
by as much as 30 per cent. For small transit angles ymid) ^ —e 

,Po 

and for large transit angles ymid) « — 
Po 

The velocity-modulation admittance at the exit plane is obtained 
from Eq. (16), which gives 

U(d) « 
Po 

Me-i 
6 * 

it 
1 - Ve 2 

(41) 
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11-^ 
For small transit angles fm{d) « — ^ e ® and for large transit angles 

Po ^ 

fmid) - -gCos-^e 

Modulation Matrix.—The modulation matrix at the grid is found by 
making the proper substitutions in Eq. (12), which then reduces to 

_ 0 j0[l-Ne 2 + 

0 - 1 - 

w L. 
Ne 

6 

'-1- (42) 
Ne 2 

Since the first column of this matrix is approximately zero, the smoothing 
of the beam as it leaves the space-charge-limited region with respect to 
density fluctuations at the cathode is practically complete. For small 
transit angles, 

fO 3 

n{d) « n 
15 J ’ 

and for large transit angles 

(44) 

64. Grid-screen and Output Regions^ Neglecting Velocity Spread.— 
The spread in velocity of the electrons is almost always negligible in all 
regions following the input if there are no reflected electrons in those 
regions and if the grid and anode voltages are sufficiently high. Two 
special conditions are of particular interest. If the d-c voltage across 
the gap is very high, space charge in the gap is negligible and the r-f 
characteristics of the region are quite simple. On the other hand, if 
space charge is important, a great simplification is obtained by studying 
phenoHiena at large transit angles. 

HighHfelocity Gap with High Gap-voltage,—If the d-c gap-voltage is 
very high, v{d) t;(0), and space charge has a negligible effect on the 
d-c fields. Under these conditions coA «l,cr«l,r»2, 5»1, and 
a(0) » a{d). The r-f characteristics become 

(46) 
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The velocity modulations at the exit plane arising from both density and 
velocity modulations at the entrance plane are practically zero. 

Very Large Transit Angle,—If space charge is not negligible but the 
transit angle is very large, the r-f characteristics become 

Yb « 0, 

y»(d) « Ud) 

Ml « 

M(d) « 

(0 — r)c~'*, 
<T jd 

v(0) 
0 

v{d) 
- (1 - <r) 

(46) 

Both the driving current and the velocity modulation at the exit plane 
are almost entirely due to velocity modulation at injection. Since no 
special restrictions have been imposed on a and r, these relations are 
readily shown to be consistent with those of the preceding paragraph and 
also those of Sec. 5*3. 

6*6. Positive-grid High-mu Triode with Minimum near Cathode.— 
Both the input and output regions of a positive-grid high-mu triode with 
large cathode emission can be treated by the single-velocity theory. 
The formulas of Sec. 5-3 are used for the input and the general formulas 
of Sec. 51, or under special conditions those of Sec. 5*4, are used for the 
output. 

The equation for the electronic transadmittance is 

= a. j + [v(d)U(d)U [^)]^)' 

which is taken from Eqs. (27). Since the first column is zero in both 
the excitation and modulation matrices of the input region, density 
fluctuations in the cathode emission drop out of both the noise figure and 
the total grid noise current and only velocity and partition fluctuations 
remain. Eq. (24) for the noise figure becomes 

JVF « 1 + [GmPo]*, {3 (i g I 

+ 2«,(1 - a,) l[/*«LaP j ■ (47) 

The total grid noise current due to cathode and partition fluctuations 
takes the form 
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+ HMv. [^]J [ - T +'] j - [«(cr' + ')]» 
Using this expression, the total grid noise current is found to have 

the spectral density 

- ( - Y„ + a,\ji,M]M,a + aMd)n.v(d)V, •[aU 

The noise figure, as given by Eq. (47), contains independent contribu¬ 
tions from cathode fluctuations and partition fluctuations. The contri¬ 
bution from cathode fluctuations has input and output terms, which are 
not independent, however, since they have the common origin in velocity 
fluctuations of the cathode emission. The same is true of the spectral 
density of the total noise current. If the circuits are tuned, Gjgif) is 
roughly proportional to the square of the frequency, sin(*.e for each circuit 
~y,/y + 1 « -iu)C/G. 

Output Transit Angle and Electronic Transadmittance.—It is to be 
observed that the d-c parameters of the output circuit are determined if 
the ratio of the output to input gap spacings and the ratio of the output 
to input transit times are specified, for a simple calculation shows that 

and therefore in addition 6, o*, and also v{Q)/v{d) are determined. In 
theory it is more convenient to vary the output transit time, rather than 
some other quantity (such as the anode voltage, for example), since 
otherwise a cubic equation (Eq. 3-45) has to be solved. 

The general effect on the electronic transadmittance of an output 

transit angle that differs from zero is the reduction of its magnitude and 
the increase of the negative of its phase. These changes are illustrated 
in Fig. 6-4, which shows the dependence of the magnitude and negative 
phase on the input transit angle for a tube in which the output spacing 
is three times the input spacing and the transit angles have the ratios 
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indicated.^ In the figure the transmission coefficient is given the value 
unity. It is seen that the decrease in the magnitude of the electronic 
transadmittance can be very large. An approximate formula, which 
holds if the output region is a high-velocity gap with high d-c gap voltage, 
is 

Km « j {yn.i.d)U + Hd)Ud)]k. (49) 

Since under these conditions the ratio of grid to anode velocity is small, 
the term containing the velocity-modulation admittance is small except 
for very large output transit angles. For the most part, the dependence 

Fig. 6*4.—Dependence on cathode>grid transit angle of magnitude and phase of trans¬ 
admittance of high-mu triode assuming negligible cathode velocities and complete cathode 
space charge. Curves are for grid-plate spacing three times cathode-grid spacing and for 
three values of ratio of output to input transit angles. 

of the electronic transadmittance on the output characteristics is given by 

the factor [ZTe ^']ga. The functions and are shown as functions 
of B in Fig. 3-8. It is significant that since the output noise current has 
the same factor, this factor drops out in computing the noise figure. 
Hence the noise figure is relatively insensitive to the output transit 
angle as long as that angle is not extremely large. These effects are 
independent of the nature of the input region. 

HtghH)elodty Output with Small Transit Angle,—It is instructive to 
consider a triode for which space charge and transit angle in the output 
are both small. The output excitation matrix, then, is simply (1 0). 
The electronic transadmittance reduces to ag\ym{d)]ko] it is simply propor- 

^ The curves of Fig. 5-4 are based on calculations of J. R. Whinneiy, General 
Electric Data Folder Nos. 46210 and 46218 (1942). 
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tional to the input internal transadmittance at the grid. Eqs. (47) and 

(48) reduce to 

'f I a 4r % ^ I I ff.„ I I If...in. I I 

JVF « 1 + -fi I - j) 51 - tel, + [5® IJ 
+ 2(1 — a„) /c7o#)o\ 

a, \kT ) [Po2/m(<^)]»iel* 

— 

OM » (l - + l) ].. - «. 

+ M,»(d) J 2ea„(l — q:o)/o| —y~ 

If the input transit angle is small, these equations become 

+ 1 

NF 1 Gbrpo 
To IK'-i) 

1 
PoY 

+ 

+ 1 

2(1 — a») /e/opoN) 

GM . ^- l) + l]^ - 

On the other hand, if the input transit angle is large. 

(50) 

(51) 

NF « 

G/.(/) « 

1 + e„« js (i - r) ^ 9. + (“f®)), 
(52) 

The noise figure for large input transit angle can be very large because 
the term due to cathode fluctuations contains the factor 6^. For example, 
if GbrPo and eloPo/kT are of the order of magnitude of unity, which is not 
unreasonable, and if the grid transmission coefficient is 0.8 and the tem¬ 
perature ratio is 3.5, 

NF ^1+ + i). 

With a transit angle of 10 radians, the noise figure is about 100. It is 
easily shown that the noise figure as given by Eqs. (52) holds for large 
input transit angle irrespective of the output condition since the coeffi¬ 
cients of the output drop out of the calculation. 

6«6. Positive-grid Tetrode with Minimum near Cathode.—Just as 
in a triode, the principal effect of a large output transit angle on the 
electronic transadmittance of a tetrode is to reduce its magnitude and 
increase the negative of its phase. If the output region is a high-velocity 

gap with high d-c gap voltage, the factor [He appears in both 
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the electronic transadmittance and the output noise current. This 
factor drops out in computing the noise figure, leaving it relatively 
insensitive to the output transit angle. 

If both the grid-screen and the output regions are high-velocity gaps 
with high gap voltages, the electronic transadmittance is given by the 
formula 

y™ = (53) 

Since the ratio of the grid to screen velocity is small under these condi¬ 
tions, the term containing the velocity-modulation admittance is small 
except for very large grid-screen transit angles. As expected, the grid- 
screen region contributes a phase delay equal to its transit angle. 

High-velocity Output with Small Transit Angle.—In order to simplify 
matters, both space charge and transit angle in the output are assumed 
to be small in the remainder of this section. However no restrictions 
are placed on the grid-screen region, except that there are no reflected 
electrons. The output excitation matrix becomes (1 0). The elec¬ 
tronic transadmittance, as obtained from Eq. (29), is given by 

= «.«„ {[2/„(d)]UM»(d)]„. + Hd)U{d)],, j • (54) 

The cathode contributes only velocity fluctuations to the noise figure, 
but both grid and screen contribute partition fluctuations. The formula 
for the noise figure is 

NF = \ + [Gs.p.]h, {3 (l - 011 - [ 

+ ^^([pUd)]Md)],. + \v(.d)p.Mh. Jf 
+ 2aja„(l — Of) IpoF^ |[Mu(rf)]».l® 

+ 2a,a.(l - a.) (^-^^ (66) 

The total grid noise current due to cathode and partition fluctuations 
becomes 

im) {[“■’ +0]^ + [fl 

+ [v(.d)Ud)U [j^)] J - 

+ [j^] J) - (56) 
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Similarly, the total screen noise current due to cathode and partition 
fluctuations becomes 

+ l]J + a, (UvWIUmu],. + 

- «.«. ([M«(d)]*„[M«(d)la. + [ W] j [^“ ^].«l 

+ h {[Mi4. - «. [M«(d)]« [ -^" + 1 ], J - ^ ^ ].«■ 
Very Large Input and Grid-screen Transit Angles.—It is of particular 

interest to study the effect of space charge in the grid-screen region, for 
the space charge can be used to reduce the noise figuie of the tube. The 
analysis is greatly simplified by assuming that both the input and the 
grid-screen transit angles are very large, for then limiting forms can be 
used foi the modulation admittances and matrix elements. 

If both the input and grid-screen transit angles are very large, Eq. 
(54) for the electronic transadmittance becomes 

F. . - W.. + [t’l, 1' + “1..) (68) 

It is seen from this formula that the electronic transadmittance can be 
made larger than a«ag/po by making the product {v(d)/d]kg[d/v{d)]us 
greater than unity and by selecting a suitable value of the input transit 
angle, for then the velocity modulation produced by the input voltage 
gives rise to a large output excitation current because of the long drift 
time in the separation region. 

However, for a low noise figure, conditions leading to a greatly 
enhanced electronic transadmittance are not the most favorable, as has 
been observed by L. C. Peterson.^ In fact by properly choosing [<r]^, 
contributions to the output noise current arising from density and 
velocity modulations at the entrance plane of the grid-screen region can 
be made to cancel each other. The result is that the principal contribu¬ 
tion to the noise figure is eliminated and the noise figure is very sub¬ 
stantially reduced. 

When both input and grid-screen transit angles are very large, Eq. 
(65) for the noise figure reduces to 

*L. C. Peterson, Bell Telephone Laboratories MM-42-130-91. Llewell}^ and 
Peterson use a space-charge factor f which is (1 — <r)f»(d)/[t>(0) + f^(d)]. 
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JVF « 1 + yjs (l - 110“]*, 

Examination of this expression shows that the contribution arising from 
cathode fluctuations, which is usually the largest term because of the 
factor [6%gj can be made zero by putting 

For this value of the grid-scieen smoothing parameter, 

[ae-’%- (61) 
Po 

Since this parameter is never greater than unity, the condition of Eq. 
(60) gives a reduction of the electronic transadmittance from its low- 
frequency value asaglpoj which is accompanied by a decrease in the gain 
of the tube. It is to be noted that the contribution to the noise figure 
arising from grid partition fluctuations is zero if is zero but that the 
contribution arising from screen fluctuations cannot be made zero. The 
three contributions all vary inversely with the square of the magnitude 
of the electronic transadmittance. There is an optimum condition, which 
is not greatly different from Eq. (60), for which the noise figure is a 
minimum. It is to be expected that such a condition exists under much 
more general conditions than have been here assumed. 

6«7. General Relations for Velocity Distribution Phenomena.—The 
general properties of the beam are described in terms of the distribution 
in velocity of the electrons of which it is composed. Such a description 
can be made using a charge distribution function or a current distribution 
function. The two are proportional, with the velocity as the factor of 
proportionality. In this discussion the current distribution function 
i(XfVft) is used. Its definition is that t(x,v,t)dv is the current at the plane 
X at time t due to electrons having velocities in the range t; to t; + 
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If v^(Xft) is the lowest (or most negative) velocity at the plane x at time 
the integrated current is 

/• ^ 

i{x,t) = 1 dvi(XfVjt). 
J ^Kx,t) 

Similarly, the charge density is 

p(x,t) = f *i!^. 
JvKx^t) ‘Av 

The current distribution function can be used to calculate current 
averages in the beam. For example, if v^{Xyt) ^ 0, the instantaneous 
average velocity of the electrons passing through the plane x at time t is 

vQcjt) = - 

j 

1 dvii(x,v,t) 
rvt(r,e) 
f. 
1 dvi(XfVjt) 
’ vKjr,t) 

and the instantaneous mean square deviation from the instantaneous 
average velocity is 

/•... . 
|l It 

<
 

dv{v^ — v{x,iY]i{x,v^t) 

r. - 
/ dvi(x,Vyt) 

Liouviiys Theorem.—If the electrons with the velocity v at the plane 
X at time t were injected at x = 0 with velocityat time because of the 
conservation of particles 

i{x,v,t)dv dt = i{Q,v^,t')dv' dt\ 

However in addition theie is a relation between i{x,Vyt) and which 
does not involve differentials. This is 

V v' ^ ^ 

and is a form of Liouville^s theorem. 
The proof of the theorem is obtained by considering the two-dimen¬ 

sional phase space in which x is the abscissa and v is the ordinate. Each 
electron is assigned a point in this space according to its position and 
velocity. The point will move about in time. The area Ax Av occupied 
by the points for a clustei of neighboring electrons having about the same 
velocity the property that it does not change in time; for 

I- [s(s) + 
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but ^ = a{Xyt) and ^ ~ ^ regarded as functions of x and v; 

hence 

|(AxA.)=0. 

This is one statement of Liouville’s theorem. In terms of XyVyt and 0,rV' 

V dtdv = dt^ dv\ 

Therefore Eq. (G2) follows from the preceding equation for particle 
conservation. 

According to Liouville’s theorem the density of electrons in phase 
space does not change with time provided one keeps moving with the 
electrons. Thus the total derivative of i{XyVyt)/v is zero if taken along 
with the electrons. This derivative is 

[l< + ij 
The direct proof of this relation gives an alternative derivation of the 
theorem. 

Liouville^s theorem has an important bearing on the theory of space- 
charge devices. The distribution function is used to calculate the 
properties of the beam. The theorem gives this function at any plane 
in terms of the function at the plane of injection once the motion of the 
electrons is known. 

Thermal Distribution of Velocities,—The electrons emitted by a 
cathode have very nearly a Maxwell-Boltzmann velocity distribution. 
If there is a positive electric field at the surface, electrons are prevented 
from returning to the cathode. The distribution function at the cathode 
is then zero for all negative velocities and is given by the expression 

mv'* 

W) 

for 0 ^ v'. In this expression —/c is the total cathode emission current, 
T is the absolute temperature of the cathode, and k is Boltzmann’s 
constant. This constant has the value 1.38 X joule/degree; for a 
temperature of 1160 degrees Kelvin, fcT = electron volt. Ic is deter¬ 
mined by the emissive prop^lies of the cathode and by its temperature. 
Since in the presence of an^Bbelerating field the current is not changed 
appreciably by changing the field but is changed by changing the tem¬ 
perature, such a cathode is said to be temperature-limited. 

The average velocity of emission and the mean square deviation from 
the average are given by the formulas, 
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viO) 

A(0) 

dv' v'i(0,v') 

dv' i{0,v') 

dv'W^ - i;(0)»]t(0,t/) 

L 
ao 

dv' i{oy) 

For a Maxwell-Boltzmann distribution, they have the values, 

If the d-c potential measured from the cathode is V(x) at the plane 
X, the velocity of the slowest electron, in the absence of an r-f field, is 

\/2eF(x)/m. The velocity of an electron emitted with velocity v' is 
given by 

The semicolon is used to emphasize the fact that v' is not the velocity 
at X but rather the velocity at x = 0. The d-c distribution function is 
easily obtained by using Liouville's theorem. It is zero for all velocities 

less than y/2eV{x)/m; for velocities greater than this value, 

If the field at the cathode is negative and the d-c potential has a 
minimum a distance c from the cathode, all electrons with energy insuffi¬ 
cient to get them past the minimum are reflected. The distribution 
function at the cathode is 

= -L ^ e'^, -u(c) < V'; 

t(0,t'') =0, v' < — m(c), 

where u(c) is the speed of injection of an electron which has energy enough 
to just reach the minimum 

,, l-2eV(cj 

The int^ated current is /«o muje)* 

dv' t(0,»0 - - -i^no/kT = 
-u<l>) 
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The distribution function anywhere in the gap is again easily obtained 
from charge conservation or from Liouville’s theorem. For example, at a 
plane beyond the minimum {x > c), 

where 

i(x,v) = 0, 

v‘{x) ^ v; 

V < v^ix); 

v‘(x) = r.(c)»+MMT = r _ 2^+2^1" 
The integrated current is, of course, the same as t(0), 

i{x) = --I,e^y^c)/kT 

In terms of /o, 

iix,v) = "^0^® ^ "5 

i(x,v) =0, V < v^(x). 

The average velocity and mean square deviation are 

A(a;) = 1^1 + 1, - + e” j^ dz e—^ j 
where 17 = e[V(x) — V(c)]/kT. At the minimum 

In the limit 17 00, 

v(x) 
l2kTv _ '2eV{x) _ 2eV(c)l 
/ m m m J ‘A(x) 0. 

At the minimum the velocity spread, or root mean square deviation, is 
of the same order of magnitude as the average velocity. On the other 
hand, in the limit 17 —> 00 the velocity spread becomes a negligible fraction 
of the average velocity. 

Series Formulation.—It is seen in Chapter 3 that the results of the 
Llewellyn theory are given directly in terms of the series formulation 
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V~ I^fZg €g \ 

~ “f* ts(x\ f 

fvix) \ I 
V^{x) = + ^«(^)- ) 

The theory of velocity-distribution phenomena also leads directly to 
the series formulation. The three quantities, f.(a:), and Vs(x) can be 
written in terms of modulations in the distribution function at injection. 
If the lower limit at injection is negative or zero, the expressions have the 
form 

€* = dv' u(0y)Zg(v^)y 

ii(x) == dv' i^(Oy)a(x;v'), 

v»(x) = f dv' i^(Oy)fi{x;v'). 
—io Jo 

where Zg(v') is the excitation impedance for injected electrons in the 
velocity range v* to v* + dv*, and a{x\v') and ^{x]v') are the corresponding 
series density and velocity modulation functions. From Eq. (3*11) 
it follows that 

1 1 

The shunt excitation and modulation functions of Eqs. (5) are related 
to the series functions as follows: 

= Zf,{v')Yg, \ 
Mt(ry) = Zg{v')ym{x) +a{x;v'), [ (66) 

fivior-/) = Zgiv')fm{x) -b Pix-y). ) 

Integral Equation for the R-f Field.—The determining relation which 
is encountered in the small-signal approximation is an integral equation 
of the form 

a«(x) = K{x) + dta„{t)K{^,x), 

where a^(x) is the Fourier integral transform of the acceleration a(x,t). 
The quantity K{x) is a known combination of d-c and r-f quantities. The 
kernel K{^jX) is calculated from the d-c characteristics of the gap, namely 
the d-c distribution function of the injected current and certain phase 
factors containing d*c transit times. 

The solution of this equation is given by Fredholm^s theory^ in terms 
of a resolving kernel L(pc,y) which is itself a solution of the integral equation 

* E. T. Whittaker and G, N. Watson, Modem Analysis, Chap. 11. 
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L(x,y) = K{x,y) + diL{x,i)K{X,y). 

This equation is free of r-f amplitudes but contains the frequency in the 
phase factors of the kernel. It has been found possible to find the 
resolving kernel in closed form in only a few relatively simple limiting 
cases, such as the limit of low frequencies or negligible velocity spread. 
However the theory gives formal expression to the fundamental con¬ 
cepts of the r-f behavior of a gap containing spa(*e charge and is a starting 
point for detailed calculations of the characteristics of the region. 

The solution in terms of the resolving kernel is 

a«(a:) = K(x) + [ 
Jo 

The function K(x) is linear in the amplitudes Ju> and which 
are the Fourier integral transforms of J(t) and j(0yv\f)j respectively. 
By using this equation, the r-f characteristics are obtained explicitly 
in terms of the resolving kernel. 

6*8. Low-velocity Gap without Reflections.—The discussion of 
velocity-distribution phenomena in a uniform region is greatly simplified 
if all the electrons traverse the gap in the same direction without reflec¬ 
tions. Since there are no electrons with negative velocities in the gap, 
the lower limit is everywhere positive at all times. 

It is shown in this section that the resolving kernel for such a region 
is determined by the equation 

L(x,y) = K(x,y) + d^L(x,^)K(^,y). 

This is a Fredholm integral equation with variable upper and lower limits. 
The kernel is 

K{x,y) = / A (67) 

where i(0,i^') = ei{0,v')/mAt(i and T{y'y) is the time required for an 
electron to go from the injection plane to the plane y in the absence of the 
r-f field. 

In the limit ot zero frequency, the kernel is shown to be 

where a(f) is the acceleration experienced by the electron at the plane f 
in the absence of the r-f field. The resolving kernel is found to be 
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If all the electrf)ns at any moment are injected with the same velocity 
(Llewellyn approximation), the kernel is 

K(t ij\ = A_^ ^-J«[7’(l/;v(0))~T(x;v(0))] 

jwKO) av(0) 

and the corresponding resolving kernel is found to be 

L(z,y) = ITMO)) - r(:c;KO))]e-«[r(.:.(o),-r(x:.(o»i. 

Z)-c Conditions,—The acceleration in the absence of the r-f field is 
calculated from the equation 

,,,i(0j£0 
v{x-,v')’ 

where 

Since 

r(x;t>') = Jo v(ry) 
the equation for the acceleration can be integrated directly, 

a(x) — a(0) = dvy(0y)T(x;v'), 

However, another and more useful expression is obtained by multiplying 
by a(x) before integrating, thus obtaining 

a(xy - a(0)2 = ~2 / dvy(Oy)iv(x;v') - v']. 
J 10) 

The introduction of the d-c potential 

V(x) = ^ Cdtait) 
Jo 

as the independent variable makes it possible to solve this equation by 
separation of variables. The function a(x) becomes a function of V 
alone: 

1 /■“ r/ 2eV\^ 1)^ / \ I /rt\ o rt # 7 ./ //rk I f /o I I /II 
•w - |<.(0>- - 2 d^iioy) [(k” + ^)’ - 

Hence 
e dV 

* “ m jo 
This is a form that lends itself to munerical integration. 
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The a-c resistance of such a region, of which a temperature-limited 
diode is an example, is infinite, since a small change in the d-c voltage 
produces no change in the current. If, however, the field at the injection 
plane is zero and is kept zero during the change, a change in current is 
required to satisfy the conditions. On putting x ^ d in the last equa¬ 
tion and differentiating with respect to /o, there is found for the a-c 
resistance under such conditions 

P = 
_ ^d) _ ma(d) 

dh /: dx In a{x). 
dl 0 

Usually j(0y) is simply proportional to h and ~~ In a(x) = 
ui0 0 

_ a(d)d 
oAto 

Then 

This expression is readily checked for Childs’ law, since 

= -^8-^ 

and 
a{d) = 

Hence by differentiation or by substitution in the above, 

P = 
12do*^A€o* 

Derivation of Integral Equation,—Because of the presence of noise, 
which has a continuous spectrum, it is convenient to represent all time- 
dependent quantities with Fourier integrals. To this end, there is 
introduced a time interval much longer than all periods under considera¬ 
tion and all time-dependent functions are put equal to their average values 
outside of this interval. It is then possible to carry out the Fourier 
analysis without diflSculty in terms of Fourier integrals in the usual way. 
For example, 

Kx,t) = iix) + ■ 

where is the average value of j{xjt) and j^ix) is its Fourier transform, 

^ dtj{x,t)e-"^, (69) 

and it is understood that the integration is actually limited to the time 
interval mentioned. 
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When written in terms of Fourier transforms, Eq. (18) takes the form 

jo)a^(x) = (70) 

The procedure in the development of a general consistent theory is to 
find an expression for j^(x) in terms of a^ix). The transform of the time 
T{Xyt]v') required for an electron which is injected with velocity u' to reach 
the plane x at time t appears at an intermediate step but is eliminated by a 
direct calculation from the field. 

On introducing the velocity distribution into Eq. (69), 

/« r» 
dt / dvj{XyV,t)e-‘’^K 

-00 J 

If an electron at the plane x with velocity v at time t was injected at 
X ^ 0 with velocity v' at time then by particle conservation 

j(XyVyt)dV dt = j{0yV'yt^)dv' dt\ 

Hence it follows that 

jioix) = / dt'c~^^^' f dv'j{0yyt')c-^'^ 
J - 00 J vK0,t') 

In this equation Fourier integral expressions are substituted for the three 
time-dependent quantities, j(0,v',^')> T{Xyt]v'), and only terms 
linear in the amplitudes are retained. The result is 

j.{x) = / 
JvHO) 

- f dv'jiOy)j(aT„(x;v'), (71) 
JvKO) 

In the single-velocity theory the corresponding expression is Eq. 3*18. 
The next step is to use 

nx,f,v') ^ j^dv^v’o + 2 yjdra(rVo] ^ 
to find an equation for T„{x;v'). Now 

airr) = o(r") + ^ 

v(r,v’) = [r'» + 2 

These expressions are substituted in the denominator is 
expanded, and quadratic and higher terms are dropped: 

TM) - T(x/) - 



132 THEORY OF H-F SPACE-CHARGE DEVICES [Sec. 5-8 

Hence, after rearrangement, 

" 7’(r;0]- (72j 

The desired integral equation is obtained by using Eq. (70) with 
Eq. (71) for j«(a:) into which Eq. (72) has been substituted. The result 
is an integral equation with a variable upper limit, 

a.,(x) = 6«(x) + d^a„{^)K{^,x), (73) 

where b„(x) is defined by 

jo>K(x) = -J„ + / dv'U0y)e->'‘‘^(-y^ - ^L(0)i(0,y*(0))e-'■"^•(«-'(o»^ 
J f'CO) 

(74) 

and the kernel is given by Eq. 67. 
Density Modulation.—By Fredholm’s theory, Eq. (73) has the solution 

a„(x) = 5„(x) + df6„(f)L(f,x), (75) 

where L{^,x) is the resolving kernel. The resolving kernel is, in turn, the 
solution of 

L{x,y) = K(x,y) + diL{x,i)K{i,y), (76) 

which is the fundamental integral equation of the uniform low-velocity 
gap without reflections. The r-f characteristics can be written explicitly 
in terms of the resolving kernel. 

In order to find the density modulation, Eq. (75) is substituted in 
Eq. (70). The result is found in the series form. 
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Gap Voltage.—The elements of the series formula for the gap voltage, 

Vta = I<aZg 

are calculated from the integrals of Eq. (3*11). The results are 

M I!-^b 
e, = / dv^ia,(Oy)zg(v^) — 2^1(0) t‘(0,v^(0))2(,(t;^(0)), 

Jvm 

with the excitation impedance given by 

*■<"’> - 3 I! [i + j" dSUx,t)]. (80) 

It is interesting to note that, since the transit angle tends towards zero 
with increasing electron velocity, as t;' —> , 

a{z]v') 1 + a{x), Zg{v') Zg. 

Therefore from Eq. (66) it is seen that the excitation function 
and the density-modulation function tii{x)v^) both have the limiting 
value unity for very high velocities of injection. This is as expected 
since very fast electrons are practically unaffected by the field. 

Velocity Modulation.—It follows from the definition of the instan¬ 
taneous average velocity at the exit plane v{d,i)^ that the velocity 
modulation at the exit plane is given by the relation, 

„„(d) = j jdv ]4(d,v) 

- vi{d) [] i{d,v‘{d)) I. (81) 

In order to convert this into the series form 

vM = -h m + v.id), 

where, as it turns out, 

v.(d) = ( /*" dv'i„iO,v'md'y) - t;L(0)t-(0y(0))/9(d;t;'(0))l (82) 
— io [JvKO) ) 

the two quantities, and vL(d), must be expressed in terms of J«, 
and ri,(0). 

The first step is to find formulas involving a„(x). From Liouville^s 
theorem, 

e-ioTid-y) _ f ^ (83) 
V p' v'dv'\ v' / Jo 



134 THEORY OF H-F 8PACE-CHAR0E DEVICES [Sec. 5-8 

From the energy integral, 

Eq. (75) is used to eliminate There enters the quantity, 

-3/.' 
dxaix ;t;')e-'“CT 

The substitution of the results in Eq. (81) leads to the expected form with 

« --r.\ 

-i '^‘1 
M-P) - i J w 

where v{d) is the d-c average velocity at the exit plane and v{d\v^') is 
the velocity at the exit plane of an electron injected with the velocity 
v", computed in the absence of the r-f field. 

Low-frequency Approximation.—A power series expansion in q> can 
be expected to converge rapidly at low frequencies. The first terms are 
readily calculated. Such an expansion gives for the kernel 

I m V dv' I y, v(ti;t>') 

[jx 
The first term is 

/■'i > 
Jx a(t}) dri^ 

as is seen by referring to the d-c conditions. The corresponding term 
in the resolving kernel is 

r / A / A dn 1 

as a direct substitution in the integral equation shows. The second term 
in the resolving kernel is 

jja 
2 dx dy 

-[/>i 
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This term is obtained by deriving from the integral equation an equation 
containing only terms proportional to jw. This is an integral equation 
the kernel of which is the first term of K(x^y), 

The resolving kernel is, therefore, 

dxdyl \J^ a{7iy 2 y.i(o) v' dv' 

+ 

By using this expression it is found that 

1 a(0)o(rf) 
ja,C d' ' yi>'(0) t> dv' 

[/. a5T=’] - [/. )) 

( d^_jjv 
\Jo a(r,y 2 

+ 

and in addition 

a(x;v') — a(x) — 1 

- |«W /, - «'l) + 

><■’') - - "'1 + 

(88) 

m 

(90) 

Similar expressions can be derived for /3(d) and ^(d;t;'). 
Llewellyn Approximation.—In the Llewellyn approximation all elec¬ 

trons at a given plane at a given moment are assumed to have the same 
velocity. Thus 

i(XjVft) == i{x,t)d(v — v{x,t))y 

where B(v) is the Dirac delta function. This problem is discussed in 
Chap. 3 by using the Llewellyn equation, which is based on the fact that 
current and charge density are proportional in this approximation. Such 
a treatment has no simple extension to multistream phenomena. For 
this reason it is of interest to see how the Llewellyn electronic equations 
are derived from the more general theory of this chapter. 

In the small-signal approximation 

i{x,v) = i{x)d(v — v{x)) —/o6(^ — v(x))j 
iu(XfV) == ita{x)B{v — v(x)) + IoVc^{x)B\v — v(a:)), 

where 8'(r) is the derivative of the Dirac delta function. 
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ITie kernel becomes 

K(x,y) = - r Jo 
ju}v(0) dv(0) 

g—jw[ r (w;t> (0))—T (»(0)) ] ^ (92) 

In order to find the resolving kernel, the following two functions are 
introduced: 

k{x,y) = 
l{x,y) - L(a:,j|/)c»"H’<»:>’Co))-r(»;»(o)))_ 

The integral equation becomes 

lix,y) = k(x,y) + d^l{x,i)k{X,y), 

with 
fv 1 

k(l:,y) = -Jo 

The integral equation can be converted into the differential equation 

^ ^ = -Jok{x,y), 

which is to be solved with the conditions 

l(y,y) = kiy,y) =0, \l{x,y) - /:(x,y)]|^ = 0. 

The solution is 

and hence the resolving kernel is 

L{x,y) = [r(j/;K0)) - T{x-,v (0))]e-»“Cr(v;.(o))-r(.:.(o))i. (93) 

With the distribution function as defined by Eq. (91), the series 
formulation as given by Eqs. (63) and (64) becomes 

- -hZ, + f„(0)2,(v(0)) - 7or„(0) 
\ OV /v(0) 

t«(d) - -j„a(d) + t„(0)a(d?;(0)) - /„t>„(0) fea(d;«o) » 
\oV /o(0) 

vM - -h m + {f»(0)/S(d;t;(0)) 
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The nine coefficients are known functions of the resolving kernel, which 
is also known. They can be calculated in detail.^ The results are 
identical with those of the Llewellyn calculation. 

Narrow Velocity Spread,—The integral equation treatment of the 
electronic behavior of a uniform gap makes possible a formal extension 
of the Llewellyn theory to include a narrow spread in the velocity of 
the electrons of the beam. Since no convenient representation of the 
resolving kernel has been found, only a brief indication of the method 
will be presented. 

The distribution function can be used to calculate the current and a 
set of moments, the first two of which are the average velocity and the 
mean square deviation. Thus 

i{Xyt) A(a:,0 = 

j dvi(x,Vft)f 

dtm{x,v,t)f 

dv[v^ — v{Xjty]i(XfVft)y 

j 

/ 
/ 

and so forth. If the velocity spread is small, it is possible to show that 
for the purpose of calculating average values the distribution function 
can be represented as follows: 

i(x,v,t) = — v(x,t)) + iA(x,t)B"(v — v{x,t)) + 

Using this expression, it is found that 

i(x,v) = —Io{B(v — v(x)) +iA(x)S"(v — v(x)) +•**}, 

i,(x,v) = - v(x)) + iA(x)S''(v — r (*))+'•’ } 

' + - Ka:)) + iA(x)S"'(v - v(x)) + • 

- A,(a:)7o{«"(v - t>(x)) +•••}+***• 

where 

—= J dwi(x,v), 

—JoA(x) = J — p(x)®]t‘(x,i>). 

(96) 

(96) 

The electronic equations take the form of relations giving V„, tu(d), 
v„(d), A„(d), etc., as linear functions of /«, t«(0), r*(0), A.,(0), etc., the 
coefficients of wUch contain /o and the d-c moments. The Llewellyn 
theory gives an exact solution under the assumption that the second 
and all higher moments are zero. 

> See “Temperature-limited Diode,” J. K. Knipp, BL Report No. 761, 1946. 
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The kernel is 

jl+iA(0)j^5-,+ KL(x,y), 

where > 

Ki.{x,y) 
-Jo d 

jwv(0) dv{0) 
g--jw[r(l/;w(0))—r(x;r(0))) 

(97) 

is the kernel for the Llewellyn approximation. 
6*9. Retarding Field with Reflections.—The presence of electrons 

with negative velocities is a complication which is difficult to handle. 
Since the theory in its present state leads to very few results, only a brief 
discussion will be presented. For reflection of electrons to take place 
the field must be positive. It can either be positive all the way across the 
gap or start out positive at the first plane and end up negative at the 
second plane. In the latter case the potential has a minimum within 
the region. This minimum is itself a complication. It has been treated 
successfully at low frequencies and affords an explanation of the space- 
charge reduction of shot noise. The discussion of this section is restricted 
to conditions in which the field is positive everywhere in the region. 
The d-c voltage of the second plane is negative with respect to the first. 
Electrons which are injected with high energies are able to overcome 
the retarding field and reach the second plane. However, the low-energy 
electrons are stopped in the region and sent back to the first plane. If 
these reflected electrons spend an appreciable fraction of a cycle in 
the region, they affect the r-f behavior of the region in many ways. They 
load the circuit through a contribution to the beam loading; they excite 
the gap voltage through a contribution to the exciting current; and 
through their own modulations they affect the modulations of the 
electrons that reach the second plane. 

Space-constant Field.—relatively simple and very instructive 
example of reflection phenomena is afforded by a region in which the 
reflecting d-c field is very strong and the current densities are small. 
Space-charge is negligible and the electric field can be treated as space- 
constant. It is represented by 

Eixyt) = - ~ (a + 
e e 

where a is a negative quantity. The r-f voltage is « mo^d/e. 
Since, under these assumptions, the electrons affect each other only 

indirectly, only a single velocity group need be considered. The effect 
of a distribution in velocity is the average over the velocity groups of 
the effects of the separate groups. 
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In the region penetrated by the electrons, the electron current is 
the sum of contributions from the oncoming and reflected streams, 

i(x,t) = + i~{Xjt), 

If an electron at the plane x at time t with a positive velocity was injected 
at X = 0 at time the time of passage is f ~ T{xfy. Similarly, 
if an electron at the plane x at time t with negative velocity was injected 
at X = 0 at time the time of passage is t — = T~‘{x,t), They are 
represented by 

T{x,i) = r + 
T‘'{Xyt) = T — T' + T-z(x)e^^K 

where T is the total time spent in the region and 3’' is the time required 
to go from the first plane to the plane x without reflection, both in the 
absence of the r-f field. By particle conservation. 

and therefore 

LM = + /olico7«(x) - ja)Tz(x)]. (98) 

This expression is to be compared to Eq. (3*18) of the single-velocity 
theory. 

The quantities T«(x) and Tz(x) are readily found by direct integration 
of Newton^s law. If v(x) is the speed of the electrons at the plane x, 
in the absence of the r-f field (v(x) is always positive), the result is 

rp (^\ _ _ Jffp-jB'_ 

~ v(x) ® v{x)Uo>y (1 - e-‘>'- je'e-n, 

v(,x) 

+ 
v{x)Uo>) 

. [1 — — j{e — o') 

(99) 

The quantity of interest is the driving current, 

1 fT/2 
K ^ 2 jo dT'v{x)i„{x). 

The integration is carried out using v{x) = t>(0) + aT' and the result 
expressed in the familiar form, 

” VifiYB "1“ 

The expression which is found for the beam-loading admittance is 

(100) 
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where Go == lo/Vo. The dependence of its real and imaginaiy parts 
on $ are shown plotted in Mg. 3-4. The expresmon for the exciting 

current is 

(101) 

Because of cancellation, the exciting current is zero for zero 6. Except 
—}> 

for a term i‘‘(p)Me ® which is not present in Eq. (101), the above expres¬ 
sions for Yb and are very similar to those for the high-velocity gap 
(see Eq. 3.37). 

D-c Conditions.—The acceleration in the absence of the r-f field is 
calculated from the equation 

where 

dajx) ^ dt,i(5£), 
dx J,nx) V ’ 

i/(x) = ~ [“2^^ dMrtj , 

since the velocity distribution contains reflected electrons. All the 
electrons in the region are injected at the first plane and therefore the 
above integral can be expressed in terms of j(0,v'), 

where 

^ - -2 - f 
dx JuM v{x-y) J„(i) v(x;v') 

v(xy) 

u(x) 

*-|-2 /^*dra(r)] 

2 /Jdro(r)] 

Direct integration gives 

/•u(ar) ruid) 

a{x) - a(0) » -2 / dv'jiOy)T{r%v^) - 2 / dv'j(0y)T{x;v') 
Jo Juix) 

- r do'jioymxy), 
j*(d) 

where r' is the {dane of reflection cS an electron injected with velocity 
v'. On the other hand, integration after multiplsdng by a(r) gives 
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fuix) fuid) 

a(x)® — a(fly a* 4 / dv'j(Oy)v' — 4 / dv^j(0,v')[v{x-y) — r'] 
Jo Ju{x) 

~2 / - r']. 
Ju(d) 

The introduction of a(d) yields the simpler relation, 

fu(d) r • 
a(xy — a(dy = —4 / dv'j(0,v')v(x;v') — 2 / 

yu(*) Ju(d) 
- vid)v')]. 

By introducing the d-c potential, a form is obtained which is useful in 
numerical integration. 

The d-c voltage at the second plane is 

V{d) = 
mu(dy 

The a-c resistance is p == dV‘(d)/d/o; but 

hence 

dvH{OyV^); 

1 __ —eHfiyU{d)) 
p mu{d) 

For a Maxwell-Boltzmann distribution, this expression 3delds the familiar 

, kT 
p/o = —. 

At 1160® K, kT/e ia tV volt. 
Integral Equation.—^The Fourier transform of j(x,t) is 

j<^{x) = / dt f dvj{0,0,1)0-" 

It can be written in terms of j(0, v', t'): 

rl-r dv'j{0,v' ,t')er>‘‘' + dv'j{fi,v' ,t')(n'“ 

where u{x',l') is the speed of injection of an electron which is injected at 
t' and reaches x with zero velocity. 

The two time intervals T(x,ty>') and T~(x,t;v') are introduced; they 
are the times required for an electron injected with velocity v' to reach x 
at time t directly and by reflection, respectively. In terms of these 
quantities, 
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I / dv^j{0,v*,F)[e- 

- oo \Ju{z,t*) 

/• 
Ju(d;n 

On introducing Fourier integral expressions for all time-dependent 
quantities and keeping only terms linear in the amplitudes, there results 

fu(d) 

j^(x) = / dv'j^ioy) _ ^-i«7-(T;y)] 

Juix) 
f » fu{d) 

+ / dv'UQ,v')e->-''^-’''^ - / dw'j(Oy) [jcor„(x/) 

— jwTzix-/)] — I dv'j(Oy)juT„(x;v') 
Ju(d) 

dv'j(Oy)juT„(x;v') 

— (103) 

A simple calculation yields [compare with Eq. (84)] 

««(d) - - dfa« 

Eq. 72 is valid for Tu{x]v')y which is written in the form 

r„(xy/) = - dra»(r) -^-Tw (.-»4r(*y)-r(ry)], j(av'dv' 
The derivation of an expression for r«(T;y') follows along similar lines 
but is somewhat more tedious since care must be exercised to avoid 
integrals which diverge at the point of reflection. It is found that 

Tz(x;v') = - df««(f)-;j^,e'“tr(x:»')-rw] 

— j dfa„(f) [e-i«[r-(»y)-r(f:.’')] _ eiBlrCxyj-rcry)]]. (log) 

It is of interest to note that if o(f) and Oa(i’) are constants, these expres- 
, sions give the Eqs. (99) with »t(0) = 0, as direct integrations shdw. 

The integral equation for a«(a:) is obtained by using Eq. (70) with Eq. 
(103) for ju{x) into which Eqs. (104), (105), and (106) have been sub¬ 
stituted. The result is 

a»(x) = K(x) - + d^a^ixiklM, (107) 

where h^{x) is defined by 
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ju)K(x) 
fuid) 

— + / 
J u(x) 

dv'j„{0,v') [e-»"r(»i»'> — 

+ 
and Ca is the constant 

f. 
JuW 

dv%(0,v')e-’‘‘r<^y'>, (108) 

and the kernel is defined as follows: 

F(t.x) - /. 

X, I 
r;l 

Kii,x) = f < 
Ki^,x) = F(x,i:), X < 

“W ,Y0 v') d 

uM j(M' dv''- 

G(i,x) = I 
Juid) jwf 

(109) 

(110) 

) (111) 

Density Modulation.—The solution of Eq. (107) is 

a„(x) = 6„(x) + df6„({-)L(f,x) - -;«7’~(x;w(rf)) 

/: + / L(f ,x) ,x)j. 

where c« is a constant that remains to be evaluated. After substituting 
from Eq. (108), the solution can be written in the form, 

juOuix) = — J„[l + <^(x)] + dv%(0y)<f>{x-,v') — ^ <f>~(x), (112) 

where 

<l>(x) dfL(f,x), <^-(x) = e-^"r-(x;«(rf)) ^ dfe->"r-<f:«M))L(f,a:), 

_ e-'"’-«-:»')]L({-,x), 0 < v' < «(x), 

u(x) <v'< uid), 

^g-;-T(.y) + dre-'«’’<f:''>L(r,x), M(d) < v\ 

The constant c„ is found by using Eq. (112) in Eq. (109). The result 
IS 

c« /. dv'M0,v')x(v'), 

S»C'p + X" 
, (113) 
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where 

ir 
ih, 

’‘<’'>,-3/.' 

dx[l + 

Hence 

1 + <t>(x) - 7 

+ 

juCp + X 

J dv'j<a(Oy 

1 
'1 ! /rr-nM 

^ jW+lri 
(114) 

Eq. (70) gives the density modulation, which is written in the series 

form 
k(x) = —I^a(x) + u{x), 

with 

i.(x) - dv%(0y)a(x ;t/). 

The coefficients are 

a(x) = <l>(x) — . 

_ /__ j./—...n ^ (^)x(*^ ) 

(116) 

In the limit of zero transit angles, ^“(at) becomes 1 + <l>{x), x~ 

becomes x, and it is found that 

1 + a(x) 
^ juC /I + ^(j)\ 

X 

For the gap admittance is foimd 

Y, 

which is just the siun of the a-c conductance and the susceptance due to 
a capacity modified by the presence of space charge. In addition 

As e3q>ected, the intemal transadmittance at the exit plane becomes the 
sum of the a-o conductance and a low-frequency space-chaii^ contribu¬ 
tion. In the limit of lero transit an;d^> and x(v*) both become 
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zero for velocities of injection too small to reach the second plane, 

v' < u{d); while for v' > u{d), (l>(,x;v') becomes 1 + <l>{x) and x(y') 

becomes x- Thus it follows that both a{x;v') and 2g{v') are zero for 

v' < u{d); and for v' > u{d) 

a(x,v') 1 + aix), z,(v') Z„, 

and both the excitation function and the density-modulation func¬ 

tion iut(d;«;') become unity. 



CHAPTER 6 

SPACE-CHARGE DEVICES AS MICROWAVE AMPLIFIERS 

By J. B. H. Kuper 

6*1. Introduction.—The importance of microwave amplifiers has been 
discussed in Chap. 2, where it was pointed out that the commercially 
available triodes, the ‘'lighthouse^' family, are not satisfactory amplifiers 
when operated much above 1000 Mc/sec. The best experimental 
triodes and tetrodes perform well at 3000 Mc/sec, but at still higher 
frequencies the amplifier field will probably be left to the klystrons and 
other “high-velocity" types such as the traveling-wave tube. 

In this chapter an attempt is made to justify the above conclusions 
on the basis of the rather meager experimental data at hand. Unfortu¬ 
nately it is not possible to correlate the experiments with the theory 
developed in the preceding three chapters, except in a most general 
fashion. This difficulty results from the fact that real tubes depart 
widely from the ideal geometry and simple conditions postulated in the 
theoretical treatment. Also in most experimental amplifiers a negative 
grid is used while most cases considered in Chap. 5 used a positive grid. 
Under wartime conditions the rather disappointing experimental results 
precluded the expenditure of time needed for a check of the theory. 

The experiments can be discussed in elementary terms with the intro¬ 
duction of an “effective transconductance," which is the magnitude of 
the complex transadmittance multiplied by the beam coupling coefficient 
of the input gap. This simplification is permissible only because micro- 
wave amplifiers are usually operated in class A (indeed it is somewhat 
doubtful if class C operation has been attained above 3000 Mc/sec) and 
the phase shift resulting from transit time in the amplifier tube is rarely 
measured. 

6*2. Elementary Discussion of Grid-separation Amplifiers.—A tube 
intended for microwave use must possess either an integral cavity 
resonator or a structure to which a cavity may readily be attached; any 
other circuit would be impractically small or would have excessive radia¬ 
tion losses. Wheh this need is understood, it is a matter of topology 
that the grounded-grid circuit—sometimes called the “grid-separation" 
circuit—^is the natural one to use. Fortunately, a circuit of this type is 
usually stable without neutralization. The designation “grid-separa¬ 
tion" seems more appropriate than the more usual term “grounded- 

146 
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grid ; the grid actually separates the input and output circuits physically, 
and it is meaningless to speak of grounding^’ one part of a cavity 
resonator. 

For a planar triode the input resonator would be a coaxial line whose 
outer conductor would make contact with the grid and whose inner 
conductor would end at the cathode. Such a line would normally 
have an adjustable short-circuiting plunger, set to give the line an 
electrical length of 1, 3, 6, . . . quarter-wavelengths. The output 
circuit would be a similar coaxial line between the grid and plate. Each 
cavity would have suitable coupling loops or probes and provisions 
for applying the necessary d-c voltages. 

Gain of a Low-level Grid-separation Amplifier,—When such an amplifier 
has its input and output circuits tuned to resonance, so that they appear 
as pure resistances, and when the input circuit is matched to the generator 
impedance the equivalent circuit is as 
shown in Fig. 0*1. The tube is drawn as 
a tetrode merely to emphasize the separa¬ 
tion of input and output circuits, here 
assumed to be completely isolated except 
for the unidirectional electron stream. In 
a low-level amplifier the r-f voltages devel¬ 
oped across the input and output gaps are 
always small compared with the d-c beam 
voltage. The input line is assumed to be 
matched so that any power sent down the 
line is dissipated in the input losses Ri. These losses may be defined by 
noting that, if the r-f power Pi is applied to the line, an rms voltage V\ 
is developed between cathode and grid where 

Fig. 61.—Equivalent circuit of 
a grid-separation amplifier with 
complete isolation between input 
and output circuits except for 
the unidirectional electron stream. 
Direct-current connections omitted. 

V\ = PxRi. (1) 
This voltage produces an r-f current i passing through the first grid 

having a value 

If I = (2) 

where is the absolute value of the transadmittance of the electron 
stream or the “effective transconductance.” This value may, under 
the proper circumstances, be only a little less than that of the familiar 
low-frequency (see Figs. 6.3 and 6.4). If Vi is the r-f voltage devel¬ 
oped across the output circuit, the total power delivered by the beam is 

and the useful power Pi is Vl/Ri. If the full r-f current |tl arrives in 
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the output circuit, F2 is given by 

and therefore 

p t* / RiRL V _ RIRl 
^ Rl\Ri. + rJ ~ {Ri + Riy 

(4) 

(5) 

By combining Eqs. (1) and (2) and substituting for i in Eq. (5), the 
following relation for the power gain is obtained: 

_Pl _ qUIiRIUl 
Pi (Rl + R2V 

(6) 

For a constant-current generator such as this amplifier, the maximum 
value of Pl is obtained when Rl = i22, in which case 

ymRiRj 
4 (7) 

In this simplified derivation the effects of transit time, represented by 
the beam-coupling coefficient, are assumed to have been included in the 
effective transconductance. The details of the calculation of the inter¬ 
action between the electron beam and the gap are discussed in (^haps. 3 
and 5. From Eq. (7) it is clear that the maximum gain obtainable is 
dependent not only on the transconductance but also on the shunt resist¬ 
ances of the input and output circuits, which are partly functions of the 
tube and partly of the rest of the resonator. 

High-efficiency Amplifiers.—Equations (6) and (7) lose their meaning 
when applied to a power amplifier operated in Class B or C in the interests 
of eflSciency because there the tube is not operating as a constant current 
device. The concept of the transconductance must therefore be revised. 
In the first place, the loading is adjusted to let the r-f voltage in the output 
circuit rise to the point where it almost stops the beam, thus giving the 
best possible “electronic eflSciency.” Beyond this point any increase 
in current calls for a heavier load. Because the circuit losses remain 
the same if the r-f voltage is kept at its .optimum value while the output 
power is increasing, the “circuit efficiency'^ may also become high. 
High-efficiency operation of this sort, it appears, has not yet been 
achieved at microwave frequencies. In the second place, in discussing 
high-efficiency operation it seems simplest to follow the terminology 
that is usual in klystron work and to speak of “bunches" of charge 
traversing the output r-f gap (the grid-plate region) with the distinction 
'that here the bunches are formed by “gating" action at the potential 
minimum and not by velocity modulation and a drift space. In fact. 
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a power tube must have a negligible drift space or separation between 
input and output circuits, otherwise the velocity variations accompanying 
the gating action may lead to ‘‘debunching/^ No detailed treatment of 
power amplifiers is given here in view of the lack of experimental data, 
and the balance of this chapter is concerned mostly with low-level 
amplifiers.^ 

Resonator parameters.—Provided the resonator geometry is such that 
there is a well-defined region—^the r-f gap—across wliich most of the 
capacitance is found, the Q is given approximately by the familiar low- 
frequency expression Q == wC/2, where C is the effective capacitance, 
ordinarily fixed by the tube geometry, and H is the circuit shunt resist¬ 
ance. The values of C and R are by no means independent, however, 
because for many common resonator shapes that portion of R contributed 
by circuit losses is directly proportional to the length of the r-f gap, 
whereas C varies inversely with this length (see Chap. 4). In most 
tube designs, beam loading on the cathode side insures that Ri is enough 
smaller than Rz to outweigh differences in effective capacitance in the 
input and output circuits, and thus makes the bandwidth of the input 
circuit greater than that of the output circuit, usually by a factor of 2 or 

more. 
The shunt impedances Ri and Rz may be estimated in several ways. 

Where the geometry is simple, the factor relating shunt impedance and 
unloaded Q is known. Standing-wave measurements in the input line 
will then permit calculation of R. On the other hand, it may be possible 
to vary a bias until electron flow is just cut off; this method measures the 
peak r-f voltage, from which the shunt impedance may readily be com¬ 
puted if the driving power is known. A correction for transit-time 
effects, using the beam coupling coefficient, may be advisable. 

High-frequency g^.—Before proceeding to the experimental data it 
may be well to examine further the statement about high-frequency g^ 
that was made in connection with Eq. (2) The calculations of Llewellyn 
and Peterson® show that the magnitude of the transconductance for small 
signals does not greatly deteriorate even at very high frequencies. Their 
curves predict a minimum of slightly less than 0.8 of the d-c value for a 
transit angle of 2ir, after which the gm oscillates but never departs from 
the d-c value by more than 10 per cent. For small angles (ir or less) 

^ For a r68um6 of experiments on several types of power amplifiers and a discussion 
of the failure to achieve Class C operation, see H, W. Jamieson and J. R. Whinnery, 

Power Amplifiers with Disk-Seal Tubes,'' Proc, LR.E.^ 84, 483 (1946). 
• The treatment here follows that in H. V, Neher, **Some Notes on Space-charge- 

limited Oscillators and Amplifiers at Microwave Frequencies," RL Report No. 822, 
Nov. 15, 1946. 

• F. B. Llewellyn and L. C. Peterson, "Vacuum Tube Networks," Proc, LR,E,, 82, 
144, (1944). See also Fig. 5»3. 
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the phase lag of the current passing the grid is H of the transit angle, 
and at larger angles the lag is approximately equal to the angle less tt. 
In computing transit angles in a space-charge-limited region it must be 
remembered that an electron requires 50 per cent more time to traverse 
the distance than it does in a space-charge-frce region. 

Spread in Transit Angles.—It should not be assumed that the results 
reached by Llewellyn and Peterson predict satisfactory operation at 
higher and higher frequencies without the necessity for decreasing the 
cathode-grid spacing. Where the lag in transconductance is large it 
becomes very necessary to keep the spread in transit angles to a low value. 
For, if the phase of some of the electrons passing the grid differs by tt from 
that of other electrons which ideally would have the same phase, then 
these two groups of electrons will cancel each other, electron for electron, 
and the resultant transconductance will suffer accordingly. A criterion 
that the spread in transit angles for all electrons must not exceed ±7r/4 
may be set arbitrarily. Any variation in cathode-grid spacing from point 
to point results in the same percentage variation in transit angle, and any 
variation in potential causes roughly half that variation in transit angle. 

The factors that affect the phases of the electrons may be listed in two 
main categories, as follows: 

1. Irregularities in the electric field between cathode and grid. 
a. Edge effects or fringing. These result in a different distance of 

travel as well as in a variation in field strength (most important 
for small cathodes). 

b. Nonuniform spacing between cathode and grid—^for example, 
lack of parallelism in a planar structure. 

^ c. Coarse grid mesh. For a parallel-wire grid the spacing between 
wires should not exceed the cathode-grid spacing. A limit is 
thus set on the wire size also because, for good transparency, the 
wire diameter should be less than one-third the spacing. For a 
woven-mesh grid the requirement on wire size is still more 
stringent because of the irregularities introduced by the weave. 

d. Irregularities on the surface of the cathode are just as important 
as irregularities in grid surface. 

e. Variation in contact potential over the grid. It is known that 
such a potential may amount to several volts and there is no 
a priori reason to assume it is constant over the whole grid 

surface. 
2. Irregularities in emission over the cathode surface. These may be 

a serious factor not only in causing variations in transit angles but 
also in causing excessive loading. If the cathode does not emit 
uniformly over its surface but has some temperature-limited 
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regions and some regions that emit several times more copiously 
than is necessary, the transit angle may vary by at least 50 per 
cent. There is a transconductance from a temperature-limited 
region that is due to transit-angle ‘^bunching'' (see Eq. 3.28) and 
this transconductance may be completely out of phase with that 
from the space-charge-limited regions. 

The difEculties of making a high-frequency amplifier are apparent 
when it is pointed out that even for very close spacings (of the order of 
0.001 in.) the cathode-grid transit angle for an electron wdth thermal 
energy is about 2t at 3000 Mc/sec—which, with the limits on spread of 
±7r/4, means an allowable variation of ± 12 per cent in spacing. Never¬ 
theless, the factors listed under Category 1 can be made to approach 
the ideal simply by refinements in construction. On the other hand, the 
production of a satisfactory cathode that emits uniformly over its surface 
is presumably the major problem to be solved. 

Maximum Value of Low-frequency Transconductance,—As the grid is 
brought closer and closer to the cathode the low-frequency transconduc¬ 
tance per unit current tends to approach a limit set by the thermal energy 
distribution of the electrons. If the grid is at the potential minimum, the 
electrons reaching it are those with energies greater than a certain mini¬ 
mum value. From kinetic theory it may be shown that the limiting 
conductance per unit current is given by 

where e is the electron charge, k is Boltzmann^s constant, and T is the 
absolute temperature of the cathode. For a cathode at 1050®K the 
limiting conductance is about 11 mhos/amp or 11000 /4mhos/ma. The 
best cathode in the series of experimental tubes built at the Radiation 
Laboratory was less than half as good as this ideal; it had a static 
of 5000 jLonhos at 1 ma plate current and 8000 fimhos at 2 ma. The 
spacings were such that the potential minimum was put in the plane 
of the grid at about 1 ma. This experimental result is taken to mean 
that only a fraction of the cathode surface was emitting copiously. 

The high-frequency can be computed from Eq. (7) provided the 
shunt impedances and the gain are known. Where the geometry permits 
a good estimate of the shunt impedances, the values obtained for the best 
tubes (from the standpoint of the factors listed under Category 1) are in 
fair agreement with the low-frequency results, as is shown in Sec. 6*3. 

Bandwidth,—Measurements of gain are of little value unless the 
bandwidth is specified. In almost all grid-separation amplifiers the 
loading on the input circuit is so heavy that the bandwidth of tho output 
circuit is the determining factor. Writing C% for the effective capaci- 
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tance across the output circuit, the bandwidth A/ between the half-power 
points is given by 

\t — L — -^8 + 
^ Q 2irCiRsJtL (9) 

Combining this result with Eq. (7) gives an equation for a figure of merit, 
power gain multiplied by bandwidth, 

(?• A/ gjRi__ 
2tC2 (Rl + Ri) 

(10) 

If the amplifier is loaded for maximum gain, Rl = Rt, the figure of merit 
is 

* A^jftt mKsO = (11) 

this figure is a property of the tube alone, if it is granted that most of the 
input loading is in the tube rather than in circuit losses. If the loading 
is adjusted for the highest possible figure of merit, the latter approaches, 
as a limit for very heavy loads, a value just twice that given by Eq. 

(11)—^that is. 

lim (G • A/) = 
2irC2 

(12) 

At this limit the gain would fall to zero, but long before this condition 
was reached the bandwidth of the input circuit would have become the 
limiting factor. 

Effect of Feedback,—In practice, the assumption of negligible feedback 
is unjustified; there is considerable coupling through the plate-cathode 
capacitance. If the resultant voltages across the input and output gaps 
are denoted by V[ and 7$ where the primes indicate that feedback is 
included, and if m is the feedback voltage ratio, then for the special case 
of 180® transit angle 

F' « Fi + mFJ - 7i + mi' R^Rl 
Rl 4“ R2 

Vi 

1 ~ mg„ 
R2RL 

Rl + Rn 

(13) 

and it can readily be shown that the power output is 

p/ _ 
(Rl + R2r 

Vi 

1 — rng„ 
R^Rl 

Rl “b i?2 

(14) 

The gain with feedback, (?', is given, in terms of the gain G predicted by 
Eq. (6), by the expression 

1 
(15) 
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where 7 is written for mgJR^ and x =* The effect of the kind 
of positive feedback considered here is to increase the gain markedly, 
especially at light loads (small x)y and to shift the maximum output point 
to lighter loads than the value Rl = Rz which was predicted by Eq. (7). 

Another effect of positive feedback is the narrowing of the input circuit 
bandwidth, which may become severe enough to reduce drastically the 
figure of merit. The existence of a positive feedback means that from 
the point of view of the generator in the input circuit a negative con¬ 
ductance has been inserted parallel with the positive conductance already 
present to represent the losses. Since the input power Pi [in Eq. (1)] 
remains constant while the developed voltage Vi is increased by the 
factor 

1 

rfigt 
K^Rl 

L ^ R2 

1 

7 
I + X 

[see Eq. (13)], the input resistance with feedback R[ is enhanced by the 
same factor as the gain [in Eq. (15)]. The input circuit bandwidth is 
inversely proportional to Riy and so must decrease as the gain is increased 
by regeneration. With even moderate amounts of regeneration the 
input circuit bandwidth may become less than that of the output circuit, 
and the generator may no longer be matched to the input; Eep (1) there¬ 
fore is no longer valid. For this reason an exact expression for the 
figure of merit is too complicated to be useful. Qualitatively the figure 
of merit may increase slightly with very small amounts of regeneration, 
provided the input circuit without feedback is much broader than the 
output circuit. After the regeneration has been increased to the point 
w'here the input circuit is the narrow^er one, the figure of merit decreases 

rapidly. 
6*3. Experimental Amplifier Tubes for the 3000-Mc/sec Region.— 

H. V. Neher at the Radiation Laboratory^ improved the space-charge- 
controlled amplifier tubes for the 3000-Mc/sec region and this work 
resulted in some experimental triodes and tetrodes that gave remarkably 
good performance. These tubes were difficult to produce consistently, 
however, and so far have not been produced commercially. Their con¬ 
struction is illustrated in Fig. 6*2. 

The tube is mounted in a standard metal envelope containing both 
input and output resonators, w’^hich are tuned by distorting the envelope 
slightly. The input circuit comprises the cathode assembly 1, mounted 
in a copper sleeve 2, which forms the inner conductor, a flexible diaphragm 

^ H. V. Neher, A Preliminary Report on the Radiation Laboratory S-band Ampli¬ 
fier,RL Report No. 306, July 10, 1943, and “Some Notes on Space-charge-limited 
Oscillators and Amplifiers at Microwave Frequencies,^' RL Report No. 822, Nov. 15, 
1045. 
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6, and an outer conductor 5, closed by the first grid 7. This grid is wound 
with 0 0003-in tungsten wire stretched across a i-in. hole in a 0 005-in 
molybdenum disk, and is insulated (for direct current) from the outer 
conductor 5 and the screen grid 8 by mica disks The input circuit is 
fed by a coaxial line 22, tapped on to the center conductor by a flexible 
sleeve 4 The circuit is tuned by applying pressure with the screws in 

Fig 6 2.—Cutaway drawing of an experimental SOOC-Mc/sec amplifier tube 

the heavy ring 24. Pressure applied in line with the bent strut 17 amoves 
the cathode away from the grid and increases the resonant frequency; 
pressure along the diameter at right angles moves the cathode closer to 
the first grid and lowers frequency. The output circuit consists of the 
copper anode 9, the diaphragm 12, the outer conductor 11, and a grid 8. 
The latter is similar to the grid 7 except for wire spacing. The actuating 
rod 10 for the output-circuit tuning is made of Invar and forms part of 
the temperature-compensation system. The entire output circuit is at 
anode potential, being insulated by mica from the grid 8, mounting 
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sleeve 20, and retaining ring 13, and from the tuning mechanism with a 
ceramic bead 14. The output-coupling loop mounted on the coaxial 
fitting 23 enters the cavity through an oversized hole in 11. 

This construction is unconventional but has several important 
characteristics. 

1. Resonators are ^'built in’^ and are of simple geometry. 
2. Cathode and anode spacings are adjustable (at the price of a shift 

in frequency). 
3. The cathode can be flattened in place both before and after coating. 
4. A high degree of parallelism between cathode and grid can be 

maintained. 
5. Cathode-grid spacing can be calibrated in terms of resonant fre¬ 

quency by measurements on the cold circuit before assembly. 
6. Fine, taut grids with wires as small as 0.0003 in. and spacings down 

to 0.001 in. can be used. 
7. By stacking grids with micia insulators it is possible to make a 

pentode almost as easily as a triode. 

The performance of the best of these experimental tubes was very 
satisfactory. Gains up to 20 db at 6 Mc/sec bandwidth and noise figures 
in the order of magnitude of 9 db were obtained in the 3000-Mc/sec 
region. One triode that was operated as an oscillator gave an output of 
1 watt at 25 per cent efficiency. In general, it was necessary to use a 
tetrode structure to avoid instability. A few' tubes of similar structure, 
designed for the 10,000-Mc/sec region, were built by G. A. Hobart III. 
The best of these had a gain of 10 db and a noise figure of 18 db, and 
oscillated at 1 per cent efficiency. The bandmdth was not recorded. 

Because the simple geometry permits the estimation of the shunt 
resistances, the effective Qm for radio frequencies can be calculated from 
Eq. (6). Typical values for one tube are: Ri = 300 ohms, R2 ~ 70,000 
ohms, gain = 100, r-f = 4400 jumhos [computed from Eq. (6)], and 
low-frequency Qm = 0000 /^mhos (measured at direct current). These 
measurements appear to confirm the predictions of Llewellyn and Peter¬ 
son, referred to in Sec. 6*2, that transconductances closely approaching 
the d-c values may be obtained at microwave frequencies, provided the 
spread in transit angles is kept low. 

Input Loading,—At low frequencies, because the signal is injected 
between the cathode and grid, R\ would be expected to be simple diode 

loading—^that is, R\ = —• The modifications introduced by transit- 
gm 

time effects have been worked out by Benham,^ and Llewellyn and 

* W. E. Benham, Theory of the Internal Action of Thermionic Systems at Moder¬ 
ately ffigh Frequencies,Phil. Mag, 6, 641, (1928), also 11, 457 (1931). 
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Peterson.^ In general, as the frequency is raised the conductance 
decreases slowly at first, drops to zero at a transit angle of 27r, then 
goes negative, and passes through zero again at Stt. At frequencies of 
about 1000 to 1500 Mc/sec vith comparatively large grid-cathode spac- 
ings, it is possible to follow this behavior experimentally. In the nega¬ 
tive conductance region, oscillation at low efficiency (the so-called 
'^monotron^' mentioned in Chap. 2) has been obtained.-* In the 3000- 
Mc/sec region it becomes very difficult to follow this ideal diode behavior; 
the reason for the difficulty must be discovered. One possible reason 
is the variation in transit angles introdu(‘ed by the spread in initial 
velocities (the thermal-energy distribution). A simple calculation shows 
that this effect is small even for a diode voltage of 2 with spacings of a 
few thousandths of an inch. Experimentally, it has been found that the 

input circuit resistance is sensitive 
to grid bias, as is shown in Fig. 6*3. 
This experiment was made on a 
tube with a cathode are^a of 0.08 
cm^, a grid wire diameter of 0.0003 
in., and a spacing of 0.002 in. be¬ 
tween centers, at a grid-cathode 
spacing of 0.0030 in. and a fre- 
(piency of 3000 Mc/sec. At suffi¬ 
ciently high negative biases the 
shunt resistance Ri approaches the 
values found for a cold tube, but as 
the bias is decreased the resistance 
drops rapidly. When current flow 

begins, the resistance has already fallen almost to its minimum; the actual 
flow of current has little effect on the loading. Similar variations in shunt 
resistance are found if the grid bias is held constant and the heater power is 
varied; under these conditions the cathode current will also change widely. 
This change is caused in part by the shift of the potential minimum 
(virtual cathode) from the cathode toward the grid as the emission 
becomes more plentiful, and in part by nonuniformity in activity over the 
cathode surface, which means that some regions are temperature-limited. 

The foregoing results can be understood with reference to the classical 
theories of cathode behavior. Electrons are emitted from the cathode, 
the number per unit time depending on the nature and temperature 
of the surface* How far these electrons travel from the cathode will 

^ F. B. Llewellyn and L. C. Peterson, “Vacuum Tube Networks,^' Prac. I.R.E.^ 82, 
144 (1944) Fig. 4. 

* F. B. Llewellyn and A. E. Bowen, “Ultra-High-Frequency Oscillations by Means 
of Diodes,'* Bell System Tech, 18, 280 (1939). 
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Grid bias (volts) 
Fig. 6*3.—Variation of input shunt 

resistance of an experimental 3000-Mc/sec 
amplifier with grid bias. The correspond¬ 
ing cathode current is also shown. 
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depend on their initial velocities and on the field in which they find 
themselves. Ordinarily, there is a large excess of emission that results 
in the turning back of many electrons to the cathode by the negative 
field built up by their own charges. Only a few have sufficient initial 
energy to pass the resulting potential minimum that constitutes the 
^Virtual cathode.”^ A simple calculation shows that, for ordinary 
current densities and cathode temperatures, the transit angle for an 
electron that almost reaches the potential minimum and is then turned 
back to the cathode is between w and 27r at a frequency of 3000 Mc/sec. 
Under these conditions the exchange of energy between the electrons and 
the r-f field is close to its maximum value. In the first order this energy 
exchange should cancel out over a cycle because of the random emission 
from the cathode, but second-order effects are important and result 
in a net transfer of energy from the field to the electrons. For example, 
this hypothesis predicts that some electrons will strike the cathode with 
extra energy (back bombardment); this energy reappears as cathode¬ 
heating. Energy is conserved, but back bombardment is an unduly 
expensive method of heating a cathode. The loading that results from 
this process ordinarily appears to be heaviest at frequencies around 
3000 Mc/sec, and it is expected that it would decrease somewhat at higher 
frequencies; however, this decrease has apparently not yet been observed. 

The conclusion is that an ideal cathode would be one that emits 
uniformly over its whole surface, with the result that the potential mini¬ 
mum would be plane and the spread in transit angles would be minimized. 
For a low-level amplifier the cathode temperature should be adjusted so 
that the emission is only a little greater than the standing current— 
enough to supply the demands of the signal without reaching saturation. 
Under these conditions there would be the least possible loading by low- 
cnergy electrons shuttling between the cathode and potential minimum, 
without sacrificing gain. As a practical working rule the input-circuit 
loading at frequencies in the 3000-Mc/sec region is given by RiA = 25 
ohms-cm^, where A is the cathode area in square centimeters. 

6'4, Noise in Microwave Amplifiers. Input Circuit Noise.—The 
noise generated in the input and output circuits of an amplifier of this 
sort may be measured separately, provided the circuit not being meas¬ 
ured is detuned to avoid feedback effects. If the current is not tem¬ 
perature-limited, the noise power originating in the input circuit can 
be remarkably low. This fact is shown in Fig. 6-4, where the 3000 
Mc/sec noise power Niin units of kT(Af)—A X watts for 1 Mc/sec 

^ The distance from the cathode to the potential minimum may be calculated from 
data published by B. J. Thompson, D. O. North, and W. A. Harris, “Muctuations in 
Space^harge-limited Currents at Moderately ]^h Frequencies,'' RCA Rev., 4, 443, 
(1940). 
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at room temperature—^is plotted against grid bias for a tube with a grid- 
cathode spacing of 0.001 in. The plate current is also shown. The noise 

-4 -2 0 +2 
Grid bias (volts) 

Fio. 6*4.—Noise at 3000 Mc/sec* 
generated in input circuit of an experi¬ 
mental amplifier with grid-cathode 
spacing of 0.001 in. as a function of grid 
bias The corresponding plate current 
is also shown. 

curve should level off at a value 
ture-limited diode. 

becomes very low at high negative 
biases because the transit angle be¬ 
tween cathode and potential minimum 
becomes very small. At the normal 
operating current of 2 ma the noise 
power is still less than twice kT(Af) 
and the actual flow of current makes 
comparatively little difference. As 
long as electrons come near the grid it 
does not matter whether they continue 
through it. 

If the heater power is reduced so 
that a temperature-limited current is 
obtained, the situation is very differ¬ 
ent, as shown in Fig. 6*5. The circuit 
is quiet as long as the current is space- 
charge-limited, but the noise rises 
rapidly as the current becomes more 
and more temperature-limited. At 
still higher positive biases the noise 

corresponding to the familiar tempera- 

-4 -2 0 +2 +4 +6 
Grid bias (volts) 

Fig. 6‘6.—Noise generated in the input circuit of the amplifier shown in Fig. 6*4 with the 
heater power decreased to give temperature-limited emission. 

At low frequencies the noise from a temperature-limited diode or 
from a closely spaced space-charge-limited diode may readily be calcu¬ 
lated. Considering the cathode-grid region as a space-charge-limited 
diode, if the potential minimum is at the grid, as it will be to a fair 
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approximation, the number of electrons reaching the grid will be governed 
by the laws of probability. A perfectly random current, therefore, may 
be assumed. Furthermore, at low frequencies the electrons that are 
turned back before reaching the potential minimum will not exchange 
energy with the field because of the averaging-out over the cycle; the 
averaging is effective at small transit angles. Under these conditions 
the mean-square noise current is given by the equation 

Tl = 2e7o(A/), (16) 

where e is the electron charge, h the average current, and A/ the bandwidth 
of the detecting device. These currents will cause a voltage Vn to be 
built up across the circuit given by 

n = 2eh{Af)Rl, (17) 

where Ri is the shunt resistance of the input circuit. Expressing the 
noise power in terms of the Johnson noise, AkToR(Af)y developed across 
any resistance R at the temperature To gives 

= (18) 

At low frequencies, Ri == 1/gr, where g is the diode conductance and 
g/Io is given in the ideal case by Eq. (8). Substituting these values in 
Eq. (18) there is obtained 

1 T 
(19) 

where T and To are cathode and room temperatures respectively, for the 
noise power in terms of Johnson noise in an ideal closely spaced diode 
at low frequencies. Ni is often referred to as the ‘‘noise ratio” of the 
input circuits. 

At high frequencies the low-energy electrons (those which shuttle 
between the cathode and the virtual cathode) discussed in connection 
with input loading also contribute noise. Both experimental and 
theoretical considerations indicate that the extra noise current is very 
nearly offset by the attendant decrease in Ri, Thus Eq. (19) may be 
used for microwave frequencies, and in fact it agrees well with the results 
of Fig. 6*4 at zero bias. 

Output Circuit Noise.—The output circuit noise may be measured 
either by detuning the input or by reflecting a short circuit in the input 
line to the gap. The effectiveness of this procedure (and the abiSence 
of feedback) may be tested by measuring the gain, which should be down 
by about 30 db. In a widely spaced tube at low frequencies the reduction 
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of noise by space-charge smoothing is well known. ^ For a closely spaced 
diode where the anode is at or near the potential minimum, there is no 
smoothing effect since the minimum is essentially tied to the anode and 
is not free to vary. As the cathode-grid spacing is increased, the potential 
minimum becomes fre^ to perform its gating action. The factor relating 
the noise with space-charge smoothing to that from a perfectly random 
current is usually called and theoretical values for this factor have been 
checked experimentally. 

The smoothing factor F^ may be measured conveniently by replacing 
the hypothetical diode plate with a grid and measuring the noise in the 

output circuit. A series of measure¬ 
ments at 3000 Mc/sec with various 
cathode-grid spacings is shown in Fig. 
(v6. Noise power in units of kT{Af) 

is plotted against plate current. For 
Curve 1 the cathode-grid spacing is 
0.036 cm, and the cathode is operated 
at a temperature low enough to make 
the emission temperature-limited. As 
is to be expected, the noise power is 
linear with the current. For the rest 
of the curves the current was space- 
charge-limited. For (Mrve 2 the spac¬ 
ing is 0.009 cm, and for Curve 3 it is 
0.013 cm. The reduction of noise is 
appreciable. In Curves 4 and 5, 
taken at spacings of 0.028 cm and 
0.036 cm respectively, a positive grid 
bias is required to obtain the higher 
currents. These portions of the 
curves are indicated by broken lines 
and the experimental points have been 
corrected (arrows) for the extra noise 

due to grid interception. The smallest value of F^ (Curve 5) is found to be 
0.20, in contrast to the low-frequency theoretical value of 0.02 for the 
same spacing and current. Thus, space-charge smoothing appears to 
exist at 3000 Mc/sec but is much less effective than at low frequencies. 
This decrease in effectiveness is to be expected because the interaction 
between slow electrons that gives rise to the smoothing takes appre¬ 
ciable time. Also, the smoothing can be obtained only with cathode-grid 

good discussion of this is given in B. J. Thompson, D. O. North, and W. A. 
Harris, “Fluctuations in Space-Charge-Limited Currents at Moderately High Fre¬ 
quencies,” RCA Rev.f 4, 441, (1940). 

Plate current (ma) 

Fig. 6*6.—Output-circuit noise show¬ 
ing effects of space-charge smoothing. 
In curve 1 the emission is temperature- 
limited; in curves 2 to 6 the current is 
space-charge-limited and the cathode- 
grid spacings are 0.009, 0.013, 0.028 and 
0.036 cm respectively. Broken lines 
corrected for interception noise. 
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spacings that are far too large to give a satisfactory high-frequency 
transconductance. The result is that the current in the output circuit 
must be considered to have the full shot noise. 

Over-all Noise.—The over-all noise in these experimental tubes was 
found to be equal to the sum of the input- and outpTit-circuit contribu¬ 
tions. This relation does not necessarily hold, especially at low fre¬ 
quencies, where feedback effects ma^ reduce the noise originating between 
cathode and grid when the input and output circuits are in resonance. 
When the input circuit is as quiet as it was in these experiments, no 
appreciable feedback effect is to be expected. 

The output-circuit noise voltage is given by Eq. (17), with Ri replaced 
by In terms of Johnson noise, the output noise ratio is 

analogous to Eq. (18). In order to calculate the noise figure for the 
amplifier as a whole, this noise ratio may be referred to the input circuit 
by dividing by the gain and adding it to the input contribution, Eq. (19), 
plus one to insure the correct reduction to a passive network; thus 

m = i + Ni + ^^- (21) 

By taking the gain at matched load as given by Eq. (7), and substituting 
from Eqs. (19) and (20), there is obtained 

W = 1 + 1Z+ 2., 
^ 2 To ^ kTo 

h 

glRi 
(22) 

This expression has been checked for various amplifiers in the 3000- 
Mc/sec region and has almost always predicted the noise figure within 
a factor of 2. It is interesting to note that the properties of the output 
circuit do not enter into the noise figure. 

The factor —2c- in the last term of Eq. (22) may be written in the 
glUi 

following way: 

(23) 

The maximum practical current density h/A for an oxide-coated cathode 
is about 0.2 amp/cm^; RiA has an experimental value of about 25 ohms/ 
cm^; and the theoretical limit for Qm/h is 11 per volt [Eq, (8)]. When 
these values are substituted in Eq. (22), an optimum noise figure of 
4*2 is obtained. The best of Neher’s experimental tubes has a noise 
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figure of about 7, but has a value of Qm/Io that is only about 0.4 the pos¬ 
sible maximum. 

The conclusion is that satisfactory low-level amplifiers of more or 
less conventional design can be developed for the frequency range up to 
at least 3000 Mc/scc. All that is needed is the application of refinements 
in construction and the development of more dependable and uniform 
cathodes. Interesting possibilities for future research include the 
replacement of the actual cathode as a part of the input circuit by a 
virtual cathode formed by injecting the beam at low velocity into an 
r-f gap between two grids. Preliminary studies indicate that such a 
virtual cathode may be quietand at the same time show a high 
mutual conductance. Another possibility is raised by a suggestion of 
Peterson^ that at high frequencies there should be a reduction in noise 
if a space charge is built up between the input and output circuits of a 
tetrode. This can be done if the first grid is run a few volts positive with 
respect to the cathode and the second grid at a lower positive potential. 
As the injected current is raised, there will be sudden discontinuity in 
current to the second grid and a simultaneous formation of a virtual 
cathode between the grids. This point is known as the ^^Kipp^^ point,^ 
and Peterson predicted that some interesting effects would be observed 
just below this point (see Sec. 5.6). The general features of his theory 
have been confirmed by Neher. Depending on the various currents and 
voltages, the signal power and noise power coming out of the tube are 
drastically affected and to different degrees; for example, the signal 
could be enhanced as much as 10 db or could be diminished 20 db with 
less than 50 per cent change in plate current. The effect is most marked 
with comparatively large grid-cathode spacings, and so far the best that 
has been done is to give a tube with rather wide spacings a noise figure 
about as low as that obtained with close spacings. There seems to be 
no easy way of getting a mental picture of the process, except that transit 
angles of the order of 2ir are involved. Further research seems necessary. 

6*6. High-efficiency Amplifiers.—The question of high-efficiency 
Class B and Class C amplifiers has received relatively little attention. 
So far no successful tubes have been built for frequencies of 3000 Mc/sec 
and above, but some measurements on the behavior of the experimental 
amplifiers designed for Class A operation described in Secs. 6-3 and 6*4 
have indicated that Class B or Class C operation can be attained, given 
sufficient driving power. These small experimental tubes have insuffi¬ 
cient power-handling capacity to make a useful device. 

*L. C. Peterson, ‘‘Receiver Noise Figures,” BTL Memorandum MM-42-130-91, 
Sept. 30, 1942. 

* J. K. Knipp, “Space Charge Between Parallel Planes,” RL Report No. 634, 
Mar. 22, 1944. 
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In order to get high eflBciency it seems necessary to use a tetrode struc¬ 
ture with a negligible drift distance between the input and output 
circuits so as to avoid ordinary drift-space bunching that would have a 
‘‘debunching^^ effect in this case. Since for a high electronic efficiency 
the electrons should reach the plate with a very low velocity, triodes 
would have poor output circuit efficiency. It would be necessary to 
use close spacings because the electrons would start across the output 
gap with a comparatively low velocity; these close spacings would cause 
relatively high circuit losses. 

The output circuit would have to be designed so that loading by 
secondaries ejected from the plate could be avoided. Probably such a 
design would necessitate a slat or honeycomb construction of the plate 
that would act as an electron trap or Faraday cage. The mechanical 
difficulties of maintaining constant close spacings between cathode and 
grid become increasingly serious, and the problems of producing a 
uniformly effective cathode become more difficult, as the cathode area 
is increased. 

6*6. Practical Triode Amplifiers.—The commercially available space- 
charge-control tubes best suited to amplifier applications are the light¬ 
house family of disk-seal planar triodes. The graduated disk-seal 
construction of the lighthouse tubes was chosen with the intention of 
facilitating their insertion in a grid-separation circuit with concentric 
coaxial-line cavities, the cylinder in contact with the grid disk serving 
simultaneously as outer conductor for the output (plate) circuit and inner 
conductor for the input (cathode) circuit. This arrangement is shown 
schematically in Fig. 6*7; the d-c connections and necessary blocking 
condensers are omitted. It should be noted that, if the over-all diameter 
of the circuit is kept small and if the anode lead is made massive for 
good heat conduction, the output lead must be small in diameter. 

In order to improve cooling of the anode and to reduce losses in the 
output circuit, some tubes have been designed with an inverted structure, 
the cathode being at the small end with a concentric heater lead. An 
example of this construction was the CV90, developed in England.^ 
The 2C38, 2C39, and 2C41 are samples of the inverted lighthouse con¬ 
struction developed in the United States; they are sometimes referred 
to as ‘^oilcan” tubes. Although they are certainly superior to ordinary 
lighthouse tubes in respect to power handling capabilities it is not at all 
clear that the inverted lighthouse tubes make better low-level amplifiers. 

Only a few studies of the performance obtainable from lighthouse 
tube amplifiers over the frequency range 1000 to 3000 Mc/sec were 
undertaken during the war because the work was time-consuming and 

1 A smaller version of this tube, the 2C36, was put into limited production in this 
country toward the end of the war. 
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the results disappointing. Furthermore in view of the wide variations 
in performance from tube to tube the samples studied were usually too 
small to give a trustworthy picture. 

In the region from 500 to 1000 Mc/sec, amplifiers using apparatus 
similar to that shown in Fig. 6*7 have been widely used. The d-c 
insulation between cathode and grid is provided by the mica condenser 

connection 
Fig. 6*7.—Sketch of a typical grid-separation circuit for a lighthouse tube. Direct-current 

-connections and insulation omitted. 

Fig. 6-8.- 

7 ■ ^ Plate of Hj 

"^ca blocking condenser 

^ Plate of lighthouse tube 
-Sketch of a plate blocking condenser for lighthouse-tube circuits. 

built into the lighthouse tube between the cathode proper and the base 
shell which forms the r-f cathode connection. Plate voltage is applied 
by means of a d-c lead within a hollow plate connector provided with a 
blocking condenser as indicated roughly in Fig. 6-8. A condenser of 
this type introduces the minimum losses in the cavity if placed with 
point a near a current node. At the higher frequencies it is advisable 
to make the electrical length of the dielectric-filled line a — 6 a quarter 
wavelength.^ A choke plunger might be used instead of one with 

^ At this wavelength the coaxial line formed with the d-c lead as the center conduc¬ 
tor should have a high impedance, and r-f chokes (quarter-wavelength cups) on the 
center conductor may be advisable to reduce leakage. 
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contact fingers. The use of such a plunger, however, would require an 
increase in the diameter of the grid line to obtain reasonable clearances, 
and this in turn would require an increase in size of the cathode-grid 
cavity. This enlargement may give trouble with a higher mode (than 
the principal 7"£M-mode), which becomes possible when the arithmetic- 
mean circumference of the two conductors is approximately equal to the 
wavelength. 

Typical noise figures for an amplifier of this sort, using a 446B or 
2C40 lighthouse tube, are 7 db at 500 Mc/sec and 10 db at 1000 Mc/sec. 
Above 1000 Mc/sec the noise figures deteriorate rapidly;^ average values 
are 16 db at 2000 Mc/sec and about 21 db at 3000 Mc/sec, when the 
tube is operated at a plate voltage of 300 and a current of 20 ma.^ At 
frequencies below about 1500 Mc/sec the noise figure is improved by 
operating at lower plate currents. Along with the rapid increase in 
noise figure at the higher frequencies there is a marked decline in the gain. 
For a typical tube and circuit the gain might drop from 10 or 11 db at 
1500 Mc/sec to about 1 db at 3000 Mc/sec. 

A characteristic of the noise figure is that it fluctuates much less 
from tube to tube than does the gain. Doubling the shunt resistance 
of the output circuit doubles the power gain (and halves the bandwidth), 
but it also doubles the shot noise from the output circuit. As was 
pointed out in the discussion of Eq. (22), the properties of the output 
circuit do not enter in the computation of the noise figure, and as the 
contribution of the output circuit usually makes up by far the larger 
proportion of the noise figure, the over-all noise figure varies little from 
tube to tube. As a result, measurements of noise figures made in various 
laboratories may be expected to agree within 2 db, if obviously defective 
tubes are excluded. 

At frequencies greater than about 2000 Mc/sec it is usually impossible 
to use coaxial-line resonators with lighthouse tubes in their fundamental 
mode. Because of the capacitive loading contributed by the tube the 
quarter-wavelength line must be shortened so much that the plunger 
would strike the glass envelope of the tube. In these circumstances an 
integral number of half-wavelengths is added to the line; the line is then 
said to be operating in the fX, fX, etc., mode. In comparison with the 
fundamental (iX) mode, these higher modes have somewhat greater 
Q^s and therefore smaller bandwidths. The higher Q results from the 

1 Sec measurements reported by W. M. Breazealc and M. Waltz, Performance of 
the GL446 Lighthouse Tube as an R-f Amplifier in the 10-20 cm Region,^’ RL Report 
No. 291, Oct. 5, 1942. 

* Measurements in general agreement with these but running 2 or 3 db higher 
have been reported by P. M. Garratt in ^'lighthouse Tubes as R-f Amplifiers in the 
10-cm Range,"' General Electric Data Folder 46231, and in '‘Performance Character¬ 
istics of GL446 Amplifiers," General Electric Data Folder 46240. 
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fact that the volume available for storing electromagnetic energy has 
been increased more than has the dissipation. The factor by which the 
Q is increased in going from one mode to another depends to some extent 
on the capacitive loading provided by the tube but more on the dis¬ 
tribution of the dissipation between losses in the resonator and the 
external load. If the circuit efficiency is high and the capacitive loading 
light, the bandwidth in the fX mode may be only a little more thail one 
third of that in the fundamental mode. Allowance for this effect should 
be made in applying the results of Sec. 6*2 by suitably increasing the 
value of C2 used in Eqs. (9) to (12). 

Experimental Results with Lighthouse Tubes,—The validity of the 
conclusions of Sec. 6-2 has been tested Avith some simple experiments.^ 
The circuit Avas basically that of Fig. 6-7 except that the cathode and 

grid lines AA^ere of larger diameter in 
order to facilitate coupling out of the 
grid-plate cavity. The outer and 
inner diameters of the cathode-grid 
circuit Avere 5.5 and 3.48 cm, and the 
corresponding dimensions for the grid- 
plate circuit were 3.32 and 1.1 cm. 
Choke plungers Avere used to avoid 
variable contact resistances, and al¬ 
though efforts were made to reduce 
resonance effects in the lines behind 
the plungers, these effects could not be 
completely eliminated. The input 
line Avas lossy and was matched to the 
cathode grid cavity with an adjustable 
probe. A constant power of the order 
of magnitude of a milliwatt from a 
swept frequency oscillator was avail¬ 

able at the input. The output loop could be rotated to vary the coupling. 
Figure 6-9 shows the variation of gain and bandwidth Avith rotation 

of the loop for a typical 2C40 operated at 250 volts on the plate with a 
current of 30 ma.^ Results are plotted against sin^ By where B is th^ angle 
between the plane of the loop and the magnetic field in the cavity. This 
gives a scale proportional to 1/Rl or to x. The bandwidth varies 
linearly as expected, and the scale of x may be established by use of the 
fact that Af doubles in going from x = 0 to x = 1. The gain curve is 
computed from Eq. (16), using y = 0.75 and giRiRi « 6.72 to fit at the 

^ Unpublished work of M. C. Waltz at Radiation Laboratory, 
* The recommended plate dissipation was exceeded in order to facilitate measure* 

meat of output powers. 

X 
0.5 1.0 1.5 

Fig. 6*9.—Gain and bandwidth of 
a typical 2C40 amplifier at 9.9 cm, with 
varying load. Plate voltage 260, cur¬ 
rent 30 ma. 
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peak. For comparison, a theoretical curve of gain without feedback, 
normalized to the same value of glfixRz, is also shown. The value chosen 
for 7 may seem unduly large but it must be remembered that- 
is greater than 4, probably by a fac¬ 
tor of at least 2; therefore, m is much 
less than unity, probably not greater 
than 0.1. In these experiments the 
cavity geometry was not favorable 
for estimating C2 or the losses R\and 
Ri, If it is assumed that Ri = 150 
ohms (a normal value for a cathode 
area of ^ cm^ spaced a few thou¬ 
sandths of an inch from the grid) and 
the assumption that C2 = 6 M^f is 
made (allowing for the f-mode in 
the cavity), g^, -Ba, and m may be esti¬ 
mated from the experimental band¬ 
width at zero load, 2.3 Mc/sec, and the value of glJRiR^ obtained from 
the gain curve. The quantities Riy and m so obtained are respec¬ 
tively 1900 /imhos, 11,000 ohms, and 0.035. The assumptions regarding 
phase of feedback, etc., involved in deriving Eqs. (14) and (15), are much 

too drastic for these numerical 
results to have any real signifi¬ 
cance, but at any rate they form a 
plausible set. 

In Fig. 6*10 the gain, band¬ 
width, and figure of merit for the 
same tube are shown as functions 
of the plate current, varied by 
changing grid bias, with the plate 
voltage held constant at 250 volts. 
The coupling was occasionally re¬ 
adjusted during the experiment 
for optimum output. As a result 
the bandwidth appears to vary 
erratically; this variation is pre¬ 
sumably due to the difficulty in 
locating the maximum of the gain 

curve, especially when little or no regeneration is present. Since the 
points for the gain tend to fluctuate in a compensating direction, the 
figure of merit follows a smooth curve reasonably well. 

In Fig. 6*11 the gain, bandwidth, and figure of merit are shown as in 
Fig. 6*10, except that in this experiment the plate current was constantly 

I^Pfate voltage 

Fio. C-11.—Gain, bandwidth, and figure 
of merit of the typical 2C40 lighthouse tube 
shown in Fig. 6*10 as functions of plate 
voltage, plate current held constant at 20 ma. 

Fio. 0*10.—Gain, bandwidth, and 
figure of merit of a typical 2C40 light¬ 
house tube as functions of plate current, 
plate voltage held constant at 250 volts. 
Frequency is 3030 Mc/sec. 
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readjusted to 20 ma while the voltage was varied over a range from 
110 volts (the minimum at which 20 ma could be obtained without using 
positive grid bias) to 400 volts. For convenience, the data are plotted 
against the square root of the voltage. The tendency for the gain and 
bandwidth to vary inversely while the figure of merit remains relatively 
constant is striking. The cyclical variation ot the gain is readily under¬ 
stood provided there is feedback by the plate-cathode capacitance. In 
the absence of feedback the gain and bandwidth at optimum load would 
be expected to remain relatively independent of voltage, provided the 
r-f voltages are small compared with the corresponding d-c voltages and 
that the beam-coupling coefficient for the output circuit is not appreciably 
affected. If there is feedback, however, the phase of the transcon¬ 
ductance becomes important. Because this phase is varied by changing 
the electron velocity while the phase of the feedback is constant, a 
cyclical variation of the gain is to be expected. As the feedback swings 
from positive to negative, the loading required for optimum output 
becomes heavier. 

Measurement of amplifier performance over a frequency band requires 
more careful cavity construction than was used in the experiments 
detailed above. The bandwidth of choke plungers must be taken into 
account, and it is important to eliminate any leakage past the plungers 
that can give rise to resonances and possibly to coupling between cavities. 
Failure to suppress completely such extra fe(‘dback or fluctuations in Ri 
and R2 results in a curve of gain vs. freciuency in which the general trend 
is hard to see because of numerous peaks and valleys. Because of the 
decrease in effective gm resulting from spread in transit angles, the general 
trend of the gain curve may be expected to fall slowly at first and then 
rapidly as the frequency is increased. Superimposed on this downward 
trend there may be an oscillation that is due to feedback through the 
plate-cathode capacitance when the phase of the Qm is shifted by the 
change in frequency. 

An idea of the variations to be expected between individual lighthouse 
tubes may be obtained from Table 6*1, which shows gain, bandwidth, 
and figure of merit for a group of 446B and 2C40 lighthouse tubes pro¬ 
duced over a period of years by various companies. In tube 2C40 
No. 2, which has the highest gain of the lot, the amplifier is on the verge 
of oscillating when lightly loaded. Under these conditions the band¬ 
width is very small, not so much because of the light loading of the output 
circuit as because of the reduction in bandwidth of the input, and the 
figure of merit decreases markedly, as is usual when there is regeneration. 
Since tube variations are so pronounced, any practical application of an 

amplifier of this type is diflEicult. The chief value of amplifier measure- 
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Table 6-1.—Properties of Representative Lighthouse Tubes as Amplifiers 

AT 10 CM. 

Plate voltage 250, current 32 ma. Load adjusted for maximum gain 

Tube type 
Tube 

immbor 
Power gain 

Bandwidth, 
Me/sec 

Figure of merit, power 
gain X bandwidth, Mc/sec 

2C40 4' 2.56 9.3 23.8 
446B 1 3.25 6.9 22.4 
2CH0 2* 13,7 0.85 11.6 
2C40 2* 9.6 2.9 27.8 
2C40 2* 4.4 7.8 34 3 
2C40 y 1.96 7.2 14.1 

3 4.83 4.7 22.7 
4 3 6 5.0 18 
5 9 0 3.9 i 35 
6 5 8 4.7 1 27.3 

446B 7 3.25 4.6 15 
2C40 8 7.3 3.2 23 4 
2C40 10 5 3 4 7 25 
2C40 1 11 4 85 3 9 19 
2C40 ! 12 7 3 3 1 22 6 
2C40 13 1 69 6 5 tl 
2C40 14 5.3 4.3 22 8 
2C40 8' 3.25 5.6 18 2 
2C'40 X 9.0 2.9 26 

* VariotiH settings of coupling loop. 

ments on lighthouse tubes in the 3000-Mc/see region is to increase 
understanding of the behavior of such tubes as oscillators. 

In view of the importance of feedback effects it is natural to inquire 
whether neutralization can be accomplished. Over a small frequency 
range good neutralization can be obtained with a slot or other coupling 
device properly placed in the partition between input and output cavi¬ 
ties. Because of the dimensions of the envelope this coupling has to be 
located at an appreciable fraction of a wavelength from the capacitive 
coupling being neutralized—a distance that makes the adjustment fre¬ 
quency sensitive. Very little experimental work, it appears, has been 
done on this problem. Neutralization, however, has sometimes been 
obtained accidentally in the course of attempting to make oscillators. 
Care must be taken to insure good contact to the grid disk of the tube. 
If one or more of the spring fingers does not make contact, or if the slots 
between the fingers are resonant, there may be considerable extra feed¬ 
back in addition to that caused by direct capacitive coupling through 
the grid. 



CHAPTER 7 

MICROWAVE TRIODE OSCILLATORS 

By J. B. H. Kuper 

7*1. Introduction.—Space-charge-control tubes capable of functioning 
as amplifiers in the microwave region can, of course, be made to oscillate 
if provided with the proper feedback. The only triodes commercially 
available during the war that were suitable for use at frequencies much 
higher than 1000 Mc/sec were the lighthouse family of tubes. As a 
result there is a considerable amount of information on how to make a 
lighthouse tube oscillate at a given frequency, but comparatively little 
work has been done on the fundamentals of triode operation.^ 

When operated in a grid-separation circuit of the type described in 
Sec. 6*6 or in the ^^reentrant” oscillator circuit that is discussed in 
Sec. 6 of this chapter, a typical 2C40 lighthouse tube might furnish I 
watt at 20 per cent efficiency in the 1000-M(‘/sec region and perhaps 
0.1 watt at 2 per cent efficiency in the 3000-Mc/sec region. The upper 
frequency limit of most lighthouse tubes is in the neighborhood of 3600 
to 4000 Mc/sec. Despite their poor efficiency, lighthouse tube oscillators 
are often used as superheterodyne local oscillators or as signal generators 
because they do not require complicated regulated power supplies. In 
comparison with the more common form of reflex klystron, the integral- 
cavity type, triode oscillators have the advantages of flexibility and 
cheapness, but these are offset to a considerable degree by the fact that 
the external cavity resonator is expensive. 

In microwave oscillators it is scarcely possible to consider the tube 
apart from the circuit; cavity problems loom large in any application. 
A satisfactory cavity design must not only accommodate a large range of 
electrical properties from tube to tube, but must also solve the mechanical 
problem of making good contact to the tube without subjecting it to 
mechanical stresses. Cooling of the plate of the tube is also an important 
consideration in cavity design. 

When a resonator is suitably modified to withstand high voltages, 
lighthouse oscillators may be operated under pulse conditions with volt¬ 
ages up to 3 or 4 kv and the same (or lower) average input powers as are 

^ For an extensive discussion of oscillator circuits for the lighthouse tubes see 
A. M. Gurewitsch and J. R, Whinnery, ‘‘Microwave Oscillators Using Disk-Seal 
Tubes,'' Proc. S5, 462 (1947). 
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used under c-w conditions. As a result of the decreased time of transit 
from cathode to plate under higher plate voltages, slight additional modi¬ 
fications to the cavity will be needed to secure the correct phase of feed¬ 
back. Where 2- to 3-kv pulses are applied to the plate of a 2C43 tube, 
r-f pulse powers of the order of magnitude of a kilowatt may be obtained 
in the 3000 Mc/sec region, and somewhat more at lower frequencies. 
Oscillators of this kind have been used as medium-power beacon trans¬ 
mitters and for special-purpose short-range radar sets. Pulse operation 
is discussed in the next chapter; the remainder of this chapter is devoted 
to a consideration of the fundamental circuit types and c-w operation. 

The very large number of oscillator designs that have been used in 
practical applications is in itself an indication that a thoroughly practical 
general-purpose cavity has not yet been developed. The compromises 
that must be made in the interests of simplicity generally result in a 
serious loss in flexibility; the more limited the application (particularly 
in respect to frequency band), the greater the chance of achieving a 
satisfactory design. It would be unprofitable to describe a number of 
these devices in detail; rather it seems best to emphasize the fundamental 
principles involved. 

One of the chief factors involved in these compromises is the fact that 
at the higher frequencies it is necessarj' to adjust not only the magnitude 
of the voltage that is fed back to the input but also the phase. When 
the phase of the transadmittance becomes much greater than tt radians, 
the phase adjustment may be critical in comparison with the adjustment 
of magnitude. Ordinary oscillator cavities do not permit continuous 
adjustment of feedback phase. This fact is responsible for many 
interesting points of behavior, some of which are mentioned in succeeding 
sections. 

Most statements in the remainder of this chapter refer specifically 
to lighthouse tubes, but it is felt that the conclusions would be applicable 
in general to other forms of close-spaced triodes. Physically the light¬ 
house tubes depart so mdely from the ideal structures postulated in 
Chaps. 3 and 5 that there is little use in attempting a rigorous analysis. 
For example, the spacing between grid wires in a 2C40 tube is greater 
than the separation between grid and cathode. The plane of the grid 
is far from being flat, and there are serious differences in transit angle 
between those electrons that pass close to the wires and those that go 
through near the centers of the holes. 

7*2« Principal Tjrpes of Oscillator Circuits Applicable to Triodes.—In 
the frequency region from about 50 to 200 or 300 Mc/sec, the standard 
triode oscillator is one in which the resonant tank circuit is connected 
between the grid and the plate, and the cathode lead is (usually) provided 
with an r-f choke. Although various forms of this arrangement have 
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received special names, basically it is a Colpitts oscillator in which the 
tube interelectrode capacitances and strays provide the capacitance 
potential divider for the cathode. When the frequency becomes high 
enough to make the use of coaxial-line resonators advisable, this arrange¬ 
ment requires modification. Stray capacitance between the plate and 
cathode is cut out by the shielding action of the grid connection, leaving 
only a very small internal plate-cathode capacitance. The latter is so 
much smaller than the grid-cathode capacitance that the resulting grid- 
cathode voltage is insufficient to sustain oscillations. One remedy 
is to increase artifically the plate-cathode capacitance by means of one 
or more conducting strips fastened to the cathode lead, passing through 
holes in the grid connector and presenting a surface to the plate or plate 
lead. This form of Colpitts circuit will give satisfactory results provided 
the phase angle of the tube transadmittance is small. At considerably 
higher frequencies (around 1000 Mc/sec) an analogous arrangement, 
in which the grid and cathode are exchanged, is sometimes used; the 
resonator is connected between the plate and the cathode, and the grid is 
capacitively coupled to or tapped onto a suitable point on the inside 
of the resonator. This circuit operates well when the phase lag in the 
tube is about t radians because it provides a reversed feedback voltage. 
This circuit resembles the ^^grid tickler’^ or ‘‘reverse feedbackcircuit 
except for a reversal of the tickler connections to provide the tt radians 
phase shift. With a given set of interelectrode spacings and voltages, 
there is an intermediate frequency range in which neither of these circuits 
works—^that is, where the phase lag is about 7r/2 radians. 

The other types of circuits generally bear less resemblance to familiar 
low-frequency forms. The grid-separation amplifier, discussed in the pre¬ 
vious chapter, is well adapted mechanically to the lighthouse tubes, and 
functions as an oscillator if the right amount and phase of feedback are 
provided. A circuit of this t3q)e is the most flexible because it permits 
enough adjustments to take care of any phase shifts that may be encoun¬ 
tered. In fact, the multiplicity of adjustments is the greatest drawback 
to the general use of grid-separation oscillators. If one is willing to 
make the adjustments, this oscillator will give the best performance of 
which the tube is capable. 

Since lighthouse tubes require relatively large driving voltages at the 
higher frequencies, various attempts have been made to build oscillators 
consisting essentially of a transmission line, radial or coaxial, running 
between the grid-plate gap and the cathode-grid gap. Such a line 
generally is not uniform; rather there are one or more discontinuities 
that permit designation of a portion of the line as the principal “tank'' 
circuit—^that is, the region in which most of the energy is stored. This 
portion plays the major role in determining the frequency of oscillations. 
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For obvious mechanical reasons this transmission line must be folded. One 
of the designs for realizing an oscillator of this type is the ambiguously 
named ‘‘reentrant^' oscillator^ illustrated in Fig. 7*1. In this oscillator 
there is a cylindrical conductor connected to the cathode, a concentric 
rod or tube connected to the plate cap, and a short open-ended cylinder 
connected to the grid disk. The cathode and plate cylinders are con¬ 
nected (as far as radio frequency is concerned) by a short-circuiting 
plunger that may be either of the choke or of the contact type. The 
choke type is preferred, particularly when high plate voltages are used, 
because it simplifies the d-c insulation problem. The necessary d-c 
connection to the grid is made by a wire or a spring located at or near a 

Fia. 7*1.—Section of a typical “reentrant” cavity oscillator for a lighthouse tube. All 
three cylinders have spring fingers to make contact to the tube. 

voltage node, and r-f power is coupled out by a loop or probe inserted 
usually in the space between the grid and cathode cylinders. Although 
the constniction of this oscillator is simple and it has the great merit of 
readily accommodating the inevitable mechanical imperfections of the 
tubes, its electrical behavior is complicated. For the present it will 
suffice to remark that, because the region between the grid and plate 
cylinders usually contains the major part of the stored energy, it is the 
most important region in determining the frequency, whereas the posi¬ 
tion of the plate-cathode plunger chiefly affects the feedback. 

Numerous hybrid oscillator designs are possible—^for example, the 
combination of a radial transmission-line cavity for the input circuit and 
a coaxial-line cavity for the output circuit. Most of the hybrid designs 
that have been found useful at frequencies above 2000 Mc/sec may be 
considered as variants of either the basic grid-separation circuit or the 
folded-transmission-line circuit typified by the reentrant oscillator. 
At somewhat lower frequencies, up to perhaps 1500 Mc/sec, many other 

^ Several variants are despribed by A. M. Gurewitsch, “Cavity Oscillator Circuits,'' 
Electronics, 19, 2, 135 (1946). 
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schemes have been used. Among these are the so-called ‘‘coaxial butter¬ 
fly^' circuits and the “cylinder" circuits, which have been described by 
Karplus.^ Most of these may be analyzed as combinations of coaxial 
lines loaded by concentrated (if not “lumped") reactances. Because 
of their limited applications, no detailed discussion of the hybrid circuits 
is given here. 

The coaxial-line grid-separation oscillator and the reentrant oscillator 
are the only types used extensively in the microwave region—^the former 
mostly in cases where wide tuning ranges arc required, and the latter 
where tuning ranges of about 10 per cent are sufficient and the utmost 

Feedback probe adjustable in 

Fig. 7’2.—Sketch of lighthouae-tube grid-separation oscillator with enough adjubt- 
menta to permit obtaining optimum conditions for any tube when frequency and voltages 
are specified. 

simplicity in construction is desired. From the standpoint of the tube, 
however, the ideal oscillator would be something like that shown sche¬ 
matically in Fig. 7-2. This is an oscillator of the coaxial-line type 
providing enough adjustments to permit achievement of optimum 
conditions of feedback. The two coaxial cavities are‘tuned with plungers 
of either the choke or the quarter-wavelength spring-finger type. The 
space behind the plungers is made nonresonant by the use of high-loss 
insulating material on the heels of the plungers and for the supporting 
rings. In general, the two cavities should be operating in different modes 
—^for example, f and f wavelengths (effective)—so as to avoid troubles 

1 E. Karplujs, ** Wide-Range Tuned Circuits and Oscillators for High Frequencies," 
Proc. /.R.E., 83, 426 (1946). 
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with undesired low frequencies that might arise if they were both tuned 
to the same wavelength. 

The probe that injects feedback voltage into the cathode-grid cavity 
should be adjustable radially and longitudinally (by a slot) so that the 
feedback line is always terminated by the tube input losses, transformed 
to the line impedance by the cavity. When the feedback line is so 
terminated, the use of a telescoping section (a ^^line stretcher^’) provides 
any phase of feedback voltage that may be required by the transit angle 
in the tube. The tw^o rotatable coupling loops mounted in the plate 
plunger permit adjustment of the magnitude of the feedback voltage 
and of the load. There is unavoidable interaction between these last 
two adjustments, but otherwise the adjustments are nearly independent 
and can be made in a systematic manner. Nevertheless, it is clear that 
such a multiplicity of adjustments can never be tolerated in a practical 
oscillator. This device could be used only under laboratory conditions 
for special purposes. 

Because equipment designers usually want a single-control oscillator, 
although they can sometimes be persuaded to accept a subsidiary 
*4rimming^^ adjustment, considerable sacrifices in performance are to 
be expected. The alternative of ganging the necessary adjustments is 
almost certainly too complicated mechanically. In the practical forms 
of the coaxial-line grid-separation oscillator, or of the reentrant oscillator, 
the phase and magnitude of the feedback cannot be adjusted inde¬ 
pendently; a fixed adjustment or a crude tracking scheme is satisfactory 
over a narrow frequency range. Unfortunately, redesigning an oscillator 
for a moderate shift in frequency may require considerable experiment; 
it is not often possible to use simple scaling methods. 

The remainder of this chapter and the succjeeding one are devoted 
to a discussion of the operation of these two circuit types. The discussion 
is general and nonmathematical, chiefly because the necessary tube 
parameters are very seldom known with sufficient accuracy to justify 
anything more than a qualitative treatment. • 

7*3. Power Supply and Bias Considerations.—Because of the very low 
efficiency of even the best triode oscillators at frequencies above 1500 
Mc/sec, slightly different bias and supply arrangements from those used 
at low frequencies are advisable. Particularly with an oscillator that 
requires more than one adjustment, so that there is a good chance of 
setting the circuit in a nonoscillating condition, the use of grid-leak 
bias may be dangerous. This situation is in contrast to that occurring 
at low frequencies, where the use of a grid leak assists starting of oscil¬ 
lations and automatically adjusts the bias as required by changing load 
conditions, etc. 

To protect the tube against overheating when it is not oscillating, 
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it is often advisable to use some cathode bias. This bias needs only 
to be sufficient to prevent overload at the plate voltage used and the 
remainder of the bias voltage may be furnished by a grid leak. Bypass 
condensers are ordinarily not required for the bias resistors. The cathode 
condenser that is built into the tube structure is usually sufficient to 
prevent r-f voltage from appearing on the d-c cathode connection. The 
reentrant oscillator is an exception if the d-c lead to the grid cyclinder 
is not at a voltage node; in this case a small condenser formed by a mica 
washer, or a quarter-wavelength choke may be necessary. With a well- 
designed cavity there should be no troublesome leakage of r-f power from 
the d-c plate lead.^ 

At moderately high frequencies (200 Mc/sec or less) a reentrant 
cavity, especially if provided with a choke plunger between the cathode 
and plate cylinders, may appear merely as some extra capacitance in 
parallel with the tube interelectrode capacitances. Because of the 
high transconductance of the lighthouse tubes at these frequencies, 
parasitic oscillations in the circuits formed by the power-supply leads are 
sometimes encountered. These lower-frequency oscillations are found 
most often in bench setups and are cured by the insertion of appropriate 
r-f chokes in the leads. They are often encountered also when attempting 
to measure the usual parameters, mutual conductance, plate resistance, 
and ^ with a vacuum-tube bridge of standard design. The subject is 
mentioned here mainly to warn the experimenter to suspect parasitics 
in cases of erratic behavior. 

Another common difficulty is intermittent or interrupted oscillation, 
which may be ‘‘self-quenched’^ superregeneration (“squegging”) at a 
moderately high audio frequency or lower frequency “motorboating.” 
The latter is usually a fault of the power supply itself and is remedied 
by proper bypassing, but the former is more difficult to overcome. 
Because the operator generally lacks adequate control over the feedback, 
it not infrequently happens that the feedback is excessive, and super- 
regeneration occurs with a quench frequency that depends mainly on 
the time constant of the grid leak and the stray grid-ground capacitances. 
Reduction of this time constant generally stops the superregeneration, 
but the proper cure is to reduce the feedback. 

Unless a high degree of frequency stability is required, it is not 
necessary to regulate the power supply. When stability is important, 
however, it is usually necessary to regulate the heater voltage as well as 
the plate supply. Voltage regulation is more important with the reen¬ 
trant oscillator than with the two-cavity coaxial grid-separation circuit. 
When the taut-grid 2C40 and 2C43 tubes are used, the frequency shifts 

‘ If present, the leakage can readily be detected by running a finger or screwdriver 
along the lead and noting the reaction on the oscillator. 
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resulting from an unregulated supply should not exceed 0.5 Mc/sec 
(at 3000 Mc/sec) for a 1 per cent change in line voltage. 

The provision of adequate cooling of the anode is important enough 
to deserve mention here, although it is more a question of cavity design 
than of power supply. Because of the low efficiency, plate input power 
is practically synonomous with plate dissipation. Most oscillator designs 
bury the plate connection within a pair of concentric cylinders. Since 
these are usually silver-plated, they practically eliminate radiation 
cooling. It is necessary to provide adequate conduction along the plate 
cylinder or to blow air on the plate cap itself. A surprisingly large 
number of small ventilation holes may be bor^ in the cylindrical con¬ 
ductors forming the oscillator cavity with no apparent detriment to 
performance. 

7*4. Two-cavity Grid-separation Oscillators.—Many of the impor¬ 
tant points in the construction of two-cavity coaxial-line grid-separation 
oscillators are obvious and need only be listed here. These are: (1) 
the importance of designing contact fingers to provide good electrical 
(and thermal) contact without stressing the tube mechanically; (2) the 
necessity for dependable action of the short-circuiting plungers (which 
means the use of choke plungers, unless too wide a frequency range is 
required); (3) the avoidance of resonances in the supposedly ‘‘dead” 
region behind the plungers; and (4) the possibility of higher modes in 
the outer coaxial line at high frequencies. 

In most applications it is desirable to gang the two plungers so that 
a single tuning control will suffice. Such a procedure is complicated 
because the graph of wavelength against plunger position is not a straight 
line. The departure from a straight line is due to the loading effect of 
the tube on the open end of the coaxial line. 

The r-f gap in the tube may be represented to a first approximation 
by a lumped capacitance, provided the radius of the plate or cathode is 
very much less than one-quarter wavelength (this condition always being 
satisfied in lighthouse tubes). This lumped capacitance loads a radial 
transmission line at the center, and this radial line in turn loads the 
coaxial line. This resonator is evidently somewhat more complicated 
than the simple klystron resonator discussed in Chap. 4. The transition 
region between the radial and the coaxial transmission lines makes calcu¬ 
lations of resonant frequency unsatisfactory. The lack of a simple 
method of calculating the dimensions of this resonator is not serious 
since the actual tubes depart widely from the simple geometry considered 
here. 

If the mode in which the resonator is operating is designated as the 
(n/4)-mode, where n is any odd integer, ti « 1, 3, 6, • • • ; then as n 
increases^ the effect of the loading becomes less important and the 
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tuning curve (wavelength vs. plunger position) approaches a straight line 
of slope 4/w, When n is not very large, however, as the line length 
is decreased the points depart more and more from the predicted line, 
always lying above it. It is this curvature, which depends on the loading 
and therefore is different for the two cavities, that makes ganging difficult. 
In taking experimental data for the design of a tracking mechanism, 
it is worth remembering that the complete curve for only one mode needs 
to be determined accurately for each cavity; the rest of the curves in 
the family are readily constructed by adding or subtracting the proper 
number of half wavelengths. If carried over a sufficiently large wave- 

Fig. 7-3.—Tuning curves for a type 446 tube in a two-cavity grid-sepai ation oscillator. 
Crosses, experimental points, and dots obtained by extrapolation. 

(a) Cathode line (6) Plate line, 
i-in. inner conductor i-in. inner conductor 
li-in. outer conductor l-in. outer conductor 

length range, a family of curves of this sort will show whether or not it 
is necessary to use different modes for the two cavities to avoid operation 
in the fundamental. The physical line lengths required for a given 
wavelength depend on the diameters of the conductors and the configura¬ 
tion of the contact fingers, but the data of Fig. 7-3 give an idea* of the 
orders of magnitude. The resonant wavelengths for the various modes 
are plotted as functions of distances (in centimeters) from the plane of 
the grid disk to the short circuit. The data were taken on a 446 tube 
in an oscillator in which the inner and outer conductors of the plate 
cavity were f in. and f in, in diameter, and of the cathode cavity i in, 
and li in., respectively. It should be noted that for this particular 
tube a radial cavity li in. in diameter between the cathode shell and the 
grid disk would resonate near 14 cm« and a similar cavity between the 
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grid and the plate disks f in. in diameter would resonate a little below 
10 cm. Figure 7-3 also indicates that, unless precautions are taken, it 
is not safe to use the |X-mode in both cavities at 10 cm because in that 
case the lengths of the lines would be too close to those required for 
oscillation in the fundamental mode between 22 and 25 cm. 

Feedback arrangements for oscillators of this type are numerous, and 
in general not very satisfactory. Various types of coupling loops or loop- 
and-probe combinations inserted through the grid conductor are often 
used; these function well over a 10 to 20 per cent frequency band. When 
wider bands are required, several different feedback devices may be 
employed simultaneously. Another common scheme is to cut a longi¬ 
tudinal slot in the grid cylinder and to mount a small probe on one of 
the shorting plungers so that it picks up some energy from the other 
cavity. If the same mode is used in both cavities, the feedback tracks 
roughly at least over a considerable range. 

Ordinarily, the coupling between the two circuits Anil l)e much 
tighter than critical coupling, so the response curve will have two peaks. 
Therefore, if both cavities are tuned to the same frequency, all of these 
schemes can produce only zero or tt radians phase shift in the feedback. 
Detuning of the cathode circuit allows some adjustment of the angle, 
but at a sacrific>e in driving voltage. Furthermore, a phase shift of Tr/2 
or 37r/2 radians is impractical. 

Unless very strong coupling is used, the frequency stability of these 
oscillators Avith respect to poAver supply or thermal variations is notice¬ 
ably better than that of the reentrant oscillator. Not only is the cathode- 
grid capacitance less tightly coupled to the frequency determining circuit, 
but the common practice of using fX- or fX-modes in the grid-plate 
cavity reduces the importance of changes in plate spacing. The higher 
Q in the frequency-determining circuit proportionately reduces the 
sensitivity to changes in any of the tube parameters, whereas the loose 
coupling further reduces the importance of heater voltage. 

Despite this advantage of the two-cavity circuit, it has been used 
relatively little on account of the mechanical difficulties in producing the 
oscillators and the evident complexity of the adjustments. The main 
uses have been for laboratory measurements on the tubes and for special 
signal generators. In most of the large-scale applications the reentrant 
oscillator has been preferred in spite of its inferior stability and the fact 
that it is less flexible and harder to understand. 

7-6. Reentrant Oscillators.—In order to analyze the behavior of the 
reentrant oscillator in terms of an equivalent circuit,^ a somewhat simpli¬ 
fied picture will be introduced first. In Fig. 7*4 the d-c grid lead is 

'The treatment follows that of J. R. Whinnery, Preliminary Report on 
Reentrant Oscillator Theory,^' General Electric Data Folder, 46256, Aug. 2, 1943. 
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omitted, numerous discontinuities are ignored, and the load is represented 

by a lumped admittance Yl. 
The most common method of tuning a reentrant oscillator over a 

5 to 10 per cent tuning range is to slide the plate connector partly off 
the plate cap of the tube in such a way as to leave a discontinuity, which 
may be treated as* a variable lumped inductance Lt in series with the 
coaxial line 3. A motion of tV in. will shift the frequency about 100 

Grid 

Fig. 7*4.—Idealized reentrant cav¬ 
ity, d-c grid connection omitted. 

h __ c 
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1 , 1 
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3 

Fig. 7-5.- Coaxial line con¬ 
figuration similar to that at the 
end of a grid cylinder. 

Mc/sec in the 3000-Mc/sec region. The grid cylinder, which is usually 
made to snap on to the grid disk, has a short ''overhang'’ extending 
toward the cathode. Tuning is sometimes done by varying the length 

of the grid cylinder with a telescoping section. 
Before proceeding to the equivalent circuit a few remarks on the 

fields in the neighborhood of one of the ends of the grid cylinder may be 
helpful. In the configuration shown 
in Fig. 7*5 a coaxial line c is connected 
to two concentric lines a and fc, which 
are formed by inserting the cylinder 3 
into line c. Provided cylinder 3 has 
negligible thickness, the analysis is 
simple. A wave in line c proceeding 
to the left is split into two waves 
with amplitudes proportional to the 
characteristic impedances of a and 6, 
and there is no reflection. However, 
a wave sent down line a to thfe right 

will, in general, be partly reflected and partly transmitted into b and c. 
This wave will "see'* a discontinuity capacitance arising from the fring- 
ing field at the end of 3; and a wave sent to the right in h will behave 
qualitatively like one in a. The characteristic impedance of line c will 
be the sum of the impedances of lines a and h. 

These considerations lead to an equivalent circuit for Fig. 7*5 as 
shown in Fig. 7*6. The two discontinuity capacitances Ca and Ch may 
be calculated from the geometry. The discontinuity appearing across 

Fig. 7*6.—Equivalent circuit for the 
configuration of Fig. 7*5, Le is resonant 
with the series combination of Ca and 
Cb. 
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line c is an inductance Lc, which is resonant with the series combination 
of Ca and Cb. When line c is closed with a short-circuiting plunger, as in 
the reentrant oscillator, its effect may be merged with L as a variable 
reactance. Thus line a is terminated by line b in series with a variable 
reactance, adjustable by moving the short-circuiting plunger in c. If 
line b has a dissipative load, variation of the length of c will produce 
a variable phase shift of the wave in b A^’ith respect to that in a, but the 
phase shift will be accompanied by a change in magnitude and it will 
not be possible to reach all angles. 

After this digression, it is now possible to draw an equivalent circuit 
for the complete oscillator, provided some simplifying assumptions are 
made. In addition to neglecting the effects of the d-c grid connection, 
the reflections from the output probe, and the losses at the r-f contacts, 
it is convenient to assume small-signal conditions, so that the tube charac- 

Jia. 7*7.—Equivalent cirtMiit for oscillator of Fig. 7-4, awsiiming small-signal theory. 

teristics may be expressed by input and transfer admittances. Also, the 
tube is assumed to have infinite plate resistance and the plate-cathode 
capacitance is neglected. The assumption of small signals limits the 
analysis to conditions at the start of oscillation. Given sufficient knowl¬ 
edge of the tube parameters, it is possible to predict whether oscillations 
will occur and at w hat frequency, but no conclusions can be d<awn 
about the equilibrium amplitude of oscillations. Experimentally, the 
most serious assumption is the neglect of the reflections from the d-c 
grid connection and the output probe. 

Referring to Fig. 7-4, the input region 8 may be considered as a 
capacitance C% shunted by a loading resistance Rs, across which the 
voltage Vg is developed. As a result of this voltage, there will be a 
current generator Y^Vg in the output circuit, where Ym, is the trans¬ 
admittance. The grid-plate capacitance is designated as Ci and the 
discontinuity capacitance at the plate disk of the tube is C%. The circuit 
then will be as shown in Fig. 7*7, The various pieces of coaxial line 
appearing in Fig. 7*4 are indicated here by small Vs with a subscript to 
correspond to the numbers already used. It should be noted that there is 
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a mechanical requirement that the length of line 6 be the sum of tile 
lengths of lines 2, 3, and 7. 

For oscillations to persist, it is necessary that a current YmVgj fed 
in at the left-hand end, give a voltage F' in the correct phase at the right- 
hand end. For the oscillations to build up, F' must be at least infinitesi¬ 
mally greater than* Vg. The frequency of oscillation will adjust itself 
until the phase shift produced by the circuit plus that produced by 
transit time is just 27r or a multiple thereof. Calculations performed by 
Whinnery and others, for cases in which the tube transadmittance was 
known, have shown that the circuit of Fig. 7-7 mil predict correctly the 
range of lengths of h over wliich oscillation will be obtained.^ 

Obviously, there will be successive positions, differing by a half wave¬ 
length, for the short-circuiting plunger on U. Unfortunately, the agree¬ 
ment between experiment and theory is mainly reassurance that the 
analysis has been followed correctly; the tube parameters are known too 
rarely for calculations to be of much practical use. 

Before this analysis was available, it was known empirically that the 
region from Ci to the junction of lines 3, 4, and 5 (the end of the grid 
cylinder) was the most important in determining frequency. Because 
the reflection at the end of the grid cylinder is large in all normal reentrant 
oscillator construction, ^ it is to be expected that the greater part of the 
stored energy will be found here. To a rough approximation, the line 
as far as the end of the grid cylinder behaves like a loaded half-wavelength 
line, which is physically about one quarter-wavelength long at 3000 
Mc/sec, but the other circuit parameters cannot entirely be neglected. 

The load can be connected almost anjrsvhere in the circuit and about 
the same amount of power can be obtained, but it has been found best 
experimentally, from the standpoint of smooth operation over a range of 
frequencies, to connect the load as shown in line 5. Fortunately, this 
connection is also convenient mechanically. This optimum location 
could have been predicted from Whinnery^s analysis, since placing a 
load on line 6 assists in obtaining a wider range of phase shifts by adjust¬ 
ment of the plunger in line 4. 

It was known early that different dimensions were required to reach 
the same frequency under c-w and pulse conditions. Clearly, the fipplied 
voltage will affect the phase of Ym and the line lengths must be altered 
to correspond. 

* Most of these comparisons between theory and experiment were made in the 
1000-Mc/sec region with selected tubes for which the spacings were known, 

^ In some experimental oscillators, which were constructed by J. B. H. Kuper and 
P. A. Cole at the Radiation Laboratory and which had a very low characteristic imped¬ 
ance for line 5, the position of the short circuit in line 4, or rather the length h + h + 
was the main frequency-determining dement* 
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In spite of its limitations it appears that Whinnery's equivalent 
circuit is invaluable in understanding the behavior of reentrant oscillators. 
Perhaps the most important result is the fact that only a limited range 
of feedback phase angles can be obtained by adjustment of the plunger, 
and then only with a corresponding variation in amplitude. 

7*6. Behavior of Practical Reentrant Oscillators.—In most reentrant 
oscillators the arrangement of the cathode cylinder and its contact 
to the cathode shell of the tube departs widely from the simple scheme 
shown in Fig. 7-4. Since no attempt is ordinarily made to use the 
equivalent circuit quantitatively, this variation is not very important, 
but it must be remembered that any change in dimensions in the oscil¬ 
lator cavity will affect the feedback and probably the frequency also. 
The location of the d-c grid connection is sometimes very important in 
obtaining oscillations at a particular frequency. A 3000-Mc/sec oscih 
lator may operate at some frequency m the 1000-M c/sec region if the 
arrangement of contact springs for the d-c grid connection is wrong; 

The operating wavelength, length of the grid cylinder, and location 
of the short-circuiting plunger are given in Table 7-1 for a typical 2C40 
tube. The measurements were made under c-w conditions with 200 
volts on the plate and under pulse conditions with 1200 volts in an 

Table 7*1.—Relation of Wavelength, Grid Cylinder Length, and Plunger 

Position for a 2C40 in a Reentrant Oscillator 

RL Dwg. D-11089-A. Continuous-wave measurements at 200 volts, pulse measure¬ 
ments at 1200 volts 

Wavelength, cm 

Continuous wave Pulse 
_ _ ... „ 

Grid cylinder 
/2 -f Z3, cm 

Plunger 
distance Z4, 

wavelengths 

Grid cylinder 
I2 "f" Za, cm 

Plunger 
distance Z4, 
wavelengths 

8.8 1.84 0.40 1.58 0.36 
9.2 2.08 0.41 1.75 0.37 
9.6 2.32 0.41 1.90 0.37 

10.0 2.60 0.405 
i_ 

2.07 0.40 

oscillator shown in the Radiation Laboratory drawing D-11089-A. The 
position of the plunger determining h (see preceding section) is given 
in wavelengths from the end of the grid cylinder. 

The wavelength varies almost linearly with the length of the grid 
cylinder, but the optimum electrical length of ^4 remains more or less 
constant. The physical position of the plunger is changed considerably. 
The small variations in plunger distance are within the experimental 
error in locating the optimum position. There is a striking difference 
between the optimum dimensions for c-w and pulse operation. This 
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difference is a result of the decreased transit time at the higher plate 
voltage. The full effect of the change in voltage is not seen because the 
tube spacings decrease with increasing temperature and the average 
input power is usually higher under c-w^ conditions. An oscillator 
designed for pulse operation will operate under c-w conditions if the grid- 
cylinder length and plunger distance are both increased. Naturally, 
the insulation of the plate lead need not be so good for c-w operation. 

In many practical oscillators there is no convenient independent 
adjustment of h. Instead, the plunger is fastened to the plate rod, and 
the length of line 4 is increased slightly as the rod is pulled off the plate 
cap of the tube, increasing Lt and with it the wavelength. For small 
changes in wavelength, approximately the same electrical length of U 
will be necessary, as indicated in Table 7T. These measurements indi¬ 
cate merely that it is plausible to move the two adjustments in the same 

direction but they give no information 
about the relative rates required. In 
many oscillators w^here this sort of “gang¬ 
ing” is used, it is possible when changing 
tubes to shift the position of the short- 
circuiting plunger on the plate rod. 

The power output to be expected from 
a 2C40 in a reentrant oscillator varies 
widely with frequency and from tube to 

jg jg 20 tuning range may be com- 
Cgp \inU paratively wide if the length of the grid 

7-8.—Wavelength of os- Cylinder is varied, but if the tuning is done 
dilation in a fixed-tuned reentrant gliding the plate rod part W^ay ofif thc 
osdllator vs. grid-plate capacitance 
of various 464A tubes. The curve Cap, a range between 5 and lU per cent is 
is calculated by Whinnery. Cir¬ 
cles represent measured points with 
different tubes. 

to be expected in the 3000-Mc/sec region. 
The range is partly a question of how far 
the plate rod may be withdrawn without 

interfering wdth the cooling of the plate. Because even the best contact 
fingers loosen in time, it is well not to push the tuning range to its limit. 

In most applications of lighthouse tubes it is necessary to design 
the cavity to tune over a specified range with any tube. Because of 
manufacturing variations from tube to tube, or rather from batch to 
batch, it sometimes happens that a large part of the available tuning 
range is used up in compensating for tube changes. As might be expected, 
the grid-plate capacitance, appearing as Ci in Fig. 7*7, has a large influence 
on the wavelength of oscillation with all other dimensions fixed. With 
normal cavity proportions the effect of variations in grid-cathode capaci¬ 
tance might be only a fifth as great as that of the grid-plate capacitance. 
Experimentally, there is no correlation between operating wavelength 
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and grid-cathode capacitance but, as is shown in Fig. 7*8, there is a good 
correlation between wavelength in a fixed-tuned oscillator and grid-plate 
capacitance. These data (from Whinnery^s report) were taken on 464A 
tubes. A theoretical curve calculated from the equivalent circuit is also 
sho’svn. The calculations were made using the capacitances measured on 
the cold tubes; a correction for the thermal change in capacitances would 
improve the agreement. 

Several anomalous points of behavior have been observed in oscillators 
operating with very long pulses (about 40 /isec) or with c-w with high 
plate voltages (300 volts or more). This behavior, for want of a better 
term, has been called drooping.'' Some measurements by R. Kyhl 
indicate that drooping" is encountered when the transit angle is slightly 
greater than ir/2 radians. In general, the behavior consists in a decrease 
in power output, or an increase in pulse-buildup time, under conditions 
which would ordinarily be expected to be more favorable. Examples 
are: a decrease in output power as the cathode gradually reaches its full 
temperature with recovery if the heater voltage is dropped, a decrease 
in output power as the wavelength is in(;reased, and a decrease in output 
power when the plate voltage is raised beyond a certain value. Not all 
tubes show this behavior; it is commonest in tubes with the smaller 
grid-cathode spacings. Increasing the plate voltage or decreasing the 
frequency will decrease the transit angle; increasing the heater voltage 
will have the same effect because the cathode post expands toAvard the 
grid and at the same time the virtual cathode moves farther out. If the 
transit angle is not much greater than ir/2 radians, a moderate decrease 
in the angle may put it beyond the range afforded by the adjustment of U. 
Thus, it is generally not possible to pass continuously from c-w operation 
at 200 or 300 volts to pulse operation in the 1 to 2 kv volt range. At 
intermediate voltages there is a region in w’^hich no oscillation is found, 
and sometimes there is a narrow range in which oscillation at some fre¬ 
quency far removed from the normal range of the cavity is observed. 

The question of frequency stability vnth respect to heater- and plate- 
voltage changes may be considered in a general way on the basis of the 
equivalent circuit. Increasing either voltage decreases the transit angle, 
which affects Ym- Expansion of the cathode post increases Cgk with some 
effect on the frequency, but with a larger effect on the feedback. An 
increase in plate dissipation expands the plate post and increases Cgp, 
thus lowering the frequency. The frequency shifts depend on the 
proportions of the cavity used; some data obtained on a common form of 
oscillator under pulse conditions are given in the next chapter. 

7*7. Modulation of Triode Oscillators*—^Because of the importance 
of transit time in the operatibn of triode oscillators in the microwave 
region, attempts to modulate them are less satisfactory than attempts 
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to modulate self-excited oscillators at lower frequencies. Mechanical 
frequency variation over a range of 10 to 20 Mc/sec can readily be 
obtained by rotating a paddle of metal, or a low-loss dielectric such as 
polystyrene, in the oscillator cavity. Frequency modulation by this 
means is useful in special signal generators for amplifier alignment and 
similar purposes, and can also be used as the basis for an electro-mechani¬ 
cal automatic frequency control. However, it is not modulation in the 
sense that it can be used for conveying complicated information such as 
speech or video signals. Modulation of this sort must be electrical, and 
preferably should be applied to a high-impedance control electrode. 

Little has been done on the problem of obtaining frequency modula¬ 
tion that is substantially free from incidental amplitude modulation, 
or vice versa. In principle, at least, a lighthouse triode or diode could be 
used with an eighth-wavelength line to function as a variable reactance. 
A few attempts have been unsuccessful because of the difficulties in 
obtaining a sufficiently high r-f conductance with available tubes. A 
reactance tube using electrons injected parallel to a magnetic field, like 
those used for electronic tuning of magnetrons, could certainly be used to 
frequency modulate a lighthouse tube. 

Slight frequency deviations, up to perhaps 100 kc/sec, can be obtained 
simply by applying a ^small voltage in series with the grid bias of a light¬ 
house tube. Unless the deviation is kept small, however, there is an 
objectionable amount of amplitude modulation. With a proper adjust¬ 
ment of modulating voltages simultaneously applied to the grid and 
plate of a lighthouse tube, it should be possible to vary the phase of the 
transadmittance without affecting the amplitude appreciably. Although 
such a system would be difficult to adjust, it should permit fairly large 
deviations. 

Amplitude modulation (as distinct from pulse modulation) appears 

more difficult to achieve than satisfactory frequency modulation. The 
use of a two-cavity grid-separation oscillator seems to be indicated, and 
even then it may be advisable to apply the modulation to both grid and 
plate. Doubtless various schemes involving variable conductances 
supplied by an auxiliary tube can be made to work. 

The whole subject of modulation of triodes at microwave frequencies 
is another illustration of the narrowness of wartime research where 
attention is focused sharply on the immediate application. Although the 
problems are not simple, there is little reason to doubt that solutions 
will be forthcoming soon. The question of pulse modulation of light¬ 
house tubes, together with a detailed discussion of cavity designs and 
performance, is taken up in the next chapter. 



CHAPTER 8 

PULSE OPERATION OF MICROWAVE TRIODES 

By J. B. H. Kuperi 

8*1. Factors Important in Pulse Operation.—^Tighthouse-tube oscilla¬ 
tors designed for pulse operation have be^n used extensively as trans¬ 
mitters in low power radar sets and lightweight beacons, and as signal 
generators. It is almost axiomatic that any radar or beacon application 
in which l-/isec pulses of 1 to 3 kw r-f pulse power are useful is also an 
application demanding extreme compactness, light weight, and low power 
consumption. Hence, in addition to the requirements on tuning range, 
frequency stability, and mechanical simplicity of the oscillator cavity 
that were discussed in the preceding chapter in connection with low-level 
c-w applications, the question of eflSciency becomes of great importance 
in pulse operation. 

The designer of an efficient pulser must take into consideration the 
pulser load impedance presented by the lighthouse-tube oscillator. This 
impedance varies somewhat from tube to tube, but is affected markedly 
by the adjustment of the oscillator circuit and the applied voltages. The 
impedance often is not constant over the duration of the pulse. 

The preferred method of obtaining pulse operation is to apply a 
positive voltage pulse to the plate of the lighthouse tube. This method is 
depend,able and will give satisfactory tube life, but many designers prefer 
not to build a pulser capable of furnishing the plate power. Instead, 
the plate voltage is applied continuously with the tube biased beyond 
cutoff, and the hold-off bias is overcome by a pulse applied to the grid 
or cathode. With this method of operation (referred to as '‘grid^' or 

cathode pulsing'0; the adjustment of the oscillator is somewhat more 
difficult, and the lighthouse tubes often fail prematurely. **Grid’^ or 
‘^cathode pulsing’’ is generally not recommended by the tube manufac¬ 
turers, and its use is largely confined to low power applications, such as 
signal generators. 

The question of starting time, the interval between application of a 
voltage pulse and the buildup of the r-f oscillations, is often critical in 
pulse operation. Attainment of a short (less than i /xsec) and reproduci- 

^ Most of the material for this chapter, including all of the illustrations, was com¬ 
piled by M. E. Gardner, who was in charge of research on pulse operation of lighthouse 
tubes at the Radiation Laboratory. His cooperation is gratefully acknowledged. 

187 



188 PULSE OPERATION OF MICROWAVE TRIODES [Sec. 8 2 

ble starting time requires that the oscillator have strong feedback. 
Largely for this reason the “reentrant’’ oscillator is used almost univer¬ 
sally in pulse operation of lighthouse tubes. When feedback conditions 
are wrong, as in severe “drooping” (Sec. 7-6), the starting time may be 

as much as 40 /xsec of more. 
Standardization on the use of the reentrant oscillator and adoption 

of a normal pulse length of 1 /zsec with a recurrence frequency of 1000 pps 
for experimental investigations has resulted in making available much 
more controlled data on pulse operation than has so far been obtained on 
c-w performance. With the one type of cavity and a constant duty ratio, 
the importantv parameters to be studied are feedback control (choke 
plunger position), pulse voltage, bias, and load adjustment. Load 
adjustment and feedback are unfortunately not independent. 

Fig. 8 1.- -Cross section of a reentrant cavity for pulse operation. Distance D is measured 
from probe to grid cylinder. 

8'2. Typical Cavity Design.—schematic drawing of a typical 
reentrant oscillator designed for pulse operation in the 3000-Mc/sec 
region is sho^vn in Fig. 8*1. This cavity differs from that of Fig. 7*1 
mainly in the spacing between the plate choke plunger and the cathode 
cylinder, which has been increased to withstand high plate voltages. 
Figure 8*2 is a photograph of an experimental cavity that has been cut 
open to show the arrangement of the parts. The grid cylinder snaps 
on to the grid disk of the 2C43 lighthouse tube. The d-c connection 
to the grid is made by springs that are mounted on the cathode cylinder 
with small screws passing through bakelite bushings. Mica washers 
provide bypassing to prevent leakage of r-f energy on the grid leads. 
Three contact springs are provided in this cavity, of which two appear 
in the photograph. The quarter-wavelength cup forming the plate 
choke plunger is fixed on the plate rod. To tune the oscillator the entire 
assembly can be moved on or off the plate cap of the tube by means of 
the tuning knob and screw in the end cap. The output probe is located 
in the region between the grid and cathode cylinders; the depth of penetra¬ 
tion is adjusted by means of a threaded collar. 
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In order to obtain a good voltage-pulse shape, without mnlcing the 
internal impedance of the pulser inconveniently low, it is necessary to 
keep the stray capacitance of the lead from the pulser to the tube as low 
as possible. This, together with the problem of breakdown under high 
voltages, makes the use of plate blocking condensers undesirable. Use 
of a choke type of plate plunger avoids the necessity of a blocking 
condenser. 

Jig. 8*2.—Photograph of an expeiimental reentrant oscillator, cut open to show auangemont 
of parts. 

A typical reentrant oscillator might have a cathode cylinder 1^ in. 
in diameter (inside) with a i-in. air gap between cathode cylinder and 
plate choke, giving a quarter wavelength line with a characteristic 
impedance of about 10 ohms. If the end space beyond the plate plunger 
is resonant an appreciable amount of energy may leak into the end space 
and cause “dead spots” or irregularities in tuning. This difficulty can 
be avoided by inserting lossy material in the end space. 

The grid cylinder must make good mechanical and electrical contact 
to the grid disk of the tube. This requires the use of a springy material 
(phosphor bronse or beryllium copper), carefully machined. The usual 
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dimensions for the grid cylinder are a |-in. outside diameter, with the 
length as given in Table 7-1. It is customary to extend the grid cylinder 
past the grid toward the cathode shell to produce an “overhang^' or 
‘‘skirt,’' as shown in Fig. 8*3, which illustrates a design for operation 
around 3300 Mc/sec: For pulse operation in the 3000-Mc/sec region, a 
typical skirt would leave about tV in. spacing between the end of the 
grid cylinder and the cathode shell of the lighthouse tube. The length 
of the skirt has comparatively little effect on power output or frequency 

of oscillations but does appear to 
affect the stability of the oscil¬ 
lator.^ With longer grid cylinders 
and a corresponding lengthening of 
the distance to the r-f short circuit 
produced by the plate plunger, 
reentrant oscillators operate satis¬ 
factorily down to about 1000 
Mc/sec. 

The choke plunger may be 
located as indicated in Table ?•! 
or it can, of course, be moved out 
a half-wavelength. This is some¬ 
times done if the cup forming the 

plate choke overlaps the end of the grid cylinder and so leaves insufficient 
clearance for high pulse voltages. In any event the cup can be turned 
either to face the tube (as in the illustrations) or in the opposite direction ; 
the location of the “short-circuit” at the bottom of the cup is the 
important dimension. 

The tuning range of this type of reentrant oscillator is about 10 per 
cent for any one tube, as in the case of the oscillators discussed in the 
preceding chapter. This range is set by the length of the plate cap, and 
may be extended by the use of a telescoping grid cylinder or similar means. 
For ranges much greater than about 10 per cent, however, it will probably 
be necessary to provide an independent adjustment of the choke-plunger 
position. For this reason the simple tuning scheme illustrated here has 
been used most widely. 

Since the efficiency of a lighthouse oscillator operated under pulse 
conditions in the 3000-Mc/sec region is only about 20 per cent or so, 
it is important to provide good cooling for the plate seal of the tube 
unless the duty ratio is small. The cathode cylinder may be provided 
with several small holes for ventilation without appreciably affecting the 
operation of the oscillator. At frequencies in the 1000-Mc/sec range, 

* M. E. Gardner and S. C. Peek, “Prelimmary Data on the GL 464 High Fre¬ 
quency Triode When Used as a Pulae Oacillator,” BL Internal Report 52-8/5/48. 

Fig. 8*3.—Grid cylinder for a reentrant 
oscillator operating in the 3000 Mc/soc 
region. 
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the efficiency is considerably higher, but the difference between operation 
at 1000 and at 3000 Mc/sec is not nearly as great in pulse operation as 
it is under c-w conditions. 

8*3. Tube-design Requirements.—In general, the requirements to be 
met by a tube intended for pulse applications in the microwave region 
are the same as those previously discussed in connection with c-w opera¬ 
tion. The chief exception is the cathode emission that is required. The 
cathode should be capable of emitting at least 10 amp/cm^ under pulse 
conditions, and preferably much more. This is not a stringent require¬ 
ment since emissions approaching 100 amp/cm^ appear to be possible 
with the best commercial cathodes. Furthermore, the cathode area 
should be as large as convenient, with due regard to the importance of 
maintaining a reasonably constant r-f field and transit angle for all parts 
of the electron beam. In the 2C43 lighthouse tube, which is intended 
primarily for pulse operation in the 2000- to 3000-Mc/sec region, the 
cathode area is about 0.3 cm®. Most of the data available on the behavior 
of lighthouse tubes under pulse condition^were taken with pulse dura¬ 
tions of 1 or 2 /xsec. Relatively little is kndwn about the effects of very 
long pulses on oscillator efficiency and cathode life. 

The interelectrode spacings can be considerably larger in a tube 
designed for pulse operation than in its c-w counterpart. For the same 
transit angles the spacings increase as the square root of the voltage, but 
it is customary to increase the spacings only enough to prevent flashover, 
and to take advantage of a reduction in transit angle. This procedure 
accounts in large measure for the difference in efficiency between the 
2C43 operating under pulse conditions and the 2C40 operating con¬ 
tinuously at the same frequency. 

The frequency stability of an oscillator with respect to changes in 
ambient temperature or in applied voltages is dependent to a great degree 
on details of construction of the tube. In most pulse applications where 
the duty ratio is constant, the problems are just the same as those 
encountered in c-w operation, but in other cases, notably beacon trans¬ 
mitters, the duty ratio may fluctuate wildly. The maintenance of a 
stable frequency in this application requires exceptionally good compensa¬ 
tion for thermal effects. 

For identical cavity adjustments the impedance presented to the 
pulser is affected strongly by the fineness of the grid structure and its 
spacing from the other electrodes, particularly the cathode. Opening 
up the grid mesh or moving it closer to the cathode results in a lower 
impedance, and increasing the cathode emission likewise decreases the 

impedance. 
The anode of the tube is relatively unimportant. The spacing 

between anode and grid should be held constant because the grid-plate 
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capacitance is a major factor in determining the frequency of oscillations, 
as was shown in Fig. 7-8. The particular spacing chosen is a minor 
matter; a compromise must be made between extremely short spacings, 
which are hard to maintain accurately in production and may give trouble 
with breakdown undw high pulse voltages, and longer spacings, which 
involve excessive transit angles. 

The material used for the anode post naturally has a large influence 
on the frequency stability because expansion of the plate changes the 
grid-plate capacitance. There is not, however, much point in attempting 
to achieve perfect compensation within the tube as the cavity will have a 
temperature coefficient of frequency of its own. 

8*4, Effect of Plate-plunger Position.—^As the analysis of the reentrant 
oscillator (Sec. 7*5) showed, the location of the plate choke plunger (or 
the length of line U) is important in determining the feedback phase and 
magnitude. In addition, there is a change in frec^uency accompanying 
a motion of the plunger. This tuning effect is a minor one, however, in 
comparison to the tuning ranges made available by altering the length 
of the grid cylinder or inserting a discontinuity in the plate lead. The 
output coupling also affects the feedback, particularly if the probe is 
placed as usual in the region betw'een the cathode line and grid cylinder. 
As a result the location of the plunger and the depth of penetration of 
the output probe are interdependent. 

The curves of Fig. 8-4 illustrate these effects in a general way. The 
curves are the averaged values for several 2C43 tubes, with different 
interelectrode capacitances, operated at a pulse voltage of 3.0 kv. For 
each setting of the choke plunger the output probe was adjusted for 
maximum output, and the distance between the probe and the grid 
cylinder, dimension D of Fig. 8-1, is plotted. The operating wave¬ 
length, r-f power output, and pulse plate current for this load adjust¬ 
ment are plotted. As the short-circuiting plunger is moved away 
from the tube, no oscillations are found until the plunger is almost 4.5 
cm away from the plane of the grid. As the plunger is withdrawn 
further, the r-f power builds up rapidly to a broad maximum and then 
falls off rather slowly. Further motion of the plunger causes the oscilla¬ 
tions to stop and nothing happens until the length of h is increased to 
about 8.9 cm (a half-wavelength longer), when the cycle starts to repeat. 

As the plunger is moved away from the tube the output probe must 
also be withdrawn from the cavity, otherwise the oscillator soon over¬ 
loads and the range of plunger positions over which oscillations are 
obtained would be shortened markedly. The wavelength increases 
almost linearly with increase of h, and the plate current increases rapidly 
from a minimum value obtained when oscillations are just starting. The 
best ^ciency is obtained when the power output is noticeably less than 



GRID BIAS Sec. 8-6] 193 

its maximum, and the plunger adjustment for optimum efficiency is 
critical. 

Since the curves of Fig. 8*4 were taken at a constant plate voltage, 
the plate-current curve shows the variation of pulser load conductance 
with plunger position for a given grid-bias resistor. 

The position of the plunger also has an effect on the starting time 
because the time required for oscillations to build up to an appreciable 
amplitude from the noise level, or an initial transient, is dependent on 
the feedback. Thus it may be found that the starting time will be 
relatively long, perhaps 0.5 /xsec or more, near the ends of the range of 

Fia. 8*4.—EflFoct of choko position on wavelength, output-power, and plate current. 

plunger positions over which oscillation is obtained. At some point 
within this range, where the feedback is optimum at low levels, the 
starting time will have a minimum value of 0.1 ^sec or less. 

8*6. Grid Bias.—^In oscillators in which a positive voltage pulse is 
applied to the plate, it is most convenient to supply the grid bias by 
means of a grid-leak resistance. Once the r-f adjustments of the cavity, 
tuning, plunger position, and load coupling have been fixed, the choice 
of the grid-biasing resistor affects the output power and efficiency, and 
possibly the starting time also. The optimum bias resistor depends on 
the pulse voltage applied to the plate. 

A convenient means of illustrating the effects of chajoging grid-bias 
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resistance is a performance chart constructed as follows.^ With a fixed 
adjustment of the cavity the pulse plate current is plotted against the 
pulse plate voltage with grid-bias resistor as a parameter, and the loci 
of constant r-f output power are dra^^^l. Figure 8*5 is a sample chart 
presenting averaged results for ten tubes in a cavity operating at 2600 
Mc/sec mth all adjustments locked. As the bias resistor is increased 
the r-f power decreases, but so does the input power. Also, as the bias 
resistor is increased the starting time for the lower plate voltages is 

Fig. 8-6.—Average performance chart of ten 2C43 tubes in a fixed oscillator operating 
at about 2600 Mc/sec as a function of grid-bias resistance. Pulse-power output (kw) 
shown by broken lines. 

increased, and unstable operation may result. Tubes that have poor 
cathode emission will have bias-resistor curves that lie close together 
and have low current values and small slopes. 

The load impedance presented to the pulse generator can readily be 
calculated from the data of the performance chart. The impedance 
increases with increasing bias resistance and decreases slightly with 
increasing plate voltage. 

It is not possible to draw general conclusions about the effects of 
changes in cavity proportions on the impedance. In most cases, tuning 

^ M. E. Gardner, ^'Performance of Lighthouse Tubes as Pulsed Oscillators in a 
Be«eiitrant Cavity,RL Internal Report 62-5/4/44. 
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a given oscillator to lower frequencies decreases the impedance, and so 
does moving the plate plunger away from the tube (see Fig. 8*4). How¬ 
ever, in a particular case an oscillator designed for operation around 3400 
Mc/sec showed an impedance only two-thirds that of a 2600-Mc/sec 
oscillator. 

The efficiency obtained from a lighthouse tube operating under pulse 
conditions is very sensitive to the r-f adjustments of the cavity. For 
fixed cavity adjustments it is possible to draw some general conclusions 
about the variation of efficiency with grid-bias resistance and plate 
voltage. At low plate voltages the highest efficiency is obtained with 
very low bias resistances, but for these low resistances the efficiency falls 
off as the plate voltage is increased. For higher resistances the efficiency 
increases with plate voltage, and for some intermediate value of bias the 
efficiency is almost constant and near the maximum determined by the 
r-f conditions. 

8-6. Plate and Heater Voltages.—Many of the effects of varying plate 
voltages have already been mentioned in the preceding sections. The 
variation of output power with plate voltage is visible in the sample 
performance chart (Fig. 8*5) but is shown more clearly in the curves of 
Fig. 8*6, which are average results for five 2C43 tubes. The 2C43 tube 
has a maximum voltage rating of 3.5 kv, but appears to give satisfactory 
life at 4.0 kv, provided the duty ratio is such that the plate dissipation 
is well below 12 watts. In the 3000-Mc/sec region the 2C43 does not 
operate satisfactorily with pulse voltages less than about 1.5 kv. 

Where it is necessary to operate at low pulse voltages, and low r-f 
power is sufficient, the 2C40 tube is often used, despite the fact that this 
tube is not designed or recommended for pulse operation. Although 
occasional tubes fail prematurely, most 2C40's can be operated at pulse 
voltages ranging from 0.8 to 1.2 kv, and give pulse-power outputs in the 
3000-Mc/sec region of about 100 watts. 

At low plate voltages the starting time may be undesirably long; 
failure to achieve optimum adjustment of the cavity greatly magnifies 
this difficulty. In a typical experiment a 2C40 that starts satisfactorily 
with a pulse voltage of 1000 shows a delay of 1 /xsec at 900 volts. At 800 
volts the starting time is variable (commonly referred to as ‘‘jittering^’) 
and about i nsec; at 750 volts the delay exceeds | n^ec and is very 
unsteady (about half the time the oscillator fails to start at all). Similar 
difficulties with starting are found with 2C43^s at somewhat higher 
voltages. 

The frequency of oscillation is affected by changes in pulse plate 
voltage in at least two ways. An increase in input power causes the 
plate rod to expand and increase the grid-plate capacitance, while a 
decrease in transit time necessitates an increase in frequency. The 
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resultant of these opposing effects depends on the details of construction 
of the cavity and on the duty ratio. Typical curves of frequency shift 
with pulse plate voltage for various grid-bias resistors are shown in Fig. 
8-7. These were taken on 2C43 tubes at about 3400 Mc/sec with a pulse 

12 3 4 
Pulse plate voltage (kv) 

Fig. 8*6.—ll-f puLse power output ah a function of plate voltage for vaiious grid-bias 
resihtois, /o ^ 2550 Mc/sec (average of five 2C43 tubes). 

Fxa. 8*7.—Frequency shift with changes in plate pulse voltage and grid-bias resistor, 
/o » 3400 Mc/sec. 

duration of 1 ;<sec and a recurrence frequency of 1000 pps. In this case 
the transit time effect is more important than the heating. 

The heater voltage also affects the frequency in several ways. Expan- 
dkm of the caUiode increases the grid-cathode capacitance (tending to 
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lower the frequency) and decreases the transit time from the virtual 
cathode to the grid; furthermore, an increase in emission tends to decrease 
the transit time. Changes in grid-cathode capacitance are only about 
one fifth as effective in shifting frequency as changes in grid-plate capaci¬ 
tance. For the 2C43 under pulse conditions the opposing effects are 
about balanced, and both positive and negative frequency shifts with 

Heater voltage 

Fio. 8-8.—Frequency variation of five 2C43 tubes with changes in heater voltage, /o « 2500 
M c/sec. 

heater voltage are observed. This effect is illustrated in Fig. 8-8, which 
shows the frequency variation for heater voltages from 5.7 to 6.9 for 
five 2C43 tubes measured at 2500 Mc/scc. 

8*7. Load Coupling.—By the adjustment of the position of the output 
probe it-is possible to transfer an optimum amount of power to a resistive 
load terminating the output line. The same amount of power could, 
of course, be obtained with a fixed probe position by using an adjustable 

D (incM 
Fio. 8*9.—Power output and pulling figure for a typical oscillator as functions of output- 

probe depth. 

transformer (such as a double-stub tuner), provided the transformer 
losses are not excessive. Because the adjustment is easier, variation 
of the probe depth is the method usually adopted. 

In some applications where the load may vary with time, the effect 
of the load on the frequency must be taken into account. Following the 
usage adopted for magnetrons, it is customary to express the frequency 
shifts with load changes in terms of the ‘‘pulling figure.’^ The pulling 
figure is defined as the difference between the highest and lowest fre¬ 
quencies obtained when a load with a standing-wave voltage ratio of 
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1.5 is moved a half wavelength along the line to produce all phases of 

reflection. 
A sample of the variation of power output and pulling figure as a 

function of the distance between the end of the output probe and the grid 
cylinder (dimension D in Fig. 8-1) is shown in Fig. 8*9. Here the power 

output (broken line) goes through a minimum and then a maximum as 
the probe distance is increased. The minimum in power output is 
evidently due to a severe overload because the pulling figure is a maxi¬ 
mum at the same probe position. Where frequency stability is impor¬ 
tant, it is good practice to decrease the loading until the power output 
has dropped to about 0.8 of the maximum value, and so to secure a much 
lower pulling figure. 
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CHAPTER 9 

VELOCITY MODULATION AND KLYSTRON BUNCHING 

By D. R. Hamilton 

9-1. Introduction.—It is pointed out in Chap. 1 that the conventional 
multielectrode tube encounters serious limitations at microwave fre- 
quenpies, and that some of these limitations may be minimized by new 
techniques of vacuum-tube construction. Regardless of circuit improve¬ 
ments thus made possible, however, there remains the basic electronic 
necessity for transit of the electrons through the control (i.e., cathode- 
grid) region in a time considerably smaller than a cycle of the micro- 
wave oscillation in question. Since it is an essential feature of such tubes 
that the electron velocity in the cathode-grid region never exceeds a 
value corresponding to a small fraction of the plate voltage, the require¬ 
ment of short transit time becomes a very stringent requirement on 
interelectrode spacing. 

The basic electronic problem in these tubes and in any oscillate* (2) 
amplifier is, in general, the problem of utilizing an irr.Hn- ' ^ 
from feedback or input) to produce at some ^ j 

current with an r-f component—that is, it Velocity that is expressed by 
an electronic transfer admittance, or trans|di as it leaves the input gap 

The klystron* is the product of an ap, ig tno^n as the “depth of 
problem that differs radically from prev’ 

antecedent) approaches, and was stu ^ g^d Qt of the output gap 
tered in the latter. Electronically tl again for simplicity, that 
in the klystron. The most important/ r-f fields, and that any space- 
velocity modulation and bunching, are kinematic; the elec- 
electrons becomes the basic means ( ^egi^ catch up with the dower 

upon) the transadmittance. Th^jjd eventually result in a breaking up of 
bunching is the element common^ This process, known as “bunching,”* 
cussed in some detail in this ch^g relation between distance and time is 
are described. 

The second radical departuiation,” as used here, does not have the common 
first and is not discussed furirtber time variation on an already sinusoidally 

velocity-modulating r-f contrt''^"»t““ “ superimposed on a previously time- 

than before, the acceleration *7 “modi^tion” m^e 
’ , , 1 . ons such as “the frequency modulation of velocity- 

voltage. Although the electr»u„ however, weU established by usage. 

> R. H. Varum and S. F. yarian,|i., 10, SOI (1980). 
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through the control region of less than one cycle, the electron velocity 
is much higher for a given plate voltage and the geometrical limitations 
on the control region are therefore greatly relaxed. 

The present chapter is intended to be a reference compendium of the 
basic information about velocity modulation and bunching that will be 
required for subsequent discussion of the various forms of klystrons. 
Thus, the choice of material has been governed primarily by the topics 
covered in the later chapters rather than by any desire to summarize 
completely all the features of bunching that would be necessary to form a 
complete discussion of this very interesting field. For the same reason, 
all discussion of the way in which klystron behavior is affected by the 
details of the bunching process is left for the later chapters. It is there¬ 
fore suggested that the reader may profitably confine a first reading to 
Section 9*2 of the present chapter, returning to the other sections as they 
are referred to in later chapters. 

9*2. Simple Velocity Modulation and Bunching.—The schematic 
diagram in Fig. 9-1 represents, in an idealized form, that part of a klystron 

in which the processes of velocity 
^ j modulation and bunching take place. 

Region j i_  j This region corresponds to the input 

1 * -XA *5 Output or cathode-grid space of a triode, in 
\ i sense that from this region there 

I emerges an intensity-modulated con- 

Calhode ^ ! duction current that serves to drive 

repr.«enV'"' reSOnator. The 
of velocity modulation and buncH^K nature of microwave cavity resonators 
region in klystron. \ which they are driven 

by an r-f component of the con^uction current is discussed in Chaps. 3 
and 4; this chapter is concerned with the genesis of the electronic 

Drift space 

—Input 

Fia. 9*1.—Schematic represen 
of velocity modulation and buncW^K 
region in klystron. \ 

transadmittance to which this r-fi conduction current corresponds. 
The space shown in Fig. 9-1 Stpmprises three separate regions. The 

processes that occur in these regio^ are first qualitatively summarized, 
temporarily Tn«lfiTig simplifications inVrder to emphasize the fundamental 

points. \ 
In region A—^the space between t»® cathode K and the grid Gi— 

there exists only a d-c field that corresi^rids to the application bf full 
beam voltage between K and <?i. The wfluence of the d-c fi^ results 
in the injection into r^on B, through <J^i> of a stream of ele^iffetHis all 
having tie same velocity »o (pven by n#‘’o/2 = and with current 

denaty constant in time. ^ 
In regiop B—the control regi<m (or,' “input gap”) between grids 

Q\ and Gt—^thwe is an externally imi»es/^ alternating r-f voltage the 
instantaneous value of wWoh is written V rin «<• This instantaneous 
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voltage is the real part of the complex voltage the complex voltage 
amplitude Vi is thus given by 

Vi = --7T. (1) 

Throughout the present section it is assumed, for simplicity, that 
V/2Vo 1, and that the time of transit through region B is very small 
compared with one cycle of the r-f oscillation. (This transit-time condi¬ 
tion is easier to meet here than in the analogous cathode-grid region of a 
triode because the electrons have already received full d-c acceleration 
in region ^1.) No electrons are turned back between Gi and O2, and the 
current density of the stream of electrons leaving G2 is closely constant 
in time, just as it was at Gi. Individual electrons are speeded up or 
slowed down in passage through the input gap, depending on the phase 
of the r-f field at the time of the electron's transit. Adopting the con¬ 
vention that the r-f voltage is positive when electrons are accelerated, 
it follows that each electron in passage from Gi to G2 has gained an 
energy eMV sin o)L Here M is the beam-coupling coefficient discussed 
in Chap. 3; M ^ 1. Hence when the electron passes through Cr2 it has a 
velocity v given by the relation mv^/2 = eVo + eMV sin wL Since 
mv\/2 = eFo, it follows that 

sin (tit » vq sin wt + 

to a good degree of approximation when MV/2Vo <5C 1. 
It is this periodic variation of electron velocity that is expressed by 

saying that the beam is velocity-modulated^ as it leaves the input gap 
between Gi and G2] the quantity V/Vo is known as the ‘‘depth of 
modulation.'' 

Region C—^which extends from G2 to the first grid Gz of the output gap 
—is called the “drift space." It is assumed, again for simplicity, that 
in region C there are no d-c fields and no r-f fields, and that any space- 
charge effects are negligible. The only effects are kinematic; the elec¬ 
trons that were speeded up in B begin to catch up with the slower 
electrons that are ahead of them, and eventually result in a breaking up of 
the beam into groups or bunches. This process, known as “bunching,"^ 
is illustrated in Fig. 9*2; here the relation between distance and time is 

^ It should be noted that ^'modulation,’' as used here, does not have the common 
connotation of superposition of further time variation on an already sinusoidally 
varying quantity; rather, the time variation is superimposed on a previously time- 
constant quantity, the electron velocity. These two senses of "modulation" make 
possible somewhat awkward expressions such as "the frequency modulation of velocity- 
modulation tubes." The noma:iclature is, however, well established by usage. 

* B. L. Webster, Jour. Am Phys., 10,501 (1080). 
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shown for each of a series of typical electrons in what is known as an 
‘'Applegate diagram/^ The velocity modulation appears as a periodic 
change in the slope of the electron trajectories at the input gap; bunching 
corresponds to the convergence and eventual crossing of these trajectories. 
It may be noted that*at Oz the current is not uniform in time; instead, 
it has r-f components. It may be noted also that the larger F/Fo 
is, the less drift length is required to produce a given degree of bunching, 
and that with an excessive amoimt of r-f voltage or of drift length the 

Time 

Fio. 9-2.—Applegate diagram of election trajectories in velocity modulation and bunching. 

trajectories diverge from their crossover points and the r-f component of 
current diminishes. 
^ The main point is that the low-velocity cathode-grid control region 
oi the triode is replaced in the klystron by a composite region in which 
external r-f control is exerted only on high-velocity electrons, and in 
which differences of finite electron transit times have been used to 
produce an intensity-modulated conduction current. * 

The simplifications assumed in the preceding description of velocity 
modulation and bunching are continued in the following quantitative 
discussion. 

In considering the relation between time erf departure from the input 
g^, th time of arrival at the output gap, h, the time of transit 
through the gaps is ignored. Then, by £q. (2), 
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The quantity ul/vti is the d-c transit time through the drift space, meas¬ 
ured in radians of the input frequency; it is represented by Oo: 

Bo 
ul 
Vo 

(3a) 

It is also convenient to define 

Xo = (3*>) 

X 0 as given here is a particular example of a dimensionless quantity known 
as the ^‘bunching parameter’^; the definition of the bunching parameter 
is generalized in succeeding sections. In terms of the transit angle do and 
the bunching parameter Xo, the above transit-time relation becomes 

o)i2 — o>ti ~f" do — Xo sin u)ii. (3c) 

Many of the more general situations discussed later in this chapter 
are described by a transit-time relation given in the above form, but 
with a more general definition of bunching parameter than that given in 
Eq. (36). In order to emphasize this fact, and in order to put the results 
of the discussion that now follows into a form that will be readily appli¬ 
cable later, the subscript is omitted 
from the bunching parameter in the 
discussion of the consequences of 
Eq. (3c). 

This relation embodied in Eq. 
(3c) is shown in Fig. 9-3 for X = 
0.5, 1, 1.84, and 3.83. ' The quan¬ 
titative relations in the bunching 
process are more clearly indicated 
here than in Fig. 9*2, and the illus¬ 
tration sugge!^ts a simple means of 
finding the actual waveform of the 
bunched current by application of 
the principle of conservation of 
charge. Thus, the electrons arriv¬ 
ing at the output gap in the time 

w\ 
jn^h 

+3r ^ 

y x«o.50 

MM. 

Time of departure oif j 

Fig. 9-3.—Relation between time of 
departure from input gap^ ti, and time of 
arrival at output gap, ^2, for several values 
of bunching parameter X. 

interval are^made up of one or more groups of electrons (three for the 
case indicated in Fig. 9-3) that have left the input gap during intervals 
A^i |d^i/d^| A^s. If the d-c beam current is lo, the total charge carried 
by the electrons arriving in Af, is 
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when the summation encompasses all times of departure h that cor¬ 
respond to the same time of arrival t2» The total charge is also iAtz 
where i is the instantaneous current through the output gap; hence 

This equation simply states that the output gap current at any 
instant t2 is obtained from Fig. 9*3 by adding the absolute values of all 
the inverse derivatives dti/dh corresponding to the given time of arrival 
^2. This process has been carried out in obtaining Fig. 9*4, which there¬ 
fore shows the dependence on time of the instantaneous output-gap 
current for the four previously used values of the bunching parameter, 

X « 0.5, 1, 1.84, and 3.83. 
The infinite-current peaks are a striking feature of Fig. 9-4 and arise 

in an obvious manner. For X < 1, the electrons that arrive at the output 
gap at any given instant are those 
that left the input gap at a single 
previous instant; for X > 1, on the 
other hand, it has already been 
noted that for a portion of a cycle 
the electrons that left the input gap 
at several different times arrive 
simultaneously at the output gap. 
As indicated in Fig. 9*3, this portion 
of the cycle begins afid ends at the 
values of <2 for which dU/dtx = 0; 
dt2/dtx = 0 means that electrons 
leaving the input gap in an incre¬ 
ment of time dh arrive at the output 
gap in an infinitely shorter incre¬ 

ment of time dt2 and therefore constitute an instantaneously infinite cur¬ 
rent, carrying only a finite charge. 

The component of the waveforms of Fig. 9*4 at the fundamental 
frequency depends not so much on the presence of infinite peaks as on 
the general concentration of current in one particular half cycle/ It is 
obvious from Fig. 9*4 that this concentration increases as X initially 
increases. As X increases past unity the two infinite-current peaks, 
which contain a considerable concentration of current, become more 
and more separated in time. At X =* 1.84 the concentration of current 
is still rather high; as may be seen shortly, this value of X corresponds 
approximately to the maximum value of the fundamental component. 
At X » 8.83, however, the peaks are somewhat more than a half cycle 
apart and in iHam effect (for example, in driving a circuit) they oppose 

Fig. 9*4.—Dependence of relative cur¬ 
rent at output gap i(tt)/Io on time t2 for 
various values of bimching parameter X. 
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each other in phase; although the current is hardly constant in time, the 
fundamental component is exactly zero at this value of X. 

For high harmonics the infinite-current peaks become very important 
because any one of such peaks provides an appreciable concentration of 
current in a half cycle of a high harmonic. Since infinite peaks occur 
only for X ^ 1, not much harmonic content should be expected for 
X < 1, Whenever the two peaks that are present when X > 1 are 
separated by an integral number of half cycles of the harmonic in ques¬ 
tion, their resulting opposition in phase brings the content of this har¬ 
monic nearly to zero. The amplitude of higher harmonics is thus 
expected to be a maximum near X = 1, and to oscillate about zero as X 
increases past this point. 

The above description is an intuitive Fourier analysis of the bunched 
beam current; for more exact information an exact Fourier analysis is 
needed and this will now be made. 

Since the output-gap current 2(^2) is periodic with the angular fre¬ 
quency CO, this current may be expressed as the sum of a series of har¬ 
monics of co: 

i{t2) = Re > 

The values of im are thus the complex current amplitudes at the various 
harmonics, just as Fi is the complex r-f gap-voltage amplitude. By the 
usual theory of Fourier series, the values of im are given by 

If the relation for i{t^ given by Eq. (4) is recalled, it is apparent that 

■U = /o d((ot2)e~ 

This expression is made analytically inconvenient by the occurrence of’ 
the absolute value and discrete summation in the integrand. These 
features, arising from the multiple-valued dependence of h on shown 
in Fig. 9*4, are necessary only for X > 1. For X ^ 1, \dti/dt2\ may be 
replaced by dti/dt2j in which case the above equation becomes 

vifn J 
This equation has sometimes been derived for X ^ 1 in this manner, 

and the results then applied to instances where X > 1. This procedure 
has given rise to some confusion, not because the equation is incorrect 
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(it is not), but because its validity for > 1 is not immediately obvious. 
The demonstration of this validity may be based explicitly on Eq. (7), 
but it may also be demonstrated in a more general manner as follows. 

Since 1(12) dt2 is an element of charge, Eq. (6) is a sqinmation of the 
phase factor over all electrons that pass throughsthe output gap 
in one cycle. The order in which the contributions of the various elec¬ 
trons are summed up is immaterial; for example, a summation index not 
necessarily assigned in the order of arrival of electrons at the output gap 
may be associated with each individual electron. In this case, 

6) 

where e is the charge on the electron. Here t2n is the arrival time for the 
nth electron, and the summation is over all electrons passing through 
the output gap in one cycle. As a particular illustration, since 1% is a 
single-valued function of n may be identified with the time of departure 
h) since the electrons in the element of charge /o dh arrive (to first order) 
at the same time 4(^i), the summation may be written as an integral, 
giving 

Here the specific limits of integration indicate that the integral is extended 
only over those values of h that, although they may not in themselves 
lie within a single period, correspond to arrival times /s lying within 
one period. But since t2 — is a periodic function of ^2, the limits of 
integration may be further changed to correspond to an arbitrary addi¬ 
tion or subtraction of an integral number of periods to the h correspond¬ 
ing to any dt2- In particular, this arbitrary change can be carried out 
in such a way as to make the integration over h correspond to integration } 
over a single consecutive period of fi. This process is easily visualized 
with the aid of an extension of Fig. 9-3 to cover several periods of and 

<2. Thus finally 

= Jo j_ (8) 

By Eq. (3), Eq. (8) may be written 

Using the Bessel function expansion of the integrand, 
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(9) 

+0.6 

-0.6 

— 

3.0 

the equation for im becomes 

In Fig. 9*5 are shown, for the fundamental and several harmonics, 
the absolute values of the current components divided by beam current, 
\im\/h == These curves show in more detail the dependence 
of current component on bunching parameter that has already been 

qualitatively discussed. 
Since the leading term in and hence the predominant term 

for A"' « 1, is proportional to X”^, only the fundamental component is 
linear in X for small bunching volt¬ 
ages. The maximum value of |fil//o, 
1.16, occurs for X = 1.84 and, as the 
harmonic order increases, the value of 
X for maximum harmonic content 
approaches unity. For m 1 the 
maximum value of JmimX) approaches 
the value 0.65/in^^; this remarkably 
slow diminution of harmonic ampli¬ 
tude with harmonic order is a charac¬ 
teristic feature of klystron bunching arising from the infinite peak of Fig. 
9*4, as has already been noted qualitatively. 

9*3. Debunching in a Klystron.—^The preceding section has dealt 
with bunching as a process involving simply the kinematics of electrons 
in a field-free drift space. It is clear, however, that Avith sufficiently 
high current density, space-charge forces may influence the electron 
motion more than the electrode or gap voltages. If this is true, it might 
be better to begin by considering bunching as a phenomenon involving 
waves in a traveling space charge.^ The present discussion is concerned 
only with those effects of space charge that are easily considered as 
modifications of bunching, or as debunching.This distinction is not 
a sharp one and lies primarily in the degree of approximation. 

Space-charge Spreading of an Unneutralized D-c Beam,—As an intro¬ 
duction to debunching, the orders of magnitude involved in space-charge 

0 1.0 2.0 
Bunching parameter X 

Fio. 9*5.—Dependence of hafmonic 
components im of bunched beam cur¬ 
rent on''punching parameter X for sev¬ 
eral valuefe^f harmonic order. ^ 

^ D. L. Webster, J<mr, App, Phys., 10, 15 (1939). 
W. C. Hahn, O, E, Review, 42, 258 (1939), 
W. C. Hahn and G. F. Metcalf, Proc, LR.E. 27, 106 (1939). 
S, Ramo, Proc, LR.E., 27, 757 (1939). 
E. Feenberg, ** Theory of Small Signal Bunching in a Beam of Finite Cross Sec¬ 

tion,” Sperry Gyroscope Co. Report 5221-1043, Sept. 17, 1945. 
E. Feenberg and D. Feldman, Jour. App. Phya., 17, 1025 (1946). 

*E. Feenberg, “Theory of Bunching,” Sperry Gyroscope Co, Report 5221-105, 
Nov. 24, 1942. 

W. W. Hansen, unpublished notes. 
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effects may be seen by considering a simpler question: How much does a 
cylindrical beam of initially parallel electrons, located in empty space, 
spread out as a result of mutual repulsion of the electrons? Figure 9-6 is 
a schematic representation of such a beam. In the usual case that is of 
interest to this discussion, electron velocity « velocity of light, and drift- 
tube diameter « waveguide-cutoff diameter—that is, 

= \»3.4o.. 
c 

The first inequality ensures that the magnetic interaction between 
I electrons can be neglected; the second inequality 

means that the drift tube is unable to act as a trans¬ 
mission line for electromagnetic waves of the funda¬ 
mental frequency. Hence, when the discussion returns 
to debunching the potential at any point can be taken 
as a time-varying electrostatic potential rather than as 
a rigorous solution of MaxwelPs equations. 

A simple and approximate way of determining the spread of the d-c 
beam is to find the radial electric field at the edge of the beam assuming 
there is no spreading, and then to calculate the displacement of an edge- 
of-the-beam electron under the influence of this force. For beam cur¬ 
rent, voltage, diameter, and electron velocity, given by /o, Fo, 2a, and 
Vq, respectively, the charge density in the beam has the value 

Boundary of beam 

Fia. 9-6.—Beam 
geometry. 

P = 
J[o_ 

ira^o 

By Gauss’s theorem, the flux of the electric field strength E through any 
closed surface is given by /E • dS = g/co, where q is the total charge 
enclosed by the surface; appl3dng this relation to a cylinder coaxial with 
and enclosing the beam, it is found that the radial field Er at the edge 
of the beam is given by 

Er ~ R——- volts/meter. 
2iravo€o 

Here co = 8.85 X 10“^^ farad/meter; /o is in amperes, a in meters, Vo 
in meters/sec. An electron with initial radial velocity of zero, traveling 
a distance z = vot under the influence of this force, is radially deflected a 
distance Aa given by 

Aa (10) 

where e = the charge on the electron = 1.6 X coulombs; m = the 
mass of the electron = 9.0 X lO””*^ kg. Equation (10) can be written 

Aa 
"o’ 

(llo) 
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Here /i is a parameter given by 

{ha)^ 
1 c I{j_60/o 

T€omvJ 
(life) 

with lo and Vo in amperes and volts. 
The Debunchtng Wave Number.—This simple example is interesting 

both in itself (for purposes of later comparison) and for the way in which 
it introduces an important characteristic of space-charge flow—the 
occurrence of the parameter /i, which describes the combined effects of 
the parameters a, /o, and Fo on the relative spreading in a given distance. 
This parameter has the dimension of inverse length; because of its 
repeated occurrence in space-charge calculations, h/2T is called in 
klystron theory the ^^debunching wrave number’’; the reciprocal, 2ir/h, 
is called the ^‘debunching wavelength.” Generally speaking, space- 
charge effects become appreciable as soon as the distances involved 
become comparable to the characteristic length 1/h; thus in the example 
above, the beam diameter has increased by roughly 25 per cent when 
z = 1/h. 

The relation between the debunching wave number and the primary 
tube parameters is much simpler than it appears at first sight. The 
quantities lo/vl and lo/fiVo are both proportional to the perveance of 
the electron gun, lo/Vo^^\ this perveance is independent of beam voltage. 
More specifically, it is a constant in any space-charge limited multi¬ 
electrode gun \vith all auxiliary voltages proportional to Vo. The 
perveance depends only on gun geometry; if the gun is represented by a 
plane parallel diode of electrode diameter 2a and electrode spacing 
to which it usually bears a close resemblance, then 

Vo^^ 
= 2.33 X 

where lo and Vo are in amperes and volts, respectively. Comparing 
this relation with Eq. (11) and utilizing the relation 10/5 == \/Fo/2650, 
it is seen that 

hs = 0.47; i = 2.1s. (12) 

Thus the debunching wavelength 2r/h is roughly thirteen times the 
cathode-anode spacing in the equivalent electron gun. 

Space-charge Debunching of a Bunched Beam.—^With this introductory 
exploration of a simple d-c problem, the discussion may now be brought 
back to the bunching of a velocity-modulated beam. Several important 
differences from the foregoing simple example immediately become 
apparent. Perhaps the most marked difference occurs in the reflex 
klystron, in which the axial velocity of the electrons is reduced to zero 
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and reversed. Space-charge effects are very pronounced in this region 
of low velocity. They are also difficult to analyze partly because of the 
positive and negative velocities that occur at every point in the reflection 
region, partly because different electrons penetrate to different depths 
in the field, and partly because in the region of low velocity the r-f 
component of electron velocity exceeds the d-c component. This latter 
point makes perturbation calculations difficult. The question of space- 
charge effects in reflex klystrons is discussed in more detail in Chap. 13. 
The present section is limited to debunching in a drift space that is free of 
d-c fields, such as is described in the first section of this chapter; many 
of the simplifying assumptions found necessary in that section are also 

used here. 
In a practical field-free drift space the physical circumstances differ 

in one basic respect from those assumed above, and in a manner not 
dependent on the presence of r-f modulation of velocity or density. 
Residual gas is present, and is ionized by the electron beam. The 
slowly moving and continuously produced gaseous ions build up a positive 
ion cloud in the beam, which more than neutralizes the negative space 
charge of the electrons; this process goes on until the center of the beam 
becomes positive enough (by a few volts) to cause the ions to diffuse out 
of the beam as fast as they are formed. This slight positive potential 
at the center of the beam is not enough to affect the electron beam in a 
well-evacuated tube; in a ^^gassy'^ tube it produces the phenomenon of 
''gas focusing.'^ Since the positive ion cloud is made up of particles too 
massive to respond appreciably to the r-f fluctuations in the electron 
stream, the net effect is the approximate disappearance of the time-aver¬ 
age value of the charge density in the electron beam. 

Under these circumstances of zero average charge density the d-c 
beam of Fig. 9*6 will not spread at all. In a bunched beam, however, 
the bunches and the space between the bunches (or " antibunches 
are regions of instantaneous negative and positive space charge respec- 

^tively; thus debunching effects are present, although in some respects 
they are diminished by the positive ions. It is convenient to separate 
these effects into transverse and longitudinal debunching, corresponding 
to expansion of the bunch by space-charge forces transverse to and 
parallel to the beam. 

Transverse Debunching.—^Transverse debunching is similar to the 
simple spreading of a d-c beam. The bunches spread out and the anti¬ 
bunches narrow down; excessive spreading causes loss of the bunch on 
the walls of the drift tube. This spreading is easily estimated (ignoring 
drift-tube-wall effects) when the bunch is long and fiat, for then the maxi¬ 
mum radial electric field is approximately that existing in a long beam of 
uniform charge density equal in magnitude to the charge density at the 
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center of the bunch. This assumption corresponds to the assumption 
X 1 (degree of bunching small) and a (separation between centers 
of bunches large compared with the drift-tube radius). 

The r-f component of the current at the center of the bunch is then 
2IoJi(X) « loX and the r-f charge density is given by p == hX/waho^ 
The corresponding radial field, Erj at the edge of the beam is given by 

TP ^ ^ 

“ 2 27ra2;o‘ 

This differs by the factor X from the field obtained with direct current; 
since the radial force on a given electron is increasing with distance 
from the input gap, or time, the radial spreading will be proportional to 
the cube of distance, in comparison with the square in the d-e case. 

03X V V 
Specifically, since X = — otr> given by 

Vq ZV 0 r 0 

eoEr 

integration of the equation of motion, m (Pr/dt^ == cEr, gives for the 
deflection of an edge-of-the-beam electron 

Aa 

a 
X 
12 

{hx)K 

Comparison with Eq. (11a) show^s that the effect of the absence of d-c 
space charge and of the presence of r-f space charge is to decrease the 
unneutralized d-c spreading by the factor X/3. If circumstances are 
such that the part of the bunch that expands beyond the original beam 
diameter is wasted, then debunching diminishes the r-f current by a 

factor ’ 

This factor is not (1 — 2Aa/a) because only the bunch, not the antibunch, 
is changed. 

Transverse debunching is very small in small-signal amplifiers where 
X <3C 1, but, if the results are extrapolated to a power tube in which 
X « 2, transverse debunching is appreciable when Ax ^ 1. 

The effect of a metal tube surrounding the beam, which is neglected 
in the foregoing discussion, is to increase the spreading because of the 
positive image charges induced by the electrons in the wall of the drift 

tube.^ 

* E. Feenberg, ''Small Signal Theory of Longitudinal and Transverse Debunching,’’ 
Sperry Gyroscope Co, Report 5221-114, Apr, 12, 1944. 
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Longitudinal Debunching,—Consider now the case of longitudinal 
debunching. It is again convenient to assume a drift-tube wall distant 
from the beam; a metallic wall that is adjacent to the beam allows no 
longitudinal forces to exist at the outer edge of the beam. Otherwise, 
the physical conditions that are assumed in order to simplify the analysis 
of longitudinal debunching are just the opposite of those assumed for 
transverse debunching; it is assumed that the beam diameter is much 
greater than the separation of the bunches, i.e., that 2a ^ jSX. 

This assumption makes the problem one-dimensional; consequently, 
it allows a method of solution that is more complete and exa(*t, within 
the limitation of this initial assumption, than the perturbation procedure 
used for transverse debunching. The method consists basically of 
assuming an unknown functional relation between bunching parameter 
and distance, and then finding out what this functional relation must be 
in order^to satisfy the physical laws governing space-charge flow. 

As seen in Chap. 3, these laws are three: (1) Poisson^s equation relating 
space charge and potential or field, (2) the continuity equation relating 
current and time rate of change of charge density, and (3) Newton^s 
law of motion relating force and acceleration. Conservation of (‘barge, 
which is implicit in the continuity equation, is also used as in Sec. 9-2. 
In applying these laws it is convenient to deal only with the r-f component 
of charge density and current. The d-c current has only a magnetic 
effect, the neglect of which has already been noted; in an “infinitely 
wide’’ beam (with end effects neglected) the d-c component of charge 
has no physical effect and in the presence of the positive ion cloud the 
total d-c charge density is physically approximately zero. 

Poisson’s equation and the equation of continuity are commonly 
combined to deduce the fact that the divergence of the total current 
density (displacement current plus convection current) vanishes; this 
means, in the present case, that 

+ (14) 

where the electric field, E{x,t), is now parallel to the axis of the beam. 
With the assumption of an infinitely wide beam, and the consequent 
absence of any return path for the r-f component of current, the total 
current (quantity in brackets) must vanish; hence 

Without the assumption of an infinitely wide beam, the space-constant 
but time-dependent total current would have to be added to the right- 
hand dde of Eq. (15); together with the added edge effects, this would 
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considerably complicate the subsequent treatment, eventually limit its 
validity to infinitesimal bunching parameter, and probably not add a 
compensating amount of physical insight into the problem. Hence the 
development continues on the basis of Eq. (15). 

This equation may now be integrated with respect to time to give 
the following relation between the current and the electric field: 

E(x,t) = - r dt'. (16) 
irU Co J r/vo 

Mathematically speaking, it will be noted that any constant lower 
limit for this integral is as good as any other one, if an arbitrary constant 
of integration is added. Actually, the lower limit has been chosen so 
that this constant of integration vanishes. The corresponding physical 
picture is simple. The end result of this choice of limits is consistent 
with a fact that is to be suspected from what has already been discovered 
about the electron trajectories—namely, that an electron at the center 
of a bunch experiences no longitudinal space-charge fields. A center- 
of-the-bunch electron passes through the input gap at time < = 0 and 
passes the point a: at ^ = x/vo. Hence the lower limit has been so 
chosen as to make E(x,x/v(i) = 0. Physically speaking, the above 
ecjuation then shows that the field at any point is that which is produced 
by the charge lying between the point in question and the center of the 
nearest bunch; for the indicated integration of current with respect to time 
is identical with an integration of charge density with respect to dis¬ 
tance, carried out from the point x to the center of the nearest bunch. 

It is now convenient to assume, subject to more exact determination 
shortly, an unspecified functional relation between the position of an 
electron and time. By analogy with Eq. (3) this relation is written 

cot = o)ti + — X{x) sin cotij (17) 
Vo 

where t is the time of arrival at point x. This is an assumption that is 
intuitively appealing, but it is justified only by the subsequent deduction 
of a definite differential equation for the function X{x). In order to 
take the next step it is also necessary to require that X{x) ^ 1; this 
requirement means that when the differential equation for X{x) has a 
solution for which X{x) > 1, this solution probably does not represent 
the facts in that region of x for vrhich X{x) > 1. 

The r-f current t(x,t) is obtained by subtracting the d-c current h 
from the total conduction current. Conservation of charge says that 
the latter is given, for Z(x) ^ 1 (see Sec. 9*2), by Jo(d^i/dO; hence 
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This current may in turn be used to find the electric field as given by 
Eq. (16), with the following result: 

E{x,t) = r hit) - <1 -1 
eoTra- (_ \Vo/ Voj 

= - ~ X{x) sin o)ti, 
eocoTra^ 

Here use is made of the fact that the time of passage of the center of the 
bunch through the input gap, ti(x/vo)f is zero. 

Since ii is constant for a given electron, this value of field may be 
used in the equation of motion to give the acceleration of an electron as a 
function solely of its position. Thus, by use of the assumption of Eq. 
(17), the equation of motion becomes 

d^x __ eE(x,t) 
m €o^coira* 

X{x) sin o)ti. (18) 

But Eq. (17) implicitly contains, independently of any physical laws, 
a relation between x and t from which a value of d'^x/dt^ may be obtained 
by differentiation; thus 

d^x 
dt^ 

vld^X{x) 
0) dx^ 

j ___ ^dX{x) 
0) dx 

sin Q)ti 
(19) 

If a solution for X{x) may be found that makes Eqs. (18) and (19) 
consistent, then this solution and Eq. (17) accurately represent the 
physical situation. 

It is consistent with the final result, and with the assumption 
F/2Fo 1, which has already been made, to set (l/?;o) dx/dt « 1 and 
(«o/«) dX/dx 1. (Note that, in the absence of space charge, 

(vJ\dX ^ V\ 

V / dx 2Fo/ 

Making this simplification, and recalling the definition of the debqnching 
wave number h, Eqs. (18) and (19) give 

g + = 0. (20) 

From Eq. (17) it is apparent that X(0) = 0, and, by comparing dx/dt 
as given by Eq. (2) and by differentiating Eq. (17), it may be found 
thatdX'(0)/<ir *= V(t>/2Vtifo- These boundary conditions serve to specify 
the solution of Eq. (20) as 
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X(x) == Xo(x) 
sin hx 

hx 

““ i;o 2Fo‘ 

(21) 

Here Xq{x) is the value that X would have in the absence of space charge; 
it corresponds exactly to the Xo of Eq. (36). 

The amplitudes of the fundamental and various harmonic components 
of the beam current, as given in Sec. 9*2, are unaltered in their dependence 
on X by this altered dependence of X on x. Thus Eq. (9) still holds true 
with X given by Eq. (21), the only new restriction being that X{x) ^ 1. 
Harmonic components of the beam are appreciable, however, only for 
Z > 1. Hence perhaps the only way in which Eq. (21) should be 
applied to questions of higher harmonic content is to note that if X(x) 
is such that the condition for the validity of Eq. (21), X ^ 1, is satisfied 
at all values of Xy then the harmonic content will be very much less than 
without debunching. The condition for X ^ 1 at all values of a: may 
be written (V/2Vo)(w/hvo) ^ 1; this relation is equivalent to 

hl3\ ^ 
tV 
K’ 

or 
. 6.6F 

T - -V7’ 
(22) 

as the condition for drastic diminution in high harmonic content. This 
condition is referred to later in the discussion of frequency multiplier 
klystrons. 

Summary.—The foregoing discussion of debunching may be summed 
up as follows. The approximations involve small velocity modulation 
(F/2Fo <3C 1), small bunching (X ^ 1 in one case, X <K 1 in the other), 
and neglect of the effects of the conducting walls of the drift tube. 
Transverse debunching has been estimated by a perturbation procedure 
with the additional condition /3X ^ 2a, which incidentally tends to 
reduce the longitudinal debunching; the net result, as given by Eq. (13), 
is a reduction by the factor 1 — X{hxy/12 of that part of the r-f compo¬ 
nent of the beam that lies within the original beam diameter. Longitu¬ 
dinal debunching has been calculated by a more exact space-charge-wave 
procedure which, however, is accurate for jSX <$C 2a; and the result, as 
given by Eq. (21), is a reduction factor in the r-f current of 

i^hx) j _ . 
hx 6 ^ 

Thus if these results are extrapolated to the usual operating region of 
X 1 or 2, the two effects appear comparable in magnitude and become 
api«eciable when hx 1. 
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9«4. Bunching with Finite Gap-voltage and Arbitrary Drift-space 
Characteristics.—In order to emphasize the basic features of bunching 
and debunching, the foregoing discussion has made use of certain simplify¬ 
ing assumptions that are not always justified. The rejection of all these 
assumptions at one and the same time, and the subsequent deduction of a 
complete and rigorous solution to the bunching problem in all generality, 
appears desirable at first sight. It will become apparent that this 
procedure would be very difficult, and second thought suggests that it 
might not be too profitable. It would certainly have a tendency to 
obscure, under the weight of a large number of parameters, the physical 
significance of some of the effects involved. 

The actual procedure of the present chapter is to utilize the simple 
bunching theory of Sec. 9-2 as a starting point from w^hich to branch out 
in various directions. The various sections of the chapter consider one 
or two effects at a time, and each section is based on a prior knowledge 
only of Sec. 9*2. 

As the various simplifications made in Sec. 9*2 are eliminated, the 
bunching process is affected. In the simplest case, where the r-f voltage 
is small, the electron velocity as well as the electron energy is sinusoidally 
modulated; when the gap voltage is large, and ilf « 1, the electron energy 
is still sinusoidally modulated, but, since 

V' (^) ™ + (i^) ™ "<■ 

except when il!fF/2Fo<Kl, the velocity is no longer sinusoidally 
modulated. When the conditions F/2Fo 1 and ikf » 1 are both 
violated, not even the electron energy is sinusoidally modulated. An 
arbitrary d-c field in the drift space affects the electron transit times in 
such a way that even a sinusoidal velocity modulation does not result 
in a sinusoidal modulation of the time of arrival of electrons at the output 
gap. All of these effects thus change the waveform of the bunched 
beam current from that discussed in Sec. 9*2. 

The present section is concerned wdth eliminating the two following 
assumptions: 

1, That the r-f gap voltage is small, i.e., F/2Fo 1. 
2. That the drift space is free of d-c fields. 

In order to emphasize the main features of what happens, the assumption 
that M « 1 is made; this assumption means that the electron energy is 
sinusoidally modulated. Some of the consequences of removing this 
assumption are discussed in Sec. 9-6. Space-charge effects are neglected 
in the present and subsequent sections. 

The reader who is familiar with the various types of klystrons will 
note that the second assumption noted above does not hold for reflex 
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klystrons, for there the electron spends most of its time in a d-c retarding 
electric field that is strong enough to slow the electron down to a stop and 
reverse its direction of motion. Very conveniently, as will be shown in 
detail, this reflecting action makes only minor changes in the simple 
bunching theory of Sec. 9*2; more generally, the results of Sec. 9-2 are 
valid to a large extent for a drift space with arbitrary d-c fields. The 
debunching theory of Sec. 9-3, however, is another story. Whereas 
bunching is a purely kinematical matter relating only to questions of 
total time spent in the drift space, debunching on the other hand involves 
the details of the mutual interaction of electrons at every point in the 
drift space; as a result, practically nothing is known about debunching 
in any but the field-free drift space, and it has not so far been found 
possible to combine the results of Sec. 9-3 with those of the present 
section. 

The general properties of the drift space may be described by express¬ 
ing the electron transit angle through the drift space as an analytic 
function, d(Vc)y of the electron energy Ve. The time of arrival at the 
output gap, t2f is then given by the relation 

= Wt, + 00 + (J~y iVe -Vo)+l (7. - Voy + • • • , (23) 

in which the subscript zero signifies evaluation for Ve — Vo. 
The assumption M « 1 is necessary in order that the electron energy 

may still be considered to be sinusoidally modulated; the electron energy 
Vt is then given by the relation 

7. = Fo [ 1 + sin j- (24) 

It is to be noted that this does not necessarily correspond to a sinusoidal 
velocity modulation [of. Eq. (2)]. Thus the expression for may be 
written 

co<2 = oih + do — X sin u)fi + 02X^ sin^ cah + a^X^ sin* + • • • , 
(25) 

where 

X = -M7 = aiXo, Xo = + Bo, (26o) 

(26c) 
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In Eq. (26a), Xo is the value of the bunching parameter deduced under 
the simplified assumption of Sec. 9 2; see Eq. (36). 

The quantities ai, a2, as, etc. thus constitute a set of coefficients that 
specify the properties of the drift space in a form relevant to and con¬ 
venient for considerations of bunching. The significance of these coeffi¬ 
cients will become more apparent as the development proceeds. 

To return to Eq. (25), this generalized relation between time of depar¬ 
ture and time of arrival may be used in Eq. (8) to give the r-f components 
of the beam current because the latter equation is a very general one. 
Thus Eq. (8) becomes 

— g—;mdo 

TT 
g——X Bin c«><2 + 

In the simplest practical cases, as will be seen shortly, the coefficients 
On are small compared with unity (in fact, la«| <<C |a;,-i|) and the second 
exponential in this equation may therefore lie expanded as a power series. 
Only the two leading terms are carried through the next three equations 
to indicate the method. Expanding the exponential, the current compo¬ 
nents are thus 

tm == ~ / (1 — jma2X^ sin* + * • • 
^ J —r 

It is to be noted, however, that 

dX 
gjmXdnw*! — Jffi gJjj (27) 

and that differentiation with respect to X may be taken outside the 
integral;^ thus 

It has already been shown, however, that 

/: 

‘ E. Feenberg, “Theory of Bunching,” Sperry Gyroscope Go. Report 5221-106, 
Nov. 24, 1942. 
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Hence, the current components, including the terms of next higher order 
that were left out of the foregoing equation for sake of conciseness, are 
given by 

asX^ 

dX^ 

alX* d^ 
2m^ dX^'^ ^ ^ 

Jm(mX). (28) 

This is the final expression for the current components in the general 
kinematic situation specified by Eqs. (23) and (24). 

Comparison of Eq. (28) and Eq. (9) indicates that the leading term in 
im is unaffected in functional form by finite gap voltage and arbitrary 
d-c fields in the drift space; the only change is in the generalization 
in the definition of the bunching parameter in Eq. (26a). One way 
of expressing this generalization is to say that, in the calculation of the 
bunching parameter, the transit angle has been replaced by another 
angle ai6o; this latter quantity is sometimes called the “bunching angle^^ 
for convenience of reference. At later points in this book, where bunch¬ 
ing theory is applied with a degree of generality somewhat less than is 
used here, the bunching angle is considered to be intrinsically positive and 
is denoted by 

In the simple cases already mentioned, for which as 02 ai, the 
second term in Eq. (28) is the first order and next most important term. 
Since it is small and in quadrature to the first term, it may be considered 
as producing simply a phase shift. The third and fourth terms, which 
are normally still smaller than the second, are in phase with the leading 
term and therefore describe a change in amplitude. 

These deviations from simple theory have important consequences in 
free-running oscillators, where they give rise to hysteresis and associated 
phenoD^ena (see Chap. 14). Limiting discussion to the case where 
m — 1, which is useful in oscillators, it is seen that Eq. (28) may be 
rewritten 

ii = (1 + Ji(X), (29) 

where Ap6 and Apii/ii are defined as^ 

A,ii _ [a,Zy;"(X) - 
ii ~ JliX) 

(30) 

The functions Ji(X) and ZVi'(X)//i(Z) are shown in Fig. 9-7; the 
functions X*J"[(X)/Ji(,X) and X*JtiX)/Ji(X) are shown in Fig. 9-8. 

« 
^ The subscript v distinguishes the quantities in Bq. (29) from similar quantities 

arising from finite-gap-transit effects that are discussed in the next section and are 
labelled with a subscript G, 



222 VELOCITY MODULATION AND KLYSTRON BUNCHING [Sec. 9*4 

To obtain any numerical values of and At,fi/fi, the data in Figs. 
9-7 and 9*8 must be supplemented by a knowledge of the coeflBicients Un, 
which are discussed shortly. Numerical values for A^^ and A„fi/fi for 
typical situations in a reflex klystron with a linear reflecting field are given 
in Table 9*2 at the end of Sec. 9*5, where a comparison is made with the 
phase shifts and amplitude changes arising from finite gap-transit angles. 

Aside from such numerical values, some additional conclusions may 
be drawn from Figs. 9*7 and 9*8. It is apparent that Ar^ and are 
small for X < I because they are proportional to X^. At X = 2 (the 
vicinity of normal oscillator operating conditions), the functions in Figs. 
9*7 and 9*8 are not too much greater than unity, but for larger values of 
X (overbunching) some of the terms become very large. This corre¬ 
sponds in part, but not completely, to the fact that the leading term in 

Fig. 9 7.—Functional dependence of Ji{X) (curve A) and — -r-np:—^ (cuive B) on X, 
J\\X) 

Fio. 9-8.—Dependence of X^Jx'\X)/Ji{X) (ruive A) and XVi*'^(X)/2/i(X) (curve B) 
on X. 

iij J\(X)y is approaching zero; therefore the ^‘correction” terms in ii 
become predominant. These correction terms prevent the current ii 
from having the zeros indicated in Fig. 9*5. A more physical picture of 
this phenomenon results from the treatment in Sec. 9*6; experimental data 
on the point appear in Fig. 10*8 (Chap. 10). 

The DriJtrS'pace Coefficients.—^The discussion needs now to be turned 
to a general consideration of the drift-space coeflicients ai, a2, and a^. 
These coefficients are readily obtained for the two simple drift spaces 
already mentioned, the field-free drift space and the uniform reflecting 
field, because of the simple dependence of 6 on Ve in these two cases. For 
a field-free drift space of constant length, S is inversely proportional to 
electron velocity, hence 6 = constant X In a uniform reflecting 
field, the depth of penetration into the field is proportional to Ve, whereas 
the average velocity of the electron is still proportional to Ve^; the 
transit angle 0 is proportional to the ratio of these two factors, hence 
$ « constant X Ve^. Because the faster electrons penetrate more 
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deeply, they spend more time in the reflecting field. Consequences of this 
fact are noted several times in the further development of this subject. 

These two simple drift spaces are thus special instances of a somewhat 
more general case, ^ = constant X F?. For 6 = constant X F? it is 
easy to show that 

Qi = 2n, 
1 n — 1 

(I2 — 
200 

and 

^3 a £l 

1 
60§ 

n 

. - 2) 

From these general relations, Table 9T may be deduced. 

Table 9*1.—Dbipt-kpace Coefficients 

Field-free drift ITiiiforni n'flecting field 
space (n = — J) (n - i) 

ai 
! 

+ 1 -1 

^2 j 
1 

1 
*200 200 

5 1 
«3 20J 

The first point to be noted here is the difference in the sign of ai in the 
two cases. From Eq. (26a), it is seen that this difference in signs corre¬ 
sponds to a negative bunching parameter in a uniform reflecting field and 
a positive bunching parameter in a field-free drift space. This conven¬ 
tion deviates from the customary one of making X an inherently positive 
quantity and altering the sign of the term X sin o)ti in Eq. (25) to fit the 
circumstances. Perhaps unfortunately, the latter convention has 
become firmly entrenched in common usage for the simple theory of the 
reflex klystron with linear drift space; hence, with the exception of Chap. 
13, it is followed in all subsequent discussions involving reflex bunching. 
For more generalized discussions of bunching such as those of Chap. 13, 
however, the convention that the sign for a is the sign of X seems much 
preferable and is therefore used. 

Since Ji(—X) = —Ji(X), a reversal of sign of X corresponds to a 
phase shift of 180® in ii; physically speaking, this means a phase shift of 
180® in time of arrival of the bunch. Thus in a field-free drift space 
(X > 0), the electrons that pass through the input gap at wh = 0 and 2ir 
are at the centers of successive bunches, whereas, in a uniform reflecting 
field (X < 0), the centers of the bunches are the electrons for which 
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o)ti = T and Sir. Physically, this phenomenon is easily traced back to 
the fact, already mentioned, that in the uniform reflecting field the faster 
electrons have the longer transit timel This phenomenon has an exact 
analogy in a ball thrown up into the air; the harder it is thrown, the 
longer it takes to return. Thus the center of the bunch is the electron 
that passes through the input gap at the instant when the r-f field is zero 
and changing from accelerating to decelerating. Just the reverse is true 
in field-free bunching. The questions of sign and phase discussed in this 
paragraph are simple physical matters for which the foregoing general 
treatment is not at all necessary. 

It may also easily be seen that, in a drift space that is composed of one 
field-free section and one section with a uniform reflecting field, 

~1 < ai < 1 

depending on the relative proportions of the two regions. 
The next interesting point to be noted in Table 9T is the dependence 

of the a’s on ^o. Since, in most practical cases, do ^ 10 radians, the fact 
that <12^0, dzdlf . . . are approximately unity is important because it 
means that each coefficient an is smaller than the preceding one by at least 
an order of magnitude, and this in turn makes the expansion in Eq. (28) 
well-behaved. 

It should be noted, however, that this simple relation between $o and 
the a^s holds only when $ = constant X Fj, a simple relation that for¬ 
tunately includes the two simplest practical examples. A more compli¬ 
cated arrangement of d-c fields in the drift space might at some value of 
Fo, for example, correspond to a large {d^6/dVf)o and a small {d0/dVe)o] if 
this were true, the second term in Eq. (28) would outweigh the first and 
the functional dependence of im on X would be completely altered. Some 
specific examples of such behavior are discussed in Chap. 13 in connection 
with reflection-field effects. 

9*6. Influence of Finite Gap-transit Angle on Bunching.—In the 
previous section the effect of the passage of electrons through the input 
gap was described as a simple energy modulation, expressed in electron 
volts by Eq. (24): 

V. = Fo(l 

The effects of the drift-space characteristics and the finite use of V/V9 

'were then investigated. In actual practice, gap-transit times of a half 
cycle or more dre often encountered. In such cases, effects arise that 
make a discusmon of velocity modulation and bunching incomplete 
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without an investigation of at least the general anatomy and orders of 
magnitude of these effects.^ 

One phenomenon arising from finite gap transit angles is beam load¬ 
ing; another is the existence of the beam-coupling coefficient M. These 
phenomena have already been discussed in Chap. 3. Although the sub¬ 
ject of beam loading does not lie within the scope of the present chapter, 
it is intimately related to some of the effects discussed herein. 

It becomes apparent from the preceding discussions that any analysis 
of klystron electronics begins with an investigation of electron kinematics. 
This investigation has as its result an expression for time of arrival of an 
electron at a given point in terms of time of departure from a reference 
point where the initial conditions are known—that is, the entrance to the 
input gap. The effect of a finite gap-transit angle on such a kinematical 
analysis is two-fold. In the first place, the time of electron arrival at 
any point is directly affected by any finite gap-transit angle, and this 
gap-transit angle varies with the phase of the r-f field at which an electron 
enters the gap. In the second place, the change in electron energy 
in passing through a gap, — Fo, is no longer a simple sinusoidal 
function of time such as that referred to above. 

Such considerations are, of course, just as relevant to the passage 
through the output gap as through the input gap. Although the output 
gap may appear not to be involved, per se, in the question of velocity 
modulation and bunching with which this chapter is concerned, never¬ 
theless this is the appropriate place to discuss any questions of finite 
output-gap-transit angle that need to be discussed. Since these ques¬ 
tions will be passed over lightly, a brief discussion of the relation between 
input-gap- and output-gap-transit-angle effects, and the reason for the 
brevity of the treatment of the latter, is in order. 

The'effect of the output-gap-transit angle may be described as follows. 
The bunched current effective in driving the output circuit is (for plane- 
parallel geometry) the value of the instantaneous r-f conduction current 
averaged over all points in the output gap. If the transit time through 
the output gap is finite, however, the r-f field in this gap has time to 
modify the electron motions; hence the instantaneous r-f current at any 
point in the gap is also modified by the r-f field, and the over-all driving 
current for the output circuit may not be calculated rigorously without 
including the reaction of the output circuit (r-f voltage in the output gap) 
back upon the driving current. This factor becomes particularly impor¬ 
tant when the r-f voltage in the output gap is comparable to or greater 

^ For a general discussion of finite gap-transit angles from a viewpoint somewhat 
different from that of this section, see E. Feenberg, ''Theory of Bunching,'' Sperry 
Gyroscope Co,, Report 5221-105, Nov. 24, 1942; also compare Chap. 12 and: 

J. K. Knipp, *'Notes on the Reflex Oscillator," RL Report 709, May 3,1946. 
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than the beam voltage; in this instance electrons may actually be turned 
back at the output gap. 

However, the main emphasis of the book is upon reflex klystrons; 
here the r-f voltage in the single (input and output) gap is usually con¬ 
siderably less than beam voltage. In this situation the input-gap effects 
are the more important, especially because these effects influence the 
whole course of bunching in the drift space. Furthermore, any general 
discussion of output-gap effects adds a great deal of complication to the 
analysis and probably could not be justified without going into the effect 
of the input gap in considerably more detail than is intended. 

For these reasons output-gap effects are not to be discussed further, 
beyond noting in the discussion of input-gap effects some obvious 
generalization of results to output-gap effects. In discussing input-gap 
effects the aim of the present section is to indicate the nature and magni¬ 
tude of these effects rather than to cover the subject with complete 
generality. After these general comments, the discussion may now be 
centered on the details of what happens in the input gap. 

The basic equations for phenomena occurring in gaps are discussed 
in Chap. 3. Thus the manner in which the presence of an r-f field modi¬ 
fies the gap transit time is indicated in Eqs. (3T5) and (3*25). These 
equations may be applied to give the transit time through the complete 
gap for the case when the beam is unmodulated upon entrance into the 
gap; in the notation of Chap. 3, this corresponds to taking 2^„(0) = 0, 
a; = d, T' ^ T, M' — Mf N' = N, 6' = 6 = cuT. Writing 6 = 6i to 
correspond to the notation of the present chapter, and noting by a 
comparison of Eqs. (1) and (3*13) that = — jT, one finds for the actual 
gap transit angle (which will be denoted by dg)^ the following expression 
(accurate to first order in y/2Fo): 

^ 2^ [ 
= -12f„ + Sr) 

In this equation o)ti is defined, as a matter of convenience, as (phase 
angle at entrance into the gap) + di/2”; that is, h is the time at which 
an electron would pass the center of the gap in the absence of the r-f 
field. The functions M{$i) and N{6i)y both of which approach unity 
as $i approaches zero, are defined in Chap. 3 as follows: 

M - (sin ei/2) 
~ (^i/2) 

2A / , 9i $i b\ 
2“ 2 
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In Pig. 3-8 are shown, as functions of Bi, the functions 

227 

H - + N^eym 

and r} = tan"“^ (NBi/QM) which occur in Eq. (31a). 
The above expression for the gap transit angle may now be used to 

determine the velocity with which the electrons leave the gap; this is 
a matter of prime importance since it determines the subsequent bunching 
action. The exact change in the electron's velocity which occurs in the 
gap is given by Eq. (3*19); utilizing the value of the gap transit angle 
given in Eq. (31a), bearing in mind the changes in notation mentioned 
above, and discarding terms of higher order than (F/2Fo)^ the following 
relation is obtained for F^, the energy of the electron on leaving the gap: 

7. - 7o = MV sin [ -P sin 2«<i + (316) 

In this equation the function P is defined as 

P(6i) = (^1 - sin ^i). 

This function approaches unity as Bi approaches zero, but has no zeros 
for ^1 > 0. In Fig. 3*3, iW, N, and P are shown as functions of ^i. 

A general treatment of input-gap effects could now be carried out in 
the framework of the previous section by adding to the right-hand 
side of Eq. (23) the term Bg, and using in Eq. (23) the expression for 
Fc — Fo given by Eq. (316) alone rather than that of Eq. (24). In 
carrying out such a treatment the method of Sec. 9*4 could be used intact 
if the sin 2w<i and cos wh terms in Eq. (31) were expanded as a power 
series in sin (ch; however, this particular method has faults that make 
it not very practicable. 

The salient features of any such general analysis are emphasized 
when only the linear term in (Fc — Fo) is used, that is, if Eq. (23) is 
replaced by 

= (o>h - + 0, + flo + (7. - 7o) + • • • . (32) 

With the values for dg and (7, — 7o) given by Eq. (31), Eq. (32) becomes 
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This equation has been written explicitly to make the origin of the various 
terms of the next equation more obvious. Rearranging Eq. (33) and 
keeping only first-order terms in F/2Fo, 

where 

It is to be noted that is independent of r-f gap voltage. 
This equation describes several effects of the finite gap-transit angle 

on both the amplitude and phase of the r-f components of the bunched 
current. If the amplitude effects are considered first, it may be noted 
that the coeflScient of — sin (oiti — (which would be the argument of 
the Bessel functions giving the current components if 7 were zero) is 
X + MVBi/AVq, This fact is not surprising, since MF^i/4Fo is just 
the contribution to the bunching parameter that would be made by a 
(d-c) field-free drift space with transit angle 0i/2; thus the effective 
bunching parameter is obtained by extending the drift space back to 
the middle of the gap and considering the r-f field as concentrated at the 
middle of the gap. It is to be noted that in the other places where X 
occurs in Eq. (34), the term {X + MVBi/AV^) could be substituted at 
will since the resulting changes would be of order (F/2Fo)^. 

A much less trivial effect is the existence of the second-harmonic 
term, sin 2(w/i — /S). It may be seen by comparing Eqs. (33) and (34) 
that the term arises from the modification of Fe — Fo in the presence of 
a finite input gap. One might say that velocity modulation by a sinu¬ 
soidal voltage in a finite gap is like velocity modulation in an infinitesimal 
gap by a fundamental and second-harmonic voltage. Since the second- 
harmonic term has the same symmetry about = 0 as does the 
first-harmonic term, the presence of the second harmonic does not change 
the phase of the bunch, but it does change the shape of the bunch and 
the magnitude of the r-f component. 

This may be seen graphically in Fig. 9-9. Here then is shown the 
relation between h and h for the simplified relations 

w<2 == X(sin o>ti — 7 sin 2w<i) (36) 

with X = 2 and 7 ~ 0, 0.5. 
In Fig. 9*10 are shown the resulting dependences on time of bunched 

beam current. It is apparent from these figures that the presence of 

-T-( 
„ . Jt/FOA 

4Fo/ 
[sin («<i — 0) — y sin 2(w<i — (S)] (34) 

VNe\ 
'^FoX 

y = 
FPOi 

24FoM 

12A/nx^o 

PXdi 

12M*a,eo' 
(35) 



Sec. 9-5] FINITE QAP-TRANSIT ANGLE 229 

the second-harmonic term, with a coefficient negative with respect to 
the first, tends to concentrate more current at the center of the bunch. 
This phenomenon has been analyzed in considerable detail in connection 

Fig. 9*9.—Transit-time phase rela- Fia. 9*10.—Waveform of bundled 
tions in the presence of second harmonic beam current as modified by presence of 
velocity modulation or equivalent. Re- second-haimonic velocity modulation or 
lation between time of arrival U and time equivalent; compare with Fig. 9*9. 

of departure = oiti —X (sin — 
y sin 2 

with cascade bunching,^ where it also occurs. (Sec the discussion of 
cascade bunching in Sec. 9*8.) The behavior of the fundamental 
component of the bunched beam ii 
is indicated in Fig. 9*11. It is appar¬ 
ent from the figure that this maximum 
current component occurs in the °0.6 

vicinity of X = 2, 7 = 0.4 and that 
at this point the maximum current o.4 
component has been increased by 28 
per cent over the value at 7 = 0. 
This result should really be stated for 
\X\ = 2, since the sign of X is irrele¬ 
vant to the results, and it is to be 
noted from Eq. (35) that 7 is positive 
for 0 ^ < ^. Defining this frac- 

0 0.2 0.4 0.6 0.8 
y 

Fig. 9*11.—Dependence of ti, funda¬ 
mental component of bunched beam 
current, on bunching parameter X and 
on the parameter y giving the relative 
amplitude of second harmonic in simpli¬ 
fied bunching equation for a finite gap 
[see Eq. (35)]. 

tional increase of ii as Aoii/iij it is seen from the figure that, for |X| = 2, 
the following equation may be written: 

(37) 

^E. Feenberg, Theory of Cascade Bunching,” Sperry Gyroscope Co. Report 
5221-143, Aug. 22, 1945. 
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For most values of 6i (i.e., 0i ^ 5), P/M » 1; for V/Vq = 0.4 and 
= ir, 7 = .05. This gives only some 6 per cent increase in funda¬ 

mental component of the bunched beam. But it may be observed from 
Fig. 3 that as ► 27r, ilf —> 0 and P/M —> oo. Thus y uiay be brought 
into the optimum vicinity of i by letting 6i approach 2x, provided that 
by some means, such as a large drift space, the value of X is enabled 
to remain in the vicinity of 2. 

Phase effects shown in Eq. (34) are likewise quite striking and are 
of two types, as represented by the presence of the term fiX^/2 and by 
the change from o)ti to (w<i — /3). 

The term fiX^/2 comes from the constant term V^MNdl/48Vo in 
(Ve Po), which represents the beam loading at the input gap; that is, 
the beam-loading term in (F^ — Fo) is the average amount of energy 
abstracted from the gap by each electron. Since the mean velocity of a 
beam passing through a finite gap is thus increased by an amount pro¬ 
portional to (F/Fo)^ or X^j the time of transit of the bunch is changed 
by a corresponding amount—an increase for a normal reflex klystron 
{dS/dVe < 0) and a decrease for a field-free drift space. It may be noted 
by comparison Avith Eq. (26) and Table 9T that the sign of ^ is deter¬ 
mined by the sign of ai. 

The presence of jS in the argument of sin (w<i — jS) also represents a 
phase shift of the bunched beam, which may be traced back to its source 
in the phase difference between the transit time and the r-f voltage 
F sin It might be said that because of this phase difference the 
bunching that occurs in the gap is out of phase with that which occurs 
in the drift space, and so manages to shift the phase of the final bunched 
current by a small amount. But, although this phase shift varies from 
mode to mode, it is independent of r-f voltage; hence it has little signifi¬ 
cance. As a numerical example, suppose that = 10, X = — 2, 
^1 == T, M = 0.67, and F/Fo = f; then 8 = —0.11 radians or —0.02 
cycles. 

Since the only phase shift of much interest is therefore —/SXV2, a 
phase shift Ao$, which is due to the finite gap-transit time, may be 
written as 

Of these two phase shifts, the second may be expected to have an 
analogue in the output gap; but the first shift—the only one that is 
relevant—^is a drift-space effect pure and simple. Of the two amplitude 
effects, the obvious addition of MVdi/AVo to the bunching parameter has 
an analogue in the output gap. The much more interesting effect pf the 
finite input-gap angle in producing more efficient bunching is again* 



Sec. 9'5] FINITE GAP-TRANSIT ANGLE 231 

something that requires a drift space for its unfolding and hence has no 
output-gap analogue. It is clear that the principal output-gap elffects 
are the usual beam-coupling-coefficient effect and the normal beam 
loading. 

As already noted, these summarizing comments hold true where the 
output-gap voltages and dimensions are such as not to approach the 
condition of turning back electrons. It should also be realized that 
the use of only the leading terms in Eq. (32) implies that the coefficients 
On of the previous section are small, or that in normal cases the d-c drift 
angle is large. This assumption that 1 is equivalent to the 
assumption used through this section that F/2Fo<Cl, so the whole 
scheme is consistent. 

As a final comparison of the results of the last two sections, it is 
interesting to compare the quantities Avii/ii, A<?^, and of a 
simpler case in which the values of are known—the reflex klystron 
with a linear reflection field. The condition for approximately optimum 
operation, |X| = 2, will be used, and in calculating AgO and gap- 
transit angles of ir and I.Stt will be used. The results are shown in 
Table 9*2. 

Table 9-2.—Phase and Amplitude Changes in Bunching in the Presence op 

Finite Gap-voltages and Transit Times 

|X1 -2 
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reducing the accuracy of the approximation, this high gap voltage may 
also involve high power loss in the resonator. It is true, in general, 
that for = TT the phase and amplitude effects arising from the two 
different sources are comparable, the finite-transit-anglc effects being 
somewhat the larger. 

9*6. Bunching by a Gap Voltage Comparable to Beam Voltage.—The 
treatment of finite-gap-voltage effects in Sec. 9*4 provides an analytical 
description that is convenient for many applications. If the effective 
r-f voltage becomes comparable to or greater than the beam voltage, 
however,^ the treatment of Sec. 9*4 loses its usefulness or breaks down 
entirely. For, with ilf « 1 and F/Fo ^ 1, some of the electrons of the 
beam are turned back at the input gap, and even before this condition 
is reached, the bunching process is markedly changed. 

Such situations, although seldom occurring in oscillators or amplifiers, 
are not uncommon in frequency multipliers. The input frequency of a 
frequency multiplier is low, often below the microwave region; therefore, 
a drift space of convenient physical dimensions corresponds to a drift- 
space transit angle do that is smaller than that common in oscillators. 
To obtain satisfactory bunching (MVdo/Vo « 2) it is therefore necessary 
to increase MV/Vo, Furthermore, the bunching produced when 
F/Fo ^ 1 has characteristics that are desirable for frequency multipliers 
in certain situations, as is discussed in the next chapter. The analysis 
of these effects given here is limited to bunching in a field-free drift 
space such as is found in frequency multipliers; the general procedure, 
but not all the detailed results, may be applied to any type of klystron 
bunching. Aside from detailed results, the method of dealing with this 
very high input-gap voltage is interesting also for the light it sheds on the 
nature of the bunching process. 

As in the previous section, the assumed conditions are simplified so 
as to emphasize the salient features of the phenomenon under discussion. 
Space-charge debunching effects are ignored. Gap-transit-time effects, 
except the existence of the beam-coupling coefficient M, are also 
ignored. It is assumed that if « 1; when M is small compared with 
unity, the situation is very much more complicated—^for example, with a 
small M there may be no electrons turned back at the gap even with 
F/Fo considerably larger than unity. Finally, as already noted, a field- 
free drift space is assumed. All told, the assumed conditions are identical 

withthoseof Sec. 9-2 except for the assumptions if F/Fo » land if » 1, 
which replace the assumption if F/Fo » 0. It may frequently be con¬ 
venient to compare the results of these two assumptions; for this purpose, 

^The treatment of this section follows, in large part, E. Feenberg, Bunching 
Theory for Two-resonator Klystron Multipliers,'* Sperry Gyroscope Co. Report 
5221-117, May 23, 1944. 
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MVIVo » 1 is referred to in the remainder of this section as the ‘4arge- 
signal case/' as compared with the ‘‘small-signal case" of Sec. 9*2. 

An example of the type of velocity modulation produced for V/Vq > 1 
is shown in Fig. 9*12, which shows the velocity modulation resulting when 
V/Vo = M == 1. The deviation of the velocity from an even approxi¬ 
mately sinusoidal dependence on time is obvious; furthermore, during 
nearly a quarter of a cycle electrons are turned back at the input gap 
and so do not reach the drift space at all. The term “velocity modula¬ 
tion," therefore, is no longer completely descriptive of the input-gap 
process. 

The corresponding effect on transit time is shown in Fig. 9*13. Here 
<2, the time of arrival at some point 
(for example, the output gap) is shown 
as a function of time of departure from 
the input gap for a field-free drift space 
with a d-c transit angle of ~ 6 radi¬ 
ans. The values of X ~ MVBo/2Vq 
with w’^hich the curves are labeled, 
namely 0.5, 1, 2, and 4, arc similar 
to the values of X for the analogous 
curves of Fig. 9*3; the curve for X = 4 
corresponds to the (V/Vo = I) veloc¬ 
ity modulation sho^vn in Fig. 9*12, and 
both figures show the period during 
which no electrons penetrate the gap. 

The bunched-beam-current wnveform is readily obtained from Fig. 
9*13 as discussed in Sec. 9*2, and is shown in Fig. 9*14. The curves of 
Fig. 9*14 should be compared with those of Fig. 9*4, which correspond to 
similar values of X in the small-signal case. 

It is apparent that in Fig. 9*14 the most marked effects of a large 
MV/Vo occur for X = 2 and X = 4. At X = 2, the intensity in the 
earliest-arriving peak has been somewhat enhanced, whereas the latter 
one has been greatly diminished. This effect corresponds to the differ¬ 
ence in the breadth of the corresponding maxima and minima (“points 
of stationary phase") in Fig. 9*13; the smaller the value of dH^/di\ at a 
point of stationary phase, the more intense is the corresponding infinite 
peak of i. The trend shown for X = 2 in Fig. 9*14 has its logical con¬ 
clusion for X = 4; here, with V/Vo > 1, there is only one current peak 
per cycle. 

It may be recalled that, in the discussion of small-signal bunching in 
Sec. 9*2, it is pointed out that the alternating behavior of any given r-f 
component of i as a function of X (shown in Fig. 9*6) is caused by the 
interference of the two infinite peaks, which separate in time as X 

Fia. 9 12.—Dependence of relative 
electron velocity v/»o on time of passage 
h through an r-f gap with gap voltage 
|Fo sin iati] M ** 1. 
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Time of departure r 
Fig. 9«13.—Dependence of arrival time at output gap, tz, on departure time fiom 

input gap, tu Cross-hatched area represents interval of ti during which no electrons pass 
through input gap; « 6 radians. 

0 

Fig. 9'14.—Time dependence of instantaneous bunched beam current for various 
values of bunching parameter X; field*free drift space, » 6 radians, hence large bunching 
voltage. Derived from Fig. 9*13. 
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increases and alternately reinforce and cancel each other as their phase 
difference increases at the harmonic in question. It is apparent from 
Fig. 914 that in the present large-signal case these peaks are no longer 
equal in amplitude, with the result that this interference between peaks 
cannot give rise to zeros in the absolute value of im\ furthermore, when 
F/7o > 1 and M « 1, there is no interference at all because there is 
only a single peak, and \im\ is then a very smooth function of X deter¬ 
mined principally by the relation between and <2 near the point of 
stationary phase in Fig. 9-13. 

It turns out that the <2 — vs — h diagrams for X > 1 in Figs. 9*14 and 
9*3 may, for purposes of calculating current waveforms and r-f components 

Fig. 9*16.—Representation of the 
{X «= 2)h — vs — diagram of Fig. 
9-13 by two equivalent parabolas 
(indicated by broken curves); — 6 
radians. 

-r 0 +r 
(radians) 

Fig. 9-16.—Waveform of bunched beam 
current as produced by “actual” (solid 
curve) and “equivalent” (broken curve) 
/2 — vs — ti diagrams of Fig. 9-16. 

of bunched beam current, be represented by two parabolas that coincide 
with the <2 — vs — h curves at the points of stationary phase. The 

actual’’ and the equivalent” <2 ““ vs — t\ diagrams for the large-signal 
(Z = 2) case are shown in Fig. 9-15; the ''actual” diagram is the same as 
that shown in Fig. 913. In Fig. 916 are shown the corresponding cur¬ 
rent wave-forms. It is seen that the correspondence of the time depend¬ 
ence of i{t) is close; the principal difference between the two curves, the 
addition of a d-c component, is irrelevant for the present purposes. 

9«7. Analytical Discussion of Bunching by a Gap Voltage Comparable 
to Beam Voltage.—Thus it seems, from the results shown in Fig. 9.16, 
that an anal3rtical deduction of the properties of the bunched beam 
current from the behavior in the immediate vicinity of the points of 
stationary phase holds some promise. Such a process has the advantage 
that, for the determination of im, only the points of stationary phase in 
Fig. 9*15 and the second derivative (shape of the equivalent parabolas) 
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at these points need be known. This analysis will now be carried out, 
and the degree of validity of the results will be checked by application 
to the small-signal case for which the values of im are already known from 
Sec. 9*2. 

To avoid cumbersome expression, the following notation is introduced: 

s r <t)t2 — do ^ (39) 

The points of stationary phase (dylz/dr = 0) will be labeled ^i, ^2,* the 
corresponding values of the second derivative are and 

}f/i and ^2 ^ ^2 and > 0. Then the two parabolas in the 
equivalent ^2 ““ vs — h (or ~ vs — r) diagram are given by 

1^' = (t - Tl)* 

^ = + (t) 
and for ilf » 1 and F > Fo there will be only one parabola, the first of 
the two above. 

By Eq. (8), the harmonic of the bunched beam current is, in this 
notation, 

t-m 

rnypi f 

dr + e 
r- —ra)* , C 2 

The largest part of these integrals comes from the regions r — n « 0 
and r — 72 « 0; hence when lm^"| 1, the limits of integration may be 
changed to ± 00 without much error. When the limits are changed, and 
the variable altered to simplify the exponentials, and remembering that 

^'1' > 0, < 0, the above integrals become 

In obtaining this equation, use is made of the definite integral 

c^*’da: \/ir 

There is an additional limitation on Eq. (40) in the assumption that 
X is large enough so that the fj — vs — h diagram may berepresented 
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by the two-parabola equivalent. In the small-signal case for X = I 
(and in the large-signal case, for some value of X slightly less than 
unity) there is only one point of stationary phase, and at this point 

=0; the dependence of ^ on r is essentially cubic and the basis 
of Eq. (40) is invalid, as witness the fact that, when = 0, Eq. (40) 
has t’m == . This fact, as well as the » 1 condition, will increase 
the validity of Eq. (40) as X exceeds unity. The point at which Eq. (40) 
becomes valid is best found by applying this equation to the small-signal 
case, for which the exact value of im is already known by Sec. 9-2. 

In the small-signal case, ^2 == and ^2^ = —^1', and Eq. (40) 
reduces to 

2^^ / A 
t„. = cos (41) 

This equation may be compared with the exact small-signal result, 

- 2UJjriX)en^\ (Eq. (9)) 

In order to carry out the comparison, the small-signal dependence of 
and ypi on X must be known. By Eqs. (3) and (39), here 

rp = T — X sin r, 

= cos-‘ (42) 

lAi' = VX^ - 1- 

It is apparent from Eqs. (41) and (42) that, at the first maximum of 
the approximate im given by Eq. (41), mypi + 7r/4 » 0. This is an 
approximate relation because the increase of ypi with X has been ignored; 
a more closely figured maximum would have a value of + ir/A 
somewhat less than zero. From Eq. (42) the values of X and cor¬ 
responding to m\pi + 7r/4 = 0 may be determined. The results of this 
process are given in Table 9*3 below. In this table Xm represents 
the value of X that maximizes im- The values of Xm corresponding to 
the exact and approximate Eqs. (9) and (41) are given, as are also the 

Table 9-3.—Comparison of Values of Maximum im and Corbbspondinq Value of 

Bunching Parameter, Xm, as Given for the Small-signal Case by 

THE Exact and Approximate Eq^. (9) and (41) 

m exact 
Approx, max. 

lt»|/2/. 
Exact max. 
lt„|/2/o 

1 1.6 1.84 0.58 0.58 
8 3.0 0.44 0.43 

10 6.5 1.19 1.18 0.31 0.30 
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corresponding maximum values of im- Also, for i^eference, is 
shown. 

It appears from this table that, by the time the first maximum of 
tm has been reached, Eq. (41) is a very good approximation, regardless 
of whether is much larger than unity. The error in the approximate 
value of Xm is due in large part to the roughness of the location of the 
maximum in Eq. (41), as already noted. A procedure similar to the 
above, carried out for the small-signal case with X = I and with 

gives results that are as valid at X = 1 as are the above results for 
X ^ X^, 

The only results that are usually desired, however, are the value of 
the first maximum of |tmi and the general functional dependence of |im| 
thereafter; for this, Eq. (40) thus seems to be satisfactory. By Eq. (40), 

IT. 
2/o 

1 2 sin m(^i — ^2) 
(43) 

Thus as X and ^2 — increase, ltm|//o oscillates between two limits: 

/—^-7^=^ < \/2wm\'^A ^ H-/ ^ ~ Y (44) 
By Eq. (43), |fm| is equal to its upper limit when 

sin m(^2 — ^^i) = 1. (45) 

The corresponding maximum of \im\ is about the same as this upper 
limit but occurs at a slightly smaller value of X, just as for the small-signal 
case discussed in the preceding paragraph. 

The extension to the case ilf « 1 and V > Voj when there is only 
one point of stationary phase, is simple. Thus, 

W- f. 
h 

V > Vo. (46) 

Evaluation of jiml as given by Eqs. (44), (45), and (46) follows the 
same procedure as with the small-signal case. In the present larpfe-signal 
case, the relation between ^ and r for a field-free drift space is 

1 
^ = T + 

sin r Vl + (itfF/Fo) sin' 

For the case of a refiex klystron with a linear reflecting field. 

(47) 

^ B. T -b + ^^^sinr - ij; (48) 
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this latter case, which is not discussed here, may be handled just as 
the field-free case. Equation (47) and similar equations for may 
be treated graphically to give, as functions of X for various values of 
^0, the values of and and the corresponding limits to jiml- Simi¬ 
larly, a graphical determination of the dependence of and ^2 on X and 
^0 allows the determination from Eq. (45) of the values of X at which 
\im\ is equal to its upper limit, as well as the corresponding approximately 
maximum values of |tml. 

I2ii 

I 

Bunching parameter X Bunching parameter X 

Fig. 9-17. Fig. 9-18. 

Fig. 9*17.—Upper and lower limits of |im|, mth harmonic of bunched beam current, as 
function of bunching parameter X for various values of ^0. For MV/Vq — 2X/$o > 1, 
upper and lower limits coalesce to a single value. Dotted lines are loci of the first maxima 
of |im| for various values of harmonic order m. 

Fio. 9*18.—Dependence of third harmonic of bunched beam current, u, on bunching 
parameter X when ~ 6 radians. 

The details of this procedure are not given here, but Fig. 9*17 shows, 
for $0 = 3, 6, 12, and <», the dependence on X of the upper and lower 
limits to y/2irm |im|/2/o for MV/Vq < 1 and the single value of 

y/ %tm ^ 
io 

forF/Fo > 1.. The case ^0 = corresponds to the small-signal case dis¬ 
cussed earlier; for the lower limit to |fm| is zero, as already noted. 
The light dotted lines represent, for different values of m, the locus of 
points at which the value of jiml first equals the upper limiting value; 
these points therefore indicate the approximate locations and heights of 
the first maximum. 

It is apparent that many of the combinations of X and shown in 
Fig. 9*17 correspond to values of MYfor which the procedures of 
Secs. 9 2 and 9-4 are applicable; this correspond^ce provides a convenient 
connecting link between the two treatments. 

In Fig. 9-18 is sketched, from Fig. 9T7, the approximate dependence 
of |<mi/2Jo on X for do « 6, m « 3, The increasing rapidity of the varia¬ 
tion of |im| as the point {X « 1-5, MY/Yo » 1) is approached is caused 
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by the corresponding rapid upward motion of the first point of stationary 
phase in Fig. 9-13. 

Some interesting points of general structure are apparent in Fig. 9*17. 
For example, in reducing from oo to 3 radians, the value of the bunching 
parameter required to produce ^'optimum bunching^' (in the sense of 
making the graph*of jiml tangent to its upper limit) is reduced by approxi¬ 
mately 50 per cent for m = 1 and 30 per cent for m = 10. In later 
applications it may be seen that this reduction is no great advantage 
because the diminished value of X for optimum bunching is bought 
at the expense of an increase in il/F/Fo- As a matter of fact, in reflex 
oscillators (in which phenomena of the same type occur, although Fig. 
9*17 refers to a field-free drift space) this effect is very detrimental to 
oscillator efficiency. 

On the other hand. Fig. 9*17 shows that the maximum amplitude of 
the various harmonics decreases only slightly as do decreases from the 
small-signal value of infinity; the decrease in the actual maxima is 
probably even less, as these maxima lie above and to the left of the points 
of tangency whose locus is graphed in Fig. 9*17. 

Probably the most important feature of Figs. 9*17 and 9*18 is the 
practically complete lack of dependence of \im\ on X, once V > Vo. 
This independence has important applications in frequency multipliers, 
since it has the effect that in an overdriven multiplier with small do 
the output is practically independent of r-f input over wide ranges of the 
latter; this point is discussed in detail in Chap. 11. 

9*8, Cascade Bunching.—The preceding sections have been concerned 
with the bunching action that follows passage of an electron beam through 
a single velocity-modulating r-f gap. Two successive transits of a beam 
through an r-f gap or gaps produce velocity modulation and bunching 
of the type known as ‘‘cascade bunching.'^^ One example of cascade 
bunching is provided by the cascade amplifier (see Chap. 10), in which 
the beam passes through three resonators in succession; the input signal 
is applied to the first gap and the output taken from the last gap. 
Another example occurs in the reflex klystron (see Chap. 14). Here 
the beam passes once through a gap and is reflected for a second passage; 
part of the beam is often reflected from the cathode region for a third 
passage. In the first of these examples the cascade action is intentional 
and beneficial; in the second it is unintentional and usually detrimental. 
The basic processes are identical, however, and it is these basic processes 
with which this section is concerned. 

All the complications of Secs. 9*3 through 9*7 apply as much to 

^ E. Feenberg, ** Small Signal Theory for Multiple Resonator Klystron Amplifier,'* 
Sperry Gyroscope Co. Report 5221-106, July 14, 1943; see also “Theory of Cascade 
BuncMng," Sperry Gyroscope Co. Report 5221-143, Aug. 22, 1945. 
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cascade bunching as to single-gap bunching, but the most profitable 
procedure for this section is to omit discussion of these higher-order 
effects and to emphasize those features that are characteristic of the 
cascade process per se. The general assumptions of Sec. 9-2 are therefore 
retained—that is, no space-charge debunching, no gap-transit effects 
(except for the usual beam-coupling coefficient, ilf), no higher-order terms 
in V/Vo. The generalized form of the bunching parameter X (Sec. 
9*4) may be retained at no cost; therefore, the results of the present 
section are applicable to any drift space, as long as the drift-space coeffi¬ 
cients Un are not sufficiently abnormal to emphasize higher-order terms 
in V/Vo. 

Given the above premises, the notation to be used is a simple generali¬ 
zation of that of Sec. 9-2. For the complex r-f voltages, 

Vi = —jV = —JaiVo (49a) 

V2 - (496) 

Thus the voltage notation has been generalized so that the first- and 
second-gap real r-f voltage amplitudes are aiVo and 0:2^0. In the real 
(as opposed to complex) notation, the first-gap and second-gap time- 
dependent r-f voltages are thus Re = aiVo sin co<i and 

Re (F2C^"'0 =" '-oc2Vo cos {o3t2 — ^01 + respectively. The phase of 
the second-gap r-f voltage with respect to the first, as specified by the 
phase factor is kept arbitrary in this section; in the later applications 
of the results, /3 is determined by the operating conditions. The some¬ 
what awkward appearance of the phase of the second-gap r-f voltage is 
chosen for convenience in these later applications. It may be noted that 
the center of a bunch (for example, the electron for which = 0) 
arrives at the second gap when the r-f voltage at the latter has the value 
— ^2^0 cos thus /3 = 0 is the condition for maximum extraction of 
enerSgy from the beam by the second resonator. But this is simply a 
quick look behind the scenes. As already noted, this section is concerned 
not with the origin of the second-gap r-f voltage (that is, with the depend¬ 
ence of a2 on P)f but only with the results of its existence; and these 
results may be deduced without reference to the origin of the second-gap 
voltage. 

The remainder of the new notation to be used in this section is as 

follows: 

Xu: value that bunching parameter would have at the third gap if 
there were only first-gap modulation. 

iih fundamental r-f component of the bunched-beam current 
at the second and third gaps.’ (Note that the subscript 1 refers 
not to the first gap but to the fundamental component.) 
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Oon, (d$/dVe)onj Mn with n = 1, 2: the values of ^o, id6/dVe)o, and M 
for the first and second gap or the drift space following the first 
and second gaps, as the case may be. 

Xu: bunching parameter at the second gap, which is due to velocity 
modulation at the first gap; Xn = '-MiaiVo(d6/dVe)oi. 

X2z: bunching parameter at the third gap in the presence of only 

second-gap modulation; X23 ^ —‘M2a2Vo(dd/dV()o2- 

The first step in the development is now the usual one of investigating 
the electron kinematics. The time of arrival at the second gap, <2, 
is given by 

co^2 “ “t” ^01 — X12 sin o)ti. (50) 

On leaving the second gap the energy of the electron in electron volts, 
Vfj is the energy on entering the gap, Fo(l + Miai sin a>^i), plus the 
modification of Vc in the second-gap passage; thus 

F« == Fo[l Midi sin — M20L2 cos (cot2 — ^01 "1“ jS)]. (51) 

The time of arrival, <3, at the point where the r-f current is to be evaluated 
—hereafter referred to as the third gap—is then given by 

o)tz = <0^2 ”t“ ^02 4“ Fo ( jTr") [Midi sin o)ti — M2d2 cos (0)^2 — ^01 4" j3)] 
\(l V e/ 02 

= o)ti + ^01 “I” ^02 — Xu sin <j)fi + X2Z cos (a>^2 — ^01 4* P) (52) 

So far this discussion has involved only the usual restrictions of zero- 
order theory that allow the bunching parameter to have any value as 
long as the a's are small compared with unity. To be useful in evaluating 
the final r-f current, however, Eq. (52) must be altered so that <ati appears 
explicitly throughout, instead of implicitly in the u)t2 term. If the addi¬ 
tional restriction 

X12 < 0.4 (63) 

is made, the alteration in Eq. (52) is much simplified. The change 
causes little inconvenience in discussing later applications of cascade 
bunching, and since it makes XI2/2 <0.1 it makes quite accurate the 
approximation 

cos (wfe — ^01 4” iS) « cos (ctf^i 4" jS) 4“ -3li2 sin coti sin {uti 4“ jS). 

Thus Eq. (52) becomes 

<atz * o)ti 4" ^01 4“ ^02 — sin o)ti 4" •X^23 cos (w^i 4” P) 
4" XzzXu sin o)ti sin {o)ti 4" (54) 

Equation (64) is the final kinematical equation that is used in the 
remainder of this section to evaluate the r-f current under various 
circumstances. 
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In many practical cases the last term in Eq. (64) may be neglected, 
for example, where X12 is much smaller than Xis or X28, both of which 
may be of the same order and greater than unity; this happens when 
^01 O02 as with multiple transits in the usual reflex klystron. The 
last term in Eq. (54) may also be neglected when Xu and Xu are of the 
same order but are no greater than X23, with IX28I <$C 1 in turn; this cor¬ 
responds to the situation in any cascade amplifier operating at low signal 
level. 

In any such situation where the approximation of neglecting X12X28 

in Eq. (64) may be made, the equation may be written in an easily handled 
form by combining the two remaining sinusoidal terms into one. A 
little trigonometric manipulation shows that 

—X18 sin (ah + Z28 cos (cah + jS) == — Z' sin ((ah + O') (55) 
where 

« Xi3 - iZ28e^^ X' real. (56) 

Thus Eq. (54) becomes 

(ats == ((atI + O') -f- 001 “h 0O2 — 0' — X' sin ((ah “t" O'). (67) 

By comparison with Eqs. (3c) and (9) it is apparent that the fundamental 
r-f component of the bunched beam current is given by 

it = (58) 

Thus, to the degree of approximation with which these last two 
paragraphs have been concerned, the bunching is represented by an 
^‘effective bunching parameterX'; the current waveform and the 
maximum value of the various r-f components of the bunched beam 
current are the same as in simple bunching. The significance of the 
effective .bunching parameter may be realized more readily by noting 
that the respective r-f voltages momentarily glimpsed at the two gaps 
by an electron traveling at beam velocity are the real parts of the complex 
expressions, 

-“jV"^(Fi and — jVze^^). 

Thus, in using Eq. (56) to find X' as a geometrical sum of the bunching 
parameters Xu and X23, the phases associated with Xu and X28 are 
simply the corresponding phases of bunching produced by the first and 
second gaps. As would be expected, it appears from Eq. (58) that the 
phase of the bunching differs by the term —0' from that which would 
obtain in the presence of first-gap velocity modulation alone. 

Because F2, and hence Z28, are found to be functions of p in the prac¬ 
tical cases to be discussed later, it is clear that X' and 0' cannot be further 
specified without the knowledge of this functional relation which must 
wait for the specific situations in later chapters. There are, of course, 
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cases in which the X12X2S term in Eq. (64) must not be neglected. One 
of the most prominent of such instances is the cascade amplifier operated 
mth sufficient drive to produce optimum bunching at the third gap; 
here X23 « 2, and X12 and Xu are comparable to each other. The 

12X28 term describes the fact that the second gap has an intensity- 
modulated electron beam to work on; as a result of this fact, some parts 
of the bunch are more heavily weighted than others. The results of this 
effect are rather surprising, and arise from the fact that sin (ati 
sin (o)ti + /3) is an essentially second-harmonic term. Thus, making 
use of the definition of X' and 6^ in Eqs. (55) and (56), Eq. (54) may be 
rewritten 

0)^8 ~ “f* ^01 “h ^02 H-^2 ^ 

+ sin (2o>tx + iS - l)- (59) 

If, by analogy with Eq. (36), a new quantity y is defined by the 
equation 

then Eq. (59) becomes 

o)ts = "I” ^01 “h ^02 H-cos — X^ L (^^1 “b ^0 

- y sin ^2w<i + (51) 

This equation is very similar to Eq. (36); the only important difference 
is the inequality in Eq. (61) of the phases of the first- and second-har¬ 
monic terms. 

In the discussion of Eq. (36) in the section on finite gap-transit times 
it was shown that the presence of a second-harmonic term in the kine- 
matical equation may result in as much as a 28 per cent increase in ii; 
in the notation of Eq. (61) this would occur when X' = 2, 7 = 0.4, 

IT 
^ ~ ^ 2 discussing Eq. (36) there was no’ occasion to'consider 

what might happen if the first- and second-harmonic terms were out of 
phase, as they are in Eq. (61). By substituting the arrival time of Eq. 
(61) in the basic Eq. (8), and carrying out some manipulation, it may 
be shown that for a given X' and 7, \ii\ is always a maximum when 

^ = ifil — the condition X' = 2, 7 = 0.4, « jS — therefore, 

determines an absolute maximum of \ii\ for a kinematioal situation 
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described by Eq. (61). The same calculation just referred to shows that, 
m the neighborhood of this absolute maximum, |zi| is proportional to 

It is interesting to note that the origins of the second-harmonic 
terms in Eqs. (36) and (61) are rather different—the former case repre¬ 
sents the effect of a finite gap-transit angle in distorting velocity modula¬ 
tion, and the present case represents the cooperative effect of the two 
separated gaps, but the end result is the same. 

As a second point, it should be noted that if either or both of the drift 
spaces are reflector-like (negative bunching parameter) in cascade 
bunching, then the value of y given by Eq. (60) may be negative. A 
parabolic extrapolation of the curves in Fig. 9*5 (analytically justified) 
shows that a negative y may make a very sizable reduction in ^l. 

The general theory of cascade bunching has been developed in the 
second item of the reference at the beginning of the section; in this work 
the effects of harmonic voltages in the second gap have been considered, 
and the harmonic content of the bunched beam has been evaluated in 
detail. 

9*9. Bunching in the Presence of Harmonic Phase and Amplitude 
Modulation.—In the discussion of reflex-klystron modulation in Chap. 16, 
the question is considered of what happens when the beam current or 
the reflection time is subjected to a small degree of modulation at •a 
frequency near one of the harmonics of the fundamental frequency of 
velocity modulation. It is shown in that chapter that this question may 
be reduced to the simpler one of what happens when this additional 
modulation is at an exact harmonic of the fundamental frequency. 

Such a modulation is exactly like the type that is discussed in Secs. 
9*5 and 9-8; in these sections it is noted that when velocity modulation 
is produced by passage through a single r-f gap with a finite transit angle, 
or when it is produced by passage through two r-f gaps in succession, 
then the resultant velocity modulation possesses harmonic components. 

In Secs. 9*5 and 9*8, this fact is of interest because with large r-f 
voltage this ‘‘equivalent harmonic modulationis able to cause an 
increase in the maximum value of lfil//o from 1.16 to 1.48. A detailed 
proof of this last statement is not given in Secs. 9-5 and 9-8, nor will it 
be given here, for, in the small-signal modulation theory to which the 
results of the present section will be applied, it is not necessary to go into 
the lengthy details required to prove the relations that were used for the 
large-signal case. Nevertheless, the procedure used here indicates the 
method that would be followed in the large-signal case. 

The basic relation to be used is the general bunching relation given 
in Eq. (8). This relation will be specialized to give the fundamental 
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component of the bunched beam current, the only component to be 
investigated here; it will be generalized to include the possibility of time 
variation of the initial beam current. This equation then becomes 

vii = j (62) 

The simple transit-time relation, Eq. (3c), will be rewritten to conform 
to the customary, rather than the consistent, sign convention for the 
bunching parameter in a reflex klystron—that is, X will be considered 
inherently positive; this question of sign is discussed in Sec. 9*4. Thus 

+ ^ + X sin oiti, (63) 

Transit-time Modulation at a Harmonic Frequency,—Suppose that 
the drift-space transit angle, written now as is given a slight modulation 
at the frequency nco. Denoting by m the amplitude of the modulation 
(as distinct from the previous use of m to indicate harmonic order), and 
denoting by y an arbitrary phase angle (as distinct from the usage of 
Secs. 9*6 and 9*8), the modulation of d may be expressed as follows: 

^ = Bq[\ m cos {nwh + 7)]. (64) 

Since only small-signal modulation theory is in question, m is assumed 
to be small compared with unity. Equation (64) is in itself somewhat 
of an idealization because it assumes a modulation such that the value 
of d for a given electron depends only on its time of passage through the 
input r-f gap. This assumption is strictly valid only for a phase modula¬ 
tion produced simply by an additional velocity modulation at the fre¬ 

quency na>. 
Substituting Eqs. (63) and (64) into Eq. (62) and carrying out the 

Bessel-function expansion of the exponential terms, there results a com¬ 
plicated expression that may be greatly simplified by use of the assump¬ 
tion m <C 1; the final result is 

ix = -2/oC-'*»j7i(X) + j. (65) 

Current Modulation.—Let the time dependence of the beam current 
Jo(<i) in Eq. (62) be represented by 

/o(<i) = /oo[l + m cos {nuh + y)], (66) 

corresponding to a modulation of Jo at the harmonic rua. Since the 
Bessel-funotion expamdon of the integral in Eq. (62) is mmpler than in 
tile previously discuiraed case, it is not necessary to assume m ^ 1 for 
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simplification, and so the final result holds true for any degree of current 
modulation, that is, 

U = {ji(X) - I + e-'>(-l)»»y„+i(X)]j. (67) 

It is to be recalled that this equation has been derived for future use in 
connection with reflex klystrons; because the conventional, rather than 
the consistent, sign convention for X has been used in its derivation, ^ 

the sign of X in Eqs. (G5) and (67) must be reversed if these equations 
are applied to klystrons with field-free drift space. 



CHAPTER 10 

AMPLIFIER KLYSTRONS 

By D. R. Hamilton 

lO'l. Multiresonator Klystron T3rpes.—The preceding chapter has 
been concerned solely with the way in which velocity modulation and 
bunching produce beam current intensity modulation by the time the 
electron beam is ready to pass through the r-f interaction gap of the out¬ 
put resonator. The effects of the resultant driving of the output circuit 
in a number of klystron types that may be classified as multiresonator 
klystrons are considered in the present chapter and in the following 
chapter. The principal feature that these tubes have in common is a 
drift space that is usually field-free. This characteristic distinguishes 
them from the reflex klystrons that are discussed in the remaining chap¬ 
ters of the book. The proportionate number of chapters devoted to the 
discussion of multiresonator klystrons and of reflex klystrons is a rough 
indication of the relative utilization of these klystron types at the present 

time. 
The multiresonator klystrons are discussed first because they are 

naturally associated with the basic form of klystron—the amplifier. 
The klystron amplifier is operated simply by supplying r-f power to the 
input resonator and abstracting a larger amount of r-f power from the 
bunched beam at the output resonator; normally no regenerative feed¬ 
back is used. The frequency multiplier is an analogous device except 
that the output circuit is tuned to a harmonic of the input frequency, 
and therefore is driven by the beam at this harmonic frequency. An 
obvious adaptation of the amplifier is the two-resonator klystron oscil¬ 
lator in which power from the output circuit is returned to the input 
circuit in the proper pha^e for maintaining self-sustaining oscillations. 

Although d-c fields may appear in the drift space of multiresonator 
klystrons without reflecting electrons, they are usually mechanically 
inconvenient; hence, for all further discussion in this chapter, an entirely 
field-free drift space is assumed. Klystron amplifiers may be conven¬ 
iently divided into three categories. The simplest form of amplifier 
is the two-resonator single-stage type, the characteristics of which 
depend somewhat on its use. In general, when it is used to amplify 
small signals there is high-gain small-signal operation (X 1), and noise 
considerations are important; when used to generate large power outputs 
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it operates at optimum bunching (X « 2), and both gain and noise are 
comparatively irrelevant. These two categories of amplifier, which are 
termed “voltage amplifiers'^ and “power amplifiers’^ respectively, over¬ 
lap to a considerable extent and the division is somewhat arbitrary. 
A third convenient category is the “cascade amplifier,” so-called because 
it has three or more resonators and thus (as will shortly be seen in more 
detail) two or more stages of amplification. Such a klystron may be 
designed or used primarily as a “cascade voltage amplifier” or as a 
“cascade power amplifier”; in either case new operating characteristics 
are introduced by the cascade feature. 

The properties of klystron amplifiers are discussed in the present 
chapter. Chapter 11 deals with freqr**ncy multipliers and two-resonator 
oscillators. 

10*2. General Voltage-amplifier Relations.—schematic diagram of 
the type 41 OR, a s'ommon two-reso- 
nator klystron amolifier, is sho^vn in 
Fig. 101. An electron beam passes 
through the r-f gaps of two cavity- 
resonators in sequence; across the gap 
of the first cavity there is an r-f volt¬ 
age, the “input signal,” whose r-f 
power is supplied by an external 
source. The input-cavity gap voltage 
velocity-modulates the electron beam, 
which is thus, to some degree, bunched 
when it reaches the output gap. This 
intensity-modulated beam current 
acts as a driving current for the out¬ 
put cavity and delivers r-f power to the latter, just as in the microwave 
triode amplifier. 

General Amplifier Gap-voltage Relations.—The way in which an inten¬ 
sity-modulated electron beam drives the output cavity, whether in a 
klystron or in some other device, is discussed in detail in Chap, 3, There 
it is shown that if the shunt admittance of the output cavity plus load 
is Y^y as measured at the gap at a frequency co, and if the component 
of the intensity-modulated beam at the frequency w is then the 
complex r-f voltage V2 that is developed across the output gap at the 
frequency w is given by the expression 

y.M - (1) 

Thus the driving current for the output circuit is simply M^iiiS). When 
Eq. (1) gives a value of V% large enough to turn electrons back at the 

Coaxial transmission lines 
(Input) (Output) 

Fig. 10*1.—Schematic diagram of a 
typical (type 41 OR) two-resonator 
klystron amplifier. 
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second gap, Eq. (1) is no longer valid; this point is discussed in more 
detail in Sec. 10-6. In any case, this limitation on Eq. (1) dotes not 
arise in a voltage amplifier. 

It is convenient to use an explicit form for the shun;^ admittance Y2 

in dealing with Eq. (1). For a loaded cavity resonator with resonant 
frequency, shunt conductance, and Q of the cavity-plus-load combination 
given respectively by W2i C?2, and Q2, and with no other resonances near 
0)2, the shunt admittance is given by the expression 

Fa = (?2 [ 1 + jQ, - 5)] “ ^*(1 + (2) 

where 

= " - 1. (3) 
0)2 

Here the shunt conductance G2 may be written as 

(?2 ~ + Gjs + Gr; Gbr ^ Gb Grj (4) 

where (?l, Gb^ and Gr represent, respectively, the contribution to the shunt 
conductance by the external load, by beam loading arising from the 
passage of the beam through the resonator, and by ohmic losses in 
the resonator. Equation (4) simply provides a notation for use in dis¬ 
cussing these various contributions. 

It is also convenient in applications of Eq. (1) to define an “electronic 
transfer admittanceor “electronic transadmittanceYe as the ratio 
of output-gap driving current to input-gap voltage: 

Ye = M2 
Kl(co)' (5) 

In terms of the electronic transfer admittance and the output-cavity 
shunt admittance, the “gap-voltage gain or ratio of output- to input-gap 
voltages is given by 

F2 _ Ye _ Ye 
Vl Y2 G2{1 + 2jQ2d2) (6) 

(Note the change, in Eqs. (1) and (5), from the sign convention of 
Chap. 3.) 

General Amplifier Power Relations.—The power P2 delivered from 
the electron stream to the output resonator may be found either from the 
power required to sustain V2 across (j2, i|F2|^2, or directly from the 
power delivered to V2 hy the driving current M2i, 

-iReCMai^Fa) « -iRe(K?F?'F2). 
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Assuming the validity of Eq. (1), either procedure gives 

® (72(1 + 4Q|ai)' 

The '^circuit efficiency’’ m, ^>1" fraction of P2 that is dissipated in the 
external load Glj is given by 

Gl (8) 

hence the power Pl delivered to this external load is Pl = ^71^2, or 

p - 
^ (?|(1 + 4Q$5i)‘ 

(9) 

It may be observed from the relation between G^ and Gl in Eq. (4) 
that Gl affects Pl through the factor Gl/{Gbr + GlY, which has its 
maximum value of 1/^Gbr when Gl = G^J^. Thus at this optimum load 

. ^ \yeV,\^ 
^ + QIA) 

(10) 

Hence, at optimum load for an amplifier to which Eq. (1) applies, that is, 
when Gl = Gbr, half the power is delivered to the load and half to the 
internal power losses represented by Gbr> If Gl is decreased from the 
optimum value, the amount of power abstracted from the beam is 
increased, and y2 builds up to a higher value; but since the circuit 
efficiency m decreases more rapidly than P2 increases, the net value of 
Pl decreases. 

This matching of load to generator is not limited to klystrons; specific 
klystron properties have not yet been considered. In all subsequent 
discussions of voltage amplifiers it is assumed that the load is optimized— 
that is, that Gl == Gbr- Two later instances where this is not assumed 
are carefully noted. In power amplifiers there may be, as already noted, 
a situation where iFsl has an upper limit and is not given by Eq. (1); 
here Gl = Gbr is not the optimum load. In oscillators, contrary to 
the tacit assumptions made above, i depends on F2; again, therefore, 
Gl == Gbr is not necessarily the optimum load. 

The input-signal power Pi required to generate an input-gap voltage 
7i is given by 

Pl - ilFil^i. 

Since the first cavity is ordinarily unloaded, Gi is simply the value of 
Gbr for the first cavity, for example, Gbr\- If the Obr of the output cavity 
is denoted by (?bb2, the final expression for the power gain is 

^ ~ (11) 
P1 ^GbRtGbR2 

Note the similarity between this equation and Eqs. (6-22) and (6*7). 
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10*3. Two-resonator Voltage Amplifiers; Gain. Electronic Transad¬ 
mittance in the Voltage-^tmplifier Klystron,—^All the foregoing relations 
hold true for any amplifier to which Eq. (1) applies. They may now 
be particularized to the voltage-amplifier klystron by use of the cor¬ 
responding explicit expression for Ye. 

The expression for the fundamental component of the bunched beam 
current, which is derived in Sec. 9-2, is 

ii = (12) 

This equation needs to be modified in two ways for application to the 
voltage amplifier. In the first place, since the discussion is concerned 
with weak signals {X 1), 2J i{X) » X, In the second place,“debunch- 
ing^' may well be a predominant factor and should therefore be taken 
into consideration as soon as possible. As to this last point, it may be 
recalled from Sec. 9*3 and from Eqs. (13) and (21) of Sec. 9*3 that the 
leading terms in the reduction of the bunched beam current are 
1 — X{hiy/i2 for transverse debunching, and 1 — (hiy/6 for longi¬ 
tudinal debunching. Thus for weak signals the longitudinal debunching 
is the larger effect, and it contributes a factor (sin hi)/hi to ii and Ye. (In 
the present chapter, I denotes drift-tube length, as distinct from the use of 
X in Chap. 9 as a general coordinate measured along the length of the 
beam.) 

When 2J\{X) is’replaced by X in Eq. (12) and the effects of longitu¬ 
dinal debunching are included, and when from Sec. 9*2 it is recalled that 

= — jT, the electronic transadmittance of Eq. (5) becomes 

Ye 
sin hi 

hi ' 
(13) 

in which Ge, the ^‘small-signal electronic transconductance,is given by 

^ M1M2OQG0 
VJc = -o-> (14) 

where Go is the beam conductance lo/Vo. It may be noted that Ge 

is defined “omitting debunching,” and also that Ge is the absolute value, 
not the real part, of the corresponding Ye. Since Ge ^ Bo ^ 1, the 
dependence of Ye on I is contained completely in the term sin hi. The 
first (and best) maximum of Ye comes at hi = 7r/2. 

In comparison with Eq. (13) the electronic transadmittance based upon 
the unmodified ii of Eq. (12) is written 

(15) 

This equation describes the strong-signal situation when debunching 
is a minor factor; an eventual diminution of Ye occurs, but as a result 
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of overbunching rather than of debunching. As with Eq. (13), G^/X 

is independent of I and the dependence of Ye on drift distance is con¬ 
tained completely in Ji(X)j which has a maximum at Z == 1.84. 

In Fig. 10*2 are shown the functions sin hl/hl and 2Ji{X)/X, which 
appear in Eqs. (13) and (15). 

A numerical example may serve to emphasize the importance of 
debunching. Suppose Vo = 600 volts, Iq = 40 ma, a = 0.5 cm, X ~ 10 
cm; then by Eq. (9*11) it follows that h = 0.6 cm“”'. Thus \ Yf\ has its 
maximum value for hi = t/2 or 
I = 2.6 cm. On the other hand, 
for V/Vo = 10~^, overbunching 
takes place (X « 2) for Z ^ 30 
cm; and the equation F/Fo = 10“^ 
corresponds to the not-at-all-small 
signal power of about a milliwatt in 
a conventional cavity resonator at 
this frequency. 

Two points now arise in Eq. 
(13). In the first place, although 
Ge is a convenient over-all param¬ 
eter for describing a design goal or 
an actual tube, its use in p]q. (13) 
does not display well the depend¬ 
ence of Ye on the various tube 
parameters, such as the drift dis¬ 
tance L In the second place, the 
maximum of as set by debunch¬ 
ing occurs at /iZ = ir/2; this is a 
condition that is independent of signal level and is therefore one of the 
first to be satisfied in a well-designed tube. Therefore, in the following 
equation, hi has been set equal to ir/2, the value of ddGo required by this 
condition has been inserted in Eq. (14) and thence in Eq. (13), and the 
detailed tube parameters appear explicitly: 

Y-- 4m (“-5) 

Since Ye has been maximized with respect to debunching, it is propor¬ 
tional to Go^ instead of to Go as it would be (through Ge) if debunching 
were ignored in Eq. (13). This is true simply because Eq. (16) implies 
that if Go is increased, Z is decreased to keep hi ~ ir/2; hence the product 
BoGof to which the optimum F« is proportional, increases only as Go^^. 

The beam radius a in Eq. (16) arises in the same way; because h « ar^, 

it/followB that as a increases the optimum drift distance and gain increase. 

Fig. 10'2a.—Longitudinal debunching 
factor, sin hl/M, as a function of hi. 

Fio. 10*26.—Conductance compression, 
2Ji(X)/X, as a function of bunching 
parameter X. 
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Voltage-amplifier Klystron Power Gain,—^From Eqs. (11) and (16) 
the over-all power gain of the voltage-amplifier klystron at resonance 
may readily be obtained if optimum drift distance is assumed; thus, with 

Obr = GbBI = GBR2f 

Pl _ MlMl (waV 60(?o A, _ ir’ 

Pi 4|8 V X / (6OG1,*)*' V 2, 
(17) 

If there were no beam-loading, Go would not influence Gbr at all, 
and the power gain with continually optimized I would be directly 
proportional to Go//3. Since Go/^ is independent of Fo, the gain would 
then be independent of Fo except for the dependence of the factor 
M\M\ on Fo. At that value of Fo for which the two gap-transit times 
are each one-half cycle, MIM\ = 0.16. A four-fold increase in Fo cuts 
the transit time down to one-quarter cycle and raises M\M\ by about a 
factor of 4 to 0.66; however, no further increase in Fo can raise M\M\ 

above unity. Hence, at voltages such that the gap-transit times are 
less than a quarter cycle, and in the absence of beam loading, the power 
gain is practically independent of the beam voltage. 

This incipient proportionality between gain and Go/^ is a temptation, 
in designing a voltage amplifier, to go to very high values of Go/fi and 
very short values of I, Eventually, however, in this process the beam¬ 
loading conductance Gb becomes so large that it predominates in Gbr- 

As will shortly become evident, Gb may reasonably be assumed to be 
proportional to (?o, and in that case the gain becomes inversely, instead 
of directly, proportional to Go- The question now rises as to what is 
the optimum value of Go- The answer involves some comment on beam¬ 
loading in general. 

Beam Loading,—One type of beam-loading loss is that which occurs 
whenever a d-c beam passes through an r-f gap in a nonzero fraction of a 
cycle. In Chap. 3 it is shown that the contribution to Gb from this 
source is ^J(?o/24 {6g = gap-transit angle, assumed <Kir). This quantity 
simply corresponds to the energy consumed in velocity-modulating 
a d-c beam. Beam-loading losses measured experimentally in cavity 
resonators with some form of grid in the gap (see, for example. Fig. 12*19) 
are too large to be explained by this effect. The most likely source 
of these losses seems to be slow-speed secondary electrons that are 
knocked out of the grids with almost zero energy by the high-speed 
primaries of the beam. Such electrons oscillate back and forth in the 
gap under the influence of the r-f field, and they will eventually leave the 
gap, carrying with them some of the energy of the r-f field. Not much 
more is known of this effect at present than that it contributes to cavity 
losses a shunt conductance that is proportional to lo and is approximately 
independent of the beam voltage. 
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Let 

Ga = Wto. (18) 

Here h may depend on gap spacing, is approximately proportional to 
Fo over small ranges of Fo, and certainly depends on the secondary- 
emitting properties of the gap surfaces. The contribution of the term 
flJG'o/24 is not explicitly included. By a comparison of Eqs. (4), (17), 
and (18) it is seen that Go enters the expression for the gain in the form 
Go/(Gb + 5Go)*. When Fo is held constant, this expression is maximized 
with respect to Go when 5Go = Gb; and in this case 

Pl _ M\Ml /voV 1 
Pi '16/3 \ X / 606Gb' 

(19) 

Further MaximizaMon of Amplifier Gain.—^This expression for the 
maximum gain of a voltage-amplifier klystron is as far as one may proceed 
without more detailed knowledge of beam loading. As a particular 
example, at very low voltages and currents one might find the beam 
loading to be predominantly the type of loading by the primary beam 
that was discussed in Chap. 3; then Gb = ^Go/24 and h = ^/24. .Given 
this particular explicit expression for h and a knowledge of the way in 
which Gfi depends upon resonator dimensions, a further maximization 
of Pl/Pi has been carried out‘ but is not reproduced in detail here. 
In the work referred to, it was found that Pl/Pi has no absolute maxi¬ 
mum; the maximum of Pl/Pi at a given X and d-c input increases 
monotonically but increasingly slowly with increasing d-c power input. 

Comment on Design of Amplifiers for Maximum Gain.—The optimum 
tube design that gives the gain of Eq. (19) is one in which Gl = 2Gs 
and Gb = Gb. Thus, of the r-f power delivered to the output resonator 
by the fundamental component of the bunched beam, 50 per cent is 
delivered to the external load, 25 per cent is dissipated in ohmic losses 
in the output cavity resonator, and 25 per cent is consumed by losses 
introduced by the d-c component of the beam current. Furthermore, 
if input and output resonators are assumed to be identical except for 
the absence of external load on the input resonator, 50 per cent of the 
input-signal power goes into resonator ohmic losses, 50 per cent into 
beam loading. 

The assumption of the equality of the values of Gbb for both cavities, 
made in order to simplify Eq. (11), may be justified by repeating the 
discussion without making this assumption. It will be found that the 
gain is maximized when the ratio b/Ga is the same for both cavities and 
when the products M1M2 and GaiGat have their piaximum value; 

* W. W. Hansen and E. Feenberg, “Klystron Voltage Amplifiers,” Sperry Gyro¬ 
scope Co. Report 6221-108, Sept. 22, 1943. 
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barriag unusual beam-loading conditions^ these conditions are satisfied 
by identical cavities. This point is mentioned here because, if the input 
and output cavities are identical, then the optimum connections from 
cavity to external transmission line are also the same for both cavities. 
The optimum condition for the input connection to the first cavity is 
that the cavity should present a match to the line at resonance when 
the beam current is turned on. This condition is also the condition for 
loading the resonator so that G2 = 2Gbr when the line is terminated in 
its characteristic impedance looking away from the resonator. Thus a 
complete symmetry of the amplifier usually corresponds to optimum 
input and output conditions. 

A comparison of some of these results with experiment is made in 
Sec. 10*7, which shows the agreement to be good. 

Relation Between Input- and Output-signal Voltages.— AM of the fore¬ 
going discussion of amplifier gain has been concerned solely with the 
power gain at resonance—that is, w = a>i = a>2 and 5i = 62 = 0. Nothing 
has been said about bandwidth or about the way in which the relative 
phase of the input and output voltages depends upon frequency. 

If it is assumed, merely to avoid arbitrary constants, that input 
and output transmission lines have the same characteristic impedance, 
then the absolute value of the ratio of output to input voltages \ Vl/Vs\ 

is given at resonance by 

The ratio VlIVs is compounded of three factors; Vi/Vs, F2/F1, and 
Vh/Vi- The first and last of these ratios depend purely on circuits and 
do not involve any properties peculiar to the klystron; Vl/V^ is essen¬ 
tially independent of frequency; Vi/Vs is given, within a multiplicative 
constant, by 

^ « (1 + 2jQih)-\ 

For any voltage amplifier, by Eq. (6), 

Vi _ Y. 
Vx Oi{l + 2jQih)' 

Since, for a symmetrical amplifier with optimum load, it has been found, 
in general, that Gx — Gbr and Gi = 2Gbk, Qx and Qi may be written 
Qbb and iQBB respectively. When all these factors are combined and 
normalized by Eq. (20), 
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within an arbitrary complex multiplicative constant; here Pl/Pi is 
the power gain at resonance. 

The phase and bandwidth properties indicated in Eq. (21) are those 
of any amplifier with tuned input and output circuits. By staggered 
tuning (coi 7^ 0)2), the bandwidth may be increased at the expense of gain. 
The only characteristic klystron property is the factor This factor 
points up the ease of phase-modulating a klystron amplifier. A given 
percentage of modulation of the beam voltage produces half this per¬ 
centage of modulation of 60; the larger Oo is (60 radians is an easily 
obtained value), the larger vn\l be the resultant phase modulation of the 
output signal. In the absence of beam loading, and possibly in its 
presence, there will be no accompanying amplitude modulation. To the 
same degree that gain is independent of beam voltage, as discussed above, 
there will be no amplitude modulation accompanying the phase 
modulation. 

10-4. Voltage-amplifier Klystrons: Noise.—One of the most obvious 
applications of a voltage amplifier is to enlarge weak r-f signals before 
they are detected or are mixed with local-oscillator signals in a receiver. 
Any amplifier has an inherent output noise power, however, which, if 
large enough, makes the amplifier useless as an r-f preamplifier. Ques¬ 
tions of noise are thus vital to voltage amplifiers. 

Noise may arise from any of several sources in a klystron amplifier. 
One such source is the thermal voltage fluctuations across the r-f gap, 
which are exactly analogous to the voltage fluctuations across the 
terminals of a resistor (^^ Johnson noise well-known equation for 
the mean-square fluctuation voltage is 

(volts) S (22) 

where A/ is the bandwidth of the measuring device, T is the absolute 
temperature of the resistor, the conductance of which is G, and k is 
Boltzmann^s constant (1.4 X 10“^® joules/®K). In the klystron amplifier 
the conductance G corresponds to the shunt conductance of the input 
cavity including the effects of any external load that is coupled into 
this cavity. In an ideal receiver, the available signal power needed to 
give unity signal-to-noise ratio in the receiver output would he kT Af; Af 

is the limiting bandwidth of the receiver, whatever the factor may be 
which determines this bandwidth. If the input-cavity thermal nedse 
were the only source of noise in klystron r-f amplifiers, then the necessary 
signal power would still be A-T A/, and there would be no advantage to 
placing this ideal klystron r-f amplifier ahead of the ideal receiver. 
However, as receivers (including the mixer) do not have ideal sensitivity, 
an r-f amplifier with input circuit noise that is predominantly thermal 
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noise would be a very useful device. Thermal noise thus serves as a 
standard by which to measure other sources of noise in the amplifier. 

Another of such sources of noise lies in the fluctuations in the beam 
current (shot effect). Any such random fluctuations in the beam current 
correspond to an intensity modulation of the beam current at all fre¬ 
quencies simultaneously—including, of course, the frequency to which 
the first resonator is tuned. If it is assumed, for the sake of simplicity, 
that the input signal is matched into the input cavity of the amplifier, 
the shunt conductance of the input (iavity will be 2GBRf where 
is the shunt conductance of the beam-loaded cavity by itself. If 
is the mean-square current fluctuation that is due to shot noise, this 
fluctuating current delivers a noise power Pn to the input cavity, where 

Pi. 1 M\i% 
2 Gbr 

The resulting random voltage will velocity-modulate the beam. 
At low frequencies it is well known that, when the current lo is drawn 

from a temperature-limited cathode, = 2c/o A/; here c is the charge 
on the electron, l.G X coulombs. When the current h is drawn 
from a space-charge-limited cathode, the low-frequency fluctuations in 
Iq are smoothed out by the reaction of the potential minimum virtual 
cathode^0* However, a fluctuation in electron emission so rapid that 
it takes place in a time less than a ‘Hime of reaction of the potential 
minimum will not be smoothed out. Thus at microwave frequencies 
the quieting effect of space-charge limitation seems small (see page 160). 

If it is still assumed that the shunt conductance of the input cavity 
has been increased to 2Gbr by the associated signal-input circuits, the 
noise power delivered to the input cavity by shot effect in the electron 
beam is thus M\eIo Af/GsR watts, which corresponds to a mean-square 
fluctuation voltage, arising from the shot effect, of 

in = 
2(?L 

(23) 

Even if the beam current were not at all intensity-modulated by the 
shot effect as it leaves the cathode, intensity modulation would result 
at the anode (first gap) simply as the result of the thermal spread in the 
velocity of the electrons as they leave the cathode. This thermal spread 
in velocity is the same as the result of a random velocity modulation, 
and during passage of the beam from cathode to anode there ensue the 
usual bunching effects and the resulting intensity modulation. The 
theory of bunching in a space-charge-limited potential, which is necessary 
in a discussion of this question, is complicated and is not reviewed here. 
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Equations (22) and (23) must suffice for estimating orders of magnitude 
of noise effects. 

The relative influence of shot noise and Johnson input-circuit noise 
is measured by the ratio of the corresponding mean-square fluctuation 
voltages across the input gap. If the mean-square voltage fluctuation 
due to thermal (Johnson) noise is written asT|, and if 6? = 2GitR is placed 
in Eq. (22), Eqs. (22) and (23) give for this ratio 

Vl _ M\eU 
V% • 2k f 

(24) 

The effect of some of the" factors in Eq. (24) may be seen in Fig. 
10*3, which shows the noise charac¬ 
teristics of a 3000-mc/sec receiver 
preceded by a three-resonator klys¬ 
tron amplifier.^ These character¬ 
istics are expressed in terms of the 
noise figure, which is the ratio to 
frTA/ of the minimum input-signal 
power for which unity signal-to-noise 
ratio may be obtained at the output 
terminals of the receiver. Also 
shown in the figure is the power gain 
of the klystron amplifier and the 
noise figure of the receiver without 
the klystron r-f amplifier; this latter 
noise figure, 19 db, is determined pri¬ 
marily by the crystal-mixer noise. 

At the upper end of the beam-voltage range in Fig. 10*3, the amplifier 
gain is much higher than the noise figure of the receiver. Hence the 
noise from the input of the amplifier here masks the receiver (crystal) 
noise and is the determining factor in the over-all noise figure, which is 
now simply the ratio Y\/V\ given by Eq. (24). Since both M\ and lu 
decrease with decreasing beam voltage, the over-all noise figure also 
decreases with the beam voltage in this region of high gain. This effect 

appears in Fig. 10-3. 
Eventually, however, a decrease of beam voltage brings a very sharp 

drop of gain caused by the approach of M\ to zero as the input-gap transit 
angle approaches 27r radians. This effect is very marked in Fig. 10-3; 
the gain has a value of approximately zero for Fo ^ 225 volts. This 
voltage corresponds to a gap-transit time of about 2t radians as calculated 
from the resonator dimensions. In the limit, as gain approaches zero, 

(volts) 

Fig. 10*3.—Dependence on klystron 
beam voltage of: (-.4) the over-all noise 
figure for 3000-Mc/sec receiver preceded 
by klystron amplifier; {B) amplifier gain; 
and (C) receiver crystal noise figure. 

1 Data provided by E. Barlow, Sperry Gyroscope Co. Research Laboratories, 
Garden City, N.Y. 
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the noise contributed by the amplifier input circuit (but not necessarily 
by the amplifier output circuit) may be neglected; since the primary 
effect is the attenuation of the input signal, the over-all noise figure 
becomes inversely proportional to amplifier gain and increases with 
decreasing beam voltage. 

The combined effect of these two trends is to produce a minimum in 
the noise figure, which for the tube used in Fig. 10*3 occurs at Fo = 270 
volts. It is clear from the figure that there is no advantage, at least as 
concerns ultimate sensitivity, in using this particular tube as an r-f 
amplifier ahead of the crystal mixer, even if the amplifier is operated at the 
position of minimum noise figure. 

It is interesting to note how the noise figures of Fig. 10-3 compare with 
those that may be calculated from Eq. (24). Consider the situation at 
Vo = 600 volts. Here lo = 16 ma, Gbr » 1.0 X 10‘ ^ mhos. Ml « 0.37; 
this value for Ml is deduced from the value Ml « 0 at Fo = 225 volts. 
At r = 300®K, these figures give 

II = 4900 = 37 db, 
V% 

as compared with the observed 35^ db shown in Fig. 10*3. 
So far no low-noise klystron amplifiers have been developed that are 

satisfactory as r-f preamplifiers. A promising approach to this problem 
is, however, suggested by Eq. (24) and data such as that of Fig. 10*3. A 
diminution of io diminishes FJ/Ff, no matter how the lo diminution is 
brought about. On the other hand, except for beam-loading effects, 
the amplifier gain may, by Eq. (17), be made independent of a reduction 
in Jo—provided this is carried out by a reduction of beam voltage at 
constant electron-gun perveance and is accompanied by a change in 
resonator dimensions such that Mi and Gr are unaltered. This process 
thus requires a whole series of compensating design changes. Without 
analyzing these points in detail, tw^o warnings may be made. First, 
the requisite small voltages imply minute physical structures, which are 
difficult to fabricate. Furthermore, there may be a relative '^velocity 
modulation’^ that is due to a thermal spread in the electron-emission 
velocity; if this were present it would be considerably increased at low 
values of Fo and might give rise to enhanced bunching and random 
fluctuations in Jo. 

10*6, Two-resonator Power-amplifier Klystrons; Bunching Condi¬ 
tions.—In discussing voltage amplifiers in Secs. 10-2, 10-3, and 10-4 it is 
assumed that the main function of the amplifier is the amplification of 
small signals. This assumption implies that gain is of paramount 
importance. Also, the input signal is assumed to be so small that A' 1, 
in which case the efficiency is always negligibly small; therefore an 
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increase in gain at the expense of efficiency might be considered profitable. 
On the other hand, there are also applications in which the maximum 
obtainable efficiency is desired but the amount of gain is comparatively 
unimportant, as in the buffer amplifier. 

The present section is concerned with two-resonator amplifiers 
designed for, or operated at, conditions approximating maximum effi¬ 
ciency. Since this dichotomy of all amplifiers into power amplifiers'^ 
and ^Woltage amplifiers’’ in the sense used here is somewhat artificial, 
a few points regarding operation at high signal levels, but not at maximum 
efficiency, are also discussed. It should be noted that cascade amplifiers 
(Secs. 10*8 through 10-10) combine some of the features of both voltage 
and power amplifiers. 

Optimum Bunching and Overbunching ~-The most striking feature of 
the power amplifier, or of any other klystron operating at optimum 
bunching, is the nonlinear dependence on the bunching parameter of the 
r-f components of the bunched beam current. The eventual diminution 
of any of these components as X increases iKS known as ‘‘overbunching” 
and has been discussed in Sec. 9-2: overbunching has also been noted in 
Sec. 10-3 by way of comparison with the diminution of r-f current compo¬ 
nents by debunching. The values of 11 and F,, if debunching is neglected, 
are repeated from that section for ease of reference; 

ii = 2IoJi(X)e-’\ (12) 

„ • 2JiiX) 
(13) 

^ M 
(jTe — 2 (14) 

The function Ji{X) is shown in Fig. 9*5, and 2Ji{X)/X is shown in 
Fig. 10-2. The function 2Ji(X)/X is known as the “conductance 
compression.” 

The maximum output power occurs at Z = 1.84 (“optimum 
bunching”), at w^hich point \ii\ has its maximum value of 1.16 /«. For 
X = 1.84, \Ye\ is diminished from its small-signal value Ge by the factor 
2Ji{X)/X = 0.63; hence the power gain given by Eq. (11) is diminished 
from its small-signal value by the factor (0.63)^ = 0.40. This result 
may be altered somewhat by debunching and by limitations on the out- 
put-gap voltage, both of which phenomena are discussed shortly. 

Customary operation of a power amplifier, then, is in the vicinity of 
X ~ 1.84; in the remainder of this section, it is therefore assumed that 
X « 2. 

The diminution of output power with overdrive gives rise to an output 
characteristic like that of Fig. 10-4; if the r-f drive power is enough to 
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produce overbunching with the input cavity tuned to resonance, opti¬ 
mum bunching is obtained with the input cavity somewhat detuned in 
order to cut down the input-gap r-f voltage. 

Debunching,—The effects of debunching for X « 2 are not nearly so 
clear-cut as they are for X <5C 1. It may be recalled that derivation of 
longitudinal debunching effects takes the form of finding the change in 
the bunching parameter effected by debunching; the results are strictly 
valid only w^hen the resulting X is less than, or equal to, unity. If the 
condition V/Vo ^ hfiX/ir is satisfied, X never exceeds unity, and there 
ensues a clear-cut situation in which none of the electron trajectories in an 

Applegate diagram (see Fig. 9*2) 
would ever intersect. It is thus im¬ 
mediately apparent that, in order to 
get something approximating opti¬ 
mum bunching in a power amplifier, 
the input r-f drive must be such that 
V/Vq > hp\/ir, or, what is the same 
thing, X'o > hL Here Xo is the value 
of in the absence of debunching. 
If Xo > hi so that X may exceed unity, 
the theory of Sec. 9-2 breaks down 
because at least some of the electron 

trajectories are now intersecting. A perturbation calculation starting 
from the known conditions at X = 1 might well shed considerable light 
on the situation, but has not been carried out. Very qualitative con¬ 
siderations indicate that for good bunching in the vicinity of Xo = 2, the 
condition Xo > hi should be met with a factor of safety of 2—that is, 

hi S 1. (25) 

In this case the bunched beam current may be diminished somewhat less 
than by the factor (sin hi/hi) » (1 — (hl/^/ij), which holds for X < 1. 
Wall effects also lessen the longitudinal debunching effect, as already 
noted. 

The calculation of transverse debunching in Sec. 9 3 is approximate 
because it is based upon a center-of-the-bunch charge density propor¬ 
tional to X; this assumption is probably not very inaccurate for X g 2. 
The calculation gives a spreading of the bunch proportional to X® or Z®, 
and a consequent fractional loss of current from the original beam area 
that amounts to (hl)^/& when X = 2. (These results can hardly be 
applied for X > 2, where charge densities are decreasing rather than 
increasing with X.) The loss of current is the same as the naively 
calculated longitudinal debunching loss; the latter is, however, suspected 
of being less, in fact, than the naive calculation indicates, The presence 

Input cavity tuning 

Fig. 10*4.-—Klystron amplifier out¬ 
put characteristic: {A) excess drive 
producing overbunching at resonance 
and (B) optimum r-f drive. 
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of one type of debunching diminishes the space-charge forces that give 
rise to the other t>pe; hence it seems safe to assume, for the net effect 
of both types of debunching, a reduction by a factor of 1 — {hiy/& 
at X = 2. 

If Eq. (25) is satisfied, the debunching loss in ii and Ye will not exceed 
about 16 per cent. The 16 per cent loss for hi = 1 could be halved by 

reducing hi to l/\/2. If this were done by a reduction in I, an increase 
in and in the r-f drive power by a factor of 2 would be required for 
the resultant 8 per cent increase in output-circuit driving current; or, 

if hi were reduced to l/\/2 by a 50 per cent reduction in Jo, the output 
would be halved for an increase in efficiency by one part in twelve. 
Ordinarily, neither procedure is very profitable. Hence, good design 
seems to indicate /iZ = 1, or somewhat less than the value of 7r/2 deduced 
for the voltage amplifier; therefore, in later discussions of efficiency it is 
assumed that ii has been reduced by debunching from I.I6J0 to| X I.I6J0 

or O.97/0. 
10-6. General Klystron Power-amplifier Relations.—In Sec. 10*2 a 

number of general voltage amplifier relations are considered; these rela¬ 
tions hold true for any voltage amplifier, regardless of the manner in 
which the output-circuit driving current is derived from the input signal. 
The present section deals with certain general relations that characterize 
any power amplifier, wdiether klystron or microwave triode; these rela¬ 
tions have been touched upon, in less detail, in connection with the 
discussion of triode amplifiers in Chap. 6. Early in the present section, 
however, the explicit distribution of electron energies in a velocity- 
modulated beam enters into the equations; this fact makes improper a 
direct application of all the subseejuent details to triodes. 

The Limitation on Output-gap Voltage.—The basis of Sec. 10*2 is 
Eq. (1), which describes the driving of the output resonator by an r-f 
current. As long as this equation remains valid, most of the develop¬ 
ment of Secs. 10*2 and 10*3 for voltage amplifiers holds true for power 
amplifiers also; it is necessary, in dealing with klystron amplifiers, to 
take account in Ye only of the changes in bunching and debunching that 
have just been discussed in Sec. 10*5. 

Equation (1) assumes that properly phased electrons are able to 
deliver an amount of energy 6^2] F2I to the output resonator in passing 
through the gap. In an output r-f gap with negligible transit angle, 
this assumption is obviously untrue if jF2l > Fo, for then an electron 
entering the gap at the moment of retarding peak r-f voltage will actually 
be reflected from the gap. Far from delivering all its initial kinetic 
energy, the electron will actually regain some of its energy in retracing 
its path out of the gap and will return to the drift space with an energy 
equal to IF2I — Fo. The bunch will not have delivered so much energy 
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to the field as would be delivered if IF2I = Fo, and yet more power is 
required to maintain a gap voltage IF2I > Fo than is required for 
IF2I = Fo. Thus the gap voltage F2 will never rise above Fo. 

Strictly speaking, this dedu(»tion from the physical picture of the 
mechanism in the output gap holds true only when F(= |Fi|) = 0 and 
when the output-gap transit angle is zero. If F > 0, half the electrons 
have less energy than eFo and therefore may be turned back for some 
value of IF2I < Fo; a more exact calculation^ for zero gap transit angle 
shows that the maximum value of IF2I is related to F by the approximate 
relation 

1x^2! g Fo - F. (26) 

The effect of the output-gap transit angle is not well known, but prob¬ 
ably it affects the efficiency more chrough beam-loading than through 
influence on maximum F2. Nevertheless, the foregoing comments and 
the succeeding deductions are rigorous only for il/2 « 1. 

Thus, the simple Eq. (I) for the driving of the output resonator is 
invalid whenever it predicts the physically impossible situation 

IF2I > Fo - F 
- - that is, whenever 

Ahliil ^ (Fo - F)ir2|. (27a) 

Whenever the condition of Eq. (27a) is met and Eq. (1) is made invalid, 
the latter equation is then to be replaced by 

IK2I = Fo - F. (276) 

The phase of F2 is the same'-* as the phase of ii/Y^^ 
Equations (27) have an unexpected consequence in that they make 

the amplifier gain once more a relevant quantity in the power amplifier 
because a low gain means a high F/Fo for optimum bunching, with the 
resulting low IF2I and low efficiency. 

Output Power in the Power Amplifier,—The principal questions that 
have to be answered in the light of this new limitation imposed on F2 

by Eq. (26) have to do with the way in which the output power Pl 
depends upon the various tube parameters such as lfi|, Fo, and Gl. 
It is convenient initially to consider only what happens when w = <02; 
what happens when the output resonator is tuned off resonance is easily 
appended later. 

^ E. Feenberg, ‘^Theory of Bunching,'' Sperry Gyroscope Co. Report 5221-105, 
Nov. 24, 1942. 

* It seems more convenient in this section to use instead of its equivalent 
F,Fi because Vi has lost much of its previous importance, and |ti| always has a known 
value of approximately 7o. 
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The power dissipated in cavity-plus-load in the presence of a gap 
voltage (Fo — V) is i(Fo — F)^G2* This power must therefore also be 
that delivered by the beam at the gap whenever Eq. (27a) is satisfied. 
The circuit efficiency is still Gl/G^] hence, when Eq. (27a) holds true, 
the power delivered to the load is 

Pl = i(Fo ~ V)K}l- (28a) 

This equation expresses several fairly obvious facts. When excess 
driving current is available, an increase in this current does not increase 
Pl, as is shown by the absence of ii from Eq. (28). When excess driving 
current is available, an increase in Gl does not cause a decrease in F2; 
hence Pl increases directly with Gl. 

When the condition in Eq. (27a) does not hold, Pl is given by Eq. (9), 
which for convenience is rewritten heie with fj2 written as Gan + Gl, 
YeV\ written as and 62 — 0: 

Pl - lM\\ii\HiL/(GBR + Gl)\ (286) 

For comparison with Ec^s. (28a) and (286) it is instructive to consider 
what the maximum value of Pl may be for a given value of (Fo. — F) 
and ikf2^1. This maximum value of Pl vdll be obtained when all of the 
current Mzii is effective in driving the output cavity—that is, when any 
larger value of Gl would make IF2I < (Fo ~ F)—and when none of the 
power delivered by the electron stream is wasted in ca\dty or beam¬ 
loading losses—that is, Gbr = 0. In this case Pl will have the value 
Pmax given by 

P.« = W2\ii\iy, - F). (29) 

This illustration may be further idealized by setting — 1, F<5CFo, 
and l^il == I.I6/0; then the over-all efficiency of the amplifier, 

Pmax 

loVo 

is 58 per cent. This percentage derives from the fact that the maximum 
value of Ji(X) is 0.58 and is the basis of the common statement, ‘‘The 
maximum efficiency of the klystron is 58 per cent.'^ (In Secs. 9-5 and 
9*8 it is shown that bunching with a finite input-gap transit angle and 
cascade bunching may produce a waveform for which the “58 per cent’' 
becomes ‘^74 per cent.") 

At the end of this section the factors that modify this “58 per cent" 
are collected and reviewed; for the moment, Pn«x serves simply as a 
convenient normalizing factor for expressing the values of Pl. It is 
convenient to define one more normalizing quantity, a critical con¬ 
ductance Oc given by 

Oc s 
M2\il\ 

(Fo - vy (30) 
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This Gc is not the transfer conductance; it is simply a measure of the 
output-circuit driving current in units that are convenient for expressing 
the condition stated in Eq. (27a). By comparing Eqs. (27a), (28a), 
(286), (29), and (30) it is seen that the behavior of the output power of an 
amplifier with its output cavity tuned to resonance is completely described 
by the follo^ving equations: 

for 

and for 

= ^(Fo - YYGc) 

Gc ^ (72 — GbR + Gl, 
Gl. 
Gc^ 

Gc ^ G2 — GbR + Gl^ 
Pl ^_ \Gc/ 

-Pniax (Gbr/Gc 4* Gl/GcY 

(31a) 

(316) 

(31c) 

The relation between PiJPm^x and GjJGc for various values of Gbr/Gc 

is shown in Fig. 10*5. Here the value of Pl/P^^x given by Ecp (31c) 

Fia. 10-5.—Dopendenoe of relative out¬ 
put power Ph/Pmax on normalized load 
conductance Ol/Gc, for various values of 
the normalized internal-loss conductance 
Qbr/Gc\ dotted lines represent form that 
curves would have if F2 were not limited. 

0 1 2 
('br/ 

Fig. 10’6.—Value of the normalized 
load conductance (GL/Crc)opt which maxi¬ 
mizes output power, as a function of nor¬ 
malized internal-loss conductance Gbs/Gc, 

is shown as a dotted line for that region in which this equation is inappli¬ 
cable because of the limitation on F*. 

Let the value of Pt/Pm^ at optimum Gl/Qc be (Pt./P—)_• then it 
is apparent from Fig. 10-5 and Eqs. (31) that 

for (326) 
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Equation (32a) is the result previously derived [cf. Eq. (10)] with no 
attention paid to the limitation on the optimum load is Gl = Gbr^ 
For the region covered by Eq. (326), for which 1721 = 7o - 7, the 
optimum Gl is given by (?l/Gc = 1 - Gbr/Gc. The dropping of Px/Pm« 
below unity for 0 < Gbr/Gc < 0.5 is caused by the corresponding decrease 
of circuit efficiency below unity; when Gbr/Gc > 0.5, the circuit efficiency 
remains constant at i, but a continuing diminution of Px/Pmax is caused 
by the decrease in 72, which now sets in. 

Figure 10*6 shows this relation between Gbr/Gc and the optimum 
value of Gl/Gc) Fig. 10-7 gives the dependence of the corresponding 
maximum value of PjL/Pmax on Gbr/Gc. Figure 10*7 and Eq. (29) 
express the essence of all that has 
been said concerning loading condi¬ 
tions and limitation on output gap 
r-f voltage in the power amplifier. 
The resulting diminution in effi¬ 
ciency is seen to depend only on 
Gbr/Gc. In the absence of beam 
loading, Gbr/Gc gets smaller and the 
efficiency gets higher as ii is in¬ 
creased; but beam loading, if it is 
present at all, will eventually dominate in Gbk, and Grr/Gc will then 
asymptotically approach a nonzero lower limit as /o or ii is increased. 
Writing Gb = bGo as before, this lower limit is given by 

1 

0 12 3 

^brI^c 
Fig. 10-7.— Dependence of normal¬ 

ized output powei at optimum load 
(PL/Pinax)max, Oil normalized internal- 
loss conductance GehIGc. 

> WoO - V/Vo) 
Gc = 

(33) 

The dependence of output power on tuning of the output resonator 
is now fairly obvious. At values of 62 for which 

Ga ^ 17*1 = G2II + 2iQ2«2l, 

Eq. (28o) for Pi will still hold true, and in particular Pi will be inde¬ 
pendent of St; thus the center portion of the resonance curve will be 
flat-topped. When 62 is so large that Go < 1721, the usual form of 
resonance curve will obtain. Thus the distortion of the form of the 
resonance curve is one way of identifying the onset of the limitation of 
Vt. 

10*7. Comparison of Theory and Experiment for Two-resonator 
Amplifier Elystrons.—^After this discussion of the various factors that 
enter into voltage-amplifier and power-amplifier operation, it is interest¬ 
ing to combine them for a specific case and see how the result compares 
with experiment. The type 410R klystron, perhaps the best-known 
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two-resonator klystron amplifier, of which a schematic diagram is shown 
in Fig. 10*1, will be used for this purpose. In Fig. 10*8 is shown a graph 

of output power as a function of 
input r-f power at Fo = 2070 volts 
and with zero volts on the beam- 
focusing electrode.^ The functional 
form of this curve is discussed later; 
for the moment the quantities of 
interest are the maximum efficiency, 
the small-signal power gain, and the 
input and output r-f powers at maxi¬ 
mum r-f output. These quantities 
are optimized at a negative bias of 
60 volts on the control electrode, 
and the optimum values that will be 
used are therefore not identical with 
those shown in Fig. 10*8. 

The operating characteristics 
(and other relevant data) to be 
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Fig. 10*8.—Dependence of 
power Pl on input r-f power P 
type 41 OR amplifier klystron. 

output 
in the 

observed at Fo = 2070 volts are as follows: 

Fo. 
^. 
lo. 
Maximum Pl. 
Corresponding Pi. 
Maximum vl (over-all efficiency) 
Small-signal Pl/Pi. 
I. 
a. 

X. 

Equivalent gap spacing. 
Grid transmission loss. 
Or. 

2070 volts 
0.091 
92 ma 
18 watts 
1.8 watts 
9.5 per cent 
25 
3 cm 
0.5 cm 
10 cm 
0.23 cm (both cavities) 
0.08 per grid 
0.75 X 10“® mhos. 

The number of grids through which the beam has passed at any given 
stage may be ascertained from Fig. 10*1; in calculations based on current 
at any point, the beam current will be 0.92^ X 92 ma, where n is the 
number of grids traversed to reach the point in question. The relevant 
factors affecting operation may now be summarized. 

Debunching: Effective beam current = 92 X (0.92)® ma = 71 ma; 
from this, h = 0.29, hi = 0.87. Thus the design is very close to 
the optimum for debunching specified in Eq. (25). Debunching 
diminishes \ii\ by the factor 1 — (hl^/Q = 0.87. 

' Sperry Gyroscope Co, Technical Information Sheet on the type 410R klystron. 
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Beam-coupling coefficient: Since == 0.91 cm, an equivalent gap 
spacing of 0.23 cm means a quarter-cycle gap-transit angle, for 
which M = 0.90. 

Depth of modulation 7/Fo: In the expression X = irZM7//SFoX, 
the above values of Z, M, /S, and X give F/Fo = 0.20 at optimum 
bunching (X == 1.84). 

Bunched-current component i\ and critical conductance Get With 
four grid absorptions before the current enters the output gap, if 
optimum bunching is assumed and the above debunching diminu¬ 
tion included, 

|ii| = 2Ji(1.84) X [1 - {hiy/(S] X (0.92)4 X 92 ma = 66 ma. 

These values makeGc = M2liil/(Fo — F) = 3.6 X 10~® mhos. 
Beam-loading: From measurements of Qbr as a function of beam 

current in this tube' it is known that Gbr/Gr = 1 + /o(ma)/34. 
The value of Gr given in the above summary of operating conditions 
is an average of values obtained by velocity-spectrograph measure¬ 
ments^ and by calculation.'’ The effective beam currents in the 
first and second r-f gaps are 92 X (0.92)2 = 78 ma and 

92 X (0.92)4 = 65 ma 

respectively; these values give Gbri = 2.5 X 10”* mhos, 

Gbr2 = 2.2 X lO”* mhos. 

Maximum efficiency: Since GBie2/Gc = 0.61, IF2I has not quite reached 
the value (Fo — F), and, by Eq. (32a), {Pl/P^t^ = 0.41. 
Thus, all told, the presence of circuit and beam-loading losses 
(nonzero G^b) has reduced the circuit efficiency and has so reduced 
the output gap voltage that the load receives 41 per cent of the 
power that it would receive if Gbr were zero. If Gbr were zero, 
the conversion efficiency would be 

/oFo 
0.26; 

thus debunching, grid-absorption losses, beam-coupling coefficient, 
and the limitation of IF2I to (Fo — F) have reduced the ideal 
^'58 per cent'' to a semi-ideal 26 per cent that would obtain if there 

1 Data communicated to author by M, Chodorow, Sperry Gyroscope Co. Research 
Laboratories, Garden City, N.Y. 

*J. J. Caldwell, “Velocity Spectrograph Measurements of Beam I^oading,” 
Sperry Gyroscope Co. Report 5221-1015, Oct. 23, 1944. 

* Microwave Transmission Design Data, Sperry Gyroscope Co., Publication No. 23- 
80, Brooklyn, N.Y., 1944. 
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were no circuit or beam-loading losses. The over-all efficiency is 
the product of the two factors just discussed, or 

VL = 0.41 X 0.26 = 10.6 per cent. 

Hence the predicted value of Pl is 20.2 watts, which is in good 
agreement with the observed value of 18 watts. 

Power gain at optimum bunching: The calculated required input r-f 
power is Pl = V^/2Gbri = 2.15 watts; hence, at optimum bunching 
the power gain to be expected is given by Pl/Pi = 9.4. 

Small-signal power gain; The calculated small-signal electronic 
transconductance is Ge = il/iilf2^oGo/2 = 27 X 10-® mhos; if 
the factor 0.87 is allowed for debunching, 17^1 = 23.5 X 10""^ mhos 
at resonance. And when Eq. (11) is generalized forGsRi 9^ Gbr2, 
the predicted small-signal power gain becomes 

P1 AGbRiGbR2 

The final comparison between theoretical and experimental values 
is then as follows: 

Theoretical Experimental 
Efficiency, per cent. :. 10 6 9.5 
Output r-f power (optimum bunching), watts. 20.2 18 
Input r-f power (optimum bunching), watts. 2.15 1.8 
Power gain (optimum bunching). 9.4 10 

Power gain (small signal). 25 25 

The most dubious ingredient in this generally close agreement is the 
assumed value of Gr, to which a “ ±30 per cent” might reasonably have 
been appended. It would not be surprising if the errors in the debunch¬ 
ing estimates were nearly of this order of magnitude also; therefore, the 
agreement may be in fact fortuitous. But the consistency of the calcula¬ 
tion of output power and gain takes some of the sting away from this 
word of caution. 

Comparison of Theory and Experiment jat High Input-gap Voltage.— 
Figure 10-8 provides an interesting check of the bunching theory for large 
values of F/Fo in Sec. 9-4. The coordinates in this figure are powers, 
not voltages or bunching parameter; hence, if the simplest bunching 
theory holds true. Pi « If,]* « [Ji(X)]* and this figure should be geomet¬ 
rically similar to a plot of [/iCX)]* versus XK Since /i(3.84) = 0, 
this relation implies that Pl = Oforaninputr-f power (3.84/1.84)* = 4.4 
times the drive power for optimum bunching, or 7.9 watts. Actually, 
Pl passes through a nonzero minimum at a drive power of 10 watts, and 
at the value of 7.9 watts, where simple theory indicates that there should 
be a zero in Pl, the output power is 30 per cent of the maYimiim output 
power. 
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This phenomenon suggests that the more exact equation for the 
bunched current components, Eq. (9-28), should be compared with the 
experimental data. Under the assumed conditions, 20; by Table 
9*1 the drift-space coefficients that appear in Eq. (9-28) are thus given 
by ai = 1, 02 = 0.075, Oa = —0.00625. When l^ll is evaluated by Eq. 
(9*28) at the point of the expected zero {X = 3.84), it is found that 
|ii| = 0.62/o instead of zero. The same calculation gives \ii\ == I.I6/0 

at == 1.84—that is, at this latter point the higher-order corrections 
are negligible. The ratio of the two values of is 0.29, in perfect 
agreement with the observed ratio, 0.30. The use of Eq. (9-28) to predict 
the complete curve of Fig. 10*8 beyond this single check point is left 
as an exercise for the reader. 

10*8. Voltage Cascade-amplifier Klystrons.—It has been seen in 
Sec. 10-3 that there are definite upper limits to the gain of a two-resonator 
voltage-amplifier klystron with a given d-c input power. It is obvious 
that a gain higher than that allowed by these limits may be obtained by 
using more than one stage of amplification. One simple tw^o-stage 
arrangement would be to lead the output power from one two-resonator 
amplifier into the input resonator of a second amplifier. The so-called 

cascade amplifier^' is a much better way of accomplishing the same 
end by having both stages of amplification located within the same 
vacuum envelope and utilizing the same electron beam. In the simplest 
form, three resonators are arranged along an electron beam. The middle 
resonator abstracts power from the beam as the output cavity of the 
first stage; the second-gap r-f voltage that is thereby developed proceeds 
to velocity-modulate the beam further as the input-gap voltage of the 

second stage. 
This arrangement has a number of advantages. There is one electron 

beam instead of two and hence half the d-c input power; there are three 
resonators to tune instead of four, and none of the complications intro¬ 
duced by having two coupled resonators are present; moreover, the over¬ 
all gain is at least four times as high as it would be for the same two stages 
of amplification operating on separate beams. This factor of 4, although 
perhaps at first glance somewhat surprising, is based upon the simple 
considerations that follow. With two intermediate resonators, one 
serving as output cavity for the first stage and one serving as input 
cavity for the second stage, the intermediate-circuit losses are doubled, 
thus doubling the shunt conductance that the output cavity of the first 
stage presents to the beam. The power abstracted from the beam by 
this cavity is therefore only half the power that would be abstracted by 
the single intermediate cavity of the cascade amplifier, and this reduced 
amount of power must furthermore be divided between two cavities 
instead of exciting a single cavity. Hence the power available for 
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developing the input-gap voltage for the second stage is only one-quarter 
as much in the two-tube two-stage amplifier as it is in the two-stage 
cascade amplifier. 

These general comments assume that the two stages of amplification 
act more or less independently—that is, that the voltage across the r-f 

Output gap voltage 

Fig. 10*9.—Applegate diagram of electron trajectories in cascade amplifier. 

gap of the second resonator proceeds to velocity-modulate the beam 
and to be amplified just as if it existed across the first gap of a two- 
resonator voltage amplifier. It may be seen shortly that in a high-gain 
cascade amplifier this situation holds to an approximate degree. 

Regarding the cascade voltage amplifier the question is sometimes 
asked: '‘If the maximum gain has bean extracted from the beam in the 
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first stage, how can one get still more gain out of the beam by hanging a 
third resonator on it?'' A few comments prior to the detailed analysis 
may help to explain this point. In the first place, when the beam enters 
the second gap it is assumed to have a small degree of intensity modula¬ 
tion and velocity modulation; thus, for all intents and purposes, the 
second gap r-f voltage has a d-c beam to work on. In the second place, 
this beam delivers energy to the second resonator by virtue of its intensity 
modulation, not its velocity modulation; therefore, the further velocity 
modulation that the beam receives as it delivers this energy does not 
upset the process of energy transfer. Finally, after the beam has passed 
through the second gap, it has received a velocity modulation much larger 
than it received in the first gap, and its subsequent bunching is therefore 
determined almost entirely by the second-gap velocity modulation. 

These facts are put into graphic form by Fig. 10*9,^ which shows an 
Applegate diagram for a typical cascade amplifier. (See Sec. 9-2 for a 
single-stage Applegate diagram and a discussion of its significance.) 

Particularization of Cascade-hunching Theory to the Cascade Amplifier, 
The theory of cascade bunching is developed in Sec. 9*8, and the notation 
of that section is adopted without further comment. The results of 
Sec. 9*8 that are applicable to small-signal cascade amplifiers may be 
summed up in the following statement. Cascade bunching in a small- 
signal cascade amplifier results in waveform components and relative 
current components just like those of simple bunching; the equivalent 
bunching parameter A', which determines the waveform and current 
components for cascade bunching, is given by 

X'e^^ = Ais - (9-56) 

(Here gives the phase of the bunching relative to that which would 
result from first-gap velocity-modulation alone, and p is used as a phase 
param'eter, not as the ratio of electron velocity to velocity of light.) 
This simple description is valid when 

Ai2A23«2A'; (34) 

this condition is met in a high-gain cascade amplifier working at low levels. 
What happens when this condition is not met is discussed in the next 
section. 

The behavior of the equivalent bunching parameter A' is thus the 
key to the anatomy of the cascade voltage amplifier and the only point 
that distinguishes the latter from the single-stage voltage amplifier. 

In deriving Eq. (9*56) for the equivalent bunching parameter A', 

^A. E. Harrison, “Graphical Methods for Analysis of Velocity-modulation 
Bunching,” Proc. 33, 20 (1945). 
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the following gap voltages were assumed: 

Vi = -jaiVo V2 = (9-49) 

The parameters ^2 and iS, which specify the amplitude and phase of the 
second-gap voltage, have been left completely arbitrary because in Sec. 
9*8 no hypothesis is made concerning the origin of the second-gap 
voltage. In the present case F2 results from the driving of the second 
resonator by the current hence by Eq. (1), 

G2(1 + 2/Q,52)’ 

This equation is made equivalent to the assumed form, Eq. (9*496), 
by writing 

p = -tan-i 202^2 (35) 
and 

a'2Fo 
M2\ll2\ COS p 
~ G2 

(36) 

Thus p gives the phase angle between the driving current ^2^12 and the 
second-gap r-f voltage and is determined by the tuning of the second 
cavity; = 0 at resonance. 

Since a2 « cos P, X2B « cos P; hence 

X2b(P) = X2zi0) cos p. (37) 

Thus Eq. (9*56) for the effective bunching parameter X' becomes 

X'(P)e^^' = Xi3 - jX2z(0)e^^ cos p, (38) 

Many of the more important features of the cascade amplifier result 
simply from the explicit dependence of X2Z and X' on the tuning param¬ 
eter P as shown in Eqs. (37) and (38); hence the consequences of Eq. 
(38) are explored in some detail before further specification of the values 

of XiB and X28(0). 
Dependence of X' on Middle^-resonator Tuning,—Without further 

detailed knowledge of Xu and X^^(0) the most important questions to 
be asked concerning Eq. (38) are these: How does X' depend on P, and 
what is the maximum value of X' obtained by varying p (tuning the 
middle resonator)? 

The answers are indicated in Fig. 10*10, in which Eq. (38) is repre¬ 
sented graphically by showing the addition of the two complex vectors 
that make up X'e^'^\ The locus of the end point of the vector 
is seen to be a circle that is tangent to the real axis at X18. One interest¬ 
ing point about Fig. 10*10 is that the maximum value of X' does not 
occur with /J = 0 and the middle resonator tuned to resonance. Bather, 
X' is maximized when P is somewhat positive; by Eqs. (36) and (3) 
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this condition corresponds to tuning the second resonator to a frequency 
0)2 higher than the driving frequency o). Thus Z' is a maximum when 
the bunched current contributed by the second-gap velocity modulation 
is somewhat diminished in magnitude, but is more advantageously phased 
with respect to the contribution of the first-gap velocity modulation. 

This fact suggests a second inter¬ 
esting point about Fig. 10*10. When 
the general subject of cascade ampli¬ 
fication was introduced and roughly 
evaluated, the independence of first- 
and second-stage bunching was 
tacitly assumed; this was equivalent 
to the assumption that Z' = Z23(0). 
It is now apparent that when the 
continuation of the first-stage bunch¬ 
ing into the second stage—that is, 
the influence of Z13 on Z'—is con¬ 
sidered, the net effect is to cause an 
additional increase in Z' and hence 
in the power gain. This effect is not 
numerically important in the cascade voltage amplifier, but it is the fore¬ 
runner of an analogous and important effect in power amplifiers. 

The various details of the behavior of Z', including the extent of 
this increase of Z' over Z23(0), are easily listed. From Eq. (38) it may 
be deduced that Z' is a maximum or a minimum when 

Fio. lO'lO.—Graphical construction 
of Eq. (38) 

X'e'"' - Xu - cos 

or 

tan 2^ = 
2Xi^ 

X„(0)’ 
(39o) 

tan = 
, Si,(q) 

~2Xu - V 4Xf, (39b) 

The upper and lower signs correspond to the position of the maximum 
and minimum values of X' respectively. By Eqs. (35) and (39b) the 
difference between the corresponding values of the second-cavity resonant 

frequencies, Wm.. and Umm, is given by 

- b».n) = Q2 + 1. ' ^ (40a) 

The maximum and minimum values of Z' are given by 

•(&)■) + X\r (41a) 
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In a high-gain amplifier—in which it is obvious that Xi* Xs8(0)— 
Eqs. (40) and (41) may be written 

<22(5m« - «m„) « 2^^ + Xi;^) +■■■]’ 

x'^ « X2o(0) 1^1 + x^"(o)* 

and 

Y' -- I . , . (41c) 

Thus, the higher the gain (the higher X23(0)/Xi3), the less X'r^ is 
increased above X-23(0) by the continuation of first-stage btinching into 

' ' —_I_I_I_I_i_» I_I 

-12 -10 -8 -6 -4 -2 0 +2 +4 +6 -¥8 
JanjS^ZQ^ (uju -1) 

Fio. 10*11.—Middle resonator tuning curves of the cascade amplifier; effective bunch¬ 
ing parameter at resonance, X\ as a function of middle resonator tuning for Several values 
of X28(0)/XlS. 

the second stage; and the higher the gain the less detuning of the second 
resonator is required to maximize X'. 

The effects that have just been described are illustrated in Fig. 
lO'll, in which is shown the theoretical dependence of XyX2z{0) on 
tuning of the second resonator; this tuning is specified by 2Q2(p2/q3 — 1), 
which is also written — 2^252. The curves are plotted for thr^ values of 
Xi8/-3l28(0). a comparison of the different curves shows the dependence 
on Xii/XssCO) of X^/X28(0) and Xi»in/-X'23(0) as in Eqs. (4l), and of 
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o>mKx and ojnito as in Eqs. (40). The general dependence of ‘‘bandwidth 
is also shown, although bandwidth is a somewhat nebulous property 
except when Xn/X2z{0) is small. The case [Xi3/X23(0)] = 1 is a some¬ 
what academic one because it corresponds to a very low second-stage 
voltage gain such as would not be used in a voltage amplifier. 

Equations (40) and (41) and Fig. 10*11 suggest the use of experi¬ 
mentally observed middle-resonator tuning curves to determine the tube 
parameters. Thus by Eq. (41), the following relation holds true between 
the maximum and minimum X' and the value of X' for the middle 
resonator completely detuned (p = ^/2): 

(42) 

This relation provides two determinations of Xn/X23{0), vvhich may be 
checked for self-consisteucy. The value of Q2(5,„** — 5ra,n) that cor¬ 
responds to the value of Xia/X23(0) may be found from Eq. (406). This 
calculated value of Q2(5ma* — 5,„m), in conjunction with the observable 
quantity (5»nax — 5,u.n), provides a determination of Q2. 

Condition for Validity of Equivalent Bunching Parameter^^ in Power 
Amplifier Operating at Optimum Bunching,—It should be noted that the 
foregoing discussion is valid for more general conditions than are involved 
solely in voltage amplifiers, in the sense in which this term is used in 
Sec. 10*2. It has been assumed that Xu ^ 0.4 and that therefore 
1^12! = J0X12, and it has been assumed that X12X23 2X', or, approxi¬ 
mately, Xi2 <3C 2 for a high-gain amplifier. When the gain is high, for 

instance, so high that 

^ 0.1, (43) 
A 23 

neither of these conditions will be invalidated by operation at optimum 
bunching, X' = 1.84. In this case the calculation of iu may be extended 
into the range where \iu\ = 2/oJi(X'). Although operation at this level 
might come under the heading of ^'power-amplifier operationas the 
term has been used in this chapter, these comments on it fit more logically 
into the present section. 

Cascade Amplifiers with More Than Two SUxges,—The principles that 
have been discussed here for the two-stage amplifier apply, with addi¬ 
tional complication of detail, to an n-stage cascade amplifier. However, 
as more Stages are added and the gain is rapidly increased, it becomes 
more difficult to prevent feedback and regeneration. Self-sustaining 
oscillations or rapid fluctuations in gain therefore occur as the input 
signal is increased. These phenomena have been observed under 
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certain conditions even in two-stage cascade amplifiers;^ the feedback 
mechanism has been traced to the few secondary electrons that traverse 
the tube in a direction opposite to that of the initial beam. Such effects 
have made cascade amplifiers of more than two stages infeasible. 

10-9. Voltage Cascade Amplifier Gain; Comparison with Experi¬ 
ment. Electronic Transadmittance and Amplifier Gain.—Tn finding the 
over-all gain of the amplifier it is assumed that X' has been maximized 
with respect to middle-resonator tuning and is therefore given by Kq. 
(416). 

The absolute value of the electronic transadmittance is then given by 

w I = 
aiV 0 ai 

Equation (416) gives XVX28(0); the definition of X23 gives X23(0)/a2; 
and Eqs. (6) or (36) give ^2/0:1 for = 0. From these it is found that 

GeiG,2 sin AZi sin 6Z2 r, . / V . 
(?2 hh ' hU L \^23(0)/ ^ 

(44) 

where Gei and Ge2 are the small-signal electronic transconductances defined 
for the first and second stages by exact analogy to Eq. (14). The small 
correction term in -the square bracket may be evaluated by means of the 
relation 

Xi3 _ G2 Ml $01 ‘jr $02 /.-V 

X23(0) ““ Gel M2 ‘ $02 ’ ^ ^ 

Debunching effects have been included in Eq. (44), but not in Eq. (45). 
The power gain is given by writing Eq. (11) with the value of \Ye\ 

as given by Eq, (44), with G2 = Gbr2- Because the middle resonator 
is not normally loaded externally, 

_ 4 Gh _6*2 _ /sin hh sin 
Pi ^GbbiGbR2 ^GbR^BH2 \ 6Z1 6Z2 / 

More briefly, the power gain is four times the product of the single-stage 
gains of the individual stages, times the factor in square brackets, which 
is somewhat larger than unity. It is apparent that the optimization 
of the gain of each stage may be carried out independently in accordance 

^ E. Barlow and A. E. Harrison, ^‘Klystron Resonator Coupling,^* Sperry Gyro¬ 
scope Co. Report 5224-139, Feb. 14, 1944. 
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with the principles of Sec. 10*3. If the loss of beam current by grid 
absorption and possible beam spreading is not taken into account, the 
optimum design will be a symmetrical 
one with h ^ I2 and all three resona¬ 
tors identical. 

Illustrative Comparison of Cascade 
Amplifier Theory and Experiment—In 
Fig. 10-12 there is shown the relative 
output voltage (and hence relative 
X') of an experimental high-gain 
cascade amplifier, observed as a func¬ 
tion of ^2, the fractional frequency 
deviation of the middle resonator.^ 
The power gain, which is not indicai/ed 
in the figure, was measured as approxi¬ 
mately 1000. 
follow 

Fig. 10-12.- Observed relative out- 
1 at voltage of cascade amplifier klystron 
as a function of middle resonator detun¬ 
ing, — 62 = W2/C0 — 1. 

The operating characteristics and other relevant data 

V,. 
s Me) . . 

/o. 
X. 
a. 
U. 
I2. 
Gr. 
. 

Gap spacing 

1600 volts 
0.080 
63 ma 
10 cm 
0.5 cm 
2.3 cmj (9oi ~ 18.3 
1.3 cm; ^02 10.4 
0.75 X 10”^ mhos 
3500 
0.060 in. 

The electron gun and the resonators are the same as in the type 410R, 
the performance of which as a single-stage amplifier is analyzed in Sec. 
10-7. .The grid-transmission losses and the beam-loading effects are 
therefore the same as those given in that discussion. 

In a comparison of the predictions of theory with the data of Fig. 
10-12, the values of Xi3/X28(0) and Q2 are deduced from Fig. 10-12 by 
the procedure discussed in connection with Eq. (42); the same quantities 
are then calculated by dead reckoning through the use of Eq. (45) and 
the known beam loading. The power gain is then calculated. 

If the effects of debunching, grid absorption, and beam loading are 
included, from the above operating characteristics the following values 
may be calculated: 

^ E. C. Levinthal, A. E. Harrison, E. Feenberg, Cascade Amplification with 
Multiple-resonator Klystrons,” Sperry Gyroscope Co. Report 5221-109, Oct. 15,1943. 

* Data on Qn provided by M. Chodorow, Sperry Gyroscope Co. Research Labora¬ 
tories, Garden City, N. Y. 
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GbR2 

Gel 
Ge2 

sin hh 
hli 

sin hh 

hh 
Ml = = Mz 

From the above values of Gbr2, Gr, and Qr, Qbr2 is found by use of the 
relation Qbr2/Qr = Gr/Gbr2 to have the value Qbr2 = 1500. 

The application of these numerical values of Eq. (45), with G^ set 
equal to GBR2y gives X23(0)/Xi3 = 4.7. Since the above values of 
(sin hi)/hi indicate that debunching is not serious, Eq. (45) is not greatly 
affected by its neglect of debunching. 

In Fig. 10-12 the voltages at the points of maximum output voltage, 
complete middle-resonator detuning, and minimum output voltage are 

observed to be in the ratio 5.2:1: \/2/8.2. The two values of X2z{0)/Xn 
that result, 5.2 and 8.2, are not very consistent. Since the value 8.2 
is based upon Xmin, which involves a very small crystal-current reading, 
it may be inaccurate; the theoretical 4.7 agrees well with the other 
value, 5.2. 

Figure 10-12 also indicates that 5 max ^mia 0.0019; a value for 
X28(0)/Xi8 of 5.2 in Eq. (406) predicts 0B«2(5nuix — = 2.85, from 
which may be deduced a value of Qbr2 equal to 1500. This result is in 
full agreement with the value of 1500 predicted from the known resonator 
Q and beam loading. 

From the above list of calculated shunt conductances and electron 
transconductances and from Eq. (44), the theoretical power gain is found 
to be 1150, which is within the limits of experimental error of the observed 

value of 1000. 
With the exception of the already noted inconsistency, which would 

be removed if the value of the minimum relative voltage in Fig. 1012 
were in error by two, the quantitative agreement between theory and 
experiment is seen to be good. 

1040* Power Cascade-amplifier Klystrons.—There are two basic 
points involved in the discussion of two-resonator power amplifiers in 
Secs. 10-5 and 10*6. The first (Sec. 10-5) concerns the dependence of 
output-circuit driving current on input'drive power and tube parameters 
when these quantities are such as to make the tube operate outside the 
“ small-signal range. The second concerned the effect that the physical 
limitation IF2I S (Fo — V) had on optimum loading conditions and 
efficiency. This second point is common to all power amplifiers and 

= 1.75 X 10-® mhos 
= 21.6 X 10~^ mhos 
= 10.2 X 10“^ mhos 

= 0.91 

= 0.98 

= 0.87. 
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need not be considered anew for power cascade amplifiers. The first 
point, concerned with the factors that determine the maximum obtainable 
value of the output-circuit driving current Mzin, does sometimes involve 
features peculiar to the cascade amplifier. 

The essence of the discussion of cascade voltage amplifiers in Sec. 
10'8 is the calculation of the equivalent bunching parameter X'. It is 
noted that under certain conditions characteristic of high-gain amplifiers, 
namely, 

Y = (47) 

the bunched-beam-current component would be given by 

liial = 2/oJ/XO. 

In such an instance there is very little to distinguish the single-stage 
amplifier from the cascade power amplifier. The maximum obtainable 
value for |ii3| is l.lO/o for both amplifiers; and if too much r-f drive 
power is supplied, with the result that the beam is overbunched at the 
last resonator, then a detuning of any one of the two prior resonators 
will reduce the degree of bunching to the optimum point at which 
X' == 1.84 and \iu\ = l.lG/o. This process is noted in Fig. 10-4 of 
Sec. 10*5. 

It is easily possible, however, in a low-gain cascade amplifier to have 
Eq. (47) invalidated. Furthermore, it is apparent from Eq. (47) that, 
since X12, X23, and X' are all proportional to the input-gap voltage 
ofiFo, there is for every amplifier some level of r-f drive power above which 
Eq. (47) no longer holds and the bunching is no longer described by the 
effective bunching parameter X'. It turns out that under such conditions 
of low gain or overdrive the maximum obtainable value of [tul, and hence 
of the output power, is increased by a factor of roughly 6/4. It is 
with this phenomenon and its ramifications that the present section is 
concerned. 

Applicability of Harmonic Bunching^^ to the Present Case.—^The 
discussion of cascade bunching in Sec. 9*6 is intended to be just suffi¬ 
ciently detailed to allow the drawing of some conclusions concerning 
the general manner in which this increase in the maximum value of 
Itisl is caused by the presence of harmonic terms in the kinematical 
equation. Any exact treatment of this feature of cascade amplifiers 
would necessitate the use of a kinematical equation more exact than 
Eqs. (9.63) and (9.68). In deriving these equations it is assumed that 
X12 S 0.4, which by Eq. (69) implies y S O.2X23/X'; it is apparent from 
Fig. 10*10 that in the cascade amplifier the quantities X28 = X23(0) 
cos jS and X' are usually of the ^me order of magnitude. Hence Eqs. 
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(53) and (58), when applied to cascade amplifiers, contain the implicit 
assumption y < 0.2 (at least). But these same equations predict 
maximum jiisl at y = 0.4. At y = 0.4 an appreciable third-harmonic 
term is present in the kinematical equations; it does not, however, 
appreciably alter the maximum obtainable \iis\. Therefore, in a sketchy 
discussion of the low-gain or overdriven amplifier there seems little point 
to going into the exact theory; the discussion is based upon a simple 
application of the results of Sec. 9*6. 

To summarize the results referred to: An increase of the maximum 
value of \iis\ by a factor 1.28 over the value predicted by simple bunch¬ 
ing theory occurs when A"' « 2, y « 0.4, and — /3 + x/2 = 0. If X' 
and y are in the vicinity of these optimum values and — /S + ^/2 5*^ 0, 
\iis\ ^ Qosi(d' — ^-f 7r/2). The dependence of |zi3|/2/o on X' and 
on y for ^' = jS — t/2 is indicated in Fig. 9T1. 

Influence of Tube Parameters on Die Increase in |ii3|.—The general 
behavior of X', y, and + 7r/2 may be seen most readily with 
reference to Fig. lOTO. The deviations of cos 2(0' — jS + Tr/2) from 
unity are a measure of the lack of proper phase relation between the 
first- and second-harmonic components of the bunching. It is seen that in 
a high-gain tube (X23(0)/Xi3 ^ 1), the deviations of cos i($' — /3 + 7r/2) 
from unity are very minor for any value of jS. For X23(0)/Xi3 ^ 1 
they are still minor for jS > 0 but may be sizable for /S < 0. This 
condition means that for X23(0)/Xi3;» 1 the dependence of \ii^\ on X' 
and y will be very close to that given in Fig. 9T1, regardless of the value 
of jS; but when A"23(0)/Xi3 > 1 by no very large amount, and when 
jS < 0, Ifisl will be diminished from the value shown in that figure. 

What is the condition for obtaining the optimum combination 
X' = 2, y = 0.4? It will be observed that both X' and y are proportional 
to the r-f input driving voltage; therefore if there is some value of 
at which the ratio y/X' has the value 0.4/2 = 0.2, then there is some 
amount of r-f input drive power that will give y and X' simultaneously 
the correct absolute values. This necessary condition, y/X' = 0.2, 
may for ease of reference be written 

X12 Xi3 X23 

Xi3 X' X' 
= 0.4, (48) 

in which X12/X18 is a quantity less than unity. 
Application to the High-gain Amplifier,—Consider now the case of 

the high-gain amplifier for which X23(0)/Xi3 1. Over most of the 
range of except for jS near ±7r/2, X13/X' 1 and X23/X' « 1; hence 
Eq, (48) cannot be satisfied. If it is to be satisfied anywhere, it will be 
for ^ » ±v/2. For such values of jS the situation is as shown in Fig. 
10*13, which is an enlarged section of the relevant part of Fig. 10*10 
when Xi8/X28(0) 1. This figure shows that to a good approximation, 
the product of two of the factors in Eq. (48) has the value 



Sjbc. 10-10] POWER CASCADE-AMPLIFIER KLYSTRONS 283 

x'^ ■ (1 + \p ~ ± 2) 

The expression with the upper sign (/3 « +x/2) has at Xjs = Xu a 
maximum value of i. Thus Eq. (48) cannot be completely satisfied 
for /3 » +t/2. The optimum condition X' = 2, y = 0.4 cannot be 
reached for /3 > 0 as long as the gain is high enough for Fig. 10'13 to 
describe the facts when the equations Xu/X' « 1 and X23/X' » 1 do 
not describe them. But on the other hand, for « —t/2, Eq. (48) 

Fig. 10-13.—Dotei niination of 
effective bunching parameter in 
high-gain cascade amplifier with 

a* ± 7r/2 (middle resonator 
strongly detuned). Compare with 
Fig. 1010. 

01_I _I 

--0.004 -0.002 0 0.002 0.004 
Fractional tuning deviation,-^2»"< 

of second resonator 

Fig. 10*14.—Output power of typo 2K35 
klystron cascade amplifier as function of 
middle resonator tuning, for three values of 
input r-f power. 

will be satisfied some place in the vicinity of X' = A'la = iX2z. If, 
for the sake of a definite example, A12/A13 is taken as 0.4, and if the drive 
is then adjusted to optimize X\ the ideal combination is A'ls « 1.3, 
A23 « 3.3, A' « 2, and y « 0.4. 

Thus, by drastic detuning and overdriving, the additional factor 
1.28 in [zial may be obtained from a high-gain amplifier; but this result 
is accomplished at the cost of detuning—a cost so great that Xu has 
nearly the value required for optimum bunching in the absence of the 
second resonator. Thus, the gain of the device is of the same order of 
magnitude as the gain of a single-stage amplifier of the same construction. 

When P is not near ±r/2, y is small, and therefore Izisj is once more 
given by 2/oJi(A'); but since X' increases rapidly as p approaches zero, 
there is drastic overbunching and diminution of the output power. 

Illustrative High-gain Amplifier Tuning Curves,—Some of these points 
are illustrated by Fig. 10-14, in which is shown the amplification charac¬ 
teristic^ of the type 2K35—a 3000 Me/sec high-gain cascade amplifier 

^E. C. Levinthal, A. E. Harrison, E. Feenberg, ‘‘Cascade Amplification with 
Multiple-resonator Klystrons,'' Sperry Gyroscope Co. Report 5221-109, Oct. 15, 1943, 
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that is very similar to the type 410R in electron optics and resonator 
structure. The data in this figure correspond to operating conditions 
of Fo = 1800 volts, lo = 77 ma. Although this figure is intended pri¬ 
marily as an illustration of the dependence of output power on middle- 
resonator tuning at high r-f input power, it should be noted in passing 
that the small-signal gain is shown to be about 7000. 

In this figure the output power is shown as a function of middle- 
resonator tuning for three different values of drive power. The smallest 
of these drive powers, 1 mw, corresponds to small-signal high-gain 
operation. It is seen from the figure that the next highest value of drive 
power, 6 mw, is just slightly more than is necessary to maximize the 
output power at /3 = 0. The highest drive power shown, 70 mw, is 
insufiScient to make « 2 at the amount of detuning required to make 
7 = 0.4; a higher drive power would pioduce a still higher amount of 
output power at a still greater degree of detuning. Nevertheless, a 35 
per cent increase in output power is already apparent at the detuned peak. 
(Since this tube is probably operating with IF3I < Fo, the ideal 28 per 
cent increase in \iu\ that is to be expected from the cascade bunching 
process with overdrive would correspond to a 64 per cent increase in 
output power.) The rapid fluctuations in output power that arc caused 
by overbunching are also apparent at the center of the tuning curve for 
the overdriven case. 

Application to the Low-gain Amplifier,—Considerations similar to 
the above may be carried out for an inherently low-gain amplifier 
(X23(0)/Zi3 « 1). It will be found that the optimum value of P will 
be positive and much nearer zero than in the high-gain amplifier. For 
example, with Xu/Xiz = 0.8 and X2z{0)/Xiz = 1, the optimum com¬ 
bination is /? = 0, Xu = 1.4, X23 = 1.4, X' = 2, and 7 = 0.4. This 
combination has about the same over-all gain as the detuned high-gain 
amplifier discussed above. 

The results of the present section may be summed up in the following 
way. In a power amplifier that is supplied with enough input r-f power 
to maximize the output power, the use of an intermediate resonator in a 
power amplifier does not increase or decrease the gain, but it does increase 
the fundamental component of the bunched beam current by a factor up 
to 1.28. Also, if not enough input r-f power is supplied to reach the 
absolute maximum of output power, a very sizable increase in gain may 
be obtained over the two-resonator power amplifier. 

The influence, on the harmonic components imz, of an intermediate 
resonator tuned to the fundamental or a harmonic frequency has been 
investigated;^ this work is not discussed here. 

»E. Feenberg, ‘‘Theory of Cascade Bunching,” Sperry Gyroscope Co* Report 
6221-1043, Aug. 22, 1945. 



CHAPTER 11 

FREQUENCY MULTIPLIER KLYSTRONS AND TWO-RESONATOR 
KLYSTRON OSCILLATORS 

By D. R. Hamilton 

11*1. Frequency Multiplier Klystrons.—In Sec. 9*2 the unusual wave¬ 
form of the bunched beam current in a klystron is noted, and typical 
waveforms for the simplest type of bunching are shown in Fig. 9*4. 
These waveforms are characterized by sharp peaks that are very rich 
in harmonic content. The Fourier analysis of these peaks, carried out 
in Sec. 9*2, shows that the current components at the mth harmonic, 
u, are given by 

i„, = 2Ioe-^^^^Jm(rnX). (9*9) 

The resulting dependence of im on X is indicated in Fig. 9*5. This figure 
indicates two interesting features: the slow diminution of the maximum 
value of im as m increases, and the more rapid narrowing of this first 
maximum as m increases. 

The maximum value of Jm{rnX) is approximately equal to 0.65m~^; 
hence the r-f power available (with operation at IF2I < (Fo — F)) 
should be proportional to Trr^, The exact values for the maxima of 
Ji and Jio indicate that the efficiency at the tenth harmonic should be 
28 per cent of that at the fundamental (that is, that of an amplifier). 
A number of factors act to reduce the experimental results below this 
first hopeful estimate, but the general fact of the unusually high harmonic 
content remains and has been utilized in the development of frequency 
multiplier klystrons. 

The second feature of Fig. 9-5, the small range of values of X at which 
I'lo is appreciable, indicates that a 50 per cent diminution in jiiol* would be 
caused by a change of the bunching parameter by ± 16 per cent. This 
sensitivity of output power to input r-f drive could be inconvenient. 
However, it will be seen that the actual situation may be greatly improved 
over the predictions of simple theory in this respect. 

A typical frequency multiplier klystron, the type 2K37, is shown 
schematically in Fig. 11-1. The resonant frequencies of the input and 
output cavities are, respectively, about 300 and 3000 Mc/sec. As a 
matter of mechanical convenience, the input cavity is not simply a 
scaled-up^by-ten version of the output cavity; by fairly heavy capacitance 

285 
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loading the size of the input cavity is made not much larger than that 
of the output cavity. 

Applications of Frequency Multiplier Klystrons.—The primary use to 
which frequency multipliers have been put is the generation of microwave 

power at some integral multiple of 
the reference frequency of a quartz 
crystal. Generators of such crys¬ 
tal-controlled microwave frequen¬ 
cies have been used as frequency 
standards; cascade amplifiers driven 
by the crystal-controlled output of 
a frequency multiplier have been 
used to provide 100 watts of fre¬ 
quency-stabilized power for various 
types of experimental microwave 
communication equipment. In a 
typical frequency-multiplication 
chain for such uses one might start 
with a 5-Mc/sec quartz crystal; 
successive stages of conventional 
frequency multiplication would 
produce power in the vicinity of 

300 Mc/sec, which would then be used to drive a multiplier klystron with 
output at 3000 to 6000 Mc/sec. 

The optimum frequency at which to make the transition from triodes 
to klystrons in such a chain depends upon the state of development and 
the inherent capabilities of the two tube types. Very good lighthouse 
tubes and other planar triodes have been developed in the 300- to 1000- 
Mc/sec range; on the other hand, for a klystron with a given electron 
beam and a given drift space the r-f drive voltage required to produce 
optimum bunching varies inversely to the drive frequency, and the r-f 
output increases as the order of multiplication is decreased. These 
factors indicate that the optimum frequency for the transition from 
triodes to klystron may be about 1000 Mc/sec. 

Influence of Debunching in Frequency Multipliers.—Debunching, 
which is always very relevant in klystrons, attains increased importance 
in frequency multipliers through an interesting chain of circumstances. 
In the first place, with a given ratio F/Fo of input-gap r-f voltage to 
beam voltage, the drift length required for a given value of X is inversely 
proportional to the input frequency. The tendency, then, would be to 
economize on r-f drive powers by using a long drift space. The debunch¬ 
ing wave number h depends, however, only on the d-c properties of the 
beam and is independent of frequency; this makes it impossible to hold 

Fig. 11*1.—Schematic diagram of the type 
2K36 klystron frequency multiplier. 
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constant the product of drift distance times input frequency without 
sustaining serious debunching losses. But holding the drift distance 
constant to avoid debunching then makes the input r-f voltage inversely 
proportional to input frequency. The consequence at low drive fre¬ 
quencies is that V > Vq. 

In one way this excess of gap voltage over beam voltage is, however, 
a blessing in disguise; for as is discussed in Sec. 9*6, having V > Vo makes 
the output r-f power very insensitive to r-f drive. This same fact, however, 
also raises the r-f drive power, thereby making the latter more important 
than the d-c klystron input power as a factor of over-all efficiency. 

The accuracy of the theory of longitudinal debunching as given in 
Sec. 9*3 is diminished as the drive frequency a>i is decreased. Aside 
from the violation of the assumption F sjC Fo as 6>i decreases, there is the 
additional fact that, whereas the distance jSXi between bunches is increas¬ 
ing, the longitudinal-debunching theory of Sec. 9*3 assumes p\i <$C a. 
It has already been noted in that section that in the part of the beam 
adjacent to the conducting walls of the drift tube there can be no longi¬ 
tudinal electric field and hence no debunching. Physically speaking, 
the effect of increasing is to give this wall effect more prominence 
and thus to reduce longitudinal debunching. 

On the other hand, the accuracy of the theory of transverse debunch¬ 
ing is increased as is increased; and in the limit of large jSXi/a, 
the presence of a conducting wall at the outer edge of a beam doubles 
the transverse debunching because of the image forces arising in the 
conductor. The effects just noted have been considered in some detail 
by Feenberg.^ 

Experimentally Observed Debunching in Multiplier Klystrons,—These 
considerations regarding the relative importance of tlie two types of 
debunching make it worth while to compare debunching theory and 
experiment under circumstances to which simple bunching theory may 
be applied, before going on to the implications of the designs with the 
large V/Vo that debunching makes necessary. This procedure is given 
point, over and above the question of multipliers, by the probability 
that experimental debunching effects may be more clear-cut in multi¬ 
pliers, for which X « 1.2 at optimum bunching, than they are in ampli¬ 
fiers with X « 1.8 at optimum bunching. This probability arises from 
the thought that the theory, which is not strictly applicable above 
X = 1, should have more semblance of truth at X = 1.2 than at X == 1.8. 
Thus a comparison between theory and experiment at this point is of 
interest to the whole subject of debunching as well as to multipliers. 

1 E. Feenberg, “Theory of Bunching,” Sperry Gyroscope Co. Report 5221-105, 
Nov. 24, 1942; and “SmaU-signal Theory of Longitudinal and Transverse Debunch¬ 
ing,” Sperry Gs^roscope Co. Report 5221-114, Apr. 12, 1944.’ 
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Debunching has a readily observable influence on the operation of 
any given tube. Transverse debunching causes a diminution in the 
current passing through the output gap. Longitudinal debunching 
causes a diminution in bunching parameter at the output gap which may 
be compensated for by a corresponding increase in r-f drive voltage. 
These points are readily checked experimentally; Figs. 11*2 and 11*3 

give relevant experimental data.^ 
In each of these figures one of the coordinates is ^'exciter plate 

voltage/’ which is the voltage on the plate of the exciter tube just 
preceding the input to the multiplier. The r-f voltage appearing across 

Fio. 11*2.—Observed dependence on 
beam current /o of the exciter plate volt¬ 
age Voxc for optimum output power from 
an experimental klystron frequency multi¬ 
plier; beam voltage 600 volts, input and 
output frequencies 270 and 2970 Me/sec. 

Fio. 11*3.—Diminution of beam through 
last resonator with increase of input r-f drive. 
Experimental klystron multiplier, Z «= 6 cm, 
Fo =* 400 volts. 

the input gap of the multiplier should be approximately proportional 
to this exciter plate voltage. To determine the constant of propor¬ 
tionality, measurements were made of the maximum voltage required to 
stop electrons that had passed through the input r-f gap. These measure¬ 
ments indicated that the exciter plate voltage and the input-gap r-f 
voltage are the same to within ±5 per cent; this similarity is mostly 
fortuitous. 

In Fig. 11-2 the exciter plate voltage required for optimum bunching 
is shown as a function of 7o for different values of I, 

At optimum bimching—that is, with X fixed at 1.2—the product 
(F/Fo) (sin hi)/hi is constant; hence the exciter plate voltage required 
for any beam current is proportional to 

hi 
sin hi « 1+ i (/iO* « 1 + 

lOGo 

P ' 

* A. E. Harrison, R. O. Haxby, '‘Klystron Frequency Multipliers,” Sperry Gyro¬ 
scope Co. Report 6221-116, Apr. 12, 1944. 
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This approximately linear dependence of drive voltage on beam current 
in Fig. 11-2 appears except at very low beam current and near the 
maximum beam current. At low current the high negative control- 
grid voltage used for diminishing lo has a focusing action such that 
the current is simultaneously reduced in magnitude and concentrated in a 
smaller beam. The dcbunching therefore does not decrease in proportion 
to the decrease in Jo. It is known that the electron gun used in this tube 
likewise gives a divergent beam when the control-grid voltage is run too 
positive; this accounts for the leveling off of the curves at high 7o. 

When all space-charge effects at the low-current end are eliminated 
by extrapolating the linear portion of the curves to zero beam current and 
by setting the exciter plate voltage equal to V, values of F/Fo = 0.368, 
0.216, and 0.128 are obtained for ^ = 6, 9, and 14 cm respectively. The 
input cavity is tuned to Xi = 110 cm; and = 0.045 at Fo = 500 volts, 
hence the corresponding values of the bunching parameter, 7rZF/Foj3X, 
are 1.18, 1.23, and 1.15. The agreement with the theoretical value of 
1.2 is good and provides gratifying agreement with simple bunching 
theory. 

An increase in exciter power with increasing klystron beam current 
could also be produced by beam loading in the input cavity. This 
increase would not affect the comparison between theory and experiment 
that has just been made, but it would affect any conclusion about 
debunching that might be drawn from Fig. 11*2. It is known that there 
is some beam loading in this input resonator, but it has not been accu¬ 
rately measured. It seems safe to ignore it for the following reason. 
First, the Gr of the input cavity is calculated to be higher by a factor 
of 5 than that of typical 3000-Mc/sec cavities because of the heavy 
capacitance loading used in reducing the cavity size. A correspondingly 
higher beam-loading conductance Gb would be required in order to 
produce a given effect. But the beam current in Fig. 11*2 is very low 
by the criteria used in the estimates of beam loading at earlier points 
in the previous chapter. 

Having checked simple bunching at zero current in Fig. 11-2, the 
behavior at finite beam current in this figure will now be analyzed on 
the assumption that it is caused by debunching. The relative increase 
in the exciter plate voltage over its value at zero current should be 
AZ/sin hL At Jo = 7 ma the exciter plate voltage is increased over its 
zero-current value by factors of 1.15, 1.56, and 1.85, which correspond 
to hi = 0.9, 1.53, and 1.80 or A = 0.18, 0.17, and 0.13 for Z = 5, 9, and 
14 cm respectively. For this beam voltage and for the radius of the 
drift tube, a, equal to 0.5 cm, these values of A would be produced by 

values of Jo of 3.1, 2.7, and 1.6 ma. \ 
Because most debunching takes place just befqre the beam enters 
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the output gap, the actual cathode-emission current should be reduced 
by two factors before comparing with the above values: a factor of 0.85 
for grid-absorption losses before entering the drift tube, and a factor 
1 — {X/Q){hl)^ = 1 — 0,2(hiy for transverse-debunching losses of the 
beam current. If the effects of these two factors are included, the actual 
beam currents at the output gap are calculated to be 6.0, 3.1, and 2.1 
ma respectively. The beam currents that are necessary to explain 
the observed longitudinal debunching thus seem 25 per cent lower than 
the actual beam currents; this is probably the extent of the diminution 
of longitudinal debunching as caused by the conducting wall effect. 

In Fig. 11-3 a measurement of beam loss due to transverse debunching 
is shown as a function of exciter-plate voltage, for Z = 5 cm. Since 
Fo *= 400 volts. Fig. 1T3 is not directly comparable to Fig. 1T2; 
because Jo is proportional to and in Fig. 11*3 is measured after 
being diminished by 0.71 by four grid absorptions, the zero-drive beam 
current of 5.7 ma would correspond to 11.2 ma in Fig. 11*3. Since 
h = 0.89 for Jo = 7 ma, hi = 0.89 -\/ll 2/7.0 = 1.13 here. The result¬ 
ing theoretical transverse-debunching current reduction of 

1 - (f) (W)* = 0.75 

compares well with the observed value 4.5/5.7 = 0.79. 
The conclusions from these comparisons are as follows: The effect 

of longitudinal debunching on the drive voltage required for optimum 
bunching in this series of three tubes is less than elementary debunching 
theory predicts; the difference may very well be due to the wall effect. 
The beam loss that is due to transverse spreading is slightly greater 
than that predicted by elementary debunching theory. The over-all 
agreement is perhaps better than might have been expected. 

11*2. Frequency Multiplier Klystrons; Comparison of Theory and 
Experiment The Theoretical Effects of Debunching on Multiplier Output 
Power.—What effect does this debunching have on output power of the 
multiplier? Transverse debunching predicts simply a certain loss of 
current from the bunch, and hence a diminution of output power propor¬ 
tional to the square of the current. Longitudinal debunching, as applied 
to a beam of infinite width for X ^ 1, implies no diminution of output 
power or change of waveform, but simply an increase in the value of 
F/Fo required for optimum bunching. 

As already noted in Sec. 9-3, however, in a beam of finite cross section 
with a eonducting wall there is no longitudinal debunching at the outer 
edge of the beam. This fact has already been called upon to explain 
the way in which, in Fig. 11*2, the drive voltage for optimum bunching 
does not increase with beam current so rapidly as expected. ^^Opti^ 
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mum bunching,” of course, must now be taken to mean an average over 
the beam width because the bunching parameter now varies with radial 
position in the beam. If X varies over a wider range than corresponds 
to the width of the first maximum of then a large part of the 
beam contributes nothing to the average value of or may even diminish 
it. Thus longitudinal debunching probably diminishes output power 
more by virtue of its variation with radial distance from the axis of the 
beam than it does by virtue of its mere presence. A glance at Fig. 9*5 
shows that a slight variation of X across the width of the beam becomes 
increasingly serious as m, the harmonic order, is increased; this is the 
reason for discussing the subject in connection with multipliers. 

Exciter.plate voltage 

Fig. 11*4.—Observed relative multiplier output power as function of exciter-plate 
voltage for various values of beam current and drift length. Same tubes as used in Figs. 
11*2 and 11-3. 

The Observed Influence of Debunching on Multiplier Output Power.— 
These comments serve as background for Fig. 11-4, in which is shown the 
variation of the relative output power with exciter plate voltage for 
the same tubes as were used for the data of Figs. 11-2 and 11-3. Since the 
relative output powers were measured with a crystal rectifier that was 
probably saturating at the higher power levels, an accurate quantitative 
interpretation of the relative powers cannot be made. However, the 
relative output powers will be compared with what would be expected 
on the basis of transverse debunching alone. 

Before making this comparison, it should be noted that debunching 
will not only cause differences between various curves in Fig. 11*4, 
but will also affect the shape of an individual curve. In spite of the 
effect of debunching on an individual curve, the similarity to the ideal 
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bunching curves of Fig. 9*5 is striking provided it is noted that Fig. 9*5 
shows |im|, and Fig. 11*4 shows relative 

In analyzing Fig. 11-4 it is to be noted that although the higher beam 
current is normally 15 ma, it appears likely, from Fig. 11*2 and from the 
known divergence of the beam at higher currents, that the equivalent 
cathode-emission current is less—say 12 ma for Z = 5 cm, and 10 ma 
each for Z = 9 and 14 cm. Scaling up to these currents the values of 
debunching wavenumber estimated for Iq = 7 ma from Fig. 11*2, one 
may obtain the values of /?Z, sin hi/hi, and 7§[1 + 0.1(/iZ)2]-'^ shown in 
Table 10. Of these quantities, (sin hi)/hi gives the ratio of bunching 
parameter at the edge of the beam to ‘^mean^’ bunching parameter, by 
virtue of the way in which the values of h were derived empirically from 
Fig. 11*2. The quantity [1 + 0A{hiy^]~^ gives the diminution of output 
power by transverse debunching, and is used instead of the approximate 
[1 — 0.2(/iZ)2]2. quantity 7g[l + 0.1 (/?Z)‘^]“^ should therefore be 
proportional to the total output power if the longitudinal effects do not 
greatly predominate. In calculating this quantity, 7o is taken not as 
the nominal 15 ma of Fig. 11*2 but rather as the values 12, 10, and 10 ma 
discussed above. 

Table 11 1.—Comparison of Observed Relative Output Powers of Fig. 114 and 

THE Relative Output Powers Predicted on the Basis of Transverse 

Debunching 

l, 
cm 

Nominal 
I oj ma 

hi sin hi 
~hl 

/?[! + o.i(W)*r^ 
a relative P 
(predicted) 

Normal¬ 
ized P 

(predicted) 

Relative P 
(observed) 

Normal¬ 
ized P 

(observed) 

5 5 0.75 0.90 5* X 0.81 = 20 1 2.4 1 
15 1.16 0.78 12* X 0.60 = 86 4.3 12.0 5.0 

9 5 1.30 0.73 5* X 0.53 « 13 0.65 1.0 0.42 
15 1.84 0.52 10* X 0.31 *= 31 1.55 3.7 1.54 

14 15 2.54 0.123 10* X 0.14 « 14 0.69 1.35 0.56 

The experimentally observed output powers also are listed in Table 
11*1. In order to simplify the comparison of prediction and experiment, 
the predicted and observed relative power outputs are normalized to 
unity for Z = 5 cm and 7o ~ 5 ma. 

It is apparent that the general behavior of the observed relative 
powers is in agreement with the behavior that is predicted by taking 
into consideration only the transverse-debunching losses. From the 
width of the peaks in Fig. 11*4—approximately 20 per cent at half- 
power—one would conclude that output power should be reduced 50 
per cent by a uniform spread of ± 20 per cent in the values of the bunching 
parameter at different radial positions in the beam. The fact that there 
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are no such unexplained diminutions in relative output power that may 
be ascribed to longitudinal effects, and the fact that the simple longitu* 
dinal theory predicts fairly well the relation between beam current and 
r-f drive voltage, seem to indicate that any wall effects do not extend 
very far into the beam. 

Absolute Multiplier Efficiency.—^All these deductions have been based 
on relative measurements. It is relevant to make a comparison of 
theory and absolute output power. The absolute output power meas¬ 
ured for the tube with Z = 5 cm, actual /o — 12 ma, Fo = 500 volts is 
about 25 mw, corresponding to an efficiency of 0.4 per cent. If trans¬ 
verse debunching loss, absorption of beam current by grids, and the beam¬ 
coupling coefficient of the output gap are allowed for, and if Gbr = 10~*^ 
mhos for the output cavity, the calculated power output is 90 mw for a 
predicted efficiency of 1.5 per cent. This agreement is not as good as 
that obtained in previous sections tor other types of klystrons. 

This calculation assumes that « 2/o X 0.65m“^"^, as given by 
simple bunching theory. A deviation from this expression would have a 
marked influence on the predicted output power; it should therefore be 
noted that evidence has been presented^ tending to show that in at 
least one multiplier \ij[ is proportional to mr^'^ for 10 < m < 30. What¬ 
ever the source of this more rapid diminution with m, it probably does 
not hold true for 1 < m < 10 because it would then make the calculated 
absolute efficiency half the size of the observed efficiency in the above 
example. It may be that this behavior for 10 < w < 30 represents 
the influence of the longitudinal wall effect, which gets worse as m 

increases. 
Multiplier Operation at High Input-gap Voltage,—^The zero-current 

values of F/Fo that were deduced for optimum bunching in the tubes 
just under consideration ranged up to F/Fo = 0.37 for Z = 5 cm. This 
value'of F/Fo is sufficient to cause the smoothing out of the zero of 
output power for Z = 5 cm by the second-order high-F effects described 
in Sec. 9-4, as is discussed in Sec. 10*7 in connection with the similar 
amplifier data of Fig. 10*8. It is interesting to note the greatly increased 
smoothing-out for Z = 5 cm, Jo = 15 ma. It may be that the second- 
order high-F effects are beginning to merge into the F > Fo effects of 
Secs. 9*6 and 9*7 here because F/Fo » 0.8 at an exciter plate voltage of 
400 volts. 

Be that as it may, all the data and analysis so far have been by way 
of exploring the phenomena that force one to still shorter drift distance 
and higher F/Fo. Figure 11*5 shows the analogous curves of output 
power vs. input-gap r-f voltage for a multiplier with the same input 

* A. E. Harrison, R. O. Haxby, “Klystron Frequency Multipliers,” Sperry 
Gyroscope Co. Report 5221-115, April 12, 1^4. 
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frequency as those just considered, but with 7o = 400 volts, I == 2.5 cm, 
and hence « 3.5 radians. The independent variable in Fig. 11*5 
is the input-gap voltage as measured by the voltage required to stop 
all the electrons of the beam (see discussion following Fig. 11*3). 

The fact that the output power is at the 19th harmonic in this tube 
does not affect the present discussion. Here F/Fo » 0.7 at optimum 
bunching. Figure 9*17 predicts, for Bq « 3.5, that beyond the simple 
optimum bunching the output power will level off at 15 to 20 per cent 
of the optimum-bunching peak. Actually, as may be seen in Fig. 11*5, 
the output power rises continually instead of leveling off, and it rises 
considerably above the level of the first peak. 

This continual rise is probably 
due to the fact that the electrons 
of the bunch are now those that 
have been the most accelerated by 
the large input-gap r-f voltage. 
Thus the higher the input-gap r-f 
voltage, the less is the effect of 
debunching and the output-gap 
beam-coupling coefficient in reduc¬ 
ing the driving current in the last 
resonator. The fact that this 
bunched current for F > Fo is 
greater than that for F < Fo, 
instead of less as predicted by Fig. 

9*17, is probably a combination of the high-electron-velocity factor 
already mentioned and the greater simplicity of the bunching process 
for F > Fo. 

11*3. Two-resonator Klystron Oscillators.—The preceding chapter 
and the first two sections of the present chapter have been concerned 
solely with klystrons in which no energy is fed back from the output to 
the input circuit. A klystron amplifier, like any other amplifier, can be 
converted into a free-running oscillator by installing the proper feedback. 
The maximum ideal efficiency of such an oscillator is 58 per cent with 
simple bunching, and 74 per cent if a second harmonic is added to the 
bunching by the processes described in Secs. 9*5 and 9*8. Thi? often- 
quoted ideal efficiency assumes IF2I = Fo, a circuit efficiency of unity, no 
beam loading or resonator losses, no debunching, and no grid interception. 
The factors thus assumed are common to both oscillators and amplifiers, 
and have already been discussed in Secs. 10-7 and 10*9. 

More basic to the operation of multiresonator oscillators than these 
factors are the constraints introduced by feedback. A concise presenta¬ 
tion of the features that are peculiar to oscillators requires the passing 

100 200 400 600 
(nput-gap r-f voltage (volts) 

Fig. 11*6.—Dependence* of relative out¬ 
put power at the 19th harmonic on input 
gap r-f voltage. Input frequency 270 
Mc/sec, I » 2.6 cm; Vo « 400 volts; 
60 » 3.5 radians. 
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over of those points which oscillators share with amplifiers; the modifying 
effect of such factors may be seen in the conclusions reached by this 
discussion. 

It is particularly to be noted that the simplifying assumption, 
lV’2f < (^0 — V)j is hereby made in order to avoid the complications of 
Sec. 10*6 that arise when output-gap voltage reaches the upper limit 
(7o — F). It is also advantageous to simplify the discussion of oscil¬ 
lator-circuit features by assuming an extremely simple form of feed¬ 
back—a frequency-insensitive mutual inductance Me between output 
and input circuits. ^ This simple mutual inductance^ is a good representa¬ 
tion of the feedback coupling when the latter is provided by a slot or 
loop connecting two adjacent cavities. When the feedback coupling 
is provided by a comparatively long trap ^mission line, there are, of course, 
various resonances and frequency sensitivities associated with the latter, 
but when the oscillation frequency is distant from any such resonant 
frequencies, the general coupled-circuit features of the oscillator are well 
represented by the coupling assumed above. 

Over and above these particular assumptions is the intention to 
discuss only two-resonator oscillators in detail. Two other related types 
of oscillators should, however, be mentioned in passing. 

One is the so-called ^'floating drift-tubeoscillator, in which prac¬ 
tically all the wall dividing the first and second cavities has been removed, 
leaving only enough material to provide a means of mechanical support 
for the drift tube. As a result, that which was originally a pair of 
separately-tuned cavities is now a single cavity, with a consequent 
increased ease of tuning. On the other hand, it is still possible to 
retain the advantage of using an input-gap r-f voltage that is smaller 
than the output-gap voltage, because these two gaps are separated. A 
tube of this type thus combines the ease of tuning of the reflex klystron 
(see succeeding chapters) with one of the r-f advantages of the two- 
resonator oscillator. An example of such an oscillator with floating 
drift-tube is the 2K40, developed at the Bell Telephone Laboratories. 

The other multiresonator oscillator that should be noted is the oscil¬ 
lator-buffer klystron. Here a third resonator is placed along the axis 
of the beam, separated by a very short drift space from the second 
resonator. The first two resonators constitute an ordinary two-resonator 
oscillator, which has, however, no external load. If the drift space 
between the second and third resonators is short, the waveform of the 
bunched beam current will not be changed appreciably in passing from 

'The **inputV and output'' nomenclature, although derived from amplifier 
usage, remains convenient and unambiguous in discussing oscillators. 

' Note the subscript that distinguishes the mutual inductance Me from the beam- 
coupling coefficient M (which is assumed the same for both cavities). 
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second to third resonator; hence the third (or buffer^0 resonator is 
able to abstract from the beam and deliver to an external load nearly as 
much power as could the second resonator if it were properly loaded. 
The primary utility of this oscillator-buffer arrangement lies in the fact 

that any change of the load caused 
by the buffer resonator is unable 
to influence the frequency of oscil¬ 
lation because the latter is deter¬ 
mined by the first two resonators. 
The oscillator-buffer klystron thus 
provides a very stable source of 
power. A typical klystron of this 
type is the 2K34, produced by the 
Sperry Gyroscope Company; this 

klystron is similar in construction and performance to the type 410R, 
which is discussed in some detail in the preceding and present chapters. 

Representation of the Two-resonator Klystron Oscillator,—As a result 
of these various simplifications, the two-resonator klystron oscillator 
under discussion is represented in a lumped-constant manner by Fig. 
11*6. The influence of the bunched beam current on the output circuit 
is represented by the driving current Mix, applied across the shunt 
resonant output circuit, as discussed in C'hap. 3. The effect of the 

Second CoutpuT’) First (‘InpuT’) 
cavity cavity 

Fig. 11*6.—^Lumped-constant equivalent 
circuit for the two-resonator klystron oscil¬ 
lator. 

Network introducing a delay equivalent 
to transit time of electrons in drift space. 

Fig. 11-7.—Hypothetical oscillator using circuit of, and having characteristics of, a 
two-resonator klystron oscillator (Fig. 11*6), but deriving Mix from Fi by conventional 
means rather than by velocity modulation and bunching. 

external load applied to the output circuit is represented by the additional 
shunt conductance Gl\ and the shunt conductances of the respective 
beam-loaded cavities are Gbri and Gbb2- Thus (?2 = Gbr^ + Gl and 
Gi = Gbbi* 

Figure 11*6 is not concerned with the manner in which Vi produces 
Mil by velocity modulation and bunching. As a matter of interest in 
structure, Fig. 11-7 illustrates a hypothetical oscillator using conventional 
low-frequency electronics and having the same characteristics as the 
klystron oscillator; here the generation of Mix by Fi is simulated by the 
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action of a conventional multigrid vacuum tube that has no coupling 
between input and output circuits, and which is followed by a delay 
line that introduces a delay equal to the transit time of the electrons 
in the drift space. 

It is clear from Fig. 11*4 that, if Mi^ is given, the r-f voltage across the 
first gap Vi is uniquely determined by the usual laws of circuit theory. 
This fact does not depend upon any knowledge of the origin of Mix, 
It is equally clear that the fact that this is a klystron oscillator—that is, 
that Mil is produced by Fi by the physical mechanism of velocity 
modulation and bunching—also uniquely determines the ratio Mii/Vi. 
In a steady state of oscillation these two relations between Mix and Fi, 
arising from two different sets of physical circumstances, must be satis¬ 
fied. This requirement may be expressed as follows: the circuit transfer 
admittance Yc (or “ transadmittance ”)> must equal the electronic 
transadmittance Ye] that is, with the sign convention noted in the next 
section. 

Ye - Fe. (1) 

11*4. Condition for Oscillation.—The condition stated in Eq. Cl) is 
sufficient to determine all the characteristics of oscillator behavior. The 
present section is devoted to a discussion of these two transadmittances 
and some of the consequences of the condition for oscillation. 

The Electronic Transadmittance.—By Eq. (9*9) ix = 2/oC'"^®°Ji(Z), 
where Fi = —jV. Although the assumption of this particular phase for 
Fi is not retained, the phase of the electronic transadmittance is inde¬ 
pendent of the assumed phase of Fi; and from the above expressions the 
electronic transadmittance has already been found to be 

Mil 

'ft 
2/l(X) 

X 
(10*15) 

It may be recalled from the discussion of amplifier theory in Sec. 10*3 
that Ge is the small-signal electronic transconductance, Gc ^ ilf 2^o6ro/2, 

which is independent of beam voltage for the customary constant- 
perveance electron gun; the conductance compression, 2Ji(X)/X, which 
gives the diminution of F« when X is more than infinitesimal, is shown 
in Fig. 10*2. 

The Circuit Transadmittance.—few comments about sign conven¬ 
tions are in order before writing down the circuit transadmittance. 
The primary sign conventions that have so far been made are the follow¬ 
ing: (1) the instantaneous value of the bunched-beam-current component 
is positive during the ‘^passage of the bunch,and (2) the instantaneous 
r-f gap voltage is positive when accelerating the electrons of the beam. 
As a consequence of these two conventions, the average power P delivered 
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to the output «’>'9{iit is given by 

P = - ine(MirV2) = ReCF^FfFj). (2) 

To these conventions must be added another: the mutual inductance 
Me and the circuit-coupling coeffi¬ 
cient k(k^ ^ MI/L1L2) is taken to be 
positive when Vi a —jV2 at reson¬ 
ance of both circuits to the frequency 
of the driving current. (It should be 
noted that in circuit considerations 
based on Fig. 11*6, Fi and V2 are the 
secondary and primary voltages re¬ 
spectively.) This convention is 
necessary because the sign of k may 
be reversed by a simple change in cou¬ 
pling such as the one shown in Fig. 11.8. 

Given this sign convention, a conventional lumped-constant circuit 
analysis shows that the circuit transconductance is given by 

Fig. 11*8.—IlluHtration of means of 
changiiif; sign of the coupling coefficient 
k by a change in the symmetry of a 
feedback loop. 

Mil 
Vi yjLi 

[(1 + 2jQi8i)(l + 2jQ2d2) + k^QiQ2] 
kQi (3) 

Here, as usual, 61 s (w — wi)/a)i, and a similar relation holds for 62; 
Q2 is the Q of the output circuit including the effect of the load conduct¬ 
ance Gl. However, Eq. (3) is not a convenient form because the fre¬ 
quency of the driving current (that is, the frequency of oscillation) 
appears both in 5i and 82. A better form may be obtained by use of the 
following notation: 

and 

8 - 
W (wi + W2)/2 

\/ C01W2 

(4a) 

^0 
(C02 ~ 0>l) 

2 '^0)10)2 
m 

Thus 8 is the fractional deviation of w from the mean frequency of the 
two resonant cavities, and 8q is one-half the fractional detuning of the 
two cavities from each other. It is also useful to define 

- k^QiQ2. (5) 

At the critical coupling, == 1. The term “criticaF^ refers to the 
usual circuit terminology and does not refer to any critical condition for 
oscillator operation. Utilizing the relation Q == l/(al£ff Eq. (3) may now 
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be rewritten 
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Yr = {-2[(0, + Q,)S + (Qx - Q,)5„] 

+ j[(l + K^ + - 4Qx<?*5*]}. (6) 

The Condition for Oscillation.—It has already been noted that steady- 
state oscillations exist only when the circuit and electronic transfer 
admittances are equal, that is, when 

Y. = F.. (1) 

If the values of the transfer admittances Ye and Ft given in Eqs. (10*15) 
and (6) are used, this condition may, for convenience, be written in full 
as follows: 

' X 
\/ ij\0^ 

*2[(yi + Qf)b + (Qi — Q2)8o] 

+ Ml +K^ + ^QiQ2dl) - 4QiQ262]1 . (7) 

The questions asked concerning the oscillator are usuall^if such as to 
suggest the following classification of the various quantities in Eq. 
(7). The d-c transit angle of electrons from input to output gap. So, 
is the independent variable; it is proportional to and a change in this 
independent variable simply describes a change in beam voltage. The 
dependent variables are 5 and X, which specify the frequency and 
amplitude of oscillation. The basic circuit parameters are the relative 
detuning of the resonators 5o, the normalized circuit-coupling coefficient 
K, the unloaded Q of first cavity Qi, the loaded Q of second cavity Q2, 
and the product GQ = coC for each cavity. The basic electronic param¬ 
eter is Ge, the small-signal electronic transconductance. It should be 
recalled particularly that ^0 and that usually (i.e., electron gun 
of constant perveance)/o «: Fo^^^andGo « ; hence G®, which is propor¬ 
tional to doGof is independent of Bo and Fo except for the usually minor 

dependence of ilf on Fo. 
The dependent variable X does not give very much information about 

the output power because X oc |Fi|, whereas the output power involves 
F2. A subsidiary relation to Eqs. (1) and (7) giving the relation between 
Fi and F2 is needed, which follows from simple circuit analysis: 

T7 jYi \/Gi/G2 [1 + 2jQi{d 4* 5o)] V, =-^- (8) 

The discussion is, for some time, concerned not with output, but simply 
with the values that X assumes under various circumstances; neverthe¬ 
less Eq. (8) is inserted at this point to call attention to the way in which 
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\V%/Vi\ and the output power for a given X increase as 5 + 6o increases 
or as K decreases. 

Returning now to Eq. (7), it is worth while to inspect the way in 
which the variables ^o, X, and 5 appear. Since the circuit elements are 
all linear, X does not appear in Yc\ neither does the purely electronic 
variable ^o. Thus, both the phase and the absolute value of the circuit 
transadmittance are determined by the frequency deviation 5. In the 
electronic transadmittance the phase is determined solely by Bo and the 
absolute value by X alone. 

The way in which X and 5 are determined by may thus be visualized 
somewhat as follows. Suppose that all the circuit and electronic para¬ 
meters have been fixed, and that someone now sets the beam voltage at a 
particular value and thus determines the value of Bo, This determines 
the phase of the electronic and hence of the circuit traiisadmittance; 
the frequency deviation 6 is thus immediately determined as the value 
that gives Yc the correct phase. But, in thus meeting the phase condi¬ 
tion, 8 also completely determines the absolute value of The 
amplitude of oscillation, as indicated by JT, must therefore now be such 
as to give*F« this same absolute value. Thus one might say that Bo 

determines 8 and that 8 determines X. 
Sometimes these various conditions are incompatible. The maximum 

absolute value of Ye for any X is Gey and this value occurs for X « 0. 
If the value of 8 as determined by is such as to make | Fd > G*, then no 
oscillation can be supported. For example, as Bo—^2t X (integer -f- i), 
Ye becomes negative imaginary; if K is positive then F^ becomes negative 
imaginary only as 5 —> ± oo ; but at the same time | Fc| cjo. Hence 
oscillations can never occur for a positive X at = 27r X (integer + ^). 
Similarly for a negative X, oscillations can never occur at 

^0 = 27r X integer. 

Thus a plot of strength of oscillation versus Fo or shows discrete modes 
of oscillation separated by regions of no oscillation. The larger Ge is, the 
narrower these regions of no oscillation will be. 

Equations (7) also verify the physically obvious fact that with small 
enough coupling (K) or large enough detuning (5o), [F. | will be so large 
at all frequencies that no oscillation is possible for any Bo, 

Figures 11-9 and 11-10 show the way in which oscillation ceases at 
certain values of Bo (or Fo), with the adjacent zeros of output separated 
by one cycle of electron-transit time. 

These figures^ show the frequency of oscillation and output power of 
the 410R klystron as a function of beam voltage. The 410R has already 

* Type 410E Technical Information Sheet, Sperry Gyroscope Co., Greak Neck, 
N.Y, 
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been referred to as an ‘‘amplifier klystronit may be converted to an 
oscillator by attaching an external feedback line for which connections 
are provided. Various features of these figures are discussed at a later 
point; their relevancy to the present discussion lies in their illustration 
of the existence of discrete “modes of oscillation.^’ It is to be noted that 
“mode” is here used in a sense different from that involved in “modes 
of free oscillation of coupled circuits”; the modes in Figs. 11-9 and 11*10 
differ not in circuit features but only in electron-transit time. 

In Fig. 11*10, for example, the centers of the regions of zero oscilla¬ 
tion occur at Fo = 560, 770, 1200, and 1950 volts; from the facts that 
X — 10 cm and the drift length I = 3 cm, the corresponding transit 

Vq (volts) 

Fia. 11-9.—Typical output power and 
oscillation frequency characteristics in 
the typo 41 OR two-resonator klystron 
oscillator. Feedback and detuning ad¬ 
justed for maximum output power. 
Zero focus voltage. Center frequency 
fo ~ 3000 Mc/soc. 

Fig. 11-10.—Typical output power and 
oscillation frequency characteristics in the 
type 410R two-resonator klystron oscillator. 
Feedback and detuning adjusted for uniform 
output power characteristic. Focus voltage 
zero. Center frequency fo * 3000 Mc/sec. 

times are found to be 6.38, 5.36, 4.35, and 3.40 cycles. These numbers 
are not integers or integers plus one-half because, in comparison to the 
simple mutual-inductance model of Fig. 11*6, operation of the 410R 
involves an additional transit time—that of the feedback signal around 
the external feedback line. This fact also explains the slight shift in the 
modes in going from Fig. 1110 to Fig. 11*9; the shift occurs because 
the length of the feedback line has been intentionally changed to produce 
the difference in the shapes of the modes in the two figures. The region 
of no oscillation that one would expect to find centered at 2.37 cycles or 
4000 volts under the conditions of Fig. 11*10 is considerably broadened 
because the cathode begins to be temperature-limited, thus diminishing 
G0 above 2500 volts; the zeros below 2000 volts also become increasingly 
wide (in percentage) as Fo is decreased, because of the accompanying 
diminution of M and hence of G*. 
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11*6, Transadmittance Diagrams.—^Analytically, the condition for 
oscillation as expressed in Eq. (7) is somewhat cumbersome. A more 
intuitive and simpler way of expressing this condition is made possible 
by considering the loci of Ye and Ye in the admittance plane. The 
condition for oscillation, Ye = then simply reduces to the condition 
that the loci of Ye and F, intersect. Before considering the various 
stages involved in thus expressing the condition for oscillation, however, 
the general anatomy of these transadmittance loci themselves must be 
considered in some detail. 

Locus of the Circuit Transadmittance.—The real part of Yc is a linear 
function of 5; the imaginary part is a quadratic function of 5 and hence 

Fig. ll-ll,—^Locub of cirruit tranHadimttance Kc, noimalized ab YcK/^''GiG2, as a 
parametric function of froquoncy deviation 5. 

of the real part; the locus of Yc is therefore a parabola with axis parallel 
to the imaginary axis of the admittance plane; each point on this parabola 
corresponds to a single value of 5. The geometry of this parabola is 

summarized in Fig. 11*11, in which is shown the locus of YcK/y/GiG^^ 
If if > 0, then Fig. 11*11 also shows Fc to within a scale factor, but 

if 12^ < 0 (see Fig. 11*8), then the locus of Yc will be the negative of the one 
shown—that is, each point will be inverted through the origin. The 
vertex of the parabola always lies above the real axis by an amount 

(y/Gx/G^/K) {I + + AQxQ^hl)] this distance is thus always in¬ 
creased by increasing the relative resonator detuning, is decreased by 
heavy loading of the output cavity, and is a minimum with respect to 
coupling when it® = 1 + ^QiQ2^l> The distance of the vertex from the 
imaginary axis is proportional to the detuning, but would always be 
zero if both cavities were loaded to the same Q. 

Locus of the Electronic Transadmittance.—The locus of F« is more 
simple. As shown in Fig. 11*12, for any given value of X the locus of 
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y. is a circle about the ongin of radius G, • 2Ji{X)/X: the radii for several 
values of X are shown in Fig. 11-12, 
Ji{X)/X on X may be obtained from 

Fig. 11-12.—Dependence of Ye/Gt, ratio 
of electronic tranaadmittance to small-signal 
electronic transconductance, on bunching 
parameter X and electron-traiAit angle (?o; 

and the more exact dependence of 
Fig. 10-2. 

Fig. 11-13.—Transadmittance dia¬ 
gram (loci of Ye/G\ and Ye/G\) for criti¬ 
cal coupling, no detuning (K ^ 1, do ^ 
0);Q2 =iQi,GJGi -5\/2. 

The condition for oscillation, Etj. (7), now finds simple expression 
in terms of these transadmittance loci. Figure 11*13 shows the loci 
of and Yo for the simple case 
of critical coupling and no detun¬ 
ing (K = 1, 5o =0).^ Oscillation 
will only occur for the range 
^01 < ^0 < (9o2for which \ Yc\ < Ge, 

that is, for which the parabola lies 
within the X = 0 circle of radius 
Ge. For any value of within 
this range, X will assume the 
value corresponding to the Ye 
circle intersected by the parabola 
at this value of ^o. Similarly, to 
within an additive constant, the 
value of S at any is propor¬ 
tional to the horizontal (real) 
projection of the parabola at the corresponding value of The depend¬ 
ence of X and S on as thus graphically derived from the transadmit¬ 
tance diagram of Fig. 11*13 is shown in Fig. 11*14. The limits of 
oscillation are the ^oi and ^02 of the previous figure. 

Relative electron transit angle (0o~2irn) 

Fig. 11-14,—Dependence of electronic 
efficiency tj, bunching parameter X, and 
oscillation frequency deviation S, on electron 
transit time 0o, for conditions as given in 
transadmittance diagram in Fig. 11-13. 

^ Certain values of Q1/Q2 and Oe/Gi are assumed to make these curves identical 
with some that will appear later as part of a family of characteristics. 
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Some of the general conclusions to which this use of the transadmit¬ 
tance diagram leads are discussed later. It should be noted, however, 
that while this procedure gives the output-frequency deviation 5, it does 
not give the output power, but only the bunching parameter X, The 
connection between output power and X will now be discussed. 

11*6. General Oscillator Characteristics.—Relation between Electronic 
Efficiency rj and Bunching Parameter X,—The determination of the out¬ 
put power—or better, the output efficiency—really comprises two steps: 
(1) the determination of the electronic efficiency, and (2) the determina¬ 
tion of the circuit efficiency. The electronic efficiency y] is the efficiency 
of delivery of power by the electron stream to the output resonator. The 
circuit efficiency rje is the fraction of this power that gets delivered to 
the external load as represented by Gl in Fig. ITG. Thus the over-all 
efficiency rjL is given by 

Vl == (9) 

As discussed in deriving Eq. (10*7) for the power P2 delivered to the 
output cavity, the electronic efficiency rj is given by 

^ Re (YytV2) 
“ 2/oFo 

"" “ ^oFo ^ (^* Ti ' 

Using Eqs. (10-15), (8), and (9-2) to give values of Ye, Fj/Fj, and X, respec¬ 
tively, this equation becomes 

M ^ [cos ffa - 2Q,(« + «o) sin do]. (10) 

Even the above form of Eq. (10) is hardly convenient analytically; 
but, as a matter of fact, it has a very simple physical content. If the 
constants of proportionality are omitted, this expression for rj is com¬ 
posed of the following factors: 

1. 2Ji(X), the relative r-f component of bunched beam current. 

2. X \/l + + hY/K, the magnitude of the output-gap 
r-f voltage. 

3. [cos $0 — 2Qi(d + do) sin ^oJ/a/I + -f 5o)^ the cosine of 
the phase between the bunched current ii and the output-gap r-f 
voltage. 

The factor [cos — ^Qi(d + Bo) sin ^o] in Eq. (10) thus describes 
two separate effects: the changes in the magnitude of 72, and in the 
relative phase of ii and 72 as varies at constant X. 
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Consider, as an example, the case of no detuning (5o =* 0). Here 
the transit angle = 2im, where n is an integer, gives 5 = 0 and 

e,r, = 2XJx{X) VQUQiIK. 

As 5o increases two effects occur: IF2/F1I increases, and the cosine 
of the angle between V2 and i\ decreases. These two effects have opposite 
influences on the efficiency; which will predominate? Equation (10) 
shows that, if — 5 increases sufficiently rapidly with 5o, the increase in 
IF2I predominates over the increasingly unfavorable phase angle between 
i\ and F2, and the efficiency is a maximum at sin 5o = ±1. This is the 
usual case; it gives rise to behavior such as that shown in Figs. 11*9 
and 11*10, where the efficiency shows local maxima just before the tube 
goes out of oscillation. The other altemiitive occurs only for small values 

of (?e/G2. 
In an oscillator with a sizable it is apparent from what has just 

been said that ii and F2 are not 
in phase at the maximum effi¬ 
ciency available for 5o == 0. This 
fact indicates the advantage of a 
relative detuning of the resona¬ 
tors, for the optimum efficiency 
will occur with the combination 
of maximum .IF2I and zero phase 
angle between ii and F2. The 
illustration of these points in detail 
by an exhaustive discussion of the 
contours of constant rj in the 
admittance plane is too lengthy a 
procedure to be carried out here. 
The present comments should 
suffice to indicate the physical factors at work; graphical illustrations of 
the effect of detuning on efficiency are given later. 

The relative contribution to rj by the factor XJi(X) is easily seen. 
In Fig. 11*15 is shown the dependence of this function on 2Ji(X)/X 
(that is, on the relative distance from the center of the transadmittance 
diagram). 

It should also be noted that, since K occurs in the denominator of 
the right-hand member of Eq. (10), it might appear that an infinitesimally 
small coupling leads to an infinite 1?. But the normalization factor in 
Fig. 11*11 shows that as K is decreased the absolute scale of the circuit 
transadmittance locus is increased; hence, too small a value of K causes 
the locus of Yc to expand far beyond the locus of F®, and thus makes 
oscillation impossible long before any infinite 17 is reached. 

0 0.2 0.4 0.6 0.8 1.0 
2J,(X)/X 

Fig. 11*16.—Dependence of XJ\{X) on 
2Ji(X) /Xt that is, on radial position in the 
transadmittance diagram. 
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The Circuit Efficiency,—The circuit efficiency rje is the ratio of the 
power dissipated in the load Gl to the power dissipated in Gi and G2I 
hence 

\V2\^L 

By Eq. (8) this becomes 

GsL l'+4Qf(5 + 5o)== 

When jRl <$C 1, that is, when very little of the r-f power developed is 
returned to the first resonator to be there dissipated, this expression 
reduces to the simple equation rjc = GlIG^i which was used for amplifiers. 
The same is true when Qi6o» 1, that is, when the detuning of the first 
resonator with respect to the second is very great. 

The basic point about Eq. (11), however, is really the simple fact 
that the circuit efficiency depends on 5 and hence, implicitly, on 
and Fo. This dependence is in sharp contrast to the situation, for 
example, in the reflex klystron. 

7'he Frequency of Oscillation.—It has already been noted in discussing 
Eq. (7) that the frequency of oscillation is determined by the condition 

that the phase of the circuit trans¬ 
admittance Ye shall be equal to the 
phase of the electronic transadmit¬ 
tance Ye] and the latter, 7r/2 — &o, 
is determined solely by the mean 
electron-transit time. The de¬ 
pendence of 3 on ^0 is thus purely 
a circuit matter and is not at all 
influenced by amplitude of oscilla¬ 
tion; the functional relation be¬ 
tween 8 and is determined by 
simple considerations involving the 
analysis of coupled circuits. 

In the transadmittance diagram 
(see Fig. 11*11), the real part of Ye 
is linear in 3. Thus, in terms of 
this diagram, 3 may be determined 
from the Ye parabola for any value 
of ffo by drawing a line from the 

origin at an angle to the imaginary axis; the real part of the admittance 
point where this line intersects the parabola is proportional to a constant 
minus 8. 

Fig. 11*16.—Graphical determination 
of the relative frequency changes, A and J3, 
produced at $9 *» 2im and ^0 ** 27m -h ir/2 
by a given increment of ^0, A^o. Strong 
circuit coupling. 
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This graphical construction allows simple conclusions about the 
dependence of b on ^o. In Fig. 11-16 is shown the Ye parabola for strong 
coupling, K — with = 0. A change A$o at ~ 0 makes a change 
A in Re (Fc) that is much larger than the change B produced by the same 
A^o at ^0 = 7r/2. Hence d8/ddo is much larger at j0o = 0 than at do = ir/2. 

Similar reasoning may be applied to other values of K and 8o, and 
will disclose the dependence of 8 on 6oy which is shown in Fig. 11*17 for 

5o = 0 with iC 1, JE = 1, JC = 3, and for \^QiQ28o = ± 1 with K = 1 
(critical coupling). It may be noted that at critical coupling 8 is prac¬ 
tically linear in do for —7r/2 < do — 27m < v/2. Detuning produces a 
characteristic asymmetry; it may be deduced by a comparison of Figs. 
11-9, 11*10, and 11*17 that do > 0 in Fig. 11*9 whereas do < 0 in Fig. 

Fig. 11*17.—Oscillator frequency deviation 5 as a function of electron-transit angle do, 

for M * 1, ^2 *= J(?i, Ge/G - 5 \/2- Combinations of coupling and detuning as indi¬ 
cated. Qiio = 0 (solid curve); Qido « 0.5 (broken curve). 

II'IO. Overcoupling produces linear regions (effectively, points of inflec¬ 
tion) at 6o — 2jm = ±ir/2 instead of at 6o — Zttw = 0, as was the case 
with critical coupling. 

It appears that the largest approximately linear variation of frequency 
with 6o (that is, with a change in beam voltage) occurs for {o = 0 and 
X == 1; it has already been noted that this combination produces a 
somewhat lowered efiiciency. It would also appear that the total range 
of frequency change, regardless of linearity, increases with increased 
overcoupling. This latter point is rather illusory, since the overcoupling 
will later be seen to split the main mode into two separate modes centered 
at' tfo — 2im = ±ir/2; these two separate modes of oscillation cor- 
re^ond to the two ‘^normal modes of free oscillation" of two coupled 
circuits, and the centers of gravity of the frequency of these two modes 
separate as K increases. This fact emphasizes that the limits of oscilla¬ 
tion must be taken into account in drawing conclusions from Fig. 11'17. 
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An anal3rtical relation between $ and tan 0o may be derived from Eq. 
(7), but it serves more as a point of reference in calculation than as a 
source of understanding. For reference purposes, it is 

1 fan fl — + {Ql — ^2)^0- 
2 ^ "o 1 + + 4QiQ*5§ - 4QiQ,«*‘ , 

(12) 

Equation (12) shows that the decrease of h, that accompanies the 
increase of 0o, is unaffected by the sign of the coupling parameter K. 
It will be found by checking into the derivation of Eq, (10) that, when 
00 is increased from the value at which ii and Vi are in phase, 5 always 
decreases; this decrease tends to minimize the efficiency-reducing phase 
difference between ii and Vi. It might be said that the sign of dd/dOo 
is determined by the instinct of self-preservation! 

Typical Modes.—The foregoing comments on the variation of X, 5, and 
1) in the two-resonator oscillator may be most easily illustrated by pre¬ 
senting the transadmittance diagrams and mode shapes for typical 

combinations of K and 3o. For this purpose, some assumptions must be 
made about Gi, Gi, Qi, and Qi. It will be assumed that Gi = 2Gi 
and Ql — 2Qi (i.e., Ci = Cg). This value would be optimum load for a 
small-signal amplifier, but is only approximately optimum for the two- 
resonator oscillator. As already noted, however, in the present case 
the optimum load varies with do, and therefore there is no one load that 
is optimum over the whole mode. 

A purely illustrative assumption must also be made about the rela¬ 
tive size of Ge and Gi, which determines the relative size of the Fc-parabola 
and the F<-circle in the transadmittance diagram. The value of Ge/Gi 

is taken as 5 \/2- 
In Fig. 11-18 is shown the transadmittance diagram for 5o = 0, 

K = 0.3, 1, and 6—that is, undercoupling, critical coupling, and over- 
coupling of the circuits. (The “over” and “under” is circuit nomencla¬ 
ture, and does not necessarily mean “nonoptimum” so far as the 
oscillator is concerned.) In Fig. 11-19 is shown the transadmittance dia¬ 
gram for critical coupling (K = 1) and for Qi5o = 0 and -fO.S. In Fig, 
11-20 is shown the dependence of X on $0, which may be deduced from 

these transadmittance diagrams. In Fig. 11-21 is shown the correspond¬ 
ing dependence of ri, which may be deduced'from Eqs. (9), (10), and (11). 
For completeness, there is also repeated in Fig. 11-21 the dependence of 
B on 00, which has already been given in Fig. 11-17. 

The particular combinations of K, So, and G,/Gi to which these modes 
correspond have been chosen as typical of the various modes encountered 
in oiBc^tor operation. The characteristic features oi each type of mode 
may be summed up as follows. 
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• The mode for X = 6 and 5o = 0 shows the way in which strong cou¬ 
pling splits one mode into two separate modes. The center frequencies 
of these modes are separated by an amount that increases with K, just 

Fia. —Transadmittancc diagram for 

a. - 0. G./<?1 = 6 Vi, Qi = \Qu 

Fig. 11*19.—Transadmittance diagram 
for iC =1 (critical coupling), « 5 \/2, 
Qt « \Qi. 

as the two normal frequencies of free oscillation of two coupled circuits 
separate as K increases. By the proper adjustment of Ge/G^—that 
is, by the proper adjustment of the output load—these modes become 

Fig. 11*20.—Dependence of bunching 
parameter X on electron-transit angle 0o, for 
the combinations of coupling and detuning 

as indicated, and for Qz ** iQi, G«/Oi 5 \/2* 
Qi5o » 0 (solid curve); <ji5o « 0,6 (broken 
curve). See Figs, 11*18 and 11*19 for cor¬ 
responding trai^sadmittanoe diagrams. 

-a* ->r/2 0 *f'/2 
Relative electron transit angle {6Q-2irn) 

Fig. 11*21.—Electronic efficiency iy 
as function of electron transit angle 

for e» - iQi, O./Gi - 6 v^. QiS, - 0 
(solid curve); » 0.6 (broken curve). 
Compare with Figs. 11*17 through 11*20. 

efficient. Operation in an overcoupled state is therefore a common 
practice. It is seen that with such operation the voltage modes of 
oscillation may be divided into two families, the mean frequencies of 
which are separated by an amount that increases with K. As the beam 
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voltage is changed the modes of oscillation alternate between these two 
families. 

The mode for optimum coupling with no detuning (K = 1, So = 0) 
has an eflSciency that is almost constant over a large range of ^o, and a 
frequency that (as already noted) is quite linear in do. The price of 
this advantageous behavior is a slight loss in efl&ciency. 

The mode with So = 0 and K = 0.3 (weak coupling) shows primarily 
the loss in efficiency caused by lack of sufficient feedback to maintain 
optimum bunching; it is apparent from the transadmittance diagram 
that a slight additional diminution in K would cause the oscillations 
to cease entirely. 

The mode with detuning (Qjfio = 0.5) and K = 1 shows the results 
of detuning, namely, mode asymmetry and increased peak efficiency. 

By presenting a number of such curves, enough information may be 
made available to allow a detailed analysis of the output efficiency of 
any oscillator. The discussion will not be carried, however, beyond what 
has been shown about general oscillator characteristics, for it is now 
apparent that the number of available degrees of freedom of adjustment 

of a given oscillator should make it possible to obtain an output power 
that is equal, essentially, to that of the corresponding power amplifier 
diminished by the power required to excite the first cavity. 

Using as an example the 410R klystron to which so much reference 
has already been made, an amplifier output of 18 watts was quoted for 

Fo = 2070 volts and Jo = 92 ma. The oscillator data of Figs. 11-9 
and 11-10 may be interpolated to Fo = 2070 and allowance made for 
the increase of efficiency with a negative focusing voltage on the electron 
gun. If this is done, an oscillator output of 14.3 watts as compared 
with the amplifier output of 18 watts is obtained. The amplifier data 
indicate a necessary r-f input to the first cavity of 1.8 watts, or an ideal 
oscillator output of 16.2 watts. A large part of the difference between 
this figure and 14.3 watts may be loss in the external feedback line; in 

any case, the observed oscillator efficiency closely approximates that 
predicted by the amplifier performance. 



CHAPTER 12 

REFLEX KLYSTRON OSCILLATORS 

By J. K. Knipp and D. R. Hamilton^ 

The reflex klystron oscillator is a high-frequency single-resonator 
tube employing the principles of velocity modulation and bunching 
for the purpose of production of r-f power. A stream of electrons from a 
cathode is accelerated to a potential of a few hundred volts in a region 
forming an electron gun (see Fig. 12*1). This stream passes through the 
gap of the resonator into a refle<*tor region. Here the electrons are 
stopped by a strong retarding field and reflected back through the gap, 

12-1. General Behavior.—If an r-f field exists across the gap, the 
stream is velocity-modulated on emerging from the gap after the first 
transit of the electrons. As a 
result of this initial velocity modu¬ 
lation, the stream is density- 
modulated on returning to the gap 
after being reflected. The degree 
to which the stream is density- 
modulated depends on the exact 
nature of the reflector region and 
on the magnitude of the initial 
velocity modulation. During the 
second transit, the modulated cur¬ 
rent interacts with the gap fields. 
If the relative phase of this current 
and the r-f gap voltage lies in the 
proper range, power can be de¬ 
livered from the stream to the 
resonator. If this power is suflS.- 
cient for the losses and the load, steady oscillations can be sustained. 
The frequency of these oscillations will be near the principal resonant fre¬ 
quency of the resonator. The degree to which it differs from it will 
depend on the effective capacitance of the resonator and the reactive 
portion of the electron transadmittance, the latter being controlled by the 
phase of the reflected current. 

^ Sections 12*3 and 12*4 by D. E. Hamilton; the remainder of Chap. 12 by J. K. 
Knipp. 

Fig. 12* 1.—Schematic drawing of reflex oscil¬ 
lator with coaxial-line loop output. 

311 
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Optimum Phase,—The condition of optimum phase is determined by 
the fact that the center of the bunches in the returning stream should 
pass through the gap when the gap field has its greatest retarding effect, 
for then the greatest number of electrons lose the largest possible amount 
of energy during the passage and the maximum power is extracted from 
the beam. 

Electrons forming the center of a bunch on the second transit are 
readily identified as those passing through the gap on the first transit 
at a time when the field is changing from one that is accelerating the 
electrons to one that is decelerating them. Consider the group of elec¬ 
trons that passes through the gap in a short interval of time extending a 
small fraction of a cycle before and after this time. Because the faster 
electrons penetrate deeper into the reflector region, their return takes a 
longer time than that of the slower ones. In fact, in a constant reflector 
field, the time required for electrons to return is proportional to the 
velocity of injection. Hence, if the earlier electrons in the group are 
also the faster, as they are if the earlier were accelerated and the later were 
decelerated during the first transit, conditions are right for the formation 
of bunches. The center of the bunch is composed of electrons that have 
their velocities unaffected by the transit. 

In general, if the phase is to be optimum, this center must arrive at 
the gap when the gap field exerts the maximum retarding effect on the 
electrons at the center. Since the gap field changes from acceleration 
to deceleration on the first transit, it does not oppose returning electrons 
until i cycle later and it will have its maximum retarding effect f cycle 
later. Subsequently the maximum retardation occurs If, 2f, . . . 
cycles after the first transit of the gap. Hence the optimum phase angles 
between bunched current and gap field are $n = 2ir(w + f), n = 0, 
1, 2, 3, • • • . 

Possible Modes of Operation,—Oscillation with a phase near an opti¬ 
mum value constitutes a possible mode of operation of the reflex oscillator. 
These modes are identified by n, the number of whole cycles to which f 
is added for optimum phase. 

The relative phase of the bunched current and the gap voltage can 
be controlled by changing the reflector voltage. A change in reflector 
voltage changes the average time spent by the electrons in the retarding 
field, and hence the number of cycles that have elapsed between first 
and second transits. It is therefore very simple to change from one mode 
to another by making a change in the reflector voltage. There exists a 
succession of discrete values of the reflector voltage corresponding to 
the sequence of numbers for optimum phase, with the less negative values 
having the laiger values of n. There are, of course, limitations in a tube 
of particular design on the phases that can actually be reached. For 
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example, the depth of the reflector region places an upper limit on the 
total time that an electron of a given initial velocity can spend in that 
region. 

Weak Modulation,—The initial oscillations start from noise fluctua¬ 
tions, which are ever present in both the beam current and the gap 
voltage. The manner in which the oscillation builds up depends on 
how the various fields are applied. It is significant that under ideal 
conditions the phase of the bunches relative to the gap voltage does not 
depend to any marked degree on 
the amplitude of the gap voltage, 
and hence undergoes only negligi¬ 
ble change during the buildup of 
oscillation provided the d-c condi¬ 
tions are not changed. 

In order to simplify the dis¬ 
cussion, suppose the transit angle 
of the gap is negligibly small. ^ 
The bunching parameter for negli¬ 
gible gap-transit angle is' 

X = ev/2V,, 

In the initial oscillations the 
bunching parameter is very nearly 
zero because of the smallness 
of the gap-voltage amplitude V 
compared with the beam poten¬ 
tial Fo. As the oscillation builds 
up, X increases until the steady- 
state value is reached. 

The velocity modulation that 
is due to the action of the gap 
voltage during the first transit has an amplitude that is the product 
of the average velocity of the electrons f>o and the ratio F/2Fo. If the 
modulation is extremely weak, the amplitude of the bunched current 
caused by this velocity modulation is simply the product of the amplitude 
of the velocity modulation, the average charge density, and —(com¬ 
pare Sec. 3*3 and Sec. 9*3). This current can be used to define a small- 
signal electronic transadmittance. It is 

Y, « (1) 

where On is the beam conductance at the gap. If 9 is regarded as a 
parameter that starts from zero, F« as given by this formula traces a 

' See J. R. Pierce, “Reflex Osofllators,” Proe, t.R.E. S8, 112 (1945). 

admittance. Y, <» 
2 
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spiral in the complex admittance planer as shown in Fig. 12*2. This 
spiral starts at the origin with infinite slope and moves in a clockwise 
direction in ever increasing loops. It cuts the negative real axis at the 
angles 6n = 27r(n + |), w = 0, 1, 2, • • • . These are values of n 
for which the electronic admittance is a pure negative conductajxce. 

Bunching Parameter,—If conditions are such that the gap voltage 
increases, X grows in value and the 
bunching process becomes less simple. 
As already noted, the phase angle does 
not ordinarily change. From bunching 
theory it is found that the effect on the 
electronic admittance is given by the 
factor 2Ji(X)/X, This factor, which 
is plotted in Fig. 12-3, has the value 
unity for X == 0, and drops to zero at 
X = 3.83. It follows that a point on 
the spiral representing the initial elec¬ 
tronic admittance for very weak modu¬ 
lation will move inward along the radius 
vector from the origin as the oscillation 
builds up. The shrinkage along the 
radius vector is given by Fig. 12*3 as 
a function of the bunching parameter. 
The process of initial build-up is dis¬ 
cussed in Chap. 16, Sec. 16*8. 

Steady OscilloMon.—The resonator and load can be represented at the 
gap by a conductance G and variable susceptance 2jC{<a — wo), which is 
zero at the effective resonant angular frequency coo. Hence the circuit 
admittance at the gap is 

F = (7 + 2jC(u> - coo). 

Bunching parameter X 

Fig. 12*3.—Factor giving effect 
of bunching parameter on electronic 
transadmittance. 

Regarded as a function of co, the circuit admittance traces out a vertical 
line in the admittance plane with an intercept with the real axis at 0. 

The condition for steady-state oscillation is the familiar one that the 
total admittance is zero, 

F + Fa = 0. 

This relation gives at once the point at which the shrinking process must 
stop. In Fig. 12*2, — F has been indicated as a vertical line on the 
electronic admittance diagram. The steady-state condition has been 
satisfied when the electronic admittance that has the initial value indi¬ 
cated by the point a changes by moving along the radius vector toward 
the origin until it reaches the point 6, which is the intercept of this vector 
with the line *- F. Steady oscillations are established at this point. 
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It is seen that the process described can take place only if the initial 
point on the spiral lies to the left of the constant circuit-conductance line, 
for otherwise the radius vector does not intercept that line. Only points 
to the left of the line can lead to steady oscillation. Hence it becomes 
apparent that of the possible modes of oscillation, only those having 
electronic conductance for weak modulation at optimum phase greater 
in magnitude than the circuit conductance can operate with these 
conductances unchanged. For a given beam conductance and a given 
circuit conductance, there is in the sequence of possible modes a lowest 
value of n corresponding to the smallest intercept on the spiral from which 
steady oscillations can be initiated. 

The point 6 not only establishes the magnitude of the gap potential, 
through the dependence on X as 
given in Fig. 12-3, but also deter¬ 
mines the frequency of the oscilla¬ 
tions by giving the amount of 
circuit susceptance that is needed. 
The frequency of oscillation will be 
the resonant frequency wo only if 
the point a, and hence 6, is on the 
real axis. Otherwise the frequency 
will deviate above or below wo by an 
amount depending on C, (?o, and 0. 
If in the nth mode B is greater than 
27r(n + f), the frequency of oscil¬ 
lation will be less than woj and if 
it is less than this value, the fre¬ 
quency will be greater than wo. 

Electronic Tuning.—The qualitative behavior under electronic tuning 
can be seen from the spiral diagram. If the point a is on the negative 
real axis and to the left of the constant circuit-conductance line, the 
point 6 is also on the axis and the tube oscillates in the center of the mode. 
If the reflector voltage is made less negative, B increases, the point a 
moves upward along the spiral in the clockwise manner, and the point 
h moves upward along the vertical line. At the same time, the frequency 
of oscillation decreases, though not fast enough to cause a decrease in 
the product of frequency and time spent in the reflector region. When 
the two points meet, the gap voltage is reduced to zero and oscillation 
stops. Hence the two points of intersection of the vertical line with 
that portion of the spiral belonging to the nth mode define the limits of 
oscillation and the frequency range under electronic tuning. The higher 
the mode, the greater the separation of these extreme points and the 
greater the tuning range. For a given mode the frequency changes 

12*4.—Electronic tuning in a given 
inode. 
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more rapidly with voltage at the center of the mode for a heavy load than 
for a light load because the point b is nearer a for the heavy load and hence 
moves more nearly at the same rate (see Fig. 12-4). 

Since the spiral is not symmetrical above and below the centter of the 
mode, electronic tuning is not completely symmetrical, the asymmetry 
being greater for lower modes. Other causes for asymmetry will become 
apparent in this and later chapters. 

Power Production.—The r-f current in the gap depends on the gap 
voltage through the factor Ji{X). It has a maximum that is the same 
in magnitude for all modes and occurs at the first maximum of /i(X), 
which comes at X = 1.84. Since X = eV/2V^ and B is larger for higher 
modes, the maximum of Ji{X) comes at smaller gap voltages for higher 
modes. Thus, it is to be expected that the maximum total r-f power 
produced is less for higher modes because the largest currents are at lower 
voltages. More exactly, the power is proportional to XJ\(X)/B] hence 
the power falls from mode to mode as l/(n -f I). The maximum of 
XJi(X) occurs at X = 2.40. For a particular mode there is a value of the 
circuit conductance G that leads to this value of the bunching parameter 
at the center of the tuning range under steady oscillation. Larger and 
smaller circuit conductances (heavier and lighter loads) have smaller total 
power. 

Because of the losses to the beam and to the resonator, not all the 
power produced is delivered to the load. The fraction of useful power 
that is produced is given by the circuit efficiency, which is the ratio of the 
load conductance to the total circuit conductance. The remaining power 
goes into losses in the cavity walls and in the beam. 

The frequency of oscillation is usu¬ 
ally as readily measured as the reflec¬ 
tor voltage; since a unique relation 
exists between them in a given mode, 
the poorer is often regarded as a func¬ 
tion of the frequency. Illustrative 
curves are shown in Fig. 12-6. At the 

- -resonant frequency «o the total power 
^ . J , , , IS less than maximum for heavy loads 

during electronic tuning. 1168<r d in 12*2 Snd X ^ 2.40) 
and for light loads (6 near origin and 

X > 2.40). The frequency range between zero-power points increases 
the lighter the load. 

Gap Transit Angle.—A finite gap transit angle 6i causes the gap volt¬ 
age to be not fully effective in producing bunching and the bunched cur¬ 
rant not fully effective in driving the resonator. The first effect arises 
because the field changes during the time of passage through the gap, 

Heavy load 

Fiq. 12*6.—Total r-f power produced 
during electronic tuning. 
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and hence an average value less than the maximum value becomes 
operative. The second effect is due to the partial cancellation in phase 
of the current in the gap, again because of the finite time of transit of the 
gap. Each introduces a factor M = sin (0i/2)/(^i/2) into the small- 
signal driving current. 

The first effect introduces a factor M into the bunching parameter. 
In addition the gap transit angle exerts an additional influence because 
the phase angle that is effective in bunching must be measured from the 
center of the gap; hence, if ^3 = wTs, where Tz is the average time spent 
by the electrons in the reflector region, the phase angle is ^ + ^3 

because the time required to go from the center of the gap back to the 
center of the gap is longer by two contributions, each of which is equal to 
Ti/2, the time of passage across half the gap. The angle that enters in 
the bunching parameter is also affected by the finite time of passage 
of the gap but not in the same way. For a linear reflecting field this 
angle, which is callo<l the effective bunching angle, ^«, is equal to 6z minus 
the gap-transit angle; thu& The negative sign is due to 
the fact that, in the process of bunching due to velocity modulation, the 
extra time spent in the gap is similar in its effect to time spent in a 
field-free drift space. As is pointed out in Chap. 9, bunching caused by 
free drift and bunching caused by the action of a reflecting field give 
density modulations that are opposite in sign. The angle that enters as 
a factor in the small-signal transadmittance is the effective bunching 
angle Be, In Eq. (1) it is written as 6 since (for a linear reflecting field) 
the two angles are the same for ^1 = 0. 

With these changes arising from the finite gap-transit angle, 
X == OeMV/2Vo and the electronic transadmittance is the expression, 

= (2) 

The combination Gne = BneMH}^/2, where B^e ^ Bn — 2mTi is the value 
of Be at the center of the nth mode, is the negative of small-signal elec¬ 
tronic conductance at the center of that mode. 

The maximum possible total power produced in a given mode is 
affected by gap transit angle only by a factor B/Be to first approximation, 
for the optimum value of the bunching parameter is unchanged. This 
optimum value occurs for a value of G that is smaller by MHe/B and for 
a value of V that is larger by BfMBe than the corresponding values for 
zero gap transit angle; since the total power is its maximum is 
increased by the factor B/Be. However, it is to be remembered that design 
considerations do not always allow the optimum value of G. 

12«2* Oscillator Theory for High Modes*—^There are three principal 
reasons why velocity-modulated tubes, of which the reflex oscillator is 
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an example, are subject to fairly reliable theoretical treatment: the geom¬ 
etry is simple, the current densities are low, and the velocities in the gaps 
are high. The electrons travel very nearly along straight and parallel 
lines. The circuit is composed of one or more resonators and, except 
for coupling devices, it has a high degree of axial symmetry. The resona¬ 
tor gaps, through which the electrons pass, have depths that are usually 
small compared with the diameters of the openings. The principal 
mode of excitation of each resonator is generally such that the electrical 
field in the gap is directed along the axis of the tube and has a space- 
constant amplitude. Because of the low current densities and high 
velocities of injection, space charge usually has only a slight effect on the 
beam. It can cause spreading and debunching and, where the velocities 
drop to zero as in the reflector region of the reflex oscillator, it can have 
an effect on the time of passage. Such effects are present in varying 
degrees under different operating conditions and affect the action of the 
tubes in a quantitative manner. However, they rarely change in any 
marked degree the qualitative aspects of the tube behavior. Because 
of the high velocities, the thermal velocity spread of the beam has but 
slight effect on the operation of the tube. 

In this section the simple theory of the reflex oscillator is developed. 
This theory is based on space-constant gap and reflector fields and has 
its greatest degree of validity for high modes. In low modes (small n) 
various correction terms in the electronic admittance are important 
[they contain extra factors 1/de (see Sec. 9*4 and Sec. 12*5)]. Also, for 
the lowest modes the amplitude of the gap voltage required for bunching 
sometimes becomes so large that some electrons are stopped in their return 
passage through the gap. This complication does not arise for high 
modes because the large values of the bunching angle in the bunching 
parameter X make optimum bunching possible with small gap voltages. 

Electronic Transadmittance,—In formulating simple bunching theory 
in Sec. 9-2, a field-free drift space was assumed. However, it was then 
found in Sec. 9-4 that with the exception of a possible change in the sign 
of the bunched beam current the results of Sec. 9*2 could be adopted 
in toto for the present case of a linear reflecting field. Here there will 
be used a sign convention for the bunched current that makes Eq. (9*9) 
applicable without change. Since the gap voltage is given by the real 
part of —as in Eq. (9*1), it follows that the electronic transad¬ 
mittance for the present case can be written as 

* 7, = ^ (2) 

where Go = klo/Vo is the beam conductance of the stream that returns 
to the gap; k is the fraction of the beam returning. 
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Condition for Oscillation,—For steady oscillation to take place the 
total admittance measured at the gap must be zero. The circuit admit¬ 
tance Y is the sum of three contributions: the load admittance 7l, the 
resonator admittance F/?, and the beam-loading admittance Yh, all 
measured at the gap. Hence the condition for oscillation is 

Yl + Yn + Yn + F. - 0. 

The circuit admittance is written in the form 

F = Fz. + F;^ + Fz, = Gj. + Gnu + 2iC(a, - 6,o), 

where Gl is the load conductance, Gbr — Gb + Gr is the conductance 
arising from the beam loading and the resonator, C is the effective 
capacitance, and coo is the freciuency of Ortcillation at the center of the mode 
—that is, it is the frequency of oscillation for 0 = 0^ = 2T(n + |). 

In a particular mode, it is con^'enient to measure the phase angle from 
its value at the center by writing 6 — $n + <!>. On introducing the new 
symbols and separating real and imaginary part, the condition for 
oscillation yields the two eciuations 

(7 = — M^de Y—^ 

2C(co - «o) = - ^ sin 4>, 

where G = Gl + Gbr is the total circuit conductance. 
The two equations above serve to determine the gap voltage and 

frequency of oscillation. It is convenient to regard </» as a parameter, 
which is assigned values in an interval corresponding to the tuning range, 
from which X and w are calculated. If the second equation is divided 
by the first, there is obtained 

= 25“"*- w 

where Q = mC/G is the loaded Q of the circuit. From the definitions 
of B and Bej Be = Bn — 2Bi + <^. The bunching angle at the center of 
the mode has the value Bne = Bn — 2cooTi. At the center of the mode 
the negative of the small-signal transconductance is (?n* == Bn«MHjo/2, A 
conductance parameter is introduced, which is defined as 7 = G/Gne- 
The first equation then becomes 

y = — 

where the ratio Be/Bn^ has been set equal to unity because its dependence 
on <l> is negligible in high modes. 
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X as given by 

For steady oscillation to take place in a particular mode, the con¬ 
ductance parameter for that mode must be less than unity. This condi¬ 
tion has been noted in the first section of this chapter, where it was 
observed that the magnitude of the small-signal transconductance for a 
. particular mode must exceed the 

circuit conductance if steady oscil¬ 
lation is to be maintained. The 
bunching parameter for 0 = 0 is 
shown plotted as a function of the 
conductance parameter in Fig. 
12C. 

Starting Current.—If the tube 
is to be operated with the injected 
current —/o but is started cold 
with the reflector voltage adjusted 
to the center of the tuning range 
for an operating mode, oscillations 

0 0.2 0.4 0.6 0.8 1.0 will not start until Gnr, which is 
CondiiCBnce parammi r-C/O™ proportional to the injected eur- 

E'-hto than G. Aa the 
electronic efficiency on conductance param- cathode temperature is increased, 
eter. Gn, = ^«eii/*(7o/2; injected current, and hence 

« 27r(n + I) - 2«o5ri; q When Gne becomes 
n » 0, 1, 2, 3 • • • . 

’ ’ ’ ’ * * greater than G, oscillations be¬ 
come possible. The larger G is, the greater is the starting current; 
or again the lower Q as the result of a large G, the greater the starting 
current. The ratio of the magnitude of the starting current to the 

operating current is 
2Ji(X) 

which for a given conductance itself depends 

on /o. 

Efficiency and Output Power.—The total r-f power generated and the 
r-f output power are ^GF^ and ^GlV^ respectively. The electronic 
efficiency krj and the over-all electronic efficiency to the load krjL are given 
by the equations, 

2kIoVo 2kIoVo 

In this section and in Sec. 12.5 the t?’s are defined for convenience as 
efficiencies with respect to the beam current returning through the gap. 
The rj*s can readily be rewritten: 

One 

2XJi(X) cos^; _ _ 
Gl + Gbs 

2XJi(X) 
cos 
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For X = 2.4, 2X/en is 1.02, 0.44, 

where Sne/Ol has been replaced by l/One and yi — Oh/O^ is the load 
conductance parameter. At the center of the mode the product 
Bnefi = 2XJi{X) and is shown plotted in Fig. 12-6. It has a maximum at 
X = 2.40, which is the value of the bunching parameter for optimum 
total power conversion. At this point y = 0.433 and 2XJi(X) = 2.504. 
Since this value is the same for all modes, the maximum total electronic 
efficiency changes as 1 /One from mode to mode, or roughly as ll2ir(n + i). 
It is small, since even for n = 2, the maximum value of {Bne/0n)v is 
only 0.144. 

It is well to check the assumption F/Fo < i, which guarantees that 
no electrons are stopped in the gap. Since BeM^ is less than Bn at the 
center of the mode, F/Fn > 2X/Bn^ 
and 0.278 for n =0, 1, and 2, re¬ 
spectively. Hence for maximum 
total power conversion the condi¬ 
tion is certainly violated for the 
(n = 0) mode. For X = 3.83, for 
which the power conversion is zero, 
2X/Bn is 1.62, 0.696, and 0.442 for 
n = 0,1, and 2, respectively and the 
condition is certainly violated for 
the two lowest modes. It is seen, 
therefore, that for this reason alone 
the theory of this section has very 
little meaning in the lowest two 
modes, except for X < 2.4, a fact 
that must be kept in mind in using 
the equations and curves. How¬ 
ever, for completeness, curves will 
be given for low as well as high values of n, although these curves have 
cartain validity only for the high modes. 

Usually the internal conductance (resonator and beam) is a quantity 
that cannot be easily changed. The power conversion to the load is of 
primary consideration and it can be varied by changing the load con¬ 
ductance. Since in this simple theory the phase does not change with 
changes in gap voltage—^that is, it does not change with X, a tube in the 
center of the mode remains in the center of the mode as the load con¬ 
ductance is varied. In Fig. 12*7 the product Bne^L for ^ = 0 is shown 
plotted for a number of fixed values of the internal conductance parameter 

ySB = {Ob + Gj^/Gne- 

It is readily shown that for maximum output power 

Fig. 12*7.—Dependence of output 
efficiency at center of mode on the load- 
conductance parameter for five values of 
internal-conductance parameter. 

« 7a 4* *= + Or) /Gne. 

yi = Jt{X), yB. = MX). (8) 
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In Fig. 12-8 7jr, r, and also the ratio 7x/7, which is circuit efficiency, are 
plotted as functions of yan for the condition that yL has been adjusted 
to give the maximum output power for the indicated value of yan- The 

Fig. 12*8.—Conductance parameter, load-conductance parameter, and circuit efficiency for 
maximum power output as functions of internal-conductance parameter. 

best condition for output power is, of course, achieved by having the 
internal conductance parameter as small as possible, for then the internal 
losses are minimized. As the internal losses increase, the circuit efficiency 

^R)/^ne 
Fig. 12*9.—Dependence of total electronic efficiency and output efficiency for maximum 

power output on internal-conductance parameter. 

drops rapidly, approaching zero as Gbr approaches (?. The actual Bffi- 

ciencies with yL adjusted to maximum power output are obtainable from 
Fig. 12'9, if the internal conductance parameter is known. 
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Returning to a discussion of the starting current, it is noted that, if 
the total power conversion is to be a maximum, X = 2.40 and the ratio 
of the starting current to the operating current should not be less than 
0.433. If the load conductance has been adjusted to give maximum 
output power, the ratio of the starting current to the operating current 
for particular values of the internal-conductance parameter is not less 
than the corresponding value of y in Fig. 12-8. 

Electronic Tuning.—Within a mode, changing the reflector voltage 
from the value for operation at the center of the mode changes the 
frequency of oscillation and the bunching parameter. The range of the 
frequency of oscillation is bounded by the zero gap-voltage points, for 

Fiq. 12*10.—Dependence of total half- 
power range, total zero-power range, and 
their ratio on the conductance parameter. 

Fig. 12*11.—Dependence of total half¬ 
power range on load-conductance param¬ 
eter for five values of internal-conductance 
parameter. 

which X = 0. At these points cos <#> == 7; hence [from Eq. (4)] the 

frequency range is ^ ^ ^ \/l — 7^- The 

frequency width, 2Q = Gnc/C, is the total half-power width of the loaded 
resonator with the resonator so loaded that the frequency range for 
electrical tuning has been just reduced to zero ((? = Gne)- The total 

frequency range between zero-power points" is 20 \/l — 7^, and the total 
frequency range between half-power points is given by the formula. 

/2Aa>\ ^ |r2Ji(Xo/\/2)]^ _ 
VzQ/h 1L Xo/\/2 J L -X"# J I 

where Xo is the value of the bunching parameter at the center of the mode. 
These quantities and their ratio are plotted in Fig. 12T0 as functions of 
the conductance parameter 7. The total zero-power frequency range is 
equal to 20 for 7 ** 0 and drops steadily to zero as 7 approaches unity. 
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The half-power frequency range starts at 0.66at 7 = 0, has a maximum, 
which is 1.0412 at 7 = 0.45, and goes to zero for 7 = 1. The half-power 
frequency range divided by 212 is shown in Fig. 12*11 plotted as a function 
of 71, for the particular values of 7br used in Fig. 12*7. 

Operating Conditions,—In order to compare different modes a new 
parameter, F = dn7, is introduced; it is proportional to 2G/Gq and is 

Fig. 12*12.—Dependence of total electronic efficiency on total conductance. 

Bn -* 2ir(n -f 1); Bnt 

r = ^ 

2T(n + J) - 2w,Tu n -= 1, ^ yjtottx ~ 0.22Gj 71 ** 2, 

ffmnK ** 0.144. 

approximately constant from mode to mode. In Fig. 12-12, {Ke/Onh 
at the center of the modes is plotted against F for successive values of n. 
It is of particular interest to note that, if the total power conversion for a 
given value of F is a maximum for a given mode, it decreases for higliftr 
modes for fixed F but, on going to lower modes, it incre^es before 
dropping suddenly. Hence, for a fixed total conductance the total power 
oonvendon is the greatest for a mode below that for which the total 
power convetmon is nearest its own maximum. 
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Fio. 12-14.—Dependence of output effioienay on load conductance with fixed internal 
conductance (F** •> 20). 
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Fiq. 12'15.—Dependence of output efficiency on load conductance with fixed internal 
conductance (Fb* = 30). 
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Of greater interest are Figs. 12-13, 12*14, and 12*15, which show 
(One/^fdvL at the centers of the tuning range as functions of Tl = SnjL 
for the lowest operating modes for three values of ysn- 

In Fig. 12*16 functions proportional to the half-power tuning ranges 
in successive modes are plotted against F. Since the tuning range 
depends only on F and not on Fl, curves for particular values of F^a as 
functions of Tl are given by Fig. 12*16 by starting with F = Fbjj as the 
new abscissa origin. For example, if Fiji? = 20, that part of Fig. 12*16 
to the right of F = 20 gives the tuning ranges as functions of Tl; the 
output power is zero for Fi, = 0 but the tuning range is not zero in this 
example for modes above n = 2. For a fixed value of Tbe, the maximum 
half-power tuning range of each mode cannot be reached in the lowest 
of the operating modes. Thus, if Tex = 20, the maxima can be reached 
by varying Fl only in modes above n = 6. 

It is instructive to investigate the locus of the maxima of the output 
power curves for fixed Fb/? (dashed lines in Figs. 12*12, 12*13, 12*14, and 
12*15) and to make comparisons of the half-power tuning ranges. Since 
for maximum output power [by Eqs. (8)], 

Fx, = BnJ) 1 

and [ (10) 
TBit = OnJj 

the output conversion efficiency to the load is given by the expression 

{dr.e\ ^XMo(X)MX) 

as is found by using Fl and Fbb to eliminate and 6^ in the equation 
(Bn*/Bn)riL = yLX^/Bn. Morcovcr, at the maximum 

r — 2{X) 
^ ^ ~ MX) 

This equation combined with Eq. (11) gives a parametric relation between 
the maximum of the output efficiency and Fl. The locus of the maxima 
of (Bne/Bn)’t)L agaiust Fl starts at zero at Fl = 0, rises to a maximum at 
Fl = TaRy where X^Jo(X)J2(X) = 0.34, and thereafter decreases towards 
zero for larger Fl. At the highest point the locus gives 

From Fig. 12*8, it is seen that the point Fl = F^je corresponds to 
Tl =« Tbr = 0.32 Bn, T = 0.64 Bn. The maximum half-power tuning 
range in a particular mode is see§ from Fig. 12*10 to have the value 
0,52 Bn{One/BnC) Eud comes at F = 0.45 Bn. At F =* 0.64 Bn, the half- 
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power tuning range in the same mode has dropped only six per cent to 
the value OA9Bn(One/OnC). However, the output power at r == 0.45 dn 
in the mode having its maximum output power nearest T = 0.64 On 
is about 40 per cent less than the value at the maximum, for the change 
from Tx, = 0.32 6n to Fl = 0.13 $n is a change in dneVL from 1.05 to 0.64, 
as is found by using Fig. 12-6. 

The conclusion is that, if the load conductance is varied and the 
mode chosen to give the maximum output power, the half-power tuning 
range is only a few per cent below the maximum for that mode. Under 
these conditions the internal conductance is roughly equal to the load 
conductance. Approximate formulas for the output conversion efficiency 
and half-power tuning range are 0.34M‘^o/6l and 1.6(jl/C, respectively. 
(It is to be remembered that tuning ranges in this section are for angular 
frequencies.) 

The frequency of oscillation is sensitive to small changes in the 
reflector and beam voltages. It is easily shown that 

where Vr is the reflector voltage with respect to the cathode (not the 
absolute value of this voltage) and FJ is its value at the center of the 
mode. A simple calculation gives 

d(a\ _ 0)0 ( Bn \ Fo + F? 
^ - FJ! \2Q + ej 2Fo' * 

(13) 

Since Fo is positive and Vr is negative, this quantity vanishes for 
yo -- — Fo. Therefore, frequency stability with regard to beam voltage 
can be obtained and still keep high frequency sensitivity to reflector 
voltage for the purposes of tuning. 

The addition of a susceptance. Whether mechanically, through the 
load, or through beam loading can change both the resonant frequency 
and the effective capacitance. If the addition at the gap is 

-Bfl + (w — o)o)Cb, 

then 

2(w — a>o)C -|- jBb + (w — o)o)Cb = 2(a> — coo)C', 

where C' = C + Cb/2, ~ wo — Bb/2C', If the tube was originally 
at the center of the tuning range and the reflector voltage is not 
changed, the change in frequency is given by the equation, 
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for small changes 

also 

CO coo ^ 
(coj — coo)2Q^ 

(2Q + Bn) ' 

coj — co' 
(cOo — m)Bn 

\2Q + l?n) ' 

Hence, if the resonant frequency is increased by the introduction of a 
negative susceptance, the frequency of operation increases almost as 
much as the change in the resonant frequency, assuming Bn/2Q 1, 
but the tube will operate at slightly less than the new resonant frequency. 
It is easily seen that the rate at which the reflector voltage must be 
changed in order to keep the tube in the center of the tuning range is 
given by 

^ 1 

Fo -Vl dm ^ 
(14) 

12*3. Observed Characteristics of the Reflex Klystron.—The idealized 
theory of the reflex klystron that has just been discussed involves only 
the simpler details of reflex-klystron operation. It becomes a matter 
of immediate interest to know how adequately actual reflex-klystron 
behavior is described by the theory. 

Many features of observed behavior differ in various details from those 
predicted in this chapter. These divergences may, however, be adequately 
explained by refining the theory. It is with such details of behavior 
that the next five chapters are concerned; and these chapters in them¬ 
selves present experimental data that indirectly provide striking confirma¬ 
tion of reflex-klystron theory when simple theory is used as the basis 
for mote complicated considerations. 

The present section reviews some of the simpler aspects of theory 
that may be compared with experiment; points for which comparison 
is iniplicit in the consideration of later chapters are noted only briefly, 
but additional data that do not logically occur in any of these later 
chapters are presented here. 

Phxiae Relations for Oscillation.—One of the simplest points of reflex- 
klystron theory is the prediction that maximum r-f output power is 
generated when the reflection transit angle is given by the relation 
B = 27r(n + f), where n is an integer. This and associated phase rela¬ 
tions are responsible for the existence of discrete modes of oscillation. 
In the following chapter, as an introduction to consideration of the 
generalized reflector, there is discussed the relation between the various 
electrode voltages at which local maxima of output power occur; it is 
shown there that the observed location of the modes of oscillation is in 

^ good agreement with the above condition B « 2ir(n + f). 
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Oeneral Functional Relations Within an Individual Mode.—^To the 
user of the reflex klystron, one of the klystron characteristics most 
generally referred to is the way in which the output power and the 
frequency of oscillation depend upon the reflector voltage for a given 
mode of oscillation. By the methods described in Chap. 13, values of 
reflector voltage may be transformed into values of reflection transit 
time, which is conveniently measured in terms of the relative reflection 
transit angle given by ^ — 2x(/i + I). In Figs. 12-4 and 12*5 are 
shown the predictions of simple theory about the way in which the fre¬ 
quency of oscillation and the relative output power are expected to 
depend on the reflector voltage and the oscillation frequency. In the 
actual reflex klystron the individual modes always show characteristics 
that bear a basic resemblance to those set forth in these figures. 

One such reason for a divergence from behavior as predicted in these 
figures is the fact that they have been explicitly deduced for a “high 
mode’'—that is, one for which Be is so large that the percentage variation 

of Be across a mode is negligible. 
For a “low mode” an asymmetry 
is introduced into the mode shape. 
Another typical distortion of mode 
shape occurs when, for any reason, 
the phase of the return bunched 
beam current depends upon the 
amplitude of bunching. A rather 
more drastic change in the mode 
may be produced by electrons that 
make three or more transits of the 
r-f gap. In addition to changes in 
mode shape, the latter two effects 
may also give rise to an electronic 
tuning hysteresis in which the 
amplitude and frequency of oscilla¬ 

tion depend upon the direction from which the operating value of the 
reflector voltage is approached. All these phenomena are discussed in 
Chap. 14. 

Hysteresis and mode distortion may also arise when the klystron 
operates into a resonant or frequency-dependent load, as discussed in 
Chap. 16. 

In spite of these various perturbing influences, mode shapes similar 
to those of Figs. 12*4 and 12*5 are observed in well-designed oscillators 
operating on a high mode and into a good load. Typical of such opera¬ 
tion is the mode shown in Fig. 12-17 for a type 2K33 klystron. This 
figure is an oscilloscope photograph in which output power and oscillation 

Fig 12 V7.— Oscilloscope photograph of 
mode of type 2K33 reflex klystron; output 
power and frequency as functions of 
reflector voltage. Adjacent frequency 
markers indicate frequencies separated by 
5 Mc/sec. 
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frequency are shown as functions of reflector voltage, the horizontal 
coordinate. Frequencies occurring at various reflector voltages are 
indicated by the frequency markers lying along the horizontal base line; 
adjacent markers are separated by 5 Mc/sec. 

Nature of the Small-signal Electronic Transconductance.—The relation 
between 6^ and the small-signal 
electronic transconductance may _ 
perhaps best be observed by ^ ® 
means other than those involving s o 
actual oscillation of the klystron 
in question. In Fig. 12-18 are 
shown data obtained on a type 3 
417A klystron in which the beam o 2 

current is reduced to a value too § 
low to sustain oscillation.^ The ^ 
Q and the resonant frequency of 0 

the resonant cavity of the 417A ® Reflector voltage 

are measured by means of usual froqueney 
, . . — f — h ratio Q/vo of effective Q to 

techniques involving an external zero beam-current Q, foi type 417A reflex 

signal generator. The figure l^lystron operating with beam current leaa 
” , , , /. 1 than starting cun ent. 

shows the dependence of the meas¬ 
ured Q and the resonant frequency upon the reflector voltage, that is, 
upon the reflection transit phase. 

The over-all klystron-cavity admittance is the sum of the intrinsic 
admittance of the cavity and the contribution of the electronic trans- 
admittance. Under the condition of this experiment, with the r-fgap 
voltage provided by an external signal generator, small-signal conditions 
prevail and the electronic transadmittance is given by Eq. (1). The real 
part of this transadmittance, which affects the over-all Q in this experi¬ 
ment, oscillates about zero with increasing amplitude as 6 is increased 
(reflector voltage less negative); this situation corresponds, in the figure, 
to the oscillation of Q about the intrinsic Q of the resonator with an 
amplitude that increases as reflector voltage is lowered. Similarly, the 
electronic susceptance and the over-all resonant frequency of the cavity 
oscillate with increasing amplitude about zero and about the intrinsic 
resonant frequency of the cavity. Zero electronic susceptance is seen to 
correspond to maximum absolute value of electronic conductance and 
vice versa. These phenomena are in agreement with the predictions of 
Eq. (1) concerning the electronic transadmittance* 

Relative Dependence of Output Power and Electronic Tuning Range 
Upon Load.—According to simple theory the output power and electronic- 

' E. L. Ginzton and A. E. Harrison, ** Reflex Klystron Oscillators,” Proc. I.R.E., 
84, 97(1946). 
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tuning range should depend upon the load that the oscillator sees, in a 
manner described in the last paragraphs of Sec. 12*2. This subject is 
discussed at length in Chap. 15; there it is shown that under properly 
simplified operating conditions there is good agreement between simple 
theory and experiment. 

12*4. Quantitative Comparison of Theory and Experiment.—The 
preceding section has been concerned with some general qualitative 
comparisons between theory and experiment. It is instructive to make 
the comparison more quantitative, particularly with respect to the two 
characteristics of greatest practical importance—the output power 
and the electronic tuning range. The present section is concerned with 
the details of such a comparison as carried out with one particular type, 
the 3K23 reflex klystron. 

Operating Condition.—The data in question are all taken at Fo = 900 
volts, n = 2, X = 30.5 cm. The cathode emission current (intentionally 
reduced in taking some of the data) is normally 60 ma. The beam passes 
through a total of four grids before it finally makes its second transit 
of the r-f gap; at each passage through a grid 6 per cent of the current is 
absorbed Avith the result that the beam current A*/o effective in oscillator 
operation is 78 per cent of the cathode emission current /o. (The ratio 
is somewhat lower at the highest values of current used, apparently 
because of a slight beam spreading.) 

Beam Coupling Coefficient.—The actual gap spacing is 0.25 cm; that 
is a spacing between rather coarse grids; and with this type of grid, meas¬ 
urement of the beam voltage for which M == 0 indicates that the gap 
spacing that is effective in determining the beam-coupling coefficient is 
about 0.35 cm. At the specific Fo and X this gives M = 0.94, = 0.88. 

Beam Loading.—basic factor in the over-all operation of an oscillator 
is the effective value of the cavity Q and the cavity shunt conductance 
O or the shunt''impedance R = 1/G. Although the shunt conductance 
is not easily measured by direct means, ^ there are two general types of 
methods available for measuring Q. The results of these two measure¬ 
ments of Q are of interest not only in themselves, but also because a 
comparison of the results provides one of the best tests of reflex-klystron 
theory. One of the types of method referred to includes any method 
that is based on the use of an external signal generator, such, as the 
measurement of the bandwidth of the cavity operated as a filter. The 
second method is based on Eq. (4), the derivative of which states that 
at the center of a mode (i.e., = 0) the ijate of electronic tuning is given 

by 

/o d4> 2Q 

^ See, however, R. SprouU and E. G. Linder, Proc. I.R.E.j 84, 805 (1946). 

(15) 
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By the first method the Q of the resonant cavity of the type 3K23 
with no beam current is found to be 2000 ± 10 per cent. (This limit 
of error is not indicative of the much smaller limits applicable to a more 
careful experiment.) 

Measurement of the values of Q 
indicated by the second means, obser¬ 
vation of the center-of-mode tuning 
rate, is made at a number of values 
of the effective beam current /rJo, as 
indicated in Fig. 12-19. During these 
measurements the tube is oscillating 
and, as only an infinitesimal amount 
of power is coupled out of the resonator 
for purposes of measurement of tuning 
rate, the resulting Q should be Qbrj 
the Q of the resonator as loaded by 
the beam only. 

The data in Fig. 12-19 are well represented by the empirical relation 

^ = 0.48 X lO-s'Cl + O.OSOWo), (16) 

where /rZo is the effective beam current in milliamperes. Thus it appears 
that a beam loading is present that may be represented by a beam-loading 
conductance linear in /o, and which will reduce the inherent resonator Q 
by a factor of 2 when hi = 26 ma or Jo = 33 ma. Since the normal 
operating current is 00 ma, it is seen that beam-loading losses ordinarily 
predominate over resonator losses in this tube. This result is basic to 
the subsequent analysis. 

The data of Fig. 12*19 extrapolate to Q = 2100 at zero current. This 
value compares very well with the value of 2000 indicated by the first 
method, and constitutes good experimental verification of the theory of 
electronic tuning. 

Starting Current.—The starting current, or the minimum current that 
will sustain oscillation, depends directly upon the effective shunt con¬ 
ductance of the resonant cavity; conversely, measurement of starting 
current gives information about this shunt conductance provided that 
the theory is correct in its statements about starting current. 

With the stated operating conditions of the t3rpe 3K23, and with 
observation of oscillation carried out by coupling an infinitesimal amount 
of power out to an external load, it is found that with zero external load, 
oscillations occur for an effective beam current given by Ho ^ 2.36 ma. 
It will become apparent from the subsequent discussion of Fig. 12*20 
that this current is the same as the starting current shown in that figure. 

Effective beam current kl^ (ma) 

Fia. 12-19. - “Observed dependence of 
Qbr {Q of beam-loaded cavity) on 
effective beam current ^/o, in a type 
3K23 reflex klystron. 
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From the above beam'-Ioading data, Gbr = 1.09Gij at A*7o = 2.35 ma. 
If a linear reflector field is assumed (as will very nearly be the case at 
these low currents), the simple theory states that Gbr = ^r(n + 

if Go is the beam conductance (corresponding to the effective starting 
current. From the already stated valuers of M, n, Fo and the above 
values of starting current and Gbr/Gr^ it is deduced that 

G/e = 18 X 10-® mhos. 

Comparison of Observed and Predicted Qr and Gr.—From the dimensions 
of the 3K23 cavity and from cavity-resonator charts of Chap. 4, the theo¬ 
retically predicted values of Qr and Gr are found to be 2030 and 8.3 X 10“** 
mhos respectively. The predicted value of Qr agrees very well with the 
observed values of 2000 and 2100; but the predicted value of Gr is half 
of the value calculated from oscillator theory and the observed starting 
current. This discrepancy may arise from any of several sources. 
The calculated shunt impedances or conductances of Chap. 4 arc admit¬ 
tedly approximate, although an error of two is not to be expected. Also, 
the discrepancy is in the same direction as that produced by phase 
aberration in the reflector—that is, by a difference in the d-c transit times 
or the values of <#> associated with different electron trajectori('s in the 
reflector region. Such phase aberrations are discussed in Chap. 13, where 
it is shown that they may be expressed by a factor (cos by which 
efficiency and effective beam current are reduced. Thus, to explain 
completely the present discrepancy, a phase-aberration factor of 8.3/18 
or approximately 0.5 would have to be postulated. 

Finally, there are undoubtedly some electrons that make more than 
two transits of the r-f gap; and it may be seen in Chap. 14 that the 
influence of these multiple-transit electrons is particularly marked in the 
vicinity of the starting point. 

The Parameter ysR and its Dependence on kla. The parameter yBR 
is defined as the ratio IGbr/MHJG^, More generally, with the beam¬ 
loading contribution of A*/o included in Gbr^ yBR is the ratio of zero- 
extemal-load effective starting current to effective beam current /r/o. 

Since Gbr increases with /r/o, yBR is not exactly inversely proportional 
to A*/o. 

The usefulness of the parameter yBR lies in the fact that the electronic- 
tuning range A/ (Note that A/ = 2Aw/2ir) and the efficiency at optimum 
loading are known functions of yBn (see Figs. 12*9, 12T0, and 12T1). If 
it is assumed that the experimentally observed value of the starting current 
is not influenced by some effect that is more important at low amplitudes 
than at high amplitudes (for example, multiple transits), then the observed 
beam loading and the observed zero-extomal-load effective starting current 
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yield the following relation: 

(1 + 0 039 1th). (17) 

Utilizing Eq. (16) for Qbr and Eq. (17) for yaRy the curves in Figs. 
12-8, 12*9, and 1210 may be used to deduce the predicted dependence 
of rjL and Af shown in Figs. 12-20 and 12-21. The efficiency predicted 
in Fig. 12-20 is the over-all efficiency, and allowance has been made in 
this figure for the loss of 22 per cent of the beam current in grid intercep¬ 
tion. The ideal efficiency for a reflex klystron working in the (n = 2)- 
mode is 14.5 per cent; the current loss in grid interception reduces this 
to 11.3 per cent; the difference between this latter figure and the effi- 

Fia. 12*20.—Dependence of oscillator 
efficiency tjlj on effective beam current klo 
for a type 3K23 reflex klystron. Experi¬ 
mental data (broken curve). Dependence 
predicted on basis of simple oscillator 
theory, observed beam-loading, observed 
startingj current (solid curve). 

Fig. 12*21.—Dependence of electronic- 
tuning range on effective beam current for a 
type 3K23 reflex klystron. Experimental 
data (broken curve); calculated from ob¬ 
served starting current (solid curve). 

ciencies predicted for various currents in Fig. 12-20 represents the 
efficiency loss that is anticipated as a result of resonator and beam-loading 
losses. 

Experimentally Observed Dependence of Efficiency on Effective Beam 
Current.—Figure 12-20 summarizes the experimental data on this point. 
It is seen that there is considerable discrepancy between the predicted 
and observed behavior. The discrepancy takes two forms. In the 
first place, at low currents the experimental curve lies below the predicted 
curve by a constant factor of 2.3. In the second place, at high currents 
the shapes of the two curves differ markedly, with the experimental 
efficiency'' eventually decreasing with increasing current. 

The first of these points is reminiscent of the factor 2.2 by which the 
starting current is found to differ from the value precUcted on the basis of 
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theoretical cavity shunt conductance. One of the tentative hypotheses 
advanced to explain this previous discrepancy was a phase-aberra¬ 
tion factor (cos = 0,5. The same hypothesis explains the low- 
current data of Fig. 12*20 because the efficiency should be reduced by this 
same factor. On the other hand, the hypothesis that the calculation of 
Gr in Chap. 4 is inaccurate by a factor of two will explain the starting- 
current anomaly but will do nothing to bring observed and predicted 
efficiencies into line. The same is true of any simple hypothesis concern¬ 
ing multiple-transit electrons. The indication of phase aberration is 
thus reinforced. 

The second point about Fig. 12*20, the drooping of the experimental 
efficiency at high currents, seems to be related to space-charge distortion 
of the reflector field of the sort discussed in more detail in Chap. 13. 
This space-charge distortion occurs in the 3K23 at current densities at 
which no trouble would arise with shortcr-wavelength klystrons in which 
the anode-reflector spacing is correspondingly smaller. It will be seen 
that this phenomenon is probably an important factor in setting a long- 
wavelength limit to the profitable operation of the reflex klystron. 

Experimentally Observed Dependence of Electronic Tuning Range on 
Effective Beam Current—The empirically observed data is shown in Fig. 
12*21 together with the predicted values of A/. It is seen that the 
experimental values exceed the theoretical by some 20 per cent at low 
currents, and that this excess increases at higher currents. 

This divergence is in general agreement with and corroborates the 
conclusions already reached in connection with the efficiency data. A 
phase-aberration factor will not affect the relation between A/ and ysR 
when (as here) the latter is determined empirically from the starting 
current. The slight excess of observed over predicted values at low 
currents is probably caused by a slight curvature of the reflector field; 
it is seen in Chap. 13 that a corresponding 20 per cent diminution in 
efficiency would then accompany this increase in A/. This 20 per cent 
diminution of efficiency is masked by the larger phase-aberration effect. 
Similarly, the abnormal increase of A/ at high current is exactly what 
would be expected if the unexpected decrease of v at high currents were 
due to space-charge distortion of the reflector field. 

Conclusions.—It is apparent from this example that the.behavior 
of a single reflex-klystron type may contain sizable quantitative deviations 
from simple theory. It has been noted that the reasons for these dis¬ 
crepancies are susceptible to analysis and that the elaborations of theory 
that are necessary for obtaining quantitative agreement are discussed 
in subsequent chapters. Given these subsequent elaborations of theory 
there do not seen^ to be any large gaps in the understanding of the reflex 
klystron. It should be noted, however, that in some cases (notably 
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the matter of space charge in the reflector region) these elaborations of 
theory are sketched in these later chapters, but not developed in full 
detail. 

12*6. Detailed Theory of Idealized Oscillator.—The theory of the 
reflex oscillator as presented in Sec. 12*2 is based on the simplest 
possible assumptions and approximations. Most of the remainder of 
this book is concerned with the phenomena occurring when the operating 
conditions or theoretical assumptions of Sec. 12*2 are made more general. 
The present section is concerned with the generalizations that are intro¬ 
duced by applying to the idealized oscillator of Sec. 12*2 a less approxi¬ 
mate mathematical treatment than was given there. It will be found 
that this procedure alters the oscillator behavior in several interesting 
details, but not in basic characteristic^^. In order to make the present 
section more self-contained some of the material of Chap. 9 is repeated 
here. 

In the remaining six chapters of this book many phenomena encoun¬ 
tered in reflex oscillators that arc not accounted for under the idealiza¬ 
tions of this section are discussed. Of particular interest and importance 
is the effect of a nonideal reflector, the field of which is not constant 
along the axis of the tube and therefore changes the transit-time and 
bunching relationships. This is the subject of the next chapter. Non¬ 
ideal behavior as manifiested in hysteresis is the subject of Chap. 14. 
In Chap. 15 the effect of load is discussed in detail. The next two 
chapters deal with the modulation of the oscillations, intentionally and 
because of noise. The final chapter is a summary of the characteristics 
of practical reflex tubes. 

In the present section some of the results of the following chapter 
are anticipated by generalizing the assumed oscillator in one respect over 
that of Sec. 12*2. Four instead of three regions in the tube, separated 
by ideal grids, are considered: the acceleration region, the gap, a field- 
free drift space, and the reflector region. The field-free drift space may be 
built into the tube, or it may be an idealization of a thick grid, or it may 
not be present at all; it is of interest principally because of differences in 
the bunching caused by this region and in the bunching caused by the 
reflector region. 

In relation to the cathode the resonator is at the positive d-c potential 
Fo and the reflector is at the negative d-c potential Fr. The total 
potential drop in the reflector region is therefore Fo — Fr. The current 
injected into the gap from the acceleration region is — Jo (/o is positive). 
The beam conductance is most conveniently defined in terms of the 
current that returns to the gap, (?o = i/o/Fo. 

The velocity Vq of injection of the electrons is given by the beam 
potential, Fo = mv\/2e. In the absence of the r-f field, the one-way 
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transit time of the gap is Ti = d/vo, where d is the spacing of the gap 
grids. The one-way transit time in the field-free drift space is T2, 
and the complete transit time in the reflector region is T^. The time that 
the electrons take in going from the center of the gap back to the center 
of the gap, in the absence of r-f fields, is T — Ti + 2T2 + Tz. 

Natvre of the Driving Current.—The driving current is the sum of 
parts coming from the injected and reflected electrons, 

i{t) = + i-(0. 

These parts are the space averages of the injected and reflected currents, 
respectively, 

i^(t) = -1 I dxi^(x,t), i~'(t) = -1 I dxi^{Xft). 
(I J0 ct Jo 

Following the treatment of Chap. 3, Sec. 3*5, two-way transmission 
of a high-velocity gap can be considered as the simultaneous injection of 
electrons into the gap through both grids; each injected stream can have 
both density and velocity modulation. The method of analysis indicated 
there can be used in developing the theory of the reflex oscillator. It is 
necessary to calculate the density and velocity modulation of the reflected 
stream as it enters the gap from the properties of the stream as it emerges 
from the gap after the first transit. This procedure gives readily the first 
approximation to the electronic admittance as in Eq. (12*2). However, 
if an attempt is made to improve the calculation, two difficulties arise: 
the calculation of the properties of the reflected stream from its properties 
before reflection is very diflicult, and it is apparent that a consistent 
description requires a more careful analysis of the action of the gap than 
is contained in the considerations of Sec. 3*5. 

In the treatment here presented all phenomena in the gap are traced 
back, with the aid of kinematical relations derived from Newton^s law, 
to the time of first injection of the electrons into the gap. In the mathe¬ 
matical formulation phase factors occur that can be calculated from the 
model with any degree of accuracy desired. Since both the current and 
the velocity of the injected stream are assumed to be unmodulated, this 
method of attack is particularly suited to the problem of this section. 
In Chap. 17 the theory of noise in the reflex oscillator is developed using 
also this method of treatment; in the noise problem neither the injection 
velocity nor the injection current is constant. 

It is convenient in this chapter and also in Chap. 17 to use the Fourier- 
integral theorem. In order to give mathematical validity to its use, a 
time interval is introduced that is much longer than the period cor¬ 
responding to toy of the frequencies which are considered; and, outside 
that time interval, all time-varying quantities are considered equal to 
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their average values. The integrations over the time are carried out 
with the aid of the Dirac delta function and its integral representation. 
This function 5(w') has the property that if F(w') is an arbitrary function 
of w', 

do)' = /'’(O). 

Its integral representation is 

By the Fourier-integral theorem 

In order to express these quantities in terms of the injected current at 
the first grid suppose in each case that an electron arriving at x at time r 
first entered the gap at x = 0 at time r'. Then 

/- 

(18) 

where is the injected current at the time t and fci+(0,T') is that 
portion of the injected current that is reflected back into the gap. These 
identities are the result of the continuity and single-valued nature of r 

when regarded as a function of r'. 

In’ order to establish the validity of the second of the identities, the 
observation is made that the reflected electrons that pass through the 
plane x at time r in the time interval Ar have a total charge — At. 

Since r' is not necessarily a single-valued function of t, these electrons 
can have been first injected into the gap at several earlier times r'. 
If the positive time interval at r' during which those injected at r' first 
pass through the first grid is Ar', the ratio Ar/Ar' is given by |dr/(ir'| 
for that value of r'. Since these electrons have the total charge 
Jki+(0,r') At', 

At —k ^ Ar', 

r^) 

where the sum is over all r' having the same r. If the left member of 
this equation is multiplied by and summed over all r, the left 
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member of the second identity results in the limit. If the right member 
is multiplied by and summed over all r, the double sum can be 
replaced by a single sum over r' and the right member of the second 
identity results; there is no overlapping of the intervals At' since r is a 
single-valued function of r' and the total range of r' is covered since that 
function is continuous. The first identity follows by a similar argument. 

Therefore 

(19) 

where T+(a:;r') and T""(a:;r') are the arrival times at the plane x of electrons 
that were injected into the gap at a: = 0 at time r' and which have come 
directly or been reflected, respectively. The driving current is 

/: dr'i+i0,r') \ /: (20) 

In this chapter both the injected current and the velocity of injection are 
considered to be constant. 

This description of the current has a generality beyond the use made 
of it in this chapter. For instance, i'^iOy) need not be set equal to a 
constant; it can be a periodic function of the time as determined by some 
earlier condition (as by an additional resonator), or it can be a random 
variable (such as a current with noise components). Similarly, the injec¬ 
tion velocity need not be constant, a consideration that can affect the 
calculation of the arrival times. It is to be noted that the two identities 
above (Eqs. 18) are valid if is replaced by an arbitrary function of t. 

In this method of determining the driving current the essential step 
is the calculation of the space averages of the phase factors containing 
the arrival times. These arrival times are obtained with the aid of 
Newton’s law from the fields through which the electrons move. 

Motion of the Electrons.—The arrival times T+(a:;T') and i^{xy) 
depend on the velocity of injection t»o, as determined by the beam poten¬ 
tial, Fo = mvlf2e, and on the transit times Ti, Z'2, Tz, all of which are 
independent of the r-f field; in addition, they depend on the frequency, 
amplitude, and phase of the gap potential V sin ut. Of particular 
importance are the three transit angles di — «<i, dt = wTz, 0z = uTz, and 
the phase angle d = Bi 20i + 0z, which is measured from the center 
of the gap to the center of the gap. The condition F/2Fo < i is assumed, 

for otherwise if were small enough, some of the electrons could be 
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stopped in the gap. Such a stoppage, although not impossible, is not 
considered in this chapter since a special treatment of the problem is 
required. Of interest are the relative magnitudes of the four quantities 
TzJTiy T^ITif 1, V12VQ. The assumption is made that Tz/Ti and 
T2/T^ are (or can be) much larger than unity. The distinction is made 
between Ts, T2, Ti, {V/2Vq)Tzj and {V/2Vq)T2^ which are zero-order 
quantities, and (F/2Fo)r], (V/2Vo)^Tzy and (F/2Fo)^r2, which are first- 
order quantities. This distinction is made in order that the implicit 
functional relations that are obtained for the desired arrival times can 
be solved explicitly to first-order quantities. The calculation of the 
driving current is carried out to first order. 

With the gap potential V sin wr, Newton^s law is 

m 
dr^ 

eV . 
-y Sin WT. 

If the first passage through the gap is considered, NewtonV law can be 
integrated to give 

eV 
w{v — Vo) = — X” 

ctw 

eV 
mx = mvo{T — t') — ^2 ~ '^0 wr'] 

(21) 

If the second equation is rearranged and eVIdcomvo == V12Vodi is sub¬ 
stituted, there is obtained 

T - t' + ^ + ^ ^ ~ ~ 

which is an exact expression. Hence, to the first order, 

= / + I r. + ^ [sin (^' + 19.) 

— sin ut' — ^9i cos wt'j- (23) 

It is interesting to express the time of arrival at the second grid, as 
obtained from the expression just derived, in terms of the functions of 
the gap-transit angle, M and N, introduced in Chap. 3. These functions 
are unity for = 0 and become small for large values of The fol¬ 

lowing equation results 

,+(<!,■/) - ^ + n - (j^) ^ [m A. («- + I) 

_ __C08(^«r -H gjj- 
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It is to be noted that to this approximation the elBfective phase is that which 
the electron would have had at the center of the gap, if the r-f field had not 
been present, modified by the additional angle — tan“^ (BiN/QM). This 
angle arises from the cosine term in the above; this term also modifies the 
magnitude of the effective gap voltage (see Fig. 3*8). 

Considering next the passage through the field-free drift space and 
the reflection in the reflector region, if Vd is the velocity of the electron 
as it first emerges from the gap, the time spent in the field-free drift space 
(both ways) is Under the assumption of a constant reflector 
field, the time spent in the reflector region is T^Vd/vo, 

In order to get all the first-order terms in the total time between 
emerging from the gap and entering it again, v^/va and Vd/v^ are needed, 
to the second order, in 7/270. The expression for Vd is 

Vd = Vo (cos cor — cos cor'). (24) 

From this equation is found, to the second order, with the aid of the 
first-order expression for r, 

= ro [l + ^ sin (cor' +^-\ (^) sin^ (cor' + 

+ S (^„) [ “ ^ + l) + I) + ) ■ (26) 
Terms that remain in the limit of zero gap-transit angle have been sepa¬ 
rated out and are recognizable as terms in the expansion of 

Vo 1 -f- sin I a 
L ^0 \ 

The remaining terms vanish for 6i = 0. The quantity P is given by 

P = sin ^i); 

and, like M and N, is unity for = 0 and becomes small for large values 
of (see Fig. 3-3). It is significant that the second-order terms intro¬ 
duce the frequency 2a>. Since the bunching process is not a linear one, 
terms of this frequency in the arrival times contribute to the principal 
harmonic of the driving current. 
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The time of reentry can now be calculated to first order. It is 

T-(d;r') = r' + r + (-27’* + 7’,) (^) sin (cor' + 

-(-67’*+7’,)^f^ysm^(cor' + |) 

- T (^„) + I) - Y +1) ] (20) 
+ (-2^2 + Ss) (27J [ -2^ + 0 

cob(o>T + 2/ + —^ J’ 
where T = ITi + 2r2 + Ta. In the equation for the arrival time T2 and 
Tz enter in the first-order terms with opposite signs because the effect 
of the velocity change is not the same in the field-free drift space and the 
repeller region. The difference is the greatest in its effect on the coeffi¬ 
cient of sin^ (wr' + 0i/2), where the extra factor of 3 comes from the 
addition in the expansion of Vo/Vd that is due to the contribution of 
sin (wT^ -}- ^1/2). 

Considering, finally, the return passage in the gap, since the electron 
is now moving in the opposite direction, the effect of the field is the 
negative of the effect on injected electrons. The exact expression is 

r = r (d;r') + [sm «r - sin cor-(d;r') 

— q){t — T~{d]r')) cos wT"'(d;r') j| (27) 

Two facts are significant: the speed of the reentry is Vd, not Vo, and the 
time of reentry is T”(d;r'). However, in the time interval r — T”(d;T') 
the latter appears in the high-order term. With the aid of first-order 
expression for Vdj there is obtained to first-order, 

+ in(w' + |)] 

— ^^cos 6 Z sin (cor' -f- (28) 

cot' + ^ + Z sin I 

cot' 6 Z sin 

where 6 = uT, and Z co(—27’2 4* 7’») 
MV 
Wl' 

It is to be noted that the 
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first-order terms contain all harmonics of the oscillation frequency because 
the arguments of the sine and cosine functions contain sines themselves. 

Phases and Phase Factors,—The first-order contributions to the phases 
co'r+(x;r') and w'r"“(a:;r') are conveniently expressed in terms of the fol¬ 
lowing three functions: 

f \ . X 
fjyF 4* -j ) — sin wr'-zBi cos wr' 

^ d J cL 
^ j^sin ^ 6^ — sin oyr' ~ ^ wt'Jj 

F'{x-,r') ==-(-60^ + ei) ~ sin-* (a,/ + 

- I [m sin (cot' + fj - cos (a.r' + 0] J 

+ ilk [ + I) + 2) + ( ^29) 
“ (~k^) ^ + I’)' l 

F~'{x;t') = jsin j^tor' + 0 + Z sin ^ ^'] 

— sin ojt' $1 Z sin jj 

— ^ cos j^cur' + ^ -f- Z sin ^cor' + jj j 

Therefore, the phases co'r+(x;r') and a>'T“"(a*;r') may be written as follows: 

«'r+(x;r') = co'r' + | F+'(xy), \ 

«'x-(x;r') = «V + e' + Z' sin (cor' + ^ J (30) 

In the phase factors, and the exponentials con¬ 
taining first-order terms can be expanded and quadratic and higher terms 
dropped. Hence, the space-averages of the phase factors, which are the 
quantities that occur in the driving current, are 

i \ I (31, 
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These averages need be carried out only for w' = u because only the 
coefficient of e'"' in the driAdng current is desired. The result is 

i || [Ne~^ - Pe-jcw+j.)]^ 

- {_(_6<,,+ fl,) 

cos («/ + 1)] + [-2P»in(-/ + I) 

(-• + 1) 

e,MN 

Ne - Pc 
-j^2<or'+tfi + 2tf+2^sin 

^■)]). 

Zero-order Terms in the Drwing Current.—Since a description of the 
general behavior of the reflex oscillator is to be found in the zero-order 
terms, they are considered separately. The arrival times to zero-order 
are simply 

r+(2:;r') = r' + ^ T,, 

^ (33) 

r-M-r'+{-2T, + r.) (^) «„ + !■) + (!^) T. ) 

From these expressions the space-averages of the phase factors for the 
injected and reflected currents are readily calculated. They are, 
respectively, 

I ,3 
^_,[„V+|'+»'+Z'sin (-'+!-■) f 

where 

A MV 
e[ = «Ti, O' = «T, Z' = i-2ei + ei) 

M(0i) =8in|/|- 

The driving current is 

.•(«) - -I. /_■_ ^ «»'• /_■_ dr'e-4"'^') 

Jir(f'.) {1 - (35) 
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Since 

= 27r5(w')> 

the first term is merely —/o. As expected, the average current on its 
first transit is unmodulated in this approximation. The phase factor in 
the reflected current can be resolved into an infinite sum of harmonic 
contributions by means of the Bessel-function expansion 

Since 

== 27r5(co' “ mw), 

(36) 

the reflected current is the familiar sum of harmonic contributions with 
Bessel functions in the amplitudes; the driving current is 

(37) 

The electronic transadmittance is — 2j7F times the coefficient of c'"' 
in the driving current. Hence 

Ye « ^ A-/oA//i(Z)e-'(»+'). 

In this expression Z = (—2^2 + Sii)MV/2Vo. The quantity (—202 + ^a) 
is the angle that is effective in the combined bunching action of the field- 
free drift space and the repeller space. Since these two spaces tend to 
form bunches in opposition, the bunching angle is effectively reduced. 
It is not unreasonable to think of half of the gap as part of the drift 
space, in which case the bunching takes place from the center of the gap 
to the center of the gap. Such a picture is already implied in the phase 
of the driving current 0 = 0] + 202 + 03. The effective bunching angle 
then is 0« = — 0i — 202 + 03 and the bunching parameter X = 0eMF/2Fo. 
Since 

+ J[(Z) f-’*, 

where Ji{Z) = dJi(Z)/dZj the change that is introduced is not a zero- 
order contribution. 

Additions to the Admittancee—When the first-order terms are included 
in the phase factors, — 2jf/F times the coefficient of in the driving cur- 

i{t) = 
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rent is found to be the rather cumbersome expression 

Go Y + Os) - 

+ (—6^8 + Os) r"'® 

- Go ^ \^e,MNJ,(.Z) - ZJ,{Z) + i2PJ8(Z)] c-»« 

+ Go ^4 l) + PJ8(2Z)c''("*+i). (38) 

The first term, j (- 2^2 4 is the zero-ordfer contri¬ 

bution. The second term, — —is the addition to this 

contril)ution that is discussed in the last paragraph. It is caused by the 
extension of the effective drift space by half the vidth of the gap. The 

third term, ( — 0^2 + Os) ^27^) ^ first-order contribu¬ 

tion to the electronic admittance that does not vanish with zero gap- 
transit angle; it arises from one of the second-order terms in The 
group of terms that follows arises from the combined e^ffcct of additional 
second-order terms in vj and first-order terms, not included in the addition 
to the zero-order contribution, that have their origin in the effective drift 

action of the gap. The term^'^—^c ^ the beam-loading 

admittance arising from the double transit of the unmodulated current. 
The last term is an addition to the beam loading which is due to the 
modulation of the reflected current. 

The terms containing Ji{Z)y Jo{Z)y and Ji{Z) are 90° out of phase 
with the zero-order admittance. At the center of a mode, the term 
containing J2{2Z) is 90° out of phase with the ordinary beam-loading 
terms. Hence, at the center of a mode these out-of-phase terms do not 
affect the magnitude of the oscillations directly, but do affect the fre¬ 
quency with which the oscillations take place. 

All but the first two of these additions to the admittance are prob¬ 
ably best regarded as variable additions to the circuit conductance and 
susceptance arising from the presence of the beam. It is therefore con¬ 
venient to define the electronic admittance as follows, 

r. - Go ^ je, + Xfj'{{X) j (39) 
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where X = eMVI2Vo, ~ 26^ + Bz, and X/ = BfMYI2Y^, 
Of = — — 0^2 + ^3. The extra factor 3 in the drift contributions 
to Bf is caused by the combined effect of pure second-order terms and 
squares of first-order terms in Vq/v^i; these terms and the second-order 
terms in Vd/vo become first-order terms because B^ and Bz can be large. 
Correspondingly, the beam-loading admittance is defined as 

Fb = - ^ (t) - —2^ + flPMX)] 

+ y ^ G + 0 ^ (^0 (40) 

The sum Ye + Yb contains all the terms of Eq. (38)“but does not exclude 
some higher-order terms. The beam-loading admittance as defined is 
zero for zero gap-transit angle (M, N, and P are shown plotted in Fig. 
3-3). 

Condition for Oscillation.—For ease of reference some of the impor¬ 
tant relations from Sec. 12*2 are reproduced here. For oscillation to take 
place the total admittance measured at the gap must be zero. Thus 

Yn+YL+YB+Ye^ 0, 

where Yr and Yl are the resonator and load admittances measured at the 

gap. 
The total circuit admittance is defined to include the beam-loading 

admittance: Y = Yr + Yl + Yb- Using this modified formulation, 

r = (? + j2C(a) - w«), 

where G is the effective conductance, C is the effective capacitance of the 
gap, and can is the effective resonant frequency. It should be remembered 
that these quantities depend on w and F to a certain extent, as did in fact 
the unmodified quantities. 

On separating real and imaginary parts, 

^ GoM^{2J^(X) , , ir\ ^ . ttM 
I —y— Be COS U -f ^ I - XfJ\\X) sin iB + , 

, GoM^l2Ji(X) ^ , A 
2C(« - wr) =-\ 2/ 

+ XfJ[\X) cos 

These two equations serve to determine the gap voltage and oscillation 
frequency. 
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As already noted, oscillation cannot take place for all values of the 
phase angle 6. The values d — On ^ 2^(11 + f), » = 0, 1, 2, • • • , are 
called the centers of possible modes of oscillation. At these points 

2JiiX) 
2 X 

= (70 
M2 2Ji(X) 

(•—2^1 — 4^2 + ^n), (42) 

because — 2(^2 + 63 and 63 = d — di — 202- Since 2Ji(X)/X 
cannot be greater than unity, the tube cannot oscillate in the mode in 
question, or at least not for 0 = dn, if G/{BeMKTQ/2) is greater than unity. 

,This ratio at the center of the mode is defined in Sec. 12*2 as 'Hhe con¬ 
ductance parameter” and — BeMHjQ/2 at the center of the mode is called 
the small-signal electronic transconductance. Let wo be the frequency 
of oscillation at the center. Then 

0)0 
- ^M1 

2C 2 
XfA'(X). 

The fractional deviation from o)i h 

XfJ',\X) 1 
2o)rC 2J\{X)/X Be 

(43) 

Suppose, for example, X = 2.4; then 2Ji{X)/X = 0.433 and 

-Xr{{X) = 0.822. 

Then (wo — a)jj)/coij « O.95/Q0*, where Q = o)rC/G) except for low modes 
the deviation is very small compared with the bandwidth of the circuit. 

The mode is usually limited by its zero-voltage points. They are 

G = Go 

0) — «« = — 

~ (-201 - 402 + 0) cos 

which give 0 and co at the two points. 
Efficiency,—As noted in Sec. 12*2 the r-f power generated and the r-f 

power output are and ^GlV^, respectively. In that section 17 is 
taken as the total electronic efficiency and til the electronic efficiency to 
the load, both defined using the current that returns to the gap. Then 

GV^ __ GlV^ 

~ 2khVo “ 2kIoV,' 

It is convenient to measure the phase in a particular mode from its 

value 0n at the center of the mode and to write 0 = 0n + The effective 
bunching angle at the center of the nth mode is 0ne = 0n — 2(ao(Ti + 2T^), 
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Let —(jne be the small-signal electronic transconductance at the center of 
the nth mode, Gne = ^n«M^o/2. The electronic transadmittance then 
is 

F, = (A) - jXsW) (44) 

and the total electronic efficiency becomes 

where 7n = G/Gne is the conductance parameter at the center of the nth 
mode. 

In terms of these symbols and the loaded Q of the circuit, Q = (>)rC/G, 
the conditions for oscillation are 

0) — 0)R 
(jOr 

_ 2Ji(X) ^ ^ ^ 1 . , 
7 = —v— I ^ ) cos </> — XfJI (X) — sin <t>, 

u\. \vnc/ ^ne 

On substituting for y in the efficiency 

2XJi(X)/<?nA ^ XfX-^j','iX) fe„x . ^ 
' - —r (xj - —li- Uj “ <“> 

The maximum of XJi{X) is at X = 2.4, for which —X^Ji{X) = 4.74. 
The above formula indicates, as has already been noted, that the effi¬ 
ciency decreases on going to higher modes. The factor dne/Be makes 
the power output unsymmetrical about the center of the mode. So also 
does sin <t>j but in the opposite direction. The term containing sin <#> 
makes an appreciable contribution only in very low modes because of the 
extra factor One in the denominator; however, for such modes, the effi¬ 
ciency is considerably reduced by the beam loading, which has been 
concealed in the modified circuit conductance. 

Electronic Tuning,—In a uniform reflector field the product 

(Fo ~ F.)r8 

is a constant for a given velocity of injection. However, 

^8 = ^ + ^e) = ^ (^n + Qne) + <#> + ^ 

If Tz is eliminated and the reflector voltage F? at the center of the mode 
(w = = 0) is introduced to remove the constant, it can be shown 
that 
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COo — W . 
Vr - y,“ _ e» + <?„, «0 

n-F? r 24, , /a>0 - coVo. - g.,\r 
L \ coo / \^« + <>-/J 

A useful measure of the rate of electronic tuning is 

_^0 /_ 20n r 1 _ ^5^ /1. 

^0 — V'? \ ^co /<oo On + One L On 

but 

(^\ 2C ^ 2Qo 

\0o}/o,o ^ ^0 ^ 

where Qo = odo/CG, Hence 

/ Vq — Fy\ / d<jo\ _/ On -\r A 1 ^ On 

V ' CO ; Vdf,Ao "■ V ^On J " On + 2Q„‘ 
(47) 

This equation gives the rate of change of frequency with change in 
reflector voltage at the center of the mode. 



CHAPTER 13 

NONroEAL REFLECTORS 

By D. R. Hamilton 

In the preceding chapter various idealizations were made in order to 
emphasize the most basic features of the reflex klystron. Among these 
idealizations the following may be noted: 

1. The assumption of an '^ideaP^ reflector, in which the potential 
varies linearly with distance, as would be produced by plane- 
parallel electrodes mth no space-charge effects. 

2. The assumption of small r-f gap voltages—that is, the assumption 
of a ‘‘high mode” (n ^ 1). 

3. The assumption that no electron makes more than one return 
transit through the gap—or the assumption of no “multiple 
transits,” as this term will hereafter be used. 

The next chapter is concerned with the phenomenon of “electronic- 
tuning hysteresis,” which results when the third of the above assump¬ 
tions is violated. Violation of the second assumption, with the resultant 
bunched-beam-current phase shifts, also gives rise to “hysteresis” and 
mode asymmetries that are closely related to those produced by multiple 
transits. The magnitude of these phase shifts is considerably dependent 
upon the first assumption. Violation of the second assumption also 
causes deviations from the simple bunching theory as discussed in Sec. 
9*4; but in the reflex klystron these effects are minor compared with the 
effects that are introduced when the assumption of an ideal reflector is 
invalid. 

The present chapter, then, is concerned primarily with some of the 
general relations that are applicable in practical cases when the assump¬ 
tion of an ideal reflector does not hold true. These general relations are 
of two types. One type is concerned with the purely d-c transit-time 
questions that are involved in the phase relations of bunched beam cur¬ 
rent and r-f gap voltage; the other type is concerned with the bunching 
process, and involves the derivatives of transit time with respect to 
initial electron velocity. 

13*1. D-c Electron Optics.—^The d-c motions of electrons in the 
reflection region involve, of course, standard problems of electron optics 
such as the question of how to reflect all the electrons back for a second 

352 
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transit through the r-f gap. As a matter of fact, it may be seen in the 
next chapter that a supplementary and more difficult question is how to 
reflect all of them for a second transit, while ensuring that none are again 
reflected from the cathode region for additional transits through the gap. 
For all such purely geometrical questions regarding electron trajectories, 
commonly used electron-optical techniques are available. One such tech¬ 
nique is graphical ray-tracing in the electrostatic field of given electrodes, 
this field being calculated by electrostatic theory or plotted with an 
electrolytic tank; another technique makes use of the analogy between 
electrons moving in an electrostatic field and small balls rolling under the 
influence of gravity on a stretched elastic membrane. 

The electron optics of reflection involves not only the requirement 
that electrons go to the right places, but also the requirement that all 
electrons of a given velocity spend the same amount uf time in being 
reflected; the phase aberrations that result if this requirement is not met 
have adverse effects on performance and are discussed in Sec. 13*10. 
Both of the abo^'e-mentioned methods of finding out the path of the 
electrons—ray-tracing and ball-rolling—are easily adapted to give this 
additional information about transit time. Neither of them includes 
directly the effect of space-charge forces on electron motion. A con¬ 
venient method that has been developed for including the effects of 
space charge in electron-gun design^ docs not seem to be directly appli¬ 
cable to general reflector design. 

For further information on the background of electron optics that is 
relevant to these specific design questions just discussed, the reader is 
referred to the extensive literature on electron optics in general. The 
present chapter and the next one are primarily concerned with those 
questions of electron motion that remain relevant to oscillator operation 
when the above two requirements (geometrically satisfactory electron 
trajectories, and uniformity of transit time) may be assumed to have 
been met. 

The first question to be discussed concerns the way in which applied 
electrode voltages and reflector geometry affect the absolute value of the 
d-c transit time. Such a discussion fulfills two functions. One is that 
of introduction and ground work for the subsequent discussion of r-f 
effects. Another equally important function arises from the fact that 
the d-c or equilibrium electron motions determine those combinations 
of oscillator parameters at which oscillation may or may not occur. 
The resulting interrelations of applied parameters that are required for 
oscillation are in themselves important operating characteristics of the 
practical oscillator; and in addition they may give, in any particular 

^ J. R. Pierce, Jour, App, Phys,, 11, 648 (1940). 
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case, information about the nature of the reflector field that will be 
relevant to subsequent questions of r-f performance. 

The procedure that is followed in discussing d-c transit-time relations 
is to consider these relations in various simplified reflector fields. The 
principal features of these fields are representative of the reflectors met 
in actual practice, and the simplifications that are involved are those 
which ensure the satisfaction of the primary condition of uniformity of 
transit time among the electrons. However, before dealing with specific 
reflector fields it is worth while to consider certain general relations that 
concern the effects of changing dimensions and electrode voltages in an 
electron-optical system; these relations serve as essential tools in the 
later discussion. 

13*2. General Scaling of Voltages and Dimensions.—The general 
relations that are involved in the scaling of voltages and dimensions in 
a d-c electron-optical system follow in a straightforward manner from 
the dimensional relations in the three basic laws that describe the flow 
of electrons in a vacuum. These laws are: 

1. The Coulomb law of force between charged particles, as expressed 
in Poisson’s equation relating the space-charge density p and the 
variation of the potential 4> with position: 

2. The conservation of matter, as expressed in the requirement that 
as much charge flows into any given volume element as flows out 
of it. For a d-c system, i.e. for dp/dt = 0, this requirement is 
expressed by the relation 

V. (pv) ^ £ ipv.) + ^ (pvy) + ^ (pv,) = 0 

where v is the electron-velocity vector and pv = J, the current- 
density vector. 

3. Newton’s laws of motion, or conservation of energy applied to the 
relation between the electrostatic potential (measured with respect 
to the cathode) and the electron velocity: 

(3) 

Any electron-optical situation is described by the three variables, 
p, V, and that enter into these three equations. Given the conditions 
existing at the surface enclosing a given region—^for example, the poten¬ 
tial and electron-emission characteristics at every point—^then these three 
equations determine uniquely the resulting values of p, v, and at every 
point in the region. 
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The above comments and relations should be generalized in one 
respect. Suppose that v is not a single-valued function of position— 
i.e., suppose that more than one stream of electrons passes through some 
points of space; the reflection region of the reflex klystron is a case in 
point. Then p in Eq. (1) and pv in Eq. (2) are understood to represent 
the summation, over all these streams, of the values of p and pv respec¬ 
tively associated with each of these streams. This is, however, a purely 
formal matter that does not affect any of the conclusions to be drawn 
from Eqs. 1-3 and therefore does not warrant a formal complication of 
these equations. 

An explicit mathematical solution for p, v, and <J> in any particular 
case is usually not feasible unless the boundary conditions are especially 
simple. However, comparisons of the solutions to these equations in 
cases with complex but similar boundary conditions ma> be made easily 
and with profit. 

Thus, suppose it is desired to compare the physical situations in two 
regions that are related to each other as follows: 

1. They are geometrically similar—^that is, all the dimensions of 
Region 2 are larger than those of Region 1 by the scale factor a. 

2. In Region 2 the applied voltages at every boundary point, measured 
with respect to the cathode, are larger by the factor b than the volt¬ 
ages at the geometrically analogous points in Region 1. 

3. The electron-emitting surfaces in the two regions are geometrically 
similar and the electron emission from these surfaces is space- 
charge limited with the applied voltages that are involved—that 
is, the potential gradient at the emitting surfaces is always zero. 

Two such regions are shown in Fig. 13*1. The position vectors of 
two geometrically similar points are denoted by ri and respectively; 
the geometrical similarity is thus expressed by the equation 

12 = ari. (4; 

Suppose that in Region 1 the space-charge density, electron velocity, 
and electrostatic potential are the functions of position pi(ri), Vi(ri), and 

Then, because of the specified similarity between the two regions 
and because of the way in which the various dimensions enter into 
Eqs. (1), (2), and (3), it is seen that for Region 2 a possible solution 

P2(r2), V2(r2), ^2(^2) is the following: 

V2(rs) s V2(ori) = &^i(ri) (5a) 
y ^ V 

P*(rs) — p*(ari) = ( ^ 1 pi(ri) (66) 
\ r 

**(r*) as (5c) 
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It is well known, however, that there is only one possible solution 
to Eqs. (1), (2), and (3) for each region; hence the solution for Region 2 
deduced in this manner from the solution for Region 1, and given in 
Eq. (5), must be the only solution for Region 2. There are, therefore, 

Fig. 13‘1.—Graphical representation of 
the situation involved in the scaling of 
voltages and dimensions in an electron- 
optical system. Boundary conditions: in 
region one, on ^ = ^i(ri) on boundary; in 
region two, *= ^>2(12) » 2>4>i(ri) on 
boundary. 

the following simple and interest¬ 
ing results of the specified scaling 
of the boundary conditions in 
voltage and geometrical size: (1) 
the potential, at every point 
within the region, scales by the 
same factor as is applied to the 
boundary potential, (2) the elec¬ 
tron trajectories remain geomet¬ 
rically similar, (3) the space-charge 
density, at every point, scales by 
the same constant factor b/a^. 

The third requirement initially 
applied to the derivation of these 
results, that of space-charge limi¬ 
tation of the emitting surfaces, is 
not necessary and could be re¬ 
placed by a more general require¬ 
ment on the scaling up of the 
potential gradient at the cathode 
by the factor b/a; this is, however, 
a very nonrealistic requirement on 
the physical electron-emitting 
characteristics of the cathode ex¬ 

cept for the space-charge-limited case of zero potential gradient. 
From the behavior of the primary variables as shown in Eq. (5), the 

behavior of the secondary^' variables J = pv (the current density), 
I (the total emission current), and T (the electron transit time between 
any geometrically similar pair of points) may be deduced. These scale 
as follows (omitting the arguments of the functions): 

J2 = 

h = 

T2 = 

(ба) 

(бб) 

(6c) 

Equations (6a) and (66) express the functional dependence of current 
on dimension and voltage as given by the Langmuir-Childs law; these 
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equations show that this functional dependence holds for any arbitrary 
geometry as long as the cathode is space-charge limited. 

The regions of Fig. 13-1 may be subdivided into smaller regions, 
some of which would not contain the cathode surface. It may be seen 
from considering this case that the scaling behavior described in Eqs. 
(5), (66), and (6c) applies equally well to any region into which current 
is injected instead of being drawn from a cathode within the region; it 
is necessary only that the injected current density be given by Eq. (6a)— 
or what is the same thing, it is necessary that the external cathode that 
supplies the injected current should be subjected to the same scaling 
process as is the region under consideration. 

13*3. Reflector Mode Patterns.—The “reflector mode patternis 
one of the best ways of summarizing, for a given oscillator, either the 
d-c transit-time relations or the combinations of oscillator parameters 
for which oscillation occurs. A reflector mode pattern is a graphical 
presentation of the dependence, on some other parameter, of the reflector 
voltages corresponding to the centers of various modes of oscillation, 
that is, corresponding to the transit-time relation^ + f) or 
<;> = 0. A reflector mode pattern is made up of a number of individual 
“mode loci’’ each one corresponding to a single mode (single value of 
n). It is to be particularly noted that “mode pattern” as here used has 
a meaning distinctly different from that of “mode shape”; the latter 
expression has been used to denote the dependence of frequency or out¬ 
put power on reflector voltage. 

In some cases there may be a use for a mode pattern showing not 
only the loci of the points for which 6^ = 27r(n ■+■ f), but also showing 
contours of constant frequency, constant output power, etc; such a mode 
pattern, particularly the one involving output power, involves other 
properties of the reflector field beside the d-c electron-transit times and 
would therefore involve the bunching factors discussed in Sec. 13*7 and 
subsequently. The simple mode patterns here considered depend only 
upon d-c transit-time phenomena; this statement is based on the assump¬ 
tion that at the center of the bunch is an electron traveling with the d-c 
(the mean or unmodulated) velocity. This assumption is not always 
exactly true under non-small-signal conditions (see Sec. 9-4) and to this 
degree the conclusions of the present chapter are not exactly correct 
when applied to experimental data obtained at large amplitude of oscil¬ 
lation; but the errors are usually of the second order. 

1 Throughout this chapter the notation with regard to transit angle follows that of 
Chap. 9, i.e., Bq « transit angle for Vt « V^] $ is the transit angle for arbitrary F*. 
This distinction was unnecessary in Chap. 12, where B alone was used; the necessity 
in the present chapter appears later when the drift-space coefficients of Chap. 9 are 
used. The present Bn need not be confused with Bn{n ^ 0), since in practice the 
latter very seldom occurs. 
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The most generally useful mode pattern is that in which the values of 
Vr for the center of the various modes are plotted against 7o. Such a 
Fr-vs.-Fo reflector mode pattern, measured for the type 417A, is shown 

in Fig. 13*2. 
As an introduction to the general relations that apply in such a mode 

pattern, the dotted construction line that passes through the point 
(Yr = 0, Fo = 0) in Fig. 13*2 should be considered. This line is the 
locus of those operating points for which the ratio jFrl/Fo has some con¬ 
stant value—^what the particular value is does not matter in the present 
discussion. From the discussion of voltage scaling in an electron-optical 

system given in Sec. 13*2, it follows 
that if the cathode emission is space- 
charge limited throughout this range 
of beam voltage, that is, if lo ^ Fo^^, 
then all these points with some given 
value of |Frl/Fo must correspond to 
a given set of d-c electron trajectories. 
This holds true for any arbitrarily 
shaped reflector region and for any 
degree of space charge. Since the tra¬ 

jectories are geometrically identical and since the velocities at all points 
in the reflector region change as Fo^S the total transit time must vary as 

for points lying on the dotted line in Fig. 13*2. 

The points of intersection of the dotted construction line with the 
various mode loci will now be considered. Each of these loci corresponds 
to the condition = 0, or = 2ir(n + f) when n is an integer. But it 
hasalready been shown that along the line I Fr|/Fo = constant, 0o « 
hence the values of Fo""^^ at the intersections of the dotted line with the 
mode loci should be in the ratio of adjacent integers plus |, and the 
fulfilling of this condition will determine the integer n associated with 
each mode. 

In Table 13*1 below there are listed the values of Fo and the rela¬ 
tive values of Fo“"^ for the intersection of the mode loci and the line 
iFrl/Fo = constant. Listed in adjacent columns are the values for the 
number of cycles transit time, as deduced for the two extreme modes 

Table 13-1.—Assignment op Mode Numbers in Fig. 13-2 

V, Relative 
Relative Fo"*^ normalized to various choices of 

(n -f J) for value of 0o/27r in middle mode 

1090 1.0 2.04 2.78 3.53 
600 1,346 2.75 3.75 4.75 
370 1.718 3.61 4.78 6.06 

Fig. 13-2.—Vr-Vb.-Fo mode pattern 
for the type 417A reflex klystron oper¬ 
ating at iO.O cm. 
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from the relation when the values 2f, 3|, and 4f cycles are 
assigned to the middle mode. It is seen that the relations do « 
and 00 oc (n + i) are simultaneously satisfied for only one of the possible 
assignments of values of 7iy namely the assignment indicated in Fig. 13*2. 

The above procedure is a very useful one for identifying modes'; this 
identification, when compared with that predicted by dead reckoning 
from dimensions and voltages, in itself tells something about the elec¬ 
tron optics of the reflector region. It illustrates, however, simply a 
special case of a more general property of the reflector mode pattern. 
This property may be stated as follows: All the mode loci in a Vr -vs.-Fo 
reflector mode pattern are geometrically similar, differing only by a 
scale factor; if a single mode locus and the corresponding value of n are 
known, then the remainder of the mode pattern may be deduced there¬ 
from. The truth of this statement is easily seen by considering the effect 
of changing the direction of the doited construction line in Fig. 13-2, for 
the distances from the origin at vrhich the various mode loci intersect 
this construction line are in the ratio of f and this ratio is inde¬ 
pendent of the particular direction of the construction line in question. 

Thus all the d-c transit-time relations for a given reflector field are 
completely described and specified by a single mode locus. It follows 
from the general discussion of Sec. 
13*2 that the shape of this generalized 
mode locus is unaffected by an over¬ 
all geometrical scaling that includes 
the space-charge-limited electron gun 
as well as the reflector region. 

The Reflector Mode Pattern for 
Plane-parallel Space-charge-free Reflec¬ 
tor Field,—In addition to giving infor¬ 
mation about the dependence of d-c 
transit time on electrode voltages, as 
has just been discussed, the reflector 
mode pattern also reveals something 
of the characteristics of the reflector 
field. Since most reflector fields have their generic origin in the plane- 
parallel space-charge-free field, the mode pattern existing with this field 
provides a good point of departure for a discussion of the influence of 
reflector field on mode pattern. 

For an electron entering (with energy eVo) the reflector field shown in 
Fig. 13*3, the depth of penetration into the field is proportional to 
Vo/{Vo + |Fr|); the average velocity (in a uniform field such as this) is 
proportional to y/Vl] the transit time of an electron into the reflection 
region and back out again is therefore proportional to VFo/(Fo + \Vr\). 

o 

Fig. 13-3.—Variation of potential 
with position in plane-parallel space- 
charge-free reflector. 
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If this expression is set equal to a constant, and the voltages are measured 
in arbitrary units such that |7r| =0 when Fo = 1, then 

|F,| = Vn - Fo; (7) 

0 0.2 0.4 0.6 0.8 
Relative beam voltage Vq 

Fig. 13-4,—Normalized mode locus for plane- 
parallel space-charge-free reflector. 

or, what is the same thing, if the constant to which ‘\/Fo/(^o + |T^r|) 
is set equal is unity, then \Vr\ = VTo — Vq. Since it has already been 

seen that all mode loci for a given 
reflector have the same shape, and 
since it is only the shape that is a 
matter of present concern, this 
nonchalance regarding absolute 
values is justified. Such a mode 
locus, passing though the point 
(\Vr\ = 0, Ko = 1) will be called a 
‘^normalized mode locus. 

In Fig. 13*4 is shown the normalized mode locus described by Eq. (7). 
Physically, its shape arises as follows. For Fo <3C |Fr| the strength of 
the reflecting field is practically independent of Fo) in order to maintain 
a constant reflection time as Fo (and the electron velocity) is increased, 
the strength of the reflection field and hence the size of \Vr\ must be 
rapidly increased with Fo in order to prevent a too rapid increase in 
depth of penetration. On the other hand, when Fo» |Fr|, the depth 
of penetration is hardly affected by an increase in Fo; and in order to 
compensate for the increased 
electron velocity, |Fr| must be 
decreased to allow for deeper 
penetration. 

The Relation between Normal¬ 

ized Mode Locus and Over-all Reflec¬ 

tor Mode Pattern.—For purposes of 
comparison with the mode loci of 
other reflector fields, Fig. 13-4 illus¬ 
trates all that need be said; but be¬ 
fore going on to these other reflector 
fields it is worth while to note the 
relation between the normalized mode locus of Fig. 13 *4 and the observed 
mode pattern of Fig. 13-2. 

In Fig. 13-5 are shown a series of mode loci derived from the normalized 
mode locus of Fig. 13*4 and graduated in size to correspond to the values 
of n indicated on each locus; that is, the normalized mode locus is scaled 
up by a factor proportional to l/V^ + 1- 

Tlie experimentally observed mode loci of Fig. 13*2 do not, however, 
extend down to Fo « 0; the reason becomes apparent when considera- 

0 1 
Relative beam voltage Vq 

Fig. 13-5.—Idealized reflector mode 
pattern as derived from the normalized 
mode locus of Fig. 13*4 and the condition 
GJG ^ 1. 
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tion is given to the necessary condition for the starting of oscillation, 
Ge/G ^ 1. For the present case Ge = assuming a space- 
charge-limited electron gun, Go = lo/Vo oc \/V^. Hence the boundary 
between the regions of oscillation and no oscillation in the reflector- 
mode pattern, specified by the relation Ge/G = constant, is given for 
constant G by the condition M^do VFo = constant. 

It has already been seen, however, that along a line from the origin 
in the mode pattern (that is, |Fr|/Fo constant, identical electron trajec¬ 
tories), 6o \^Vl is constant. Hence for the range of beam voltages for 
which « 1, oscillation will occur in the region of the mode pattern 
for which |Fr|/Fo ^ some constant. When the beam voltage gets low 
enough, starts to decrease and this boundary line sags, as is shown 
for a typical boundary in Fig. 13*5. The individual mode loci are con¬ 
tinued to the left of this boundary as faint lines, indicating the form that 
the mode pattern would take if the boundary were shifted. 

The General Relation for Radians per Volt.'^—The general theoretical 
relations for the reflex klystron give output characteristics in terms of the 
electronic parameters Ge and 0, In most practical problems involving 
changes within a given mode (for example, electronic tuning and modula¬ 
tion), Ge is sensibly constant and <t> 

is altered by changing some elec¬ 
trode voltage. In these practical 
problems it is just as important to 
know the relation between electrode 
voltage and the absolute or relative 
transit time in radians (0o or <#>) as 
it is to know the relation between 
Bo or <l> and the output character¬ 
istics. This relation between 
transit time and applied voltage— 
or, more briefly, the ‘"radians per 
volt,'^ “radians per reflector volt,'' 
“radians per beam volt," etc.—may be deduced in a simple manner from 
that part of the mode locus in the vicinity of the operating point. 

In Fig. 13-6, the encircled point A in the (yr,Fo)-plane represents 
the combination of values of Vr and To at which a knowledge of radians 
per volt is desired. Through this point are drawn two lines, ^40 and AB. 

The line AO is a geometrical construction line through the origin; the 
other line AB, the tangent to the locus of constant passing through the 
point A, is the only necessary bit of experimental data. 

Since for motion along the line OA, 

Fig. 13-6.—Mode pattern geometry. 

Pi - tan-i (|F,|/Fo): 
Pt = -tan-i (dim/ar.)„. 
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Since AB is the contour of constant 0o, however, the maximum gradient 
of ffo is along the line AC perpendicular to AB. By the construction 
shown in Fig. 13 6, this maximum gradient of 0o is 

where 

(9) 

(10) 

Similarly, the gradient of along the line AD, that is, (d^o/dlFrDro, is 
given by 

1 / ^^0 ) ^ 1 /±0o) 
cos ^2 \^|l^r|/Vo ^^in (^1 + /32) (11) 

The derivative of do with respect to any other change of voltage is 
easily found from Fig. 13*6, but only (ddo/djVrDvo, the most commonly 
useful of these derivatives, will be worked out explicitly with the aid 
of Eq. (10). Here Eqs. (8), (10), and (11) give 

This is a general relation that makes it possible to find {d<l>/d\Vr\)\o 

when \Vr\f Vo, and So are given, provided that the influence of reflector 
geometry as represented by (d\Vr\/dVo)do is known. Not much more 
can be said on this point until the mode loci for various specific geometries 
are investigated at a later point. It may, however, be noted that the 
geometrical similarity of all mode loci for a given reflector makes 
{d\Vr\/dVo)eti a constant for constant Vr/Vo; hence from Eq. (12), 

Thus the radians per reflector volt for a given electron trajectory increase 
rapidly as Fo is lowered. 

13*4. Reflector Mode Patterns of Fr-vs,-X.—Most of Sec. 13*3 has 
been concerned with the specific properties of the Fr-vs.-Fo reflector mode 
pattern. Another type of mode pattern that presents useful practical 
information about oscillator characteristics is the reflector voltage versus 
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wavelength, or Fr-vs.-X, mode pattern; and like the Fr-vs.-Fo pattern, 
this one contains within itself the complete description of the d-c transit¬ 
time properties of a given reflector. A Fr-vs.-X pattern as observed for 
the type 417A (the same tube as used for Fig. 13-2) is shown in Fig. 13*7. 

The Fr-vs.-X mode pattern is of practical importance in applications 
where X must be changed over a considerable range without exceeding 
certain limits in reflector voltage range. Since the Fr-vs.-X and the 
Fr-vs.-Fo diagrams are directly derivable from each other, as is discussed 
shortly, either type of measurement may be used to obtain information. 
Thus the Fr-vs.-X mode pattern is particularly important in tubes that 
operate over only a narrow range 
of beam voltages but over a rela- 
lively larger range of wavelengths. 

Since So « T/x, T is propor¬ 
tional to X at constant Fo and So 

(that is, for a given mode in Fig. 
13-7). Hence the Fr-vs.-X mode -~200 

pattern is essentially a plot of ~ 
reflector voltage vs. transit time, ^ 
or vice versa. S 

In the Fr-vs.-X diagram, since B 

it is taken at constant Fo, points § 
corresponding to a given set of 
electron trajectories lie on a hori¬ 
zontal line of constant Fr. Along 
such a line of constant electron 
trajectory, the value of So for any 
given X is inversely proportional 

to X. Hence from the mode locus Wavelength X (cm) 
for a single value of do all the is-t.-f^vs-x reflector mode p»t- 

other mode loci may be derived; tern for the type 417A reflex klystron oper- 

conversely, given a set of mode 
loci in the (Fr, X)-plane the values of So for each mode may be assigned by 
use of the requirement that So = 2ir(f, If, 2|, • • • ) just as was done 
with the Fr-vs.-Fo diagram. 

Thus in Fig. 13-7, for [Frl = 185 volts two modes occur with X = 9.00, 
10.91 cm. The ratio of these two wavelengths, 1.21, is closely the same 
as the ratio 4.75/3.75 = 1.21; hence the assignment of mode numbers 
shown in Fig. 13-7. It will be noted that this assignment agrees with 
that of Fig. 13.2. 

Since a single mode locus in the Fr-vs.-X plane determines all other 
mode loci in the manner described above, all mode loci are similar in 
the sense that they differ only by a horizontal (X) scale factor. Thus a 
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mode pattern may be represented by a single mode locus that may be 
conveniently normalized to pass through the point (X = 1, Fr = 0). 
The normalized Fr-vs.-Fo and Fr-vs.-X mode loci may be easily derived 
from each other with the help of the auxiliary normalized Fr-vs.-X- 

mode locus; the Fr-vs.-X^ and the 
Fr-vs.-Fo loci are related to each 
other by the simple geometrical 
construction of Fig. 13-8. The 
verification of this fact is left as 
an exercise for the reader, with 
the hint that in Fig. 13*8, the 
relation of point C to points A 

and B should be considered. 
The normalized Fr-vs.-X mode 

locus for a parallel plane reflector, 
no space charge, is shown in Fig. 
13*9. In discussing the mode 
patterns of specific reflectors in 
the next two sections, only the 

normalized Fr-vs.-Fo locus will be shown (Figs. 13*13 and 13*19). But 
it is apparent from Fig. 13*8 that the slope of the right-hand half of the 
F,^vs.-X mode locus is roughly proportional to the corresponding slope 
in the Frvs.-Fo mode locus; any¬ 
thing that affects one of these 
will affect the other in the same 
manner. 

13-6. Normalized Mode Locus 
of a Space-charge-free Recessed 
Reflector.—In actual practice the 
anode-reflector region is not 
bounded by two parallel planes. 
The reflector electrode is com¬ 
monly somewhat recessed over a 
diameter somewhat greater than 
that of the electron beam, as is 
shown in various figures of Chap. 
18. This has the effect of provid¬ 
ing a radially inward force on 
electrons, which tends to counter¬ 
act any inherent or space-charge-produced divergences in the beam. 
In the next chapter it is seen that it is sometimes advantageous to add 
other complications to the electrode shape in order to avoid more than 
two transits of the electrons through the r-f gap. 

0 0.5 1 

Relative wavelength X 
Fio, 13*9.—Normalized Fr-vs.-X mode 

locus for plane-parallel space-charge-free 
reflector. 

Fig. 13-8.—Geometrical construction for 
generation of the Fr-vs-X* normalized mode 
locus from the Fr-vs.-Fo locus or vice versa. 
Curve (/), Fr-vs.-X* mode locus; curve (//), 
Fr-vs.-Fo mode locus. 
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The particular recessed reflector with which the present section is 
concerned is shown in Fig. 13*10. The relative dimensions, with reflector 
depth equal to half the reflector diameter, are more extreme than most 
of the practical reflectors shown in Chap. 18. However, when space 
charge is neglected any equipotential lying between the two electrodes 
of Fig. 13* 10 may be replaced by a conducting surface operated at a poten¬ 
tial negative with respect to cathode; thus the solution of this reflector 
inherently contains the solution to a number of other convergent reflectors 
that are similar to the reflectors of Chap. 18. For purposes of discussing 
this reflector field^ it will be assumed that the electrons move along the 
axis without too great a divergence therefrom, in other words, that the 
diameter of the reflector is rather larger than the beam and that the beam 
is not initially very divergent. In this case the reflector field is essentially 

Reflector 
Fig. 13-10.—Geometry of 

tho cup reflector to which 
Figs. 13-11 and 13-12 and 
13-13 refer. 

Fig. 13-11.—Variation of relative negative 
potential‘l>/(Fo + |Fr|) along the axis of cup 
reflector as function of x/ro, distance from 
anode measured in units of the reflector 
radius ro. 

one-dimensional; in Fig. 13* 11 is shown the dependence of electrostatic 
potential on x/ro, distance along the axis as measured in units of the 
reflector radius. 

Some of the properties of the mode locus of this reflector are immedi¬ 
ately apparent from Fig. 13*11. Thus, for |Fr| » Fo (electron turn¬ 
around at 4>/(Fo + |Fr|) « 1), the behavior is essentially that of a 
plane-parallel reflector. But for |Fr| = Fo/2 (electron turn-around at 
^/{Va -f |Fr|) = I in Fig. 13*11), a further increase in Fo increases 
the depth of penetration much more rapidly than in the plane-parallel 
case; thus not as large a compensating decrease in \Vr\ is necessary to 
hold the reflection time constant. 

The dependence of transit time T on incident energy Fo, with con¬ 
stant total potential difference (Fo + lFr|) in the field ef Fig. 13*11, 
is shown in Fig. 13*12. The normalizing factor To is the reflection 
time for a plane-parallel reflector with the same reflector spacing and 

1 This discussion of the tubular reflector is based upon the unreported work of J. B. 
Garrison of the Radiation Laboratory. 
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with reflector voltage zero. The square-root dependence of T on 
V{i for a plane-parallel reflector is also indicated in the figure. 
Similar curves giving the reflection time T for reflectors derivable 
from the present recessed reflector by placing conductors at various 

equipotentials may be obtained 
from Fig. 13T2 by a horizontal 
expansion of the curve in Fig. 
13T2 sufficient to give the correct 
intercept at Fo/(Fo + |Fr|) = 1. 

The mode locus is in turn 
derivable from Fig. 13T2 by 
plotting Vr vs. Fo at constant T. 

The resulting normalized mode 
locus is shown in Fig. 13T3 with 
the mode locus for the plane- 
parallel reflector indicated for 
comparison. The flattening out 
of the locus as the reflector gets 

deeper is a raonotonically progressing process. Considerations of 
power-supply convenience and the avoidance of reflector bombardment 
by fast electrons usually require operation with 0.2Fo ^ \Vr\ ^ 0.5Fo; 

Fig. 18*12.—Electron reflection time* T 
in the reflector field of Fig. 13* 11 (solid line). 
Transit time in reflector of same spacing but 
with linear variation of potential (broken 
line); To is the transit time in this linear 

field with IFrI =0. 

Relative beam voltage 

Fio. 13*13.—Normalized mode locus 
for the reflector potential of Fig. 13*11 
(solid curve). Normalized mode locus for 
plane-parallel space-charge-froe reflector 
(broken curve). 

Beam voltage Vq 

Fig. 13*14.—Reflector-mode pattern in 
experimental reflex klystron with hemi¬ 
spherical reflector. 

and it is apparent from Fig. 13T3 that for a deep reflector the mode 
loci in this range of reflector voltages are practically horizontal lines— 
that is, the reflection-transit time and hence the oscillation frequency 
are nearly independent of beam voltage. Similarly, it is apparent from 
the previous discussion of the factors that determine radians phase 
change per reflector volt that this quantity is maximized for such a 
horizontal mode locus. 

In Fig. 13T4 the mode pattern for an experimental reflex oscillator 
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with a hemispherical reflector is shown; the correspondence with the 
behavior just discussed is obvious. 

Some of the other implications of the deeper reflector are discussed 
when the effect of various reflectors on the bunching process is considered. 

18'6. Space-charge Transit-time Effects in the Plane-parallel Reflec¬ 
tor.—Space-charge effects are always present to some degree in any 
reflecting region. The only reflector for \\hich they can be analyzed 
with any degree of facility is the plane-parallel reflector; the analysis of 
this reflector will serve to indicate orders of magnitude and the nature 
of end results. 

The general question of one-dimensional flow of electrons between 
parallel planes has been thoroughly discuss(‘d elsewhere^ without, how¬ 
ever, giving in much detail the resuLs that are applicable to the case 
of complete reflection of the electrons. (See also Sec. 3-6.) The 
mathematical analysis of the additional details^ will not be reproduced 
here, the discussion being limited to stating the results and discussing 
their physical content 

According to Poisson’s equation, the cun^ature of the potential func¬ 
tion is proportional to the space-charge density. In a region into which 
a constant current is injected, the space-charge density at any point is 
inversely proportional to the electron velocity, or the square root of the 
potential, at that point; space-charge effects are then greatest at the 
turn-around point in the reflector region. 

The order of magnitude of the effects involved may be seen from a 
simple case. In a plane-parallel diode with negligible cathode-emission 
current the potential varies linearly with distance from the cathode. If the 
cathode-emission current is increased until it is space-charge limited, 
the potential gradient at the cathode is zero and the potential varies with 
the i power of distance from the cathode. Nearly the same i power 
spacer-charge distortion of the electrostatic field would result, for the 
same geometry, if the current were injected at the anode and collected 
at the ^^cathode,'' now run slightly positive with respect to the zero 
equipotential. Furthermore, suppose that the current were injected at 
the anode, with the ^‘cathode” now operated as a reflector at a voltage 
infinitesimally negative with respect to the source of the electrons, with 
the result that all the electrons are now returned to the anode; then if 
the cathode (reflector!)-anode pacing were decreased by the factor 
l/\/2, nearly the same ^ power variation of potential with distance 
would again result. This last factor of 1/V2 comes in because the 

1 C. E. Fay, A. L. Samuel, and W. Shockley, Bell SysL Tech. J., 17, 49 (1938). 
B. Salzberg, A. V. Haeff, R.C.A. Review^ 2, 236 (1938). 

2 Private communication from W. Sollfrey, Sperry Gyroscope Co. Research Labora¬ 
tories, Garden City, N.Y. 
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injected current, since it is now reflected, is equivalent in its space- 
charge contribution to twice as much current in_a one-way diode; and 
a decrease in diode spacing by the factor \/y/2 doubles the emission 
current. These considerations suggest that a very useful parameter for 
use in dealing with space-charge effects in reflectors is the ratio \/2 d/s, 

where d is the anode-reflector spacing and s is the cathode-anode spacing 
in the ^'equivalent diode.” By this last term is meant a space-charge- 
limited diode that would supply, at the given beam voltage, the current 
density which is injected into the reflector region. The ratio \^dls 

is proportional to the square root of the perveance of the electron gun. 
(Perveance = a quantity that is independent of Fo in a space- 
charge-limited electron gun.) 

When \/2 d/s = 1 and the reflector is operated infinitesimally nega¬ 
tive (it is assumed that the electrons have no velocity distribution), then 
the potential varies with the ^ power of distance from reflector to anode. 
For \/2 d/s <^\ there is little space-charge influence and the potential 

varies nearly linearly with distance. 
This latter case corresponds to the 
situation in a temperature-limited 
diode. This analogy between a 
diode and the reflecting region can¬ 
not be carried far, however, unless 
attention is given to the fact that 
a reflector is often run negative 
with respect to cathode. Thus, Fig. 
13-15 shows the variation of poten¬ 
tial in a reflection region with two 
different reflector voltages but with 
everything else constant. It is 

seen in this figure that a high reflector voltage, by pushing the elec¬ 
tron tum-around point nearer to the anode, diminishes the total 
amount of space charge and the space-charge distortion of the field just 
as would a smaller anode-reflector spacing. The specific curves in Fig. 
13*15 have been calculated for \/2 d/s = 1.4. In the type 3K23 reflex 
klystron, the operation of which is analyzed in Chap. 12, an even higher 
degree of space-charge is present, corresponding to \/2 d/s = 2.5. 
The curvature of the potential that sets in at low reflector voltages, to 
which was ascribed in Chap. 12 an observed decrease in eflSciency in the 
type 3K23, is apparent in Fig. 13-15; the way in which this curvature 
influences bunching and efficiency is discussed in Secs. 13-7 to 13-9. 

Some attention must also be given to what happens when 7r — 0 
("Fr «= 0” hereafter means "reflector infinitesimally negative”) and 

d/« > 1. In this case, as shown in Fig. 13*16, the turn-around point 

Distance 

Anode 
potential 
Cathode 
potential 

Reflector 
potentials 
jL 

Fig. 13*15.—Variation of potential 
with distance in the presence of space 
charge; same /o, Vo, reflector spacing, 

corresponding to \/2d/« =1.4; two 
different reflector voltages. 
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moves out from the reflector toward the anode; the potential maintains 
its same relative form, shrinking horizontally in the figure. 

In finding the variation of potential in cases such as those of Fig. 
13*15, it is necessary to join two solu¬ 
tions: the linear potential in the region 
between the reflector and the turn¬ 
around point, and the temperature- 
limited-diode potential between the 
turn-around point and the anode. 
These two solutions must join with 
continuous first derivatives at the turn- 1 
around point; hence, if \Vr\ > 0, the ■§ 
solution for the potential in the space- ^ 

charge-field region must have non-zero fig. 1316.—Variation of potential 
gradient at the turn-around point, just position in the reflector region 

. when Vr ~ 0, for various values of the 
as does the potential m a temperature- ^ 

limited diode. 
Without reproducing the details of the derivation, the results of the 

considerations just outlined may be summarized. The notation used is 

as follows: 

j = distance measured into reflection region from the anode. 
^ = the electrostatic potential measured with respect to the cathode 

or the electron turn-around point in the reflector region, and 
normalized by dividing by Yo. 

Then the relation between potential and distance in that part of the 
reflection region where current is present is given by 

= (1 - 20(1 -1- OH - - 2C){^^ •+ O*^. (13) 
s 

Here C is a parameter the physical significance of which is shown by the 

relation 

Thus C is proportional to the square of the (suitably normalized) poten¬ 
tial gradient at the electron turn-around point. This relation, however, 
is hardly convenient for finding the value of C with which to enter 
Eq. (13) in any given situation. The value of the parameter C may be 

determined from the relation 

. ICW - (1 - 20(1 + 0« - 2CH j. (14) 
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This equation is summarized graphically in Fig. 13*17, which gives the 
relation between \Vr\/Vo and C for various values of \^2d/s. For 
\/2 d/s ^ 1, there is no value of C for which \Vr\/Vo = 0. This condi¬ 
tion corresponds to the physical fact that, if \/2 d/s > 1 and Vr = 0, 
the potential has the value zero for a finite distance in front of the reflector. 
The potential remains at zero up to the point x = s/\/2; for smaller 

values of .r, the potential depends 
upon distance just as it would if 
d were given by s/\/2- 

The d-c transit times in the 
reflection region are conveniently 
normalized in terms of the value 
that the round-trip transit time 
assumes when the potential in the 
reflection region is just like that in 

a space-charge-limited diode—that is, when -\/2 d/s = 1. In this latter 
case the transit time is For any other case the transit time T and 
the normalized transit time r are given by 

10*^ 10“^ 10’^ 1 10 10^ 10^ 10^ 

Space charge parameter C 

Fig. 13*17.—Dependence of the space- 
charge parameter C on the parameters 

l^rl/Fo and \/2 d/s. 

(15) 

From this equation and the dependence of C on \Vr\/Vo and \/2d/s 

as shown in Fig. 13*17, one may deduce the dependence of the normalized 
transit time r on \Vr\/Vo and \/2 d/s as shown in Fig. 13*18. 

The behavior sliown in Fig, 13*18 results from the interplay of two 
factors: the depth of penetration of the electrons into the reflector field, 
and the mean electron velocity 
in the reflector space. In the 
absence of space charge, a diminu¬ 
tion of |Fr| at constant Vo in¬ 
creases the depth of penetration 
while leaving the mean electron 
velocity unchanged; as \Vr\/Vo 
goes from unity to zero the 
transit time is doubled. This 

Fig, 13*18.—Dependence of the normal¬ 
ized reflection transit-time t on the parame¬ 

ters |Fr|/Fo and d/«. 

behavior corresponds to the behavior shown in Fig. 13-18 for \/2 d/s 1. 
(The curve for ■\/2d/s = 0.2 is expanded horizontally over that for 
-y/^d/s = 0.1 because the transit time through the equivalent diode, 
to which T is normalized, has been correspondingly decreased.) As space 
charge comes effective (\/2 d/s ^ 1), it is apparent from Fig. 13-15 that 
the depth of penetration increases less rapidly as |F.|/Fo diminishes, but, 
because of the increasing potential curvature, an increasingly large frac- • 
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tion of the electron's path lies in the low-velocity region near the turn¬ 
around point. ^ These two factors have opposite effects on the transit 
time. For \/2 d/s g 1 the turn-around point for Fr « 0 is at the reflec¬ 
tor and the turn-around point for |Fr|/Fo == 1 is practically midway 
between anode and reflector just as in the absence of space charge; thus 
the increasing curvature of the potential as Vr approaches zero (see Fig. 
13-16) gives rise to an increase of transit time with diminishing |Fr| that 
is more rapid than in the absence of space charge. However, as y/2 d/s 

increases above unity (see Fig. J3-l()), the depth of penetration at 
Fr = 0 becomes less and less. This effect tends to counterbalance the 
space-charge diminution of mean velocity that takes place as \ Vr\ dimin¬ 
ishes; the net result is that for y/2d/s 1 (very severe space-charge 
conditions) the transit time becomes more and more independent of Fr. 
This result is likewise apparent m Fig. 13*18. 

The interplay of thchc various transit-time factors results in the 
normalized mode Uk-i shown in Fig. 13-19 for various degrees of space 
charge. The most interesting feature here is the extreme distortion 
from the space-charge-frec case under conditions of high space charge. 
This distortion is due to the effect just noted for, as Fo is increased and 
an attempt is made to hold T 

constant by a decrease in |Fr| to 
allow deeper penetration, this 
attempt is partially frustrated by 
the increasing curvature of the 
potential function. This increas¬ 
ing curvature must be compen¬ 
sated by a further decrease in |Fr|; 
this accelerating process brings 
1 Fr| rapidly to zero. The curves 
in Fig. 13*15 may also be used to 
illustrate this point because, since 
space-charge phenomena are inde¬ 
pendent of voltage in the presence of a space-charge limited cathode, the 
curves of Fig. 13-15 may correspond as well to constant Ty variable Fo, as 
to the constant Fo, variable T indicated in the caption. The value of Fr 
would then be measured relative to the varying Fo; and with T constant, 
the curve with low |Fr| corresponds to high Fo. 

Although Fig. 13-19 shows the mode loci normalized to Fr = 0 at 
Fo = 1 for comparison wdth Figs. 13-4 and 13-13, the physical factors 
just discussed may be more easily seen in the unnormalized pattern of 
Fig. 13-20, which shows the locus for a single mode (single value of T) 

as y/2d/s is increased. This figure shows that as the electron-gun 
perveance per unit area is increased for a given reflector geometry, the 

0 0.2 0.4 0.6 0.8 1.0 
Beam voltage 

Fig. 13-19.—Normalized mode locus for 
plane-parallel reflector with varying degrees 
of space charge as indicated by varying 

values of \/2 d/«. 
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maximum transit time obtainable with a given beam voltage eventually 
diminishes monotonically. 

This maximum transit time is always obtained with Vr = 0. With 
a given geometry and Fo and with Vr ~ 0, Fig. 13*16 illustrates why 
transit time eventually decreases monotonically with increasing current. 
At zero reflector voltage, an increase in current does not at first change 
depth of i>enetration but does increase potential curvature and transit 
time; however, as already noted, for \/2d/s ^ 1 a further increase in 
current simply moves the turn-around point nearer the anode without 
changing the relative shape of the potential, and hence diminishes the 
transit time. 

These comments about the influence of space charge in the reflector 
region have been intended largely as background; the only clear-cut 
easily observable effect that has been discussed is the influence of space 

Fio. 13'2().— Unnormalized mode locus for a given value of reflection time T, showing 
relation between Vr and Vo as d/s (that is, beam current at constant beam voltage) is 

increased. Curves labelled with values of \/2 d/a. 

charge on the mode pattern. Aside from the usefulness of knowledge 
of mode patterns per se, and the implied possibility of exploring d-c 
space-charge effects and verifying these comments by observation of 
actual mode patterns, there are two important consequences of this 
discussion. 

One has to do with the influence that the curvature of the potential 
in the region of the turn-around point has upon the bunching phenome¬ 
non, which is discussed later. The other point, related in part to the 
first, has to do with the influence of space-charge phenomena on the useful 
range of wavelengths for the reflex klystron. 

As the operating wavelength of the reflex klystron is increased, the 
reflection time must be increased in the same proportion because, in order 
for oscillation to exist, the reflection time must have a minimum value 
of f or preferably If cycles measured at the oscillation frequency. It is 
seen in the later discussion of the effects of space charge upon bunching 
that the effects of increasing space charge are eventually adverse. Hence, 
let it be supposed that in increasing the wavelength of the klystron the 
space-charge effects are maintained at some constant level; the depend¬ 
ence of relative potential upon relative position is therefore unchanged 
in the scaling process. The invariance of space-charge effects and the 
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proportionality of reflection time to wavelength may be accomplished 
by holding Vq constant and scaling the dimensions of the cathode and 
the reflector in proportion to the wavelength (see the previous discussion 
of the scaling of electron-optical systems). But this scaling process 
holds /o constant. Thus as the wavelength is increased, the d-c input 
power, the efficiency, and the r-f output power approach constant limiting 
values. At the same time, however, competition from other oscillators 
that are not limited in this manner comes into play and hence makes the 
reflex klystron increasingly less advantageous above some maximum 
wavelength. 

This conclusion is not appreciably changed by considering other 
methods of scaling; hence it may be said that reflector space-charge 
effects, operating in the dimension parallel to the motion of the beam, 
set one long-wavelength limit to the competitive ability of the reflex- 
klystron oscillator. The same may be said concerning the effects of 
debunching in multi resonator klystrons. There, for a given beam volt¬ 
age, the necessary drift length is proportional to the wavelength, but the 
debunching wave number, which determines the length of drift space 
for which debunching becomes harmful, does not involve the frequency of 
the r-f input-gap voltage. 

It is not too irrelevant to note an interesting related fact, which is 
that the short-wavelengih^limit for klystron operation is set by another 
electron-optical effect, the existence of a maximum obtainable current 
density.^ This maximum current density is a limitation involving 
dimensions transverse to the beam. The maximum current density is 
important because circuit losses increase as the wavelength decreases, 
and a larger total current is therefore required to sustain oscillation; at 
the same time the cavity size and the gap area available for this current 
decrease. Since the current density is limited, the two requirements 
collide head-on and set a lower limit to available operating wavelengths. 
Unfortunately, at present this lower limit is not influenced by competition 
from any markedly better oscillator, in contrast to the situation at the 
long-wavelength limit. 

All told, the two limitations just described seem to limit the usefulness 
of the reflex klystron oscillator to the (not-so-small!) wavelength range 
extending from somewhat more than a millimeter to somewhat less than 

a meter. 
13*7. Influence of Reflector Field on Bunching.—^The effects of 

velocity modulation by a noninfinitesimal r-f gap voltage and of subse¬ 
quent bunching in an arbitrary drift space are considered in detail in 
Sec. 9-4. There it is found that, even with the simplest drift spaces, the 

‘ J, R. Pierce, J<mr. App, Phya., 10, 715 (1939). 
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noninfinitesimal r«f gap voltage necessitated corrections to the results 
of the simple bunching theory of Sec. 9-2 and Eq. (9*9). Changes in both 
the phase and the amplitude of the bunched-beam-current components 
are indicated, and since these are primarily effects that increase with 
increasing amplitude of the gap voltage, they usually diminish with 
increasing n in the reflex klystron. In generalizing these results to 
arbitrary drift spaces it is found that these effects of noninfinitesimal 
gap-voltage amplitude are dependent on the transit-time charac,teristics 
of the drift space. 

It is also found, however, that the relation between bunching param¬ 
eter and r-f gap voltage is dependent on the drift-space characteristics; 
and this is considerably more important to the present dis(mssion. In 
the two simplest drift spaces, a field-free drift space and a linear reflecting 
field, \X\ = M6()V/2Vo, where do is the d-c transit angle in the drift 
space; however, for all other drift spaces, A" = aiM6oV/2Voy where the 
coefficient Ui is a characteristic of the drift space given by Eq. (9*26&); 

tti = ‘-{2Vo/Oo)(dd/dVe)o. This last effect is not, as w^ere the previous 
ones, a matter of distortion of the bunch consequent upon modulation 
by a large r-f gap voltage; to the contrary, the waveform and phase of 
the bunched beam current are unaltered, and the simple zero-ordei* 
Eq. (9*9) for the current components still holds. All that has happened 
is that the degree of bunching produced by % given F/7o is the same as 
that which would be produced in a linear reflecting field with a d-(j 
transit angle jai^ol instead of do. 

This fact is sometimes expressed by saying that in a nonlinear reflect¬ 
ing field the equivalent bunching time’^ is different from the transit 
time. The equivalent bunching angle jai^ol thus governs all considera¬ 
tions of bunching and small-signal electronic conductance Ge, and the 
transit angle do governs all considerations of bunching phase and the 
phase angle <t>. The main importance of the field coefficient ai lies in 
the fact that it does not depend on gap-voltage amplitude and hence is 
less likely to decrease with increasing n. 

The consequences of an increase in equivalent bunching time over 
transit time (|ail > 1) are simple. They are the same as the conse¬ 
quences, already noted in detail in Chap. 12, of increasing in the linear 
reflecting field. Thus in the simplest terms (assuming high current 
efficiency), 17 a l/\ai\do and A/^ oc [ail^o. If by some means do and n 

could be held constant and |ai| increased, a decrease of tj and an increase 
of Af^ would result. Conversely, a decrease in |ai| increases efficiency 
and decreases electronic-tuning range. 

Thus the principal subject of interest in the investigation of general 
reflector fields is the field coefficient ai, which apparently can have such 
far-reaching effects on the simplest aspects of reflex-klystron behavior. 
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13*8. D-c Transit Time Versus Effective Bunching Time.—Since 
bunching depends upon differences in transit times, the resulting depend¬ 
ence of bunching parameter on the derivative {dB/dV^^ in ai is to be 
expected. But the way in which (dO/dV,)o depends on the general shape 
of the reflector field is perhaps not so obvious, and the physical origin of 
any such dependence is therefore worth some investigation. 

What happens in the vicinity of the electron turn-around point has a 
pronounced effect on transit-time relations as the electron velocities in 
this vicinity are low and the time spent in this region is out of proportion 
to its geometrical extent. The vari¬ 
ous relations involved may perhaps 
most easily be seen with reference 
to Fig. 13*21. Here are shown sche¬ 
matically three reflector fields sueh 
as might be produced b> placing an 
auxiliary grid between the anode and 
reflector at the position indicated. 

The transit-time relations in such 
a case are simiile and are eiisily 
derived because the average velocity 
in traversing any segment of a linear 
potential is simply the average of the 
velocities at the beginning and at the 
end of the sc^gmeiit. Iliese relations 
will be stated without derivation and 
with no discussion of their signifi¬ 
cance as analytical expressions; they 
are given explicitly simply for the convenience of anyone who may 
wish to experiment wdth combinations of parameters other than those 
shown in Fig. 13*21. 

Let the relative position and potential of the imaginary ‘‘auxiliary 
grid^’ be given by bi and 62, as shown in the figure; and let ^00 be the d-c 
transit angle when 61 = 62—that is, ^00 is the d-c transit angle for an ideal 
linear reflector with the same turn-around point as the reflector in ques¬ 
tion. Then the d-c transit angle ^0 is given by 

^ ^ ^ I_b2 — bi . 
^00 bi 62 \/l — ^>2 

The rate of change of transit time with changing electron energy 
may be measured by a quantity similar to that used in defining ai, 
— {2Vo/Boo)(dd/dVe)Q. This quantity is given, for the indicated reflector 

field, by 

Fig. 13-21.—Illustrative reflector fields 
for discussion of transit time and bunching 
relations: {A) bi = 62 — 0; {B) hi * 62; 
(O hi I, 62 *= 0.95. 
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2Vo/dd\^hi, b2-bi 
Boo \dVe/o 62*^62(1 - ^ ^ 

What do these relations say about the potential curves, A By and C 

of Fig. (13*21), for which 61 = f and 62 = 0, f and 0.95 respectively? 
Equation (16) indicates transit times given by 

~ = 0.67, 1, and 2.02 

respectively. This result is as it should be; the velocity at any given 
point in space has been progressively decreased in going from A to C. 

By Eq. (17), the rate of change of transit time with incident electron 
velocity is given by 

2Fo 

^00 

0, 1, and 27; 

hence 
ai = 0, — 1, and —13.4 

for Ay By and C respectively. 
This result is rather surprising. It says that in the reflection field A 

no bunching action at all occurs, and also that in field (7, bunching occurs 
as easily as it would in a linear reflecting field with 13.4 times as large 
a d-c transit angle; in field C, rj is reduced by a factor 13.4 and A/^ 
increased by a factor 13.4 from the values in a linear field with the same 
d-c transit angle. What is happening here? 

Consider first field A of Fig. 13*21. This field is really a combination 
(in a proportion chosen with the intention of .emphasizing a particular 
point) of two cases that have already been noted in detail: the ideal 
reflector and the field-free drift space. It will be recalled that the 
transit time of an electron with initial energy Ve is proportional to 
Ve^ in the ideal reflector and to in a field-free drift space; hence in 
Case Ay where bi is so chosen as to make the transit times in the two 
spaces equal, the total transit time is independent of Ve for Fc « Fo. 
There thus can be no bunching by small r-f gap voltages with the field 
of Case Ay as transit time is independent of electron energy. 

This result does not hold true, of course, for any value of bi other than 
f. At 6i = # and 62 == 0, ai goes through zero and changes sign; for 

sa 0 and 61 > f the bunching is predominantly field-free in character 
and 180® out of phase with that for 62 “ 0, 61 < i; with a reflector 
for which 62 = 0 and 61 > modes of oscillation can occur not at 
$0 =s 2ir(n + i) but at Bo = 27r(n + i). 

Consider now Case C of Fig. 13*21. What makes (dB/dVe)o so large? 
This quantity has increased out of all proportion to the increase in Bo. 

The increase in Bo results largely from the increase in the geometrical 
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extent of the region where velocities are small; but the increase in 
(d6/dVe)o arises because the gradient of the potential at the tum-around 
point is small. This small gradient means that a slight increase in 
incident electron energy makes a disproportionate increase in the depth 
of penetration and in the distance which the electron must travel at 
very low energy. This example illustrates the fact that the potential 
gradient at the turn-around point becomes of prime importance when it 
is small. 

Case C corresponds to the general shape of reflector field most com¬ 
monly encountered in fact. A distortion in the same direction as this 
one is caused by space-charge effects between plane-parallel electrodes, 
as has already been seen in Figs. 13*] 5 and 13-16. Even in the absence 
of space embargo, the provision of a radially inward focusing field at the 
reflector produces the same downward displacement of the potential 
function, as seen in Fig 1311. So an increase in the bunching time over 
the transit time, ith the consequent decrease in efficiency and increase 
in electronic tuning range over that expected with a linear reflecting 
field, must be expected to be the rule rather than the exception. 

Dependence of the Field Coefficient ai on Position in the Reflector Mode 

Pattern.—The factor U], wliich is usually increased by the common non- 
linearities of reflector fields, is a dimensionless number that will always 
be the same for given d-c electron trajectories in a given reflector (with 
possible later reservations in the case of space-charge distortions of the 
field). It is shown in Sec. 13*3 that for any particular tube (with space- 
charge-limited cathode) a given value of Fr/Fo always corresponds to 
the same set of electron trajectories, regardless of frequency of oscillation 
or absolute value of the electrode voltage. Thus the loci of constant 
values of ai are straight lines through the origin in the Fr-vs.-Fo mode 
pattern, and horizontal straight lines in the Fr-vs.-X mode pattern. 

The general trend of the further dependence of a i is also apparent 
from general considerations. In a reflector field in which curvature of 
the potential arises from a shaping of the electrodes to produce a focusing 
action on the beam—as in the recessed reflector of Sec. 13-5—a diminish¬ 
ing of |Fr|/Fo allows a deeper penetration of electrons into the reflector, 
and the potential gradient at the turn-around point is thus diminished. 
In a plane-parallel reflector field with space charge a decrease in [Frl/Fo 
causes a rapid decrease in the potential gradient at the turn-around 
point. In normal operating conditions a decrease in |Frl/Fo accom¬ 
panies an increase in Fo or X, as the reflector mode patterns of Figs. 13-2 
and 13*7 illustrate; hence, for a given mode of oscillation, an increase 
in Fo or X causes an increase in |ai| that is usually fairly slow at first and 
then becomes more rapid as Fr approaches zero. If this effect ih not 
accompanied by others, such as the phenomenon of phase aberration 
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which will be discussed shortly, then the approach of Fr to zero is accom¬ 
panied by a rapid decrease of rj and a rapid increase in Af^/fo* 

Illustrative Examples.—An illustration of this action is shown in 
Fig. 13*22. In this figure are shown the dependence of output power 
and electronic-tuning range on Fo for the (n = 3)-mode of the type 417A. 
The corresponding mode locus is shown in Fig. 13*2. Without trying to 
disentangle all the factors involved (the change in M and the fact that 

the cathode was not operated at 
exactly constant perveance), it 
appears that for Fo > 000 volts or 
for lFr|/Fo < i a rapid increase in 
|ai| occurs for this mode, with the 
attendant increase in and de¬ 
crease in rj. The type 417A has 
a rather flat reflector; therefore this 
effect can arise only in a minor 
degree from an increased depth of 
penetration into the curved poten¬ 
tial which a recessed reflector pro¬ 
vides. On the other hand, a 

comparison of Figs. 13*2 and 13*19 also suggests that space charge has 
considerably affected the reflector mode pattern. From the dimensions 
of the 417A, the beam diameter (i in.) and the operating conditions 
(7o = 25 and 75 ma at Fo = 400 and 1000 volts respectively—not con¬ 
stant perveance), one may calculate for \/2d/s the values 1.5 and 1.1 
respectively for Fo = 400 and 1000 volts. The mode pattern of Fig. 
13*2 is consistent with values of \/2 d/s of about 2.0 and 1.5 in these two 
cases. It is not known how space-charge effects and reflector-depth 
effects (the latter slight in this case) combine; hence this approximate 
agreement seems satisfactory and lends support to the suggestion that 
the increase in |ai|, that may be deduced from Fig. 13*22, is due to space- 
charge effects. 

Exactly similar conclusions may be drawn from the example of the 
type 3K23, discussed in Section 12-4. 

Elimination of Reflector Effects from Comparisons of Theory and 

Experiment—These general remarks also make clear another point: 
if one wants to compare the behavior of various modes in a reflex klystron 
with zero-order theory the only really satisfactory way to do it is under 
circumstances such that the same value of a i is operative for each mode 
during the comparison. One way to do this is to work with small cur¬ 
rents and to use an accurately plane-parallel reflector. A better way, 
when this is possible, is to make the comparison under the condition of 
identical electron trajectories for each mode. 

400 600 800 1000 1200 
Beam voltage 

Fig. 13*22,— Variation of output power 
P (curve A) and electronic tuning range 

(curve B) in the (n *= 3)-mode of the 
type 417A reflex klystron. Compare with 
Figs. 12*20 and 12*21. 
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In Fig. 13*23 is shown the dependence of Vr on X for the type SD835D, 
an external resonator tube developed^ by Sylvania Electric Products, 
Inc. In Fig. 13*24 is shown the dependence of output power on X. 
Both these figures are taken at 3^^ 
the same constant beam voltage, 
325 volts. The experimental ^ 
points in Fig. 13*24 scatter con- 
siderably, probably in large part | 
because of the necessity of chang- 1100 
ing cavities to cover the wave¬ 
length range anrl because of the 0 
difficulties of measuring power 

over wide wavelength ranges; it Fig. i:f23. TVvs.-Fo mode pattern for 

seems reasonable t^ idealize ibi^* SD835D reflex kiystj0.1; Vo = 325 volta. 

data by drawing the da^ijed line. At any given wavelength the depend¬ 
ence of output po^v( r P on mode number n is very far from the relation 
P oc 1 /(n + !■) predicted by the zero-order theory. 

Wavelength (cm) 

Fig. 13*24.—Dependence of output power on wavelength for various modes of SD835D 
reflex klystron; Fo * 326 volts. At double circles, \ Vr\ 200 volts. 

From Fig, 13*23 one may pick out the wavelengths at which the 
various modes have a given Vr and hence have given d-c trajectories 

^V. B. Corey and P. R. Malmberg, **SD835D Reflex Oscillator Tube,'' 
Sylvania Report D-62, Peb. 2, 1945. 
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Suppose that this is done for \Vr\ = 200 volts. The points on the power 
curves of Fig. 13*24 that occur at the corresponding values of X and hence 
are obtained with a single set of electron trajectories are indicated in 
Fig. 13*24 by large circles. In Table 13*2 below are indicated the result¬ 
ing values of power output for the various modes. If « l/(n + f) 
as simple theory predicts, then (n + f)P should be a constant for the 
values of P and n indicated. In the next column this product is found. 
It is seen that the constancy of the product (n + i)P is good except for 
w = 0. 

It seems reasonable to conclude from this data that the predictions 
of the zero-order theory as to the variation of efficiency with n are rather 
accurate for n ^ 1 in this tube. It is interesting to note that this does 
not hold true for n = 0, and that the efficiency here is down by a factor 
of nearly five from a simple prediction based on the other two modes. 
This discrepancy may result from two factors: a value of Ge and a beam 
current that are too small to sustain this mode well, and the high r-f 
gap voltage that is present in this low mode. (For n = 0, V/Vo « 1 at 
X = 2.) 

Table 13*2.—Relation between Oittpitt Power P and Mode Number n for 

Operation at |F,] = 200 Volts, Fo = 325 Volts in the SD835D Reflex 

Klystron 

n 
1- 

P, inw (n + i)l^ 

0 58 44 
1 112 196 
2 83 228 
3 54 203 

The comparison of experiment with theory is discussed at this point 
not so much to check the theory as to indicate the transcendent importance 
of reflector optics. In a completely ideal (linear, space-charge-free) 
reflector, the power curves of Fig. 13*24 would become horizontal straight 
lines. Whether they are different from horizontal straight lines because 
of reflector nonlinearities or phase aberrations or beam-loading cannot 
be deduced from Fig. 13*24 without experimental evidence on the similar 
dependence of Af^ on X and n, which is unfortunately lacking. The 
manner in which such experimental data would be utilized is described 
after the discussion of phase-aberration effects. 

. 13-9. Bunching and Space Charge.—It has already been seen, in 
discussing the d-c transit-time properties of the plane-parallel reflector 
with space charge, that the presence of space charge produces a diminu¬ 
tion in the potential gradient at the tum-around point in the reflection 
region. It has been seen—as, for example, in Fig. 13*16—that a com- 
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paratively small change in Vr near Fr = 0 may cause a large change in 
this turn-around gradient. It is apparent that important increases in 
I Oil are bound to occur under such circumstances, and it would be con¬ 
venient to have a neat presentation of the effect of the various space- 
charge parameters on ai and 

This presentation is no simple matter, however. The basic difficulty 
is the fact that the effects now considered arise from the interaction of 
electrons with each other rather than their interaction, as separate indi¬ 
viduals, with external electrodes. The situation in this case is somewhat 
analogous to that of debunching in the field-free drift space—with an 
interesting difference. In the field-free case the space-charge effect of 
debunching is to slow down the bunching and decrease X/V] in the 
present reflector case, the indications are that the space-charge distortion 
of the reflecting field makes X/V larger than would be calculated for a 
given ^0 in the absence of space charge. However, this point is only an 
interesting sidelight to the main points, for debunching in a field-free 
drift space is simple compared with that which takes place in a reflecting 
field. The most troublesome complication in the latter case is the fact 
that electrons with different energies penetrate to different distances, 
making the forces in the vicinity of the all-important turn-around point 
very complex. 

One way of throwing some light on the situation is the following. 
In considering small-signal behavior, it might seem reasonable to investi¬ 
gate the motion of one test electron in the field of all the other electrons, 
which are assumed to be moving with the single d-c energy cFo. In 
doing this a peculiar difficulty arises. There are inherent discontinuities 
in certain derivatives of the space-charge-influenced potential at the 
turn-around point; because of these, the derivatives of transit time with 
respect to incident energy, evaluated at Fe = Fo, are logarithmically 
infinite, and the field coefficients ai, a2 • . . therefore have no meaning 
in this calculation. 

To be sure, this logarithmic infinity in derivative corresponds to a 
minor kink in a curve of 6 vs. F«. One possible solution might be to 
disregard the kink and use the calculated dependence of 6 on Ve to con¬ 
struct a ^2-vs.-<i diagram after the manner of Chap. 9. A numerical 
integration may be used to make a Fourier analysis of the waveforms 
corresponding to this ^jrvs.-^i diagram, and if this is done for several 
values of Ve/Vo the numerical dependence of current components on 
F«/Fo is known. This information may be compared with Eq. (9*9) 
and may be used to predict the efficiency. The procedure, while not 
elegant, certainly has some significance. 

A more accurate and probably more elegant procedure would be to 
carry out a self-consistent field calculation in the same manner as has 
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been carried out by Hartree with such success in the theory of atomic 
structure. 

These questions are left as a problem for the reader; the authors do 
not know the answers. It is apparent, however, that the answers are 
of great importance, particularly to longer-wavelength tubes operating 
at high d-c inputs. 

13*10. Reflector Fields with Phase Aberrations.—The foregoing dis¬ 
cussion has implicitly assumed that in the d-c case all electrons have the 
same total reflection transit time (same values of 0o), and therefore all 
parts of the bunch return to the r-f gap at the same time. If this con¬ 
dition is not fulfilled—that is, if ‘'phase aberrations'^ are present—then 
the bunch loses some of its effectiveness because the condition for maxi¬ 
mum power transfer, </> = 0, cannot be fulfilled for all electrons by any 
given reflector voltage. The effective power factor is now cos the 
value of cos <t> averaged over all electrons; and the net results of the phase 
aberrations are two. The effective beam current is reduced by a factor 
(cos 0)m«, and, since a fraction of the beam current, 1 — (cos is 
bound to be wasted, the maximum electronic efficiency is reduced by the 
factor (cos 0)m*x. There is, in addition, a diminution in the operating 
circuit efficiency because of the diminution in beam current. 

Any phase aberration can be very harmful, particularly in high modes, 
for it is the absolute phase aberration, not the relative phase aberration, 
that diminishes (cos For example, a ±5 per cent variation in a 
transit time of six cycles (^o = 38 radians) corresponds to 

(cos <^)n»x = 0.50 

or a more than 50 per cent reduction in operating efficiency. This effect 
is thus a sizable factor in the requirements for high precision in the manu¬ 
facture of short-wavelength reflex klystrons. 

The degree of phase aberration depends on the depth of penetration 
into the reflector field and hence on F,/Fo; for example, a wide beam 
would have little phase aberration in the recessed reflector of Fig. 13*10, 
with a very high reflector voltage, but for a smaller reflector voltage the 
aberration would be severe. The percentage phase aberration is a single 
valued function of Fr/Fo just as are the field coefficients ai, a2, . . . . 
For a given Fr/Fo and a given percentage phase aberration, the^absolute 
aberration is proportional to or inversely proportional to \/Vl] and 
since the absolute phase aberration is what is effective, phase aberration 
effects will be less for the low modes. 

13*11. Comparison of Phase Aberrations and Reflector Noxilinearities. 
Either one of these effects (aberration or nonlinearity) may thus cause 
a decrease in oscillator efficiency; certain uncommon nonlinearities, such 
as Case A of Fig. 13*21, can of course cause increased efficiency. The 
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relative effects of aberration and nonlinearity are, however, distinguish¬ 
able in several respects. 

A phase aberration decreases A/^ as well as 17, whereas a nonlinearity 
that diminishes tj increases Afy^, Thus the effects of Fig. 13*22 are due 
to reflector-field nonlinearities, not to phase aberrations. 

The effects of a nonlinearity are the same for all modes at a given 
Fr/Fo; the effects of phase aberration diminish at low modes. The 
constancy of the product (n + f )P, which apparently verifies the zero- 
order theory in Fig. 13*24, holds true equally well over a wide range^of 
values of Fr/Fo in that figure. Since it is rather unlikely that the degree 
of phase aberration will be constant over a wide range of values of Fr/Fo, 
it seems probable that the diminution of output power with decreasing 
|Frl in the SD-835 is a straightforward matter of nonlinearity of the 
reflector field. Observation of the variation of Afy with Fr would check 
this point. 

A simple linear reflector field differs from both the cases just discussed, 
of course, because in this case #7 and Afu^ should have the variations 
indicated by the zero-order theory independently of Vr/Vo- 



CHAPTER 14 

HYSTERESIS IN REFLEX KLYSTRONS 

By D. R. Hamilton 

14*1. Phenomenon of Hysteresis.—In common usage “ hysteresis 
refers to a phenomenon in which a dependent physical variable assumes 
any one of several values for a single value of an independently variable 
parameter; which of these several values the dependent variable assumes 
is governed by the history of the independent variable. The term 
**hysteresis’’ is most commonly used in connection with reflex klystrons 
to denote the often encountered multiple dependence of output power 
and frequency on reflector voltage. The same factors that give rise to 
this particular type of hysteresis cause hysteresis with respect to changes 
in other parameters such as beam voltage, beam current, or resonator 
tuning; these other types of hysteresis will not be discussed further, but 
the methods used in treating reflector-voltage hysteresis are directly 
applicable to them. 

In its milder form hysteresis is important less for its own sake than 
for the mode asymmetry that is associated with it. (See Fig. 12*4 for 
an ideal symmetrical mode.) Hysteresis, when not too pronounced, 
occurs at one edge of the mode (see Fig. 14-() for example) and is accom¬ 
panied by a mode asymmetry that looks as if it were produced by a 
compression of the reflector voltage scale on one side of the mode. The 
consequences are not bad if the frequency and output-power character¬ 
istics are compressed by the same amount, as in Fig. 14*6, but in many 
instances the two characteristics differ in the degree of asymmetry, 
making the frequency deviations between maximum-power point and 
the two half-power points on either side different. For many purposes— 
such as automatic frequency control of the reflex-klystron local oscillator 
in a receiver—this variance reduces the effective electronic tuning range 
to twice the smaller of these two frequency deviations. 

In more extreme cases, as in Fig. 14*16, the hysteresis extends well 
into the mode, occurs in a series of small steps, and is accompanied by 
frequency discontinuities. The problem of asymmetry is minor in 
comparison. 

Since, however, all forms of hysteresis are usually closely related to 
mode asymmetry, this chapter is concerned both with mode asymmetry 
and hysteresis even when the asymmetry arises from a cause that does 
not, in itself, cause hysteresis. 

m 



Sec. 14*21 LOW MODE ASYMMETRY 385 

Mode asymmetry and hysteresis may arise either from load effects 
or from electronic causes; load effects are discussed in Chap. 15 and the 
electronic causes of these phenomena are discussed in the present chapter. 
There are at least three electronic causes: the appreciable variation across 
the width of a low mode of the small-signal electronic transconductance 
Gey the dependence of the phase of the bunched beam current upon r-f gap 
voltage, and the effects of electrons making more than one return transit 
of the r-f gap.^ 

14*2. Mode Asymmetry Produced by Dependence of (?e on ^ in Low 
Modes.—In obtaining the idealized mode shape of Fig. 12-4, n was 
assumed much greater than unity. The primary value of this assump- 

Fig. 14*1.—Admittance diagram for n ~ 1, assuming simple bunching. Loci of F® for 
constant r-f gap voltage, as indicated by corresponding values of Xn (continuous curves). 
Locus of small-signal admittance for this mode when variation of is neglected in calcu¬ 
lating Ge (broken curve). Values of indicate relative frequency deviation associated 
with corresponding points on load lines; 4* ^ do — 27r(w + ^). 

tion lies in the fact that the variation of Gej the small-signal electronic 
transconductance, across the width of the mode can be neglected. In the 
admittance diagram of Fig. 12-2 this assumption corresponds to the 
assumption that n or So are so large that the spiral half-loop of small- 
signal electronic transadmittance is essentially a semicircle. 

It is apparent from Fig. 12*2 that for modes with low n this assumption 
is badly in error. A segment of the admittance diagram for a single value 
of n, n = 1, but for several levels of r-f voltage is shown in Fig. 14*1; here 
the higher-order corrections to the r-f component of the bunched beam 
current are neglected. The small-signal admittance, --Gee'~^* or +jGee^^\ 
depends both in magnitude and phase on ^o; this polar plot of the admit- 

* The origin, in multiple transits, of much hysteresis was first noted by W. G. Shep¬ 
herd, Bell Telephone Laboratories Report MM-42-140-56. Most of the discussion 
and all the experimental data in the present chapter is taken from J. B. Garrison, “A 
Qualitative Analysis of Hysteresis in Reflex Klystrons,” RL Report No. 650, Feb. 4, 
1946. 
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tance includes the effect of the dependence of Ge on as given^ by 

Ge = ^oM2Go/2. 

The figure also shows the loci of the large-signal electronic transadmit¬ 
tance, Ye = j€^^^'Ge2Ji(X)/Xy for various values of the r-f gap voltage. 
Constant r-f gap voltage is indicated by constant Xny which is the value 
of the bunching parameter for 0o = ^ 27r(n + f); contours of constant 
X would not serve here the desired purpose of indicating constant gap 
voltage since the ratio of bunching parameter to gap voltage is in itself 
dependent upon ^o. Also, for purposes of visual comparison, the dotted 
line in Fig. 14*1 is a semicircle, which shows whore the locus of small- 
signal transadmittance would lie if the value of at the center of the 
mode were used in calculating 

The three straight-line loci of constant circuit conductance in Fig. 14-1 
correspond to heavy, optimum, and light loading. As discussed in 
Chap. 12, the various load lines are simply the loci of the circuit admit¬ 

tance for various conditions of load¬ 
ing. The fractional frequency 
deviation 5 associated with a given 
point in a load line is proportional 
to the distance of this point from the 
real axis. The value of 8 correspond¬ 
ing to a given horizontal location in 
Fig. 141 is indicated by the value of 
the product Qopt^; Qopt is the value 
of the cavity Q that corresponds to 
optimum load (maximum output 
power for ideal oscillator). From 
the asymmetrical occurrence of the 
intersections of the load lines with the 
admittance loci of constant Xn in 
Fig. 14*1 it is apparent that there is 

marked mode asymmetry, particularly at light load. This asymmetry, 
as deduced from Fig. 14*1, is shown in detail in Fig. 14*2. Since the 
curves of output power (proportional to the values of XI) are normalized 
to unity for each mode the mode curves show only relative power within 
each mode. (In comparing this and subsequent mode shapes with 
experiment, it is to be borne in mind that increasing <l> corresponds to 
decreasing absolute value of reflector voltage and decreasing frequency.) 

1 Note that Oe depends upon ^o, as distinct from the One used in Chap. 12 for the 
value of 0» at the center of the nth mode. Note also that the d-c transit angle, 0 in 
Chap* 12, here is denoted by d© and is not distinguished from the bunching angle 0e, 

Fig. 14-2.—Dependence of normalized 
output power, P/Pmax (continuous curves) 
and normalized frequency deviation, 
QoptS (broken curves) on relative reflec¬ 
tion transit angle <t> for n ~ 1 as deduced 
from Fig. 14-1. 0o — 2ir{n -h I). 
(A ~ light load; B *= optimum load; 
C « heavy load.) 
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These figures indicate that a definite asymmetry, in both output 
power and frequency of oscillation, is produced by the effect in question. 
This asymmetry is slight at optimum load and is greatest for very light 
load. Since the mode for which n = 1 is the lowest mode commonly 
used (n = 0 being unsatisfactory), and since the asymmetry diminishes 
rapidly as n is increased, it is clear that the variation of across the mode 
is usually a minor factor in causing mode asymmetry. 

14*3. Hysteresis Caused by Phase Shifts Dependent Upon R-f Gap 
Voltage and Independent of Bo.—All the forms of hysteresis that have an 
electronic origin have as their most essential characteristic a dependence 
of the phase of the bunched beam current on the amplitude of the r-f 
gap voltage. The simplest type of hysteresis results when this phase 
shift depends only upon r-f gap voltage amplitude and is unaffected by 
the value of <l> or Bo. 

Such a phase shift is encountered in Sec. 9*4, where it is shown that 
a finite gap volta^ge gives rise to a phase shift that is proportional to 
02, where 02 is one of the field coefficients defined in Eq. (9*26). In 
general, I02I increases as the mode number decreases; in a linear reflecting 
field, I02I == by Table 9*1. This increase of phase shift with decreas¬ 
ing n or ^0 is explained simply by the fact that the smaller the value of 
Bof the larger the r-f gap voltage required for a given X. For n = 1 and 
^0 = If X 2t (the lowest practical mode), and for X = 2, a phase shift 
of —0.14 radians results with a linear reflector field. 

The phase shift may be markedly changed in magnitude and sign 
by the changes in the reflection-field coefficient 02 in other than linear 
reflectors. A phase shift may also be brought about by other than purely 
transit-time effects, such as a velocity-dependent absorption or preferen¬ 
tial focusing of electrons in the reflection space. The consequences of an 
amplitude-dependent phase shift are therefore discussed in general terms 
without immediate reference to any one model. 

Any question of mode asymmetry or hysteresis is most easily dis¬ 
cussed, as are the questions of the preceding section, in terms of the 
admittance diagram. The best way of representing the behavior of the 
electronic transadmittance in the admittance diagram is different for 
different behaviors. In all the previous applications of the admittance 
diagram the phase of the electronic transadmittance has been equal to 0 
plus a constant. It was, therefore, superfluous to show a series of radii 
representing the loci of F« for constant <^. Even the circles of the Fe-loci 
for constant X are somewhat superfluous, except that the spacing of these 
circles indicates the functional dependence of F« on X. In Fig. 14-1, 
however, the loci of Ye at constant V/Vo or X^ have real significance 
because these loci are no longer simple. 

For the present section it is assumed that a high mode (n:§> 1) is 
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involved, and the effect considered in Sec. 14*2 may therefore be neglected. 
Since, by assumption, the dependence of Ye on X is still the same as in 
the zero-order theory, the loci of Ye for constant X are circles. However, 
the phase of Ye is not linearly dependent on <t); hence the locus of Ye at 
constant <<>, which shows how the phase of Ye depends on X, becomes the 
most basic part of the diagram. 

An admittance diagram for an assumed simple dependence of Ye on 
X is shown in Fig. 14-3; it is assumed that the phase shift goes to zero for 
X = 0. Two Fe-loci for constant are shown. It may be noted that 
they have the same shape and may be derived from each other by a 
simple rotation about the origin; this results from the assumption that 
the amplitude-dependent phase shift is independent of <t>. As is always 
true of any admittance diagram for a simple resonant circuit, the circuit 
admittance locus, or ^‘load line,*’ is a straight line parallel to the iraagi- 

Fig. 14*3.—Admittance diagram for high mode, showing two typical loci of Ye when 
phase of Fe depends on r-f gap voltage as well as on reflection time. Because of this latter 
assumption the negative real axis is the origin of <t> only for Xn = 0. 

nary axis, with the circuit susceptance linear in frequency deviation. 
Such lines corresponding to light, optimum, and heavy load are indicated 
in Fig. 14-3. 

As is also true of any admittance diagram, oscillation can occur for 
a given <f> only if the electron admittance locus for that value of and 
the circuit admittance locus intersect at a point so that the condition 

— y may be met. The resultant amplitude and frequency of oscil¬ 
lation are determined by the amplitude label of this point on the y^-locus 
and the frequency label of this point on the T-locus. When this pro¬ 
cedure is applied to Fig. 14*3 and the F^-locus is rotated about the origin 
(which corresponds to sweeping <t> or reflector voltage), the three modes 
of Fig. 14*4 emerge. 

The reasons for the shapes of these modes are simple. For the light 
and the optimum load lines it is clear that, as the y«-locus is rotated 
clockwise, a rotation corresponding to increasing ^ through the starting- 
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point, the intersection of the Fe-locus moves through the frequency and 
amplitude scale at a rapid rate because of the changed shape of the 
y.-locus. At the other end of the 

“’^2 0 ■♦“72 
0 

mode a correspondingly diminished 
rate of change of X and 5 occurs; 
the result is a mode asymmetry. 

For the lightest of the three 
loads indicated in Fig. 14*3 a new 
feature occurs. At the lower of 
the two values of <> for which a 
constant-0 locus of F* is shown in 
Fig. 14-3, there are two points of 
intersection of the F^-locus and the 

0 Bunching parameter X 

Fig. 14*4.—Dependence of normalized 
frequency deviation, Qopt5 (broken cuive) 
and square of r-f gap voltage (continuous 
curve) on relative reflection transit angle 

for the three loads of Fig. 14*3. Loads 
are as follows: (.4) optimum load; {B) light 
load; (C) heavy load. 

Fig. 14‘5.—Possible dependence on 
bunching parameter X oIPd (power dissi¬ 
pated in cii’cuit) and Ps (power supplied 
by electron stream); illustration of system 
in which stable oscillation may exist 
(at point B) but is not self-starting. 

load line. In this situation oscillations are not self-starting. If oscilla¬ 
tions exist at point B they are self-sustaining. 

These statements are most readily understood with reference to 
Fig. 14*5. The power dissipated by the circuit, Pi>, and the power sup¬ 
plied to the circuit by the electron stream, Ps, are shown here as functions 
of the bunching parameter X for the situation just aiscussed. At point 
B any tentative overtures made by the oscillator in the direction of an 
increase in X result in an excess of Pd over Ps, an effect that discourages 
such overtures; any decrease of X below point B results in an invigor¬ 
ating excess of Ps over Pd; therefore, point B is, as usual, a point of 
stable equilibrium. The same line of reasoning shows that any oscilla¬ 
tion existing between points A and B will build up to point B, Since 
below point A, however, Ps < Pj>, any oscillation existing here will die 
down; no oscillation can build up through this region. 

TWs figure makes clear the reason for the hysteresis phenomenon 
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that appears in Fig. 14-46. During the interval when and <l> increase 
from below the starting point, oscillations are unable to start until the 
JST = 0 point in the Fe-locus reaches the load line; but once the oscilla¬ 
tion starts it immediately builds up to its equilibrium amplitude. As 0 
passes through this same region in the opposite direction, the amplitude 
of oscillation decreases until reaches the value at which points A and 
B coalesce, then oscillation drops to zero, but from a lower amplitude 
than that to which it builds up on the return trip. ♦ 

General Properties of Simple Phase-shift Hysteresis.—From the exam¬ 
ples shown in Figs. 14*3 and 14*4 a number of generalizations may be 
drawn. These generalizations concern the occurrence of hysteresis and 
associated behavior when the magnitude and relative phase variation of 
Ye are arbitrary functions of X but the reflection phase enters only in 
the factor in terms of the admittance diagram, this condition occurs 
when the various constant-^o or constant-0 loci of in the admittance 
diagram differ from each other not in shape but only by a rotation about 
the origin. 

One of the more important of these generalizations involves the rela¬ 
tion between output power and frequency of oscillation. Although these 
quantities will be asymmetrical functions of and <j> even when the phase 
shift is not great enough to cause hysteresis, nevertheless output power 
will be a symmetrical function of frequency. This effect shows up, for 
example, in Fig. 14-4a in the correlation in rate of change of amplitude 
and frequency. This effect has its origin in the assumption that the 
locus of Ye maintains its shape as it rotates about the origin with ^o, 
thus making the contours of constant bunching parameter in the admit¬ 
tance plane circles as in Fig. 14*3. Since the dependence of AT on 5 is 
governed by the values of X and d at the intersection of the circles of 
constant X with the load line, the values of 0 required to bring about this 
intersection are completely irrelevant to the relation between X and 6. 

It is also clear that the lighter the load the greater the tendency to 
hysteresis. Since circuit conductance G has significance only in rela¬ 
tion to the small-signal electronic transconductance G^e, at constant load the 
larger (?«the more hysteresis. Thus the beam voltage Vo will influence 
hysteresis only by its influence on (?«. 

Hysteresis will occur at one end of the mode or the other but not at 
both. If the large-signal bunched beam current is retarded with respect 
to the small-signal current (as in Fig. 14-3), hysteresis will occur at the 
high-frequency end of the mode, and vice versa. 

Comparison of Theory and Experiment.—In many cases simple phase- 
shift hysteresis is masked or complicated by the multiple-transit hys¬ 
teresis described in the next section. If careful precautions,are taken to 
avoid multiple transits, as discussed later, hysteresis with the charac- 
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teristics just discussed may occur. In Fig. 14*6 is shown a photograph 
of an oscilloscope trace (retouched with arrows), showing output power 
(vertical) as the reflector voltage (horizontal) is swept with a sine-wave 
sweep; also shown are equally spaced frequency markers which indicate 
the frequency of oscillation at that 
point on the output-power trace 
directly above the frequency 
marker. The reflector voltage is 
increasing and <f> is decreasing to the 
left. A sizable hysteresis at the 
high-frequency end of the mode is 
shown, with the klystron dropping 
out of oscillation at about the 20 
per cent power point and coming 
back into oscillation at about the 
80 per cent power point on the 
return sweep. Although there is a 
marked asymmetry of mode shape, 
the curve of power vs. frequency 
plotted from this data and shown in Fig. 14*7 is seen to be symmetrical. 

The degree of power-vs-voltage asymmetry occurring in a given mode 
may be expressed in terms of the differences in reflector voltage between 
the maximum power point and the two half-power points; more exactly, 

Fig. 14*6.—Oscilloscope photograph, re¬ 
touched with arrows, showing output power 
and frequency of oscillation as functions of 
reflector voltage; absolute value of reflector 
voltage increasing to left. 

/-/j,(Mc/sec) 

Fig. 14‘7.--Helation between 
output power and frequency devi¬ 
ation / — /o for the mode of Fig, 
14*6. 

1500 1750 2000 

Beam voltage 

Fio. 14*8.—Observed degree of 
asymmetry as a function of beam 
voltage Vo, for the same type 
2K33 klystron as used in Figs. 14-6, 
14*7, and 14*9; Jo ** 8ma, X « 1.26 
cm. 

by ^'degree of asymmetryis meant the ratio of the voltage difference 
between maximum-power and low-frequency half-power points to the 
voltage difference between maximum-power and high-frequency half¬ 
power points. 
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Observations of this asymmetry similar to those of Fig. 14*6 were 
made over a range of beam voltages with this same tube, a type 2K33. 
A summary of the observed asymmetry for constant oscillator loading is 
presented in Fig. 14-8. These data were taken not at constant electron- 
gun perveance but at constant beam current; as far as dependence on 
beam voltage is concerned, the small-signal electronic transconductance 
is therefore proportional to which is in turn proportional to 
sin^ (^i/2), where Bi is the transit angle through the r-f gap. The data 
in Fig. 14*8 therefore show not only the expected slow dependence of 
asymmetry on beam voltage, but also suggest that Si = tt for Va = 1750 
volts. This value of Si implies an equivalent gap spacing of 0.042 in. 

for the operating wavelength of 1.25 
cm of the 2K33. Since the r-f gap in 
the 2K33 is not a grid but simply two 
opposing 0.028-in. holes in two 0.005-in. 
copper sheets separated by a spacing of 
0.007 in., an equivalent gap spacing of 
0.042 in. is not out of line with the con¬ 
struction; the data of Fig. 14-8 probably 
provide as good an experimental meas¬ 
ure of this quantity as can be obtained. 

With the same tube, measurements 
were also made of the dependence of 
mode asymmetry on beam current at 
constant load. The asymmetry should 
decrease rapidly with decreasing beam 
current because the constant load be¬ 
comes relatively heavier. This be¬ 

havior is verified by the data shown in Fig. 14*9. 
The type of behavior discussed in this section is thus seen to have a 

close counterpart in experimental data. In the case of the particular 
2K33, for which data is plotted in Figs. 14*6, 14*7, 14-8, and 14*9, the 
sign and magnitude of the phase shift deduced from the data do not 
agree with those predicted by bunching theory. However, when this 
tube is in oscillation, it is experimentally observed that there is an r-f 
focusing action caused by the interception, by the resonator^walls, of 
many electrons that in the nonoscillating state would be returned 
through the gap. Since this is a rather sizable amplitude-dependent 
effect, it is capable of producing the phase shift that is required to produce 
the observed hysteresis and mode asymmetry. 

These data were taken with a 2K33 tube constructed to eliminate 
the multiple return transits of the electron through the r-f gap. This 
tube is not typical, for many of the 2K33 tubes show very little hysteresis. 

Fio. 14*9.—Observed degree of 
asymmetry as a function of beam cur¬ 
rent Jo, for the same type 2K33 
klystron as used in Figs. 14*6, 14-7, 
and 14 8; Vo * 1800 volts, X = 1.25 
cm. 
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In the next section tne behavior produced in the same tubes by multiple 
transits is described. 

14«4. Bunching Theory for Multiple-transit Electrons.—To sustain 
oscillation it is required only that the electrons in a reflex klystron make 
one return transit through the r-f gap after their initial transit. Unless 
very careful precautions are taken, however, there will always be some 
electrons that make more than one return transit in the normal form of 
reflex klystron. Such electrons are called ^'-multiple-transit ” electrons, 
as distinguished from the "single-transit’’ electrons that make only one 
return passage. It should be noted that "multiple” and "single” refer 
to the number of return transits, not to the total number of transits. 
Since the number of electrons making multiple return transits is small, 
it is sufiicient for the present purpose to consider only those electrons 
that, after their first return trjvnsit, are reflected from the cathode region 
for a second return transit. These electrons give rise to a characteristic 
type of hysteresis that is discussed in the present section. 

This stream of multiple-transit electrons leads a complicated life. 
But whatever the total effect produced on this stream by double velocity 
modulation, interception of electrons by the cathode, and the compli¬ 
cated d-c potentials through which the electrons pass, this third-transit 
stream is intensity-modulated and constitutes a driving current for the 
oscillator circuit. Its presence means that the electronic transadmittance 
is composed of two components, a single-transit admittance and a 
multiple-transit admittance. 

It might be thought that no appreciable effect could arise from this 
multiple-transit electron stream, considering the diminutions in intensity 
produced by grid absorption losses and considering also the fact that the 
multiple-transit electrons have not received the careful attention pro¬ 
vided for the single-transit electrons. This decrease in intensity, how¬ 
ever, is counteracted by the fact that the reflection time in the cathode 
region is usually much longer than that in the reflector region; thus the 
naively calculated small-signal electronic transconductance G*., which is (at 
least approximately) proportional to the product of drift time and beam 
current, may have for the multiple-transit stream a value comparable 
to that for the single-transit stream. If this is true, then multiple 
transits may be expected to have an important influence in the small- 
signal region near the edges of the modes of oscillation. 

Application of Cascade Bunching Theory to Mvltiple-^transit Phe-* 
nomena.—The multiple-transit electrons in the reflex klystron are not 
found in the usual environment for bunching, for many of the electrons 
that enter the cathode region with a net increase in energy as the result 
of their two passages through the r-f gap collide with the cathode and 
are absorbed or cause secondary emission. This effect is best taken 
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into consideration, however, only after discussing the relation that exists 
between the multiple-transit and single-transit bunched beam currents 
if the cathode-anode region has the attributes of an ordinary reflector 
region. When these conditions exist, the cascade-bunching theory of 
Sec. 9*8 is directly applicable to the calculation of the multiple-transit 
bunched beam current because it is concerned with the bunching that 
follows velocity modulation of a beam at two separated r-f gaps. The 
results of Sec. 9*8 are easily particularized to the present case. 

In the application of the results of Sec. 9*8 serious consideration must 
be given to the questions of sign that are brought up by the fact that, 
in the present case, there is a single r-f gap with the single-transit and 
multiple-transit electrons going through it in opposite directions. The 
fundamental components of the single-transit and multiple-transit 
bunched beam currents must be considered first; these may be denoted 
by ill and fi2 respectively. The former is given, as usual, by Eq. (9.9) 
with the notation slightly modified as noted above and as in Sec. 9*8: 

in = 27oe;~^®°'Ji(Xi2). (1) 

For ii2 any self-consistent sign convention may be adopted; the best 
convention seems to be the one that allows direct use of the results of 
Sec. 9*8 without change. If it is assumed that only the fraction a of 
the single-transit electrons is reflected from the cathode for another 
transit of the gap, Eq. (9*58) then becomes (with slight modification of 
notation but with signs unchanged) 

ii2 = (2) 

In the interests of self-consistency, the fact that in and in are flowing 
through the same gap in opposite directions must be taken into account 
by writing the total amount as 

ii = ill ii2. (3) 

In Sec. 9*8 the complex first and second r-f gap voltages are written 

Vi == —jaiVo (9-49a) 
Vz = (9-496) 

Here aiVo and azVo are the absolute values of Vi and F2; be<?ause, in 
the present case, both refer to the same gap, the notation may be sim¬ 
plified by writing ai = ^2 = a. In Sec. 9*8 the phase angle p was an 
arbitrary parameter used to specify the relative phases of Vi and F2, 
and was to be determined in a particular instance by the constraints 
between Fi and F2. 

If it is assumed, in the present case, that iFil = IF2I, what is the 
i^ative phase of Fi and F2? The sign convention used in Eqs. (1), (2), 
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and (3) must be followed; this is the convention of defining the sign of 
quantities by reference to the direction of the electron stream concerned. 
Consequently, Vi = — F2. Equation (9*49) then indicates that 

p = Oqi — 27r(r? + •f) + TT = ^ -f* TT. (4) 

Equation (9*50) for the effective bunching parameter X' and the cascade- 
bunching phase shaft 0' then becomes 

XV®' = X13 -f- (5) 

This equation, in conjunction with Eq. (2), completely specifies the 
multiple-transit current 712. 

A very convenient approximation may be introduced here. As 
already noted, this approximation corresponds closely to fact in most 
reflex klystrons and in particular in the type 2K33, with the performance 
of which the theory developed is compared. This approximation is 
given by the expression 

Xi3 « X23 a-nd Xj3>^ X12; (6) 

in approximately linear cathode-anode and anode-reflector fields this 
corresponds to assuming that 602 ^ ^01. Any inaccuracy in this assump¬ 
tion does not affect the general character of the conclusions that are 
drawn from these considerations. 

The assumption of Eq. (6) simplifies Eq. (5) considerably: with the 
aid of trigonometric identities, 

XV*- « Xx,(l + j(”*) = Xu V2{1 - sin <p) e (2+O, 
or 

X' « Xu \/2(l - sin <l>), (7a) 

e' « I + J- (7b) 

Perhaps the most interesting fact about Eqs. (7) is the dependence of 
X' on <j>. It is apparent that X' increases steadily from almost zero at 
the high-^ (low-frequency) end of the mode to a value of approximately 
2Xi8 at the low-0 (high-frequency) end of the mode. Thus any effects 
arising from multiple transits, whatever they may later be found to be 
in detail, will be much more marked at the high-frequency end of the 
mode. This result in Eq. (7a) corresponds to a simple physical fact that 
is illustrated in the partial Applegate diagram of Fig. 14T0. Here are 
shown the electron trajectories and the r-f fields that the corresponding 
electrons encounter when they make their initial transit and first return 
transit of the gap. For the particular case shown, = 2xm; hence 
0 XX +t/2. It is seen that the electrons that were speeded up and slowed 
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down on the initial transit are respectively slowed down and speeded 
up by almost the same amount on the return transit—that is, the net 
velocity modulation after the return transit is almost zero, and corre¬ 
sponds to ' » 0 for <l> = v/2 in Eq. (7a). A similar line of reasoning 
for = 0 and 0 = t/2 shows the initial velocity modulation respectively 

unaffected and doubled by the re¬ 
turn transit; this likewise corre¬ 
sponds to Eq. (7a). 

By Eq. (76), ranges from 0, 
for 0 = —7r/2, to ir/2 for (f> = 
+Tr/2; and by Eq. (2), this posi¬ 
tive phase shift of 6' corresponds 
to a diminution in the transit time 
of the bunch. 

The immediately preceding 
comments have been concerned 
primarily with the values of X' 
and 0' for use in Eq. (2) to obtain 
the current in. Before the appli¬ 

cation of the resulting value of in to a determination of oscillator behavior 
is considered, the subject of cathode interception of electrons during their 
reflection from the cathode region should be discussed. 

Interception of Speeded-up Electrons by the Cathode Surface,—It may 
be thought at first glance that all the electrons entering the cathode 
region with a velocity exceeding the d-c beam velocity would be absorbed 
by the cathode. This assumption would be true if all the electron tra¬ 
jectories were normal to the cathode surface. Actually, however, most 
electrons have some small radial component of velocity perpendicular to 
the axis of the beam. Therefore at no point in the process of reflection 
from the cathode do they have zero velocity and zero kinetic energy. 
As a result any given electron must have a finite amount of energy in 
excess of the d-c beam energy before it is absorbed. Since this excess 
energy required for absorption is different for different electron tra¬ 
jectories, therefore cathode-interception effects increase smoothly with 
the r-f gap voltage until all the speeded-up electrons are intercepted. 
Interception effects vary also with For example, at the center of the 
mode most of the electrons of the bunch are slowed down by the maximum 
r-f voltage and hence are not intercepted at the cathode. It has already 
been seen that at that mode edge for which ^ » t/2 the original velocity 
modulation is largely neutralized on the first return transit, whereas 
for ^ « — ir/2 the original velocity modulation is increased. Thus the 
effects of cathode interception are most marked for the high-frequency 
edge of the mode, ^ « —t/2. 

Fig. 14-10.— Diagram of electron tra¬ 
jectories (4) and r-f gap voltage (B) illus¬ 
trating the almost complete cancellation of 
initial velocity modulation that occurs, on 
return transit, for 0 *= ir/2. 
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These effects are two: a diminution in iu because of the smaller 
number of electrons involved, and a shift in the phase of in because of the 
asymmetry of the bunch produced by removing the fast electrons. 
The fast electrons of the bunch have a longer reflection time than the 
slow ones, but they start sooner from the gap and under small-signal 
conditions return sooner than the slow electrons; hence a removal of 
the fast electrons corresponds to a slowing down of the bunch—an 
increase in ^02, or a decrease in Since this effect is most marked foi 
^ < 0, it is an effect of the same 
sign as the cascade-bunching phase 
shift described by Eq. (Jh), The 
maximum magnitude of the phase 
shift produced by absorbing the 
fast electrons of a bunch is 
approximately ir/4. 

Thus the variation with ^ of 
the sum-total phase difference be¬ 
tween in and in is similar to that 
shown in Fig. 14*11. No analy¬ 
tical expression for the effect of 
this cathode interception is pre¬ 
sented, but its qualitative effects are noted as occasion arises. They do 
not appear to be important except in a few isolated cases. (The discus¬ 
sion of Fig. 14* 16c should be noted as an important example.) 

14'6. Production of Hysteresis by Multiple-transit Electrons.—The 
effects of cathode interception may be left for qualitative insertion at a 
later point, and the total electronic transadmittance may be written with 
the aid of Eqs. (1), (2), (9*49), and (7). If refers to the usual single¬ 
transit small-signal electronic transconductance, then 

Fig. 14-11.—Approximate dependence on 
<j> of the phase of in with respect to fu: with¬ 
out cathode interception (broken curve); 
with cathode interception (continuous curve). 

Y, = -^i*Ge 
'2Ji{Xu) aXii X' 2J,iX') -y(»..-|- 

X12 X,* X 13 X’ 
0". (B) 

The contribution of the multiple-transit electrons is intentionally 
expressed in an expanded form in order to emphasize certain points. Thus 
the amplitude-independent quantity aXn/Xn, in which a <5C 1 and 
Xis/Xn'^ 1, may of itself be comparable to unity; this argument was 
previously used in noting the possibility of sizable multiple-transit effects. 
In turn, the factor X'jXn « \/2(l sin 0) is the dominant factor 
making multiple-transit effects so important at the high-frequency end 
of the mode. 

The factor 2Ji{X')/X', while equal to unity for small signals just 
as is 2Ji{Xn)/Xn, nevertheless decreases much more rapidly than the 
latter as a increases because Xny> Xn, and hence, usually, Xn* 
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Consequently at high amplitude 

X' Xn 

—^that is, the multiple-transit current is easily overbunched and loses 
its relative influence. Its influence will thus be strongest at small ampli¬ 

tudes when 2Ji(X')/X' - 2Ji(Xi2)/Xi2 = 1. 
Further discussion of Eq. (8) proceeds most easily with the aid of a 

specific example based on the following 
assumptions: (1) that the electron 
optics of the cathode region are such 
that aXiz/Xi2 = 0.25, (2) that the 
beam voltage (which determines ^02) 
has a value such that to the nearest 
whole cycle ^02 = St/4, and (3) that 
Xi3 « 7X12. (This last assumption 
determines the relative rate of increase 
of X' and X12 with a.) In Fig. 14*12 
are shown the resulting loci of Ye/Ge 
for three different values of 0. The 
points on the loci that correspond to 
various values of X12 are so indicated. 

The following points should be observed in Fig. 14*12: 

1. The increasing distortion of the loci as the high-frequency (nega- 
tive-<^) end of the mode is approached. 

2. The fact that the distortion produced by multiple transits dies 
down rapidly with increasing gap voltage or single-transit bunching 
parameter X12. 

3. The damped oscillatory variation of the phase of Fe as Xj 2 increases. 
4. The change with 0 of the relative angle of the multiple-transit 

‘‘hook^^ on the end of the locus. 

What effects do cathode interception have on Fig. 14*12? Since the 
interception is zero for zero gap voltage (X12 = 0) and then increases to 
a constant value at a larger value of X12, and since the sign of the phase 
shift is as shown in Fig. 14*11, the net effect is as shown by the dotted 
lines in Fig. 14*12. Thus, there is no change in the basic character of 
the F<rlocus produced by the cathode-interception effects. 

Some of the finer details of experimentally observed hysteresis are 
later seen to require, for explanation, reference to some of the finer details 
of Fig. 14*12. But having shown these several accurate F«-loci, it is 
now apparent that, for discussing the basic structure of hysteresis, several 
simplifications may be made. One important question of basic charac- 

Fia. 14*12.—^Locus of normalized 
total electronic admittance, Ye!Gf, as a 
parametric function of Xu for ^ = 
—60®, 0. +60° and for other specialized 

conditions as described in text. Dotted 
line indicates the change in (Fe/G',.)-locus 
introduced by including the effects of 

cathode interception. 
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teristics that needs to be investigated deals with the variation of multiple- 
transit hysteresis with 0o2, that is, with beam voltage. For this purpose 
the F^-locus may, for ease of handling, be represented by two straight- 

Fio. 14*13.—Admittance diagram showing three idealized total electronic-admittance 
loci (A, J5, C) corresponding to a single value of <f> and three values of ^02. Compare with 

Fig. 1412. 

line segments as in Fig. 14-13. The Xi2-labels at the various points 
in these segments approximate those of the (<#> = — G0°)-locus in Fig. 
1412. The orientation of the segment representing the single-transit 
admittance depends only on 601 or the orientation, relative to this 
segment, of the segment represent¬ 
ing the contribution of the multi¬ 
ple-transit admittance depends only 
on 002 because the dependence on <t> 
is minor for small ranges of <^. 

Several such F«-loci for several 
values of 0o2 are shown in Fig. 14-13. 
By rotating these loci about the 
origin ((corresponding to changing 
(t>) and observing the intersection of 
the Fc-locus with the load line, the 
shapes of the modes, the high-fre¬ 
quency ends of which are shown in 
Fig. 14-14, may be deduced. These are purely schematic diagrams and 
no attempt has been made to show the asymmetry introduced into the 
mode shape; only the starting and stopping conditions are indicated. 

In Figs. 14-13 and 14*14 the two values of 0o2 corresponding to the 
loci A and C correspond roughly to the two extreme mode shapes that 

Fig. 14-14.—Schematic representation 
of the variation with of output power 
(continuous curves) and frequency devi¬ 
ation (broken curves) on the high-frequency 
side of a mode. These three mode shapes 
correspond to those obtained by rotating 
the three admittance loci A, B, and C of 

Fig. 14*13. 
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will be obtained. With locus A, the direction of the frequency change 
is reversed and a very small amplitude oscillation diminishes gradually 
over a large range of With locus C, both the starting and stopping 
processes are discontinuous, and the discontinuous stopping occurs at a 
fairly low amplitude. As <l> is made less negative (locus swinging clock¬ 
wise) the starting process may at times be uncertain for, during the 
instant when the end of the locus is on the load line, the amplitude 
must build up most of the way to its large equilibrium value—at least 
past the point A in Fig. 14*5. If the rate of sweeping of </> is too fast, 
the opportunity may be lost and oscillation may not start at all. This 
difficulty does not arise with mode A in Fig. 14-13. 

In Fig. 14*15 are shown three oscilloscope photographs showing mode 
shapes occurring in type 2K33 klystrons of an early version that have 
multiple transits. (For the significance of the various axes and the two 
traces, see the discussion of Fig. 14*6.) Figure 14*15a shows a mode that 

Fig. 14*15.—Oscilloscope photograph ol typical mode shapes illustrating multiple-transit 
hysteresis and associated effects; taken with early model of typo 2K33 klystron. 

corresponds to locus C in Fig. 14*13. The high-frequency hysteresis is 
very marked. It may be noted that the high-frequency stopping dis¬ 
continuity is very slight and that there is also present some low-frequency 
hysteresis. The latter has not been discussed but may be readily deduced. 
Figure 14*155 shows the high-frequency tailing-off phenomenon; the 
existence of oscillation far to the left of the apparent edge of the mode is 
shown by a faint frequency marker that could not be there unless the 
klystron were oscillating at that point. Figure 14* 15c shows the same 
phenomenon, but here the frequency-marker arrangement is adjusted to 
give an indication only at a single frequency rather than at evenly spaced 
frequency intervals as in the other pictures. It is seen that the same 
oscillation frequency occurs for three adjacent values of reflector voltage 
or of 

Figures 14*13 and 14*14 predict a frequency-doubling but not such a 
frequency-tripling at the tailing-ofif point. However, if the curvature of 
the multiple-transit segment of the admittance locus, produced by 
cathode-interception phase shift (see Fig. 14*12), is taken into account, 
thep this frequency-tripling seems explained. 
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The small low-frequency hysteresis phenomenon has already been 
noted in Fig. 14-15a. There may also be a low-frequency tailing-off 
phenomenon similar to that found at high frequencies but not so extended 
in range of or reflector voltage. 

The damped oscillatory behav¬ 
ior of the Fe-locus that occurs in the 
more exact loci of Fig. 14*12 can 
give rise, in a fairly obvious manner 
that will not be discussed in detail, 
to the mode discontinuities shown 
in the oscilloscope photograph of 
Fig. 14*16. These discontinuities, fio. 14 16.—Osciilosoope photograph 

in which the amplitude jumps be- showing dependence of output power 
1 (vertical) on reflector voltage increasing in 

tween two non-zero values, are absolute value to the left; illustrative of 

accompanied by frequency hyster- mode irregularities produced by multiple 

esis. This phenomenon does not ^ 
occur in the variations of h3'^steresis previously discussed, and in 
many applications it is obviously more objectionable than amplitude 
hysteresis. 

Comparison between Multiple-transit Hysteresis and Simple Single¬ 
transit Phase-shift Hysteresis.—Several points of comparison between 
multiple-transit hysteresis and the pure single-transit phase-shift hys¬ 
teresis discussed in the previous section now present themselves. For 

w X integer 

one thing, Figs. 14*12 and 14*13 
indicate that with multiple transits 
there is no single-valued relation 
between Xjz (that is, output power) 
and Ye. From the discussion in 
Sec. 14*3, it follows that there is 
no symmetrical relation between 
power and frequency when the 
mode asymmetry is introduced by 
multiple-transit phenomena. 

In the second place, it is appar- 
Fig. 14*17.—Dependence on $ot of the ent from Figs. 14*13 and 14*14 that 

values of <i> at which oscillation begins ^ith multiple transits there is a 
(broken curves) and stops (continuous . , . - 
curves)} calculated for the specific case to periociic Variation oi nysteresis Wltil 
which Figs. 14-13 and 14-14 apply. beam voltage, the frequency of this 

variation being rapid when the reflection time in the cathode region is a 
large number of cycles. 

One further point: because of the peculiar folded-back form which 
the F^locus assumes for some values of ^02 in the presence of multiple 
transits, multiple-transit hysteresis is not limited to light loads as is 
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single-transit phase-shift hysteresis. (At least it is not so limited as it 
is when this phase shift is sizable only for sizable values of X.) 

The second point above, the periodic variation of multiple-transit 
hysteresis with beam voltage, is perhaps the most characteristic. Since 
^02 also varies with X and since focusing conditions may make it vary 
with /o, a periodic dependence of multiple-transit hysteresis on these 
quantities may be expected also. In Fig. 14*17 is shown a calculated 
dependence on ^02 of the values of 4> at which oscillations start and stop. 
This curve has been calculated for optimum loading with the numerical 
values of klystron characteristics that were assumed in constructing 
Figs. 14*12 and 14*13. These numerical characteristics correspond 
closely to those of the type 2K33 klystron, with which all the experi¬ 
mental data reproduced in this chapter have been taken. The details of 

Fig. 14*18.—Variation of mode limits in a type 2K33 reflex klystron with multiple 
transits; starting point (broken curves) and stopping point (continuous curves), (a) Vari¬ 
ation with wavelength, X; Vo = 1800 volts, Jo * 8 ma; {b) Variation with voltage, Vo; 
X * 1.25 cm, Jo = 8ma; (c) Variation with beam current, Jo; Vo « 1800 volts, X *= 1.25 cm. 

the derivation of Fig. 14*17 are not reproduced here because they follow 
closely the principles just outlined. The points in Fig. 14*17 that corre¬ 
spond to the three Fr-loci of Fig. 14*13 and the corresponding mode 
shapes of Fig. 14*14 are indicated. 

In Fig. 14*18 is shown the experimentally observed dependence on 
Vo, X, and /o of the mode limits that are predicted in Fig. 14*17. In 
Fig. 14*186 may be seen the influence of the dependence of Ge on Vo. 
This influence is discussed in the previous section in connection with the 
dependence of hysteresis on Fo in a 2K33 tube from which multiple transits 
had been eliminated (see Fig. 14*8). 

But such questions of the absolute values of the limits of oscillation 
shown in Pig. 14*18 are not nearly so interesting as the periodicity, which 
is apparent. Thus in Fig. 14*186 an increase of Fo by 1.077 or an increase 
in '\/Fo (that is, a decrease in ^02) by 1.038 = ^ takes the hysteresis 
through one full cycle. In Fig. 14* 18a, a decrease in X from 1.286 cm 
to 1.230 cm—^that is, an increase in @02 by 1.286/1.230 = l-j—takes the 
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hysteresis through one complete cycle. These figures are consistent 
with each other, and with the geometry of the 2K33, in indicating a 
reflection time from the cathode region of the order of magnitude of 
twenty-five cycles. Since the reflector mode used in these studies of the 
2K33 corresponds to 4f cycles reflection-time in the reflector region, 
the origin of some of the numbers used as bases for Figs. 14*12 and 14*13 
is perhaps now more clear. 

The Elimination of Multiple Transits.—It is thus seen that, although 

it may not produce a completely ideal mode, the elimination of multiple 
transits goes a long way toward clearing up the mode. The mode shown 
in Fig. 14*6 is a somewhat extreme sample of (presumably) single-transit 
phase-shift hysteresis in the 2K33, whereas the modes of Figs. 14*15 and 
14*16 are mild compared with some of those produced by multiple 
transits. Furthermore, in most reflex tubes with grids in the r-f gap, 
there is not the possibility of the r-f focusing effect, which probably 
causes phase-shifting in the (gridless) 2K33. Thus the question of 
elimination of multiple transits is an important one. 

The elimination in multiple transits is primarily an electron-optical 
problem. A satisfactory procedure, which was used by the Bell Tele¬ 
phone Laboratories in the type 726 klystron, and which was applied 
by the Raytheon Manufacturing Company to the 2K33, consists of 
placing a spike in the middle of the reflector to distort the reflection 
field in such a manner that a force is exerted on the electrons radially 
outward from the axis of the beam. The resulting divergence of the 
beam, although not enough to prevent the return of the electrons through 
the r-f gap, is enough to prevent another reflection from the cathode. 
There are, of course, refinements to the procedure, but this is the essence 
of the method, and the fact that it has been very successful in eliminating 
hysteresis further verifies the multiple-transit hypothesis concerning the 

origin of most hysteresis. 



Chapter 15 

LOAD EFFECTS IN REFLEX KLYSTRONS 

By J. B. H. Kuper 

16*1, Introduction.—Up to this point the reflex klystron oscillator 
has been considered in te/ms of the rather simple equivalent circuit 
shown in Fig. 15*la, which contains a gap (or pair of grids) represented 
by the capacitance C, the electronic admittance Ye, the conductance 
Gr and susceptance Br of the rest of the resonator, and the load admit¬ 

tance Vl- This circuit is adequate 
for discussion of the electronics of the 
device and the major features of its 
practical behavior under load, but for 
predictions of engineering accuracy it 
will be necessary to use the more 
detailed circuit of Fig. 15-16. 

Here there is an output coupling • 
device that may be a stepdown trans¬ 
former. Physically, this might be a 
coupling loop inserted in a cavity or a 
coupling aperture between the cavity 
and a waveguide. This coupling will 
generally have appreciable losses. In 
a typical tube, the 2K25 or 723A/B, 
the output consists of a coupling loop 
to a coaxial line (which has a glass bead 
for the vacuum seal) and an antenna 
to excite a waveguide. A detailed 
analysis of such a device would be very 

tedious and fortunately it is unnecessary except for the actual designing 
of a tube. Even then it is necessary only to insure that the behavior 
of the coupling is fairly smooth over the contemplated frequency range. 
The load is now designated as Fi, to call attention to the fact that it is 
measured in waveguide or a coaxial line rather than referred to the 
gap. 

Fortunately, a fairly simple measurement procedure, commonly 
known as ‘‘cold test^’ since the tube under test is not oscillating, will 
permit determination of the properties of the output coupler and of the 
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(b) 
Fig. 16*la.—Simplified equivalent 

circuit for reflex oscillator. 
Fig. 16-16.—Simplified equivalent 

circmt including an output coupling that 
may have losses. 
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resonator with the exception of the capacitance’^ C. Depending on the 
construction of the tube, this parameter may be measured at low fre¬ 
quency, computed from the geometry, or estimated from the dimensions 
of the cavity and the resonant frequency (see Chap. 4). 

Another type of test, in which the tube is in active operation, is 
required to obtain information on power output, frequency, and elec¬ 
tronic tuning range as functions of load. This information is commonly 
plotted in the form of contours on a circle diagram or Smith^ chart, and 
is often referred to as a Rieke diagram. 

-^ Direction of power flow 

(a) 

To spectrum analyser 

Fig. 15*2.—Block diagrams of apparatus for making (a) active tests (Rieke diagrams) or 
(h) cold tests. 

Block diagrams of the apparatus required for active and cold tests 
are shown in Fig. 15-2. The use of a spectrum analyzer for standing- 
wave measurements is a considerable convenience but not essential; any 
calibrated detector and frequency meter can be substituted. 

In the succeeding sections methods of making these tests and their 
interpretation are discussed in detail, and the problem of avoiding dis¬ 
continuous frequency jumps in the presence of a high-Q load such as a 
reference cavity is treated briefly. 

16-2. Basis of the Cold Test.—^The theory of the cold test has been 
discussed by Slater.^ In Fig. 15-26, the tube under test. Tube 1, is 
inoperative and power is supplied from another source indicated as 
Tube 2, which may or may not be of the same type. Power is fed to the 

ip, H. Smith, ^^Transmission Line Calculator,” Ekctronica, 12, 29 (1939); **An 
Improved Transmission Line Calculator,” Electronics^ 17, 130 (1944). 

• J. C. Slater, **Operation and Testing of Reflex Oscillators,” RL Report No. 742, 
June 18, 1945. The treatment of the cold test in this chapter, in general, follows 
that of Slater, with some minor changes. See also J. C. Slater, ” Microwave Elec¬ 
tronics,” Rev, Mod, Phys,, 18, 441 (1946). 



406 LOAD EFFECTS IN REFLEX KLYSTRONS (Sec. 15-2 

left, as indicated by the arrows, from the auxiliary source through an 
attenuator whose chief function is to decouple the source from the meas¬ 
uring equipment. The slotted section is used to measure impedances, 
referred to some plane indicated by the vertical dotted line, at various 
frequencies in the region in which Tube 1 would oscillate if active. 

The method of analysis is independent of the particular type of out¬ 
put transformer used and depends only on the existence of a resonant 
cavity coupled to an output transmission line. The first problem is to 
consider the input impedance looking into the cavity across an arbitrary 
plane in the vicinity of the slotted section as a function of frequency. 

Impedance of a Lossless Cavity.—If the special case of a cavity with 
no surface resistance losses and no electron loading, so that the impedance 
is purely reactive, is considered first, it can be shown perfectly generally^ 
that the impedance looking into the cavity to the left across an arbitrary 
plane can be written in the form 

The sum is taken over the infinite number of normal modes of the cavity. 
These modes are the natural oscillations with the output open-circuited 
at the plane of measurements; for if co is equal to one of the co,»^s so one 

of the denominators vanishes, Z will be infinite. The Z„^s are constants 
whose significance is discussed later. It is most convenient to express 
impedances in terms of the characteristic impedance of the measuring 

line so that Z and the Zn's are dimensionless and not affected by any con¬ 
ventions that may be involved in defining impedance (as in waveguide). 

It is assumed that one of the resonant frequencies Wn refers to the 
mode of particular interest, and that all other modes are widely separated 
from it. This assumption is safe for ordinary reflex oscillator cavities, 
provided that the transmission line out to the point of measurement is 
not too long. For a long line, coupling between cavity and line may 
result in modes that are close together. Let the particular resonant 
frequency of interest be wo. Then for frequencies in this neighborhood, 
Eq. (1) can be written 

^ J. C, Slater, ^‘Forced Oscillations in Cavity Resonators,’’ RL Report No. 118, 
December 81, 19^. 
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where 
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For small variations of co around wo, Zi will vary only slowly with fre¬ 
quency. Each individual term of Zi will be much smaller than the 
resonance term of Eq. (2), since the denominators do not approach 
zero, but the sum is finite. The quantity Zi represents the input reac¬ 
tance of the transmission line alone when the cavity is off resonance.^ 

Choice of Reference Plarie,—By proper choice of the plane of measure¬ 
ments, Zi can be eliminated. Suppose first that the resonance term in 
Eq. (2) is eliminated by detuning the cavity without disturbing the 
transmission-line term Zi, as can be done experimentally to a high degree 
of accuracy. Then Zi will vary as the plane of reference is moved along 
the line in the familiar manner—^that is, the standing-wave ratio will be 
infinite, and 

z, = j (3) 
^(7 

In this expression d is the distance along the line from the cavity to the 
plane at which the impedance is measured, do is the position of one of 
the standing-wave minima or zero impedance planes, and \g is the wave¬ 
length in the guide or transmission line. If Zi is known as a function of 
wavelength across a particular plane d, Eq. (3) can be used to determine 
do as a function of X^. Of course, there will be a number of values of 
do, a half guide wavelength apart, that will satisfy Eq. (3) equally well. 
Further, if one of the planes do is chosen as the reference plane for all 
measurements, the Zi term in Eq. (2) will vanish, and the analysis is 
considerably simplified at the price of introducing a moving coordinate 
system in the standing-wave measurements. 

Inclusion of Losses,—If the planes of reference do are used, the imped¬ 
ance looking into the cavity (lossless) will be 

^ Some authors immediately identify the reactance Zi with jtaLi (suitably trans¬ 
formed) where Li is the inductance of the output loop; here the attempt is to use 
only quantities readily obtainable from external measurements. Both procedures 
are equally valid. 
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The behavior of a real (i.e., lossy) cavity can be represented in terms of a 
complex frequency^ w given by the equation 

(6) 

Provided that Q is not too small it can be shown that this expression is 

equivalent to the definition of Q as 2ir X--. 
energy dissipated per cycle 

It is also true (from considerations of continuity) that if a transmission 
line is broken at any plane without disturbing the current or voltage the 
impedances looking in the two directions from the plane will be given 

by Z Z = 0. 
Suppose that the cavity has no internal losses but is loaded by a 

matched output line. 
(4) reduces to 

Then Z(rfo) = 1 and hence Z(do) == —1, and Eq. 

i(~--) + Zo = 0. (6) 
\C*Jo (^/ 

It is customary to define the Q of a circuit loaded only by a matched 
output as the ‘‘external Q,” Q„t. By comparison of Eqs. (5) and (6), 
it is evident that. 

(7) 

Similarly, the internal losses in the cavity may be represented by the 
“ unloaded Q, ’ ^ Qo. This is the Q obtained when the load is open-circuited. 
Equation (4) may now be rewritten 

Z(do) — (8) 

which obviously satisfies the special cases of matched load, Z(da) = 1, and 
—+ 

open circuit, Z(do) = . 
By choosing the reference plane do the reactive part of Zi can be 

made to vanish, but in any real device there will be a finito resistive 
term remaining to make the observed standing-wave ratio ai less than 
infinity. Ordinarily this loss will be small, but in special cases it may be 
of considerable importance. It can conveniently be included by adding 
a term <ri to Eq." (8). 

1 The concept of a complex frequency to represent a damped wave is convenient 
although perhaps unfamiliar. For if « - iS -f ja then a disturbance 
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Effect of Electron Beam.—Finally, although strictly speaking there 
will be no electron beam in a cold test, it may be desirable to include the 
effects of a beam to allow for conditions when the reflector voltage is 
set outside the oscillation range of a mode. The beam admittance 

Fe = -2(7. 
X ® 

may be included by adding a term in the denominator of Eq. (8) of the 
form Fc/Cwo. The justification for this is as follows. Let F« = gr + jb 
and consider for a moment only the conductance. Then Ccaolg would be 
the Q of the resonator loaded only by the beam conductance, here assumed 
positive—that is, reflector voltage set roughly midway between two 
oscillating modes. This expression would be analogous to that for Qo, 
which could be written (referring to Fig. 15Ta) as Co)o/Gr. It can also 
be shown that the imaginary part of Ye predicts the electronic tuning 
effects correctly. 

The final expression for the oscillator cavity is thus 

This expression can be used not only as the basis of a cold test but also 
to predict active behavior. In a true cold test the Ye term will vanish. 

16-3. Cold-test Procedure.—In making a test it is customary to 
record the locations of the standing-wave minima, designated here as 
the planes d, and the standing-wave voltage ratio a. 

The impedance looking into the resonant cavity across the plane d 
of the standing-wave minimum is 

Z(^ = (10) 

Then the impedance across the plane do is 

1 . ^ 27r(d - 
-j tan - - ■ 
<r X, 

do) 

, 1 . , 27r(d - 
1-j tan — ^7— 

<r X, 
do) 

(11) 

It is often more convenient to introduce the complex reflection coefficient 
r defined by the equations 

- l/<r - 1 1 - <r 
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Now the reflection coefficients t^j) and are related by the equation 

Tea., = ^ . (13) 

4— 

The familiar circle diagram or Smith chart is actually a plot of r(,/o) in 
the complex plane. In practice, the transformation from the plane d 

to plane do is made with the aid of a 
circular transmission-line calculator^ 
rather than by computation with Eq. 
(11). 

Determination of Output Line 
Losses,—As indicated above, the first 
step is to determine both a and do, 
with the cavity detuned, as functions 
of frequency in the region of interest. 
Since it is to be expected that do will 
change rather rapidly with frequency, 
careful measurements are essen¬ 
tial here. With the cavity suffi¬ 
ciently detuned, Eq. (9) reduces to 

Z(do; = <ri. Standing-wave ratios are usually measured in decibels using 
the attenuator on a spectrum analyzer; conversion of standing-wave 
measurements in db to voltage ratios is to be made by the relation 

ori(db) = 201ogio~* (14) 
c 1 

In an actual tube with a well-designed output line, (7i(db) may be about 
36 db, corresponding to a <ri of 0.018. 

Determination of Cavity Parameters,—The next step is to retune the 
cavity to the frequency at which measurements are to be made. Remem¬ 
bering that in a cold test Ye is zero, and hence C cannot be determined, 
the remaining quantities in Eq. (9), wo, Qo, and Qert, can be found. The 
most accurate way to determine these is by a plot of the standing-wave 
ratio in db, ir(db), as a function of frequency throughout the resonance 
curve of the cavity. A typical plot of this sort appears in Fig. 15*3. 

If the value of Z(do) at resonance is defined as (To, from Eq. (9) it is 
evident that * 

<>■0 = Z(d,) = ^ -b <ri. (15) 
Vest 

^ For example, the calculator manufactured by the Emeloid Co., Inc., 287 Laurel 
Aye., Arlington, N.J. 

Fig. 16*3.—Typical cold test data, <r (db) 
vs. frequency. 
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Since the quantity <tq may be greater or less than unity, two cases must 
be distinguished. In Case 1, the standing-wave maximum at resonance 
is found at do and o-o is greater than unity; in Case 2, the coupling is 
weak, (To is less than unity, and the standing-wave minimum will occur 
at do as in the detuned case. The standing-wave ratio at resonance 
in db, called <To(db), is given by 

(To(db) = 20 logic 0*0, 

(To(db) = 20 logic —y 

Thus the ratio Qo/Qext, and wo may be determined by measurements at 
resonance. To separate Qo and Qext, however, it is necessary to observe 
more of the resonance curve. 

First let the abbreviation 

Case 1, \ 

Case 2. J 

d = <?exi 2Qext (--(17) 
\ajo W / \ 0)0 / 

be introduced, and Eq. (15) be rearranged to read 

Qo 
= (To — (Ti. 

Vext 

If this equation is substituted in Eq. (9), there is obtained 

Z(rfo) = - —- + 0^1 (18) 
• I ■* 

(To ~ (Ti 

for the cold test. With Eqs. (12) and (18), a reflection coefficient can 
be written with a magnitude given by 

(<ri - l)»(<r, - + ((TO - 1) 

(vx + l)*(<ro - <ri)“5* + {ao + 1) 

2 

2* (19) 

Since <r = (1 + |r|)/(l — |r|) it is evident that, given <ri and vt, a curve 
of (T as a function of S can be constructed. Given an experimental curve 
such as that in Fig. 15-3, from which wo, ffo, and <n can be read off, a 
possible procedure is to compute a theoretical curve of <r(db) as a func- 
tipn of S and then to choose to give the horUontal scale in best agree¬ 
ment with experiment. 

This procedime, although best from the standpoint of accuracy, is 
not often justified. Instead it is customary to determine the width of 
the resonance curve at some properly chosen value of a, and thus to 
find Qo or Qo,. In Case 1 it is convenient to take the width of the reso- 
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nance curve between points 5 = ± 1. Then from Eq. (17) 

^ i (Case 1) (20) 

where A/ is the frequency difference between the two points at which 
\d\ = 1. These points come at a height <r'(db) on the resonance curve, 

CTQidb) 

Fio. 16-4.—<r'(db) as fiinolion of <ro(db) for various v^ues of <ri db). 

which can be computed from Eq. (19) as a function of <ro with vi(db) as 
a parameter, and using 3 = 1. Curves computed in this way, for 
<ri(db) between 10 and », over the range of (7-o(db) up to 14 are given jn 
Fig. 16'4. In Case 2 it woxild be possible to find a value of ff'(db) such 
that Eq. (20) would apply, but this would involve taking the width of 
the curve so near the minimum that precision would be low. Instead, 
it is more convenient to use the curves of Fig. 15*4 to find a value of 
cr'(db) corresponding to the observed cro(db) and (ri(db) and then to 
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ask where this value of A/// leads. In this case, ao is less than unity so 
that the curves of Fig. 15*4 give the value of <ri(db) (with 5 = ±1) for 
which the reflection coeflScient is given by 

(o-i - l)^(lAo - ffi)^ + (i/ffo — 1)^ .on 
(t, + l)»(l/<ro - + (l/(ro + 1)^’ ^ ^ 

If numerator and denominator inside the radical are multiplied by al, 
this equation may be written 

+ (ffo - ir 
i<ri + l)*(<ro — + (<ro — 1)® 

where 

j, _ 1 — ffQffl 
ctq a 1 

(22) 

(23) 

By the use of Eqs. (15) and (17) it is evident that in Case 2 the width 
Af of the resonance curve at the height a-'(db) given by Fig. 15*4 is 

^ == 

/ Qo 
(Case 2). (24) 

Now it has been shown that the quantities do, (Ti, o)o, Oe*t, and Qo 
can all be determined by cold-test measurements. The only quantity 
pertaining to the resonator that cannot be determined in this way is 
the capacitance C, as was mentioned above. Although the details of the 
output coupling device remain completely unspecified, its effect on the 
behavior of the oscillator can be interpreted fully in terms of do, <ri, and 
Q«rt. In designing a tube to cover a broad frequency band it would be * 
necessary to consider in greater detail the nature of the output device; 
the problem is largely one of getting reasonable constancy of over 
the b&nd in question.^ 

Thermal Effects and Beam Loading.—Before closing discussion on the 
subject of cold tests it is well to point out that in these experiments the 
tubes are literally, as well as figuratively, cold. This will have notice¬ 
able effects in general on wo and Qo. Because of imperfect temperature 
compensation, wo will be appreciably different for a cold tube than for 
the same one at operating temperatures. Also, the resistivity of the 
cavity walls will increase with the temperature, and Qo will decrease 
somewhat from this cause. In addition to this purely thermal effect, 
it is to be expected that loading by the beam and by secondaries ejected 
from the grids will markedly decrease Qo in an operating tube. In 

^ A more complete discussion of this aspect of the problem, with particular appli¬ 
cation to the 2J51 magnetron, is given in J. C. Slater, ^^Cold Test Results on 2J51 and 
725A Magnetrons,*' BTL Technical Memorandum, 44-180-3, Oct. 20, 1044. 
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principle it is possible to arrive at a more realistic Qo by making a ^‘cold’^ 
test with a beam passing through the tube but with the reflector voltage 
adjusted to one of the special values (</> = ±90°) between oscillating 
modes. 

16*4. Active Operation; the Ideal Rieke Diagram.^—distinctive 
feature of the cold tests outlined in the preceding sections is the use of a 
moving coordinate system, referred to the planes do, for expressing the 
results. Although this approach causes a welcome simplification of the 
expressions leading to determination of the cavity parameters, for tubes in 
active operation the problem is to predict the power (and frequency) 
delivered to various loads at a fixed physical distance from the oscillator. 

Thus it would be simple to equate Z(do) as given by Eq. (9) to —Z(do), where 
the latter is the load impedance referred to do, and obtain expressions 
for the power and frecjuency, but it would turn out to be troublesome 
always to have to refer loads to the moving plane do. For this reason it 
seems best to return to first principles—that is, the concepts of elemen¬ 
tary reflex klystron theory (see Chap. 12) and the circuits of Fig. 15*1. 
At this time it is also convenient to shift from the use of impedances as 
in the preceding sections to admittances, which indeed might perfectly 
well have been used throughout. 

Behavior of Tube with Load LocaJted at Gap.—^At the outset consider the 
load admittance Fl of Fig. 15*la as located not in the output line but 
directly across the gap C. When the load is so situated the fundamental 
equation is 

F« + joiC + JBr + Gr + Fl = 0 (25) 
where as usual 

Y, = 

In Chap. 12 and particularly in Sec. 12-2 the implications of this equa¬ 
tion are discussed and it is shown that the real and imaginary parts 
yield the power and frequency respectively. These parts are 

—2Ge cos + 2^ + Gb + (jL = 0 (26) 

and 

2Ge sin “b 2) + Bl == 0. (27) 

In computing power output, Eq. (26) is to be solved for X and the value 
obtained substituted in 

^ J. C. Slater, Operation and Testing of Keflex Oscillators,'' RL Report No. 742, 
June 18, 1945; J. B. H. Kuper and M. C. Waltz, Notes on Load Effects in Reflex 
Oscillators," RL Report No. 717, May 29, 1945. 
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^ "-W o-' (» + i) (») 
The frequency equation can be simplified by writing w = wo + Aw, where 
Wo is the resonant frequency of the cavity alone. ^ Then 

Bn = 

WoC 

1 + Aw 

Wo 

— woC “f" C Aw. 

This approximation is safe for the high-Q cavities generally employed. 
Equation (26) can also be used to eliminate the term involving Z, 
resulting in 

{Gr + Gl) tan + 2C Aw + Bl == 0. (29) 

In all these expressions the angle -h ^ may be replaced by </>. 

Inspection of these expressions shows that the Rieke diagram for the 
tube having a load Yi = (7/ + JBl referred to the gap is extremely 
simple. If rectangular coordinates are used for Bl and G ^ Gr + Gl the 
power contours will be straight lines parallel to the imaginary axis. 
These contours will be included between the values G = Gk{Gl = 0) and 
G = Gc cos <l)f on both of which the power output will be zero. At(? Gr 

the r-f voltage developed will be high but the circuit efficiency vanishes; 
at the other boundary the circuit efficiency will approach its maximum 
but because of overloading the r-f voltage will fall to zero. Between 
these limiting values the power contours will be distributed in accordance 
with Eqs. (26) and (28). The frequency contours will also be a family 
of straight lines equally spaced and making an angle — <t> with the real 
axis. The contour w = wo will cut the real axis at Gje + = 0 (outside 

the region of oscillation), and Aw for the other contours wdll be — 

where Bo is the intercept on the imaginary axis. 
Figure 15*5 is a sample of this sort of diagram drawn for a hypothetical 

tube. The small-signal conductance Ge is taken as 500 /xmhos, Gr as 
100 Atmhos, and C as 1 pLfif. This diagram assumes 0 == +30®, or reflector 
voltage somewhat less negative than optimum for the mode in use. 
The operating region is bounded on one side by (? = Gj? = 100 ^mhos, 
where the circuit efficiency is zero, and on the other by G = G® cos 30®, 
where oscillations cease because of overload. The power contours 
between these boundaries are labelled in per cent of the maximum power 
output obtainable. Note that loading for output reasonably close to 
the maximum is not particularly critical. The frequency contours are 

^ Note that Aw does not have the same meaning here as in Chap. 12. 
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labelled in Mc/sec shifts from the resonant frequency of the unperturbed 
cavity, and are drawn at 5-Mc/sec intervals. 

Deviations from the Ideal in Practical Diagrams.—Aside from the 
obvious difficulty of there being no simple way of taking a diagram for a 
real tube under the conditions postulated here, there are several points 
in which a practical diagram would depart significantly from the simple 
one of Fig. 15-5. Chief among these is the assumption that the circuit 

G 
efficiency can be represented hy ^with no dependence on load 

Czi, "T vTfl 

susceptance. In any physical tube there will be losses in the output 
lead as represented by <ri in the preceding sections. With highly reac- 

Fio. 15*5.—Ideal Hioke diagram in B^G piano for a hypothetical tube with load con¬ 
nected directly across the gap. Ge *= 600 fimhos, Oh =100 /iinhos, C = 1 jujuf, ^ = +30°, 
(?«(?*+ Gl, 

tive loads there will be, in general, a large standing wave in the output 
line that will greatly increase the importance of such small losses. This 
will distort Fig. 15-5 by drawing the power contours together at the top 
and bottom of the diagram with the result that the region of oscillation 
no longer extends to infinity. The second point of departure is the 
fact that it would be very difficult to keep a constant phase angle 4> 
of the returning electrons while taking a diagram. Since the frequency 
will be changing because of the “pulling” effect of the load susceptance, 
it would be necessary to readjust the reflector voltage continually while 
taking the diagram. For the special condition of <^ = 0 it might be 
possible so to readjust the voltage, but in a case such as that considered 
here with ^ = +30®, it would almost be necessary to have all the informa¬ 
tion obtainable from the Rieke diagram in order to know how to set the 
voltage. The effect of keeping a constant reflector voltage would be to 
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change 4> by an amount 

and to rotate the frequency contours accordingly so they would no longer 
be parallel. 

Change to Circle Diagram Representation.—Before considering in detail 
the distortions of the ideal diagram, it is convenient to change from the 

Fig. 15‘6.—Ideal Rieko diagram in circle>diagram form for the same hypothetical tube 
as in Fig. 16*5. In Figs. 16*6 to 16*13 the power contours are shown as solid lines and the 
frequency contours as broken lines. The coordinates are conductance and susceptance. 

rectangular coordinates for the admittance plane to the circle-diagram 
representation. The rectangular plot is the natural one to use at low 
frequencies where load impedances are measured on a bridge and line 
lengths are small in terms of wavelengths. At microwave frequencies, 
however, the impedances or admittances will, in general, not be measured 
directly. Instead, the experimental data will be standing-wave measure¬ 
ments—^that is, magnitudes and phases of reflection coefficients. For 
data of this type the circle diagram representation is the natural and 
convenient one. 



418 WAD EFFECTS IN REFLEX KLYSTRONS [Sec. 164 

The idealized diagram of Fig. 16-5 is transformed to the circle chart 
form in Fig. 15*6, taking the unit of admittance as 100 /xmhos. Only the 
region presumed to be accessible to experiment, or Gl positive, is shown in 
this diagram. In contrast to Fig. 15*5, a rectangular plot or Cr = Gr + Gl 
and Bl, the circle diagram is a plot of Gl and Bl. Accordingly, the region 
of Fig. 15*5 to the left of the boundary of the oscillation region marked 
‘‘circuit eflSciency zero’’ does not appear at all in Fig. 15*6. 

Fio. 15*7.—Ideal Rieke diagram for the same hypothetical tube as in Figs. 15-6 and 16-6, 
except that ^ = 0. 

In Fig. 15-6 the boundaries of the oscillation region are the bounding 
circle of the diagram for the zero-circuit efficiency contour and a con¬ 
ductance circle at Gl, = G, cos <l> — Gr for the overload region. This 
region is commonly called the “sink.” Between these boundaries the 
power contours are conductance circles that are tangent to the edge of 
the diagram at the point representing infinity. Thus the “90 per cent 
power” contours enclose a crescent-shaped region tapering to infinitesi¬ 
mal thickness below the sink. The frequency contours transform into 
arcs of circles that make an angle — <p with the susceptance coordinates. 
One of these arcs will be a straight line, but the fact that the straight 
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contour happens to be the one for zero frequency shift in Fig. 15*6 is 
merely an accident of the choice of Gr as 1 unit in this example.^ 

As is mentioned above, it would be almost impossible to obtain an 
experimental diagram at constant <l> for any value of </> other than zero. 
Considerable interest is attached to this special case, and accordingly 
the rest of the diagrams will be drawn for 0 = 0, at least for a resistive 
load. Figure 15*7 corresponds exactly to Fig. 15*6 with the exception 
of the change from 4> = 30° to <^> = 0°. Note that in addition to the 
effect on the frequency contours, which now follow the susceptance circles, 
the sink is smaller and a higher conductance is required for optimum 
output. Although it is not evident from the diagram, ^^100 per cent 
powerin this diagram actually represents considerably more power than 
the optimum in Fig. 15*6. 

Effect of Fixed Reflector Voltage,—The next step in evolving a theo¬ 
retical diagram from the zero-order theory for comparison with experi¬ 
ment is to use a fixed reflector voltage rather than attempt to maintain 
a constant <^. The effect of this, as indicated in Eq. (30), will depend on 
the order of the mode used. Merely for convenience in computing, 
27^(/^ + I) = 50, which corresponds very nearly to n = 7, was chosen. 
This value of n is rather larger than that used in most practical tubes, 
but will make the effects on the idealized Rieke diagram more readily 
visible. It is assumed that the reflector voltage is set for 0 = 0 with 
a purely resistive load, and then left unchanged. Substituting A<t> from 
Eq. (30) in (29) yields a rather unwieldy expression for Aw: 

(CrjB -f- Gl) tan j — * 27r 
L ^0 

It can readily be seen that the effect of a fixed reflector voltage is to make 
the frequency pulling for a given load susceptance somewhat less than 
it would otherwise have been. The departure of the frequency contours 
from the susceptance circles will be least for light loads and small n, 
whereas in the vicinity of the sink the contours will be spread apart 
considerably. The power contours will also be affected, in a manner 
precisely similar to the effect of the equivalent amount of electronic 
tuning. Unfortunately, lacking inverse Bessel functions, the power 
variation with cannot be expressed by a single equation. In the 
diagram, the result is to close off the power contours rather than to 
permit them to extend to infinity below the sink, and also slightly to 

1 It is a property of the transformation that any straight line in the rectangular 
Gl ^ Bl plot passing through the point ( — 1, 0) and entering the region of positive 
conductance will be transformed into a straight line in the circle diagram. Further¬ 
more, angles are preserved in the transformation. Straight lines not passing through 
(—1, 0) are transformed into arcs of circles. 
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deform the sink from its original circular form. The sink will be defined 
by the relation 

Glo = Ge cos ■“ Gr. (32) 

These minor changes in the diagram are shown in Fig. 15*8. 
In computing these diagrams it has been tacitly assumed that Ge 

is strictly constant. Whether 4) or the reflector voltage is held constant, 
there will be some change in M and 6e, because the frequency is changing, 
with reactive loads. This change in M and Be will cause small departures 

a25 

Fig. 16‘8.—Ideal Rieke diagram for the same hypothetical tube as in Fig. 16*7 except that 
reflector voltage is held constant throughout, and assuming 2ir{n -f 1) ~ 50. 

of the power contours in Fig. 15*7 from the conductance circles, but in 
practice these distortions will hardly be noticeable. The contours would 
tend to move upward slightly on the high-frequency side of the diagram 
and to be depressed at the lower frequencies. The neglect of this factor 
is equivalent to the assumption that the locus of the electronic conduct¬ 
ance is an arc of a circle rather than a portion of a spiral. 

Diagrams of Electronic Tuning,—Before proceeding to transform these 
idealized diagrams into more practical diagrams, it should be mentioned 
that another type of performance chart, strictly speaking not a Rieke 
diagram, is sometimes of interest. In this chart, power and electronic 
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tuning range (normally measured between the half-power points) are 
plotted as functions of the load. Since the power contours and sink 
have already been illustrated, it remains only to compute the tuning 
ranges. Let Xm be the value of X at the center of the mode, 0 = 0. 
Then Xm is a function of Ge and the loss and load conductances only, for 
when 0 = 0, Eq. (26) reduces to 

Jl(Xm) __ Gr + Gl 

X^ ^ 2Ge 

The value of X at the half-power points, Xy,, will be Xm/\/2, and the 
value of 0 required to tune this far may be denoted by 0^^. This angle 
can be found from the relation 

cos 0V4 = 
J,(X«)] /rJAXm/y/^Y 
“ Xm' j/ L {XJ^Ji) J' 

and the frequency is then to be found by using Eq. (29). Corrections 
similar to those discussed above will be required to take care of the 
variation of (?« caused by pulling, consequently the contours of constant 
electrical tuning range will resemble strongly the power contours. The 
tuning range between half-power points falls off much less rapidly than 
the power at light loads, goes through a very broad maximum at about 
the same loading as the power maximum, and drops off slowly until the 
overload becomes severe, after which it falls rapidly to zero at the sink. 
In contrast to this behavior, the tuning range between extinction points 
is a maximum for a vanishing load and decreases monotonically as 
the load becomes heavier. 

16*6. Transformation to the Practical Rieke Diagram.—The obvious 
first step in transforming the preceding diagrams into practical ones is 
to shift the reference plane from the gap to a point that is accessible to 
experiment. The making of this shift involves the changes indicated 
in Fig. 15Ti). The load admittance Fl, will no longer appear directly 
across the gap; there will now be a section of line between the gap and the 
output coupling or transducer and usually another section of line between 
the transducer and the reference point. The cavity will be the first 
section of line (normally a radial transmission line) with the losses (mostly 
series resistance losses in actuality) represented by the shunt conductance 
Gr, The output coupling will be most often a loop feeding a coaxial 
line, but it may be window to a waveguide; it will have an impedance- 
transformation ratio m and, in general, will also have some losses. The 
remaining section of line will be usually straightforward but in some 
tubes, for example the 723A/B, it may be necessary to consider lumped 
susceptance at the glass bead forming the vacuum seal and also possible 
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discontinuities where the coaxial line is coupled to waveguide by an 
antenna. 

Effect of Output Coupling,—The transformation from the ideal to a 
practical diagram can be calculated for very simple cavities, but this 
is unnecessary. The representation of Fig. 15T6, omitting details of 
the output coupling other than to consider it as a slightly lossy trans¬ 
former, will be adequate for all purposes, except perhaps the actual 
design of a coupling for a tube intended to cover a wide band. 

In Fig. 15T6 it will be most convenient to consider the load admit¬ 
tance Fi, = in relative units with respect to the characteristic 
admittance Fo of the line or waveguide in which the load is measured, 
and to neglect for the moment losses in the output coupler. From this 
equivalent circuit it is clear that 

and 

(33) 

(34) 

from the definition of Q^xt- Since Yl in Fig. 15Ta is assumed to be equiva¬ 
lent to apart from phase shifts due to the presence of a trans¬ 
mission line, it evidently will be possible to use the quantities determined 
in cold test to express Eqs. (26) to (29) in terms of C and an easily meas¬ 
ured load. In a simple case Avhere the plane of reference for the diagram 
is an integral number of half waves from the gap the results are the 
following: 

and 

2GeJi{X) ^ , 1 , 
—- cos <^ + + 

Pl = 
2kIoVo 

G1 + 
Qo 

= 0 

XJ i(X) cos <f> 

\Qo ^ qJ 

2Aco B'r 
tan ^ = 0. 

Wo V«t 

(35) 

(36) 

(37) 

In these expressions it is often convenient to introduce the loaded Q, 
Ql, given by 1/Ql = 1/Qo + The introduction of the cold-test 
quantities in this way obviates the necessity of an arbitrary choice of 
the unit for the diagrams (100 jumhos in the preceding examples) pro¬ 
vided only that C is known. 

For any plane of reference other than one that is an integral number 
of half waves from the gap, the transformation from ideal to practical is 
easily made by rotating the family of contours comprising the dingrunn 



Skc. 16*61 TRANSFORMATION TO THE PRACTICAL DIAGRAM 423 

with respect to the coordinates of the Smith chart counterclockwise by 
the required amount, one complete revolution representing a half wave¬ 
length of line. 

Effect of Losses in Outpvt Line.—The presence of even moderate 
amounts of loss in the output line introduces marked changes in the 
diagrams. The most important are those resulting from the fact that 
Eqs. (35) and (3G), which together determine the power output, will no 
longer involve only the load conductance but also the susceptance. 
The admittance = (7 is to be taken as the load admittance 
when there is no loss in the output line, or <ti = 0. It will be convenient 
to introduce a new load admittance^ Y — G + jB io indicate the ‘dis¬ 
posable’’ load—that is, the load external to the tube and therefore sub¬ 
ject to experimental variation. It is measured of course in relative 
units with respect to the characteristic admittance of the line or wave¬ 
guide in which the standing-wave observations are made, and experi¬ 
mental Rieke diagrams will be plotted with respect to it. 

With measurements referred to the planes do as located by the proce¬ 
dure described in Sec. 15*3 it is clear by definition that 

J_ _ ^ _ 1_ 

“Z,/o -f- O’] 

Without line loss, the circuit efficiency r/r is given by [see Eq. (36)] 

Zjo + (Xi 

(38) 

(?'.+ 
Qext 

Qo 

Actually however the power will be dissipated in the series resistance <ti 
as well as in the real component of the load. If it is remembered that 

- G’i + B'i 

and that the power dissipated in one of two resistances in series is pro¬ 
portional to that resistance, the circuit efficiency is 

+ Q. 
Qo 

G'^ + 
Q. 
Qo 

(39) 

The power output will decrease as RJ. increases; and at sufficiently high 

values of BJ,, namely when it will fall to zero. In this 

^ The notation Y G + jB departs from that used by J. C. Slater in ** Operation 
and Testing of Reflex Oscillators,'’ RL Report No. 742, June 18, 1946. Slater used 
G -hjB in the sense is used here. 



424 LOAD EFFECTS IN REFLEX KLYSTRONS ISbc. 16-5 

condition, the load impedance Z^, is a pure reactance and all the power 
that is not dissipated in the cavity is lost in the output lead. 

From the definition of GJ, + jB'j, in Eq. (38) it is evident that this 
quantity can be expressed in terms of the load admittance G + jB, 
provided the latter is measured at do, by the relations 

_ _B 
G'S + B2 G^ + m 

G', _ G 
G't + B'i + B* 

which can be rearranged a.s 

m + 

G 

G' 
G^ + B* O-i + O'! 

/ G 
\G^ +'B“ \G2 + B7 

B 

BC = 
G^ + B2 

( ^ 4. W ( Y 
\G= + B‘‘ ‘"7 \G2 + By 

(40) 

If Eq. (36) for the power output is corrected as indicated in Eq. (39) 
to read 

2kIoVo 

<?; + Q«t 
Qo 

' XJi{X) cos <l> (41) 

the development is complete, for with Eqs. (35), (37), and (41) together 
with the substitutions indicated in Eq. (40), the behavior is fully speci¬ 
fied in terms of 0, C, quantities determined in cold test, and the 
external load G + jB as measured at the planes do. Equivalent results 
would have been obtained by using Eq. (38) in Eq. (9) and rearranging to 
3deld 

+ JBi + [i ^ j ^ 0. (42) 

If this equation is separated into real and imaginary parts, the former 
will give Eq. (35) determining the bunching parameter X. The latter 
will determine the frequency and can be combined with Eq. (35) to 
3deld Eq. (37) using the approximation 

i!L — 5!® ^ 
03q (a) 0)q 

Use of Transmission Line Calculator to Allow for Line Loss.—Unfor¬ 
tunately Eqs. (40) are not particularly handy for performing the com- 
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putations required. In practice, it seems much easier to make use of 
the transmission-line calculator in an alternative procedure. A trans¬ 
formation along a lossy line follows a spiral path instead of a simple 
rotation on the circle diagram. The observed <ri from cold test can be 
used to calculate the loss of the section of line (assumed to be evenly 
distributed) instead of considering it to represent a series resistance (in 
units of the characteristic impedance of the line) located immediately 
adjacent to the plane do- 

The definition of ai means that 

1 = L+W 
(Tl 1 - I'fj 

where jr] is the magnitude of the reflected voltage at the sending end of 
the line. Let the power P(» at the receiving end of a length I of lossy 
line be Po = Pc“®* where P is the sending-end power. Correspondingly, 
the amplitudes will be given by 

Vq — ve ^ . 

Remembering that in reflection the length I is traversed twice, 

_ a? _^cil 

|r| = (? 2 . ^ 2 ~ 

then 
1 — 

- r+ e-'' 

A solution of this equation for the power ratio (loss) yields 

or 

= A 
P 

1 -7 

I + (Tl 

line loss (db) = 10 logic 
1 -- 

1 + (Tl 
(43) 

The typical case cited above in which (r(db) might be of the order of 
35 db thus corresponds to a line loss of 0.156 db. A value of <ri(db) of 
10 db, as has been found in certain frequency regions for the 2K25 tube, 
indicates a line loss of 2.84 db. These losses apply where the line is 
terminated in a matched load; when standing waves are present on the 
line the dissipation is increased. 

It is clear from the method of measurement of ax that at the sending 
end of the line in question no standing-wave ratio higher than (ri(db) 
can exist no matter what the termination at the receiving end. There¬ 
fore, there is an annular region extending inward from the boundary of 
the Smith chart which the tube can never see as a load; the width of this 
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region depends on the line loss. The Rieke diagrams are plotted with 
respect to standing-wave ratios at the receiving end of the line; these 
may, in principle at least, cover the whole chart. This effect can be 
taken into account by imagining that the allowed region of the chart has 
been stretched radially enough to cover the whole circle. The amount 
of this stretch will vary with the radial distance (or standing-wave ratio). 
The idealized diagrams may be stretched in this way and then the power 
contours readjusted to allow for the attenuation, not forgetting the factor 
resulting from the standing waves. 

a25 

Fig. 16-9.—Ideal Hieke diagram for the same hypothetical tube as in Fig. 16*8 referred 
to a point in the line 2i wavelengths from the gap. Line loss 0.6 db, transformer ratio 

Ideal Rieke Diagram Including Line Loss,—Alternatively, one may 
use the circular transmission-line calculator to make the entire transfor¬ 
mation. Starting with any load point, in terms of magnitude and phase 
of the standing wave, the calculator is rotated to transform to the gap 
and the slider on the radial arm moved inward (according to the scale 
provided) to include the line loss. The new load, with a somewhat 
diminished standing-wave ratio and a new phase, is read off the chart in 
terms of conductance and susceptance, and these values are used to 
compute the frequency and the sending-end power. The latter must be 
corrected for the attenuation, including the standing-wave factor, and 
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the results are then to be plotted at the original load point. This 
method is fairly rapid, particularly when a calculator with dissipation^' 
and ‘^standing-wave-loss coefficient" scales on the radial arm is employed. 
It was used to construct the ideal diagram of Fig. 15*9, which applies to 
the hypothetical tube used in the previous examples. For this tube G« 
is assumed to be 500 /imhos, C is 1 mm/; Gr is 100 jumhos, and 

Mn + f) « 50. 

The reflector voltage is assumed to be held constant at a value giving 
0 = 0 for a pure resistance load at the gap. It is now time to assume a 
resonant frequency for the cavity, a line length from the grids to the 
point of measurement, and a line loss. Let these be, respectively, 
Wo = 6 X 10^° cps., 2i wavelengths, and 0.5 db. Let it be further 
assumed that Yq ^ 2000 /imbos and that the transformer admittance 
stepup ratio m = ^. 

With these assumptions, the unloaded Q, Qo would be 600 [from Eq. 
(33)] and the external Q, Oext, would have the same numerical value 
[Eq. (34)]. Though not representing any particular tube type, these 
figures are of a reasonable order of magnitude. The line lengths in 
the 2K25 tubes seem to be about 2 to 2i wavelengths (depending on the 
frequency) from the grids to the plane in the waveguide containing the 
output antenna. This length varies from tube to tube over a range of 
about i wavelength. The assumed loss of 0.5 db is also somewhere in 
the range encountered with that tube type. 

In plotting Fig. 15*9 no ^^long-line effect" has been included; that is 
to say, the plane of reference is assumed to move as the frequency varies 
so that the electrical length remains constant. Apart from the obvious 
change in appearance that is due to the rotation, the change in shape of 
the power contours and of the sink is most striking. The sink has been 
‘‘pushed outward" so that a portion of the circle is lost, and the horns 
of the power contours have been cut off so that they are kidney-shaped 
rather than crescents. The frequency contours are comparatively 
unaffected. 

Effect of Impedance Discontinuity in Output Line,—In actual practice 
it may happen that there is an appreciable discontinuity in the output 
line. For example, there may be a noticeable reflection introduced by 
a glass bead forming the vacuum seal, or an output antenna may not 
be matched to the waveguide. In any event where there is appreciable 
loss between the cavity proper and such a discontinuity, it wall be neces¬ 
sary to “tune out" the latter in order to obtain optimum power output. 
If there is no problem of multiple reflections, this situation can be handled 
readily by the method outlined in the preceding paragraphs. The pro¬ 
cedure is to transform along the line from the load point to the discon- 
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tinuity, to add the appropriate susceptance to the transformed load 
admittance^ and then to transform the rest of the way to the grids cal¬ 
culating the frequency and sending-end power as before. An accurate 
calculation of the output power requires a knowledge of the distribution 
of the loss on the two sides of the discontinuity, but the purpose here is 
merely to give an idea of the kind of distortion of the Rieke diagram 
produced by a discontinuity. The appearance of the distorted diagram 
will naturally be sensitive to the location of the discontinuity. A 

Fig. 16* 10.—Ideal Rieke diagram for the same hypothetical tube as in Fig. 15‘9, with a 
discontinixity of located 1^ wavelengths from the gap. 

typical case is illustrated in Fig. 16-10, drawn for the same conditions 
as those in Fig. 16-9, except that now there is a discontinuity of —ji 
located in the line IJ wavelengths from the gap, or f wavelength from 
the reference plane. The distortion is similar to that produced by failure 
to set the reflector voltage for ^ = 0, as in Fig. 15-6. However, in 
Fig. 15*6 maximum power will occur on or near a diameter of the chart 
that passes through the sink; but when there is a discontinuity, the opti- 
miun loading will be noticeably off this (flameter. In additicm, if the 
plane of reference is chosen an integral number of half wavelengths from 
the gap, the frequency contours will make an angle — ^ with the suscep- 
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tance circles. In practice, it may be diiSicult to get data that are suffici¬ 
ently accurate to distinguish between a small discontinuity and a small 
error in setting the reflector voltage, but even a small discontinuity 
should show on cold test, provided that is determined over an appreci¬ 
able frequency range. 

Long-line Effects,—^Long-line effects will be noticeable in many prac¬ 
tical applications of reflex klystrons, in which the load will normally 
be a device with an admittance that varies slowly with frequency and 

Fig. 16*11.—Ideal Rieke diagram for the same hypothetical tube as in Fig. 16*9, with 
longtime effect included. Line 2| wavelengths long. 

that is located at a fixed distance from the tube. A diagram of the type 
illustrated in Fig. 15-9 is satisfactory for comparison between theory and 
experiment, except for the nuisance of using a slightly different line 
length for the reduction of each standing-wave observation. A diagram 
in which the physical line length is constant will make clearer some points 
of behavior. Phenomena such as split reflector-mode patterns (some¬ 
times erroneously termed double moding^’) and frequency disconti¬ 
nuities that make it impossible to tune to a specified frequency may arise 
from a mismatched load in combination with an excessive line length. 

To transform a diagram drawn for a constant electrical length to a 
constant physical line, approximately N wavelengths long, it is necessary 
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to rotate every point except the zero frequency-shift contour through an 
angle (A///o)N • 720° with positive angles measured counterclockwise. 
The effect of this rotation will clearly be greatest in the neighbor¬ 
hood of the sink and, in fact, will alter the shape of the latter profoundly. 
For moderate amounts of long-line effect, such as is unavoidable in the 
2K25 tube, the sink will be “pinched in” at the sides and bottom. With 
longer lengths of line the two boundaries “cross over” each other at the 
bottom of the sink, which is thus divided into two distinct regions. For 

a29 

Fig. 15*12.—Ideal Rieke diagram for the same hypothetical tube as in Fig. 16*9 with 
long-line effect included. Line 6i wavelengths long. 

still longer lines, this second region gets very much larger, while the orig¬ 
inal true sink shrinks to a point. This behavior is illustrated in Figs. 
15T1, 15T2, and 15T3, which represent the diagram of Fig. 15*9 modi¬ 
fied for line lengths of 2f, 5^, and 10^ wavelengths respectively. 

Tte second region of the sink, appearing in Figs. IS* 12 and 15-13 and 
indicated by different shading, is of considerable interest. Unlike the 
first region within which no oscillation is possible at all, in the second 
region oscillation will occur, but both the power and frequency are 
double-valued. That is to say, in this second r^hn the frequency and 
power contours originally on the high- and low-frequency side of the sink 
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are now both present together. If the tube is delivering power to a load 
represented by a point on the low-frequency side of the sink and the 
phase of the reflection is shifted clockwise so as to pass through the 
second region, the behavior will be regular as this region is entered, and 
the frequency will continue to decrease until the farther boundary of the 
region is reached. At the boundary the frequency and power ouput will 
jump to values conforming to the contours outside the region on the high- 

Fig. 16*13.—Ideal Rieke diagram for the same hypothetical tube as in Fig. 15*9, with 
long-line effect included. Line 101 wavelengths long. 

frequency side. In general, there will be a discontinuity in both fre¬ 
quency and power output although, for special cases, the change in power 
when crossing the line may be almost zero. If an attempt is made to 
operate continuously in this region, the tube will shift erratically between 
the two possible sets of operating conditions. For this reason it is very 
difflcult to map this part of the sink. 

Since the output in this second region depends on the previous history 
of the tube, this behavior might well be called a third type of hysteresis, 
not to be confused with those discussed in the preceding chapter caused 
by multiple transits or by transit angles var3dng with r-f voltage. This 
terminology is particularly apt since the reflector characteristic patterns 
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obtained when operating in this region may be very similar to those 
produced by the other types of hysteresis, which may of course be present 
simultaneously. This third type of hysteresis will be very sensitive to 
changes in loading and will appear only with overloads. By contrast, 
hysteresis arising from a dependence of 4> on r-f voltage will be most 
severe at light loads and relatively insensitive to changes in loading. 
Multiple-transit hysteresis will be extremely sensitive to changes in 
resonator voltage, so it should always be easy to distinguish the different 

types. 

02S 

Fig. 16-14.—Experimental diagram for a typical 723A/B tube. Power and frequency 
plotted as functions of load admittance referred to the plane in the waveguide containing 
the output probe; resonator voltage 300; reflector voltage constant in the “160-volt’* 
mode; wavelength 3.2 cm. 

16*6. Experimental Rieke Diagrams.—Obtaining experimental Rieke 
diagrams with sufficient accuracy to permit comparison with theoretical 
results requires considerable patience and some practice on the part of 
the observer. Extreme care is necessary to avoid drifts in frequency 
(and, to a less extent, in power) resulting from drifts in applied voltages 
or from thermal changes. A skilled observer will require several hours 
to take the data for a detailed diagram; all drifts must be rigorously 
excluded during this time. 
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It is not often necessary to take a complete diagram; the location 
of the maximum power point and minimum standing-wave ratio to just 
reach the sink, or the sketching of a few frequency contours, may suflSce, 
depending on the subject under investigation. After a little practice 
it is easy to accomplish these with a minimum of wasted effort, but the 
beginner will be well advised to start with a complete diagram. 

Considerable labor can be avoided if the device used as a standing- 
wave introducer is of a type in which standing-wave ratio and phase 

0.25 

Fia. 15*15.—Exporimcntal diagram for a typical 723A/B tube (as in Fig. 16*14) taken at 
a wavelength of 3.1 cm. 

can be adjusted independently, or nearly so. Devices such as the double¬ 
slug tuner or sliding screw are desirable from this standpoint, although 
the former may not produce a sufficiently high standing-wave ratio for 
all purposes. Diagrams good enough for many practical purposes may 
be drawn from observations,at the match point and suitably distributed 
aroimd three standing-wave circles, a total of some two dozen points. 

In drawing the contours it will usually be helpful to make separate 
auxiliary plots of power and frequency as a function of phase for the 
several standing-wave ratios used. Curves sketched in on these plots 
will asnst in interpolation and will indicate clearly where additional 
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observations may be needed. Without such interpolation curves the 
sketching-in of contours on the circle diagram will be very tedious. 

Sample experimental diagrams taken on a typical 723A/B are shown 
in Figs. 15-14, 15*15, and 15*16. The tube was mounted in an adapter 
similar to that specified for testing the 2K25 tube. In this adapter the 
output antenna was thrust to its full length into the broad side of a 
standard by 1-in. (outside) waveguide, with an r-f choke joint to the 
outer conductor. The point of insertion was 0.394 in. from a shorting 

0.25 

Fig. 16*16.—Experimental diagram for a typical 723A/B tube (as in Fig. 15-14) taken 
at a wavelength of 3.2 cm, with a line about 10 wavelengths long and the reflector voltage 
in the “260-volt” mode. 

plug and 0.178 in. from the center line of the wave-guide. The resonator 
voltage was 300, and reflector voltage was held constant in either the 
160-volt (nominal) or the “250-volt” mode. The diagrams were referred 
to the plane of the waveguide containing the output antenna, and no 
attempt was made to eliminate the long-line.effect necessarily introduced 
by the slotted section and couplings to the standing-wave introducer. 
The unit admittance is naturally that of the i- by 1-in. waveguide. 

In Fig. 16-14 the tube was operated in the “160-volt” reflector mode 
at a wavelength of 3.2 cm. Note that the tube was definitely under¬ 
loaded for this condition; this underloading is a property of the adapter 
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used, which was deliberately designed for light loading in order to secure 
more uniform output over the specified frequency band. Also, there 
was a noticeable long-line effect resulting from the almost unavoidable 
length of the waveguide involved in the measuring equipment. For 
Fig. 15*15 nothing was changed except the wavelength, which was 3.1 
cm, and the refIe(‘tor voltage, which was increased slightly. The dia¬ 
gram is similar to Fig. 15*14 except for the rotation caused by the increased 
electrical length of the output line. 

Figure 15*10 illustrates an extreme long-line effect in which an attempt 
has been made to follow the freciuency contours into the second region 
of the sink. The conditions were the same as for Fig. 15*14 except that 
the line length was increased to about 10 wavelengths and the tube was 
operated in the 250-volt reflector mode. The electronic conductance 
was thereby decreased so that the tube required a lighter load. 

These diagrams were all taken with the reflector voltage set for the 
center of the mode, 4* « 0, at a matched load. In a diagram taken with 
the tube detuned electrically to one of the half-power points, the fre¬ 
quency contours would be skewed aroiind as in Fig. 15*6 and the sink 
would come noticcal)ly (doser to the center of the diagram. 

16*7. Effects of a High-Q Load.—In the previous discussion it was 
assumed that the load was of such a nature that it could be described in 
terms of an admittance that was almost constant over the frequency 
range of interest. However, it is often necessary to use a high-Q cavity, 
for example a reference wavemeter, in conjunction with a reflex oscillator. 
Depending on the line length from the r-f gap to the reference cavity, 
a variety of phenomena are possible: among these are stabilization by the 
external cavity in which the freciueney shift produced by a given tempera¬ 
ture change or a small displacement of the tuning mechanism is cut to a 
few per cent of its normal value, and discontinuities in tuning that make 
it impossible to set on particular frequencies. Stabilization by the 
method of ‘locking to an external cavity has not come into general 
use, possibly because the modest improvement in frequency stability is 
not worth the difficulty inherent in keeping the line lengths correct; it is 
more common to use an external reference cavity and some form of 
automatic frequency control operating on the oscillator. Smooth and 
positive frequency control is important and requires the introduction of 
considerable loss in the line or attention to the loading of the cavity.^ 

Admittance of a Cavity as a Function of Frequency,—At the input to a 
cavity there will be an admittance Yc{f) that is a function of frequency 

^ R. V. Pound, “Frequency Discontinuities of Local Oscillator Tubes Due to 
High-Q Load Circuits,'^ RL Report No. 694, Feb. 27, 1945. See also R. V. Pound, 
“Electronic Frequency Stabilization of Microwave Oscillators,” Rev, Sci, 

17, 490, (1946). 
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of the form 

Yo<J) = g ■¥ jhif), (44) 

where all quantities are in units of the characteristic admittance. At 
the resonant frequency /o the admittance will be a pure conductance g, 
determined by the input and output couplings, the load, and the internal 
losses. On a Smith chart the locus of Ydf) will be a circle as drawn in 
Fig. 15-17a, traversed in the direction of the arrows as the frequency is 
increased. Clear!}'', this would be a most undesirable load for the tube, 

ia) 
Fig. 15*17.—^Locus of admittaiu*e of a cavity (in relative units): (a) at its input window, 

and (b) referred to a plane one-quarter wave back from the window at which there is a 
shunt conductance Fo. Arrows indicate direction of traverse for increasing frequency. 

Oscillator Oscillator 
output output 

load 

(a) (b) 
Fig. 16«18.—Two possible arrangements for approximately realizing conditions of 

Fig. 15*17(5). In (a) the plane of reference is that containing the output antenna and 
n is odd; in (b) the plane is that containing the lumped termination Fo. 

especially at frequencies remote from fo; consequently it is expedient 
to put a terminating conductance Yo one quarter wavelength in front 
of the cavity. At the plane of this termination the new locus of the 
admittance will be simply the addition of Yo to the reciprocal of YJYo 
(provided g <giYo as indicated in Fig. 15-176). At resonance the con¬ 
ductance will be Fo + Yo/g and the direction of traversing the circle is 
the same as before. A sufficient approximation to the conditions postu¬ 
lated here can be achieved with either of the arrangements sketched in 
fig. 15-18. If no useful output is needed, other than that coming throu^ 
the cavity, the scheme of Fig. 15-186 is preferred. In Fig. 15-18o the 
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plane of reference for which Fig. 16*176 applies is that of the oscillator 
output antenna provided n is odd, whereas in Fig. 15*186 the plane is 
that containing the lumped terminating resistance. 

Admittance of Oscillator Resonator and External Ccwity,—Since by 
hypothesis the external load has a Q that is high in comparison with the 
oscillator resonator, the latter may be considered as consisting of a 
constant conductance Gr and a susceptance Br^ which varies linearly 
with frequency, across the r-f gap. Then, when the plane of reference 
for Fig. 15*176 is an integral number of half wavelengths from the r-f 
gap, the total susceptance will vary with frequency as shown in Fig. 
15*19. When the maximum negative slope of the dotted line representing 
the susceptance that is due to the external cavity is greater than the 
slope of the broken line representing the susceptance of the oscillator 
cavity, the tuning will be discontinuous, as is evidenced by the double¬ 
valued region of the solid line in Fig. 19* 19a, which represents the sum 

Fio. 16* 19.—Susceptance at r-f gap. The dashed line is the contribution of oscillator 
resonator, dotted line the susceptance of external cavity, solid lino the sum. Tuning is 
discontinuous in (o), barely continuous in (6), and smooth in (c). 

of the susceptances. The other two sketches represent cases in which 
smooth tuning will be obtained. 

^^Pulling^^ Parameter,—A quantity somewhat similar to a ‘^pulling 
figure^’ can be defined as follows. Let K be the fractional frequency 
shift produced by a change of unit susceptance in the external load, at 
an integral number of half wavelengths from the gap. The ordinary 
pulling figure in magnetron practice is the frequency shift produced by 
a load with a voltage standing-wave ratio of 1.5 moved through 360® in 
phase, and is approximately 0.9SfoK, From Eq. (37) it is evident that 
at the center of the electrical-tuning range K Will be just l/20ext. In the 
cases of interest there will be some change in load conductance accom¬ 
panying a change in susceptance, which will tend to increase K provided 
^9^0. Also, loss in the output line, requiring the use of Eq. (40), will 
introduce an asymmetrical variation in K with electrical tuning. Experi¬ 
mentally, in the 2K25 tube, K is usually considerably larger at the 
low-frequency half-power point than at the center of the mode, and its 
variation with electrical tuning is complicated. From the definition of K it 
is easy to see that the slope of the broken line in Fig. 15*19 will be merely 

l/K. 
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Properties of a Cavity in Terms of Probability Functions,—The behavior 
of the external cavity may be represented by Qo, the dissipative Q due 
to internal losses, and by Qi and Qi, the Q's of the windows (input and 
output respectively), which depend on the window sizes and on the 

admittances presented to them. For 
simplification of the algebra, it is con¬ 
venient to use 5o, 5i, and 62, the reciprocals 
of these (2^s, in the derivation.^ The con¬ 
cept of the Fs may help to clarify the 
meaning of the term Q when applied to 
the windows or coupling devices of a 
cavity, for the 6*s are simply proportional 
to relative conductances of each of the 

three circuits associated with the cavity. They are sometimes called 
probability functions for they are related to the probability of energy 
dissipation per cycle in the respective circuits. 

If the equivalent circuit of Fig. 15*20 is considered, it is easy to show 
that, for a generator conductance 61 representing a matched line as seen 
from the cavity input, Eq. (44) may be written as 

]_j 

> gL 
> C-.- 

Fig. 16-20.—Equivalent circuit 
for a cavity in teims of “proba¬ 

bility functions** 5» = 
Qn 

Ycif) ^ ^2 4. ^ 
/o5i 

Also, the power transmission through the cavity will be 

T = ^j = ^^1^2 ^ m 
Pi (5i + 62 + 5o)^ Q1Q2 

(45) 

(46) 

where Po is the power dissipated in the load and Pi is that available from 
the generator. The admittance presented to the oscillator in the con¬ 
ditions of Fig. 15*176 will be 

Fl == 1 + 
5i(5o + §2) — j 

1 ^- /o 

(5« + 62)^ + 4 (f)' 
(47) 

As before, it is assumed that the plane of reference across which Yl is 
seen is an integral number of half wavelengths from the r-f gap. It can 
readily be shown that this is the most unfavorable situation for the 
avoidance of discontinuities, for the part of the small circle in Fig. 15*176 
orthogonal to the constant-susceptance contours is the part in which 
the maximum rate of traverse with frequency is encountered. 

Choice of Parameters to Avoid Discontinuities,—The maximum rate of 
change of the imaginary part of Eq. (47) with respect to Af/fo is found 

»Note that these are not to be confused with the 6 used in Sec. 16‘3. 
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by differentiation to be 
-25i 

(5o + 52)^* 

Hence the condition for continuous tuning—that the maximum slope of 
the dotted line in Fig. 15-19 be less than that of the broken line—may 
be written 

25, 
(5o + 52)2 

or, in the more familiar Q notation, 

(48a) 

(485) 

Thus the problem of avoiding discontinuities in an arrangement of the 
kind depicted in Fig. 15-18 is reduced to a suitable choice of the cavity 

parameters. Note that Qo and Q2 have relatively larger effects than Qi; 
hence -the common arrangement using identical input and output cou¬ 
plings will not be the most desirable. The choice of values for the Q’s is, 
of course, to be made with due consideration of the desired loaded Q, 
Ql, given by 

^ = 5, + 5, + 5, = ^ + i + ^ 
and of the power transmitted through the cavity as given by Eq. (46). 

Stabilization by an External Cavity.—Frequency stabilization is 
obtained if the phase of the admittance at the r-f gap caused by the 
external circuit is the opposite to that shown in Fig. 15T75. This 
condition would be attained by making the distance from the reference 
plane to the gap an odd number of quarter wavelengths instead of a 
number of half wavelengths as before. This situation is illustrated in 
Fig. 16*21, corresponding to Fig. 15-20. In Fig. 15-21a there is good 
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stabilization, as evidenced by the steepness of the curve of total suscept- 
ance with respect to frequency shift. When stabilization is good there 
are two discontinuities. Starting from the extreme negative end, the 
frequency changes continuously to a, jumps to 6, changes smoothly from 
h to c, and then jumps to d. In the opposite direction the tube tunes 
continuously to r, jumps to /, goes continuously to g, and jumps to h. 
There are no discontinuities in Figs. 15-216 and 15-21c; Fig. 15-216 
represents a borderline case. 

This method of stabilization has not been very practical, partly 

because of the difficulty in keeping the correct line lengths but also 
because it has been found necessary, in order to achieve sufficient stabi¬ 
lization, to work in an extreme condition of the type illustrated in Fig. 

15-21a. Then, in order to get the tube ‘‘locked'' to the cavity, a special 
tune-up procedure is required because the tube will lock when first turned 
on only if it happens to be tuned between points 6 and /, but it will stay 

locked if tuned anywhere between c and g. In experimental cases the 
difference was much larger than is indicated in the illustration. 



CHAPTER 16 

REFLEX-KLYSTRON MODULATION 

By D. R. Hamilton 

16*1, Types of Modulation.—Manj*' of the modulation characteristics 
and possible types of modulation of the reflex klystron are indicated by 
the static operating characteristics shown in Figs. 12*4 and 12*17. 

A simple tj^e of modulation is the square-wave amplitude modula¬ 
tion produced by sejuare-wave modulating the reflector \oltage; this is a 
common technique in measurements work. Another simple modulation 
that has been used in microwave 
communications is small-ampli¬ 
tude modulation of the reflector 
voltage about the center of a 
mode; this gives a nearly linear 
frequency-modulation character¬ 
istic, with accompanying ampli¬ 
tude modulation to a degree 
dependent upon the excursion of 
the modulated voltage. The type 
of characteristic obtained with 
these two kinds of modulation is 
indicated in Fig. 16*1. 

An equally important kind of 
modulation, always present al¬ 
though unintentionally so, is noise 
modulation by shot effect in the 
beam current. Here the beam- 
current noise components at fre¬ 
quencies adjacent to the oscillation 
frequency give rise to an output 
noise power at these adjacent fre¬ 
quencies. This subject is touched 
upon briefly in the present chapter; the next chapter discusses in more 
detail the importance of this noise modulation and presents a detailed 
analysis and experimental data. 

In addition to these commonly used or commonly occurring modula¬ 
tions, others suggest themselves for various purposes or simply for their 
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Time 

1 n rid 
Time 

Fiq. 16*1.—Commonly used reflex klystron 
modulation characteristics: output power P 
and oscillation frequency / as functions of 
time for slow reflector-voltage (Vr) modu¬ 
lations. 
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own intrinsic interest. Most of these may be grouped in the two cate¬ 
gories of modulation of the reflector voltage and the beam current—or, 
more generally, modulation of the reflection phase and the small-signal 
electronic transconductance G,, The eftocts of such modulation depend 
on whether the modulating frequency is comparable to or much smaller 
than the oscillation frequency. Another possible type of modulation 
with interesting characteristics is modulation by an external microwave 
signal coupled directly into the resonant circuit. In addition, there is 

always the microphonic modula¬ 
tion of the resonant frequency of 
the cavity to contend with in 
actual tubes. 

The general subject of modu¬ 
lation will also be taken to include 
transient phenomena; the most 
important of these transients is 
the initiation of oscillation when 
the oscillator is suddenly turned 
on. 

16*2. Static Characteristics 
Relevant to Low-frequency Modu¬ 
lation.—Before discussing the de¬ 
tails of dynamic modulation and 
transient theory, it is worth while 
to review those static charac¬ 
teristics that are relevant to 
modulation at sufficiently low fre¬ 
quencies. These characteristics 
were treated by implication in 
Chap. 12, and were summarized 
there in Figs. 12*4,12*5, and 12-17. 
The same information is presented 
in Fig. 16-2 in a slightly altered 
manner; here two universal curves 
illustrate the way in which oscil¬ 
lation frequency and relative out¬ 

put power depend upon the relative reflection transit angle 4>, The 
relation between and the actual electrode voltages has already been 
discussed in Chap. 13. Figure 16-2 and all the statements of this section 
refer to an oscillator for which Gc/Gbr y> 1 and n 1, and which is work¬ 
ing into optimum load, that is Ge/G = 2,3. The analogous results for. a 
nonideal oscillator with small G,/Gdr may be deduced from the general 
data given in Chap. 12 for this case. 

Relative reflection phase ^ (radians) 

-1.5 0 +1.5 
Relative reflection phase ^ (radians) 

Fig. 16*2.—Oscillation frequency / and 
relative output power P/Pma* as functions 
of relative reflection phase angle </>, measured 
in radians: ideal oscillator ipe/GaK ^ 1) 
operated at optimum load {GJO =* 2.3). 
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Little need be said about the output-power characteristic in Fig. 16-2 
beyond the fact that the half-power points are separated by a change 
in reflection transit angle of 1.76 radians. Above these half-power points 
the characteristic has essentially the shape of a resonance curve. 

The points that need to be mentioned specifically about Fig. 16*2 
relate to the frequency dependence shown there. The following numer¬ 
ical results may be obtained from that figure and should be noted: 

1. The electronic tuning range A/^, or the difference in the oscilla¬ 
tion frequencies at the two half-power points, is 1.21/o/Q or 
approximately the bandwidth of the klystron cavity when loaded 
for optimum output. 

2. Since the mode has a reflection-transit-angle width of 1.76 radians 
between half-power points, the mean electronic-tuning rate aver¬ 
aged between half-power points is — 0.69/o/Q frequency units per 
radian. 

3. Since tan 4> « —2Q(w/ajo — 1) by Eq. (12*4), the center-of-mode 
tuning rate is —/o/2Q frequency units per radian. 

The degree of linearity of frequency deviation with applied voltage 
is thus shown by the fact that the frequency deviation at the half-power 
point is 38 per cent larger than it would be if the center-of-mode tuning 
rate applied throughout. This nonlinearity diminishes as the frequency 
deviation diminishes; the frequency deviation which is half of that at 
the half-power points is only 11 per cent greater than would be expected 
from the center-of-mode tuning rate. Thus if a given frequency devia¬ 
tion is required from an oscillator, the only way to make the tuning 
linear with the applied voltage is to make the half-power tuning range as 
large as possible. 

It can be seen from Fig. 16*2 that the same general prescription 
holds true if the minimum amplitude modulation for a given frequency 
modulation is desired. As a numerical example, suppose that it is 
desired to work between the 84 per cent power points; reference to Fig. 
16*2 then shows that only the center half of the electronic-tuning range 
may be utilized. 

It thus appears that anything that acts to make an oscillator operate 
with a low Q at optimum load has the effect of simultaneously optimizing 
all the properties that are beneficial for frequency-modulated operation: 
namely, electronic-tuning range, rate and linearity of electronic tuning, 
and absence of associated amplitude modulation. As is seen in Chap. 12, 
this minimization of the value of Q at optimum load corresponds to a 
maximization of OJoiC, and, as far as concerns the choice of mode (value 
of n) is concerned, this maximization of OJtaC is associated with a sac¬ 
rifice of output efficiency. 
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16*8. Limitations on the Use of Static Characteristics; the Quasi¬ 
static Approximation in Modulation Theory.—Static characteristics give 
no information regarding transients, and their implications as to periodic 
modulation become more and more faulty as the modulation frequency 
is raised. A more exact analysis of modulation^ must be based upon an 
analysis of bunching and of circuit behavior when the relevant voltages 
and currents and parameters are not constants or single-frequency 
sinusoidal functions of time. This analysis is carried out in the next few 
sections. It is, however, considerably simplified by certain approxima¬ 
tions; these are suggested and made palatable by considering what goes 
wrong with the static characteristics as the modulation frequency is 
increased or as transients are examined in greater detail. 

Consider, for example, a sudden decrease in beam current or in 
small-signal electronic transconductance. The amplitude of oscillation 
approaches its new and lower value with the difference decaying expo- 

_ iixrf 

nentially as e the process requires a finite time because the surplus 
energy stored in the circuit must be dissipated before the new equilibrium 
amplitude is reached. 

On the other hand, the consequence of a sudden change in reflection 
phase from <^i to 4>2 (and hence in the equilibrium value of oscillation 
frequency from wi to <02) can not be deduced as simply from conserva¬ 
tion of energy. In general, however, the initial output sine wave at 
frequency coi and the final equilibrium sine wave at 002 do not correspond 
to the same values of voltages and currents (or zeroth and first deriva¬ 
tives of either variable) at the instant of change in <l>; and since these 
latter quantities must be physically continuous (by conservation of 

energy!), a transient oscillation described by 2q 
instant of change in <^. Thus, the requirement of continuity in the volt¬ 
ages and currents has the consequence that the eventual pure sine wave 
at 0)2 is initially mixed up with an exponentially damped sine wave at 
0)0, the resonant frequency of the cavity. Generalizing from these illus¬ 
trations, any sudden change in conditions of oscillation is followed by an 
exponential approach to the new equilibrium. This is a general property 
of the differential equations of forced simple harmonic motion. 

The consequences of sinusoidal modulation are less easily visualized 
in detail because they are essentially the consequences of an exponential 
pursuit of a continuously changing equilibrium point. It is clear, how¬ 
ever, that if the modulation period becomes comparable to the circuit 

^ A large part of the remainder of this chapter is based on the following report: 
E. Feenberg and B. R. Hamilton, ‘‘Theory of Modulation of Reflex Klystrons,’* 
Report 5221.1040, Sperry Gyroscope Co. Research Laboratories, Garden City, N.Y., 
Aug. 30, 1045. 
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decay time, then with sinusoidal modulation, just as with discontinuous 
change, the r-f voltages and currents are not able to follow the applied 
electrode voltages instantaneously; static characteristics no longer 
necessarily describe the modulation. Since the time constant of the 
exponential approach to equilibrium is 2Q/a>o, the higher the Q the lower 
the modulation frequency at which dynamic effects begin to have an 
influence. 

Thus, the customarily sizable circuit Q necessitates an analysis of 
modulation from a dynamic, as distinguished from a static, point of 
view, but it also simplifies this analysis. The circuit Q sets certain 
limits on those modulation frequencies that have appreciable effects; 
this limitation of the relevant modulation frequencies in turn permits the 
use of a convenient simplifying approximation and method of treatment. 

The limitation comes about because, by an extension of the previous 
qualitative argument, the rate of variation of the r-f variables is limited 
by the circuit Q; if too high a modulation rate is used, the oscillator 
simply ignores the modulation. To say the same thing another way, 
a high-Q circuit acts as a filter in suppressing any modulation sidebands 
that are far from the carrier frequency. Therefore there is little point 
in considering in detail any applied modulation for which all the generated 
sidebands lie far outside the pass band of the oscillator circuit. 

Although modulation effects die out when the order of magnitude of 
the modulation frequency greatly exceeds a>/Q, this does not mean that 
modulation at all higher frequencies produces negligible effects on the 
output signal; when the modulation frequency approaches a>(l — 1/Q), 
modulation effects become important once more. To make this point 
clear by an illustration, suppose that the beam current is modulated at 
a circular frequency « + separated by the low frequency Q from the 
oscillation frequency Such modulation is later found to have the 
same effect as does the addition of small components, of frequency 
6j ± 12, to the bunched beam current. But this is exactly the effect that 
a modulation at the low frequency 12 would have. More generally, 
any modulation at a frequency nw ± 12 near one of the harmonics of w 
may be represented by an equivalent modulation at the low frequency 12. 

This equivalence is later shown in detail for various specific modula¬ 
tions. For the moment, however, these considerations are only briefly 
introduced in order to delineate the resultant limitation of the relevant 
modulation frequencies. 

As has already been stated, this limitation is the basis for a consid¬ 
erable simplification in the dynamic analysis of modulation and transients. 
The simplification arises from the fact that with modulation frequencies 
12 and ± 12—^where Q/o) 1—^all oscillator parameters and all r-f 
amplitudes and phases vary only slightly in one period of the oscillation 
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or carrier frequency co. This means, to a good approximation, that the 
relation between the momentary bunched beam current and the momen¬ 
tary r-f gap voltage is simply that of ^‘staticbunching theory. Such an 
approximation, in which quantities that vary slowly with time are con¬ 
sidered constant over a cycle, is referred to as the ^'quasi-static approxi¬ 
mation.’^ The detailed application of the quasi-static approximation 
may be seen in the remainder of the present chapter, in which this 
approximation is used. The eventual theoretical results should be 
accurate for 0/w <0.1. 

16*4. Description of Modulation; the Small-signal Approximation.— 
It is a standard procedure to describe a modulated wave in terms of the 
Fourier analysis into the carrier wave and the various sidebands. With 
the use of the Fourier integral this procedure becomes sufficiently general 
to allow the treatment of a wave modulated in any aperiodic way, as 
by a transient. The use of the quasi-static approximation suggests a 
slightly different and perhaps more intuitive description, which utilizes 
a simple generalization of the nomenclature used for the unmodulated 
wave. 

Thus in Chap. 9 the instantaneous gap voltage *0 vas given by 

V == Re (Fie'"0 = Rf' (1) 

where V was a real constant [see Eq. (9*1)]. If in the modulated or 
transient case co is taken to be the equilibrium oscillation frequency, then 
the above expression for V still holds with V a (complex) slowly varying 
function of time. As distinguished from *1), the instantaneous gap 
voltage, V may be called the "momentary” vector amplitude of the 
r-f gap voltage. 

The same generalization may be used to describe any other modulated 
r-f variable, such as the components of the bunched beam current; the 
discussion makes use of V simply as representative of all these other 
variables. The general procedure omits further specification of the 
time-dependence of momentary voltage and current amplitudes in dis¬ 
cussing quasi-static bunching and oscillator circuit relations. However, 
the remainder of this section is concerned with periodic modulation as 
distinct from transients. When periodic modulation is discussed as 
such, V may be expressed as a Fourier series vdth components at the 
fundamental and various harmonics of the modulation (or equivalent 
low-frequency modulation) frequency, and these components are the 
unknowns of the problem. 

In an analysis of periodic modulation, where V may be expressed as 
a Fourier series in the modulation frequency, a further important sim¬ 
plification may be made if the modulation is assumed to be small. It 
is seen in later sections that the importance of this assumption lies in the 



Sec. 164] SMALL^SIGNAL APPROXIMATION 447 

manner in which it makes modulations at different modulation frequencies 
additive in their effects; at large modulation, nonlinearities in the bunch¬ 
ing process make the situation more complicated. The preservation of 
linearity by the use of small signals means that any applied modulation 
may be analyzed into its Fourier components, each of which constitutes 
an isolated problem; thus only the question of an applied modulation 
consisting of a single pure sine wave need be considered. This small- 
signal approximation is introduced here with these sketchy comments 
because it is used in the immediately subsequent discussion; the state¬ 
ments about the bunching process arc discussed in more detail in the 
next section. 

A sine wave of circular frequency co, amplitude modulated at a circular 
frequency may be Fourier-analyzed by simple trigonometric relations 
into a carrier wave at w plus two sidebands occurring at the sum and 
difference frequencies c*j ± 0. A similarly phase- or frequency-modu¬ 
lated sine wave is equivalent to a carrier at the frequency w plus an 
infinite number of sidebands occurring at frequencies co ± nQ where 
n 1, 2, • • • 00. But in the latter case, if the phase or frequency 
modulation is small enough, the only appreciable and relevant sidebands 
are those adjacent to the carrier at w ± 0. Since the present discussions 
are to be confined to small-signal theory, any combination of amplitude 
and phase modulation will give rise to only two sidebands, at w ± 
Since the wave trains and sideband structures produced by phase and 
frequency modulation are identical, and since this type of modulation is 
most easily thought of as phase modulation in the present case, frequency 
modulation is not referred to further. 

A carrier voltage with two completely arbitrary sidebands is described 
by Eq. (1) and the following equation: 

7 ~ Foa = Vo{ao + (2) 

(The various as are an additional notation introduced here for con¬ 
venience in the later development.) This equation is the Fourier analysis 
of V as referred to earlier, with only two time-dependent terms because 
of the small-signal assumption. Just as V/Vo is taken to be real in 
Chap. 9, so now ao may be taken as real as a matter of convenience 
without affecting the final results. The relative phase and magnitude 
of the complex quantities a+ and a- depend on the specific type of modu¬ 
lation that Eq. (2) serves to describe. 

The complex instantaneous voltage is thus the sum 
of three vectors rotating counter clockwise in the complex plane at 
angular frequencies w ± 0. The physical significance of the normal¬ 
ized sideband voltages a± is most easily seen by considering the motion 
of these two sideband vectors with respect to the normalized carrier 
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voltage ao, as shown in Eq. (2); and rotate counter clock¬ 
wise and clockwise respectively at the angular modulation frequency 
Q about ao, as shown in Fig. 16-3. This motion of with 
respect to ao is slow compared with the rotation of the total normalized 
voltage vector about the origin. Hence it is apparent from 
Fig. 16*3 that the instantaneous real part of a+c^®* + gives the 
momentary change in the voltage amplitude; the imaginary part of 

/ao gives the mo¬ 
mentary phase shift in the voltage 
wave. These phase and amplitude 
deviations oscillate at the modula¬ 
tion frequency Q. 

When a+ = a*, the amplitude 
buc not the phase of a and of the 
instantaneous r-f gap voltage is 
modulated; when a+ = —a*, the 
phase but not the amplitude of a is 
modulated—at least to first order, 
W’hich is all that matters in the 

small-signal applications in which these equations will be used. Thus it 
is convenient to define two new normalized voltages ap and a^ (P and A 
for phase and amplitude) as follows: 

a* ^ a+ — a*; a^ ^ a+ + a*; (3a) 
2a-^ = aA + ot*; 2a* = ax — a*. ^ (36) 

The magnitudes and phases of ap and ax thus indicate the magnitude 
and phase of the amplitude and phase modulation of the instantaneous 
r-f gap voltage; ap and ax indicate the relative voltage response of phase- 
modulation and amplitude-modulation receivers receiving the output 
signal of the modulated oscillator. 

The quantities ax and ap are proportional to the relative response of 
an amplitude-modulation or a hypothetical phase-modulation receiver. 
A given phase-modulated wave-train may be described either by a given 
excursion in phase or by an excursion in frequency that is equal to the 
product of this phase excursion and the modulation frequency; hence 
the response of a frequency-modulated receiver is proportional to 12ap. 
This suggests the definition of the quantity ap to which the response of 
an f-m receiver is proportional: 

The significance of ax and ap may be put in analytical form by 
expressing a in terms of ap and ax instead of a±: 

Fig. 16*3.—Composition of the complex 
normalized gap-voltage vector a, in the 
presence of phase and amplitude modu¬ 
lation at the frequency 0. a ao -f 
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a = ao 1^1 + Re (5) 

This relationship holds true only for \aA\ <3C ao, \ap\ ao—^that is, for 
the small-signal theory. 

To this approximation, Eqs. (2) and (5) are exactly equivalent ways 
of expressing the value of a to use in Eq. (1). In Eq. (2) the voltages at 
the three frequencies co, w ± f2 are explicitly separated in a form conven¬ 
ient for calculating the effect of the voltage modulation on the bunching 
process; this is therefore the form that is used in the bunching theory. 
The primary purpose of Eq. (5) is to emphasize the function of the 
normalized voltages a a and ap defined in Eqs. (3). 

16*6. Bunching in the Presence of Gap-voltage Modulation or Tran- 
j sients.—Usually the reason for the existence of a modulation of the r-f 
gap voltage and of the output signal is a modulation of one of the oscil¬ 
lator parameters such as^ Ge or do. In the transient state when such 
modulation has just been initiated, the parameter modulation initially 
causes a bunched beam current modulation, which in turn causes r-f gap- 
voltage modulation; subsequently, or in the steady state, both r-f 
gap-voltage modulation and parameter modulation cause bunched-beam- 
current modulation simultaneously. Since small-signal modulation is 
assumed, the two modulations will not interfere with each other and may 
be calculated independently. The current modulation caused by a given 
gap-voltage modulation will be the same regardless of the original source 
of the over-all modulation, but that part of the current modulation 
arising directly from the modulation of applied electrode voltages 
(parameter modulation) must be calculated anew for each new type of 
applied modulation. It is convenient to use a different notation for these 
two contributions to the bunched beam current. Thus 

h = Re(fie^’"0 (6) 

is the instantaneous value of the fundamental component of that part of 
bunched beam current caused by the modulated r-f gap voltage; 

A/i = Re(Aiie'"0 (7) 

is the corresponding contribution arising from the primary parameter 
modulation. Like a, both ii and Aii are slowly varying complex func¬ 
tions of time. The present section is concerned with deducing the prop¬ 
erties of ii and /i, the next section with those of Aii and A/i. 

In an oscillator in which an applied parameter has just been suddenly 
changed, with the result that the oscillator is in the transient state of 

^In this chapter is the unmodulated value of reflection transit angle; the 
S3rmbol used to denote this same quantity in Chap. 12, is reserved here for subse¬ 
quent use as the modulated reflection transit angle. 
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approaching its new equilibrium, Aii = 0 because the applied param¬ 
eter modulation^' is only instantaneous. The calculation of ii is the 
same as it is when modulation is continuous, until detailed assumptions 
are made about the specific time dependence of a. 

General Bunching Relations with an R-f Gap Voltage of Time-dependent 
Phase and Amplitude.—To the limits of accuracy of the quasi-static 
approximation, the general relation between ii and a is a simple one. 

The absolute value of ii is 2IqJi{X), when X = Af0o|«|/2. If ao is 
used, in a sense somewhat broader than that of Eq. (2), to denote either 
the time-independent or final equilibrium value of a, then the time- 
independent or final equilibrium value of X may be denoted by Xo, where 

then X is given by 

Xo 
M doao 

(8) 

(9) 

Similarly the time-independent part of ii, fundamental component of 
the bunched beam current, is denoted by im; by Eq. (9*9), 

iio = —^V“^‘^2/ot/i(A o). (f9) 

By the quasi-static assumption, the phase of ii is modified from that 
of iio by the factor <x/\a\. Thus all told, 

ii 
jf-^^2UJ^(X)a 

(11) 

with X given by Eq. (9). 
Effect of Steady-state Sinusoidal Modulation of R-f Gap Voltage.— 

Equation (11), which is general as long as the quasi-static bunching 
limitation on modulation rate holds true, is now particularized somewhat 
for the case of a steady-state sinusoidal modulation of a at the frequency 
0. For this purpose it is convenient to use the sideband expression for 
a in Eq. (2). The equivalent expression in terms of the degree of phase 
and amplitude modulation is given in Eq. (5). For small-signal modula¬ 
tion, that is, with 

it follows that 

«: ao, |a~| <K ao, 

« 1 + Re 
ao \ao ao / 

A « 1 + j Im 
H \ao ao / 

(12) 
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Since 

JiiX) « 1 + o)[] 
J'liXo) 
JiiXo) 

it follows from Eqs. (9), (11), and (12) that 

•L.l+:£^Re(=i 

'i(x - Xo)], 

tio \ao 
H-e 

(XQ 
,-jQ^ 

( + j Imi — + — e 
ao 

Comparison of Eqs. (2) and (13) 
and a/ao are the same, as they should 
be; thus any phase modulation of a 
is reproduced in ii. The relative 
amplitude modulation of a and ii are 
not the same in magnitude nor, for 
Xo > 1.84, in sign; the reason, the 
nonlinear relation between z'l orJi(X) 
and X, is obvious from Fig. 9*5. The 
deviation from unity of the function 
XoJi{Xo)/Ji(Xo)j which appears in 
Eq. (13), is a measure of this non¬ 
linearity. It is convenient to specify 
this nonlinearity by the function K(Xo): 

\(Xo 

verifies that the phases of 

(13) 

Equilibrium bunching parameter Xq 

Fig. 16*4.—Dependence on equi> 
librium bunching parameter Xo of the 
function K{Xo), 

KiX 
•>-5[ 

1 
XoJ[(Xo) XoJo(Xo) _ XoJ2(Xo) 

(14) 
Ji(Xo) J ~ 2./i(Xo) ~ 2Ji(Xo) 

The function X(Xo) is shown in Fig. 16-4. It is to be noted that X(0) =0 
and that iiL(2.405) = 1; Xo = 2.405 is found in Chap. 12 to be the value 
of the bunching parameter at the center of a mode at optimum load with 
Ge/G»L 

An analysis of ii into sideband components, corresponding to Eq. (2) 
for a, shows some of the interesting consequences of the difference in the 
relative amplitude modulations of a and ii. In a form similar to Eq. (2), 
ii may be written 

ii 
iio 

= 1 + !i± 
fio 

(15) 

A comparison of Eqs. (13) and (15) indicates, with the aid of Eq. (14) 
and some rearranging, that 

(1 - X) ^ - x ^ 
ao ao 

-X + (1 - X) 
ao ao 

(16o) 

(166) 
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Thus when K 9^ 0—that is, when Xo > 0—the two voltage side¬ 
bands do not act independently in producing the bunched beam current 
sidebands.^ As already noted, = 1 at loading for maximum output 
in a tube with (?,/<? 1; and at this particular operating point, by Eq. 
(16), each current sideband is produced solely by the opposite voltage 
sideband. This mixing of the sidebands by the nonlinearity of the 
bunching process has important consequences to be discussed later; it 
also provides an interesting example of the translation from phase-and- 
amplitude language into sideband language. 

Modulation of R-f Gap Voltage with a Spectrum of Modulation Fre- 
quencies,—Another point of comparison between Eqs. (13) or (16) and 
Eq. (2) that should be noted, although it is mathematically trivial, is 
the fact that the voltage sidebands at 6> ± 0 generate current sidebands 
only at 0) ± 12 and at no other frequencies. This is simply a consequence 
of the assumption of small-signal modulation. For sizable modulation, 
such that |a+| <$C ao no longer is true, comparable current sidebands 
occur at w ± 12, 212, 312, • • ; but for small modulation, the modulating 
signal may be decomposed into its components at various frequencies 12; 
each component has two sidebands at w ± 12 and each acts independently 
of other component frequencies of the signal. Consequently, the theory 
of small-signal modulation at a single frequency is very easily generalized 
to cover any arbitrary small-signal modulation involving a spectrum of 
frequencies. This point is briefly commented upon in the preceding 
section. 

16*6. Effect of Primary Modulation of Oscillator Parameters.—It 
has already been noted that an additional modulation of the bunched 
beam current also often arises from the primary modulation of oscillator 
parameters; the complex amplitude of this contribution, which is present 
only with continuous modulation, was denoted by Aii. As in gap-voltage 
modulation, this source contributes nothing to f 10; hence Azi maybe written 

Ail = + Ail_c“^^^ (17) 

The values of Ai± will now be calculated for a series of different primary 
parameter modulations. 

Low-frequency Beam-current Modulation,—The first parameter modu¬ 
lation to be considered is the low-frequency modulation of the beam 
current at the frequency 12, as indicated thus: 

I = Io[l + m cos (12< -f 7)]. (18) 

= /o |l + ^ -f- e“J(Q<+7)] 

»This was first noted in J. K. Enipp, ‘‘Theory of Noise from the Reflex Oscillator,’’ 
HL Report No. 873, Jan. 10, 1946. See also Chap. 17. 
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By the quasi-static assumption, the amplitude of the bunched beam cur¬ 
rent is modulated in the same manner as is the d-c beam current because 
the momentary value of any component of the bunched beam current 
is proportional to the momentary value of the beam current. Thus 

(Zio + ^ 
iio 

comparison with Eq. (18) shows that 

iio 2 
(19) 

High-frequency Beam-current Modulation,—By this term is meant the 
modulation of /o at a frequency (nco -f- 12) distant by the small amount 12 

from one of the harmonics, of the oscillation frequency: 

/ » /o{l + m cos [(nw + 12)^ + y]). (20) 

Here the frequency 12 may be either positive or negative. From the 
usual quasi-static viewpoint, the momentary values of I and of the 
bunched beam current are those calculated on the basis of a modulation 
of /o at the harmonic frequency nw and with the momentary phase 
(i2< + 7). This principle allows a direct application of the results of 
Sec. 9-9 where it is shown that a beam-current modulation 

I = /o[l + m cos {noit + 7)] (9-C6) 

gives rise to the following fundamental component of the bunched beam 
current: 

» -27oe->»» j/i(Z„) - ^[enj_x(^«) + e-n(-l)«+V„+,(A’o)]}. (9.67)' 

By replacing, in these equations from Chap. 9, the constant phase 7 by 
the momentarily constant phase (Hi + 7), it is apparent that 

Ati-, ^ m (-l)”e-^^Vn4-i(^o), 

t’lo 2 Ji{Xo) 

The value of Aii^/iio is almost the same as for An-./^io, except that 
in this latter quantity an additional factor must be taken into account. 
This is the fact that when n = 1 the modulated beam current has a 
component at « -+- 12 even on the first passage of the beam through the 
r-f gap; this component, m/oc^'y in the complex notation, must be added 

to the second-transit component with reversed sign. This process is 
carried out; then with the aid of the results of the preceding paragraph, 
it is found that 
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2yx(Ao) ’ 
—me~’yJi{Xo) 
'~2J';(Xo) ’ 

- - <“ 
(«l)ty-nmJ„+i(Xo) 

2/i(X«) 

(n > 1), 

Low-frequency lie flection-time Modulation.—The reflection time 
affects the components of the bunched beam current in two ways: through 
the dependence on of both the bunching parameter and the relative 
phase <l>. The bunching parameter is proportional to whereas <#> is a 
small difference between the value of for a given electrode voltage 
and the value of do at the center of the modes; since Boy> 1 usually, a 
small change in makes a much larger change in 4> than in X. Hence 
the effect of reflection-time modulation on the bunching parameter and 
the magnitude of the current components is ignored, and only the effects 
on the phase of the bunched current are considered. 

The modulated value of do is denoted by 6 and is taken as 

d = 0o[l + rn cos (^t -f- t)]; 

hence if <^o is the d-c value of <t), the momentary value is 

0 = <#>o “h — ^o) = "t" mdo cos {Ut + y). (23) 

For mdo <3C 1, 

i 1 . 1 — j ^ ^-ko«4-7)]|5 

and since this is the only factor through which this modulation affects 
the bunched beam current, 

^ (24) 
tio 2 

High-frequency Reflection-time Modulation.—As in the discussion of 
low-frequency reflection-time modulation, amplitude effects are ignored; 
thus the effect of the modulation 

d = do[\. + m cos [(no) + ^t)t -b 7]} 

is taken as equivalent to the modulation 

^ « 00 “b mdo cos [(wc*) “b 0)^ -b 7]* (25) 

Just as in high-frequency beam-current modulation, the quasi-static 
approximation allows representation of this modulation as modulation 
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at the harmonic frequency nw and the momentary phase (7 + Ot). 
In Sec. 9-9, a phase modulation given by 

6 ^ Sq + mSo cos {no)t + 7), 

where 7 is constant, is found to give the following fundamental component 
of the bunched beam current: 

h = jji(Xo) 

By replacing, in these equations, the constant phase 7 by the momentarily 
constant phase (Qt + y)y these equations are made applicable to the 
present case to the degree of accuracy of the quasi-static approximation. 
The result is 

Aii+ ^ n+i{Xo)uy 
iio 2J i{Xo) 

iio 2t/ i(Xo) 

Since the modulation is applied between the first and second gap-transits 
of the beam, there is no such sideband at w + in the first gap-transit 
as there was in the case of high-frequency current modulation. 

16*7. Driving of a Resonant Circuit by a Slowly Changing R-f Cur¬ 
rent.—Before considering the modulated oscillator as a whole, two neces¬ 
sary steps must be taken. The first of these, deduction of the bunched 
beam current generated by the modulated r-f gap voltage and by the 
primary parameter modulation, has just been discussed; the second step, 
investigation of the way in which such a time-varying r-f current drives a 
resonant circuit, is discussed in this section. The time dependence of 
the fimdamental bunched beam current component ii will initially be 
left completely arbitrary, and will then be particularized to the case of a 
pure sine-wave modulation. 

Any time-varying r-f current, periodic or aperiodic, may be Fourier- 
analyzed into its components at various frequencies; and the over-all 
response of the resonant circuit, since the latter is composed of linear 
elements, may be obtained by adding up the individual responses to 
each frequency component of the bunched beam. This approach is 
used in the next chapter in discussing noise modulation, but the present 
section continues with the perhaps more intuitive quasi-static procedure 
used so far in this chapter. Thus there is deduced a differential equa¬ 
tion describing the way in which the momentary r-f gap voltage is deter¬ 
mined by the momentary bunched beam current; this differential equation 
is applicable to transients and to continuous modulation alike. When 
particularized to the case of a sinusoidally modulated driving current, 

(26a) 

(26&) 
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the differential equation may be reduced to linear relations between the 
carrier and sideband amplitudes of the driving current and the r-f gap 
voltage. As has already been noted, the linearity of the circuit elements 
makes driving current sidebands at « ± produce voltage sidebands 
only at CO ± hence no interaction between the effects of current side¬ 
bands at different values of Q need be considered. 

The present section is concerned solely with the driving of the 
resonant circuit, without any reference to the origin of the driving cur¬ 
rent. To forestall a suspicion of confused nomenclature, however, an 
anticipatory comment about the use of the results of Secs. 16-5 and 16*0 
should be made. There it was found that when the over-all modulation 
is the result of continued modulation of one of the oscillator parameters 
(more concretely, one of the applied electrode voltages), then this param¬ 
eter modulation adds a modulated current component Aii to Ihe modu¬ 
lated current ii that would be generated by the modulated gap voltage 
alone. There are other means of primary modulation—for example, 
the microphonic modulation of the circuit’s resonant frequency or the 
excitation of the oscillator circuit from an external source at the frequency 

w + 12, the effects of which may 
be described as being due to a 
voltage generator within the cir¬ 
cuit itself. It is convenient ta 
develop the circuit and oscillator 
equations in a unified manner in 
which the effect of the primary 
modulation is always represented 

«XVSfrP«'''Szisr?“r,ir.""* '■>' “ voitag. output, 
resonant cavity by a modulated r-f current. denoted by E/Q, of a generator 

fl ^ located within the circuit, as shown 
in Fig. 16'5. Thus when the 

physical driving current is t'l + Ati, the effect will be represented as due 
to a driving current ii and an output voltage E/Q from the equivalent 
voltage generator. Cavity and load losses are for convenience repre¬ 
sented as a series resistance R„ given by R, = 1/GQ* where G is the 
corresponding shunt conductance. 

The details of this equivalent voltage generator are discussed later. 
This brief discussion of the equivalent oscillator circuit of Fig. 16-4 has 
been carried out so as to nuike clear that the use of only Mii to represent 
the driving current is not a conflict of notation with the previous section 
this discussion is also intended to make temporarily palatable the intro¬ 
duction of the voltage generator. The topic of the moment is the fol¬ 
lowing: Given a resonant circuit, driven as in Fig. 16-5 by shunt current 
and series voltage generators with instantaneous outputs 
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(27a) 

(276) 

Mh ^ M Re 

8 = ~ Re 

in which ii and E are slowly varying functions of time; what is the value 
of the instantaneous gap voltage V and the instantaneous circuit current 
/c? Or more to the point, what is the time dependence of a? 

The instantaneous signal-generator current and circuit current of 
Fig. 16*5 are MIi and h respectively. The latter may be immediately 
disposed of by noting that the rate of change of the instantaneous elec¬ 
tromagnetic energy stored in the capacitance C is given by 

and hence that 

/. = C ^ - MU. (28) 

The vanishing of the instantaneous voltage drop around the circuit 
of Fig. 16*1 may be written as follows: 

0 = t) -f Ic I j c 

dt 
8. 

Utilizing the value of Ic from Eq. (28), and writing *1)' = dU/d(wO, where 
as usual w is taken to be the frequency of h and *U in the equilibrium 
state, the above equation becomes 

Here wj = 1/LC. 
Since Eq. (29) is linear with real coefficients, the real quantities therein 

may be replaced by the corresponding vector (complex) quantities of 
which the real parts are taken in Eqs. (1), (2), and (27). If this change is 
made and the differentiation indicated in Eq. (29) is carried out, the 
latter becomes 

\wo/ \ Wo V/ Wo V W5 Q Wo/ Q Ko 

jM Til 

Here co/coo may be set equal to unity except in the resonance term 
(1 ~ ; and in the right-hand member of the equation, the driving 
term, ii and it/Q may be neglected compared with t'l; ii/ii is small because 



[Sec. 16-8 458 REFLEX-KLYSTRON MODULATION 

of the assumed slow rate of change of t'l. Writing, as usual, 

(« — £i>o) 
0 = -y 

the above form of Eq. (29) becomes 

5 ° ^ ^ ■ mv, 
This, then, is a general equation giving the momentary gap voltage 

of a resonant circuit in terms of the momentary driving current and 
voltage shown in Fig. 16-5. It holds not only for a reflex oscillator, but 
equally well for the output circuit of any klystron or of any other device 
described by Fig. 16-5. In the equilibrium case (that is, 

a' = a" = £ = 0), 

this equation reduces to the familiar 

Tr • T7 
Vi JaVo - 2yQj)- 

In subsequent sections the circuit relations given by Eq. (30) are cor¬ 
related with the bunching relations from Sec. 10-5 to determine the 
behavior of the oscillator as a whole. 

16-8. Transient Phenomena; Pulse Btiildup.—transient state, as 
the expression is used in this chapter, refers to the approach to a new 
equilibrium after a sudden change in some oscillator parameter or applied 
voltage. One of the most common transient phenomena in the reflex 
oscillator is the buildup of the amplitude of oscillation from zero when 
the various applied voltages or oscillator parameters are suddenly given 
values permitting oscillation. Since in much common usage the dura¬ 
tion of a condition allowing oscillation is very short, of the order of 
magnitude of a microsecond, the nature of the resultant output pulse is 
considerably influenced by the time taken for oscillation to build up 
initially. 

The transient phenomena in such a ‘‘pulse buildup’^ are analyzed 
with the aid of the bunching relations and circuit relations of the preced¬ 
ing sections; such an analysis serves as an illustration of the method to be 
used with other transient phenomena. The final results must, of course, 
be subjected to a requirement of self-consistency in that they must not 
indicate a buildup so rapid as to be out of line with the quasi-static 
approximation. The results of the calculation meet this requirement, as 
is almost obvious from the beginning; and they are in good agreement 
with experiment, as a final illustrative comparison shows. 
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General Oscillator Relations in Transient Phenomena,—The necessary 
information for a discussion of transient phenomena is given in Eqs. (11) 
and (30), which show respectively the generation of ii by the processes 
of velocity modulation and bunching, and the driving of the oscillator 
circuit by ii. These equations may be simplified somewhat before being 
combined to give the over-all oscillator behavior. Thus in transient 
phenomena, the parameter modulation is not continual but consists 
merely of the discontinuous change that initiates the transient; hence 
Ml and E are zero. 

Another simplification may be made if the limiting form of Eqs. (11) 
and (30) in the equilibrium case is noted. Here a! = a" = 0 in Eq. 
(30), and ii = iio = — jc“^‘^2/o»/i(Ao) in Eq. (11), Combined, these two 
equations then give 

Ao 

a 
G 

= 1 + 2iQ5, 

which is simply Eq. (12*3) in sligh tl> altered form, as it should be. .Thus, 
the statement in the preceding section—that b and w refer to the time- 
independent or final equilibrium oscillator frequency—^is justified. Using 
in Eq. (30) the above relation for (1 + *2,jQb) and the value of ii from 
Eq. (11), and setting == 0, the oscillator equation applicable to transient 
phenomena in general is found to be 

a" + 
2J,{X,) 2J,(X) 

Xo X 
a = 0. (31) 

Pidse Buildup.—In the particular case of the transient buildup of 
oscillation when the oscillator is suddenly “turned on,” the oscillation 
must start from a very low noise level, which is discussed later in more 
detail. During by far the largest portion of the buildup period X 1, 
2J\{X)/X » 1, and the coefficient of a in Eq. (31) is constant. In most 
practical instances a negligible error is made if the coefficient of a in 
Eq. (31) is assumed to be proportional to [2/i(Xo)/Xo — 1] right up to 
the point when X = Xo. If this coefficient is written as —jaer’*, where 

.. _ laf, 2y,(Xo)1 _i[G, 1 1 
““Q(?L ^0 J cos^J’ 

Eq. (31) becomes 

a” + 

(32) 

(33) 

This equation for the momentary normalized gap voltage a must 
now be solved subject to the proper boundary conditions. At the instant 
t 0, taken as the time when G, or ^ is suddenly given the value used in 
Eqs. (31) and (32), a has some value au determined by shot noise in the 



460 REFLEX-KLYSTRON MODULATION [Sec. 16*8 

beam or thermal fluctuations in the circuit; a(0) = a'(0) = 0. Since 
a(0) is a noise fluctuation voltage, the boundary condition a'(0) = 0 is 
not especially significant; but this fact does not matter much, since the 
only effect of this latter boundary condition is to introduce a subtransient 
that decays exponentially. If only that part of the solution which 
builds up exponentially is written, a is given by 

(cos 00) 

a = aN('^ (34) 

Thus, in addition to an exponential increase in a there is also a 
phase shift linear in time—or what is the same thing, a constant devia¬ 
tion of frequency from the equilibrium value. Since the instantaneous 
voltage is proportional to the frequency during buildup is 

there is no frequency shift at the center of the mode. Both the expo¬ 
nential increase in a and the constant frequency shift taper off as X 
approaches Xq. 

By Eqs. (32) and (34), the exponential time constant U is given by 

For an oscillator in which Ge/GsR y> 1 and which is working at optimum 
load for maximum output, Ge/G = 2.32 and Q Afyjf = 1.21. Here and 
in what follows, A/^ is the half-power electronic tuning range. For 
this ideal oscillator, 

X = ^ (0.96 cos 4> - 0.41). (36) 

Thus, the time in radians required for the oscillation to build up by a 
factor e at ^ = 0 is approximately 2/(fractional electronic-tuning range). 
Since many practical oscillators deviate widely from the ideal oscillator, 
any actual numerical calculation should be based on Eq. (36); an example 
of such a calculation and a comparison of the result with experiment are 
given later. ' 

K Eq. (34) is rewritten as 

la] »= aArC"'*, (37) 

it is apparent that, if the final equilibrium value that |a| takes up is a*, 
the time r required to build up from the initial an to the finn.1 ig given 
by 

«r ™ uU In (38) 
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Initial Noise Level is thus of considerable importance. With no beam 
current at all, the mean-square fluctuation voltage across the r-f gap 
due to the Johnson thermal noise in the equivalent shunt conductance 
G of the resonator is given by 

Yl = volts®, 

where Afe is now the cavity bandwidth, not the electronic-tuning range; 
k, Boltzmann^s constant, is 1.4 X 10""^® joules/degree and G is measured 
in mhos. To this T|. corresponds an a, which may be denoted by ar, 
given by 

If, however, there is beam current passing through the resonator, 
the shot noise provider a fluctuation current 7^ = 2c/o A/r, where e is 
the charge on the electron, e = l.G X 10“^® coulombs. This fluctuation 
current induces an r-f gap voltage corresponding to an a, denoted by 
ots, which is given by 

In practical oscillators, as ar. By application of Eq. (30) to the 
buildup of gap voltage that is due to shot noise it appears that this buildup 
is proportional to (1 — —that is, a ^ as after Q/tt cycles have 
elapsed from the time the beam current is turned on. If a were building 
up from ar by the process of oscillator buildup it would have increased 
by a factor of only about e in this time. Since ar << as, it appears, then, 
that the initial noise level is effectively aN = as; if any correction were 
made to Eq. (38) for the time required to go from ar to as by shot noise 
excitation, Eq. (38) would read 

(OT == (aU In + 20, (41) 

Pulse Buildup in the 2K25.—As an illustration of the foregoing rela¬ 
tions, the type 2K25 reflex klystron may be considered. For the 2K25, 
M = 0.66, Vo = 300 volts, and /o = 20 ma. For the (n = 5)-mode, allow¬ 
ing for absorption of beam current on grids, these numbers indicate 

Ge = 1.9 X lO”^^ mhos. 

An observed starting current with zero external load of 7 to 10 ma, 
together with the above value of (?«, indicates that at load for maximum 
output Gt/0 =» 1.6 or G « 1.3 X 10~^ mhos. From this same starting 
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current may be deduced Q A/^/f « 0.6; for A/^ == 55 Mc/sec at / = 9400 
Mc/sec, this gives Q « 100, which also agrees with cold measurements, 
so these results are consistent so far. The above value of G would be 
made falsely high by any reflector phase aberrations and therefore needs 
a little reducing. The end result for the ingredients of a numerical cal¬ 
culation are: Q = 100;(? == 1.0 X 10”"^ mhos; A/p = 94 Mc/sec;/ = 9400 
Mc/sec; GJG = 1.5; /o = 13 ma on first passage of the beam through 
the resonator. 

These numbers give, with the foregoing equations, 

= 1.35 X 10-^ 
ar = 4.2 X 10-7, 

OLe ~ 0.17, 
<aU = 400 radians, 
wr == 400 In 12,600 + 200 = 4000 radians, 
r = 640 cycles = 0.07 /isec. 

Since the starting time observed under comparable conditions varies 
between 0.1 and 0.05 /isec, the agreement is good. 

16*9. General Oscillator Relations with Sinusoidal Modulation.— 
As has already been noted several times, any periodic modulation may, 
to the degree of accuracy of the small-signal approximation, be subjected 
to a Fourier analysis and the effects of each of its component frequencies* 
considered separately. Thus the momentary amplitudes a, E, and ii 
that appear in the circuit equation, Eq. (30), and the bunching equation, 
Eq. (11), have already been written in a form that covers the general case: 

a = ao + a-e (2) 
ii — t'lo + (15) 
E = E^£’°‘ + (42) 

In the discussion of the bunching theory in Secs. 16-5 and 16-6, the 
values of iio, i\± for given ao, oi± have been determined [Eqs. (10) and 
(16)]; the current sidebands were found to be linear functions of the gap- 
voltage sidebands. If these values of fio, ii± and the expressions for ii 
and a in Eqs. (15) and (2) are combined with the circuit equation, 
Eq. (30), the behavior of the modulated oscillator should be completely 
specified. 

The resulting equation is really three separate equations arising from 
the time-independent portion, the coefficients of and the coefficients 
of The equation derived from the time-independent terms is the 
ordinary equilibrium equation, Eq. (12), as has already been noted in 
the preArious section. From the coefficients of there result the fol¬ 
lowing equations: 
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-K’(Xo)(l + 2jQS){a^ + a*) + 2jWa+ = 
Vo 

K(Xo){l - 2jQ8)(a^ + aZ) + 2jWaZ = 
y 0 

(43) 

Here TT is a measure of the modulation frequency in terms of the cavil y 
bandwidth; W is defined by the equation 

0) 
(44) 

The Eqs. (43) may be solved for a±; if this is done and if the equilibrium 
relation 

1 + 2jQ8 == 
cos <t> 

is utilized as a means of slight simplification, then it is found that 

ijW(K + jW)a+Vo = + 2jW^ 

^jW(K + jW)alV, = + 2jW^ E* 

This is the basic oscillator relation, which shows how the gap-voltage 
sideband amplitudes a±Fo are determined by the output jE/Q of the 
equivalent voltage generator that represents the effect of the primary 
parameter modulation. 

Determination of the Equivalent Voltage Generator.—In Fig. 16*1 the 
oscillator circuit is shown being driven by both the voltage jE/Q and 
the current Mii. Only the former appears in Eq. (45) because, as has 
been already noted, Mii includes the equilibrium r-f current and, in 
addition, only that part of the current sidebands which is the direct result 
of the gap-voltage modulation; this explicit dependence of Mix on a has 
already been utilized in obtaining Eqs. (43) and (45). The equivalent- 
voltage-generator output is a catch-all used to describe any factor whose 
influence on the circuit equation, Eq. (30), cannot be explicitly calculated 
from a. The most fiequent source of this driving voltage jE/Q is 
simply the additional r-f driving-current component Aii, which arises 
from the primary parameter modulation rather than from the gap- 
voltage modulation. Since Ati = Afi+e'®* + it is apparent 
from Eq. (30) that the voltage-generator output, the effect of which is 
equivalent to the additional driving current Aii, is given by 

jM Ati^ 
E± = — 

cos <l> 

Ke^^E^ 
cos <t> 

(45) 

(46) 
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If oscillator modulation is accomplished by some means other than 
the application of a modulation to the beam, Aii is zero; E may still 
be found as that term whose presence is required to maintain the form 
of Eq. (30). Several illustrations serve to elucidate this point. 

As an example, suppose that the resonant frequency of the oscillator 
circuit is modulated at the low frequency 12 by some means—this might 
occur by microphonics or it might be caused by a beam current modula¬ 
tion, which would in turn vary the space charge in the gap region and 
hence the resonant frequency. Whatever the reason, the resonant fre¬ 
quency Wo is given by 

Wo = wo<i[l 4“ w cos (12^ -j- y)]. ("17) 

If this new time-dependence of wo is inserted in Eq. (29), an additional 
term is eventually added to Eq. (30); the form of Eq. (30) remains unal¬ 
tered if this additional term is absorbed in E, giving 

E± = (48) 

This illustration is of more pedagogic than practical interest because it 
is obvious from the quasi-static viewpoint that a given modulation of 
Wo will produce the same modulation in the oscillation frequency w. 

As another illustration, suppose that an externally supplied r-f signal 
at frequency w + 12 is introduced into the resonator circuit. If the 
generator of this signal is isolated from the oscillator in question by 
sufficient attenuation, it is obvious, without discussing the details of the 
r-f input arrangement, that 

E+ == constant, 
ii!. 0. w 

Phase and Amplitude Modulation.—The specific values of Aii± and 
of E± for specific modulations are shortly used to deduce oscillator-output 
characteristics such as are given by Eq. (45). The latter equation, 
however, gives the relative amplitudes of the sidebands as they would be 
seen individually by a narrow-band receiver or a spectrum analyzer. 
In most practical cases the important thing is the way in which these 
sidebands and the carrier cooperate to produce an amplitude-modulated 
or phase-modulated wave train, the amplitude or phase modulation of 
which is then detected by a suitable wideband receiver. Hence of more 
importance than ct± are the quantities ua, ap, and Wap b (Q/f)ap as 
defined in Eqs. (3) and (4), to which quantities are proportional the 
responses of receivers using amplitude modulation (AM), hypothetical 
phase modulation (PM), and frequency modulation (FM), respectively. 

As an aid in rephrasing Eq. (45) in terms of amplitude and phase 
modulation, the amplitude and phase-modulation components of the 
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output of the equivalent voltage generator may be defined as follows, by 
analogy to Eq. (3): 

Ej, = £?+ + El - El = E^-El (50a) 
2E+ = Ea + El; 2El = Ea - El. (506) 

In terms of these quantities, Eqs. (45) become 

2(K + jW)aAVo = Ea, 
2{K + jW)WalV, = -j(K + jW)El + KEa tan (51) 

These Eqs. (51) are used in the next sections to deduce the specific 
output characteristics resulting from the various specific modulations 
considered in this section and in Sec. 16*6. 

1640. Low-frequency Modulation of Beam Current and Reflection 
Transit Time.—The values of Aii± for low-frequency modulation of the 
beam current and the reflection transit time have been found in Sec. 16*6, 
and are given in Eqs. (19) and (24). These values of may be utilized 
in Eq. (46) to give the values of E± which characterize the equivalent 
voltage generators; the amplitude and phase-modulation components of 
the latter are then found by Eq. (50) to be the following: 

1. Low-frequency beam-current modulation: 

Ea - niaoVoe^^y (52) 
El = jmaoVoe^''^ tan <^. 

2. Low-frequency reflect or-volt age modulation: 

Ea = mdoaoVac^'^ tan (f> (53) 
El = -jmdoaoVoeJy. 

The significance of y as the phase of the applied modulation, and of m 
as th'e peak fractional excursion of beam current or reflection transit 

* time may be easily recalled by reference to the Eqs. (18) and (23) describ¬ 
ing the applied modulation. 

These values of Ea and Ep may now be used in the oscillator equation, 
Eq. (61), to give the values of the relative amplitude-, phase-, and fre¬ 
quency-modulation output-voltage signals, ap, and ap, respectively. 
To simplify the resulting expression somewhat, only the absolute values 
of these output signals are given. They are: 

1. Low-frequency beam-current modulation: 

man 
{2irQ/a)\ar\ 

mao 

1 

2 VK^ + 
tan 0 

2 VK^ + 

(64a) 

mao 
(546) 
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2. Low-frequency reflection-transit-time modulation: 

maoBe 

maoOo maoOo 

2 -1- 

^-7 + \/K^ + W\ 
cos’ <i> / 

(55o) 

(656) 

These equations possess a number of interesting features. The 
output-signal amplitude and phase modulation (AM and PM) produced 
by applied beara-currenl modulation 

0 0.4 08 12 
Absolute value of relative reflection 

time ^(radians) 

Fig 16 6—Dependence of A'(Xo) and 
i?(Xo)/cos* </> on </> foi ideal obcillator 
(Gc/Gbk ^ 1) at optimum load {Ge/G = 2 3). 

(‘^To-modulation^^), and the output 
PM produced by reflection transit 
time modulation ^o-modula- 
tion’O, all depend on the modu¬ 
lation frequency 0 through the 
factor 

_1^_ 

m 

(It will be recalled that 
W == QQ/oi)) The output PM 
produced by ^o-modulation has a 
somewhat more complicated de¬ 
pendence on W. Reference to 
Fig IG-G, in which is shown the 
dependence of K and iiC/cos^ 0 on 
<l> for GJG = 2.3 (optimum load 
for an ideal oscillator), shows that 

K « cos^ </> for —0.95 ^ <t> ^ 0.95—that is, for that part of the mode 
between the 39 per cent power points (see Fig. 16*2). Hence to a good 
approximation, for ^o-modulation Eq, (556) becomes 

maoSo 

vT+ 
2W y/K^ 

Thus, at large modulation frequencies, la^l and \ap\ are inversely pro¬ 
portional to TF for both types of applied modulation and are hence 
limited by the bandwidth of the oscillator circuit. 

The static characteristics discussed in Sec. 16-2 predict the values 
that la^l and lajrj should have at very low modulation frequencies. 
Without going into details, it may be stated that in the limit as TF —> 0, 
Eqs. (54) and (55) predict the same AM and FM characteristics as do 
deductions from the static characteristics shown in Fig. 16*2 and dis¬ 
cussed in Sec. 16*2. These static characteristics indicate nothing directly, 
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however, about phase modulation. It is interesting, therefore, to note 
from Eq. (546) that with TF = 0, the output PM produced by /o-modula- 
tion is given by 

mao 
tan <t> 

1 sin <l> 
2 cos* <t» 

It is at first sight surprising that there should be any output PM pro¬ 
duced by a modulation in Jo. 

As regards this phase modulation, Eq. (546) effectively shows that 
no matter how slowly the current is changed, a certain constant shift 

Absolute value of relative reflection 
transit time 4> (radians) 

Absolute value of relative reflection 
transit time <P (radians) 

Fig. 16*7.—Dependence on 0 and W of the amplitude modulation produced by beam- 
current modulation {aA/mao) and the frequency modulation produced by reflection time 

* ZttQ {Xf • • 
modulation-—; ideal oscillator, at optimum load. 

a> maoBo 

in the phase of the output wave train is produced by a given change in 
beam current. This is exactly the same phenomenon as is observed in 
the discussion of pulse buildup in Sec. 16-8—namely, that while the 
amplitude is increasing there is, during buildup, a constant deviation 
of the oscillation frequency from its equilibrium value, which can be 
described equally well as a phase shift between the wave trains at different 
levels of oscillation; this phase shift is proportional to sin 

There are other interesting features about Eqs. (54) and (55), such 
as the symmetry between the output PM produced by Zo-modulation 
and the output AM produced by ^o-modulation. There is also a less 
apparent similarity between the variation with ^ of the output AM pro¬ 
duced by /o-modulation and the output PM or FM produced by ^o-modu- 
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lation. These similarities appear in Fig. 16*7, in which is shown the 
dependence on of \ax\/rriaQ for Jo-modulation, and the dependence on 

of W\ap\/motQdQ for ^o-modiilation. Curves are shown for W = 0.1, 
1, and 10. 

The most interesting and important aspect of the modulation phe¬ 
nomena discussed in this section, however, has to do with the output 
signal FM, and in particular with its dependence on modulation frequency. 

First the output-signal FM produced by ^o-modulation is considered. 
By Eq. (556), at the center of the mode (</> = 0), air is completely inde¬ 
pendent of modulation frequency. Even at the half-power point (at 
which K « cos^ <t> = 0.4), the value of ap at very high modulating fre¬ 
quencies is reduced to only 0.4 times its low-frequency value. 

The output-signal FM produced by Zo-modulation is practically zero 
for W <K 1, but, since the dependence of ap on modulation frequency is 
given by W/y/K"^ + otp increases with increasing W and eventually 
becomes independent of modulating frequency, just as is true of the 
do-modulation considered above. At any modulation frequency ap is 
identically zero at the center of the mode, but it becomes important as 
soon as tan <t> becomes comparable to unity. (Tan = 1 at the equilib¬ 
rium 69 per cent power point.) This production of a frequency-modu¬ 
lated output signal by beam-current modulation at high frequencies may 
be traced to the same change of phase during a change of amplitude that 
is discussed in connection with the residual PM at low frequencies and 
the change of frequency during pulse buildup. 

These properties of the output-signal FM that appear as the modu¬ 
lation frequency is increased indicate that for FM, as distinguished from 
AM or PM, the modulation frequency is not limited by the bandwidth 
of the oscillator circuit. This fact can be stated more precisely in the 
following manner. For a given Q, the output FM has an almost constant 
value independent of modulation frequency, but for a given modulation 
frequency, the output FM signal is inversely proportional to Q. Thus, 
the minimization of the value of Q for optimum load is still just as good 
a prescription for a good frequency-modulated oscillator as it was in 
Sec. 16-2. 

It is not within the scope of the present discussion, which is based on 
small-signal theory, to discuss the linearity of the output FM with the 
input signal at high modulation frequencies. 

The eventual limitation on the modulation frequency must come 
from phenomena neglected in the two principal approximations used in 
this chapter. The first of these approximations is the quasi-statio 
bunching approximation; the second is the neglect, in applying this 
bunching approximation, of the finite transit time of electrons in the 
reflection space. With regard to this last point, a more exact treatment 
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of Eq. (30) would have a(o)t) in the left-hand member of the equation, 
and i[a{(at — ^o)] in the right-hand member. 

Modulation of Ge and do at Frequencies Comparable to co.— 
This modulation is very important physically, not because it has been 
utilized intentionally, but because it occurs unintentionally in the form 
of noise modulation. It is shown in Sec. 16-6 that such an applied modu¬ 
lation at a frequency w -f gives rise to bunched beam current and r-f 
gap-voltage sidebands at w ± which may be treated just as if they 
were produced by a low-frequency modulation at the modulation fre¬ 
quency 0. This whole subject of noise in the reflex oscillator, including 
the associated modulation theory, is treated in the next chapter. It is 
found to provide a good experimental confirmation of the modulation 
theory that is developed in the present chapter, although the mathe¬ 

matical formalism associated with the treatment of an infinite spectrum 
of noise modulation frequencies makes the correlation of the two chapters 
not too apparent. (Note also in the next chapter that the quantity 
denoted by ^ and defined on page 485 is not related to the a of the pres¬ 
ent chapter.) 



CHAPTER 17 

NOISE IN REFLEX KLYSTRONS 

By J. B. H. Kupkh and J. K. Knipp^ 

It is evident from the discussion of the preceding chapter, and of 
Chap. 3, that the output of a reflex oscillator is not a pure continuous 
wave without trace of frequency or amplitude modulation. A beam of 
electrons passing through the r-f gap of a resonator contains a continuous 
spectrum of noise currents arising from shot effect and from partition, 
and those frequencies for which the resonator has an appreciable shunt 
resistance appear as output voltages. Such direct excitation of the 
resonator has been used to some extent as a low-level noise generator for 
testing receiver sensitivity.^ In the reflex oscillator there are, in addition, 
bunching effects that are due to noise voltages across the resonator and 
interactions with the returning electrons which can result in appreciable 
enhancement of the noise. 

17-1, Importance of Oscillator Noise.—When a reflex klystron is 
used as a local oscillator, the resulting noise sidebands can mix with the 
desired oscillator frequency in the converter of a superheterodyne 
receiver. Two portions of these sidebands, equal in width to the i-f 
bandwidth of the receiver and located symmetrically with respect to 
the local oscillator frequency at a distance equal to the intermediate 
frequency, contribute noise to the receiver output. In the case of micro- 
wave receivers, where the intermediate frequency is a small fraction of 
the radio frequency, this source of noise can become the limiting factor 
in the over-all receiver noise figure. 

Particularly with oscillator tubes designed for wide electronic tuning 
ranges the bandwidth of the loaded oscillator resonator is of the order of 
magnitude of the intermediate frequency, and a typical 3-cm receiver 
employing the conventional 2K25 or 723A/B tube at an intermediate 
frequency of 30 Mc/sec may lose 1 db or more in noise figure from oscil¬ 
lator noise. This limitation can be avoided by filtering the oscillator 
output with a suitable high-Q cavity before feeding it to the mixer, or 
by the use of some form of balanced mixer. The latter is preferred since, 

^ Sections 17-1 through 17*5 by J. B. H. Kuper; the remainder of Chap. 17 by J. 
K. Knipp. 

* J. B. H. Kuper and M. C. Walts, **Simplified Measurements of Receiver Sensi¬ 
tivities (S-band Noise Source),” RL Report No. 443, Sept. 17, 1943. 
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with a high-Q filter, manual tuning becomes very difficult and AFC 
is exceedingly complicated except in the case of fixed channel reception. 
The balanced mixer customarily employs a so-called magic in an 
arrangement that is analogous to the balanced modulator used in carrier 
telephony. The cancellation is good enough to reduce the oscillator 
noise by roughly 20 db, so that it is no longer of practical concern. These 
mixers are discussed elsewhere in this series.^ 

It must be emphasized that these remarks apply only to the unavoid¬ 
able noise modulation resulting from the finite charge and mass of the 
electron. Modulation arising from poorly filtered or unbypassed sup¬ 
plies may, of course, contribute tremendous amounts of i-f noise beyond 
that under consideration here. Most receivers for the bands above 
3000 Mc/sec that do not have filters or balanced mixers are probably 
sacrificing a little in performance through neglect of this source of noise, 
the situation being worst for those with the highest ratio of r-f to i-f 
and employing tubes vdth large e^ctronic tuning ranges. Designs 
employing balanced mixers seem destined to be used more widely in the 
future, since such mixers have numerous advantages beyond cancella¬ 
tion of oscillator noise, and accordingly this problem will presumably 
disappear. Nevertheless, although the practical importance of oscillator 
noise may diminish, it affords some interesting checks on our theoretical 
conclusions. 

17*2, Method of Measurement. Early Measurements.—Early 
experiments^ on oscillator noise were made in a simple and straightfor¬ 
ward manner by measuring the noise figure of a receiver, with and with¬ 
out a filter in the line between oscillator tube and mixer. This method 
suffers from one serious disadvantage. Because of the insertion loss of 
the filter, it is necessary to readjust the coupling in the two cases in 
order, to keep the mixer crystal at the same working level, and it is not 
easy to do this without changing the load seen by either the crystal or 
the oscillator. 

In some cases there is enough power available to permit adequate 
padding on both sides of the filter and in such instances this method of 
measurement is satisfactory. Ordinarily, however, there is not enough 
power in the cases of greatest interest, namely at wavelengths of 3 cm 
and shorter. The apparatus needed is the same as that for measure- 

^ See Vol. 16, Microwave Mixers^ of the Radiation Laboratory Series. 
*E. Sherwood and E. Ginzton, '*Some Studies of Noise produced by Velocity 

Modulated Tubes of the Reflex TyP©/' Sperry Gyroscope Co. Report 6220-107, 
Mar. 9, 1943. A. J. Rack, ''Noise from the Beating Oscillator in Radar Systems,'^ 
Bell Telephone Laboratory Report MM-42-130-85, Nov. 2, 1942. T. G. Roach, 
"Noise in S22A Valves,'' Standard Telephones and Cables, Ltd. Report WR671, 
Nov. 1942, published at Ilminster, Somerset, England, Y. Beers, "Noise from Local 
Oscillator," RL Report No. 304, June 8, 1943. 
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meuts of mixer noise figures, that is, a good stable i-f amplifier with an 
attenuator and output meter, a mixer, and a signal or noise generator. 

Measurements by this method have resulted in the general conclusion 
that with existing tubes oscillator noise can be ^ignored in the 10-cm 
region provided that the intermediate frequency is not much less than 
30 Mc/sec, but that this noise is definitely present in the 3-cm region. 
It is further noticed that the noise does not behave symmetrically with 
electronic tuning. In the great majority of cases the noise at the half¬ 
power point on the high-frequency side of the reflector “mode^^ is con¬ 
siderably stronger than at the center of the mode, or at the low-frequency 
half-power point. In the early work this observation did not receive 
very much attention, possibly because there were high-Q elements, such 
as T-R cells, present in the mixers used. 

Measurement Procedure.—In some more recent measurements^ every 
effort was made to avoid resonance effects and as far as possible to use 
a known load on the oscillator tube. In view of the scarcity of numerical 
data on local-oscillator noise, these results are summarized and some 
details of the procedure are given. Taking the case of the 723A/B as 
typical, the tube was mounted on a piece of waveguide with a plunger 
adjustment to permit varying the load for maximum output. An 
attenuator in the waveguide afforded padding as well as a means of 
adjusting crystal excitation to a standard level. The crystal (the same 
one was used throughout the measurements on one band) was matched 
to the guide and its output was fed by means of a coaxial-line transformer 
to one of three preamplifiers tuned to 30, 60, and 90 Mc/sec. A tem¬ 
perature-limited diode noise source associated with the crystal could be 
used to measure the noise figures of the various preamplifiers, and the 
transformers were so arranged that the crystal saw the same load regard¬ 
less of which intermediate frequency was in use. The 60- and 90-Mc/sec 
preamplifiers were provided with converters to 30 Mc/sec so that the same 
i-f amplifiers, attenuator, and output meter could be used throughout. 

The standard expression for the noise figure "WF (expressed as a ratio) 
of a receiver is 

^ + - 1)^ 

(jc 

where Tc and (?© are the ‘Hemperature'^ and conversion gain of the mixer, 
and WFirt is the noise figure of the amplifier. If additional noise power 
from the local oscillator Pnx (in watts for the bandwidth Af) is fed to the 
input there results the expression 

' p». ^ , (n + - 1) 
JcTAfJ Go ’ 

^ J. B. I(. Kuper and M. C, Waltz, Measurements on Noise from Reflex OsciUa- 
tors,’^ RL Report No. 872| Dec. 21,1^6. 
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where WF' is the resultant noise figure, k is Boltzmann^s constant, and T 
is the absolute temperature of the input circuit. 

For convenience in measurement an apparent crystal “temperature'' 
r', that includes the effects of oscillator noise, can be introduced so that 

WF' = 

and 

With this relation it is only necessary to measure the apparent crystal 
temperature by comparing the amplifier noise output with that obtained 
when the crystal is replaced by a resistor of equivalent i-f impedance. 
The conversion gain and temperature of the crystal are measured under 
standard conditions with oscillator noise filtered out, and rechecked 
occasionally. Barring aocid^^nts, both of these parameters seem to 
remain stable over extended series of measurements. 

A “noise-to-signal ratio'* for the oscillator itself can be defined as 
follows: Let Pn be the total noise power in watts contained in the two 
portions of the noise sidebands of width A/ centered on the frequencies, 
/ ± fit where / is the oscillator frequency and /»■ is the intermediate 
frequency, and let P be the oscillator power output. The ratio Pn/P 
will naturally be a function of bandwidth and intermediate frequency. 
A bandwidth of 2.5 Mc/sec was used throughout the experiments under 
discussion. 

If Px is the local-oscillator power fed to the crystal, and there is no 
high-Q element in the oscillator line, Pnx is given by 

Pn. = 

When measurements are always made under standard conditions, 
say 0.5-ma crystal current, P* will vary roughly as l/Gc. Therefore, the 
increase in apparent temperature P' — Te will be directly proportional 
to Pn/P and relatively independent of the properties of the particular 
crystal used for the measurement. 

For many purposes such as evaluation of the deterioration in per¬ 
formance for a given receiver it is more convenient to work with P' than 
the noise-to-signal ratio. The latter is, of course, required when com¬ 
paring experiment with theory. 

17*8. Total Oscillator Noise.—In Table 17*1 are shown sample 
measurements for a typical 723A/B tube operating at 3.2 cm. Measure¬ 
ments were made in five reflector modes, with the reflector voltage 
adjusted for the center and also for the high- and low-frequenoy half- 



474 NOISE IN REFLEX KLYSTRONS [Sec. 17-3 

power points in each mode, at each of the three intermediate frequencies. 
The power output at the center of the mode and electronic-tuning range 
between half-power points is also given. All data were taken with the 
attenuation adjusted for 0.5-ma crystal current, at which level the par¬ 
ticular crystal used had a conversion gain of —7 db and a noise tempera¬ 
ture of 1.2 times. Data for the half-power points were corrected for 

Table 174.—Sample Noise Measurements on a Typical 7234/B Klystron 

Wavelength *=3.2 cm, resonator voltage = 300 volts, loaded for maximum output 
in ^460-voltmode. Crystal conversion gain = —7 db, Tc ~ —1.2; is the sum 
of noise powers in the two sidebands 2.5 Me/sec in width, measured at centers of 
modes and detuned to the half-i)Ower points. 

Reflector 
mode, 
volts 

Power out- 
imt (cen¬ 
ter) , watts 

Electronic 
tuning 
range, 
Mc/sec 

Pn, 10~^8 watts 

30 Mc/sec GO Mc/sec 90 Mc/sec 

center i high J low i center i high i low center i high i low 
260 49 X 10“* 20 156 202 122 C3 03 41 14.7 17.1 12.2 
160 47.5 32 91 2J5 98 48 68.5 44 9.6 10.6 14.2 
105 22.8 39 45.5 137 44.5 27.5 1 5i 29.5 6.9 14.7 13.7 
70 7.4 65 22 65 19 15.5 31 16.4 7.4 13.2 10.8 
45 0.86 57 137 304 198 62.6 60 60 31 19.7 29 

this change in attenuation and so represent the noise that would be 
obtained with constant coupling as in a practical receiver. The noise 
power, Pnj is given in units of 10'“^’^ watts for the sum of the two bands 
2.5 Mc/sec wide. In calculating noise-to-signal ratios for the detuned 
conditions it is necessary to take account of the reduction in useful 
power. 

The reduction in noise brought about by raising the intermediate 
frequency is shown clearly. As a matter of fact the noise at 90 Mc/sec 
is so weak that the experimental data cannot be considered trustworthy. 
Results for the 45-volt mode are doubtful for several reasons. The power 
is so low that it is impossible to use enough attenuation to eliminate 
resonance effects. The tube-mounting arrangements do not have suffi¬ 
cient range of adjustment to permit optimum loading for this mode, 
and bad electronic-tuning hysteresis is present. In all probability elec¬ 
trons penetrate so close to the reflector that focusing may be bad; further¬ 
more, some electrons may strike the reflector. Otherwise the noise 
output has a regular trend downward as the transit angle is increased. 

Again excluding the 45-volt mode, the noise-to-signal ratio remains 
comparatively constant with a minimum at the 160-volt mode. At the 
260-volt mode the tube is somewhat overloaded, bringing the power 
down and the noise up, so P«/P rises rapidly. For the modes below 
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160 volts, the tube is progressively underloaded and both the noise and 
the useful power decrease, the latter dropping off faster than does the 
noise. This behavior is illustrated in Table 17«2, which shows Pn/P for 
the same tube as in Table 174 for the centers of the various modes. 

Table 17*2.—Noise-to-signal Ratios 

Values of P„/P computed from data in Table 17*1, for the centers of the modes 

Reflector mode. 
P./P 

volts 
30 Mc/sec 60 Mc/sec 90 Mc/sec 

250 3.2 X 10-»« 1.3X10-10 0.3 X 10-10 
160 1.9 i 1.0 0 2 
105 2.0 1 2 0.3 
70 3.0 2.1 1.0 
45 159 

1 
36 

Returning now to Table 174, the behavior of the noise with jespect 
to electronic tuning shows a marked difference between the high- and 
low-frequency half-power points. With the single exception of the 
45-volt mode at 90 Mc/sec intermediate frequency the high-frequency 
side is distinctly noisier. This asymmetry is generally observed except 
in cases of extremely light loading. Earlier theories^ failed to predict 
this effect, which results from the ‘‘quasi-coherence’^ of noise that is due 
to the first and second passages of the electrons through the resonator— 
that is, for resonators with loaded Q’s of about 100 to 300 as used here, 
the time (a few cycles) spent by the electrons in the reflector space is 
not sufficient to destroy coherence. In a group of 21 tubes chosen to 
represent the widest possible range in other parameters, two cases were 
found in which the noise was worse on the low-frequency side in the 
105-volt mode at 30 Mc/sec intermediate frequency. In this group Pn 
was found to vary from 3.2 to 9.8 X 10““^2 -w^atts. 

17-4. Separation of Sidebands.—Generally speaking, no attempt was 
made to separate the two sidebands contributing the noise. The separa¬ 
tion was made, however, in a few cases in this series of measurements 
by use of a sharp rejection filter on a T-connection to the main line. 
When the sidebands were separated it was found they were not alto¬ 
gether symmetrical at the center of the electronic-tuning range. Actually, 
the point at which the two contributions were equal was noticeably 
displaced toward the high-frequency side of the center of the mode. 
Also, it was found that the high-frequency sideband went through rather 
minor variations with electronic tuning, while the low-frequency side- 

^ J. R. Pierce, **Noise Calculations for Reflex Oscillators,'* Bell Telephone Labora. 
tory Report MM-44-140-4, Jan. 29, 1944. . 
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band varied more rapidly. This behavior is illustrated in Figs. 17-1 
and 17*2, which show the variations with electronic tuning of the sepa¬ 
rated sidebands as well as their sum for intermediate frequencies of 

-50 -40 -30 -20 -10 0 +10 +20 +30 +40 +50 
Electronic tuning (Mc/sec) 

Fig. 17*1. -Noise sidebands from a 723A/B tube as a function of electronic tuning, 
30-Mc/faoc i-f, “105-volt” mode. 

Fio. 17*2.“—Noise sidebands from a 723A/B tube as a function of electronic tuning, 
60-Mc/sec i-f, “106-volt” mode. 

30 and 60 Mc/sec respectively. The scale of ordinates is T' — Tf 
Points were taken at the i-, i-, and i-power points and corrected for the 
ehdnges in attenuation required. The curves are sketched with an 
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attempt to follow the sort of variation predicted by the theory developed 
later in this chapter. The vertical dotted lines indicate the limits of 
oscillation, beyond which the concept of two sideband regions mixing 
with the main oscillation loses its meaning. There will, of course, be 
noise output in the nonoscillating state. 

17'6. Dependence of Noise on Load.—The next point to be considered 
is the behavior of noise under variation of the load. For this purpose a 
representation in the form of a Rieke diagram is most useful. As indi- 

0.25 

Fia. 17-3.—Noise output of a 723A/B tube plotted against load admittance, 
SO-Mo/sec W, “106-volt” mode. Contours labelled with {Te — T) X the per cent of 
maximum power, a quantity proportional to Pn. 

cated in Chap. 16, the useful power output undergoes considerable 
change; therefore, large changes in attenuation are required to keep the 
measuring crystal at a constant level. For this reason contours were 
chosen, the numerical designations of which were obtained by multiplying 
the observed Ti — Tt by the per cent of maximum power output. These 
coordinates are directly proportional to Pn- The contours are plotted 
on an admittance diagram with the plane of reference an integral number 
of half-waves from the grids. The noise contours might be expected to 
be symmetrical because only the conductance component enters into 
the shunt impedance of the resonator; instead, however, th^ are found 
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to bulge upward on the inductive (negative susceptance) side of the 
diagram. This phenomenon is illustrated in Fig. 17-3, taken on a 
723A/B tube in the 105-volt mode at 30-Mc/sec intermediate frequency. 
The maximum power point is indicated by a cross. 

The explanation for the distortion of the noise contours lies in the 
inevitable long-line effect coupled with the fact that the two noise con¬ 
tributions (from upper and lower sidebands) are not equal. In the present 
case each point on the diagram is actually the sum of the noise in the 
neighborhood of / + /»• and that around / — /». Because of the long- 
line effect, the conductances seen by the two noise components are, in 
general, appreciably different. In plotting the diagram, the difference 
in the conductances is neglected; only the total noise is measured. Fur¬ 
thermore, theory predicts and experiments confirm tliat the two noise 
sidebands are asymmetrical, the degree of asymmetry depending on the 
load. Taken together, these factors result in just the type of distortion 
seen in Fig. 17*3. This conclusion was checked by constmeting for a 
hypothetical tube a synthetic diagram that was found to exhibit the 
same features. 

Apart from such matters as the asymmetry effects, the experimental 
results can be represented fairly well by a simple theory in which a 
mean-square noise-current, P, proportional to the beam current flows 
through the shunt impedance of the resonator, and a fraction of the 
power is coupled out. If it is granted that a definite amount of power is 
required at the mixer, it is obvious that the accompanying noise is mini¬ 
mized by making the best possible use of the electron beam. Poor 
focusing, spread in transit angles, and losses due to interception at the 
grids—all of which reduce efficiency below theoretical expectations—may 
be expected to make the tube noisier. Overloading, and conditions that 
give rise to severe hysteresis, are also very bad from the noise standpoint. 
The loaded Q of the oscillator resonator should be as high as possible, 
consistent with the electronic-tuning range required. This range is 
largely determined in the design of the tube, of course, and there is 
very little the circuit designer can do about it. Some improvement can 
be obtained by deliberate underloading in special cases where the increase 
in Pn/P is more than compensated by the clipping of the sidebands. At 
the same time the intermediate frequency should be as high as practicable. 
Since the noise figure of the i-f amplifier usually increases with frequency, 
the choice of an optimum frequency for a given receiver may be rather 
difficult when a balanced mixer is not used. 

It should be borne in mind that many mixers contain fairly high-Q 
TR tubes that can make a considerable difference in the noise question. 
It is possible so to arrange the mixer that the desired oscillator power and 
one of the noise sidebands (the one at ‘‘imagefrequency) are reflected 
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from the TR tube back to the crystal, while the noise sideband at signal 
frequency passes through the TR tube and is radiated. In practical 
cases the noise entering the receiver is appreciably reduced by effects 
of this sort in comparison to the powers observed in the experiments. 
The very simple theory referred to here does not permit conclusions 
about the effects of electronic tuning on noise figures. For this, it is 
necessary to consider the more complete discussion presented in the 
following sections. 

17*6. Summary of Noise Behavior and Estimate of Noise Magnitude. 
The measurements described in the preceding sections give the magni« 
tude of reflex-oscillator noise and show how it changes with operating 
conditions. 

Observed Behavior—Noise behavior may be summarized as follows: 

1. The total noise-power output at the center of the tuning range of 
a 723A/B 3.2-cm reflex oxcillator, operating with a beam potential 
of 300 volts in a 160-volt mode and loaded for optimum power 
output (about 2-0 'vatt), is of the order of magnitude of 10“^^ watts 
for an intermediate frequency of 30 Mc/sec and bandwidth of 
2.5 Mc/sec. 

2. On going to higher modes by using less negative reflector voltages, 
the noise-power output decreases; so does the oscillation power 
and at about the same rate. Hence the noise-to-signal ratio is 
roughly constant over a range of several modes; it is of the order 
of magnitude of 2 X 10""^®. 

3. A change in the intermediate frequency from 30 Mc/sec to 60 
Mc/sec decreases the noise output by a factor of about changing 
from 30 Mc/sec to 90 Mc/sec decreases it by a factor of about 

4. The same tube when electronically detuned by varying the 
" reflector voltage until the power output is reduced by i has a 

total noise-power output that is altered very little at the low- 
frequency half-power point, but is larger by a factor of about 2 at 
the high-frequency half-power point. Thus, the total noise output 
is unsymmetrical with regard to electronic tuning although the 
oscillation-power output is nearly symmetrical. 

5. The noise-power output from the two separate sidebands is different 
over the observed tuning range except at a crossover point that 
lies a few megacycles per second on the high-frequency side of the 
center of the tuning range. Below this crossover point the high- 
frequency sideband contributes the most noise; above the cross¬ 
over point, the low-frequency sideband contributes the most. 
Extreme values of the noise from the low-frequency sideband differ 
by as much as a factor of 10; extreme values from the high-fre¬ 
quency sideband differ by a factor of about 2. 
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With the exception of 2, this behavior is understandable on the 
basis of a quantitative theory to be discussed shortly in which the noise 
arises from the shot effect in the injected current. The injected and 
reflected noise currents are partially coherent and the dissymmetry of the 
total noise with regard to electronic tuning is due to the change in relative 
phase of these two currents. The phase change is merely that arising 
from the change in time spent by the electrons in the reflector region due 
to the change in the reflector voltage. With regard to 2, the simple theory 
predicts the noise-power output to be approximately constant from one 
high mode to the next if the conductance is not changed. Consequently, 
the noise-to-signal ratio is expected to increase on going to modes beyond 
that for which the oscillation power output is a maximum, contrary to 
observation. This discrepancy is probably associated with the fact that 
the simple model does not give accurately the observed mode-to-mode 
changes in oscillation power output and electronic tuning. 

Gap-voltage Spectrum.—In calculating the noise power of a reflex 
oscillator, it is to be remembered that the gap voltage V{i) is composed 
of the oscillation potential, of amplitude F, and components that aie 
due to noise. It is desirable, for frequencies near the oscillation fre¬ 
quency /, to define the spectral density of the gap potential as 
This quantity is related to the time average of the square of the gap 
potential, 

y+ (1) 

If G is the gap conductance, the frequency dependence of which is usually 
negligible, the noise power produced in a sideband at /' of width A/ is 
GiiiGviS')- The oscillation power produced is GV^/2. To obtain the 
power delivered to the load, these quantities must be multiplied by the 
circuit eflSciency Gi,fG, where Gi. is the load conductance measured at 
the gap. 

The spectral density of the gap voltage bears a linear relation to the 
spectral functions characteristic of the injected electron stream. The 
most important of the latter is the spectral density of the injected cur¬ 
rent Gi(J'). The time average of the square of the injected current 

is 

= /“dfW), (2) 
Jo 

where —/o is the average injected current. For the spectral density of 
the injected current there is the relation 

(?<(/') - 2ehTl(f'), (3) 
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where rj(/') is a factor determined by conditions in the acceleration 
region. For a temperature-limited cathode, rf (/') « 1, except at very 
high frequencies. It can be much less than unity for a space-charge- 
limited cathode. This space-charge factor has been carefully studied 
for low frequencies but for high frequencies very little is known about 
its magnitude or behavior.^ 

Noise Mdgnitude from Shot Formula and Gap Admittance,—It is pos¬ 
sible to estimate 6rv(/') from (?<(/') by dividing the latter by the square 
of the absolute value of the admittance presented to the injected noise 
current at At the oscillation frequency the circuit admittance is just 
canceled by the electronic admittance. In a noise sideband not far from 
the oscillation frequency /, the circuit admittance is different from that 
at the oscillation frequency by — /)C, where C is the effective gap 
capacitance. Since the electronic admittance is a slowly varying func¬ 
tion of frequency, it changes very little in passing to the sideband fre¬ 
quency. However, the original portion of the circuit admittance is not 
completely canceled for the noise current because for it the differential 
electronic admittance is effective. Still, 47ri(/' — f)C is a fair measure 
of the total admittance presented to the noise current. Hence an esti¬ 
mate of the spectral density of the gap voltage is 

MHJmFiif) M^2ehTKm(n 
167r2(/' - /)2C2 ~ 16x2(/' - /)2C2 ' 

where M is the beam-coupling coefficient and Fi(f') is a factor of the order 
of magnitude of unity. 

Reasonable values are = i, /o = 2 X 10“^ amp, and C = 
farad. With rf(/')Ft(/') made equal to unity, e = i.6 X 10""*® coulomb, 
and an intermediate frequency /»=/'—/ of 30 Mc/sec, the gap-voltage 
spectral density is estimated as 2 X 10""*^ (volts) * sec. If 

G = 2 X 10“^ mho, 

if the circuit efficiency is 40 per cent, and if the bandwidth is 2.5 Mc/sec, 
the total noise power from both bands is calculated to be 8 X lO"’*^ 
watt, which is of the order of magnitude of the observed value. 

It is possible to eliminate C by introducing Q = ^rfoC/Gj where /o 

is the resonant frequency of the circuit. It is convenient to introduce 
the conductance parameter defined by G = yG^ = (see 
Chap. 12). In this expression Gn« is the negative of the electronic admit¬ 
tance for zero gap voltage, is the effective bunching angle at the 
center of the mode, A;/o is the average current which returns to the gap, 
and Fo is the beam potential. In high modes, for oscillation to take 

^ For a discussion of the space-charge factor, see Vol. 24, Threshold Signals^ of 
this series. Chap. 4. Some experimental data are given in Sec. 6.4 of this book. 
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place, the conductance parameter must be less than unity. Equation (4) 

becomes 

where /' = / ± /». From this expression it is seen that, if t, Q, and Fo 
are kept constant, as is sometimes the case, the noise power increases 
with operating frequency for a given intermediate frequency and mode 
of operation; in addition, it decreases with increasing intermediate fre¬ 
quency and with increasing beam current. 

17*7. Discussion of Complicating Effects.—Nonlinear Effects of 
Bunching.—The oscillation voltage causes bunching in the reflected cur« 
rent. Besides introducing a discrete spectrum composed of all the har¬ 
monics of the oscillation frequency, the bunching action, which is 
nonlinear, affects the continuous noise spectrum by adding to any portion 
contributions from all portions of the continuous noise spectrum of the 
injected current separated from /' by integral multiples of the oscillation 
frequency /. The result is that the reflected noise current in the side¬ 
band of frequency /' = / + /*, where /< is an intermediate frequency, 
contains not only a contribution from the injected noise current of the 
frequency f but also contributions from all higher and lower frequencies 
/' — m/, where m is a positive or negative integer and negative frequencies 
are interpreted as being associated with exponential negative time factors. 
Each contribution has an amplitude determined by the bunching action. 
All have the common phase lag compared with the injected current 
associated with the time spent in the effective reflector region. For 
m ~ 1 the harmonic contribution comes from the i-f portion of the 
spectrum and is termed 'Tow-frequency noise.'’ It is small for a beam 
arising from a space-charge-limited cathode because 

r?(/' “ /) - r?(/.) «1. 
It is very likely that the space-charge action is less effective in smoothing 
the beam in other portions of the spectrum. Other contributions there¬ 
fore probably have factors more nearly equal to unity, except possibly 
those from exceedingly high frequencies, where the amplitudes of the 
bunched current are small in any case. 

Coherence of Injected and Reflected Noise Currents.—The portion of 
the reflected noise current that arises from/' is coherent with the injected 
noise current, for the thermal spread in velocities is not sufl5ciently large 
to destroy that coherence. Thus the spread in phase caused by a spread 
Av in the velocity is Ad = ^ At^/v. For thermal energies of tV electron- 
volt and a beam potential of 300 volts, J^v/v = Hence if d « 40, 
Ad « xihr> a* spread that is small enough to have negligible effect on the 
coherence. The two currents must be added with the proper phase. 
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This phase is subject to change under electronic tuning; hence, changing 
the reflector voltage changes the combined noise current in an unsym- 
metrical way about the center of the tuning range. 

Fluctuation in Velocity of Injection.—The thermal spread in velocities 
does, however, have an important effect through the fluctuations that 
arise in the average velocity of injection of the electrons. This velocity 
VQ{t) is a random variable, similar to the random variable it(0,0, because 
of the discreteness of the electronic charge and the fact that the electrons 
do not all have the same velocity. It has a spectral density Gv(f) for 
which 

= + (6), 

where Vq is the average velocity of injection. 
Gvif') is written in the form, 

G.in 

The spectral density 

where k is Boltzmann^s constant, T is the absolute temperature of the 
cathode, and rj(/') is a factor of the order of magnitude of unity (or zero') 
in the absence of space-charge smoothing.^ 

Velocity fluctuations in the injected beam lead, through drift action 
(see Chaps. 3 and 12), to fluctuations in the reflected current propor¬ 

tional to 
kl^Be 

) where Be is the bunching angle (it is usually not greatly 

different from the phase angle B), The addition to the gap-voltage 
spectral density is estimated as 

where f = f ± fi and Fv{f) is of the order of magnitude of unity. 
Rewriting as before, this is 

' /o NV^FoV 2c (9\kT\ 
:2yQfiJ \eMj k^h\eVoJ 

k^n{f')F.(f'). (9) 

If Eq. (9) is compared with Eq. (5), it is seen that the essential difference 
is the factor [By^T/eVo)k^. With Be = 40, kT/e = volt, Fo = 300 
volts, and = i, this factor is However, it increases rapidly with 
mode of operation; for sufficiently high modes, the noise from velocity 
fluctuation is larger than that arising from density fluctuation. 

Correlation between Current and Velocity Fluctuations.—There is, 
furthermore, the possibility of correlation between the density and 

See, for example, J, K. Knipp, Theory of Noise from the Reflex Oscillator,” 
RL Report 873, Jan, 10, 1946, Appendix. 
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velocity fluctuations in the injected beam since they both arise from the 
shot effect. Such a correlation can be described in terms of a spectral 
function CrwCfO for which 

UO,t)vo(i) = -/ot>o + i df'GUf')- (10) 

The spectral function Giv{f') is written in the form, 

<?»(/') = 2e.^r.„(/o. (11) 

For the pure shot effect, Tiv(f ) = 0. The addition to the gap-voltage 
spectral density arising from such a correlation is estimated as 

kTUf)FUf)i (12) 

where Fiv(f') is of the order of magnitude of unity. BothF„(/') andFi^CfO 
contain harmonic contributions similar to those discussed in the first 
paragraph of this section. 

Mixing of Noise-voltage Effects,—There is also bunching in the 
reflected current caused by the noise components of the gap voltage. 
This bunching is superposed on that due to the oscillation voltage. • 
Because of the limited bandwidth of the resonator, the contributions 
to the reflected current are from the frequencies f + fi and / — fi only. 
The occurrence of such terms in the reflected current results in a mixing 
of the effects of the two gap-voltage sidebands. The circuit relations 
for the determination of the noise voltage amplitudes are a pair of simul¬ 
taneous equations. Therefore the amplitude for each sideband is a 
linear combination of the effects of the total noise currents in these two 
bands. 

17-8. Summary of Results of Noise Calculation.—In this section is 
presented, in advance of derivation, a discussion of the results of a 
detailed calculation of the spectral density of the gap voltage Gviff), 
As indicated in the preceding section, it is the infinite sum of terms con¬ 
taining factors Gi(inf), Gvimf), and Giv{mf)y which are functions charac¬ 
teristic of the primary spectra of the injected stream. Since these 
quantities are not known with any exactness for a stream originating 
from a space-charge-limited cathode such as is usually employed, a full 
discussion must await further research on the nature of the shot effect 
at high frequencies in the presence of space charge. 

Assumptions Regarding Primary Spectra,—It is, however, instructive 
to study the results under the simple assumption that Giv(mf) is negligibly 
smaU for all frequencies and that Oi(mf) and Ovimf) have their pure 
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shot-effect values, except at low frequencies, where they are negligibly 
small. Stated in terms of the coefficients in Eqs. (3), (7), and (11), 

= 0, for all m; 
r?(0) = 0, r*(0) = 0; (i3) 

T}{rnf) = 1, Tl{mf) = 1, for all m 0. 

The infinite summation occurring in Gv(f'), for which see Eq. (48), can 
then be carried out with the aid of the two identities 

00 

2 
= 1, 

00 

X 
(14) 

J = J2(2x). 

Noise-power Spectrum.- —For the spectral density of the gap voltage 
for the high-frequency sideband there is found 

+« - (24.)’ (a?)’ w. [ w+/.) 

where Fi{f + /») and Fp{f + /,) are now known factors. Explicitly, 

FiU + fi) = 1 +^«»^os^ 4; [(1 + « sin (1 - 2kJo(x) sin «) 

-h 21(Jt{x) sin ^ -t- ^1 + ^ + a sin k*il — Jlix)) 

- + a sin k\Ji{2x) - Jf(x)) j; ) (16) 

F.U + Si) 
1 

1 + cos^ 4> 
j^(l + ^ + a sin ^ (1 - J\{x)) 

-h a sin (J,i2x) - /f(x)) j- 

In these expressions 

MX), (17) 

X is the bunching parameter 0,MV/2Vo, and 4> is the phase angle meas¬ 
ured from the center of the tunidg range; for the nth mode 

^ — 9 — 2jr(n -f- ■}•). 
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The conditions of oscillation are (see Chap. 12) 

y = 

/a-/_ 

h ' 
2Q 

2J,(X) 
X 

cos <t>, 

tan <l>. 
(18) 

They determine X and <t> in terms of the conductance parameter 7, the 
frequency detuning / “■ /o) and one-half the loaded resonator bandwidth 

0 0.2 0.4 0.6 0.8 1.0 
Conductance parameter 7 

Fio. 17*4.—Factors for total noise from both i-f sidebands due to density fluctuations 
in injected current as functions of conductance parameter; F* =* F%{f +/») + F*(/ —/»); 

fi/W2yQ) * 4irAC/G^»e. 

The spectral density of the gap potential for the low-frequency side 
band is Gvif — /«)• The factors F<(/ — /.) and F,(/ — /<) are obtained 
from Eq. (16) by replacing a by —a. .The total noise power from both 
adebands is [Ov(f -h /<) -I- Gr(f — /<)!• The factors that occur are 
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Fi = F,{S + fi) + h\U - S,) 

“ r+'tt^cos»» [(^ ■*■ i") ^ 
+ (^ + !) T - Jf(x))], 

and 

/-% = F,(/ + /*)+F.(/-/^) 

- rr.w» [(‘+^) (' - •'iw) + j (•'■w - ■'!«)]• 

(19) 

There are two sources of dissymmetry under electronic tuning. One is 
the dissymmetry in the admittance coelhcients; the other is dissymmetry 
resulting from coherence between injected- and reflecteu-noise-current 
components. Terms that are due to the first source appear in Fi(f + /,), 
^i(f — fi), Pv{} + /0i and/^u(/ — /i), but drop out of Fi and F^ of Eq. (19). 

Fic. 17'5.—Fiiotors for total noise from both i-f sidebands as functioxis of oscillation- 
frequency change under electronic tuning. * F<(/ -f/*) + F<(/ —/»); A; •» J, 7 « 
p - 4YirfiC/On., 
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Terms that are due to the second source appear in i^f(/ + /<) and Fi(f — fi), 
but not in F,(/ + /<) and F,(/ — /<) because velocity fluctuations require 
large drift times to be effective. Terms that are due to this source 
remain in F,. As a consequence, the coherence causes the total noise 
that is due to density fluctuations to be unsymmetrical under electronic 
tuning. However, the total noise that is due to velocity fluctuations is 
symmetrical under electronic tuning, although the noise from the separate 
bands is unsynunetrical due to the admittance coefficients. 

0 0.2 0.4 0.6 0.8 * 1.0 
Conductance parameter Tr 

Flo. 17*6.—Factors for noise from the separate i-f sidebands as functions of the conductance 
parameter; /s = p * I; p » 47r/»C/(?n*. 

The factor Ft is plotted in Fig. 17-4 and Fig. 17*5 for particular values 
of the parameters. In Fig. 17-4 three curves are shown: "one for the 
center of the tuning range, one for the half-power point under electronic 
timing on the high-frequency side, and one for the half-power point under 
electronic tuning on the low-frequency side, all plotted as functions,of 
the conductance parameter y. In Fig. 17’4 curves are plotted against 
frequency change under electronic tuning for several values of the i-f 
parameter p ■= 4t/[C/C?«,. The factors F<(/ -f- ft) and F«(/ — ft) are 
plotted in Fip. 17*6 and 17*7 for the same parameter values. 
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17*9. Theory of Noise in Reflex Klystron,^—The starting point in the 
calculation of noise is the assumption that the gap voltage can be expressed 
as a single oscillation term plus a continuous spectrum. In order to 
be able to express V(t) with the aid of a Fourier integral, there is intro¬ 
duced a long time interval T and V(i) is taken as zero outside that inter- 

5 

4 

3 

2 

1 

0 

Fig. X7*7.—Factors for noise from the separate i-f sidebands as functions of oscillation- 
frequency change under electronic tuning; k *§,7 ^ i; p - 4irf%C/Gn«^ 

val. Other quantities that are to be expressed as Fourier integrals are 
treated in a similar way. Thus the gap voltage is 

F(«) = 7 sin ^ 7„/e»“'‘, (20) 

where V!L,’ = 7„' since 7(0 is real, and « = 2ir/, and w' = 2irf. The 
gap-potential spectral density is 

Gvif') = lim I |7„-I*. (21) 

The gap voltage is the result of excitation of the resonator by the 
electron beam. The driving current contains all harmonics of the oscil- 

* J. K. Enipp, “Theory of Noise from the Reflex Oscillator,” EL Beport No. 873, 

Jan. 10, 1946. 
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lation frequency (see Chap, 12) as well as a continuous spectrum. It 
can be expressed in terms of the voltage amplitudes, with the aid of the 
gap admittance as 

i{t) = -(1 - k)I, + ^ (22) 

Since the gap admittance is very large for freciuencies that are appre¬ 
ciably different from ± wo = + 2x/o, the voltage amplitudes are small for 
such frequencies even though the corresponding components of the 
driving current are not small. 

In the reflex oscillator the driving current is the sum of the injected 
and reflected currents 

i(t) == t+(/) -r ^“(0• (23) 

As shown in Chap. 12, it can be expressed in terms of the injected current 
^+(0,0 through the relation (Eq. 12.20) 

iit) '^^(0,r') -T (24) 

where d is the distance of separation of the grids of the gap, and r+(a-;T') 
and r"'(a:;r') are the arrival times at the plane x of electrons that were 
injected at r' and have come directly or been reflected, respectively. 
The arrival times depend on the velocity of injection at r' and the instan¬ 
taneous field through which the electrons move. 

Primary Spectra,—When the expressions for the arrival times derived 
from Newton^s law are substituted in Eq. (24), it will contain the noise 
voltage amplitudes, which it is proposed to calculate, the injected current 
amplitudes, and the injected velocity amplitudes. The injected current 
and velocity amplitudes are defined by: 

j+(0,T') = -Io + j ^ it, 
Vo(r') = Do + J ^ 

The three spectral functions associated with these two quantities are 

G. (f) = lim I \ 

Gv(f) = lim -I 1d„-12, ( (26) 
^-♦00 J’ ( 

2 1 
Giv(f') = lim Tpit'vZ^- 1 

These are the primary spectral functions.^ 

»They are discussed briefly in the appendix of RL Report 878. 
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Driving Current with Noise.—If Vdir^) is the speed with which an 
electron injected at r' with the speed VoCr') leaves the gap after its first 
passage, for small voltage amplitudes (high modes), 

1 mviir'y « ^'mvoir'y + MF sin + j ^ 

(27) 

where M and M' are the beam-coupling coefficients for the frequencies 
CO and co', and 0i and 6'i are the corresponding gap-transit angles. Hence 

Vdjr') 

Vo 
« 1 + 

MV , 
2Vo V“^ 

M'V^’ 

2Vo 
(28) 

To this approximation the arrival times are 

r^x-y) = r' -h J 

T-(xy) =t' + Tx -b r, + 2To + To 

-j-( 2r2-|-T3)|^2Fo^‘" v’’2irV!’o'^ 2Fo f J’ 

(29) 

where Ti, 27^2, and Tz are the transit times through the gap, through a 
possible field-free drift space (both ways), and in the reflector region, 
respectively, in the absence of the r-f field of an electron injected with 
the velocity Vq. 

The space average of the phase factors required in the driving current 
are the expressions, 

1 
d 

i f"* dx = M'e 
d Jo 

i: 
dx = M'e 

M"F„.- 
2F 

(30) 

where Z' = (—2^, ff8)MF/2Fo and co" is a frequency of integration. 
Because quadratic and higher terms in the noise amplitudes are to be 
discarded, the last exponential is expanded as follows: 

1 
d /: fix « M'e 

y(„V+^+<r) -yz'Bin (»r'+|) 

(31) 
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The quantities just obtained are to be substituted into the expression 
for the driving current, Eq. (24). For the first portion of the driving 

current 

j+(<) == j ^e>“‘j rfr'^-/o+ j ~ 2 X (32) 

Now 

j dr' e>(<«"-»')T' = 25r«(«" - «') (33) 

is the integral representation of the Dirac delta function. Hence 

i+(t) = -J« + J M’it' (34) 

This result is entirely reasonable because the electrons that contribute 
to this portion of the driving current are those with positive velocities 
which are at the instant within the gap. Their phases are spread uni¬ 
formly over the range 0 to d'l. On averaging over phases, one obtains 

- 
the usual factor M'e 2, 

Considering next the reflected current, 

i-(i) - j j *'(-/• + / 

The Bessel function expansion is introduced, 
(36) 

^ —jZ* Bin ^ 

eo 

(36) 

and after dropping quadratic noise terms, the integrations over r' and 
w" are carried out. It is convenient to write 

iZ' = «-'»' y i) fft" + ;7o(-2fl^ +0 J) . (37) 

Then 

i-(t) = Ho ^ *‘) 

- jkh j ^ M' ^ /„(Z')e'’”*^^"5)(-20j + O',) 
2F« 

(38) 

By Eq. (23) the driving current -with noise is the sum of Eq. (34) 
and Eq. (38). 
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Noise Circuit Equations.—On identifying coefficients of in Eqs. 
(22) and (24), there is obtained the equation, 

-y 
= M'e 'Hit' - H«0 

(-205 + Oj) 
■ 2F„ 

(39) 

Let o)'" = 2a) — 0)', then since o)' — o) = o) — o)'", a;' and o)'" are two fre¬ 
quencies located symmetrically about the oscillation frequency; they are 
the high and low sideband frequencies, respectively. In the summation 
the voltage amplitudes make all terms negligible except those with m = 0 
and m = 2. For these values of m, a‘" has the values o)' and —o)'", 
respectively. Hence 

M'e 2 {ii, - Ail?) - MZ')(- 2^ + 0i) 
MF„4 
^Fo' 

- JiiZ’H- ■202 + 0t) 
2F« 

(40) 

Now 
= F„ + 2j(w' - m)C = -F. + 2i(«' ■ (41) 

where F, is the electronic admittance 
» 

^ 2kIoMJi(Z) 
— ye (42) 

In the coefficients, the substitution o)' = o)'" = o) is made and Z is 
replaced by X = BeMVI2Vo^ which are valid approximations (compare 
Chap. 12). Noting that 2Ji(X) — XJoiX) = XJ2(X),Eq. (40) becomes 

^ . Mc-‘f (.f - K-.). (43) 

The abbreviations, 

4 and B = 2(a>' - cS)C, (44) 

are then introduced. To obtain a second equation, o)' is substituted for 
0)"' in Eq. (4) (hence B is replaced by — J5). The two noise circuit 
equations are 

4 c»* + b) F-«'» - - H+.»)*, 
(45) 
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where explicitly, 

e-’<'Y^J^i(X)e "(a 

- ke‘» ^ .. Jm+i(X)e 
-J(m + 1) 

jloGeVm(a-h(u*-^) I (46) 
Vo J 

■+i)(2--i)r + I «) 

jl Q^eVmu-\-(<a'- 

Vo 
These equations give for V^>y 

A 1 -3- 
B[B + jA sin e]V^^ = + B jMe '2 (f+, kizd 

+ ^ c-’^jMe^ at" - H-'")*. (47) 

After considerable manipulation there results 
52(52 + ^2 gin2 (9XyV(/') 

Af2 

== r+ -82 + AB cos A (1 — 2kJo{X) cos 6) == 1^^^ + -82 + AB cos (1 — 2kJo{X) cos 6) 

+ cos e + 2W.(X)j (?<(/) 

- + B* + .45 cos 2kJoix) 

- [AB2kMX)] [(?i„(/) - G*{f)] 

+ + B» + AB cos 0) ^ {r7,(m/) + ^G.(m/) 

+ Ar»^ 1 [G,-,(m/) - GUmf)] - AB 1 

• [Gtimf)e'> - GUmf)e-i»] \. (48) 

This expression is the basis of the discussion in Sec. 17-7. 



CHAPTER 18 

PRACTICAL REFLEX KLYSTRONS 

By J. B. H. Kupek 

18*1. Introduction.—The main purpose of this chapter is to help the 
reader to select the correct type of reflex klystron for a given application. 
With this in mind some representative tubes have been chosen to illus¬ 
trate a discussion of cavity design, methods of tuning, and other mechan¬ 
ical features in relation to the performance of the tube a» an oscillator. 
In selecting types for discussion, consideration has been given to the illus¬ 
trative value, rather than the popularity, of the tubes. Foreign types 
have been omitted because they are not widely known in this country. 

Of many possible ways of classifying reflex oscillator types, perhaps 
the most obvious method depends on whether or not the tube requires 
an external cavity; a tube that is not a self-contained microwave oscil¬ 
lator requires the appendage of a cavity, in addition to the output lead 
and means of mechanical tuning. The next possible method of classifi¬ 
cation depends upon method of tuning, whether direct mechanical or 
thermal; then come electronic tuning range, power (input and output), 
and type of output lead. For many applications, frequency stability is 
so important that other factors in the choice of a tube are almost elimi¬ 
nated; in other instances output power or speed of tuning may be 
paramount. 

Probably the best-known tube of the external cavity type is the 
707B or its electronic equivalent, the 2K28. Designed primarily for 
the 3000-Mc/sec region, it can be used with suitable cavities at frequencies 
up to about 4000 Mc/sec and down to 2000 Mc/sec or lower. The 
classic examples of the integral cavity type are the 417A for the 3000- 
Mc/sec region, and the 723A/B (or its improved successor, the 2K25) 
for the range 8500 to 9660 Mc/sec. Both these tubes are mechanically 
tuned, but the 417A is capable of large output powers and has a very 
small electronic tuning range, whereas the 2K26/723A/B is designed 
specifically for use as a superheterodyne local oscillator and has a com¬ 
paratively low power level but a wide electronic tuning range. 

The integral-cavity tubes with thermal tuning are well represented 
by the 2K46, which is similar to the 2K25 as regards performance; the 
tuning, however, is controlled by the voltage applied to the grid of a 
triode section built inside the envelope. Expansion of the triode plate 

495 
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under bombardment is magnified and this magnified expansion is used' 
for varying the separation between the grids that form the r-f gap. By 
using the thermal-tuner grid for coarse frequency adjustment and the 
reflector voltage for fine adjustment, the tube can be tuned easily from 
a remote location with negligible power required from the control circuit. 

The 2K33 tube and the Sperry developmental tube designated as 
2K57 (formerly SRC-2) have unusual combinations of features. The 
former, although it requires an external cavity, is tuned mechanically 
by flexing a diaphragm and altering the spacing of the r-f gap. The 
latter has an integral cavity tuned by mechanical variation of the 
‘inductiveportion rather than by the gap spacing, and it also has a 
waveguide output; this tube is capable of markedly higher efficiency 
than is usual in reflex oscillators. 

At frequencies above 5000 Mc/sec it becomes possible to build into 
a tube an output waveguide of convenient size, which seems to permit 
greater uniformity in loading from tube to tube than the more usual 
coupling loop and coaxial line. A good example of this construction, 
also incorporating a thermal tuning mechanism with grid control, is 
afforded by the 2K50. 

Some of the most important characteristics of these types are sum¬ 
marized, for purposes of comparison, in Table 18*1. The numerical 
values given are neither specification limits nor maximum ratings; rather^ 
an attempt has been made to give typical operating conditions. Many 
of the figures, particularly the reflector voltages, are to be taken only as 
rough indications. Of the types considered, only the 2K33 does not 
have grids at the r-f gap, having instead a pair of pinhole apertures 
0.028 in. in diameter. 

The reader should not be misled by the discussion of this chapter 
into thinking that the development of reflex klystrons is essentially a 
closed subject. Throughout most of the war years the emphasis was 
placed on producing types that were useful for superheterodyne local 
oscillators, and very little attention was paid to oscillator efficiency. 

More recently, attempts have been made to come closer to realizing 
the theoretical efficiency of reflex klystrons with the intention of using 
them for transmitting tubes. Efficiency is a comparatively minor matter 
in local oscillator service where 26 mw of r-f power is usually adequate, 
and it makes little difference if 2.5 or even 5 watts is expended to obtain 
it. Where output powers of 6 to 10 watts are necessary for transmitter 
purposes, however, an efficiency of the order of magnitude of 1 per cent 
is hardly tolerable. Fortunately, by more careful design it seems prac¬ 
ticable to attain efficiencies of 3 to < per cent in c-w operation and con¬ 
siderably higher efficiencies in pulsed applications. The 2K67 is one of 
the first reflex tubes designed specifically for transmitter service in c-w 
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applications. The remarkable difference shoAvn in Table 18*1 between 
the 2K67 and the other tubes indicates that there is much room for 
improvement in most tube designs and it gives hope that satisfactory 
transmitter tubes will soon be available. 

Tubes designed for pulse operation at very high recurrence rates— 
duty ratios of the order of magnitude of tV —niay also be expected to 
become common in the future. The pioneer types in this field are the 
2K54 and 2K55, w'hich furnish a minimum pulse power of 7.5 watts. 

18*2. Resonator Design in Relation to Performance. Integral vs. 
External Cavity Const! action,—The choice between the integral and 
external cavity constru(‘tions can often be made on the basis of the 
intended service. From the standpoint of electronics only, the external 
cavity type, as exemplified by the 707B, offers advantages in simplicity 
and ease of exhaust that make the tube cheap to build. From the circuit 
standpoint it is not easy to devise a cavity that will be light and strong, 
make dependable contact to the tube, and at the same time permit 
quick and simple replacement of the tube. These questions depend to 
some extent on frequency, design of an external cavity being relatively 
easy for frequencies not exceeding 4000 Mc/sec. Circuit losses introduced 
by the glass envelope are another drawback in the external cavity type, 
but if a very wide tuning range is needed, it is usually chosen. 

From the standpoint of temperature compensation there is little choice 
between the two types. With care either type can be made to work 
satisfactorily but the solution of the problem, at least in the case of the 
2K28, seems a little easier with the external cavity. On the other hand, 
somewhat better heat dissipation can be obtained with the integral 
cavity construction. Barometric effects and sensitivity to acoustic dis¬ 
turbances should never be troublesome with an external cavity. 

Resonator Shape,—consideration of cavity proportions in their rela¬ 
tion to power output, efficiency, and electronic tuning range is important 
for understanding reflex klystrons. The bunched beam in a klystron 
can best be considered as a current generator, and therefore a high- 
impedance load circuit is required as in the ordinary pentode. The 
problem is to choose a resonator that will present a high shunt impedance 
with a reasonable beam coupling coefficient. At this point it is helpful 
to repeat some of the results obtained in the theoretical discussions of 
Chaps. 3 and 4. 

In practically all cases the resonator is a cylindrical container with a 
central post^ as illustrated in cross section in Fig. 18-1. The top surface 
of the post and the corresponding portion of the top wall of the cavity 
must be perforated to permit the passage of the electron beam. The 
radius a of the post must be large enough to permit the passage of the 
required current without causing difficulties with focusing, alignment, 



Bec. 18-21 REHONATOH DESIGN 499 

or the fundamental limitb imposed by space-charge effects. In any 
event, the dimension a must be small compared with a quarter of the 
desired wavelength; otherwise a large part ol the beam will interact with 
a negligible r-f voltage. The length of the r-f gap d must be small 
enough to give a satisfactory beam coupling coefficient at the desired 
beam voltage. This dimension must 
not, however, be made too small or 
the gap capacitance will be high and 
the shunt resistance low, resulting in 
a small electronic tuning range and 
poor circuit efficiency. 

The transit angle through the gap, 
coTi, has an optimum value in the 
vicinity of tt. The exact optimum 
value is determined by two opposing 
effects: the decrease of shunt imped¬ 
ance with decreasing gap lengtli, and 
the decrease of the beam coupling coefficient as o)T] increases toward 
2v, If d is allowed to approach zero the capacitance approaches infinity; 
the circulating current, and hence the losses, must likewise approach 
infinity. 

The beam coupling coefficient M, given by the equation 

. wTi 

M = —(1) 

enters in the expressions for electronic efficiency in an involved way 
(see Chap. 12). Its primary influence lies in the proportionality to M 
of the efficiency at optimum load, but it enters as the square in the 
determination of optimum load. It will be evident from the graph of 
Fig. 18*2, in which M and are plotted as functions of o)Tu that tho 
electronic efficiency will fall to zero at = 2ir. The over-all efficiency 
will go through a maximum somewhere between 0 and 27r, and in most 

.cases the maximum will not be far from coTi = t. For the present 
purposes it is sufficient to know that a maximum exists somewhere 
around this value. 

Once the dimensions of the r-f gap have been fixed, it is necessary 
only to adjust the inductive portion for optimum shunt impedance 

' Quotation marks around the words “inductive*' and “capacitive” are used here 
to call attention to the fact that in a cavity resonator a clean-cut separation of this 
sort is impossible, yet the two regions under consideration behave as though they 
were predominantly capacitive or inductive. 

Fig 18 1.—rfertion of tvpical klys- 
tion resonatoi, the ooiiiiUete resonator 

a hguie of ievolution about the axis 
indicated. 
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Fig. 18'2.—Beam coupling coefficient M, and 
its square, as functions of transit angle. 

at the desired frequency. The proportions are not very critical, but 
there will be a broad maximum in shunt impedance when the cross section 

of the toroidal inductive’' region 
is square, that is, for A = 6 — a. 
This condition is not very critical, 
however, and is often violated for 
reasons of mechanical conven¬ 
ience. If h is made very large, as 
is sometimes done when the neces¬ 
sity for a wide mechanical tuning 
range outweighs all other deside¬ 
rata, the cavity degenerates into a 
short-circuited coaxial line loaded 
at the open end by the gap capaci¬ 
tance. The other extreme, the 
reduction of h until the post dis¬ 
appears, is never used because 
tuning is difficult (the resonant 
frequency depends only on b) and 
the attainment of a reasonable 
shunt impedance requires a long 
r-f gap (shunt impedance varies 

approximately as the square of the height rf).^ 
Grids vs. Apertures.—Important differences arise between cavities 

that have a simple aperture for the beam, as in the 2K33, and those 
provided with grids. When a cavity has an aperture, the transit times 
for electrons near the center may be sensibly different from those for 
electrons in the outer portions of the beam. This difference may lead 
to a spread in phase of the returning bunch. Also, because of the fringing 
of the fields, unless the r-f field is small compared with the d-c acceler¬ 
ating and retarding fields, a variation in focusing properties of the r-f 
gap during the cycle is to be expected. Depending on circumstances, a 
complication of this sort may or may not be harmful; that is, there may 
be some ^‘sorting” in addition to reflex bunching, and it will be a matter 
of relative phases whether or not this is desirable. In general, however, 
it seems likely that phase shifts in the returning beam that are dependent 
on r-f voltage across the gap will lead to asymmetrical reflector charac¬ 
teristics (mode shape) and hysteresis. 

Effects arising from fringing and interpenetration of the fields will be 
minimized by using a small aperture and a high beam velocity. Focusing 
and alignment difficulties, of course, set a lower limit to the practical 

^ A tabulation of Qo and shunt impedance for various resonator shapes is given in 
Hgs. 4-8 to 412. 
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aperture diameter. Heat dissipation is much less of a problem because 
all the electrons eventually strike solid metal; the circuit losses are lower 
because no current has to flow on fine wires. 

When the apertures are covered with grids, troubles with field pene¬ 
tration and spreads in transit angle are greatly reduced, and a lower beam 
voltage becomes practical. The disadvantages of using grids are beam 
losses by interception, higher circuit losses (caused by secondary' electrons 
emitted from the grid and by resistance of the wires), and generally lower 
permissible input powers because of poor heat conduction. Since the elec¬ 
tron beam must traverse a minimum of three grids (not counting the 
accelerator or smoother’^ grid (?i, if it is used) in order to deliver energy 
to the resonator, a grid transmission of ^0 per cent means that half the 
current injected is wasted. A transmission much less than 80 per cent 
for each grid is too wasteful for most applications. Circuit losses for a 
cavity with grids are increased because a large part of the charging cur¬ 
rent for the gap capacitance must flow' on the grid wires. If the aperture 
size required to pass the necessary current becomes a large fraction of 
the total surface of the cavity, grid losses may be large enough to prevent 
oscillation. For example, the 2K50 probably would not oscillate if a 
parallel beam wx're used instead of one brought to a foc\is near the inter¬ 
action gap; otherwise the grids would have to extend over too large a part 
of the cavity. 

In scaling all dimensions of a cavity the unloaded Q and the shunt 
impedance will vary as the square root of the wavelength. Therefore, 
as the wavelength is decreased, the beam current must be raised to 
maintain the same power production. If the proportions remain 
unchanged, it is clearly necessary to increase the current density in the 
beam. The maximum current density permitted by space charge, there¬ 
fore, sets an upper limit to the attainable frequency.^ 

Losses in grids are increased by the fact that the temperature is 
usually high, and materials such as tungsten are required for mechanical 
reasons. Mesh grids may be less desirable than parallel wire construc¬ 
tion because the second set of wires contributes less to the beam coupling 
coefficient than to the interception losses, and poor contacts at the wire 
crossings can increase the r-f losses. Loading by secondaries wdll also 

be more serious. 
To sum up, a cavity without grids can probably be made to oscillate 

at frequencies higher than those that have been attained in tubes writh 
grids, but at the cost of raising the voltage requirements and increasing 
the difficulties of focusing and alignment, thus tending to make the 

1 In most practical cases heat dissipation limits the current density before the 
space-charge limitation is reached. In high-power reflex oscillators space-charge 
effects in the reflector region may limit performance at low frequencies. 
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tube more expensive. This construction might also be valuable in 
tubes of comparatively high power at lower Irequencies. For moderate 
powers, where the interception loss can be tolerated, the use of grids is 
almost universal. A large part of the excellent performance of the 
2K57 is due to the use of a honeycomb grid, w hich combines low losses 
with high heat-dissipation capabilities. 

18*3. Tuning Methods. Capacitive*^ vs Inductive** Tuning,—The 
method adopted for tuning the resonator has an important bearing 
on the performance of a reflex klystron, apart from the obvious considera¬ 
tions of the user^s convenience. Tuning is most commonly accomplished 
by varying the length of the r-f gap and thus adjusting the capacitive 
portion of the resonator, but some tubes, most particularly the 707B 
and the 2K57, are tuned by altering the ‘‘inductive’’ portion. Capaci¬ 
tive tuning requires small motions for large frequency shifts, particularly 
near the low-frequency end of the range It is entirely a matter of the 
circumstances of a given application whether this sensitivity is to be 
considered a drawback or an advantage. In general, it leads to extra 
trouble in attempting temperature compensation since there must be 
considerable reduction of motion by a mechanical linkage between the 
control knob and the gap itself. 

In all cases, how’ever, the use of capacitive tuning reduces the tuning 
range over which reasonable efficiency is obtained. As the frequency is 
raised by lengthening the gap, the transit angle through the gap increases 
rapidly because the electrons have farther to go and less time to make 
the trip. Thus, varies faster than co, and conditions soon depart 
widely from the optimum referred to above. The frequency increases 
roughly as y/d, and consequently coTi is proportional to As M 
drops very rapidly w^hen wTi exceeds tt, a precipitous drop in power output 
is found at high frequencies. At frequencies below the center of the 
range, wTi becomes less than the optimum and the output again decreases, 
although not so rapidly as at the high-frequency limit. 

A further difficulty with capacitive tuning as ordinarily employed 
is that a portion of the resonator must be flexible. This requirement 
often leads either to vacuum troubles and undue frequency modulation 
from sound waves impinging on the diaphragm, or to undesirable mechan¬ 
ical hysteresis in tuning if the diaphragm is too stiff. 

Inductive tuning, on the other hand, is generally less sensitive in 
that larger mechanical motions are required. In the radial cavities 
customarily used with the 707B, radial screw plugs (four or six) are used 
for tuning. These prevent the fields from extending throughout the 
cavity volume and thus increase the frequency. The variation of shimt 
impedance with tuning of this kind is not wholly predictable, but, in 
any case, oiITi varies only with (a and the useful operating range is wider 
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than in the “ capacitive'' method. If efficiency is a minor matter, rela¬ 
tively enormous tuning ranges, 2 to 1 or more in frequency, can be 
obtained by use of a coaxial cavity. 

Thermal Tuning,—Mechanical tuning, as distinct from thermal 
tuning which is exemplified by the 2K45 and 2K50, is employed in most 
applications. The exceptions occur where remote or automatic control 
of frequency is required over ranges larger than those obtained by reflec¬ 
tor-voltage variations. A serious drawback to the general use of a 
thermally tuned tube is the complexity of its frequency control, but such 
tubes have been very successful in special signal generators sweeping 
over wide bands, systems involving control and stabilization of the 
frequency of an oscillator by means of h separate wavemeter cavity, and 
in radar systems permitting instantaneous frequency shifts with a single 

control knob. 
Because the motion obtained is small, thermal tuning is always of 

the capacitive type. Some of the earlj'^ experimental thermally tuned 
oscillators used resistive heating of a strut, or wire, through which a 
current is passed to actuate the tuner. Tnless a heater design of incon¬ 
veniently low impedance is employed, there will be some insulating 
material, which will add thcnnal capacity to the system. The result is 
a lag, or overshoot, which prevents the direction of the frequency 
shift from reversing instantly when the heater current is cut off* or sud¬ 
denly applied. This lag is most marked in those cases where a construc¬ 
tion resembling the familiar internally heated cathode sleeve is employed. 
This lag is most troublesome to the designer of a frequency-control 
circuit; the elimination of hunting without undue sacrifice in speed of 
response is very difficult. Therefore, in recent designs the tuning strut 
has been made the anode of an auxiliary triode that is heated by electron 
bombardment. In this case the strut can have good thermal contact 
to some fairly massive ‘^sink^^ in order that the temi)erature will start 
to change as soon as the bombarding current is altered. In addition, 
this scheme automatically provides a high-impedance control electrode, 
which materially simplifies the design of the control circuit. 

For a tuning strut, of length I and thermal conductivity K, whose 
ends are maintained at a constant temperature, and to which heat is 
supplied uniformly along its length, the time constant r is given apprpxi- 

mately^ by 

r » (2) 

where <r and p are the specific heat and specific density, respectively. 
The approximation here is the assumption that, in equilibrium, the 

» For derivation see H. V. Neher, “A Low-voltage K-baiid Oscillator,'' RL Report 

No. 764, pp. 6~7, Sept. 17, 1945. 
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temperature will increase linearly from the ends to the middle of the 
strut. The product ap has a value close to 0.6 cal/cm^ for most metals. 

The power P required to produce a useful motion Al is 

p   Ot AlepFmil* 

Xt Satmx 

where a is the mechanical equivalenl of heat, X is the linear thermal- 
expansion coefficient of the strut, Fmax is the maximum force against 
which the tuning mechanism will be expected to work, and Sm»x is the 
maximum strain the material will take without creep at the highest 
temperatures expected. From the standpoint of low tuning power the 
material should be chosen for a maximum value of the product \Sjnnx, 
rather than for a large expansion alone. (Comparison of Kqs. (2) and (3) 
points to the fact that a small time constant implies a large expenditure 
of power in the tuner; this conclusion might almost have been reached 
without resorting to mathematics. It should be noted that the cross- 
sectional area of the stmt does not appear in either equation. It is 
necessary that the area be large enough to exert the required force without 
undue elastic deformation. A major problem in tuner design is to select 
a material for the stmts that does not “ creep appreciably at the highest 
temperatures encountered in exhaust or operation. This reciuirement is 
necessary because the tuner must be set before assembly in order to 
cover the required range. Some recently developed stainless steels and 
Nichrome V have been found suitable. 

Speed of T'hermal Tuning.—The tuning speed of a thermally tuned 
tube is an important parameter because it enters into the design of the 
frequency-control circuits. In the case of fhe 2K45, from 4 to 8 sec 
are required to tune over the whole band (8500 to 9660 Mc/sec) in the 
direction of increasing frequency, and a slightly longer time is needed to 
cover the band in the other direction. 

In practical tubes, heating and cooling curves do not follow a simple 
exponential law exactly, but show more than one time constant. This 
variation may be due either to heat loss by radiation in addition to conduc¬ 
tion, or to the fact that the ends of the stmt do not remain at a constant 
temperature. Manufacturing variations between tubes are large 
enough, however, to necessitate the use of a single average time constant 
in designing control circuits. 

In order to have reasonably constant tuning speed over the entire 
operating frequency range, it is necessary to design the tuner mechanism 
for a much larger range as illustrated in Fig. 18*3. The '*no heat’^ 
position of the tuner mechanism is determined by the ambient tempera¬ 
ture and the input power to the oscillator section of the tube, and the 
'^maximum heat'^ is fixed by the safe working temperature for the stmt 
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material. Starting from the cold end with full heat applied, the tem¬ 
perature (and frequency to a first approximation) changes in accord 
with the curve marked ‘‘heating,'^ and if the heat is suddenly cut off 
after equilibrium is reached at the hot extreme, the temperature follows 
the cooling^' curve. Clearly, the speeds in the two directions will be 
very different near either end of the range, but over a considerable 
interval in the middle—for example, that indicated by broken lines— 
the speeds will be nearly enough constant to permit design of a satis¬ 
factory control circuit. Tn the 2K45 and 2K50 it is found experimentally 
that the wavelength changes almost linearly with tuner cathode current, 
or frequency increases more or less 
linearly with increasing negative 
grid bias on the tuner triode. i 

If an attempt is made t o operate I 
without automatic frequemy con- J 
trol, it will ordinarily be necessary £ 
to regulate the heater voltage | 
supply in addition to the reflector 
and resonator supplies. For ex¬ 
ample, in the 2K45 a 10 per cent 
drop in heater voltage may cause a & 
frequency increase of as much as S 
400 Mc/scc. This difficulty comes ^ 
partly from the fact that the state I 
of activation of the tuner cathode, » 
like any other oxide-coated cathode, 
depends on its history, and partly 
from the fact that as the cathode Thermal-tuning curves based 

. . 1 , . on simple exponential law. 
temperature is raised, there is a 
greater length of the sleeve emitting. Presumably, this last effect could 
be reduced by coating only a central portion of the length of the cathode 
sleeve. The design should minimize transfer of heat by radiation between 
cathode and anode. 

It might appear that because of the light construction usual in 
thermal-tuning mechanisms, a tube of this type would give unusual 
trouble with microphonic response. This fear seems to be groundless. 
Although the mechanisms are light, they are of necessity well designed 
from the standpoint of strength and rigidity, with the result that ther¬ 
mally tuned tubes stand shock and vibration about as well as the corre¬ 
sponding mechanically tuned types. 

Thermal Compensation,—In an integral-cavity tube, temperature 
compensation is obtained by a proper choice of materials (with regard 
to expansion coefficients) for the cavity and for the tuner mechanism. 
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The latter may incorporate struts housed in hollow screws as in the 
417A, or it may have a fixed strut and a pair of bow springs as in the 
723A/B. When the operating frequency range is small, it is possible 
to secure good compensation, Mt the manufacturing problem of keeping 
sufficiently tight tolerances on grid shaping and other critical dimensions 
is a severe one. For large frequency ranges with capacitive tuning, 
good thermal compensation is extremely difficult, if not impossible, to 
secure. 

Compensation schemes in which the frequency-determining elements 
are partly within and partly outside the vacuum envelope have some 
inherent disadvantages. Obviously, there will be transient frequency 
shifts accompanying any change in ambient conditions, or input power, 
unless the thermal conductivity between the parts is very high, even 
though the frequency may return to the original value when the new 
equilibrium is attained. 

This effect is quite marked in the 723A/B, which has satisfactory 
compensation for ambient changes, provided there is no attendant 
change in ventilation, but the presence of variable drafts leads to serious 
frequency fluctuations. If the temperature compensation is placed 
partly within and partly outside the envelope, there results also a baro¬ 
metric pressure effect on frequency that can be very objectionable in 
airborne equipment. The variation is due in part to a true pressurq 
effect on the resonator considered as an anaeroid capsule, but the effect 
of changes in ventilation on the temperature distribution may be more 
serious. Although the 417A tube could be expected to suffer from this 
same difficulty, the effect is much smaller because of its more massive 
construction. 

With an external-cavity tube such as the 707B, compensation for 
temperature changes may be achieved by choosing a suitable material 
for the cylinder supporting one resonator grid, by bending the annular 
portion of the disk between the cylinder and the glass, or by applying 
a bimetal ring to the lower side of the disk. The resulting temperature 
coefficient of frequency depends on the external cavity used. For a 
707B in a thick-walled brass cavity the coefficient should not exceed 
—0.2 Mc/sec per degree centigrade at 3000 Mc/sec. 

Thermal compensation is ordinarily not considered very important 
in a thermally tuned oscillator because some form of automatic frequency 
control is almost always employed, but it does enter into the question 
of warmup drift. Fortunately, when all vital parts are mounted within 
the envelope, it is not difficult to achieve satisfactory compensation. 
Measurement of the temperature coefficient is usually not even attempted 
because of the difficulty in maintaining adequate stability in the power 
supplies. 
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18*4. Output Couplings.—Tubes with integral resonators normally 
have built-in output circuits that consist essentially of a coupling 
device and an output transmission line. The most common coupling 
device is an inductive pickup loop formed on the end of a coaxial line 
and inserted in a region of the resonator where the magnetic field is high. 
This device is used on all the Sperry tubes of the 417A family and on the 
Bell Telephone Laboratories tubes of the 723A/B family, including the 
2K45. Coupling by means of an aperture between the resonator and 
the output line, often referred to as ‘‘iris coupling/’ is used to a lesser 
extent, as in the 2K33, 2K50, and 2K57. A third type, the capacitive 
prob(}—or antenna feeding a coaxial line—is not often used except in 
external cavities of the coaxial-line type, where for optimum coupling 
a loop should be inserted in the tuning plunger, necessitating a flexible 
output line to permit tuning. Since a loop furnishes support to the 
center conductor, which olberwise would require a bead, and since the 
region of the resonator in which the electric field is strongest is already 
occupied by the electron beam, it is easy to see why the loop is generally 
preferred.^ 

The output lines are often small coaxial lines provided with beads, 
which are also vacuum seals, and carry either a fitting for making con¬ 
nections to another coaxial line or (as in the 2K25 and 2K45) an antenna 
that feeds a waveguide. Where it is desired to obtain maximum effi¬ 
ciency, waveguide output lines are used (as in the 2K33, 2K50, and the 
2K57). This construction is more common for frequencies greater than 
10,000 Mc/sec, where coaxial lines must be inconveniently small and 
waveguides are no longer awkwardly large. Whether or not there is an 
inherent reason, the experience has been that waveguide windows are 
held to closer tolerances than the coaxial-line bead seals. An aperture 
can be machined to much closer tolerances and will hold its dimensions 
through subsequent processing better than small coupling loops. 

With a waveguide output line it is possible to preplumb” a design 
so that all tubes will be loaded correctly by a matched guide, but except 
at comparatively low frequencies this is not satisfactory in the loop-to- 
coaxial line combination. Most tubes of the family typified by the 
417A require individually adjusted transformers of some sort (usually 
a double-stub tuner) in order to deliver full power to a resistive load. 
The same is true to a considerable degree of the tubes in the 723A/B 
family, with the exception of the 726C, and especially the 2K29, which 

1 Where it is necessary, for mechanical reasons, to place a pickup in a region of 
weak magnetic field (where a loop would have to have excessive inductance) a probe 
with capacitive end loading may be used. This device may be considered as a very 
large loop whose self-inductance is to a large extent tuned out by the series capacitanoe 
between the button on the end of the probe and the opposite wall of the resonator. 
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work well into fixed loads. On the other hand, a 2K50 rarely delivers 
appreciably more power to a tuned load than to a simple terminated 
waveguide. 

In the external-cavity construction it is easy to provide a simple 
coupling adjustment, which is a more desirable method of securing correct 
loading than the use of a separate tuner. When the adjustment is 
made by rotating a loop or by partially withdrawing it from the resonator, 
the load will be constant over a wide frequency range (limited mainly 
by the changing shunt impedan<‘e of the resonator). On the other hand, 
a device such as a double-stub tuner is frequency-sensitive in itself and 
is ordinarily located an appreciable distance (in wavelengths) along the 
line from the loop. 

18*6. Description of Some Representative Reflex Tubes.—This sec¬ 
tion contains a more detailed description of the representative reflex- 
klystron tubes that are listed in Sec. 18*1 and are referred to in Secs. 18*2 
to 18*4. Some of these tubes, particularly the 417A and 2K26/723A/B, 
are important as prototypes for whole series of tubes differing chiefly 
in frequency of oscillation. Others are included because their unusual 
features will assume more importance in future designs. 

The 707jB.—The 707B, which was developed at the Bell Telephone 
Laboratories and produced by the Western Electric (Company, the 
Raytheon Manufacturing Company, and the Sylvania Electric Products, 
Inc., is illustrated in Fig. 18*4, which shows a photograph and an x-ray 
view. The grids G2 and G3 are supported by thin copper disks to which 
the glass is sealed. These disks are the means by which connection is 
made to the external cavity. Most commonly the external cavity is 
radial and is split to permit insertion of the tube (see Fig. 1.5c), although 
coaxial cavities are sometimes employed when very wide tuning ranges 
are required. The three grids are slightly bowed, for the purpose of 
avoiding erratic changes in spacing as a result of thermal expansion. 
The indirectly heated oxide cathode is a flat disk, with a projecting 
focusing cylinder at the same potential. The cathode is surrounded by 
a heat shield that supports the accelerating grid Gi, This electrode is 
normally operated at the same d-c potential as the resonator grids G2 and 
Gzj but may be run at other potentials in order to adjust the power output 
by controlling the cathode current. The reflector is a shallow cup with 
sUghtly concave bottom. 

Since the convergence of the beam resulting from curvature of the 
reflector field is not very strong, calculations of transit time and bunching 
on the basis of a parallel beam seem reasonably accurate. The permis- 
fidble power input is limited by the temperature of the grids. Under 
normal operating conditions (6 to 8 watts input), the grids are a bright 

yellow. 
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The reflector voltage ranges in which oscillations are obtained at 
3000 Mc/sec with a resonator voltage of +300 volts are —30 to —75 
volts and —105 to —190 volts. ^ These ranges correspond, respectively, 
to transit times of 3f and 2f cycles. Somewhat larger negative reflector 
voltages are required at lower resonator voltages or at higher frequencies. 
The half-power electronic tuning range is roughly 20 Mc/sec; the tuning 

Fio 18 4 —Photograph and x-iay of a 707B tube. 

rate in Mc/sec per reflector volt depends largely on the external cavity 
and coupling loop. Tubes of this type frequently suffer from excesrave 
electronic tuning hysteresis, which is caused by multiple tranrats. 

The 2E28, developed by the Raytheon Manufacturing Company, 
differs from the 707B chiefly in the fact that the lengths of the glass por¬ 
tions are reduced. Electrically, the tubes are practically identical, but 
the temperature compensation is slightly better in the 2K28 than in the 
707B. 

* Tlteae voltage ranges result from manufacturing tolerances in spacings from tube 
to tube; for toy one tube the regions of oscillation (“modes”) are 20 to 40 vcdts wide. 
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The 417/4.—The 417A, developed by the Sperry Gyroscope Company, 
Inc., and produced by them and by the Westinghouse Electric Company 
is illustrated in Fig. 18*6. In this tube the grids are made of radial 
vanes and have appreciable depth. As a result, heat is dissipated much 
better than in the 707B, and power inputs up to 75 watts (60 ma at 
1250 volts) are possible with forced air cooling. The side of the cavity 

toward the cathode is a flexible diaphragm, and the spacing between the 
grids is controlled by three tuning struts. Coarse adjustment of fre¬ 
quency covering the range from 2650 to 3330 Mc/sec is made with screw¬ 
driver and pliers; fine adjustment is provided by a screw actuating a 
bent lever under one of the struts. Thus, the two parts of the tube are 
tilted sdightly with respect to each other as the grid spacing is varied. 
This fine adjustment affords a minimum range of about 200 Mc/sec. 



Sec. 18-6] REPRESENTATIVE REFLEX TUBES 511 

Temperature comp)en8ation is obtained by using metals of different 
coefficients of expansion for the struts and the hollow-screw strut-hous¬ 
ings. By this scheme the frequency drift is held to less than 6 Mc/sec 
over the temperature range from —10° to -1-40°C. In general, the 
reflector voltage should not exceed —300 volts. The electron gun is 
provided with a control electrode in the form of a grid in front of the 
flat oxide-coated emitting surface. ‘ The control electrode is normally 

- I 
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Fig. 18-5(6).—Photograph of a 417A tube mounted in tuner. 

connected to the cathode, but if the maximum possible output is required, 
it may be run as much as 60 volts positive. Two coaxial output leads 
are provided, and r-f powers in excess of i watt may be expected. Ordi¬ 
narily, maximum output power will not be delivered directly to a 50-ohm 
line, and some form of transformer, usually a double-stub tuner, is 
required. The electronic tuning range between half-power points will 
be about 6 to 8 Mc/sec. Where comparatively low powers will suffice, 
as in local oscillator service, the 417A may be operated at a resonator 
potential of about 400 volts with a reduced beam current. Output 

^ A control grid is used only in the 417A; the other Sperry tubes have focusing 
rings operated at cathode potential or riightly negative. 
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powers of about 25 to 50 mw should be obtained. Various other tubes 
employing a similar structure are made for frequency ranges up to 10,300 

Me/sec. _ 
Tlu\723A /g\(2A^25)l—The 723A/B was developed by the Bell Tele¬ 

phone Laboratories and manufactured by Western Electric, Raytheon, 
and Ken-Rad. It has been superseded by the 2K25, which is almost 
identical except for stricter test specifications. Figure 18*6 shows a 
photograph of the tube exterior and a cross section sketch. The tube is 
designed to plug into a modified octal socket through which the output 

(a) Q>) 
Fig. 18 6.—A 2K26/723A/B tube: (a) cross section and (?>) photograph. 

lead (occupying the No. 4 pin position) projects into a waveguide. 
The center ponductor of the output lead, protected by a j)olystyrene 
jacket, extends beyond the outer conductor to form an antenna. A por¬ 
tion of the envelope forming the upper surface of the resonator is flexible. 
The spacing between Ot and 6i can then be varied by compressing the 
tuning bows and thereby tilting the upper part of the tube about the 
fixed strut as a pivot. 

In an oscillator of this type the accelerator grid Gi is mounted across 
the bottom of the cylinder supporting Ot] no independent control of 
its potential is possible. The cathode is fiat and is surrounded by a 
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heat-shield trumpet at the same potential, which serves as a focusing 
electrode. The cathode current of any given tube can be varied only 
by changing the resonator voltage, and for a fixed voltage it varies from 
tube to tube as a result of differences in spacing. Moderately good 
heat conduction between the grids and the envelope permits the use of 
input powers up to 8 or 10 watts, although at these input levels the mesh 
grids are probably operating at a bright-red heat. 

When operated at 300 volts on the resonator in the —160-volt 
(nominal) reflector mode, the 2K25 delivers a minimum of 20 mw at 
any frequency from 8500 to 9660 Mc/sec. Satisfactory operation over 
a band this wide requires careful attention to the loading of the tube. 
Correct loading is obtained, using standard 1-in. by i-in. (outside) 
waveguide, if the antenna is inserted to its full length at a point 0.394 
in. from a short circuit and 0.178 in. from the center line of the broad 
face of the guide. In the region around 9375 Mc/sec, the electronic 
tuning range between half-power points will probably be at least 46 
Mc/sec, and an output power of 35 to 40 mw is not unusual. At the 
ends of the band the electronic tuning range is somewhat less. 

The 723A/B tube has served as the prototype for a whole series of 
tubes operating at various frequencies down to about 2700 Mc/sec. 
These tubes are similar in external appearance, with the exception that 
at the lower frequencies the output antenna is replaced by an extended 
center conductor that is plugged into a coaxial connector. The interior 
structure is much the same except that the lower side of the resonator is 
moved down toward the base and the cylindrical support for G2 is cor¬ 
respondingly lengthened. Many of these tubes have also had altera¬ 
tions to the electron optics to discourage multiple transits. 

The 2iiL45.—The 2K45, which also was developed at Bell Telephone 
Laboratories, is illustrated in Fig. 18-7. In regard to frequency range, 
output power, and output coupling, this type is similar to the 2K25, 
except that it frequently produces somewhat higher power. This higher 
power is very likely due to improvements in design of the resonator and 
coupling loop. The upper surface of the resonator is flexible and actuated 
by the thermal-tuning mechanism. Because this diaphragm does not 
form part of the vacuum envelope it can be made thin, and it is slotted 
radially and corrugated to reduce further the force required from the 
tuner. Both the gun structure and the reflector are mounted on mica 
disks supported from the cavity, and the reflector retains its position 
with respect to the cathode when Gz is moved for tuning. Consequently, 
there is a greatly reduced variation in the reflector voltage required to 
produce oscillations over the band. 

The cathode in a tube of this type is concave (with a central hole to 
eHminate the axial electrons) in order to produce a crossover. Tb& 
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aperture on the cathode side of the resonator covered with a grid (G2 

in the usual notation') is about half the diameter of the grid ((73) on the 
reflector side. Thus, if the beam is brought to a focus below G2 so as to 
diverge slightly on entering the resonator, it will continue to diverge 
after reflection, and most of the current will fail to pass through G2 on 
the return trip. By this means multiple-transit hysteresis is almost 
entirely eliminated. 

The tuner mechanism consists essentially of a low-/i triode mounted 
from the resonator frame. The anode of the triode is in the form of a 

Tuner anode 

Cavity wall 

Oscillator filament 

Rods to 
cavity 

Tuner bow 

Tuner cathode 

J^Tuner grid 

Mica disk 

Reflector 

Coupling loop 

Oscillator cathode 

Fig. 18*7(a).—Cross section of part of a 2K45 tube. Fig. 18-7(6),—Photo¬ 
graph of a 2K45 tube. 

U-section, concave toward the cathode, and mounted so as to permit 
longitudinal expansion; it has good heat conduction from the ends. A 
bow spring made of a stack of thin laminations is fastened by its ends to 
the ends of the anode. When the latter expands as a result of electron 
bombardment, the spring, which is protected from bombardipent and is 
fastened at the cool ends of the anode, is pulled down toward the anode. 
A yoke is fastened to the center of the spring and is connected to the 
diaphragm by a pair of rods. Thus, expansion of the anode flattens 
the leaf spring and, by moving Gs downward toward G2, lowers the fre¬ 
quency. The sign of the frequency shift produced by a change in tuner- 

1 The customary accelerating grid Oi is omitted in this design. An accelerating 
OT&der extends toward the cathode from the lower side of (?2. 
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grid potential is the same as that produced by a change of reflector 
potential; in each case, increasing the negative potentud increases the 
frequency. Uang the thermal-tuner grid alone, it is usually possible to 

Inches 

Fig. 18*8,—Photograph of a 2K33 tube mounted in tuner. Adjusting knob for tuning stub 
visible. Output waveguide on opposite side. 

Fig. 18*9.—Photograph of a 2K33 tube without tuner. 

tune at least 600 Mc/sec between half-power points without chanipng 
the reflector potential. 

The 2£33.—Tlie 2K33 tube was developed at the Clarendon Lab¬ 
oratory, Oxford, England, and with asdstance from the Radiation 
Laboratory was put into production at the Raytheon Manufacturing 
Company. From Figs. 18-8,18*9, and 18’10 it.is apparent that, although 
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the 2K33 is supplied with an external cavity (output waveguide 
and mechanical tuner put on at the factory), it really belongs with 

Unlike the 707B, however, the 
frequency range is fixed by the 
internal cavity. The construc¬ 
tion of the tube is unusual and 
will therefore be briefly described. 
The glass forming the cathode end 
is “dimpled” with three longi¬ 
tudinal creases in order to fit 
snugly on an arbor. An align¬ 
ment tool fitting the dimples and 
carrying a 0.028-in. spike is in¬ 
serted and the stamped disks and 
glass rings stacked up and sealed, 
the disks being held in alignment 
by the spike. The reflector is also 
provided with a hole so that it can 
be lined up with the same tool. 
After the reflector is sealed in, the 
tool is withdrawn and the gun 
assembly, centered in two mica 
rings, is forced in and held by 
the dimples. 

The use of apertures rather 
than grids requires the use of a 
high beam velocity to minimize 
variations in beam coupling coeffi¬ 
cient and transit angle over the 

cross section of the beam. The 2K33 is operated normally with 

1800 volts on the resonator. The gun, which is proAuded with a 
control electrode, produces a very fine focus in the gap region. The 
inner cavity is tuned by flexing the upper disk between the glass ring 
and the reflector sleeve, and is coupled to the outer cavity by a low- 
impedance radial line about a quarter wavelength long. This outer 
region, which ideally should not be resonant, is closed by'the external 
cavity ring, which has two waveguides at opposite ends of a diameter. 
One of the waveguides is closed with an adjustable choke plunger to 
act as a tuning stub; the other is the output line. The loading of the 
resonator is strongly affected by the height of the radial coupling line, 
which not only varies from tube to tube but also is changed during tuning. 
Aa a result, it is sometimes difficult to get reasonably constant output 

the 707B in the disk-seal class. 
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power over a band from 23,600 to 24,500 Mc/sec. From the electronic 
standpoint the tube should be capable of oscillating at any frequency 
from at least 25,000 down to 23,000 Mc/sec or lower, but, in practice, 
reflections from the glass restrict the range. 

The tuner mechanism consists of a flat steel spring bent in the form 
of a U. One arm is fastened to the external cavity block, the other carries 
a clamp for the reflector sleeve. The free end of the spring is pushed 
upward by a strut and a screw-actuated bent lever similar to that used 
with the 417A tube. Temperature compensation is achieved by proper 
choice of the strut material. Because a surprisingly large force is required 
to flex the upper disk, the spring must be heavy, and mechanical tuning 

hysteresis is noticeable 
Early samples of this type gave considerable trouble because they 

had lopsided reflector characto’-i'^tics and hysteresis. This trouble has 

been remedied to a large extent by a 
modification of the reflector In its 
original form, the reflector had a hole 
of the same diameter as the apertures 
in the disks; however, it was found 
that a small spike (a tungsten wire 
0 005 in, in diameter) mounted in the 
center of the hole reduced the exces¬ 
sive curvature of the reflector field 
while permitting the use of the spindle 
aUgnment technique (with a piece of is-n.-Ptotograph of a 2K57 tube. 

tubing instead of a solid spike) A redesign of the disks and a change in 
dimensions of the outer cavity apparently obviates the necessity of the 

tuning stub. 
When operated at 1800 volts and 9-ma cathode current, in the reflector 

mode in the region of —200 volts, output powers from 15 to 60 mw may 
be expected. Under these conditions, the electronic tuning range 
between half-power points should be about 60 Mc/sec. Considerable 
frequency shifts will occur if the beam current is varied by means of the 
focusing electrode. These shifts result in large part from the thermal 
expansion of the noazle or “trumpet” in the lower disk resulting from 
electron bombardment. Since the trumpet tapers down to a thin wall 
at its top, a small change in current distribution over the trumpet can 

make a large difference in its temperature. 
The 2X67.—The experimental type 2K67 developed at Sperry Gyro¬ 

scope Company is an example of a tube designed for transmitting 
applications. This tube is also of interest because of its novel tuning 
mechanism As is evident from the illustrations of Figs. 18-11 and 18-12, 
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the 2K57 has a waveguide output that is iris-coupled to an integral reso¬ 
nator. The latter is tuned not by variation of the grid spacing, but by a 
plunger that varies the volume of the inductive portion. The grids are of 
a honeycomb construction, which permits improved heat conduction and 
reduced interception losses. An improved gun design with higher 
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Fig. 18*12.—Cross section of a 2K57 tube. 
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perveance (note the typical rating of 70 ma at 700 volts as contrasted 
with 40 ma at 1000 volts for the 417A) is also an important factor. 

Inasmuch as experimental tubes under the conditions set forth in 
Table 18T have given output powers of 2.5 watts, the 1.5 watts listed 
there is conservative. In achieving this greater efficiency, it has not 
been found necessary to sacrifice electronic tuning range. In fact, on a 
percentage basis this type has the largest range of those listed. Its 
great range is the result of the high current density achieved and of the 
minimising of the parasitic or inactive capacitance across the r-f gap. 

The 2KS0,—The 2K60, which was developed at the Radiation Lab- 
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oratory by H. V. Neher, and later improved and redesigned for produc¬ 
tion at the Bell Telephone Laboratories, is interesting in comparison 
with the 2K33. Both tubes cover the same frequency range and have 
comparable output powers (perhaps 10 to 40 mw for the 2K50 in com¬ 
parison with 15 to 50 mw for the 2K33), yet their power-supply require¬ 
ments are very different. The explanation is that th(‘ 2K33 was designed 
primarily with regard to simplicity in manufacture, whereas the 2K60 
employs delicate parts and a relatively 
complicated assembly procedure to 
achieve exceptional performance. 

Figures 18*13 and 18*14 are, re¬ 
spectively, a photograph of a com¬ 
pleted tube and an enlarged sketch of 
the inner construction* of an early 
model] that is efesentiari> the same as 
the final version. Referring to Fig 
18*14, 1 is the indirectly heated cath¬ 

ode, with a concave emitting surface, 
a focusing ring 2 at cathode potential, 
and an accelerator grid 3; the combi¬ 
nation brings a beam of about 15 ma 

(at 300 volts or less) to a focus below 
the r-f gap formed by grids 4 and 13. 
Partly as a result of curvature of the 
grids, the beam enters the reflector 
space almost parallel. The reflector 
14 is given the same curvature as Gs in 
its central region, and the curvature 
near the edges is increased by cut and 
try'' methods until about 90 per cent of the beam returns through (?2. The 
cavity 5 is a hole in the block 6, closed on the lower side by the support 
for G2 which has a conical nozzle, and on the upper side by a thin corru¬ 
gated diaphragm to which (?3 and the reflector sleeve are fastened. 

A portion of the cavity block is cut away to form the iris 18 coupling 
to the tapered waveguide 19, 21. This waveguide is standard width 
throughout its length, with the height tapering from that of the cavity 
to standard height at the window. The end of the waveguide is con¬ 
nected for radio frequency by a choke Joint 22 to the Kovar.cup 26 carry¬ 
ing the glass window 27. In the completed tube an insulating flange is 
provided in order that the tube may be mounted with a slight modificar 

^For a more complete description see H. V. Neher, Low-voltage K-band 
OecOlator,” RL Report No. 764, ^pt. 17, 1946. 

Fig. 18-13.—Photograph of a 2K50tube. 
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tion of the standard choke joint. In the production design, the cavity 
is solidly connected to the tube envelope in order to improve the cooling. 

In this tube, because of the small mechanical motion required to 
tune over the band, the thermal tuner is somewhat simpler than that 
employed in the 2K45. The tuning element is formed by the two struts 
8, which are metal strips creased longitudinally for most of their length 
to provide stiffening. These are fastened at one end to an eyelet on the 
reflector sleeve, and at the other to the upper and lower sides of a rigid 
U-shaped support 7 welded to the resonator block. The ends of the 
struts are kept cool by conduction through 7 and the flexible copper 
strap 12. When the upper strut is heated by bombardment from the 

cathode 10 (under control of the grid 9) it expands; the lower strut, which 
is protected from bombardment, retains its dimensions. The junction 
of the two struts at the eyelet thus tends to describe an arc with the lower 
strut as radius. For the small motions considered here, the resultant 
is practically a vertical motion of the whole reflector assembly and Gz, 
because the diaphragm will resist any lateral displacement. It is evident 
that a tuner of this type tends to be self-compensating for ambient 
temperature changes if the cavity block, strut support, and reflector 
sleeve are all of the same material. In the 2K60 tube temperature 
compensation, as evidenced by warmup drift, is very good indeed. 

The speed of this thermal tuner is remarkable. If the tube is allowed 
to reach equilibrium at one end of the 6 per cent tuning range centered 
on 24,000 Mc/sec, and the tuner power is cut off or applied full on as 
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the case may be, the other end of the range will be reached in 1.2 to 
2.6 sec. Near the middle of the range, tuning speeds of 600 to 800 
Mc/sec/sec are obtained. 

The grids are parallel wires rather than meshes, and are wound with 
0.0006-in. tungsten wire, spaced 0.0037 in.; they are bowed to a radius 
of 0.10 in. A grid of this type will stand input powers up to 5 watts 
safely. Alignment of this tube is somewhat less critical than that of 
the 2K33 because the apertures are each 0.040 in. in diameter. The 
reflector shape is such that a lateral displacement of a few mils would 
probably not be very serious, but if the spread in transit angles of the 
returning beam is not to exceed ir/4 radians, the tilt of the axis of the 
reflector must be less than 1 degree. 

18'6. Power Supplies. Piihe Operation.—Reflex klystrons are often 
‘^keyed^^ to produce short buists of r-f power at levels not far in excess 
of normal values, but liiey are seldom operated under pulse conditions 
with high peak input and ouiput powers because magnetrons are supe¬ 
rior in efficiency and power-handling ability. At duty ratios of the order 
of magnitude of the performance of reflex klystrons has been dis¬ 
appointing, possibly because few have been designed for the requisite 
high voltages, but at duty ratios near -j^, which are of interest in pulse 
communication systems, they can be designed for appreciably higher 
efficiency than c-w tubes of the same general constmetion. For example, 
the 2K64 and 2K65 tubes, which physically resemble the 723A/B 
family, have a specification limit on output power of 7.5 watts minimum 
when pulsed at duty ratio at 1130 volts. Under these conditions the 
minimum efficiency is 5.6 per cent, and the average tube should do much 
better. Since tubes specially designed for this class of applications are 
not yet common, it does not appear worth while to consider detailed 
design of suitable pulse generators. The pulse voltage should be applied 
to the resonator or, simultaneously, to the cathode and reflector, if a 
grounded resonator is desired. The applied voltage pulse must have a 
good flat top to avoid frequency modulation during the pulse. This 
requirement is considerably more severe than in magnetron practice 
because the electronic tuning rates for reflex tubes are larger. Questions 
of jitter'^ and starting time are too specialized for discussion here; the 
latter was considered with reference to the 2K25 in Chap. 16. The 
balance of this section is devoted to general considerations applicable 
to power supplies for reflex tubes used as generators of continuous waves 

or modulated CW. 
C-w Operation. Polarity. One of the first points to be settled in 

designing a power supply for a reflex oscillator is that of polarity. As in 
conventional vacuum tubes, it is customary to refer all voltages to the 
cathode, but it is often impractical to run a klystron with the cathode 
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grounded. In applications such as signal generators, where a power 
supply is built for this purpose alone, it is generally desirable to operate 
with the resonator grounded in order that direct connections may be 
made to the r-f output terminals and that the resonator may be tuned 
without danger of shock. When J/he reflex klystron is used as the local 
oscillator in a microwave superheterodyne receiver, however, it is usually 
possible to obtain some, if not all, of the necessary regulated voltages 
from existing supplies and it may then become desirable to operate with 
the cathode grounded and the resonator at a positive d-c potential of 
hundreds of volts. This polarity is used most often with those types 
that operate normally with resonator voltages not over 300 volts. The 
2K50 is provided with an insulating mounting flange especially for this 
purpose, and tubes like the 2K45 and 2K26/732A/B, which have output 
antennas, are usually operated with the cathode grounded. When this 
is done, an insulated shaft is needed on the tuning control. With external 
cavity tubes such as the 707B, it is easy to insulate the coupling loop, 
and with coaxial output tubes like the 726^s, an insulating section can be 
designed in the coaxial-line adaptor. 

Necessity of Voltage Regulation, Regulation will be needed for both 
the resonator and reflector voltages if the output power is to be reason¬ 
ably free from amplitude and frequency modulation. Sometimes in 
superheterodyne local oscillator applications, where the reflector voltage 
is obtained from an automatic-frequency-control circuit, an unregulated 
supply is used for the resonator. This supply must have adequate 
filtering to keep the ripple negligible. A variation of the reflector voltage 
will be sufficient to compensate for any electronic tuning resulting from 
resonator-voltage variations, but unfortunately, in most reflex tubes, 
the power dissipated in the grids will vary as the f power of the resonator 
voltage, and the resulting temperature changes will cause appreciable 
shifts in resonant frequency of the cavity. It then becomes necessary to 
sacrifice a portion of the useful electronic tuning range to compensate 
for the thermal tuning.^ This practice may be satisfactory provided 
the fluctuations in line voltage are not severe. 

Compensating Circuits, A method of compensating for line-voltage 
changes without complete regulation has been described by engineers 
of the Sperry Gyroscope Company.* Like the arrangement mentioned 
in the preceding paragraph, this method will compensate for the elec¬ 
tronic tuning resulting from voltage variations but will not remove 
amplitude modulation or frequency shifts resulting from thermal effects. 

* This point is discussed more fully in the RL Group Report 53-4/17/45, ^'Regula- 
tion Off Resonator Voltage in Reflex Oscillators,*' by J. B. H. Kuper, O. N. Sands, 
and P. A. Cole. 

»'^Slystioii Technical Manual," Sperry Gyroscope Co., Inc., 1044, pp. 55-55. 
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““Vo and —(Fo + \Vr\) are the cathode and reflector voltages, respec¬ 
tively, measured with reference to the resonator, the time of flight in 
the reflector region will be proportional to a/Fo/(Fo + (Frl), assuming a 
uniform retarding field and neglecting space charge. Electronic tuning 
effects will be eliminated if this time of flight is constant, apart from the 
small effects that are due to the variation of the transit time in the r-f 
gap. It is easy to show by differentiation that the time in an ideal 
reflector field will be constant if 

ACFo + \Vr[) _ 1 AFo ... 
"(Fo + IFh) ~2 Fo^ 

or if the fractional change in reflector voltage is made half the fractional 
change in cathode voltage. This condition can be satisfied by supplying 
the reflector partly from a stable source and partly from the same unregu¬ 
lated supply furnishing the catLodc-to-resonator voltage, as is illustrated 

Resonator Resonator 

(a) 
Fig. 18‘16 (a) and (6).—Circuits tor compensating electronic tuning resulting from line 

voltage variations. 

schematically in Fig. 18T5. Figure 18T5a shows an arrangement using 
gas-discharge voltage-regulator tubes fed from an auxiliary half-wave 
rectifier operating on the same transformer as the main supply. A circuit 
of this type is reported to be satisfactory for line-voltage variations up 
to ±10 per cent. Batteries may also be used, as indicated in Pig. 
18T56, because the drain in the reflector circuit is infinitesimal. In 
practice, Eq. (4) is used only as a rough guide in setting up the circuit, 
and the constants are adjusted empirically for the particular reflex 
oscillator used. These circuits may need readjustment to restore good 
compensation after a major change in operating frequency has required 
a large change in reflector voltage. This necessity for individual adjust¬ 
ment, together with the residual amplitude modulation and thermal- 
tuning effects, has greatly restricted the application of this method, which 
appears most attractive in connection with high-power tubes. 

Electronically Regulated Supplies. A discussion of the details of 
regulated power supply design is beyond the scope of this book, but 
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some general remarks of particular interest in the present connection 
may be worth while. Regulators suitable for reflex klystron supplies 
may employ cold-cathode gas-discharge tubes or may be of the so-called 
“ electronictype in which the voltage drop in a series tube (ordinarily 
a triode) is controlled. This type, among others, has received extensive 
discussion by Hunt and Hickman,^ and in spite of its apparent greater 
complexity, is usually more economical than the gas-discharge type. 
The reference voltage, however, will ordinarily be provided by one or 
more gas-discharge tubes that also regulate the reflector supply. Since 

(a) 

ib) 
Fia. 18*16.—Schematics of typical olectronically regulated supplies for reflex oscillators. 

an electronic regulator is very effective in reducing ripple, a much smaller 
filter can be used than would otherwise be possible. Two versions of 
electronically regulated supplies are shown schematically in Fig. 18T6. 
In Fig. 18T6a an auxiliary supply furnishes the reference voltage and 
the reflector supply. Since the principal drain on this supply is the cur¬ 
rent drawn by the gas-discharge tube, the supply can be a^simple half¬ 
wave arrangement with jBC-filtering. In Fig. 18T66 only one rectifier 
and filter are used, but the voltage out of the filter must be the sum of 
the resonator and reflector supply voltages, plus the drop in the series 
tube« This higher voltage may increase the cost of the filter condensers 
and transformers enough to make circuit (a) preferable. Also, in cir- 

1F. V. Hunt and R. W. Hickman, ^‘On Electronic Voltage Stabilizers,’* Rev. ScL 
Inst. 10, 6, (1989). 
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cuit (6) the beam current in the oscillator plus the screen-divider current 
for the pentode must flow through the gas-discharge tube; consequently 
this scheme is restricted to those tubes having currents in the desirable 
working range of the gas-filled tubes. ^ This restriction is not severe 
because a great many reflex tubes have normal currents in the range 
15 to 25 ma. 

An annoying phenomenon that sometimes occurs in regulators of the 
types shown in Fig. 18T6 is a high-voltage surge occurring when the 
supply is first turned on. Such a surge results when the series tube, 
which is usually a quick-heating triode, starts to conduct before the 
pentode control tube has warmed up. The remedies are obvious: use 
of a slow-heating rectifier tube, or se'^uence switching with a time delay 
to prevent the application of the high voltage until the cathodes are 
warmed up. Gemrall^', however, this surge applied to a cold oscillator 
tube does no harm. 

Many tubes require, in addition to heater, resonator, and reflector 
voltages, a voltage for a control electrode (for example, the Sperry tubes 
of the 417A family and the 2K33) or a bias for a thermal-tuner grid 
(as in the 2K45 and the 2K50). Because supplies of the sort indicated 
in Fig. 18T6 have available regulated voltages both positive and negative 
with respect to cathode, one can obtain such extra voltages by a potentiom¬ 
eter arrangement. Most of the Sperry tubes operate satisfactorily 
with the control electrode at cathode potential, but the 417A requires a 
small positive bias for optimum performance. The rest of the Sperry 
reflex klystrons require zero or negative biases. Some of the higher- 
power tubes may have secondary emission from the control electrode and 
therefore require a low-impedance bias supply. The manufacturer's 
recommendations should be adhered to carefully in this respect. 

Jteflector Supply Impedance, Although normally no current other 
than leakage current and a small gas current will flow in the reflector 
circuit, it is inadvisable to have a very high impedance there. Many 
reflectors have secondary emission ratios greater than unity so that if the 
reflector momentarily goes positive as a result of some transient, and a 
high impedance is present, the reflector may bias itself positively and 
hold its bias. The condition is sometimes called '^blocking," generally 
results in a considerable evolution of gas, and may ruin the tube. Such 
an accident is most likely to occur when the primary power is removed 
briefly and restored before the cathodes have cooled; it is much more 
probable with a grounded-resonator supply circuit than with a grounded 

^ Although series operation of gas-discharge regulator tubes is satisfactory and 
often employed, (the only precaution required being to shunt a high resistance across 
each tube but one), parallel operation is rarely attempted. Because equalising 
resistors are necessary, the regulation obtained is poor. 
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cathode. Similar troubles may be encountered if too large a modulating 
voltage is applied to the reflector. In either case a diode connected 
between cathode and reflector so that the reflector is prevented from 
going positive is well worth the expense. 

Accuracy of Regulation. The degree of regulation required is clearly 
a function of the frequency stability required in a particular application. 
Unfortunately, the electronic tuning rate—^the frequency change per 
volt change on the reflector—cannot be specified for a particular tube 
unless the load is also specified. This fact is evidenced by the fact that 
the loaded Q of the resonator appears in the expressions for electronic 
tuning derived in previous chapters. To give an idea of magnitudes, 
eighty out of one hundred 2K25 tubes tested in the load described in the 
preceding section had tuning rates at 9370 Mc/sec between 1.4 and 
3.1 Mc/sec per reflector volt.^ 

With spreads as large as this, it is difficult to be specific about the 
regulation requirements in a given application, but it is safe to conclude 
that ripple and other fluctuations must be held to a small fraction of a 
volt. To the extent that the assumptions made in connection with 
Eq. (4) are valid (the neglect of thermal tuning effects is the most serious), 
it can be shown that the electronic tuning rate with respect to resonator 
voltage will be the rate with respect to reflector voltage multiplied by the 
factor i(l — |Fr|/|7o|). Because |Fri is usually about half of |7o|, the 
conclusion is that, provided thermal effects are absent, the regulation of 
the resonator voltage need be only about one quarter as good as that of 
the reflector supply on an absolute basis, or half as good as the reflector 
supply on a percentage basis. 

More specific data and complete diagrams of typical power supplies 
may be found in Chap. 3, ‘‘Power Sources,^^ of Vol. 11 in the Radiation 
Laboratory Series. The manufacturers' bulletins should be consulted 
for information on the peculiarities of specific types. 

^ J, B. H. Kuper and D. S. Beers, ^‘Electronic Tuning of Reflex Oscillators,” RL 
Report No. 774, Aug. 1, 1945. 
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Baytheon Manufacturing Company, 403 
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Reflector space-charge effects, 373 
Reflector supply impedance, 525 
Reflex klystron, 211, 218-219, 222, 223, 

226, 230, 238, 240, 311 
noise in, 470 
static characteristics of, 442-444 

Reflex-klystron modulation, 441-469 
Reflex oscillator types, 495 
Reflex tube, 707 B, 508 

723 A/B, 512 
2K25, 512 
2K33, 392-403, 516 
2K46, 514 
2K50, 519 
2K57, 517 

Resonant circuit, driving of, by slowly 
changing r-f current, 455 

Resonator admittance, 319 
Resonator design, 498 
Resonator tube, external, SD-836, 379 
Retarding field, 138 
R-f relations, 64 
Rieke diagram, 405 

experimental, 432 
ideal, 414 
practical, 421 

S 

S22A, Heil tube, 30 
Scaling, 373 
Screen noise current, 109, 121 
Screen transadmittance, 109 
Sere&i transmission coefficient, 109 
BD-83S, external resonator tube, 379 
707B reflex tube, 508 
723 reflex klystron, 27 
723A/B reflex tube, 512 

726, klystron, 403 
Shepherd, W. G., 385 
Shot effect, 258 
Shunt conductance, 76, 88, 280 
Shunt (‘onductance G, 77 
Sign convention, 297, 394 
Signal amplifier, 18-21 
Signal-to-noise ratio, 257 
Sink, 418 

second region of, 430 
Smoothing factor, 66 
Space charge, 209-217, 372 

invariance of, 372 
Space-charge density, 354-357 
Space-charge devices, 97 
Space-charge factor, 121 
Space-charge smoothing, 160 
Space-charge transit-time effects, 367- 

373 
Spectra, primary, 490 
Spectral density, 112-114 
Sperry Gyroscope Company, 255, 259, 

269, 278, 279, 283, 284, 287, 288, 
293, 296, 300, 444 

Stabilization, 435, 439 
Superregeneration, 176 
Sylvania Electric Products, Inc., 379 

T 

Tetrode, 108, 119 
Thermal compensation, 505 
Thermal effects, 413 
Thermal tuning, 503 

speed of, 504 
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Transadmittance diagranis, 302-304, 
308-310 

Transconductance, effective, 146 
electronic, 280 

small-signal, 252, 297, 299, 331 
maximum, 151 

Transient phenomena, 458-462 
Transit angle, 33, 41 

gap, 220-227, 231, 316 
finite, 224-232 
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Transit angle, spread in, 150 
Transit time, 33, 356 
Transits, multiple, elimination of, 403 
Triode, high-mu, 108, 116 

planar, 286 
CV90, 23 

Tubes, lighthouse (sec Lighthouse tubes) 
multigrid, 106 

Tuning, electronic, 315, 323, 350, 420 
linearity of, 443 

Tuning curve, 178 
Tuning methods, 502 
Tuning range, electronic, 27, 28, 331, 336, 

378-384, 443 
half-power, 327 

Tuning rate, electronic, 443 
Turn-around point, 367, 368, 377 381 

2C40 lighthouse tubes, 20, 25, 26 
2C43 lighthouse tubes, 21, 25 
2K25 rc'flex tulie, 512 
2K33 reflex tube, 392-403, 516 
2K34 oscillator-bnff^r klystron, 29, 296 
2K35 cascade amphfi(*r, 22 
2K37 frequency-m\iltiplier klystron, 285 
2K45 reflex tube, 514 
2K50 reflex tube, 519 
2K57 reflex tube, 517 

U 

Undercoupling, 308 
Unloaded Q, 76, 87 

V 

Velocity, average, 100, 123 
fluctuation in, 483 

Velocity distribution, 100 
Velocity distribution phenomena, 122 
Velocity modulation, 34, 40, 46, 55, 59, 

133, 201-203, 218-219, 224-228, 233, 
240, 245-246, 260 

second-harmonic, 228-230, 244 
Velocity spectrograph, 269 
Velocity spread, 60 

narrow, 137 
Voltage generator, equivalent, 456, 463 
Voltage regulation, 522 
Voltage source, internal, 51 
Voltages, and dime Aisions, scaling of, 

354-357 
output-gap, limitations on, 263-264 
plate and heater, 195 

W 

Waveform, bimched-beam-current, 233- 
235 

bunched current, 229 
Waveguides, 7 
Wavelength, free-space, 70 

resonant, 73 
Wavelength limit, long, 373 

short, for klystron operation, 373 
Wavelength range, 373 
Webster, D. L., 203, 209 
Width, half-power, total, 323 






