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PREFACE 

I HAVE been writing this book, off and on, for the last six years. Now 

that it is all in print, the preface must be written and should describe 

my aims in writing the book. It is hard to recall now precisely why I 

embarked on this stupendous task in 1943. Probably it was due to 

exasperation at not having the various standard cases of aerial design 

set out in a book, either for the convenience of my own reference or to 

assist in explanation to others. 

The general scheme is to set out very fully the solution of a large 

number of special solutions of Maxwell’s equations and to show how they 

can be used to guide the experimental work on which all practical 

designs of aerials must ultimately rest. 

It is bad practice to start on experimental work before having thought 

out what the experiment is likely to show: unless this is done much time 

will be wasted and it is likely that the experimental results will not be 

capable of general interpretation. The performance of most aerials 

approximates very closely to the known solution of some idealized 

problem, and therefore the standard solutions set out here are a great 

help in practice. 

This work is intended mainly as a hand-book to assist in the design 

and testing of short-wave aerials and it contains a large amount of 

experimental work. But in addition to this use, much of the earlier 

chapters should be helpful to students of electromagnetic theory, 

independently of whether or not they expect to do practical work on 

aerials: thus it is intended, in part, as a students’ text-book. 

Though this is a large book it does not attempt to cover all aspects of 

aerial design and it does not even cover the whole of the aspects with 

which it does deal. I have always been disinclined to write about any¬ 

thing of which I have not had personal experience and for this reason I 

have scarcely touched on problems I have not worked at. 

The book contains a great deal of mathematical analysis: all of it is 

straightforward work which could have been done any time these last 

sixty years: though sometimes rather intricate, it is all elementary in 

the sense of not requiring any special skill or novelty of method. There 

is no reason to expect that there is any of it which has not been worked 

out, at least in part, by someone else previously. Because it is proper 

to regard the analysis as elementary I have not attempted to search out 

previous publications of the solutions I have derived myself. But I 
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believe I have not failed to make acknowledgement of every occasion 

on which I have obtained help from previously published work. 
When the book had been completed, the Editors of this series 

suggested that I should convert all the analysis into M.K.S. units. 

Though quite willing in principle to do so I found it was impracticable 

to do it at that late stage: had the attempt been made I feel sure that 

many slips and errors would have crept in. Thus it was decided to 

leave it as it had been written. 

This book w as started and most of it w as written in the Trafford Park 

Laboratories of Messrs. Metropolitan-Vickers Electrical Co. Ltd. With¬ 

out the ideal conditions, the experimental facilities, and the kindness 

and help of my colleagues at Trafford Park it never could have been 

written. I take this opportunity to record my ever-grateful thanks to 

the Company and especially to Sir Arthur Fleming for the encourage¬ 

ment he gave me and for allowing me the privilege of spending three 

extremely happy years working under his direction. 
E. B. M. 

ENGINEERING LABORATORY, 
CAMBRIDGE 

April, 1949 
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I 

ELECTROMAGNETIC FIELD OF CURRENT 

FILAMENT AND PLANES 

1.1. Preliminary 

In studying electromagnetism the student is soon introduced to certain 

standard problems whose solution is straightforward: typically these 

are the distribution of magnetic field due to a steady current flowing 

in (a) a very long straight wire, (b) a very long solenoid, (c) an infinite 

flat sheet. In this chapter we shall solve these problems for a current 
which is alternating simple harmonically at any frequency. We shall 

include a few associated problems which can be solved by superposition 

of these three standard cases. In this way we provide ourselves with 

a set of tools which can be used to solve, either completely or approxi¬ 

mately, other more complicated problems which are the main study 

of this book. 

In this chapter our concern is only to find the solution to certain 

precisely specified and hypothetical problems: it is no part of our 

business now to discuss v hether these problems are precisely realizable 

in the physical world: that will come later and such matters are dis¬ 

cussed at length througJi the remainder of the book. Suffice it to say 

now that the reader need not fear he is being asked to watch the solution 

of certain pedantic and pedagogic exercises: if he will learn to do these 

exercises he can then be taught to solve many practical problems which 

arise continually in the practice of radio communication. These pre¬ 

liminary exercises may be likened to the essential grammar, if not the 

very,alphabet, of the language. Those who would speak and read this 

language must know these preliminaries, there is no other way. The 

alternative is not a language but is gesture and dumb show: this is not 

to say, however, that some communication cannot be carried out by 

the process of gesture and dumb show, for much is done that way. 

In teaching these preliminaries the reader’s attention will not be 

distracted by discussions of practical w ays and means, though an aside 

remark may sometimes be made; the writer does not propose to justify 

each choice of theme now but asks for an act of faith from the reader. 

1.2. Brief survey of the steady current problem 

In the eighteenth century men sought to establish experimentally 

a connexion between electrical phenomena, as produced by the fric¬ 

tional type of generator, and the magnetic phenomena of the lodestone. 
4791.1 3 
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Systematic description of the first had been helped enormously by the 

invention of a hypothetical and im|X)nderable stuff called electricity, 

which served as a sort of mental focus for the ‘virtues’ observed; it 

described, without attempting to explain, these ‘virtues’. Similarly, the 

concept of magnetic pole had correlated the observed phenomena of 

magnetism and served to provide a way for calculating the net result 

of any combination of specified lodestones. Then came the discoveries 

of the Italian physiologist Galvani (1737-98) and the invention by Volta 

(1745-1827) of the voltaic pile, now called an electric battery. The 

voltaic pile produced sparks and shocks and attractions, and therefore 

was indistinguishable in effect from a frictional electric machine, but 

had the additional property that its ‘virtue’ was long lived and not 

immediately discharged by a shock or spark. It was a new and better 

source with which to seek for magnetic effects. Many people sought a 

connexion between electricity and magnetism, and Hans Christian 

Oersted (1777-1851) found it, in Copenhagen, in the year 1820. Within 

a year of the notification of Oersted’s discovery the French mathemati¬ 

cian Andre Marie Ampere (1775-1836) had established a full and 

complete quantitative description of the whole x)henomenon. His work 

is an everlasting glory of logical thought, systematic experiment, and 

experimental genius: it left nothing which could possibly be added to 

the quantitative statement of steady current magnetic phenomena, so 

long as man finds it convenient to describe electrical phenomena in 

terras of charges, inverse square law, and magnetic fields. Ampere 

started with the guess, better called hypothesis, that the magnetic field 

which results when the ends of a single turn of wire are connected to 

the two terminals of a voltaic pile is indistinguishable from that of a 

bar magnet with axis normal to the plane of the turn, provided always 

the comparison is made at an infinite distance and, moreover, that the 

moment of this said equivalent magnet would be equal to the area of 

the turn (whatever its shape) multiplied by the electric current flowing 

in it. It should be noted that his hypothesis is formulated in a way 

w^hich forbids all possibility of exact and direct experimental verifica¬ 

tion, since the comparison must be made at infinity. A magnetic field 

was known to be associated with an electric circuit and therefore any 

circuit must be represented by some equivalent system of bar magnets. 

The genius of Ampere lay in postulating comparison at an infinite 

distance: the power of his logical argument lay in discovering how 

strong the field should be at a finite distance. In effect he had con¬ 

ceived the elementary circuit, corresponding to the elementary magnetic 
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particle. The pure logic of his argument made it possible to design 

experiments by which his hypothesis could be tested; these experiments 

he conceived and made, no subsequent experiment has yielded the 

faintest suggestion that Ampere’s hypothesis is not a complete and 

accurate description of the whole phenomenon. The hypothesis is 

expressed most conveniently in a derived form, as follows: If a unit 

magnetic pole is taken round any circuital path which threads a current, 

then work is done whose amount equals 47r times the current flowing 

in the circuit which is threaded. It is expressed algebraically by the 

symbols § H dl ^ or by the ‘short-hand’ description ourlfl^ == 47n'. 

The inclusion of the factor 47t seems clumsy, but if it is left out here it 

causes trouble elsewhere and cannot be avoided everywhere. We shall 

refer to this statement of the hypothesis as Ampere’s Law or as the 

Work Law.f 

To obtain a magnetic field it is essential to connect each end of the 

coil to one terminal of the battery, in modem parlance to close the 

switch: that was the discovery which Oersted made and which others 

had failed to make. The existing nomenclature and ideas of electricity 

insisted that a current of this imponderable hypothetical fluid must be 

flowing from the battery. There was no need to suppose it flowed 

anywhere except through the material of the wire itself, and to suppose 

more than this would be to introduce an unhelpful complication. Yet 

the associated magnetic field is found everywhere through the whole of 

space. Thus have we associated something which is found throughout 

a volume with something which occurs only locally; namely, a flow of 

current which is concentrated entirely within a fine wire. It is important 

to have this concept clear in the mind. 

Though the work law (when couched in its magnetic-shell form) 

suffices to calculate the magnetic field due to any circuit or coil whatso¬ 

ever, it is not a convenient tool for calculation. Calculation would be 

simplified enormously if the circuit could be treated as elements of 

length rather than elements of area. But an isolated elementary length 

of circuit has no physical meaning whatever because it has ceased to 

be a circuit: the concept of cutting the wire into lengths is obviously 

and inescapably equivalent to ‘opening the switch’. We owe it to the 

clarity of thought of Oliver Heaviside (1860-1926) to give us a rational 

t In rationalized M.K.S. units we should write ^ H dl ^ i, where i is the current in 

amperes, dl is measured in metres, and H is the force in newtons on the unit magnetic 
pole, the unit magnetic pole being <lefined as one which repels a similar pole 1 metre 
away with a force of jTr/iAo Nw, where ftp « 47r/10^. Thus this unit pole is 10®/4ir times 
as large as the classic tinit in the c.g. system. 
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method of forging the tool required for computation. Because his con¬ 

cept bears a striking resemblance to the alternating-current doublet, 

used repeatedly in this book, it is appropriate to develop the Heaviside 

element here, even at the cost of a small delay in our main quest. 

Suppose a cylindrical ‘torch battery’ (having the usual insulation 

round its curved sides) is immersed in an infinite ocean of some con¬ 

ducting liquid, say sea-water. Then current will flow out radially and 

Fig. 1.1. Diagram of Heaviside element. 

uniformly from its positive pole and converge similarly into its negative 

pole. In Fig. 1.1 the battery is represented diagrammatically by AB. 
Because current flow is symmetrical about the axis AB the lines of 

magnetic force must all be circles centred on this axis. One such is 

indicated in Fig. 1.1 by the circle whose centre is C and radius i?. 

If the field be H round this circle then, by Ampere’s work law, 

H X 27rR = 47r X current flowing through the circle. This said current 

must be equal numerically to the difference between the outwardly 

flowing current diverging radially from B and the like inward flow 

converging on A, The current density i at radius r, due to a total 

current 1 diverging radially, is IHence the total current flowing 

outwards through the ring of radius R is this density multiplied by the 

area of the spherical cap bounded by the circle of radius R. This area 

is well known to be equal to 27rr(f—rcos0), and thus the outflowing 

current equals 

^x2nr^{l-oose) = |(1—cos0). 

Hence the net current = ^[{1—co8 0}—{1- 
2 

—S0)}] = ~sin0 80. 
2 
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^ I Be sine ^ 18d 

R ~ r 

I Blm\.e (1.1) 

The magnetic field at any point in the ocean is thus described in terms 

of the length of the battery and the total current fiowing through it. 

Though current is flowing everywhere throughout the whole ocean, yet 

the magnetic field is described in terms of the current flowing only in 

that one place where all of it is constrained to gather together and pass 

through a very narrow tube, the battery. The calculation is much 

simpler than could possibly have been expected at first sight. Any 

number of batteries may be joined end to end, each joint being then 

insulated to prevent current flowing from it. The magnetic field which 

will then result is to be calculated by evaluating I Bl sin djr^ along the 

chain of batteries, but the integration must start and finish with this 

chain. Strange to say, the magnetic effect of the current flow which 

is diffused everywhere is reckoned correctly in this process. Such a 

process might be needed in practice to calculate the strength of a 

magnetic field intended to explode magnetic mines. Heaviside called 

his concept ‘a rational current element’ and described it on p. 502 of 

vol. ii of his Collected Papers, If the two open ends of his ‘cable of 

batteries’ are joined together, then flow in the ocean will cease and 

the ocean plays no more part: a closed wire circuit has been formed 

and now the conducting ocean can be drained away. The process has 

shovTi that the magnetic field of a closed circuit can be calculated at 

any point by performing the integral of 181 sin round the circuit: it 

has provided a new tool for calculation and that is all there is to be said 

about it. It does not say and cannot say that a particular element makes 

a particular contribution to the total result, in the sense that the total 

result would be that much smaller if that element were snipped out. 

If the element were snipped out current w^ould cease to flow and there 

would be no magnetic field anywhere. Magnetic field would reappear 

if the ocean w^as poured back again and then the field would be short 

of the previous total by the contribution from the missing element; 

but it would not be the original current flow. 

The intrinsic interest of Heaviside’s element is very great: its interest 

here is to show that fields due to a flow which occurs throughout the 

whole of space can be calculated in terms of the current flow in that 

one tiny element of volume where all the current is constrained to pass. 

We are leading up to aerials and are hoping to calculate the field at a 

t In rationalized M.K.S. units (1.1) would be written H == 7 8Z sin ^/47rr® oersteds, 
where I is in amperes, I and r in metres. 
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distant point in tenns of the current where it flows through the aerial 

itself. That is why Heaviside’s element matters to us here, it is a 

hopeful portent: it may now be stored in our memory and we may 

proceed. 
Armed with the Heaviside element it is a simple matter to evaluate 

the field outside a, long straight current filament, inside an infinite 

solenoid or outside an infinite plane: the result is well known to be 

H == 2//r, 4it/; or 2jrJ respectively. These results are true only if the 

current is steady, and it is then only that Ampere’s law applies. 

In 1831 Michael Faraday (1791-1867) discovered that a current is 

produced in a closed circuit while it is moving in a magnetic field: the 

effect ceases with the motion. 

The flow of current in a wire can be caused only by the existence of 

an electric field: it seems unlikely that this field depends on the presence 

of the material circuit. To be a little less positive, we will put it this way: 

though a material circuit is necessary for a current flow, yet an electric 

field could be discovered at any point of space by means other than the 

flow of a current, say, by a charged pith ball or a gold-leaf electroscope. 

A charged pith ball moved relative to a magnet will, in principle, 

disclose the existence of an electric field. A detector sensitive enough 

to show the force at-a point did not then exist. The only detector which 

worked was a galvanometer recording the current induced in a wire 

circuit, and this could only disclose the electric force integrated round 

the closed circuit. Neumann formulated the discovery quantitatively 

and his formulation may be written 

jEdl= -d4>ldt-f 

or curl E — —dHjdt. 

The negative sign describes the sense of the ‘electromotive force’, 

according to right-handed axes or the ‘right-hand screw rule’. We 

shall call it the Faraday Law or the Electromotive Force Law. Though 

inadequate experimental facilities may have demanded a material 

circuit, it can scarcely be doubted that curl .£> = —dHjdt rouftd any 

circuital line drawn m space, whether current is allowed to flow of hot. 

Experience showed currents were induced in a circuit during the c^ai^e 

of ouirent in another circuit, relative movement of the drctuta not baing 

essential. Thus, current was induced m a semroh coil ^oed insidn a 

t mUoai^ized M.K.S. ujaita S wouid be in yclts. pc^r znetie end 4 faJNN ; 
eppropnats to tho unit pete of tbst syateni: n>oe tbe 
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long solenoid in which an alternating current flowed. More significant 
still, current was induced in a ‘search coil’ which embraced the loi^ 
solenoid externally: in such circumstances the induced electromotive 
force is independent of the area of the search ooU, provided only it 
embraces the solenoid. It woifld thus seem that an electric force can 
be produced even at places where there is no magnetic field. The 
suspicions of the thoughtful reader will be aroused here, and rightly so. 
He will suspect the magnetic field is not zero outside a solenoid carr3dng 
an alternating current, and he will be right. He will suspect that more 
precise measurements will show the e.m.f. is not independent of the 
area of the search coil, and again he will be right. He is perceiving that 
Faraday’s and Ampere’s laws are not strictly consistent and that in 
using the relation curl E = —dHjdt it will not suffice to calculate H by 
Ampere’s method. Ampere’s daw applies only to steady currents: it 
needs extending to include changing currents. Without such extension 
this book cannot proceed. 

We here remind the reader of a mathematical tool useful in describing 
magnetic fields. It is a tool which describes the flux through an area 
in terms of a line integral round its bounding edge: it is denoted by the 
symbol A and is defined by the equation § Add = ^ or curl A = H. 
It is called the vector potential because the in verse square law demands 
that A — i 81/r-f-oonstant, and this is reminiscent of the electrostatic 
potential of a charge element, for which V = q'/r+constant. Arbi¬ 
trary convention takes the constant in F as zero. If we choose to do so 
we can take the constant in A as zero, but with no more and no less 
reason than mere convenience. We believe that curl E = —dHjdt and 
we define curl A = H. Thus we obtain E = —dAjdt+dldt (unknown 
constant). The value we derive for E will depend on this unknown 
constant and the issue cannot be evaded. Faraday’s law cannot possibly 
suffice, by any device of introducing a new function, to disclose the 
value of at a point. For it relates only to curl E, and not to E itself 
at any point of the curl. Suffice it here to remind the reader of the 
mathematical tool called vector potential: a function, like scalar poten¬ 
tial, defined only by its space rate of change in relation to a static field. 

1.3. The Maxwell hypothesis 
Consider a fiat plate condenser having jfiates of area A separated 

a distance d and in vacuo and carrying a charge Q: then the eleotrio 
Ipree jS hetwerai the {dates has the vidue 4m(QIA) everywhere. If the 
oexh^^iHier^^ in the process of charging, or (hsdhaiging, the current I 
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flowing in the wires connecting the plates to the source of voltage is 

related to Q by the relation I = dQjdt == (AI^7r)(dEldt). This relation¬ 

ship between I and dEjdt shows we may trace round a complete 

circuit of current flow by introducing the device of reckoning a 

changing electric force as equivalent to a current: round one part of 

the circuital path the flow consists of moving electric charges confined 

to a wire, and in the other part it consists of a time changing electric 

force. It is a device for making current flow circuital; for tracing 

round a circuit. 

Between 1863 and 1876 James Clerk Maxwell (1831-79) conceived 

the idea that this equivalence might be complete and that a changing 

electric field could never be distinguished from the current flow con¬ 

ceived by Ampere. In other words, it must be accompanied by a 

magnetic field: and hence that the magnetic field associated with the 

current flow which is charging a condenser would be calculated cor¬ 

rectly by the ‘Heaviside rational current element’ process. It was an 

idea which was not then susceptible to direct experimental verification: 

it is essential, just as it was with Ampere’s idea, to derive the logical 

consequences of the idea and find therefrom an experiment capable 

of verification. The idea of current flow as something wliich can occur 

only in a wire is gone for ever; now it is something which may occur 

everywhere; in places it may be a conduction current and elsewhere a 

displacement current, but they are only alternative aspects of a coherent 

and indistinguishable whole. Steady flow is a particular case where the 

current flow is restricted to the wire; at any rate this is so on a time 

average and a not too detailed view of the phenomenon. 

Apply the concept to a charged particle moving uniformly in a 

straight line. All space is filled with electric field w hich is changing at 

every point because the charge is moving. If there is magnetic field, 

then symmetry shows its lines must be circles centred on the axis of 

movement: Fig. 1.1 will suffice to describe the problem if the torch 

battery AB is replaced by a charge q moving with speed v in the 

direction AB. According to the inverse square law the flux of electric 

force through the circle of radius R is i*eadily seen to be equal to 

27rqlr^ X r2(l—cos 6): hence the time rate of change of this electric flux is 

-2^^(oo,9) = = 2^;^^ 
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Now applying the Ampere law we find H = qv&vadjr^, and this is 

the same as would result from a Heaviside element 181 = gv at AB, 
immersed in a conducting ocean. Once more the magnetic effect of a 

current which is distributed through all space is to be calculated in 

terms of the current flowing at the one point where it is all constrained 

together, in this case the only point where charged matter is in motion. 

The previous calculation of H cannot be correct because no cognizance 

has been taken of the Faraday law: E was stated from the inverse 

square law and consequently curl E must be zero, whereas in fact curl E 
must equal —dHjdt. Thus it was incorrect to write E = qjr^ when q is 

in motion, and the expression for H is only an approximately correct 

derivation from the Maxwell hypothesis. 

So far we have deliberately worked in inconsistent units. Q in the 

expression E — Qj^irA or j//* is in electrostatic units, whereas i in 

curlH = ini is in electromagnetic units. We ought to have written 

E = QjincA or j/cr*, where c is the number of electrostatic units in one 

electromagnetic unit of charge. Accordingly we write the Maxwell 

hypothesis as 
, „ . 1 dE 

curlH = inx-^-jT = 
inC dt 

1^ 
c dt ’ 

and shall call it the Maxwell law. If the path curled round includes also 

a charge q moving with .speed v we have 

curlff = 

where i is the conduction current reckoned in E.S. units. 

The whole concept of current is now much enlarged and is included 

in a definition once given by Faraday:f ‘By a current I mean anything 

progressive, whether it be a fluid of electricity, or two fluids moving in 

opposite directions, or merely vibrations, or, speaking more generally, 

progressive forces.’ 

Many electricians continue to find that Maxwell’s concept of displace¬ 

ment current is repugnant to them and it would seem that Lord Kelvin 

was always among that number. Perhaps the reason for that distaste 

is somewhat as follows. The science of electricity advanced enormously 

as soon as men invented the ‘stuff electricity’ and concentrated their 

attention on the charges situated at points in space; charges which, in 

a'sense, they had just then invented. This was in contrast to devoting 

their attention to the whole ‘orb of virtue’ surrounding an ‘electrified 

t S®® Faraday’s Researches, voL 1« 19. 
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body’. The concept that the charge was the cause and the orb of virtue 
was the result seems to have marked the real birth of the science and 
to have paved the way for Priestley’s suggestion of inverse square law. 
The dictum ‘never rest until you have located the charges which are 
producing the electric field’ is one of the soundest precepts which an 
applied electrician <»n have. 

In using Ampere’s law we curl round charges which are supposed 
to be moving along a wire and thus here we know and remember where 
the charges are located. But in using Maxwell’s law we do not curl 
round omr supposedly ultimate concept, the charge, but only curl round 
a path which encloses a field (the effect of a charge) which is changing. 
Looked at in this way, the electrician may well feel repugnance and 
feel he has abandoned the precious and hard-won charge to play, as of 
old, with a nebulous ‘orb of virtue’ or ‘electric effluvium’. But Maxwell 
was much infiuenced by Faraday and it seems now as if Faraday’s mind 
worked more, on the whole, with orbs of virtue than with point charges. 
It must surely be rather a matter of arbitrary choice whether the 
charge or the field is regarded as the ultimate reality; the old dictum 
that a charge is the end of a tube of force seems to abandon the cause 
and effect notion and to regard the charge and the tube as inseparable 
parts of a whole unity. 

Let us now return to the condenser of our supposed experiment and 
let it be furnished with a material dielectric, such as paraffln wax. In 
our determination to try to describe everything in terms of electric 
charges, we endow the particles of this wax with electric doublets whose 
electric moment is attained by the slight straining apart of a normally 
coincident positive and negative charge under the infiuence of the 
attractions and repulsions arising from the charges situated on the metal 
plates of the condenser. This idea has been very successful and has 
served to describe all the main phenomena of dielectric polarization 
while still permitting the retention of an inverse square law which is 
unmodified by the properties of the medium surrounding the charges. 
And, moreover, in due course, it has helped to lead on to the extremely 
firoitM concepts of valency electrons in a molecule. The idea of the 
formaticm of doublets in the material dielectric is firmly entrenched in 
our system and is a valuable addition to it. Aocordii^ly, in curh’ng 
round a path in the paraffin wax, while the condenser is chaining, we 
certainly do presume that we are curling round electric charges whidh 
axe in motion, restricted though this motion is. A miaxmeopio vie^ ^ 
what is happening in the wax differs from a microscopic Anew of what 
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is happening in the wire only in that we are apt to suppose that a given 
electron can progress along the whole length of the wire, whereas a given 
electron in the wax must always oscillate about a fixed point in space 
and can never emerge from the wax and pass on to a plate of the 
condenser. But when we allow ourselves to go so far as to speak about a 
given electron, to mark one with a spot of paint so to speak, we are 
pretty certain to be talking nonsense. If all electrons are identical, how 
can any one be endowed with recognizable identity? It has to be 
admitted that, whether we are curling round a path in the wax or 
curling round the wire, a current of moving charges is threaded and 
that there does not seem to be any significant diflFerence in the mechan¬ 
ism of current flow. And thus Maxwell’s law does not appear to be 
any new concept when applied to a material dielectric and in such 
circumstances there does not appear to be any real distinction between 
conduction and displacement currents. However, there does remain 
one important point which must be taken into account. The electric 
charge which appears on the surfaces of the wax is smaller than the 
charge on the contiguous plate of the condenser and therefore the 
current due to moving charges in the wax is smaller than the current 
of moving charges flowing in the wires through which the condenser is 
being charged; and this means the current is not continuous in magni¬ 
tude roimd the whole circuit, even though it consists of moving charges 
in all parts of the circuit. The current due to the oscillating charges in 
the wax is too small; to bring it up to strength there must be added 
something which is not current in the sense that it consists of moving 
charges. The amount which has to be added is equal in numerical value 
to the rate of change of the force in a ‘pipe hole’ drilled through the 
wax 'from one plate to the other; it has this value because this force is 
obviously proportional to the differences between the charge on the 
plates and the charge on the surfaces of the wax. So, notwithstanding 
the current of oscillating charges in the wax, we shall have to reckon 
as current something which is not movement of charge, at that place, 
if we are to obtain the same value of magnetic force at the surface of 
the plate whether we curl round a path in the wax and parallel to the 
plate and close to it or whether we curl round the plate itself. Thus 
the Maxwell hypothesis seems to be inescapable, whether we like it or 
not. The idea of oscillating doublets in the dielectric, thereby seeming 
to be a current just like a conduction current, does much to stimulate 
the notion of a current through the dielectric* Having once visualized 
this mechanism for current through a material dielectric, surely every 
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electrician would feel compelled to treat the current of oscillating 

charges as the equivalent of a conduction current, in that Ampere’s 

work law must surely be applicable to it, and therefore he feels prepared 

to calculate the magnetic field at a point in the wax. But the known 

value of the magnetic field at the surface of the plate shows that the 

current through the dielectric must be made continuous with the current 

in the plate by the seemingly fictitious process of reckoning as current 

something which is not attributable to charges moving through the 

circuit curled round. And, moreover, the ideas which are prompted 

very naturally by the doublet mechanism of a material dielectric 

demand, through a general sense of continuity, to be applied wlien 

no material dielectric is present and the component of current due to 

oscillating electric charges has vanished. 

In thinking of the formation of doublets in a material dielectric it is 

natural to think of the displacement of valency electrons, and then the 

term displacement current seems particularly appropriate to that 

current which consists of the oscillatory movements of charges; it 

would be a term which was appropriate to and descriptive of the 

slightly different mechanism from that obtaining in a genuine con¬ 

duction current in a wire or an electrolyte. But in fact the term is 

used to describe the’total current through the dielectric whether or not 

this happens to include a component arising from oscillatory movement 

of charges, such being present only when the dielectric consists of 

material particles. The term ‘displacement current’ dates from Maxwell 

and it does not seem that he paid any special attention to a particle 

mechanism of solid or liquid dielectrics. In his determination to make 

currents continuous, something had to happen in the dielectric and 

that something could not be a conduction of the ordinary and familiar 

kind; therefore let it be called a displacement without yet bothering 

what it was a displacement of or bothering about any particular 

mechanism. Seemingly, all dielectrics to him were continuous struc¬ 

tures; some dielectrics ‘displaced’ more than others imder the action 

of a given electric field, just as some materials yield more than others 

to a given mechanical force. One of the very great advantages of our 

doublet theory of material dielectrics is that it allows us to make inverse 

square law independent, in its magnitude, of the material surrounding 

the charges. When we say that the force is ee'jKr^ we know that the 

use of K is merely a very convenient way of allowing for the force due 

to a multitude of electric charges which were already in the wax and 

have disclosed their presence by being strained apart slightly by the 



1.3] CURRENT FILAMENT AND PLANES IS 

forces from the charges e and e'. From this point of view the dielectric 

constant of a vacuum is unity by the very nature of things, and the 

idea of the dielectric constant of free space becomes a repugnant notion, 

even though it may be desirable to swallow it as a convenient fiction 
in the interests of making a system which is consistent dimensionally. 

Maybe it is desirable, from some points of view, to write the force 

between charges as ee'IK^r^, where Kq is some undiscovered, and 

presumably undiscoverable property of free space which shall be called, 

perhaps rather unfortunately, the dielectric constant of free space. 

Then the dielectric constant of, say, paraffin wax, must be written 

as KKq, where K is purely a ratio. The doublet description of a 

material dielectric gives us a complete understanding of how and why 

K arises; but we have no physical conceptions of the meaning of jKq 

and scent the possibility of its existence only through our ideas of 

dimensions. Of course, if the doublet description of material dielectrics 

had not emerged, then K would be just as mystifying as K^, but the 

said theory has emerged and was bound to do so, and thus the whole 

meaning of the ratio K is well understood, and the effect it describes 

could have been predicted before it was discovered experimentally. 

The theory of dielectrics has made the seemingly necessary retention 

of more than ever artificial, and perhaps we may be allowed to say 

both irritating and repugnant. 

In order to test Maxwell’s hypothesis experimentally we must 

discover its logical implications and need an algebraic statement of it 

to help in this task. 

1.4. Maxweirs equations in free space 
For any region of space which does not include charged matter we 

propose that , ^ 
curl^ = i^ 1 

and 

c 

curl E = 

(1.2) 

and retain Gauss’s theorem of inverse square law, which gives 

di V = 01 

and divff = ol 
(1.3) 

t We do not propose to retain here the dielectric constant and the permeability of 
free space, concepts discussed at the end of the last section. Electric force is measured 
in the electrostatic system of units and hence the displacement current must be written 
as (1/c) & vfhdXL using it iu the work law. 
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Writing these in Cartesian form gives 

1 dEi _ dj^_ dH^^ 

c dt ~ dy " dz 

1 8E^ dHi JJk 
c 

il l.=8 dz dx 

1 dE^_ \ 
c«> 1 1 

c dt dx ^ J 

1 dHi _ 

c dt dy dz 

1 dH^ _ dE^ 
c dt dz dx 

1 dH^ _ dE^ dE^ 
c dt dx dy 

dx dy dz 

dHy^ dH^ dH^ 0 

Differentiating the first of (1.4) with respect to t gives 

~c dt^ dt\dy] dt\bz] 

d IdH^ d/dHA 

^ dy\dt ) az\ tt j 

dy) dz\ dz ^xjj’ 

L^8_ d^Ei d^EA 

[dydx^ ̂  dzdx ~ dy^ ~ " azM 

(1.4) 

(1.5) 

(1.6) 

from (1.6), 

= c 

= c 

fa*Ei d^Ei a*E, a idEi 

(a** ^ dy^' ̂  az* ■ dx\ dx 

iS^Ei^ 

_ iHi 1 J
 

. by (1 
\dx^ ^ dy^^ az*/ 

dy^ dzjj 

(1.7) 

with similar equations for and E^: also for Hi, and ffg. Equations 
of the form (1.7) will be called the wave equation. 

Equations typified by (1.7) have a solution of the form E =»/(#—r/c),t 

t See, for example, Jeans’s Electricity and Magnetism, § 57^, liouviUet 
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which may be interpreted as stating that an observer travelKng with 

uniform speed c would perceive fields which differed markedly from 

those he would perceive if he was travelling with any speed other than c. 

The idea of a certain velocity has thus emerged, but we purposely do 

not discuss the matter further at present: the magnitude of this velocity 

is equal numerically to the ratio of the electromagnetic to the electro¬ 

static unit of charge. 

1,5. Lorentz’s equation and retarded potentials 

Maxwell’s equations relate to free space and therefore do not help 

directly to discover the fields in free space due to a specified disturbance 

at the origin. We must derive fresh equations for paths which curl 

round moving charges and closed conducting circuits. In a given volume 

element dr, let there be a charge q moving with component velocities 

^2, and v^: then etc. Equations (1.4) must now be written 

We now use the vector potential, the full definition of this function 

being that curl A = J?: a definition which defines dAjdx but does not 

define the magnitude of A. Accordingly we have 

= and = 
dz dx dx dy 

Whence 

^iav 4-^\ = 
c\^^~^47r/ dydx dy^ dz^ ^ dzdx 

^ d^Ai eMg e^Ai 
. dx? dydx dzdx dx^ dy^ dz^ 

d (dA-y dA^ . ^AA_ 
dx\dx'^ dy^ dz I ^ 

(1.9) 

also 
dy dz 

1^ 

' c dt 

1 d (dAo dA 

c dt\ dy 

leA^ 

dz i 
(1.10) 

The form of (1.10) suggests that JS?. --etc.: but suppose 
c dt 

E, — etc., where V is some function of x, y, z, and t. 
C dt dz 

t this, q is reckoned in electrostatic units of charge and hence the current is (llc)qvx 
reckoned in electromagnetic units of current. 
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dW 
Then (1.10) will be satisfied if provided V is 

cydz vzoy 

any function which has no curl, such, for instance, as the scalar potential 

of charges. Accordingly we have 

1 eMj e^F 
c dt^ dtdx' 

(1.11) 

Substituting (1.11) in (1.9) gives 

or 

c 

V2Ai- 

1 02^1 
c2 at* 

1 e^Ai 

c* at* 

1 a*F 
c ata.r 

47r^t;i 

C ^.r 
div^ + 

im 

c dtj* 
(1.12) 

The left-hand side of (1.12) has now the form of the wave equation. 

Remember, however, that V and A are two subsidiary mathematical 

tools which have been defined only by the relations curl F = 0 and 

curl A ^ Hy definitions w^hich define only the slopes and not the values 

of the functions. The value of the function can be reckoned from any 

convenient datum level without upsetting the definition, and it remains 

only to decide what datum is the most convenient. For scalar potential 

of charges it is commonly found convenient to say arbitrarily that the 

potential at infinity is zero. It is permissible here to impose any datum 

on the value of A and V since no datum can alter the value of their curl. 

Equation (1.12) will be simplified enormously if we impose the extra 

1 dV 
condition, on the magnitude of A and F, that div^-|-== 0: then 

we have 
_ 1 d'^A^ 47rqv^ 

(1.13) 

and similar equations for A2 and A^, 

Now by Gauss’s theorem 

. dJEi , dE« j. jj, 

1 8 /BAi BA^ eAg\ a*F g*F dW 

c* dx'^ dy'^ dz) a»* ay* az* 

_l1^ 
■^c* a<* 

-V*F, since divA = 
1^ 

c at 
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Thus the arbitrary but permissible decision imposed on A and F, 

1 dV 
namely, that div A-— = 0, has resulted in similar equations for A 

c ct 

and F, as shown in (1.13) and (1.14) and which have the form of the 

wave equation plus an extra term involving charges at a specified point; 

they may be compared to Poisson’s equation of electrostatics. 

It may be found that the solution of (1.13) and (1.14) is 

A = - [ ^ 
^ c J r 

^ = 1 f F = f 
‘ cj r Jr 

A f 
® c J r 

where [g] and bi’i], etc., denote that the charge and current supposed 

to be in a given volume element of dr (distant r from the point where 

Ai, etc., and F are being calculated) at time t is not that obtaining in 

the element at that time but is to be taken as that which obtained in 

the element at the earlier time t—rjc. This may be put as follows: If 

current and charge are indicated by meters visible from the distant 
point, then the distant observer is to use in his calculations the values 

he reads now, his perception being late by time t = rjc. Such quantities 

are often called ‘retarded functions’; A and F are called the retarded 

vector and scalar electromagnetic potentials respectively. Retarded 

functions are due to L. Lorentz (1829-91) of Copenhagen. 

Hence, if q and qv are postulated at all points where q exists, then A 

and F can be calculated at any point of space; ^nd from them the 

fundamental quantities E and H can be calculated, by means of the 

relations 

and 

1 dA^ dV 

c dt dx 

1 ^ r [qv^ dr 

cm} r 

dz ’ 
etc. 

dxj r ’ 
(1.16) 

By this process it has been made possible to calculate E at any point 

of space in terms oxily of the movement of electric charges supposed to 

be located at certain points; and without reference to the fields in all 

tiie rest of space. If we choose to take the view that an electron has 
47*1.1 fi 
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material substance which is located at a point, then ever3rthing is 

reckoned from these electrons and from them alone: the whole system 

is bound to the idea, or invention, of electric charge and electric fluid. 

Put analytically, the process of integration is one from points and not 

a volume integration through all space: in this way the evaluation is 

greatly simplified. This approach is the very opposite of that implied 

in the Huygens (1629-95) process, where the origin of the disturbance 

is distributed through all space or at any rate moves along: here the 

immediate cause of disturbance is tied to electric charges constrained 

to move on fixed conductorsf and it is not the displacement currents 

filling space. It may well be argued that the existence of an electron 

is inferred only by observing an electric field: and that since such field 

can be perceived everywhere, every electron, in a sense, fills all space 

and is not located at a point. Granted this is a reasonable point of 

view, then if it is adhered to, the Lorentz equations have no meaning 

since they postulate charge in an element of volume: it all depends on 

what we mean by charge. The field of a charged particle has a con¬ 

vergence point at the particle and this convergence point we call the 

charge. Lorentz’s equations do disclose the fields set up by any number 

of charged bodies when they are moved about. The only uncertainty 

is whether the movement of small charged beads along a path does 

produce the same effect as is produced by what we call a current in 

a conductor. 

Throughout this book the writer will relate fields at a given point to 

currents flowing in fixed conductors,! his conception of current having 

just been explained: to him the fields (i.e. displacement currents) in the 

remainder of space are irrelevant. To him propagation velocity arises 

only in that the distant observer must use local time for reckoning the 

magnitudes of the currents in distant conductors, and even then he 

shrinks from the physical concept of the velocity. The algebraic relation 

of /(^—r/c) can be interpreted in terms of something proceeding with 

velocity c, but the relation appears only in the expressions to be used 

for calculating -4 or F and these two vectors are not observable quan¬ 

tities, being only algebraic tools. To say that A and V are propagated 

with velocity c has no physical meaning, since A and F are not 

quantities which are recognizable directly, and it seems to be straining 

unduly to seek an analogy in order to identify c with a velocity, when 

it is but the ratio of two systems of units. The writer’s approach is a 

consistent, logical, and possible approach, but presumably it is not the 

t Or poesibly chax^ osciUating about a mean position in a material dieleotric» see | 
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only approach possible. Presumably it must be possible to take account 

of what is happening everywhere and the process should give the same 

answer if the volume integration is performed correctly. The relations 

curlH in and curl E — relate essentially to quantities located 
c c 

at a given point. Thus, at a given point, H does not depend on the 

integrated effects of the displacement currents filling all space, but 

depends only on the displacement current at the point where H is to 

be reckoned. The rest of space matters only to the extent that what 

is happening throughout it does determine what the displacement 

current is at the point where we are making observations. 

This approach appears to confiict with the approach which develops 

naturally from the classic methods of physical optics. It is helpful to 

give here a brief historical i*eview. Study of the phenomena of light 

goes far back into antiquity, at any rate as far as Hipparchus in 200 B.c. 

Narrow shafts of light appearing through cracks and holes are obvious 

to all, likewise the hard edge of shadows. These familiar experiences 

readily suggest material particles travelling in straight lines; a flight of 

arrows or of bullets according as we are living in old or in modern days. 

On this concept, laws of reflection and refraction are discovered by 

experimentation, and optical technology has been bom. The Dutch¬ 

man, Christian Huygens (1629-95), exercised his imagination on the 

manner in which the arrows flew and with what propelled them. In 

some ways it seems possible his imagination may really have been play¬ 

ing more with the propagation of sound than of light and his ideas 

very appropriate to propagation by collision between molecules having 

an agitation velocity. Be this as it may, he invented a geometrical 

construction which led to an advancing surface which we wiU call a 

wave-front. Everyone has the perception that sound travels com¬ 

paratively slowly and appears to have a definite velocity. Something 

advances and brings to a point of space some virtue which did not 

appear to exist there just previously. Huygens produced a geometrical 

construction which described how a virtue might creep along or 

propagate: it dealt with the very front edge of the virtue, be that 

virtue light or sound. The construction comprehended the known laws 

of reflection and refraction but could not describe the hard edge of 

shadows. Mainly for this reason, most natural scientists (Newton in 

particular) concluded that Huygens had done no more than invent a 

oertain geometrical technique which had no particular foundation in 

reality. In 1801 Thomas Young (1773-1829) was struck by observing 
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trains of wavelets traversing a surface of water: he recognized they 

could be led into a pair of canals and reunited in such a way as to 

produce smooth water by means of the destructive interference of wave 

crests. He succeeded in observing this effect from the small shafts of 

light emerging from two holes in a screen, and thus established a 

correspondence between the phenomena of light and that of waves on 

the surface of a pond. His startling discovery revived Huygens’s 

construction, which had long been in obscurity. 

In 1821 Young’s ideas were put into mathematical form by Auguste 

Jean Fresnel (1788-1827), who formulated a wave equation. Presum¬ 

ably it was the indirect influence of the work of Fourier, and of Euler 

before him, which helped Fresnel to reduce his equations to a manage¬ 

able form by the simple but all-important device of making his quan¬ 

tities vary harmonically with time. This step made possible the imposing 

mathematical analysis developed by men such as Stokes in the first half 

of the nineteenth century. All that analysis is interpreted and described 

in terms of Huygens’s principle and construction: no doubt this was 

very natural, more especially when we remember that Maxwell’s inter¬ 

pretation of light in terms of electricity did not emerge till about 1870. 

But it does seem to the writer that the habits of thought which prevailed 

between 1820 and 1880 can be somewhat confusing to-day and be 

accompanied by hidden pitfalls. Huygens was not thinking of har¬ 

monic variation in time but was thinking of short-lived pulses, which 

may be likened to bubbles which expand till they burst suddenly 

and thus cease to exist, or even to the flight of a molecule brought to 

an end by a collision. The writer feels that when Fresnel’s harmonic 

excitation came in, Huygens’s ideas ought to have gone out for good; 

but in fact they did not. Huygens’s ideas are very suggestive in 

respect of occurrences at a wave-front, meaning by that the hard front 

edge of an advancing disturbance. Once Fresnel’s harmonic variation 

is admitted there is no wave-front in the sense just defined because 

the disturbance has existed for inflnite time already, all transient effects 

having died out. A wave-front now becomes the more recondite notion 

of a surface of equal phase; it is this which advances with a'constant 

velocity and not the front edge of the wave train, since that is already 

at infinity. The equi-phase-front can be considered to propagate itself 

locally, and at itself, by molecular collisions if molecules enter into the 

process, as they do in a soimd wave. Once light was described in terms 

of electric forces it seems to the writer that Huygens’s ideas were 
inadmissible in an equi-phase-front, and that it then became essential 
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to relate the disturbance to those places where electrons were located. 

But the formulae and technique of optics were built up before Maxwell’s 

time, and concentrated attention on a wave-front and hence logically 

on an aperture. There are no electrons in an aperture, and hence the 

aperture ideas can be made to work only by the device of filling it with 

fictitious equivalent electrons; the process of finding this equivalent 

stratum is very difficult and often insoluble. 

Many who have been brought up in the techniques of physical optics 

do not consciously realize the necessity for this equivalent stratum and in 

consequence use the ‘aperture concepts’ more freely than is quite justifi¬ 

able. It is very difficult for one who uses electrical concepts to converse 

with one who uses optical concepts because the two languages are not 

the same, even though they have a common root and some similarity. 

A point is reached where the two men realize they are talking different 

languages and then the attempted conversation has to be given up. 

Readers are asked to realize that this book is written in the electrical 

language and insists on trying to relate fields to currents flowing in 

conductors.! It starts with the alphabet and simple grammar of the 

language, and thus does not assume this knowledge in its readers. But 

if readers are not willing to face the effort of learning the grammar, 

and of using it, the book cannot be of much use to them. 

1.6. Fields due to a very small closed circuit 

We shall always presume currents in the conductors pulsate simple 

harmonically: it is the state of greatest interest in the problems we have 

mostly in mind and is general, in the formal sense, by the application 

of Fourier’s theorem. 

Let a planar circuit of thin wire carry a current i = /sinp^: it is 

postulated the current has the same magnitude and phase at every 

point of the circuit and we do not stop to discuss here whether this is 

physically possible. Let Fig. 1.2(a) be a close view of the circuit. It 

is required to find the field at a very distant point P described with 

reference to Fig. 1.2(6). The point P must be very distant; so here 

our investigation bears a likeness to that of Ampere. Because it is 

laid down that the current is uniform round the circuit, there is no 

charge anywhere on the wire, and accordingly the delayed scalar 

potential V in (1.15) is zero everywhere, and the electric field, by (1.16), 

is due only to the delayed vector potential of the currents. 

Imagine the wire crenellated into short steps parallel to and per- 

t 'to charges oscillating in a dielectric, see § 1.3. 
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pendicular to the direction OB, Two representative parallel steps are 

shown by e/and gh: two perpendicular steps by ab and cd. The parallel 

steps ef and gh are equidistant from the very distant point P and carry 

oppositely directed currents: hence the net contribution from them to 

A at point P is zero. The perpendicular element ab is more distant by 

/cos^ from P than is the perpendicular element cd. The delayed vector 

potential at P due to these two elements is thus given by 

chA 1 • I ^ , pi j\ 

— .-Trr—r\ sin(pl—^—^oosA 
(r+ficos^) \ c 2c / 

We now impose a condition not needed by Ampere, namely, that pZ/2c 

is very small; then 

cSA ^ 8m(pt—prlc)+(plcoa<^f2c)cos(pt—prlc) 

18y ' r—^lcoa<f> 

8m(pt—pr/c)—(plcoa<f>/2c)ooa{pt—prlc) .j. ^ i 

4= I cos ^ „ y/c) p ^——]|, since -<^1. 
( r* cr \ c Jj . r . 

The condition that pljic 1 is the same as saying that nl/X < 1, 

where A is the wavelength defined by c = /A: hence here P must not 

only be very distant from the circuit, but the dimensions of the circuit 

must also be vanishingly small compared with A. 

But 1is the area of the strip abed: if a similar calculation is made 

for any other pair of perpendicular steps and all are added, it 8ho*ald 
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be clear that 18y becomes replaced by S, the area of the circuit of any 

shape. 

Hence 

18 
-cos '(( 

co&prjc p sinpric 

cr 
&mpt+ 

( sin pr Ic , p cos pr Ic\ 
+ 

aHS 

E,= -- 

(soa<f> 

1^ 

c 8t 

\ (cos ar , sin ar\ ( sin ar cosar\) 

1\ ' ar j ^ \ aV® ^ 11 

aUS 
coa<l> 

{(■ 

where a = pjc. (1.17) 

sinar . cos ar\ 
2r2 a^r at 

/cos ar sinar\ 

\ aV ^ ' ar / 

(1.18) 

Equation (1.18) shows that there is a component of in phase with 

the current in the wire and also a component in quadrature thereto. 

At certain distances either component can be zero, but never both zero 

simultaneously. If one is zero at distance r it will again be zero at 

distance r+^A, r+A, etc. The phase of the resultant field repeats 

cyclically with wavelength A, where c = /A. 

It should be noticed that it is only the area 8 and not the shape of 

the circuit which enters into (1.18); and in this respect it is like Ampere’s 

hypothesis for the magnetic moment of a small circuit. Accordingly 

the electric field is disposed in circular lines centred on the axis OZ] 

always provided that P is very distant and IjX 1. 

We will now use the vector potential to calculate the magnetic field. 

We will use polar coordinates and then there will be a radial component 

of magnetic field Hj. and a tangential component Hq, The equi-veotor- 

potential lines will be small circles of a sphere centred at the circuit 

and with a normal to this circuit pointing to the pole of this sphere. 

To find the radial component of magnetic field we must find the curl 

of A round a path consisting of short arcs of two neighbouring small 

circles and two short arcs of great circles. Consider a point P (r, ^) on 

a sphere of radius r. Then the radius of the small circle through P is 

roos^ and the length of a short arc of it is r cos^ 80. The contribution 

to the curl from this arc is Ar cos 80. The contribution to the curl 

from a portion of the path along an arc of a great circle is zero, because 

A in this direction is zero. Accordingly the required curl of A is 

^(.4rcos^ 80) 8^. 
Ofp 
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The area within the curl is 

r cos <l>hd r 8<f>. 

Accordingly Hj.roos^ 80 r 8<l> = —(Arcos^ 86) 8<^. 
dip 

rH^co^if) = — (A cos(i), since r and 89 are constants. 
dip 

To find we must traverse short arcs of small circles on spheres of 

radii r and both of them at elevation Accordingly 

H^r cos if> 8d8r = ^(Ar cos if> 86) 8r 

= cos if) 86 ^(Ar) 8r. 
dr 

. rr dA A 
dr r 

Accordingly it follows from (1.17) that 

2//S 
- sin <f>{{cos ar+ar sin ar)+j{—sin ar-]-ar cos ar)} 

or** 

Hq = —[(aV^— l)cosar—ar sinar-~j{(aV^— l)sinar4-<^r cos ar}]. 
Cyg 

If ar 1, we may write sin ar #= ar—and cosar == 1-—, then 

2IS . , a 

/aScos^Pj 

J Q 

^4^4 .2aV 

^+-r+-’'T" 

When ar tends to zero these expressions are the components of the field 

due to a magnetic particle of moment IS/c and hence they then agree 

with Ampere’s expression for the field of a small circuit carrying a 

steady current. Note, however, that the requirement is only that 

2j7r/A should be very small, and this can still obtain even when r tends 

to infinity compared with the physical dimensions of the circuit. Thus, 

suppose p/27t equals 60 cycles/sec. and r = 1 km., then ar == 1/10®; 

then for distances up to 1 km. from the circuit the inphase compo* 

nent of magnetic field will differ by less than one part in 10* from 

the value it would have if the current were ‘frozen’ steady at its 

instantaneous value. 
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Though all space is filled with displacement current, yet the field at 

any given point can be calculated in terms of the conduction current 
in the wire, and in terms of this alone. In this approach to the problem 

it is the only thing which matters, the rest of space does not enter 

explicity into the calculation. 

It should be remembered that the Lorentz equations are constructed 

on the supposition of moving charged particles, and we have tacitly 

but inevitably supposed a current is such a stream. Yet, in the limit, 

we arrive at Ampere’s hypothesis, which was not bound to so narrow 

a description of current flow. 

On making ar small in (1.18) we obtain 

E, a^IS cos</)| (1.18a) 

and accordingly note it is only the quadrature term which tends to 

infinity when ar tends to zero. This is a key to an essential factor in 

the problem, but this aspect is better treated by starting close up to 

the circuit. 

It is important to recognize that equations (1.15) are correct for all 

values of r, even down to zero; this follows from the statement of (1.8); 

hence they may be used to find the field at points very close indeed to 

the conductors. 

Let the circuit discussed in relation to Fig. 1.2 be the rectangle shown 

in Fig. 1.3: it is desired to find the electric field at any point P on the 

perimeter. The process consists in finding the delayed vector potential 

at P due to the elements of current round the perimeter. At P the 

component of field along the wire arises only from the current in OA 

and in CB, since the vector potential is everywhere parallel to the 

current. At distance r from a current element I dl sinpt we have 

c8A __ sin(pt—ar) __ Icosar .sinar\ 

/ 8/ r ^ \ ar ^ ar j 

Consider first the quadrature component of .4 at P; then the elements 

at B and Q together contribute 

cSA 

I SI 

a^PR^\ 
3! I +1 
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Hence the total A at P, due to the sides CB and OA, is 

./aW , .1, IpHh^ . , . 
, whence jEp ==-si since E=-A, 

c 
A ^ 

This is independent of x, the coordinate of the point P, and hence Ep 

1 S B 
^ h T 

h 1 
f 

p 
ft Tj L I 

Fig. 1.3 

has the same value at all points along OA, Accordingly, the voltage 

difference between 0 and A equals — -- , and the e.m.f. round 
C C* O! 

the complete rectangle is four times this amount: note that this e.m.f. 

is in antiphase with the current and therefore represents an output of 

work. The rate of working is given by P = (Pjc^a^S^sin^pt and 

thus it is as though the circuit had a resistance equal to 2a^S^ISc. 

This apparent resistance is not associated with imperfect conductivity 

of the wire and therefore must represent power leaving the circuit. In 

other words, the circuit radiates energy and has a radiation resistance 

S = 20a^S^ = 
3207r45f2 

ohms. 

Though the circuit in Fig. 1.3 was rectangular, brief consideration will 

show, the same result would have been arrived at for a circuit of any 
shape, provided that terms in a*r^, etc., are ignored. 

The quadrature component of field is dominated by the term 1/r, 

and evaluation of this leads to the familiar expression for self-inductance 
and need not detain us here. 

If in (1.18 a) the small circuit be supposed circular, % then it follows the 

e.m.f. round it equals 2 >SV/ 2 I p* 

a result in agreement with that we have just found: however, it was not 

t The symbols £Jp and Eq are used to denote respectively the component of E which 
is in phase with or in phase quadrature with the current in the circuit, 

t For circle of any radius see p. 74 and equation (1.84a). 
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obvious the inphase component in {1.18a) would hold correct right 

down to the circuit itself. 

It follows from (1.18) that 

E = 
a^ISoose V(l + l/aV2) 

c ar 
sin(pf—cx), (1.19) 

where tana = 
1+ar tan ar 

ar—tanar 

— tan(ar+tan-^ — 
\ 

a = ar+tan""^—. 
ar 

(1.20) 

Equation (1.19) shows that E becomes rapidly asymptotic to 1/ar, the 

discrepancy being only 5 per cent, even when r/A = Equation (1.20) 

shows that a becomes rapidly asymptotic to ar, that is a 27r(r/A). 

Hence the phase of the field will be the same as the phase of the current 

whenever the distance is a whole number of wavelengths, provided ar 

is large. When ar = 0, a = Jtt, and when r/A = a = 197-4®. 

We will here call the reader’s attention explicitly to the outstanding 

feature of the field described by (1.18) and by the expression for the 

magnetic field. That outstanding feature is not so much that the 

magnetic field is very much larger, at great distances, than we should 

have calculated by applying Ampere’s hypothesis to an alternating 

current, as that the phase of the field changes progressively and 

regularly with a substantially constant wavelength. This change of 

phase is something quite new and unexpected, and is surely more 

remarkable than a mere discrepancy of magnitude, since it is a change 

in kind and not only in degree. The picture of a field which is already 

established and existing everywhere, but has the essential characteristic 

that its phase changes with a constant wavelength is, the writer suggests, 

a more helpful picture to the reader than that of a field which is 

travelling outwards with a constant speed. It is not the field which 

travels with a constant speed, but it is a hypothetical observer who 

would have to travel with this speed if he is to experience a field which 

does not alternate, but merely decreases smoothly in magnitude as the 

distance increases. When calculating the resultant field due to two 

separate coils the reader will readily perceive that in adding the con¬ 

tributions provided by the two separate coils he must allow for the 

difiFerenoe in phase between these two contributions: a difference which 

depends only on the number of wavelengths which separate the two 
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coils, both of which are very distant from the point where the field is 

to be calculated. This description comes to the same thing numerically 

as saying that allowance must be made for the difference in time which 

the field of either coil takes to reach a given point in space; but no 

very precise meaning can be attached to the statement that a field 

takes a given time to reach a given place. Precision is attained only 

by introducing a hypothetical observer, w ho has to travel in a particular 

manner so that he does not experience any alternation of force. If the 

reader is subconsciously thinking of an experience like seeing the flash 

of a gun and hearing an explosion after an interval of time, then he is 

thinking of the real front of a disturbance, and is not thinking about 

continuing to listen to the steady howl of a siren. It is important to 

realize that equations like (1.18) do not apply until the initial front of 

the disturbance has spread beyond the point where the field is being 

observed. This is implicit in the solution, and has entered into it when 

it is supposed that the field at a given point alternates simple harmoni¬ 

cally with the frequency of the source; this is tantamount to saying 

that the steady state has been reached and any transient effect has 

died out. The appropriate analysis for dealing with the transient effect 

does not appear to have been worked out. 

If we have made our point that it is in general best to think of a field 

which has been established everywhere and which changes its phase 

with a constant wavelength, then w^e remind the reader that the product 

of the wavelength and the frequency is constant, and that the numerical 

value of this constant is c, the ratio between the electromagnetic and 

the electrostatic unit of charge. It is true that the product has the 

dimensions of a velocity and that if a hypothetical observer moves 

with this velocity he will not perceive an alternating field; but is this 

hypothetical experiment very illuminating ? It is time that ranges can 

be calculated correctly by presuming that Radar pulses travel with 

velocity c, but do not let us bother about that here. 

1.7. Field of a long filament carrying a current Imxpt 

Let a current Imipt flow along a thin wire of infinite length: it is 

thus postulated that there is no change of magnitude or of phase from 

point to point along the filament. Infinite length and absence of return 

current may offend the reader’s sense of what constitutes a realizable 

problem; just as his senses were probably offended when he was first 

confronted with the similar problem for a steady current. Then it 

turned out he was being asked to do one stage only in evaluating an 
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integral round a complete circuit; the problem was soon made realizable 

by placing a return current parallel to the first. He is asked to accept 

the present problem as an act of faith and not demand more justification 

now; he will be shown later that, when the current is alternating, the 

Fia. 1.4. 

analysis represents far more than one step of a circuital integration, and 

is a realizable problem as it stands. 

Because the filament has infinite length the field distribution is in 

two dimensions only: symmetry demands that the magnetic field is 

disposed in circles centred on the wire, and the electric field is every¬ 

where parallel to the wire, without radial component anywhere. Since 

this field distribution is a very simple one, it is easy to derive the 

relevant equations de novo, without adapting them from (1.7), and to 

do so will give the reader experience of the general process. Curling 

right-handedly round a rectangle of unit height and radial width hr 

(see Fig. 1.4) gives — = 
or 

l^JL 
C dt ’ 

if H has the sense shown in the figure. 

Curling right-handedly along magnetic lines gives 

-277(r+Sr)lF-i-^ hr\+27irH 
27rr Sr dE\ 

47r ■¥/’ 

r c dt' 

dm idH d^E 

dtdr'^r dt c dt^ ’ 

whence elimination of H gives 

d<^E idE _ I dm 

dr^^ r dr ~ c® dt* 
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In this problem 

accordingly 

E must pulsate harmonically everywhere, and 

1«_ J>‘«_ 

, d^E 1 dE .QTTrrk /irtiN whence _+__+a*^ = 0. (1.21) 

A straightforward process shows this equation has a solution which 

is the infinite series 

E = 

or the infinite series 

1 (jz)^ I (jg)* (jzf 
1! ■^(2!)2 (3!)2 

E = ^j(logi2+y)Jo(z) + {iz)*-j|P(l + i)+ 

+ + + — ^(*)’ 

where z = ar, y = 0'6772... (Euler’s constant). The two infinite series 

are represented by the symbols Jq{z) and 1^(2) respectively: they have 

been evaluated and tabulated. When z tends to zero we see that JJ,(z) 

tends to unity and Yq(z) tends logarithmically to minus infinity. 

Numerical evaluation will show that «/j,(2) passes through zero between 

2 = 2 and 2 = 3 a,nd that Yf,{z) is positive when z is luiity. The ratio 

of the («+l)th to the nth term (starting with n = 0) of J5,(2) is equal 

to {2/2(n+l)}*, and this is less than unity provided n+1 exceeds ^2. 

Suppose, for example, 2 = 6, then the third term is the lai^est, and 

we can write 

The infinite series in the curled brackets is less term by term than 

the series 1—(|)*+(i)*—... = 1/{1+(|)®}. and is still less than the series 

14-(i)®+(|)*—••• - Thus the series is convergent and would still be con¬ 

vergent if all the terms were positive, instead of alternatively positive 

and negative. Thus the series is what is called absolutely convergent 

and it is permissible to differentiate it term by term. The convergence 

is not conditional on the alternations of sign, and hence the finite sum 

is not the finite difference between two infinite quantities. The series 

1^(2) is also absolutely convergent. A rough plot of Jq(z) and l^(z) (or 

plotting from tables) will show each is zero repeatedly amd sensibly 

with period tt. The solution for the small circuit was of the form 

sinor and cosar, and has thus led us to expect a solution of periodic 

form here. 
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We found there was an output of energy from the small circuit, and 
that it had a field whose R.M.S. value varied inversely as the distance 
and did not increase with time. The total energy associated with the 
field is obtained by integrating E^j^ir per unit volume through all space. 
Since E varies as 1/r, the steady output of energy means that the field 
must be contained within a sphere of finite radius, and, moreover, a 
radius which is increasing uniformly with time, thus implying a wave- 
front in the old Huygensian sense. To use a seventeenth-century 
expression, the source is surrounded by an ever-expanding ‘orb of 
virtue’. The idea of the uniformly expanding orb of virtue leads us to 
expect that the field will vary as in the cylindrical problem, and 
accordingly we expect that sin 2/2^ is either a solution of (1.21) or at 
least an approximate solution when 2 is large. If ^ = (cos2+sin2)/2i, 
then substitution shows the right-hand side of (1.21) is equal to 
(cos2-f sin2)/42^ == Ej^z^, and this quantity gets smaller and smaller 
as 2 becomes large: thus we have obviously found an approximate 
solution when 2 is large. It is well known that 

*^(2:) == l7Tz){cosz+smz) = -^(2/772)008(2—Jtt) 

and Yq{z) == -y/(2/7r2)sin(2—Jtt), when 2 is large. 

We have now found the solution of Maxwell’s equations appropriate 
to this problem, in a form suitable for numerical evaluation; and, 
moreover, see it has the character natural to expect. 

Equation (1.21) is well known, and is called Bessel’s equation: the 
generalized theory of it was published by the German astronomer 
F. W. Bessel in 1824, particular cases having been known during the 
previous century. The functions Jq{z) and Yq{z) are called Bessel 
functions of the first and second kind respectively, and of zero order; 
later on we shall meet Bessel functions of higher order. Suffice it for 
the present to recognize Jq(z) and Yq{z) as the symbols for a pair of 
infinite series which, when plotted, are reminiscent of cos 2 and sin 2 

respectively, and more especially of cos 2/2* and ainzlz^: they are 
tabulated in a form reminiscent of the tables of cos 2 and sin 2. 

Accordingly = {AJ(,(2)-l--J51^(2)}sinpf is a possible solution of (1.21), 
where the constants A and B must be found so as to correspond with a 
current filament at the origin. Similarly 

E = {(7/o(2)-f I>ro(2)}oosp« 

is a possible solution: hence the most complete solution is 

, E = {AJo(z)+BY,{z)}+j{CJo{z)+DYM- (1-22) 
In this problem some of the constants may be zero; to find them we 
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must use the delayed functions of equation (1.15). If, by using delayed 

functions, we can calculate E at one point, we shall thereby fix the 

values of -4, B, etc., and hence know E everywhere. Because the 

current is uniform in magnitude and phase there is no electric charge 

anywhere on the filament, and therefore the contribution arising from 

F, the delayed scalar potential, is zero. But the charge cannot be zero 

at the ends of the wire, even though these are at infinity: the wire must 

terminate, even though at infinity, and at these terminations con¬ 

duction current ceases and charge accumulates. The charge which 

accumulates there is ^ idt ^ (7/p)cos^)/; thus the two charges at 

infinity depend only on I and p, and not on the length of the wire, and 

thus its infinite length does not involve an infinite charge. The delayed 

scalar potential of this finite charge is, by (1.15), of the form \Q\lr, and 

thus tends to zero as r tends to infinity. Hence, as the two ends are 

pushed farther and farther away, the effect of the charges at them gets 

steadily less and less at points in the mid-equatorial plane of the 

filament and near its surface. Accordingly we are ignoring the con¬ 

tribution from, and not the existence of, the charges; and thus the 

statement of the problem is compatible with the essential requirements 

of electricity and of current flow. 

Accordingly we'calculate E from A alone: since conduction current 

flows only in the wire, A is everywhere parallel to the filament. Thus, 

with reference to Fig. 1.4(6), we have to evaluate 

c J 
0 

andhenoe -E = ^ T 
c J \ ap ap ] ^ 

— 00 

The inphase component can be evaluated without difficulty at r = 0 
+ 00 

because J is known to be finite and equal to tt. The quadra- 

— CO 

ture component is troublesome to evaluate because that integral tends, 
logarithmically, to infinity whmi r = 0. When ar = 0, t^(or) = 1 and 
I^(ar) = —00. Hence, using the inphase component only of (1.22), we 
have now found that 

{Ax 1+5x —oo); 
c 

hence we must make B zero and A equal to —alTrjc, 
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The impasse with the quadrature term disappears when allowance is 

made for the small finite radius b of the wire. We must find the field 

at a point on the surface of this thin round wire, and to do so must 

evaluate the integral in two portions: the first from y = 0 up to a 

value of y which is very large compared with b and yet very small 

compared with A; the second, from this point on to infinity. 
Now 

0 0 

y 

* J if 
0 

= \og{y-[-^{b^-\-y^)}—^{y^(b^+y^)}+b^ log ^ j 

= 1 log jy^(62+y2)+62 log y±M±^\^ 

= \\og^-^{y^+bHog^, ify>b 

It is known that 

Hence 

+ 00 

ap 
“OO 

Hence, from (1.22), 

cosap , 2/ , , ah' 
-ly+log 

)■ 
when o6 1. 

TtaJ 
3^(a6) = Cx l+i>l^(a6). 

whence C = 0 and D = anljc, and accordingly 

cE 

and 

aiti 
(1.23) 

(1.23a) 
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These two equations, very simple in form, are of fimdamental impor¬ 

tance, and are in constant use: they should be memorized,! 

Now 
H-- 

dr * 

. H =^{Y'^{ar)+jJ'^(aT)). 
c 

3 E 1 3ff 
The same result can be achieved from the relation — =-. 

dr c 8t 

(1.24) 

t Equation (1.23) can be derived directly by means of a known integral, as follows: 

4-00 
J where 

Put p = r cosh 6 and y ^ r sinli 6, then 

+00 
cE cE r 

—^ = J {sin(ar cosh cos(ar cosh 6)} dS 

= an{Jo{ar)-jYo{ar)}. 

See Watson, p. 180, equations (12) and (13). The writer is indebted to Mr. M. Gardiner 
for drawing his attention to the integral form of J^{z) and to its application here. 

However, there is much to bo said for the longer derivation we have used since it 
avoids a recondite property of Bessel functions. But it is satisfactory to have this 
known property of Bessel functions to use since by it we do derive the field of a current 
filament directly from the delayed potentials without the intervening step of using 
Maxwell’s equations, a step which must be unnecessary in principle, since it has entered 
into the derivation of the delayed potentials. 

An alternative approach by known integrals is as follows: 

21 r 8m{pt—ap) 
dy 

00 

cos ap . sin ap 
) dy. 

Put p* = then y = r(d*—l)^ and dy = 
r^dB rBdJB 

y (^*~i)** 

21 r fcos(a 

\W^ 
Q08{ard) . &m{ard) \ 

1)1 *^(^*-1)1/ 
dB. 

Now 

OG 

J 
cos(ar^) dB 

(^*-1)1 — j7rFo(«^) 
r sin(ar^) dB 

J (^*-1)1 ’ 
1 1 

see McLachlan, Beeael Functions far Engineers, formulae (66) and (29). 

••• A = —y{F,(ar)+;Je(or)}. 

cE 

T' 
^ aw{~Jo(a^)4-iIi(or)}. 
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Since the series for and are absolutely convergent, they can be 

differentiated term by term, and hence it may be found that 

(iz)\ m* ihzr I 
2 ■^3(21)2 4(3!)2+6(4!)* "T 

a series reminiscent of Jo(z). It is the Bessel fimction of order unity and 

is written Ji(z). Hence J'q{z) — —Jx(z) and also Yq(z) = —Ii(z), and 

thus we write , 
H = ^ {Yx{ar)Jr3JM)}. (1.25) 

is written Jx(z). Hence Jq{z) = 

thus we write 

But 

Yx{z) = - 

==-(1—^2®log2), when z-^0. 
ttz 

--J > when ar 0 

and this reduces to the familiar expression, for a steady current, when 

ar tends to zero; again, the general expression for the field reduces to 

that derived from Ampere’s hypothesis when the frequency tends to 

zero. Suppose the frequency is 50 cycles/sec., then ar == 1/10® at a 

distance of 1 km. from the wire. There the fractional value of the 

quadrature component of H is less than one part in a million. 

At the surface of the wire (1.23) gives cElairl == — 1 +jl^(a6). Hence 

there is an antiphase field at the surface of the wire and this represents 

an output of power equivalent to a resistance aiTjc per unit length, 

which is SOtt® ohms per half wavelength. This is the radiation resistance 

per half wavelength of a filament in which the current is constant in 

magnitude and phase. The reactive field is 

-^Y,{ab) = _M(logo6-0-1169) = 

Hence the inductance per unit length of a fine wire filament is equal 

to that of a coaxial cable whose outer conductor has a radius 0*18A 

and inner conductor a radius b. Fig. 1.5 depicts the manner in which 

the two components of E vary with distance from the centre of a 

tubular filament of radius 6/A = 1 /lOO. When or is lai^e (1.23) reduces to 

.^(logo6-0-1169) 
c 

/0-18A\ 

'(—)• 

V(^) co8(p<—or—Jtt), (1.26) 
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and this shows the phase of the wave is such that it is as though the 
filament were JA nearer the observation point than it really is. This is 
in interesting contrast to the magnetic field of a very small circuit, 
where we found the phase corresponded precisely with the distance 
from the elementary circuit. 

Fig. 1.5. Distribution of electric field of a current filament. 

Since §H dl — ivX (conduction current plus displacement current), 
it follows this total current is zero at that radius at which H is zero. 
There is no radius at which \H\ is zero, but there are successive radii at 
which either one or other component of H is zero. Hence the first 
radius at which the inphase component of H is zero marks the boundary 
where the total inphase displacement current is equal and opposite to 
the conduction current in the wire. By equation (1.26), this occurs when 
3^(ar) is zero for the first time, and this is when or = 2-18 or r/A = 0’347. 
This radius may be regarded as the boundary of the original current 
flow in the wire, though this concept is not very helpful, sinoe the 
essence of the Maxwell concept is that current flows everywhere. 
However, it may help the reader to realize that the conduction current 
flowing in the wire is made circuital by displacement currents which 
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are generated by that said conduction current and not generated by 

electric charges accumulating on the surface of the wire. The presence 

of an electric force does not necessarily depend on the accumulation 

of electric charge. If the reader insists on inquiring how the current 

could be produced in the filament he can be given a convincing reply: 

it could be generated by an incident plane wave. There are, however, 

other methods of even greater interest. 

1.8. Field of a tubular current of any radius 

Equation (1.21) must represent the field of a current flowing along 

a tube of any radius and distributed uniformly round the circumference, 

and the solution given in {1.22) must be applicable in such circumstances. 

We have found the constants A, B, etc., appropriate to a filament, now 

we must find them for a tube of any radius B: we shall write 27rJ?/A = k. 
The current flowing along the tube and distributed uniformly round the 

circumference of the tube may be decomposed into current filaments. 

The centre of the tube is equidistant from all such filaments, and 

therefore the field at the centre is, by (1.23), given by the relation 

^ = -Jo(k)+jYo(k). 

Hence substitution in (1.22) gives 

— {-W+iW} = {A'+B'x-^)+j{C'+D'x-oo). 
c 

Accordingly B' and D' must be zero; 

A’ = and C = —Y^(k), 
c c 

whence ^ (1.27) 

and this equation gives the field at all internal points. 

The field at the surface of the very thin tube is given by 

^ (1.27 a) 

Using (1.23) for external points gives 

= {-AVo(ifc)+5'Fo(jfc)}+i{-UVo(*)+OTo(*)}. 
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Accordingly B" and C must be zero, whence the external field is given 

cE 
airl 

= M^){-M<^r)+jYo(ar)}. (1.28) 

This shows the external field is the same as that of a current filament 

of strength Jo{k)I^ 
Now •7q(A;) = 0 when k = 2*405, 5*520, 8*654, etc. (values whose 

difference approaches more and more closely to tt but is never precisely 

equal to tt), which is when E/X = 0*382, 0*88, etc. If the very thin 

tube has any one of these critical radii, then the external field is 

precisely zero everywhere, and the conduction current in its walls can¬ 

not be detected by any external test; this discovery of a non-radiating 

current is very interesting and perhaps surprising. The mechanism 

by which the external field becomes zero will become apparent in the 

next chapter, where that aspect of the problem is discussed. 

The inphase component of field at the surface is proportional to 

Jl(k): it follows the radiation resistance, is Z(}TT^Jl(k) ohms per half 

wavelength, and the apparent inductance is 2J^(k)Y^{k) cm. per cm. of 

length. The inductance is zero when = 0, and this occurs when 

EjX == 0*142, 0*63, etc.; in such circumstances a condition is attained 

which corresponds with a ‘rejector circuit’ resonance. If RjX lies 

between 0*142 and 0*63 the reactance is capacitative. The reader should 

recognize that a capacitative reactance can arise even though there are 

no charges present: this is another aspect of the general thesis that a 

quadrature electric field need not imply the presence of charge: whether 

such field is in leading or lagging phase quadrature may depend only on 

physical dimensions and not on accumulation of charge. 

The internal magnetic field is given by the equation 

H = -^{-J^{k)+jY^{k)]J,(ar) 

This shows there is always magnetic field inside a tube, the quadrature 

component being the more important when k is small; it reduces to 

zero for a steady current. 

1.9. Field of a filament carrying current I em(7Tylg)e,m.pt 

The next case to consider is a filament in which the current is constant 

in phase along the infinite length, but has a magnitude which varies 

harmonicaUy with distance. This is a more complex proUem, because 
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now there must be charge on the filament, and this may well contribute 

to the field, and accordingly it may seem to be essential to evaluate the 

delayed scalar potential. The current distribution is illustrated diagram- 

matically in Fig. 1.6; the current is always zero at points typified by 

C, D, E, F, etc., separated from one another by distance g. If at any 

Fio. 1.6. 

instant of time current is flowing upwards along all the lengths DC 
and FE, then it is flowing downwards along all the length of DE and 

FO, etc. If the filament were of length 2g, ig, etc., the field would be 

zero at a distant point in the equatorial plane because the field of DE 
would cancel that of CD\ it would be appreciable only at points high 

above or below the equatorial plane,. But here we‘have the analytical 

abstraction of a filament of infinite length, and it is not superficially 

apparent whether the field will be finite or zero at a large distance; 

only complete analysis can give the answer. If the charge density were 

constant along the length, the field due to it would be purely radial; 

it is unlikely the sinoidal distribution of charge will annul the radial 

component of electric field completely. There will certainly be an axial 

component of E because this will arise from the vector potential, which 

is purely aadal; it will be a very special case if the net axial field is zero, 

and this can happen only if the axial component arising from the 

charges just neutralizes, at all points, the axial component due to dAjdt. 
The axial S3mimetry demands that H must be disposed in circles 

centred on the wire. Since we now have to allow for a radial component 

Ef of electric force there will be a radial component of displacement 
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current, and hence the curl of H round it will not be zero; hence, at 

13E 
any given radius, His a, function of y such that — =-Curling 

cy c dt 
right-handedly round the rectangle inset in Fig. 1.6 gives 

dEy dE^ _idH 
dr dy c dt' 

These two relations show that E^ and Ey can be found if J? is known. 

But H can be found from the vector potential alone, since curM = H\ 
but A depends only on the current, and hence H can be calculated 

without reference to the charges. Thus it is not essential to perform 

direct integration from the charges to calculate E^ and Ey (even though 

E^ can arise only from the charges), since they can be derived from H, 
which depends only on the current. It is not essential to make explicit 

reference to the charges, though implicit reference is made to them 

through the current distribution, w^hich involves a distribution of charge. 

The vector potential at any point in a plane perpendicular to the 

filament and crossing it at points such as (7, D, E, etc., in Fig. 1.6 

must be zero, since it is equidistant from similar and oppositely directed 

current elements. Accordingly, at any radius, A must be zero in planes 

separated by g and must be periodic, and thus it is natural to expect 

that AjI = f(r)cos7rylg when the origin is on the filament and midway 

between the nodes of current. Now' A is an analytical tool which has 

been fashioned so that each of its three rectangular components satisfies 

the wave equation, see (1.12) and (1.13). Here there is only one com¬ 

ponent of A, and that is parallel to the current. Accordingly 

0. 

0, 

which we write 

If A varies as cos nyjg cos by we have 

1 8A 

= 0, where = 6*. 

Hence, as in (1.22), we now have 

A — {BJ0(a’r)+jCY0{a'r)}oo8by, 

provided a > b, which is y > JA. 
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To find B and C we must evaluate A at the surface of the filament: 
at the origin we have 

+ 00 

cos by mi{pt—pyjc) 

— 00 

+ 00 

y 
dy 

+ 00 

r cosftycosa?/ , . r cosftysinav T 

therefore 

2cA 
+ 00 

^=J‘ 
— 00 

+00 

cos(a+6)i/+cos(a—b)y 
+ C0 

8in(a+b)y+sin(a—b)y 

y 

cos udu cos V) dw 
u w 

+ 0O 

)-■ J (- 
'' J y 

—00 

> 
fsinudu 1 1 Bmwdw\ 
[ n ^ w j 

dy 

+ 00 

Now J (sinu du)lu = if 6 > « (i.e. g < ^A), then w is negative and 
— 00 

the quadrature component of A is zero: a truly startling discovery of 

great importance. 

If a > 6, then the quadrature integral equals 2it. It should be noted 

that the sign of the inphase integral does not change if w is negative: 

we have found it already, with much labour, just before arriving at 

(1.23). Hence at the origin —cAjrrl = and at y = — Jgr 

it is obviously zero. If we shift the origin a distance z along the axis 

we can write the current distribution as /cos62;co8 62/+/sin6zsin6y. 

Now A is zero at point z for the second term in this distribution, and 

hence it follows that --cAIttI ^ {YQ{a'b)+jjQ(a'b)}cosby along the 

surface of the filament, and this shows the general expression is 

—^ = {Yo{a'r)+jJo{a'r)}cosby, (1.29) 

which differs from (1.23 a) only in the term cos6y and in that a' has 

replaced a; it degenerates to (1.23a) when b tends to zero. Since 

H = —dAjdr we have 

—^ = {r,(a'f)+M(«V)}oos by. (1.30) 
CL ITl 

Since 

w© have 

8H 1 eE^ 
dy~ ~c dt’ 

= {Ji(aV)+jFi(aV)}sin%, (1.31) 
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and from the relation 

dE.y dE^ I dH 

dr dy c dt * 

we have ^ == |l — ^{—J^{a'r) +jY„(a'r)}coa by, 

or = {-Jo{a'r)+jYo(a'r)}coBhy. (1.32) 

(1.32) degenerates into (1.23) and (1.30) into (1.25) when b tends to 

zero, and then JEy tends to zero as b^. Before interpreting equations 

(1.30) to (1.32) we will consider the case where b > a, which is gr < |A. 

We now write = b^—a^ — so that 

d^A 1 dA 
dr^ r dr 

= 0, 

and the solution of this is 

A = BWr)+jCK^{a^r), 

where Iq and Kq are the modified Bessel functions such that 

/o(3) = 

We have seen that the quadrature component of A is zero at the 

surface if gr < ^A, and hence C in the above is zero. But even when 

gr < the inphase component at the surface remains unchanged in 

value when a—b is negative. When z is very small 11,(2) = (2/»r)logz 
and J^o(z) == —logz. When y > A — (7rIlc)Yg(a'b) at the surface, 

and this we may write as .4 = —(2I/c)Kg(a''b). Accordingly, the general 

expression is . 
— =: ‘iKg{a''r)ooaby, (1.33) 

and this leads to 

and 

^ = 2K^{a''r)<ioaby, 
a 1 

^ = 2j.^i(oV)sin6y, 
a 01 

= 2jKo(a''r)coBby. 

(1.34) 

(1.35) 

(1.36) 

When 2 exceeds about 2, .Ko(*) 4= .>/('n-/2z)e“* and hence, provided 

gr < |A, the fields do tend rapidly to zero as the distance from the 

filament increases. It was pointed out initially that it was not obvious 

that the field would be appreciabtej since one loop of current must 
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tend to neutralize the next: we have found it does fall rapidly to zero 

unless g > ^A, and this is an essential condition for the field to be 

appreciable at a large distance. If gr < JA, then H is everywhere in 

phase with /, and both and Ey are in phase quadrature with /: if 

gr > JA then, from (1.31), etc., the fields fall off as and their phase 

changes with a wavelength A{1—(2A/gr)2}-i. It is surely as unexpected 

to find the wavelength of the disturbance is increased as it is surprising 

to find the field can be finite at large distances. An observer travelling 

with speed c{l —(2A/gr)2}“l would experience a force on his test charge 

which decreased continuously as the distance increased but did not 

pulsate. But the mass of the test charge would have passed through 

infinity in attaining this speed, so it would seem the hypothetical 

observation is meaningless. Jfc is another example of the difficulties 
encountered in the concepts of propagation velocity. It is well to 

remember that the presence of a solid dielectric would decrease the 

wavelength, and the manner in which this shortening comes about is 

as difficult to visualize as the lengthening we have encountered in this 

problem. 

Now consider the special case where b tends to the value a, i.e. 

g =r |A, so that a'r tends to zero for all values of r. Then we may write 

(1.32) as 

i a'V^+i-tt'^^^logavjcosfey; 

since xlogx tends to zero with x it follows that Ey tends to zero as a' 

tends to zero. Since there is now no axial displacement current it 

follows at once that Hx^irr = 47r/cos6y, and this .result also follows 

from (1.30), since */i(aV) = 0 when aV = 0 and Y^(a'r) —2/7raV. 

Similarly — sin6vcosp^ = 
ar 

since dqldt = dijdy = blrniby. Accordingly the fields at any given 

section are precisely the same as they would be if the current were 

steady, or the charge static and continued to infinity along the filament, 

at the local value. In this very special case the fields fall off as 1/r, and 

the electric field is purely radial everjrwhere, even at the surface, and 

this means no work is done on the current: E and H are in phase 

quadrature, and their phase does not change with distance. 

It follows from (1.32) that the output of work equala (a'*7r/ac)/*oos*6y 

per unit length, and hence the radiation resistance per unit length is 

Constant and equal to a'hrja: hence the radiation resistance per loop 
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of current, measured from the middle of the loop, is 307r2(2gr/A—A/2gr) 

ohms. 

1.10. Field of a current Ico^bymipt distributed round a tube of 
radius R 

Proceeding as in § L8 it can readily be shown that 

-T—j = Ja(h){Yi(a'r)+jJi(a'r))(iosby, for r > R, (1.37) 
CL TTI 

or = Ji(ar){ro(i-)4-j«4(^)}cos6y, for J? > r, 

and to obtain and it is necessary only to place Jo{k) in front of 
the curled bracket in (1.31) and (1.32), remembering that k 

When g < JA, (1.33) to (1.36) become 

— a'R. 

cA 

T ~ 
2/„(i).S'o(a'V)eos6y, for r > R (1.38) 

or = 2A’o(t)/o(«''^)cosfey, for R > r. 

cH 

a”I 
2/o(i:)Ari(aV)cos by, foTr>R (1.39) 

or . — —2Aj(^)/i(a"r)cos by, for R > r. 

oeEf 

arbl~ 
2jIo(k)Ki{a''r)smby, for r > R (1.40) 

or = —2jK„{k)Ii(a’'r)sm by, for R> r. 

acEy 
2jIo(k)Kf,{a''r)coBby, forr>R (1.41) 

or =s: 2jK0)I^(a''r)coBby, for R > r. 

If a" is small (1.39) gives cHjl = (2//ii)cos6y at the outside surface, 
as it should do, and cHjl — (P log k)/R at the inside surface. If S' < JA, 
then a" = b; then if I; is large, which means nRjg greater than, say, 
unity, we find cHJI = 1/R at the outside surface and —IJR at the 
inside surface. 

1.11. Vector potential of a blade of current 

We shall often need the vector potential of a blade of current, by 
which we mean a narrow strip of infinite length with current flowing 
transversely to the length. Of coiuw there must be charges along the 
edges of the blade; but here we are concerned only with the vector 
potential which depends only on the current. We may use F^. 1.4 if 
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we suppose the current is flowing transversely to the filament and 

hence across a blade of width 81. Then 

this is the same integral we had to evaluate for the current filament 

save that now 181 must replace I; accordingly, by (1.23 a), 

= Y,{ar)+jJ,{ar). (1.42) 

Though the extension is very obvious, it is convenient for reference 

to give it a special section here, because we often have to make use of it. 
If the current is /cos 61/ along the length, then (1.42) will become (1.29) 

or (1.33), remembering that I must be replaced by 181 in them. It 

must be remembered that although ^4 is a function of r only, its 

direction is always parallel to the blade. 

1,12. Field of a pair of like current filaments 

Let a pair of filaments be separated a distance 2JR and carry equal 

currents flowing in like sense: in Fig. 1.7 a cross-section of the filaments 

is represented by the points A and B. To 

simplify the algebra we shall suppose the 

current is constant in magnitude along the 

length; if this magnitude varies as cos6^ 

we have but to replace a by a' or a'" and 

to use the results of § 1.9. The field pattern 

must be symmetrical about the line AB 

and also about the normal to it through 0: 

accordingly, at the point P(r, 6) its equation 

must be of the form 

E =/(r)+^(r)cos 2fl-f ^(r)cos404-.... 

Expressing (1.7) in polar form shows the 

axial component of E (and there is no other component if the magni¬ 

tude of current is constant along the filaments) must satisfy the equation 

Fig. 1.7. 

(1.43) 

If this has a solution of the form E = F{ar)coand, substitution shows 
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This is Bessel’s equation of order n, and its solution is 

E = [{^J„(ar)4-£r„(ar)}+j{C'J„(a»-)+Z)r„(ar)}]oos»0, 

since symmetry has shown that terms involving sinw0 are inadmissible 

here. 

When ar tends to infinity the form of solution is straightforward, 

since either filament alone would produce at P a field of the same 

magnitude The distance from P to filament A tends to exceed that 

from P by 2Pcos0: this difference is too small compared with r to 

have appreciable effect on the magnitude, but does have appreciable 

effect on the relative phase of the contributions to the resultant field 

made by each of the two separated filaments. The resultant field is 

the vector sum of the two contributions, and this differs insensibly 

from 2 cos(fc cos fl)pQ, when Rjr tends to zero. Hence, when ar tends to 

infinity, the solution of (1.43) must degenerate into 

2^ = {-J'o(«»')+j5"o(«»')}co8(*cos0). (1.44) 

A well-known Fourier expansion for cos(^ cos 6) is 

cos(koo80) = Jo(^)‘~’2{e4(fc)co8 20—J4(i)cos40+...}. (1.45) 

Substitution of (1.45) in (1.44) would be of the form of the general 

solution if — could be replaced by —J,^{ar)+jY^(ar). 

The recurrence formula of Bessel functions is 

and = -Y„_,(z)+^Y^{z), 

and this shows that J^{z) == —J^iz) = Jt(z), etc., and Y^^z) = —1^2(2), 

etc., when z tends to infinity. Hence at infinity it is permissible to write 

r E 

+2{—J2{ar)+jY2{ar)}J^{k)co8 20+..., (1.46) 

and this is a solution of (1.43). Accordingly it is the solution of our 

problem, and we have found an expression for the field of two like 

filaments with respect to an origin midway between them. When 

ar < k, then k and ar must be mterchanged in (1.46). 

The general term is {—J2n(®»’)+i^an(®^)}^*n(*)®o®2n0, and it is neces- 
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sary to consider the value this assumes when n is infinite and ar has 

any value. Now 

and this tends to ^for sufficiently large n for any value of ar. 
n\ 

Hence J^JJc)Jzn^ar) tends to (ari/4)*"/{(2w)!}®, and it is easy to show 

this is an absolutely convergent series for all values of ark. Since 

cos 2n8 is never greater than unity it follows, a fortiori, the real part of 

(1.46) is absolutely convergent. For sufficiently large rt the dominant 

term in I^(z) is — l)!(2/z)“, and thus 5^(z) then increases 

without limit. But for large enough n we have 

and this is an absolutely convergent series for all values of ar greater 

than k. 

At k = ar and 0 = 0 or tt the series degenerates ultimately into the 
00 

form 2 diverges logarithmically to infinity. This is what 

is required, because at these two points there are current filaments, 

and at them the quadrature component of force is proportional to 
00 

IJ,(0)+I^{2A:). Now 2 is knovTi to be convergent, though 

not absolutely convergent, and thus (1.46) is valid everywhere except at 

the two filaments, and may be differentiated term by term except at 

the radius r — R. 

It, should be noted explicitly that the inphase component of E is 

absolutely convergent even at the filaments themselves, and this is a 

characteiiatio of all our problems: then it is the field against which the 

currents do work. At either filament its value is 

“S = 2[Jg(i:)+2{.^(*)+J|(*)+...}], 

and the right-hand side of this gives the radiation resistance relative to 

an isolated filament. Also it is clear from Fig. 1.7 that at either wire 

and thus is found an expansion for J^{2k) in terms of J%{k). 

Equation (1.46) is the first appearance of a form we shall soon 

generalize and use repeatedly. Its absolute convergence renders it 
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valid for numerical computation in all circumstances, though computa¬ 

tion is very cumbersome if k is large and r^R, Fortunately the sum 

converges very rapidly to the limit given by (1.44) and (1.45), and in 

most cases it is the value for ar very large which chiefly concerns us. 

The writer feels he ought to point out one step which has caused him 

much misgiving. The recurrence formula has been used to show that 

J^(z) = J2(^)> when z is very large, but there we ignored the obvious 

condition that z must be very large compared with n: we are dealing 

with an infinite series, and thus it is not permissible to limit n in that 

way. Now (1.46) is a solution of Maxwell’s equation, it has the required 

degrees of symmetry, and its sum runs logarithmically to infinity at 

the two currents, and accordingly there is strong reason to suppose it 

is the solution of our problem. Also, there is no doubt the solution we 

require must tend to degenerate into (1.44) when ar is very large, even 

though it cannot do so accurately since (1.44) is not a solution of (1.43). 

The two solutions are identical, term by term, when njar is small; but 

corresponding terms are very discrepant when njar is not small. 

Perhaps the process we have used has been no more than a hint for 

a lucky guess in spotting (1.46). However, this equation can be derived 

in several other ways, and undoubtedly is the solution we require, and 

its sum must tend to (1.44) when Rjr 1: we need have no qualms 

about it. 

1.13. Field of a pair of oppositely directed filaments 

The disposition is described by Fig. 1.8, which differs from Fig. 1.7 

only in that the current at A is negative. Considerations of symmetry 

show that now the field must be expressed by an equation of the form 

E =/(r)cos0-f <^(r)cos30+^(r)co8 50+..., 

and it follows, from the last section, that 

= {-^i(or)4-il'i(ar)K#)co8 0+ 

+{—J^(ar)+jYi{ar)}Ji{k)(iOBZe+.... (1.47) 

When ar tends to infinity —/^(ar) = •\-J^{ar) — —J^jiar), etc., and then 

(1.47) takes the form 

Moreover, at infinity, J-^ar) = Y^{p/r) and Yi{ar) = —^(or); also it is 
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known that ^&m{kcoQ6) = J^{k)oo&d-‘J^(k)G6BZ6+..., Hence, at 
infinity (1.47) can be written 

cE 
Jo(«^)+j5o(«^)}><isin{Aco8 0)^ (1.48) 

Now consider the field at a very distant point P in Fig. 1.8: it is the 

vector difference of two equal vectors whose phase differs by an 

amount corresponding to a path difference 

2RQo&d, which is an angle 

^ = (47ri2/A)cos0. 

The appropriate vector diagram is inset 

in Fig. 1.8 and shows the resultant is 

2sin<^/2 = 2sin(icos0) times a single 

vector, and is in leading phase quadrature 

with the field which would arise from a 

hypothetical current at 0. Thus the field 

should have the value shown in (1.48), and 

thus we have shown that (1.47) fits the 

problem at infinity and is a solution of the 

problem. 

If 4; > ar it is necessary to interchange k and ar in (1.47), which then 

shows the field is zero at O, as it should be, since Ji(0) = t4(0) = 0. 

Discussions similar to those in the last section show that (1.47) is con¬ 

vergent everywhere save at the two points (ifc,0) and (k,7T), where it 

diverges logarithmically to plus or minus infinity, and is absolutely 

convergent save on the circle ar = k. We have now shown it describes 
the particular problem (a) at infinity, (6) at each wire, (c) at the origin: 

hence it must be the solution of the problem. 

For the inphase component of field at B we have 

the right-hand side of this gives the radiation resistance relative to an 

isolated filament. Also it is clear from Fig. 1.8 that this ratio is equal 

to 1—,^(2Jfc) and accordingly find that 

J^(2k) = J|(&)+...}. 

By means of the expression for Jo(2k) in the last section we find that 

1 = Jl{k)-{-2 2 for all values of k. 

If each wire has a very small radius b then, from (1.23a), the line 
*7«.l B 

Fia. 1.8. 
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mtegral of the vector potential round a path up the surface of one wire, 

normally across to the surface of the other, down it and normally 

across again is 

Accordingly the magnetic flux passing between the wires is 

— when 2k <^\ \ 

this reduces to the steady current value when k is zero and also gives 

the order of approximation to the limit when k is small. 

If the reader has been inclined to doubt the reality of the problems 

we are studying he is now in at least as good a position as in steady 

current problems, since he now has a go and return wire, even though 

the rectangular circuit is indefinitely long. 

1.14. Field of an isolated filament referred to an origin not on 
the wire 

By means of equations (1.46) and (1.47) we can now relate the field 

of an isolated filament to an origin at any distance from the wire: this 

facility is very helpful in solving many 

problems. 

Thus let B in Fig. 1.9 represent a fila¬ 

ment Isixipt perpendicular to the plane 

of the paper. Its field is given by (1.23) 

when the origin is at B: now we wish to 

have the origin at O, and this places the 

filament at the point (J?, 0). 

On superposing Figs. 1.7 and 1.8 we 

obtain a current 21 at B and zero current 

at A, and the field referred to O would be given by the sum of (1.46) 

and (1.47), and accordingly the field of current /sinp^ at B is given by 

^ = {-J<i{ar)-\-3Ya(ar)}Jo{k)+2 5 {-J„(ar)+jT„(or)}J„(A!)cos»fl. 

(1.49) 

When JR >r, interchange k and ar in (1.49). Equation (1.49) is very 

important later and is needed now. The series is convergent, save at 

(h,^) where it diverges logarithmically to infinity, and is absolutely 

ocmvragent save on the circle of radius k. 
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It is known as Neumann’s addition theorem.f 

If the current is on the left-hand side of A (that is, at point (A, tt)), 

then we must write (—1)*^ inside the S sign: it is a disposition which 

we shall use at times. 

With reference to Fig. 1.9, comparison of (1.49) with (1.23) shows 

that 

—Jf^{ap)-\-jY^{ap) = {—Jo{ar)+jYo{ar)}Jf^{k)+ 

+2 2 {—JJar)-\-jYJar))JJJc)co&ne, 
1 

where p = {r^+R^—2Rroo&d)^ and r > R. 

1.15. Field of a long solenoid 

Suppose a current of uniform density and constant phase is flowing 

circumferentially round a tube of radius R and infinite length; the 

familiar problem of a circular solenoid (current sheet and not a helix). 

The current crossing unit axial length of a generator of the cylinder 

is 1 sinpt. Consider an element IR 80 sinp^ situated at Q (see Fig. 1.10). 

We require the vector potential at P of an infinitely long strip of very 

small width with current flowing perpendicular to the length: this has 

been found in § 1.11, the strip being then called a blade. 

By (1.42) the vector potential at P due to the blade at Q is 

and is directed perpendicular to OQ: we require the component per¬ 

pendicular to OP, and hence 
277 

= i? J {Y^(ap)+jJo{ap)}coBede 

0 

277 

= i? J 

0 „ 
+22 (®^) +i«4(®*’)}^o(^)®o® »0]cos 6 dd (1.60) 

E^-- = —{-J^(arnjY^{ar)}J^{k). (1.62) 
c c 

And thus A is disposed in circles centred at 0: if r < £, interchange r 
and B in (1.62). It is postulated that the density is uniform and 

t See Funetwm, G. N. Watson, p. 368, or Modem Analysis, W^hittaker and 
Watson, p. 380, example 16. 
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accordingly there are no charges, and hence E = —Ale: the charges 

which necessarily resided along the edges of each component blade 

have vanished by neutralization from the next element. The magnetic 

field is obtained from the circuital relation —H == Afr+dAldr, 

Fig. 1.10. Section across circular current sheet. 

c z 

(1.63) 

or 
27r*jfc/ {Yi{^)+jJi{^)War) 

for internal points. 

It is worth noting that in this problem H is axial and a function 

of r only, and hence must satisfy Bessel’s equation of zero order and 

accordingly must vary as J^iar) and I^(ar): thus (1.53) is seen to be 

essentially correct in form, our method of approach having served to 

find the constants of integration. Internally and with small k 

g ^ 2MI !( 2 , .ai, (arY\ 

4ir//, .Ttk^L oV*\ 

and this shows the degree of approximation to the limiting value 4ir//c. 

It should be noted consciously that there is magnetic field outside a 

solenoid which carries an alternating current, unless the radius has a 

special value which makes J-^{le) = 0; then the external field is zero 

everywhere, just as though the current were steady: such special radii 

are SjX = 0*606, 1*118, etc. Note also that the intenuil magnetic 

field is ever3rwhere in phase quadrature with the current when Ii(it) = 0; 

this occurs first when MjX = 0*347. 
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It follows from (1.52) that the ‘radiation resistance’ is l207T^SJ\{k) 

ohms per half wavelength of axial length: this reduces to 1207r^/S*/A^ 

ohms when k is very small. The radiation resistance of a small coil is 

(see § 1.6) ohms: accordingly the output from a very small 

solenoid per half wave of axial length is three-eighths of the output 

of a small coil having the same ampere turns per unit length as the 

solenoid. 

It follows from (1.53) that the phase of the external magnetic field 

tends to correspond to a distance A/8 less than the distance between 

the observation point and the axis of the solenoid. 

The electric field tends, by (1.52), to the value 

cE 

T cos(p^-—ar-f Jtt) 

sin(p<~-ar~-j7T), 

and this shows the phase corresponds to a distance greater than r by A/8, 

in contrast with the small coil for which, equation (1.20) shows, the 

phase of E corresponds precisely with r. If the current density varies 

as cos by along the axis of the solenoid there will be a radial component 

of H in addition to the axial component. As in § 1.9 it is necessary to 

replace a by a', where a'^ = 6^. With this modification (1.52) and 

(1.53) remain unchanged except that each must be multiplied by cosfty. 

In addition we have 

= Ji{lc)^i{a’r)+jJj{a'r)}smby. (1.64) 

In the special case when gr = ^A this reduces to 

c£L , 
=-smov or-sm6y 

I gr ^ g ^ 

for external and internal points respectively: also Hy = {4^J/c)ooBbp 

for internal points, a result reminiscent of steady currents. 

If (7 < then (1.61) becomes 

rA 
-y— — 4ljiJc)Ki{a''r)oosby, for r > R, 
itlM 

(1.66) 

or = 4K’i(i:)/i(o''r)oos6y, for B > r, 

whence _ —j4naB l^{k)Ki{a''r)ooBby, (1.66) 

or = —jiTTuB Ki{k)Ij{a''r)ooaby. 

It should be noticed that there is now no inphase component of E and 
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thus the output is zero. Equation (1.55) is very useful in problems of 

coils enclosed in metal screening cans with closed ends, but this applica¬ 

tion will not be developed here. 

1.16. Field of a line doublet 

Take Fig. 1.16 to represent a normal cross-section through a line 

doublet of infinite length and carrying a current I per unit length. 

This is a two-dimensional problem, and we have already found in § 1.11 
that the vector potential of a blade of current is 

f* >4 

In this A is everywhere parallel to the blade. The magnetic field must 

be everywhere perpendicular to the plane of the paper and 

H == 
dx' 

accordingly, = —a{Yi{ar)+jJi{ar)}—. 

••• = {Yj^(ar)+jJi(ar)}cos<f>. 

■KT 1 dEf ■ 8H ahrll ,(vi \\ •n u Now -- cos i(ar) Jx(or)}. 

(1.67) 

Again, 

= Jco8^{Ji(ar)—/gCor)}—j{ro(ar)—FaCar)}]. (1 

88 ~ c dt ' 

■■■ (. 
When or 0 

Hence at the line doublet, Ep == —07r/l/2c, in contrast with —|(o*/7/c) 
for a ain^e doublet. If we choose I so that ^A/ = I' (i.e. the line doublet 
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has the same number of metre amperes per half wavelength of its length 

as the single doublet), then the output per half wavelength is 

as compared with 

for the isolated doublet. 
We can also write Ep ~ —(7t^Ic){IIX)I, and should compare this with 

the expression Ep = —"iTrilc for an infinite sheet, see (1.60); these are 

identical if Z/A = 2/77. 

PLANAR PROBLEMS 

1.17. Field of an infinite sheet carrying uniform current density 
Let AB in Fig. 1.11 be the trace of an infinite plane sheet standing 

perpendicular to the paper and carrying a imiform 

current density i sinpt flowing upwards. Because the 

sheet is infinite in both directions the field at any 

point P must be independent of distance in respect 

of magnitude, though not necessarily in respect of 

phase. The magnetic field must be parallel to the 

plane of the paper; curling round an elementary 

circuital path close to the sheet and threading it 

twice gives H = {27ri/c)sinpt at the surface. 

In this problem equation (1.7) takes the form 

d^Hjdx^ = and the solution is 

H — {AQOBax+Bmiax)+j(C cosax+D&inax), 

where the constants A, B, etc., must be found to 

suit the current density in the sheet. When a:; = 0 we have found that 

is in phase with i: accordingly C must be zero and A = 27nlc. Now 

divide the sheet into filaments parallel to the current flow, a typical 

filament being iSy at Q in Fig. 1.11. Then for the field at P we have 
00 

^. = 2 [ {-J,{ap)+jY,{ap)}dy 
am J 

0 

00 

=S 2 J {—Jo(oy)+i3o(oy)} if p is at 0, 

0 

= ^(-i+ixo). 
a 
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Hence E == — (27ri/c)8injp^ at the surface of the sheet. 

Since 
dx dt ’ 

we have 
dE 

dt 

_a I 27ri . 
^ c\ c 

sinax+B cosax cosax. 

= Dcosaa:—^sinaa;-(-JScosaa;j. 

Since we have found that the quadrature component of E is zero at the 

surface it follows that B must be zero and D = —2iTilc. 

and 

iiri 

cE 

2'3n 

- = cosoa;—jsinoa; = sin(p<—aa:) 

cosa*—jsinoa; = sm(p<—oa;) 

(1.60) 

Accordingly E — H numerically at all points and at every instant of 

time: at any point the phase of both E and H corresponds exactly 

with the distance of the point from the sheet. 

It is helpful and instructive to solve the problem completely from 

the field of a filament: it follows from (1.49) that 

Jo(a®a;®+oV)* = Jo{ax)Jo(ay)—2{J2iax)Js{ay)—Ji{ax)Jt{ay)+...}. 

Hence at point P in Fig. 1.11 the inphase component of E is given by 

+ 00 +00 

—^ = J^(ax) r Jg{ay) dy—2J^(ax) f J^iay) dy+.... 
am j j 

— 00 —00 

It is known that 

cEp 

2m 

f Jn{z)dz = 1. 
6 

J (oa:)—2{J2(<ix)—J^{ax)-\-J^{ax)...} 

= cos oa:. 

Alternatively we could have used (1.46) instead of proceeding from 

(1.49). It does not appear possible to evaluate the quadrature com¬ 

ponent of field in the same manner because a typical term in it is 

JJpa)Tjfvy) when y > x and JJfly) Tn{ax) when x>y. Hence a typical 

term in the integration is 
00 X 

J„(ax) j Y^{ay) dy+TJax) f JJfly) d/y 
X 0 
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and this does not seem to be integrable. It is known from (1.46) that 

cE 
—2 = sin aa: == 2{J^{ax)—J^{ax)-\-...}, 
Ztti 

and this must give the value of the unknown integrals. The solution 

of some problems in this book depends on being able to make a suitable 

change of origin. As an example of this process we will calculate the 

field at point Q(0,z) in the sheet, using the origin O in Fig. 1.11. 

Then by (1.49) 
00 Z 

= Jo(^z) f May) dy+Maz) I* May) dy-\- 
(iTr% J j 

z 0 
(00 z 

Maz) j May) dy+Maz) J May) dyW- • 

z 0 * 

-Eff = Maz)+^i(az)+2Maz)-\-... 
at 

= cos(a2Cos|7r) = 1. 

Since the plane is infinite, the field at Q must necessarily equal that 

at O, and hence the calculation we have just made is pointless save as 

an example of the use of a fresh origin. It is not possible to calculate 

the quadrature component at Q, working from O as origin, because this 

involves oo 

J YJay) dy, etc. 
Z 

The analytical concept of infinite sheets is not only artificial but must 

always tend to be a little suspect: the reader should be inquiring how 

wide a sheet must be to count as sensibly infinite. Here the sheet need 

not be infinitely wide, though it must be infinitely high. If its width 

is 2z, then in the midline 
z z 

“ J J 
0 0 

It can be readily shown that, provided z is large, 

[ J(ay)dy == \—Ta{az) and J Yo(ay)dy == —Maz)- 
0 0 

cE 

2atti 
= {—l-\-Yo{az)}—jJo{az) Hence 
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Hence z/A must exceed 2007r before the fluctuations of Fj> fall to 3 per 

cent.: they are, however, only about 20 per cent, when z/A = 3. Thus 

we have found the rate of approach to infinite width for the force at 

a point on the sheet: for a point not on the sheet see Chapters VII 

and VIII. We remember there must be line charges along the top and 

bottom edges of the sheet but know the force contributed by them is 

negligible, since we have seen it was negligible for each elementary 

vertical filament. However, we can build up the strip from horizontal 

line doublets: their charges will neutralize by superposition save along 

the bounding edges. The field of a line doublet is given in (1.58) and 

(1.59). Hence, from (1.59), the force at a point on the surface of the 

sheet is 
z 

^ = 2 f Ji(ay) 
airi J \ ay ay j 

0 

di/ 

= 2 J 
0 

z 

f {Ji(ai/)+Jf,(at/)} d(at/) = 2, 
TTt J 

0 

when z tends to infinity. This, however, gives accurately the force in 

the midline of a sheet of vertical height 2z and infinite width and 

includes the contribution from the line charges along the edges. The 

quadrature term becomes divergent at the origin, because there we are 

in the middle of a doublet. It is not worth while to go through all the 

moves of unravelling the tangle because we know already that Eq is in 

fact zero. Using the approximate expressions for J Jq{z) dz, we have 

^ = l-ir^(az)-iYo{az) 

= 1 
az 

Hence here the fluctuations fall off as (az)*, thus showing the approach 

to the limit is very rapid and much more rapid than in respect of width. 

1.18. Field of infinite sheet carrying current density which varies 
periodically across its width 
Let ABC be the trace of an inflnite flat sheet standing perpendicular 

to the paper: current flows perpendicular to the paper and is oophased 
eyer3r(rhere. Let the density be I <xm(7rylg)eaxipl = /cos6y sinpi: then, 
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with reference to Fig. 1.12, the density is always zero at points A, B, 

Cy etc. Note that the density is constant along the direction of flow 

and accordingly the sheet can be divided into current filaments of 

infinite length. Consideration will show that 

the vector potential A and the electric force E 

must be zero in a plane typified by BD, because 

any point in this plane is equidistant from 

similarly situated filaments of unlike sense. In 

this two-dimensional problem, A must satisfy 

the equation 

d^A , b^A , 2 . „ 

W+W+ “ ■ 
Since A must repeat itself periodically in the 

y-direction, the distribution in a plane distant 

X from the sheet can be expressed as a Fourier 

series and accordingly the solution must be of 

the form A =f(x)cos nby, when the origin is at O. Accordingly we have 

Fig. 1.12. 

d^A 

dx^ 
+ (a^-n%^)A = 0. (1.61) 

If a > 7^ (i.e. g > nX/2) the solution is of the form 

A == sin mx COB nby: 

but if a dnb it will be of the form 

A = €“”*^cosn6y 

and thus diminishes rapidly with distance without being periodic. We 

have to find the solution appropriate to the density I cos by in the 

sheet and expect to proceed as in the last section by dividing the sheet 

into long filaments: this approach works, but it is very cumbersome. 

If, however, we divide the plane into horizontal strips (i.e. blades 

transverse to the direction of flow), the complete solution is very 

straightforward. It follows readily from § 1.11 combined with § 1.9, 

that if the density varies as cos by along the blade, then (1.42) becomes 

where a'* = a*—b* and the origin is at a maximum of density. Then, 

with reference to Fig. 1.13, the vector potential at P is the sum of 
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contributions from blades typified by BQC at height z above the 

(a;,y)-'plane and is parallel to the sheet. Accordingly 
00 —^ = ^GOsby J %{a'p)-\-jJ^{a'p)) dz. 

0 

Had the density been uniform across the sheet the corresponding 

integral would have differed from the foregoing only in that a would 

have replaced a', and thus it follows readily from (1.60), since 

E 

that we should have had 

IdA 

c dt ’ 

acA . , . 
—■—-T = smoar+icosaa:. 

2in *' 

Whence, in our present problem, we must have 

a'cA 
2itI 

= (sin a'x+j cos a'x)coB by. 

a'cE 
2wo/ 

= {—cosa'x+j 8ma^x)coBby 

= —€“^®'®cos6y, (1.62) 

CHy 

2ml 
= (—cosa'a:+isiiiGt'ic)cos6y 

= —€~^®'*oos6y, (1.63) 
ca'H^ 
2nbl 

=; (sin a'x+j cos a'a;)sin by 

j€’-^^'^smby. (1.64) 
This shows that \E\ and \H\ are independent of x, but that the pbiu^ 
changes with wavelength A{1—(A/2g)*}“*. This accords with the over* 
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riding requirements of (1-61), but in addition shows that for the 
particular density distribution we have chosen the only admissible 
value of n is unity. At the surface of the sheet (1.62) gives 

a'cE 
27ral 

— cos by. 

Now approach the problem by dividing the sheet into vertical strips as 
in Fig. 1,11 and proceeding as in § 1.17 for a point on the surface. 

Then we have 
00 

cE C 
2^= J {—Jo{ay)+jYo{ay)}co8bydy. 

0 

Comparison of the two approaches shows that, when a > b, 
00 

0 

00 

and J YQ{ay)coBby dy = 0. 

0 

The first integral is very well known and is due to Weber; the second 
integral is less well known. 

When gr < the vector potential of a blade (compare 1.55) is 

^ = 2Ko{mr)oosby, 

where m® = b^—a^, and this leads to 

and 

mcE 
2iTaI 

cos by, 

cj^ 
277/ 

e-"“cos6y, 

mcH-x 

^trbl 
€-”“sin6y, 

(1.66) 

and these follow directly from (1.62)-(1.64) by writing m = 
Equations (1.66) are also in accordance with the overruling require¬ 
ments (1.131) in showing the field is not periodic and decreases exponen¬ 
tially with distance when g < |A, and that for density oos6y the 
only permissible value of n is unity. Note that B is now everywhere 
in quadratiue with I and hence the power output is zero; and this is 
to be expected, since the field attenuates very rapidly. 
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Comparison of the approaches by the horizontal and vertical division 

shows that when a < 6, 
00 

J Jo(ay)cosby dy = 0 
0 

00 

and J Y^{ay)co8by dy = 

0 

Returning to (1.62), we see the fields are akin to a plane wave in that 

E and Hy are everywhere cophased, but here Hy — (A/2gr)2}i: the 

so-called ‘propagation velocity’ exceeds c, but it is still possible to 

regard the Poynting vector as travelling with speed c. It should be 

noted that the quadrature component of field is zero at the surface of 

the sheet and that the phase corresponds precisely with the distance; 

or in short, that (1.62)-(1.64) reduce to (1.60) when g is infinite. 

We have now a measure of the effect of inequalities of distribution 

across an infinite sheet. Provided the inequalities are periodic they 

can be expressed as a Fourier series: if the pitch of the inequality is 

less than A, then the field at a large distance is precisely the same as 

if the density were uniform and equal to the mean value of the actual 

distribution, the effect of the inequality is limited to a region near 

the sheet and appears only in the quadrature component. If the pitch 

exceeds A, then the field at a large distance will be that due to the mean 

density together with a term given by (1.62): the two components have 

the same frequency but different wavelengths, and thus there will be 

interference maxima and minima in the x-direction as well as a super¬ 

posed ripple in the ^-direction. 

1.19. Infinite plane grid of parallel wires 

Let adjacent filaments be spaced a distance g apart, the origin of 

rectangular coordinates being taken at one wire, as shown in Kg. 1.14: 

each wire carries a current Imipt throughout its length. The current 

distribution is shown inset in the figure and consists of rectangles of 

height T and width 2a. When expressed as a Fourier series this dis¬ 

tribution is 

... •.l(.+4co.2^), 

if a ->■ 0, and where I is the current in each wire. My < Athe distance 
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between the current nodes of every harmonic component is less than 

and accordingly each one produces a field which varies as 

Hence at a large distance the field will be precisely the same as that 

of an infinite sheet with uniform density Ijg: it is precisely the same as 

if the concentrated currents had been smeared uniformly over the 

Fig. 1.14. 

plane. If gr > the field will be that of a uniform density Ijg together 

with the fields of those harmonic components for which g > nX, 

Accordingly at each wire 

It must not be forgotten that when g > X the field will have a 

component whose wavelength exceeds A. 

Since cEjaTrl = follows directly from Fig. 1.14 

that at the surface of a wire 

-^= l + 2|;J5)(«oS'): 

hence by comparison with the result obtained by the Fourier process 

we find that «, , 

if z < 7r, a result which can be obtained directly from the theory of 

Bessel functions (see Watson, p. 632, 19.4). If gr = A, then 

^ == l+2[jo(2^)+W+;;^(^i+j»+|+---)] + 

+jro(o60+2j[r„(2,r)+r„{4,r)-^[i + l + ...^^^ 



64 ELECTROMAGNETIC FIELD OF [Chap. 1 

These series diverge logarithmically to infinity; but %J^{nz) and 

00 

2 YQ(nz) are convergent, though not absolutely, for all values of z save 
1 
the special and isolated values 477, etc. If gjX = 3/2 then, by (1.66), 

cEpg_, 2 — Q.Att _cEp — ^ WQ 
1 + —^ = 3-68 or _£& = 0'78. 

277/ (1—5)^ airl 

The quadrature field at the surface cannot be evaluated from (1.62) 

because it is saved from being infinite only because the small radius 6' 

is finite. It is better to proceed from 

yo(«6')+2|yo(na^). 

When gjX has the values 0*16, J, and f we have estimated that 

2 Y^(nag) equals 0*62, 0-56, 0-20, and —0*32 respectively. 

However, (1.62) shows that the contribution to Eq from the funda¬ 

mental component of density is zero, and hence by (1.66) 

cEn . \ 
mg 

where mg = m| = 2662—a*, etc. 

We defer a more detailed consideration of Eq until Chapter V and 

Fig. 5.16, where it is required to estimate the screening qualities of 

wire netting. 

1.20. Current filament between two parallel conducting planes 

Reverting to Fig. 1.12 and equations (1.62) or (1.65) it will be seen 

that E and Hy are zero in planes separated by a distance gr, and 

accordingly infinitely extended and perfectly conducting sheets may 

be situated in these planes, and then we have a sinoidally loaded 

current sheet across a corridor of width g\ in technical parlance this 

is called a ‘rectangular wave guide’. Currents will be induced in the 

walls having a density given by 477i = cH^., whence by (1.64) 

/ ^a' ’ 

since sin6^ = 1 at the walls. This shows the walls are sinoidally loaded 

with two component densities which are in quadrature in both time 

and space. 

Fig. 1.15 represents a cross-section, in which AB is the sinoidally 

loaded driving sheet and the sinusoid represents the quadrature com¬ 

ponent of induced density, successive nodes of current being separated 
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a distance 7r/a'. We have seen in (1.62) that density gos by radiates a 

field perpendicular to the sheet with wavelength (ala')X: hence density 
coBa'y radiates a field with wavelength 

a a . 

b a 
X=2g, 

But here there are two similar sheets separated a distance g and each 

radiating a field of wavelength 2g, consequently their net field is zero 

in a direction perpendicular to the walls and outside them. This shows 
the induced densities do in fact produce zero external field. The field 

of the sheet AB decreases as in the .r-direction and thus is negligible 

ultimately, and then we may say the field in the guide is due only to 

the currents induced in its walls: but these are induced by the driving 

sheet AB, and the actual field is always given by (1,62). The sheet AB 

has all the attributes of what an engineer calls a generator. If the 

sheet AB is replaced by a single central wire, then we have but to use 

the Fourier series of the last section, omitting its constant term. It 

then follows readily that, if g/X lies between ^ and f, 

cE 

I 
— cos a'x +j sin a'x)cos by — — €~'”®^cos 36y 

Tfl^ 

— ^ cos 56y—...], (1.67) 

where m\ = etc., and this is also the field of a wire grating 

in which the currents alternate in sense. Proceeding from that system 
we have 

^ = -{l-2J;,(asr)+2J„(2a?)-2Ji(3aff)+...}+ 

+.?{^o(o6')- 2ro(«l/)+2ro(2aff)-...} 
at the surface of a wire. Comparison with (1.67) shows 

1+2 (—l)Vo(na8r) = 0 

4W1.1 _ 
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if gr < TT, a well-known result called the SchlOmilch null function (see 

Watson, p. 634), and if g lies between tt and Stt, the sum of the series is 

4 _ 4 

gra' agr{l~-(7r2/aV)}*’ 

Relative to the isolated value, the radiation resistance of each wire is 
4 

“ /\\2—Tu provided gjX < 3/2. The quadrature field at the surface 

can best be evaluated from (1.67), or computed from values in l^(wagr) 

taken from tables. When gr = 1 we find cJE^Q/air/ — F(aft')+0-27. Since 

Y{ab') is negative we see that neighbouring wires then reduce the 

effective self-inductance of the wire. When gr/A is small, say less than 1/5, 

(1.67) becomes 

cE 

I 
Jg-6mi a:_|. ) 

= log tanh nil (1.68) 

and this gives the field in what is commonly called an attenuator. It 

is perhaps advisable to point out explicitly that it is permissible to 

place metal cover plates across the two infinite walls, thereby producing 

a rectangular tube: currents will be induced in these cover plates and will 

have axial and transverse components obtained by dividing (1.63) and 

(1,64) by 477. Since the transverse component dwindles to zero at the 

midline there must also be a charge density on the cover plates: the 

induced charges and currents together produce a field equivalent to 

that contributed by the currents in the, previously, infinitely high walls 

and driving filament. 

In these last two sections we have derived all the analysis essential 

for solving problems of wave guides, attenuators, and wire netting 

screens. We leave their more detailed and practical interpretation to 

later chapters. 

SUNDRY PROBLEMS IN THREE DIMENSIONS 

1.21. Field of an electric doublet 

Let there be a doublet of moment Ql oo&pt at the origin and pointing 

along the axis of z (see Fig. 1.16). By a doublet is meant here a fine 

wire of length I terminated by large capacitances; I will then be shrunk 

to zero while maintaining Ql finite. It corresponds to the Heaviside 

current element of § 1.2 (Fig. 1.1): here there is no need to provide an 
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infinite conducting ocean because the current is not steady but is 

alternating. It is required to find the field at a point P distant r from 

the doublet and at an angle of elevation <j) above the equatorial plane 

Fig. 1.16. Electric doublet. 

(see Fig. 1.16). When P is very distant the retarded potential there 

due to charge +Q will be 

V _ cos{pt—prjc) _ cosarj , .Sinara 
-^ ^ ^ , 

Q 
Hence the retarded potential at P due to both charges is 

V __ cos _ _ 2V, ./sinari sinar^^ 
Q \ r, r, r^\ r, r, ) 

COS avi cos a(ri-\-l sin _j_ ^./sin ar^ sin a(ri+^ sin <^) 

r^+isin^ 

Icosari cosa(ri+^sin.Isino 

~ 1 n fi+isin^ I fi 
. f/1 1 \ , aZsin<isinar) 

\\r r+/sin^/ r f 

r+^sin^) 

+ 

sin ar¬ 

sing |- Zsin 

1 ^ 

T d<f> 

'cos or a sin ar\ 

^ r 1 

1 

r r+l Bin <f)J^ 

/sin ar acosar\l 

al sin ^ cos ar\ 

r I 

= Ql cos 
//cos ar asinar\ , ./sinar a COS ar\) 

i\ HI 
r ^2 j-r rs - r* j) 

and 

£Z 
8r 

Ql sin 
2 cos or 2a sin or , o®cosar\ 

r» 
+ 

+j 
/ 2smar 2a COS ar o®sinor\^ 

\ r® r« ^ -• It 
A = — = ^^(sinor—joosor), 
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JEi= --- 

1^, 

c dt 

1 dV 1 dA. 

QaH 
(cos ar+i sin ar). 

r d(l> c dt 
cos<f> 

. /(cos ar-[-ar sin ar—ah^ cos ar)+ 

^^Xsin ar—ar cos ar—a^r^ sin ar)}, (1.69) 

E, = -2;_i 
' dr c dt ^ 

_ 2^Zsin ^ ar-\-ar sin ar)+j(sm ar—ar cos or)}. ^3 

Q/ COS^ 
(1—aV^+aV)^ 

and 

Writing these in terms of current, where I == -—pQ, 

and 

clE,l 

•aUl 

COS^/j 

ar \ oV'^ov)^ 

II 

2 sin <f>l 

oV \ , ^oVV 

_dA 1 1 d /cos or .sinar\ 

dx c r ^ r ) 

cos ar a sin ar ./ sin or , ocosor\) 

cl r2 r *^\ r^ r )] 

cr 

. , cosar , ./ sin 
cos <f>l sin ar H-(-j( cos ar 

I ar 

inar\| 

iirli 
all COB <f>^ 

cr 

where 
, o tanar—ar . i v tan p = = tan(tan“w—or). 

(1.70) 

(1.71) 

(1.72) 

(1.73) 

(1.74) 

1+ar tan or 

j3 = or—tan~^r. 

Accordingly, when or is large, the phase of H tends to correspond with 

the doublet being closer than it really is to the point where H is 
beii^ observed. 

It will be noted that H is derived from the current alone and remem¬ 

bered that E can always be derived fi%>m H by means of the circiutal 
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relations. Hence E could have been derived without explicit reference 

to the charges and to F, as indeed it was done in §§ 1.9 and 1.16. Here 

it has been derived explicitly by use of F, as an example of that method. 

Now - , alL ̂ cosur 

c ' > ar ar 1- 

2 \ 
COS 

TTarj 

and it is known that 

and hence we may write A in the form 

and this is very reminiscent of (1.23). Also we can write 

cos ar, 

(1.75) 

cH 

a^Il 

and this is very reminiscent of (1.24) when Y'^ is replaced by 

In this problem E,., E,, and H are functions of (f> but not of 6, the 

bearing. Maxwell’s equation now takes the form 

,dm 
■ 2r 

8H 1 

dr^ ‘ dr sin<;6 

and the general solution of this is kno%vn to be 

H = i{.4,/„+i(ar)+J5J_„_j(ar)}P„(p.), 

(1.77) 

(1.78) 

where p = cos^ and P(p) is a surface harmonic (Legendre function): 

it is weD known that i^(p) = 1 and Pi(p) = cos0, and accordingly 

(1.76) is seen to conform with (1.78). 

aV 
On writing sin or 

quadrature term of (1.69) and (1.70) we obtain 

' . 1 1 ® ^ , • iU or—cosor= 1— 

and 
cEf 

am 

\ _ (2 4 oV 

^Z“i3“5‘3! 

J2 4 , 

\3! 5! 

oV* 6 o*r* 8a«r6 

6 

7! 

9 7! 

1 
‘9! 

+ 

o*r*H- 

.jcos^ 

...jsin^. 

(1.79) 

(1.790) 

These equations show that when or tends to zero the component of 

electric field which is in phase with the current is parallel to the doublet, 
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directed oppositely to the current, and independent of distance. It has 

thevalue e = 

along the axis of the doublet, and hence the rate of working is 

If == ?£!?/2sinV, 
o C 

and this may be expressed in terms of a radiation resistance. The 

quadrature component of field tends to infinity at the doublet: these 

correspond to Jo(ar) ~ 1 and F(,(ar) = oo when ar -> 0, in our previous 

problems. 

1.22. Radiation resistance of a half-wave aerial 

Because this result is required in the next chapter it must be derived 

here though it belongs more properly to Chapter VIII, which is devoted 

to the isolated fine wire aerial. Unfortunately the precise current 

distribution along a finite wire cannot be calculated; the reasons for 

this will become apparent in Chapter VIII. Therefore it is necessary 

to take a general distribution, and we shall assume only one thing, 

namely, that the phase of the current is constant at all points along 

the length. This simplification is almost certainly not correct. Let the 

length of the thin straight wire be 2h. It is required to calculate the 

field at point P (see Fig. 1.17) due to charge elements +q8y and 

—q Sy at the points B and B' respectively. We shall concern ourselves 

only with the component of field which is in phase with the current. 

For the vector potential at P we have 

ihy 

A 

ai 8y 

cA 

— sin{pt—ar^) + i sin(p<-“ar2). 

(sinar. , sinar2\ .... 
--s Ismterm in oospt, 

^1 H / 

2 j 1+ ^(*‘+6^ V+S/*)-... j. 

This is the contribution to at P provided by current elements at 
B and B', To find the total value of A at P contributed by all the 
elements along the wire we must integrate this expression with respect 
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to y. On doing this and writing f idz == Xq and J dz = we 
0 0 

obtain 

To find the electric field at P we must also find there the contribution 

which arises through the space rate of change of the delayed potential 

Fig. 1.17. 

of the charges: this can be found by a similar process and details need 

not be given.t On doing this we find 

This shows that Ep varies along the length of the wire. To find the 

rate of working it is necessary to evaluate 2 J iEp dy^ and on doing 
0 

t For full detwls of the algebra of these steps see Joumal I.E.S. (Proceedings Wireless 
Section), 11 (1036), 96. 
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this we obtain 

_ 2 raf, 3Xi\ a« /X* , 15X^X\\ , ] 

3 ®L 5 X„'^l4o\Zo'^ X§/ 7560\Xo'^ X§ r"j 

(1.80a) 

This expression is general for any distribution of current having a 

constant phase along the wire. If h = JA and if i = /sin(27ri//A), then 

it may be found that p 
— ^ = 0-6095Xg. (1.81) 

Thus in respect of the output it is as though Ep were constant along 

the aerial, of total length |A, and having the value 

Ep =■ 

2 2Zga2 

•3X-c-> 

and thus there is a small reduction in the mean effective inphase field. 

If 2h = JA, and if the current distribution is triangular, vice sinoidal, 

then evaluation shows the factor 0*6095 becomes 0*616. Accordingly 

we may have great confidence in taking the value of this numerical 

factor as 0*61 for any aerial whose total length is ^A. Accordingly we 

have 2 

P = 240^ X0-6lZg watts. (1.82) 

If the distribution is sinoidal, then the radiation resistance of a 

half-wave aerial is 73 ohms. We shall continue this discussion in 

detail in Chapter VIII. 

1.23. Circle of radius R 

In some respects we can now generalize the problem of a very small 

circuit, solved in § 1.6. Let a current I sinp< flow, in a thin wire, round 

a circle of radius R. It should be noted that the current is constant 

in magnitude and phase at all points round the circumference for any 

value of R. We do not discuss here how such a current could be 

produced in practice, since we are concerned now only with the field 

which would result from such a current. The more complex distribution 

which would obtain in practice can be dealt with by a Fourier series 

corresponding to that used in § 1.19: here we are concerned only with 

the field due to the constant term in such a series. 

Since the current is constant in magnitude and phase there is no 

charge on the wire, and accordingly the electric field can be derived 
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from the vector potential only. The vector potential at point P, in 
Fig. 1.18, due to an element IR Sdmnpt at B is 

Fio. 1.18. 

Consider first the quadrature component of .4, then 

^ „ 2 f W co» e m. wher. aB^k, 
I J ^ Sin id 

rr 

/( 
sin(2A;sin ^6) 

-sin(2A’sin^0)sin |^| dd 
2 sin ^d 

0 

r /?iEl:i™l?L^--sin(2/::sin<i)sin d6, where ^d eh (/>, 
J I 2sm0 ) 

Jj {2k)sm<f)+jQ( 2i)sin 3<l>+... 

sm<l> 

iTT 

-J{ 

—{(1—cos 2<f>)Ji{2k)+{co8 2^—cos 4^)J3(2i:)+—}j 

mk) 
am<f> 

. d<l> 

= 27T{Ji{2k)+J^(2k)+...}, since f if nis odd, 
J Sin 9 
0 

2k 
= TT J J^{Z) dz. 
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P 27rREp 27T^k r j. j 

r^=—J**)* 
0 

3c \ 5 ”*"56 720“^ *‘7 

[Chap. I 

(1.83) 

(1.84) 

(1.84a) 

Equation (1.84) gives the radiation resistance for a circle of any 

radius, while (1.84 a) shows that when k is very small the expression 

reduces to that found already in § 1.6, for a very small circuit. We now 

find, from (1.84 a), that the well-known and limiting value is correct to 

closer than 5 per cent, so long as < ^, which is iZ/A < xV 
00 

Since J dz = 1, equation (1.83) shows that Ep — —airljc when 

jB -> 00, and thus reduces to the value appropriate to a straight filament; 

see (1.23). 

The radiation resistance passes through maxima and minima when 

J^[k) = 0 and this occurs when iZ/A = 0*813, 1*34, 1*85, etc. Fig. 1.19 

shows radiation resistance plotted as a function of 2iZ/A: the dotted line 

is the asymptote for 2iZ/A very large, and the dotted curve is the 

asymptote for 2iZ/A very small. It may be seen that the curve of 

radiation resistance is climbing much the same general gradient as the 

straight asymptote, but with pauses at maxima and minima: it should 

be noted that the curve is everywhere below the asymptote, and thus 

the radiation resistance is always less than (1207r^iZ)/A ohms. 

It follows from (1.78) that the value of A at distance r from the 

centre of the circle and at elevation <f> above its plane must be given by 

with » odd. 

When <l> = 0, Pniyt) = 1: hence in the plane of the circle 

(1.86) 

Equation (1.17), for a very small circle, may be written 

(1.86a) 
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Comparison of (1.85) and (1.85a) shows that = ttP. Expansion of 

(1.85) with ar = k gives 

0-5 1*0 1-5 2-0 2-5 

Fig. 1,19. Uniform current flowing round a circle of‘radius JR. 

Comparison of this with (1.84 a) gives 

Ai = ttP, A^ = —A^ = etc. 

(1.86) 
and this equation serves to evaluate the mutual radiation resistance 

between two parallel and coaxial circles. The mutual radiation resis¬ 

tance between two similar coaxial circles whose planes are separated 

a distance z is given by the readily derivable expression 

ah^ a*z* .,,(2z‘+5 Ji^)) 

30 i 28 1512 7 604 / 
+ .... (1.87) 
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More terms will be needed in this expression if it is to be used for com¬ 
putation when k exceeds about 2. 

To calculate the effective inductance of the circle we require the 

inphase component of vector potential at point P in Fig. 1.18. In the 
notation of this figure we have 

cA 

2IaR 
Jcosar ^ 
-cos ff do 

ar 
0 

J \ar 2! 4! j 
0 

_ r cos 0 d6 r r pi: sir 
~ J ^ J [1—27 

2i:sinJ^ (2i:sin|^)® . 
41 +•••/- 

-2 
2k sin® ^0 

2! 
2®P sin® \0 

4[ d0. 

cA C co&0d0 , „/ 1 2®a:® , \ 
—7-+^ io!-0!+7:3:^-7!':6i+"7’ 

where x ~ 2i:, 

f cos0d0 , 2k^[^ 2P Sk* _ 4F \ 

J --+3 1' ^315 4725 ' "7 
(1.88) 

The integral term in (1.88) is the vector potential for a steady 

current and is well known to be equal to {log(8i2/6) —2-00), where b is 

the small radius of the wire: if R/X — ^ and A/6 = 100, the value of this 

term is 4, and if R/X = 2 and A/6 = 100, its value is 6*4. The series 

portion of (1.88) is approximately equal to +0’4 when i: = 1 and 

—0*675 when k = 2, thus showing it passes through zero near i: = 1*5. 

In other words, the self-inductance passes through the steady current 

value when R/X is approximately equal to J. 

Since, as we have seen, the quadrature component of A tends in the 

limit to the value appropriate to a straight filament, it is natural to 

suppose the inphase component will also tend to the limit for a straight 

filament, and this is 

Thus it seems improbable that the reactance of a circle of fine wire can 

ever tend to zero, but is always inductive. 
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The magnitude of A at infinity can be calculated as follows. Consider 

a very distant point in the plane of the circle and in the direction 

OP in Fig. 1.18. Consider first the elements IB SO at B and 

and resolve them into components parallel to OP and perpendicular 
thereto. The parallel components are opposite in sense and hence make 

no net contribution at the distant point in the direction OP: the same 

is true of the horizontal components of elements at jBg and Bq. Thus 
we are left with unlike perpendicular components IB SO cos 0 Bit B and 

B^ also at B^ and B^- Hence, as in § 1.13, Fig. 1.8, the vector sum of such 

a pair will be 2jsin(^cosfl) times the contribution of one element, 

the phase of the resultant being that of an element at 0. Hence, 

consideration will show that at a very large distance r we have 

cA .Jcosar . sin ar\ f . 
8in(A" cos 0)B cos 0 dO 

=z 4ck JJ {Ji(i^)cos20—J3(^*)cos0cos 3^} dO 

0 

= (1.89) 

If the point is at an angle of elevation from the plane of the circle, 

then we must write Ji(A:cos<^) in (1.89) above. Hence it follows that A 

is zero whenever Ji(i:cos<^) is zero. When ar ->oo, Fj == «/| = ©fc., 

and so (1.89) is compatible in form with (1.85). 

IdA 
Converting to electric field, by the relation E = have 

or 

if 

cE 

al 

cE 

‘Inakl 

47r3i?2 

A2 

(cosar .sinarV,., 
-3-Ui(Arcos0 , 

ar ar I 

k^cos^dAlcosar . sin ar\ 

(1.90) 

(1.90a) 

Equation (1.90a) shows that (1.90) reduces, when k is very small, to 

the weU-known expression for the field of a very small circle, as given 

already in (1.18). But (1.90a) shows the limiting form is substantially 

correct, even in the equatorial plane, so long as 2BjX is less than, say, 1/3. 
Since Ji(») passes through zero when z ~ 3"83, 7-02, 10-16, etc., it 

follows from (1.90) that the field can be made zero at any desired 
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angle of elevation by appropriate choice of the radius: the larger the 

radius the greater the number of extinction angles which will occur, 

and we are reminded thereby of a broadside array and how the number 

of its side lobes increases with the width of the curtain. An example 

will illustrate this point. Let 2RjX — 3*83/7r = 1*22, then the field in 

the equatorial plane will be zero, but will not be zero at elevation ^ 

because kcoB(f} will then be always less than 3*83. The first maximum 

of occurs when z = 1*8, and has the value 0*581; accordingly the 

field will be a maximum when 3*83 cos = 1*8, which is = 62°. In 

the general case the field will be zero at elevation (/> when k cos ^ = 10*16, 

7*02, 3*83, etc. 

Bearing Poynting’s theorem in mind, we realize the total output will 

be small when the field is zero in the equatorial plane, because the 

equatorial belt contributes much to the area of a Poynting sphere. 

Accordingly we shall expect the radiation resistance to be a minimum 

at radii near those which make the equatorial field zero and vice versa. 

The radii for maximum and zero equatorial field are marked in Fig. 1.19, 

and it may be seen that these agree approximately with the maxima 

and minima of radiation resistance, and thus explain why these minima 

must exist. 

1.24. Two similar and coaxial circles with planes parallel 

If there are two similar coaxial circles in planes separated a distance 

2h and carrying equal and cophased currents, then it follows, as in (1.44), 

from (1.90) that 

-^ = (-^-K/,(icos0)cos(A: sm0), (LOl) 
^Trakl \ ar ar } 

where k' — 27rA/A. 

By suitable choice of both k and k' it must be possible to make the 

total output very small, though never zero. Thus, if ^ = 3*83, the 

equatorial field is zero and the field of one circle alone would be a 

maximum at <^ = 62°. The field at this elevation will be zero if k' is 

chosen so that ^'sin 62° == Jtt, which is 2A/A = 0*57. Accordingly with 

such an arrangement the field will be small, save near ^ = 30°, and is 

zero at ^ = 0, 62°, and 90°. 

1.25. Field of a ring doublet 

Let the circle in Fig. 1.20 represent a ring of doublets standing 

perpendicular to the plane of the paper: thus, if the ring of electric 

charge just above the paper is positive, the corresponding ring just 
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below the plane is negative, the two rings of charge being joined by 
a short cylinder of conduction current flowing perpendicular to the 

paper. We will calculate the vector potential, which is everywhere 

parallel to the conduction current and therefore perpendicular to the 
paper: the radial component of A does not exist. Each element of the 
ring makes the same contribution to A at a very distant point Q, in 

Fig. 1.20. 

direction OB, and we have only to make allowance for the path 

difference between typical components. The pair of similarly situated 

elements at P and P', when acting together, produce at Q a resultant 

which is 2cos{(27ri?/A)/cosS) = 2cos(/:costf) times either contribution 
alone (compare 1.44). Hence if Aq be the vector potential at the point Q 

due to the current in unit arc we have 

iTT 

^ = 2 r 2 co8(k cos 9) Bd0 

0 

iTT 

= 4J? J {Jf^{k)—2J^(k)cos29+2J^{k)cos^6+.,.}d6 
0 

= 27TBJ^(k). (1.92) 

Hence the resultant vector potential of the whole ring is J^ik) times 
what it would be if the ring of short aerials were collapsed into a single 

aerial at its centre. This result is reminiscent of a tubular current, see 

(1.27), and indeed describes why it is that a tube produces no external 

field if J(k) == 0, But the field of a ring doublet cannot be zero every¬ 
where: we have been reckoning .4 at a point in the plane of the ring. 
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but had the point Q been at elevation <f} the typical path difference 

would have been cos 0 cos ^ and then (1.92) would have been 

= 2nRJ{koos^), (1.93) 

and this shows that,,for a given k, A cannot be zero for all values of (^. 

The inphase component of field at the ring can be found by the 

process corresponding to that used in § 1.22: this will not be developed 

here, but the reader is referred to Journal LE,E, 88, Part III, 1941, 

p. 50, and to equation (15): for a ring doublet this equation is 

cP __ ..rJ, 2F , k^ , \ 

4^2 5 +240 189 "^"T 
(1.94) 

Comparison with (1.81) shows that the infinite series in brackets repre¬ 

sents the factor by which the output is reduced when a simple doublet 

is expanded into a ring doublet. The number of terms is insufficient to 

evaluate the output accurately when k = 2*405, but the factor seems 

then to be of the order of It follows from this discussion that a metal 

ring cannot have a natural mode of oscillation if it is excited by an^ 

electric field parallel to its axis; for there is no radius which makes the 

radiated field zero, though the radiated energy will be near a minimum 

if 27ri?/A = 2*405. 

The magnetic field at a great distance is obtained by differentiating 

(1,92) with respect to x in the manner of (1.74). 



II 

CERTAIN STANDARD DIFFRACTION PATTERNS AND POLAR 
DIAGRAMS AND POWER GAIN OF CERTAIN ARRAYS 

2.1. The basic idea 

Sometimes we wish an aerial to broadcast equally in all directions; 

in other circumstances we wish it to provide a communication service 

to one fixed point only: then we are glad to constrain its radiation to 

a narrow path both as a means of conserving power and of reducing 

unnecessary interference with other stations. A narrow beam of radia¬ 

tion can be attained by using an array of many aerials spaced apart a 

distance comparable with a wavelength. Consider two parallel aerials 

carrying equal cophased currents and spaced apart a distance 2i?, as 

shown diagrammatically in Fig. 1.7. At a very distant point the 

resultant field will be the vector sum of two components which are 

sensibly equal in magnitude. Reference to the figure show^s the path 

difference from P to the two aerials tends to equal 2i?cos0: hence the 

phase-angle p between the two sensibly equal component vectors is 

^ ~ X 2J?cos^. 
A 

If each aerial alone would produce at P a field E^, then the two together 

will produce a field (see also p. 46) 

2PoCos^ = 2Po cos^^^^ cos — "lE^conikcosO). 

If on some bearing 6 the path difference is |A, then the two components 
will be in antiphase, and in that particular direction the field will be 
zero. Thus suppose the two aerials are spaced apart a distance A: then 
when 6 = 60°, the path difference will be ^A and thus on bearings ±60° 
and ±120° to the direction AB the resultant field will be zero. We are 
utilizing the principle which, in the study of optics, is called destructive 
interference. If the relation between intensity and bearing is plotted 
in polar coordinates, the resulting diagram in this case has four petals 
or lobes each with maximum intensity 2Ef): two have a width, zero to 
zero, of 120° and two a width 60°. When plotted in polar coordinates 
the intensity distribution will be referred to as a polar diagram: 
when plotted in Cartesian coordinates it will be called a diffraction 
pattern. 

4W1.1 
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Now consider the case when the two currents are not necessarily 

equal or cophased, differing in time phase by the angle a. Then on 

bearing 6 the two component fields will differ in phase by the angle j8 

resulting from the path difference plus the angle a which is the arbitrary 

phase difference of the two currents. If the resultant field on bearing 6 

be Bi, then ^2 ^ El+El+2E^ J^gcos^+a). 

In this relation we suppose the left-hand current, A in Fig. 1.7, lags ol 

in phase with respect to current J5. Then on bearing 180°+^ the angle 

between the two component vectors will be jS—a and then we have 

i?| = j&f+^|-f2i7ijE?2Cos(j8—cx) 

= (E^—E2)^+2E^E2{1+cos(^—oc)} 

= (E,-E^)^+4EiE^cos^^. (2.1) 

This shows B2 can be zero provided E^ is equal to E2 and if in addition 

j3—-a = TT, Stt, etc.: if both these conditions are fulfilled, then 

= 2^7 sin a 

and generally = 2iJ2{l-f sin(|7rcos0)}. 

A well-known application of this principle is when the spacing is JA 

and the phase angle is 90°. Thus with reference to Fig. 1.7, suppose 

current A leads a quarter cycle on current B. Consider the field in the 

direction AB. The field of A lags that of .B by a quarter cycle in 

respect of path difference, but this lag of quarter cycle is compensated 

for by the lead of quarter cycle in the current A, Hence the field is 

2E in direction AB and is zero in direction BA: when d = ±90°, 

B = 's!2E: the polar diagram is a heart-shaped figure. These two 

examples serve as an introduction to certain standard cases. 

2.2. Curtain array with side spacing ^A 

Consider an array of N parallel aerials carrying equal and cophased 

currents, forming a grating with spacing |A. We will consider now only 

the pattern in the equatorial plane of the grating and thus need 

not discuss whether each member is a doublet, half-wave aerial, or long 

filament. We may use Fig. 1.14 to illustrate this problem. Then on 

any bearing the components due to currents 2 and 2' will lead and lag 

the component due to current O by the same angle: accordingly the 

phase of the resultant field must be the same as the phase of the 
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component due to the middle wire of the grating. The resultant field 

at a very distant point is the vector sum of N equal vectors each inclined 

at an angle 2j8 = {2TTgjX)smd to its neighbour, where d is the bearing 

with respect to the normal to the grating. The vector polygon is 

typified by Fig. 2.1: the resultant is FA and is parallel to DC, the 

component due to the middle member. It follows from simple trigo¬ 

nometry that 
FA _ siniVj3_ sin{(7r(7iV7A)sin 6/} ^ 

IV'xlLB ■“ "" :V^{|7r(/7A)^^ ‘ 

A precisely corresponding problem arises in cal¬ 

culating the e.m.f. of an alternating current dy¬ 

namo, and we shall adopt here its long-established 

nomenclature and term expression (2.2), the 

'breadth factor’ of the array. It is highly con¬ 

venient to visualize the array in terms of a single 

ecjuivalent aerial placed at its middle point and 

carrying a current whose magnitude is N times 

the 'breadth factor’; we note this single equiva¬ 

lent current is a function of the bearing angle. 

Conscious recognition of this principle and artifice 

makes it simple to add vectorially the fields of any 

number of arrays, which need not even be coplanar. 

We note from (2.2) that the resultant field is zero when 

^^^^sin0 = TT, 27r, etc.; or sin0 , etc. (2.3) 
A Ng Ag 

In mtoy of our applications gjX = ^ and then sin 6 = 2IN, 4:/N, 6/N, 

etc. If b is the total breadth of the array, b = (A^—I)gr == Ng: accord¬ 

ingly the bearings for zero field are given approximately by 

sinfl (2.3a) 

Since the field passes through zero on all the bearings for which 

Np = TT, 27r, etc., the field must be a maximum on bearings very near 

those for which == 37r/2, 577/2, etc. Now when g/X is not greater 

than i the path difference between consecutive members must be less 

than JA and hence jS, which is half the phase angle between two 

consecutive members, can attain to only when the bearing is 

verging on 90°, We are interested mainly in the field on bearings less 

than, say, 30° away from the normal, and in such circumstances may 

A 
Fig. 2.1. 
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write sinjS == jS in (2.2). Then it follows that when Np = 37r/2, 57r/2, 

etc., the breadth factor is approximately equal to l/N^ and hence 

successive maxima are substantially in the ratio 1, 2/37r, 2/5tt, 2/77r, etc. ; 

i.e. 1, 0*21, 0*13, 0*09, 0*07, 0*06, 0*05, etc. Fig. 2.2 shows the diffraction 

pattern in the equatorial plane of a curtain array having 16 equal 

1 

0 

0 

o>0 
Ol 

:20 
iz 

0 

Fig. 2.2. Relating to curtain-array; current loading uniform and cophased. 
Power gain 21-8, 

and cophased members spaced JA apart. It is typical of the pattern 

of the large directive arrays which are to be seen in this country and 

which carry out the point-to-point services of the G.P.O. and of 

commercial communication companies. 

The pattern is commonly said to consist of a central beam and side 

lobes: it is important to realize that increasing the width of the array 

does not decrease the fractional amplitude of the side lobes. Increasing 

the width merely narrows the main beam and adds more side lobes, 

the first of which always has an amplitude which is 21 per cent, of the 

amplitude of the main beam. 

It is important to realize some zeros occur in a way we may call 

absolute while others are not absolute in the sense we mean here. 

Thus consider a pair of aerials separated by 2A: then the path difference 

for such a pair will be ^A when the bearing is arcsin J, which is 14*5°. 

The curtain of 16 members can be decomposed into 8 such pairs 

separated by 2A and thus the net resultant field must be zero on a 

bearing of 14'6® (see Fig. 2.2), and such a zero we call an absolute zero. 



2.2] DIAGRAMS AND POWER GAIN OF CERTAIN ARRAYS 85 

This condition will occur again when 6 = arcsin | = 48-55°, and hence 

this bearing is also an absolute zero. Again, a pair of aerials separated 

by A will have a path difference of when the bearing is 30° and 

there are 8 such pairs in a curtain of 16 members, and hence 6 = 30° 

is also an absolute zero. It will be appreciated that alternate zeros 

are absolute, while the remainder become zero for a less absolute 

reason. When the distance between the members is very small the 

curtain degenerates ultimately into a uniformly loaded continuous 

sheet. Then extension of the argument respecting absolute zeros 

will show the first zero of field must occur on that bearing for which 

the path difference between the midline of the sheet and either of its 

two edges is ^A; this also follows from (2.3a). The other absolute 

zeros occur when this path dilference is 3A/2, 5A/2, etc., and give half 

the total number of zeros. 

In considering a single curtain, spacings greater than ^A are not of 

interest. In the problem of the optical grating we have to consider a 

curtain of curtains and then g will stand for the distance between the 

midpoints of neighbouring wide current sheets, and in such circumstances 

gj\ is large, usually of the order of 20. Having fixed in our minds 

that the side lobes of a curtain or current sheet are of the order of 

21 per cent., 13 per cent., etc., we must remember this applies only to 

a curtain for which gjX is not greater than When gr/A is large there 

will be bearings for which 2j3 = 27r, 47r, etc., and then consideration 

will show the breadth factor must be unity. The pattern would consist 

of a series of equal main beams with small side lobes between them. 

2.3. Curtain array with non-uniform cophased loading 

In certain circumstances the side lobes are objectionable; not because 

of the waste of power they represent, since that is small, but because 

they may cause troublesome interference at a comparatively short 

range. It is well known that some side lobes can be decreased in 

relative magnitude by concentrating the current in the middle of the 

curtain, at the expense, however, of increasing the width of the main 

beam. The mechanism of the action is readily understood by remem¬ 

bering that the phase of the resultant field on any bearing is the phase 

of the component from the middle member, provided only that all 

currents are cophased. Suppose now the current in the 8 central 

members of a 16-member curtain is twice that in the outside 4 at each 

end. This may be thought of as the superposition of a 16-member 

uniformly loaded curtain and an 8-member uniformly loaded curtain. 
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In virtue of the property just described the resulting diffraction pattern 
is t]tie arithmetic sum of the patterns appropriate to a 16-member and 
t^ an 8-member curtain. Now refer to Fig. 2.2: had this depicted 

/ the pattern of an 8-member curtain the maximum of the first side 
lobe would have occurred very near a bearing of 20° and of the 
second near 36°, and so on. Hence, on bearing 20° the 8-member 

1*0 

0-8 

0*6 

f»0*4 
i. 
x> 

lo-Z 
UL 

0 

^ 10 20 30 40 50 60 70 80 90 

Fig. 2.3. Curtain-array: current loading 1:2:2:1, cophased. Power gain 17*3. 

contributes a negative field of 21 per cent, and the 16-member a positive 
field of about 13 per cent., and thus the result will be a negative field 
of some 8 per cent, and is therefore a substantial reduction of the largest 
lobe. Fig. 2.3 shows the whole resultant pattern and is typical of the 
general principle involved. Comparing these two figures we see that 
in Fig. 2.3 the first zero occurs on a bearing of 10° instead of 7J°, but 
the first two side lobes have become small; on the other hand, the 
third and fourth have been enhanced slightly. 

2.4. Curtain array with ‘triangular’ loading 

By this we mean a load curve which is symmetrical about the middle 
member and in which there is a constant difference in current from 
member to member: thus if the curtain had 16 members, then the 
currents in them, reckoning from the extreme towards the middle, 
would be 1, 2, 3, 4, 6, 6, 7, 8, 8, 7, 6,..,, 1. All currents are supposed 
to be cophased. Accordingly the pattern can be built up by arithmetic 
addition of component patterns. We will consider first a 16-member 
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curtain and proceed by induction to a general formula. Accordingly 
we have to add the pattern for a uniformly loaded array of 16 members 

to that of 14 members and then to that of 12 members, and so on. 

Let 2)8 be the phase angle between any two consecutive members on 

Fig. 2.4. Current loading, triangular and cophased. Power gain 13'3. 

bearing d. Then if B is the resultant field and the field per unit 

current for an isolated member, we have by (2.2) 

B ^ sin 16)8 sin 14)8 i 

Eq'^ sin)8 sin)8 sin)8 

sin 9)8 sin 8)8 

sin2)8 

When jS = 0 we have Rq = accordingly 

Breadth factor = X 
sin(W/2)j8 

(W/2)sin)3’ 
(2.4) 

£ttid this shows the pattern is the product of the pattern of a uniformly 

loaded array having {N+2)j2 members with the pattern of a uniformly 

loaded array having Nj2 members. Fig. 2.4 shows the pattern for an 

array with 16 members and should be compared with Fig. 2.2. It will 
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be seen that the largest side lobe is now 4*8 per cent, as compared with 
21 per cent. 

Now let N become large and g small, but the product Ng = b 

remains constant: that is to say, an array of given width in which 

the number of component members is increased without limit. Then 

~r-p 2 A 
sin 6 

Trb 
sin 6, 

Fig. 2.5. Loading outward-triangular, cophased. Power gain 13-3. 

and accordingly (2.4) becomes 

Breadth factor = 
( {noj2X)Bind I ' ' 

and this is the square of the breadth factor of a uniformly loaded 

continuous sheet of width Accordingly it has 6/A bearings of zero 

field, whereas the uniformly loaded sheet of the same width would 

have twice this number. The breadth factor is always positive and 

hence there is no change of phase in passing through a bearing for zero 

field. The maxima of the side lobes are given bj' the series 1, (2/3ir)®, 

(2/67t)®,..., i.e. 100,,4'6, 1'63, 0*82, 0-6, 0-34 per cent,, etc. Though the 
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angle for the first zero is twice as great with triangular as with uniform 

loading this does not mean the main beam is twice as wide at half¬ 

height. Thus in Fig. 2.2 this width is 4-5° and in Fig. 2.4 it is 6°. 

The pattern appropriate to a loading which increases uniformly from 

the centre outwards can obviously be obtained from the difference 

between Figs. 2.2 and 2.4 provided that the ordinate scale of 2.2 is 

twice that of 2.4. The result is shown in Fig. 2.5: here the side lobes 

are enormous and the main beam is decreased in w idth. The pattern for 

any polygonal loading can be derived by appropriate combinations of 

Figs. 2.2 and 2.4, and these figures should be regarded as the con¬ 

structional units for any symmetrical cophased loadings. 

2.5. Curtain array with sinusoidal loading 

Let N be odd, and let the current in the middle member be /: then 

it is to be / cosa, /cos2a, etc., in successive members on each side of 

the middle, a being such that (iV^+l)a = tt. Then if 2j8 be the phase 

angle due to path difference between any consecutive pair of currents 

on an assigned bearing 6 and numbering from an extreme member of 

the array, we shall have 

R 
— = sin asinpf4-sin2asin(^?f+2j8)4--*-• 
K 

After considerable reduction, the breadth factor is found to be 

Breadth factor = 
2 cos{N +l)p sin2(a/2) 

cos2j8—cosa • 
(2.5) 

Close scrutiny shows (2.5) has the value Jtt when 2/3 ~ a. The field is 

zero when (5/A)sin d == 3/2, 5/2, etc., and this show s the first bearing for 

zero field is about 1*5 times as great as for uniform loading of the same 

wddth. 

Sinusoidal loading of members separated by a finite distance g is 

rather a pedagogic problem and therefore has not been expounded in 

detail. On the other hand, a continuous sheet of width 6 = with 

sinusoidal loading is of great practical importance. The appropriate 

expression can be obtained by taking (2.5) to the limit; but because 

this example is of great practical importance it is worth while to derive 

the expression ab initio. Let the flow of current be perpendicular to 

the breadth b and have density cosinx/b), where x is the distance of an 

elementary strip of width Sx from the middle of the array. Then the 

resultant field due to elements cos{iTx/b) 8x at will be proportional 
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to 2cos^co8|^^8inflj 8a: on bearing 6 from the normal to the 

plane of the array. Accordingly 
1_6 

It 

0 

iA 

J 

TTX 
COS —cosl- 

/27TX 

') 
sin^i dx 

cos -r- cos( sin oj dx^ si; 
27rx 

T 
[27TX 

i-T 
since b = JA, 

— J |^cos|^^(l+sin^)|+cos|^^(l—sin^)|jda; 

0 

__ A fsin{^7r(l+sin0)} sin{|7r(l—sin0)}| 

277 \ l+sin0 1—sin0 / 

A cos(^7rsin0) 

77 cos^d 

When 0 == 0, jBq = A/77, and hence 

Breadth factor = — = 
R cos(^77sin6) 

Rq oo&W 
(2.6) 

This attains the value J77 when 6 = hence the polar diagram of a 

sheet of width ^A with sinusoidal loading is not far from a circle. 

When 6/A = then (2.4) reduces to 

16 sin2(j77sin0) 

77^ sin^^ ^ 
(2.7) 

and the value of this is 0-81 when 6 = 

2.6. Curtain array with spacing ^A and binomial loading 

The previous sections have shown the size of the lobes depends on 

the distribution of current across the array: we have found that a 

concentration in the middle reduces the lobes to a small value and they 

are virtually removed by triangular loading. There is, however, a 

loading for which the field never falls to zero save when d = 90°, and 

then ripples do not exist on the skirts of the diffraction pattern. 

Consider a pair of equal cophased currents separated by ^A: their 

resultant field can be zero only when 6 == 90°. The pair can be replaced 

by a single equivalent aerial half-way between them and supposed to 

bear a current of strength 2cos(j77sin0). Now arrange two such pairs 

as in Fig. 2.6(a) with their planes very close together: the left-hand 

pair can be replaced by a single equivalent aerial at A and the second 

by an equivalent at B. The two equivalents are separated by JA and 
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have equal strengths on any assigned bearing, and accordingly their 

field falls to zero only at 0 = 90°. Because their planes are very close 

they degenerate into a 3-member curtain with loading 1, 2, 1, Now 

take two such 3-element curtains disposed as in Fig. 2.6(6): each of 

these two can be replaced by a single equivalent at its middle point 

and these two equivalents are separated by 

Vz--Vz—► 

Fig. 2.6. 

Accordingly it follow's that the field of a 4-element curtain with loading 

1, 3, 3, 1 will fall to zero only w^hen 6 = 90°. We can now take two 

such 4-element curtains to build one with 5 elements and loading 

1, 4, 6, 4, 1. We can proceed indefinitely in this manner and so arrive 

at an array in w^hich each member, reckoning from one extreme, 

carries a current proportional to the coefficients in the expansion of 

(1 accordingly we shall term this a binomial loading. It follows 

readily that Breadth factor = cos"’^'“^{^7rsin0). (2.7 a) 

Had the loading been uniform the field would have been zero for the 

first time when Bind = 2/N: if N = 6, then on this bearing the field of 

an array in w^hich the loading is 1, 5, 10, 10, 5, 1 is, from (2.7 a), 

(0-866)5 = 0-486. 

Thus it is seen the main beam slopes rather gradually away to zero, 

and this must be so because the performance is obviously dominated 

by the large current in the middle pair of members. When N is large 

it follows readily from (2.7 a) that the fractional reduction when 

Bind = 2/N approaches the value 7r^l2N, Binomial loading is an 

elegant device,! but of little practical value: it does remove side lobes 

in the sense that the field nowhere passes through zero, but it replaces 

them by giving the pattern a gently falling skirt. For all practical 

purposes triangular loading is the best for avoiding side lobes. 

t It may be well known, but was shown to me by Mr. Rj. V. Aired in September 1940; 
compare also p. 94 of Studies in Optics by A. A. Michelson. 
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As a final example we give Fig. 2.7, which shows the pattern for a 

16-member equally loaded array save that the current is zero in the 

two middle members. Here we note the absent currents have increased 

the first side lobe from 21 to 37 per cent, and exemplify once more 

the great importance of the central members. Those who have had 

much practical experience of adjusting arrays will know how hard it 

Fig. 2.7. Loading cophased and uniform save that the two central members 
are absent. Power gain 21-4. 

often is to attain side lobes as small as 21 per cent, even when steps 

have been taken to encourage concentration of current in the central 

members. This difficulty does not appear to arige in the vast panels 

such as are used for world services operating at a wavelength of some 

20 m. Presumably this is because it is comparatively easy to regulate 

the feeding to each member at such comparatively long wavelengths. 

For wavelengths less than about 2 m. it is difficult to control the 

feeding and still more difficult to ascertain the current in each member; 

and it is at such wavelengths that the side lobes have the unpleasant 

habit of being larger than they ought to be. We will reserve these 

practical considerations to a later chapter, but will interpolate the 

following dictum here: if the side lobes are larger than they should be, 

then it is almost certain that two or three members near the middle of 

the curtain have less than their proper share of current. Inadequacy 

of current is far more likely to be the cause of the trouble than incorrect- 
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ness of phase. The tester should not rest till he is quite certain the 

middle members have their proper share of current; when, and only 

when, he is satisfied that they have should he allow himself to be 

deflected by the suggestion that phasing is incorrect. That explanation 

is always put forward and is almost always wrong: an infinity of time 

can be wasted in shortening individual cables slightly, remaking joints, 

and doing much incidental permanent damage. But it is a more obvious 

and direct occupation than measuring the current in each member: 

repeated failures seem to damp little the hopefulness which is inherent 

in junior testers: the remote chance of a fortunate occurrence is in 

general more attractive than the stern discipline of systematic and 

ordered work. We will renew this discussion in Chapter XIV. 

2.7. Method of turning the main beam away from the normal 

Sometimes it is required to change the direction of the main beam 

of a curtain array and it may well be impossible, as, for example, with 

the great panels of the G.P.O., to turn the array physically as a whole. 

We must seek to turn the beam by electrical means, and it is necessary 

to assess the possibility of doing so by adjustment of the phase of the 

component members. Thus suppose the phase of one extreme quarter 

is advanced by a quarter cycle with respect to the central half and the 

phase of the other extreme quarter is retarded by a quarter cycle. 

Then the result must be somewhat as though the plane of the whole 

array had been turned through an angle whose tangent equals JA 

divided by the total width. If the spacing is ^A, then this angle is 

1 l{N — 1) radians, or, say, 4"" if iVT = 16. Since the distance of the middle 

of the array to the middle of an outer quarter is |6 it may be more 

proper to compare the angle with 4/3(iV— 1), but this must certainly be 

an upper limit which cannot be attained. The process of deriving the 

pattern is best described by a numerical example and we will take 

N = 16. Each outer 4 has a breadth coefficient 

sin{4(27rd/A)sin0} sin(47rsin0) 

4sin{(27rd/A)sin0} 4sm(7rsin0) 

and can be replaced by a single equivalent aerial at the middle point of 

an outer quarter. These two equivalent aerials are in antiphase with 

one another and are separated a distance 6A. Hence the two together 

will produce a field strength 

2sin(67Tsin 6) 
sin(47Tsin 6) 

sin(7rsin0) 
9 

and this will be in phase quadrature with the current in the outer 
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quarters and therefore in phase with the field from the middle half 

(compare § 1.13). The middle half will produce a field given by 

sin(47rsin 6) 

sin(7rsin0) * 

These two component patterns must be plotted separately and added 

arithmetically. The first component is zero when 0 = 0 and when 

0 = ±9*6°, and hence presumably is near its maximum when 0 = 

one maximum being positive and the other negative. The second com¬ 

ponent is a maximum when 0 = 0 and zero when 0 = and 

hence must be far short of its maximum when 0 = 4*8°. Thus we are 

adding a decreasing and an increasing function, and the maximum will 

occur before the maximum of the increasing function, and hence the 

beam must be turned through less than 4-8°. The firm line curve in 

Fig. 2.8 shows the resulting pattern, while the dotted curve is the 

pattern when all 16 currents are cophased. The beam is turned off 

centre by about 4°: it will be noted that the side lobes are modified 

profoundly and enhanced. 

Fig. 2.9 shows the component patterns when only the two extreme 

currents are in leading and lagging phase quadrature with the other 14: 

it serves to illustrate the process underlying all such calculations; in this 

case the main beam is turned through nearly V. 

It can be shown that when N is large the main beam is turned off 

centre through an angle which is approximately equal to (a) ^jirX^IN 

of the first zero angle when only the extreme members are in leading 

and lagging phase quadrature with the remainder, (6) half the first 

zero angle when the outer quarters are in leading and lagging quadra¬ 

ture, (c) three-eighths of the first zero angle when the two halves 

of the array are in phase quadrature, (d) If the two halves are in 

antiphase the main beam is bifurcated (the forward field being zero) 

and each of the two equal maxima is off centre by an angle just greater 

than 3/2N. 

We see it is not possible to rotate the beam through more than a few 

degrees by appropriate adjustment of phase: this limitation may be 

distressing when it is desired so to turn the beam, but it has a very 

fortunate aspect which is of immense practical benefit. For if it is very 

hard to turn the beam off centre by deliberate and co-operative phase 

adjustment then it means the beam will not be turned off centre 

appreciably by small maladjustments of phase of individual members. 

The main beam is, as it were, very rigid, and will always be almost 
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perfectly on centre, no matter how much the array as a whole is out 

of adjustment. This property cannot be over-emphasized and it seems 

almost impossible to make the young test-hand appreciate it. That the 

main beam is on centre is no criterion whatever that the array is in 

reasonably correct adjustment: the diificulty is not to get it on centre 

but to get it off centre. The side lobes, however, are very sensitive to 

maladjustment of phase and are as ‘flexible’ as the main beam is ‘rigid’. 

To support this statement see Fig. 2.8. Unsymmetrical side lobes 

certainly denote maladjustment of phase: large side lobes are not likely 

to be due to maladjustment of phase but to maladjustment of magni¬ 

tude. These practical points will be taken up fully in Chapter XIV. 

It is, however, well to interpolate these remarks here, since bitter 

experience shows they are principles which are extremely difficult to 

inculcate in the heads of many whose business is to adjust aerial 

curtains. 

2.8. In-line arrays 

The reader must not forget that the diffraction patterns discussed 

in the last section are valid only in the equatorial plane of a curtain. 

We now consider the radiation figure for an isolated straight wire of 

any length, called hereafter an in-line array: when this has been done 

we can complete the problem of a curtain. 

The radiation figure of an in-line array is obviously a solid of revolu¬ 

tion about the array as axis. In Chapter I we derived the field of a 

doublet aerial, and equation (1.71) shows that the electric field is 

tangential at large distances and varies as the cosine of the angle of 

elevation above the equatorial plane. Any in-line array can be built up 

by superposing a distribution of doublets appropriate to the current 

distribution in the array. Here the informed reader will interject that 

the current distribution is never known exactly, the only certainty 

being that the current is zero at each end of the wire: he states truly, 

but will soon find the lack of precise knowledge makes a very small 

uncertainty in the radiation figure. Consider first a wire half a wave¬ 

length long with a current distribution which is sinusoidal: it can be 

built up of a sinusoidal distribution of doublets. At angle of eleva¬ 

tion <f} every component doublet will make a contribution to the field 

proportional to cos^ and to the strength of that component. The 

resultant field will be the vector sum of all these contributions, each one 

having a phase angle corresponding to the path difference due to its 

position on the half-wave aerial: the value of this resultant is given by 
mi.i XT 
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equation (2,6). Accordingly the field at elevation ff>, and on any bearing, 

is given by 

F ^ 92!ii!LfEi.)cosi = cos(^^sin^) <2 g, 
^ ooa^<f> ™ (ioa<f> 

Some values of and of cos<^ are collected in Table 2.1 below. 

Table 2.1 

<!> 0 20 30 40 45 60 70 80 ! 90 
COS <k 1 0-94 0-866 0-77 0-71 0-5 0-34 0-17 1 0 

1 0-91 
i 

0-816 0-69 0-62 0-42 0-28 0-14 0 

This table shows that is never much less than cos<^. and this 

means that is insensitive to the length of the aerial (provided this 

does not exceed JA). It is also insensitive to the current distribution; 

thus, if the distribution were triangular (instead of sinusoidal) F^ would 

be cos<f) times (2.7) and then it may be found that = 0-43 when 

ff, = 60°. The query raised by the hypothetical reader has been 

answered, and it has been shown that the result is insensitive to 

current distribution. 

If there are N half-wave units in line, all currents being cophased 

and equal, the resulting breadth factor will be the product of (2.2) and 

(2.8) and thus 

B,..dth factor = f. X X . (2.9) 
ooa<f> iV sm( Jtt sin (p) 

Because the resulting pattern is the product of and F^, uncertainty 

in the current distribution does not produce a cumulative effect. It is 

true that (2.9) assumes that all the N elements carry equal currents 

similarly distributed: if the currents are not equal, then equation (2.9) 

must be modified in accordance with § 2.3. If the distribution of equal 

‘metre-amperes’ differs slightly from element to element, this can do 

no more than ‘ blur’ slightly the value of jF,, within Limits which Table 2.1 
shows are very small. Thus (2.9) must be valid for any real in-line array, 

with great accuracy, provided it is interpreted with full understanding 

of the factors postulated in the last few sections. It now appears that 

figs. 2.2-2.5 have much wider application than was apparent at first 

and are standard forms which will solve any problem provided only 

the bearing scale is adjusted to suit the particular value of N. Thus 

if Fig. 2.2 is to be applied to a 16-member in-line array it is necessary 

only to multiply its ordinates by the values of F^ given in Table 2.1. 

Note that the in-line disposition has a marked effect in reducing the 

‘far out’ side lobes: thus the 6 per cent, lobe at 66” will be reduced to 
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about 2-5 per cent, by the in-line disposition. Near-in lobes are scarcely 

affected, because then Qos<f> is near unity. Hence Fig. 2.4 will scarcely 

be changed, taking the practical outlook that the side lobes are negli¬ 

gible anyhow with a triangular distribution. If the reader will ponder 

these matters he will realize how little the distribution along a member 

can matter, more especially when there is some concentration of 

loading towards the middle of the in-line array. 

We will not discuss here how the current is fed to the various 

members: a common method is to place all in series through ‘Franklin 

phasing coils’. Many engineers believe that then the current tends to 

attenuate along the length, and this is very probable. If this is so it 

provides an automatic way of concentrating current in the middle of 

the line and the only appreciable effect on the pattern is reduction of 

near-in side lobes: we say ‘near in’ because the ‘far out’ lobes are 

made small anyhow by the or cos(f> effect. The pattern will scarcely 

be changed if individual elements, pitched apart, are themselves 

shorter than ^A. If there are gaps between the tips (a necessary provi¬ 

sion when each element is fed by a separate cable), then, in the limit, 

Fi can but be increased to oo8<l>. 

All that was said in § 2.7. about turning the beam is applicable 

without modification to an in-line array. 

2.9. Pattern at any angle of elevation for curtain array 

In § 2.2 attention was tacitly restricted to the equatorial plane by 

taking the typical path difference as g&inO, Consideration will show 

that the path diflFerence at angle of elevation if> becon^es g^sin0cos^. 

Hence the more general expression for the breadth coefficient becomes 

_ _ sinHN-rTg/X)smeoos<f>} 

® sin{(iTgr/A)sin0cos^} ’ 

this is zero when sin ^ cos ^ = 2/N, 4:/N, etc., if g/X = 

The beams and lobes are narrowest in the equatorial plane. In other 

words, a ship proceeding on a given bearing towards the curtain can 

remain in zero field; but an aeroplane flying vertically above that ship 

would not be in zero field. Or take a numerical example in which 

N = 16, the bearings of zero field in the equatorial plane are shown in 

Fig. 2.2: the fourth zero is given by sin0 = 8/(16oos^) and accordingly 

the fourth and higher zeros cannot occur at elevations above 60°. 

A curtain array is usually several half wavelengths high and then the 

pattern is given by the relation 

F = FjX JixFa, (2.11) 
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where these factors are defined by (2.8), (2.9), and (2.10). It should be 

obvious the radiation figure then consists dominantly of a beam normal 

to the array: it is approximately a solid of revolution, which is always 

waisted slightly in the equatorial plane. 

The shape of the main beam, when plotted as a diffraction pattern, 

is always very nearly sinusoidal: it is convenient to defer close con¬ 

sideration of this shape until the next chapter. 

2.10. The power gain of aerials 

So far we have considered only the directive properties of arrays 

without explicit reference to the saving of power which must accrue 

thereby. The saving of power is defined relative to a half-wave aerial 

which necessarily radiates equally on all bearings. Let an array produce 

a certain field E on an assigned bearing at a given large distance: let 

it then be replaced by a single half-wave aerial, and let the power input 

to this be adjusted till it produces the same field E at that distant 

point. When this adjustment has been attained, let the power input 

to the half-wave aerial be G times that required by the array. Then 

the ‘power gain’ of the array is said to be equal to 0, We note that 

this definition leaves 0 a function of bearing (and elevation): unless 

otherwise stated it 'will be assumed the bearing chosen w^as normal to 

the plane of the curtain or to the axis of the in-line array and this will 

be called the ‘forward gain’. The standard of reference has been chosen 

arbitrarily as a half-wave aerial: it would have been more logical, 

though less convenient, to have chosen a doublet. The factor and 

Table 2.1 show the half-wave aerial possesses slightly more directive 

properties than a doublet in the sense that it gives a slightly smaller 

field at high angles of elevation (thus 0*42 as compared with 0-5 at 

(f, = 60^^). Therefore it has a power gain with respect to a doublet; but 

according to ordinary convention the doublet would be said to have 

a power loss wdth respect to a half-wave aerial. In equation (1.79) we 

found the inphase component of field along a doublet was 

and thus the output was 
I 

=j iPpt dx = - 
2 4o*X§ 

0 

where X„ is the area under the current distribution curve from the 
middle of the doublet to its tip. In equation (1.80) we found the 
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inphase component of field along a finite aerial decreased slightly from 

the middle to the tips. The output was given by (1.80 a): when the 

length was JA and the current distribution was sinusoidal this reduced 

P = 0-6095 
c 

Accordingly the ‘power loss’ of a doublet with respect to a half-wave 

aerial is 0-6095 xf == 0-9142, and this is about 0-4 of a dB. 

The power gain can best be calculated by means of the inphase field: 

a few examples should make the process clear. 

2.11. Power gain of two parallel half-wave aerials separated by 

|A carrying equal and cophased current 

The inphase component of field along each of the two aerials will 

now consist of one portion due to the current in itself and another 

jX)rtion due to the current in the neighbouring aerial. If the neighbour 

were a doublet its field would be given by (1.69) which is repeated here 

and referred to the current 

cEf 008 . 9 o • V . _ ^ ^rcosar—aVsinan+ 
2a^XQ ^ 

+j(cos ar+ar sin ar—ah^ cos ar)}. (2.12) 

Here we are concerned only with the inphase component, in the 

equatorial plane, at r/A == which is ar == tt: hence, then, 

cEp _ 1 

2a2Xo”” 772* 

It is a toilsome argument to show that Ep is almost constant in the 

range of height ±JA and would be still more nearly constant if the 

doublet were replaced by a half-wave aerial. For details the reader is 

referred to Chapter VHI, where the assumption is justified fully. Accord¬ 

ingly the electric field along each aerial is 

^^__0.6«95+_ =-0-6081, 

hence P = 0*6081 x 
c 

If the reader is suspicious of the approximation in taking the ‘mutual 

force’ constant along the lei^h he will be reassured by remembering 

the work is dominated by the contribution from the large oiurrent near 

the middle: even if the force decreases sightly near the tips, this will 
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have a second-order effect on the work (which is the product of current 

and field) because the ciuxent itself must decrease smoothly to zero at 

the tips. The ‘forward field’ of the two aerials is the same as the field 

of a single aerial carrying the sum of their two equal currents. Accord¬ 

ingly the output of the single half-wave aerial which would produce a 

field in the ‘forward direction’ equal to that of the pair is 

4(72Y2 
P = 0-6096 X X 4. 

c 

The output of the two aerials together is 

P = 0-5081 X X 2 
c 

and hence the power gain is 

0-6095x4 

0-5081 X 2 
2-40. (2.13) 

Concurrently the radiation resistance of each aerial is reduced by the 

presence of the other in the ratio 0-508/0-609 == 0-84, and thus is about 

62 ohms. 

2.12. Power gain of'two parallel half-wave aerials with equal 
currents in phase quadrature 

Here it is the quadrature field of one aerial which will be in phase 

with the current in the other aerial; but consideration will show that 

if the mutual field is in phase with the current in the one aerial then it 

will be in antiphase with the current in the other aerial. The mutual 

interaction causes one aerial to radiate more power than the other, but 

the total output from the two together is precisely the same as it would 

be if the pair were separated by an infinite distance. A case of great 

interest is that considered in § 2.1, where the separation is JA: then the 

far distant field in the plane of the pair in one direction is twice that 

due to one alone, while in the opposite sense it is zero. Hence, for equal 

field strength, the output of a single half-wave aerial would need to, be 

four times the average of the pair, while the total output of the pair 

is twice that of each member in isolation. The forward power gain 

therefore is two, and will remain two no matter what the separation, so 

long as it is not less than |A. 

At distance JA the quadrature field of a doublet is Eq — 0-4 x 2a^XJc: 

hence the inphase field along one aerial is proportional to 

0-609+0-4 = 1-009 
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and along the other it is 0-609—0*4 = 0-209. Accordingly the output 

and radiation resistance of one is about five times that of the other, 

the resistances being in the neighbourhood of 120 and 24 ohms. It is 

of great practical importance to be conscious of this large inequality 

of resistance, for it will affect profoundly the conditions required for 

feeding the pair. Unless due precautions are taken the two currents 

will not be equal even if they are in phase quadrature, and then it is 

impossible to obtain zero field in one direction in the plane of the pair 

(see (2.1)). 

2.13. Power gain of three parallel and cophased half-wave 

aerials 

Here the mutual action of the outer pair on the middle member is 

not the same as the mutual action on an outer member from the other 

two. Reference to (2.12) will show that when ar = 27t then 

^ J_ 

2a2Xo ■^47r2' 

Hence for the middle member we have 

cEp 

““2^0 

and for each outer member 

0-6095— 
TT^ 

0*407, 

cE 1 1 

2a2Z. 
P = 0-6095—L + ^ = 0-633; 

47r2 

accordingly the total output is proportional to 0-407+2 X 0*533 = 1*473. 

The forward field is three times that of a single aerial and so the output 

of the single aerial for equal field is proportional to 9 x 0*6095 == 5*485, 

and thus « >10=: 

Note that the resistance of each outer member exceeds that of the 

middle member in the ratio 0-533/0-407 = 1-3, the resistances being 

approximately 49 and 64 ohms. Here we meet, for the first time, a 

factor which is of great practical importance: namely, that current 

will not naturally tend to distribute itself equally between the members 

of a curtain unless steps are taken to force it to do so. There is a 

tendency for current to concentrate in the middle, and we have seen 

this tends to reduce the side lobes. 

The mutual reaction of the quadrature component of field will afiect 
the tuning conditions: a difiFerent tuning condition is required by each 
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member. It is clear that impedance measurements must be made with 

the whole array excited. 

2.14. Power gain of four parallel cophased half-wave aerials 

Let the four aerials, carrying equal cophased currents, be represented 

by Fig. 2.10. Then the output from aerials 2 or 3 is proportional to 

0-6095—4+-^ = 0-4316, 
TT^ 47r^ 

while the output from 1 or 4 is proportional to 

0-6095—-L 0-522. 

Vz Vz 

il 2 3 4 

Fio. 2.10. 

The forward field is four times that of a single tierial, and hence it follows 

that 
G = 

16x0-6095 

2(0-4315+0-522) 
(2.15) 

The radiation resistances are approximately 62 ohms for the inner and 

64 ohms for the outer pair, showing once more that current will tend 

to concentrate in the inner pair. 

2.15. Power gain of eight parallel cophased half-wave aerials 

Following the same process it can be shown that 

cP 

4a^XI 
j|4x0-6096—^^7 — 1+1 

22^32 
1+1 
42-1-52 62^72/1 

= 3-706. 

Hence 
64x0-6096 

“ 3-706 - 
(2.16) 

The radiation resistance of each end member is near 63 ohms, and that 

of each of the middle pair near 54 obms. 
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2.16. Limiting output for very wide curtain of half-wave aerials 

When the number of members is infinite the output of any one will 
tend to the value given by 

cP _ 
0-6095 + --- + 

■)) 
= (0-6095-i) = 0-4428, 

,,1,1,1 TT® 
since 1-4——=... = — 

T 22^^32“ 42 0 
1 , 1 . 1 , 1 and l+_+_+_... = -^. 

Accordingly, when N becomes very large the gain approximates to the 

expression 
G 

0-6096A^2 

0‘4428A^ 
= l-38iV^. (2.17) 

The output of the extreme member of a semi-infinite curtain is propor¬ 

tional to (0-6095-—= 0-526, and accordingly the extreme range 

of radiation resistance is in the ratio 1-19 and the resistance will be 

near 53 ohms rising to 63 at the outside members. Pistolkors calculated 

such resistances in a classic paper before the Institute of Radio 

Engineersf and found the limiting value to be near 56 ohms. 

2.17. Empirical formula for power gain of curtain of N half-wave 
aerials 

In the following table are collected the power gains of curtains 

composed of various numbers of half-wave aerials. 

Table 2.2 

N 1 2 3 4 6 8 very large 
G 1 2-4 3-7 51 7-84 10*5 ISSN 

The values given in it are related approximately by the empirical 

relation ^ ^ 1.38(iV-0-32), (2;18) 

which is correct to closer than 4 per cent, from N = 2 upwards. 

2.18. Power gain when loading is not uniform 

The process of calculating the gain when the loading is not uniform 
should follow obviously from the previous examples of uniform loading. 
Reference to Figs. 2.2-2.9 will show that each carries a legend stating 
the power gain: these have been evaluated by the method just described. 

t See Proc. I.B.E. 17 (1»2»), 670. 
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Thus in Fig. 2.2 the gain is 21*8, which accords with (2.18). When the 

current loading is triangular (Fig. 2.4) the gain is 13-3, and when the 

loading is 1.2.2.1 (Fig. 2.3) the gain is 17*3; the diminution of gain is 

due mainly to the increase in width of the main beam, a statement 

which will be understood better when we have developed and illustrated 

Poynting’s theorem. A caution is needed about calculating the power 

gain when the beam is turned off centre (see Figs. 2.7 and 2.8) by giving 

the currents in the outside members a leading and lagging quadrature 

phase; it is that such members have no net interaction with the 

central members. The process of evaluating the gain of a 16-member cur¬ 

tain whose two outer quarters are in phase quadrature is as follows. 

First calculate the output from an 8-member curtain (the central half): 

this can be derived from (2.18). Then calculate the output from a 

4-member curtain in the presence of another 4-member curtain at the 

other end of the array and carrying antiphased currents: the interaction 

between these widely separated groups of 4 turns out to be insignificant. 

We have now found the total output. The forward field must be found 

from drawing the pattern, and when this has been done 0 can be 
calculated. 

In Fig. 2.8 the stated gain is 18’2: this is the gain reckoned with 

respect to the field on bearing -+-4° and not on the much smaller forward 

field at bearing zero. We will make this more clear as follows: 

Output 

hence with N = 8 the output is proportional to 3'7, since 0 = 10-6 

(see Table 2.2). When .^ = 4 the output is found to be 1'9: ignoring 

the mutual action of the two end groups of four, the total output is 

proportional to 3-7+2 x 1-9 = 7-6, as compared with 7-16 for a 16- 

member curtain. Reference to Fig. 2.7 shows the maximum field is 0-94 

of what it would be if all the 16 members were cophased, and accordingly 

^ _ 0-6096 X 16* X (0-94)* , „ „ 

Beckoned on the field at bearing zero 0 = 6-2. 

2.19, Power gain of in-line arrays 

Here the mutual field is the field along the axis of a half-wave aerial 

and beyond its tips; The values of this field at various distances from 

the middle of the aerial are given in Fig. 8.1 and differ very little from 

the fidd that ^ould obtain if the half-wave aerial were replaced by a 
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doublet having the same number of metre-amperes. Consider first two 

half-wave aerials in line and contiguous. The inphase field along a 

doublet is = f X 2a2Xo/c, at the midpoint of a half-wave aerial it is 

Ep = 2/7r X 2a^XJc: we shall express the force in terms of | xa^X^/c as 

a unit. Then by means of Fig. 8.1 we find the field at various distances 

from the junction of two equal and cophased half-wave aerials has the 

values shown collected in Table 2.3 below. 

Table 2.3 

y/A 0 1 * 1 i i 

Field 1-500 1-42 1-29 1-04 0-81 

If these values are plotted the resulting curve will be found to differ 

insensibly from a sinusoid of amplitude (1*506—0*81) = 0*696 super¬ 

posed on a uniform field of magnitude 0*81. Hence, to find the power 

we have to evaluate 

iA J 0-8l|l+0-86cos^jsin^-^dy = 1-27 X;^. 

0 

The corresponding expression for a single half-wave aerial is O-OIA/tt: 

hence the power radiated by each aerial is increased, by the presence 

of the other, in the ratio 1*27/0*91 = 1*4. Accordingly 

Corresponding treatment for three and for four aerials in line gives 

G — 2*06 and 2-6 respectively. 

When N = 2 the radiation resistance of each aerial is 102 ohms; 

when N — Z the resistance of the middle aerial is 130 ohms and of 

each outer is 97 ohms, the mean being 108. It should be noted that the 

resistance of the outer members is less than the middle member and 

therefore the current will tend to concentrate towards the ends of the 

array and thereby increase the side lobes. General consideration will 

show that mutual action between elements separated by distances of 

the order of a wavelength must be small, because the term 1/r in the 

field is zero along the axis, see (1.70). We can readily solve the limiting 

case of this problem by using one of the tools prepared in § 1.7, namely, 

the ciirrent filament of infinite length (Ilg. 1.4). Consider first an 

in-line array of infinite length, the equal and cophased current distribu¬ 

tion being that shown in Fig. 2.11 (a) and consisting of half-sinusoids 



DIFFRACTION PATTERNS AND POLAR 108 [Chap. II 

of height I. This distribution can be 

i _ f/l_cos(4wy/A) 
I Tr\2 1.3 

represented by the Fourier series 

cos(877y/A) \ 

O "7 
and thus consists of ripples superposed on a constant current of 
magnitude 2jiT. 

The forward field due to the ripples on any one half wavelength 
member is zero because the ripples are a succession of antiphased pairs: 
even when the length of the array is finite their field at any elevation 
is very small and must tend to zero when N tends to infinity. Accord¬ 
ingly the output they contribute tends to zero and the total output 
will tend to be the same as if the ripples were absent and the current 
uniform in magnitude and phase throughout the length. Hence, by 
(1.23) the inphase component of field along the wire would be 

„ oir.. 2 T 2o/ 
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The average value for a single half-wave aerial is 

—Ep = 0-6095 X = 0-6095 x-X^X-X^I = 0-6095 x —. 
c c A 77 4 c 

From the arithmetic leading to (2.19) we see that the average value of 

Ep for two half-wave aerials in line is 

1*27 2al . 2al 
0-6095 X 7-777 X-== X-; 

0*91 c c 

when iV^ = 3 it may be found that the average value of Ep is 0*9 x 2allc. 

Thus even when N is only 3, the average value of Ep has attained 0*9 

of its ultimate value, and this shows the rate of approach to the limit 

is very rapid. We saw in Chapter I that the radiation resistance per 

half wavelength for a uniform current was 3077^ ohms. Hence the 

radiation resistance per half wavelength of an in-line array, reckoned 

in terms of the current at its middle point, must tend to the value 

3077^ X (2/77)^ =120 ohms (the average value was 108 ohms when N = 3). 

So for the limiting value we have 

G = = 0609N. 

Some particular values are shown collected in Table 2.4 below. 

Table 2.4 

N 1 1 ^ 
3 4 8 16 very large 

0 1 1-43 206 2*6 5-2 9-8 0-609N 

The values stated above are related approximately by the empirical 

formula ^ ^ 0-609{iV^+0-4), (2.20) 

which is correct to about 1 per cent, from N = 2 upwards. 

Ck)mpari8on of (2.20) with (2.18) shows that the gain of a given 

number of members in curtain is more than twice the gain when the 

same number is in-line. The radiation figure for the in-line array is 

a solid of revolution, reminiscent of a flywheel with small cones 

representing the side lobes. The figure for the curtain may be compared 

to pears placed stem to stem, and this is obviously more conservative 

of power. 

It is perhaps worth reminding the reader, once more, that the 

empirical formulae (2.18) and (2.20) are almost independent of the 

currmt distribution along each element: provided the cunents are 

cophased uid the loading is uniform, both fonnulae must be correct 
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to a high degree of accuracy and therefore they are of great practical 

value and importance. The effect on the power gain of intentional 

or accidental departures from uniformity of loading can readily be 

assessed from the values quoted in Figs. 2.3, 2.4, etc., or 0 can be 

evaluated for any assigned loading. The effect of phase difference 

between members is discussed in §§ 14.2 and 14.3, and is not large. 

In short, the power gain of an isolated array is a parameter which can 

be estimated in practice with great confidence and certainty. 

2.20. Power gain of a high curtain 

The curtains considered in §§2.12-17 were only one element high. 

The large curtains to be seen about the country-side are usually 3 

elements high above the ground, and so are effectively 6 elements in 

height. Thus each string of elements is high enough to give each one 

a radiation resistance near 120 ohms if it were isolated and not a 

member in a curtain. Neighbouring members of the curtain will reduce 

the resistance. 

The limiting case was solved in § 1.19, where we considered an infinite 

grid of wires of infinite height. There we found that up to gjX = 

. .r. __ 27r/'_ 47r/' 
--cEp == —— = — 

9 ^ 

if gr = ^A. In our case we must make /' = (2/7r)/ and .then 

—Ep = 

C CTT 

and it follows, from the foregoing, that the radiation resistance per 

member must tend to the value 2/TrX 120 = 76*5 ohms. If the curtain 

is elements high (including the image in the ground) and has JVg 

strings in the width, then 

Q = (2.21) 
70*0 

or Q = 3*8 X (area of curtain (and image) in A*). (2.21 a) 

Formula (2.21) may over-estimate O for very wide curtains ii^hich 
are only about 3 elements high above the ground; for though they are 
high enough to maJke the ‘self-resistance’ 120 ohms per member, they 
are not high enough (compared with the width) to make the average 
mutual resistance (1—2/47) of 120 ohms. The average re^tance will 
less than 120 ohms and more than 76*5 ohms, and thus limits are set 
to the uncertainty in applying (2.21) in practice. One may suggest 
the gain win not be less than six tunes the area of the curtain (ignoring 
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the image), reckoned in square wavelengths. We may note in passing 
that (2.18) may be written O = 6-6 x (area of curtain in A®). 

The problem of the wide high curtain is examined more fully in 
Chapter XIV: its practical aspect is complicated enormously by the 
reflecting curtain that is usually provided, and this reflector is insoluble 
precisely for reasons which are associated with practical adjustments 
only. 

2.21. Curtain of single half-wave aerials in which alternate 
elements are in antiphase: prototype of Yagi arrays 

If adjacent members are in antiphase, then the field is zero in the 
plane normal to the curtain if N is even, and is that of one member if N 
is odd. If the spacing is ^A, then brief consideration shows the field is 
N times that of one member in the direction of the plane of the array. 
To calculate the pattern we must divide the array into two groups 
separated by A: successive members of either group will be cophased. 
Each group can be replaced by a single equivalent member at its middle 
point. If N is odd the two equivalent members will be coincident: if N 
is even they will be separated by ^A. We will illustrate by a numerical 
example and take ^ = 9. We then have one group of 4 cophased 
members separated by A and another group of 5 cophased members 
also separated by A, the two groups being in antiphase vdth one another. 
If Eq be the field due to one member on bearing 6 to the normal to the 
array, we have „ ... . 

^ E ^8m{47rSind) 
jE?0 "" sin(7rsin0) 

for the group of four, and 

E _ sin(57rsin0) 
JS/q sin(7rsin0) 

for the group of five, and hence 

E _ sin(6Trsin&)—sin(47rsin0) 
Eq^ sin(7rsin0) 

— 2 cos(|iT sin 6)sm(^n sin d) 
sin(7rsinfl) 

cos(|7rBing) 

QO&(^Bin$y 
(2.22) 

an expression reminiscent of the form of (2.2). Had N been equal to 8 
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the two equivalent equal and antiphased aerials would have been 

separated by and we should have had (compare § 1.13) 

E 
E. 

^sin(47rsin0) . . .. 
2 —^ sm(47r sin 6) 

sin(7rsine) ^ 

sin(47r sin 6) 
^ (2.23) 

cos(i7rsin 6) 

E is zero in (2.22) when d == 6-3°, 19-5°, 33*7°, 51°, while in (2.23) it 

is zero when 6 = 0°, 14-5°, 30°, 48*5°. Obviously the equatorial pattern 

resembles that of a cophased curtain turned through 90°. In both cases 

the main beam is zero when 6 is near 50° from the nornial and hence 

corresponds with a main beam coming to zero at about ±40° from the 

plane of the array. At an angle of elevation ^ we must replace sin 6 by 

sin 0 cos ^ in both (2.22) and (2.23). Accordingly when 6 = 90°, (2.22) 

is zero when cos^ = J or ^ == 38-7° and (2.23) is zero when (jy ~ 41*5°: 

the radiation figures may be likened to two pears placed stem to stem 

and in addition some conical hoods for the side lobes. 

Following § 2.16, we find the output of any one member of a very 

wide curtain in which the currents are alternate in sense is given by 

the expression 

j^ = {0.6095+|(l-^+^,..)j-0-7761. 

Accordingly, when N is large the gain approximates to the value 

0-6096iV^2 
0 = 

0-7761^ 
= 0-782^^ (2.24) 

and the radiation resistance per member tends to 

0-776 

0-609 
X 73-1 = 93Q. 

The system we have just described can be realized in practice by 
feeding each member in such a way that the phase alternates. More 
commonly, however, only one member is fed with power and cutrent 
is induced in the other members by the field of the driven member. 
In such circumstances the magnitude of the current is likely to attenuate 
along the array, and it is foimd that no advantage accrues from 
increasing N indefinitely. In general there is little advantage in 
malring N greater than about 10. The system in which successive 
currents are induced by one member is commonly called a ‘ Yagi array’ 
and will be discussed briefly later on. 



2.22] DIAGRAMS AND POWER GAIN OF CERTAIN ARRAYS 113 

2.22. Poynting’s theorem 
Following Maxwell we assume the energy is located in the medium, 

and that the total energy is given by 

^ JJJ dxdydz. 

According to our interpretation the region in which a field exists is 

expanding continuously with time, and hence the total stored energy 

must be increasing continuously, and it is this which demands an 

output of work from the source, represented by the parameter we call 

radiation resistance. If w e take any fixed and closed region of space it 

must be possible to interpret the equations in such a way as to make 

them describe a constant outflow of energy from the whole closed 

surface. There can be no grounds for asserting that a certain amount 

of energy does in fact flow across some assigned piece of the total area, 

V)ut only that it is as though there were a total flow of a certain amount 

of energy across the whole surface. We shall not develop the appropriate 

analysis here, but refer the reader to some treatise on electromagnetism 

(see, for example, Jeans’s Chap. 17, § 576, p. 518). It is proved that 

the flow is to be reckoned at the rate (cJE'jfir/47r)sin 0 per unit area of the 

closed surface, where 0 is the angle between E and H: the direction of 

the supposed flow is perpendicular to both E and H. 
We will apply this to the radiation from a doublet. As the closed 

surface, take any very large sphere centred at the doublet. Then we 

know' (see (1.73) and (1.74)) that at any point on this sphere E lies in 

lines of longitude and H in lines of latitude and E = H, and that E 
varies as Accordingly the rate of flow across an element of 

surface is cE^j4tTT, If E^ is the field at radius R in the equatorial plane 

we have 

P = ^ J Elco8^<I>x27tR.Rcos<l}d^ 

-irr 

iir- 

= cElB^ J cosV d<f> = IcEl2?* = f Xby (1.73), 

0 

and this agrees with the value deduced from (1.79). There we deduced 

it from the inphase electric field acting against the current in the 

doublet: here we deduce it from the field at the surface of an arbitrary 

sphere drawn in space. We are getting near the Huygens principle, 

but at the price of having to make a surface integration: it exemplifies 

the contrast between two possible means of approach, discussed in 
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Chapter I. Either we must fix our eyes on the points where we are in 

the habit of choosing to locate an electron or we must integrate over 

the whole of a closed surface of space: in general the first is much the 

simpler operation to perform. It is instructive to use (1.73) to express 

the whole energy present in all space: if this is done, the total energy 

in the expanding sphere of field will be found to increase uniformly 

I 

I 
Fig. 2.12. 

with time: we leave it as an exercise to the reader (or see Radio 

Frequency Measurements, E. B. Moullin, Chap. I, § 7, p. 23). If the 

source is a half-wave aerial, then by (2.8) 

P = cE^B^ j cos®(^7rsin^)cos^ d<f). 
0 

Possibly this integral can be evaluated in terms of Bessel functions: 

we know from (1.81) that its value is 0-6096. 

The output from an in-line array involves evaluating 

r ainmNnsind) ... , ,, 
J sin*(iirsin^) y/ r y 
0 

Whether or not it is possible to evaluate this directly we prefer to 
approximate to the answer because this wiU disclose the structure of 
the process. Let Fig. 2.12 represent a cross-section of the sphere over 
whose surface the integration is to be performed. Let the radii OB, OC, 
etc. be drawn along the extinction angles <f>i, etc. The angles 
AOB, BOG, etc., are approximately equal and less than 16° if N 
exceeds 8. The obliquity factor of equation (2.8) remains substan- 
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tially constant over the small angles AOB, BOC, etc. Hence the error 

will be small in writing 

j E\cos<j>d<l> = „Flcos<l>„ j FI d^, 

where and cos are the values of and cos ^ at the midpoint of 

the interval. If the main beam and side lobes (when plotted as a 

diffraction pattern) were sine curves their mean square value would 

be half the square of their maximum ordinate: if a triangle, one-third 

of the square of the maximum. Hence the mean square value must be 

between a half and a third; the mean of these two fractions is 1^2 = 0-416. 

The mean square value of the main beam has been found (by graphical 

integration) to be 0-466 and 0-472 when N = S and 16 respectively: we 

shall adopt the value 0-47. Also AOB == BOC =N ^2 

irr 

\ cos<^d^ ===-^(ljPfcOS^l+a2 2^lCOS^2+-)> 

0 

where is the fractional amplitude of the nth side lobe. It is known 

that (see § 2.2) cxg, etc., equal 2/37r, 2/5tt, etc. Moreover, 

772^32^5*^72^ / 77*^8 / 
0095. 

Now 1 cos +a| cos ^2+••• roust always be less than 1+al+“I+• • • 

and hence less than 1-095. It will approach more and more nearly to 

this value when N is large because then ^Fl cos 4>i and cos <f>^ get 

more and more nearly equal to unity. Accordingly the power gain 

must tend to the value 

0-6095i\r 

0-94x1-095 
0-6iV^, 

and this agrees closely with the value deduced in (2.20), and approximate 

integration has served its turn. It has, however, disclosed the interesting 

feature that the power radiated in the side lobes tends to be 9-5 per cent, 

as an upper limit. It should be noted that the power in the side lobes 

is relatively less important when N is small, because then the first and 

second lobes (which are much the most important) are considerably 

reduced in size by the obliquity factor Fi and also because they then 

‘bathe’ a much smaller area of the Poynting sphere. Direct evaluation 

shows that when JV = 2, 3, 8, and 16 the power in the side lobes is 

0'6, 1*0, 4-0, and 6-6 per cent, respectively. Those who are concerned 
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with making aerials should memorize the result that the power in the side 

lobes of a uniformly loaded in-line array must be less than 9*5 per cent. 

If side lobes are objectionable it is not because they radiate a substantial 

amount of power. 

The power radiated by a uniformly loaded curtain can be evaluated 

by a similar process of approximate integration: it has been done more 

elegantly in equation (2.18) and will not be done again. Suffice it to 

say that if the mean square field is taken as 0*47, then the power gain 

without side lobes is found to be h56N. We found in (2.18) that 

G = l-38iV' and so we deduce that the power in the side lobes is 

11 per cent. 

The mean square field in the equatorial plane of a uniformly loaded 

curtain can be found from direct integration, for it is known that 

r sin^fi^^sin d) 

J sin2(gf cos d) 
0 

de^ i7r(iV+2V(A^-r)Jo(r?)), 

this result follows at once, by Poynting’s theorem, from the approach 

to (1.45).t 

It has often been -thought the power gain can be estimated from the 

diffraction pattern in the two principal planes. This is true only in the 

very simplest cases, as a glance at Fig. 4.12 will show. The power gain 

should be calculated from the inphase component of field along the 

aerial itself and not by using Poynting’s theorem. It may be argued 

that the diffraction pattern can be measured and the inphase field 

cannot, and that therefore Poynting’s theorem is the only available 

method of deducing the power gain of an aerial in operation. There is 

some substance in such an argument, but it needs closer scrutiny. 

The first process must always be to calculate the power gain and the 

radiation figure for the idealized array: by idealized is meant that 

reflecting screens are supposed to extend to infinity and the current 

distribution between members of an array is postulated (once more we 

remind the reader that current distribution along a single member is 

unimportant since it affects the factor JPi only, and anyhow is 

sensibly equal to cos<f>). Then the two principal patterns should be 

observed for the real array and compared with the ideal patterns. 

From comparing their mean square Values with the ideal it should be 

possible to estimate how much the power gain falls short of the ideal: 

provided always there are no significant lobes which do not appear in 

t See, for example, MclAchlao, Bettel Funetionafor Enffimen, § 4, p. 46^ 
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the two principal patterns. In other words, that the radiation figure is 

not typified by Figs. 4,12-4.14. 

We will close this chapter by treating the example of §§ 2.1 and 2.12 
by the Poynting method. Here we have two aerials in phase quadrature 

and separated by JA. Let the field of either aerial alone be at an 

angle of elevation and let the phase angle due to path difference on 

a bearing She then the pliase difference between the two component 

fields is P+^7T and the resultant is 

4:7tP 
c 

2J?f(l-sin/S). 
Itt tt 

2 j j Ef cos <j) d<f>dd 

0 0 

Iw 27r 

4 J J jB?f{l—sin(|7r cos(f> cos 6)}oos (f> d(f>dd 
0 0 
in 27r 

4 I J Ef{l — 2Ji(^7rcoS(^)cosff—2J^(i7TCOs<f>)oo8 30}x 
b 0 

Xoos<f> d<l>dd 

4 
in 
j Efx 27t C08 ff> d(f> 

0 

in 

= Stt J cos <f) d(f>, 
0 

and thus is precisely twice the output of one aerial alone. A result we 

have already shown directly by considering the inphase field along each 
aerial. 
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AERIALS IN THE PRESENCE OF INFINITELY EXTENDED 
FLAT SHEET REFLECTORS 

3.1. Introduction 

The curtain arrays discussed in Chapter II have been seen to produce 
a narrow beam of electric field in both directions along the normal to 
the array: the in-line arrays produce a thin disk of field bathing the 
equator of a circumscribing sphere. In general it is required to restrict 
the radiation from a curtain to one direction along the normal and to 
restrict the radiation from an in-hne array to a sector of the circum¬ 
scribing sphere. This result can be produced by a second parallel 
curtain with appropriate spacing and magnitude and phase of current, 
since any curtain can be replaced by a single equivalent aerial at its 
middle point. The two equivalent aerials representing the two parallel 
curtains can produce zero field along one normal if the currents are 
equal and in phase quadrature and the spacing is JA (see § 2.1), and thus 
the desired result can be attained. It is more usual to approximate to 
this result by using one driven curtain to induce current in a second 
parallel curtain: then the best spacing is a matter for experience and 
adjustment. It is natural to refer to the second and undriven array 
as a refiecting curtain. An alternative to an open wire curtain is a very 
large continuous sheet of metal: such is often preferable in practice 
because it demands no tuning adjustment provided its area is much 
latter than the driven curtain. This essential condition will be practi¬ 
cable only if the wavelength is less than, say, 6 metres. 

We shall now consider the performance of aerials combined with 

large flat metal sheets; a system which has enormous practical apphca- 
tion when the wavelength is less than about 1-5 m. The problem 
is idealized at present by supposing the sheets unlimited in extent, 
and we shall not attempt to discuss here how much these solutions 
will be modified in practice by the finite size of the sheets: this is 
discussed analytically in Chapter V and an immense amount of 
practical observation is scattered through later chapters. Suffice it to 
say now that quite small sheets do in fact approach very close to the 

limit of the ideal and thus the solutions we derive here are of great 
practical value if used with intelligence and understanding. 

The problem is much simplified by restricting the field to two 
dimensions only: in other words, the source is to be thought of as a 
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very long in-line array. Later we shall replace the long array by a 

single half-wave aerial. Until further notice, the reader must realize 

the source is a single filament of infinite length carrying a current 

Isinpt, 

3.2. Current filament parallel to an infinite and perfectly con¬ 

ducting plane 

Consider a filament, carrying a current isinpf, parallel to an infinite 

and perfectly conducting plane. It follows, from considerations of 

symmetry, that the electric field must be parallel everywhere to the 

plane; moreover, it must have zero value at the plane because the 

conductivity is perfect. The component of magnetic field perpendicular 

to the plane must be zero at its surface ; for if the plane were penetrated 

by a magnetic field there would be an electromotive force round any 

circuital path in the plane, and this is impossible since the electric force 

is zero everywhere in the plane. The penetrating H can be prevented 

only by a system of induced currents, flowing parallel to the filament, 

and having a value and distribution such that they produce a normal 

component of H equal and opposite to the normal component of H 
which would obtain at any point of the surface if the plane were absent 

and the filament alone were present. The magnetic force must be 

parallel to the plane at its surface, and if H is its magnitude at a point 

where the current density is i, then H == Ani: this result follows by 

curling round a rectangular path one side of which is just outside the 

surface and one side is inside it; no displacement current is curled 

round because E is zero at the surface, and inside it, and hence the 

total current curled round is only the conduction current i; and more¬ 

over, as we have seen, H is zero along three sides of the rectangular 

path. Now consider Fig. 3.1 (a), in which AB and F represent respec¬ 

tively a section across the plane and the filament, both standing 

perpendicular to the paper. The induced currents are represented by 

the dots and crosses in circles lying just inside the trace -4 it is to be 

noted that they are shown as crosses in some regions and as dots in 

others, in order to remind the reader that the induced density is never 

cophased at all points. The filament would contribute at a point 

typified by P an electric force E depending only on the distance r: 
since the net electric force must be zero at the surface, it follows that 

the distribution of induced currents must be such that the resultant 

force due to all the filamentary streamlets which compose it is exactly 

©qtial to (compare cE == iiri for a uniform density, see p. 56). 
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Now consider Fig. 3.1 (6), which depicts a current +/ at F to the right 

of a plane AB and a current —/ at F* to the left of a second and 

separate plane A'B\ the two very thin material planes being placed 

parallel to one another and close together. The distribution in A'B' 
will be similar in form but opposite in sign to that in AB, and accord¬ 

ingly current densities at P and P' will be equal and oppoaite. Now 

consider the electric field at a point typified by Q: it is the resultant 

of the force due to -f/ at P and to / at F' and to the distribution 

all over the face AB and to the distribution all over the face A'B', 
The force due to the two distributors, taken together, will tend to 

vanish as the two planes are brought ever closer together, because 

typical streamlets at P and P' become more and more nearly coincident, 

and their contribution to the field will vary as 2TTdjX, where 2d is the 

distance between the two faces (see § 1.13). Accordingly, in the limit, 

the force at Q will be due to the filaments F and P' only, and this is 

readily calculable. But the field is in no way disturbed by bringing the 

planes AB and A'P' into proximity, since the field between them is 

zero everywhere. Hence it follows that the field due to the distribution 

on AB in Fig. 3.1 (a) is identical with the field due to P' in Fig. 3.1 (6); 

and accordingly that the force at any point to the right of A P in {a) is 

equal to the force due to current filament -f/ at P together with — / 

at its image point F\ it being supposed that the conducting plane AB 
has been removed. Similarly the force at any point to the left of AB 
in (a) must be zero because in this region the field due to the indueed 
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density is the same as that of a filament — / at J?’, and hence the total 

force to the left of -4 B is the same as that due to a current — / at -F 

together with a current +I the same point, making the net current 

zero. 

The magnetic field due to the current and its image is readily cal¬ 

culable in the plane which is midway between them and perpendicular 

to the plane joining them: consideration will show it is directed along 

this plane. It is equal in value to the magnetic field due to F and the 

distribution on the conducting plane. Since H is known, the induced 

density follows from the relation H = and hence the whole problem 

is solved. Though the argument has been developed for current fila- 

raentvS, brief consideration will show it is also valid for an electric 

doublet and hence, by superposition, for any system of doublets in the 

presence of an infinite and conducting plane. 

An image system can be found only for flat sheets: the image systems 

for spheres and cylinders which are vafid in electrostatics are not valid 

in our problems because we are not now concerned with a scalar potential 

which varies only as 1/r. Again, the treatment in optics of images due 

to spherical mirrors is approximate only: if such images are used to 

obtain solutions of aerial problems it is essential to recognize that such 

solutions are only approximate. 

If the distance between F and the plane ivS J, I, etc., of A, then the 

distance between F and F* is |, etc., of A, and it should be obvious 

from Fig. 3.1 (b) that the field in the direction F'F is twice that due to 

one current alone. If OF equals 1, |, etc., of A, then the field in the 

direction OF is zero. It is an essential feature of this and all similar 

problems that as the aerial F is moved progressively away from O the 

‘ forward field’ at a distant point will pass successively through maximum 

and minimum values: in this case zero and 2E, From equation (1.48) 

the field on bearing d varies as 2 sin(fc cos 6); it follows from this that there 

are always one or more bearings on which the field has the value 2E 
provided R exceeds JA. As R is increased from a small value up to JA 

the polar diagram remains nearly a circle, touching the plane. When 

R exceeds JA the circle develops a dimple on bearing zero; when 

i? == ^A it has turned into a bifurcated beam whose maxima are at ±60^ 

and which have zero field at 0 = 0 and 90°. When RjX = | the polar 

diagram consists of three petals of equal length, one centred on = 0 

and the other two on = ±70°. When RjX = J there are five petals, 

and so on. For most practical applications these petals are objection¬ 

able and hence we expect to make RjX near J. 
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Referred to 0 as origin, the field at any distance and for any value 

of R is given by (1.47): accordingly the inphase field along the filament F 
is given by 

cEp 
iTTttl 

(3.1) 

Also it should be obvious from Figs. 1.8 or 3.1 that 

cEp 
anl 

1-Jo(k), (3.2) 

and thus by comparing (3.1) and (3.2) we discover an interesting 

identity. It follows from (3.1) and (1.23) that the radiation resistance 

per half wavelength of the filament in the presence of the sheet equals 

{1—JJ,(2I;)}x 307J-2 ohms, and this equals 307r2x 1-3038 ohms when 

R/X = | . If the current distribution is in fact a series of half sinusoids 

(as in an in-line array), then the resistance, measured from the middle 

point of any one, will be 167 ohms. Since the forward field is then 

twice that of the isolated filament the power gain conferred by the 

refiector is 
(?' = 

The general expression is 

O’ = 

4x120 

157 
3-06. 

4sin2I: 

l-Joi^k) 
== 4{l-^k^+...). 

(3.3) 

(3.3a) 

Hence, in respect of gain, it is best to make RjX less than J and to 

use the distance as a means of adjusting the radiation resistance to any 

desired value less than 157 ohms. It follows from (2.20) that the gain 

of an iV-member in-line array close to a flat sheet is near 

G = 2'4N. (3.4) 

(o) Density of current induced in the sheet 

To find the current density i we must calculate H, the magnetic field 

in the median plane of Fig. 1.8 or 3.1 (6), and then we have H = 47n'. 

H can be found most readily from the vector potential A, since 

curl A — H OT A = jaE: hence from (1.47) 

cA 
TiTl' 

and 

thus . j 

{Fi{ar)+jJjiar)}Ji(k)ooB 6+{Yi(ar)+jJ^{ar)}Ja{}c)oos ^6+..., 

rr 

■■ ^[{^i(a>')+M(«>‘)KiW-3{1^8(®»')+i«4(«»‘)KW+---L (3-6) 

since here 6 = 90°. 
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When ar < k, interchange k and ar in (3.5). When ar tends to zero 

= (^r)» = — 

and therefore 

and Pol 
I 

^^{Y\{k)+Jl{k)} 

1 

or 

• W 
. 1 

, when k exceeds about 4, 

TTjB 

when k is small. Fio. 3.2. 

Equation (3.5) is very cumbersome to evaluate when ar is large, and 

in such circumstances it is more convenient to take the origin at the 

filament. Then with reference to Fig. 3.2, it follows at once from (1.25) 

that 
j = \asmtl,{Yi{ap)+jJj{ap)} (3.6) 

I p 

When ap is large = — Jj, and = Yq, and then 

i = ^Ia8m^{-Map)+jYoiap)} = by (1.23), (3.6a) 

where E is the field which would exist at the point P if the sheet were 

absent. It may be seen from (1.60) that if a plane wave of amplitude E 
is incident, on an infinite sheet it induces a density i = cEj^In, Accord¬ 

ingly the current induced at P is nearly the same as it would be if the 

normal component of field incident at this point were incident over the 

whole plane. This is an important principle of approximation which 

we shall use in problems where the density cannot be calculated; it is 

here almost correct in respect of magnitude but never quite correct in 

respect of phase. The error in magnitude is less than 1 per cent, so 

long as ap exceeds 4, which is when pjX > 0*63: the phase error is 

about 3® when ap = 10 and about 1-8° when ap = 16. When ap exceeds 

about 4 we may write 

U|® /fJ-) or i = 
I 2p aJ \napl *0 \PI 

(3.7) 

Accordingly ifi^ decreases rapidly as p increases, and this gives good 
reason to hope that it will be possible in practice to terminate the sheet 
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at a finite width without impairing its reflecting properties appreciably: 

if this is hopeful in the two-dimensional problem it must be still more 

hopeful if the filament (long in-line array) is replaced by a single half¬ 

wave aerial, for then iji^ is almost certain to vary as (Rlp)^, as compared 

with (B/p)^, 
We have presumed the reflecting sheet is a perfect conductor. If it 

has a small finite resistivity, of value p' at the operating frequency, the 

induced current will differ little from the value appropriate to a perfect 

conductor. Accordingly the energy loss, in unit width of the sheet, is 

given approximately by 

P = 2/ J \if dy 4= 27*^' J i dy 

0 0 

0 

Accordingly the energy loss in a strip half a wavelength wide equals 

Pp\ This rather surprising result shows the loss in a strip half a 

wavelength wide is independent of A (save in so far as p varies as A~*) 

and of jB, provided always that i?/A is not very small. The loss in a 

strip of infinite width and height ^A in the direction of flow is the same 

as if the aerial current I flowed through a square piece of reflector of 

1 cm. side: this description will help to show the loss is very small. 

Suppose the aerial wire itself is 1 cm. in circumference and of the same 

material as the sheet, then the conductor loss in the aerial itself will be 

|A times as much as the loss in the reflector. This comparison shows 

clearly that the conductivity of the sheet is not important because the 

loss in it can scarcely be comparable with the loss in the aerial itself. 

Resort to tables of Ti shows that when RjX = J or J then 

y'~'~ = respectively, 

and accordingly our approximation will not underestimate the’loss 

appreciably. 

The effective resistivity of a sheet at frequency / is p' = 27r^(pf), 
where p is the resistivity of the metal in e.m. units. Accordingly 

p' = 2'45XlO-^^(/ Mc/s) ohms for copper: thus p = 6xl0~® ohms 

if A = 50 cm. When RfX = J the radiation resistance is 157 ohms, 

reckoned from the ‘loop current’, and this is about 400 ohms reckoned 

on the average current in the array. Accordingly the fractional loss 
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in a copper reflector is of the order of (6x 10-®)/400, which is about 

15 parts in a million and is insignificant. It is abundantly clear there 

is no need to use copper for the reflector: it might just as well be made 

of painted iron sheet. To use copper or aluminium for electrical reasons 

discloses a gross lack of understanding and is therefore very bad 

practice. If the copper aerial wire is 6 mm. diameter and A = 50 cm. 

its effective resistance (reckoned on average current) will be near 

0*1 ohm per member and accordingly the conductor loss in it will be 

some seventeen times as great as in the whole reflector; though only 

about one part in 4,000 of the output. If, for reasons of appearance, 

it is desired to inhibit corrosion by plating the aerial conductor, then 

significant losses will not result from plating it with a metal whose 

resistivity is greater than copper. Resistivities, relative to copper, of 

silver, rhodium, cadmium, and chromium are 0-92, 3-4, 4-2, and 7-8 

respectively. When penetration depth is small the effective resistance 

is proportional to and accordingly these materials will change the 

loss, relative to copper, in the ratio 0-96, 1*85, 2*05, and 2*8 respectively. 

Even chromium plating will not make the loss as much as 0-1 per cent, 

at A = 50 cm. But it shows a lack of understanding to insist on 

rhodium-plated aerial rods together with copper reflector sheets. 

Painted copper rods and painted iron sheet or expanded metal is a 

construction which shows both an appreciation of the technical aspect 

of a constructional problem and some regard for its cost.f 

Having shown the losses in a flat metal reflecting sheet are negligible, 

we need scarcely raise this problem again for more complex reflecting 

systems. If practising engineers insist on trying to reduce a negligible 

loss, then at least it is to be hoped they will do it by fixing a narrow 

copper strip, just behind the aerial, to the iron or expanded metal 

reflector: showing thereby they understand where the dominant fraction 

of the loss is located. For a fuU discussion of the effective resistance of 

plated conductors see the paper by R. Faraday Proctor in the Wireless 
Engineer, 20 (1943), 66. 

3.3. Pair of reflecting sheets at right angles 

The system is illustrated diagrammatically in Fig. 3.3, where A 
represents the aerial, standing perpendicular to the plane of the paper. 

t Note: Teachers of engineering are sometimes accused of paying no attention 
in their teaching to ‘Engineering Economics’. This stricture is not always 
justified, and indeed it is difficult to conceive how ^:igineering teaching could be 
arranged to avoid including a peipetual backgrotmd of economics. 
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Consideration will show that the four aerials A, B, C, D must together 

produce a field in which the electric force is zero along the planes OE 
and OF. Hence if these planes are replaced 

by perfect conductors, the aerial A and the 

currents induced in said planes will together 

produce a field in all the region EOAF 
which is identical with the field, in this 

region, due to the aerial A and the three 

images. The field at point P (coordinates 

r, 6 with respect to origin 0 and initial line 

OA) due to the like pair of aerials A and 

C is given by equation (1.46). The field at 

P due to the four aerials A, B, C, and D 
is given by subtracting from (1.46) a 

similar expression in which (^n—d) is sub¬ 

stituted for 6. Accordingly 

~j = {—J2{ar)+jY2{ar)]J2{k)<iOB2e+{—Je{ar)+jY^{ar)}Je{k)cosQd+ 

+{—100+.... (3.9) 

If J? > r, then transpose k and ar in (3.9). 

When ar tends to infinity (3.9) degenerates into 

= J^(i;)cos 20+J5(i:)cos60+..., (3.9 a) 

where is the field at this distance due to an isolated current I. 
Consideration of the path difference at a great distance shows also that 

E 
■— = cos(i:cos0)—cos(yfcsin0). (3.10) 
2% 

And this is an alternative expression for the diffraction pattern. The 

forward field equals 2.®o(cosfc—l) = —4JS?o sin* p, and this is zero when 

RjX — 1, 2, 3, etc., and rises to a maximum value when RjX-— J, 

I, etc. Thus, as with the single flat sheet, RjX has an infinite series of 

values for which the ‘forward field’ is zero: then the pattern consists 

of an even number of petals, not all of which necessarily have a maxi¬ 

mum 4Eg. We shall delay further discussion of the shape of this pattern 

till § 3.8. The inphase component of field at the aerial is by (3.9) 

(3.11) 
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It should also be obvious from Fig. 3.3 that 

l-2Jo(V2*)+/o(2)fc), (3.11a) 
clttI 

and thus is summed the series in (3.11). Evaluation of numerical values 

of radiation resistance will be delayed until § 3.6. By Poynting’s 

theorem the output can be derived from the mean square value of 

(3.9 a), and this leads at once to (3.11) since, for example, 

irr 
2 J cos^ 60 dd = Jtt. 

0 

To find the current density induced in the sheets we proceed as in 

(3.5), and accordingly 

J = (3-12) 

This expression is cumbersome to evaluate when ar is large, and we 

can readily find the asymptotic expression by considering Fig. 3.3. 

For this shows that H at the surface of the sheet OE must be the H 
due to the imlike pair of currents A, B together with the unlike pair C, D. 
Hence i at any point in OE is the sum of the currents which would be 

induced in it if it were doubly infinite and excited by the unlike 

currents A and D. To find the resultant it is necessary to add separately 

the two contributions to the inphase component of current and the 

two contributions to the quadrature component. Thus, in the notation 

of Fig. 3.2, we have 

=r= |asin^[ ^(®Pa)}] 

. ^cEasiath . k 
== —2-^-sm-T-. 

2ir V2 

Here then the induced current does not depend on the normal com¬ 

ponent of the field due to A alone, but to that of currents -f-/ at 

and —I at D. If AD = A, 2A, etc., then the induced current at a 

distant point will be very small, sinoe the two contributions tend to 

neutralize one another. Obviously this effect will help to make the 

performance of finite sheets approximate closely to the ideal limit. 

3.4. Reflecting plates inclined at any angle 
Let the angle between the plates be )S, where n/3 = v. When n is a 

whole number it is possible to find a system of images (i.e. when 

= 180°, 90°, 60°, 46°, 36°, 80°, etc.): then the field can be built up by 
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appropriate combination of like pairs (for n even) or unlike pairs {n odd), 

and by use of equations (1.43) or (1.47), or by adding by means of (1.49) 
the fields of currents, alternate in sense, spaced uniformly round a circle 
of radius B. On doing this we find the general expression 

^ = 4«,[{-J„(ar)+jr„(ar)}J„(i)co8W0+ 

+{—'4»K)+p3«(«0}'4«(^)cos 3nd+...]. (3. ] 3) 

The inphase component of field at the aerial is always given by the 

equation 

^ = 4n{JUk)+JUfc)+JL(k)+-}- (3.14) 
As an example let j8 = 60° and then n = 3: then we are concerned 

with J3, Jg, etc. When ar is very large == —Y^ = +I7 = 
and consequently successive terms in (1.47) must alternate in sign. 

Also 1^3= — = Jq. It follows from this example that when ar tends 

to infinity 

^ = (-l)t»{J„(fc)cosn0+J3„(i;)cos3w^+ 

' } when n is even 
and (3.15) 

= j(— nd—J^,^(k)oos 3n0+ 

+J^^(k)cos ...} when n is odd, 

where Eq is the field at the given distant point due to an isolated 

filament carrying current /. Accordingly the magnitude of the forward 

field is t4(^)+»4«(*)+-- according as n is even or 
odd. It should be noted that (3.15) shows the field at a distant point 

is always inphase or in antiphase with Eq when n is even, and is always 

in leading or lagging phase quadrature with Eq when n is odd. 
The forward power gain with respect to an isolated filament is 

expressed by 

or 

with n even, 

with n odd. 

(3.16) 

When k is small etc., are very small compared with and accord¬ 
ingly G then tends to the value 4n for all values of n. We shall see 

shortly an obvious interpretation of this result in terms of Poynting’s 
theorem. If the filament consists of an in-line array of N members not 
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very far from the apex of a Vee reflector of angle lSO°/n then, from 

(2.20), O == 2-4nN. (3.16a) 

Thus if = 10 and jS “ 45°, 6? = 96 when k is small: it can reach a 

maximum of 460, when B/X — 2, see Fig. 3.26. 

Though equation (3.15) gives the diffraction pattern correctly, an 

alternative form can be .written down directly by consideration of the 

path difference between component images. Particular cases of such 

expressions are as follows: 

n == 1, = 180^ 

/I-2, = 90° 

71 = 3, 

o O
 II 

n = 4, 

o II 

— = 2sin(A:cos0). (3.15 a) 
K 

^ == 2{cos(i:cos6)--cos(A:8in0)}. (3.156) 
K 
E 

= 4sin(^A;cos0){cos(iA:cos0)—cos(jV3i:sin0)}. 
Eq 

(3.15c) 
E 

== 2{cos(icos0)+cos(/csin0) — 

—2 oos|™ cos 6^—cos^^ sin ^jj. (S.lSd) 

Whenever n is an integer the inphase field at the filament can be found 

directly by adding the fields due to the images, and thus the sum to 

infinity of the series J'n+«^3n+«^6H+*” is known, as we have seen 
already in (3.11a), Thus 

l^2J,{k) + 2J,(^/Sk)-J,{2k) = l2{Jl{k) + Jl(k)+Jl,(k)+.„}, 

We have been careful to stress that n must be an integer because the 

formation of (3.13) has been built up from an image system. Con¬ 

sideration, however, appears to show that (3.13) must be the general 

solution for all values of n, integral or fractional. Thus it is certainly 

a solution of the two-dimensional form of Maxwell’s equation and 

makes E zero when 0 since = tt. There is, however, the 

difficulty that E is multi-valued when n. is a fraction; thus if d is 

increased by 2^, 47r, etc., then cosn(^+27r) is not equal to cosnd unless 

n is an integer: accordingly E can have any value at the point r,d 

according to the number of multiples of 27r by which 2d is increased. 

Thus E is zero at 0 = JjS but not at 0 = Jj8-f27r, when n is a fraction. 

It is true that B cannot exceed JjS without penetrating the material 

reflecting sheets: in other words, in our problem the field exists only in 
479U1 _ 
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the range of 0 between ± JjS, and hence it seems that larger values have 

no meaning and that the multiple values are ruled out automatically 

by the material boundaries we employ. Moreover, the discussion of 

convergence developed in § 1.9 will hold for any value of n, and this 

shows the series is convergent everywhere save at the point {ky 0) where 

it diverges logarithmically to infinity, as it ought to do in order to 

disclose the current filament of zero 

radius at this point. There is a distri¬ 

bution of induced current correspond¬ 

ing to H along the boundary sheets 

when 0 — 1)8, but it is a little arbitrary 

to assume this is the distribution 

which in fact will give zero field at the 

sheets since a different distribution is 

appropriate to 0 = ^p-\-27T, and this 

certainly would not make E zero. 

However, for the time being, we shall 

assume that the existence of the material boundaries rules out the possi¬ 

bility of multiple values here and thus makes the difficulty purely one of 

mathematical analysis of no concern in the physical problem. Thus we 

shall presume that (3.13) describes the field of a thin filament on the 

bisector of a Vee refiector of any angle and distant Xk/27r from the apex, 

valid for all values of n. Accordingly it solves the problems typified by 

Fig. 3.4 (a), (b), and (c). The limiting case. Fig. 3.4(c), is when n == J 

and corresponds to a semi-infinite sheet. Solutions for n less than J do 

not appear to have a physical interpretation, though some method may 

be found of interpreting them. Equation (3.14) is valid for all values of 

n, but (3.15) needs attention before it can be generalized; this is fore¬ 

shadowed by its two forms, according as n is odd or even. Equations 

of the form (3.15a-d) can be foimd only when n is an integer, because 

it is only then that a system of images exists. When n is a fraction, Ep 
must be evaluated by the laborious process of adding sufficient terms 

of the infinite series. When z is sufficiently large 

—iTT—Jwtt) ^ -Bcos(D—^riTr) 

and Y^(z) == Bsin{D—inn). 

•• “~«^8n(2)+jy8n(2) = B(co&in7T+j 8infn7r)(—cosD+j sinD) 
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Accordingly, when ar tends to infinity (3.13) reduces to 

^ = 4«{€’‘«V„(*)cos»0+e»#tV3„(A:)oos Zn9+...}, (3.13o) 
K 

valid for all values of n, integral and fractional, and interpretable 

physically for all positive real values of n greater than and including 

When n = |, then 

^ = \/2[{Jj(A;)cosfl—Jj(A;)cos30+J^(A:)cos5fl—...}+ 
Eq 

+j{J^(k)coad-\-J^{k)coB3d-{-J^(k)oo8 5d+...}], (3.17) 

We now see this has two components of field in phase quadrature, and 

this is true for all fractional values of n: accordingly it is only when the 

system can be replaced by images that the phase of the field is indepen¬ 

dent of bearing and is either in phase or in antiphase with This 

comes about in the image system because there are always two images 

on one line through the apex : if the general case can be described in 

terms of an infinite set of images, then these are not located in such 

a manner. 

The forward field will fall to zero periodically only if each of the two 

quadrature components is zero simultaneously for some value of k. 
For this to happen in (3.17) it would be necessary that 

= 0- 

It is known, however, that the sum of this series is 

I J dk = {2n)~i J dk, 

0 0 

and this integral is never zero. Accordingly there is no value of k which 

makes the forward field zero when /3 = 360° (n = J), and this is 

characteristic of all fractional values of n. For all values of n the 

forward field fluctuates periodically as k is continuously increased, but 

it is only when n is an integer that the field falls to zero for particular 

values of k. 
The general expression for the density of the current induced in the 

reflector is 

+5{F5,i(or)4-i^j„(or)}J5„(*:)-...] (3.18) 

valid for all values of n: when r < R, interchange or and k above. 
The convergence of (3.18) must be examined. When n+1 > 
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then Jn,{z) 4= — 
^ r(n+l) 

the real portion of the series is 

, hence for sufficiently large n a typical term of 

n farkY' 
)■ {r(n+i)}n 2 

and this will certainly be absolutely convergent since the terms are 

smaller than those of the series represented by For sufficiently 

large n, J^{z)Y^(z) = — l/n for all values of z, whether n is integral or 

fractional. Hence a typical term of the imaginary part of (3.18) tends 

ultimately to ± 1 /tt, when ar = k. Hence at this distance the series is 

divergent but oscillates finitely. It is conditionally convergent when ar 
is just greater or just less than fc, and accordingly it may be used to 

evaluate the current everywhere save exactly at the distance ar = k: 
even there the current is finite, though it may be large. When ar tends 

~ r(«+i)( 2/ ^ 

Hence at r = 0, i is zero if n > 1: it is finite if n = 1 (infinite plane) 

and is infinite if n is less than unity. The infinity arises because of the 

sharp convex angle and would not occur if it had a finite radius of 

curvature. We shall see later that it causes no serious trouble in 

analysis and could not occur in any practical structure. 

The current density at the apex needs a little further consideration 

as follows: The lines of magnetic force are parallel to the boundary at 

its surface; but at the sharp apex the boundary has two directions and 

therefore the magnetic field must have two directions at this point. 

But a field cannot have two directions at a point unless the field has 

the particular value zero and hence this requirement demands that the 

current density shall be zero at the apex. This explains why i is zero 

at r = 0 when n exceeds unity: but according to our analysis i ^ould 

be infinite when n is less than unity, and this means that H is infinite 

and has then two directions at the origin. Moreover, the tangential 

component of H is equal to Ajr and hence is proportional to 

{r„(*)+j J„(*)}j;(ar)oos0+-. 

But 2Jn — ‘4-i~*4+i hence J'Jflr) is infinite when ar is zero if n 
is less than unity. Accordingly, the component of H perpendicular to 

the sheets at the origin is of the form oo x 0 and its limit is not zero, and 
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thus the solution breaks down. It is true that the singularity disappears 

if the apex is furnished with a cylinder of very small radius; but it is 

suspicious this attention is not required when n exceeds unity. At 

present we shall ignore this rather unsatisfactory state of affairs though 

we shall not forget it. 

3.5. The curves of forward field 

We have seen physical reasons why the forward field for a flat sheet 

or right-angled reflector must go periodically through zero as R is 

increased continuously: in essence this property is general for any angle 

between the sheets, either acute or obtuse, but when the angle is other 

than 180°, 90°, 60°, 45°, etc., the field falls to a minimum and does not 

pass through or reach zero. It is an essential property of reflectors 

which the reader must never lose sight of, though he may easily lose 

sight of it if he thinks loosely in terms of optical experience. A com¬ 

prehensive family of curves of forward field is shown in Figs. 3.5-3.13: 

this selection is of great practical use since it suffices to cover, by 

interpolation, almost all cases of practical interest and it represents a 

great deal of laborious evaluation. Consider first Figs. 3.7 and 3.9: these 

are simple in their periodicity, and all zero points succeed one another 

at regular intervals. Fig. 3.11, for a 60° mirror, is periodic in the 

wave form shown in the figure. When = 60°, 45°, 30°, etc., the forward 

field must be periodic, though it may be necessary to increase R through 

an enormous range before the wave form repeats. It may be compared to 

a heterodyne pattern (seeeq. 3.15d); the ripples will not tend to die out, 

however large R may be. For example, when j8 = 45°, EjE^ == 8 when 

Rj\ = 5: the ratio EjE^ will continue to attain the value 8 at large 

regular intervals no matter how large R may be. Figs. 3.8 and 3.10 

(j8 == 120° and 72° respectively) are typical of cases where n is not an 

integer (f and | respectively) and it is to be noted that now the forward 

field never reaches zero and EjE^ is seldom less than unity. Fig. 3.10 

is instructive in showing the manner in which Fig. 3.9 changes into 

Fig. 3.11 as the angle ^ is decreased from 90° to 60°. It seems probable 

the curve of Fig. 3.10 must repeat itself for larger values of JS, but the 

labour of evaluation is prohibitive for R/X greater than about 4. 

Similarly the process by which Fig. 3.8 merges into Fig. 3.10 is illus¬ 

trated by Fig. 3.9, and again we must conclude this figure will repeat 

itself ultimately. The general trend of these curves, as n increases, can 

be understood by the help of (3.15). Provided n is an integer, a trigono¬ 

metrical expression can always be found for the curve of forward field 
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and then its evaluation is straightforward, though sometimes the 
process is very laborious: thus the equation for /S = 30° (n = 6), corre- 

;tf=360* 

Fio. 3.5. 

W 1-5 ^ 20 

Fio. 3.7. 

spending to (3.15d) for ^ == 46° (n = 4), is very tedious to evaluate, 
and for larger values of n the work is intolerable. When n is a fraction 
the forward field must be calculated from the infinite series of Bessel 
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functions given by (3.15) and hence the Bessel process cannot’ be 

avoided. But if the reader knows clearly the form of Bessel functions he 

will at once realize that the Bessel series is a peculiarly elegant method of 
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Fig. 3.8. 

1-5 ^/A 2-0 

representation which conveys the whole story graphically to those who 
know how to read the chart: it provides a quick approximation to the 
position of maxima and minima, whose more precise location can then 
be found readily from the trigonometrical expression if this is desired, 
when n is an integer. It may perhaps be wise to remark here that 
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experience shows that the width of the sheets must be increased 
enormously as ^ is diminished if a close approximation to the ideal 

pattern is required. Unless the wavelength is only some 10 or 20 cm., 
the physical dimensions may well be intolerable for less than, say, 
46®, and hence it may well be that n larger than about 4 is of little 
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practical interest to many users. But a complete grip of the problem 

is much increased for everyone by considering the general case for n 

large, and we shall therefore make here a sub-section on the form 

of J„(z). 

(a) The general form of the Bessel function J^{z) 

Fig. .3.14 is a sketch of J^^iz) and is typical of the function J„(z) 

provided n exceeds unity. It is characterized by a very leisurely rise 

to its first maximum followed by a steep descent, through zero, to its 

first negative maximum; thereafter the function oscillates with an 

amplitude tending to vary as and with a period which rapidly tends 

to the value 27r but never equals 2i7 precisely. The general properties 

of this fimction have long been studied by mathematicians and are 

described fully in Chapters 8 and 15 of Professor G. N. Watson’s 

Theory of Bessel Functions: the reader should be familiar with certain 

general properties which will now be quoted. First, it can be proved 

(see Watson, p. 486, 15.3) that, for all values of n, J^{z) and are 

positive and increasing for all values of z less than n: hence, with 

reference to Fig. 3.14, the first maximum must occur at a value of z 

which is greater than n. Also it can be proved (ibid., p. 487, 7) that 

the first zero occurs for a value j,^ of z such that 

in < V{i(”+l)(”+5)} =# ™ “ large; 

the empirical relation == 2*4-|-l*15n serves to locate approximately 

the first zero for positive values of n less than about 30. Ifjn denotes 
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the value of z which makes zero for the first time, then it can be 

shown that 

Aj, if 71 is large; 

hence it follows that the first maximum occurs when z exceeds n and 

is less than 1^16n, for n large: as n increases, the first maximum tends 

to occur more and more closely at 2: = n. 

Again, it can be shown (ibid. (6)) that > ^{n(n— 1)} and < 1): 

hence the slope in Fig. 3.14 is a maximum very near indeed to z n; 

moreover, this proves that J'ni^) is positive when z <n, thus showing 

there are no ripples on the curve as it rises towards its first maximum. 

It can also be shown that Y^iz) passes through zero for the first time 

when z has a value which lies between and the empirical relation 

= 0-89+I'l^ serves to locate approximately the first zero of Y^{z), 

It is also known (see ibid., p. 746, Table VI) that n^JJn) = 0*446 to 

an accuracy closer than 0*25 per cent, for n > 3 and that 

nU'Jn) = 0*40; 

also that YJ^n) = V3J^(n) and Y*^{n) = V3e7'^(n) to the same order of 

accuracy. 

The value of the first maximum is given by the approximate formula 

0*674886/71*, which appears to be always slightly an over-estimate. 

Thus the ratio of the maximum of JJz) to e4(ri) is substantially equal 

to 0*675/0*446 = 1*51: since this ratio is independent of n, it is clear 

that must tend to the value n in the limit. 

It is shown (ibid., p. 441) that Jn{‘^)+Y%{z) is a decreasing function 

of z, and it follows from the foregoing that 

= 2x0*446; 

hence it follows that n*T^^( < 0*66. Also it is known that 

■^.W+nW >|. 

an inequality which allows us to assess the rate at which successive 

maxima of and tend to vary as since YJ^z) is always very near 

zero when J„(z) is a maximum and vice versa. 

Also it can be shown (ibid., p. 267) that Jn{am)IJ,^(n) is a non-increasing 

function of » for a: < 1. Thus, consider the ratio Jn{0’9n)/Jn{n): tables 

show this ratio equals 0’76, 0*60, 0-60, 0-40, and 0*27 when » = 6, 10, 

16, 20, and 27 respectively and thus decreases as n increases. Aocord- 

in^y, if a fandly of curves is plotted to an abscissa scale which varies 

fn > V{«(«+3)} == «/1 -f 
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inversely as n, then the first maximum becomes relatively sharper as 

n increases. 

{b) Curve of forward field expressed in a Bessel series 

Having now a clear picture of the function we can foresee the 

general trend of the series «4(^)+*4«(^)+«47i(^)+-* • We now know 
that J^{k) reaches its first maximum soon after k n and that 

is then extremely small; indeed, the second term in the series cannot 

be very important until k is approaching 3w, save at those particular 

and intermediate values of k which make JJJc) == 0. It is worth noting 

that when k n we have ^TrRjX = Tr/jS, thus showing the circumferen¬ 

tial width across the Vee is then equal to ^A. Hence the first maximum 

of forward field cannot occur till this circumferential width exceeds ^A: 

the limiting case of this general law is the well-known ‘ cut-off’ property 

of a rectangular wave guide (when j8 = 0 and n = oo) where the output 

is zero unless the width of the guide exceeds |^A. 

The interval ink, between k = n and k == 3n, embraces a number 

of wavelengths which increases with n, and hence the number of 

subsidiary maxima of forward field between the maximum near k n 

and that near k = 3n increases as ^ decreases: this is another description 

of what we have called the 'heterodyne ripple effect’ described by the 

trigonometrical form, 

A numerical example will help to make clear the process of inter¬ 

preting the Bessel series: thus take n = 6 (jS = 30®), for which the 

curve of forward field has been given already in Fig. 3.13. The ratio 

Jis(k)IJ^(k) must, in general, be small until k equals about 16, which 

corresponds to RjX = 2-5; hence up to about A; = 16 the curve of 

forward field must be substantially the function J^(k), The curves 

J^{k) and Ji8(^) ^'^e shown plotted in Fig. 3.15, and this shows clearly 

that only the first term of the series is significant up to, say, A: = 15. 

It may be seen that the first maximum occurs at RjX = 1*2, and this, 

of course, agrees with Fig. 3.13, which was plotted from the trigono¬ 

metrical form. It is obvious from Fig. 3.15 that the forward field will 

be zero at A; = 10 and at A; = 13*5, and close inspection will show that 

it scarcely falls to zero between A: == 17 and 20. Reference to Fig. 3.13 

shows there is a minimum at RjX = 2*9 (A; = 18-2) whose value is just 

not zero. In the range of k between 20*3 and 23*2 both component 

terms are positive and must conspire to a grand maximum near A: = 22: 

Fig. 3.13 shows there is a grand maximum, equal in value to the first, 

At RjX 3*4 {k = 21-2), Thus the whole stracture of Fig. 8.13 is 
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made clear by a glance at Fig. 3.15 and could have been derived 

much more expeditiously from this figure: the correspondence would 

have been even more apparent if the second loop in Fig. 3.13 had been 

drawn below the axis. 

Fig. 3.15. 

The Bessel description makes it quite obvious that minor maxima 

must occur between the first maximum and that maximum which is 

due largely to the first maximum of this behaviour could scarcely 

have been discerned from the trigonometrical form, typified by equation 

(3.15d). Thenumberofsubsidiary maxima must increase with n; thus if 

n- = 20 (j8 = 9°), the first maximum will occur near A = 24 (RjX ~ 3-8), 

and the first maximum of near fc = 66 {RjX = 10*5); the interval 

is about 7A, and this is likely to embrace about a dozen subsidiary 

maxima. 

It is hard to say which grand maximum will be the grandest peak: 

in Fig, 3.12 it is the third grand peak, while in Fig. 3.13 the first two 

grand peaks are equal in height. The height of the first peak should 

be given approximately by the formula 4wx0‘675/«.l = when 

n == 2, 3, 4, and 6 this yields a result which is too large by about 

6 per cent. When n is very large and k approaches Zn the curve of 

forward field may well be described as JJJc) climbing up the compara¬ 

tively broad hump of ^ description which is already appropriate 

even when n = 6, see Fig. 3.15. The larger n the more nearly will 

be constant in a range tt of the variable k, and thus the greater the 

chance that a positive maximum of JJ^k) will occur very near the crest 

of then the amplitude of will be of the order of of its 
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first maximum and the crest of will be 3-i of the first maximum 

of Accordingly, the second grand crest of EjE^ is likely to be 

approximately equal to 

According to this approximate estimate the second grand peak is hkely 

to exceed the first unless n exceeds 64, but the ratio is only 1*25 even 

when n == 4. Though this formula may seem to be only of academic 

interest for exploring the limit when n is large, it is of l se in practice 

because it is needful to assess the power gain when k is large and n equal 

to 8 or 10. Evaluation from the trigonometrical form is very laborious, 

and ordinary tables of Bessel functions do not go beyond k = 24. The 

experience exemplified by Kg. 3.12 gives the uneasy feeling that the 

grand peaks may go on growing until RjX is much greater than 5, and 

therefore it is satisfactory to know how to estimate successive peaks 

without the necessity of precise evaluation. As an example of this 

process take n ^ 6 and then the series is 

second zero of Jif,{k) occurs at A: = 24-4 and is just beyond the ordinary 

tables. On plotting the two Bessel functions in the range up to Z; = 24 

it will be found that the first maximum of EjE^ occurs at ib = 6*5 and 

has the value 7*5; the first maximum of -Ji, is almost coincident with 

the fourth maximum of J5, and thus the second grand maximum is 

found to occur at A; = 17 {RjX = 2-7) and its value is EjE^ = 9, thus 

being 1-2 times the first maximum; according to the approximate 

formula this ratio would be 1-23. The next grand peak will be caused 

by J^^(k) whose maximum cannot occur until k > 26-5 and is probably 

near 27-5, and its value is 0-675/261 = 0-231. Since this is beyond the 

range of tables we must estimate the value of — and do this by the 

asymptotic expression 

valid when k is large enough: assuming this requirement is satisfied it 

follows that 

Jh-Ai = —jp- 8m(i-Jw), 

and this has maxima at A: = 24-3, 27"4, 30*6, etc. The function can 

be plotted from tables up to A: = 24, and if this is done it will be found 

to fit well with the asymptotic fonn. Moreover, we see from the above 

j cos(A:—Jw—Jwtt), 
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that the positive maximum is sensibly coincident with the first maxi¬ 

mum of t/gs fi'Rd a rough plot shows the grand peak must occur very 

near A; = 28 and that then EjE^ = 20(0-23+0*30) == 10*6; thus the 

third grand peak is possibly slightly the grandest. The general form 

having now been found, exact values could be found if necessary from 

the trigonometrical expression with comparatively little labour. 

Turning now to obtuse-angled mirrors, curves of forward field for 

them are typified by Figs. 3.5 and 3.6. Obviously they are useless for 

producing highly directive beams, but they do find useful application 

when it is desired to produce a polar diagram which is substantially 

a circle with a sector cut out of it. The limiting case, when jS = 360 

{n == is useful in practice and has much theoretical interest. The 

Bessel series for iV' = J is 

—e^(A?)+...}. (3.19) 

These series were summed by L5mmel,f who showed that 

and 

where 

«7|(A;)~J|(A;)+e7|(A;)—... = -4;(^cosAi+GsinAj) 
V2 

J^{k)—Ji{k)-\-J:^{lc)—... — ■^{Psm.k—Qco&k), 

2k 

j Ji(2k) d{2k) and 
0 

2k 

Q ^ J J^(2k) d{2k). 
0 

Now P and Q, known as FresneFs integrals, have been tabulated 

(for example, see Watson, Bessel FunctionSy Table V, p. 744). 

Hence ^ 
— = P(cosA;—sinifc)+Q(cosA;+sinA;)+ 
Eq 

+jP{ooB A:+sin A;)+Q(sin A;—cos A;). 

j§l = V2(P*+(?*)t, 

and this is in a convenient form for evaluation iiom tables. Its 
structure is not yet apparent but may readily be disclosed, since we 
can approximate to the form of P and Q as follows. It is known that 

00 

J JJ^z) (fe =i 1 for all values of» greater than >— 1. Now J^(z) = ^{2/irz)san z 

and tihus, wh«i z is large, each loop of the curve will differ in shape very 

t See Tr€aiiae on Functions, Gray and Matthews, p. 210. 
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little from a sinusoid having the same maximum amplitude: using this 

approximation, it is simple to estimate the area under the curve J^(z) 

from any, not too small, value of z to infinity. We will illustrate the 

process by estimating the area from z = 4 to infinity: thus 

47r 

dx —- ^ ^ 

....) 

(l+4a:)» (l+4a;)* 
1" ^ i [_il” Ja ■ ’>•1 arija* 

Hence 

k 

jj,fz)dz = = l-y(|)co8t - 

and similarly 

IV 

I J^^{z)dz == l+t4(ifc). 

We may note here that the same process shows that 

k 

J 1 
0 
k 

also that J J^(z) dz == 1— 

0 

Accordingly, \e\ ( i 2 

when 2k is large. 

This equation should represent approximately the curve shown in 

Fig. 3.6: both the equation and the curve show maxima and minima 

succeed each other at intervals of ^A, and this is in marked contrast 

with previous experience, where we have seen the distance from 

maximum to ma.ximum tends to be A. When k = ‘n o\a approximation 

to P and Q gives E/Eq — 0’86, whereas Fig. 3.6 shows the correct 

value is 0*82, suggesting that the approximation is closely correct so 
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long as E/X exceeds about We note that \E\/\E^^\ tends ultimately 

to unity and that the fluctuations of forward field will be less than 

6 per cent, if B/X > 9. 

Fig. 3.6 suggests that when w = f the wavelength of the ripple is less 

than A but greater than |A: no sign of attenuation of amplitude appears 

in the range of k considered. When n = ^ the equation of the curve 

of forward field is, from (3.13 a), 

Now («/2+*/4+*Ao-”) = ^(1—cosi:), and thus fluctuates between zero 
and unity with wavelength A. Accordingly ihe curve of forward field 

has one component which fluctuates periodically between 8/3 and zero, 

and thus it is possible the fluctuations depicted in Fig. 3.6 do not tend 

to die out when k is large. It is well to point out that these curves of 

forward field relate to a given constant current in the filament and not 

to a constant radiated power. In practical tests it is not easy to 

maintain the condition of constant current, and accordingly the 

position of maxima may not be found to agree with the ideal, for 

reasons which are not concerned with the limited area of the reflecting 

sheets but with the generator which supplies power to the aerial. For 

this reason the positions of zero field are more trustw orthy points than 

maxima for comparing performance with the ideal. 

3.6. Radiation resistance of a filament in a Vee reflector 

Reflecting sheets find application in practice for restricting the 

radiation to a narrow sector of the equatorial plane. Almost all they 

can do could be done by a tall curtain array furnished with a ‘reflecting 

curtain’: they are not really an advance of possibilities inherent in the 

curtain arrays which have been in common use for twenty years and 

are to be seen in many places in this country, e.g. Rugby, Dorchester, 

Grimsby. But each member of a curtain must be fed by a cable ,and 

the current adjusted in both magnitude and phase: the cable system 

is complex, costlj^ and difiioult to adjust. Those readers who have 

practical experience of aerials will agree that the main purpose of using 

a reflecting sheet is to avoid the necessity for many feeding cables 

and most will jump at the possibility, which the sheets provide, of 

escape from cables. Currents are induced in the screen automatically 

with the correct magnitude and phase: hence not only are the cables, 

as such, avoided but also the necessity for troublesome and nice 



3.6] EXTENDED FLAT SHEET REFLECTORS 145 

adjustment of them. A single in-line array combined with a reflector 

is the equivalent of many, perhaps 20 or 30, similar in-line arrays hung 

in curtain, and hence the necessary number of feeding cables is reduced 

by a factor of the order of 20. Since it is clear that a Vee reflector is 

used to avoid feeding cables, it is logical to expect to replace the long 

in-line array by a single half-wave aerial; then the cables are reduced 

to the irreducible minimum of one: and a single half-wave aerial can 

be used with excellent results. To avoid confusion, the study of a single 

half-wave aerial will be deferred till the next chapter. In the main^ 

this chapter is dealing with general principles and is not clouded with 

discussing practical ways and means, which are referred to only in 

asides. We are still collecting our kit of general tools and gathering a 

background of informed horse-sense which later we shall use on practical 

problems: when that stage is reached we can make our practical guesses 

intelligently, a necessary but insufficient condition to justify calling a 

man an engineer or to warrant him practising his art. Speaking 

analytically, this chapter is restricted to two-dimensional problems: 

these are approximated to closely in practice by an in-line array. 

If reflecting sheets are to be regarded only as an alternative to 

feeding cables, is there no overriding consideration which rules out one 

or other system entirely? If the wavelength is longer than about 

10 or 15 m., sheets are impracticable because they cannot be made 

tall enough without providing masts of intolerable height. Windage 

is not an overwhelming factor because the continuous sheets can be 

replaced by curtain wires without appreciable detriment, provided 

always the wires are many wavelengths long. The writer suspects 

more could be done with screens than has been done so far, at wave¬ 

lengths of the order of 15 m. 

When the wavelength is less than, say, 40 cm., many cables become 

scarcely practicable, and when the wavelength is only a few centimetres 

many cables are impossible. The writer hazards the suggestion that a 

multiplicity of cables should be ruled out of consideration for fixed 

stations operating on a wavelength less than 3 m. and for mobile stations 

operating on a wavelength less than about 1-5 m. 

After this preliminary we now reproduce a set of graphs showing 

radiation resistance as a function of jB/A for a wide range of the angle P 

between the sheets. They are calculated from equation (3.14) or by 

adding the contributions to Ep from the component images, for example,, 

by (3.11a), when these exist, whichever of the two equivalent methods 

happens to be the more convenient. 
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The resistances are reckoned relative to that of an isolated filament, 
and the value for it is 120 ohms per half-wave member of an in-line 
array. Fig. 3.16 relates to an aerial in the same plane as a semi-infinite 
sheet and it should be associated with the corresponding curve of 
forward field, which is given in Fig. 3.5. We note that the relative 
resistance is never far from unity, if R/X exceeds 0-2, and oscillates 

Fig. 3.10. 

about this value with diminishing amplitude. The corresponding curve 
for a filament in front of a flat sheet has the equation 1—J„(2ii;), and 
thus oscillates with diminishing amplitude about the value unity: when 
R/X exceeds about J this expression approximates to 

1 —cos(2^:—Jtt) 

and thus is a maximum when R/X = fj, etc., and the maximum is 

near !•! when R/X is of the order of 5. Fig. 3.17 is the corresponding 
ciirve for ^ = 120°: once more the oscillations are of decreasing ampli¬ 
tude and successive maxima occur at intervals near ^A. Figs. 3.18-3.21 
relate to /S = 90°, 72°, 60°, and 46° respectively. In all cases the amplitude 
of fluctuation decreases as R/X increases, but it should be noticed that 
when j8 is less than 90° the initial fluctuations are very large; indeed, 
the resistance feUs nearly to zero when R/X =1*2 with j8 = 46°. The 
reader should remember that the resistance per member of an in-line 
array can range between almost zero and some 400 ohms according to 
its distance from the apex of the Vee. Such changes mil have a 
profound effect on the loading condition of the feeding cable, and it is 
eswntial to provide a suitable matching transformer between the swid 
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cable and the aerial member. The said transformer must have a ratio 
capable of continuous adjustment if an appreciable range of RjX is 

called for in operation or in initial adjustment of the polar diagram. 

The form of the resistance curve can be readily appreciated by a 

reasoned study of the Bessel expansion (3.14), namely, 

Relative radiation resistance = 

Every term of this is positive, and no more than one term is precisely zero 
for any value of k. It is inevitable the resistance cannot be negative, for 

this would denote an intake of power, but it is not otherwise obvious that 
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it cannot be zero: it may be very small, but it must be finite. At the first 

maximum of e/„ (fe) the contribution of the other terms is negligible, and 

Fig. 3.21. 

accordingly the first maximum value is given by the approximate formula 

4nx (0*676/71^)2 = l*87i*: this formula over-estimates the ratio by about 

16 per cent, for ti = 2, 3, and 4. When jS == 16® the ratio is 4 and thus 
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the resistance is then 480 ohms per member. When n is large the 
resistance will fall periodically to very small values because 

thejy extremely small when JJJc) is zero for the first time. Thus if 

6 (j8 = 30®), J^(k) = 0 when RjX = 1-57, and then Ji^(h) == 10“*^ 
/ 1-5 
and J^(k) == : then the resistance per member is of the order of 

24 V 120 
—— == 2*9xl0~® ohms. We saw in Chapter I that a tubular 

current has zero external field for certain radii. The corresponding 

condition can never occur precisely with a Vee but can be approached 

as closely as we please by the simple process of decreasing j8 and 

choosing RjX correctly. This example should be arresting to those whose 

habitual tendency is to think in optical analogies. For it amounts to 

this: that a line source, however bright, can be made as near dark as 

we please by placing it suitably between two perfect mirrors. This 

result is not experienced in optics because every optical source is 

thousands of wavelengths in diameter and therefore cannot all be 

situated at a value of RjX which makes for substantial extinction. 

But it is this reason alone which prevents us from experiencing this 

phenomenon, which to our gross scale optical experience seems absurd 

and impossible. This example should show the necessity of using 

optical parallels with due care and forethought: the parallel always 

exists and is valid if not used carelessly. The reader is warned against 

confusing the phenomenon just described with the much narrower one 

of zero forward field: this is only an example of the familiar experience 

of an extinction, by interference, on a particular bearing, and that 

bearing happens to be along the bisector of the Vee. In the interesting 

case we have just considered the field is very nearly zero in all directions. 

Conceivably this principle could be used for ‘keying’ a signal by the 

simple process of varying p or RjX mechanically. 

3.7. Power gain of long in-line array in a Vee reflector 

Here the power gain will not be reckoned relative to a half-wave aerial 

and thus, in a sense, conflicts with the definition in § 2.10: it will* be 

reckoned relative to an isolated in-line array. We consider only the 

‘forward power gain’, since presumably this is the direction of principal 

interest and accordingly the forward gain is zero when RjX is such as 

to make the forward field zero. For our purpose here, the gain is now 

the ratio of the square of the forward field to the relative resistance: it 

can be computed directly from Figs. 3.6-3.21. It follows from (3.16) 
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that BO long as etc., can be neglected, then the gain is independent 
of k and remains equal to 4», and this must certainly hold for k less 
than I’Iti. This limiting value can be derived at once from Poynting’s 

theorem: for the sheets restrict the radiation to a sector l/2n of the 
complete circle; moreover, in this sector the diffraction pattern is a 
sinusoid provided k is appreciably less than dn, and then the mean 
square field is half the square of the maximum and thus O — 4». 
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Figs. 3.22-3.27 show as a function of R/X for p = 120°, 90°, 72°, 60°, 

45°, and 30° respectively. They show that G remains substantially 

constant until RjX reaches the value for tlie first zero of forward field 

and then drops suddenly to zero, ft is correct to say the forward gain 

falls to zero because the forward field is zero and yet the radiation 

Fig. 3.25. 

resistance is not then quite zero because is finite: though considera¬ 

tion of (3.16) will show that when n is large G must remain substantially 

equal to 4n provided k does not exceed, say, 2-5n. When n is very large 

the graph of G against RjX must tend to become a horizontal line of 

height 4n, interrupted with very steep crevasses at each station for 

zero forward field. This tendency is appearing in Fig. 3.27 and will 

become more pronounced as n increases. Hence when the angle jS is 

very small, and the system is tending towards a wave guide, we may 

say that the gain is independent of k until k is verging on 3n: a small 
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movement of the aerial may make a very large change in the radiation 

resistance but cannot alter the pattern or the gain. Thus in such 

circumstances the aerial may be situated anywhere (provided k < Sti), 

and the only purpose of adjusting its position is to match its resistance 
to the feeding cable. Consider now the range of p which is of more 

practical interest for mirrors, say p not less than 45®. When jS = 45° 

the aerial may be stationed anywhere within B/X = 1 or else should be 

near R/X = 2, when the gain is 48. Then the gain of an N-memhev 

array would be 29JV' and this is 580 when N = 20. Reference to 
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Kg. 3.12, etc., will show that the stations for grand optimum gain do not 

necessarily coincide precisely with the stations for maximum forward 

field. This is because, as may be seen in Fig. 3.21, the resistance is 

increasing in the range in which the forward field is increasing: this 

almost always occurs, and hence the curves of maximum forward field 

must not be used to determine the most favourable stations for the 

aerial. Figs. 3.22-3.27 show that the positions of optimum gain are often 

sharply defined, and thus the adjustment may be rather critical in 

practice: also they often occur when the space rate of change of resis¬ 

tance is large, and this involves violent changes in the condition of 

matching to the feeding cable. It will be necessary to examine Figs. 

3.22-3.27 in closer detail when we come to discuss the relative merits 

of various constructions of practical aerials. 

3.8. The shape of the diffraction pattern 

Comparison of equations (3.15a-d) with equations (2.2), (2.4), or 

(2.6) shows the patterns must have the general character of those 

illustrated by Figs. 2.2, 2.3, 2.4, etc., in that they evidently consist 

of a main beam and certain side lobes. Many particular cases are 

illustrated in Chapter X. Our purpose now is to examine the structure 

of these patterns and to learn to predict the shape before evaluation. 

We divide the Vee mirrors into two categories, those for which j8 is 

less than 180® and those for which it is between 180® and 360®: the 

analysis is completely general, but becomes a really powerful weapon 

only when ^ is not more than 90®. We reproduce here a few illustrative 

patterns for large values of j8, but deem them outside our main dis¬ 

cussion: they have many valuable practical applications, but not that 

of producing a sharp beam. We repeat here that the pattern for a 

filament is also the equatorial pattern of an in-line array, including a 

half-wave aerial. It is the most general equatorial pattern, and hence 

our discussion now is of much wider application than the previous 

portions of this chapter, which have related only to a long in-line array, 

except those portions which have been concerned with the patterp and 

forward field. Kg. 3.28 is the polar diagram for an aerial in the plane 

of a semi-infinite sheet and distant R/X = 0-48 from its edge: it is 

characterized by a sharp crevasse in the plane of the sheet. Kg. 3.29 

is the polar diagram for an aerial distant 0‘79A from the apex of an 

obtuse right-angled comer and is characterized by a 90® sector of zero 

field. 

Kgs. 3.30 and 3.31 show typical polar diagrams for p = 120®. 
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Fig. 3.30 is for It/A = 0*79, a ‘station’ which reference to Fig. 3.22 

will show is still almost in the range where G = 4n, Fig. 3.31 is for 
Jt/A == 2*38, which is near the station for grand optimum gain. Here 

the zero (in fact minimum) of the main beam occurs on a bearing of 
3^15° and thus corresponds roughly with a curtain of 8 members 

120® 90® 

Fig. 3.28. R/A = 0-48. 

(width 3-5A): however, it differs enormously from the curtain in that 

the side lobes are about 75 per cent, amplitude instead of the largest 

being 21 per cent, A sharp beam is always accompanied by large side 
lobes, because when J?/A becomes large the diagram tends to degenerate 

into a large number of sharp rays of approximately equal length. Let 

this suffice now for the discussion of the polar diagram of very wide 

angled mirrors. 
In the following discussion it is implicit that jS is less than 90®, 

though this restriction is not essential. The kernel of the whole process 
turns on expressing the pattern as a Fourier series, as in (3.17) and (3.15) 
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rather than in the form in (3.16a-<Z). To simplify things, in the begin¬ 

ning, we shall take n an integer and accordingly, 

= 4n(—l)i»{J„(i:)cos»0±J8„(i:)cos3»0-|- 

+J5^(fc)cos 5nd±:J^^^{k)cos 7nd(3.15) 

negative signs going with n odd. 

Since «4n(^) is always positive and extremely small until k is approach¬ 

ing 3n, (3.15) shows the pattern must differ insensibly from a simple 

sinusoid until the circumferential width across the Vee at the aerial is 

verging on |A. It is true that in the interval between k n and k = 

there will have been approximately 2nl7r occasions on which J^ik) is 

zero and then the pattern is cos inB; but these are patterns of vanish¬ 

ingly small field strength and it is pendantic to take account of them. 

A working rule, to memorize, is that the polar diagram cannot have 

any appreciable side lobes until the arcual width across the Vee, at the 

aerial, is verging on |A. In such circumstances it is waste of time to 

evaluate patterns from equations like (3.15 c) because the result cannot 
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be anything but a simple sinusoid. In the interval between k = Zn 

and 5n (i.e. arcual width between | and |A) the pattern wiU consist of 

a sine curve and a third harmonic, and thus is the sum of two com¬ 

ponents typified by Pig. 3.32 (a) and (6). If the beam is to be sharpened 

by the third harmonic, then it must be disposed as in Fig. 3.32 (a), that 

is, and must both be positive or both negative if is even (see 

3.15). But Jjn is necessarily positive until k slightly exceeds 3w; 

whether or not is positive in this region depends on n. Reference to 

tables will show that when n = 2, 3, 6, and 7, then J„{Zn) is negative, 

whereas when n = 4, 5, and 8, J'„(3n) is positive. Accordingly if^ — 60°, 

46°, 25-6°, or 22-6°, the main beam will tend to sharpen when the width 

across the Vee at the aerial is approaching |A, but when /S = 90°, 36°, 

and 30° it will tend to become more blunt. The amplitude of J^ik) 

near A; = 3n is approximately equal to ^{Z/Zn) while Jzn(^n) = 0-44/{3»)*, 

and hence then J^JJn 4= 0‘7»^/®: accordingly we are likely to be able to 

obtain a laige third harmonic to sharpen the beam when the arcual 

width is approaching |A. Fig. 3.33 is a useful guide for constructing 
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patterns approximating to a given shape; the curve in Fig. 3.33 (o) is 

the graph of the equation y — cosa;+0'6oos3a: while 3.33(6) exhibits 
y — cosar+O'Boos 3a:: the first gives a side lobe of magnitude 6per cent. 

and the second of 11 per cent. The angle in Fig. 3.33 is shown as ±90°, 

but it will be imderstood that this is to be taken as j8/2: the beam width 

at half-height in each figure is near 30°, and accordingly if we can obtain 

J^JJ^ == the width of beam at half-height in field strength wfil be 

near j8/3, say 10° if = 30°. As an example take j8 = 46°, then jgnMn 

is found to equal 1*05, 1-16, and 3-7 when k = 12, 13, and 14 respec¬ 

tively: accordingly the side lobes must be large though the main beam 

will be very sharp, and thus Fig. 3.33 cannot be approximated to in 

this range of k when j8 = 46°. If jS = 25'6°, we find J^/J^ equals —0-68, 

—0‘6, and —1*6 when k — 14, 20, and 21 respectively: thus the width 

of the beam, at half-height, will be near 8'6° if » = 7 and B/X =# 3*2 
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(when the arcual width is 1*42A at the aerial); if this width is |A, the 

side lobes will be large. 

If the pattern y = cos 0*6 cos 3a:—0*06 cos So: can be constructed, 

the side lobes will be obliterated and there will be no appreciable field 

outside a bearing of ±i3/3: to attempt such a pattern the arcual width 

at the aerial must be approaching |A. 

So far we have used only the first rising portion of the curve of e4n> 

but what of the region between = 3n and, say, 4*5n.? If Ic is large 

enough, JJJc) == ^(2/A;)oos(i:—7r/4—n7r/2) and we must consider the 

relative phase of J^Jk) and JJJc) when k exceeds 3n: the asymptotic 

expression shows that if n is divisible by 2 then the successive loops of 

and will be nearly in phase with one another when k is large and 

will tend to vanish nearly simultaneously. But appeal to tables appears 

to show this condition does not arise till k is much larger than 5n: 

thus it may be found that and always of opposite sign in the 

range of k from 15 to 24, and accordingly throughout this range the 

third harmonic will increase the width of beam from a 45° mirror. 

If n = 5, then and Ju are of unlike sign between Jk = 16 and 22, and 

here the third harmonic will sharpen the beam (note, n is odd, see 3.15): 

when == 19, J5 =4= 0 and when k = 20, == 0, and thus it follows 

that near k = 19-6 a pattern like Fig. 3.33 could result, and, moreover, 

then J25 can be made of the order of 6 per cent. Thus by nice adjustment 

of the position of the aerial it must be possible to produce a lobe-free 

beam entirely included with a total width of 12° if jS == 36°, but the 

adjustment will be critical. Reference to tables shows that if j8 = 30°, 

then a very sharp beam with large lobes can be obtained if i = 22 and 

a very perfect pattern if A: == 23: further, = 0-38. In general a 

very careful'choice of position can produce an almost lobe-free beam 

whose width at half-height is less than j3/3 provided jS is less than 

about 45°. 

We will close this section by an example to illustrate the use of the 

Fourier series to arrive rapidly at the shape of the polar diagram. 

Thus take jS = 60° (i.e. n = 3) and A: = 8 (i.e. B/\ = 1-27), which is 

substantially a station for maximum forward field, see Fig. 3.11. 

On substituting in (3.15) the appropriate values of e4(8) we obtain 

^ j X 3*5|oos 0+0-434 cos 30 — cos 50... 

showing that only the first two terms are significant: these are sketched 

in Fig. 3.34. On reference to this figure it follows readily that when 
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Zd = 60° the net ordinate is 3-5(0*5—0-434) = 4-3-5X 0-066, showing 

that the field has not yet fallen quite to zero. When 30 = 66° the net 

ordinate is 3-6(0-406—0-434x0-951) = —3-5x0-007, thus showing the 

bearing for zero field must be between 20° and 22°. Since the field is 

always zero when 6 exceeds 30°, it follows the maximum of the side lobe 

must occur near bearing ^(30+22) = 26°: at this bearing the net 

ordinate is 3-5(0-21—0-43x0-59) = 3-6x0-044, showing that the 

maximum amplitude of the side lobe is near 3 per cent. This very 

simple and rapid computation shows the field is sensibly restricted to 

a central beam of total width 43° and inevitably will differ little from a 

simple sinusoid on a base of 40°. At 6 — 10° the fractional height is 

1/1-434 = 0-698, and this is sensibly consistent with a sinusoid falling 

to zero at 0 = ±20°: the total width at half-height of field strength is 

substantially equal to |x40 = 27°. The process outlined in this 

example is vastly simpler than direct point-to-point computation from 

(3.16c), an equation which hides the form of the resulting graph. ' 

3.9. Principle of improving the shape of the pattern by addition 
of a ‘parasitic’ aeriai 
There is a commonly accepted idea, doubtless based on optical 

treatment, that the ‘direct rays from the aerial’ ought to be obscured 

by a small reflector placed in front of it, the notion being that all the 
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energy should be directed into the main reflector before it emerges into 
free space. In our view this is but a crude description of a device which 
has useful applications in practice. In our view the subsidiary reflector 
is but an additional set of aerials, into which it is convenient to induce 
current rather than to supply them by separate cables. The parallel 
with the corresponding optical device is not very close because the 
subsidiary aerial is usually less than a wavelength from the source 
instead of being many thousands of A distant. An example will serve 
to make clear our interpretation of the device, but we leave a detailed 
consideration until later. In practice the device has been used mainly 
with wide-angled mirrors, and for this reason we will take = 90° in 
our example. Tables show that w'hen = 3, then Jg = 0*486 and 

= 0*01; and when h = 8*5, Jg = 0 and — 0*3. Accordingly unit 
current at A: = 3 combined with a cophased current of magnitude 
about 0*75 at k =-* 8*5 vdll together give a pattern near 

y = cos 0*46 cos 3a:. 

Thus by the use of two aerials bearing currents suitably arranged in 
phase and magnitude it is possible to obtain a much narrower and 
more lobe-free beam than was possible to obtain from one aerial alone: 
the principle can be extended to obtain beams of any shape. It is a 
difficult device to carry into practice when the additional currents are 
induced, because it is difficult to obtain both the desired magnitude 
and phase: the desired phase is achieved by adjusting the length of the 
subsidiary aerial, since this controls the phase angle of its impedance. 
Consideration of a figure such as 3.33 shows that substantial advantage 
can accrue only if the subsidiary current is cophased or antiphased 
with the driven aerial. This example should suffice to give a rational 
description of the mechanism of a device which is commonly used, 
and will show experimenters, who were previously not conversant with 
it, the reason why an infinite variety of modifications of the pattern, 
mostly undesirable, can arise from the use of a ‘parasite’ aerial in a 
reflector. 

3.10 Method of turning aside the main beam produced by a Vee 

reflector 

To obtain a simple approach consider two reflecting sheets at right 
angles to one another and with the aerial not on the bisector, as 
described by Fig. 3.36, which shows the three image currents. Considera¬ 
tion will show the main beam is turned away from the bisector in a 
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sense opposite to a. Appropriate use of equations (1.47) or (1.49) will 

show the general equation for the polar diagram is 

E 
— = in{f^^”^”l^Vn{k)oosnoiOosnd+€^^^”^”l^V2„(k)sm2nasm2nd+ 
% 

j. (3.20) 

this reduces to (3.13 a) when a = 0. Harmonics of even order have now 

been introduced, and these make the polar diagram unsymmetrical 

about the bisector or, in other words, turn the main beam away from 

the bisector. We have seen that when k is not greater than about 2w 

then J^JJn is usually much less than unity and accordingly J^JJn will 

be still more negligible: then the turning action will depend dominantly 

on and thus the whole mechanism of the effect it is desired to 

produce is illustrated by Fig. 3.36. As an illustrative example take 

(3 = 90° (» = 2), then sin 2it/2, sin inl2, etc., are zero and thus (3.20) 
reduces to 

A. 
SEff 

{J2(i)cos 2a cos 26—J^{k)sin 4a sin 40+Jj(i)cos 6a cos 6fl—...}. 

If A: — 3, «/2 — 0‘486, = 0’132, and = O’Oll, and thus 

E 
8E„ 

co8 2aJ2(<;){cos20 
2J^{k) 

sin 2a sin 4^ (3.'21) 

This shows the effect of offsetting the aerial is to reduce the forward 

field in proportion to cos 2a and to introduce a sine second harmonic 

proportional to sin 2a. It should now be obvious from Fig. 3.36 that 

the main beam cannot be turned off centre by as much as 22-6° for any 
value of a. 
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From (3.21), EjE^ is a maximum when 

Mk) 
sin 2<x, 

or B ^ X, when sin 2(x 1. 

Take <x = 22*5"^: then if = 3, a: = 0*19, and accordingly it”follows the 

maximum occurs when d = — 9-5°. When k = 3*6 (i?/A = 0-55) the 

deflexion of the beam attains a very flat maximum of about 14° near 

where a = 22°: thus the beam cannot be turned through more than 

about 12° without producing a very large side lobe, which eventually 

becomes a symmetrical bifurcated beam when RjX = 0-82, for all 

values of a. 

Details of a practical design will be left to a later chapter: meanwhile 

we will consider an important general principle. Fig. 3.37 shows the 

image system for sheets inclined to one another at 60°: careful con¬ 

sideration of this shows the polar diagram must be symmetrical about 

the bisector OM for all values of a. It is helpful to consider the currents 

E with F, D with A, and C with B as the sides of three separate 

rectangular coils whose planes are parallel: it should be obvious their 

resultant field must be symmetrical about the bisector plane OM, and 

accordingly it is impossible to turn the beam of a 60° reflector by 

offsetting the aerial. Diagrams of images, corresponding to Fig. 3.37, 

show the same surprising property obtains when n is an odd integer, 

which is when = 60°, 36°, 25-7°, 20°, etc. Since the beam cannot be 

turned at all when has one of these angles, it seems likely it cannot 

be turned much when j8 is less than about 70°: in other words, if it is 
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essential to turn the beam without turning the axis of the mirror, then 

it is essential to use a mirror of wide angle. Equation (3.20) shows that 

whenever n is an odd integer the even harmonics in the pattern are 

always in phase quadrature with the odd harmonics, and accordingly 

there can be no dissymmetry in the pattern of mean square field. The 

phase angle of the field changes from positive to negative as the bearing 

passes through that of the bisector, and it must be possible to utilize 

the said change of phase in a way which may be equivalent to that 

which would have been produced by turning the beam off centre. But 

the dissymmetry is purely one of phase and not of magnitude and 

cannot be discovered by a detector, such as a thermocouple, responding 

to mean square values. Numerical evaluation of (3.20) shows that the 

main beam is turned off centre for all values of p save those corre¬ 

sponding to n an odd integer, but that in fact the deflexion is insignifi¬ 

cant when jS is less than about 75°. Figs. 3.38 and 3.39 show the ideal 

pattern respectively for jS == 90°, B/X = |, a = 2° and jS = 60°, B/X == J 

and <x = 10°. In the second case the polar diagram remains symmetrical 

but has developed a dimple: in the first case the beam has been deflected 

by 2-09°, but at the expense of producing an enormous side lobe. This 

whole principle is a particular example of the general property 

(developed already in § 2.7) that the main beam is very hard to turn 

oflf centre, and may be said to be rigid, while the side lobes are always 

flexible and can be pushed readily from side to side. 
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If there are similar currents at symmetry is restored, but the 

terms coswa, cosSnay etc., remain in (3.20). By suitable choice of a 
any harmonic can be made zero for every value of k. In general the 

effect will be to make the pattern more nearly a perfect sinusoid than 

it would otherwise have been and thereby decrease the gain. On the 

other hand, a pair of offset aerials is a device which gives an extra 

degree of freedom for shaping the pattern, and very strange patterns 

can readily be produced by this means. For example, suppose /3 = 45°, 

a == 7^°, and jB/A == 3*8: then J^(k) = 0, and consequently the term 

in cos 40 is zero; cos 12a = 0, and thereby the term in cos 120 is zero; 

J2o(^^) = 0*162 and */28(24) = 0*022, and accordingly the pattern is 

five sensibly equal rays in a total bearing sector of 45°. A practical use 

for such a pattern is not apparent, but the example does illustrate a 

curious result which might conceivably arise accidentally and which 

would appear very surprising to those unpractised in the Fourier 

representation. If a single aerial on the bisector is replaced by a 

uniformly loaded arc of radius i2, centred at the apex and subtending 

there an angle 2a, then the term cosna in (3.20) will obviously be 

replaced by (sinw-a)/n, etc. If the current loading is sinusoidal in the 

arc of aerials, then the diffraction pattern is a perfect sine curve for 

all values of k\ see also Chapter VI. 

3.11. The diffraction pattern at a finite distance 

The field at any distance r is given precisely by equation (3.13), 

which assumes the simpler form (3.15) when ar tends to infinity. We 

are studying these problems mainly to use the solutions as a guide in 

practical work and as a basis of comparison for polar diagrams which 

have been obtained experimentally from finite sheets. Therefore it is 

important to know what order of distance may be regarded as sub¬ 

stantially infinite. The power available at very short wavelengths is 

likely to be very limited in practical testing, and thus the deflexion of 

the indicating galvanometer, actuated by a thermocouple, is commonly 

inadequate. Since the experimenter will commonly desire to reduce the 

distance between transmitter and receiver, he needs to know the 

shortest distance at which he may dare to work and yet obtain a 

pattern which differs insensibly from the ultimate Umit. The guiding 

principle for deciding on the smallest safe distance is obvious on 

remembering that (3.15) is generalized from a set of images and was 

formed from the path difference between successive images and the 

observation point. In any specified case in practice it is an elementary 
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matter to decide whether the actual and the limiting path differences 

differ by a significant amount, bearing in mind that the largest path 

difference must be a small fraction of the range. Provided iZ/A is not 

larger than about 4, then a range of about 60A is likely to be sufiicient 

for most practical purposes. Thus Fig. 3.40 shows the ideal diffraction 

Fio. 3.40. 

pattern at various ranges from the apex of a 60° Vee in which iZ/A = | 

{k = 8); the equation ofthe limiting pattern is 0*291(cos 3d-f 0*43 cos p0). 

This figure shows that when r/A = 16*9 the pattern is scarcely dis¬ 

tinguishable from the limiting form for bearings up to 15° (i.e. |j3), and 

that when r/A = 80 the discrepancies are negligible everywhere. It does 

not seem necessary to labour this problem further by analysis: the 

informed experimenter should surely be capable of assessing the dis¬ 

crepancy in any particular case. Suffice it to say that experimental 

difficulties can often be mitigated enormously if the observers will 
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spend a few minutes assessing numerically the shortest range which is 

permissible. 

3.12. Reciprocal properties of Vee mirrors 

(a) Two simple reciprocities 

Appropriate use of equation (1.49) shows that a current Isinpt 

situated at the point (li,a) in Fig. 3.35 will produce a field at the 

point (r, 0) given by the equation 

c E 
= {—J„{ar)+jY,^(ar)}J,Xk)cosnoLCOsne-\- 

+{—+i^2n(«^)Kn(^)sin sin 2w0+ 

+{—«4n(«^)+i^3«(«^)K»(*)co8 Znoi cos Bn0+..., (3.22) 

where, as usual, a — pjc = 27r/A and r > R, If JK > r, then k and ar 

must be interchanged in (3.22). First consider the case where r > i? so 

that P and A are situated as in Fig. 3.35, then (3.22) gives the field 

at P due to current / at A. But if the current filament had been situated 

at P and we required the field at A, we must use the form of (3.22) 

appropriate to a point closer to the apex than the current filament, and 

thus the variable coordinates are (i2,0) with r > i?; accordingly (3.22) 

is correct as it stands, since a and 6 are interchangeable. Accordingly, 

(3.22) shows that if unit current at any point A produces field E at any 

other point P, then unit current at P will produce field E at the point A: 

this is one important reciprocal property. It shows, for example, that 

the forward field test may be performed either by observing the field at 

a fixed and distant point, due to a transmitting aerial which is moved 

along the bisector, or by observing the field due to a fixed and distant 

transmitter at a receiving aerial which is moved along the bisector. 

A second simple reciprocity is in respect of the angles a and d. 

For (3.22) shows that if unit current at (R,a) produces a field E at 

point (r, 0), then unit current at (r, a) will produce field E at point (P, 6). 

Recognition of this property may find useful application in the testing 

of polar diagrams. In such a process it is usual to place the aerial on 

the bisector (i.e. a = 0) and to plot the field due to a distant aerial at P, 

as >a function of 0, by turning the whole reflector about an axis perpen^ 

dicular to the plane of the paper. It is not essential to proceed in this 

way: the same result will be obtained (in the idealized conditions 

postulated) if the distant transmitter P is located with respect to the 

bisector so that 0 = 0: then instead of revolving the mirror, on a turn¬ 

table, the aerial A may be moved on an arm of fixed radius R and the 

field plotted as a function of a. Such a process would be practicable 
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even when the physical dimensions of the reflecting screens made it 

impracticable to turn the whole mirror about an axis. However, the 

reader should note we are discussing here a reciprocal property enjoyed 

by a certain idealized system in which the sheets extend to infinity 

and it may not hold for sheets of finite width. Thus, suppose P is a 

distant transmitting station on bearing 0 = Jj8: in ideal conditions it 

would produce zero field at A, but with sheets of finite width it will 

produce appreciable field at A, due to what optical parlance calls 

diffraction round the edge. But if A is placed in contact with the sheet, 

i.e. a = |j8, the field at A must be zero, and thus it must make some 

difference whether it is a or 0 which equals Also the reader should 

note that the reciprocity applies to field strength and not to the current 

which that field induces in a given aerial. If a distant transmitter at P 

induces a current in an aerial at A and this current is observed as a 

function of a, it must not be overlooked that the radiation resistance 

of the aerial is a function of a, and accordingly the induced current is 

not simply proportional to the inducing field. 

(6) Less simple reciprocities 

Suppose now that 0 = 0 and a is not zero: then we saw in § 3.10 

that the aerial at A emits a main beam which is ‘off centre’ if j8 exceeds, 

say, 70°. In such circumstances an important parameter is always the 

forward field, i.e. the field on bearing 0 = 0. We note from (3.22) that 

the field at 0 = 0 when a = is the same as the field when a = 0 

and 0 = <xi. Hence if the ‘central diffraction pattern’ is available, the 

field which it shows on bearing ±^1 will be the field on bearing zero 

when the aerial is offset an angle conscious recognition of this 

property will save much unnecessary computation in design work. 

For a given value of a there is a value 0^ of 0 which makes E a 

maximum: a particular numerical case of this was solved in the last 

section; hence if 0 = 0^, E will be a maximum when the aerial is set 

so as to make cx = aj. Accordingly tables could be derived for any 

given aerial showing for every value of 0^, and accordingly 0^ could 

be deduced experimentally by observing the value of ol which made*P 

a maximum. Here is a possibility of direction finding without the 

necessity of moving the mirror as a whole. 

(c) Reciprocity in power gain 

We have explored fully the stations a transmission aerial should have 

to make its forward power gain a maximum. The converse problem is 

to decide where a receiving aerial should be placed so that it shall 
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absorb the maximum amount of energy from the field incident on it. 

The word absorb is used here with deliberate intent and denotes a sink 

of energy and not mere re-radiation. We must suppose the filament is 

tuned in some manner, such as by the use of ‘Franklin coils’ or a 

plurality of cables feeding half-wave elements, so as to make the 

reactive component of its impedance zero: this is a pre-requisite for 

maximum dissipation of energy. Then it must pass the induced current 

through a resistance which is numerically equal to the radiation 

resistance: then only will the dissipation of energy be a true maximum. 

The radiation resistance, however, depends very much on the distance 

of the aerial from the apex (see Figs. 3.18-3.21), and thus the optimum 

loading resistance will also depend on this distance: accordingly it is 

not a constant and may well be far from 70 ohms. Moreover, E^, the 

incident field at the aerial, also depends on k: accordingly both distance 

and loading position must be chosen so as to make EljR^ a maximum, 

both these quantities being functions of k. The reciprocal theorems 

show us that E will be the same function of k when the source is 

distant as the distant field was when the transmission aerial was 

close to the apex. Hence the condition for making E^jR^ a maxi¬ 

mum in reception is the same as that which makes the power gain a 

maximum in transmission. For example, the best possible reception 

with a 60° Vee (with unlimited sheets) will occur (see Fig. 3.25) when 

i?/A = 3*2, and to obtain the maximum dissipation the loading resis¬ 

tance (see Fig. 3.20) should be 0*44 of the isolated value, 

which is 53 ohms for a long in-line array. If the mirror angle is 30° 

the power gain is independent of k provided RjX < 2 (see Fig. 3.27), but 

for any given k within this range the power absorbed will not be a 

maximum unless the loading resistance is chosen appropriately to the 

value of RjX in use, and this will fluctuate violently since it is propor¬ 

tional to Jl{k), The loading resistance cannot in practice be inserted 

in the aerial itself but must necessarily be at the far end of a feeding 

cable: hence it must have that value which will ‘look like’ the radiation 

resistance from the aerial end of the cable. To minimize attenuation 

losses in the cable the loading resistance should equal the characteristic 

resistance of the cable, which often is 70 ohms. Hence when a 30° Vee 

is used at RjX < 2, then RjX should be chosen so that the radiation 

resistance is 70 ohms—that is, so that 47iJ\{]c) = 70/120, which is when 

J^{k) = ±0*166, and this occurs when k #= 6*4, 7*8, 10*8, 14. Fortu¬ 

nately these optima are blunt and thus the adjustment is not critical: 

thus suppose the loading resistance were 70 ohms in the previous 
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example of a 60*^ Vee instead of the correct value, 53 ohms. Then the 

power output would be (70+53)/(70+70) = 0-9 of the optimum, a loss 

of about 0*5 dB, which is not significant. If the load resistance is 

70 ohms, the power loss will be only of the order of 1*5 dB provided 

the radiation resistance is between 35 and 140 ohms. Figs. 3.19-3.21 

show, however, that the radiation resistance may well vary between 

almost zero and 300 ohms, and thus it is not permissible to choose the 

aerial station at random even though it is in the range where the 

power gain is independent of i?/A. At very short wavelengths the best 

method of adjusting the receiver may well be to provide a ‘distant 

operated’ means of moving the aerial along the bisector of the Vee. 



IV 

HALF-WAVE AERIAL COMBINED WITH VEE REFLECTOR 

4.1. Introduction 
In the last chapter the aerial was a long filament, applicable in practice, 

with reservations, to a long in-line array. We now treat the problem 

of a single half-wave aerial, an important practical case because it in¬ 

volves only one feeding cable; it is a problem in three dimensions and 

thereby becomes much more complicated. Images can be found when n 

is an integer and then the problem is straightforward in all its aspects, 

and for most practical applications these particular cases suffice. In the 

last chapter we derived elegant general formulae in Fourier-Bessel 

expansions which were valid everywhere: formulae of the same general 

kind must exist for a doublet and Vee reflector, but they will not have 

the same elegance and simplicity because they have to be expressed 

as a series in P^{cos<f>), where /J, is a Legendre polynomial and involves 

powers of cos<l>: this renders them clumsy. Because it is bound to be 

clumsy we do not attempt to derive the general expression: to do so 

would but clutter many pages with dull analysis, difficult to evaluate 

numerically. By using reason, knowledge, and common sense we can 

pass round the obstruction without severe loss of generality. 

4.2. The radiation figure at a great distance 
When the angle between the mirrors is 180°, 90°, 60°, etc., the field 

on any bearing 6 and angle of elevation <j> can be obtained by writing 

koos(l> for k in equations (3.15a-d), and in addition multiplying their 

right-hand sides by the factor x defined in equations (2.8) and (2.9). 

If the source is a single doublet, F^ is unity and Fj = cos^; if it is a 

single half-wave aerial, then Fj is unity and Fj is tabulated in Table 2.1; 

if it is an in-line array of N half-wave members, then F^ x is defined 

by equation (2.9). Hence we have the field at any distant point for 

any system of aerials combined with Vee mirrors provided only they 

are inclined at 90°, 60°, etc.; generality is lacking only in respect of the 

mirror-angle )3. In practice j8 is likely to be less than 90° and then the 

gaps between soluble angles are small and the lacunae have little 

practical significance. It so chances that the only oases which are really 

of interest and troublesome to do in three dimensions arise mainly in 

practice only in two dimensions, when the solution is simple. 

When n is integral the^equatorial pattern is given by (3.16o-d) as 
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they stand, and these can be expanded in the Fourier series (3.15). It 

is scarcely open to doubt that (3.15) expresses the equatorial pattern 

for any angle )3 (including 180°) when the source is a doublet or half¬ 

wave aerial or any collinear system at distance R from the apex: we 

can state that experiment shows it is valid for all values of ti from 

I upward. Hence we know all about the equatorial pattern, and all 

that was said about the shape of the pattern in the last chapter holds 

good when the source? is a half-wave aerial: §§ 3.8 and 3.9 have much 

wider application than was apparent in them. 

Equation (3.15) is valid for expressing the forward field as a function 

of k, and so Figs. 3.5-3.13 are always valid provided it is remembered 

they apply only to the forward field in the equatorial plane. On bearing 

9 = 0 they will apply at any angle of elevation (f> provided we replace k 

by Acos^. For example, consider Fig. 3.9, which shows the forward 

field for sheets at right angles. The forward field will be zero whenever 

(i?/A)cos^ = 1, 2, 3, etc. Hence the forward field will be zero at an 

angle of elevation of 45°, provided RjX = V2, 2V2, etc. Also we note 

that, if RjX =1,2, etc., then the forw’^ard field is not zero at a small 

angle of elevation. Accordingly stations for zero forward field in the 

equatorial plane now correspond to the condition where the beam is 

shot upwards. If the aerial is vertical and propagation is intended to 

proceed mainly by the Heaviside layer then, obviously, the aerial 

should be put at a station for zero forward field in the e(|uatorial plane: 

then the beam will be turned upwards to the reflecting layer of iono¬ 

sphere. We shall continue this study when we have discussed curves 

of radiation resistance and forward gain; such curves help enormously 

in understanding and forecasting the complete radiation figure. 

4.3. Radiation resistance as a function of k 

In this problem we suffer somewhat from not having a general 

equation corresponding to (3.14): we can deal only with jS = 180°, 90°, 

60°, etc., and must calculate the radiation resistance by adding the 

inphase field, at the aerial, due to the current in itself and also due to 

the current in each image. We saw in equation (1.80) that we must 

take —cEpj2a^ = f Ag for an isolated half-wave aerial. Each image 

aerial is appreciably distant from the real aerial and this means the 

force at the real aerial due to the image will differ insensibly from 

what it would be if the image were a doublet of equal X^: it is pedantic 

to make allowance for the images being half-wave aerials, in respect of 

the field they produce at the real aerial. Accordingly (1.69) may be 
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used to calculate the mutual forces, just as it was used in Chapter II to 

calculate the power gain of curtains; the process should be obvious and 

corresponds to that outlined just after equations (3.15d). Figs. 4.1-4.4 

show radiation resistance as a function of R/X for jS = 180°, 90°, 60°, 

45° respectively: naturally they are of the same general character as 

Figs. 3.18-3.21 and should be compared with them. For example, 

Figs. 3.20 and 4.3 (for /3 = 60°) correspond closely in general terms: 

the only outstanding difference is that the resistance does not fall to 

small values when the source is a half-wave aerial: this is because the 

radiation is always considerable at some angle of elevation even though 

it may be very small in the equatorial plane. It is to be presumed that 

Figs. 3.17 and 3.19 are a sound guide for the resistance of a half-wave 
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aerial in a mirror of angle 120° or 72° respectively, provided it is 

remembered the minima will be much larger than in these figures. 

0 1 2 ^/A S 
Fia. 4.3. Half-wave aerial in 60"* corner. 

When k is very small we can deduce Ep from the series expansion of 

equation (1.69) and thus find that the resistance, relative to the isolated 

value, is equal to jifc* when )S = 180° and when j8 = 90°, and varies 
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as jfc* when j8 = 60°. We conclude that, when k is small, the relative 

resistance for j3 — irln varies as A;®" for all values of n. 

4.4. Power gain as a function of k 

Figs. 4.5 to 4.8 show the power gain as a function of k for j8 = 180°, 

90°, 60°, and 45°: they are naturally of the same character as Figs. 3.23, 

Fig. 4.5. Half-wave aerial in front of infinite sheet. 

Fig. 4.6. Half-wave aerial in 90*^ corner. 

3.25, and 3.26 and should be compared with them. But in making the 

comparison it should be recognized that Figs. 4.5-4.8 record power 

gain relative to a single isolated half-wave aerial, whereas Figs. 3.23, etc., 

record gain relative to a long isolated in-line array, which may itself 

have a very large power gain relative to a single half-wave aerial. 

Figs. 3.23 and 4.6 correspond in showing that the aerial should be 

located at BjX = f from the apex of a right-angled reflector; then the 

gain will be near 20. 

There is general correspondence between Figs. 3.26 and 4.7 which 

relate to a 60° mirror. A long in-line array should be placed at RjX = 
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but Fig. 4.7 shows that the gain at EjX = y for a single half-wave 

aerial is the same as at BjX = |. At first sight this seems strange 

because the main beam must be much sharper when R/X = ^ than it 

is when RjX == and this suggests a higher power gain—a suggestion 

which is borne out by Fig. 3.25. The diffraction pattern in the equatorial 

plane for R/X = is described in § 10.3(d) and reference there will 

show the main beam is very narrow and the side lobes are small—^in 

fact a very attractive pattern. Why, then, is the power gain for a 

half-wave aerial no larger when R/X — than when R/X = as would 

be suggested by the equatorial pattern which (as shown by Fig. 3.25) 

enhances the power gain in the ratio ||? The reason is that the 

half-wave aerial produces large beams whose maxima occur at'sub¬ 

stantial angles of elevation and thus are not disclosed appreciably in 

the equatorial pattern. Such large and subsidiary beams are vastly 

suppressed by an in-line array of several members. This discussion will 

be more clear when we have considered the solid figures of radiation, 

reproduced in the next section. Meanwhile the reader should learn to 

recognize what is disclosed by comparison of the family of Figs. 3.23, etc., 

with the family 4.6, etc. When corresponding stations show an advantage 
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Fia. 4.11. BjX — f. Solid model of polar diagram of half-wave aerial dintant from 
apex of 60' mirror. Forward gain 18. Note that field is not at its maximum in 

equatorial plane. 

Fig. 4.12. BjX = 3J. Solid model of polar diagram of half-wave aerial distant SJA from 
apex of 60® mirror. Forward gain 32. Note large and sharp beams of radiation at high 

angles, not disclosed by pattern in equatorial plane. 



Fig. 4.13. RjX — 3J. Differont view of model in 4.12. 

Fig. 4.14. i?/A = SJ. Another view of model in 4.12, 
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in the 3.23 family and not in the 4.5 family, then he should realize 

the outer station is undesirable with a single half-wave aerial because 

it is associated inevitably with large elevated beams which are not 

disclosed in the equatorial pattern. 

Fig. 4.8 shows G = 52 when B/X = 2 and p = 45"^, however, to 

attain this gain in practice it would be necessary to use very wide sheets 

and such would be tolerable only if A is small. 

4.5. Some solid models of radiation figures 
We have discussed in detail the shape of the equatorial pattern; but 

although we have given many formulae for the field on any bearing and 

angle of elevation, we have not done much evaluation from them. 

Provided the half-wave aerial is not too far from the apex of the Vee, 
then the patterns in the two principal planes are a sound guide to the 

field on any bearing and elevation. But when R/X is large these two 

patterns give little guidance as to the field which would be experienced, 

shall we say, by an aeroplane flying anywhere. The general principle, 

which is not universally appreciated, can be illustrated well by the 

simple problem of a half-wave aerial parallel to an infinite flat sheet. 

Let the reader replace this system in his mind by the aerial and its 

image and remember that whenever the path difference from any point 

in space is JA the field will be 2Eq. Let the aerial and its image be 

separated a considerable distance, say 40A. Then consideration will 

show that an aeroplane could discover a very large number of points 
47W.1 
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in space from which the path difference would be JA and an equal 

number from which this difference would be A: at such points the field 

would be 2Eq and zero respectively. Accordingly if a solid polar figure 

of radiation intensity were made it would be suggestive of a rolled-up 

hedgehog: the larger the distance of the half-wave aerial from the plane 

the greater the number of spikes and the sharper they would be. The 

same sort of thing must occur for a Vee reflector of any angle when the 

aerial is far away from the apex, though now the spikes will not all 

have equal length. It is desirable to look at this in another way: we 

have seen that when i?/A is large the radiation resistance must tend to 

the isolated value, and accordingly the output from a given current in 

the aerial then becomes independent of jR/X It is obvious the width 

in the equatorial plane of the main beam must become narrower and 

narrower and this means, by Poynting’s theorem, that less and less 

energy is radiated in it. Since the total radiated energy is constant 

the number of large narrow beams must increase with JR/A: if they do 

not appear in either of the two principal planes they must appear in 

some other plane, producing the effect we have compared to a hedgehog. 

It is instructive to think of this effect with light, where all radiators 

are likely to be millions of A from the reflecting sheets, and to realize 

that what appears to be uniform light must be composed of millions of 

shafts with darkness between them. Because all real sources are vast 

in extent component shafts overlap and blur the effect: moreover, the 

life of an individual excited molecule is short. 

The following figures are photographs of solid radiation figures 

relating to a half-wave aerial and a 60° mirror. In each of them the 

axis of the aerial is perpendicular to the table and the reader should 

think of the reflector standing on the table like a book standing up on 

edge, with its covers opened to 60°. In all save Fig. 4.9 the model shows 

only half the figure; there should be a similar ‘mirror image’ below the 

table-top. Fig. 4.9 is for the condition RjX = 1: reference to Fig. 3.11 

will show that the forward field is then zero; the equatorial pattern is 

found to consist of a pair of small and narrow lobes centred on about 

±20°. The beam, however, is a large one and directed up into the air 

(and, of course, also downwards) at an angle of elevation of about 60°. 

The black spot at the vertex of the model is intended to represent the 

mouth of a cave or cleft which ultimately narrows to a point: construc¬ 

tion of the model made it impossible to hollow out this cave. 

It is obvious from Fig. 4.9 that i?/A = 1 is the proper station to use 

when communication is intended to be via the Heaviside layer. Fig. 
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4.10 relates to B/X = f, which Pig. 4.7 shows is a station for maximum 

gain, and then 0 = 32. The pattern in the equatorial plane is lobe free 

and the straight sides of the main beam cut the bearing axis at ±19"^. 

In the other principal plane the field falls to zero at an angle of elevation 

of 53° and rises to a maximum at about 76°. The plate gives a very 

clear representation of the field and shows it is very small for elevations 

greater than about 45°, save in a narrow range centred on 75°. Fig. 4.11 

is for B/X — reference to Fig. 4.7 shows that now (? = 18. The 

equatorial pattern shows the main beam has narrowed greatly and that 

two narrow but considerable side lobes have appeared. Reference to 

Fig. 3.25 will show that as B/X increases from | to f the gain (reckoned 

on equatorial pattern) has fallen in the ratio || = 0-68. Why, then, has 

the gain for a half-wave aerial fallen in the ratio || = 0-56 ? The answer 

is clear from Fig. 4.11 which shows the forward field increases with 

angle of elevation up to about 30° and that the main beam is narrowest 

in the equatorial plane. It is interesting to see the side lobes virtually 

vanish at an angle of elevation of about 10° and so would be perceived 

only by low-fiying aircraft. Compare Fig. 4.10 and Fig. 4.11 as a system 

for searching for ships. It is true the main beam for B/X = f is narrower 

than when B/X = | and thus confers greater discrimination; but only 

at the price of a pair of large lobes which would be liable to give false 

bearings: the pattern for B/X = f is not tolerable for searching for ships. 

If it is required to search for aeroplanes fiying at an angle of elevation 

greater than about 10°, then the side lobes cannot give a false bearing 

because they do not persist above about <^ == 10°. But above ^ = 10° 

the main beam widens considerably and approaches that for B/X = 
and thus there is little, if any, advantage in Fig. 4.11 over Fig. 4.10. 

Now consider Figs. 4.12, 4.13, and 4.14, which relate to B/X = 
Reference to Fig. 4.7 shows that now G = 32, as it did for B/X ~ 
while Fig. 3.25 shows the gain on the equatorial pattern is 42 as com¬ 

pared with 25. Fig. 4.12 explains the discrepancy: the radiation figure 

has become a hedgehog. If the system is required for searching for 

ships, then B/X = ^ is an excellent arrangement because the main 

beam in the equatorial plane is very sharp and the side lobes are 

comparatively small and very sharp. It is a good system for searching 

for ships and should find practical application: it is not necessary to 

stress its complete uselessness for searching for aeroplanes. 

The practical designer of aerials should study these models long and 

studiously, for they are very instructive. They are capable of giving 

his imagination a power of insight and prediction which is of great 
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value: it can save many mistakes and a vast amount of laborious 

computation of patterns. There is one further point about Fig. 4.11 

which is worth pointing out: when B/A = 2 the forward field is zero 

and the figure must once more approach that typified by Fig. 4.9; the 

tendency for this to occur is observable in Fig. 4.11 and is disclosed by 

the main beam being narrowest in the equatorial plane. The reader 

should have realized from § 3.8 that the smaller the angle of the mirror 

the larger must i?/A be before it is possible for a zero to occur in the 

vertical plane. Thus suppose jS = 30, then the Fourier expression for 

the pattern is 

E 
- - = Jg(fccos<^)cos60+Jjg(A"cos<^)cos 18^+.... 
24^0 A 

Now Jigik) is negligible till B/X exceeds 2 and accordingly the field will 

be very near zero when cos (f>) == 0, and for this to be possible 

kcos<l> == 10, thus <f> == 40° if k = 13. It should also be noted that if 

the pattern in the equatorial plane is nearly a sinusoid then it will be 

much more nearly a sinusoid to an aeroplane flying at a given height 

and in a circle centred on the aerial. 

Having now considered a single half-wave aerial and also an in-line 

array of infinite length, in a Vee reflector, the reader may wish for some 

guidance for intermediate cases of a few half-wave aerials in-line. They 

are very easily dealt with because, as we have seen in Chapter II, the 

pattern is always expressible as the product of three factors x Fg x Fg, 
these factors having been defined in (2.8), (2.9), etc. The solid models 

shown in Figs. 4.9-4.14 give a three-dimensional exhibition of the 

product Fj X Fg. The factor Fg is merely that for N in-line members 

and is typified graphically by Fig. 2.2. It is most important to realize 

the three-dimensional pattern is the product of independent factors. 

Thus consider Figs. 4.12, 4,13, and 4.14, a hedgehog pattern which 

is useless in most practical applications. Suppose now there had been 

four half-wave aerials in line instead of one only. Then by (2.9) the 

field would be zero at an angle of elevation 30° on all bearings; just 

because there were four elements in line irrespective of their distance 

from the apex. The factor Fg would attain a maximum of value near 

0*21, at an angle of elevation near 60°. Now ‘operate with Fg’ on 

Figs. 4.12 and 4.13. Since the field at ^ = 30° must be zero on all 

bearings, the two enormous upward pointing lobes must be suppressed 

almost completely. The large upward lobe in the forward direction 

must also be sensibly removed because its maximum is near ^ = 46°. 
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There is a small back lobe centred at about ^ = 00°; this will be reduced 

to about 21 per cent, of its size in the Plate. With four in-line members 

all the lobes not in the equatorial plane will still show some amputated 

stumps, but not much can be left of them. The radiation figure must 

be reduced sensibly to the main forward beam shown in the plates. 

The radiation resistance of each member will be very near (see Fig. 3.20) 

0*44 X 120 = 53 ohms, and hence, from Fig. 3.11, 

4X53 

a fivefold increase on a single element. It is not surprising the increment 

sl)ould be as much as fivefold because five enormous beams have been 

suppressed almost completely. Had the 60° Vee been furnished with 
top and bottom cover plates, also extending to infinity and separated 

a distance the gain would be enormous and depend on the range: 

for in such circumstances the field strength would fall off as instead 

of as and the comparison has no meaning. But it seems possible 

that large cover plates of finite size may well increase enormously the 

gain obtainable from a single aerial. 

4.6. Half-wave aerial with axis perpendicular to the junction line 

of reflecting sheets 

This disposition of the aerial with respect to the reflecting sheets is 

described by Fig. 4.15, which illustrates the particular case for ^ = 90°. 

When j8 == 180°, 90°, 60°, 45°, etc., images 

can be found and the problem solved. 

Here, however, there is a marked difference 

of kind from the disposition in which the 

aerial was parallel to the sheets. Then the 

electric field was parallel to the sheet, * 
having zero value at its surface. Now the 

electric field is perpendicular to the surface 

of the sheets and is not zero there. It is 

obvious from Fig. 4.15 that there is no 

net mutual action between the aerial and 

those two images which are perpendicular to it: mutual action arises 

only from the parallel image. Accordingly, for every value of It/A the 

radiation resistance is the same as that of an aerial parallel to a flat 

sheet and also distant It from it. Likewise it is obvious the forward field 

in the equatorial plane is that of the aerial and its parallel image only, 

and hence cannot exceed twice that of an isolated aerial. Hence for 
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jS = 90° and any given value of E/X the forward power gain is the same 
as the forward gain of an aerial and flat sheet, and this cannot exceed 4. 
An observer in the equatorial plane would be unable to tell whether 
p was 90° or 180°, observers above the equatorial plane would perceive 
the difference. It is easy to show the equation of the pattern on bearing 
zero and angle of elevation <f> is 

E 
== s\n{k cos ^)cos (^+sin(A; sin <^)sin (4.1) 

2Ao 

If B/X = 1/V2 or V2, then E = 0 Sit (f> ~ 45°; hence in these special 
cases the field is zero at the sheet, and it is possible that then finite 

Fig, 4.16. Diffraction pattern. 

sheets may produce an effect closer to the ideal than for any other 
value of jB/A. 

There is a notion in common currency that the disposition of Pig. 4.16 
is more favourable for suppressing side lobes than that in which the 
aerial is parallel to the sheets, the argument being that in Fig. 4.16 the 
lobes are operated on by the ‘obliquity effect’, cos^ or P^. 

When expanded in a Fourier series (4.1) becomes 

E 
(«^ J^)cos4^—(«7j—Jf)cos8<f>—.... (4.2) 

This pattern for S/X = | is shown in Fig. 4.16. It will be seen that the 
field is not zero when ^ = ±46*’, which is at the surface of the sheets. 
The disposition in Fig. 4.16 with /S = 90® is not of much practical 
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interest because O cannot exceed 4, whereas it can reach 20 if the aerial 

is parallel to the sheets and RjX = | (see Fig. 4.6). The reason for 

the small gain follows readily from Poynting’s theorem. According to 

the description of that theorem the gain will be large if the area on the 

circumscribing sphere is small where it is bathed by the radiation of 

high intensity, and this is in the equatorial plane. In the parallel 

disposition only one-quarter of the equatorial belt is so bathed, whereas 

in the perpendicular direction half of it is bathed. The writer is not 

aware of the perpendicular disposition having been used in Vees of 

small angle, and he leaves jS == 60°, 45°, etc., as an exercise to the 

reader. In his opinion it is not a proj^er disposition for a half-wave 

aerial in a Vee; the Vee is used properly only when the aerial is parallel 

t(.) the sheets. 

4.7. Frequency consciousness of aerials in Vee reflectors 
It is sometimes desired to operate an aerial system over a band of 

wavelength which varies by some ±25 per cent, from the mean. Then 

it is necessary to understand the effect which a change of wavelength 

will have on the equatorial pattern and the radiation resistance. First 

consider aerials parallel to the sheet. If RjX is such that the width 

across the Vee at the aerial is less than A, then, as we have emphasized, 

the equatorial pattern is sensibly a sine curve bounded by the sheets. 

Hence if R is such that the forward field does not fall to its first zero 

in the required range of A, then that range of A can have scarcely any 

effect on the equatorial pattern, in this respect the aerial is frequency 

unconscious. Suppose, for example, j3 = 30°: we have given many 

numerical -examples to show the pattern is always a sine curve until 

RjX exceeds about 2*2. If then RjX is less than 2*2 within the whole 

range of A, the pattern is frequency unconscious, and no more need be 

said about the pattern. Reference to Figs. 4.2-4.4 will show that a small 

change of RjX can cause a large change of radiation resistance, and 

therefore provision must be made for wide adjustment of the matching 

transformer between the aerial and the cable. 

If j8 = 90° and the aerial is in the perpendicular position, then the 

two principal patterns are likely to be very conscious of frequency, 

because the forward field goes through zero when RjX goes through the 

values 0*5, 1, 1*5, etc., and thus a range of ±25 per cent, in A is bound 

to bring RjX near one of these values. The whole problem of frequency 

consciousness should be straightforward to readers who have under¬ 

stood this and the previous two chapters. 
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4.8. Line doublets in Vee reflectors 
The three-dimensional problem of a doublet in a Vee reflector is too 

cumbersome to justify solution, but the two-dimensional problem of a 

line doublet in a Vee is not unduly complex and is of practical interest, 

since we can use it to simulate a wide curtain array of half-wave 

elements. We will solve it in stages. 

Fig. 4.17. Line doublet parallel to flat sheet. 

(a) Line doublet parallel to an infinite conducting sheet 

From (1.58) we have, for an isolated line doublet, 

Let the doublet be parallel to the sheet and distant R from it. The 

inphase component of electric field at the doublet is then found to be 

cEjp 

anil 2k 

(4.3) 
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The forward field is 2sini times that of an isolated line doublet, and 

so the power gain relative to an isolated line doublet is, when k tends 

4sin2ix^ — 
3\ ~T8/- 

(4.4) 

Figs. 4.17 and 4.18 show respectively the radiation resistance and 

forward power gain for a line doublet parallel to an infinite conducting 

0 5 Ic to 

Fig. 4.18. Line doublet parallel to flat sheet, 

sheet: the gain rises to a maximum of about 3-3 near i?/A =: | and then 

the radiation resistance is about 20 per cent, greater than the isolated 

value. Doubtless this figure is substantially valid for a wide curtain of 

half-wave elements, and accordingly the resistance per member is, by 

§2.16, about 53x1*2 = 64 ohms, and the maximum gain would be 

near 4*5iV^. 

The complete solution of the fields can readily be obtained. In § 1.11 

we saw that the vector potential of a line doublet was given by 

and was everywhere parallel to the blade. Hence, by § 1.13, for two 

unlike and parallel doublets 

f* A 
{I^i(a^)+M(Gtr)}Ji(fc)cose+{I^3(a^)+i*4(«*^)}*4(*)<^os3e+.^ 

where the origin is midway between them and A is everywhere parallel 

to the two blades. The magnetic field is everywhere perpendicular to 
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1 dA 
the plane of the paper and H =-^, and accordingly 

r du 

'4anm ^ i9+{1^3(a»')+j*/3(«>‘)H(^)sin 3ff+...]. 

(4.6) 

(6) Line doublet referred to any origin 

By proceeding as in § 1.12 we have, for two parallel like doublets, 

cH 
-^i^l = {^o(«»')+J*^o(«OKo(^)+2{5^2(“^)+i‘^2(“»')}'4(^')cos20+-. • 

On superposing a like and an unlike pair of doublets we obtain the 

solution for a single line doublet referred to p^ny origin in its equatorial 

plane. Addition will give H for any number of doublets placed at 

intervals round a circle of radius i?, and from this the two components 

of electric field can be derived. Then if any radial planes exist in which 

is zero a conducting sheet can be placed in such planes: we shall not 

develop a general solution here. 

4,9, An aerial in a rectangular wave guide 

In § 1.20 we derived the main features of the solution for a long 

filament midway between two parallel conducting sheets. We now see 

this is the limiting case of a Vee reflector in which ^ = 0 and k tends 

to infinity. It is usual to call such a system a rectangular wave guide 

and unusual to regard the wave guide as the limiting case of a Vee, 

though logical for us to do so here and to treat it purely as an aerial. 

In practice, sheets of finite width produce a pattern very near the ideal 

for infinite width; but the smaller p the wider must the sheets be. If 

/8 = 0 no width of sheet suffices to produce a parallel beam; and Vee 

reflectors of very small angle have no practical interest as reflectors for 

an aerial. If the sides are parallel, then the pattern is improved by 

expanding the width near the open end. Then it is natural to regard 

the expanded part as the reflector and the parallel part as a pipe leading 

the energy flow to the ultimate reflector. It is a natural, practical, 

though not very logical description. It is a remarkable fact of practical 

experience that right-angled bends in the parallel portion make very 

little difference to the final result and this extraordinary property lends 

colour to the pipe conception. Thus the originating aerial need not be 

optically visible from the final Vee, or horn as it is commonly called. 

So far it has not been discovered how to treat the bends in analysis. 

We can, however, solve an aerial in a parallel rectangular pipe of 
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infinite length and we could now fill in more practical details of the 

solution which has been outlined in Chapter I. 

If the width of the pipe is g then, as we have seen, gjX must be at 

least or the inphase component of field is zero at the aerial, and 

accordingly its output is zero. When gjX — then Ep is infinite, and 

accordingly it will in practice not be possible to get any current in the 

filament. 

We will not develop the whole matter here but refer the reader for 

it to Journal I.E.E. 92 (1945), Part III, p. 8. Fig. 4 in it relates radia¬ 

tion resistance of the filament with gjX and thus is a curve of the same 

general type as the series 3.17-3.21. Sections (4) and (5) of the same 

paper explain the process of obtaining the solution for a wave guide as 

the limit of the solution for a Vee refiector. 



V 

THE SEMMNFINITE SHEET: NETWORK REFLECTORS 

5.1. Introduction 

In the last two chapters the reflecting sheets have extended to infinity. 

We are studying these problems only in the hope of applying their 

solutions to sheets which are only a few wavelengths wide, and therefore 

we badly need general guidance about the effect of finite width. Such 

guidance is given by putting n = | in the general expressions and 

thereby obtaining the solution for a semi-infinite sheet, or half-plane 

(see Fig. 3.4 c). The reader may perhaps inquire why all such questions 

are not left to be answered by experiment: in the main they must be 

left to experiment, but it is a great help to have at least one precise 

analytical solution, since it will serve as a guide and save much blind 

experimentation and piling up of numerous experimental curves which 

can scarcely be interpreted. Analysis does show quantitatively the rate 

of approach to the limit, and such rate of approach is often very difficult 

to deduce by experiment. Not only do we need to know the performance 

in practice of a sheet'of given width, but we also need to be able to 

estimate how much that performance would be improved by a given 

increment of width. The size of aerials is always largely governed by 

a variety of factors and expediencies which are unrelated to its scientific 

and technical design: the technical designer needs always to be able 

to assess quickly the cost to the performance of having to make some 

surrender to the demands of constructional expediency. The solution 

of the half-plane is a valuable guide in this respect. 

5.2. Long current filament in the presence of a half-plane 

This solution is obtained by putting n = J in the equation leading to 
(3.20), and we have 

cE 
2^ = {-/i(ar)+jyj(ar)}Ji(A:)cos^acos|fl+ 

a sin 0+ 

+{—Jj(ar)+jy,(or)}J,(*)oo8 fa cos f0-f-.... (5.1) 

This describes the field at the point {r, 6) due to a filament at the point 

(R, a), the origin being at the edge of the semi-infinite sheet. When ar 

tends to infinity this takes the form 

— El2Ef) = e^*^Vj(A:)cosfacosf^-|-€W‘Ji(A:)sina8in0-f 

+e*MVj(^)cog|Q(CO8|0-f €^"'Vj(i)8in2a8in20+..,, (6.2) 
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The main use here of (5.2) is to trace the change in the polar diagram 

as a filament, at a given distance from a sheet, approaches the edge. 

Thus suppose the distance from the sheet is JA and that the filament 

Fig. 5.1. 

is moved in the manner indicated by Fig. 5.1, starting at JS, round 

the semicircular arc BC and then along the line CD, a increasing from 

zero to 77 in the process. When x tends to infinity the equation of the 

Fig. 5.2. Polar diagram for current filament distant JA from edge of semi-infinite 
sheet and in plane of sheet. 

diagram becomes Ej^E^ = sin(7rco8 0), where d is measured from the 

normal. Equation (6.2) has been evaluated for a = 0°, 45°, and 90° 

and also for xjX = 0*407, 1*086, and 2*216. To simplify computation, 

integral values of k have been used, and this leads to values of x/X which 

are not integral: the values chosen for k correspond approximately with 

= i. 1. and 2. Figs. 6.2-6.7 show the polar diagrams for these 
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positions and illustrate very beautifully the reflecting effect of a semi¬ 

infinite sheet. Fig. 6.8 superposes Fig. 6.6 on the diagram for x infinite: 

Fig. 5.3. Polar diagram for semi-infinite flat sheet, aerial at (JA, 45° 

Fio. 5.4. Polar diagram for semi-infinite flat sheet, aerial at (^A, 90°). 

it may be seen that the left-hand halves of the two diagrams are 

indistinguishable and the right-hand halves differ only in that x = 1 •09X 
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permits a small amount of diffraction round the edge of the sheet and 

also slightly sharpens the beam. The difference between Figs. 6.4 and 

5.5 is very marked: that between Figs. 5.5 and 5.6 is not very marked. 

Fig. 5.5. Polar diagram for aerial distant JA from semi-infinite flat sheet. 

Fig. 5.6. Polar diagram for aerial distant JA from semi-infinite flat sheet. 

These three diagrams show it is enormously worth while to set back 

the aerial about from the edge of the reflector, but thereafter the 

approach to the limit is very slow. It is very encouraging to find that 

when xjX is even as small as ^ the pattern is not very different from 

that appropriate to an infinite sheet. Surely this tells us that sheets 

of very moderate width will give a performance approximating closely 

to the ideal limits we have studied in Chapters III and IV. We see 
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that increasing xjX from | to 2-2 does not improve the performance 

very substantially: this shows the limit is not approached exponentially 

Fiq. 5.7. Polar diagram for aerial distant JA from semi-infinite flat sheet. 

Fig. 5.8. Comparison of diffraction patterns of inflnite and semi-infinite plane sheets: 
aerial distant JA from sheets, and 1 086A from bounding edge in case of semi- 

infinite sheet. 

and should tell the practical designer, without experiment, that an 

extravagant increase of width cannot be expected to reduce appreciably 
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a comparatively small diffraction round the edge. Fig. 5.9 shows the 

calculated diagram for a filament distant from the sheet and with 

xjX = 0*63: the left-hand half of this diagram differs insensibly from 

the limit and the two halves are not markedly dissimilar. 

If the sheet were doubly infinite the field would be zero in its plane 

(i.e. on bearing 0 = 0); when it is a half-plane the field on 0 == 0 cannot 

Fig. 5.9. Polar diagram for aerial distant from semi-infinite fiat sheet. 

be zero because there must be some field behind the sheet. It may be 

found from Figs. 5.2-5.8 that the field on 0 = 0 is expressed very 

closely by the empirical formula l-6|^ro(a:/A)|; from this it would seem 

that xjX must exceed 100 before the field at a distant point in the plane 

of the sheet is reduced to 5 per cent, of the field along the normal to 

the plane. This example illustrates forcibly the diminishing returns 

which must be expected to accrue from increasing the width of reflecting 

sheets. 
For djX = the ‘front-to-back’ ratio is 24, 86, 156, and 200 when 

xjX = 0*48, 1-09, 1*52, and 2-22 respectively. We conclude it is well 

worth while to make xjX = 1, but scarcely worth while to make it 

exceed unity appreciably. If d is the shortest distance from the aerial 

to the sheet, we find that when xjd is constant and equal to | (ot = 143°) 

then the ‘baok-to-f5ront’ ratio is 0*195, 0*125, and 0*77 when djX = 0*048, 

0*096, and 0*25 respectively: showing that, for a given configuration, 

the backward field inci^ases as A increases. In other words, it is more 

important that xjX should be comparable with unity than that xjd 

should be large. 
47na o 
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When djX = J and x is infinity the radiation resistance is 

= 1-304 

relative to an isolated in-line array (i.e. 157 per member). When 

cx = 0, 45°, and 90° it may be found this ratio is 1-179, 1-198, and 1-242 

respectively and when xjX = 2-85 it is 1-311. Thus it is clear the 

radiation resistance depends little on xjX so long as this ratio exceeds 

zero. Mere inspection of Figs. 5.6~5.8 should show that the power gain 

differs little from the limiting value (3-06) so long as xjX exceeds unity: 

indeed there may be some value of xjX for which the gain slightly 

exceeds the ultimate limit. Computation shows that for djX ==0-1 and 

xjX = 0-13 the resistance is 0-997 of what it would be if x were infinite. 

Equation (5.2) is very laborious to evaluate, but the series can be 

summed in certain special cases: thus the particular case oc = 0 and 

0 = 0 was summed in § 3.5 (6); it is the forward field curve 

Eo 
^2(P^+Q^)K 

the equation of the famous Cornu spiral, and wdiere P and Q are 

Fresnel’s integrals. 

If a = 0 and 0 = we have 

siiice 

DK K r k n, 

" dk+ J Jj(*) dk+jl J J_^{k) dk- J J^ijk) dk 

u 0 ^0 0 

Z 

J ‘4(2) = 2(.4+1+‘4+3+-")- 

rI = i I J dljV j J J^(k) itj’ 
^co.(*+h)*, when k is large. (6.26) 

This is similar in form to the equation for the forward field, save that 

now the wavelength of the ripple is A where previously it was JA. It 

shows that when k is large the field on d tends to equal the 

forward field and that \EIEq\ tends to unity. Reference to Fig. 6.2 

shows that when k — \n the forward field happens to equal that on 

5 = ^TT, but that EjEf^ = 1*25. When k is very small, equations (5.2) 
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and (5.2a) show the forward field tends to be ^2 times the field on 

d — Exact evaluation shows this ratio is 0’70 and 0-74 when 

k — ^ and 1 respectively. The reciprocity theorem shows that we have 

also found an expression for the field on bearing zero for a filament at 

a = comparison of Figs. 5.2 and 6.4 shows the field on 0 = in 

Fig. 5.2 equals the field on 0 = 0 in Fig. 5.4, and thus confirms this 

statement. We note, however, the field in the direction in Fig. 6.4 

is much larger than the forward field in Fig. 5.2—because the sheet in 

Fig. 5.4 is much better able to reflect than when it is edge on, as in 

Fig. 5.2. 

Now make a — and d — ±1^, thus giving the forward and back- 

wai-d field for a filament level with the edge of a semi-infinite sheet and 

at any distance from it. Now (5.2) becomes 

= ^\P{cosksmk)+Q{Gosk+^mk)+ 

+j{P(cos A:+sin A:)+Q(sin fc—cos A')}]± j sin k, (5.2 c) 
2k 

where P ^ | J d(2k). It should be noted that the portion of 
0 

this expression in square brackets is half the forward field for a = 0 

and that the portion j sin k is half the forward field for a doubly infinite 

sheet. Moreover, comparison of (5.2) and (3.22) shows the series in¬ 

volving J5l same as that which arises on putting == 1 in 

(3.22), for all values of a and 6: hence a component of the pattern for 

a semi-infinite sheet is always the pattern for a doubly infinite sheet. 

When 2k is large, P = Q =z ^ and then 

= Kco®*+.?(l±2)8ini;} or = J(l-|-8sin*fc)b (6.2d) 

Hence the forward field fluctuates between f and ^Eq and the backward 

field equals When k = ^ir, Fig. 6.4 shows the forward field is 1-64.Eq, 

whereas it would be 2Eq for a doubly infiinite sheet, and the front-to-back 

ratio is 4'1. It has been found that when i: = 1 the forward field is 

I'lliJ, (l-68i{, for doubly infinite) and the front-to-back ratio 6*5: for 

i = J these magnitudes are 0*7iS^ (0*98jEJ, for doubly infinite) and 2*6 

respectively. We have been calculating the field at infinity due to a 

current filament not far from the sheet: we should remember the 
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reciprocal theorem tells us the filament and observation point are inter¬ 

changeable, but defer this aspect till Chapter VII. 

5.3. Curtain array parallel to a half-plane 
If the sheet is finite there will be some field on the side behind the 

aerial and hence there must be some field in the plane of the half-sheet 

whether or not field would exist on this bearing if the half-plane were 

Fig. 5.10. Two aerials, 0‘5A apart, 0-26A from semi-infinite plane sheet. 
(Overlapping boimding edge.) 

absent. If a curtain with an even number of members has spacing, 

the field in its plane is zero; but it cannot be zero in this plane if the 

curtain is parallel to a finite reflecting sheet. This feature is well 

illustrated in Fig. 5.10, which shows the pattern resulting from two 

parallel filaments ^A apart, parallel to and distant ^A from a half-plane 

disposed as shown in the inset diagram: the superposed symmetrical 

diagram shows the corresponding polar diagram for a doubly infinite 

sheet. The diffraction round the bounding edge is apparent, and the 

field in the plane of the bounded sheet is 0-24 of the forward field. In 

spite of the gross inadequacy of this reflector, in which one member is 

aotuaUy about 0*1A beyond the edge, the forward field is 0-86 of the 

ultimate limit. It is apparent that sheets of very moderate dimensions 

must produce a forward field nearly as great as the ideal upper limit, 

though they cannot be expected to make the diffracted field in the plane 

of the sheet very small. The pattern has been computed for two currents 

distant JA from the sheet and situated at xjX = 1-09 and 1'69: it was 

indistinguiBhable from the ideal in the range 6 = —90° to 6 = -f-60° 

from the normal. The fractional field in the plane of the sheet was 
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then only 2-5 per cent., showing that when the field would be zero in 

the absence of the sheet it would be very small provided the sheet 

projects about one wavelength beyond the current. This performance 

is markedly better than that of a single current at xjX = 1'09, as 

exemplified in Fig. 6.6. If the sheet is doubly infinite it can be shown 

that the resistance of each of the two filaments is 1-33 times the 

—BOO oSa ; 

'‘-0U3X-’- o-mx ~- omx^ o-wx- 

Fio. 5.11. Polar diagram of four-element curtain array near edge 
of Hemi-infinite flat sheet. 

isolated value and thus it follows that the ideal gain is then 6. For the 

disposition Bhown in Fig. 5.10 the ‘relative self-resistance’ of the current 

nearest to and farthest from the edge is 1-231 and 1-228 respectively, 

while the ‘mutual resistance’ is -f0-062, making the resultant values 

1-293 and 1-290 respectively: it is instructive to note that a gross 

dissymmetry of position causes the two resistances to differ by less 

than 3 parts in a thousand. The forward field is 3-494 times that of a 

single current, and hence the forward gain is 4-90 as compared with 
the upper limit of 6-0. 

Numerical results such as those leading to Figs. 5.5-5.7 can be added 

vectorially to give the polar diagram of four filaments at the stations 

used in these figures. The side spacings are 0-679A, 0-486A, and 0-643A 

(mean 0-603) and a;/A = 0-407 for the filament nearest the edge: these 

Bpacings are near 0-5A, the pitch commonly used in practice. The polar 

diagram for the system is shown in Pig. 5.11, while Pig. 5.12, plotted 
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as a diffraction pattern, compares it with the limiting form for a 

doubly infinite sheet. It may be seen that the bounding edge reduces 

slightly the amplitude of the two side lobes and increases shghtly the 

bearing of their maxima: both results are experienced commonly in 

practice. It is as though the two lobes had slipped a little round the 

edge. When we come to examine experimental patterns we shall often 

Fig. 6.12. Diffraction patterns of four-element array in front of infinite sheet or near 
edge of semi-infinite sheet. 

speak of the outer lobes ‘sliding round the edge’. The field in the plane 

of the sheet is 12’6 per cent, and the front-to-back ratio is found to 

be 96. 

If the sheet were doubly infinite it may be found that the relative 

resistance of each of the outer pair is 1'02 and of each inner pair is 1*14; 

accordingly the gain would be 14'8 if all four currents are equal and 

oophased. Since gain is a measure of mean square field it is obvious 

from Fig. 5.12 that the gain with a half-plane cannot be appreciably 

less than the upper limit of 14-8. Accordingly there is good reason to 

hope that the ideal gains calculated in Chapters III and IV can be 

substantially realized in practice. 
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5.4. Effect of bounding edge on the forward field 

For a single filament situated so that xjX = 1*8 the forward field has 

been calculated for d/X = 0-33, 0-63, 0*847, 1*018, 1*173, and 1*312, and 

in each case it differed by no more than 1 per cent, from the value it 

would have had for a doubly infinite sheet. Thus it is concluded the 

forward field cannot be appreciably different from the ideal so long as 

the sheet is some 4A wide and d/X is not much greater than Again, 

it can be found from Fig. 5.9 that, if x/X = 0*63 and d/X = 0*1, then the 

forward field is only some 1 per cent, less than it would be for a 

doubly infinite sheet, and likewise from Fig. 5.5 when x/X = 0*407 and 

d/X == J. It is thus to be expected that narrow sheets will not appre¬ 

ciably affect the curve of forward field so long as the distance of the 

aerial from the sheet is not much greater than its width. Accordingly, 

we may confidently expect to find that the stations for maximum and 

minimum forward field differ insensibly in practice from those calculated 

in Chapter III, provided always R/X is not excessive compared with 

the width of the sheets. 

5.5. Density of current induced in each side of the sheet 
It follows from (3.18) that the current density in the sheet at a 

distance r from the bounding edge is given by the equation 

(5.3) 

where 
00 271-4-1 

A = 2 (— l)”(2?l4-l)y'2n+l(«?')’^2»+l Woos—— CX, 
0 2 2-^ 

B ~ 2"^ (—l)”+iMr„(ar)J„(/fc)sin«a, 
0 

00 1 
0 = 2 ( — + ^ 

D = 2 2 (—l)^'^^nJJar)JJk)8innoc. 
0 

For ar <c k, interchange ar and k above. On the side of the sheet 

nearest the aerial we take A-{-B-\-j{C+D) and on the back side we 

take jD). The series denoted by B and D can be summed, 

and turn out to be half the current density which would exist if the 

sheet were doubly infinite. This shows that expression in the form .4+ 

C+D has physical significance and that when the edge is infinitely 

remote A tends to B and C tends to D, so that the net current on the 

back is zero and on the front is 2(J5+JD). 
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The study of these currents is worth while only in so far as they can 

be used to describe the radiation at a distant point. It is worth while 

to try to build up the pattern from the field of the current in the 

filament and the currents it induces in the sheet. The reader may 

interject that this has been done already without all the complexity of 

deriving the current, therefore why do it again ? We do it because we 

must learn how to estimate the pattern which will result from Vee 

reflectors of finite width, a problem which cannot be solved analytically. 

If we can find the region here where the induced current is small we 

shall conclude that such portions of the half-plane could be removed 

without producing much effect in the portion of the sheet which remains: 

if we can find the effect on the pattern of omitting some portions of the 

induced current, we shall have made an approximation to the solution 

of a flat sheet of finite width. By now the reader should have learned 

that electric field at any point can be traced back to movement of 

electrons in conductors. If then the distribution of induced current is 

known, we shall calculate the pattern as the resultant field of the original 

filament of strength I together with the field due to induced filaments 

i dr distributed over both sides of the semi-infinite thin sheet. At any 

distance r from the bounding edge there is a current jfilament (A+B) dr 

on the front side and a filament {A—B) dr on the back side, the two 

filaments being separated by the negligible thickness of the sheet. 

Accordingly the net field, far off, must be that of a current filament 

(2A+2j(7) dr\ in other words, the components B and D contribute no 

net effect to the field. Therefore it is only the components A and C 

which are of interest to us. When ar tends to zero we have 

7= 

since 
J,(or) 
-> 

ar 
etc,, tend to zero, 

4= y(^)oo8Hn(*)+M(^*)}. when ar 0. 

A|il_co8ja_^ d 

I ~ tj{ark) ■ aJBM’ 
when a TT. 

Thus the density at the edge is always infinite but at a small finite 
distance from the edge decreases rapidly as B, increases. The total 
current in a narrow strip of width 6 varies as 6^ and thus is always 
&ute. Tbs infinity is of no practical importance and occurs oniy 
because Idle edge is sharp, in the mathematical sense. We shall see later 
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that the infinity does not occur if there is a very small cjdinder at 

the edge, i.e. if the radius of curvature at the edge is finite, and so 

its appearance in the mathematics here is of no practical significance 

and we shall not discuss the matter further. Since both and 

change sign periodically we note that the phase of each component of 

induced current at the edge changes periodically, with k, through 180®. 

Fig. 5.15. Distribution of its two components of current induced in semi-infinite 
flat sheet by filament distant from it and level with edge. 

Fig. 6.13 shows the two components of induced current (due to terms 

A and C only) for the case where dj\ — 0*096 and xjX = 0*128. It 

should be noted that both are extremely small when r/A exceeds, say, 

tmity, and that ip attains a maximum near the point closest to the 

aerial. This figure suggests that the currents induced in a sheet, say 

2A wide, would differ little from those induced in the first 2A width 

of a half-plane, save that the induced current would rise sharply 

near the more distant edge. Fig. 6.14 shows the same pair of com¬ 

ponent densities for djX = 0*096 and x]X = 0*31, together with the 

two components for a doubly infinite sheet. On the near side of the 

sheet the two curves of ip and tg are to be added, and on the far side 
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they are to be subtracted, to obtain the net resultant density. It may 

readily be seen that if this is done the resultant ip on the near side will 

be a close approach to what would result in the doubly infinite sheet 

and on the far side it would be small save in the first JA of width. 

Close study of Fig. 5.14 will give a good idea of the general manner 

in which the net density must be distributed: we again emphasize, 

however, that the net density is of no interest in respect of the radiation, 

it is the components A and C alone which contribute to it. Fig. 5.15 

shows the two components of induced density (due only to A and C) 

for djX == 0*096 and a == 90°: the density of both is extremely small at 

points more distant than about from the edge. 

5.6. Screening properties of a grid of parallel wires 

We have been trying to assess the effect of using screens of finite 

width; groping a way from the idealized boundaries of analysis to the 

real boundaries of practice. Here then is the place to assess the result 

of replacing continuous sheets by wire netting, for it is often necessary 

to use rods or netting in order to reduce weight, windage, or obstruction 

of view. The analytical tools for dealing with grating reflectors were 

prepared in § 1.19, ready for their use here. We suppose a plane wave 

incident on an infinite flat grid of thin wires, parallel to the electric 

vector, and shall calculate the resultant field behind the grating. The 

incident field will induce currents, in the parallel wires of the grating, 

of such a value that the net field is just zero at the sur face of each wire. 

The resultant field on the far side of the grating will depend on the 

magnitude and the phase of the induced current; these depend on the 

diameter of the wires and on the spacing between them. We saw in 

Chapter I that the field at each wire was given by the expression 

~ = —(l+2 f Jo(««9'))+i(j"o(«^)+2 1 YQ{nag)\, 

where g is the distance between the centres of the thin wires of radius 6. 

It follows from (1.66) that 

'^Jo{nag) = -—5 if gr/A < 1, and then 
T ” ag 2 ani ag 

or cEp = 2iT(Ijg): this shows the inphase component of field at each 

wire is the same as the inphase component at the surface of a con- 

tinuous sheet over which the concentrated currents were ‘smeared’ into 

a uniform density. Reference to (1.60) will remind the reader that the 

quadrature component of field at the surface of an infinite sheet is zero. 
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To obtain effective screening it is essential to simulate closely the effect 

of a continuous sheet, and hence it follows that the self-inductance, 

represented by the term must be made nearly equal and opposite 
00 

to the mutual inductance, represented by the term 2 2 

a given grating of pitch gr, this adjustment for approximate equality can 

be brought about only by correct choice of the wire radius 6. Fig. 5.16 

Fig. 5.16. Figiire relating to infinite grating of wires. 

has been prepared to assist in choosing this radius correctly: the left- 

hand curve shows the mutual term as a function of gjX while the right- 

hand curve shows the self-inductance as a function of 6/A. As an 

example of its use take gfX — then the left-hand curve shows the 

mutual term is 1*1 and the right-hand curve shows this will be neutral¬ 

ized if 6/A = 0-03. Similarly if gjX = 0-45, then 6/A must be 0-07. 

Provided the radius is chosen correctly, then the impedance of the 

wires is purely resistive and the induced current will be in phase with 

the inducing field E and related to it by the equation cE — 2iTljg, 

provided gr/A < 1. In other words, the current per wire is equal, in 

magnitude and phase, to the current which would be induced in a width 

g of continuous sheet. In such circumstances the wave radiated by the 

grating will be equal in magnitude and opposite in phase to the incident 

field: this is the same as saying that the grating is a perfect screen. 

Though the grating is an open one, the result can be achieved by a 

proper choice of diameter and by no other means. In this solution, 

there are certain hidden approximations which need scrutiny: they 

arise from starting with the supposition that each wire is vanishingly 

thin and then choosing a precise diameter for it. We saanma the 
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current density is uniform round the wire whereas there is sure to be 

some concentration on that half which is ‘illuminated’ by the incident 

wave: we have assumed the net incident field is constant all round the 

circumference and this is not precisely true. The error must be small 

provided we consider only cases in which fe/A is very small and b/g is 

small. The mutual force at the centre of the wire cannot differ appre¬ 

ciably from the value we have calculated (because bjg is small), but it 

may vary appreciably round the circumference. These refinements will 

become more clear in the next chapter: suffice it to say they are unlikely 

to be important so long as gJX > Now suppose g/X = | and 6/A = 0-06, 

then (see Fig. 5.16) 

^ = (_o-644-0-40) = -0*24 and ^ = 0-637. 
aTTi anl TT 

Then the impedance of the wire is proportional to 

V(0*242+0-6372) = 0*637 X 1-07 

and its phase angle is arctan 0*376 = 20*6°. Accordingly the amplitude 

of the re-radiated wave will be 0*93 of the incident and it will be short 

of antiphase by 20*6°, and so the net amplitude on the far side will be 

near to 0*97 sin 20*6° = 0*34. Thus, even if the spacing is as large as 

gjX = \ and the wires are only two-thirds of their correct diameter, the 

screening ratio still amoimts to 0*64. It is rarely that the designer 

would be forced to make gjX as large as and even gjX = \ may be 

considered large. Suppose gjX == J and 6/A == 0*02, then reference to 

Fig. 5.16 will show the net quadrature field is about 0*30 while the 

inphase field is 4/7r, and so the phase angle of the impedance is 13*3° 

and the screening ratio is very near 1—sin 13*3° = 0*77. We have again 

chosen a radius which is only two-thirds of its correct value, and even 

so the screening ratio is 0*77. 

It is apparent that even with a very open grid a screening ratio 

comparable with unity can certainly be obtained, provided the radius 

of the wire is reasonably close to that value which, according to Fig. 

5.16, would give perfect screening. Now suppose gjX == I and that 

b/X = 0*01, instead of the correct value of 0*016, then from Fig. 5.16 

the net Eq = 0*25, while Ep = S/tt, and this leads to a screening ratio 

1—sin 5*5° 4= 0*9. It is not very helpful to give a general formula for 

the screening ratio, but a general statement of our results is as follows: 

If g/X does not exceed J the screening ratio will exceed 0*9 if the 

radius of the wire is not less than 1 per cent, of a wavelength, which 
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is the same thing as saying that the screening ratio will certainly exceed 

90 per cent, if the ‘shadow ratio’ of the grid is not less than 17 per cent. 

If gjX is even as large as \ it must be possible in practice to obtain a 

screening ratio of the order of 90 per cent, by choosing the diameter 

of the wire correctly, and when gjX ~ | the ‘shadow ratio’ should be 

near 32 per cent. When the grating has been designed correctly there 

will exist a narrow range of frequency in which the screening ratio is 

almost perfect, the said range being centred on that at which the self 

and mutual inductance neutralize. The important point to remember 

is that the wires must not be extremely thin: the diameter of the wire 

in respect to the wavelength is just as important a factor as the ratio 

of gap to wavelength. The screening properties of the grating were 

examined by Sir Horace Lamb in the Proceedings of the London Mathe¬ 

matical Society in 1898 (vol. 29, p. 543), who points out that it had 

been set by Sir Joseph Larmore as a question in the Mathematical 

Tripos at Cambridge in 1894. Our solution is for a plane wave incident 

on the grating and we wish to use it as a guide for estimating the 

efficacy of the screens of a Vee reflector where the incident field is far 

from uniform: no doubt the simplified case is substantially applicable 

to the more complex one. In the Vee reflector there is always a concen¬ 

tration of induced current near the foot of the perpendiculars from the 

aerial on to the sheets. It is thus to be expected, and is confirmed by 

experiment, that a strip of sheet metal or gauze some wide attached 

to the grating in the region of intense current density will much improve 

the overall performance of the netting, or the grid-like, sides of the Vee. 

The more obvious application of the grating problem is to cases where 

screening is desired, but there are occasions when it is required to know 

how much undesired screening will be caused by some grating which is, 

so to speak, in the way of an aerial. Thus economy of masts and ground 

space often makes it necessary to erect aerial curtains in close proximity 

to one another and so disposed that one has to radiate through the other, 

‘firing through’ as it is called in technical jargon. In such circumstances 

the curtain fired through commonly operates at a wavelength at least 

twice that of the curtain firing. Since the side spacing of a curtain is 

usually near ^A, the spacing of the curtain fired through will be A or 

more with respect to the field incident on it. Since the wires of such 

curtains are tuned to the operating wavelength they will be wildly out 

of tune to the radiation fired through them. And in the circumstances 

we have in mind their radius is commonly extremely small, say 6/A of 

the order of 10*-^. Therefore Fig. 5.16 shows that the mutual effect will 
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then always be negligible compared with the self-inductance effect and 
so the current induced in the obstructing curtain will depend almost 
entirely on the diameter of its curtain wires. It is a case where the 
screening is very small because the wires are extremely fine and not 
because the spacing is large compared with a wavelength. The method 
of estimating the current induced in any specific case will become 
more obvious after § 5.8, and the reader should then be able to deal 
with any particular application without further assistance. 

5.7. Screening qualities of a squirrel cage of wires 

Another estimate of the screening qualities of a grid can be made by 
studying the problem of a long current filament surrounded by a squirrel 
cage of n equally spaced thin wires each distant R from it. It follows 
readily from equation (1.49) and § 1.14 that, if each wire of a cage carries 
a current I, the inphase component of field at the surface of any one 
of the even number n of wires is expressed by the relation 

= n/[J§(i)+2{J^(Ar)+/i„(*)+J|„(^)+...}], (5.4) 
TTd 

where k = 27tRI\. The corresponding expression for Eq is obtained by 
replacing J^(k) by J(k)Y(k), When n tends to infinity the right-hand 
side of (5.4) reduces to nIJl(k), the value appropriate to a tube carrying 
a uniformly distributed current nl. Here we realize that if R is such 
as to make J^ik) zero, then Ep will be very small and the screening 
properties need close examination. There is also need to distinguish 
two cases. One where RjX is notably less than unity and we are trying 
to estimate the effect of big holes in a structure which is desired to be 
a complete screen to some internal wire or piece of apparatus, and the 
other in which RjX is fairly large and we are likening the cage to the 
open screen of a Vee reflector. In the first case J^{k) = 0 need not arise, 
in the second case it is very liable to arise. Suppose RjX = 0*384 so 
that J^{k) == 0 for the first time. Then evaluation from (5.4) gives the 
values collected in Table 6.1 below. 

Table 5.1 

N 2 1 S 4 e 

cEp 

arri 

i 

0*763 0*218 003 0-00016 

cEp 
0-0076 2X10-* 

aiml 
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It follows from this that if the circumferential spacing is less tham 

0*6A, then Ep is less than 1 per cent, of the isolated value and the cage 

differs insensibly from the complete cylinder. 

We will now suppose the circumferential distance between the wires 

is A/10 and evaluate Ep for various n, expressing it in terms of the 

limiting value for n. infinite and nl — constant. The results of this 

computation are collected in Table 5.2, and they show that the approach 

Table 5.2 

n RJX k uEpIcoEp— 1 

4 0064 0-4 208x10-8 
6 0096 0-6 2-4 xlO-** 
8 0128 0-8 7-0 X I0-“ 

10 0160 1*0 23 X10-=" 

to a continuous tube is extremely rapid for ^gA spacing, irrespective of 

the radius of the cage. If the arcual spacing does not exceed |A, then 

i»A > 27tR and k does not exceed \n. We have seen that JJJc) attains 

its first maximum when i is a little greater than n and the value of this 

maximum does not much exceed the maximum of in this region 

of k: thus «^8(^) attains its first maximum, of value 0*25, when k = 20 

and then JJ,(20) == 0*l-7. Moreover /i8(10) = l'5x 10~*. Consideration 

of this will show that, so long as the spacing does not much exceed JA, 

then {JJjk)IJQ{k)Y cannot exceed a few parts in 10®, so long as k is not 

very close to a value which makes Jo(k) zero. It is clear that, for spacings 

at least up to ^A, the inphase component of field differs insensibly from 

what it would be if the cage were replaced by a tube carrying the same 

total current. This corresponds precisely with the result of the analysis 

of a flat grating; provided we remember that with a tube (or cage) the 

actual value of Ep depends very much on the radius of the tube. As 

with a flat grating, the magnitude and phase of the induced currents 

will depend enormously on the radius of the individual wires of the 

cage. The possibility of infinite fields when the spacing is A does not arise 

in a cage, because this spacing will never give perfect co-operatiop of 

phase from all contributing currents: it appeared in the analysis of the 

flat grid only because the width was infinite. The equation of the form 

of (5.4) is not suited for calculating Eq, as its sum must converge 

logarithmically to infinity because it includes the self-inductance term 

which runs to infinity as the radius of the wire tends to zero. The 

difficulty cannot be avoided by using (1.49) to calculate the field at 

one wire due to the remaining (n—1) wires, as that series avoids 
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divergence at ar = A; only because the terms are multiplied by Qosnd: 

an infinite series is unsuitable for calculating Eg at a radius very near 

B and it is only there we are interested in Eg in this particular problem. 

Accordingly we must calculate Eg from the relation 

E ^ 

where p is the typical chord from wire number 1 to any other wire. 

This has been done for an arcual spacing and various n; the results 

are collected in Table 5.3. 

Table 5.3 

Arctuil spacing 

n RfX k B 1 I B-nJ^Yo 

4 wgiiifd -0*81 -2*34 + 1*53 
6 -1*48 + 1*27 
8 1 0*128 ■BIB + 0*27 -0-616 + 0*88 

12 i 0*192 1*2 + 3-87 + 1-84 + 2*03 
16 1*6 + 4*57 + 3-07 
20 2*0 + 3*8 + 2-27 + 1*53 

In this table the column marked B shows the mutual term while the 

next column is proportional to Eg for a tube of the same radius as the 

cage. Our main interest is in large cages, because we are thinking here 

about aerial reflectors. Accordingly, take n = 20 in the table above: 

for this == 1*^3: reference to Fig. 5.16 shows this equals 

-~ro{a6) for a wire in which 6/A = 0*016. Hence if the 20 cage wires 

have this radius, then Eg at their surface will be the same as at the 

surface of a tube of the same radius. Such wires would be small com¬ 

pared with the spacing and with i?, and so comply with the underlying 

approximations of the solution. We have seen that Ep always differs 

insensibly from the "tube valued hence for n = 20 and 6/A = 0*016 

the impedance of each wire will have twenty times the magnitude and 

the same phase angle as the impedance per unit length of a tube of the 

same radius as the cage. Accordingly such a cage must act as a perfect 

screen to a coaxial current filament, to the order of accuracy inherent 

in the approximate solutions. Now suppose wires for which 6/A = 0*016 

are used in a cage with n = 12, then Eg is proportional to 

2*03—1*53 0*6 

and Ep is proportional to 12t7§(l*2) = 5*4, The phase angle would then 

be 6*3° leading, whereas it would have led by 18*7° for a tube. It should 
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be clear from the last section that the screening ratio would be approxi¬ 

mately equal to 1—sin 13*4® = 0*77. If the radius of the twelve wires 

had been such that 6/A = 0*008, then the screening ratio would have 

been very near unity. We may summarize these results as follows: 

If the arcual spacing is and the shadow ratio near then the 

screening ratio is likely to be at least 80 per cent, for all cages whose 

diameter exceeds about JA, and can always be made to differ insensibly 

from unity by nice choice of the radius of the cage wires. 

Table 5.4 records a numerical example where the arcual spacing is JA. 

Table 5.4 

Arcual s'pcLcing JA 

n /?/A k B nJf^Yo 

6 0-24 1-5 + 2104 M73 + 0*9:11 
8 0-32 20 + 1*848 0*915 + 0*9:13 

10 0-40 2-5 +0*686 -0*241 1 +0-927 

It shows that B—nJ^Y^ is constant to 1 per cent, as n increases from 

6 to 10: reference to Fig. 5.16 shows that Eg will be zero if the wires 

are such that 6/A = 0*04, and then the screening ratio will be substan¬ 

tially unity; the shadow, ratio is then 0*32. Reference to the last section 

will show that when gjX = J the correct value of 6/A was 0*032. Thus 

it would appear to make little difference whether the grating is flat and 

of infinite width or a cage whose diameter is only of the order of one 

wavelength: we may feel confident that a grid reflector whose rods are 

parallel to the electric field will behave substantially as a continuous 

sheet provided the shadow ratio is of the order of one-fifth and the 

spacing not much more than JA. 

Note: For a more detailed treatment see Journal LE,E, vol. 91, Part III, 
1944, 14. 

5.8. Three simple problems of rod reflectors 

(a) Aerial with one parallel rod as a reflector 

We saw in Chapter II that if two equal parallel currents in phase 
quadrature are separated by JA, then the equatorial pattern is heart- 
shaped with zero field in one direction in the plane of the pair. We will 
now see if this can be achieved by placing a rod distant JA from a long 
in-line array. Reference to tables will show that at this distance 
c\E\/aiTl = 0*626 lagging 41®. The ^parasite’ rod must then have a 
diameter such that the phase angle of its impedance is 90—41 49®. 

At the surface of the rod Eg/Ep = —}^(a6), and hence in this case we 
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must choose b so that —Y^j^ab) = tan 49° = 1*16 and thus (see Fig. 6.16) 

6/A = 0-028. At the surface of this rod 

== 1-52; 
anl 

hence the ratio of the induced to the inducing current is 0*625/l-52 = 

0-41. If the field in one direction is to be zero, the two currents must be 

in phase quadrature and also equal in magnitude, and so we find these 

essential conditions cannot be obtained when a long in-line array 

induces current in a thin rod distant JA from it. If the radius of the 

‘parasite rod’ is such that 6/A = 0*028, then the field in the plane of 

the two rods is proportional to (1+0*41)7 in one direction and to 

(1—0*41)7 in the other, the ratio of these two being 2*4. On bearing 

±90° the field would be proportional to (12±()-4P)^7 = 1*097 and thus 

is 1*09/1*41 = 0*77 of the forward field, as compared with 0*71 for equal 

currents in quadrature. To obtain the power gain we must calculate 

the inphase field at the ‘driven in-line array’, and this arises from the 

current in itself and from the quadrature field there of the induced 

quadrature current in the parasite rod. Since l^(7r/2) == 0*41, it follows 

that the inphase field at the driven in-line array is increased by the 

parasite in the ratio 1 ±0*41 x 0*41 = 1*168 and therefore 

1-168 

Had the currents been equal and in phase quadrature the gain would 

have been 2, and hence the parasite does produce a reasonably close 

approximation to the best obtainable result and does it automatically 

and without the practical difficulty of driving both in-line arrays with 

currents of equal magnitude and quadrature phase. Note, however, 

that the performance we have estimated can be obtained only by 

correct choice of the radius of the parasite, and then only supposing 

that 6/A = 0-028 is small enough not to strain unduly the approxima¬ 

tion inherent in the solution. The exact solution for a parasite rod of 

any diameter is given in the next chapter. Note also that no system 

of tuning the parasite can improve tho performance since it cannot 

make the induced current as large as the inducing current. We have 

obtained quadrature phase by adjusting the diameter of the rod. The 

phase could also be adjusted in practice by tunipg methods, and it 

might happen that a slightly better performance would result from a 

larger induced current which was not truly m phase quadrature. Or, 

if we look at the problem from a slightly different aspect, we see that 
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the tuning adjustment which gives optimum gain or optimum ratio of 

forward to backward field is not likely to be very sharp. 

(6) Aerial and two parallel reflecting rods 

Now consider two parallel "parasite’ rods, JA apart, placed symmetri¬ 

cally with respect to a long in-line array which is JA from the plane 

through them; the driven aerial and the two parasite rods being thus 

at the corners of an isosceles triangle whose base is twice the perpen¬ 

dicular from apex on to base. In proposing this disposition we are 

thinking first of the idealized problem of an aerial JA in front of an 

infinite sheet, then of the width of the sheet being reduced from infinity 

to |A, then of this strip of sheet being replaced by two round rods at 

its bounding edges. In the presence of each other the radiation resis¬ 

tance of each of the two parasitic rods will exceed the isolated value 

by the factor {1+J{)(7r)} = 0-696, while the mutual reactance is propor¬ 

tional to Y^irr) == +0-33. If their radius is such that 6/A = 0*03, then 

it follows from Fig. 5.16 that the reactance of each is proportional 

to 1-1+0-33 = —0-77, and hence the impedance of each is propor¬ 

tional to (0-772+0-696^)1 = 1*04 with lagging phase angle equal to 

arctan 770/696 = 47-7*^. Each parasite rod is distant 0-35A from the 

driven in-line array and reference to tables will show that at their 

centres c\E\ 

arrl 
= 0-53 |7^. 

Accordingly the current induced in them will be 0-53/1-04 = 0-51 of 

the current in the driven array and leading it by 102—47-7 = 54-3°. 

To calculate the polar diagram of resultant field at a great distance we 

replace the two induced currents by a single current half-way between 

them and having an apparent strength 2x0-51/cos(j7rsin^) for a 

bearing at angle 6 from the normal; the phase of this single equivalent 

current always lags 126° on the "driven’ current /, distant JA from it. 

In the forward direction the resultant field is the sum of a vector JEJ, 
and a vector l-02jS?Q lagging the first by —54-3+90 = 35-7°: this sum 

is l*9J2?o- backward direction the resultant field is the sum of a 

vector l-02iB'o and a vector Eq lagging the first by 144*3°, and this sum 

is 0-61£i,: hence the forward to backward ratio is 3-1. On bearing ±90° 

the net field of the two induced currents is zero, because they are equal, 

oophased, and separated by ^A: hence the resultant field on these 

bearings is Eq, and this is 0-62 of the forward field. 

We will now calculate the radiation resistance of the driven array. 

Each induced current is — 0-31(1+l-39j), and for separation 0-36A 
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we have J^iar) = +0*110 and l^(ar) == +0*52. Hence the field at the 

surface of the driven current is given by the formula 

cE 

anl 
= {~l+jro(<^6)}+2xO*31(l + l*39j)(--0*ll+0*52j) 

- ~-l*52+j{ro(aft)+0*226}, 

showing that the presence of the induced currents increases the radia¬ 

tion resistance in the ratio 1*52: the power gain is (1*9)^/1*52 == 2*35. 

If the two rods were replaced by an infinite sheet, then we should have 

had cEp 

arrl 
■l+Jo(7r)= -.1*35, 

and the power gain would have been equal to (2)V1*35 == 2*96. There¬ 

fore the general performance with two thin rods is not vastly inferior 

to an aerial and infinite sheet. We have seen that the fractional field 

in the plane of the rods is 0*52 (contrasted with zero for an infinite sheet), 

and it would be instructive to compare this value with the fractional 

field in the plane of a semi-infinite sheet with an aerial JA from the edge 

and JA from the sheet. The appropriate value can be interpolated 

roughly from Figs. 5.4 and 5.5, which relate to xjX zero and 0*41 respec¬ 

tively: in these the fractional field in the plane of the half-sheet is 0*78 

and 0*42 respectively, suggesting it would be near 0*5 when xjX = 

In this numerical example we chose arbitrarily to make 6/A = 0*03: 

to assess the effect on the result of this arbitrary choice we will now 

take 6/A = 0*06, noting, however, that the approximation may be 

scarcely valid for so thick a rod. From Fig. 5.16 we now find the 

reactance is proportional to —0*63+0*33 = —0*30, and then it follows 

the impedance is proportional to 0*76 and its lagging phase angle is 

23*3®: in this case = 0*7/^ and has a leading phase angle of 

102-23*3 = 78*7®. 

The forward field is now found to be 2-S9Eq and the backward field is 

0*46jE^Q, giving a front-to-back ratio of 5*2. The fractional field at 

6 = ±90® is 0*42. The field at the surface of the driven current is now 

given by the formula 

^ = {_l+jT„(o6)}+2(0-137+0-69j)(-0-H+0-52j) 

= _1.76+j{7„(a6)H-0-006}; 

hence the power gain is equal to (2-39)®/l'76 = 3’3: the approximate 

solution has probably led to an over-estimate of the gain. 

If the rods were thin wires tuned to resonance by suitably adjusted 
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Franklin coils the induced current would be (0-53/0-695)/ = 0*761 and 

would lead by 102°. Then the forward field would be 2*5lJPo and the 

backward field 0*54jEJo, giving a front-to-back ratio of 4*7. The frac¬ 

tional field on d = would be 0*39. For the field at the surface of 

the driven current we now have 

^ + = _1.75+yft(»4)-0-33). 

It follows from this that the gain would be 3*6 and presumably this 

value could be obtained if the phasing coils were correctly adjusted. 

The examples of the previous two sub-sections surely will inspire 

reasoned confidence in the expectation that finite sheets or even a few 

rods can produce results comparable with those appropriate to infinite 

sheets. 

(c) Aerial JA in front of a three-rod grating 

The arrangement and notation is explained by Fig. 5.17. Let the 

rods of the grating be such that YQ(ab) = 1, which is 6/A == 0*035. Let 

El and fields at rods 1 and 2 respectively due to unit current 

in the aerial. Then substituting in (1.23) the values of Jq and Yq appro¬ 

priate to the relevant distances gives 

^ = 0-382+0-180j and ^ = - 0-472+0409j. 
air an 

Let E'l and E2 be the field at rods 1 and 2 respectively due to the 

induced currents and then 

r 
^ (-l-j)/,+(0-303+0-330J)72+(0-22+0-23j)/i 

077 

= —(0-780+l-23j)/i+(0-303+0-33j)/2 

and ^ = 2(0-303+0-33q/)/i-(l+j)/2. 
an 

The net field must be zero at the surface of the rods and therefore 

0 = 0. Using this condition we obtain two 

simultaneous equations for and 1^ and on solving them obtain 

/i = 0-38+0-2jand Ja = (0-205+0-676j), or |/i| = 0-43and l/jl = 0-61. 

It happens that the ratio of these two currents is almost exactly in the 

same ratio as the inducing field irom the aerial; this is fortuitous, since 

the ratio depends on the value of bjX. 

Because the aerial is in front of the grating it is only the quadrature 
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components of induced current which tend to make the backward field 

zero. Consideration will show that the forward field is 

Ep = (l + 2x0-2+0-575)-(2x0*38+0-205)j= (l-975~0-965j), 

or \Ep\ == 2‘19, and the backward field is Ep = (0*025+0*965j), or 

\Ej^\ ~ 0*966. In the plane of the grating we have 

E^,^ = (l*205+0*575j)-2(0*38+0*2j) = 0*445+0*175j, 

Fio. 5.17. 

or \E^I2\ = 0*476. The field of the grating at the aerial follows readily 

from the values given already for E^ and E^, and hence 

cE 
== 2(0*382+0*180j)/i+(—0*472+0*409j)/2 

(iTT 

= —0*988+0*857^, on substituting for and /g. 

The field at the surface of the aerial due to unit current in itself is 

cEjan = — l+jF(a6): accordingly the net field at its surface is 

rV 
— =—1-988—0-143i, if blX = 0-0SS. 
an 

This shows that the presence of the grating doubles the radiation 

resistance, and so the forward power gain is (2-19)*/l-988 = 2-42, as 

compared with 2-96 for an infinite and continuous reflecting sheet. 

The results of the last three examples are summarized in Table 5.5. 

Table 5.5 

Number of rods. 1 2 3 sheet 
Forward field . 1-41 1-9 219 2 
Front-to-back ratio . 2-4 3*2 2-26 00 
Power gain 1-72 2-36 2*42 2-96 

The table demonstrates that a very simple reflecting screen produces 

a close approximation to the ideal limit in respect of forward field and 

of power gain but is not very effective in making the backward field 

very small: the polar diagram is bound to difiPer markedly from the ideal 

on bearings greater than about ±60° from the normal to the screen. 
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The reader should not forget that the results collected in the table above 

are not completely general because they have depended on the arbitrary 

choice of 6/A: had 6/A been made very small indeed, then the effect of 

the reflector would have been negligible. But if 6/A is not less than 

about 0*04, then it is evidently a simple matter to produce a very 

effective screen from two or three rods. Analytical examples make it 

quite evident that sheets whose width is a wavelength or less will be 

very effective reflectors and that then the performance cannot be very 

sensitive to their geometrical shape, which is what the optician calls 

the ‘figure’ of the mirror. 

(d) Currents induced in a grid of three wires by an incident plane wave 

We will now calculate the currents induced in a grid of three wires 

by a plane wave incident along the normal, the electric vector being 

parallel to the wires. By symmetry, similar currents will be induced in 

the outside wires, namely, Nos. 1 and 3; but the currents induced in 

them need not necessarily be equal to the current induced in the middle 

wire. The induced currents must be such that the three together pro¬ 

duce equal fields at the surface of each of the three wires and this field 

must be equal and opposite to the incident field Eq. Let each wire have 

a radius 6 and let the induced currents produce a field E^ at wires 1 

and 3 and E^ at wire 2. Then 

^ = {—l+jro(o6)}/i+{—«4M)+jI^oH)K2+{—'4(2a«i)4-jro(2ad)Ki 
an 

and —- = {— 1 
an 

Take djX — then 

J^{ad) = -0-304, Y^(ad) = 0-329, 

Jo(2a(i) = +0-22, Yo{2ad) = -0-23. 

First take 6/A = 0-036 (Ii(a6) = — 1); then on substituting in the above, 

making = E^ and solving, we obtain IJI2 — 0-694(1—O-Olj), show¬ 

ing that the middle current is much the largest and all are sensibly 

cophased. On taking 6/A = 0-007 (Y^iab) = —2) and repeating we obtain 

Ji/Ig = 0-78(1-4-0-062^), showing that the middle current is again 

much the largest and that all are sensibly cophased. We note with 

interest that a fivefold increase of 6 reduces the ratio of IJIi by only 

10 per cent, and thus conclude the ratio is very insensitive to the radius 

of the wire. 

For the larger wires we find cEJmrIx = 0-832(l-|-0-94j), whereas for 
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a single wire we should have had cEJanli = (1+j); for the smaller 

wires cEJaTrli = 0*50(14"2*6j) as compared with (l+2j). In the first 

case a7r\Ii\/c = 0-SSEq and in the second case a7r|/i|/c = 0*11^Eq\ this 

shows the magnitude of the currents is not very dependent on 6. In 

short, the diameter of the wire has a large control on the phase of the 

induced current but small control on its magnitude or distribution 

between the three wires. 

If the three-wire grid were replaced by an infinite sheet the induced 

density would be i = cEJ^tt, If we imagine the total current induced 

in the grid is smeared uniformly over the width, the average density 

would be i' = it may be found from the values above that 

\i'\ =: 0*97ci?Q/47T for the larger wires and |i'| = ()*75cJSo/47r for the 

smaller wires. Both these values are reasonably close to the limit for 

a continuous sheet. 

We may summarize these results as follows. All three currents will 

be sensibly cophased with one another, but will lag the incident field 

by an angle approximately equal to the impedance angle of a single 

isolated wire; the middle current will be about 1*35 times the outside 

currents and the average ‘smeared density’ will be near cEJiTr. 

It is important to realize that the middle current is considerably 

larger than the other two, because this will happen in a receiving curtain 

unless steps are taken to force equality. And again, the currents will 

not be equal in all three members of a transmitting array unless steps 

are taken to feed forcibly more current to the two outer members than 

to the middle member. This important practical point does not seem 

to be realized, and it appears to be assumed that similar feeding cables 

will feed similar currents to all three members. The uneven distribution 

will cause the pattern to differ appreciably from the assumed ideal, and 

it will reduce the power gain because it will increase the width of the 

main beam. To bring home this point we will calculate the power gain 

of a three-member curtain in which ail three currents are cophased but 

the loading is 1:1'35:1. 

For an outer wire we have 

—1 + 1-35 X 0*304—1x0*22 == —0*81, 

and for the middle wire, 

Ep^ —1X1-35—2X—0-304 = —0-74. 

The total work is 

P = 2xl*X0-81+l-362x0-74 = 2-96 
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and the forward field is 3-36: this gives a power gain equal to 

W=3.75. 
2-96 

Had the loading been uniform we should have had P = 2*33 and hence 

0 == 3*86: the loss of gain is negligible. 

This example is also instructive as a guide to the current induced in 

a flat strip of width A, a problem which can be solved by the help of 

Mathieu functions, but the computation is not yet available. Presum¬ 

ably we shall expect a mean density near with appreciable 

concentration towards the middle. 

(e) Currents induced in a grid of four wires by an incident plane wave 

From symmetry the current induced in wire no. 1 equals that induced 

in wire no. 4: likewise that induced in no. 2 equals that in no. 3. 

Proceeding as in the last section and taking Y^iab) = — 1, the solution 

gives I1/I2 = 0*87(1 —0*017j), again showing that all currents are sub¬ 

stantially cophased with one another and that the two inner currents 

are larger than the outer currents. The ratio now is 1*15 as contrasted 

with 1*43 for the three wires, suggesting a rapid approach to the 

limiting case of infinite "width. Now we find cEJanli = 0*725(1+0*97j) 

or a7T|/i|/c = 0*99: once more the phase angle of the current, relative 

to the incident field, is very nearly the same as the phase angle of 

the impedance of an isolated wire. The average ‘smeared density’ is 

i' = 2(/i-f-/2)/3rf, and it follows from the above that | i'| = 0*9c£^o/47r, 

and this is, again, close to the limiting value. 

Now consider the power gain of a four-wire curtain bearing cophased 

currents with loading 1: 1*15:1*15:1. The forward field is 4*3: the work 

from each of the outer wires is 0*72 and from each inner wire is 0*95, 

and then it follows the gain is 5*5. Had the loading been uniform the 

gain would have been 5*9. 

5.9. Current induced in a thin rod placed perpendicular to the 
electric vector 

In this problem two distinct component effects must be considered. 

Firstly, equal and opposite charges will be induced in the half-cylinders, 

separated by the diameter which is perpendicular to the electric field, 

and this produces a line doublet pointing along the field. Secondly, the 

incident field has a curl, and this will induce a current flowing round 

the surface of the rod; or according to the loose terminology commonly 

used in low-frequency technique, a circumferential current will be 
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induced by the magnetic field of the wave, which field is parallel to the 

rod. The appropriate equations for the line doublet are given in (1.58) 

and (1.59). The field along the axis of the line doublet and near to it 

is given by , ^ j. 
(5.5) 

The field of the current I flowing round the surface of the tube is given 

by (1.52), and accordingly the field at the surface of a tube of small 

radius b is 
(5.6) 

Now approach the problem in a more elementary manner. If a cylinder 

of radius b is transverse to a static electric field JS/, it is well knownf 

that a charge density Q sin ^ is induced on the surface of the cylinder 

and such that ^Qtt = E: moreover, the external field of this induced 

charge density is the same as that of a line doublet of moment M such 

that M = b^E 12. Accordingly the external electric field perpendicular 

to the rod and along the axis of the line doublet is 2Jf/r2 == (b^jr'^)E. 

On writing == —jpQ in (5.5) we obtain E^ == (2ilf/r^)(l+ji7raV^): the 

inphase component of this expression is the same as if the field were 

static and the quadrature term is relatively insignificant. This shows, 

as was natural to expect, that a field Emipt, incident perpendicular to 

the small rod, will induce a line doublet of moment b^EI2: therefore 

b^EI2 = Iiljp^ The limiting form of (1.53) shows the internal magnetic 

field equals 477/2, since H = E in the incident wave. We have now 

found the two components of current in terms of the incident electric 

field. Accordingly the re-radiated field at large distances is, from (1.58) 

and (1.52)», 
- (cos <f>+i){—Jo(ar) -\-jY^{ar)}. 

If the electric field had been parallel to the thin wire we should have had 

Accordingly the refiected fields on the two dispositions are in the ratio 

3 27rS6* 

2^ A* 
Yoiph) 

and this tends to the value |o*6®loga6 when ab is very small: when 

bjX = 0'016 the ratio is 0-035. Thus, as was to be expected, the scatter¬ 

ing or reflecting effect of a thin wire is very much smaller when it is 

t See, for example, MouUin, Principles of Electromagnetism, 206. 
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transverse to the field than when it is parallel to the field. It is interest¬ 

ing to note that the contribution to the scattered field arising from the 

circulating current (loop effect) is never less than half the contribution 

from the line-doublet effect. 

5.10. Grating of thin wires perpendicular to the electric vector 

Having just seen that a single transverse wire is very ineffective as 

a reflector, it is not worth while to develop a solution for an infinite 

grid corresponding to § 1.19 for a grid of wires parallel to the electric 

vector. It will suffice to indicate the steps of the process which would 

have to be gone through. 

It is required to find the mutual effect due to a grid of similar and 

parallel line doublets separated a distance g. Then it follows from (1.59) 

that the inphase component of electric force at the centre of each line 

doublet and perpendicular to its infinite length is 

cEp ^ 112 y 
airll ^ ^ nag 

The sum of this series does not appear to be known, though it may 

possibly be derivable by means of a Fourier process corresponding to 

that used in § 1.19. Resort to tables of shows that cEp == 2-04n{Illg) 

when ag = 1 and cEp == 2*047T(lllg) when ag = 3. Thus it would seem, 

that for spacings up to about ^A, Ep differs insensibly from what it 

would be in a continuous sheet if the current were ‘smeared’ uniformly 

across it: here there is correspondence with a grid which is parallel to 

the electric vector. 

Close examination, which it is not worth while to reproduce in detail, 

shows that the mutual quadrature field from the grating cannot suffice 

to reduce very much the effective capacitance of each thin wire, and thus 

effective screening cannot be attained by nice choice of the diameter 

of the wires. The induced currents in each wire of the grid will not differ 

much from what they would have been if the wire had been isolated, 

and these were calculated in the last section. 

5.11. Netting with square mesh of side g 

Let the netting be placed perpendicularly to the direction of propaga¬ 

tion of the incident wave: then every wire of the netting lies everywhere 

in the plane of the magnetic and electric vector but is not necessarily 

parallel to the electric vector. Let one set of wires be inclined at ^ to 

the electric vector and the other at (90®—^): then the field along one 

set is E co8if> and along the other is JE^sin^. We shall assume the wires 
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SO thin that the currents induced in them by the components of field 

perpendicular to their length are negligible: accordingly the only 

significant currents are those flowing along the length of the wires and 

the two perpendicular grids of current have no appreciable interaction. 

The field reflected by one set will be parallel to it and proportional to 

Eco^(/>; and similarly for the other set, but proportional to ^sin^. 

Consideration will show that the vector sum is parallel to the incident 

field and proportional to E(sin^<f)+cos^<f>) = E. Hence, to the order of 

approximation we have used, the screening ratio of a square mesh does 

not depend on the inclination of the wires to the electric vector and is 

the same as a single grid of wires, of pitch g, parallel to the field. It 

seems probable that a hexagonal mesh is equivalent to a single grid 

of pitch ^g. 



VI 

SOME PROBLEMS OF CYLINDERS 

6.1. Introduction 

In order to restrict the length of Chapter I we solved there only the 

two simplest problems of the cylinder, namely, a uniform current density 

flowing axially and a uniform current density flowing circumferentially; 

see §§1.8 and 1.15 respectively. These solutions must now' be generalized 

to apply to any distribution, for only then can we find the resultant field 

of a long filament parallel to or transverse to a cylinder of any radius. 

Any distribution of axial or circumferential density can be expressed as 

a Fourier series, and hence the field of any given distribution of current 

can be found if we know the field due to a sinusoidal distribution of 

current density. We shall first consider currents which flow along the 

axis of the cylinder and with constant phase along its infinite length; 

accordingly we do not have to take account of electric charges and our 

problem is only a generalization of that solved in § 1.8. The effect of 

the inevitable charges which must accumulate at the very distant 

ends of the cylinder has been considered in § 1.7 and shown to be 

negligible. Charges must be present if current flow^s round the circum¬ 

ference, save only if the density is constant: consideration of circum¬ 

ferential flow is delayed until the end of this chapter. 

6.2. Field of a sinusoidal distribution of current density flowing 
along a cylinder 

Let Fig. 6.1 represent the cross-section of a cylinder, of radius i2, 

with current flowing perpendicular to the plane of the paper, alternating 

with frequency / = and distributed with density cos a round 

the circumference: thus if it is a positive maximum at A in Fig. 6.1 

it is zero at B and B' and a negative maximum at A\ At any given 

instant of time current is flowing in the same sense over the whole of 

one half-circumference and in the opposite sense over the whole of the 

other half. Consider the field at a very distant point Q on bearing 6, 

It is the sum of contributions from pairs of similarly placed and 

oppositely directed filaments, such as those typified by P and P' in 

Fig. 6.1. The vector diagram of field due to one such pair of unlike 

filaments is shown in Fig. 1.8 and the resultant is seen to be in phase 

quadrature with the field which would be due to an imaginary current 

Imipt at the centre of the cylinder. If unit current in either filament 
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alone would produce a field at Q, then the two together produce a 

field 2jEJosin^, where ^ = (27rJ?/A)oos(a—0) = kco^{oL—B). Accordingly 

Fig. 6.1. 

the resultant field at Q, due to all the filaments round the circumference, 

is given by +^,2 

E = 2JEJq/i cos a sin da. 

+7r/2 
E C 

. — = 2/i ^ cos a sin{k cos(a—6)} doc 
Eq J 

—77‘/2 
+ ir/2 = 4/iiJ J {Ji(i5;)cos(a—0)—Jg(A:)cos3(a—0)+...}cosa da 

= 4/ii? J (Ji(A)(cosaco80 + suiasin0)—t73(^)cos3(a—0)+ 

= 27tIi BJi(k)coa 6. 

Hence, by •(1.23), 

cE „ 

+J5(ik)co8 5(a—0)—.. .}co8 a da 

(6.1) 

= j 2jr.R/i(^)co8 ./o(«^)+jI^o(«»')}; (6.1a) 

the factor^' i8 required to show that the resultant field is (see Fig. 1.8) 

in leading phase quadrature with that of a current I sinp^ at the centre 

of the circle. 

mi_ ^E « TiT/i_v_ne tr/_\ 'r/_\1 //» ii 
= 2'7TEJi{k)oos6{—YQ{ar)—jJf^{ar)}. (6.16) 

When ar is very large Yf^(ar) ->■ Ji{ar) and J^(or) = —Yj{ar) and then 

we may write (6.16) as 

/» Jj] 
—p == 2nRJ^{k)ooaB{—Ji{ar)-\-jY^{ar)). (6.2) 
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It follows from equation (1.43) that (6.2) is a solution of Maxwell’s 
equations and thus must be valid everywhere, not only at infinity; it 
must hold for all values of r down to R and is the counterpart of (1.28). 

We must interchange ar and k for internal points and then it becomes 

~ = %-nR{-Ji(k)+jYi(k)}J^(ar)cos 8. (6.2 a) 

The field at the surface is 

^ = 27!R{-Ji{k)+jY^{k)]Jy(k)oose. 
0/TT1 

The radiation resistivity is anjc x 2TTRJ\{k)\ this is zero when /^(fc) = 0, 
which occurs for the first time when RjX — C*61. The total output is 

27r 

P = ^iEpRde = ^ 

0 

Reckoning in terms of the total mean square current round the circum¬ 

ference, the radiation resistance is thus seen to be 307r^t/f(fc) ohms per 

half wavelength. 
Now consider a tube* bearing an axially flowing current distributed 

as /g cos 2a: then if current is flowing upwards in two opposite quadrants 
it is flowing down in the other two. If these densities were concentrated 

at their points of maximum we should have the four current filaments 
which form the image system of a right-angled reflector. The field on 

bearing 0 = 0 of such four filaments must be in antiphase with that of 

an imaginary positive filament at the centre, because the field of the 
negative pair is —2Eq while that of the positive pair is less than 
since they are not coincident. Applying this argument to the density 
/2 cos 2a and proceeding as in (6.2), it follows that 

=3H^RJ^(k)ooB 2e{-J,(ar)+jY,(ar)} 

— 2iTRJ^(k){—J2(ar)-\-jYjl(ar)}{iOB2d, (6.Z) 

since Jf,{ar) —J^{ar), when ar -> oo. 

Corresponding treatment of the densities J, cos 3a, /4OOS41X, etc., 
shows that (6.3) can be generalized and gives 

= 2rrPJ„{i:){—J„(ar)+jr„(ar)}cos»0 (6.4) 
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as the general expression for a current density I^ cos n6: for internal 

points ar and k must be interchanged. 
Note that the field is zero everywhere in the diametral planes passing 

through the points of zero current density and, accordingly, perfectly 

conducting and infinitely extended sheets may be placed in these planes. 

In other words, we have found the solution for a Vee reflector, of any 

angle, excited by a continuous arc of aerials at radius B and with 
current loading cosnd. We note with interest that the polar diagram 

is a sinusoid at any distance and thus side lobes are absent. It is an 

extension of the principle, developed in Chapter II, that the lobes of a 

flat array are reduced by concentrating the current in the middle 

portion: now we know how to make a lobe-free beam of any angular 

widtli. The forward field varies as Jn(k) and hence passes periodically 

through zero at intervals which tend ever closer to JA as k increases. 

In this respect the curves of forward field resemble the families depicted 

in Figs. 3.9-3.13 for a single filament on the bisector of a Vee. Using 

the notation np ^ tt used in Chapter III, the total current in the ‘arc 

of aerials’ is / = 21^ Rjn and then the equation of the pattern may be 

written ^ 
= 7TnJ^^(k)cosn0, (6.5) 

where Eq is the field which would obtain if the total current in the 

arc were concentrated in a filament and removed from the Vee. This 

shows there is one respect in which the present system differs markedly 

from that described by the family of curves Figs. 3.9-3.13. For in them 

the maxima of forward field, due to a given current, did not decrease 

as R increased, whilst here the said maxima tend to vary as i?~l. We 

found in Figs. 3.9, etc., that the forward field varied approximately as 

J,^{k) when k <n: now it varies precisely as Jn(k) for all values of k. 

It is easy to show that the power gain, relative to a single isolated 

filament carrying the same total current, is for aU values of k. It 

follows at once from Poynting’s theorem that the gain must be indepen¬ 

dent of fc; because the output over the Poynting surface is proportional 

to the mean square field strength and this remains equal to one-half 

the square of the maximum since the pattern is always a sinusoid. 

This is also the reason why the gain tends to 4n for a filament close to 

the apex of a Vee. When a Vee is excited by a sinusoidally loaded arc 

of aerials there are no stations for maximum gain, but the radiation 

resistance depends enormously on Jfc, and falls periodically to zero. 

The fact that the gain can never exceed 4n for a sinusoidally loaded arc 
47M.1 o 
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but can much exceed this value for a single filament may be compared 

with the reduction of gain which occurs when the loading of a curtain 

or in-line array is not uniform. 

It should be noted that the external field is precisely zero every¬ 

where (for r > B) when — 0, a result which cannot occur when 

the current is concentrated into a single filament. It should also be 

noted that (3.13) can be written down at once, from (6.5), by express¬ 

ing the concentrated loading as a Fourier series. It is instructive to 

consider the particular case when the length of the sinusoidally loaded 

arc is ^A: then k = n and (6.5) becomes 

E 
— = 7TnJ,^(n)coBnO = 0^4:4:67rn^ cos nO; 
^0 

see Chapter III(§3.5(a)). This does not tend to zero as n tends to infini ty, 

and hence the cut-off property of a truly parallel guide cannot be 

derived as a limiting case of the Vee: the reason is that unless the 

guide is truly parallel its width will exceed |A after some distance from 

the apex. 

The radiation resistance, reckoned in terms of the total current in 

the arc, is 
3077^ X ohms, 

per half wavelength of height. At the first maximum of J^ik) this has 

the value « 
3077^ X ~ X 1 • 1ohms. 

Since the field behind the arc of current varies as e/„(ar), there will 

be radii at which the field is zero provided k > 1*157^: accordingly a 

perfectly conducting sheet can be placed at such a radius without 

altering the field beyond the arc of current: then the apex of the Vee 

can be amputated. Hence by making n tend to infinity we have found 

the solution for a nearly parallel slot with an almost flat bottom, 

provided the width at the bottom of the slot exceeds 0-525A.t 

Once it is realized that a sinusoidally loaded arc in a Vee reflector 

produces a sinusoidal beam without side lobes we have another degree 

of freedom in designing reflectors to produce a polar diagram of given 

shape. Thus a suitable combination of such an arc and a single filament 

can obliterate the cosnd term and leave only the terms in cosSn^, 

cos etc. 

t For a fuller discussion of this limiting solution see Journal Part III, 1945,15. 
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The current density in the sides of the Vee is given by 

r = '^Jnmn{ar)+jJn{ar)}, (6.6) 

7 = (6.6a) 

and in this form it resembles (3.18). 

if ar > 2n, see p. 138, 

= 0*3571*, if k n and ar = 2h, 

Hence if the length of the loaded arc is ^A, then the induced density 

where the width is A decreases very slowly as n increases. This probably 

means in practice that, as j8 decreases, the width of the sheets must be 

increased so as to maintain an aperture of given width. 

6.3. Tube with sinusoidal distribution of axially flowing current 
density surrounded by a perfectly conducting tube 

Let a current ^I^^Qo^nd (with n an integer) be distributed round a 

tube of radius and flow axially. Let a tube of radius R^ surround 

the first and carry a current Then the field in the interspace 

is, by (6.4), given by 

r W 
= ^^’^niar){-Jn{h)+jYn{h)}A + 

+-Bi Jn{h){—Jn((*r)+jY„(ar)} J,,. 

is induced by and if the surrounding tube is a perfect conductor, 

then E will be zero at ar == k^, and this condition gives 

2^n _ _ 

l^n ^2 ^ni^2) 

Now g/n is ^ current density and the total current in any one band of 

like density is proportional to R, and thus we have 

total outer current in a band _ J^(fci) . 

total inner current in a band *4,(^2) 

Accordingly at the surface of the inner conductor we have 

2a7rVn ^ UK) ^n(K)UK)-UK)UK)}^^'^^- (6.8) 

This equation shows the impedance of the inner tube is purely reactive, 
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as it must be since it is completely screened by the outer: and it is zero 

_ rM (6 9) 
K(h)' 

If this condition is fulfilled, an axially flowing current will maintain 

itself without an applied voltage: in other words, it is a condition for 

a natural mode of oscillation. 

The two tubes can be furnished with top and bottom covers at any 

distance apart, since the field is purely axial: then we obtain a closed 

chamber which is resonant whenever the frequency is such as to satisfy 

the condition (6.9). It is easy to show that if kf ^ n, this condition 

tends to become 

We have presumed the current is constant in magnitude along the 

axis of the coaxial tubes. If it is distributed as cos Tryjg, then a in the 

previous equations must be replaced by a\ where = a^—b^ and 

b = 7r/gr; compare § 1.9. If the distance between the cover plates of the 

closed resonant chamber is less than |A, then the only possible distribu¬ 

tion is constant along the axis. This means that the height of a resonant 

chamber ought always to be less than |A in order to preclude modes in 

which the current density varies along the length. Provided the length 

is less than JA, then the only possible modes with axial current are given 

by (6.9), where = ^nR^jX, 

We have now derived the whole and essential basis of the theory of 

resonant cylindrical chambers: we do not propose to study them further 

in this book on aerials, but it has been natural to include this section 

here so that the reader can continue the study if he desires. 

6.4. Current filament parallel to a metal cylinder 

By means of equation (6.4) we can now determine the resultant field 

of a current filament parallel to a metal cylinder of any radius R, the 

origin of coordinates being at the centre of this cylinder. The field of 

a current filament, relative to an origin distant Xz^tt from it is given 

in equation (1.49) and described by Fig. 1.9: it is 

cE ^ 
^ = {-«4(«»')+jTo(o»-)K(z)+2 ^ {-J;{or)+jy„(or)}J„(2)cosn0. 

We propose to centre a cylinder at 0 in Pig. 1.9 (note: we now use 

JB for the radius of the cylinder and make OB = XzI2it): the current 

filament at jB will induce currents in the cylinder, the resultant field at 

(r, B) being due to the current / at B, together with the currents induced 

in the cylinder. The currents induced in the cylinder are determined 
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by the condition that the resultant field at its surface must be zero. 

Since (6.4) shows the field of a density /^cosna is everywhere propor¬ 

tional to cos nd, the expression for the resultant field of I together with 

the induced density, expressed as a Fourier series, is found in a con¬ 

venient form by adding (1.49) to a series whose terms are typified by 

(6.4). The magnitude of being determined so as to make E zero at 

radius R. The general expression is 

aiT 

+2 f {-JJar)+jrjar)}{IJJz)+'7rJtJ,,JJk)}co8n0 
1 

ibr ar > z. Inside or at the surface of the cylinder ar and z must be 

interchanged, also ar and i. At the surface E must be zero for all values 

of 6 and hence each term must be zero separately, and this gives 

I ^ r-e7o(fc)+jTO1j _l\-Uk)+3Y,{k)-\ 

2nlt [—Jo{z)+jY^(z)\ ® ^L— 
(6.10) 

which leads to 

27rRi {-Jo{z)+jYo(z)} 

{-Jo(k)+jYo{k)V“ Z 
{-JJz)+jYJz)} 
{—Jn{k)+jYn{k)} 

COS nd 

(6.11) 

for the general expression for the current density at any point of the 

surface: we shall write this in the form 

277^ ^ ^oUq4-.Bq feq ^ 2 

/ HI ^ HI 

where —JJz) = “^nik) — Yj^{z) 

(6.11a) 

'^n(k) = 6„, and 
= Jl^(k)-\-Y%{k). If the current is inside the cylinder it follows 

and hence that 

I Ji,(k) 4-1 JJk) 

Equation (6.116) shows that if R has a value which makes any one of 

the coefficients JJjk) = 0, then the density /„ cos no. will run to infinity; 
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which shows that any order of resonance of a cylindrical chamber can 

be excited by an eccentric filament. It is important to note, however, 

that the exciting action for any mode is proportional to Jn(z), Accord¬ 

ingly if it is necessary for some reason to use a chamber nearly large 

enough to be excited in the second mode, it will respond with great 

difficulty to that mode if the exciting wire is centred accurately: an 

understanding of this is important in the use of resonant chambers. 

(a) Numerical example of distribution of current density 

Equation (6.11) is very laborious to evaluate, but only by so doing 

is the general trend of its physical meaning disclosed. It is of great 

practical interest in two particular cases; when the current is so far 

away from the cylinder that the incident field is sensibly a plane wave, 

and when it is so close to the cylinder that the solution must be rapidly 

degenerating into that of a filament parallel to an infinite flat sheet. 

In approaching the second case we shall have an approximation to a 

filament in front of a flat sheet of finite width; this will occur when 

(z—1c)lk is small and yet {z—1c)12tt is not small. Since our concern is 

with the approach of a cylinder to an infinite plane, we will make the 

distance between the filament and cylinder near JA, since this distance 

would be used in practice with a flat sheet. However, this requires that 

z—k == \tt and this is troublesome in the use of tables: it will suffice to 

take z~k = 2 which corresponds to the filament being distant 0-32A 

from the cylinder. 

Familiar ideas of optics suggest the induced current density will be 

appreciable only on those portions of the cylinder which are ‘visible’ 

from the filament and, so to speak, illuminated by it. Here we need to 

distinguish two effects, namely, that the incident wave is not plane and 

the surface on which it falls is not plane. If the wave and the surface 

are plane the density is related to the field (see § 1.17) by the equation 

27rilcE = 1 and is in phase with it. If a filament is distant X/27t from 

an infinite flat sheet it follows from (3.6) that 2TTiJcE = 1*052 [12*5°, 

and this gives the limit (when the radius of the cylinder is infinite)* for 

the current density at the ‘ bright spot’ for the distance we have chosen. 

Evaluation from (6.10), for z—k = 2, gives the values collected in the 

following table for the ‘bright spot’ density and its phase lag with 

respect to the field incident there. 

The table shows that the ‘bright spot’ density fluctuates, both in 

respect of magnitude and of phase, above and below its limiting value, 

but that the departures are small provided B/\ exceeds, say, 0*2. 
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Table 6.1 

Rjx . . .n 0158 0*475 0-795 1*58 00 

Mil . 
Phase lag on field 

2-10 1-83 1*90 1-97 1*84 

in degrees . 25-4 25-2 19*7 4*4 12*5 

Fig. 6.2 shows a polar plot of A|i|// round a cylinder for which 

EjX == 0*158 (k = 1) and shows that even in so small a cylinder the 

induced density is small over that portion of the cylinder which is in 

Fig. 6.2. Mean square current density round cylinder of diameter 0'32A. 

the optical shadow. Fig. 6.3 shows root mean square current density 

round cylinders for which k = ly 3, 5, and 10: the short vertical 

stroke on each curve marks the angle at which the ‘ray’ from the aerial 

is tangential to the surface, thus 35° when ^ = 10. This figure demon¬ 

strates conclusively that the induced current in the dark area gets 

progressively less and less as B/X increases. The labour of computing 

the current density is very great, but the obvious approach to a dark 

region suggests ‘ray theory’ may provide an approximate method of 

calculation. Accordingly we try the method of (3.6 a) and compare the 

density with the equation 27r|i|/c = |^| cos/3, where )8 is defined by the 

diagram inset in Fig. 6.3 and \E\ is the field at distance AP == p from 

the current / at A. The inset graph compares the true density for 

k ^ 10 with the density calculated by what we shall call ‘ray theory’. 

There is a rough correspondence, but the agreement is not close. The 

agreement in respect of phase angle is quite hopeless: according to ray 

treatment i and E should always be cophased, whereas in this example 

i lags on E by 4-4°, 26°, and 44° when 6 = 0°, 10°, and 30° respectively. 
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This and other experiences show the induced current is always finite at 
grazing incidence, whereas ‘ray theory’ requires it should then be zero 
and thus there must always be discrepancy: we shall see later the phase 
lag at grazing incidence appears to approach a limiting value of Jtt: 
in this numerical example it is Jtt. 

It is instructive to note that comparison of (6.11 a) and (6.116) shows 
that no single internal image current could induce the distribution of 
current that is induced by the external current and thus the cylinder 
cannot be replaced correctly by a single image. Note that (6.11) shows 
that no component of current density can become infinite if JJk) = 0, 
as it would do for an internal current. 

(6) The external field of the current in the presence of the cylinder 
By combination of (6.4) and (6.11) it follows the external field of the 

induced currents is 

cE ^ {—Jo(z)+3Yo{z)}Jf^(k), 
nal 

'{-Jo(or)+jro(o»-)}+ 
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On making ar very large this becomes 

233 

cE 

rral 
{—Ja(ar)-\-jYo{ar)} {-w+jYm 

{-Jn{z)+jY^(z)]Jr,{k) 
cos nd (6.13) 

Combination of (1.49), (6.4), and (6.11) gives the resultant external 

field as 

arrl 

{Jn(z)Y„(k)—J„ (k)Y„ (z)}H„ (ar) 

Hr^ik) 
COS nd I j (6.14) 

where ) stands for — J„( )+jY^{ ). 

When ar tends to infinity this becomes 

cE 

ani 
j{—Jo{ar)+jYoiar)} 

Ya{k)Jf){z)}jQ(z) 

{ •4(^) 
+ 

The diffraction pattern can be calculated from this for any k or z. It 

follows from (6.14) that the inphase component of field at the current is 

_c^ {Jo(^)ro(z)-ro(^)Jo(g)P ^ {J,(k)Y^{z)-Y,(k)J^{z)Y 
anl \Ho(k)\^ Z \H,{k)\^ 

(6.16) 

and this gives the radiation resistance relative to an isolated filament. 

(c) Numerical examples of the external field and of the power gain 

First we will continue the numerical example of a filament situated 

so that z—k — 2. If the radius of the cylinder were infinite it would 

increase the forward field (see 3.15 a) in the ratio 2 sin 2 = 1 -818. Fig. 6.4 

shows forward field plotted as a function of R/X up to i = 10; beyond 

that the labour of computation becomes prohibitive. It shows the 

forward field increases smoothly with B/X and has reached 1'6 (the limit 

being 1'818) when B/X = 7/4: when k = 12 the ratio is 1-69. The rate 

of approach to the limit is very slow: within the range A: = 2 to 12 it 

can be expressed to an aocurarcy of 2 per cent., by the empirical relation 
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EjE^ = 1‘818{1—0*123(A/i?)*}, and according to this i2/A must exceed 

16 before EjE^ is within 3 per cent, of its final limit. The lower curve 

in the same figure shows the ‘ back-to-front’ ratio and this does approach 

zero rapidly: when = 5 it is about 2*5 per cent, and when k = 12 it 

is less than 0*75 per cent. 

JK/A = 1-6 
Fig. 6.4. Current distant 0*32A {z—k ~ 2) from surface of a cylinder. Curve of 

forward field and of back/front ratio as a func^tion of J?/A. 

The radiation resistance can be evaluated from (6.16). The limiting 

value, relative to an isolated current, is 1—e7p(4) = 1-3971, and accord¬ 

ingly the limiting gain is 2*36. Some representative values of relative 

resistance and gain are shown in Table 6.2 below. 

Table 6.2 

BIX. 0 0032 0-32 0-8 1*6 00 
Relative resistance , 1 114 1-21 1-26 1-29 1-31 1-32 1-35 1-397 
Gain 1 110 1*21 1-38 1-56 1-71 1-94 2-36 

Table 6.2 shows the radiation resistance is more than 94 per cent, of 

the limit if B/X exceeds 0-4, but then the approach to the limit is 

extremely slow. The empirical relation (? = 2-36(1—0-16(A/iZ),*) is 

correct when B/X = 0-8 and 1-6: extrapolation from this shows B/X 

must exceed 16 before the gain is within 4 per cent, of the final limit. 

The diffraction pattern for k = 0, 2, 6, 7, 12, and infinity is shown 

in Fig. 6.6. It is interesting to note that the maximum near d = 37° 

has appeared strongly even when B/X is only 0-32. The field at 6 = 90° 

is still not much less than unity even when B/X = 1-9 (k = 12), and it 

is clear that B/X must be very large before the field on this bearing 
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will fall to, say, If we are correct in presuming the gain is still only 

0*96 of the limit when i2/A =16, we must presume the field at 0 «= 90° 

is then still considerable because reference to Fig. 6.5 shows at once 

that the fractional contribution to the total output (by Poynting’s 

theorem) is small in the arc 90° to 180°. Hence the field at 0 = 90° may 

180 150 120 90 60 30 0 
Bearin3 angle 6 

Fig. 6.5. Diffraction patterns for current parallel to cylinders of various radii. 

well be still of the order of 0-2 when RjX — 16. Thus it is clear that 

a cylinder of finite radius is comparatively ineffective in simulating an 

infinite sheet: up to, say, 0 — 70° it will simulate an infinite sheet very 

closely even when R/X = 1, but an enormous increase in size will make 

little reduction of field in the arc 90° to 180°. We may summarize the 

result as follows: If a cylinder is to be used as a refiector it had best 

be near one wavelength in radius: then the front-to-back ratio will 
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exceed 50 and the pattern between 0° and 60° will simulate closely that 

appropriate to an infinite sheet, but the gain will not exceed 2. Since 

the current density in the dark region is negligible, it seems fairly 

certain the cylinder could be replaced by a half-cyhndrical shell without 

appreciable detriment. 

40* 30* 20* 10* 0* 10* 20* 30* 40* 

50* 

60® 

70® 

80® 

90* 

Fig. 6.6. Polar diagram for cylinder whose radius is 1-9A compared with that for a 
cylinder of zero radius and of infinite radius. 

It is now instructive to compare these results with those arrived at 

in Chapter V for a semi-infinite sheet. Fig. 5.6 shows that when the 

semi-infinite sheet extends 1-08A beyond the filament, then the field in 

the plane of the sheet is 0-26 of the forward field, whereas for a cylinder 

where M/X = 1 it is 0‘65 at 6 = 90°. The flat sheet is thus seen to be 

relatively more effective, and this is to be expected. Fig. 5.6 is the 

pattern for a flat reflector limited in one sense, while Fig. 6.5 is the 

pattern for a round reflector, which is limited in both senses. Considera¬ 

tion of these two figures together suggests that a flat sheet reflector 2A 

in width should be competent to give a jwwer gain near three and a 

relative field at 0 = 90° of the order of 40 per cent. In short, a width 2A 

is about what should be used in practice. 

Fig. 6.6 compares the polar diagram for JR/X =1*9 with that when 

B/X is infinite or zero, and is a striking and reassuring comparison. 

The fair success, as reflectors, of comparatively small cylinders might 

be thought to be due mainly to the close proximity of the filament to 
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the cylinder; but within limits this is not true. To explore this effect 

a second numerical example has been evaluated for a filament whose 

distance is 0'796A {z—k = 6) from a cylinder whose radius is 1'59A 

{k — 10). Fig. 6.7 shows the distribution of current density for this 

example and compares it with that deduced from our ‘ray theory’. 

Fig. 6.7. R.M.S. current distribution round cylinder for A; == 10 and 
z == 15, i.e. R = 1*6A and d — R^ 0-8A. 

Here the ray theory is a successful approximation over 20^^ out of the 

30° of illuminated arc, but the approximation must necessarily become 

bad when the glancing angle is approached. Fig. 6.8 shows the diffrac¬ 

tion pattern and compares it with that appropriate to R/X infinite. 

The two patterns bear a strong resemblance to one another and we may 

use the simile that the limiting pattern has slipped sideways. It is to be 

noted that the bearing of the minimum and the maximum has increased 

slightly, an effect which is commonly experienced in practice when 

comparing the experimental patterns from sheets of finite width with 

the ideal limiting patterns. We note once more that a comparatively 

small cylinder suffices to reproduce the salient features of the limiting 

pattern. These results, together with those of the last chapter, should 

reassure us that finite reflecting sheets will be found competent to 

reproduce very closely the outstanding features of an ideal pattern: 

evidently we shall not require to do more than make, from experience, 

an appropriate allowance for diffraction round the edges, or what an 

engineer would probably call a fringing effect. 
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{d) Numerical example of the field quite close to the cylinder 

Consider the inset diagram of Fig. 6.3: we wish to find the field at 

any point in the line through the centre B and perpendicular to AB, 

At the surface of the cylinder the field is necessarily zero: following 

Fig. 6.8. Diffr€U2tion pattern for cylinder i?/A = 1*59 and s—ife = 5. 

optical ideas it might be expected the field would remain almost zero 

until a point in this plane was reached from which the filament ’could 

be ‘seen’, using this word in its optical sense. Then the field would rise 

rapidly and pass through a maximum, since ultimately it must decrease 

in virtue of attenuation with increasing distance. The field at any point 

in this plane can be evaluated by putting 0 = Jw in (6.14) provided 

or > 2: if or < 2, then z and or must be interchanged. Fig. 6.9 shows 

the field in this plane due to a filament distant 0’32A from the surface 

of a cylinder of radius 1’9A. The filament cannot be ‘seen’ until a point 
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is reached in this plane distant l-86i? from the surface, and this point is 

marked A in the figure. The graph in the figure shows the field has 

reached its maximum at a point much nearer the surface than the point 

A and that the maximum occurs very near the distance ar = z; and 

from this distance the aerial cannot be "seen*. At large distances the 

field varies as and its absolute magnitude can be derived from 

(6.15). The dotted curve in Fig. 6.9 shows the asymptotic value for 

Fig. 6.9. Electric field close to cylinder and in diametral plane perpendicular 
to that containing the current, k = 2-nRj\ = 12, 2 = ^TtdjX ~ 10. 

large distances, and it may be seen that the field approaches close to 

tins limit even when ar is no larger than 30 (say rjX = 5): it is another 

example of the rapidity of approach to limiting values. Presumably the 

maximum typified in Fig. 6.9 will move away from the cylinder when 

RjX becomes very large. But there is always a tendency for the field 

to be large at ar — z, for the series giving the quadrature component of 

field at 0 = 90 and ar = 2 is the series for the quadrature component of the 

field at the filament with every odd term missing and with alternate 

terms of the remaining series having opposite signs. At the filament Eq 

tends logarithmically to infinity. Hence, at 0 = \tt, Eq is given by a 

convergent series which is the finite difference between two divergent 

series, and this difference may well be substantial. It is too laborious 

to pursue this much further, but it would seem the field in the 

shadow is much greater than the field, for d = 90°, extrapolated back 

to this region. Thus the relative value of the distant field strength 

at 90° in the example recorded in Fig. 6.5 is approximately equal to 

= 0-67(A/jB)““*. According to this the field at distance r on 

bearing 90° is given approximately by 

=2 //-1.W 
wnl • V \narj aJ {aB} ~ aR' 

when r = B. According to this approximate formula the field on bearing 
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0 == 90° is approximately equivalent to that of a current at the 

centre of the cylinder, and this may be regarded as giving an approxi¬ 

mate lower limit for the field in much of the shadow region. Unfortu¬ 

nately the Bessel expression is very cumbersome to evaluate and this 

makes it very laborious to trace the approach to the conditions obtaining 

in optical experience. It would appear, however, that the radii must 

be very large before the ‘optical path’ treatment is approached closely. 

(e) Attempt to use the optical image treatment for estimating the forward 

field 

According to the treatment of geometrical optics the distance from 

the centre of the object and the image are related by the formula 

l/v+llu = 2jR, Hence if 14andi? — 12, we find 21/2 = 10*5, 

For the example 2; = 14 and = 12 we will place an image at it = 10*5 

and make it of such a strength that it neutralizes the field at the 

‘brightest spot’ of the cylinder. Reference to tables shows that 

\Hq(2)\ = 0*557 and |Ho(l*5)| = 0*639 [3W°. 

Accordingly the image current must be 0*557/0*639 = 0*875 times the 

current in the filament and lead it by 150*5°. Consideration shows the 

forward field is the sum of two vectors in the ratio 0*87 and inclined 

at 29*5°, and this equals 1*80, whereas Fig. 6.5 shows the forward field 

is then 1*7, and the field is 1*82 on a bearing of 40°. Thus the image 

treatment is seen to be approximately correct. Now treat the example 

of Fig. 6.8 in this manner: here we find u = when 2=15 and k = 10, 

and it follows from tables that the image current must be 0*718 of the 

filament current and leading it by 71*2°. The vector sum is found to be 

1-71 where Fig. 6.8 shows it should be 1*64. Thus it seems the treatment 

by optical image gives the forward field very closely; but the image 

method cannot be expected to work well on other bearings, since the 

formula relates only to reflection from a small region of the cylinder 

near the bright spot. It does not seem possible to arrive at the position 

of the optical image by any but ray treatment. 

6.5. Reciprocal properties with cylinders 

Equation (6.14) gives the field at point (r,d) due to a current I at 

point (z, 0) in the presence of a cylinder of any radius kj^rr provided 

ar > z. Equation (6.12) shows complete reciprocity in respect of the 

field of the induced current: thus, the field at (r, 6) due to the current 

induced by a current I at (2,0) is the same as the field at (2,0) due to 

the currents induced by a current / at (r,0). Hence the resultant field 

at (r, 0) due to current / at (2,0) is the same as the resultant field at 
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{z, 0) due to a current / at (r, 6). This proves tjiat the forward field test 

in reception will be the same as the forward field test in transmitting. 

Let the reactance of the filament be neutralized by tuning, as in a long 

in-line array: then the current which will flow in reception is directly 

proportional to the radiation resistance at the given position of the 

in-line array. The power absorbed will be a maximum when the loading 

resistance equals the radiation resistance at the given station of the 

filament. We have defined the power gain as the square of the relative 

forward field divided by the relative radiation resistance: when this 

quotient is a maximum we call the forward power gain a maximum. 

It follows from the reciprocal property described above that the power 

which can be absorbed in reception is a maximum when the aerial is at 

a station for maximum forward gain in transmission and in addition 

when the load resistance equals the radiation resistance for this 

station. 

There is another interesting propc^rty , of a reciprocal character, which 

can be deduced from (6.16) which shows the power output due to the 

component density cos noc is zero whenever k and z are related in such 

a way as to make ^ Y„(Jc) 

and, by (6.9) this is the condition for the nth order of resonance of a 

coaxial cylindrical chamber having radii zj^rr and kj2TT, Thus we see 

that an external current will induce a density cosna, where /,^ is never 

zero or infinite even if k is such as to make J,^(k) — 0; when Jn(k) = 0 

the external field of that component density is precisely zero: but if an 

external current is situated at a radius which satisfies (6.9), then the 

component density cos noc makes no net contribution to the total 

power output. Equation (6.11) shows that when (6.9) is satisfied then 

the component /„ is exactly cophased with / and equal to 

Jni^) 2J 

Jn(tc) 27ri?* 

This cannot be zero or infinite because (6.9) cannot be satisfied if either 

Jq(z) or J^ik) are zero. 

6.6. Plane wave incident on a cylinder parallel to the electric 
vector 
To obtain a solution for a plane wave incident on the cylinder and 

advancing from right to left we have only to put z infinite in (6.11) to 
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(6.14) and (1.49), remembering that now z > ar. In this range (1.49) 

becomes 

^ = Jo{ar){-Mz)+jY,iz)}+2 2Jniar){-J„{z^^^ 

= {—J^{z)-\-jYf^{z)}{Ja{ar)—2j Ji{ar)cos 6— 2Jz{ar)cos 28+ 

+2jJs{ar)aos 36+2J4{ar)co8 46— 

Fra. 6.10. R.M.S. current density round circumference of cylinder induced by 
plane wave. 

when 2 00 since then — Yq and JJ, = —Fi, etc. The incident field at 

the centre of the cylinder is 

E^- = '^{-Jo{z)+jYM- c 

Accordingly (6.11) now becomes 

27r^ki 1 cos 26 

cE,, 

cos 40 

-Mfc)+jro(k) 

^ {■—Ji( A;) +jY^{k) —Jz(k) -\-jY^{k) 

cos 0 cos 30 

+... _ 

or 
2TT^ki i 27^008 0 2J^ cos 20 2F3 cos 30 1 

'■ i^ii* l^al* 
+...j+ 

/JL_ 2 cos 0 2Y2 cos 26 2J3 cos 30 , \ 

1^.1* W '‘7 

(6.17) 

.170) 

lfl;,l* = .^„(A;)+r*(i). where 
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By means of this equation the two components of current density 
can be plotted as a function of 6, but it is more instructive to plot |i|, 

the R.M.S. density: this has been done for RjX == 0*079 and 0*318 in 
Pig. 6.10, and these polar curves show the current at the ‘bright spot’ 
is very much greater than at the ‘dark spot’. Fig. 6.11 shows |ii plotted 

Fig. 6.11. Current distribution (R.M.S.) round cylinders of various radii, 
induced by plane wave. 

against 0 in Cartesian coordinates for JR/A = 0*08, 0*16, 0*32, and 1*6, 

together with a cosine curve for comparison, and shows the dark spot 

density tends rapidly to zero: when JB/A = 1-6 (i = 10) the dark spot 

density is only 1 per cent, of the bright spot density, and this is in 

accordance with the optical concept of illuminated area. The cosine 

curve shows the density calculated according to what we have called 

‘ray theory’, and it may be seen that this is substantially correct over the 

first 60° of the 90° of illuminated arc when Jfc = 10. Numerical evalua¬ 

tion shows there is strong tendency for the current induced at a given 
point on the cylinder to be in time phase with the field incident at that 
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point, and this is well illustrated by the results collected in Table 6.3 

for jB/A = 1*6 {k = 10). 
Table 6.3 

*=10 

e 0 15 30 45 60 75 90 

Phase lag relative to field 3-4 ' 3-7 6-0 l()-5 16-8 32-5 

The discrepancy in both phase and magnitude at 0 = 90° is large, 

presumably the magnitude of \i\ falls slowly to zero when k tends to 
infinity, but it does not seem possible to deduce this from (6.17a); the 

phase discrepancy shows a strong tendency to tend rapidly to Jtt as is 

shown by Table 6.4. 
Table 6.4 

Magnitude and relative phase at 6 90° 

k 0 0*5 1 2 3 6 10 24 

Magnitude relative 
to bright spot 

1 0-54 0-47 0-38 
1 

0-32 O'26 0-23 017 

Phase relative to 
incident field 

90 42 ! 
i 
1 

39-5 35-3 35 33-5 32-5 31-6 

Since Table 6.4 appears to show that the phase discrepancy tends 

rapidly to 30°, it may be that Table 6.3 is a fairly good guide to the 

phase discrepancy (as a function of 6) for large *, and accordingly that 
the discrepancy at 6 = 75° tends to about 15°. We have now inter¬ 

preted the cumbersome equation (6.17a) as showing that the current 

is nearly all on the illuminated side and follows ray theory closely over, 
say, ±60° of arc. According to ray theory we should have 27rilcE = 1 

at the bright spot: when * == 5 or 10 then 27rilcE = 1*08 and 1-01 

respectively, thus showing the rate of approach to the limit is very 

rapid. 
When k tends to zero equation (6.17 a) reduces to 

2rr^k\i\ 
{l±7r* cos 6), 

if 27rk 1, and this gives a ready means of assessing the size of rod at 

which the non-uniformity of current density becomes appreciable. It 
is, however, evident from Fig. 6.10 that the non-uniformity must, be 

appreciable if R/X exceeds, say, 0*01: then the approximate formula 

above gives 3/2 for the ratio of the maximum to minimum density. 
It is perhaps surprising to find that the rod must be extremely sm^l 
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before we may regard the induced density as uniform and calculable 

directly from (1.23), as was done in § 5.8a. 

(a) The external field of the currents induced in the cylinder 

This is obtained by making z tend to infinity in (6.12) and gives 

accordingly 

E _ Jo(k){—Jo{ar) +jYf^(ar)} 2Ja(A-){—J2(ar)+jrg(ar)) 
cos 20 + ...+ 

^ -^L {-Jz(k)+jYm ^ J’ 
(6.18) 

when ar 00 this becomes 

m) 2J^(k)coB 6 

i-Jo{k)+jYo(k)} {-Mlc)+jYM^ 
2J^(k)co^ 26 

(6.18 a,) 

and this gives the diffraction pattern of the wave re-radiated or scattered 

by the cylinder. It is useful for estimating the echo which returns to 

the transmitter after the cessation of a transmission and is of interest 

in radiolocation. Figs. 6.12-6.13 show the polar diagram of re-radiated 

field for B/\ — 0'32 and 3-2 respectively: they are characterized by a 

substantially constant mean square field in the bearing arc ±100° 

together with an ever narrowing beam which provides the deep shadow. 

Fig. 6.14 exhibits the forward field and the backward field at any given 

distance as a function of k. The shadow field increases linearly with k 

according to the empirical formula 0'8+l*03fc, while the echoed field 

varies as k^ according to the empirical relation ^^{nk). It seems sur¬ 

prising to find the cumbersome expression (6.18a) describes only the 

simple linear and parabolic relations disclosed by the numerical evalua¬ 

tion recorded in Fig. 6.14, and a direct approach is not hard to find. 

Thus consider Fig. 6.15 in which that half of the cylinder which is in 

shadow is shown shaded. Round the bright half the density is given 

approximately by the relation i — {cE^ cos a)/2w and round the dark half 

it is almost zero everywhere. We have seen that the density at a point 

such as B in Fig. 6.16 lags on the density at point J. by an angle nearly 

corresponding to the path difference A'B. Now consider the field of 

these induced currents (flowing perpendicular to the plane of the paper) 

at a very distant point P in a direction parallel to OA. The component 

of fleld at P due to the density at B will lead on the component due to 
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the density at A by an angle corresiK)nding to the path difference A^B; 

but since the current at B lags on that at A by the same angle, it 

follows the components of field due to all the filaments of current will 

Fio. 6.12. Polar diagrain of external field of induced current, k — 2, RjX = 0‘318. 

oophased at a distant point P. It is as though all the current were 

the plane AA': since the density varies as cos a the total current is 

= cEJ2ir X 2B. Hence the distant field in the direction ^0 is 

a7rl' E 
E =-{-J^{ar)+jYf,(ar)} or = aR{-J^(ar)+3Y^{(ir)}, 

"ill c 
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whence \E\I\E^^\ = k\HQ{ar)\, and this differs insensibly from the result 

disclosed by the straight line in Fig. 6.14. It must be an underestimate 

because it ignores the vanishingly small current on the dark half of the 

Fig. 6.14. External field (R.M.S.) at bearings 0"' and 180°, due to current induced in 
cylinders of various radii, by the incidence of a plane electric wave. 

cylinder and supposes that i varies precisely as cos a on the bright half 

and ignores the progressive discrepancy in phase which occurs as a 

approaches 90°: it is instructive to note the underestimate is but 7 per 

cent, even when k is only 10. The ‘shadow field’ increases linearly with 

k because the total induced current increases linearly with k and all 

elements are effectively cophased in respect of the field they produce 

at a distant point. It should be noted that this property is independent 
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of the shape of the object provided the phase of the induced current is 

always sensibly that of the incident wave. We have ignored the 

discrepancy in the phase of the induced current, a discrepancy which 

tends to become 30° at C and C": this will have small effect on | but 

will have a more noticeable effect on its phase. Thus, evaluation for 

(6.18 a) shows the phase of the distant field lacks 13° and 5-5° from 

Fig. 6.15. 

precise antiphase with the incident field there when A; = 6 or 24 respec¬ 

tively. These figures suggest the discrepancy from antiphase is approxi¬ 

mately equal to 10(A/if)^ degrees of arc, and if this be true it will 

exceed 1° until JS/A exceeds 100. This discrepancy of phase will give 

rise to a standing wave pattern in the region of deep shadow. 

Now consider the ‘echoed field’ at a distant point Q in direction OA 

in Fig. 6.15. The effective path difference for filaments at B and A will 

be 2A'B; and thus the field is produced by a semicircle bearing a cosine 

distribution of induced current and the effective path difference being 

as though the radius were twice what it really is. The field at Q will 

have an inphase and a quadrature component, the second being given 

by (6.2 a), on remembering the effective radius for path difference is 2B. 

From this equation we have 

^ = iTBJi{2k)x\Ho{ar)\, where 
aTTij 2tt 

It can be shown the inphase component is given by 

When 2k is very large = — Jg = J^, etc., and then 

= 2BJo{2k)Xl-562 == 7rBJ^(2k) == —nRYyi^2k). 
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Hence = 7rlH,(2i)| x |flo(«r)|, 

whence 

^ = YIX \H^{ar)\^'^Jwhen 2* is large 

= y(nk)mar)\, (6.19) 

and thus agrees precisely with the empirical relation found from 

Fig. 6.14. Evaluation of the approximate expression just given for Ep 

shows that if k exceeds 2 the expression in the curled brackets differs 

very little from 7rV2 and hence we suspect E is given closely by the 

expression 
E _ 

-Y,(2k)+jJ,{2k)}x mar)l (6.20) 

and accordingly this will differ insensibly from the cumbersome expres¬ 

sion (6.18 a) at 0 == 0. It should be noted that EjE^^. is unity when 

ar = k, provided k is large enough to replace H by its asymptotic form: 

moreover, it follows that in these circumstances the phase at ar == /b is 

equal to k. Hence the approximate expression is correct in magnitude 

and phase at the surface of the cylinder provided k exceeds about 3, 

even though it was derived for application at large distances. Numerical 

evaluation from (6.18 a) shows that Ep and Eq differ insensibly from 

{7Tkl2)Y^(2k) and {7Tkj2)J-^(2k) respectively provided k exceeds, say, 2. 

Thus Eq should be zero, according to the approximate expression, when 

Ji(2k) = 0, which is when k = 1-91, 3-5, etc., whereas Eq is in fact 

zero when it = 2*1, 3*5, etc.: and Ep should be zero when k = 1-09, 

2-71, 4-3, etc., whereas Ep is zero when k = 1-5, 2*8, 4-3, etc. Hence 

the approximate expression (6.20) is correct at a large distance for k 

greater than, say, 2: strange to say, it seems to hold even down to 

ar == k. 

No doubt the field on any bearing could be calculated from the 

approximate distribution of current, but to do so would be nearly as 

cumbersome as using {6.18 a) and would not be very helpful, more 

especially since Figs. 6.12-6.13 have shown that the polar diagram is 

nearly a circle in the range of bearing ± 110°. The field at 0 = 90° has 

been evaluated from (6.18 a) and when plotted as a function of k is 

indistinguishable from the parabola y = {i?/2)l and thus is 81 per cent, 

of the field echoed along bearing zero. 

According to geometrical optics the reflected rays appear to come 

from a focus half-way between the bright spot and the centre. Following 

the process used in § 6.4 (e), we attempt to replace the cylinder by an 
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equivalent current /' at this focus, determined in magnitude and phase 

so as to make the field zero at the bright spot: accordingly 

and so 
^ |go(ar)| 

iCl 
= lyJ(-nk)Ho(ar), 

Fig. 6.16. External field at bearings 0® and 180', due to currents induced in cylinders 
of various small radii. 

since \HQ{^k)\ = ^{4l7Tk) when k is large. Thus by one approximate 

approach we have replaced the cylinder by an equivalent current at 

the centre of the cylinder and in the other treatment by an equivalent 

current at the optical focus. 

Fig. 6.16 is an enlarged view of the foot of Fig. 6.14. It shows the 

echoed and shadow field differ noticeably when k exceeds say, 0*1 

(B/X = 0-016). The lowest curve in the figure is the parabola ^(rrk)^, 

the next above it is the echoed field calculated from the approximate 

expression (6.20). The curve between this and below the true value 

of the echoed field is that calculated by the focus treatment but using 
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the exact and not the approximate value of \HQ(\h)\. The focus treat¬ 

ment is the nearest approach and is substantially correct even down to 

RjX = 0*016: either of the three approximate treatments is sensibly 

correct if i?/A exceeds about 0*1. 

It is very difficult to understand why any one of the three approxi¬ 

mate treatments should remain substantially correct even down to RjX 

of the order of 0*1, for two of them are based on the supposition that 

current is almost zero round the dark half of the cylinder and Fig. 6.10 

shows this condition has not nearly been attained when RjX = 0*08. 

The third treatment, by the image method, would never have been 

thought of save for the guidance of geometrical optics and its physical 

significance is very obscure when k is small. It appears in analysis only 

if we happen to realize that 
_]__ 

ir|fl'o(P)r 
when k is large and we must then also recognize that this corresponds 

to a current at the optical focus. 

The approximate expression (6.20) shows the echoed field is that of 

an equivalent current 

at the centre of the cylinder: the phase of the said current being relative 

to the phase of the incident field at the centre. It follow^s from the 

properties of J^{2k) that the phase of I is in advance of at the centre 

by an angle = 2k—^tt, valid for k > 2. The distant field of a current 

filament is as though the disturbance originated at a distance JA in ad¬ 

vance of the filament (see §1.7): hence, allowing for the advance in phase 

of the current, it follows that the phase of the echoed field is as though 

the disturbance originated from a point distant 21?—^A in front of the 

centre. The phase has been plotted for = 1 and the line is as though 

zero phase occurred at a distance 0-204A behind the centre: in this case 

21?—JA = —0-182A and thus there is substantial agreement. Accord¬ 

ingly the echoed field is equivalent to a current 1 == (cEJa)^(Rj2X) and 

its phase is as though the disturbance originated from a point 21?—^A 

in front of the centre. The foregoing discussion should be compared 

with that in §§ 6.4 (a)~(e). 

6.7. The resultant field close to the cylinder 

The incident and re-radiated field combine to form a complicated 

system of standing waves in the vicinity of the cylinder. It is useful 
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to assess the magnitude of the fluctuations of field which occur in the 

neighbourhood of the cylinder because this will give us an estimate of 

the disturbance caused by objects in the path of the wave: the fluctua¬ 

tions of field strength (standing wave pattern) which occur in the 

neighbourhood of trees, hedges, etc., is a familiar experience to those 

who have made propagation experiments at a wavelength of a few 

metres. It follows from the reciprocal theorem that the disturbance 

in the direction of propagation and towards the transmitter must be 

considerable. For if the distant field is observed when an aerial is 

moved progressively away from a metal cylinder, used deliberately as a 

reflector, we expect the forward field to be a maximum when the 

distance between the aerial and the surface of the cylinder is approxi¬ 

mately an odd number of |A: it is the forward field test we have quoted 

so often in Chapter III. The reciprocity theorem tells us that if we 

remove the aerial to infinity, then measure the resultant field near the 

cylinder, we shall encounter fluctuations corresponding precisely with 

those found in the forward field test. 

First we will assess the rate at which the shadow behind the cylinder 

decreases with distance. We have seen, by means of Fig. 6.15, that the 

re-radiated field in this direction is always nearly in antiphase with the 

incident: since the echoed field varies as r“^, and the incident field does 

not decrease with distance, the shadow must gradually fade away. But 

the reflected wave is not exactly in antiphase because we have seen the 

induced current density is never precisely cophased with the incident 

field, the discrepancy rising to 30° at the point of glancing incidence: 

thus the current that was ignored in Fig. 6.15 produces a quadrature 

component of reflected shadow field. Its magnitude must be small since 

the antiphase component, calculated via Fig. 6.15, agrees with the 

R.M.S. field evaluated laboriously from (6.18 a) and recorded in Fig. 

6.14. Computation from (6.18 a) gives the values of Ep and Eq recorded 

in Table 6.5 below. 

Table 6.5 

* 0-1 0-5 1 2 4 6 8 10 12 14 20 24 

Ep 0-80 0-87 1-48 2*01 4-74 0*00 900 10-57 18-1 16-2 21-3 25-4 
-0-47 -0-72 -0-80 -1*08 1 -1*42 -1-69 -1*78 -1-87 -1-98 -21 -2-33 -2-60 

It may be found that Eq is given approximately by the empirical 

equation 
—Eg = 

1-7 

l^o(*/20)| 
0-47*t, 
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and accordingly 

and hence —— = l-03i(l—jO-46A:“*){—Jo(ar)4-,)To(®’')}- 
■^w 

When k is large and ar is very large this can be expressed in terms of an 

equivalent current at the centre of the cylinder and thus the phase of 

the field corresponds to a starting-point JA behind the centre. Accord¬ 

ingly the phase of the diminishing re-radiated wave tends to be 45^^ 

short of antiphase with the undiminishing incident wave. Consideration 

of Fig. 6.15 shows that that treatment could not give the phase, relative 

to the incident field, since the equivalent flat sheet could be situated 

anywhere between the centre and the bright spot. It then follows, from 

the expression for Eq, that when ar is very large and k is large the resul¬ 

tant field is I TCT1 / 0 7-2 O 7- \ 1 7- 

' V(war)/ 

k 

^(■nar) ’ 

and this suggests the mean square field will exceed if ar > 3k^: 

this estimate describes the gradually diminishing shadow and ignores 

the ever decreasing superposed standing wave. 

On bearing d = 90"^, computation from (6.18 a) shows that 

^ = 0-7lV)t{cos(1124-86l[:)—jsm{112+85it)}{-/o(a7-)+^To(ar)}, 

where (112+66^;) is in angular degrees. At the surface of the cylinder 

this gives —E/Ey. = 0*56, whereas the correct value there is unity. 

Hence an empirical formula intended to apply only when ar is large is 

not grossly incorrect when ar = k, and this suggests the limiting expres¬ 

sion will be nearly correct when ar is not much larger than k. The 

incident field has the same phase at all points in the plane 0 = 90°, and 

hence the resultant field in this plane is obtained by adding unity to 

the right-hand side of the empirical equation above. On doing this we 

showing that the fluctuation of R.M.S. field should be less than 10 per 

cent, when r/R exceeds 100. 

In the direction of the distant transmitting station the resultant field 

is found, by (6.20), to be given by 

_ Jar. Jif ifc is large; 
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and it is substantially correct even at ar — k. 

\E? 
W 

l+|;-y(^)cos(2or-2A), 

and according to this the fluctuations of R.M.S. field are about ± 15 per 

cent, when t == 10J? and about ±5 per cent, when r 4= 200i?. Fig. 6.17 

ar—► 
Fig. 6.17. Field strength in diametral plane perpendicular to direction of 

incident plane wav^e. 

Fig. 6.18. Field strength in plane of deepest shadow. 

shows the resultant field in the plane through the centre of a cylinder 

(for which 2jB/A = 1-27) and perpendicular to the direction of the 

incoming wave: here EjEy, never exceeds 1-5. When the cylinder is 

very large the first maximum will tend to equal 2 and the first minimntn 

to be zero,and the fluctuationswill tend rapidly to thevalue ±0-66.^( B/r), 

the minima being near a whole number of A from the surface. Fig. 6.18 

shows \E\l\E^\ in the direction of the deepest shadow for a cylinder for 

which 2J?/A = 1'27: the dotted curve in the same figure is the plot of 

the approximate formula for the R.M.S. value of the resultant field. 

This approximates very closely to the correct value if the fluctuations 

are ignored. It is surprising this formula should approximate as closely 

as it does even when k is only 4, and suggests that the rough guess that 

the field will exceed two-thirds of the undisturbed value if r/R > 20J2/A 
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is always closely correct. Thus it defines the extent of deep shadow 

very conveniently. 

The results we have obtained are substantially correct for a very long 

cylinder. They will be applicable in practice when the cylinder is very 

long compared with a wavelength and at distances smaller than the 

length of the cylinder. If we are applying these formulae in practice to 

an object such as a tree, we must remember the re-radiated field will 

tend to fall off inversely as distance when this is comparable with the 

height of the tree and inversely as close up. Accordingly our 

formulae will grossly over-estimate the disturbance at distances greater 

than the height of the tree. An appeal to arithmetic shows the deep 

shadow is not likely to be very marked at distances greater than the 

height of a tree. It should be emphasized again that the shadow fades 

out only because the re-radiated field varies as while the incident 

field (originating from a source at infinity) does not attenuate with 

distance. If the source is not very far away from the cylinder, as is the 

case when the cylinder is used deliberately as a reflector for an aerial, 

then both the incident and re-radiated field will attenuate with distance, 

at a rate which approaches ever nearer to equality, and then the deep 

shadow will tend to extend to infinity. The reader should also interpret 

this statement in terms of the reciprocity theorem. 

By implication, we are mainly concerned here with objects for which 

JfZ/Aisnot very large. Suppose, however, that J? = 1 m. and A = 0-1 mm., 

so that B/X == 10^, then the deep shadow would persist to a distance 

of the order of 100 km. if the height of the cylinder were great compared 

with this distance (a practical absurdity). But the example serves to 

show that the deep shadow would persist for distances of the order of a 

mile or two from an object some 6 ft. in diameter and about a dozen feet 

high if A were of the order of 0*1 mm. This example helps to explain the 

very wide extent of the shadow area which common experience shows 

us exists with waves of light. 

6.8. The rate of working in re-radiation and the pressure of 
radiation 

We have spent much effort in calculating the field strength echoed 

back to the source from a cylinder in the path of a wave. Poynting’s 

theorem leads seductively to the idea that energy passes at the rate 

cEljjijr across unit area perpendicular to the direction of propagation, 

though let it not be foi^otten there is nothing to show that this amount 

of energy is associated with any particular unit area of wave-front. 
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Optical ideas of an obstructing barrier combined with Poynting’s 

theorem lead some people to wish to relate the energy re-radiated with 

the area of wave front obstructed by the cylinder or other object. If 

the cylinder absorbed energy from the wave this would be a sound idea, 

but in our problem the cylinder is a perfect conductor and no energy 

is absorbed by it. We can calculate the work which would have to be 

done to maintain the currents which are induced by the incident field 

and this quantity is, in a sense, the re-radiated energy. But since it 

includes the strong field radiated in the shadow area it cannot be a very 

sensible measure of the energy reflected back towards the source, which 

is the implicit idea of the calculation. Before proceeding with the 

cylinder problem, consider first the very simple case of a plane wave 

incident on an infinite and perfectly conducting plane perpendicular to 

its direction of propagation. Equation (1.60) shows that if a uniform 

current density i flows in an infinite sheet, then there is an electric force 

opposing it given by —cEp = 27ri. The electric field at the surface of 

the sheet must be zero, and accordingly= 0, whence cE^ = 27ri. 

In the absence of the incident field, work at the rate Ep i = —cE%I2it per 

unit area would be required to maintain the flow of i. And by Poynting’s 

theorem the output of energy per unit area of sheet, reckoning the 

radiation in both directions, is ‘IcE^j^n; thus, the two methods of esti¬ 

mating the work are in agreement. When the current density i is 

maintained by the incident field E^^ it is perhaps natural to say that 

the incident field works at the rate E^,xi = cE%I27t per unit area. But 

this is twice the work which is supposed to be incoming from the 

incident field: on this reckoning the sheet appears to collect the energy 

from an area twice that of the wave-front. The energy is not dissipated 

and thus there is no contradiction of conservation of energy. In the 

presence of the reflecting sheet the field is zero on its far side and is a 

standing wave system on its near side. It is not correct to say the output 

of work from the sheet is the same as would be required to maintain the 

induced current in the absence of Ey^: in the presence of Ey^ the output 

is zero. We will now make a similar calculation for the cylinder and 
2ir 

evaluate P = It j e^i dd, where i is given by (6.17o) and e„ is given 

by (1.49), ‘which becomes 

^ = JJ,(<:)—2.4(^)®o®2fl+2,4(i;)cos4fl—...+ 

+2j{Ji(A:)co8 0—Ji(i:)oo8 3d-|-...}. 

To obtain the average rate of working the j term must be omitted from 



6.8] SOME PROBLEMS OF CYLINDERS 267 

the product. The terms involving F’s and the products like drop 
out in the process of integration and we obtain 

TT 4.7r\Hy 

The expression in the brackets has been evaluated in deriving the 

straight line in Fig. 6.14, for it is the inphase component of the shadow 

field at 0 = TT in (6.18 a) and indeed it is sensibly equal to the shadow 

field since we have seen, by the process described in Fig. 6.15, that the 

quadrature field is very small on this bearing. And we have found the 
shadow field is given by the empirical formula 0*8+l-03fc. Accordingly 

TT 477 

and this is the power which Poynting’s theorem suggests is crossing 

a strip of wave-front whose width is twice that of the obstructing 

cylinder. It is worth while to repeat this calculation according to the 

treatment described in Fig. 6.15. Then 

+ ir/2 

P = r co8edd = ^^^, 
2w J n 

—it12 

the same result as before. 

It is instructive to make a similar calculation for the supposed output 

of work from the reflecting sheet in the system described by Fig. 3.2 

and using the approximation for the induced current given in (3.6a). 

Then, 
. 00 00 

0 0 

2aP C sind/j 2a/^ f , naP 
“ —J'7^'**'- —Jf+P'**'-—• 

0 0 

This equals the output from the current in the absence of the reflecting 

sheet, whereas we should have expected the reflected energy to be half 

the total output of the isolated current. The calculations we have made 

do not represent the re-radiated energy but are merely a cumbersome 

way of stating that the field is zero in the deep shadow. The impulse 

to make the calculation has arisen only from optical concepts of energy 

in a wave-front and obstructing areas, concepts which are not helpful 
47w,i a 
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when there is no sink of energy: we shall not labour the discussion 
further. 

Note, The reader would be well advised here to consult an extremely clear 

treatment of ‘The Absorption of Energy by a Wir()less Aerial’, by J. A. Ratcliffe, 

Proc. Camb. Phil. Soc. 27 (1931), 688. 

The mechanical force on the cylinder (pressure of radiation) is 

27r 

0 

where the induced density is i. Since e = A in the wave, the expression 

for F is the same as that just evaluated for P and hence it follows that 

F = dynes per unit length when E is reckoned in volts/cm. 

Langley’s determination of the mean energy of sunlight is 4-3 x ergs 

per cu. cm. and this corresponds to a field strength of 7 volts/cm. 

Hence, if sunlight were monochromatic and polarized with electric 

vector parallel to the axis of the cylinder, the pressure of radiation 

would be about 7 dynes per cm. of axial length on a cylinder 20 metres 
in diameter. 

6.9. Field of currents flowing round the circumference of a 
cylinder 
In § 2 of this chapter we derived the field of currents which flow 

axially; now we require corresponding expressions for currents which 

flow round the circumference. The simplest case, namely, a current 

whose density is constant round the circumference, was solved in § 1.15: 

we repeat here the expression for E and H, as follows: 

(1.52) c 

and ff = ?^{r„(ar)+jJ„(ar)}J,(k), (1.53) 
c 

or = fILp(r,(^)+JJ,(^)}J„(ar) 
O 

for internal points. 

Now consider a current density /jcosa flowing circumferentially as 

described by Fig. 6.19: in this, current is flowing in both half-cylinders 

towards B and away from B’ and has its greatest density at points A 
and A'. Since the density diminishes to zero at B and B', there must 

be electric charge distributed over the half-cylinder ABA' and also over 



6.9] SOME PROBLEMS OF CYLINDERS 259 

the half-cylinder AB'A\ the greatest density of charge being at B and 

at B\ In this problem the electric field will be due both to the retarded 

vector potential of the current and also to the retarded scalar potential 

of the charges, and it will have both a radial component and a 
tangential component Eq, The magnetic field, however, is purely axial, 

and for this reason the magnetic is the easiest field to calculate initially: 
the two components of electric field are then to be derived from H by 

means of the circuital relations 

and ^ = 
dt r 86 dt dr 

Because the magnetic field has axial / 
component only, H must satisfy f \ 
Bessel’s equation: accordingly for a!]L 

the general distribution cos noc the ^ 

solution must be of the form ^ 

0 

~ = B{Y„(ar)+jJ„{ar)}Gosne, 
T 

where 5 is a constant to be deter- 

mined to suit the radius J?. 

Equation (1.53) shows that when w == 0 then B = —2TT^kJQ{k), and 

accordingly we shall guess that 

or 

cH 
2iT^kI^ 

'^n(*){J^«(ar)+i4(ar)}co8n^, for r > i? (6.21) 

= «4(^^){^n(^)+i«^n(^)}cosw0, for B > r (6.21a) 

and shall now show that (6.21) is possible. On putting ar k and 

subtracting (6.21 a) from (6.21) we find that H differs on the two sides 
of the boundary by an amount SH such that 

^ = {J',(k)YJk)-Y'„{k)JJk)}^oo^nd 

= -^ — cosnd, 
Trk C 

by the Wronksian property. 

Therefore 8H = (AnIJc)oo&nd, and this is the value the curl of H must 

have round the conduction current density cos n0. Accordingly (6.21) 
is possible for the general solution and is correct. 
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It then follows, from the circuital relations, that 

- 2^ = ne (6.22) 

Mid 2^*^ = d;(J;){-y;(oi-)+jT;(ar)}cos»9. (6.23) 

Note that is zero when « = 0, thus fulfilling the requirement of 

symmetry and agreeing with (1.52). These equations correspond to 

(6.4), which applies to a current flowing axially. 

It should be noted that the external fields are all zero everywhere if 

J'JJc) = 0 and accordingly this is the resonance condition for a cylinder 

or chamber in which the current flows round the circumference: it 

corresponds to the resonance condition Jn(k) = 0 for currents flowing 

axially. The smallest values of k which make •4(^) = 0 for 

= 0 to 4 are shown collected in Table 6.6. 

Table 6.6 

n 

Axial 

current 

JJk) = 0 

Circumferential 

current 

J'nifc) = 0 Ratio 

,0 2-405 3-832 0-626 
1 3-832 1-841 2-08 
2 5-135 3-054 1-68 
3 6-379 4-21 1-51 
4 7-586 5-3 1-43 

n large M5n n M5 

We note that the first figure in the third column agrees with the 

second figure in the second column; this is because e7J,(A) = —J-^pc). Hence 

the resonance frequency for an axial current I^gosol is the same as for 

a uniform current density flowing roxmd the circumference of the tube. 

The first figure in the third column is out of sequence and this occur¬ 

rence in such a series is somewhat surprising. It is, however, easy to 

understand why the lowest possible frequency must correspond to a 

current /iCOS(x flowing circumferentially. For consider the field at a 

very distant point in the direction .40^4' in Fig. 6.19. It must'be due 

dominantly to the line doublets concentrated near A and A': this is 

partly because the current density is at its maximiim at these points 

and partly because line doublets from other parts of the circumference 

are relatively ineffective owing to the obliquity of their direction. It 

is clear that the field will be very small when .4.4' = |A, and hence the 

resonance frequency must be near that which corresponds to the 

diameter being half a wavelength: it follows from the table that 
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resonance occurs when 2i2/A = 1 *841/77 = 0*585 == 0*5 x 1-18. Similar 

consideration for an axially flowing current /icosa (see Fig. 6.1) 

suggests 2jB/A = 1: the true value is 2R/X == 3*832/77 = 1*21. 

6.10. Plane wave incident on a cylinder whose axis is perpen¬ 
dicular to the electric vector 

If the amplitude of the undisturbed incident magnetic field is H and 

if the direction of propagation is from right to left, then its magnitude h 
at distance x from the centre of the cylinder is 

^ = ^mp(t+xlc) 

= Gosax+jsinax 

— co6(ar cos 6) -\-j sin(ar cos 0) 

== JQ{aT)—2J^{ar)GOB 20+2J4(ar)cos40~...+ 

+2J{Ji(ar)cos 0—J^{ar)Gos 30+ 

If the density of current flowing round the circumference, as typified 

by Fig. 6.19, is ■ ^ 26+..., 

then the internal magnetic field is, by (6.21a), 

where Hn(k) = — j;(^)+jy;(*). 

The net internal magnetic field must be zero everywhere and therefore 

= -mk)io = -mk)i, == hjn',(k)i, = mk)k 

2iT^ki 

'W 

imk)i, = -mk)i„ 
2 cos 20 . 2 cos 40 

{k) H’^ik) 

_/Jl 
\m 

-i 
H',{k) 

CO80 

etc. 

-f 
cos 30 . cos 60 

2Jicos 0 2Fo cos 20 2J'^ cos 30 

l^il \S’s 
+ ...) + 

+J 
/ 2Y'i cos 0 2J2COS20 2F8COs30 

\H\\^ 

2J'i cos 40 2^5 cos 60 2J'g cos < 

l^il 

The form of this equation resembles closely the form of (6.17 a). 

(6.24) 
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As a numerical example we will take k — 2 (RJX = 0-32): substitu¬ 

tion of the appropriate value of Jq, etc., gives 

= —(0-310—0-400 cos 0-3-63 cos 20-O-296 cos 30-f 
cH 

+0-455 cos 40+6 X 10-^ cos 50-~()-O15 cos 60—...)— 

—j( 1-67+3-5 cos 0+1-44 cos 20—0-95 cos 30— 

—0-006 cos 40+0-091 cos 50...). 

This equation gives 27r\i\lcE == 1-08 for the density at the ‘bright spot’ 

with a phase lag of 7-3° on the field incident there. Fig. 6.20 is the polar 

Fio. 6.20. Polar plot of current density round circumference 
of cylinder induced by plane wave whose electric vector is 

perpendicular to axis at cylinder. 

plot of 27T\i\lcE and shows that the induced density is much less on the 

dark than on the light half-cylinder. The phase of the induced density 

on the bright half is always within a few degrees of the incident field, 

the discrepancy being about 3° at 0 = 90°. 

If a wave is moving over a perfectly conducting sheet with its eldctrio 

vector perpendicular and the magnetic vector parallel to the sheet, then 

the value of the induced density will be 4n\i\jcE — 1 and thus the 

density is half what it would be if the wave was moving perpendicular 

to the sheet. In our problem, the density at 0 = 90° must surely 

approach the value given above in the limit when B/X is very large. 

Reference to Pig. 6.20 will show that when 0 = 90° then 2iT\i\lcE = 0-7, 

whereas we suggest the limiting value of this ratio would be 0-6: it 
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would seem there is a rapid approach to the limit. Fig, 6.21 shows the 

polar plot of 2TT\i\jcE based on this prediction, it being understood that 

the phase of i at any point follows the phase of the field at that point. 

If this figure is compared closely with Fig. 6.20 the resemblance is seen 

to be very striking. The labour of exact computation is very great, 

Fig. 6.21. Predicted polar plot of 2rr\i\lcE when (R/A) -> oo. 

more especially as J'^, etc., are not commonly tabulated, and accordingly 

it is not proposed to make further verification of the predicted current 

density. 

6.11. The external field of the currents induced in the cylinder 

By use of (6.23) and the values of we obtain 

Eg o r Ji(k)H'x(ar)GOB 6 J'^{k)H'2,{ar)cosW J'^{k)Hl{ar)(soa 5d 
E ~ ' L HW H',(k) ^ 

...] 
jQ{k)H*^{ar) 2 2d 

mk) 
2J't{k)H’i(ar)cosid 

H’,{k) 

Now Jn(z) = —hence j;(z) 
z 

(6.26) 

Jn-i(z) when z oo. 

Eg 
E 

Jo(k) 2Ji(A:)cos0 2J2(k)ooB 26 
H'^(k) 

(6.26) 

when or-^00, and this gives the diffraction pattern of the wave 

re-radiated or scattered by a cylinder perpendicular to the electric 

vector. 
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Fig. 6.22 exhibits the scattered field for a cylinder in which 

R/X = 0-318 (ifc = 2): 

in this case the ratio of shadow to echoed field is 1-25. If we assume 

the echoed field varies as following the precedent of a cylinder 

Fig. 6.22. Polar diagram of scattered field EqIE\Hq\, 

parallel to the electric vector, then E0lE^, — and this is in 

substantial agreement with the previous empirical formula 

If we place a line doublet at the optical focus and adjust its strength 

to make the field zero at the bright spot, we obtain, by (1.58), 

== {J'(\k)-jY'{\k)}. 

\Ee\ _ maT)\^ mar)\ 
\Ej i.&i(P)i • mm’ when ^k is large. 

4= 

and this agrees with the predicted value of the echoed field. 



VII 

FURTHER PROBLEMS OF CYLINDERS AND FLAT SHEETS 

7.1. Current filament parallel to and directly above a half- 
cylindrical boss rising out of an infinite plane; and the limiting 
case when the incident field is a plane wave 

In § 6.4 the solution was obtained for a filament distant 'Kzftn from the 

centre of a cylinder of radius R. If equal and opposite filaments are 

placed symmetrically with respect to the cylinder and on a diameter of 

it, then the electric field will be zero in the plane through the centre 

and perpendicular to that diameter: the field will not be disturbed if a 

perfectly conducting plane is placetl in the plane of zero field, and then 

we have a filament placed symmetrically above a half-cylindrical pro¬ 

tuberance rising out of an infinite plane. This system is of considerable 

practical interest since it simulates a horizontal aerial placed on the top 

of a rounded back or system of Downs. On adding to (6.14) the corre¬ 

sponding expression for the field of a current —/at (zA/27r, tt) we obtain 

4anl~'''[ Hi(k) ' ' 

I '^(^)^(2)}H3(ar)cos ZB 

” Hz{k) ■ 

where H,JJc) = —J^{k)+jYJk), 

_ 3g-t- ...1 (7.2) 
H^fjc) J 

when ar -»■ 00, and this gives the diffraction pattern for any value of k 
and z. 

It follows from (7.1) that the inphase field at the filament is 

cEp {J^{z)T^(k)-J^{k)Y,{z)f {J^mk)-J^mz)Y 

and this gives the radiation resistance relative to an isolated filament. 

Unfortunately (7.2) is extremely tedious to evaluate when k is large, 

and hence it is difficult to use it to derive the pattern for a horizontal 

aerial on top of a high hill, such as the South Downs. But it is not the 

exact pattern which is needed so much as the trend of the pattern: will 

this tend to be that of an aerial at a height above an infinite plane equal 

to its height above the top of the hiU, or at its height above the infinite 
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plane on which the hill stands ? The purpose of the question we are now 

asking should become more clear if we make a digression. When we 

discussed in Chapter III the pattern due to an aerial parallel to an 

infinite plane we were thinking mainly of using the plane as a refiector 

to enhance the field in the direction of the normal to the plane, which 

in practice would be a sheet only a few A in width. Now we are thinking 

Fig. 7.1. Diagram to represent horizontal aerials T and R above a flat earth. 

of a different aspect of the same analytical problem and have in mind 

a horizontal aerial transmitting, over a flat earth, to a distant receiving 

station near the ground, in contrast to a receiving station in an aero¬ 

plane flying high above the aerial. We are not now interested in the 

‘forward field’ but in the field very close to the reflector, at whose 

surface the field is zero. Consider Fig. 7.1, which represents a trans¬ 

mitting aerial T parallel to the ground and at height above it and 
a receiving aerial B at height Then 

RT'^-BT^ = DT’^—DT^ = 

. JiT'_RT_ ^^1^2 • 
~ RT'-\-RT^~r‘ 

If Eq is the field at R due to the current at T, then the resultant field 

at R due to the field of T and its image T' is (see (1.48)) 

Ar ’ 
when sin 6 is small. (7.4) 
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Since varies as 1/r we find that E varies as for points close 

to the ground. In order to increase the field near the ground, due to 

a transmitter of given power, it is common practice to make as large 

as possible by placing the transmitting aerial on top of a tower. We 

are asking the question, What will be the effect of placing the tower 

on top of a hill ? Will the effective value of be nearly equal to the 

height of the tower above the flat ground or the height of the tower 

above the summit of the large rounded hill ? If we think of the problem 

in terms of geometrical optics we speak of the ‘ray TP being reflected 

at P to JB’ and on this view the hill below T is of no consequence if PT 
does not cut it. But the simple aerial at T does not produce a narrow 

ray TP and a narrow ray TR but fills the whole region with field. The 

field at R is due to the current at T together with all the currents 

induced in the fiat ground and it is these which are equivalent in their 

effect to an image current at T\ 
When the half-cylinder hill exists below T the field at R is not that 

due to T and T' but to T and T* together with the currents induced 

in the hill and its image. If the hill is high compared with Ag, no ray 

reflected from the hill (in the sense of simple geometrical optics) will 

reach R and then the presence of the hill is irrelevant according to 

elementary treatment. In all probability simple ray treatment is sub¬ 

stantially correct, but it cannot be exact. The exact answer is contained 

in (7.2), but unfortunately this is very impracticable to evaluate when 

k is large. It seems, however, worth while to evaluate one numerical 

case and we will take k ~ 5 (J?/A = 0*79) and 2 = 7 (i.e. the aerial 

1-112A above the flat plane). The clearance between the aerial and the 

summit of this small hill is 0-318A. If the hill were removed the field 

would be zero at elevations of 0®, 26*8°, and 64-2'^: if the aerial was at 

a height 0-318A above the flat ground the field would be zero only along 

the ground. The pattern for a filament and complete cylinder {z = 7, 

k == 5) m shown in Fig. 6.5. We wish to compare the pattern derived 

from (7.2) with Fig. 0.5 and also with the equilobed pattern having 

zeros at elevation 0°, 26-8°, and 64-2°. 

On substituting the values of t/^,(7), etc., in (7.2) the equation of the 

pattern turns out to be 

— ~ = (0-254cos5+0-290cos3e—0*166 cos 50—0-009 cos7fl+...)+ 
4AfQ 

+j(—0*114 cos 0+0*116 cos 30+ 0*288 cos 60—0*216 cos 70+ 

+0*068 cos 90-O*OO83oo8 110+...). (7.6) 
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The striking feature of this equation is the existence of the two 

quadrature components of field, the inphase component having been 

produced by the half-cylinder. 

Curve (1) in Fig. 7.2 shows the pattern due to a filament at height 

1-lA (z = 7) above a flat plane, while curve (2) in the same figure shows 

Fig. 7.2. Relating to the problem of a horizontal aerial erected 
on the top of a hill. Curve (1) is pattern for filament at height 
1‘1A above a flat plane: curve (2) is pattern of quadrature com¬ 
ponent of fleld of filament at height 1*1A above a flat plane 

having half-cylinder boss of radius 0*79A {k 5, z — 7). 

the quadrature component of equation (7.6). Comparison of these two 

curves shows that the pattern for quadrature component of field in our 

problem is a close approximation to the pattern which would obtain if 

the half-cylinder boss were absent: the bearings for zero and for maxima 

of field are changed but little by the presence of the boss, though the 

magnitude of the maximum near 70° is substantially reduced by it. 

The fielfi strength along the normal (0 = 0) is considerably diminished 
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by the boss. Curve (1) in Fig. 7.3 shows the pattern for a filament at 

height 0’32A above a flat plane, while curve (2) in the same figure shows 

the antiphase component in equation (7.4): there is little correspondence 

between the two curves save that the ‘forward field’ of each is a 
minimum of the pattern. 

Summarizing the results displayed in Figs. 7.2 and 7.3, we may say 

that the quadrature pattern is substantially the same as if the boss 

Fig. 7.3. Curve (1) is pattern for filament at height 0-32A above 
flat plane: curve (2) is pattern of antiphase component of field 
for filament 0-32A above crest of half-cylinder boss of radius 

0-79A (Jfc = 5, 2 - 7). 

were absent, for 6 greater than 20®, but the boss produces an antiphase 

pattern which has little likeness to the pattern which would obtain if 

the radius of the hill were infinite. 

Curve (2) in Fig. 7.4 exhibits the R.M.S. pattern for the system of 

our problem, while curve (1) is the R.M.S. pattern which would obtain 

if the boss were removed. Curve (2) shows that a minimum field occurs 

at the bearing where there would be zero field if the boss were absent, 

but we note that the magnitude at the minimum is half the maximum 

amplitude. The dimple at 0 = 25® presumably represents the zero at 

$ = 23® in curve (1). The values of the maxima are reduced appreciably 
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by the boss, but the bearings at which they occur are not much changed 

by it. The point of great interest is that in the range of 0 from 80° to 90° 

the two curves are indistinguishable, thus demonstrating that the well- 

known formula E cc [h^ is valid even when part of the height is 

obtained by means of a hill. If the aerial is to be used for Radar service, 

then it is advantageous to obtain the total elevation by the help of a 

hill rather than by a single tower of height 1*1 A, because the troublesome 

0 ZO 40 60 80 100 
’Angular degrees From normal, B 

Fig. 7.4. Curve (1) is pattern for filament at height MA above 
flat plane: curve (2) is pattern of R.M.S. field when a half- 
cylinder boss of radius 0’79A is below the filament (A; — 5,2 = 7). 

zero at 0 = 63° is thereby removed: in other words, curve (2) is a more 

desirable pattern than curve (1) (both in Fig. 7.4) for observing the 

range of an aeroplane approaching the aerial. It is unfortunate the hill 

in our example is only 0-79A high, but the labour of evaluating (7.2) 

even for R == 2-5A would be very great and thus we cannot change the 

scale of the picture very much. However, much communication is 

carried out by horizontally polarized waves at A == 20 m. and then the 

hill in our example would be about 50 ft. high and thus is just worthy 

of the name hill. 

It is, however, very instructive to notice, from Fig. 7.4, that the 

shape of the ground very near the aerial has an enormous effect on 

the pattern everywhere except in the range of 6 between 80° and 90° 

and this must mean that a vertical polar diagram is as much dependent 

on the flatness of the ground as it is on the phasing of the array. 

Experience very commonly shows a minimum where the ideal pattern 

should have a zero,t and this effect is almost certainly due to the shape 

t See, for example, Journal Part III, 1946, 70, Fig. 3. 
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of the ground rather than to losses in the ground or to mis-phasing in 

the array. 

If ar < z, then (7.1) takes the form 

4tCL7T JL JjL'^yiCf 

+ (7.6) 
U2\k) J 

and is obtained by interchanging ar and z in (7.1), and this gives the 

field in the region between the aerial and the cylinder. If z tends to 

infinity we have the solution for a plane wave incident normally on a 

flat sheet having a half-cylinder boss of radius R running parallel to the 

electric vector. When z -> oo, 

E _ {Ji(ar)Y^(lc)—Ji(k)Yi(ar)}^^^ ^ 

4£o ~ ■ H^Kk) 

{J^(Sir)Y^{k)-3^{)c)Y^(ar)'\^ ^ 

where Eq is the field which would exist at the origin if the plane and 

its boss were removed. The standing wave pattern can be obtained 

from (7.7) and thus we now have a means of examining the disturbance 

caused by a round boss projecting from a flat reflector, when the boss 

is parallel to the electric vector. When A: = 0, (7.7) reduces to 

E 
—— = :[j/i(ar)co8fl—J3(ar)cos30+J^(ar)cos 60—...} 

= j J8in(arCO80) (see McLachlan, p. 43, equation (15)), 

and this gives the standing wave pattern with EjE^ fluctuating between 

±2. Equation (7.7) has been evaluated for k = 5 {R = 0*79A) and the 

two components of field are shown in Fig. 7.5 and the R.M.S. field in 

Fig. 7.6, over a distance along the normal of about 2A in front of the boss. 

It is surprising the two components of E are so nearly in space quadra¬ 

ture in this range of at since they must ultimately pass through zero 

together. Sufficient terms of the series have been taken to make the 

values valid to the accuracy of plotting: hence the phase of Ep and Eq 
must change considerably in a further range of ar since, in Fig. 7.6, 

neither has yet attained closely the phase it must have when ar is very 

large, for then the zeros must occur when ar is an exact multiple of n. 
There seems little doubt that Fig. 7.6 is correct, even though its form 

is perhaps rather unexpected: it is interesting to note that the maxima 
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of \E\IE^ attain the value 2 at once: it is the minima which attain 

slovrly their limiting value zero. 

It is of interest to evaluate the current density induced on the 

cylinder and on the plane. The density on the cylinder follows at once 

from (6.11a) or (6.17a) by omitting the terms where w = 0^ 2, 4, etc., 

and doubling the odd terms, and this shows at once that the density 

Fio. 7.6. Relating to problem of plane wave incident normally on a flat sheet 
having a half-cylinder boss of radius 0*79A (k == 5). 

is zero at the junction of the boss and the plane. Or the density can 

be deduced from (7.7) by the general relations 

c dt 
IdHe l BE 

dr c dt r dd 
and cH = 47rt. 

Whence the density on the plane is given by the equation 

m j UJx(ar)Y^(ic)-Jimar)) m(ar)Y^(k)-Mk)Y^{ar)} ] 
cEo~ar[ H^{k) H^{k) 

(7.8) 

= —{Ji{ar)+SJg(ar)+5J^{ar)+...}, ifk-*-0 

= J, by a well-known series (see, for example, McLachlan, 

p. 61, Ex. 4), 
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Fig. 7.6. Standing wave pattern along the normal to the plane through 
the centre of the boss of radius 0*79A {k == 5). 

Fig. 7.7. Current density induced on plane which has a half>cylinder boss 
at diameter 1-58A; plane wave and normal incidence. 

and this is the well-known result, often used previously. When n ^ k, 
then .4(^) ”*■ 0 (see Fig. 3.14) and accordingly the higher terms in (7.8) 
tend to the value they would have if k were, zerov This shows that the 

4m.i „ 
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right-hand side of (7.8) must tend to the value ^ when ar > k, thus 
disclosing that the effect of the boss is local: our problem is to assess 
the range of or in which this disturbance is appreciable. 

Fig. 7.7 shows the two components of current density induced in the 
plane and also |i|, for the particular case k ~ 5. It shows that i, is 
relatively very small and attenuates fairly rapidly with distance. It 

Fig. 7.8. Current density induced round the curve surface of the 
half cylinder of Fig. 7.7. 

seems that |i| does not exceed 8/5 of the limiting value, but that the 
fluctuations are considerable up to a distance of several wavelengths 
from the protruding boss. This figure is very instructive for assessing 
the distance over which the disturbance persists of the uniform density 
which would obtain if the boss were absent: note that the induced 
density has a large antiphase component in the first of distance. 

The current density induced on the surface of the boss is shown in 
Fig. 7.8: at the ‘bright spot’ 2n\i\/cE = 1*11 and there it is 31° out of 
phase with E. According to what we have called ‘simple ray theory’ 
the curve of |t| would be a odsine curve of amplitude unity and this is 
the dotted curve in the figure. The true curve of |t| oscillates about 
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008 B with an amplitude which increases with 6. The curves of ip and (q 
show that the phase angle of the current tends very nearly to 46° when 

6 tends to 90°: it will be remembered that when the plane is absent the 

phase of the induced current appears to tend to 30° at d = 90°, the 

point of grazing incidence. It is clear that the simple ray theory is 

only very roughly correct in this problem and we remember that the 

Huyghens-Presnel technique appears to demand that the current should 

have the phase and magnitude given by simple ray theory. 

7.2. Current filament anywhere in the presence of an infinite 
plane having a half-cylindrical boss 

We will now generalize the problem of the last section and allow the 

current filament to be anywhere (parallel to the boss) in contrast to 

being on the normal through the centre of the boss. The general 

problem is of practical interest because it discloses certain useful 

reciprocal properties and also because a particular case simulates a 

90° Vee with limited sheets. If 6 in equation (6.14) is replaced by (0—<x) 
the field of a single filament is referred to a line at —a to the normal 

through the filament: similarly if 6 is replaced by (fl+a) the zero line 

is shifted through -1-a. If the two equations so formed are then sub¬ 

tracted we have the field at a point (or, 0) due to a filament at (z, <x) 
where the origin is at the centre of the boss and 0 and a are angles of 

elevation above the plane. The equation is 

4ianl 

{J^(z)Y^(k)-J„(h)Y„{z)} 
Hn((ir)sm not sin n0. (7.9) 

This reduces to (7.1) when a = ^ on remembering that 0 in (7.9) is 

(\7T—0) of (7.1). If or < 2, then or and z must be interchanged in (7.9). 

Accordingly it follows that if unit current at (z, a) produces a field E at 

(or,^), then unit current at {ar,0) produces field E at {z,ot)\ thus there 

is perfect reciprocity. In particular it means that the vertical polar 

diagram can be obtained by measuring the field at a fixed receiving 

point, while ol is varied at the transmitter and z is kept constant. In 

practice it is often a simpler process to vary a. than to vary 0, since to 

vary 0 demands either an aeroplane or movable kites. It also shows 

that in the approximate formula EjE^ = {^h^h^lXr it does not matter 

whether the suffix 1 or 2 refers to the transmitter. 

Since the wall of the cylinder meets the plane at 90° it seems likely 

that this region of the boundary can be used to simulate a 90° Vee 

reflector. We are everywhere looking for soluble problems which will 
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allow US to estimate how much the pattern due to sheets of finite width 

will differ from the ideal pattern, when the sheets extend to infinity. 

Here we have an approximation to a 90° Vee reflector made by one 

infinite sheet and a cylindrical boss. If we take k = 5, z = 7, and 

a == 14-6°, the filament is situated at a point 2' = 1 -25 from the junction 

of the plane and cylinder and at an elevation of 45° measured from this 

Fig. 7.9. Graphs of certain functions required in (7.10). 

point. We propose to compare the pattern with the ideal pattern for 

a 90° Vee with the filament on the bisector and distant 0-394A from the 

apex. The ideal pattern for such a Vee is given by 3.16, and in this 

case is E 

'SE^ 
.4(2’47)cos 25+yg(2'47)cos 6^... 

= 0'442co8 2fl4'0’004co8 6^.... 
When ar-ihoo, (7.9) takes the form 

E 
— = (-Srisinasinfl—Z88in3asin3fl+X68in5asin60...)+ 

sin 2asin 2^~X^sin 4asin id+X, sin 6a sin 66—...), (7.10) 

where X = (^) '^(^)^(^)} _ 
“ H^(k) ~ HJikY 

On putting k = 0, equation (7.10) reduces to equation (3.20) with 
n ss 1, as it should do. 
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Curve (1) in Pig. 7.9 shows 

{J„(7)r„(5)-J„(5)J„(7)} 

plotted as a function of n and is the real component of in (7.10) for 

the case where 2 = 7 and ifc = 5. Curve (2) in the same figure shows 

the imaginary component of this is readily seen to degenerate into 

Fig. 7.10. Diffraction pattern due to filament and reflector system shown in 
inset dietgram. 

J„(7) when n is large. The figure also shows the plot of «7„(7), and it 

may be seen that it is always a very good approximation to curve (2). 

A large amount of computation is required to derive Mg. 7.9, and 

therefore it is recorded here in case the reader should wish to solve 

other similar problems, using these values of z and k. 
The inphase and quadrature components of field are shown by curves 

(1) and (2) in Mg. 7.10: curve (3) in the same figure shows \E\IEq and 

curve (4) shows the ideal pattern for a 90° Vee with the filament on the 

bisector and at the same distance from the apex as the filament in 

our problem is from the point B in the diagram inset in Mg. 7.10. 

The purpose of this example is to compare curve (3) with the ideal 

curve (4). It may be seen that both have substantially the same 

maximum value, but in our problem this occurs at about 64° instead 

of at 45° in the ideal. The ideal falls to zero at & = 90° and thereafter 
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E is zero for it. The attempt to reach zero at 0 = 90° is represented 

by the minimum at 0 == 80° in curve (3). There is a big lobe with 

maximum at 6 = 130°, and this results from the field refracted over the 

top of the cylinder. Seeing that the height of the cylinder is only 0-79A, 

it will surely be admitted that curve (3) is a surprisingly good approxi¬ 

mation to curve (4) and therefore gives us sound reason for hoping that 

reflecting sheets of comparatively small size will suffice to produce 

patterns very similar to the ideal. The tremendous effect of this com¬ 

paratively small cylinder is well illustrated by noting that the maximum 

value of E/Eq is 3*4, whereas it would be only 2sin(7 8in 14*7°) = 1-96 

if the cylinder were removed, or 3-5 if the radius of the cylinder were 

infinite. It would be instructive to re-plot Fig. 7.10 for a = 10° (vice 

14-7°) to see if the maximum then occurred very near d = 45°. It 

would also be instructive to derive the pattern for the arrangement 

shown by the diagram inset in Fig. 7.10 but with k and z equal to, say, 

10 and 12, but this is left to an energetic reader; doubtless the result 

would be a much closer approximation to the ideal. 

If ar < z, then ar and z must be interchanged in (7.9). When z -> oo 

the equation for the field will be given by (7.10) provided that z is 

replaced by ar in it. If we then make a tend to zero we shall have the 

field in the region of the cylinder when the source is a very distant 

filament close to the ground. Thus we can evaluate the shadow effect 

of a rounded hill, rising out of the plane, between a transmitter and 

receiver which are widely separated and both near the ground. Since 

a tends to zero we must replace sinna by 2Tmhjz, where h is the height 

of the transmitter at a large distance zXj^TT. We shall not give a 

numerical example of this problem but hope that some reader may do so. 

7.3, Any Vee reflector with cylindrical back 

Using the image process we can generalize (7.9) so as to apply to 

sheets inclined at an angle j3 = Trjn: the general expression for the field 

is then found to be 

cE 
inanl 

= ^n(ar)00B cos 3n0+...1. 

E IXJjkz) „ X^{kz) „ A 1 .A 
oosn^—?FWco83»0...1 if 

(7.11) 

ar-* CO. 

Also we have — 
cEj. _ XUkz) Xl„(kz) 

4noir/ 

(7.110) 

(7.12) 
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We can now study the effect of amputating the apex of the Vee, 

a device which is used in practice to reduce the size of the reflector. 

To fix ideas we will take as a numerical example j3 = 30°, which is 

n = 6, and feel our way by exploring first the pattern for = 0. 

Since the first maximum of J^(z) occurs when z is just greater than w, 

the term J^J^z) will not be appreciable until the aerial is at least 2A 

from the apex and till then the pattern will be a simple sinusoid. 

We will choose z = 16 (JS/A = 2*55), which Fig. 3.27 shows is a station 

for maximum forward gain. Reference to tables of J^{z) shows that 

then EjE^ = 4(cos 60+0*4 cos 180), a pattern which is 12° wide at half¬ 

height and having a 4 per cent, side lobe centred at ±13°. We will now 

study the effect of providing curved backs of various radii. The 

parameter B = Jg(16)yg(i;)~J^(fc)l8(16) == —— is found to have 

the values shown in Table 7.1 below: 

Table 7.1 

k 4 6 8 9 10 11 
i‘ .: 

12 I 13 14 15 16 

lOOB -25-5 -7-2 --3-5 4-1-4 4-4-6 4-5-4 + 2-2 ~20 gg -3-6 0 

A plot of this shows B is zero when k = 8*7 and 12*5, and then the 

pattern consists only of the term in cos 180 and is of little interest since 

it corresponds approximately to zero forward field: it occurs when the 

clearance between the aerial and the back is approximately ^A or A, 

and in this respect the rounded back is then behaving as if it were an 

infinite plane. If k is less than 16 its effect on the term cos 180 is 

negligible and it will remain 180. The coefficient of cos 60 

has a real term (save when J^{k) = 0) which tends to deteriorate the 

resultant pattern, since the two components must be added vectorially. 

Now J^{k) = 0 when k == 9*9 and 13*4, and hence these give desirable 

radii for the back since this real term is then zero. 

Reference to (7.11) will show that when Jn(k) = 0 the coefficient of 

COSW0 is +jJn(^) and thus is precisely the same as if the back were 

absent. Thus it follows the radius of the back can be chosen so that 

its presence discloses itself in the pattern only to the second-order effect 

represented by the term cos 180: when i = 13*4 this amounts to reducing 

this coeflScient by about 3 per cent, of itself and adding a quadrature 

term whose fractional size is less than 1 per cent. It may thus be said 

that the back, even though large, need not affect the pattern. Accord¬ 

ingly we may amputate a length of at least 2A from the apex and 
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thereby decrease the physical size of the reflector Very considerably. 

It is instructive to find analytically that this need have no effect on the 

ideal pattern, a result already known in practice from experiments with 

flat backs (see Chap. XII). The sagitta 8 of the round back is 

|=(l-cosi/3)==^ = 0-035, if i3 = 30°, 

thus 8 = 0-07A if jR 2A, and so the back would be considered sensibly 

flat in optical practice. The correct procedure in practice would appear 

to be as follows: 

Place the aerial at the station of maximum forward gain for a com¬ 

plete Vee: then amputate the apex at about 0-4A behind the aerial and 

close the opening with a flat back. Then find by experiment the precise 

position at which the aerial gives the sharpest pattern. A more exact 

method is to amputate the vertex at a radius which makes Jn{k) = 0 

and then proceed as above. The main effect of a flat back is to cause 

the stations for zero forward field to occur at distances which are 

multiples of ^A from it, but the positions of these stations will merge 

into those for the complete Vee when the distance between the aerial 

and the back becomes large. 
Reference to equation (3.18) shows the current density behind the 

aerial has a first term which varies as |if„(ifc)|t7„(ar) and this tends to 

be small when ar < k. Hence, in amputating the vertex we are ampu¬ 

tating a portion which carries comparatively little current, and thus 

its removal would not be expected to affect the pattern very appreciably. 

The region of large current density in the sheets (beyond the aerial) 

persists further as the angle of the Vee decreases, and then relatively 

wider sheets must evidently be required to reproduce a close approxima¬ 

tion to the ideal pattern. This result is familiar in practice (the reason 

for it is now obvious) and is particularly exemplified by the pattern 

which is observed from a rectangular wave guide (the limiting case of 

a Vee) which has not been furnished with a flared exit. 

Remembering that the vector potential A is related to E by the 

equation = •—ja.4 and that 47ri = H = it follows from (7.11) 

that the current density at the ‘bright spot’ of the back is 

i _ 27m\B{—Jn(k)+jY'^(k)} , ]_1277 ^ 4-4 (-~0*185+0-082j) 

? A L J ^ 100 (-0-082-0-209j)’ 

n = 6, k = 14, 2 = 16. 

•• / lOOA'^® • 

when 
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At ar = 2 the field incident from the aerial is cEjarrl = 0*557 |6(F, 

hence 2rrilE = 0*86. Accordingly the ‘bright spot’ density is given to 

a fair approximation by simple ray theory. The density on the back 

at the point where it joins a side of the Vee must be approached as a 

limit (because there we cannot take dAJdr without penetrating the 

boundary), but it seems certain that i must be zero at this point. 

Fig. 7.11. Some curves of forward field for a 90^ reflector having a convex back. 

We will now explore the effect of a curved back on a mirror of 

wide angle: this is a step towards the analysis of a shallow parabola, 

a form used extensively in practice. Fig. 7.11 shows the curves of 

forward field for a 90° Vee having a curved back of radius R/X = 0, 

0*32, and 0*64 respectively. It shows that the back prevents the field 

from falling to zero, because it produces a quadrature term: when z is 

large the three curves tend to coincide and the effect of the back 

becomes insignificant. When k == 9 the forward field reaches its grand 

optimum, of value 22. Then the equation of the pattern is 

-A = 0-146(cos 20+1*40 cos 60+0*86 cos 100+0*03 cos 140), 
SE^ 

and then the main beam is 20° wide at half-height and the side lobes 

are small. We will now suppose there is a curved back such that A; = 4. 

Then evaluation of the radiation resistance shows that its relative value is 

1*17 when 2 = 8, 0*95 when 2 = 9, and 0*5 when z = 10. Consideration 

of these values, in relation to Fig. 7.11, suggests the gain is a maximum 

near 2 = 8. Computation shows that then the pattern is 

— = O*7{(1+1*7/)co8 20+3*9cos60+O*7cos 100+0*01 cos 140}. 

■®o 

This is plotted in Fig, 7.12, which shows also, for comparison, the 

pattern for a 90° Vee without curved back and with the aerial at |A 

jErom the apex. It may be seen that the back of radius 0*64A does not alter 

the width of the beam at half-height, but it does increase the side lobes: 
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the quadrature term in the field prevents the R.M.S. field from passing 
through zero. The forward field is and hence 

0 = 
117 

14-3, 

which is the same value as for k = 0 and z = 8-7. Evaluation shows 

the gain is a maximum when 2 = 8 and equals 12'5 when 2 = 10. 
Clearly the main effect of the back is to increase the lobes without 

Fig. 7.12. Diffraction pattern for a 90* reflector with convex back 
(fc = 4, z = 8). 

appreciable increase in the width of the main beam. Evaluation shows 

that when k = 2 the grand optimum gain is 18 and occurs when z = 9-3: 

if 2 does not exceed 5, then the gain is substantially constant and equal 

to 8, and thus shows the effect on the pattern must be negligible. 

Hence if the aerial is close to the apex then some of the apex can be 

amputated without detriment; but when the aerial is some fA from 

the apex then a curved back will increase the side lobes and thus offset 

the advantage of some saving of space. It is, however, very striking to 

find that a convex back to the mirror does not have a violent effect; 

this might not be obvious by an approach from geometrical optics. 

If the radius of the back is very large we might be inclined to think 

the pattern would approach that for an infinite flat sheet. On the other 

hand, the field must be constrained, by the sides, to an arc of ±45°, 

and this consideration suggests the pattern tends to become a sinoid. 

On the other hand, if the radius of the back is lai^e the aerial must be 

very distant from the apex, and this we associate with a ‘porcupine’ 

pattern of very fine lobes. Thus there are conflicting tendencies to a 

single sinoid or to a porcupine. Accordingly we presume a round back 
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of large radius will tend to reduce the side lobes which otherwise would 

have existed. It thus seems conceivable that a back of large radius 

may be capable of producing a pattern having a very sharp main beam 

and comparatively small side lobes, or at any rate to group the porcupine 

lobes under a reasonably sharp envelope: a concept and mechanism we 
shall meet again when discussing the parabola. 

7.4. Filament anywhere in a Vee reflector with cylindrical back 

In the last section the filament was on the bisector of the Vee: now 

we shall generalize the analysis so as to apply to a filament which is 

not on the bisector and we do this because it leads to a solution which 

is of great practical interest. 

The equation for the pattern can be inferred at once from equation 

(3.20) since the form of (7.9) and (7.12) show that the curved back is 

described completely by replacing the J^, Jgn? in (3.20) by the 

expression denoted by the symbol X in (7.10). 

For the problems we have in mind now, there are to be a pair of 

similar and cophased filaments disposed symmetrically on each side of 

the bisector: accordingly the terms involving sin a in (3.20) vanish, and 

the equation of the resulting pattern is 

jE 

SnEo 
yin7rl2X^ COS UOL COS COS 3w0+ —}• 

(7.13) 

It is a common device in practice to use two or more Vee reflectors 

side by side and with axes parallel, thus forming an array of Vees: it is 

considered that any one aerial is almost completely screened by its own 

Vee (from the other aerials in their own Vees) and hence that each aerial 

and Vee will perform substantially as if the other Vees did not exist. 

Such an arrangement cannot be examined analytically because we 

cannot deal with reflecting sheets of finite width, and the width must 

necessarily be finite if two are to be placed side by side. But it seems 

likely that an approximate solution of the double Vee problem can be 

obtained by using a round back to simulate the middle portion of the 

W formed by a pair of Vees, side by side. Since the sides of the Vee 

in our solution are necessarily radii of the round back, the only W 

which we can attempt to simulate is one whose angles are 90°. Accord¬ 

ingly n must have the value 2 in (7.13), which then becomes 

jE 

IQE^ m) cos 2ot cos 20+X^ cos 6a cos 
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The disposition we have in mind is described by the inset diagram in 

Fig. 7.13, in which the dotted tangents meeting at C would be the apex 

of the W which we are simulating by the arc DOE: the pair of similar 

filaments are represented by and F^. As a numerical example we 

shall take k 1 and z == 8, and this makes a = 38-2°, DF^ = 1*33, and 

Fig. 7.13. Relating to the problem of two 90° reflectors, side by side. 

= 9*9: it should be noted that F^ and are not visible from one 

another in the optical sense. The ideal pattern for the 90° Vee ADC is 

a simple sinusoid within the bearings ±45°, If the two filaments were 

alone in space their field would be given by the equation 

and this is zero when 6 — 18'6° and 72°. We wish to see if the pattern 

approximates to the form cos(4‘95sin^)cos29, and this is zero when 

d = 18*5° and 46° and has a side lobe whose maximum is at 0 = 39*4°, 
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with fractional value 0-19. Fig. 7.13 shows the two components of field, 

and also \E\, appropriate to the circular back of this numerical example. 

It may be seen that \E\ falls to a sharp minimum at 0 = 19° and thus 

agrees closely with our expectation that \E\ would pass through zero 

at 0 = 18-5°: the side lobe has a maximum of 76 per cent, and occurs 

when 6 = 33° as compared with our expectation of 19 per cent, at 

0 = 39*4°. Thus our expectation has 

been fulfilled in the main, save that 

the side lobe is four times too big. We 

must now consider whether the dis¬ 

crepancy would probably tend to 

disappear as the radius of the circular 

back increased or whether the back 

is ineffective. The answer to this 

question is probably supplied by 

Fig. 7.14, which shows the ideal 

pattern for 2: = 8, i = 0, and a = 38-2°. 

If this be compared with the curve for 

\E\ in Fig. 7.13 it will be seen that 

the curved back has decreased the 

forward field from 3*06 to 2*70 but it 

also has vastly decreased the ampli¬ 

tude of the side lobe. The value of 

EJEq in the forward direction is 1-53 

for a single 90° Vee when k = 1-33: 
hence our concept of the behaviour of 7.14. A certain diffraction pattern 

, , .11 .1 11. for comparison with 7*13. 
two such Vees side by side would give a 

forward field of 3-06 and this happens to agree precisely with the forward 

field in Fig. 7.14, but is greater than the forward field for the circular 

back when k = 7. The dotted side lobe in Fig. 7.14 is the curve 

3-06 cos(4-96 sin 0)cos 2^, the main beam of this curve being indis¬ 

tinguishable from the main beam drawn in this figure. Comparing 

Figs. 7.13 and 7.14 it does seem reasonable to suppose that increasing 

the radius of the curved back would tend to make the curve of |jF| 

differ insensibly from the curve 3"O6cos(4'96sin0)cos20 and thus that 

our concept of the behaviour of two similar Vees, side by side, was 

substantially correct. 

The length of the dotted sides EC and DC in the inset diagram in 

Fig. 7.13 is only 1'12A, and we may surely expect that the ideal pattern 

■which wotild result from them would be a closer approach to what we 
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expect than the ideal pattern which does result from the circular back. 

Accordingly this example again gives us good reason to hope that sheets 

whose width is only a very few wavelengths will produce a pattern 

which is a close approximation to the ideal. 

Fig. 7.14 is very instructive in showing that the bearing for zero field 

is precisely the bearing at which this would occur if the Vee were 

removed and the two aerials left free in space. It shows there is a strong 

tendency for the pattern to be the product of the pattern due to the 

two aerials in free space and the pattern due to one aerial in the Vee. 
This principle should be useful in predicting an approximate pattern 

without the labour of complete evaluation. 

Reference to (7.3) and (7.9) will show that at each filament 

cEp 
16o7r/ 

{«4(^)^(^) —»4(^)^2(^)P „Qg2 2oi4- 

Substituting in this expression for 2 = 8 and k = 1 gives 

cEp 
anl 

0-364. 

With a simple 90° Vee and k = 1-33 we have 

= 4{Ji(l-33)+J|(l-33)...} = 0-29 

and this shows the resistance of each filament in the round-backed W 

is 1*25 times as great as if it were similarly situated in a true Vee. Since 

the forward field (see Fig. 7.13) is 2-7, it follows that 

G = 
(2-7)2 

2x0-364 
= 10. 

The ideal gain for the simple 90° Vee is 8 (see Fig. 3.23), and thus thin 

round-backed W improves the gain in the ratio 10/8 = 1-26: in the 

limit this ratio would be 2. 

7.5. The density of current induced at the apex of the Vee 

In Chapter V we found that the induced current had an infinite 

density at the edge of a half-plane: we dismissed this infinity as being 

without practical significance because we said it arose only because the 

edge was sharp: now we can furnish this edge with a cylinder of any 

radius and examine what effect tMs has on the induced density. To do 

this we require an expression for the field at a radius which is less than 
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zj^TTy and this is obtained by interchanging ar and z in (7.11), thus 

giving 

_ S{Uar)YJ]c)-JJ]c)Y„{ar)} . ^ g , 1 

X^{ar)H„{z) 
Hjk) 

COS nd+cos 3ne+... . 

(7.14) 

The vector potential A is obtained from the relation E ==: —jaAy then 

the tangential and radial components of magnetic field are given from 

the relations 
„ dA A jj I ^A 
fli = _ and = 

We note that dA/dd — 0 for all values of 0 at ar = k, showing, as it 

should do, that no magnetic field penetrates the cylinder. We have 

47m/ l HJk) J 
If i is the current density on the surface of the cylinder, then 47ri = cHffy 

^ H„(z)cos ne+... j. 

But j.y: 
=-S’ 

, i _ 20 r »,(J) a I »»(*) J., 3„a I 1 

a result which might well have been guessed from (6.116), 

(7.15) 

2o {y„(z)+j^„(z)} 
irk Y„(k) 

oo&ndy if k-^0. 

^ = ^Jnik)\Hn{z)\cosne, since 

n 
when n == |. 

V(*2)’ 

Hence even in the extreme case of » = ^ the current density at the 

edge is never infinite so long as this edge has a round nosing of finite 

radius. If the edge is truly sharp the ma>gnetio field at it must have 

two directions, and this is imiwssible unless that field is zero: the 

magnetic field is not zero if j8 is 180° or more. Once the round nose is 
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provided the direction of the magnetic field becomes unique at all 

points round it. At the point where the cylinder meets the sheet the 

induced density is zero both on the sheet and on the cylinder, and this 

is another example showing that the density is always zero at the apex of 

an angle which is just less than 180°. We have now disposed of the 

necessity for an infinite density at an obtuse angle and may guess that 

in all circumstances the density at a point of small curvature tends to 

be inversely proportional to the square root of that curvature. 

7.6. Method of producing a non-reflecting chamber 
If an aerial is enclosed within a chamber having perfectly conducting 

walls, the output of energy is zero and the internal field is disposed in 

a system of standing waves. If the walls have finite conductivity, 

energy will be dissipated in them: at once the idea suggests itself that 

it may be possible to arrange their conductivity so as to absorb just 

that amount of energy which would be crossing the boundary if the 

physical barrier did not exist. Then it would seem the existence of the 

barrier would not be perceptible from the aerial and the field inside it 

would be as though the aerial were in free space. We will put this idea 

in a manner which will appeal to transmission engineers: if a concentric 

cable is terminated with the characteristic resistance the reflection is 

said to be zero, and it is said to be as though the cable extended to 

infinity: is there any characteristic resistance for the walls of a chamber 

which will produce the same effect? Since energy can be dissipated 

only by the flow of current, and since current in the walls must produce 

a field inside the chamber, it seems impossible to prevent a standing 

wave system from being set up. This argument is inescapable and 

applies also to a cable. Close examination shows it is possible to prevent 

all reflection if the chamber has a double wall. The outer must have 

perfect conductivity and the inner must be a thin sheet of high- 

resistance material: both the resistivity and the distance between the 

shell and the outer wall must be chosen correctly. We will now work 

out a particular problem and discuss its physical interpretation later. 

Let a current filament be surrounded coaxially by a perfectly con¬ 

ducting tube of radius and also by a very thin cylindrical shell of 

radius ilg, less than .Bj, of resistivity />. By (1.27) the field of an axial 

current I distributed uniformly round a tube of radius if is 

cB 
^ Jo(o»‘)+jTo(or)}, for r-> ii: (1.27) 

for R>r, or and k must be interchanged. Let a current on the 
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common axis induce currents and /g in the shell and the outer wall 

respectively. Then the general expression for the field at radius iJg is 

cTij 
WTt 

The field outside iJg is 

_ = {J[)(^3)-4+'^(^’2K2+-(l}{~■'^(^^)+J^o(^^)}• 

Since the tube of radius JKg is a perfect conductor it follows that the 

field must be zero everywhere for r > JR and accordingly 

Substituting this condition in (7.16) gives 

C^2 
art 

. XqPc^ ^3) 

*^(^3) 
{Jo(^2)^2+A}> 

where X^ilc^lc^ = Jo(^2)^(^*3) */o(^3)^(^2)* 

But E, 
t 27tB. 

Then substitution in (7.17) gives 

cE^   Cp I2 _ fg 
arr t 27r^k2 Z 

jX^^k^k^Z 

*^(^3)’4”./-^o(^2 ^3)^*^(^2) 

^3 1 

k~' *^(^3)^“J-^o(^2 ^3) ^*^0(^2) 

ig J _ . 

i^~ Xo{kMZ~ 

(7.17) 

(7.18) 

Now both Xq and Z are essentially real quantities, hence (7.18) shows 

that /g and /g are in phase quadrature with one another for all values 

of iJg/iJg aiid of P* 
The field inside the tube of radius iZg, due to the induced currents 

Jg and /g, is 

^ = [{-Ji(i>2)+ii;(*2)}4+{-«^o(*»)+jr„(i8)}/,]J„(or) 

= [-Jo{*2) + <^o(*8) Wo(*:2) + «Ji(*;s)}KW2. t>y (7-18). 
V •7914 
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We wish to arrange that this field shall be zero for all values of r less 

than if this is to be so, then it is essential that 

—‘^(^'2)+«^o(*3) = ^ and Io(i2)+aJi)(^^3) = 

Jo(^2)*^(^3)^“^(^2)^(^3) ~ ^ 

and « = (7.20) 
^0(^3) 

The condition (7.19) is independent of oc and thus is independent 

of p: it is a purely geometrical condition. If 1*2 is large it reduces to 

cos(A;3—jfcg) = or (jRg—i22)/A == J, |, etc., and no solution is 
possible unless jfcg exceeds 0*804. 

Combining (7.17) and (7.18) gives 

= Jl(k^)+Yl(k,) (7.21) 

2 
== -y-, if I"2 is not small, 

TTAJg 

477 
then p/^ = — = 12077, in ohm units. (7.21a) 

c 
We have now found both the spacing and the resistivity which wiU 

make the field inside iZg precisely the same as it would be if both tubes 

were removed. A non-reflecting chamber then results for the particular 

frequency which makes (Ug—jBg)^ = etc., and then it is precisely 

as though the central rod were in free space. This solution does not 

demand the central current should be a filament: if it is a tube of 

radius B, then it is necessary only to replace above by 

If B2 happens to be such that either Jo(^2) ^0(^2) zero, then 

it follows, from (7.19), that B^ must be such as to make I^(A;3) or 

Joik^) zero respectively, since /o(^2) ^’^d Yf^{k2) cannot both be zero 

simultaneously: if is large, this condition obviously approaches 

(iJg—i22)/A == J. If ^0(^2) is d^st time, then reference to 

tables will show that Ajg—feg = 1*511, whereas ^tt = 1*671: hence the 

clearance is then 4 per cent, less than JA. If Jo(^2) is zero for the first 

time, then jRg—JSg is 1*3 per cent, less than JA. These examples shov^ 

the limiting clearance is approached very quickly and has sensibly been 

attained even when BJX is only of the order of 0*14. 

On making use of (7.19) and (7.20) it follows that 

II •^(^8)~h?^{^8) 

lAI “ I 2 j • 
and hence 
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Also ^ = j ^^^2) . sin(A:2 

I2 ‘^*^(*3) * oos(k^—l7T)\kJ 

^ . sin(A;2---^77) Ik^+inX^ 
008(^77 +jfc2““i77)\ i*2 / 

since ^ 3 ^’2 — j 

(7.22) 

showing that the two induced currents tend to become equal in magni¬ 

tude when BJX is large. 

If the field everywhere within the resistive tube is to be the same as 

the ‘isolated field’ of then the dissipation must equal the square of 

this field divided by the resistance of the tube: accordingly 

^ __ aWMk,)\^ 27rR,t ^ 2n^k,t\H,(k,)\^ ^ by (7.16). 

This gives an interpretation of the physical meaning of (7.16), for it is 

obvious that i^2l^o(^2)lV/^ must be constant if the dissipation is to be 

independent of i?2- The product i'2i^o{^2)P ©qR^^ls 0-33, 0-54, 0*59, 0*62, 
0*64 when k^ equals 0*1, 0*5, 1*0, 2*0 and infinity respectively: thus 

showing that pjt differs little from 12077 ohmsf if R^jX exceeds 0*16 

(i.e. ^2 = 1); if must have the value 6277 ohms if R^fX = 0*016, 

By Poynting’s theorem the outflow of power is at the rate of EHI4tn 
per unit area. If this power is to be dissipated in a thin shell and the 

field at the shell is to remain equal to E, then it follows that 

47tE 

When E ^ Hjc, as in a plane wave, we have pjt = 477/c. 

The mechanism of the whole problem is exposed by proceeding to the 

limit of i?2 tending to infinity. If a plane wave is incident on a perfectly 

conducting sheet it induces a current density i = ci&/27r; if the sheet has 

an ohmic resistivity such that pjt = 477/c, then the current induced will 

be half as much as if the resistivity were zero. This means that the 

screening ratio of the said resistive sheet is one-half: the net field 

behind it is half the incident field and the sheet re-radiates forward 

a wave of half the intensity of the incident waves. If a perfectly 

t Note, If current flows radially through an annular disk of thickness t and 
having external and internal radius a and h respectively, then it is easy to show 
that the resistance of the disk is (p/27rQlog(a/6). If such a disk is used as the 
termination of a coaxial cable, then it follows that the resistance of the disk will 
equal the characteristic resistance of the cable when pjt = 12077, a result which 
is independent of a/6. 
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conducting plane is placed behind and parallel to the resistive sheet it 

will re-radiate a wave whose intensity is half the original undisturbed 

wave. Accordingly in front of the resistive sheet there will be two re- 

radiated waves of equal intensity, each half the intensity of the original 

incident wave: one is originated by the current induced in the resistive 

sheet and the other by the current induced in the perfectly conducting 

sheet which is behind the resistive sheet. These two re-radiated waves, 

of equal intensity, will cancel each other precisely if they are exactly in 

antiphase with one another: consideration will show this will occur if 

the space between the two sheets is |A, |A, etc. We have now found the 

simple and obvious description of the whole effect analysed completely 

for a cylindrical wave. We now understand why the spacing is never 

precisely equal to JA and whj^ pjt is never precisely equal to 47r/c: these 

discrepancies are due entirely to the cylindrical character of the wave. 

It is interesting to find that the effect of the cylindrical wave-front is 

negligible when its radius of curvature exceeds about 0-15A. 

The field between and R^ is given by the equation 

CE {./o(^2W«>‘) + io(*2po(«»')}{~«4(*2)+j^o(*2)} /7 oo. 

. ~~ mh)? ^ 

or c\m 
UTtIi 

ir—R2), if ig is large; (7.24) 

thus the field in the interspace differs insensibly from a quarter of a 

sinusoid when the spacing is JA. 

We have now found the principle to be used in the construction of a 

room in which short-wave aerials can be tested as though they were in 

free space: also we see how to construct a device for absorbing the power 

radiated by an aerial without disturbing the impedance of the aerial. 

In the second application the thin resistive shell will be a tube whose 

diameter is not vastly greater than the diameter of the rod which forms 

the aerial: the output can be deduced from the temperature rise of the 

shell or by measuring the interspace field with a monitor aerial, f 

It is essential to the theory of operation that t/X shall be very small 

^tnd also that p shall be so large that the current induced in the shell 

will have sensibly a constant density through its thickness. If the shell 

were of copper it may be calculated that the thickness would have to be 

0*44 X 10~® cm. in order that pjt should equal 12077 ohms.: this is meaning¬ 

less since it is less than molecular dimensions. If f = 0*1 mm., then 

p == 3*8 Q per cm. cube; this is more than 2 x 10® times the resistivity 

t See British PaterUSf No: 585,460 and 587,616. 
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of copper, one-tenth the resistivity of a 3 per cent. NaCl solution, and 

one-thousandth part of the resistivity of 'tap water’. The effective 

depth of penetration in a conductor is given by d == (l/27r)-^(p//), where 

p must be expressed in E.M., C.G.S. units: if p = 3*8 ohm units it follows 

from this that d = 0-1 mm. when/ — 10^^, which is when A — 0*3 mm. 

Accordingly the depth of penetration need not be considered even when 

A is only of the order of 1 cm. Experience shows that paper sheets 

impregnated with colloidal graphite can readily be made to have a 

resistance near 1207r ohms for a strip of unit width and length: and that 

the resistance of such paper is sensibly constant from point to point 

and not much dependent on age if it is protected from moisture. 

Before leaving this problem it is instructive to find the ratio of 

when the interspace between the shell and perfectly conducting wall is 

very small, for this will correspond to a badly conducting skin on the 

surface of the perfectly conducting wall. It follows from (7.18) that 

Is j_ 

= Shy *3 *2 

when ^2 is large 

jcp ^ 
4:7rat^ 2n t ’ 

where ~ ~ x — . 
t c 

Hence if x is of the order of unity, /3/J2 > 1 since f/A is very small, thus 

showing that relatively very little current will flow in the badly con¬ 

ducting skin. 

We can now consider the particular case where = 0, the 

resonance condition for the surroimding chamber. Then would be 

infinite if the inner shell were absent, and the solution would break down 

because we have ignored the resistivity of the walls. It now follows 

from p. 289 that 12/^1 = lMo(^2) values of p, and hence IJIi > 1 

since is very small and JqC^s) Then there will be a very 

large current (relative to I^) in the thin shell and a vastly larger quadra¬ 

ture current in the perfectly conducting wall just behind it. It means 

that a small but finite resistivity in the wall will force the current to 

penetrate deeper than might have been expected, and change its phase 

very rapidly, if the frequency is just verging on resonance. It is obvious 

that something of this character must occur, because current at the 

radius which makes J^{h^ = 0 has no external field, however large this 

current may be, and thus cannot screen Jj. In order to screen the 

induced current must penetrate to a radius slightly greater than that 
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for which = 0 in order that it shall have an external field to 

neutralize externally the field due to 

At A = 10 cm., p'ld for copper is 14-3 mil, whereas pjt for the 

absorbing screen has to be 1207r ohms and these values are in the ratio 

2*6X 10^: if we take Xjt = 600 and x — I, then the current in the 

copper is 100 times the current in the contiguous high-resistance layer 

and then the energy loss in this layer would be 2-6 times as much as 

in the copper. Though the current in the layer is very small, it would 

produce a substantial loss unless iP > 1 or Xjt is very small indeed: it 

would have an ill effect as a lining for a resonant chamber or a wave 

guide. If the layer were of manganin the penetration depth would be 

about 0*01 mm. at A = 10 cm., so that it would be impossible to make 

it so thin that the density was substantially constant through it. This 

means that a surface layer of metal is bound to carry almost all the 

induced current and effectively screen a copper backing behind it. 

We now understand completely the theory and action of what 

opticians call a ‘black screen’ and realize it must consist of two screens 

separated by JA. The discussion of black screens in Theory of Huygens' 

Principle, Baker and Copson (pp. 98,117, and 152) suggests this essential 

feature was not understood by Kottler, Voigt, Kirchhoff, and others. 

It is appropriate to discuss brietty here another problem which bears 

a superficial similarity to the black screen but in reality is very different. 

It is the refiection from the boundary of a plane face of dielectric, and 

the particular technical application we have in mind is the device, 

developed largely by Miss Blodget, of depositing a transparent JA layer 

on the lenses of binoculars or the glass fronts of instruments. We can 

present this device in a manner familiar to engineers by using the 

terminology and ideas of propagation through a coaxial cable. In such, 

the propagation is by an electric field which is purely radial and normal 

to the inner and outer conductors. If an infinite length of cable is joined 

to a source through a finite length of a different cable, the input 

impedance will not be that of an infinite length because the discontinuity 

at the junction will set up a standing w'ave system: reflection is said to 

occur at the boundary. Suppose both lengths have inner and outer 

conductors of the same diameter, but that the infinite length has a 

dielectric of constant K while the finite length has a dielectric of constant 

unity. Then the characteristic impedance of the infinite length will be 

of that of the finite length. If the two lengths are join^ through 

a piece of a third cable it is possible to ‘match’ one piece to the other 

provided the third cable has a length of JA: let be the characteristic 
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impedance of this link. Then if it is loaded by a resistance it will 

Took like’ a resistance such that R^ R^ = Here we wish to 'step 

up’ jBg to JBi in the ratio and thus must make = Zq, where Zq 

is the characteristic impedance of the air core cable. If the conductors 

are uniform throughout, then the |A link must have a dielectric constant 

K' such that K' == K^: transferring this to refractive indices gives 

== As a numerical example take Zq = 70 ohms and K ~ 2, then 

the characteristic impedance of the infinite length of cable will be 

49*6 ohms, whence Zq must be 59 ohms, and this requires that 

If the dielectric of the infinite length is glass having refractive index 1-5, 

then the refractive index of the surface layer must be 1-23. If the 

inner radius of the cable tends to infinity, the propagation of a plane 

wave is approached and then we have reached, by familiar means, the 

solution to which the Blodget device applies. It is not a ‘black screen’ 

but a screen which permits a sudden change of medium to have no 

effect on the propagation: a double boundary is always needed to 

smooth over the transition from one medium to another, w'^hether the 

second medium is a dielectric or a perfect conductor. 

7.7. Extension of sections 7.3 and 7.6 to include rectangular 
wave guides and their correct termination 

In Chapter III all the general equations were developed for a filament 

in a Vee reflector. Though these solutions are complete only when the 

sides of the Vee extend to infinity we have derived the solutions in the 

expectation and hope that they will be approximately correct for sheets 

of finite width. This has in general involved the further implication 

that jS, the angle of the Vee, is not very small. But if ^ tends to zero 

we might expect our solutions to degenerate into the classic solutions 

for a rectangular wave guide: it is instructive to look at this limit, both 

for its analytical value and also to remind the reader that wave guides 

are a particular case of an aerial with reflecting screens. The general 

equation for the inphase component of field at the aerial (when on the 

bisector) is given by (3.14), which we repeat here 

Since each term of the infinite series is essentially positive and since not 

more than one term can be precisely zero for any given value of k, it 
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follows that the output of the aerial can never be zero for any value of n: 

regarding this from the point of view of Chapter III this is not sur¬ 

prising. But it is well known that the output of any generator in a 

parallel and rectangular wave guide is precisely zero if the width of the 

guide is less than |A. Hence if (3.14) is to degenerate into the solution 

of a parallel wave guide when n tends to infinity (that is, jS tends to 

zero), then we should expect to find Ep remained zero until k exceeded 

some definite numerical value and it is clear from (3.14) that this is 

not so. Suppose the circumferential width of the guide at the aerial 

is JA, then ^A = = RTrjn ov k = n and accordingly 

—^ = 4n{J*(n)+ 

Reference to § 3.5(a) and Fig. 3.14 will show that each J in this series 

must be positive and that every term is less than the preceding term, 

and that the first term is vastly the greatest when n is very large. 

Accordingly, —cEplaTrl == 4 x 0-446%l and this tends to infinity with n. 

If the width across the guide, at the aerial, is just less than JA the 

output will be finite, though extremely small. Thus it seems the com¬ 

plete cut-off property disappears if the sides lack parallelism by any 

amount, however small. Is this apparent discrepancy of behaviour due 

to the fact that the width across the guide will exceed JA at a sufficient 

distance from the apex, or is it due to the tapered closure of the guide 

at the apex and behind the aerial ? We can remove this second possible 

cause by putting a curved metal back behind the aerial and amputating 

the portion between the said back and the apex, then we shall have a 

conductor near the bottom of a slot whose sides are radial and very 

nearly parallel. The general equations for this arrangement are given 

in (7.11) and (7.12), but are very cumbersome because we have chosen 

a filament as the source. Since we are investigating a basic principle 

it is not necessary to choose that particular source which happens to 

look, superficially, most like a source which would be used in practice. 

The cumbersomeness disappears if the filament is replaced by a sheet 

bearing a current density which varies sinusoidally across it, and indeed 

we then obtain the most general solution, since any source can be built 

up from it by the use of a Fourier series. If an axially flowing current 

density /^cosna is distributed round a cylinder of radius U, then we 

have shown in (6.4) that 

i* E 
— = 2nBJ„{k){-J^{ar)+jYj,ar)}(iOBn0, (6.4) 
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and this gives the field in a Vee which is excited by a current sheet 

bearing a sinusoidal loading. It is convenient to write the maximum 

density in terms of the total current I in the arc, the two being 

related by the relation I = 2/^^ Rjn. Accordingly 

rF 
= nJJk){—J„{ar)+jYJar)}cos nd (7.26) 

if iJ > r in (7.25), then ar and k must be interchanged. If the current 

bearing arc has radius there is a perfectly conducting sheet 

of radius Ri behind it, then the equation for the current 1^ induced in 

this arc is 

It follows I’eadily from this that, for r > JSg, 

^2" YjkJWniK) ^ Jn(ar)+jY„{arhoosnff. 

cEp (Yi,(kt)J^(ko)—JnikAYAkc^y^  « /« 

'ani ~ \HM\^ 
cos nB (7.26) 

= 5ilM! cos e, if 

This expression is zero only for the special values of which make 

/^(Ajg). Now r,^(2:) is negative when z is very small and 

passes through zero for the first time when J,^(z) is still positive; hence 

Ep cannot be zero for the first time until i'g exceeds the value which 

first makes — 0, and accordingly k^ must exceed Yl5n when n is 

very large. {Ep = 0 for = 10 when k = 15-2, having passed 

through zero near z ~ 14*4.) The value of z which makes Y^^iz) zero for 

the first time seems to approach n continuously. Hence when Y^ik^) == 0 

the value of Ep must be about three-quarters of what it would be if the 

round back were removed, and thus will vary as n*. Hence it seems the 

complete ‘cut-off’ property of a parallel guide is absent if the sides lack 

parallelism by any amount, however small. The output falls to zero 

when the distance between the exciting sheet and the reflecting back 

has a certain critical value, and there is a corresponding adjustment for 

a guide whose sides are truly parallel. 

If z is appreciably less than n, then Y^(z) > accordingly, if 

an^I^ I Yf^(k2) 

If n= 30, then .4o(20)/^(20) = —10"®: hence we conclude that the 
back closing the Vee has a negligible effect on Ep until ki is verging on n. 
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Thus we conclude the absence of complete ‘cut off’ is due entirely to 

the fact that the width across the guide will gradually exceed JA at a 

great distance from the exciting current even when n tends to infinity. 
This suggests the classic solution for a parallel guide may be so sensitive 

to the exact form of the bounding walls as to make it slightly unreliable 

in practice. 
We will now generalize the problem of the non-reflecting cylindrical 

chamber so as to apply to a Vee-shaped chamber: when n becomes large 
this amounts to investigating the correct termination for a slightly 

tapered wave guide. We shall suppose the Vee is excited by a sinusoidally 

loaded current sheet of radius R carrying a total current /j, that it has 
a thin resistive sheet of radius i?2 and a perfectly conducting sheet of 
radius iJg, the total induced currents being and respectively. Then 

proceeding as in (7.16), etc., we find that the three equations (7.18) are 

unchanged provided only that Jq is replaced by thus 

and 

f3 ^__ 

_3_ 

The equation corresponding to (7.19) is now 

Jnih) Jn(h) + Yn(h) = 0. (7.28) 

If < n, then both T,1(^:2) and Y.n(k^) are negative and both the J’s are 
positive, and hence (7.25) cannot have a solution for k^ < n: hence if 
the field between the resistive sheet and the source is to be the same 

as if the Vee extended to infinity, then the circumferential width across 

the closed end of the Vee must exceed |A for all values of n. If 

for the first time, then lw(^'2) must also be zero: accordingly then 

JSg-iZg _ O’1571 

T~ 

when n is very large. If n = 1 we find that 

- = 0-34 when k^ = 2*2 (Tj is zero when k^ = 2*18) 

jp_jp ' 
and 0’254 when /"g == 3’8 (which is when is zero). 

If =s 16 ()8 = 12*3°) we find Yi^(z) is zero for the first time when 
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z = 17*5 and for the second time when z == 23*5, and Ji^(z) is zero 

when 2 = 21*1, and therefore 

— == 0-57 when = 17*5: 

according to these two examples the limiting formula above always 

underestimates the clearance. 

We are now able to understand the whole problem of the wave guide 

much more completely than before the start of this section. A generator 

in a parallel guide will have no output whatsoever if the width is less 

than ^A, and in such circumstances the field in the guide has a constant 

phase throughout its infinite length and the magnitude decreases con¬ 

tinuously with distance from the source. If the width of a parallel guide 

exceeds JA, then a generator in it has an output of power: if the generator 

is a sinusoidally loaded current sheet, then the mean square field is 

independent of the distance from it, but the phase changes periodically 

with a wavelength which is greater than cjn. Since the field does not 

attenuate with distance it is complete^ misleading to forget that the 

length of the guide must be infinite, and it is useless to suppose the 

solution is applicable to a long finite length of resistanceless guide. 

If the guide is a Vee, no matter how small its angle, any generator will 

have an output no matter where it is situated (save the special stations 

corresponding to J^ik) = 0): it is not necessary the width of the guide 

at the generator should exceed JA, though the output will be very small 

indeed if that width is appreciably less than |A. In all circumstances 

the field in the guide will change its phase continuously with distance, 

and the magnitude will decrease approximately as the inverse square 

root of the distance from the apex. What matters is not that the width 

of a guide should be nowhere less than JA but that it should not be less 

than |A everywhere. But since our solutions apply accurately only to 

a guide whose length really is infinite, they can be related to reality 

only by some device which will make a finite length of guide behave 

as though its length were infinite. This device is a black screen termina¬ 

tion consisting of a resistive film combined with a perfect conductor 

correctly spaced behind it. Equation (7.28) shows this device is 

impossible unless the greatest width of the guide slightly exceeds JA. 

Hence the wave guide analysis cannot be applied accurately to any 

realizable problem unless there is a width slightly greater than ^A, and 

presumably this is the full interpretation of what the ' cut-off’ property 

hints at. If the infinite Vee guide has a conducting back between the 
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sinusoidally loaded generator sheet and the apex, then (7.22) and (7.23) 

show that the field is the same as if the back were removed and the 

generator current suitably adjusted in magnitude and phase. Hence 

our solution applies to a finite length of Vee guide closed at each end 

by concentric arcs and having within it a resistive film. If n is very 

large the difference in width between the two ends can be made as small 

as we please provided only that the greater exceeds |A. Approach in 

this way would be instructive in showing whether or not the solution 

for parallel sides is sensitive to perfect parallelism. It would be interest¬ 

ing to analyse the case where there is a resistive film between the 

generator and the conductive back which closes off the apex of the Vee 

and to see if this can be made black. If so we could have a black screen 

at each end of a finite length of Vee guide and so, on making n infinite, 

approach the solution for a sinusoidally loaded generator in a doubly 

infinite parallel guide. It is worth remarking that perfect termination 

can be obtained only if the generator is a sinusoidally loaded arc, and 

this is true whether the guide is a Vee or has parallel sides. 

FURTHER PROBLEMS OF HALF-PLANES 

7-8. Plane wave incident on a half-plane having a cylinder at its 
bounding edge 
Consider a current filament in the same plane as a half-plane which 

is bounded by a cylinder. If the distance between the filament and the 

centre of the cylinder tends to infinity, then we have a plane wave 

incident on a cylinder which is parallel to the electric vector, the 

cylinder having an infinitely extended fin which is parallel to the 

direction of propagation. Thus we can examine the effect of adding 

the said fin to the problem solved in § 6.6. We shall derive now the 

current density induced round the cylinder. The general expression is 

given in (7.15), but now we must make n^ \ and make z tend to 

infinity. When 2;->oo, J^{z) == —J^{z) = *7^(2;) and Y^{z) = J^{z), etc.: 
hence (7.15) becomes 

cos 0/2 cos 60/2 , 

. Jcos 30/2 cc 

H,(k) -- 
■i/9 

1 , cos 90/2 ) 

cos 70/2 cos 110/2 

b;(&) H^(k) ■ 

z) — ^^0 
^~ V2 anl’ 

where E is the field which would exist at or = 0 if the cylinder and 
half-plane were absent. 
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V27r2K_. .. ^^J^(^•)cos0/2 F5(^’)cos 30/2 

cE, ~ ^ \H,(k)r ~Wk)T^ 

J|(i)cos50/2 Y:^(k)co&76/2 J|()fc)cos90/2 

.fTi(Z3)cos0/2 e/|(A;)cos30/2 I|(i;)cos 50/2 

Jl(k)oos7dl2 l|(A;)cos 90/2 

w)i^ 
and this is the equation corresponding to (6.17 a) for the problem 

where the fin is absent. 

Evaluation of this equation for k = 2 gives 27TijcE = 1*07 |ll° and 
0*41 |35-5'^ at 0 = 0 and 90° respectively: reference to Fig. 6.11 and 

Table 6.4 will show these values are indistinguishable from those 

obtained for the simple cylinder witnout a fin: thus showing, as would 

be expected, that the fin has no appreciable effect on the current 

distribution round the ‘bright’ semicircle, though it must make the 

density precisely zero at the ‘dark spot’. We are aware that when n 

is not an integer the Bessel solutions are multi-valued and in that sense 

seem dubious for numerical use. Therefore it is instructive and 

encouraging to note that numerical evaluation for a case where n == | 

does not show appreciable discrepancy from a very similar problem for 

which n = 0. 

•1 (7.29) 

7.9. Current induced in a half-plane when the coplanar current 
filament is very distant 
We are repeatedly feeling our way towards calculating the induced 

density by a ‘ray theory’ in the hope of finding approximate solutions 

for problems which are not soluble formally. In the problem of the 

long cylinder parallel to the electric field the ray theory worked well 

save near the points of grazing incidence, where we found a limiting 

phase lag near 30° even when the cylinder had a fin. The half-plane 

excited by a very distant coplanar filament gives an example of a plane 

wave at grazing incidence on a conductor: hence the exploration of this 

problem is useful in the general search. Having just examined the 

density induced round a cylinder at the bounding edge it will suffice 

now to find the density induced on the two sides of a sheet terminating 

in a sharp edge. We revert to (6.3) and note the terms B and D are 

zero since the filament is coplanar (a = 0). When k-*-co, 

J^{k) « -/j(&) = (*)... and Yi(k) = J,(fc). 
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The general expression is 

JL dir 

When n = J and i ocs this becomes 

+{Jt(A:)-iyj(^t)}{3J5(ar)-7Jj(ar)+llJ^^(a/-)-...}]. (7.30) 

2/2' 

since —JJT) — «4+i(2)+*4-x(2)> 
z 

{cos(ar+i^)+i sin(ar+A;)}. 

This shows that |i| varies as {ar)-^ and differs in phase by Jtt from the 

local field which would exist if the sheet were absent. The density on 

each side of the sheet at A from its edge is 1/27t of what it would have 

been if the sheet had been doubly infinite and the field incident normally 

on it: at 4A from the edge it is half this amount, and so on. 

When the filament is close to a doubly infinite plane we have seen 

that i varies as /•“** as grazing incidence is approached, whereas here i 

varies as where now r is the distance from the bounding edge of the 

half-plane. The reason why the current density decreases so much more 

rapidly in the first case is because there is an intense concentration of 

current just below the filament, thereby producing zero force all along 

the plane. When there is a bounding edge the field of the induced 

current will decrease, with distance from the edge, much more rapidly 

than the decrease of field from the very distant coplanar filament. 

Accordingly the induced current in the half-plane must persist appro¬ 

priately to make up for the said decrease of the field due to it: the 

appropriate law turns out to be i varies as r-^. In a sense it is correct 

to say that induced current exists only because there is a bounding edge. 

This example would perhaps have been more complete if we had situated 

the filament on a bearing at a to the plane of the half-plane and arranged 

a so that as k goes to infinity aAA;/27r = JA, and then we should have had 

direct comparison with a doubly infinite plane excited by a filament 

distant JA from it. But to have included this refinement would have 

complicated the analysis unduly. 

When a plane wave was incident on a cylinder of radius such that 

JS/A = 24/2^ we found the current density at the point of grazing 

incidence was l*07/2rrXoJSf/27r, and perhaps this shows the limit for a 
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cylinder is l/27r; which, according to ray theory, is as though the wave 

were incident at arcsin 1/2-0- = 9*2°. 

7.10. Current density induced in a half-plane when a plane wave 
is incident normally on it 
This example is of great interest because it shows the rate at which 

the disturbance caused by an edge fades away with distance from the 

edge when incidence is normal. We must now put a == Jtt in equation 

(5.2): then terms involving J^, J3, J5, etc., appear in the analysis and 

may be thought of as representing the attempt to establish the con¬ 

ditions obtaining on a doubly infinite plane. 

Taking first the series denoted by B and D in (5.3) and writing 

ar = we have 

I z 

= ^^^{Ji(3) + 3J3(2) + 5«/5(2) + .-}, 
z 

since = — J3, etc. when k-^00. 

Now sin(2sin0) = 2{Ji(2)8in0+.4{®)^iri^^+—}: 

hence, on differentiating, 

2 cos(2 sin 0)cos 0 = 2(Ji(2)cos0+3t4(2)cos30+...}. 

2 = 2{Ji(2)4-373(2)on putting 6 ~ 0. (7.31) 

Accordingly 

^ -= when ^ ^ 00; 

whence cE = 4:iH, where E is the incident field of the plane wave. 

Accordingly this turns out to be half the current which would exist if 

the sheet were doubly infinite and agrees with the general statement 

following (5.3). The terms denoted by A and C give 

-5{sri(k)+jJt{kmz)-...+] 

+{r,(fc)+JJi(*)}{37,(2)+77j(2)+ll7v(*)+-}] when )fc->oo 

' 0 ^ 

+{-•Ji(*)+A(*)} -•4(2')+ J* 
' 0 

(7.32) 
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by use of the recurrence formula 2nJ^^{z) = 

It has been shown previously that 

J J^{z) dz == l~J^{z) 
0 

and also a corresponding approximate expression for the other integral: 

hence it follows that both F and G tend to unity when z is large. Some 

values of F and G are shown collected in Table 7.2 below. 

Table 7.2 

z 0-2 1 0-6 10 1-.5 1 2-0 
1 

3 4 , 1 ^ 6 

F 1-79 j 1-16 0-926 1 0-870 0-891 0-967 1-02 1-03 1-01 
0 0-351 j O-60O 0-772 1 0-918 0-894 1-06 1-08 0-999 0-978 

This table shows that both F and G differ very little from unity if z 

exceeds, say, 3, and then 

= 2^ J {~^{—co&k—8m.k-\-j{s\ak—cosk)} 

whence cE = ini, where E is the field incident on the sheet. 

We have now shown that the terms B and D in (6.3) give a uniform 

density cE — iin at all points of the semi-infinite sheet, right up to the 

edge, and that the terms A and C in (5.3) give a density which differs 

insensibly from the same magnitude if z exceeds, say, 3. On the ‘bright 

side’ of the sheet the two densities are to be added and on the dark side 

subtracted; hence the resultant density is nearly zero on the dark side 

and nearly given by cE = 2wi all over the bright side. 

Since /o(*) tends to V(2/jr*)cos(*—Jw) and —T.^(k) = ^(2lnk)oo8k it 

follows that {3j(^i)+;j‘4(^)} ^ S' vector whose modulus is proportional 
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to the incident field but whose phase lags the field by Jtt: when F = 0 

the current density leads Jtt on H^(k) and then is in phase with the 

incident field. The following table shows (F^+ 0^)7V2, arctan 0/F, and 

also Jtt—arctan O/F, which is the angle by which the density lags on the 

incident field. 

Table 7.3 

z 
1 

0 ! 0-5 1*0 1-5 1 Bi 5 6 

Arctan 0/F 45 ! 11 1 25-7 39-8 43*4 45 47*8 46-6 44'2 44-2 
Lag on field 45 34 19-3 5-2 1-6 0 -2*8 -1-6 0-8 

00 1-29 i 0-85 0-92 0-92 1-00 104 100 

This table shows that the component of density represented by the 

terms A and C of (6.3) is sensibly in phase with the field at all points 

more distant from the edge than, say, r/X = 0-2 (z == 1*25). By means 

Fig. 7.15. Components of current density induced near edge of a half-plane 
by a plane wave incident normally on it. 

of the same table, the A and C component can readily be divided into 

a component which is in time phase wdth the incident field and another 

component which is in time quadrature thereto. This has been done 

and the result is shown plotted in Fig. 7.16: both these components 

run to infinity at the edge because the edge is sharp; the infinity would 

be removed by slight rounding. But even with a sharp edge neither 

component of density exceeds the ultimate limiting value so long as 

r/X exceeds the quadrature component has become negligible 

permanently if r/X exceeds J. It may be seen that the edge effect has 

sensibly died out if r/X exceeds J and is never very substantial if 

r/X > The net inphase density on the ‘bright side’ is obtained by 

adding J to each ordinate in Fig. 7.16: on the dark side by subtracting 
47M.1 X 
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Proceeding in this manner the curve of R.M.S. density on each side can 
be obtained and these densities are shown plotted in Fig. 7.16; reference 
to it shows the R.M.S. density on the bright side is substantially con¬ 
stant so long as r/A > 5^. The net current density on the bright side 
is everywhere nearly in phase with the incident field, the lag angle being 

Fig. 7.16. Density of R.M.S. current induced on bright and on dark 
side of a half-plane by a plane wave incident normally. 

19° when z = 0-2 and 46° when 2 = 0. It is surely instructive and 
perhaps surprising to find that the edge disturbs the current density 
appreciably over a range which is only of the order of We have 
repeatedly used a ciurent filament to simulate a long in-line array and 
have argued that if a very long wire were placed parallel to the electric 
vector of a wave then there would be little trace of standing waves on 
the wire, the current being sensibly constant in magnitude and phase 
along most of the length: how long the wire would need to be to 
approach dosely to this condition is not known. The discovery that 
the disturbance due to the edge is negligible at distcmoes greatw 
than ^ firom the edge suggests that, if the problem of a semi-infinite 
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wire could be solved, the current would be found sensibly uniform in 
magnitude and phase at distances greater than JA from its end, and 
within this range it would be nearly a quarter of a sinusoid. We should 
obtain a more reliable guide if we could solve the problem of a line 
doublet anywhere in a Vee of any angle; but the unwieldiness due to 
expressing H^{z) from an origin not on the doublet makes this solution 
impracticable. 

At the edge the density lags \tt on the local field, but this lag falls 
rapidly to zero with increase of ar. Hence if a wave is incident 
normally on a sheet of finite, but very great width, the R.M.S. induced 
current will be very nearly constant across the whole width; but it will 
have an appreciable quadrature component very near the edges. This 
is suggestive in respect of the currents induced in a wide panel of a 
beam array. The terms B and 2), in (5.3), in the current distribution 
reverse their sense on opposite sides of the very thin sheet and hence 
their net effect on the re-radiation is negligible: the re-radiation comes 
entirely from the current represented by the terms A and (7, since they 
do not reverse their sense on opposite sides. Hence the total effective 
current for re-radiation is the contribution from A and C on each side: 
the terms A and C yield a distribution which is substantially constant 
in magnitude and phase and equal to cEj^n, Hence the total effective 
re-radiating current is substantially constant and equal to cEjiir. 
Hence the work done in re-radiation is cE^I27t per unit area of sheet and 
this is twice the energy per unit area of wave-front. This is another 
example of the apparently general principle that an obstacle re-radiates 
twice the power supposed to be associated with the area of wave-front 
it obstructs. 

7.11. Resultant field due to a plane wave incident normally on 
a half-plane 
We will now explore the field of a plane wave which is disturbed by 

normal incidence on a half-plane: to use optical parlance, we will 
examine the diffraction due to a straight edge. Here the source is a 
current filament at infinity, thus simulating a plane wave. Exploration 
must be restricted to a radius much smaller than the distance to the 
filament, for otherwise the incident field cannot be likened to a plane 
wave; but the radius of exploration may be very large compared with 
the wavelength. Equation (5.2) gives the field at an infinite distance, 
on bearing 6, due to a current filament at (fc,cx): by the reciprocal 
thmrem the same equation gives the field at {k^a) due to a current 
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filament on bearing 0 at infinity. In our problem here we must put 

a == ^ in (6.2) and this gives 

— ^ = {Jj(ar)cos J0+«^l(«»')cos|0+J|(ar)cos|0+"-}+ 
"0 

-\-j{J^(ar)oos id—Ji(ar)oos f 0+J|(ar)co8 |fl—...}+ 

+j2{i^(ar)sin 0+J^{ar)sin 30+...}. (7.33) 

This series can be summed only when 0 = +|7r and when 0 = 0: this 

has been done already in (5.2 a), etc. When 0 = 0 we have (see (5.26)) 

K — 1. 
Hjq V2 

J^(z) dz 

It has been shown, at the end of § 3.5, that 

ar 

j J\{^) dz == 1— 
0 

and this led to the approximate expression (5.26), 

which shows that the ripple will be less than 8 per cent, if rjX exceeds 8 

and thereafter the field will be almost undisturbed by the barrier: 

resort to tables shows that EjE,^ = 0'935 when ar = 60. Fig. 7.17 

shows the diffraction pattern in the plane of the sharp edge and in the 

first wavelength of distance from it: the first maximum of R.M.S. field 

exceeds the undisturbed value by 35 per cent. It is instructive to 

derive the limiting expression more directly in terms of the current 

induced in the sheet, which we have seen differs very little from a 

uniform density equal to that which would be induced in a doubly 

infinite sheet. 

For our purposes here, in a book of this character, it does not suffice 

to calculate the field appropriate to the specified boundary because we 

want to apply the solution to practical cases where the real boundary 

caimot comply precisely with that described by the idealized sharp edge. 

In our view the field is due entirely to the currents induced in the 

boundary, and accordingly ought to have been calculated explicitly from 

the induced ciurent rather than from the general equation for the field 

which includes the current only indirectly and by implication. Aooord- 

t iVofe. These Fresnel integrals are tabulated, up to 2 = 60, on p. 744 of 
Watson’s Beasd Funetiona. 
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ingly we will calculate the field, in the plane of the edge, which would 

result from the simplest approximation to the induced current, and this 

approximation is to assume the induced current is constant right up 

to the edge and has the value i = where E^ is the field which 

the undisturbed plane wave would have in the plane of the metal sheet. 

Fig, 7.17. Standing wave pattern near edge of semi-infinite sheet and in its plane, due 
to a plane wave incident normally. 

Thus, with reference to Fig. 7.18, we require the field at P due to a 

uniform density i on one side of the half-plane OA, whose edge O is 

distant r from P. On dividing the half-plane into filaments of width Ay, 

the field at P is given by the expression 

00 00 

^ = — f ^o(«y) f ^0(0^) 
am J J 

r r 

It is easy to show, by the process used in § 3.5 (6), that 

z 

J J^{z)dz 4= 1—y|^jsin(2;—Jtt) == 

0 
z 

and similarly that J 7,{z) dz = -^z). 
0 

~ = Y,iar)-jMar) 
*0 

Hence 
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and thus is characteristic of a concentrated current located at the edge: 

adding this to the undisturbed field at P gives 

= l+\Y^{ar)+3y,(ar)- 

... \^ = ^{l+i\H,iar)\^+Y,(ar)} 

This is of the same form as the correct expression, given by (5.26), but 

the amplitude of the fluctuation is only 1/V2 of what it ought to be. 

Fig. 7.18. 

This discrepancy must be due to the disturbance of the induced density 

which in fact occurs near the edge, and accordingly the precise magnitude 

of the discrepancy must depend on the exact shape of the edge. Never¬ 

theless, since we are hoping to be able to calculate fields from an 

assumed and approximate induced density, it is necessary to track 

down more completely the cause of the discrepancy in this calculable 

*test case’. 

Substituting in (6.2 a) the approximate expression for the integrals 

gives jp 
— = i[24-Ji(ar)-/_j(or)+j{Jt(or)+/_j(or)}] (7.36) 

= j|^2+V2 y|Aj{8in{or+Jir)+^cos(or-Jw)}j 
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Comparison of the structure of this expression with the expression 

leading to (7.34) shows that the current which really is induced in the 

sheet produces a field which is V2 times as great as the field due to a 

uniform density. Reference to Fig. 7.15 suggests the main cause of 

discrepancy is probably due to ignoring the quadrature component of 

induced current: its magnitude, using our previous notation, is 

F^G 
4 ‘ 

When ar < 1, then 

5 / i V 
using this expression, combined with graphical integration from Fig. 

7.15, the total estimated quadrature current is given by 

00 

0 

If all this current be supposed concentrated at the edge then its field 

at P will be 0-145^?o{I^(a»-)H-j.^(ar)}. Accordingly the total field at 

P in phase with the incident field and due to the current in the sheet 

should have been reckoned as (0-6+0*146)£'Ql^(ar) = 0'645£'o l^(ar), 

and this is a much closer approximation to the correct value, which is 

0-105EffTg{ar). 

This investigation suffices to show it is essential to take account of 

the disturbance of the induced density by the edge; we note, however, 

that the positions of the maxima and minima will be calculated correctly 

even when the edge effect is ignored. 

We will now assess the effect of finite curvature at the edge. When 

the edge is furnished with a rod of radius Xkj^, then the term which 

was J^{ar) in (7.33) will become 

Ji{ar)Yi(k)-J^(k)7i{ar) 

and there will be corresponding expressions for all other terms. When 

ib 1 this tends to become J^(ar)+taaii;jr_|(ar). We will take aoooimt 

of the rod at the edge only in the first term of (7.33), so that where we 
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had «/|(ar) we shall now have J^{ar)-\~tdLnk J^^{ar) and there will not be 

any other change. Accordingly (5.26) becomes 

+2 tan k e7Lj(ar) J J.^(ar) drj^ 
== /1 -I—\-77^—, cos(ar+M+k /f-^]cos ar-|—— sin 2ar|^ 

( nar ^{irar) ^ V \rTar) irar f 

(7.36) 

if 1, and thus the finite curvature is seen to introduce a double¬ 

frequency term which varies as kjr and it modifies slightly the size and 

phase of the main ripple: the approximate size of the main ripple is 

now (1—^&)/^(7rar). This new estimate is probably substantially valid 

for a radius of curvature up to about then the fractional amplitude 

of the ripple will be reduced by about 16 per cent. When the disturbance 

of density at the edge was ignored we found a ripple proportional to 

whereas it ought to be proportional to 1/V2, an underestimate of 

40 per cent. When the shape of the edge is not known precisely, save 

that it is not sharp", then it seems not unlikely the best method of 

estimating the field is to assume the current density is uniform right 

up to the edge. At any rate we now know the extreme limits of 

uncertainty. 

Now consider the field along the line QQ' in Fig. 7.18; when d = 

^ }±i8inar]. 

This series has been summed already in (5.2c): provided ar is large 

enough to vrite J J^{2ar) d{2ar) = 1, we have seen, in (5.2 d), that 

= i(14-8sin%r)^ for 6 = ^tt, and = J when 0 = 

The interpretation of this result is obvious on consideration of Fig., 7.18. 

For the field at Q and Q', due to the currents induced in the sheet, must 

be half the field due to a doubly infinite sheet together with a current 

of order —jcEI{a7T/2) concentrated at the edge of the sheet. Thus it is 

a field whose modulus is together with a field whose modulus is 

E/^i-nar) and whose phase is Jtt behind the field ^E. Combining the 

field of the induced currents with that of the incident wave we obtain 

a resultant which fluctuates between (1+|) and (1—|) on the ‘bright 

side’ of the sheet and remains everywhere equal to ^E on the dark side. 



7.11] CYLINDERS AND FLAT SHEETS 313 

Hence on the edge of the geometrical shadow there is, in the limit, no 

diffraction pattern. To obtain the field at comparatively small ar and 

on 0 = it is necessary to evaluate from (5.2 c), though use of the 

reciprocal theorem allows us to make use of some values which have 

been derived already in producing figures such as 5.4. For example, 

that figure showed a filament JA from the plane of a sheet and level 

Fig. 7.19. Plane wave incident normally on Bemi-infinite sheet: curve showing 
re-radiated field along line of geometrical shadow. 

with the edge produced a field 0-39£^o at a very distant point on bearing 

—hence this will be the field at JA from the sheet and level with 

the edge due to a very distant filament at +^7r. Whenever h == it, 

217, etc., we see that , 

and we have recently seen that this equals 0*467 when 2ar = 50: thus the 

ripples will sensibly have died out when rjX exceeds about 4. Fig. 7.19 

shows EjE^ in the range r/A up to 2*5: it appears that the field increases 

steadily up to its limiting value | without ever exceeding this value, 

and no ripple is discernible. 

When 6 = ^, 

since 2nJ„(a) = 

E, 
\dE 

ee • • 
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and thus increases continuously with distance from the edge. At 0 = 0, 

\ dE . a r • / • /IN') 

Algebraic expressions have now been found for E and dEjdd at it 
and thus it is possible to sketch the general form of the distribution 
curve of mean-square field at any distance from the edge: the idea will 

be assisted by reference to Fig. 5.4, which is such a curve for the 

distance JA. If the reader will refer to this figure and remember that 
EjE^ is constant and equal to \ at e = —\7T while dEjdd varies as 

he will realize this means that the field just inside the region of optical 

shadow decreases as r increases. 

At a small distance y on either side of the line of shadow 

Eo 

\ 
yl{2nary 

When this problem is discussed in books on optics it is commonly said 

the edge shines as if self-luminous and that the diffracted light appears 
to come from the edge: it is instructive to examine what these state¬ 

ments mean in terms of the mechanism and of the apparatus we are 

thinking of here. The eye is a highly directive receiving aerial and 

perceives not only E but dEjdd: it performs 'direction finding’ in the 

sense used in radio communications. Imagine that a small loop receiver, 

on bearings d = 0 and — is used to examine the 'direction’ of the 
incoming field. To do this it is perhaps simplest to derive H the 

magnetic field and then to find the direction of the resultant H, Thus 

dr 
1 = --jaHs and 
c dt ^ 

1 ^ 
-jaH,. 

When 0=0, 

1 dE 
since and ——=:^jar. 

Hence = —Eq and 

He- {co8(or+i7r)-j 8in(or+iw)}. 
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Hence if a small coil is placed on bearing 0 = 0 and with its plane at 

an angle p to the plane of the sheet, the flux <f> through it is 

E 
= Usm{ar+in) 

\ y/(27rar) ^ ^(irar) 

This can be zero only if sin(ar+j7r) is zero: then <j> will be zero when 

P === (27rar)’-^. At distances not greater than about the field would 

appear to come from the edge, but at large distances the apparent 

direction would not be far from the source: at a distance of 4-5A the 

apparent bearing would be incorrect by about 5°. One effect of the 

edge will be to blur the minimum of the direction-finding coil. When 

0 = Jtt we have seen that (l/r)(dff/dff) varies as thus showing that 

Hy. decreases continuously, whereas E, and thus Hq, rapidly approach 

Accordingly the apparent bearing of the source would rapidly 

approach the true bearing as r increases. 

The field might be explored by an observer moving continuously on 

a given bearing or on a path parallel to or perpendicular to the sheet. 

The field at various points along a path parallel to the sheet and distant 

JA from it are given (by use of the reciprocal theorem) by the values 

of front-to-back ratio recorded in § 5.3. They are arranged more con¬ 

veniently for this purpose in Table 7.4 below, where intensities are 

expressed relative to the value when the distant aerial is just 'visible*. 

Table 7.4 

Path parallel to sheet and distant JA from it 

Distance from edge 0 0-48A 109A 1-57A 2-22A 

Relative intensity 1 017 0046 0025 002 

The table shows that the shadow develops very rapidly with distance 

from the edge, for a path only JA behind the sheet: there is no sudden 

discontinuity in crossing the line of geometrical shadow and no diffrac¬ 

tion pattern effect along this path. 

Though our solution in an infinite series of Bessels is exact, it is 

impracticable to evaluate it when ar exceeds, say, 2, and we are driven 

to use approximate methods for calculating the fields at large distances. 

This is comparatively simple to do since we now know the current 

induced in the semi-infinite sheet. Let OA in Fig. 7.20 represent the 

semi-infinite sheet: we wish to calculate the resultant field at a point P 

distant x behind the plane of the sheet and distant 6 in front or behind 

the jfiane of the geometrical shadow. We require the field radiated by 
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a uniform density i = cEI2it flowing in OA in a direction perpendicular 

to the plane of the paper. This is equal to the field there due to the 

semi-infinite sheet BA less the field due to the strip of finite width BO. 

The diffraction pattern of the uniformly loaded strip BO has been 
considered fully in § 2.2. 

We saw there that if the width of the strip exceeded A, then the first 

P B 

Fig. 7.20. 

extinction angle occurred on a bearing from which the path difference 

between an edge and the midpoint was ^A. In Fig. 7.20 

PB-PB = b^/4x, 

hence provided 2x/b > 6/A the greatest path difference will be much 

less than |A, and accordingly the field at P due to the strip BO is equal to 

// 2 \a7ri6 // 2 \a6.g 
aJ \rrax) c /J \nax) 2 

We have seen that the field at P due to the incident wave less the field 

there due to the semi-infinite sheet BA is equal to ^E, and so the net 

field at P is JJS?{li2a6/.^(27raa:)}, and this agrees with the expression we 

obtained previously from the value of 8Ej86 at 6 = derived from 

the general equation. In deriving it from the general equation we 

assumed only that 6 was small enough for 8EI86 to be constant over 

the interval: in deriving it from the approximate expression we have 

supposed « > 6 and oa: > 1 and ignored the disturbed density at the 

edge. It is mstructive to find neither of these last two approximations 
was necessary. 

We now understand why a diffraction pattern will not be found when 

travellmg far into the shadow region in a path peipendioular to the 

plane of the sheet. If we travel in a path parallel to the sheet we shall 

experience a pattern. Thus, consider the field at a point P on the 
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path PP' distant h behind the plane of the sheet, as shown in Fig. 7.21. 

We must evaluate the field at P due to a uniform density i = cEqI^tt 
in the half-plane OA. It will be equal to the 

field at P due to a semi-infinite sheet BA less 

the field of the portion BO of width x. The 

field of BA is ^E. To simplify the evaluation 
of the field due to BO we shall suppose b^x : 
then the field at P of elementary filaments 
of current at B and at 0 wdll be sensibly 
equal in magnitude, though these may differ 

considerably in phase. For a typical element 

at R we have 

PR-PB == 1/2/26. 

Hence the phase-angle of an elementary 

filament at P, relative to one at B, is 

(f) =z TTy^jXb. 

Fig. 7.21. 

Let an element of unit width at B produce a field 8E at P, then 

= i{-Jo(a6)+jTo(a6)}, 

whence BE = ,^(a6)-f,;To(a6)}. 

Then an element of unit width at R will produce at P a field whose 

inphase component, relative to an element at P, is 8E cos and quadra¬ 

ture component is SP sin <f>. Hence the field at P due to the current in 

the whole strip of width x is 

cos (j) dy 8E j cos dy 

0 0 

nx^lXb 

-m I M~>-> 
0 

nji^jXb 

= j 
0 

^x^lXb 

Similarly Eq = ^ J 
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/ 4^1 \ ^ J ^-3 J m-MabnjYom 
^0 0 ^ 

= JV2| J j J J^|{~cos(a6—J7r)+isin(a6~j7r)}. (7.37) 

In deriving this expression it has been stated explicitly that xjb < 1: 

nevertheless if \ax is large it is possible for ax^j^b to be large and then 

J === 1. In such circumstances 

E = --jV2(l---j){cos(a6--:i7r)--ysin(afe~-Jtt)} 

= — ^(cosa6—ysina6). (7.38) 

This is independent of x and equal to half the field of a doubly infinite 

plane. This result was to be expected and shows the field of a uniformly 

loaded strip approximates to that of an infinite sheet provided the 

half-width is many wavelengths and the point of observation not too 

distant. If B in Fig. 7.21 is above 0, the field at P of the current in OA 
is the field of BA less the field of BO: we have just seen this difference 

will tend to zero and then the net field at P is that of the incident 

wave alone. If B is below 0 in Fig. 7.21, then the field of OA will tend 

to become \E+\E: then the net field at P due to the incident wave 

and due to the current in the sheet will tend to zero and the shadow 

will be complete. 

Denote | and J by P and Q respectively. Then (7.37) shows 

the field of the strip PO is represented by a vector which lags 

on a vector which leads the incident field by Jw. Hence this vector 

leads the phase of the incident wave by an angle ^ = Jw—0. The 

component of field due to the strip BO which is in phase with the 

incident wave at P is thus given by 

E 4 
v(ph<2*)co8^=^ (cos 0 + sin 0) P+Q 

4 

Similarly 
Eq^P-Q 

E 4 

Hence the field at P due to the current in the half-plane OA is 

E \2 4: 



7.11] CYLINDERS AND FLAT SHEETS 319 

Hence the net resultant field at P due to the incident wave together 

with the field of the currents in the half-plane OA is 

E 
P-Q P+Q^.P- Q (7.39) 

4 2 ' 4 ' 4 

If H in Fig. 7.21 is below 0, then the field of the strip B'O must be 

added to that of the half-plane B'O and then the resultant field at P 
will be given by 

(7.40) 
E’" 
~E A ' A ' 

. _ /I ^ P+QY , IP-QY _ {i±P)*+(i±W 
• • £2 ~ ^2"^ 4 j 4 j 8 ■ 

(7.41) 

Now P == l-f-t7j(<^i) and Q == 1—«I_j(^i). 

Hence in the shadow region 

\E’T . 1 A6 _ 1 
E^ 8 - 477^1 “ 47rV" 47r^2- 

Hence to this order of approximation there are no maxima or minima 

of mean square field in the shadow region. Fig. 7.22 shows the fractional 

field as a function of x^(7T/Xb) both in the shadow and in the light region. 

It may be seen that the curve falls continuously to zero in the shadow 

region and oscillates in the bright region. In the shadow, the curve 

becomes asymptotic to \E\/Eq = l/(2V7r^) as given by (7.42) and is 

sensibly indistinguishable from this asymptote when ^ exceeds, say, 2: 

the oscillations lie under an envelope which is the same hyperbola 

plotted to the origin (0-1). In the shadow \E\/Eq is less than O’Ol if C 
exceeds 28: similarly the fractional amplitude of oscillations is less 

than 1 per cent, when ^ > 28. The first maximum of \E\/Eq occurs 

when C = 1*52 and the first minimum when f = 2-40: hence the 

distance from the edge of the geometrical shadow to the first maximum 

is I times the distance between the first maximum and the first mini¬ 

mum and very nearly equal to the distance between the first two 

maxima. At the first maximum OP—PB == 0-48A (see Fig. 7.21); at 

the second maximum this extreme path difference is near 0*96A. A 

general expression is == ^J{bX{2n’—l)} and = yJ{bX2n), where n 
is any integer (excluding zero): for the first maximum and minimum 

more correct values at Xj^^s^x == 0’S6^(bX) and Xj^in = 1*83.^(6A). 
It might have been expected the maxima and minima would occur 

when the field due to the currents in the sheet was precisely in phase 

or in antiphase with the incident field: our interpretation of (7.37) 
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shows this occurs when 6 = Jw, which is when Q — P. This occurs 

when ^2 = 2-49, 5-52, 8-7, 11-7, etc., or ^ = 1-57, 2-36, 2-96, etc., and 

thus does not coincide precisely with the maxima and minima of R.M.S. 

field. Moreover, coincidence of phase will occur both in the shadow 

region and in the bright region, and from this point of view a diffraction 

pattern might be expected to occur in both regions, but it does not 

occur in the dark region. There are similarly placed stations in both 

regions at which the phase of the field would be unaltered if the screen 

were removed. It just happens the functions P and Q are such that 

(7.41) is oscillatory when P and Q are positive, and non-oscillatory 

when they are negative: the absence or otherwise of oscillation does 

not appear susceptible of any simple physical description. Commonly 

we associate a diffraction pattern with two vectors which are periodi¬ 

cally in phase or in antiphase: here we have two vectors whose phase 
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never differs by more than a few degrees and whose proximate coinci¬ 

dence may denote either a maximum or a minimum. 

This problem has been studied and examined in optics for more than 

a century. If a reasonably sharp edge is caused to throw a shadow on 

an opaque screen parallel to itself, one or more bright lines, parallel to 

the edge of the shadow, may be observed. These bright lines are 

presumably the successive maxima in Fig. 7.22. Since the response of 

the eye is approximately proportional to the logarithm of the intensity 

(Weber-Fechner law), the eye is able to be aware of a small fractional 

increase and therefore the crests of the maxima stand out as bright 

lines even though their fractional increase is not large. The eye asso¬ 

ciates the edge with the boundary of the dark shadow: this boundary 

must start at the place where the intensity is at the limit of vision. 

Accordingly the distance between the apparent edge and the first bright 

line must be much larger than 1 •52C and can have no definite value. 

In radio-frequency measurements we are equipped with two distinct 

measuring instruments, the eye and the ammeter. Thus the intensity 

in the shadow region can be measured since we know, by eye, where 

the edge of the geometrical shadow lies. It should be recognized that 

the intensity in the shadow region falls off only as the inverse distance 

from the edge and accordingly field will be perceptible at very large 

distances behind the edge. No doubt this accounts for the comparative 

absence of sharp shadow encountered in most propagation experiments. 

Since the observed optical effects are not markedly dependent on the 

sharpness or straightness of the edge, we conclude that physical undula¬ 

tions, eyen if many A high, do not affect the performance appreciably. 

Equation (7.42) is valid only when b^x and when 6/A is large. It 

would be of interest to know its order of approximation when 6/A is 

not large. This can be assessed from Table 7.4 which refers to 6/A = J. 

Comparison of the values recorded in it with those deduced from Fig. 

7.22 show that when 6/A = J then E/Eq at a given value of C is about 

one-third of what it would be if 6/A is large. Thus it is concluded that 

(7.42) is substantially valid even when 6 is only a few wavelengths. 

7.12. Plane wave Incident normally on an infinite sheet in which 
there is a parallel-sided aperture 
A formal solution of this problem has been obtained by Morse and 

Rubenstein,t and their very interesting paper on ‘Diffraction of Waves 

by Ribbons and Strips’ should be consulted. They obtained a general 

t See Eeif* 54 (1938), 895; MoLaohlan, Theory of Mathieu Functione, p. 360. 
4m.l Y 
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solution in Mathieu functions and have performed the necessary evalua¬ 

tion to obtain some diffraction patterns. Their problem is a wave 

incident on a strip of finite width, and this can be converted to apply 
to an aperture in an infinite plane. Unfortunately for us here they 

have not completed their solution to the point of evaluating the density 

of induced current across the width of the strip: we should like to 

know how much the two bounding edges cause the density to depart 

from the value i = cJSJ/27r. The labour of completing this part of their 

solution is too great to undertake now and the writer hopes that some 

industrious reader will be stimulated to complete the task and thereby 

render complete § 7.10. The writer must rest content with pointing out 

where this much needed solution exists, waiting for a lengthy and 

painstaking use to be made of it. However, pending this having been 

done, it seems worth while to attempt a very rough approximate 

solution for a narrow aperture parallel to the electric vector. First of 

all we will make the simplification which, in effect, is made in the 

classical treatment of this problem by the methods of physical optics 

and assume that the induced density is uniform right up to the edges 

of the parallel-sided gap of width g. We will then find the field due to 

this density at any point on the surface of either half-plane. Clearly 

this must equal the field which would obtain if the gap did not exist 

less the field due to a uniformly loaded strip of width g. Hence it 

follows readily from (1.46) that at a point on either half-plane, distant 
r from the midline of the aperture, 

= l-{Jo(ar)+jFo(or)} jV„(*) dk-2{-J^{ar)+3Y^{ar)} J^(k) dk+... 
0 0 

where == 2'rrgl2X, If we now situate a like pair of filaments of 

strength J, separated a distance 2J2, symmetrically in the plane of the 
aperture, their field will be 

^ = {-Jo{ar)+jY,{ar)}Jo(k’)+^-J^[ar)+^^^ 

where k' = 2nRIX. In order to make the field of this pair of filaments 

tend to zero at large distances in their plane we will purposely mnlfa 

2B = iA: then Jo(k') = 0-472, J^(k') = 0-24, and Jt{k’) = 0-012. If it 

is now possible to find k^ so that —0-472a = il I J^{k) dk and also 
0 

f* 
—0*24a/ — * J dk, then the net field across the sheets will be very 
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nearly constant. This is fulfilled very closely when /k' = 3 and then 
3 

J J^ik) dk = 1*386 and then 21 = 5•90A^727r. The total current which 
0 

would have been induced in the strip where the aperture is (if the 

aperture had been absent) is 6Ai/27r; accordingly the net external field 

behind the aperture will be sensibly that of a concentrated current 

0*lAi/277 == 0-lcEI2na. Hence in this case it would seem that the width 

of the equivalent aperture is about of its actual width. What we 

have done is to find a pair of currents in the aperture which will cause 

the density induced in the planes, by them and the incident wave, to 

be substantially constant right up to the bounding edges. These 

currents ought to have been situated at the edges instead of inside the 

aperture, but the neutralization of the Jg term could not then have been 

attained. If we are satisfied to neutralize only the term involving 

then 
. ki 

= f J^{k)dk: 

if only the second term in the expansion of Jo{ki) is retained then it 

follows that .,2 

It would appear from this that the effective width of a very narrow 

aperture is kl/6 = l*6(gr/A)2; this is a rough estimate which is not 

expected to hold if g/X > J. This approach, rough as it is, serves to 

show that the field which ‘passes through’ a very narrow aperture is 

reduced enormously by the concentration of current which must occur 

at its edges. Only numerical appeal to the Morse and Rubenstein 

analysis can show whether these rough estimates are reasonably correct. 

It should be noticed that the external field must be very nearly that 

of a concentrated current filament in the aperture and hence must have 

sensibly the same strength on all bearings. A very narrow aperture 

cannot produce a narrow beam of field: this can occur only for an 

aperture whose width is many A. 



VIII 

THE SINGLE ISOLATED AERIAL 

8.1. The electric doublet and the thin linear aerial 
The equations for the field of an electric doublet were developed in § 1.21 

but were not then explored further than was necessary to arrive at 

equation (1.82) (for the output of a half-wave aerial), which was 

required for immediate use. Since any distribution of current can be 

built up from the appropriate distribution of doublets, the field of any 

distribution can thus be found by superposition: thus the field due to 

any current distribution can be found by the help of equations (1.69), 
(1.70), and (1.74). But we are still left with the grave problem of 

discovering what distribution is possible on a conductor of specified 

shape. In this book we have made repeated use of the concept of a 

current filament, without inquiring much how such a filament would 

be produced, knowing that, ideally, it could be produced by a multi¬ 

plicity of separately-fed short dipoles. Given such a filament, we have 

found the distribution of filaments induced in Vee reflectors and 

cylinders. 
Our problem now is to find the field due to an aerial consisting of a 

single long straight thin wire. Reality confronts us at once on the 

question of how the current is to be produced in the wire. We may 

seek simplicity by supposing it is induced by an incident field whose 

electric vector is parallel to the wire. To bring the analysis within 

bounds which may conceivably be possible we know the wire must be 

replaced by a surface of revolution, such as an ellipsoid: such a departure 

from the geometrical form of a uniform wire is not likely to be of much 

practical significance. The problem is soluble in terms of Mathieu 

functions, and it has been done.f The solution is very troublesome to 

disentangle, but it has solved analytically the reflection from an ellip¬ 

soid and in particular from a long wire. But this is not the prpblem 

of a receiving a.erial, in the ordinary sense of these words, because in 

such the current must be led through an auxiliary impedance associated 

with the recording gear. The insertion of the said impedance, be it 

direct or through a transmission line, must necessarily introduce a 

discontinuity in the ellipsoid, and the said discontinuity must invalidate 

the analysis by an amount whose relative importance cannot be assessed 

with certainty. Thus the attempted simplification of inducing the 

t See, for example, Page and Adams, Phya» Bev» 53 (1938), 819. 
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current by an incident field fails, and leads back to the equivalent of 

the transmitting aerial having current fed to it by a generator. Clearly 

the precise problem is outside the scope of analysis and also of general¬ 
ized description. 

Until recently investigators have had to be content to evaluate the 

fields due to assigned distributions, choosing such distributions as 

seemed to them reasonably appropriate; but of recent years E. Hallen, 

C. J. Bouwkamp, R. King, and C. Harrison and others have derived 

distributions which they believe are closely appropriate to the idealized 

aerial they postulate. 

It is not proposed to develop fully the analysis of the linear aerial in 

this book and in the main we shall be content with evaluating the fields 

due to assigned distributions of current: not only does this suffice for 

most practical purposes, but it is an extremely valuable way of per¬ 

ceiving the mechanism which has to be described by more complete 

solutions. 

A doublet is an infinitesimal element and therefore must not be 

approached within a distance comparable with its length, and this 

length can be shrunk indefinitely; accordingly the force at the doublet 

itself is meaningless and moreover must tend to infinity when r is put 

equal to zero in the equation for its field. It is convenient to express 

the field as a component Ep which is in phase with the current and a 

component Eq in quadrature thereto. Equation (1.79) shows that Ep 
is finite when r is zero and thus, strange to say, we can go right up to 

the doublet itself in respect of this term: it is the component of force 

which describes the output of work from the doublet, and this is the 

reason why it remains finite at the origin. Equation (1.23) exhibited 

the same property for a current filament, which is an infinitely long 

collinear distribution of doublets. Since we know the value of Ep at 

a doublet there is no serious difficulty in evaluating Ep at any point on 

the axis of any finite collinear distribution of cophased doublets. The 

expression for this is given in (1.80).t 

Fig. 8.1 exhibits the variation of Ep along the axis of a doublet and 

also along the axis of a sinusoidal distribution of cophased doublets of 

total length JA. Remembering that = J i dl, this figure shows that 

t A more extended form of this eacpression will be found in equation (13 a) on 
p. 545 of Journal T,E,E,, vol. 78 (1936) and should be referred to if more terms are 
required. The particular case where the length of the aerial is iX is of outstanding 
importance: moreover* experience has shown that then the distribution is substantially 
a sinusoid and therefore it is appropriate to evaluate the field of a sinusoidal distri< 

bution. 
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the axial distribution of Ep is scarcely dependent on whether a given 

number of metre amperes is distributed sinusoidally along a length 

or concentrated into a doublet at the middle of this length. This 

discovery is very important since it shows that the mutual field between 

Fig. 8.1, Distribution of inphase component of electric force along the axis of a 
doublet and of a half-wave aerial. 

Fig. 8.2. Distribution of inphase component of electric force in the equatorial plane 
of a doublet and of a half-wave aerial. 

any two members of an in-line array is insensibly dependent on the 

distribution along any typical member, and accordingly that it is 

permissible to regard each member as a doublet in so far as mutual 

action is concerned: this simplifies computation enormously. Fig. 8.2 

shows the distribution of Ep in the equatorial plane for such a half-wave 

distribution and for a doublet of equal strength: a^ain the two curves 



8.1] THE SINGLE ISOLATED AERIAL 327 

of Ep differ insensibly. Thus the mutual action, in respect oiEp, of two 

parallel half-wave elements must be sensibly the same as that between 

two parallel doublets. Fig. 8.3 shows the distribution of the vertical 

component of Ep, due to a doublet, along a line parallel to its axis and 

distant either JA or JA from it. Curve 2 of this figure shows that Ep is 

substantially constant throughout the distance iJA from the equatorial 

1-0 □ If 1 1 r~i 
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Fig. 8.3. Distribution of inphase component of electric force along a line 
parallel to the axis of a doublet: curve (1) distant JA from axis, curve (2) 

distant JA from axis, 

plane in a line distant only from the doublet. Accordingly, close 

consideration will show that Ep must be substantially constant along 

a line parallel to a half-wave aerial and not closer than, say, JA to it. 

Recognition of this fact simplifies enormously the calculation of the 

mutual interaction between parallel half-wave elements of an array: 

the reader should now be able to satisfy himself that only a small 

second-order difference can result in the output by allowing, very 

laboriously, for the small variation of mutual field along the length of 

half-wave elements. Recognition of points such as these we have just 

made permits much analysis to be stripped of extremely cumbersome 

trappings, trappings which obscure the vital points of the problem and 

yield an answer whose apparent accuracy far exceeds that to which the 

real problem can be stated. 
Fig. 8.4 shows the distribution of Eq along lines parallel to a doublet 

and at various distances from it and is useful for estimating the mutual 

reactance between parallel aerials: a reactance which affects the con¬ 

dition for resonance. Fig. 8,6 shows the distribution of Eq in the 

equatorial plane of a doublet and also of a half-wave aerial, the curve 
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for the half-wave aerial having been obtained by laborious computation 

from the component dipoles making up the sinusoidal distribution. 

This figure shows that at distances exceeding about fA the half-wave 

aerial is scarcely distinguishable from an equivalent dipole at its middle 

point; but for distances closer than the sinusoidal distribution has 

Fig. 8.4. Distribution of quadrature component of electric force parallel to axis of a 
doublet and at various distances from it. 

a profound effect, as would be expected. It is impracticable to evaluate 

Eq in the region where x < JA, but it certainly passes throug^h zero 

near this point. It is instructive to compare the distribution of Ep and 

Eq in the equatorial plane of a half-wave aerial, as shown in Figs. 8.2 

and 8.5 with the corresponding distribution of Ep and Eq for a current 

filament, as shown in Fig. 1.5. For the half-wave aerial Ep passes 

through zero when x/X = 0*42, whereas this occurs for the current 

filament when x/X = 0’38: at the middle of the half-wave aerial 

CEp XI V CEp n j 

-a?"-?' 
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as compared with the value unity when the loop current I persists 

throughout the filament. For the half-wave aerial Eq passes through 

zero when 2rrxjX === 0‘8 and when 2'7ra;/A = 4*5: for the current filament 

this occurs when ^nxjX = 0*89 and 3*96. Thus the equatorial field of a 

half-w^ave aerial is a close approach to that of a filament. 

If an aerial long, bearing a cophased sinusoidal distribution of 

Fig. 8.5. Distribution of quadrature component of electric force in equatorial plane 
of a doublet and of a half-wave aerial. 

current, is resonant, then Eq must be zero everywhere along the wire. 

It seems probable from Fig. 8.5 that Eq is not zero at the wire but has 

the sens^ of an inductive reactance. It is certain from Fig. 8.5 that Eq 
along a doublet is capacitative in sense. Hence it seems likely that 

Eq will have zero value at the midpoint of an aerial when its length is 

somewhat less than ^A: thus this figure suggests the known fact that 

the resonant length is slightly less than JA. 

8.2. Radiation resistance of a linear aerial 
The total output of a linear aerial is given with complete generality 

(equation 1.80) provided only that the current is cophased throughout 

its length. The output can be expressed in terms of an equivalent 

resistance measured from any point in the aerial. It has been usual to 

postulate that the current distribution is part of a sinusoid, having zero 

value at the extreme tips. One of the earliest and classic examples of 

such evaluations was made by B. van der Pol in 1917,f who used the 

t Proc. Phys. Soc. 29 (1917), 269. 
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Poynting method. In a sense his results were very general in that he 

implied the existence of a capacitance roof since he did not insist that the 

current was zero at the tips, but he ignored radiation from the roof; 

but of this later. In 1924 Stuart Ballantinef used the Poynting method 

to calculate the radiation resistance of a sinusoidal distribution of 

current along a straight line whose total length did not much exceed |A. 

The writer repeated these calculations, by the method of evaluating Ep, 
and in effect they are recorded in Pig. 8.6 which displays them in terms 

of a ‘height factor’, which is equal to 0-61 divided by the power gain. 

The figure shows that the gain reaches a maximum value of 2'05 when 

the total length is 1-24A; when the total length is 1-46A the gain is unity. 

These values are important in relation to ‘broadcast’ aerials iq,tended 

to give a direct ray service (i.e. without assistance from the Heaviside 

layer), and then they apply to a vertical tower standing on but insulated 

from the ground. The tower which will be most economical of power for 

a given field strength in the equatorial plane will have a height of 0’62A 

above the ground: the ‘gain’ of such a tower will be twice that of a 

tower whose height is JA above the ground. The saving of power is 

due to the relative reduction of high-angle radiation, and the meebaniaTn 

t Proe. I.1R.E. 12 (1824), 386. 
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by which this occurs should be obvious from consideration of the 

factor oi Chapter II. The reduction of high-angle radiation also 

reduces the interference which the station causes at distances where 

the transmission has been assisted by the Heaviside layer. Since the 

current at the foot of a tower 0*62A high is small the radiation resistance 

measured from this point is necessarily large; if the current distribution 

is sinusoidal it is about 110 ohms. The precise value depends enormously 

on the current distribution, and experience in any given application 

may well show that the resistance differs substantially from this value; 

but the power gain will differ very httle from 2 since the gain is insensi¬ 

tive to the precise distribution. In general the aerial will be fed through 

a cable whose characteristic resistance is of the order of 50 ohms; in 

order to prevent the development of unduly high voltages along the 

cable some transforming device is required to match the high resistance 

of the aerial to the lower impedance line. This may be a double-wound 

transformer, or it may be the equivalent of an auto transformer and 

consist of tapping the feeding cable to a point on the tower at a con¬ 

siderable distance above its grounded end; such a device is often called 

shunt excitation. 

If the current distribution is cophased and truly sinusoidal, then the 

radiation resistance referred to the middle point of a thin isolated wire 

has the values given in the table below. 

Table 8.1 

hl\ i 0-9 10 

Resistance in ohms 7314 107 212 198'4 

If the aerial stands perpendicular to a flat and perfectly conducting 

earth, then the values of both A/A and of resistance, in the table above, 

should be halved. 

For a given number of 'metre-amperes’, or in other words, a given 

field strength in the equatorial plane, the output is substantially 

independent of the form of the current distribution. This fact must 

not lead to the erroneous idea that radiation resistance is independent 

of distribution. The radiation resistance is defined as the quotient of 

power output and the square of the current at a given point: for a given 

output this quotient will depend enormously on the magnitude of the 

current at the measuring point and this magnitude does depend on the 

shape of the distribution curve of given area. Thus if the distribution 

curve is a triangle, then the current at the middle point of the aerial is 4/7r 
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times the current at that point for a sinusoid of the same area; accord¬ 

ingly the radiation resistance of a wire long would then be 

X 73*14 = 45 ohms. 

For the very small effect of the distribution curve on the output see 

the end of § 1.22. Although 73*14 ohms is a well-known and classic 

value for the radiation resistance of an isolated half-wave aerial, the 

writer suspects it may not always be fulfilled in practice because it is 

so intimately related to a distribution which is precisely sinusoidal. 

The numerical relation between equatorial field and power output rests 

on a very firm basis and is almost inexorable, but the numerical values 

of the radiation resistance of real aerials are much less certain. 

If the cophased distribution of current is spread uniformly round a 

tube of radius then equation (1.80a) becomesf 

cP 

4a^ 

If the length of the tube is ^A and the distribution is a sine curve the 

expression for P becomes 

g = 0-6097Zg[l-16-2^(l-6-35^+22-2| + ...)j. 
According to this the output will be reduced by less than 4 per cent, 

so long as the radius does not exceed 20^: the radiation resistance is 

60 ohms when rJX = J. 

8.3. The resonant length and the Q of a half-wave aerial 
If a thin rod is parallel to the electric vector of a field there is some 

length at which the induced current will be a maximum and this can 

properly be called the resonant length: it is not far from JA. The exact 

length is not of much practical interest because such a system does not 

provide for making use of the induced current. To make use of the 

current the rod must be broken to insert a resistance either directly or 

at the end of a cable. Once this is done a P.D. must exist between the 

faces of the broken end, and the precise frequency of resonance must 

depend on the shape and area of the said ends. Thus the practical problem 

has ceased to be a universal one and we are no longer considering the 

resonance of an aerial, per ae, but of a particular aerial with its particu¬ 

lar inevitable attachments. For this reason the search for a precise 

t For further terms of this series see Joum, I,E.E, 88, Part 3 (1941), p. S3, 
equation (IS). 
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xnathcmaticd/l solution seems somewhat pedagogic: the same remark 

applies to finding precisely the current distribution. 

Consider the problem of a thin uniform rod, of length near parallel 

to the electric field. Fig. 8.1 shows that a sinusoidal distribution of 

current does not produce a constant value of Ep along the rod, and 

consideration will show that this cannot result from any distribution 

even vaguely resembling a sinusoid. The current induced by the field 

must produce a uniform electric field all along the rod, equal and 

opposite to the inducing field. Hence it follows the field cannot induce 

a current which is cophased along the length: any attempt at a solution 

must provide for two current distributions in time quadrature. Thus 

it certainly is impossible for the current to be cophased in the reception 

problem, and probably this is also true of the transmission problem, 

though it does not seem possible to prove it by a reciprocal theorem. 

In order that current shall flow in a transmitting aerial there must be 

an electric field in phase with it. At any point, such field will be 

provided dominantly by a surface charge of electricity in phase with 

that current, and so demands two current distributions in time 

quadrature: it is not obviously necessary that the ‘back e.m.f.’ of 

radiation should be constant along the length. Our expressions for 

output are correct and general for a cophased current distribution; 

but if there are two quadrature distributions, the quadrature field of 

the quadrature distribution will do work on the inphase component 

of current and vice versa; thus there is mutual work between the two 

distributions and thus (1.80 a) will not be correct for one distribution 

in the presence of the other. An expression corresponding to (1.80a) 

can be found for Eq, the quadrature component of field due to any 

cophased distribution: it is given in § 15, equation 43, of Joum, I,E.E., 

loc. cit. Evaluation from it shows that Eq is not zero at every point 

of a rod of length |A carrying a cophased sinoidal distribution of 

current: there is everywhere a small residue whose sense is such as to 

give the aerial an inductive reactance. This suggests that the resonant 

length is less than |A. It is difficult to discuss this problem quantita¬ 

tively without reproducing a mass of computation which is not suffi¬ 

ciently soimd in principle to justify permanent record. In deriving a 

series expression for Eq corresponding to equation (1.80) for Ep one 

series arises from delayed vector potential and a second series arises 

from delayed scalar potential of charges: in each of these two series the 

terms alternate in sign» and the first term in each is the expression 

which would result if the vector or scalar potential had been evaluated 
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without retardation. Since in each case the second term is negative, 

this show's that the effective capacitance increases and inductance 

decreases with a small increase of frequency above zero. Accordingly 

it is logical to regard the second term in the contribution to Eq w^hich 

arises from the vector potential as an inductive effect.f And accordingly 

to regard the ‘inductive field’ at any point along the aerial as consisting 

of the 1st, 3rd, 6th, etc., terms of the contribution to Eq arising from [A] 

together with the 2nd, 4th, etc., terms arising from [dVjdx\ With this 

convention it can be shown that on a wire of radius and length JA, 

bearing a sinoidal distribution of cophased current, the quantity 

—has the values (logA/2r^-~0*06), l/V2{log(A/2rJ+0*6}, and 1*6 

at the middle point, at the two quarter points, and at the two tips 

respectively. Equation (1.23) shows that at the surface of a filament 

+y) = 
Comparison shows the expressions we have just given for Eq are approxi¬ 

mately equal to the reactance of an infinite filament multiplied by the 

current at the point considered, save at the tips where the current is 

zero and Eq is not zero. To a first approximation the wire behaves as 

though it had a constant inductance per unit length. To find the 

apparent input reactance X we must evaluate J Eq i dx and divide it 

by P, Using the value of Eq we have found, for the mid-point tips 

and quarter points, we estimate that X = 307r{log(A/2r^)4-0-32} ohms^ 

Since the radiation resistance is 73 ohms this gives 

Q = 1.3|logA + o-32j, 

whence Q = 12'6, 9-4, or 6’4 according as A/2r„ = 10*, 10®, or 10®. 
If a sinoilar calculation is performed for a triangular (vice sinoidal) 
distribution of current it will be found that Q— l'39{log{A/2ro)+0-39}, 
giving Q = 13'4, 10‘2, or 6’9 according as A/2r„ = 10*, 10®, or 10®. This 
shows the calculation is insensitive to the shape of the current distribu¬ 
tion, and thus it seems the Q of a half-wave aerial must be near 6-5 if 
its diameter is about 2 per cent, of its length. The Q is very small 
compared with the values commonly met with in concentrated circuits: 
thus the tuning should be very blunt and this accords with common 
experience. The phase angle is likely to be about 46° if the frequency 
is per cent, off tune. 

t For a fuller dtsoussion of this principle see JSadio Frequency MeoBuremenU, p. 27^ 
and Frinctples of EUctromagneUsm^ p. 268. 
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When the total length is then evaluation has shown that Eq is 

not zero at the middle of the aerial but has there a residue approximately 

equal to Ep and has the sense corresponding to inductive reactance. 

Hence the phase angle should then be near 45° lagging and, as we have 

just seen, this corresponds to a frequency about 7 per cent, off tune. 

Hence we suggest the natural wavelength of a straight thin isolated 

rod is about 7 per cent, more than twice its physical length. In the 

early days of the century H. M. Macdonald attempted to calculate the 

natural wavelength of a rod and estimated it at 2*53 times the physical 

length. Experimental work by R. M. Wilmottet suggests the ratio 2*1, 

our estimate is 2*14. This ratio must depend slightly on the ratio of 

length to diameter and on the shepe of the rod near its tips. Resonance 

will necessarily be very blunt, therefore the precise length for resonance 

is of little practical importance or scientific interest. 

We have seen the current distribution cannot be cophased throughout 

the length. Divide the distribution into two components, one in phase 

with the current at the mid-point of the length and one in quadrature 

thereto. Then, by definition, the second distribution will have zero 

value at the middle point; and zero value at each tip, by physical neces¬ 

sity. It may be likened to the dominant distribution on a whole wave 

aerial but compressed into half a wavelength. Its presence will have 

most effect on the R.M.S. distribution of current near the quarter points 

of the length, hence there is prima facie reason for supposing the R.M.S. 

distribution will be rather fuller than a sinusoid and more nearly con¬ 

forming to a parabola. If the aerial is transmitting, then we may regard 

this second, and comparatively small, distribution as producing (by 

means of its own Eq) the distribution of Ep demanded by the output 

from the first distribution. On this supposition the writer computes 

that the fractional value of the quadrature component is 36 per cent. 

Then the R.M.S. current at various points along the length would be 

as shown in the table below, the third row of which shows the value the 

current would have if it were everywhere oophased and distributed 

sinusoidally. 

Table 8.2 

Distance from middle point 0 i i I 1 

Relative magnitude of current 1 0-92 0*80 059 0 

omy .... 1 0*87 a-71 0-5 

t See Joum. LE.E. 46 (1928), 617^ r 



336 THE SINGLE ISOLATED AERIAL [Chap. VIII 

Consideration by Poynting’s theorem shows that the total output 
of power will be the same as the sum of the powers which would be 
radiated if each component existed alone (compare also § 2.22, p. 117), 
though the output of one component will be enhanced while the other 
is reduced by the simultaneous existence of the two. Since we know 
the output depends dominantly on Xq, and little on its shape, we thus 
see the total output will be l + (0*36)2 — 1*13 times what it would be 
if the quadrature component did not exist. We have also reason to 
expect that resonance occurs when the length is about 7 per cent, less 
than ^A, and this would make the resistance about 14 per cent, less 
than 73 ohms. Thus it seems likely the radiation resistance at resonance 
is very near 73 ohms, notwithstanding that the resonant length is 
appreciably less than ^A. 

This problem should be investigated more thoroughly by combina¬ 
tion of experiment and analysis. This has not yet been done, partly 
from lack of precise understanding of the factors involved and partly 
from lack of development of experimental technique. The writer thinks 
it could be done in the following manner. A straight thin tube some 
inch or so in diapieter should be supported vertically by the least 
practicable amount of stays. It must be supported just clear of a 
copper gauze mat whose side is at least 12 ft. Then the impedance 
between the foot of the tube and the mat must be measured as a 
function of wavelength over a range of about ±20 per cent, from four 
times the length of the tube. The inevitable leads between the ^aerial 
terminals’ and the measuring gear provide a ‘transformer action’ which 
cannot be allowed for with certainty: therefore A must be long enough 
to make the effect negligible. The writer has had considerable expe¬ 
rience in this matter and considers it is impracticable for A to be less 
than 3 m. if the measurements are to be independent of the short, but 
inevitable, connecting leads: he would advise the rod should not be 
shorter than one metre. Suppose it has this length and that the magni¬ 
tude and phase angle of the impedance is measured over a range of 
some ±20 per cent, from 4 m. The distribution of mean square current 
along the rod must then be explored by measuring the current induced 
in a small loop placed close to the rod and at various stations along it. 
The distribution curve, obtained in this manner, will certainly not differ 
much from half a sinusoid and the whole purpose of the experiment is 
to assess the discrepancy. It follows, after reduction, from (1.80 a) that 
if the distribution is fuller than a sine curve the radiation resistan.ce 
must exceed 73 ohms when the length of the rod is JA. It is essential 
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to correlate measured values of resistance with observed distribution 

curves. If the bona fides of the measurement is upheld by finding that 

the resistance does depend on the distribution curve in the general manner 
in which it must depend on it, then it should be possible, on close 

consideration, to estimate approximately the phase distribution. If 

these tests are performed with rods of length say, 1, 2, or 3 metres, it 

ought to be possible to cross-check the measurements, if they are valid* 

This should suffice to outline the procedure, an essential feature of which 

is correlation of radiation resistance and current distribution. 

8.4. Brief survey of refined analytical solution 

A very recondite solution for a straight cylindrical wire was published 

by E. Hallen in the Nova Acta Uppsala, in 1938; by means of an 

integral equation he derived an expression for the current distribution 

appropriate to the cylindrical conductor. He defined a parameter 

=E. 21og(2i/r„), where 21 and 2r^ are the length and diameter of the 

wire respectively. We have arrived at this parameter in the last section,, 

in the form IogA/2?;^ for the case where 21 — ^A. Hallen derived the 

various parameters of the aerial in a series of inverse powers of 

Hallen’s work has been continued, extended, and more fully evaluated 

by C. J. Bouwkamp,t whose results are well summarized by the 

following table, taken from his paper, and which relate to an aerial 

in the conditions when the reactive component of its impedance is zero. 

Table 8.3 

2Z/r„ . 
Q . . . 
4«/A . 
(A-40/A 
Resistance in ohms 

150 
10 
0-944 
5-60/^ 

60-4 

1800 
15 
0-964 
3-60/^ 

67-7 

22000 
20 

0-976 iA aerial 
2-4% 

70-6 

21IX . 
(A-2Z)/A 
Resistance in ohms 

0-87 1 
13% 

1150 

1 0-928 
7-2% 

2900 

0-948 \ 
5-2% 1 A aerial 

5500 1 

According to our rough estimate the resonant length of an aerial in 

which 2Z/r^ =100 was 7 per cent, less than half the wavelength; this 

is in reasonable accord with Bouwkamp’s value of 5*6 per cent, for an 

aerial in which 21 jr^ = 150. It is interesting to note that, according to 

the table, the ‘end correction’ is as much as 2-4 per cent, even when 

the ratio of length to diameter is 11x10®. On the supposition of a 

t Phyaica, 9, no. 7 (July 1942). 

Z 4791.1 
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cophased sinusoidal distribution of current the radiation resistance is 

given by the expression R = 120A;tan^(7rZ/A), where k is given by 

Fig. 8.6. According to this the resistance would be 64, 66*2, and 70-5 

ohms when had the three values for which Bouwkamp calculates the 

resistance as 60*4, 67*7, and 70*5 ohms respectively. Following the 

arguments used in the last section, we should expect the resistance to 

exceed 64 ohms when 4Z/A = 0*944 because there is necessarily an 

output of work from the quadrature component of current. Therefore 

it is surprising that Bouwkamp’s value (60*4 ohms) is less than 64 ohms, 

since we should have expected to find it greater than 64 ohms. It is 

to be regretted that Bouwkamp did not record a plot of the current 

distribution for Q = 10. Bouwkampf refutes the statement by L. V. 

KingJ that the radiation resistance of an aerial is not the same when 

receiving as when transmitting. For very many years the present 

writer has recorded his expectation of the property stated categorically 

by L. V. King, and even now he suggests it would be well to regard 

this question as svJb judice, 

Ronald King and C. W. Harrison have extended Hallen’s analysis 
to derive the distribution of current along a symmetrical centre-driven 
antenna,§ and they give many figures showing the distribution of the 
two components of current along aerials whose total length ranges 
between |A and |A and having Q = 10, 30, and oo. It is difficult to 
discover their estimate of the resonant length, but according to their 
Fig. 21 the resistance is 57 ohms when 4Z/A = 0*944 and £2 = 10 and 
thus is even less than Bouwkamp’s value. 

It does seem probable that the resistance at resonance of an isolated 

half-wave aerial is less than 73 ohms. However, the problem is not of 

much importance in practice, for the following reason. It is only when 

A is less than, say, 4 m., that a simple unsupported rod is practicable, 

and in this range of A a plurality of aerials is almost certain to be used. 

At long wavelengths, say A > 50 m., an isolated aerial is likely to be 

a tapered lattice-work tower and not a simple cylinder. 

8.5. Aerials with a large capacitance roof 
When it is impracticable to erect a mast as high as JA it is common 

to spread a capacitance of large area between a succession of masts and 
to connect it to the ground through a ‘down lead\ Then the current 
along the down lead is likely to be substantially constant in magnitude 
and phase. The currents in the roof do not contribute much to the 

t Loo. oit., p. 622. ^ t FM. Trtma, Boy* 8oc* 1937, 381. 
§ Proc* Inst* Rad, Eng, 31 (1943), 549. 
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output because Ep along them tends to be neutralized by the oppositely 

directed image currents in the ground. The radiation resistance of an 

aerial with a flat L-shaped roof was calculated by G. W. Pierce.t It 

was also calculated by a different process by the present writer, J who 

generalized it for roofs in the form of a T or a cross. These general 

equations permit any particular case to be solved by appropriate evalua¬ 

tion from them. The currents in the roof do not contribute to the field 

strength in the equatorial plane and thus are useless for a direct ray 

service: but they do mean the output is greater than if they did not 

exist since they may enhance the field strength at high angles of eleva¬ 

tion. Such increment of output can be much reduced by folding the 

roof wires back on themselves: the net effect of the roof wires will then 

be neutralized more completely than it would have been by the com¬ 

paratively distant image currents, in the ground, of the unfolded wires. 

When the roof wires are folded it is likely their total length will need 

to exceed what it would be if they were not folded, and this effect will 

tend to introduce some ‘diminishing returns' from the folding process. 

Folded roof aerials have been used with advantage in high-pow^er 

broadcasting stations where it was impracticable to use a mast higher 

than, say, |A. Full details of the relevant calculations and power gain 

values will be found in § 11 of the paper in the Journ. I.E.E, referred 

to already; also the calculation of the radiation resistance of an aerial 

in the form of an inverted cone, a disposition of historic interest since 

it is reminiscent of the famous Marconi transatlantic aerial erected in 

the early years of the century at Poldhu, Cornwall. It does not seem 

necessary to develop the analyses of roofed aerials in detail here: they 

all approximate closely to a doublet whose semi-height is the length of 

the uplead. The next approximations have been worked out fully and 

the appropriate references have been given. A point of great practical 

importance in all that work is to show that if can be determined 

by an absolute measure of the field strength at a comparatively 

nearby point in the equatorial plane, then the total output of power is 

known with great certainty and precision. Thus it follows that an 

acceptance test of guaranteed output should be based on a measurement 

of field strength rather than of input current to the aerial. The input 

current is more difficult to measure in absolute terms (the writer is here 

thinking of wavelengths not less than, say, 300 m.) than the field 

strength and is not a direct measure of the output of power. 

t See Electric Oscillators and Electric Waves, p. 434. 
X See Joum, I,E.E,, loc. cit.. Table 2 and equations <29-32). 
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8.6. Inductance and capacitance per unit length of an aerial 
Many ad hoc attempts have been made in the past to analyse the 

performance of an aerial in terms of the equations of a transmission line. 

The transmission line is a two-dimensional problem, and the solution 

is specified to be such that the electric field has no component parallel 

to the conductors. In such circumstances two parameters emerge which 

happen to be the capacitance and the inductance per unit length of a 

line of infinite length carrying a static charge or steady current. The 

solution for a finite length is not obtainable save for the particular 

terminal condition of a conducting sheet perpendicular to the axis of 

the twin cable. The length of an aerial is not infinite, and it is obvious 

the field has a component parallel to the axis, hence the solution 

for the cable is not applicable and little more need be said. 

Our rough analysis of the Q of a half-wave aerial showed that neither 

Ep nor Eq was proportional to the current at the point considered, and 

this showed the parameters are not constants per unit length. Lengthy 

explanation cannot describe more clearly than has been done already 

why the line treatment is invalid and inapplicable, and it is senseless 

to develop a cumbersome analysis attempting to estimate the degree 

of approximation. An aerial is a distributed system whose input 

impedance can be inductive or capacitative. Various networks can be 

postulated which will simulate its input impedance approximately, but 

such have no important significance. The ladder network or cable must 

have characteristics which correspond in a rough-and-ready manner 

with an aerial, and if it is helpful to use them as a rough model, by 

all means let this be done, provided always the real aerial is not then 

compelled to possess by supposition, or faulty argument, parameters 

it does not possess. If a cable is used to provide a technique for rough 

calculation let its poor claim to such use be recognized. This is not to 

say that many technical articles which use the line equations for aerials 

are not very useful guides to the engineer seeking rough quantitative 

description: they do not help him appreciably to understand why the 

aerial behaves in the manner he finds it behaves. 



EXPERIMENTAL SECTION 

IX 

GENERAL EXPERIMENTAL METHODS AND EQUIPMENT 

9.1. In the previous chapters we have studied very thoroughly the be¬ 

haviour of certain typical aerial systems which have been idealized, for 

the purpose of analysis, in ways which areunhkely to conflict severely with 

realizable aerials. Thus we start by knowing a great deal about the 

way real aerials will behave and our measurements will be directed to 

exploring the discrepancy between the behaviour of real and of idealized 

aerials. This statement may perhaps sound as if the purpose of our 

measurements was purely academic and pedagogic, but that is far from 

being so. Our purpose is to explore the behaviour of a real aerial with 

all possible economy of effort, and that effort is economized to an 

enormous extent if we consistently set out to explore the discrepancy 

between the real and the idealized performances. If we work in that 

way it means we have thought out very carefully what we want to 

measure and we know, within comparatively narrow limits, what we ought 

to find. It is the antithesis of the procedure which starts off by hoping 

to recognize generalized behaviour if only sufficient experimental data 

are available. Every unused experimental result is a waste of time which 

usually could have been avoided by more forethought; but often the 

evil is not limited to a mere waste of time because the unused experi¬ 

ment may confuse the issue. It is the essence of a systematic and 

scientific approach that we should use experiment to provide the detail 

which we have been unable to calculate. Experiment should be required 

only for the final engineering adjustment of the aerials which are to be 

built or have already been built. So much is known and understood 

about aerials that the bulk of the development work can be, and should 

be, done on paper. 

The first thing is to define the range of wavelength we intend to use: 

this range is from 10 to 100 cm., and on rare occasions, from 3 to 300 cm. 

The problem is both simpler and more restricted in the range 3 to 30 m. 

and then scarcely needs detailed description. The first essential tool is 

a valve generator: if the wavelength exceeds, say, 30 cm., then a pair 

of suitable triode valves can be used in ‘push-pull’. If the wavelength 

is less than about 30 cm. it will be necessary to use a magnetron or 

clystron tube. Considerations of flexibility, reasonable portability, and 

expense usually impose severe restrictions on the output, and this is 
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likely to be less than 10 watts. Field work is usually hampered at some 

stage by lack of power, and therefore the experimenter should provide 

himself with as powerful a generator as he can obtain. The next 

essential is a wavemeter which is both light and easy to operate. The 

work has to be carried out in the field, often in cold, drizzle, and high 

wind, and therefore it is essential that all instruments shall be very 

easy to handle: otherwise they just would not be used. There are few 

occasions when it is important to know the wavelength closer than 

about ±2 per cent., accordingly the wavemeter should have the simple 

character suited to such an order of accuracy. Avoid multirange wave- 

meters: provide several instruments each with a spectrum width of only 

about ±10 per cent, and let each be direct reading on a circular dial. 

Down to about A = 80 cm. a combination of variable air condenser and 

suitable inductance is satisfactory. An instrument of this character 

having a range from 200 to 240 Mc/s is shown in Fig. 9.1, and this 

illustration serves to describe the general class of instrument which is 

suitable and which we have in mind. Beware of robbing the laboratory 

of some high-grade instrument suited for indoor use: such desecration 

will not be justified because the tool will not be suitable. An essential 

key to the great art of measurement is to provide instruments suited 

to each particular application: good work will not necessarily be done 

by providing the most refined instrument available. If good field work 

is to be done on aerials, then the experimenter must have the wit and 

energy to provide himself with tools suitable for the purpose. A small 

effort of common sense and a considerable effort of simple construction 

must not be avoided by the lazy process of indenting for the‘best that 

money can buy’: such efforts very often are avoided and in consequence 

many have suffered misery and exasperation for months. 

In the range of wavelength from 10 to 50 cm. some form of coaxial 

tube resonator is convenient and suitable, the wavelength being 

measured directly on a centimetre scale. A chamber consisting of two 

coaxial cylinders closed by flat metal disks at each end resonates when 

the length is JA; ‘a trombone construction’ based on this prihciple is 

essentially sound. If the chamber is open at one end, resonance occurs 

when the length of the inner cylinder is about JA; in practice this 

construction works very well, though it is a little less sound in technical 

principle than the first: the clearance between the two cylinders should 

be a small fraction of A. Because the trombone has a linear scale one 

instrument will cover adequately the range 10 to 50 cm. In the range 

round 5 cm. a resonant cavity type of meter is likely to be most suitable. 
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The resonance condition of all three types is best indicated by means 

of a crystal detector and pivoted galvanometer, thereby avoiding the 

need for any power supply: now that reliable crystal detectors are 

obtainable commercially in the form of a replaceable capsule, there is 

no longer reason to be disinclined to use crystals. 

The next requirement is a turn-table on which the aerial and reflector 

can be mounted. Its construction is a simple mechanical problem and 

need not be considered in detail here. It should be a wooden structure, 

and unless it is made very robustly it will be the cause of endless 

trouble and waste of time. The table-top should be some 5 or 6 ft. in 

diameter and strong enough to bear a couple of people standing on it. 

The underside should be provided with cupboards which are reasonably 

weatherproof and the generator can be housed in them. 

The reciprocity theorems, developed in earlier chapters, show that 

the same polar diagram will ba obtained if the aerial which is to be 

revolved on the turn-table is used as a transmitter or as a receiver. 

The writer has always used it as the transmitter. It is often desirable, 

even necessary, to change the position of the transmitter or the receiver 

relative to surrounding objects, such as trees, hedges, buildings, etc., 

which inevitably border all testing sites. The turn-table is a fixture on 

a concrete base and cannot be moved: the transmitter will involve a 

feeding-point from some A.C. supply and this is not readily moved 

about the site. Hence there is something to be said for combining the 

immovable and the difficult-to-move accessories: in other words, to use 

the revolving aerial as a transmitter and the fixed aerial as receiver. 

For convenience of writing we shall suppose this regime is adopted and 

then the receiver will mean the fixed aerial. The receiving aerial must 

be fitted with a thermocouple (or equivalent device) with leads con¬ 

necting it to a galvanometer situated at the transmitting turn-table. 

Measurements will almost always be hampered by some lack of sensiti¬ 

vity, and therefore we must improve the power gain of the receiving 

aerial by furnishing it with some form of reflector. But increased 

sensitivity is not the only reason why the receiving aerial must be 

fitted with a reasonably directive reflector. The reflector is required 

to help shield the receiving aerial from fields re-radiated by objects, 

on the site, which are excited unintentionally by the transmitter. The 

illumination of such objects varies as the transmitter is revolved on its 

turn-table, and hence any field they reflect into the receiver is not a 

constant but is a function of the variable bearing of the turn-table : the 

more directive the receiving system the better, in every way. A Vee 
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reflector, of angle about 60*^, is suitable for the receiver; the appropriate 

dimensions will depend on the wavelength, and the reader will be able 

to choose them when he has read the next chapter. Because occasions 

are bound to arise when it is desired to move the receiver to some other 

place on the site, it is wise to make the receiving reflector as light and 

portable as possible, consistent with its size, which is determined mainly 

by the wavelength. It must carry an aerial, about half a wavelength 

long, and the position of this aerial should be adjustable on the bisector 

of the Vee. The aerial proper must consist of two metal rods joined 

together by a sensitive thermocouple. To obtain the best sensitivity 

the aerial should be tuned and the couple should have a resistance equal 

to the radiation resistance of the aerial, when at a station of maximum 

gain for the Vee reflector in which it is to be used. But the true optimum 

is very blunt and usually the experimenter is justified in ignoring 

refinements and in using the most sensitive couple available to him. 

Vacuum couples are available having a heater whose resistance is 

120 ohms and such that a current of 4 mA through them produces 

a steady current of 240 fiA in a imipivot of resistance 10 ohms: such 

a couple is suitable for our purpose. The best position in the Vee for a 

given aerial and couple must be located by experiment: the optimum 

will be found to be very blunt. It is sensible to construct the aerial of 

two pieces of copper tube (say, about in. diameter) which penetrate 

into a bakelite block to support them: the said block forming a box to 

contain and protect the thermocouple. Tubes are used for the aerial 

in order that they may be furnished with extension rods which telescope 

into them: thereby providing a means of tuning and of making one aerial 

suitable for a wavelength range of nearly two to one. If the ends of the 

tube are slit axially by a fine saw cut, some 2 cm. long, an adequate 

friction grip is provided for the extension rods. Fig. 9.2 is a photograph 

of such an aerial-cum-couple assembly and should serve to show the 

reader the character of apparatus we have in mind. It was made for 

measurements at A = 125 cm. but is serviceable down to about 

A = 70 cm. Experience will teach the reader that tuning is very 

blunt, and he will soon learn to regard the measuring aerial as a tool 

which does not require regular and nice adjustment. The measuring 

aerial should be robustly made and must be readily detachable from 

its reflector. Experimenters should be well drilled in the discipline of 

removing it every night from the reflector and on every occasion when 

work ceases for an hour or two: it should be the responsibility of one 

man to demount it and return it to the ofl&ce every night. Then it will 
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never be left long exposed to inclement weather nor have to survive 

crashing with the reflector in a gale of wind. In the writer^s experience 

much better service results from the use of a removable aerial in a light, 

even a flimsy, reflector than from an aerial built into a robust reflector. 

It may be tempting to build the whole apparatus in a form resembling 

what would be used in operational practice, on the plea that such 

aerials stand up satisfactorily to continuous exposure. They do, but 

they are also under continuous care and maintenance, and their fixings 

are gale-proof. As we shall sometimes need to move the receiver about 

the site its fixings will not be gale-proof, and if a collapse occurs a heavy 

reflector is likely to receive serious damage, whereas flimsy screens 

receive surprisingly little damage when capsized by the wind. If the 

undamaged aerial is carried out to the receiving reflector, then it is 

fairly certain work can always be started after only a few moments’ 

delay and thus the blessing of security of operation is achieved: then 

we shall almost certainly be able to make use of an hour or two of fine 

weather, even after an interlude of some weeks. 

Of the field apparatus, it is only the turn-table itself which demands 

robust construction, and much time will be wasted if it is not made 

properly. 

All will wish to use a unipivot galvanometer with the thermocouple, 

but occasions are bound to arise when lack of power renders its sensiti¬ 

vity inadequate. Mirror galvanometers such as the ‘Cambridge Spot 

Galvo’ are amazingly robust and manageable for field work, and are 

vastly more sensitive than a unipivot: the lamp can be energized 

from the supply feeding the turn-table, but will require a small portable 

transformer to step dowm to 4 V (a 230-V supply to the lamp should 

not be tolerated or allowed on a galvanometer used in the field: danger 

from shock is serious in these conditions of use). Usually it is necessary 

to place the galvanometer in a box, to screen it from the wind. The 

use of a sensitive galvanometer is a simple and cheap way of enhancing 

the sensitivity of measurement. Workers are strongly advised to seek 

to improve the galvanometer as the first means of improving the overall 

sensitivity: they will find it is the easiest and cheapest thing to improve 

first. The galvanometer must be provided with a resistance box giving 

it a 1, 2, 6 range: this needs attention in construction because it must 

inevitably be associated with long leads, which have appreciable 

resistance, and users must be on the look-out to see these leads are not 

changed inadvertently. 
Power is severely limited, and accordingly the distance between 
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transmitter and receiver should be as short as is consistent with 

obtaining the limiting form of the polar diagram. It is therefore 

important to understand clearly how to assess this shortest permissible 

distance. First refer to Fig. 3.40 which depicts the ideal pattern at 

various distances from the apex of a 60° Vee: it suggests that a distance 

of some BOA may be regarded as substantially infinite. The deciding 

factor is that the path difference between the various images and the 

receiver must be substantially the same as if the receiver were at 

infinity. It is a simple matter to assess the degree of approximation 

in any given case. It is a good working rule that the receiver should 

not be closer than 50A and seldom need be farther than lOOA from 

the transmitter: it is very common to find much greater distances 

in use, and in general this denotes a lack of understanding of the 

problem. 

A reader who has had no previous experience and is about to start 

on aerial measurements will be looking for direct guidance about the 

power he will require. If A does not exceed one metre, then the available 

range of small transmitting valves is small and there will not be much 

choice in the generator, and the input to it will be about 30 W. 

Short-wave generators are inconvenient and inflexible things, and it 

will be difficult to get more than about 5 W into the transmitting 

aerial. With the class of generator that he is almost bound to be using 

the experimenter should obtain adequate results from a 100-ohm couple 

and single aerial (with reflector) at distances of some 60 or 70A, provided 

a ‘spot galvanometer’ is used. This dictum should give him confidence 

to make a start and begin to get his own personal experience, which 

he must gain for himself. He must learn to adjust the generator so as 

to get out of it all it can give, must satisfy himself that the long leads 

from the thermocouple to the galvanometer have not got so high a 

resistance as to be a dominating factor controlling the sensitivity of the 

galvanometer, and that the galvanometer has a coil of suitable resistance. 

If the galvanometer deflexions are still inadequate and it is unwise to 

reduce the distance between transmitter and receiver, then the 'problem 

of improving the gain of the receiving aerial must be faced; we shall 

suppose it is fitted with a Vee reflector. If the sides of the Vee are as 

large as can be tolerated (or as large as they need be for the wavelength), 

then a rough but systematic study must be made of the effect of 

moving the receiving aerial along the bisector when the angle of the Vee 

is, say, 45°, 60°, and 90°: by such means an optimum will be found. 

If this will not suflfice, then he may have to face the complication of 
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using several collinear half-wave aerials in the reflector. Then the 

thermocouple, hitherto placed at the middle of the single aerial, must 

be replaced by a coaxial cable and all such cables joined in parallel, 

through a suitable junction box, finally feeding current into a common 

thermocouple. If any real benefit is to be obtained this will involve an 

attempt to match the load to the fine. The writer has used a receiver 

which had eight collinear half-wave aerials in parallel, feeding a couple. 

He was provided with the complete outfit and did not construct it: 

it served its purpose and that was all that mattered. But he is sceptical 

whether its behaviour was in fact much better than could have been 

obtained from a single aerial and a large Vee. He strongly advises 

against the use of more than one aerial until the experimenter is well 
versed in the art. 

Field work is essentially more exacting than work in the comfort of 

a laboratory, and therefore siriplicity of apparatus is an essential 

requisite of successful and reliable work. If improvement by a factor 

of about two will suffice, then some extra attention to generator and 

galvanometer will probably surmount the difficulty. If a much larger 

gain is required, then the design of the whole receiving aerial will 

require close consideration, and such a major problem will be better 

understood when the ensuing chapters have been read: our concern 

now is to get the reader started on experimental work. 

The degree of sensitivity in respect of length of aerial and of its 

position can be assessed, in a general manner, from the following 

example. The receiving aerial was that shown in Fig. 9.2; its length 

was adjustable and the heater (of the thermocouple) had a resistance 

of 110 ohms. It was associated with a 90° reflector (whose screens 

were 5 ft. high and 5 ft. wide) and could be moved along the bisector: 

the wavelength was 128 cm. (i.e. about 4 ft.). The following table 

records the reading of the galvanometer at five positions of the aerial 

and for five lengths of aerial. 

Table 9.1 

Distance of aerial from apex in cm. 

80 70 60 60 40 

Length of aerial Deflexion of galvanometer 

63 cm. 13-3 13-3 11-2 8-3 5*7 
69 12-2 120 11-7 10-5 7-2 
65 11-4 121 12-8 10*9 7*6 
61 8-5 10-3 10-8 10-6 6*7 
47 70 81 8-6 6-7 6-2 
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When the length of the aerial is |A (63 cm.) the galvanometer deflexion 

passes through a blunt maximum when the aerial is about 75 cm. from 

the apex: when the length is 55 cm. (or less) the blunt optimum occurs 

when the distance is near 60 cm. As a first guess we might expect the 

aerial ought to be long (for then it will be tuned) and ought to be 

about JA from the apex of a station for maximum gain. Suppose we 

choose JS = 60 cm. {BIX = 0*47): then experiments with this aerial 

and couple showed the current is greatest when the length of the aerial 

is 55 cm. (0*43A) and is then 1*14 times as great as when the length was 

0*5A. On the other hand, if we choose B — 70 cm. {B/X = 0-54), then 

the current is greatest when the length is ^A. What really matters is 

to recognize that the adjustment for optimum is very blunt indeed: 

provided the aerial is about ^A long and about ^A from the apex, then 

nice adjustment cannot do more than make a slight increase of 

deflexion; in practice this means that nice adjustment is not worth 

while. 

Reference to Fig. 4.2 shows the radiation resistance is 125 ohms 

when B/X = and thus we find that the resistance of the heater then in 

use happens to be very near the optimum value. 

An alternative^ arrangement is to replace the thermocouple by a 

tuned circuit, across which is connected a diode valve (such as B.T.H. 

Dl). It was found that the sensitivity of a particular assembly of this 

kind was 1-5 times that of the couple, when using the same galvano¬ 

meter for either system and in circumstances when the response of the 

diode was proportional to the square of the voltage. 

The inexperienced worker is very liable to think that it is no easy 

undertaking to measure the polar diagram of an aerial and reflector at 

wavelengths less than one metre: but if so he is wrong, for it is a very 

simple process. It is very easy to get frightened by observing that the 

galvanometer reading fluctuates wildly when he moves about in front 

of the aerial, and to suppose his observations will be dependent on all 

kinds of random circumstances. Ordinary gauze screens are very perfect 

reflectors, and provided he will keep behind them his presence have 

no effect, because he is perfectly screened by the reflector. Aerials may 

suitably be described as very good-tempered things having great powers 

of ignoring imperfect apparatus. After a lifetime of experience on 

high-frequency measurements the writer knows of none so easy to make 

as on aerials in the range of wavelength between 50 and 100 cm.: 

almost all the familiar troubles of high-frequency measurements seem 

to be absent. He regards the testing of aerials in much the same light 



9.1] METHODS AND EQUIPMENT 349 

as he regards the testing of a dynamo: it is extremely simple provided 

you understand what you are doing and what you are trying to find out. 

The novice is almost sure to expect that reliable results cannot be 

obtained unless he can use a clear, open, and level site, and the more 

his mind dwells on geometrical optics the more pessimistic he will 

become. Because we are testing highly directional aerials and using a 

highly directional receiver there is very little trouble from the site. 

If we are testing an aerial which is almost omni-directional, then, and 

only then, is the site important. The writer has had long experience 

of working in a large level open field, and he has also done even more 

work in the midst of the Trafford Park works of Messrs. Metropolitan 

Vickers Electric Co., Ltd., at Manchester: he did not find that work in 

the factory was more difficult than work in the open fields. If the 

reader will have the courage to use the flat roof of a building he will 

be well repaid by saving hours of time travelling to and from a distant 

field, remote from his workshop and laboratory. 

It is not necessary to write more about a very simple process: let the 

reader gather his own personal skill and experience. 

9.2. The monitor aerial 

In the last section we were thinking mainly of the apparatus for 

plotting polar diagrams, and then the only requirement of the receiving 

aerial was that it should give as much response as possible to a given 

field strength: our concern was with relative and not with absolute 

values. But there are occasions when it is desired to use an aerial to 

make an absolute measure of a field strength or to make measurements 

which shall be relatively correct over a very long period of time. Thus 

it may be required to make an absolute measure of the power radiated 

by an aerial or at any rate to compare the powers radiated from it 

from day to day or week to week. At long wavelengths this second 

requirement would be met by an aerial ammeter; but a straightforward 

ammeter is not practicable at the wavelengths and powers we have in 

mind, for reasons which should be obvious to the reader but will not 

be detailed here. It is common practice to use a small aerial, close to 

the main aerial, as the equivalent of an ammeter: such an aerial is 

often called a * monitor aeriaP and the output is said to be monitored 

by it. 
An early exponent of the use of a monitor aerial was Dr. J. S. 

McPetrie,t who developed it as a means of making an absolute measure 

t See Wireleaa Engineer^ 16 ^939)^ 342. 



350 GENERAL EXPERIMENTAL [Chap. IX 

of field strength and therefrom inferred the power output of the aerial 

which was being monitored. The small current induced in the monitor 

aerial is measured by a fine wire thermocouple: since the heater wire 

of the thermocouple is very thin, the frequency error of the instrument 

can be made negligible. The monitor aerial plays a part equivalent to 

the ammeter-transformer of low-frequency practice, and our problem 

now is to calculate the equivalent of the transformation ratio. 

(a) The impedance of a short thin aerial 

The diameter of the monitor aerial will be supposed very small 

compared with A and then the field will be sensibly cophased and 

constant all over its cross-section: the field is supposed to be constant 

along the length of the monitor. First we suppose the field is static 

and we attempt to calculate the total charge on each half of the monitor. 

If an ellipsoid of revolution is placed with its long axis parallel to a 

uniform field, then there will be positive charge over the whole of one 

half and negative over the whole of the other. It is well known that 

the charge on the surface of a cross-section slice of given thickness 

varies directly as the distance of that slice from the centre of the 

ellipsoid. If Q is the total charge on one half and E the intensity of 

the uniform field in which the ellipsoid is situated, then it is known 

thatf 

E 
(9.1) 

where iyr = ^ ^|l + 5e2+|e<+^e6+...|, (9.2) 

in which 6^ = 1 — ^. 

When o > 6, then N = 47r^|logy- ij. (9.3) 

If E fluctuates harmonically and very slowly, then Q will {iltemate, 

and thus an alternating current I will flow across the equatorial plane 

and its value will be J = pQ, and thus 

, _ pnbm __ pnb^2aE) pnbW 
N ~ 2Na ~ 2Na' ' 

where V is the voltage from end to end of the ellipsoid. Thus the 

t See, for example. Magnetic Induction in Iron, Sir J. A. Ewing, p. 25. 
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quantity 7Tb^l2Na ^ (7 is the effective capacitance of the system. 
When a/6 >1, then 

and 

a 

8{log(a/6)—0*3}’ 

1 ^ 2Na 

pC rrb^p 

30Na 
77^62 

ohms 

(9.5) 

(9.6) 

— l^/logy—O-s) ohms, when^ ^ 1. 
Tra \ 5 / 6 

It will be seen shortly that a very desirable length for a monitor aerial 

is JA, which corresponds to a = |A. Some values of Z, for various 

values of a/6, are shown collected in Table 9.2 below for a monitor 

whose length I is equal to JA: it follows from (9.5) that the impedance 

is inversely proportional to the length, and accordingly if this length 

is less than JA then the values m Table 9.2 must be increased in the 

appropriate proportion. 

Table 9.2 

a/6 1 2 4 10 30 100 

Z ohms 102 205 256 610 960 1,300 

Since the diameter, 26, is likely to be of the order of 1 per cent, of the 

length I, it follows from this table that the impedance of a monitor of 

length JA is likely to be between 1,000 and 1,500 ohms, and in such 

circumstances I == XE/4:000: in general for a monitor of length I, 

I rp EPj260X, This expression ignores the reduction of effective im¬ 

pedance due to the inductive impedance of the monitor, an effect which 

must become very important as resonance is approached. Rather than 

attempting to estimate this inductive effect we shall appeal to experi¬ 

ment, which shows that inductance is only just becoming appreciable 

when I = JA. 
A complete solution of this problem will be found in Currents in 

Aerials am? High Frequency Networks, F. B. Pidduck (Clarendon Press), 

p. 36, § 13. Pidduck evaluates the case where the length is verging on JA 

and also the case where ? < A. In the second case his equation (80) 

gives the expression I = EP/SSOX for a wire in which a/6 = 500. In 

such circumstances Table 9.2 shows that Z == 1,800 ohms and thus we 

should have given I = El^j460X, Thus there is a discrepancy of 18 per 

cent, between our approach from an elongated ellipsoid and Pidduck's 

evaluation for a cylindrical wire: it is perhaps to be expected that the 
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current induced in a long cylinder would be greater than in a long 

ellipsoid. McPetrie (loc. cit.) proposes the formula 

, Ea. 27Ta 

where, he says, represents the characteristic impedance of the aerial 

and is in the neighbourhood of 500 ohms’. If a/A < 1, McPetrie’s 

formula becomes I = 27rEay500A = Eiy320A and thus corresponds 

with an ellipsoid in which ajb =100: the three methods of approach 

give reasonably concordant results. There is not much sense in arguing 

too closely about these results because the current must be measured 

by a thermocouple placed at the mid-point of the length and this 

involves cutting the aerial into two halves and thereby making it less 

like an ellipsoid or long cylinder. It is true that the ohmic resistance 

of the couple will be small compared with the impedance of the aerial 

and thus it will, per se, reduce the current by a negligible amount, but 

it does not necessarily follow that cutting the aerial into two portions 

will have a negligible effect on its reactance. Presumably it is a cardinal 

feature of McPetrie’s concept of a monitor aerial that the resistance of 

the measuring instrument plays a negligible part in the total impedance, 

and this will obtain if the monitor is short. 

We will now describe some experiments which were designed to 

investigate the dependence of the induced current on the length and 

on the diameter of a monitor aerial, which was placed parallel to an 

electric field of constant intensity. The monitor aerial consisted of two 

equal lengths of brass rod connected by a thermojunction whose heater 

had a resistance of 15 ohms and whose sensitivity was such that a 

current of 65 mA through it produced an e.m.f. of 24 mV in the 

couple, the response obeying a square law. The thermocouple was 

housed in a bakelite block which served to support a pair of tapped 

sockets into which the two pieces of rod were screwed. The measure¬ 

ments were made at, or near, a wavelength of 125 cm. The said bakelite 

block was 7*5 cm. long in the direction of the aerial, 5 cm. wdde, and 

4 cm. thick: the block had a diamond-shaped profile so as to reduce 

the volume of dielectric as much as was compatible with mechanical 

strength and fulfilment of its functions. The aerial rods were pieces 

of brass wire which were or | in. diameter. The source of field 

was a half-wave aerial which was distant JA from the apex of a 90° 

reflector: the monitor was placed on the bisector of the 90° Vee and 

was distant ^A from the half-wave aerial, and thus it was distant A fri>m 
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the apex of the Vee. Throughout the duration of these experiments the 

field strength was observed and recorded at a very distant point, 

thereby monitoring the output of the half-wave aerial and disclosing 
any temporal changes in the field incident on the monitor aerial, whose 

characteristics were being studied. The procedure was as follows: The 

response of the thermocouple was recorded when the tip-to-tip length 

of the monitor aerial of given diameter was 34 cm. (i.e. 0-274A). The 

two rods were then unscrewed from the bakelite block and each of them 

was reduced in length by 1 cm. They were then screwed once more 

into the bakelite block and the new response of the thermocouple was 

observed, having previously ascertained that the field at the distant 

point had its correct and standard value. The process of shortening 

was repeated, centimetre by centimetre, nine times: then the tip-to-tip 

length of the monitor had been reduced to 18 cm. (i.e. 0-145A) of which 

the central length of 7*5 cm. was occupied by the bakelite block, which 

housed the thermocouple. This series of measurements was performed 

on each diameter of rod, and there were four of them. 

The results are recorded in Fig. 9.3 in which the square root of the 

induced current is plotted against the tip-to-tip length of the monitor: 

each of the four curves in this figure relates to a rod of given diameter; 

it may be seen that each curve is asymptotic to a straight line through 

the origin. According to our simple analysis D should vary as /, when 

IjX is very small. Fig. 9.3 shows that this relationship is substantially 

valid even up to Z/A == J: with the rod of largest diameter the current 

is then 16 per cent, greater than if I had continued to vary as Z^, and 

with the smallest diameter the increment of current is then 5 per cent. 

The experiments recorded in Fig. 9.3 show that increasing the diameter 

increases the induced current: a sixfold increase of diameter increases 

the current in the ratio 1 -44. Taking a general view of these experiments, 

they may be said to show that the current is very insensitive to the 

diameter, and this is in accordance with Table 9.2, and increases as the 

square of the length up to a value of Z/A which is nearly equal to 

It is to be expected that the current should tend to increase more 

rapidly than Z^ because of the increasing importance of the inductive 

reactance, an effect which is ignored in (9.6). In the experiments 

described here it is likely that a substantial fraction of this inductive 

effect is concentrated in the fine wire of the heater of the thermocouple. 

It should also be noted that (9.4) and (9.6) predict that / should 

increase less rapidly than Z* because the factor N increases as a/6 

increases: but Table 9.2 shows that N changes very slowly with a/6 
4791.1 A a 
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and hence this effect should not be important in the range covered by 

Fig. 9.3, since in it the range of a/6 is only from 18 to 200. If the 

monitor could be represented correctly by an ellipsoid, then 

/{log(a/6)—0*3) 

would be constant when a is constant and 6 is variable. We can use 

Fig. 9.3 to examine whether this formula is substantially correct: we 

Fig. 9.3. Curves showing relation between induced current and length of monitor 
aerial and its dependence on the diameter of the aerial rod. , 

will choose 1= 30 cm. and use the values of /* given by the straight 

lines, thus removing the effect attributed to inductive reactance. The 

results of the analysis are collected in Table 9.3 below, and they show 

that I does vary with 6 in a manner very similar to that appropriate 
to an ellipsoid. 

The last column records an attempt to find an empirical formula 

which represents the observed results more closely. 
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Table 9.3 

6 
(mm.) 

1 
(mA) alb log(a/6)-0-3 7{log(o/6)-0-3} /{log(a/6)-l} 

4-75 21 32 315 66 51 
3-15 i 18-5 48 3-55 66 52 
1-55 14 94 4-25 60 50 
0*8 1 187 4-95 60 51 

These experiments cannot serve to find the absolute value of the 

impedance of a monitor. But they do serve to show that we need have 

no anxiety about the inductive impedance (even when a thermocouple 

is in series with the monitor) so long as l/X is just less than in general 

we shall desire to make the monitor as long as we dare to do and hence 

we are now’ likely to make its length verging on JA. We see that the 

current increases very slowly with the diameter and in substantially 

the manner w’e expect, and it appears that a suitable value for the 

ratio of length to diameter is about 100. Having regard to the general 

accordance of the ellipsoid approach, MePetrie’s approach, and Pid- 

duck’s approach, it seems likely that / == El/1300 for a monitor whose 

length is JA and whose diameter is 1 per cent, of its length. It seems 

likely that this formula is correct to closer than 10 per cent. If A is 

measured in centimetres, then the formula becomes 

F — I ^volts/cm. — \ ■‘mA) 
^cm. 

since it applies to a monitor whose length is JA. 

Fig. 9.4 shows the relation between induced current and length of a 

monitor (diameter 3'2 mm., A = 125 cm.) in the range of length between 

about iA and ^A. The current passes through its maximum when 

IjX — 0.46: thus resonance occurs at a length which is substantially 

less than JA, and this is probably due to the concentrated inductance 

of the thermocouple heater, situated at the middle of the length. The 

current at resonance will depend appreciably on the resistance of the 

said heater: in this experiment the said resistance was 15 ohms and the 

radiation resistance was presumably in the neighbourhood of 70 ohms. 

It should be noticed that the resonance is very blunt: the current being 

greater than half the resonance value so long as the length is within 

±12 per cent, of the resonant length. This is in general accordance 

with the small values of Q that we estimated in Chapter VIII. Fig. 9.4 

does not merit close analysis because it relates to a monitor which has 

a particular thermocouple in it and we should expect the curve to be 
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altered appreciably if the couple were replaced by another couple of 

different construction: it is, however, of considerable practical interest 

since it portrays the behaviour of an aerial which is loaded with a 

concentrated resistance at its middle point. It is, however, instructive 

to compare Fig. 9.4 with Fig. 13 on p. 40 of Pidduck (loc. cit.) which 

shows P as a function of I for a rod whose length is 500 diameters, 

Fig. 9.4. Monitor aerial, made of diameter rod, in constant field strength at 
A — 125 cm.: dependence of induced current on length of aerial, 

both when the rod is a perfect conductor and also when it has a 

resistance of 60Q at its middle point. 

We have been studying the design of a monitor aerial for use in 

circumstances when it is required to infer the value of the incident 

electric field from the measured value of the induced current. But the 

reader should guard against the false impression that every aerial used 

for measurement purposes ought to comply with the conditions we have 

laid down. Thus in the first section of this chapter we discussed in 

outline the receiving system required for testing the performance of an 

array or a reflector. Then the absolute value of the field strength is not 

required, only the relative values on various bearings from the axis of 

the transmitting array. In such measurements it is permissible to use 

a measuring aerial much longer than and in general to make use of 

a close approach to resonance. Thus reference to Fig. 9.4 will show 

there is a sixteen-fold increase of induced current as the length is 
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increased from to resonance, and this means an increase of sensitivity 
of enormous practical value. 

A thermocouple must be used when absolute measurements are 
required, but when only relative values are needed it may be convenient 
to replace the couple by a diode. Then one method, which has been 
used by the writer, is to replace the thermocouple by a carbon rod 
resister (JW type) having a resistance of about 60 £2. The P.D. 
developed across this resister is applied to a small diode tube (such as 
B.T.H. Dl) having a suitable load resistance and smoothing condenser. 
It is of course necessary to make a relative calibration (at low fre¬ 
quency) of the scale of the indicating instrument-diode combination. 
By appropriate choice of the load resistance the response can be made 
substantially linear, and usually this is more convenient than the 
square law of the couple. For a given galvanometer, the response 
from a Dl diode, used in the vay described, is about the same as the 
response from a thermojunction having a heater of resistance about 
50 £2. Alternatively, the diode may be replaced by a capsule-type 
crystal rectifier (such as were developed about 1942). But here a word 
of warning is required: such crystals may give a response which increases 
more rapidly than and it can be troublesome to obtain a substantially 
linear response from them for voltages which are less than about 0-5 V. 
The certainty that the response of a couple will vary as the square of 
the heater current is a great insurance against misleading blunders in 
aerial measurements. If the reader uses some form of rectifier, then he 
must always be on the w^atch to make certain that he knows the manner 
in which the galvanometer deflexion varies with the current induced in 
the aerial, and never forget that very unexpected results may possibly 
be due more to an unrecognized behaviour of the rectifier than to an 
unexpected behaviour of the aerial system that is being tested. 

A readily portable short monitor, complete with self-contained 
thermal ammeter, is an instrument commonly associated wdth aerial 
testing: usually it is meant to be held in the hand and presented to one 
aerial after another. Such a tool makes a valid instrument for ascer¬ 
taining that successive members of an array are alive, but it can very 
easily give a very false impression of the current in successive members. 
For this purpose it is important to replace the aerial by a small loop: 
the reasons why this is necessary will be explained in a later chapter. 
Though the writer has long appreciated the necessity of using a loop 
rather than an aerial, in certain circumstances, he has not had practical 
experience of doing so and accordingly cannot give advice, based on 
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experience, about their appropriate construction. When absolute 

values of field strength are required he feels sure that an aerial must 

be used and not a loop. This is because it will be virtually impossible 

to remove what the common parlance of direction-finding has long 

termed the ‘aerial-effect’ of a loop. 

9.3. Monitor aerial used to explore the equatorial field of a 
half-wave aerial 

This seems to be the most appropriate place in the book to record the 

investigation of the field in the vicinity of a half-wave aerial: it serves 

both as an example of the use of a monitor aerial and also as the 

experimental counterpart of some of the analysis contained in Chapter 

VIII. We wish to observe the field in the equatorial plane of a half-wave 

aerial: since the field is a function of the angle of elevation, the monitor 

aerial ought to be short in order that the variation along it of the 

vertical component of field shall be small. Such variation, however, 

can be significant only when the monitor is very close to the half-wave 

aerial. Consideration of Figs. 8.3 and 8.4 will show that the vertical 

component of field must be substantially constant over a distance ± |A 

from the equatorial plane so long as the radial distance in the equatorial 

plane exceeds, say, |A. Accordingly it should be permissible to use a 

monitor whose total length is verging on JA, the limit for which its 

impedance can be estimated with reasonable accuracy. 

The electric field in the equatorial plane of a doublet is well known 

and is given by equation (9.7) below 

c\E\ _ 1 

2a2Xo ar 

where a ^ 27r/A and is the area under the current distribution 

curve. When rj\ = 0-15 the value of the radical is unity, and when 

rj\ == 0‘25 and 0-5 its value is 0-89 and 0-95 respectively. Hence if r/A 

exceeds J we may consider, without sensible error, that the field varies 

inversely as the distance from the mid-point of the doublet. Close 

consideration of Figs. 8.2 and 8.5 will show that the field in the equatorial 

plane of a half-wave aerial is scarcely distinguishable from the field of 

a doublet, having the same value of X^, provided r/A exceeds about J. 

Within the range of r/A = J the field must depend appreciably on the 

precise degree of approach to resonance. 

In the experiments to be described now a monitor aerial JA long was 

used to measure the field of an isolated half-wave aerial operating at 

a wavelength of 125 cm. The momtor was parallel to the half-wave 
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aerial and the equatorial plane of the monitor coincided with the 

equatorial plane of the half-wave aerial. The current induced in the 

monitor was observed as the distance between the axis of the monitor 

and the half-wave aerial was increased from 10 to 210 cm. (i.e. from 

0-08A to 1'72A). If the transmitting aerial was a doublet, then (9.7) 

shows that Exar tends to be constant when r/A exceeds about 

Eia. 9.6. Exploration of field in equatorial plane of a half-wave aerial. 

accordingly the product of the current induced in the monitor and the 

distance of the monitor from the half-wave aerial should tend to become 

constant; experiment showed it did become constant when r/A exceeded 

|. Clearly the best way of analysing these results is to present the 

prodilct / X r as a function of r. The relation between r and the product 

Exr for a half-wave aerial can be deduced by vector addition of 

Figs. 8.2 and 8.5, always remembering that the values of Eq in Fig. 8.5 

are somewhat uncertain, for a half-wave aerial, when r/A is less than, 

say, 0-2: however, Ep is then large and constant and Eq should be 

relatively small, and hence E should be dominated by Ep, which is 

known with considerable certainty. The upper curve in Fig. 9.5 shows 

Exar deduced in this manner: the lower curve (having observation 

points marked) in the same figure shows the observed values of /x or 

and plotted to a scale such that the observed limiting value of this 

product (viz. laiAX^em. = 9®®) taken as 1-5. The two curves are in 
reasonably close agreement, the only notable discrepancy being near 

ar/A = i, the region where Ep is negligible. This test was repeated at 

a frequency of 230 and 248 Mc/s but no significant changes were 



360 GENERAL EXPERIMENTAL [Chap. IX 

observable. The substantial agreement between the two curves in 

Pig. 9.5 suggests that a monitor of length JA will give a valid measure 

of |JS/| even when it is as close as ^A to the half-wave aerial. Since the 
relation between Ep and ar is known with considerable certainty for a 

half-wave aerial (see Fig. 8.2), it should be possible to deduce the 

relation between Eq and ar from the observed relation between E and ar. 

Fig. 9.6, Analysis of the two components of field in equatorial phase of a half¬ 
wave aerial. 

Thus curve (1) in Fig. 9.6 is the observed relation between distance and 

the current induced in a monitor aerial of length JA which was excited 

by a half-wave aerial operating at A = 125 cm. At or = 2 the current 

induced in the monitor was 3’0 mA, and at this distance (9.7) gives 

cE __ 2^. 

2o®X(, 4v 

at or = 0 we have, see Fig. 8.2, 

cEp 
2a^Xo 

X 0-96. 

Accordingly at or = 0 the current induced in the monitor aerial due to 

Ep alone should be f x 0-96 x 4it x 3 = 24 mA, since the current induced 

by \E\ was found to be 3-0 mA at or = 2. According to this method 

of computation, curve (2) m Fig. 9.6 represents the monitor current 
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which would be induced iiEp alone were acting: in other words, curve (2) 

represents Ep to the same scale that curve (1) represents \E\. Curve (3) 

in Fig. 9.6 represents Eq to the same scale and it is derived from Fig. 8.6. 

For correct agreement the maxima of the loops of curves (2) and (3) 

should be on curve (1), but in fact they lie beneath it. In the range of 

the graph the observed currents cover a range of 10 to 1 and this means 

a range of 100 to 1 in galvanometer deflexion. Even though a good 

range multiplier was used, it is improbable that the monitor currents 

were precisely in the ratio 10 to 1 when r was increased from 9 to 250 cm. 

Since it is certain that Eq must pass through zero at a distance near 

90 cm. (ar = 4'5), it would have been better (though less illustrative 

of the principle of the analysis) to have taken /• = 90 cm. as the fiducial 

point rather than r = 250 cm. If r = 90 cm. is taken as the fiducial 

point, then the ordinate scale of curves (2) and (3) must be increased 

in the ratio 9*5/7*5 = 1'2/. If tliis is done it will be found that the 

crests A, B, and C lie on curve (1) and that at r = 20 cm. ip should 

be 23 mA, when in fact the measured value of |f| was 22 mA. But 

such change of scale would make ip == 16 mA when r = 50 cm., 

whereas the observed value of |i| was only 13-5 mA. Close considera¬ 

tion of these results will show that the greatest value estimated for Eq, 

for a half-wave aerial, in Fig. 8.5 must be about 18 per cent, too large 

and that Eq must pass through zero near r/A = J. The measurements 

were repeated at A = 130 cm. and showed that Eq very near the 

aerial (i.e. closer than 12 cm.) was relatively much larger than when 

A == 125 cm., thus showing that 125 cm. was closer than 130 cm. to the 

natural wavelength of this particular aerial. 

Since the distribution of Ep is known with very considerable certainty, 

it must be possible to use this method effectively for exploring the 

distribution of Eq near a half-wave aerial, since the point at which Ep 

attains its first maximum must be a reliable fiducial point for deter¬ 

mining the curve corresponding to curve (2) in Fig. 9.6. A systematic 

exploration of the dependence on frequency of the distribution of Eq 

would reveal valuable information about the performance of a linear 

aerial near its first resonant frequency. 
These experiments can be used to give a very rough check of the 

absolute calibration of a monitor aerial. Thus in one measurement the 

current in the monitor aerial (JA long and 3-1 mm. diameter) was found 

to be 7-4 mA when the monitor was distant JA from the aerial. Reference 

to the appropriate curve in Fig. 9.3 suggests that the inductance effect 

increases the current by about 6 per cent, when i/A = accordingly 



362 EXPERIMENTAL METHODS AND EQUIPMENT [Chap. IX 

we will reckon the induced current as 7 mA instead of its recorded 

value of 7-4 mA. Taking the impedance of the monitor aerial as 1300 £2 

(see Table 9.2, ajb = 100), we have (|JE?|x31)/1300 = 7/1000, whence. 

\E\ = 29 V/m. We have, from (9.7) E = (1207rXo/Ar) V/m., where Xq 

is in metre amperes, X and r are in metres. Hence, taking |JS?| = 29 V/m. 

we find that in this experiment Xq = 0-06 metre amperes. The output 

of an isolated aerial is given by the equation P = (480^^AjA!|)/A2 watts, 

where is a factor depending on the length of the aerial and the distribu¬ 

tion of current along it. For a doublet k = 0*666, for a half-wave aerial 

with sinusoidal distribution k = 0*6095, and for a half-wave aerial with 

triangular distribution of current k = 0*616. Hence we may take 

i; = 0*61 with great confidence; whence P == 2900(Xo/A)2 — 6*6 W, 

when Xq = 0*06 and A == 1*25. It was known from the input to the 

valve generator that the output was 5 W if the efficiency was 25 per 

cent, or 10 W if the efficiency was 50 per cent. Hence the power output 

deduced from the monitor aerial has a value which is known, for quite 

other reasons, to be substantially correct. We can approach the matter 

in a way which is slightly different. If the distribution of Xq is sinusoidal 

and if the length of the aerial is |A, then the relation between the 

equatorial field at r/X = ^ and the current at the raid-point of the 

aerial is |P| = 1201 j/X. For the monitor aerial (of length JA) we have 

jP|JA = 1300/^^, whence I„JIa == 3/130. Since ~ 7 mA, this gives 

= 0*3 A, whence P = 73x(0*3)2 = 6*6 W. It should be realized 

that the two methods need not have agreed precisely, because gives 

a value of Xq and a given value of Xq need not necessarily be associated 

with a radiation resistance of 73 O. 

Having regard to the known input to the valve generator it is 

probably correct to say that the field incident on the monitor was 

29 V/m. within ±10 per cent., and hence that these limits probably 

contain the uncertainty with respect to the precise value of the impe¬ 

dance of this monitor and the frequency error of the thermocouple used 

with it. 
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TESTS OF VEE REFLECTORS 

10.1, Preliminary 

We presume the reader is equipped with a turn-table, a generator, and 
a receiver and has made sufficient preliminary experiments to give him 

the feel of the work. We set out to discuss the performance of Vee 

reflectors excited by a single half-wave aerial, and our purpose is to 
discover how nearly the polar diagram resulting from sheets of given 

size approximates to the ideal limit for infinite planes. In the tests 
about to be described the sheets were made of fine-meshed copper gauze 

mounted on a wooden framework: in a later chapter we describe the 
effect of replacing the gauze by wire netting or expanded metal sheet. 

At present we are concerned only with the effect of the finite size of 
perfectly reflecting sheets; we shall not confuse the issue by discussing 

here the effect of using finite sheets of imperfectly reflecting material. 

The performances which can readily be compared with the ideal are 
the forward field and the ecjuatorial pattern: patterns in other planes 

are very difficult and troublesome to obtain. The reader is to imagine 

a Vee reflector set up on the turn-table and used as a transmitter: the 
single half-wave aerial, fed by concentric cable, must be movable along 

a wooden lath bisecting the Vee. It is wise to make the supporting 

laths very light and to supplement their inherent lack of rigidity by 

strings attached to the corners of the screen. 

10.2. Forward field tests 
The ideal curves of forward field are depicted in Figs. 3.5-3.13, and 

we wish to discover by experiment how nearly these are simulated 

when the screens have specified dimensions. We remind the reader that 

Figs. 3.5-3.13 relate to a constant current in the aerial and that the 

radiation resistance of the aerial depends enormously on its distance 

from the apex. It is very well known that the output of a valve 

generator, fed by a given voltage on the anodes, depends greatly on the 

resistance with which it is loaded and that the maximum output can 

be obtained in a given load only by coupling it through the equivalent 

of a transformer whose ratio can be adjusted to the optimum condition. 

In our experiments the aerial is to be moved continuously along the 

bisector of the Vee and in this process its radiation resistance will vary 

widely, and so it is inevitable the power input to the aerial will vary 

widely and in a somewhat haphazard manner. It is not practicable to 
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readjust the generator to maximum output at each setting of the aerial: 

the labour of doing so would be prohibitive and unendurable, and at 

best the means of doing so scarcely exist since the small generators we 

have in mind are extremely inflexible tools. And lastly, the means of 

measuring the input power to the aerial are still inadequate, under¬ 

developed, and cumbersome. The only practicable course is to leave 

the generator alone when the aerial is moved. Consequently it is unlikely 

the power input is constant, since the radiation resistance is certainly 

varying over a wide range. Probably the changes of current could be 

measured by a loop monitor aerial, such as is outlined in the last chapter: 

the writer has never done so and the procedure would scarcely justify 

the labour. However, all this is merely to point out that the experi¬ 

mental curves of forward field cannot be expected to agree exactly with 

the ideal curves depicted in Figs. 3.5-3.13 because this series relates to 

a constant current in the aerial and it is most unlikely this condition 

will obtain in the experiments. Ideally there should be stations at which 

the forward field is zero, no matter how large the current in the aerial, 

and reference to figures such as 3.18-3.21 will show the resistance then 

is finite. Hence at these stations the current fed into the aerial by the 

generator should be finite, and ideally the forward field should then be 

zero: accordingly it would seem the stations for zero forv^ard field 

should in practice be more reliable points for comparison than the 

stations for maximum forward field, since these last may well be 

vitiated, not by the finite size of reflector, but by the completely 

independent factor that the current in the aerial may happen to be 

larger when it is near a station of maximum forward field than when 

it is precisely at such a station. 

Before tabulating experimental results it is well to consider the 

general effect of finite size. If the aerial is very far in front of the 

aperture of the Vee, it is obvious the Vee cannot have much effect on 

the forward field: if any effect is detectable the fluctuations must be 

small and the field cannot possibly fall to zero. Hence an effect of 

finite size must be to convert zeros into minima when the aerial is far 

in front of the aperture: unless the plane of the aperture is well in 

front of the first station for zero forward field we must expect to 

discover a minimum and not a zero. 

The writer has made a very comprehensive set of forward field tests 

using Vee reflectors whose angles were 360°, 270°, 180°, 120°, 90°, 72°, 

60°, and 45°: he has used screens of various sizes and employed both 

125 and 50 cm. wavelengths. Experience has shown him that so long 
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as the size of the sheets is what may be called sensible and reasonable, 

then the maxima and minima of forward field occur very near the ideal 

stations. Integrated experience shows the discrepancies are very small 

and therefore the forward field test is an unsuitable one for disclosing 

the discrepancy between any given reflector and the ideal. This 

discovery is of great practical importance and value, and the reader 

should now register in his mind that he may use the calculated values 

with great confidence. He should, however, demand to see for himself 

the evidence supporting this sweeping statement. The writer has 

fourteen tables before him which all support the statement so strongly 

that it is obviously redundant to reproduce them all and he must 

attempt to select the most instructive samples. The first relates to a 

test at A == 50 cm. of a flat reflecting sheet 3-6A wide and 1-5A high 

(i.e. 0 ft.x2| ft.): in this simple case the first maximum should occur 

when the aerial is distant (i.e. 12*5 cm. = 4*9 in.) from the sheet and 

the second w hen it is | A. The results of the test are recorded in Table 10.1. 

Table 10.1 

Flat sheet 3‘6A wide and 1-5A high, at A = 50 cm. 

The scope of this test includes two stations for zero forward field; at 

each of these the field appeared to pass through zero and not merely 

fall to a minimum. It may be seen that at both stations for zero field 

the discrepancy of position is insignificant. Hence we find experimen¬ 

tally that a sheet of half-width l-SA suffices to produce zero forward 

field for an aerial distant A from the plane: it is encouraging to find that 

a sheet so modest in size wull do this. The discrepancy for the two 

maxima is appreciable but, from what has been said previously, there 

is no particular necessity to ascribe this to the finite size of the sheet. 

Table 10.2 relates to a test, also at A = 60 cm., using a 120® Vee each 

of whose sheets was 3*6A wide and 1*6A high. It follows from these 

dimensions that the aerial was in front of the aperture plane when its 

distance from the apex exceeded 1-8A (i.e. 36 in.). 

Table 10.2 

Mirror angle 120®, sheets 3*6Ax 1*6A, A = 60 cm. 
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The ideal distances are derived from Fig. 3.7: further points are very 

laborious to evaluate, but the complete wavelength of the oscillation 

appears to be 0-7A and this corresponds here to an interval of 7 in. 

between succeeding maxima and minima. The table shows this interval 

is in fact very close to 7 in., and thus it appears that the discrepancies 

are negligible even when the aerial is distant some 3A from the apex, 

and then is far in front of the plane of the aperture. It is clear that 

sheets of very modest dimensions have sufficed to reproduce closely the 

ideal forward field characteristic. 

The next test, also at A = 60 cm., was made on a right-angled corner 

reflector and is recorded in Table 10.3. 

Table 10.3 

Mirror Angle 90°, sheets 3-6Ax 1*5A, at A = 50 cm. 

MeaHurecl distance, in.. 20-5 30 42 49-5 
Ideal distance 9-8 19-6 29-5 39-4 49 
Discrepancy, in. . +0-9 H-0-5 + 2-6 + 0-5 

Here the first maxima could not be examined because the ‘impedance 

thimble’ on the'aerial cable fouled the apex. There is only one serious 

discrepancy: it is the second station for zero field, the complete curve 

(which had an observation point at every inch of distance) had a kink 

on it in this neighbourhood. When the test was repeated using sheets 

9J ft. wide (vice 6 ft.) the kink was still apparent though smaller in size, 

and thus its existence was presumed to be a function of the size of the 

sheet. Moreover, the field did not fall to zero at 20*5 and 42 in. as it 

should do, but passed through a minimum, which was some 20 per cent, 

of the maximum. Evidently the effect of finite area was being encoun¬ 

tered, but it should be noted that the main effect is to convert a zero 

into a minimum without much change of position. 

A forward field test (A = 60 cm.) from a reflector whose sheets were 

6A wide and 1-5A high inclined at 72° (i.e. N = 6/2) showed negligible 

discrepancies in the first six stations: at the seventh and eighth stations 

the measured distance was 2 in. more than the ideal. Reference to 

Fig. 3.13 will show the eighth station occurs at RjX = 3'66 and accord¬ 

ingly .R = 70 in. in this test, and at this station the discrepancy was 

2 in., which is 0*lA. The subsidiary humps near RjX = 1'6 and 2*8 in 

Fig. 3.13 appeared in the experimental curve: in short, the forward field 

test for sheets 6A wide inclined at 72° differed insensibly from the ideal 

for values of RjX up to 3’6. 
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A forward field test (A = 60 cm.) from sheets 3*6A wide inclined at 60° 

showed a negligible discrepancy in the position of the first four stations: 

the third maximum and fourth zero (see Fig. 3.11) each occurred 2 in. 

farther out than the ideal; the fourth maximum was correct, but the 

fifth minimum occurred 8 in. (i.e. 0*4A) short of the ideal position. This 

test was then repeated with sheets 6A wide: such increase of width 

moved only the station for the fifth minimum, which then was short 

by only 4 in.: it did, however, increase the magnitude of the third and 

fourth maxima, relative to the first and second, without changing their 
positions. 

A forward field test (A = 60 cm.) from sheets 3-6A wide inclined at 

46° showed the discrepancies for the first eight stations (see Pig. 3.12) 

were within about ±1 in. and no appreciable change resulted from 

increasing the wddth of the sheet to 6A. 

These results are troublesome to digest and we suggest the following 

rough summary: Sheets 3'6A wide and 1-5A high inclined at any angle 

between 46° and 180° will reproduce the first six or seven stations of 

maxima or minima with a discrepancy less than ^A; wider sheets 

increase the relative magnitude of‘far out’ maxima. 

In Tables 10.4 to 10.6 we record some forward field tests with screens 

2A wide and 1*6A high (vice 3*6Ax 1*6A previously) which were made at 

A = 126 cm. (vice 60 cm. previously). 

Table 10.4 

Mirror angle 90°, sheets 2Ax 1-5A (A = 125 cm.) 

Measured distance, cm. 65 120 130 140 189 230 
Ideal distance . 62-5 125 ., ,, 187*5 250 
Discrepancy, cm. 4-2*6 — 5 •• •• + 1-5 -20 

In this test a subsidiary maximum (about 33 per cent, in field strength) 

occurred at JB == 130 cm. (its existence may have been due partly to 

change of output of the valve generator). The second legitimate station 

for zero field should occur when R = 260 cm. and then the aerial would 

be 0-6A in front of the plane of the aperture: this station was represented 

by a minimniri (about 30 per cent, in field strength) and occurred 20 cm. 

(0*16A) short of the ideal distance. A similar test with sheets fAxIA 

showed the first maximum occurred at 40 and the first minimum at 

108 cm., the subsidiary maximum was still present and occurred at 

120 cm., the second legitimate maximum occurred at 180 cm. Evidently 

reducing the width of sheet from 2A to |A has had a noticeable effect. 
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Table 10.5 

Mirror angle 60°, sheets 2Ax 1-5A (A = 126 cm.) 

Measured distance, cm. 70 130 150 160 170 210 
Ideal distance . 81*5 125 .. 163 ,, 250 
Discrepancy, cm. -11-5 + 5 -3 •• -40 

Here the second hump of the forward field curve had a small dimple 

on its crest and this occurred at i? == 160 cm., which is where the single 

maximum should occur in the ideal (the dimple may have been due to 

the valve generator). When the test was made with sheets |A wide the 

first minimum occurred at 125 cm. and the first maximum at 150 cm.; 

the dimple was not present. 

Table 10.6 

Mirror angle 45°, sheets 2Ax 1-5A (A = 125 cm.) 

Measured distance, cm. . 80 1 150 1 193 j 230 
Ideal distance 100 150 188 1 210 
Discrepancy, cm. . -20 0 + 5 i + 20 

When the width of the sheet was |A these discrepancies became 

0, —6, —18, and 0 cm. respectively. 

We learn from these tests, at A = 125 cm., that sheets only |A wide 

suffice to produce a fair approximation to the forward field test. Were 

it not for the analytical probing in previous chapters it would surely 

have been amazing to find that sheets a mere wavelength or so wide 

could suffice to produce a recognizable approach to the ideal: our prac¬ 

tical experience is extremely encouraging in showing that analysis of 

idealized problems is of great help in practical design. We now suggest 

the following rough summary: provided the reflecting sheets are about 

2A wide, then the stations for maximum and minimum forward field 

will occur within about ±25^ of the ideal distances, at any rate so long 

as the aerial is not much in front of the aperture plane. When the 

reader has gained experience for himself he will have complete confi¬ 

dence that the forward field test will always agree very closely with 

the ideal: he will not seek to relate closely the small discrepancies with 

the size of the sheets but will be content to check the positions of the 

stations experimentally in each individual case when the aerial and 

reflector have been made according to the design he has based closely on 

ideal values. 

Note. For some further information about forward field tests see Journal 
Part 111 (1845), ^Theory and performance of corner reflectors for aerials', § 6. 
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10.3. The equatorial pattern 
(a) General survey 

If the reflecting sheets extended to infinity, then the field would 
remain zero on all bearings greater than condition cannot 

obtain when the sheets have a finite area, for inevitably there will be 

some diffraction round their edges. In our experimental study we 

require to observe the magnitude of the said diffraction and also the 

magnitude and bearing of the various side lobes. It is the writer’s 

experience, and probably the experience of everyone, that the observed 

diffraction pattern is never perfectly symmetrical: this phenomenon 

may cause undue worry to the inexperienced. When the experimenter 

first meets this effect he may well be inclined to attribute it to small 

imperfections in the mechanical construction of the reflector, such as 

the aerial being slightly to one side of the bisector or the gauze sheets 

not truly flat. Reference to § 3.10 will remind the reader that a very 

small displacement of the aerial from the bisector has a very small 

effect on turning the main beam but does produce considerable dis¬ 

symmetry of the side lobes and thus seems to offer a rational explana¬ 

tion of the effect. However, we must remind him further that when 

^ =r= 60°, 36°, and 25*6°, etc., the mean square pattern is bound to be 

symmetrical, and hence there are certain particular cases where a slight 

and accidental offset of the aerial cannot be invoked to explain dis¬ 

symmetries in the experimental pattern. The writer has not found that 

60° mirrors give perfectly symmetrical patterns: he is convinced that 

the observed dissymmetries of the lobes is not due primarily to a very 

small/offset’ of the aerial. The figure of the good optical mirrors is 

said to be correct to within Hence if the sheets are flat within 

about ±1 iR- for A = 50 cm., then they rival the best optical practice; 

thus it does not seem likely that a slight waviness in the gauze sheets 

is important. Experience shows it is not important, for a large bulge 

(2 or 3 in. deep) does not produce a detectable effect on the side lobes. 

The writer is convinced the observed dissymmetries are not produced by 

imperfections in the mirror itself. He thinks they must be due to 

reflections and interference by objects, such as trees, hedges, etc., on 

the site itself. It must be possible to settle this question by comparing 

the patterns observed when the receiver is placed successively at 

various points on an arc of given radius. If the side lobes depend 

slightly on the location of the receiver in the testing site, then the 

discrepancies must be due to neighbouring objects. The writer has not 

had an opportunity to make this experiment, but it ought to be 
47M.I B b 
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carried out thoroughly and systematically and the result of the tests 

published. 

When such dissymmetries are observed in tests of a multi-element 

curtain or in-line array it is common to blame the feeding cables and 

to set about the laborious process of shortening this one or lengthening 

that one a trifle: those who have had the misfortune to do this operation 

know how troublesome it is to do and how unconvincing are the results. 

Fig. 10.1. Ideal diffraction pattern for aerial distant A from piano of infinite flat sheet 
and observed pattern for an aerial distant A from a sheet 3-6A in width, / — 600 

Mc/s, width of sheet 6 ft. 

If it is a fact, as the writer suspects, that the fault may be due to the 

site and not to the cables, then more harm than good is being done by 

the process. The reader will readily understand that when observing 

a lobe on a bearing of, say, +60° the main beam may be illuminating 

strongly some neighbouring object and reflections from it may fall on 

the receiver: when the transmitter is turned to bearing —60° the main 

beam illuminates a different locality and hence any re-radiation effects 

will not be the same as they were on bearing +60°. At present we must 

accept this small disability which accompanies experimental work, and 

expect to find it. 

Before working systematically through the family of Vee reflectors 

we will choose a pair of experimental patterns which contain a wealth 

of detail and oflfer them to the reader as evidence to show that sheets 

only a few wavelengths wide do suffice to reproduce a striking similarity 

to the ideal limit. Thus Fig. 10.1 shows the ideal pattern for an aerial 

distant A from an infinite flat sheet and the observed pattern resulting 

from an aerial distant A from the plane of a sheet 3‘6A wide: the test 
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was made at A = 50 cm. First note that the experimental pattern is 

not symmetrical, the right-hand lobes being higher than the left-hand 

lobes: this is a typical example of the effect we believe is due to the 

site and not to the reflector per se. Both the first maxima and both the 

first minima occur at bearings which are 4° less than the ideal: note 

Fia. 10.2. Ideal pattern for 72° corner reflector, k = 14. Observed pattern for 75° 
corner reflector with sheets 9J ft. wide; / — 600 Mc/s and i? ™ 44 in. 

these two minima do not fall quite to zero, nor does the forward field. 

In the ideal pattern the field must be zero behind the sheet, but we note 

the observed pattern shows the field is not zero on bearings greater than 

±90°: this is the diffraction round the edge of the sheet, of which we 

have spoken and which we have calculated analytically for a half-plane. 

We note the two outside maxima are much too small and occur on a 

bearing which is about 10° too large: it is somewhat as though these 

lobes had slid over the edge, a metaphor which will often be used. 

Though this particular pattern is not likely to be of practical use, it is 

surely very interesting and encouraging in demonstrating that a sheet 

less than 4A wide can produce so much of the detail of the ideal pattern. 

The flat sheet reflector Tvill be explored fully in the next chapter. 

Fig. 10.2 shows the ideal pattern for a 72° Vee when .B/A = 2-2, 

which reference to Fig. 3.10 will show is a station for maximum forward 

field. It also shows the observed pattern obtained from sheets 6A wide 

inclined at 75°. We note once again that the two big lobes have ‘slid 
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over the edge’ but their maxima occur on a bearing not much greater 

than the ideal: again the observed pattern is not truly symmetrical. 

Note that the ideal pattern is tending to form a subsidiary maximum 

at 16° and that this appears in the observed pattern as a pimple at 16°. 

The observed main beam is indistinguishable from the ideal and is 

13° wide at half height (in field strength). Again we find that com¬ 

paratively small sheets have produced a pattern which ‘attempts to 

Fig. 10.3." Ideal and observed patterns. /3 — 90^, /?/A = 0-53, 
k = 3-3. Sheets fA wide and fA high. 

copy’ the ideal very closely and may be said to fail in the attempt only 

because the outside lobes are bound to ‘slide over the edge’. It is 

particularly important to note that the main beam is reproduced faith¬ 

fully, and if that is our main purpose and desire, then the performance 

can be predicted from the ideal calculation alone; we shall see this is 

true in general. Moreover, we find the side lobes are smaller than the 

ideal and since side lobes are objectionable we realize that finite sheets 

produce a pattern which can have features more desirable than has the 

ideal; the discrepancies between the actual and the ideal tend to 

mitigate those features of the ideal pattern which would be undesirable 

in practical applications. We trust these two figures have sufficed to 

persuade the reader that the performance of Yee reflectors can be 

predicted very closely from the calculations appropriate to infinite 

sheets: the practising engineer is called on to do little more than make 

an intelligent estimate for the dififraotion round the edge. 

(6) Pattern at tile first station 

The family of curves in Figs. 3.22-3.27 has shown that for each angle 

of the Yee there are a succession of stations at which the forward gain 



10.3] TESTS OF VEE REFLECTORS 373 

is a maximum, and accordingly it is the pattern appropriate to these 

stations which is of outstanding practical interest: we shall limit our 

experiments to them. Reference to § 3.8 will remind the reader that 

the ideal pattern must be indistinguishable from a simple sinusoid 

provided the length of arc across the Vee at the aerial is less than about 

|A: at this limit the aerial is always farther from the apex than the 

first station for maximum gain. Accordingly, at the first station for 

maximum gain the ideal pattern must be a simple sinusoid and it will 

suffice to record these experiments in tabular form: however, to make 

this method quite clear we include Fig. 10.3, which compares graphically 

a certain observed pattern with the ideal sine curve. We will now record 

the patterns produced by sheets of various sizes when the aerial is at 

the first station for maximum gain: the wavelength in these experiments 

was 125 cm. 

Table 10.7 

Mirror angle 90®, i?/A — 0-52 

1 Width for 
\-power 

Width for 
\~power 

Fractional power 
at 45" 

Ideal ' 45“^ 60'^ 0 
Screens 2 A X |A. 33" 48" 3% 
Screens |A X f A. 38" [ 65" 3% 
Screens f A x f A. 38' 66" 6% 

This table shows the beam is considerably narrower than the ideal, 

an experience which is often encountered. If the width of sheet was 

progressively increased indefinitely, the width of beam at half-power 

would increase asymptotically to 45®; accordingly there must be a 

minimum width of beam and the table shows this minimum occurs 

when the width of sheet is near 2A. It is of great interest to note that 

when the width of sheet is decreased from 2A to |A then the diffraction 

round the edge, at 0 = 45®, increases only from 3 to 5 per cent.: in this 

respect the extra width is scarcely justified. This is in accordance with 

the analytical prediction arrived at in § 5.2, where it was found that the 

field in the plane of the half-sheet fell rapidly to a small value and 

thereafter could be decreased appreciably only by an extravagant 

increase in the width of sheet. Table 10.7 shows that for a 90® mirror 

it is unnecessary to use sheets wider than 2A and scarcely worth while 

to ipake them wider than JA: this is a very satisfactory and surely 

somewhat amazing discovery of great use for settling the dimensions 

for a practical design. 
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Table 10.8 

Mirror angle 60°, Rj\ = 0*52 

Width for 
\-power 

Width for 
\-power 

% power 
at :io 

% power 
at 45" 

Ideal 40" 0 0 
Screens 2A x f A . 36^^ 49° U 1 
Screens {A X | A . 55° 78° 42 14 

This table shows that sheets 2A wide do not suffice to produce a beam 

as narrow as the ideal. In fact comparison with Table 10.7 shows that 

closing the angle from 90° to 60° has widened the beam slightly: if the 

sheets are |A wide, this widening effect is very marked. 

Table 10.9 

Mirror angle 45°, RjX = 0-6 

Width for 
^•poiver i 

Width for 
\-power 

power 
at 22'5° 

% power 
at 45° 

Ideal 22-5° 30° 0 0 
Screens 2A x f A . 44° 32 3 
Screens f A X f A . 68° 80 36 

This table shows that sheets 2A wide do not produce a beam as 

narrow as-the ideal for 45° mirrors. In fact decreasing the mirror angle 

from 90° to 45° has produced a progressive increase in the width of the 

beam and without appreciable change in the fractional power on bearing 

45°. Hence if sheets 2A wide can be tolerated in a given application, 

then it is best to incline them at 90°. On the other hand, if a beam width 

of about 44°, at half-height, suffices for a particular application, then 

it can be obtained by an aperture of |A by using sheets 2A wide inclined 

at 45° or by an aperture 2d A wide by using sheets |A wide inclined at 90°. 

The first alternative will usually be preferable because the first mirror 

will be more compact than the second: even though the beam is much 

wider than the ideal for a 45° mirror, it is the same as the ideal width 

for a 90° mirror and the reflector is less bulky than if its angle had 

been 90°. 

Fig. 10.4 shows the ideal pattern for a 45° mirror with RjX = 0*8 

and also the pattern which was produced by sheets 6A wide. The 

observed pattern is much narrower than the ideal (19° as compared 

with 31° at half-height in field strength) and the side lobes are only 

of the order of 3 per cent, in power. It is an attractive pattern for 

practical use and this example is of considerable value. When the 
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width of the sheet was reduced from 6A to 3'6A the main beam was 

very slightly wider than the ideal and was accompanied by side lobes 

about 12 per cent, in power. Comparing these results with Table 10.9 

shows that sheets 2A wide are much too narrow, sheets 3'6A wide just 

reproduce the ideal beam, sheets 6A wide produce a beam whose width 

Fio. 10.4. 45° comer reflector. Sheets 9f ft. wide, / = 600 Mc/s 
i? = 16 in. = 0-81A. 

is two-thirds of the ideal: a gross increase in the width of sheet must 

therefore increase the width of beam appreciably while reducing the 

‘diffraction round the edge’ by a very small amount. Thus there is an 

optimum width which is about 6A for jS = 45°. 

These three tables provide the engineer with all the information 

required for designing a Vee mirror to be operated at the first station 

for maximum gain. 

(c) Pattern at the second station 

The second station for nmximum gain occurs when RjX is of the 

order of the exact value depends on p and can be found by reference 

to Figs. 3.22-3.27. We will now include jS == 120° because such a Vee 

provides a useful introduction to the parabola and is a first approxima¬ 

tion to it. It is instructive to give a general consideration to the shape 
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of the ideal pattern. If the reflector is a flat sheet, then the polar 

diagram is a set of equal rays, two more being added for each additional 

of distance between aerial and sheet. Imagine now the flat reflector 

is hinged in the middle and that we study the change of pattern while 

j8 is being decreased from 180°: when ^ = 120° the hinged sheets are 

still very open anil the polar diagram must be reminiscent of that for a 

flat sheet. We shall expect to find that closing the angle of the Vee 

from 180° to 120° has the effect of crowding the substantially equal 

rays of a polar diagram into a smaller total arc of bearing: this is a very 

powerful method for predicting roughly the diagram of mirrors of large 

angle. All patterns can of course be evaluated by means of the Fourier 

series with Bessel coefiicients, but the process is rather cumbersome 

when n lies between 1 and 2. When BjX — 0-79 (k = 5) and = 120° 

the ideal polar diagram is found to consist of three nearly equal petals: 

the forward field is given by EjE^ — 2-34, while the maximum of a petal 

is E/Eq = 2*1, centred on bearing ±40°: the R.M.S. field falls to a 

minimum value E/Eq = 0’75 at 0 = ±20°. Had the sheet been flat and 

jB/A = f, then the polar diagram would have consisted of three petals 

of equal length centred at 0 = 0 and ±70° with zero field at 0 == ±48°. 

If this diagram is compressed into an arc of 120° it corresponds very 

dosely with the true pattern for j8 = 120°. It is very helpful to imagine 

a rubber bag under air pressure having the same shape as the polar 

figure; then to imagine the effect of squeezing this bag between two 

boards meeting in a V: the diagram in Fig. 10.5 may help the rettder 

to understand the imaginary apparatus we have in mind. 

This very figurative description, by means of a model, often helps 
to give simple approximate answers to the questions which assistants 
are apt to raise during the discomforts of field work. But there 
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is another! approach, more suited to the office, which allows us to 

predict the general form of a polar diagram without the labour of 

evaluation. When the forward field falls to zero the output does not 

also fall to zero and this means that the main beam has shrunk to zero 

and that two side lobes have appeared. At the second station for zero 

forward field there will be four side lobes, etc. Speaking generally, the 

angular width of the main beam and side lobes is roughly equal. As 

the angle of the Vee decreases, the distance of the aerial from the apex 

at the first station of zero forward field increases (the circumferential 

width across the Vee being then somewhat greater than JA). It now 

follows that as the angle of the Vee is decreased the ideal pattern must 

remain substantially constant, Avhen plotted to a scale which maintains 

its total angular width constant and equal to j8, provided RjX is increased 

by an amount appropriate to the decrease of j8: and in the range of p 

between 180® and 90® this increase of B/X will not be very marked. 

The description by means of a rubber bag squeezed between boards is 

only a visual interpretation of the more systematic argument we have 

just given. It is really beside the point to prepare a figure in which the 

diffraction patterns (for a given k) for, say, j8 = 180®, 120®, and 90® are 

plotted to a common base and then to comment on their agreement or 

disagreement. Given an appropriate adjustment of k they must be 

substantially similar. The general correspondence is apparent from the 

following example. 

The stations for maximum forward gain of a half-wave aerial in a 

120® Vee cannot be calculated and their positions must be guessed from 

the known stations appropriate to a long current filament, as shown in 

Fig. 3.22; B/X = 1-75 is one such station and we will choose this to 

correspond with the second station for jS = 120° (possibly it ought to 

be considered the third station). Fig. 10.6 shows the ideal polar diagram 

for this station: it is found that EjE^ = 2-4 for the main beam, 

EjE^ = 1-35 for the lobe centred on 0 = 20®, and E/Eq = 2*1 for the 

lobe centred on 50®. For a flat sheet and B/X = 1-75 we should have 

had five equal rays with E/Eq == 2: imagine squeezing them into an 

arc of 120® and compare the result with the true diagram. Fig. 10.7 also 

shows the observed pattern which was produced by sheets 3‘6A wide 

and 1*5A high, with dimensions according to the inset diagram: again 

we note the observed pattern is not truly symmetrical. 

The main beam is scarcely distinguishable from the ideal and is 

about 13® wide at half-height in power. The lobes centred on 0 == 20® 

appear in the experimental figure but are much smaller than the ideal. 
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The ideal lobes centred in 0 = 52° have ‘shd over the edge’ and are 

centred on 0 = 60°. We see that these sheets reproduced the ideal main 

beam and ‘attempted’ to reproduce the whole pattern. The pattern 

they did produce is more tolerable for practical piuposes than the ideal: 
the good features of the ideal are unimpaired, the undesirable features 
are diminished, at the price of a certain amount of diffraction round 
the edges. When iV is a fraction the Fourier treatment involves the 
mathematical difficulty that the field is multivalued (in the Bienutnn 
sense) and hence it is not quite certain it represents the problem to 
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which we have applied it; when N is an integer images can be found 

and the series is not multivalued. The correspondence between the 

observed and the ideal patterns in Fig. 10.7 must surely show the ideal 

pattern predicted from the Fourier series is the correct solution or at 

least very near it. Fig. 10.8 compares the experimental with the ideal 

pattern at = 5: the correspondence is so close that it leaves no 

reasonable room for doubt that the Fourier series is valid for all values 

of N. We have now produced a main beam only 13° wide, accompanied 

by lobes which, though large, may not be intolerable, and, moreover, a 

main beam which we can predict beforehand. 

We will now examine fully the 90° reflector with the aerial at the 

second station. Fig. 10.9 shows the ideal pattern for R/X = f and also 

the pattern obtained experimentally from sheets 6A wide by fA high. 

It shows that the observed main beam is scarcely distinguishable from 

the ideal, save to the extent that it is 1-5° narrower at half-height (in 

field strength). The very small lobe, centred on 0 = 22° in the ideal, 

appears magnified in the experimental pattern, while the lobe which 

should be centred on ^ == 36° has ‘slid over the edge’ completely. This 

experiment was repeated with sheets 3-6A wide, but the result was not 

distinguishable from that shown in Fig. 10.9 for sheets 6A wide. Thus 

we conclude that sheets 3*6A wide suffice for the 90° reflector and that 

any practicable increase of width will have no sensible effect. Com¬ 

parison of Figs. 10.7 and 10.9 shows that decreasing the angle from 

120° to 90° has made a small improvement in the main beam but has 

decreased the lobes considerably: thus it is better to use these sheets 

inclined at 90° and to do so will also reduce the aperture and general 

bulk of the reflector. 
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Table 10.10 records the observed pattern produced by sheets 2A X P; 

the measurement was made at a wavelength of 125 cm. 

Fig. 10.9. 90° corner reflector, RjX — f. A — 50 cm. — 1-63 ft., sheets 9f ft. wide. 

Table 10.10 shows that the main beam produced by sheets 2A wide 

is appreciably wider than the ideal and that on bearings between 20° 

and 100° there is a general background of the order of 10 per cent, in 

power. Sheets 2A wide are still well worth while for the second station: 

interpolation between this result and Fig. 10.9 suggests the sheets 

should be about 2*5 to 3A wide for use with the second station in a 90° 

reflector. 
Table 10.10 

Mirror angle 90°, RjX == sheets 2A x fA 

Width at Width at % power % power % power 
^-power \-pow€>r at 38° at 60° at 90° 

Ideal 14-5° 20° ^ 8 0 0 * 
Observed . 18-5° 25° 7 10 4 

A representative pattern near the second station for a 75° mirror has 

been shown already in Fig. 10.2. Once more the observed and ideal 

main beams are scarcely distinguishable and are 13° wide at half-power: 

the observed side lobes are very large, though much smaller than the 

ideal. 

The ideal gain of a 60° mirror attains its second maximum, value 32, 
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when JS/A = Then the first zero occurs when 6 = 23‘^, though the 

straight sides of the main beam cut the bearing axis at 19°: the side 

lobe between 23° and 30° of bearing has a maximum which is much less 

than 1 per cent, in power and thus the ideal pattern is effectively a 

lobe-free beam of width 19° at half-height, in field strength. The 

observed pattern produced by sheets 3-6A wide is shown in Fig. 10.10: 

the straight sides of the main beam cut the bearing axis at 19° and this 

coincides with the ideal: there is diffraction round the edge amounting 

to about 4 per cent, in power on bearings between 30° and 80°. This is 

about,the best practicable Vee reflector for wavelengths round 50 cm. 

Table 10.11 records the pattern observed from sheets 2Ax|A and 

= 60°, the wavelength being 126 cm. 

Table 10.11 

Mirror angle 60°, i?/A = J, sheets 2A X |A 

Width at Width at % power % power % power 
\-power \‘POwer at 30° at 50° at 70° 

Ideal . 1 12° 19° 
Observed. 29° 41° 2-5 

It shows that sheets 2A wide do not suffice to produce the ideal main 

beam, and comparison with Table 10.10 shows the main is much 

broader than when the sheets were inclined at 90°. Thus we find that 

if the second station is to be employed with sheets 2A wide, then the 



382 TESTS OF VEE REFLECTORS [Chap. X 

mirror angle should be 90°, but if sheets 3‘6A wide can be tolerated they 
should be inclined at 60° and will then produce the ideal main beam. 

It is appropriate here to make a comparison between the 60° mirror 
and an equivalent curtain array. We have stated that the straight 
sides of the idealbeam cut the bearing axis at ±19° and hence, by (2.3), 
the main beam is equivalent to that of a curtain array having 6 members 
spaced JA apart: such a main beam being accompanied by the well- 
known series of lobes which start with an amplitude of 20 per cent, in 
field (i.e. 4 per cent, in power). It has been found that sheets 3-6A wide 
reproduce the ideal main beam, but that it is accompanied by lobes 
centred on 36° and 66° each about 4 per cent, in power: thus such sheets 
happen to be a very close equivalent, of a 6-member curtain in front of 
a large flat reflector. Thus by using the 60° Vee the pattern obtained 
from a single aerial and cable is equivalent to that from six aerials and 
six cables, in a curtain. The aperture of this particular Vee reflector is 
3*6A, the width of the 6-member curtain is 2-5A, and the reflecting sheet 
behind it would need to be at least 3*6A wide. Thus for equal w4dth the 
Vee reflector gives an equivalent performance with five less cables: we 
have said in Chapter III that sheet reflectors are really a device for 
saving a plurality of feeding cables and here we are able to make a 
direct comparison. If the sheets are increased in width, the side-lobe 
field will be reduced at a very slow rate, the main beam being unaffected. 

Let it be pointed out here that the width of the beam, for a given 
B/X, does not depend on the aperture of the mirror and the whole of 
our treatment shows the beam width depends only on jS and R/X: there 
is, however, a common misconception, based on optics, that the width 
of beam is proportional to the aperture of mirror. 

The second station for )3 = 46° is when R/X = 2 and then the ideal 
gain is about 53. We remember that the pattern cannot depart appre¬ 
ciably from a sinusoid until the arcual width, across the Vee, at the 
aerial exceeds about |A. When R/X = 2 and jS = 45° the width is 1-57A, 
and thus we are just within the range when the third harmonic in the 
pattern is becoming appreciable. Fig. 10.11 shows the ideal pattern: 
its width at J-power is 26° as compared with 30° for a sinusoid. The 
same figure shows the pattern produced by sheets 6A wide: the observed 
main beam is much narrower than the ideal, but now the rudimentary 
side lobes have swollen into formidable realities. When the sheets were 
reduced in width from 6 to 3*6A the main beam was scarcely affected, 
but then it was accompanied by enormous side lobes centred on ±30°. 
If the second station is to be used with j9 45° we conclude the sheets 
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ought to be about 7 or 8A wide, in order to curb the lobes: it is to be 

expected the main beam will be narrower than the ideal. 

At jS = 45° we have reached the limit of practicability for a wave¬ 

length of 50 cm.; for sheets 10 ft. wide scarcely suffice at the second 

station because they i)ermit lobes of the order of 30 per cent, in field 

strength. A width much in excess of 10 ft. is scarcely tolerable or 

practicable. Further consideration of § 3.8 will show that when is 

less than about 45° then i?/A must be large before we can hope to obtain 

an ideal pattern appreciably sharper than the simple sinusoid, and 

accordingly the necessary width of sheet must increase very rapidly as 

j8 diminishes. In fact, if is 45° or less it is probably best to use the 

first station, and then we can hope for a beam of width less than §/3 

only in so far as finite sheets often produce a beam narrower than the 

ideal. 

(d) Patterns for the third station 
The reader will now realize the third station can be contemplated 

only for mirrors of comparatively wide angle and then the main beam 

is likely to be accompanied by very large lobes. Fig. 10.12 shows the 

ideal pattern for /3 = 90° and JB/A = | and also the observed pattern 
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produced by sheets 6A wide. The figure is interesting chiefly in demon¬ 

strating the way in which comparatively narrow sheets ‘make a 

brave attempt’ to reproduce the ideal patterns, but in general they 

cannot achieve the legitimate side lobes in full strength. This particular 

mirror achieves a main beam only 11"’ wide, but the side lobes are 

enormous, even though they are moderate compared with the ideal. 

The ideal equatorial pattern for j8 = 60° and RjX — is attractive 

in having a main beam only 10° wide at half-height accompanied by 

very narrow 25 per cent, lobes centred on ±18°- The complete polar 

figure is reproduced in Figs. 4.12--4.14. Suffice it to say now, however, 

that sheets 6A wide produce a main beam wider than the ideal and 

accompanied by a pair of vast lobes: the third station for jS == 60° 

cannot be used unless sheets at least lOA wide can be tolerated. 

It is important to remember that these observed equatoriaji patterns 

have been produced by a half-wave aerial. Now reference to Figs. 

4.12-4.14 will remind the reader forcibly that the ideal polar figure of 

a half-wave aerial may contain large beams which do not disclose 

themselves in the equatorial pattern. It may well be that the dis¬ 

crepancy between the observed and the ideal side lobes in the equatorial 

pattern is due as much to lack of height as to lack of width in the sheets. 

Thus, the large side lobes observed in'the experiment just recorded may 

possibly be due to the large upward tilted beams (in Figs. 4.12-4.14) 
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having, so to speak, fallen down towards the equator; and they have 

done so because the height of the screens was inadequate. A full 

investigation would require the polar diagram at various angles of 

elevation and these are very troublesome to obtain. It must not be 

forgotten that the half-wave aerial is apt to produce sharp beams of 

high-angle radiation when RjX is large and these may ruin the suitabi¬ 

lity of the aerial as a searching device. They will not be disclosed in 

the equatorial pattern and accordingly this pattern may be very 

misleading. 

479U1 cc 



XI 

PERFORMANCE OF HALF-WAVE AERIAL AND FLAT 
SHEET: PERFORMANCE OF NETWORK REFLECTORS 

This chapter is the experimental counterpart of Chapter V, where we 

analysed the problem of a filament parallel to a half-plane and did so 

mainly for the purpose of assessing the diffraction round edges. Now 

we examine experimentally the pattern due to a half-wave aerial 

associated with a flat sheet of finite size. 

11.1. Aerial opposite the middle of a rectangular sheet 
We have anticipated this problem by including Fig. 10.1 in the last 

chapter, for the reasons stated there. It compares the ideal pattern 

with that obtained from a half-wave aerial distant A from the plane of 

a sheet 3-6A wide: however, this particular pattern is not likely to have 

practical application since the pattern of greatest practical importance 

is the single lobe which obtains when r/A = 

Fig. 11.1 records certain measurements at a wavelength of 125 cm. 

(i.e. 4 ft.). A half-wave aerial was placed 31-26 cm. (|A) in front of the 

plane of sheets 5 ft. (IX) high and the polar diagram was observed when 

the width of the sheet was ^A and also when the width was 3A: these 

two diagrams and also the ideal diagram are reproduced in Fig. 11.1: 

in it the left-hand curve is the diagram produced by a sheet ^A wide 

and the right-hand curve that produced by a sheet 3A wide. When the 

width is 3A the field is not a maximum on bearing zero, and this shows 

that the aerial is too far from the sheet to produce a diagram correspond¬ 

ing to the ideal for R/A = J. The back-to-front ratio is 0-1 and 0-3 for 

the wide and narrow sheets respectively and the fractional fields on 

5 = 90° is 0-1 and 0-45: the calculated values of the back-to-front ratio 

for a corresponding half-plane are 0*06 and 0-1, and for the field at 

6 = 90° are 0-2 and 0-4 respectively. In both curves in Fig. 11.1 the 

field rises to a maximum at 6 = 180°: reference to Figs. 6.6-6.9 shows 

that a half-plane does not tend to form a lobe at 0 = 180°, since the 

field decreases continuously as 0 increases. 

The two diagrams recorded in Fig. 11.1 were observed over the 

range 0°-360° and were, as usual, not quite symmetrical: the values 

recorded for any bearing 0 are the mean of the values observed on 

bearings ±0. Since the gain tends to be nearly constant when R/A is 

less than it seems natural to attempt to economize width by making 

R/A small. The polar diagram appropriate to a single aerial and flat 
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sheet is not likely to be used in practice unless the wavelength is several 
metres. Or, put it this way, if A is several metres, then an array or 

reflector system is necessarily bulky: if the station is a mobile one, then 
the problem may well be to endow it with some degree of directivity 
by using the smallest possible reflector. Presuming that there is a 
crippling restriction on absolute dimensions, then our best chance is to 

Ftcj. 11.1. Polar diagrams for half-wave aerial distant JA from a fiat metal sheet. 

use a flat sheet near the aerial, and it remains to discover by experiment 
the narrowest sheet which will be worth while to use. Having such 

possible circumstances in mind the following experiments were made with 

a half-wave aerial distant only A/10 and A/20 from the sheet. Measure¬ 

ments were made at a wavelength of 120 cm.; the screens were 1‘6A high 
and their total width was either J, or fA. The experimental results 

are shown collected in Table 11.1 below. 

Table 11.1 

Flat sheet of height 1-6A 

Total width 

of screen 

Front!Back 

% field strength in 

plane of sheet 

11 II 11 

3-2 30 32 
4A 7-5 36 32 
iA 2-6 52 62 

We note first that the performance with d/A = ^ is substantially the 
same as when d/A =: also that the diffraction round the edge, as 

measured by the field strength in the plane of the sheet (which ideally 

should be zero), decreases very slowly with increasing width, and this 
is in accordance with the analytical predictions in Chapter V. It 

appears from the series of Figs. 6.4-5.7 that when d/A = J and the sheet 



388 PERFORMANCE OF HALF-WAVE AERIAL AND [Chap. XI 

is semi-infinite, that the fractional field in the plane of the sheet is 

50 per cent, when xjX = 35 per cent, when xjX == 1, and 21 per cent, 

when xjX = 2, Our experimental equipment does not approximate to 

a half-plane, but applying that notation to them the largest value of 

xjX is I and then the field in the plane of the sheet would be 60 per cent, 

if djX = J. Experiment shows it is about 30 per cent, for a sheet only 

Fig. 11.2. Polar diagram of aerial and a flat sheet. 

|A total width, and thus turns out to be less than our analysis might 

have led us to predict. As a very rough guess we might assume the 

diffraction round each edge of a sheet JA wide is the same as that round 

the edge of a half-plane where xj\ = on this basis we can construct 

a hypothetical diagram and term it the ideal. The pattern has been 

worired out for an aerial distant d/A = ^ and situated so that xj\ — J 

(a = 143°), and Fig. 11.2 compares the experimental polar diagram for 

d/A = ^ and a sheet JA wide with the said ideal. The agreement is 

reasonably close in the range of bearing from zero to ± 140°. However, 

the observed front-to-back ratio is only 2’5 to 1, whereas our rough 

estimate gives 4 to 1. It is interesting to note from Table 11.1 that the 

ffont-to-back ratio does not increase continuously with the width of 
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the sheet. The field in the plane of a semi-infinite sheet has been worked 

out for the case where djX == and xjX = 0-63 (a = 171'5) and turns 

out to be 21 per cent. The first row of Table 11.1 shows this ratio was 

found to be 30 per cent, for each edge of a sheet of total width 1*25A. 

Thus it seems the single edge is only a very rough guide to a double 
edge. 

It is, however, clear that a sheet wide provides quite an effective 

reflector, while Fig. 11.2 shows that a sheet only JA wide confers a very 

substantial benefit. It is probably safe to interpolate that a sheet 2A 

wide would produce as near an approach to the ideal as would be worth 

while or practicable to attempt. We shall see later that such sheets 

may be constructed from widely spaced rods or very open netting: 

thus a sheet JA wide need not offer much wind resistance and thus may 

be a very practicable device for mobile stations using a wavelength of 

some 5 metres. Much the same results could be obtained from a single 

tuned rod, often called a parasite. Then it is necessary to choose 

adroitly both the distance between the aerial and the rod and also the 

tuning of the rod. Use of the narrow sheet obviates both these diffi¬ 

culties and in this respect is the preferable arrangement. The ultimate 

decision is likely to turn on the height of sheet which can be tolerated: 

the height can probably be less than 1*6A without detriment to the 

pattern. If A is less than 4 m. it will probably be best to use a narrow 

sheet, and if A exceeds 6 m. best to use a tuned parasite. 

11.2. Aerial in the plane of the sheet 

If the aerial is in the plane of the sheet the polar diagram is sub¬ 

stantially a circle with a sharp crevasse in the plane of the sheet: such 

a system has valuable properties for rough direction-finding since there 

is no ambiguity of sense. Incoming signals from all bearings will 

produce about the same signal strength: on hearing a signal the observer 

turns the sheet (with the aerial attached to it) about a vertical axis 

until silence occurs. He then knows the signal is coming in on that 

bearing of the sheet and is in the sense away from the aerial. Having 

this application in mind we must now explore the sharpness of the 

bottom of the crevasse which is produced by a sheet of practicable 

dimensions. Once more we are faced by the practical requirement of 

keeping the reflecting sheets small: accordingly we shall experiment 

with an aerial close to the edge of the flat sheet. First consider the 

shape of the ideal crevasse: to do this we have to evaluate equation (5.2) 

near 0 *= tt and with a == 0. Denote by ^ the bearing from the plane 
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of the sheet (i.e. <f> = 180°—6), then it follows from (5.2) that when k is 

very small ^ 
^ = 2Jj(&)sin^^. 
■^0 

Also, when k is very small the power output is equal to 

and, moreover, is always proportional to 7: hence for a given power 

output EQj^(k) is constant, and accordingly the field on a given bearing 

in the crevasse is then independent of k. Hence, provided k can be 

reckoned as small and the input power is constant, the crevasse should 

be independent of the distance between the aerial and the edge of the 

sheet: evaluation shows this approximation is valid up to about 

RjX == 0-2. For constant power the ideal crevasse is twice as steep 

when 72/A = ^ as when i2/A = 0*1 and three times as steep when 

if/A = 1. But to take advantage in practice of this improvement will 

involve the use of a much wider sheet. In § 2.1 we saw that two equal 

currents can produce a polar diagram with a crevasse falling to zero 

field, provided they are phased appropriately to their separation. It 

can readily be shown that when this condition is fulfilled then 

— sin(Psin2|^) == ^ksiv?^(f> 

and thus the ideal crevasse has a round bottom. The ideal crevasse for 

the half-plane has a sharp bottom and is therefore more suited inherently 

to the purpose we have in mind here, if it is attainable in practice. 

Fig. 11.3 shows the ideal pattern for 72/A = observed 

patterns produced by various sheets whose widths covered a range of 

5 to 1. The effect on the observed pattern of this fivefold increase of 

width is not very striking, and hence we conclude it is not worth while 

to use a sheet wider than fA and scarcely necessary to make it wider 

than JA. The effect was then studied of varying the height of a screen 

whose width was ^A. Then it appeared the sharpness of the crevasse 

was very dependent on the height of the screen: reduction of height 

tends to produce a pimple at the bottom of the crevasse, this said 

pimple having become enormous when the height neared JA, Figures 

such as 5.13 and 5.15 show the current density induced in the screen 

is concentrated mainly in a strip, whose width is of the order of 72, 

at the leading edge: therefore it is important to provide high con¬ 

ductivity in this strip. Experiment showed the shape of the crevasse 
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could be improved considerably by placing a strip of sheet brass (width 

about R = on the leading edge of a screen made from steel wire gauze 

having a |-in. mesh. Fig. 11.4 records various attempts to produce 

a steep-sided crevasse. Curve A is the pattern due to a screen, of steel 

gauze, fA square. Curve B is the pattern which resulted when the 

conductivity of the leading strip of this screen was improved by 

Fig. 11.3. Diffraction patterns for aerial in plane of a flat sheet. 

clipping to its surface a brass strip 1 ft. wide: the improvement is very 

marked and the reason for the effect well understood. A similar strip 

was then placed towards the trailing edge: the effect of this is recorded 

by curve C and is small, as was to be expected. Curves D and E show 

the effect of adding roof-plates, as described in the inset diagram. 

Such roof-plates steepen the sides of the crevasse but give it a flat floor. 

An enormous amount of experimentation was made in the attempt to 

sharpen the crevasse: for example, by fitting a narrow T-strip on the 

leading edge and by forming the screen from a wedge of small angle, 

etc., but all to no avail. The really important factor is that the leading 

portion of the screen should be a continuous strip of brass sheet: 

probably this is the only example where the conductivity of a reflector 

matters appreciably. Further improvement can come only from 

increasing the size of the screen, height appearing to matter more than 

width. The total width of the flat bottom of the crevasse need not be 

more than 10°, but it is extremely difficult to reduce this width below 5°. 

Those whose experience has been mainly with rod aerials may expect 

to find critical effects when the height of a narrow screen is |A, fA, etc. 

Such tuning effects, however, do not occur to any noticeable extent. 
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Thus the pattern due to a screen 2 ft. wide and 4 ft. high was observed 
at 230, 240, and 260 Mc/s: no significant difference occurred in this 
range of frequency, which was centred on a wavelength of 4 ft. A sheet 
2 ft. wide and 2 ft. high was tested over this range of firequency; the 

Fig. 11.4. Relating to aerial in plane of a flat sheet. 

pattern has a large pimple in the middle of the crevasse and this 
pimple decreased continuously as the frequency increased; since the 
decrease was continuous, the effect was not one of resonance., 

11.3. Aerial level with edge of sheet (« = 90°) 
An ideal pattern for this disposition is shown in Fig. 5.4. If there 

is an aeritd on each side of the sheet a^nd if this pair is energized 
alternately, the beam will wave from side to side: this might find 
practical applicaiaon. Fig. 11.6 shows the ideal polar diagram for an 
aerial level with the edge and distant ^ from it. Also the observed 
diagrams which resulted fr:om sheets |A, |A, and |A wide: the diagram 
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is markedly unsymmetrical even when the sheet is only JA wide. This 

figure is generally instructive, but does not call for detailed comment. 

When the width of the sheet was JA the diagram was found to be 

sensibly independent of the height of the sheet so long as it was not 

less than |A. 

Radii are scjuare of field strength 

Fig. 11.5. Polar diagrams for aerial level with edge of a flat sheet. 

11.4. Continuous sheets compared with sheets of netting 

In §§ 5.6 and 5.7 it was found that a grid of rods will reflect almost 
as well as a continuous sheet, provided the rods themselves are not 
extremely thin: the diameter of the rods is as important a factor as 
the spacing between them. It was stated there that the screening 
ratio should exceed 90 per cent, provided the ‘shadow ratio’ of the grid 
was not less than 17 per cent, and the spacing not much in excess of ^A: 
and that screening ratios near unity can be obtained even when the 
spacing is near |A provided the diameter of the rods is chosen correctly, 
by means of Fig. 5.16. 

There would be no particular interest in checking our formulae by 
experiment: they serve their purpose by pointing out the mechanism 
of the process and they provide a general scale of sizes. We conclude 
from them that screening should be sensibly perfect if the spacing does 
not exceed about ^A: let us consider what this means in actual dimen¬ 
sions. If A = 125 cm., then |'A equals 6 in.; hence if A exceeds about 
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1 metre, then a 6-in. mesh is virtually equivalent to a continuous sheet, 

provided of course the wire itself is not too fine. If A = 10 cm., then 

we may expect a ^-in. mesh to be equivalent to a continuous sheet: 

we now have a general scale in mind. Our purpose here will be served 

by giving a few comparisons of the performance of continuous and of 

netting sheets of given size. 

A 90° Vee was constructed by stretching fine mesh copper gauze on 

two wooden frames of side 5 ft. The equatorial pattern was observed 

at a wavelength of 125 cm. with the aerial set at RjX = 0-53. Then the 

gauze was removed and replaced by expanded metal having a 2 in. x 1 in. 

diamond mesh. Careful comparison of the patterns obtained from 

these two coverings showed that if there was any discrepancy, then it 

was less than the errors of measurement and these were small: no 

difference could be detected in the width of the beam at half- or at 

quarter-height (in power) or in the fractional power on bearing ±45°. 

Thus it was concluded that a diamond mesh x ^jA was indistinguish¬ 

able, as a reflector, from a continuous sheet: in the light of our analysis 

it would have been very surprising if any difference of performance 

could be detected. A comparison was also made between expanded 

metal (1 in. x 2 in. diamond mesh) spot-welded to a | in. x | in. iron frame 

5 ft. wide and 6i ft. high and S.W.G. 20 wire netting with 1J in. X in. 

mesh, stretched on wooden frames of similar size. The said wire netting 

(on wooden screens) produced a pattern which was just measurably 

wider than that produced by the expanded metal (on iron frame) 

for bearings up to ±40°: for bearing angles larger than 40° the two 

patterns were not distinguishable. Here the comparison is mainly to 

assess the effect of reducing considerably the diameter of the wires of 

the grid. The experiment shows we may regard 1J in. X1J in. wire netting 

as the equivalent of a continuous surface for wavelengths of 125 cm. 

and over. This experiment has established a point of great practical 

value, for experimenters will experience vastly less trouble from wind 

and weather if they use wire netting on their screens rather than a 

continuous sheet or copper gauze: its use reduces by a whole order the 

general difficulties attendant on aerial research. Also the engineer must 

learn confidence in using netting for permanent aerials, thereby reducing 

weight and windage enormously. High-quality netting of S.W.G. 16 

steel wire is obtainable commercially and it requires very few supporting 

ribs. 

The next example relates to the use of a grid such as we have typified 

in analysis. Two square gratings of parallel rods were made by welding 
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the ends of 5-ft. lengths of f-in. diameter brass tube, pitched 5 in. 

centre to centre, to a small channel bar: the two gratings were then 

joined together with planes at right angles, thus forming a structure 

which could not fail to be likened to half of a child’s play-pen. It was 

used as a 90^^ Vee reflector at a wavelength of 125 cm.: the gratings 

then being |A x |A with rods parallel to the half-wave aerial, which was 

mounted in the bisector at RjX = 0*52. The width of the observed 

pattern was 42° and 60° at half- and quarter-height in power respectively, 

and the fractional power on 45° was 3 per cent. Corresponding flgures 

for copper gauze screens (also 5 ft. X 5 ft.) were 38°, 56°, and 5 per cent., 

thus showing the rods produced a beam 4° wider than that produced 

by continuous sheets, the diffraction round the back being scarcely 

changed. Here there was an extremely open and light structure func¬ 

tioning almost as well as continuous sheets of similar dimensions. 

Here the pitch of the grating is 4 = 0-104A, and reference to Fig. 5.16 

will show the correct radius for the rods is 0*013A: in fact their diameter 

was {\ in. which was 0-0065A, and thus they were known to be too thin 

for perfect reflection of a plane wave. 

The writer has not had an opportunity to make an accurate com¬ 

parison, but he has strong reasons for believing that a mesh of about 

I in. formed with S.W.G. 16 wire or expanded metal is sensibly the 

equivalent of a continuous sheet when used in reflectors for a wavelength 

of 10 cm. 

We will now examine the performance of a comb of rods about JA 

long: we have in mind structures corresponding to those illustrated in 

the paper by A. W. Nagy in the Proc, Inst. Radio Engineers,^ and 

more especially the right-angled corner illustrated in the paper by 

J. D. Krauss in the same journal. J Krauss had a wooden set square 

w ith arms 2-3A long and pushed through them a large number of thin 

parallel rods 0’94A high. His paper gives some small-scale reproductions 

of the polar diagram which resulted from an aerial distant about ^A 

from the apex of the so-formed Vee: they appear to be a close approach 

to the ideal. 

The writer has made a systematic examination of comb reflectors 

of the type used by Krauss. He used a light wooden right-angled set 

square with arms 4 ft. long and pierced them with holes pitched 4 in. 

apart. Through the said holes were pushed 23 steel rods, each in. 

diameter and 2 ft. long, thus forming a right-angled comer comb 

reflector. Tests were made at or near a wavelength of 125 cm. (i.e. 4 ft.), 

t Vol. 24 (1936), 233. t Vol. 28 (1940), 513. 
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and thus the comb approximated to a pair of sheets A wide and JA high 
at right angles to one another, the shadow ratio of the so-formed 
grating being ^ = 0-08 and the pitch j^A. Bearing in mind the rooted 
faith which many radio engineers have in the virtues of a rod which 
happens to be JA long, it was desirable to examine the frequency 
consciousness of this reflector, since its rods were 2 ft. long and this is 
near ^A. Thus there was a twofold object in this experiment: (a) to 
compare the performance of the comb with that of a pair of gauze 
sheets 4 ft. wide and 2 ft. high; (6) to see if there is some wavelength, 
near 4 ft., at which a resonance effect is apparent. A half-wave aerial 
was placed on the bisector and 73 cm. (about 0*6A) distant from the 
apex. A sheet of flne copper gauze, 2 ft. wide, was folded round the 
outside of the comb and supported by it, thereby backing the comb by 
a continuous sheet. The equatorial pattern resulting from this arrange¬ 
ment was observed: the gauze sheet having been removed from the 
comb the pattern was observed once more: the results are recorded in 
Table 11.2 below. 

Table 11.2 

Width at 
half-height 
in power 

Width at 
quarter-height 

in power 
Power on 

hearing 45° 

Back-to-front 
ratio, 

in power 

Ideal 45^ 60° 0 0 

Mc/s 1 200 220 240 200 220 240 200 220 240 200 220 240 
Gauze sheet on comb 46° 46° 42° 67° 69° 63° 8% 10% 8% 5% < 1% 2% 
Bare comb 51° 54° 47° 1 73° 81° 70° 12% 19% 12% 7% 3% 2% 

On the whole the beam tends to become slightly narrower as the 
frequency rises; presumably this is mainly because the sheets become 
relatively larger as the wavelength decreases, the total range of A being 
20 per cent. The pattern produced by the comb is always a little wider 
than that produced by gauze sheets: this is to be expected, but it is 
instructive to note that the removal of 92 per cent, of the reflecting 
area increases the width at half-power by only 10 per cent. This 
emphasizes once more that sheets may be reduced to mere spider’s 
web’ without reducing their reflecting proi)erties appreciably, provided 
the pitch of the web is only a small fraction of A. 

To examine the frequency effect more thoroughly than is described 
in Table 11.2 the rods of the comb were all out to a length of 66*26 cm., 
which is |A when the frequency is -230 Mo/s. The pattern was then 
observed in the frequency range 210-260 Mc/s, which is centred on the 
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frequency at which the rods are long. The tests are recorded in 

Table 11.3. 
Table 11.3 

Comb aerial reflector, arms 4: ft. wide, rods 65*25 cm. long, 

aerial 73 cm. from apex of right angle 

Frequency 
1 Width at half- 
' height in power 

Width at quarter- 
height in power 

Power on 
hearing of 45° 

Back-to-front 
ratio, in power 

Mc/s 
210 470 67° 8% 10% 
220 44° 67° J 13% 6% 
230 63° 75° 15% 8% 
240 47° 70° 12% 3% 
250 1 48° 70° 1 10% 1% 

Table 11.3 shows that the beam width and the diffraction round the 

edge passes through a blunt maximum when the frequency is 230 Mc/s 

and thus there is a trace of a resonance effect: the effect, however, is 

deleterious to the performance of the reflector. Presumably the blunt 

resonance dictates the phase of the current induced in the rods and 

constrains it to be other than it would be in a large continuous sheet. 

At any rate we have found that the resonance effect is blunt, unimpor¬ 

tant, and on the whole to be avoided. If the reader thinks over this 

problem and this experiment in the light of various sections of Chapter II 

he will realize the effective resistance and impedance of any given rod 

will depend on its position in the comb and also on the relative current 

in other rods. Hence all the rods will not be resonant simultaneously, 

and any resonance condition inferred from the observed pattern can 

only be a general average. A simple and sharp resonance effect is not 

to be expected: experiment shows that such as does occur is deleterious. 

Accordingly the informed designer will specify rods which are slightly 

longer than ^A and will not call for close tolerance of manufacture. 

The previous chapter has shown us that sheets a few A wide may be 

expected to produce patterns closely resembling the ideal: now we 

know that even these comparatively small sheets can be replaced by 

rods or wide-mesh netting without appreciable detriment to the 

performance of the reflector. 

11.5. Half-wave aerial and two coplanar untuned parasite rods 

In § 6.8 we solved some simple and typical examples involving 

parasite rods parallel to a current filament. Now consider two rods, 

each of radius 6, distant from one another and coplanar with a 

current filament which is distant R^ from the closest rod, distant 
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from the farther rod: denote the current filament by the 

letter A and the rods by £ and C respectively. The self-impedance 

of each of the rods £ and C is given by the equation 

c 

Denote the electric field at £ due to current Ij^ at A and current Iq 

at C by then 

^ = {-W+jYS\)}iAM-UhnjUh)}ic = 

On writing down the corresponding equation for Eq we obtain the 

relations 

^0(^3)/^ "t" -^o(^2)/b Yil(i 

0, 
0. 

These give 4 and I(j in magnitude and phase relative to Let 

== = JA, and r — 0*0076A. Then numerical evaluation gives 

^JR = — 0-46 !47-5‘^ and (M2 149*7^ 
- 

It now follows the field at A due to Jg and /g is given by 

E =-^(0-406+0-168j), 
Tra 

and hence the radiation resistance of filament A, in the presence of the 

parasite, is 0*594 of what it would be if isolated. The process of deriving 

the polar diagram is straightforward: it is shown in Fig, 11.6. The 

forward field is l-llJS/o and it follows the gain = 1*22/0*59 = 2: the 

front-to-back ratio is 2*5. The curve on the left-hand side of the same 

figure, distinguished by observation points every 10°, is the observed 

diagram due to a half-wave aerial and two f-in. diameter rods (open 

circuited at each end) fA high. The distance between the two rods was 

JA and the coplanar half-wave aerial was distant 0*1 A and 0-35A from 

them; the wavelength was 125 cm. and consequently the radius of the 

rods was then 0*0076A: thus the configuration of aerial and rods corre¬ 

sponds with that postulated in the ideal diagram of Fig. 11.6. The 

correspondence between the observed and ideal patterns is really very 

close when it is remembered we have used a two-dimensional problem 

to simulate one in three dimensions: no doubt the approximation has 

been assisted here by the smallness of the distances and iZg. 

When the two f-in. diameter rods were replaced by two pieces of 

I in. XI in. brass angle, joined electrically at top and bottom by a 12-m. 
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length of the same angle, the observed pattern differed from that 

shown in Fig. 11.6 by little more than the limits of experimental error. 

Now the metal bridge pieces across the ends, forming a closed frame 

6 ft.x 1 ft., might be expected to disturb the impedance of the rods 

considerably; yet the effect on the diagram was not significant. Thus 

we infer that tuning effects in parasitic rods which are much longer 

Fig. 11.6. Polar diagram due to an aerial coplanar with a pair of untuned rods. 

than the driving aerial are not important and that their effective 

impedance does not depend much on the shape of their cross-section. 

Moreover, the effect, on the pattern, of screwing to the said angle 

frame a copper sheet 12 in. wide and 6 ft. high was also insignificant, 

thus demonstrating even more forcibly that the shaping of a reflector 

of this character is not important. Analysis of the half-plane has shown 

that in it the current density is dominantly concentrated in a narrow 

strip near the leading edge and always rises rapidly near a bounding 

edge. Hence, if we had started by using a sheet in this problem, our 

analytical experience would have taught us to expect the induced 

current would be concentrated near the edges, and this would have 

suggested the narrow sheet must be behaving very like two parallel 

rods: this supposition is borne out by these experiments. 

The close agreement between the ideal and observed patterns in 

Fig. 11.6 may possibly be fortuitous in this particular experiment; 

provided it is not accidental it would seem the two-dimensional method 

is a very powerful tool for predicting the pattern due to an aerial 

combined with two or three parasites. Everyone knows from experience 

that the pattern due to a single parasite is vastly dependent on the 
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tuning of the parasite when it is near long. Accordingly we warn 
the reader that our remarks here apply only to parasite rods which 
are much longer than the driving aerial and considerably longer than JA. 
To complete this experiment fully it would be very instructive to 
measure the distribution of current along the parasites, and probably 
this could be done by the use of a loop monitor such as is described in 
Chapter IX. Since the rods are three times as high as the aerial, they 
might be expected to produce three times as much field per ampere in 
them. Yet the ideal diagram of the two-dimensional problem is derived 
on the supposition that unit current in either of the three rods is equally 
effective in producing field at a distance. The more closely we consider 
this particular problem the more surprising it becomes that the ideal 
and observed patterns should agree closely. Systematic experiment 
would inevitably disclose the mechanism of the agreement and such 
a straightforward research is well worth doing. We would remark 
here that the agreement between the ideal and the observed patterns 
for Vee reflectors is not surprising in the same sense. For whether the 
source is an infinite filament, half-wave aerial, or doublet, an image 
system can be used when n is an integer, and thus our ideal patterns 
have not supposed a two-dimensional problem when n is an integer. 
They have supposed a two-dimensional problem when n is not an 
integer (i.e. j8 = 360°, 120°, 72°, etc.), but even then experiment has 
upheld the approximation. Even so, we have not derived the ideal 
pattern by calculating the field due to infinitely long current filaments 
distributed over the sheets and a half-wave aerial at the source. But 
in comparing the observed and ideal patterns in Fig. 11.6 we are tacitly 
assuming the rods and the aerial are the same height, when they are not. 
Either the current induced in the rods attenuates very rapidly with 
height or else it changes sense and forms negative loops such that the 
net metre amperes are closely equivalent to a half-wave aerial: the 
second of these two effects is probably the more important. 
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TURNING THE BEAM OFF CENTRE: USE OF VEE 

REFLECTORS SIDE BY SIDE: TROUGH REFLECTORS 

12.1. Further analysis of turning the beam off centre 

The general principles of this problem were developed in § 3.10 and the 

general equation describing it is (3.20). The reader should remind 

himself of certain important properties discovered there. Firstly, that 
when j8 = 60°, 36°, 26*7°, 20°, etc., the pattern cannot be made unsym- 

metrical by placing the aerial to one side of the bisector of the Vee, and 

secondly, that the amount of dissymmetry which can be produced is 
negligible if j8 is less than about 75°; thirdly, that offsetting the aerial 

has relatively much more effect on the side lobes than on the main 

beam. It is for the third reason that it is a practical proposition to turn 

the beam, by offsetting the aerial, only when the aerial is near the first 

station for maximum gain. On considering these three factors together 

it emerges that a 90° Vee with iZ/A near | is the case of much the most 

practical importance, and accordingly it alone need be considered fully. 

We saw in Fig. 3.36 that the turning action is due to the existence 

of a second harmonic term in the Fourier expansion of the equatorial 

pattern. When > 2 and iZ/A = J the third harmonic and higher 

terms are negligible. With this simplification we derived, from (3.21), 

an equation for the angle through which the maximum of the main 

beam is turned away from the bisector by an aerial which is offset an 

angle cx from the bisector. The equation is 

. i.-J(l + 32a;2) 
sin 20 = —^ 

8a; 

where rr = 
J^{k) 

sin 2a. 

A glance at Fig. 3.36 shows that when J^(k) = 0 the pattern becomes 

a symmetrical bifurcated beam with the two maxima on bearings 

± 22*5°. Only in this limiting condition can the beam be turned through 

an angle as much as 22*6°: and moreover it is obvious that if it is turned 

through more than about 16° a large side lobe must be produced. We 

need to be familiar with the effect of increasing a when RjX is constant 

and also of increasing iZ/A when a is constant. When a = 0 the forward 

gain is a maximum when iZ/A » and hence we may expect to give h 

some value between 3 and about 3*5: reference to tables shows that 
4W1.1 D 
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J^[k) = 0 when k = 5*03 (i.e. RjX = 0*81), and this sets an absolute 

upper limit on k. When fc == 3 we found in Chapter III that the 

maximum of the beam occurs at 0 = —9-5° when a = 22*5‘^. When 

k == 3-5 it may be found that the maximum occurs at —6 = a for oc 

less than 13° and that 6 attains a blunt maximum of 14-5° near 

a = 22-5°. 

In designing for a practical application we presumably require to 

turn the beam as much as possible and to do so without also producing 

a large side lobe. There are two independent variables, a and i?/A, 

which can be chosen at will to suit our purpose best. Our starting- 

point is the recognition that is roughly proportional to —a, but 

cannot exceed 22*5°; we want large as possible. The writer has 

examined this problem numerically in great detail: he considers the 

proper procedure is always to make a near 22*5° and then to choose 

J?/A to suit the particular requirements which are desired. Accordingly 

we adopt the simple rule that the aerial should slide along a rod which 

approximately bisects the angle between the bisector of the Vee and 

one of the reflecting sheets: this angle is not critical and therefore it 

shows lack of understanding to specify it to a close tolerance in the 

drawings. It will now be realized why a was chosen as 22*5° in the 

numerical example following Fig. 3.36: the ideal pattern for a = 22*5°, 

k = 3*5 is shown in Fig. 12.1. We now examine the manner in which 

the pattern will change as RjX increases from a very small value, with 

a constant and equal to 22*5°; when k is very small, 

small, since then t/4(A:)/J2(^) = &V^8; when = 3 we have found that 

^max = when k — 3*5, Fig. 12.1 shows that fl^ax == then there 

is an 8° side lobe; when k = 5*03, J^ih) = 0 and consequently 

^max = 22*5° 

and the pattern is a symmetrical bifurcated beam. Hence by adjusting 

RjX we have a considerable control of an enormous control 

over the relative magnitude of the field strength on bearing 0 = 0. 

The ratio of field on 0 = 0 to field on 0 = 0njax will be called the 'field 

ratio’. The desire to turn the beam away from the bisector will, in 

practice, usually be associated with the intention of sweeping it 

periodically first to one side and then to the other, such process being 

performed continuously and independently of any rotation which the 

whole Vee may be given on a turn-table. Then the current induced by 

an incoming signal will be the same with the aerial at :i:(x only when 

the whole Vee is turned so as to make its bisector point along the 
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direction of the said incoming signal. By the aid of this subterfuge 
and device the said direction can be discovered more precisely than 
if its determination depended only on estimating the bearing of the 
maximum of a rather blunt beam. It will, however, be realized that 
the operative field strength is that on bearing ^ = 0 and not at 
accordingly the field ratio is a parameter of great practical importance 

and must be under control. Labour can be saved in evaluating this 
ratio if the following two points are kept in mind. First, for given 
values of a and k we have an equation to determine ^niox hence j^m-v 
can be evaluated directly by substitution in (3.21). Secondly, (3.21) 
shows that a and d are interchangeable, hence the field on 0 = 0 for 
some given a, say is the same as the field on 0 = aj when a = 0. 

Fig. 12.2 shows the observed patterns (at A = 125 cm.), produced by 
screens |A wide and f A high, when JB/A = 0-63 (fc = 3-3) for a = 0 and 
ac = J::22‘6°. The equation for shows that ideally the maximum 
should occur at ±15*8°, whereas in fact it occurs in this reflector at 
±12°, thus showing that sheets JA wide do not suffice to turn the beam 
through an angle quite as large as the ideal. This figure shows the 
observed ‘field ratio’ is ^{Ih2/15) = 0'866: the ideal value being 0‘71. 
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When RjX was increased from 0*53 to 0*59 (i.e. B from 66 to 74 cm. in 
these tests, in which A was 126 cm.) it was found that the beam was 
turned through ±16° with a field ratio of 0’76, as compared with the 
ideal values 17*1° and 0-66. Fig. 12.3 shows the observed patterns from 
these sheets when RjX = 0*67, 0‘75, and 0*84. We note, as predicted, 
that the field ratio decreases as RjX increases, and clearly it has here 

Fig. 12.2. Observed diffraction patterns corresponding with 12.1. 

passed through zero for some value of BfX between 0"76 and 0-84: the 
ideal value for this occurrence is RjX — 0-81. 

Figs. 12.2 and 12.3 together demonstrate that the ideal analysis is a 
very close guide to the behaviour of quite small sheets and serves to 
predict their performance very closely. Those who have perseverance 
and industry to understand this description will find they csm predict 
and handle these aerials with complete confidence and success. Indeed, 
after this discussion, prediction and design are scarcely called for. It 
will suffice to build the refiector with sheets some fA wide, arrange 
that a shall be about 22° and that RfX is adjustable between about 0*5 
and 0'6: when the aerial system has been built the precise value of RjX, 
which suits the given requirements most closely, must be found by 
experiment. The total separation of the two peaks in curve (3) of 
Fig. 12.3 appears to be 50°, whereas ideally this separation should be 
45° when RjX == 0*81: the writer thinks it is possible for finite sheets 
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to turn the beam through a little more than 22‘5° when a exceeds 22’5°, 
but this caveat is of little practical importance. 

If the beam is to be turned from side to side periodically it will not 
be done by oscillating the aerial mechanically through ±a, but by 
providing one aerial at -fa and another aerial at —a and switching the 
power to one or the other. Hence, in practice, we must consider the 

80 70 60 50 4 0 30 20 10 0 10 ZO 30 4 0 50 60 70 80 90 
Bearing an^le in degrees 

Fig. 12.3. Observed diffraction patterns for 90° mirror. 

pattern produced when there is a driven aerial at -fa and a ‘parasite’ 
aerial at —a. If the current induced in the parasite is equal and 
opposite to that in the driven aerial, then consideration will show the 
pattern must be a symmetrical bifurcated beam. If the two currents 
are equal and cophased, then the pattern must be symmetrical about 
the bisector. Accordingly it is obvious the disturbance due to the idle 
or parasite aerial must depend very much on the phase as weU as on 
the magnitude of the current induced in it: its presence can increase 
or decrease the ‘field ratio’ according as the induced current is nearly 
anti- or nearly co-phased. The experimental patterns shown in Fig. 12.4 
are reproduced to illustrate this effect: curve (1) records the pattern 
when the idle aerial was a thin rod |A long and curve (2) when the 
idle aerial was a rod |A long interrupted by a small air gap in the 
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middle of its length. When the idle aerial was absent the beam was 
turned through 16° and the square of the field ratio was (0-76)2 ^ 0.55 

Accordingly we presume that for curve (2) the induced current had a 
large antiphased component, whereas for curve (1) it had a strong 
quadrature component. In practice the idle aerial will be a replica of 
the driven aerial and will have a length of feeding cable attached to it: 

J 1.1.1.. i 
90 80 70 60 50 40 30 ZO to 0 10 ZO 30 40 50 60 70 80 90 

Bearing angle in degrees 
Fig. 12.4. Observed diffraction patterns for 90mirror. 

the termination of the said cable will provide a means of controlling 
(within limits) the magnitude and phase of the current induced in the 
parasite. Thus it was found that when the parasite was a replica of 
the driven aerial and was attached to 230 cm. of coaxial polystyrene 
cable (equiv. length near 2-6A), then the pattern was equivalent to that 
produced by a single aerial at B/X = 0-52, whereas in fact B/X was 
equal to 0-69. 

The ideal values of radiation resistance can be evaluated by adding 
Ep due to the four images, in the manner often used in Chapters II 
and III. With B/X = 0*660 (k = 3*5) it may be foimd that the radiation 
resistance is 128, 120, 90, or 44 ohms according as a = 0°, 10°, 20°, 
or 30°. Thus if a = 22*6°, we may expect the resistance to be near 
70 ohms when B/X lies between 0*6 and 0*6. Reference to Fig. 12.1 
shows the width of the base of the main beam is about 70° and this is 
likely to mean that the power gain, reckoned on bearing 9^^ will be 
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greater than if a = 0. Computation shows that when i?/A = 0*666 this 
maximum gain equals 8*5, 9*6, and 11*5 according as a = 0°, 10°, or 
20°: the forward gain passes through the minimum value 6 when a = 20° 
and attains 8-6 when a = 27°. 

Fig. 12.6 shows the ideal pattern for j8 = 90°, R/X = 1*6, and at — 6°: 
it is characterized by an enormous side lobe, centred on 32°, whose 

presence would make the pattern intolerable. Thus we find it is not 
practicable to use the second station when it is desired to turn the 
beam from side to side. However, it should be noticed that a small 
dissymmetry of the aerial has now produced an enormous dissymmetry 
of the side lobes, showing that perfect symmetry of the lobes is very 
dependent on perfect symmetry of the system. This suggests that some 
of the lack of symmetry which is almost always observed in experi¬ 
mental patterns may perhaps be due in part to small mechanical 
imperfections in the system: though the writer has always found that 
when local irregularities are produced (say, by bulging the sheets), they 
do not appear to alter the pattern. However, the reader must not 
forget that the centre line of the main beam is not sensitive to a: if 
the reflector is made with reasonable accuracy the main beam will 
always be found to be on centre. 

The observed pattern depicted in Fig. 12.6 is reproduced to demon¬ 
strate that when P = 60° the pattern must always remain symmetrical 
for aJl values of a: the mechanism of this property was explained in 
§ 3.10. In the experiment recorded in Fig. 12.6 RJX was | and a was 15°, 
yet the pattern remains perfectly symmetrical, as predicted. It should. 
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90 80 70 60 5040 30 20 10 0 10 20 30 40 50 60 70 80 90 
Besring afyle 

Fig. 12.6. Demonstration that 60° mirror always produces a 
symmetrical diffraction pattern. 

Fio. 12.7. Ideal 72° reflector, aerial not on bisector. 

howerer, be temembered that there is a dissymmetry in the phase of 
the field. If «is oscillated periodically, the received field strength wUl 

be subject to ^ phase modulation on all bearings save ff = 0. Hence if 
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aural reception is used, it should still be possible to use a 60° mirror in 

a ‘beam splitting’ system and thereby make use of the larger power 

gain which obtains for this angle than for j8 = 90°: but if the signal 

is displayed on a cathode-ray tube the system will, and must, fail 

completely. 

If n is a fraction, say then the pattern is the vector sum of two 

quadrature components. Close study of equation (3.21) will show that 

it is only one of these components which becomes unsymmetrical when 

OL is not zero, and accordingly the net angle turned through by the main 

beam is less than it would be if the symmetrical component were 

absent. The ideal pattern for w = | (j8 = 72°) has been evaluated for 

Jt/X = 0*63 and a = 18° and is reproduced in Fig. 12.7: the main beam 

is turned through 12° and the field ratio is 0*86. This figure serves to 

substantiate the rather sweeping statement that when it is required to 

turn the beam from side to side then the angle of the mirror must not 

be appreciably less than 90°. 

12.2. Pair of Vee reflectors side by side 
Experience has shown that sheets a few wavelengths wide produce 

a close approximation to the ideal pattern, appropriate to infinite sheets: 

hence it seems probable that if two Vee reflectors are set side by side, 

forming a W, then the pattern due to an aerial in one Vee will be very 

nearly the same as if the other Vee were removed, and consequently 

if each leg of the W has an aerial in it the resultant pattern will be 

substantially the vector sum of the two component patterns. Thus, 

refer to the left-hand inset diagram in Fig. 12.8, which represents a W 

of angle j8 with aerials denoted by A, separated a distance d. Let the 

pattern for one leg alone be observed experimentally and denote it by 

E =/(0). Then if both aerials carry equal and cophased current, it 

seems reasonable to expect the resultant pattern will be expressed by 

the equation 
pE = 2/(5)cos 

and if the currents are equal but in phase quadrature by the equation 

qE = 2f{6)ooal^8va0+l'. 

Since this problem is not soluble analytically, our surmise can be tested 
only by experiment. If the surmise is correct, then E will be zero 
when sind = A/2<iI, no matter what the value of f (6) on this bearing. 
Hence the pattern resulting from equal cophased currents in a W 
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should be much narrower than for a single Vee, provided that djX is 

considerable. Thus if the reflecting sheets are 2A wide, then d == 4 sin 

and accordingly the field should be zero when the bearing is such that 

sinO = 1/(8 sin Jj8): thus 0 = 14-5° if j8 = 60°. The power gain should 

be larger than for a single Vee alone and it should be possible to con¬ 

struct a curtain array of Vee reflectors. A plurality of Vees have been 

Fig. 12.8. Diffraction pattern for a pair of 45° reflectors, side by side. 

illustrated in several technical papers but without systematic discussion 

of their action. J. D. Kraussf draws a diagram of a W but does not 

comment on it. We have seen pairs of Yagi aerials in operation and 

also one leg of a W used as transmitter and the other as receiver. There 

has been a rough and instinctive appreciation of the action, but we have 

not met a systematic experimental analysis. We will first dispose of 

something which may enter the reader’s mind and appear paradoxical. 

We are proceeding in the expectation that an aerial in one leg of the 

W is screened from the aerial in the other leg to a degree such that the 

mutual interaction is insignificant, and hence the radiation resistance 

is the same as if only one Vee were present. In calculating power gain 

t Proc. IM.E. 28 (1940) 513. 
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we have always had to evaluate radiation resistance and the impression 

may have grown up that this resistance must be less than the isolated 

value if the gain exceeds unity: this is not necessary, and consideration 

should show the reader that if the interaction is negligible then the 

gain is equal to the number of members; it is thus to be expected the 

gain of a W is nearly twice that of a Vee. 

To assess the general validity of the treatment just outlined experi¬ 

ments were made at A = 125 cm. A pair of 45° Vees each consisting 

of two gauze sheets 5 ft. wide by ft. high (i.e. fA X |A) were mounted 

side by side on a turn-table: each had a half-wave aerial on its bisector 

distant 55 cm. (iZ/A = 0-44) from its apex. The pattern due to one 

aerial alone was observed and found to be slightly unsymmetrical, 

‘diflPraction round the edge' being less on the side to which the other 

Vee was attached: the width at half-power was (35°-f23°) = 58° and 

the power at 0 = 22*5° was 43 per cent, and 76 per cent. The measured 

separation between the two aerials was 138 cm., and accordingly 

djX = 1‘1. Since the pattern from each single Vee of the W structure 

was somewhat unsymmetrical, a hypothetical pattern was constructed 

Avhich was the mean of the patterns due to one Vee alone: its width at 

half- and quarter-power was 60° and 93° respectively. The ordinates 

of this said mean pattern were multiplied by cos(l-l7rsin0) and the 

result is depicted in curve (1) of Fig. 12.8: it passes through zero at 

6 = ±27*1° and is 30° wide at half-power. The two similar aerials were 

fed simultaneously through two ostensibly similar cables branching 

from a two-way junction box, fed by a single cable from the valve 

generator: it was hoped the currents in the two aerials would be equal 

and cophased. The pattern which then resulted is recorded by curve (2) 

in Fig. 12.8. The observed pattern is seen to be a very close approach 

to the predicted pattern, and thus proves that the resultant pattern is 

substantially the vector sum of the two isolated components: the 

experiment has thus demonstrated what it was designed to prove and 

further demonstration of this important principle is not essential. It 

will, however, be noted that the observed pattern is not truly symmetri¬ 

cal and this proves the currents were not truly cophased. Fig. 12.9 

shows the result of multiplying the ordinates of the said mean pattern 

by cos{l’l7rsin0+i^) and is what should result from equal currents in 

phase quadrature. 

Figs. 12.10 and 12.11 show the pattern observed when first one and 

then the other feeding cable was lengthened by a link whose electrical 

length purported to be JA. Such insertion should increase the phase 
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difference between the currents (a difference intended to be zero 

but which in fact was not zero) by 90°. Ideally these should have 

resulted in Fig. 12.9 and its mirror image: in fact the two patterns are 

very different, because the phase difference was not zero initially and 

thus the phase difference became more than 90° in one case and less in 

the other. Fig. 12.10 is a close approximation to Fig. 12.9, whereas 

Bearing angle in degrees 

Fig. 12.9. A predicted diffraction pattern for a pair of 46° reflectors, side by side. 

Fig. 12.11 shows the two currents must have been substantially in 

antiphase after inserting the link in the lead to that aerial which was 

lagging initially. This group of figures, taken collectively, affords very 

complete proof of the vector addition of the two component patterns 

and establishes a principle which will find many applications. Also the 

experiment, per se, provides a desirable aerial system in which the beam 

can be swung from side to side. Thus, compare Figs. 12.10 and 12.2: 

the single right-angled reflector produced a beam 39° wide at half-height 

capable of being turned ±22° off centre in the limiting case: the W 

produces a beam only 26° wide At half-height and capable of being 

turned through ±22° in the limit. In the first case the aperture was 

1'76A and in the second the total aperture was 2*2A, the increment of 

width being 26 per cent. Now compare the system with a 6^ember 

curtain having side spacing |A: for such, the first zero is at ±24° and 
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Link k A long inserted 
in fed bo aerial No.1 

ini 

90 80 70 60 S040 30 20 10 0 10 20 30 40 50 60 70 80 90 
Bearing angle in degrees 

Fig. 12.10. An observed diffraction pattern for a pair of 45° reflectors, side by side 

1 J -I 
LirJ^ 4 A long inserted i 
in lead to aerial No.Z / 

In 

niii 
90 80 70 60 50 4 0 30 20 10 0 10 20 30 40 50 60 70 80 90 

Bearing angle in degrees 

Fio. 12.11. An observed difiraction pattern for a pair of 46° reflectors, side by side. 

the first side lobe 4 per cent, in power. Fig. 12.8 shows the minima 
oootur at about ±26° and the lobe is 12*6 per cent, in power. The two 

patterns ate thus seen to be yery comparable; the curtain requires five 
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feeding cables and the W only two. Clearly a curtain of Vee aerials is 

a very practicable device for producing a narrow beam by means of 

only a few feeding cables. 

An attempt at a mathematical analysis of two Vees, side by side, 

was made in § 7.4 and it was intended as an introduction to the series 

of experiments we have just described. That analytical approach was 

possible only for a W whose angles were 90° and thus the solution is 

not directly comparable with the experimental results which have just 

been recorded.f 
However, it is worth while to compare Fig. 12.8 with Fig. 7.13 and 

with the dotted curve in Fig. 7.14. First of all it should be pointed out 

that curve (1) of Fig. 12.8 differs in kind from that in Fig. 7.14 in that 

it is an experimental curve (for the 45° Vee which was used) whose 

ordinates have been multiplied by cos(l*l7rsin0), whereas the dotted 

curve in Fig. 7.14 is an ideal pattern for a 90° Vee whose ordinates 

have been multiplied by cos(l*567rsin0): this explanation accounts for 

the side lobes in curve (1) of Fig. 12.8. Curve (2) of Fig. 12.8 shows 

that the field strength does not pass through zero at 6 = ±28-5° but 

falls only to a minimum value which occurs near this bearing. Reference 

to the curve o£"\E\ in Fig. 7.13 shows that the field strength does not 

pass through zero at 6 == ±1^° but falls only to a minimum which 

occurs near this bearing. The reason for this minimum is apparent 

from the curves of Ep and Eq in the same figure, since it will be seen 

that these do not pass through zero simultaneously. Thus it would 

seem that the observed minima recorded in curve (2) of Fig. 12.8 are 

characteristic of the use of a W and need not be attributed to the 

finite area of the reflecting sheets. The width at quarter-power of the 

observed beam in curve (2) of Fig. 12.8 is 34°, whereas the corresponding 

width in Fig. 7.13 is 26° for the 90° W. Hence in this respect the 

performance of the given 45° W was less desirable than the predicted 

performance of a certain idealized W of angle 90°. It is very likely 

that the performance obtainable from four given sheets woqld be very 

insensitive to the angle of the W which they formed, provided this 

angle lay between about 90° and 45°. Indeed, this is likely to be so, 

quite apart from the effects of diffraction round the edges of the sheets, 
t Although the 'virriter had long realized the problem could be approached in the 

way this is done in Chapter VII, he had not evaluated the solution at the time when 
an urgent practical application demanded that the experiments recorded in Figs. 12.8 
and 12.10 should be made. For that application it was clear that a 45^ W would give 
a more desirable performemce than a 90'’ W and time was not available to test both 
these W reflectors. He has not had an opportunity to teat a 90^ W since evaluating 
the solution recorded in Fig. 7.13: it wotdd be interesting to make this comparison. 
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because closing the W will reduce the separation between the two 

aerials and thus tend to counteract the benefit of the sharper Vee. 

If experiment bears out this prediction, then the final choice of the W 

to be used in a given application can be determined by consideration 

of available floor space for the complete reflector. It would be instruc¬ 

tive to make this simple ad hoc research and to record it for the guidance 
of practical designs. 

12.3. Trough-shaped reflectors 

In optical practice we are familiar with mirrors which are shaped 

accurately to curved surfaces, parabolas, spheres, etc., whereas in 

radio work we obtain good performance from flat mirrors forming a Vee. 

The problem can be solved analytically for flat surfaces but not for 

parabolic surfaces. By now the reader should understand Vee mirrors 

very thoroughly and it is probable that the more he thinks about them 

the more obscure and surprising will the optical behaviour of a parabola 

appear to be. In attempting to find a mental bridge between the 

behaviour of a Vee and a parabola it is natural to try to associate 

various parts of the pattern with various parts of the reflecting surface, 

and to try experimentally the effect of local changes of shape in the 
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Vee. With this purpose in mind the writer explored the effect of 

amputating the apex of a Vee, closing the opening by a flat sheet 

parallel to the aperture plane: thus forming a mirror whose plan view 

was a regular trapezium or, more simply, a trough. Thus, refer to the 

inset diagram jn Fig. 12.12 which shows, in plan view, a 120® Vee 

reflector whose sides were 6 ft. wide: they were made by combining a 

sheet 3f ft. wide with a sheet 2^ ft. wide. If the two smaller sheets 

are removed and some other sheet placed across AB, we have what 

will now be termed a trough. In this particular structure the width 

of the floor of the trough was 0*37 of the width of the aperture. 

Measurements were made at A = 60 cm. (20 in.). Had the Vee been 

complete and infinite in extent then reference to Fig. 3.8 will show the 

forward field would be a maximum when the aerial was distant 33*5, 

47, and 69 in. from the apex. In the initial experiment the floor of the 

trough was left open and then the front-to-back ratio was found to 

have the values showm in the table below. 

Table 12.1 

Distance of aerial from apex . 33-6 in. 47 in. 59 in. 
Back-to-front power 0-3 013 016 
Back-to-front field strength . 0-55 0-36 0-4 

It is instructive to note that the backward field is only of the order of 

half the forward field even when the hole is 2*3A wide. 

The bottom of the trough was closed by a flat sheet and the forward 

field was observed as a function of the distance D of the aerial from 

the said flat bottom. Reference to the said inset diagram will show 

that the apex of the Vee was 13*6 in. = h behind the said floor. It is 

instructive to compare the value of (h-\-D) at a station for maximum or 

minimum forward field with the corresponding distance R observed for 

the complete Vee, and for this purpose the table below has been compiled. 

Table 12.2 

Forward field test; 120® trough^ h = 13*6 in. 

D observed, inches . 16 19 26 30 36-6 43 48 
2S*5 32*5 38 43 49 66 61 

R observed for Vee . 19-6 26 33 40 47 53-5 59 

When D ^ 15, 25, 35*5 in., etc., the forward field was a maximum. 

This table shows that the fiat floor pushes forward the stations for 

maxima and minima, and by an amoimt which decreases as D increases: 
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thus when D = 25 in. then JJ'—jR = 5 in., and when D == 48 in. = 2-4A 

then R'—R = 2 in. = 0*1A. The largest peak of forward field occurred 

with the trough when D = 35-5 in. and for the complete Vee when 
JB == 47 in. 

Fig. 12.12 shows superposed the observed pattern, at these stations, 

which resulted from the complete Vee and also from the trough. It 

may be seen that the amputation has had no significant effect on the 

main beam but has had a small effect on the side lobes. As usual, the 

side lobes are not symmetrical, and therefore very close comparison of 

them in the two figures has little meaning. On the whole it is fair to 

say that the effect of converting the Vee into a trough is scarcely 

noticeable and is certainly negligible for practical purposes. 

It is very striking to discover that so drastic a change of shape, or of 

the figure as the optician would call it, has had scarcely any effect on the 

pattern. From the purely practical point of view it shows, once more, 

that it displays a lack of understanding to demand close tolerances in 

the construction of mirrors: and it discourages us from expecting to 

find outstanding virtues in a parabolic shape. Moreover, it gives us leave 

to reduce the depth of the mirror and thereby save an appreciable 

amount of floor space. The writer has done much systematic measure¬ 

ment of the effect of converting a Vee into a trough. He finds the effect 

on the main beam is always negligible and the effect on the lobes is 

usually small; sometimes they are decreased and sometimes increased 

by the trough shape. Recognition of the comparative unimportance 

of the shape of the back of the mirror is an important principle to have 

established since it will assist us in approximating to solutions of 

cases which cannot be dealt with analytically. The other aspect is the 

purely practical one of how much floor space can be saved by using 

a trough and here the reader will look for direct guidance. If )8 = 90®, 

then RjX should be if RjX = then large lobes are bound to accom¬ 

pany the sharp main beam. Accordingly we presume that RjX = f 

is the only station of real interest, and for this it is permissible to 

amputate a depth of from 1 to IJA. If )8 = 60° we ought to make 

RjX = I and then it will be permissible to amputate a depth A. Thus 

we realize the depth which may be amputated cannot be very large, 

though it is certainly worth while for wavelengths greater than 

about 50 cm. 

Fig. 12.13 shows the pattern observed from a 45° trough described 

by the inset diagram, at A == 50 cm. The aerial was distant 5*5 in. 

from the fiat back and was then at a station of maximum forward field: 
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the amputated depth was 42 in., and hence the aerial was then 47-5 in. 

from the apex, whereas the maximum occurred when the aerial was 

40 in. from the apex of the complete Vee. This figure should be com¬ 

pared with Fig. 10.11, which relates to the corresponding station for 

the aerial: the two observed patterns are scarcely distinguishable and 

thus the amputation has not had an appreciable effect. The aerial 

Fio. 12.13. Diffraction pattern for 46° trough reflector, A — 50 cm. 

ought to be situated at M/X = 2 in the ideal Vee and then the gain is 

53: thus we suggest that a depth of nearly 2A can and should be 

removed from the apex of a 45® mirror. Fig. 12.13 is an attractive 

pattern for practical application. A pair of such troughs side by side, 

operated as described in § 12.2, would produce a very sharp and 

substantially lobe-free beam. We have in it the basis for a practical 

design which is well worth remembering. 

If the aerial is to be near the first station of maximum forward field, 

then it is so close to the apex that not much can be amputated and 

it will be scarcely worth while to adopt trough shape to save space. 

Nevertheless, for the sake of completeness, we now record some tests 

of troughs formed by amputating less than one wavelength from the 

apex of a Vee. 

Two gauze-covered square sheets each measuring 5 ft. by 5 ft. were 

hinged to a sheet 5 ft. by 2 ft.; at one extreme this formed a flat sheet 

12 ft. wide by 5 ft. high and at the other extreme a rectangular trough 

2 ft. wide and 5 ft. deep. It may be calculated from this that when the 

slanting sides of the symmetrical trough were inclined to one another 
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at 90®, 78®, 60®, 45®, and 30®, then the slant sides of the complete Vee 

would have been 6*4, 6-6, 7, 7*6, and 8*8 ft. respectively. Measurements 

were made at A == 125 cm. (4 ft.), and hence the said slant side ranged 

from 1*6 to 2-2A. We remember the ideal pattern for a Vee differs 

insensibly from a simple sinusoid until the length of arc across the Vee 

at the aerial is appreciably in excess of ^A: in this range the gain is 

almost independent of RjX and thus the aerial does not need to be 

stationed with precision. The curve of forward field from the trough 

was observed for various values of j8 between 90® and 30®, and the 

position of the aerial for the first maximum did not appear to be 

appreciably different from what it would have been if the reflector had 

been a Vee instead of a trough: moreover, the first station for zero 

forward field was advanced by not more than 20 cm., which here is ^A. 

Accordingly the existence of the flat bottom to the trough may be 

ignored in choosing the position of the aerial. Or we may well put it 

this way: make the bottom of the trough about |A wide and then 

situate the aerial as near the bottom as it is convenient to do. In the 

tests recorded below the aerial was situated at the observed station for 

maximum forward field and this was always about 25 cm. from the 

flat floor: it is, however, quite certain that the observed and recorded 

patterns are not sensitive to the aerial station. The outstanding features 

of the observed patterns are recorded in the table below. 

Table 12.3 

p 

Slant 
height of 

equiv. ‘Fee’ Aperture 

Width at 
half¬ 

power 

Width at 
quarter- 
power 

Power on j 

9=iP 

Power on 
B = 45° 

ft. ft. 
90" 6-4 9 36” 51" 3-6% 3-5% 
78" 6-6 8-3 38” 63° 5-5% 3-6% 
60" 7-0 7 39° 54” 180% 2-6% 
45" 7-6 6-8 47° 68" 60 0% 7-0% 
30" 8-8 3-6 69° 81° 83 0% 140% 

The figures in the last four columns show that the pattern is almost 

independent of jS in the range 90® to 60®, hence 60® is the best angle for 

practical purposes since it makes the least bulky reflector. 

We have recorded elsewhere that sheets 8 ft. wide inclined at 60® 

produced a beam whose width at half- and quarter-power was 36® and 

49® respectively with 14 per cent, power at 0 and 1 per cent, at 

6 = 45®. Had the Vee been amputated to a trough the sheets here 

would have been 7 ft. wide: the discrepancy between the trough 



420 TROUGH REFLECTORS [Chap. XII 

pattern and the Vee pattern for 8 ft. sheets is not more than is reason¬ 

able to attribute to a difference of 1 ft. in width. Hence it seems 

reasonable to state that the trough shape, per se, did not affect the 

pattern. We have also recorded elsewhere that sheets 8 ft. wide 

inclined at 45° produced a pattern described, in the same notation, 

by 44°, 62°, 32 and 3 per cent.: the trough resulted from the amputation 

Fig. 12.14. Diffraction pattern for 60° trough reflector. A — 50 cm., D = 7 in. 

of a Vee whose sheets would have been 7*6 ft. wide and its pattern is 

described by 47°, 68°, 60 and 7 per cent.; here, then, there are signs 

that the trough shape has deteriorated the pattern slightly. However, 

reference to the table shows that, with these sheets, j8 ought not to be 

as small as 46° and hence this reflector wa's not of practical interest. 

We will close with the following dictum. Provided the sheets are wide 

enough to make advantageous use of some given angle p, then the Vee 

can be converted into a trou^, whose floor width is about JA, without 

appreciable effect on the pattern. 

Kg. 12.14 shows the observed pattern (at A = 60 cm.) due to the 

60° trough described in the inset diagram. It was taken at a station 

of maximum forward field which occurred when D = 7 in. and this 

makes B' = D+h = 69 in.: for the complete and ideal Vee this 
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distance would have been 66 in. The ideal pattern passes through 

zero at 8° and 12° and 23° and has a side lobe, of amplitude 14 per cent, 

in power, centred on 18° (see Figs. 4.12-4.14). It may be seen that the 

main beam and neighbouring very small lobes of the ideal pattern for 

the Vee are reproduced faithfully, but the large lobe is much too big 

and its bearing about 4° larger than it ought to be. The pattern for 

the complete Vee had larger lobes (they were 68 per cent, in power and 

were centred on ±25°) and it exhibited more diffraction round the 

edge and a much larger ‘back-to-front ratio’. Hence, on the whole, 

the flat back has made the pattern approach more nearly to the ideal 

for the Vee. Fig. 12.16 shows the pattern which was observed when 

certain small sheets were placed across the angles of the trough, in the 

way described by the inset diagram. Comparison of Figs. 12.14 and 

12.15 shows that these sheets across the angles have had an enormous 

effect in decreasing the side lobes, without appreciably altering the 

main beam. Save for the diffracted field on bearings greater than 30°, 

this pattern is now an extremely close approach to the ideal pattern 

for a 60° Vee with B/X = 3*26. Here we meet a case where the shaping 

of the back of the mirror has been advantageous: we shall not discuss 

it further now. 
The reader ought now to turn back to section 4 of Chapter VII and 

refresh his memory of the analytical discussion of the effect of a convex 

baek to the Vee, An inevitable effect of such a back is to produce two 
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component patterns which are in phase quadrature with one another, 

and this means that the field cannot pass through zero on any bearing 

but will fall only to a minimum at certain bearings. Figs. 12.12-12.15 

do not show that minima (in contrast to true zeros) are a conspicuous 

feature of the patterns resulting from flat-backed troughs. This effect 

was conspicuous in the pattern of a certain 72° trough (n = |), but it 

must be remembered that minima are also characteristic of a complete 

Vee when n is not an integer. With the evidence before us there 

is no more reason to attribute the minima to the flat back, se, than 

to the particular angle of the Vee. The minima, due to the curved back, 

are well typified in the ideal pattern shown in Fig. 7.11. The discussion 

in Chapter VII showed that if the radius of the back is chosen so as to 

make = 0, then the back is not likely to have much effect on the 

pattern provided the aerial is not much farther away from the apex 

than the second station for maximum forward field. But this does not 

say that, in this range of z, no back will disturb the pattern much, but 

it surely helps us to a general understanding of why flat backs often do 

not disturb the pattern very much. 

The equatorial pattern for = 60° and RjX = 3 J is very attractive 

(it has been defined earlier on page 384), and it is tempting to 

examine whether this very desirable pattern is inevitably ruined by a 

curved back. After close consideration the writer has realized that it 

would involve prohibitive labour to settle this question definitely and 

for these reasons. If the aerial is about 3J^A from the apex there will 

be six lobes and the main beam. From the argument of § 10.3 (c) 

and Figs. 4.13 and 4.14 we realize there is a strong tendency for all 

seven of these petals to have nearly the same length. But a particular 

value of RjX may exist at which the main beam is vastly longer than 

the other petals, and such a case occurs for jS = 60° when RjX = 3J. 

When there is a curved back there are two independent variables, k 
and z. For making the comparison we are looking for we should 

presumably choose z so that z/27r = 3J and must then derive the 

patterns for various values of k round about kj^n = 3. If each of these 

patterns has very large lobes we have proved only that for the given 

value of z there is no value of k which gives substantially the same 

pattern as obtains when RjX = and A; = 0. It would be necessary 

to repeat the process for various values of z and a vast amount of 

labour would be involved before the question ooiild be answered with 

certainty. The labour is not justified. The analysis of the curved back, 

given in Chapter VII, is of immense value in showing that a convex 
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back need not (and indeed seldom can) have the general effect which 
would be suggested by geometrical optics. This helps us a good deal to 
understand the general reasons why a flat back often does not disturb 
the pattern much. It is tempting to use the ideal pattern for a cxirved 
back as the ideal pattern with which to compare the observed patterns 
from a flat back trough, for then we could assess the effect due to the 
back of the mirror being flat instead of convex. But unfortunately this 
is not practicable because we cannot decide on the proper and appro¬ 
priate values to choose for k and z\ and it is likely the ideal pattern may 
be very sensitive to the precise values of these two parameters. We 
must leave the problem in a qualitative stage and not press it to a 
quantitative stage. 

In comparing the size of the side lobes which are produced by a 
given Vee or trough we must be careful not to overlook the fact that 
the exciting aerial is a half-wave aerial and not an infinite filament. 
If the screens were unlimited in extent this would not matter, but 
when the height of the screens is comparatively small it is possible 
that it does matter. 

12.4. Analysis of a 45° Vee with circular back 

After giving these experimental results for troughs it seems appro¬ 
priate to examine the current density in a Vee with a circular back. 
We will take jS = 45° (i.e. n — ^) and = 4. Then the sagitta of the 
arc is 5 = JK(l-~cos 22*5°) = 0*076jK, whence sjX = 0*048 when A; = 4: 
accordingly the back is flat within 5 per cent, of a wavelength. We will 
take z~l and then the aerial is distant 0*48A from the back; accordingly 
the forward field would be almost zero if the back were flat and infinitely 
extended. The density of current induced in the curved back is given 
by (7.15), and hence we have 

A^ 

7 
cos 40+cos 120+ 

,(4) A*(4) 
...] 

2-4 
4 (O-58+O-O19j)cos40+—joosl20 

And this shows the distribution is sensibly a simple sinusoid and 
cophased with I: if the flat back had been an infinite plane, then the 
‘bright spot’ density would have been given by the expression 

(l + l-05j). 

thus showing that both the magnitude and phase of the ‘bright spot’ 
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density is modified profoundly by the sides of the Vee. The density 

induced in the sides of the Vee is given by the expression 

Xi 
I 

S27r[Xi{ar,k)H^{z) 
ar [ Hi(k) H,^k) ' 

Fig. 12.16(a) shows the two components of induced density for 
j3 = 45°, i = 0, and z = 7, while Fig. 12.16(5) shows these two com- 

Fio. 12.16. Distribution of indixced current in 45° reflectors. 

ponents when k = comparison of these two figures is instructive 
and shows that the main effect of the presence of the back is to force 
the current in curve (a) down to zero at k == 4, Fig. 12.16 (c)*shows the 

distribution of current round the curved back whose total width is JA. 
When k = 0 and z = 7 the equation for the pattern is 

= 0*1678 008 40+0-0026 cos 120, 
16^0 

and when fc = 4 it is 

= (0*14-0*25j)oos 40+0*0026 cos 120. 
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The presence of the back has an insensible effect on the third harmonic 

term in the pattern and in both cases the pattern differs insensibly 

from a simple sinusoid. The back makes a large change in the phase 

of the field and increases its R.M.S. value in the ratio 1*8. A curved 

back can do no more than modify the relative values of the Fourier 

components of the pattern and give them phase angles relative to one 

another. It is no use looking for a mechanism which will produce a 

very blunt beam, such as geometrical optics might suggest would be 

produced by the convex back. 

12.5. Vee reflectors used to curb the side lobes of curtain arrays 
It seems appropriate to place this section here because it can be help¬ 

ful in feeling our way towards analysing the behaviour of a parabola. 

Fig. 12.17. Diffraction pattern for a 6-member curtain array whose plane is 2iA in 
front of an infinite reflecting sheet. 

The dotted curve in Fig. 12.17 shows the pattern for a curtain having six 

equal and cophased currents spaced p apart: it is characterized by large 

side lobes centred on ^ = 28° and 68°. Such a curtain would usually be 

provided with a flat sheet reflector, so as to restrict the radiation to 

one direction along the normal. CJonsideration will show that the side 

lobes can be modified considerably if the distance between the curtain 

and the reflecting sheet is chosen suitably. The curtain may be replaced 

by a single equivalent current at the middle point of its width, the 

strength of this equivalent current depending on the bearing angle in 

the manner required to give the pattern for the curtain alone. 

The pattern of the curtain in the presence of the screen can be 
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calculated from this equivalent current and its mirror image behind 
the screen. If the distance between the curtain and the screen is chosen 

so as to make the field, of the equivalent current and its image, zero 
when 6 is near 28°, then the large side lobe will be much reduced. The 

equation for the resultant field is 

2E' sinj^cose^, 

where d is the distance between the planes of the curtain and the 

reflector and E' is the field of the curtain alone on bearing 0: thus the 

field is seen to be the product of two independent factors. The values 
of 6 at which the second factor is zero are shown collected in Table 12.4 
for various values of d/X, 

Table 12.4 

d/X e 
5/4 37 66 90 
7/4 31-2 65-3 73-5 90 
9/4 27 49 64 77-5 90 

13/4 22-6 39-6 52-5 62-6 72 81 85-5 

This table shovirs that when d/X = ^ the field is zero when 6 = 22*6° 
and 39*6°; accordingly it must be a maximum when 6 is near 31°. But 

the maximum of the first side lobe of a 6-member curtain occurs when 

0 = 28°, the field passing through zero when 6 = 19° and 42°. Hence, 
if d/X = the first two zeros of the second factor are very near the 

first two zeros of the first factor and thus the side lobe of the curtain 

will not be appreciably reduced by the reflector. But if d/X = | the 
table shows the reflector makes the field zero when 0 = 27° and this is 

almost the bearing for the maximum of the side lobe. Fig. 12.17 shows 

the pattern for a 6-member curtain distant 21X from an infinite reflecting 
sheet: the dotted curve in the same figure shows the pattern for the 

curtain alone. In the presence of the reflector there are now seven 

bearings on which the field is zero, whereas there were only three such 

bearings for the curtain alone. For many purposes the reflector (if 
spaced at 2JA) has improved the pattern considerably. 

If a curtain array is combined with a 90° Vee, then the field w’^ill be 
zero on bearings greater than 45° and thus the Vee removes the outer 

side lobes. The equatorial pattern for a single aerial in a 90° Vee is 
given in equation (3.156) and is 

E 
= cos(icos0)—cos(^sin^), 

■iEo 
(3.186) 
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the phase of the field being as though the single aerial were at the apex 

of the Vee. It is helpful to look at the structure of (3.156) in a way 

we have not done explicitly before. The second factor in it is the same 

as the first factor save that it is plotted from the origin Hence 

to obtain the curve cos(fccos0)—cos(A;sin0) we have only to plot, on 

transparent paper, the simple curve cos(A;cos0) in the range of 6 from 

(f to 90®, then fold it about the ordinate at 45°, and subtract the two 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

Fig. 12.18. Diffraction pattern for two parallel 7-meinber c\irtain arrays 
separated a distance 5A. 

halves which have now become superposed. The reason for this should 

be obvious from consideration of the images. Thus, the two positive 

currents are in one line with the origin and separated a distance 2i?, 

and their resultant field is 2EQOos(koos6). The pattern due to the two 

negative images must be the same shape as that due to the two positive 

currents, but its axis is turned through 90°. 

Fig. 12.18 shows the ideal pattern for two parallel 7-member curtains 

separated by 5A: the zeros at 16-5, 34-8, and 59-5 are due to the curtain 

having 7 members and the two intermediate zeros are due to the two 

curtains being 5A apart. 

If the right-hand half of Fig. 12.18 is pivoted round the point 0 = 45° 

and turned clockwise through 180° and the two superposed patterns 

are then added, the result will give the pattern for a 7-member curtain 

distant 2JA from the apex of a 90° Vee. This is shown in Fig. 12.19: 

the dotted curve in this figure shows the pattern for the 7-member 

curtain in isolation. The largest side lobe has a fractional amplitude 

of 9 per cent, and is centred on 0 = 40°: in practice much of this would 

‘slide over the edge’ of the finite reflecting sheets. Thus the pattern 

would be a substantially lobe-free beam whose width at half-height 

is 16°. 
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These examples suffice to show how the lobes of a curtain can be 

curbed enormously by the use of a wide-angle Vee. If the middle 

members of the curtain carry a relatively larger current, then the lobes 

will be still further reduced. We remind the reader that if the curtain 

is not flat but is an arc of radius R (stretching right across the Vee) and 

carrying a sinusoidal distribution of current, then the pattern is a true 

Fig. 12.19. Diffraction pattern for 7-membor curtain in a 90“ reflector. 

sinusoid for all values of R. Thus, in general, the Avidth of the main 

beam will tend to be increased if the curtain is convex to the aperture. 

Consideration will show that a concave curtain must produce the same 

pattern as an equivalent curtain in the plane of the bisector: the loading 

and spacing of the said equivalent curtain being a function of the 

curvature. 
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PARABOLIC REFLECTORS 

13.1. Introduction 

Consider the problem of a long current filament which is parallel to 

the generators of a parabolic cylinder, is inside it, and on the axis of 

a parabola which is a cross-section. The current filament will induce 

currents in the metal of the parabolic cylinder and they will flow along 

the generators. The electric field at any point will be the resultant of 

the field due to the original current filament and the component fields 

due to all the filaments indu«^.ed in the metal cylinder, whose shape is 

a parabola. It is a two-dimensional problem, and it has to satisfy the 

condition that the electric field is zero at all points on the metal wall. 

The problem is reminiscent of the problem of a filament between two 

flat metal sheets and the solution of this has occupied a large portion 

of this book. But the analytical solution for the parabola is not forth¬ 

coming. Since two intersecting straight lines are the asymptotes of a 

hyperbola it might be expected that the solution for fiat sheets would 

indicate the solution for a hyperbolic cylinder, but it does not do so: 

hence we do not get even the lead of a hyperbola to help us towards 

a parabola. In writing this we recollect that the solution for flat sheets 

is, analytically speaking, unsatisfactory when images do not exist: 

experience has shown that the solution is very valuable and is reliable 

when applied to reflectors used in practice, but this good fortune does 

not remove the analytical trouble. Having regard to the analytical 

trouble (of multiple values) which arises with flat sheets and the 

analytical impasse which arises with a hyperbola and a parabola, the 

writer is inclined to suspect that no completely satisfactory solution 

exists for infinitely extended reflectors. He suspects that a correct 

solution would include the parabola, the hyperbola, and all flat sheets. 

Perhaps it is a fortunate accident that the solution for flat sheets is 

analytically correct when images can be found, and this means that 

the form of the general solution happens to simplify itself enormously 

in these particular cases. It may be that the general solution is not of 

the form F(r) x ^(0), but that it just happens to degenerate into this form 

in the image cases. This would mean that the analytical form of the 

solution is extremely sensitive to the exact form of the boundary, but 

that the numerical value of the solution is not unduly sensitive to that 

form. From a practical point of view we get on very well indeed by 
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using a solution which is not all it should be and perhaps the step 

between flat sheets and a parabola may be less than it seems to be. 

The experiences recorded in the last chapter show that, in general, 

‘trough reflectors’ behave very much as though the apex of the Vee 

had not been amputated; accordingly the analysis for the Vee is sub¬ 

stantially valid for a trough. This must lead to the expectation that 

the behaviour of a parabolic cylinder will be very similar to that of a 

flat-sided trough: accordingly we shall set out with the expectation of 

finding that the forward field passes through a succession of maxima 

and minima as the distance is varied between the aerial and the vertex 

of the parabola. 

But when the problem is approached in this way the reader will 

surely inquire why a parabola should be used in preference to a trough 

or a Vee, since to do so strays farther outside the range of analytical 

guidance and moreover requires the reflector to be built to a shape 

which is much more difficult to construct than a Vee or a trough. Now 

a parabola is defined as the locus of a point which moves so as to be 

equidistant from a given line and a given point: the said given point 

has long been called the focus, and this is the Latin word for a fire and 

for a hearth. This will recall to the reader his ‘schoolboy’ knowledge 

of parabolic mirrors and the enormous importance of putting the source 

of light at the focus of the parabola. It explains why we think of using 

parabolic reflectors for aerials: we do so with the expectation of finding 

a focus. 

The approach we have taken may seem forced and pedantic, but it 

has been taken very deliberately to bring home the contrast between 

our experience with aerials and our experience with, say, the headlights 

of a motor-car. This contrast has long been very apparent to the writer 

and it led him, in 1941, to conduct the series of experiments which will 

now be discussed. 

13.2. Experiments with parabolic cylinders 

The experiments to be described now were made at a wavelength of 

50 cm. and they were deliberately schemed so as to make the approach 

to the investigation follow the procedure used with Vee reflectors. In 

other words, they were made in the expectation that the behaviour 

of parabolic reflectors would be substantially similar to that of Vee or 

trough reflectors, but in the hope that it would prove to be dissimilar 

to a Vee and akin to that of the parabolic mirrors used for optical 

purposes. Three frames, each of height 2^ ft., were made in wood and 
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shaped to a parabola: fine-meshed copper gauze was nailed to these 

wooden frames, thus forming a cylinder whose length was 2| ft. and 

whose cross-section was a parabola. All wooden parts were on the 

convex side of the gauze and thus the reflector presented a smooth 

metal surface to the exciting aerial. Each of the three frames had an 

aperture of 12 ft., but the depth between the aperture plane and the 

vertex of the parabola was not common: these depths were 5, 4, and 

3 ft. respectively for the cylinders, which will in future be designated 

Aj B, and C, The wooden frames were extremely well made and the 

width conformed to parabolic shape within in. at any distance 

from the vertex: since the wavelength was near 20 in., this means that 

the ‘figure’ of the mirrors was correct to within ±‘^’5 per cent, of A 

and thus was more perfect than the best optical practice. It follows 

from the stated dimensions that the focal lengths of the cylinders A, B, 
and C were 21*5, 27, and 36 in. respectively. When the wavelength was 

50 cm. the aperture of each was 7*5A and the height of each was 1-5A; 

the focal lengths being IdA, 1-35A, and 1-82A respectively. By tearing 

strips of gauze off the wooden frame it was possible to investigate the 

effect of a progressive decrease of the aperture of a parabola of given 

focal length: this process was carried out on cylinder A and on that 

one only. 

The wooden frame was mounted on a wooden turn-table and placed 

so that the axis of the parabolic cylinder was vertical. The aerial was 

a half-wave dipole which could be moved along a light wooden bar 

which pointed along the axis of a parabolic section. The axis of the 

aerial was vertical and thus the electric field was perpendicular to the 

ground. 

The receiving aerial was distant lOOA from the axis of the turn-table 

and it consisted of an in-line array of eight half-wave aerials connected 

to a thermocouple: the said in-line array was parallel to the axis of a 

small reflecting cylinder (which, incidentally, was shaped to a parabola) 

which served both to improve the ‘gain’ and to shield the receiver from 

spurious fields radiated by surrounding objects. 

(a) Forward-field tests 
Having taken a few diffraction patterns to discover which bearing 

of the turn-table corresponded to the centre line of the main beam 

pointing directly at the receiver, the table was set at this bearing and 

the response of the receiver was plotted as a function of the distance 

between the aerial and the vertex of the paraboUc cylinder—^thus 
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performing a test corresponding to what ha,s been termed the forward- 
field test for Vee reflectors. 

The curves of forward field which were observed for the three 
cylinders are reproduced in Fig. 13.1. In each case they disclose stations 
of maximum, minimum, and zero forward field and so follow the 
precedent of Vee reflectors, as we were very inclined to expect. Any 

Distance of aerial from vertex of parabola, in inches 

Fig. 13.1. Curves of forward field for parabolic cylinders. 

station of maximum forward field has properties akin to what we mean 
by using the word focus: but there is only one point which is the 
geometrical focus of a parabola, and optical experience might lead us 
to suppose that a parabolic reflector would have only one station for 
maximum forward field, and this would be at the focus of the parabola. 
The forward field curve for parabola A in Fig. 13.1 has three stations 
exhibiting focal properties and none of them is at the focus of the 
parabola. Parabola C has four stations for maximum forward field 
and one of them is very nearly at the focus of the parabola: does the 
coincidence of the grand maximum of forward field with the focus in 
this case disclose a special virtue of parabolic shape or is the coincidence 
accidental? The answer to this question is given in Fig* 13.2, which 
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relates to parabola A when successive strips of gauze were tom off it, 

so as to leave a metal cylinder having the apertures stated on the 

curves in the figure. The focus was in the plane of the aperture in 

curve (b) in Fig. 13.2 and also in the lowest curve in Fig. 13.1, and 

accordingly these two cylinders then have a certain correspondence^ 

Fig. 13.2. Curves of forward field for parabolic cylinders. 

with one another; but the curves of forward field show no correspon-^ 

dence. Every curve in the two figures shows a zero of forward field 

when the aerial is near from the vertex and in this respect the 

parabola is then acting as though it were a flat sheet. The collective 

evidence of the two figures shows that the forward field has no strong 

tendency to be a maximum when the aerial is at the focus of the 

parabola and also shows that parabolic reflectors have a succession of 

stations for maximum forward field. Surely these curves suffice to 

show that the optical properties of parabolic mirrors have not begun 

to appear in the reflectors used here ? What is this discrepancy due to ? 

Presumably it is only a matter of scale, and consideration will show 

that the discrepancy of scale is immense. The spectrum of visible light 

is contained within the range of wavelength from, say, 7 x 10“® to* 
4791.1 F f 
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4x cm., and hence an aperture of 7 cm. is more than 10® wave¬ 

lengths: in our experiments the aperture is 7-2A. Moreover, in optics 

the most perfect point-source will have a diameter which is several 

thousands of A, whereas here that diameter is about 1 per cent, of A. 

In optics there is no possibility of exploring the focus within a small 

fraction of A, but only within a small fraction of the focal length. 

Apart from mere discrepancy of scale the optical problem and the 

radio problem are not the same, and it is not essential to demand 

exactly similar behaviour. It is difficult to believe that a vast parabolic 

reflector would exhibit optical behaviour when excited by a single 

radio aerials, though it would doubtless do so if it were excited by a 

vast swarm of aerials which were grouped in the neighbourhood of the 

focus. The optical description of the parabolic mirror in terms of 

constancy of path length is seductively simple. But if we approach 

the problem only with our experience of aerials, it is very hard to 

understand the undoubted importance in optics of the focus of a 

parabola. 

(b) Relation between aperture and width of main beam 

In the period 1940-1 there was a general belief that the width of the 

main beam, from a parabola, was strictly in the inverse proportion to 

the aperture. It is now widely realized that that belief is a fallacy, but 

doubtless the fallacy will tend to linger, more especially as things do 

conspire so as to make the rule roughly correct. Our knowledge and 

understanding of Vee reflectors makes us associate the width of the 

beam with the distance of the aerial from the apex. We know very 

definitely that the width of beam does not depend only on the aperture 

since a small axial displacement of the aerial, in a reflector of given 

aperture, may cause the central beam to disappear. Moreover, it is 

known that the main beam produced by a given Vee may well be 

appreciably narrower than the ideal and then an increase in the 

aperture may cause an increase in the width of the beam.^ In short, 

with Vee reflectors the aperture does not enter into the problem so 

long as the aerial is not much in front of its plane. Why then should 

it be supposed that the aperture of a parabola is important ? 

If the reflector is parabolic, then there is only one station for the aerial 

which has logical significance and that is the focus. If the aerial is not 

at the focus, then there is no reason for using a parabolic shape: it is 

a mere fancy shape if the aerial is not at the focus, and we can scarcely 

expect to make any interesting generalizations from experiments on 
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parabolic mirrors which are used in a way not directly appropriate to 

this shape. Consideration of Pigs. 13.1 and 13.2 is almost sufficient to 

show that parabolic shape cannot have any very special meaning when 

the focal length is only of the order of a couple of wavelengths. Never¬ 

theless a study was made of the relationship between width of beam 

and aperture when the aerial was at the focus. A close study was made 

of the width of the beam as the position of the aerial was changed 

slightly in the close neighbourhood of the focus: denoting the distance 

between the aerial and the vertex by d, the focal length by F, we shall 

study the width 20, of the main beam, as djF passes through the value 

unity, hoping to find (if parabolic shape has any virtue) that 20 is a 

minimum when d/P — 1. The width of the beam is defined here from 

the bearing 0j at which the field is zero or a minimum for the first time: 

the sensitivity of the galvanometer and the shape of the patterns was 

such that it is believed that 0^ could be determined within limits which 

certainly did not exceed ±0-5^. The wooden frame A, for which 

FjX =1*1, was used when the amount of copper gauze on it gave a 

parabola whose aperture w^as 7*3A or 5*8A or 4*6A or 3*5A (see also 

Fig. 13.2). The results of these experiments are collected in Table 13.1. 

Table 13.1 

Cylinder A, Focal length 21*5 in. 

djF 

Aperture 7*3A Aperture 6'8A 

0-93 0-96 10 107 Ml 0-93 0-98 102 1-07 

29. 17 16 16-5 14 14 23 20 18 17 

djF 

Aperture 4-6A Aperture 3*5A 

0-93 0-96 102 107 0-93 102 M2 

2^1 27 24 21 21-5 28 24 21 

The table shows that in all four cases 6^ is changing continuously as 

dJF passes through unity; thus establishing that the focus is not a 

station for minimum width of beam: thus the beam does not ‘focus’ 

particularly well when the aerial is at the focus, proving that the focus 

here is not a point of outstanding peculiarity or virtue. 

A plane current sheet of width 6, bearing a umform and cophased 

current loading has a beam width defined by the equation sin 0^ = A/6, 

and presumably the belief in the importance of the aperture is associated 

with this formula. Table 13.2 shows the values of 0^ observed for the 

parabolas and the corresponding values of arosinA/6 for the pattern 
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obtained when 

49’3 cm. 

[Chap. XIII 

dJF = 1, the precise value of A having been found to be 

Table 13.2 

$1 7-75 9-25 11 12-5 
arcsin A/6 . 7-7 9-9 12-8 16-6 

The agreement happens to be within the limits of experimental error 

for the two larger apertures but is widely outside these limits for the 

two smaller apertures. Thus the width of beam does not vary inversely 

as the aperture for a parabola of given focal length. 

It seemed worth while to study what effect a small change of A had 

on the pattern obtained when djF — 1: this experiment is recorded in 
Table 13.3. 

Table 13.3 

Cylinder A. Focal length 21-5 in. — 64-5 cm. 

Aperture 4*6A Aperture 3-5A 

d/F, 0-93 102 i M2 0-93 102 M2 
2di for A = 49'3 cm. . 27 21 22 28 24 21 
201 for A = t53*6 cm. . 28 24 20 32 28 20 

When djF = 1 an increase of 8 per cent, in A has increased by 

16 per cent, in both apertures, thus showing again that 6^ is not equal 

to A/6. The condition of = A is very nearly attained when A = 63'6 cm., 

and Table 13.3 shows that no peculiar result occurs when d — F — X. 

Table 13.4 records a similar test for cylinder B. 

Table 13.4 

Cylinder B. F — 21 in. = 1-36A, aperture 7-2A 

d/F n 0*92 0-96 1*0 1*04 1*08 
20, 22-76 23*76 24*5 26-25 27*5 

Thus Table 13.4 shows that 2di is changing continuously as dfF 

passes through the value unity: here, however, 20^ is increasing with 

djF whereas it was decreasing with d/F in cylinder A. Since the 

aperture was 7*2A it follows that 2 arcsin A/6 = 16'4°, whereas 2^1 = 24‘6° 

when d/F == 1. The measurements were repeated for various values 

of A between 66*1 and 48-7 cm. and showed that 2(?i decreased as A 
increased and was 20*6° when A — d5'l cm. 
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Table 13.5 

Cylinder C. jP = 36 in. = 1-8A, aperture 7-2A, and in focal plane 

dlF 0-86 0-92 0*99 1*08 114 
14 17 21 15 13 

Here 26^ passes through a blunt maximum when djF is near unity and 

then is about 40 per cent, greater than 2A/6: here the focus of the 

parabola has the converse of a focusing property. At djF = 1 it was 

found that 26^ decreased continuously as A was increased from 46 cm. 

to 53 cm. It is relevant to compare Table 13.5 with that part of 

Table 13.1 which relates to an aperture of 4'6A, because each relates 

to a parabola in which the aperture was in the focal plane: in Table 13.1, 

F/X = 1-1 and in Table 13.5, F/X = 1*8. In both cases 20^ is near 22°, 

although the apertures are in the ratio 1*56: this shows that the beam 

width does not bear a simple relation to the aperture even for parabolas 

having apertures in the focal plane. The width of the focal planes was 

7*2, 9, and 12 ft. in cylinders A, B, and C respectively, whereas 2di was 

equal to 15*5°, 24*5°, and 21° respectively at djF = 1: this shows that 

the width of the focal plane is not the determining factor and that was 

already apparent since an increase of A may either increase or decrease 

2di. These systematic tests have failed to discover that the focus of a 

parabola has any outstanding property. 

(c) Attempt to turn the beum by offsetting the aerial 

This experiment was performed on cylinder A when it had an 

aperture of 12 ft. The half-wave aerial was placed at the focus and 

the turn-table was moved until the response of the receiver was at its 

maximum: the aerial was then offset from the focus and the table 

turned until the response became a maximum again. It was found that 
offsetting the aerial 3^ in. from the focus (i.e. a = 10° in our notation) 

turned the beam through 4° in the opposite sense and increased its 

width from 15° to 35°. Hence the main beam produced by a parabolic 

reflector is difficult to turn away from the axis and has what we have 

previously called the rigidity which is associated with the main beam 

produced by a curtain array or a Vee reflector. 

(d) The complete diffraction pattern for djF ^ I 

The curves of forward field, Figs. 13,1 and 13.2, make it evident that 

a great variety of patterns can be obtained from a parabolic reflector. 

But for the purpose of this discussion there is only one pattern of 

general interest and it is the pattern when the aerial is at the focus. 
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For a given parabolic reflector there may well be patterns which are 

more desirable for practical use, but our purpose here is to discover 

why reflectors should be made parabolic. 

Fig. 13.3 shows the diffraction pattern resulting from cylinder C 

(12 X3 ft.) whto the aerial was at the focus and A == 49-3 cm.: since 

our main interest is in the side lobes, the peak of the main beam has not 

Fig. 13.3. Diffraction pattern for parabolic cylinder: aerial at focus and F = 1*86A. 

been included in the figure. This pattern exhibits dissymmetries of the 

kind with which we are already familiar. The aerial was foimd to be 

at the middle of the aperture within less than J in. in 12 ft. (i.e. 

a < 0*08°). Though the values of the maxima and the minima differ 

considerably on the two sides of the main beam, yet it should be noticed 

that the bearings of the maxima and minima are symmetrical within 

about one degree. 

The pattern was recorded at five frequencies between 650 and 661 

Mc/s and the observed angles of maxima and minima are recorded in 

Table 13.6. 
Table 13.6 

Cylinder C (12x3 /f.), aerial at focus 

/ 
Mc/8 //A fli 9. 08 9, 0. 

650 20 14 22 30 41 60 60 
626 1*92 11-6 19 28 38 48 61 
605 1-86 9-76 IS 28 39 47 61 
575 1*76 9 16 26 36 47 61 
661 1-72 8 14^6 25 33 46 60 
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This table shows that it is only and 0^ which are appreciably 

dependent on the frequency: it also emphasizes, once more, that the 

width of the main beam is not proportional to the number of wave- 

Fig. 13.4. Diffraction pattern for parabolic cylinder: aerial at focus and F = 1'35A. 

lengths in the aperture, since here the width of the beam increases 

with the frequency. Fig. 13.4 shows the pattern due to cylinder B 

(12x4 ft.) when the aerial was at the focus and A = 49-9 cm. (/ = 601 
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Fig. 13.5. Diffraction pattern for parabolic cylinder 

Mc/s): it is a more desirable pattern than Fig. 13.3 since it has smaller 

side lobes, but the two do not differ much in general character. Figs. 

13.6 and 13.6 show the pattern for cylinder B when / = 641 and 644 

Mo/s respectively. Once more the bearings for maxima and minima 

do not depend much on frequency, but the general level of the side 

lobes is least when / is near 600 Mc/s. The last four figures show that 

parabolic shape has no marked superiority over a Yee or a trough, 
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■either in respect of width of beam or size of side lobes. Indeed, the 

whole behaviour seems to correspond very closely with that of a trough. 

Fig. 13.6. Diffraction pattern for parabolic cylinder B, 

13.3. Comparison of parabola with a Vee 
Cylinder C is ^possibly of special interest because it has the focus in 

the plane of the aperture, and this is a very common disposition. The 

latus rectum of a parabola subtends an angle of 128° at the vertex and 

hence it would be of interest to compare the performance of cylinder C 

with a Vee of angle 128° and aperture 12 ft.: this would show the effect 

of bulging the flat sides of the Vee into the parabolic form. It would 

also be desirable to compare the observed with the ideal patterns for 

such a Vee, but the ideal pattern for a 128° Vee would be troublesome 

to compute since it would entail values of etc. It was felt that 

^ = 120° involving «7|, etc., was a sufficiently close approximation for 

our purpose. Flat sheets 6 ft. wide were available, and these gave an 

aperture 10*4 ft. wide when set at 120° to one another. We are thus 

about to compare a parabola 3 ft. deep and 12 ft. wide with a Vee 3 ft. 

deep and 10-4 ft. wide. We know that the pattern for the Vee should 

be specified as a function of the distance between the aerial and the 

vertex. Hence it is natural to compare the patterns when the aerial is 

the same distance from the vertex of the parabola as it is from the 

apex of the Vee, though it does not necessarily follow that these are the 
patterns which ought to be compared. Figs. 13.7, 13.8, and 13.9 show 

the superposed patterns for the parabola and the 120° Vee when the 

distance of the aerial from the apex (or vertex) was 25, 34, and 47 in. 

respectively. A glance at Figs. 13.7 and 13.9 shows that a profound 



13.3] PARABOLIC REFLECTORS 441 

efJect on the pattern is produced if the straight sides of the reflector 

are strained and curved to parabolic form. First consider Fig. 13.7. 

The patterns for this Vee have been compared, in § 10.3(c), with the 

Fig. 13.7. Diffraction patterns for parabolic cylinder and for 120“ corner reflector. 

Fig. 13.8. Diffraction patterns for parabolic cylinder and for 120° corner reflector. 

ideal and found to be closely in agreement with them. The pattern in 

Fig. 13.7 is for the station i2/A = | and the station for minimum 

forward field occurs at B/k = 1-66. The central beam is almost non¬ 

existent and has been replaced by a wide bifurcated beam: all this is 

thoroughly characteristic of an aerial veiy near a station for minimum 



442 PARABOLIC REFLECTORS [Chap, XIII 

forward field. On the other hand, reference to the lowest curve in 

Fig. 13.1 will show that JK = 25 in. in a station for maximum forward 

field for this parabola, and the pattern for the parabola in Fig. 13.7 

has the characteristics which we associate with an aerial near a station 

of maximum forward field in a Vee. Hence with our experience and 

understanding of a Vee it is natural for us to associate the contrast 

Fig. 13.9. DifEravtion patterns for parabolic cylinder and for 120® corner reflector. 

between the two patterns in Fig. 13.7 more with the position of the 

aerial relative to a station of maximum forward field than with very 

special properties of the parabolic shape of the reflecting surface. 

Extrapolation from Fig. 3.8 shows that i?/A = 2-3 is a station for 

maximum forward field for a 120° Vee: at A = 60 cm. this will occur 

at i? = 47 in., whereas reference to the lowest curve in Fig. 13.1 

shows that .E = 44 in. is a station of minimum forward field for this 

parabola. Hence if E is increased from 25 to 47 in., we should expect 

that the pattern for the parabola would have a form t5rpifled by the 

pattern for the Vee in Fig. 13.7 and the pattern for the Vee would be 

typified by the pattern for the parabola in Fig. 13.7, save only that 

the central beam had become narrower (because of the increase of jB/A). 

Reference to Fig. 13.9 shows that these predictions from general prin¬ 

ciples are fulfilled completely. Thus, if we had never heard of the 

optical properties of a parabolic mirror but had worked out the proper¬ 

ties of a Vee and had experimented with a Vee and had also experi¬ 

mented with a trough and then been confronted with a parabola, we 

should have fotmd the behaviour of a parabola completely understand¬ 

able and should never have suspected the remarkable properties which 

parabolic mirrors have in optics. 
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Now consider Fig. 13.8 which relates to J? == 34 in., which is near a 

station for maximum forward field both for the Vee and for the parabola 

and, incidentally, is very near that very special point, the focus of the 

parabola. The patterns for the parabola and the Vee do not differ in 

any marked degree, save only that the central beam from the parabola 

is about two-thirds the width of the central beam from the Vee. Here 

the aerial is virtually at that station which is of peculiar interest in the 

parabola, and hence that pattern in Fig. 13.8 should properly be termed 

the true and proper pattern intrinsic to this reflector. Yet it is just this 

very pattern which is changed least if the parabolic sides are drawn taut 

into the chords from the vertex to the ends of the latus rectum. It is 

just when the aerial is at the focus that this gross change of figure 

makes scarcely any difference to the pattern. Surely this establishes 

that v hat we are observing is not a focus in the optical sense ? 

Reference to Table 13.5 shows that the width of the central beam 

passes through a maximum near djF = 1, and hence it is unlikely that 

patterns for Vee and parabola, near jB = 34 in., could be found which 

would agree more closely than the two which are exhibited in Fig. 13.8. 

Table 13.5 was drawn up to dispose of the fallacy that the width of 

the beam is equal to the ratio of the wavelength to the aperture; and 

it did so largely by showing that the width was not only very sensitive 

to djF but was a maximum and not a minimum when d/F == 1. Now 

we can understand why it passes through a maximum as d increases 

from 31 to 41 in. This follows from Fig. 13.1, which shows that the 

forward field is a minimum when d — SO and when d = 44 in.: at these 

values of d the central beam will either have disappeared and been 

replaced by a bifurcated beam or shrunk to a small pimple at the 

bottom of a trough in the bifurcated beam. Such a pimple is seen tc 

exist in Fig. 13.9, but happens there to be slightly unsymmetrical; it 

also appears in the pattern for the Vee recorded in Fig. 13.7. Hence 

it is in accordance with the observed curves of forward field that the 

width of the beam should be a maximum, in this parabola, when the 

aerial is at the focus: this is, however, completely contrary to any 

idea of an optical focus or of the width of beam depending on the 

aperture. 

It must be conceded that, as shown by Fig. 13.8, the parabola 

produces a pattern which is slightly more desirable for practical use 

than the pattern for the Vee, but it does not follow that this is due 

necessarily to parabolic shape: it may be that a small increase in the 

width of the flat sheets would have brought the two patterns into veiy 
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close agreement, though it has to be granted that the main beam was 

indistinguishable from the ideal. 

So far we have been comparing the patterns corresponding to similar 

distances between the aerial and the vertex or the apex and the dis¬ 

cussion has shown that this is not a proper basis of comparison at 

stations of maximum forward field. But if, for the moment, we regard 

W 80 60 40 20 0 20 40 60 80 100® 
Fig. 13.10. Diffraction patterns for parabolic cylinder and for 120° corner reflector. 

a parabola as akin to a Vee whose apex has been amputated, then it 

follows that the nth station for maximum forward field of the parabola 

may well correspond to the (n+l)th or (n+2)th, etc., maximum 

station for the Vee. Hence it is surely more reasonable to seek to find 

a pattern, at a maximum station, for the Vee which coincides sub¬ 

stantially with the pattern from that maximum station most nearly 

coinciding with the focus of the parabola. This has been done in 

Fig. 13.10 which shows, superposed, the focal pattern of the parabola 

(cylinder C) and the observed pattern for the Vee at J? = 47 in. 

(RjX == 2*35). Now the two main beams are scarcely distinguishable 

and, from a practical point of view, there is not much to choose between 

the two sets of side lobes: hence it is submitted that a 120° Vee can 

produce the same main beam and substantially similar side lobes as 

the parabola with the aerial at the focus. 

It is interesting to compare the positions of the maxima and minima 

of forward field which were observed for the Vee with those observed 

for the parabola (Fig. 13,1) when 47—36 = 11 in. has been added to 

their distance from the vertex. The comparison is shown in Table 13.7. 

It may be seen that the last five stations are sensibly coincident; 

moreover, the gi:andest maximum for the Vee occurred when J? = 47 in. 
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and the grandest maximum for the parabola when d = 36 in. Thus 

there is good reason for associating the maximum at 36 in. for the 

parabola with that at 47 in. for the Vee: and when this is done the two 

patterns are found to be sensibly identical. In fact the performance of 

the parabola can be predicted completely from the ideal performance 

of a 120° Vee. 
Table 13.7 

Fig. 13.11. Curves of forward field for a certain parabolic cylinder and 
for a certain 120” trough reflector. 

Two gauze sheets of width 3*75 ft. were available: from these a 

trough was constructed with sloping sides inclined at 120° and with an 

aperture of 10*4 ft.: thus it was as though the first 2J ft. of the slant 

side of the previous Vee had been removed and a flat sheet placed 

across the hole left by the amputation. The distance between the 

bottom of the trough and the apex of the complete Vee was thus equal 

to 13*5 in. The inset diagram in Fig. 13.11 compares the cross-section 

of the trough with the cross-section of the parabola (cylinder C). 

Fig. 13.11 records the forward field test for the trough and also for the 

parabola, the abscissa being the distance between the aerial and the 
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floor of the trough or the vertex of the parabola. The two curves are 

strikingly similar and show that the two reflectors are substantially 

identical in respect of forward field. 

Fig. 13.12 shows, superposed, the pattern for the trough when the 

aerial was distant 34-5 in. from its flat floor and the pattern for the 

parabola when the aerial was distant 39 in. from its vertex. It was 

Fia. 13.12. Diffraction pattern for a certain parabolic cylinder and for a certain 
trough reflector. 

found that the pattern from the parabola at d = 39 in. was slightly 

better than that obtaining when d = 36 in.; and hence that pattern 

was recorded in Fig. 13.12 so as to credit the parabola with its most 

favourable performance. The difference between the two patterns is 

not very significant, and it is clear that the trough and the parabola 

are almost equivalent. There is here no special virtue in the parabolic 

shape: in the main it is merely a device for reducing the depth of the 

Vee, for a given aperture, and is surely no more than a very complicated 

method of amputating the apex. In short, we find that the pattern is 

not very sensitive to the shape (opticians would call it the figure) of the 

reflector and that the analysis of the Vee can be used as a close guide 

to the performance of a reflector whose shape approximates only 

roughly to a Vee, One would suppose from this that the analysis ought 



13.3] PARABOLIC REFLECTORS 447 

to be very tolerant of the exact shape of the boundary; whereas in fact 

the analysis seems to be very sensitive to the boundary in so much as 

the solution is multivalued unless jS is precisely a proper fraction of tt. 

13.4. Use of parasitic aerial with reflector 

When a single aerial is used to excite a parabolic reflector, then the 

practice is almost universal of placing an unfed half-wave aerial in front 

of that aerial which is being fed with current by a generator. It is com¬ 

monly said that the parasite serves to reflect those rays, from the driven 

aerial, which would otherwise pass directly out of the aperture and 

turn them back into the parabolic mirror; so that they emerge again 

as a substantially parallel beam. The use of a parasite follows a long- 

established practice in optics in which a small reflector is placed in 

front of the source in order to intercept the rays of light which would 

otherwise emerge without reflection by the parabolic mirror. 

The habit of using some form of reflector in front of the source was 

established in the early applications of aerials and parabolic reflectors. 

Thus it was used in the micro-ray link established in January 1934 

between Lympne in England and St. Inglevert in France, on a wave¬ 

length of 17‘4 cm. In that application the auxiliary reflector was a 

hemisphere and has been described by McPherson and UUrich.f They 

appear to have been satisfied that their parabolic reflectors were behav¬ 

ing as they would do in optics and they describe the auxiliary reflector 

in terms of the Gouy effect. They also rely on an analysis due to 

R. DarbordJ which seems to depend on ideas of reflection of rays from 

the parabolic surface and which leads to the conclusion that the aperture 

should be in the focal plane. 

Having regard to the previous sections of this chapter we can hardly 

accept the notion that a parasitic aerial reflects back those rays which 

would emerge through the aperture without reflection by the parabola. 

We should naturally describe the effect of the parasite aerial on the 

pattern in terms of the superposition of the patterns due to the simul¬ 

taneous action of two aerials at different distances from the apex of a 

Vee. Such an arrangement was discussed analytically in § 3.9, where it 

was shown that a second aerial can be used to modify the shape of the 

pattern and to control the side lobes. And it seems probable that this 

is a satisfactory and complete explanation of the benefits which are 

known to accrue from the use of a parasite aerial with a parabolic 

t See Joumca LE.E, 78 (1936), 636. 
I See Le J<mrnal de Physique^ 7 (1932), 105. 
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reflector. It may be that the familiar optical description may turn out 

to be only another way of saying the same thing, but if this be so, then 

the bridge between the two methods of description is not clear at 

present. The optical way seems to the writer to be little more than a 

rough qualitative guide, in contrast to our way which is systematic 

and quantitative. 

The writer hats made a few experiments on the use of a parasite aerial. 

But his interpretation of its action emphasizes the number of indepen¬ 

dent variables involved and this has an inhibiting effect on ad hoc 

experimentation. If our description is correct and complete, then it 

must be recognized that the component pattern due to the parasite 

aerial will depend on its distance from the vertex and it can well be at 

a station for which its forward field is very small. The resultant of the 

two component patterns will depend on both the phase and the magni¬ 

tude of the current induced in the parasite. At a given station the said 

phase and magnitude will be sensitive to the length of the parasite. 

Again, the use of a parabola is justified only if the source is at its focus: 

if there are to be two aerials they cannot both be at the focus, and hence 

one at least of them cannot be using the parabola properly. To explore 

the effect of the parasite systematically, patterns should be observed 

for all distances between aerial and parasite, for all lengths of parasite, 

and for ail stations of the aerial: a formidable task indeed. The writer’s 

experience is restricted to a parasite distant JA in front of the aerial, 

which was at the focus of parabola C. When the length of the parasite 

was 0'6A it was found that the side lobes were reduced to about one-third 

their amplitude (in power) without any measurable change in the 

bearings of their maxima or minima and without change of their 

inherent dissymmetries. When the length of the parasite was 0-4A the 

side lobes were increased in power, without change of bearing, and the 

values of the minima were increased relatively to the maxima. Refer¬ 

ence to the lowest curve in Fig. 13.1 shows that an aerial JA in front 

of the focus would be near a station of minimum forw ard fiel4 and hence 

its pattern would have side lobes which were relatively large. Thus it 

is in a position where it is competent to have a large effect on the lobes 

in the resultant pattern: the pattern due to the driven aerial alone 

appears in Fig. 13.10. If the two patterns are substantially in antiphase, 

then it may well be that the lobes would be reduced considerably by 

the parasite. If the two patterns are substantially in phase quadrature, 

then the result is likely to be an increase in the general level of side-lobe 

field. In changing the length of the parasite from 0*6A to 0*4A there 
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would be a considerable change in the phase of the current induced in 
it. The observed results seem to be roughly in accordance with what 
was to be expected. 

13.5. Parabola excited by means of a wave guide 
Much has been written in this book about the field of a current in 

a thin aerial, usually accompanied by a reflector, but not much has 

been said about the method of supplying the current to the said aerial. 

In principle this is obvious and is often, and commonly, done by 

dividing the aerial into two portions and attaching them to the con¬ 

ductors of a twin or a coaxial cable, which cable is supported in a line 

perpendicular to the aerial and passes out through a hole in the back 

of the reflector. So long as the diameter of the cable is small compared 

with JA, then the currents induced in its metal sheath will be small and 

they will not affect the pattern appreciably. But if the wavelength is 

not more than 10 cm., the diameter of the cable cannot be much less 

than JA and then its presence in the reflector vnR be important. In 

such circumstances it is common to give up the conventional form of 

cable and proceed in a different manner. We will approach the problem 

in a manner which may seem a little pedantic to those who are accus¬ 

tomed to use and construct wave guides in much the same spirit that 

they would use water pipes: but even if it is pedantic it is also instruc¬ 

tive. We are used to the performance of an aerial which is near the apex 

of a Vee, and know that the pattern will always be a simple sinusoid 

so long as the width across the Vee at the aerial does not much exceed JA, 

Accordingly currents induced in the sheath of a cable cannot disturb 

the pattern so long as the aerial itself is at a width not much greater 

than JA. But in such circumstances the width of the central beam of 

the pattern depends only on the angles of the Vee. Hence the beam 

can be made narrow only by making j8 small and we know that this 

will involve immensely wide sheets. We may feel sure that the diffrac¬ 

tion round the edge of the sheets will be inhibited by furnishing these 

edges with wing sheets: by appropriate choice of the size and Vee angle 

of these wing sheets we may well expect to obtain a pattern which is 

a close approximation to the ideal for the narrow Vee in which the aerial 

proper is located. It is then but an unimportant step to make the sides 

of the Vee parallel, and this is commonly called a wave guide. 

But when the side sheets are parallel, i.e. j3 = 0, it is certain that 

wing sheets at their ends cannot reduce the width of the beam to zero. 

The aerial in the guide will induce currents in its parallel walls and the 
mui Q g 
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distribution of this induced current is readily calculable when the 

parallel walls extend to infinity. In practice they cannot extend to 

infinity; in the apparatus we are picturing here they end in wing sheets 

forming a Vee. The current induced in the parallel walls will inevitably 

persist along the wing sheets and the radiated field must depend mainly 

on that current which does persist in the vdng sheets. Inevitably the 

current in the wing sheets will have a distribution which is charac¬ 

terized by a phase which changes with an approximately constant 

wavelength, and thus it is surely very likely that the equatorial pattern 

will be very akin to that produced by a Vee excited by a single aerial 

not far from the apex. In other words, we shall expect a pattern which 

is substantially a sinusoid contained within the angle j8', where is 

the angle of the Vee formed by the wing plates. 

The imaginary experimental apparatus we have just postulated is 

very akin to that used by Barrow and Lewis.f They worked at 

A = 50 cm. and used a wave guide 50 cm. wide and 15 cm. high and 

about 2*4 m. long. Its end was furnished with wing plates 4A wide and 

they were hinged so that they could be set to form a Vee of any angle 

between zero and 90°. The wing sheets were furnished with a top and 

bottom cover sheet of width 1*43 m. Apart from putting the aerial 

near the end of a wave guide, their experiments are very like those 

described in Chapter X. There the sheets forming the Vee were 3-6A 

wide by 1*5A high and without cover plates, whereas the sheets used by 

Barrow were 4A wide by 0-3A high and had cover plates. Fig. 4 of 

Barrow’s paper shows the polar diagrams which were recorded (at a 

distance of GOA) when ^ = 0°, 10°, 20°, 30°,..., 90°. Provided p did not 

exceed 60° there were no side lobes and this accords with our expecta¬ 

tion: but there was a very considerable field in the backward direction 

and this is in marked contrast to our experience with sheets which 

were 1-5A high. Barrow (loc. cit., Fig. 5) gives a curve in which area 

of unit circle/area of pattern is plotted as a function of j8: this ratio is 

what we have called the gain in § 3.7, where it was shown thrft its value 

is 4/1 when the aerial is not far from the apex. Barrow found the gain 

had the value 5 when jS = 0° and when j8 = 90° and that it passed 

through the blunt maximum, of value 16, near jS == 55°. Our ideal 

gain for jS = 60° is 12, whereas Barrow found the value 15: thus he 

also found that the observed pattern can be narrower than the ideal. 

When j8 = 30° he found the gain was 11, whereas the ideal is 24: we 

should say that this showed that sheets of width 4A were insufficient 

t See Proc. IM.E, 27 (1939), 41. 
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to produce the ideal pattern when j8 = 30^, and this accords with our 
experience. 

Barrow’s paper should be consulted, but it does not seem necessary 

to discuss it further here. It has been cited to uphold our prediction 

that if the aerial is situated in a wave guide, projecting backwards 

from the apex, then the pattern is likely to be akin to that appropriate 

to an aerial not far from the apex of the Vee. The long feeding cable 

for the aerial has been replaced by the wave guide and this often has 

practical advantages when the power is so great that the insulation of 

the cable is liable to be punctured by the high voltage. The main point 

of our argument is that the current induced in the walls of the guide 

will persist along the wing plates and the pattern could be calculated 

completely if this distribution were known. Experience with an aerial 

has shown us that the pattern is insensitive to the shape of the reflecting 

surface (be it Vee, trough, or parabola), and we should confidently 

expect to find the same result in an apparatus similar to that used by 

Barrow and Lewis. 

However, a system conforming in general type to that used by Barrow 

is not one in common use when a wave guide is used to excite a reflector. 

Both according to our interpretation and to Barrow’s result the pattern 

is not likely to differ very markedly from a sine curve included within 

the angle j3. If a very narrow beam is required, while maintaining jS at 

a value which is not very small, then something must be done to 

correspond to moving the aerial a long way from the apex of the Vee. 

In other words, the wave guide must be pushed through the apex of 

the Vee until it protrudes a distance corresponding to an aerial at 

27TRjX ~ k, where k > n. It will scarcely suffice to push the pipe 

through the apex because then the current inside the guide will not be 

situated favourably for inducing currents in the sides of the Vee. It 

will be necessary to fit small wing plates to the guide so that they can 

carry the current which will induce currents in the Vee: the wing plates 

must be short if the pattern is not to conform mainly to the subsidiary 

Vee formed by them. The writer has little doubt that the system just 

described would work, but he has not tried it. The common device is 

to place a flat plate across the mouth of the guide and at a distance 

of the order of A from its end. It is commonly said that the purpose 

of this plate is to reflect the direct radiation from the mouth of the 

guide back on to the mirror. However, we should say that the plate 

is placed in front of the guide in order to have currents induced in it, 

thereby forming a current sheet whose width is of the order of A. The 
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said current sheet then takes the place of the single aerial fed by a 

cable: the guide is used as a device to produce current in a compara¬ 

tively narrow sheet, but nevertheless one whose width suffices to help 

appreciably the formation of a narrow beam from the reflector. The 

clearance between the end of the guide and the flat sheet requires nice 

adjustment, by experiment, because the distance has to be such as to 

favour a large current being induced in it and to suit the transmission 

of power through the guide, and to be such that the guide does not 

unduly screen, from the reflector, the current induced in the sheet, etc. 

The adjustment of distance corresponds roughly with the adjustments 

which would have to be made to several cables feeding a narrow curtain 

array which was placed in a Vee. 

In the writer’s opinion this description is applicable to a parabola in 

which the guide protrudes through the vertex and has a metal plate 

across its orifice. If the paraboloid is about 2 m. in diameter and its 

focus is in the plane of the aperture, then the plate across the orifice 

of the guide will be about 5A distant from the vertex if A = 10 cm. 

This would correspond to i? == lOA for a Vee, and that is i = 60. 

Inevitabjy the main beam will then be extremely narrow, and in general 

it would be expected to be accompanied by a family of large and narrow 

side lobes. Whether parabolic shape has peculiar properties in diminish¬ 

ing side lobes for very large values of k we are unable to say from direct 

and first-hand experiment. 

The most common method of using a guide to excite a reflector is to 

place the axis of the guide parallel to the plane of the aperture and to 

bend the end of the guide through a right angle so that its open orifice 

faces the vertex of the parabola. We should say that the currents near 

the edge of the orifice induce currents in the reflector; that these induce 

currents in the outside wall of that part of the guide which is in front 

of the aperture; that these, in turn, are still more active in inducing 

currents in the reflector. We suspect that it is the currents induced on 

the outside of the walls of the guide which play the* role of the aerial 

exciting the parabola. This is not the commonly accepted description; 

it may not be correct and it may not be the whole story. 

The writer regards the parabolic reflector as a very complicated 

problem which is only partly solved. Parabolic reflectors were used 

very extensively in the period between 1942 and 1946, mostly at 

A = 10 cm. Optical methods were used as the basis of interpreting their 

observed behaviour: such methods turn on the distribution of electric 

field across the aperture and not on the currents induced in the metal 
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of the reflector and the wave guide. Thus they are only partly included 

in Maxwell’s electromagnetic theory and hence do not fall properly 

within the ambit of this book. It is possible to find the distribution, 

in magnitude and phase, of the current in a flat sheet which is needed 

to produce a polar diagram of any desired shape. But the writer is not 

satisfied that the polar diagram can be predicted from measurement 

of the magnitude and phase distribution of electric field across the 

aperture of a parabolic mirror. The validity of the process turns on 

Kirchhoff’s theorem, the correct and rigid use of which is not always 

easy. The writer will not feel the problem has been solved completely 

until the polar diagram is related to electric currents in the refiector or 

in the metal of the wave guide: and until it is known how to modify 

the exciting currents so as to produce any desired changes in the polar 

diagram. He does not feel it is necessary or desirable to recount here 

recognized techniques for analysis in terms of the distribution of electric 

field across the aperture: he has not sufficient first-hand experience of 

the agreement between ‘practice and theory’ to justify him in making 

a critical and systematic survey of their success or inherent validity. 

Until a purely electrical treatment has been evolved he feels it better 

to leave the problem sub judice. 

13.6. Difficulties in understanding the optical behaviour of a 
parabola 
In the beginning portions of this chapter it has been shown that the 

focus of a parabolic mirror, having an aperture of the order of lOA, is 

not a peculiarly favoured station for excitation by a single aerial. In 

the light of the earlier chapters of this book it would have been very 

surprising if the focus had possessed any peculiar properties. We have 

surely established that undue confidence has been placed in parabolic 

mirrors for radio use and that perhaps it shows some lack of under¬ 

standing to set great store by this shape: so far all was in accordance 

with the knowledge and experience of an electrician. But now^ the 

converse problem obtrudes itself: why is the focus of a parabola 

peculiarly important in optical work? It will not do to dismiss the 

inquiry just because there is a change of scale of thousands to one: 

this vast change of scale does not in itself provide any obvious explana¬ 

tion. In optics the focus is a vast number of wavelengths from the 

vertex, and this is just the condition which we should expect to asso¬ 

ciate with a polar diagram having tens of thousands of very sharp 

beams, of the kind which have been likened previously to a porcupine’s 
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spines. Indeed, if we could excite a parabola with a single source, whose 

volume was very much less than A®, then surely it is almost certain that 

the ^porcupine’ diagram would exist, if means could be found for 

resolving one spine from its neighbours. If the focus still operated for 

a single oscillator then, presumably, at best we could expect to find the 

porcupine spines were grouped under an envelope which represents the 

Fio. 13.13. Diffraction pattern for a 90° reflector when the aerial is distant 20-5A 
from its apex. 

ghost of the very narrow beam which is experienced when a parabola 

is illuminated by a very small optical source. If we are correct in this 

surmise, then the virtue of parabolic shape must be that it has the 

property of grouping the ‘spine lobes’ under a central envelope, with 

very small envelopes representing side lobes. This idea at once raises 

the question as to whether the pattern for a Vee reflector tends to 

gather under an envelope which is itself reminiscent of a diffraction 

pattern, when the aerial is very far from the apex. We can scarcely 

hope to explore this possibility by direct appeal to the general Fourier 

expansion of the pattern, and the approach must be made from direct 

evaluation in particular cases. Thus Fig. 13.13 shows the equatorial 

pattern for a single aerial which is distant 20-5A from the apex of a 90° 

Vee; it is obvious that the maxima are tending to group themselves 

under an envelope curve which itself has the general character of a 

diffraction pattern. A very close examination of the pattern shows 

there are 29 maxima and 29 zeros in the range of B between 0 and 45°. 

A less close examination would show 6 maxima and 6 minima in this 

range. A very cursory examination would suggest a substantially 

constant illumination in the range between 0 and, say, 40°. Fig. 13.14 

shows the equatorial pattern, between 26° and 30° for an aerial distant 

50A from the apex of a right-angled Vee: here the envelope effect is 
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much more pronounced. There are 18 true maxima and 19 zeros in 

this range of 13°, but there are 4 pronounced maxima of the envelope 

curve. If this pattern were being explored experimentally, using a 

turn-table of ordinary construction, it is highly probable the true 

maxima and zeros would be missed and that the observer would record 

only the envelope curve and present it as the true diffraction pattern 

Fig. 13.14. Portion of diffraction pattern of a 90° reflector when the aerial is distant 
50A from its apex. 

for the Vee. We predict that if observations were made of the pattern 

resulting from a really large parabolic mirror, excited by a single aerial, 

then the recorded result would in fact be an envelope curve and that 

this envelope would be disclosed by making observations at intervals 

sufficiently close to reveal the ‘spines of the porcupine*. Figs. 13.13 and 

13.14 are reminiscent of a heterodyne effect of two sine curves of nearly 

equal period beating with one another. And indeed this is the true 

description of the pattern, as will be realized on reference to § 12.5, 

where it is shown that the pattern for a 90° Vee is the addition of the 

first 45° of the pattern for a like pair of filaments with the last 45° of 

that pattern; for example see Figs. 12.18 and 12.19. 

Fig. 13.14 does not suggest that the maxima of the ‘side lobe 

envelopes’ would tend to decrease when k became very large indeed. 

We can predict the envelope or ‘beating effect’, and the unlikelihood 

that the envelope maxima tend to decrease as 0 increases, by looking 

at the problem from energy considerations. Thus, when k becomes very 

large the radiation resistance of the aerial must tend to the ‘isolated 

value’ because then the inphase component at it due to the three images 

will be negligible; then the output of work will be the same as if the 

aerial were in free space. But the forward field will be four times that 

of an isolated aerial when its distance from the apex is ^A, f A, etc. This 

would lead us to expect sixteen times the isolated output, but this 
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figure is reduced to four because field exists only in one quadrant of 
space. Each porcupine spine of the pattern is sensibly a sine curve and 
thus its mean square value is J and therefore the expected output 
would thereby be reduced to twice the isolated output. But the output 
is equal to the isolated output and so there must be some other feature 
in the pattern to account for a further halving of the output: doubtless 
that feature is the formation of the envelope curve, each of whose petals 
is sensibly a sine curve. When the angle between the sheets is 60° the 
field can be 5-2 times the isolated value: since the field occurs only in 
one>sixth of space and the mean square field of a porcupine spine is 
we might expect the output would be 5*2712 == 2-25 times the isolated 
value, whereas it is equal to the isolated value. Hence now there must 
be a tendency for the ‘side lobe envelopes’ to decrease slightly. When 
p = 45° the forward field attains 8 times the isolated value and then 
we can readily account for an output of 64/(8 x 2) = 4 times the 
isolated output. Here it would seem the side-lobe envelopes must 
themselves tend to lie under an envelope which is substantially a sine 
curve. 

Therefore may it not be that the peculiar virtue of parabolic shape 
is that the envelope curves group themselves under an envelope which 
is itself a sharp beam whose width is controlled dominantly by the 
aperture of the optical mirror? This is only a suggestion, but it does 
offer a possible way of reconciling the purely electrical approach with 
optical experience. According to this description the parabola would 
not exhibit its focal properties until there are enough zeros in the 
complete diffraction pattern to make the form of the envelope clearly 
apparent. The number of zeros depends on the distance of the aerial 
from the vertex. If about 100 zeros are required to allow the envelope 
to approach its limiting form, then the focal distance would need to be 
at least 50A, corresponding to aperture of at least 200A. If this rough 
guess is of the right order, then at A = 10 cm. the diameter of the 
mirror would need to be about 20 m. before it exhibited a behaviour 
which was becoming comparable with optical experience. And a 
sufficiently close examination would show the beam was an envelope 
covering a set of porcupine spines: an experience not realizable in 
optics, where the dimensions of the source are necessarily very large 
compared with A and thereby the spines would be blurred out of 
existence by summation of the spines arising from different portions 
of the large source. 

We suspect the parabola is a device for producing a narrow envelope 
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in circumstances when it is physically impossible to place the source 
within a few wavelengths of the reflecting surface. When this can be 
done a single beam (not envelope) two or three degrees wide can be 
produced by plane mirrors or by almost any concave shape. Parabolic 
shape is known to be reasonably effective, but it seems probable that 
its effectiveness is not sui generis. Possibly parabolic mirrors are an 
essential expedient when, as with light, we cannot construct focal 
distances which are not incomparably greater than A. 

It is proposed to leave the problem at this stage: it is left unsolved, 
but at any rate it has been pointed out that there appears to be a major 
problem awaiting solution, even though comparatively small parabolic 
mirrors are well established as a practical device. We close this chapter 
with some analyses which may possibly be helpful some day in attempt¬ 
ing a quantitative sjlution. 

13.7. The field of a semicircular cylinder 
(a) Current density uniform 

Let BAC, in Fig. 13.15, represent the cross-section of the semi¬ 
circular cylinder, having centre at 0, The current flow is perpendicular 

to the plane of the paper; the density is everywhere cophased and has 
the value Iq. Consider the field at a very distant point, on bearing a, 
due to a current filament at P. The path difference, with respect to 0, 
is iJsinfl, and hence the phase angle is 

^ --r ?^^8in 0 = & sin 0. 
A 

To obtain the field due to all filaments, typified by the one at P, we 
have to find the resultant of a series of equal vectors inclined to the 
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zero line at an angle as defined above. Each vector will have a 

component in phase with the zero line and a component sin^ in 

quadrature thereto. We shall now calculate the field, on bearing a, in 

terms of a component Eq in phase with the field of a hypothetical 

element situated at 0 and a component Eq in quadrature thereto: in 

this E stands for the field, at the given distance, due to a filament of 

unit strength. Then 

Ep 
TT—a 

J cos(i;sin0) 

—a 

and 

TT—at 

J sin(A: sin 6) dd. 

— Qt 

We now use the Fourier expansion of oos(kooB6) and 8in(i!sin0) in 

terms of Bessel functions JJ,, Ji, etc., and so obtain 
7T—0L J {«^(^)+2«4(^)cos20+2t^(i)co840+...} dd = 

—at 

and thus obtain the rather surprising result that Ep is independent of a. 

Similarly, 

Em. 
kR 

2 J {J^(k)sm0+jQ(k)8in30-^,,,} d0 

~ot 

41 Ji(i)cos a + COS 3a + cos 5a+ — j. 

For every filament such as F in Fig. 13.15 there is a similarly situated 

filament at P' and accordingly Eq must be zero when a = ^tt, and the 

general expression confirms it is then zero. The field at distance r from 

a filament of unit strength is given by 

= —Jo(ar)+jr„(ar) 
UTT 

and hence 

x{—(13.1) 

When or ->■ 00 we may write = —Jg, etc., and JJ, = —1^ = I^, 

etc., and hence 

—J8(or)+jr3(or)}^^ cos 3a+... j. (13.2) 
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Since this is a solution of Maxwell’s equation it must be valid for all 
values of r at which it is convergent. At r = 0 it is obvious from 
Fig. 13.15 that 

and this shows that when r < iJ it is necessary to interchange ar and k. 
At the surface of the cylinder r = B, and then 

(13.3) 

There is no value of k for which this expression can be independent of oc 
and therefore it follows that a filament at the centre of a semicircular 

Fig. 13.16. Diffraction pattern for a certain semicircular array, with 
uniform current loading. 

metal cylinder cannot induce a uniform and cophased current density 

in the reflector. 
Equation (13.1) gives the diffraction pattern for a uniformly loaded 

semicircle. It will be noticed that there are necessarily two quadrature 

components of fleld and hence there cannot be any bearings on which 

the field is zero except possibly in the special cases where the radius is 
such as to make Jo(ifc) = 0. For example, Fig. 13.16 shows the pattern 

for a half-cylinder whose diameter is 2*76A (i.e. J^ik) == 0 for the third 

time) and compares it with the pattern for a uniformly loaded flat 
sheet of width 3A and which is carrying the same total current as the 

half-cylinder. 
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(6) Sinusoidal distribution of current density 

Let the current density round the semicircle be i = 7iSin(aH-^)) see 

Fig. 13.15: then 

Ep 

I^R 

ir—OL 

J cos(A;sin 0)sin(a+^) dd 

—a 

TT — i 

= / 
—a 

|«7o(i)sin(a+0)+2 J <72„(i)cos 2»08in(a+0)| dd 

J2n{k)cos 2na 

(^+l){2ra—1)’ 

I^S I sin(A:sin0)sin(a+^) dd 

(13.4) 

n—ot 
= 2 J {/i(i)sin0+J3(i)sin30+...}8in(a+0) 

—a 

TT—Of 
== sina j* [Ji(i)sin20+J3(ji;)(8in40+8in20)+...] 

—a 

TT—a 
+cosa J [Ji(i;)(l—cos2fl)+»l3{fc)(co8 20—co8 40)+...] 

-a 

= 7re7i(A;)cos (X. 

= j^2Jo(*)—4|^^cos2a+^|^^cos4Q[+...|—>Ji(A;)cosaj X 

x{—Jo(ar)+jYf,(ar)}. 
Proceeding as before we obtain 

rF 2 
—q^ = -•^o(*){—•Jo(«^)+jTo(«0}—«/l(o»■)+jFl(or)}cosQ!4- 

+^ «4(«^)+jT2(a»-)}cos 2a... j. (13.6) 

To obtain the electric field at the surface of the half-cylinder put 

ar = kin (13.6). 
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(c) Current density /„8inn{a+0), voith n odd 

On using the previous methods it follows readily that 

Ej, _ 2Ja{k) 

1. E 
■l-4w 

n 
J^{k)oo8 2a J^(k)ooa 4a 

{n+2)(n-2) + {^+i){n^)' 

and 
E. 

= ■7TJ„{k)cosna. 

(13.6) 

(13.6a) 

(d) Current density 7„ cosn(a+0), with n even 

Now we obtain 

and 
Eq 

hE 

Ep 

•/i(fc)cosa 

(^+1)(^-1) 

7TJ„{k)eos not 

3*73(^)008 3a 5J^(k)oos5oc 1 

(n+3)(ri-3) (n+5)(7t—5)'“ J ‘ 
(13.7) 

(e) General expression for the electric force at the cylinder 

By means of (13.3)~(13.7) we now have an expression for the field 

at any point of a semicircle which carries any distribution of current, 

the said distribution having been expressed as a Fourier series. If the 

reflector is excited by a single filament, parallel to its axis, then the 

field of the said filament is known, in terms of a Fourier series, at all 

points of the reflector. By stating the condition that the net field at 

the surface is zero v/e can obtain a set of equations relating the ampli¬ 

tudes of the Fourier components of the induced current. By this means 

it ought to be possible to determine approximately the coefficients in 

the series representing the induced current. The labour of computation 

would be very severe and would be tolerable only for values of k which 

are not large. This is not a case of much practical interest, but some 

numerical solutions for small values of k might form a guide to the 

more general behaviour. The metal reflector must have finite thickness 

and there will be some current on the back of it: it would be necessary 

to make allowance for such currents in making an approximate numeri¬ 

cal solution. The analysis is included here to assist anyone who cares 

to make the attempt. 

(/) The field of a circular arc with uniform density 

The equation of a circle referred to a point at the end of a diameter 

is y^ = 2Rx{{l—x)l2R}^ while that of a parabola is y^ == 4aa;, hence if 

xj^R is small, the circular arc does not differ much from a parabola 

whose focal length is \R. We shall take advantage of this approximation 
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to obtain the equation for the diffraction pattern of a parabolic array. 

If the chord of the arc subtends 90° at the centre, then the aperture of 

the arc is 0*854 of the aperture of the parabola and the sagitta of the 

bow is 0*586 of the focal length. If the arc subtends an angle 2^ at the 

centre of the circle, then we shall have for a uniformly loaded arc 

e72(^)siR2^cos2a+^^^sin4^cos4a... 
IqE I 2 

cos 10a... j 
if <^ == Itt, and 

—= 2[e/i(A:)sin«^cosa —^^^sin3<^cos3a—^^^sin5<^cos5a... 
ip ft L ^ ^ 

= V2[e7i(^)cosa—^^^cos3a—^^^cos 
L 3 5 

if ^ = ^TT, 

These two equations give the pattern for a uniformly loaded array 

whose contour is sensibly a parabola with the focus well in front of the 

aperture. The expression can readily be extended to include sinusoidal 

loading. 

= 2\jo(k)ln-J2{k)cos2a + ^cos6oc-^^ 
3 5 



XIV 

IN-LINE AND CURTAIN ARRAYS, YAGI AERIALS 

14.1. The performance of separately fed arrays 
In writing about the observed performance of separately fed arrays we 

must first discuss what features we are to look for in the experimental 

results. Provided the array is in the presence of a flat and perfectly 

conducting earth and has no reflector, the problem of predicting the 

pattern is completely soluble and the solution does not contain any 

idealizations. When flat sheets are used in combination with a single 

aerial we can predict the pattern only by means of the idealized pattern 

that would result if the sheets were infinite in extent: then the main 

purpose of experiment is to assess the degree of approximation to the 

ideal and to relate it to the size of the sheets. But when each member 

of an isolated array is fed with an assigned current the resulting pattern 

is known precisely, if the ground is flat: if the observed pattern does 

not agree with the calculated pattern, then the magnitude and phase 

of the currents in the members is not what it was intended to be. 

A discrepancy merely means a maladjustment somewhere and its 

appropriate correction is only indirectly a problem germane to aerials. 

If A is greater than, say, 10 m., the current in each member can be 

measured by a conventional ammeter, but such a measurement will not 

disclose the phase: if A is less than about 2 m. the current in each 

member cannot be measured directly. Due attention must be given 

to the layout of the feeding cables and to the design of the junction 

boxes so as to promote the desired distribution of current. These 

things having been done, the observed polar diagram must be regarded 

mainly as a means of checking that the current is in fact distributed 

among the members in the intended manner. Accordingly our task 

now is to learn to work back from the polar diagram to the current 

distribution, so that we shall know which cables need to be adjusted 

in order to bring the polar diagram into agreement with the one 

intended. 

It is very difficult to devise a direct means of testing whether the 

feeding cables have the correct adjustment, even at wavelengths such 

that currents and impedances can be measured with tolerable accuracy. 

This is because the impedance of each member of an array depends 

upon all the other members and it does not suffice to adjust the cables 

so that they would feed similar currents into similar loads which had 
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no mutual interaction: uniform and cophased feeding will not result 

when all the cables have precisely similar adjustments. It would seem 

that the ultimate testing and adjustment ought to be made by exploring 

the electric field produced by the whole array: whether the exploration 

ought to be made near to the array or far away from it is a matter for 

further discussion. 

With sufficient perseverance in adjustment of the cables the ideal 

pattern can be reproduced perfectly: the practical issue is to decide 

when the adjustment is good enough for the intended use of the array. 

If the array is to provide service to a fixed station, at, say, A = 20 m., 

then it is important to find out whether the main beam is centred on 

the correct bearing and has substantially its correct width; the exact 

size and bearings of the side lobes will not be very important provided 

they are not obviously very incorrect.f If the array is for Radar use, 

then it is usually very important to make the side lobes as small as 

possible and the main interest of the test will centre round these lobes. 

Thus it happens that a pattern (or degree of adjustment, call it which 

you will) which might well pass muster perfectly for fixed-station 

working could not be tolerated for Radar use. It is for Radar use that 

the pattern must agree very closely with the ideal and the difficulties 

of obtaining the agreement are very great because the wavelength will 

not be more than about 1 m. 

We will now quote from an experiment which was designed to test 

how nearly the observed and the ideal pattern agreed, when the only 

preliminary adjustment had been to cut the feeding cables to equal 

length: the operating wavelength was 50 cm. Four well-made and 

apparently precisely similar dipoles, each 23 cm, long, were mounted 

on a wooden lath and arranged so that they could form either a four- 

element in-line array or a curtain array. The wooden lath was mounted 

horizontally on a wooden turn-table which stood in a large flat field; the 

receiver was about 200A distant from the array. The four concentric 

feeding-cables had been tested electrically and their lengths had been 

adjusted until all had the same electrical length: they were brought to 

a well-made junction box which had been constructed in a way which 

appeared to give every chance for equal division of current between the 

four outgoing branches. The centre distance between the dipoles was 

t For observed patterns for arrays working at A 30 m. see, for example. Figs. 17 
and 20 of the paper *Beam arrays and transmission losses* by Dr. T. Walmsley, Journal 
I,E,E, 69 (1931), 299: it will be noted in this Fig. 17 that the field strength does not 
fall to zero at ±18° but only to a minimum. This shows the adjustment was imperfect, 
but it is an imperfection of no practical consequence in the use of that array. 
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0-63A. If the four currents are equal and cophased, then the field 

will be zero on bearing 6 when sin 6 = X/Ng, 2XjNg, etc.: here N = 4: 

and gjX = 0-63. Accordingly evaluation shows that the field should be 

zero when 6 = 28-1° and 70°. Fig. 14.1 shows the observed pattern, and 

Fio. 14.1. Diffraction pattern of a certain 4-element in-line array, A == 50 cm. 

it will be seen that the field does not fall to zero but falls to a minimum 

near 6 == 28°. The straight sides of the main beam cut the bearing axis 

at ±26-6°; the observed width at various heights is marked on the 

graph; the figures in brackets show the widths which the ideal beam 

should have: in every case the observed beam is narrower than the 

ideal. We will now attempt to deduce from the pattern the distribution 

of current which obtained in this array of four members. We shall 

presume the distribution is symmetrical about the mid-point of the 

array. The pattern is the sum of the patterns due to the inside pair A, A' 
and the outside pair B, B'. These are typified by the sketches in Fig. 14.2 

(b) and (c) respectively. At some bearing OD the amplitude DE will 

equal the antiphase amplitude DF', hence at this bearing the field will 
be zero if all the currents are oophaeed. 

47M.1 H 
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The distance g between the members is likely to be about ^A: if 
d > ^A, there is some bearing Q for which the path difference between 

A and A' is JA, and on this same bearing the path difference between B 
and B' will be |A. Hence, on this bearing the field must be zero no 

matter what the magnitude and phase of the currents in B and B' 

relative to the currents in A and A\ On bearing 
OK in Fig. 14.2 (c) the outside pair contribute 

nothing to the field, which is then due to the inside 

pair only ; hence the observed field on this bearing 
is a measure of the current in the inside pair. In 

our example gjX — 0-53, so 

OD = arcsinA/Ggr = 18*3®: 

on tliis bearing the path difference for the inside 

pair is |A and accordingly the field due to them 

is then 2 cos 30° times the field due to one current 
alone. Hence if all four currents were equal and 

cophased, the fractional field on this bearing should 

be \ cos 30° = 0*433; but if the currents are equal 

and not truly cophased this ratio will be larger 
26 

than 0*433. In Fig. 14.1 this ratio is —, = 0*34, 
76 

and thus it follows that the outside currents 
were larger than the inside currents. If the four 

currents are not cophased we can regard the 

array as the superposition of two sejjarate arrays; one 4-member 

array in which the currents are cophased but not necessarily equal 

and a pair of equal quadrature currents in the two outside members. 

Now let Figs. 14.2 (6) and (c) relate to cophased currents. Then 

we have seen already that the bearing for zero field would (with 
gjX = 0-53) be 28° if all currents were equal. If the current in the 

outside pair is greater than in the inside pair, then the vertical scale 
of the (c) figure will be increased relative to the (5) %ure and it follows 

that the point D must be closer to K in order that DF shall equal DE. 

Since KF is nearly straight, it follows that if the outside currents are 

twice the inside currents DF will equal DE when KD is half the value 
it has for equal currents; and in this example this difference is 

(28°--18*3°) = 9*7°. Hence for currents in the ratio 2 to 1 the angle DK 
will be 4*85° and then the bearing for zero field will be 

18*3°+4*86° = 23*15°. 

f w 
B' A' A B 

Fig. 14.2. Two com¬ 
ponent patterns for a 

4-element array. 
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Similarly for currents in the ratio 4 to 1 it would he 

18-3°+2*42° = 20-72°. 

We can approximate to the bearing for zero field of the cophased 

components of current by prolonging the straight sides of the main 

beam until they cut the bearing axis: this occurs at 25*5° in Fig. 14.1. 

Thus in our example DF == 25*5°—18*3° = 7*2°, and accordingly the 

9*7 
ratio of the cophase components of currents is — = 1*35. If the 

7*2 

quadrature component were zero the fractional field at 0 = 18*3° would 

be cos 30° = 0*37, and if there is a quadrature component this ratio 

will be smaller than 0*37. In Fig. 14.1 the ratio is 0*34 and thus accords 

with our prediction. If the contribution of the quadrature current to 

the R.M.S. fi^'ld at 0 = 0 be ignored, then we can find the relative value 

of the quadrature current from the relative field at the bearing at which 

the field is a minimum and this is about 26° in Fig. 14.1. At this bearing 

the path difference for the outside pair is 3grsin26° = 0*7A. Hence, 

then, the field is proportional to 2/qCos65 = 1*14/^: at 0 = 0 the field 

is proportional to 4*67p, if the field due to Iq is then ignored. At 

6 = 26° the fractional field in Fig. 14.1 is /g and hence we deduce that 

Igjlp = 0*47. Accordingly \Ib\I\Ia\ = (l-352+0*47^)l = 1*43 and the 

phase angle is about 20°. Although the observed pattern is in fairly 

good accordance with the ideal (for equal and cophased currents) it is 

clear that the currents are by no means equal and cophased. The pre¬ 

cautions to make the feeding cables similar have not sufficed to make 

the currents equal: moreover, the currents would not have been equal 

even if the cables were similar, because the mutual impedances of the 

aerials are not equal in a 4-member in-line array. Thus, reference 

to § 2.19 will show that the middle member of a 3-element in-line 

array has a resistance of 130f2 and each of the two outer members a 

resistance of 9711 when the three currents are equal. It is clear from 

this that the outer members have less resistance than the inner members 

and so the outer members will tend to carry a larger current than the 

inner ones. Possibly computation would show that the resistances are 

equal when the currents are in a ratio near 1:3. 

When the axes of the dipoles were turned through 90° the main beam 

became wider than the ideal. On extending the straight sides of the 

beam to cut the bearing axis the width, at the base, was found to be 60°, 

in contrast to 61° in Fig. 14.1: the minimum field was 11 per cent. 
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(vice 13 per cent.) and the side-lobe maximum was 22 per cent, at 46® 

(vice 24 per cent, at 40®). In the previous notation we now have 

DF = 30®—18-3® = 11*7®, and accordingly 

Li 
Ib 

11-7 

9-7 
= 1-2. 

Reference to § 2.14 will remind the reader that the current must tend 

to concentrate in the two inner members of a 4-element curtain. Let 

the current in the inner pair be x times the current in the outer pair. 

Then, following the process of working used in § 2.14, the condition for 

equal resistances is 

0*6095a; 
l-{~x 1 

47r^ 

1 

97r2’ 

whence x = 1*15. 

We have estimated from the pattern that a; = 1*2, and hence the 

distribution of current which did obtain is roughly that which would 

present equal loads at the ends of the four feeding cables. 

These two examples should suffice to show how the approximate 

distribution of current can be deduced from the observed pattern; 

when this distribution is known, steps can be taken to force it nearer 

to uniformity and cophasedness. Clearly it is important to study the 

pattern very closely over a small range of bearing near the first mini¬ 

mum. Since the response of the galvanometer is usually proportional 

to the square of the field strength it is essential to provide the galvano¬ 

meter with a variable shunt covering a very wide range of sensitivity. 

In practice this means that the galvanometer must be a very sensitive 

one, a reflecting type and not a unipivot. Analysis of the current 

distribution becomes impossibly involved when the array has many 

members, and then we must proceed by understanding what kind of 

disturbances in the pattern result from various kinds of current distribu¬ 

tion. Although the main beam is usually substantially correct, the side 

lobes commonly differ widely from the ideal. 

Thus consider Fig. 14.3, which is the observed pattern for an 

8-element in-line array: the dipoles were 23 cm. long and were spaced 

26*5 cm. apart, A being 60 cm. Each dipole was fed through about 37 in. 

of cable and each cable had been cut so as to make the electrical length 

the same for all. The received field strength was measured by a thermo¬ 

couple and galvanometer: the galvanometer was either a unipivot or a 

Cambridge portable reflecting instrument, whose sensitivity was about 

nine times as great as the unipivot. The available power was such that 
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field strengths less than about 15 per cent, of the maximum could 

scarcely be detected by the unipivot: with the reflecting instrument it 

was possible to detect a field if it was greater than about 4 per cent, 

of the maximum. The positions of the minima of field could be deter¬ 

mined within about 

If the eight currents were equal and cophased, then the maxima and 

minima and their bearings should be as recorded in Table 14.1. 

Table 14.1 

Bearing . 0 13-8 2< 
(degrees) 

Field . 100 0 2( 

On a bearing of 72® the path difference between any two consecutive 

dipoles is JA, and hence the field will be zero on this bearing for any 

symmetrical loading. According to the above table the reflecting 

instrument should be incapable of detecting any field on bearings 

larger than about 62®^ if the currents are uniform and cophased. 

The side lobes, according to Table 14.1, are shown dotted in Fig. 14.3. 

It is obvious that there is a hopeless discrepancy between the observed 

lobes and the lobes which would obtain if the loading was uniform. 

No field could be detected between 44® and 54®, or between 76® and 90®. 

There was a minimum between 65® and 68® and certainly not a zero 

at 72®. The width of the main beam, at its base, is 27® and this agrees 
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closely with the ideal width of 27-4°, but it is not quite symmetrical: 

the lobes are very unsymmetrical. The pattern is suggestive of a 

more or less progressive change of phase across the array, but that is 

about all that can be foretold about the distribution. Clearly it will 

be very hard to discover and locate the maladjustment: much time 

will be wasted in trying first this thing and then that—^just fumbling 

in the dark. In Fig. 14.3 the field does not fall to zero at 13*8° but falls 

to a minimum near this bearing: this shows that the currents cannot 

all be cophased. The pattern is very far from symmetrical and this 

shows, almost ceitainly, that there is a more or less progressive change 

of phase along the array. In this particular example great care had 

been taken to make all the feeding cables similar: four consecutive 

members were fed from one junction box and the other half of the 

array from a similar box. These two boxes were fed through similar 

cables joined to a three-way box: it seems probable that the two last- 

mentioned cables were not in fact truly similar. 

14.2. Examples of patterns when the loading is symmetrical 
but not necessarily cophased 

It is proposed now to exhibit a family of patterns to show what 

results when the currents are not cophased. In particular it is desired 

to know whether the size of the side lobes is necessarily increased when 

the currents are not cophased. All the examples relate to a 16-member 

curtain because they were prepared to help analyse the performance 

of an existing 16-member curtain: but they may be regarded as 

generally typical. The patterns for certain cophased loading have 

been shown already in Figs. 2.2 to 2.7. If the current increases uniformly 

from zero at the middle to the greatest value at the outside members, 

then the size of the first lobe is 54 per cent, (see Fig. 2.5), in contrast 

to 21 per cent, when the loading is uniform. This shows the increase 

of current from the middle outwards must be very drastic in order to 

produce a very marked increase in the size of the lobes. Fig. 2.7 shows 

the pattern which results when the two middle currents are zero, the 

other fourteen being all equal. It is appropriate to describe this 

pattern as having only four lobes, where seven would have been 

expected: it is virtually as though the base line in Fig. 2.1 had been 

moved up about 12 per cent. Thus the existence of an unduly large 

first lobe together with half the correct number of lobes denotes that 

the currents are sensibly cophased but some central members have 

become disconnected. 
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Fig. 14.4 shows the pattern which results when the two outer quarters 

are in phase with one another but in phase quadrature with the middle 

half (the dotted pattern is for uniform cophased loading). Here again 

the number of lobes is halved. The main beam is twice its proper width 

at the base and it has a pronounced shoulder on it. The existence of 

this shoulder should tell the experimenter that large quadrature 

Fig. 14.4. Dilfrax’-tion pattern for a 16-member curtain array, side spacing ^A. 
Current loading is imiform in R.M.S. value but the two outer groups of 4 are in phase 
quadrature with central group of 8. Power gain 12-2. Dotted pattern is for cophased 

currents. 

currents exist; because the minimum at 7° is an attempt to produce 

the zero of field which would occur at T if the currents were cophased. 

The lobes have not become very large but they are halved in number. 

Fig. 14.5 is the pattern which results when the R.M.S. current in 

the middle half is twice the current in the two outer quarters, the 

outer quarters being cophased with one another but in phase quadrature 

with the middle half. In general character Figs. 14.4 and 14.5 are not 

very dissimilar. Once more, the key to the distribution is that there are 

only half as many lobes as there ought to be. 

Fig. 14.6 relates to a 1:2:2:1 cophased loading with a superposed 

quadrature loading in which the quadrature current increases uniformly 

from zero in the middle members to a value which makes the current 

in the outside members have a phase angle of 45"^. The inset diagram 

shows the distribution of R.M.S. current across the curtain. If this had 

been obtained experimentally, from ammeter readings, it might well 

have been concluded that a very close approach had been obtained to 

a cophased loading described by the notation 1:1*4:1'4:1. It might 

well have been thought that the matching transformer feeding the 
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middle eight members had a ratio which increased their currents, 

relative to the two outside sets of 4, in the ratio 1-4:1, whereas it had 

Fio. 14.5. DifEraction pattern for a 16-member curtain array, side spacing JA, in 
which the current loading is 1:2:2:1 in R.M.S. value, but in which the currents in 
the two outer groups of four are in phase with one another but in phase quadra¬ 
ture with the central 8 currents. Power gain 10‘5. Dotted pattern is for cophase 

currents. 

0 10 20 30 50 60 70 80 90 
Bearing 

Fig. 14.6. DifEraction pattern for a 16-member curtain array, side spacing fA. Cur¬ 
rent loading is 1:2:2:1 cophased, plus an outward triangular loading of quadrature 

component which makes phase angle of extreme members 45Power gain 17. 

been intended to increase them in the ratio 2:1. The distribution test, 
made by ammeters only, might well appear to be satisfactory and might 
lead to the decision to leave well alone and not attempt to bring the 
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current loading more nearly in the ratio 2:1. The pattern, however, 

would show that the loading was not cophased, because there are only 

three lobes. This pattern should be compared with Fig. 2.3. There is 

a great contrast in detail, but from the practical point of view it is 

quite possible that Fig. 14.6 would be the preferable pattern because, 

on the whole, it has smaller lobes and fewer of them. Comparing 

Fig. 14.7. Diffraction pattern for a 16-member curtain array, side spacing JA. All 
currents equal in R.M.S. value but the middle pair are in phase quadrature with the 

other 14. Power gain 19*5, 

Figs. 14.5 and 14.6 we conclude that a reasonable amount of progressive 

and symmetrical phase change, across the curtain, has not got much 

practical significance. 

Fig. 14.7 shows the pattern which results when all members carry 

equal currents but when the current in the middle pair is in phase 

quadrature with the other fourteen cophased currents. This pattern is 

the vector sum of two components; one of them is the pattern shown 

in Fig. 2.7 and the other is the pattern for two equal currents separated 

by ^A. After due consideration, this description should make clear the 

structure of this pattern and show why it is virtually the same as 

Fig. 2.7 when pushed upwards by an amount which decreases smoothly 

to zero at == 90°. This figure is typical of many experimental patterns, 

in that it has imexpeotedly large lobes which are too few in number 

and the field does not pass through zero but merely falls to minima. 

It is obviously the vector addition of a pattern having many lobes and 

a quadrature pattern which has only about one bearing for zero field. 

The obvious cause of a pattern such as Fig. 14.7 is a large quadrature 
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component of current in a pair of members which are not separated 

by more than one or two multiples of ^A. 

An interesting case to consider is when the phase alternates by 90° 

from member to member. Suppose, for example, the array has 17 

members. Then we have to combine the pattern for a 9-member array, 

whose side spacing is A, with the pattern for an 8-member array, whose 

side spacing is A; the two arrays being coplanar and with a common 

centre point but having currents in phase quadrature. Since the side 

spacing is A, consideration will show that the field on bearing 90° must 

be the same as the field on bearing zero. This alone would suffice to 

disclose the phase distribution if the array was a curtain. But if it was 

an in-line array the ‘obliquity’ effect would reduce the field to zero at 

d == 90° and the phase distribution would disclose itself mainly by the 

last lobe being very large. The ‘breadth factor’ for an 8-member array 

with side spacing A is 

B y sin(87rsinfl) ^ sin(87rsin0) 

8sin(7rsin0) 16sin(|7rsin0)cos(^7rsin0)‘ 

The obliquity factor for half-wave aerials is cos(|7r8in0)/cos 6: hence 

if the array is to be in-line, its breadth factor becomes 

B F — 
16 sin(^7r sin 0)cos 0 ’ 

and this is the breadth factor for a 16-member curtain divided by cos d. 

Hence the pattern can be derived by dividing the ordinates of Fig. 2.7 

by OOS0. This counteracts the decreasing size of the side lobes: thus 

the lobe centred at 56° is increased from 5 per cent, to 9-2 per cent, and 

that centred at 75° is increased to 16 per cent. The resultant pattern 

for the 17-member array in which alternate currents are cophased and 

adjacent currents are in phase quadrature is shown in Fig. 14.8: it is 

characterized by a field which does not fall to zero anywhere but has 

a general level of about 10 per cent, in the range of bearing between 

15° and 65°. The lobes are nowhere large, but the final lobe is surpris¬ 

ingly big for a final lobe, and this is the striking feature which discloses 

that it is alternate currents which are cophased, thereby producing an 

array whose spacing is A. 

Reviewing these examples, it becomes apparent that large side lobes 

are not a characteristic of currents which are imperfectly cophased: 

the characteristic of this is a reduced number of side lobes and probably 

minima rather than zero field on certain bearings. If the pattern of an 

existing array is to be analysed systematically it is the small values of 
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field which must be studied thoroughly, and this will involve a very 

sensitive galvanometer. It is the precise bearings of the minima or 
zeros of field which must be determined because it is the discrepancy 
between these bearings and the ideal which gives much information 

about the distribution of current, in both magnitude and phase. 

Fig. 14.8. Diffraction pattern for a 17-member curtain array, side spacing JA. All 
currents equal in magnitude but phase alternates 90° from member to member. 

Usually it is only in Radar applications that very close agreement is 

called for between the observed and the ideal pattern. Then it is that 

the very existence of side lobes may be a real nuisance. But even so 

it is very often the sharp maxima of side lobes which are more a 

nuisance than the mere existence of field on bearings well away from 

that of the main beam. But there is also the question of whether 

imperfect phasing decreases the power gain appreciably. Consideration 

will show that the power gain cannot depend much on the phasing 

because the main beam accounts for nearly all the power and the main 

beam is not much dependent on the phasing. The power gain has been 

evaluated, for all the examples we have given, on the supposition that 

each member of the curtain is a single half-wave aerial; the value of the 

gain is marked ori each figure. For example, Fig. 2.3 records that the 
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gain for a 1:2:2:1 cophased loading is 17-3 and the gain for the loading 

to which Fig. 14.6 relates is 17-0: for uniform cophased loading the gain 

is 21-8 (Fig. 2.2) and in Fig. 14.7 the gain is 19*5. Imperfect adjustment 

of phase will not affect the gain appreciably unless the maladjustment 

is really gross. 

14.3. Examples of patterns when the phase distribution is not 
symmetrical 

In § 2.7 we studied the process of turning aside the main beam by 

making the phase change progressively across the curtain. When the 

array was wide we found that the amount of turning which could 

be produced was very small, of the order of two or three degrees. If 

only a few degrees of swing can be attained even when the phase 

changes progressively from leading in one extreme member to lagging 

in the other extreme member, then it follows that random and fortuitous 

maladjustments of phase cannot possibly swing the main beam by any 

significant amount. 

It must be emphasized that because the main beam is found to be 

‘on centre’, within the limits of ordinary measurements, then this is no 

indication that all the currents are cophased or that the phase distribu¬ 

tion is symmetrical. It is a matter of experience that the main beam 

always is on centre and it does not demand a very deep understanding 

of the problem to realize that this result is inevitable.! It is an equally 

common experience that the side lobes are all wrong, in size and 

bearing: these two experiences are often thought to be contradictory, 

but of course they are not contradictory. 

Fig. 14.9 shows the pattern for a curtain in which each of the 16 

members carries the same R.M.S. current but when the two extreme 

currents are in antiphase with one another and in phase quadrature 

with the remaining 14 currents: it is the resultant pattern for which 

the two components have been recorded in Fig. 2.9. The main beam is 

about 1° off centre and its width at the base is about 17-6° (vice 16® 

for cophased loading). The outstanding feature is that the side lobes 

have become very unsymmetrical and also very large on the right-hand 

t When we say the main beam is always on centre we are thinking of arrays which 
have at least 10 members: it is very easy to swing the beam when there are only about 
4 members and this is very common practice in certain broadcast services. When 
engineers meet to discuss aerial problems it is common to here views expressed which 
seem to be completely divergent. This divergence is not due to conflict of basic 
principles but arises because one man is accustomed to work at, Say, A ^ 15 m. and 
another at, say, A » 50 cm.: one of them is apt to think of a t3rpioal array as having 
about 4 meml^rs while the other one thinks of it having about 24 members. 
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side of the diagram; thus the phase of the extreme members has had 

a profound effect on the side lobes and just that kind of effect which 
is experienced very commonly when an array is first tested. The same 

kind of effect is exemplified in Fig. 14.8. It is well to remember here 

that in plotting the experimental pattern the lobes would all be plotted 

Fig. 14.9. Diffraction pattern for a 16-menaber curtain array, side spacing JA. Cur¬ 
rent loading is uniform in magnitude but the two extreme members are in antiphase 

with one another and in phase quadrature with the central 14. Power gain 16-7. 

above the base line. If this were done in Figs. 2.8 and 2.9 the 

lobes would be sensibly symmetrical in respect of amplitude and the 

dissymmetry would be mainly in their bearings. The feature which 

would strike the observer strongly is that the first pair of lobes have 

an amplitude of 37 per cent., instead of 21 per cent, for cophased 

loading. 

Fig. 14.10 shows the pattern when one middle quarter of an array 

has its currents in phase quadrature with the other 12 equal and 

cophased currents. Here the main beam is turned off-centre by V: the 

side lobes are enormous and unsymmetrical. The arrowheads on the 

base line record the bearings for zero or maximum field when all 

the currents are cophased and they serve to indicate, for comparison, 

the features of the ideal pattern. This gross maladjustment of phase 

has devastated the ideal pattern and serves well to indicate the kind of 
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thing which can well result from a group of members being misphased: 

and a whole group may get misphased because the cable feeding their 

common junction box may be out of adjustment. 

Fig. 14.10. Diffraction pattern for a 16-member curtain array, side spacing JA. All 
currents equal in magnitude but the phase of one of the middle quarters is in quadra¬ 

ture with the other 12 cophased members. Power gain 13*6. 

Fig. 14.11. Diffraction pattern for a 16-member curtain array, side spacing JA. All 
currents equal in magnitude. The two middle quarters in quadrature with one 
another; the two outer quarters are cophased with one another but their phase differs 

46° from the two middle quarters. Power gain 16. 

Fig. 14.11 shows the pattern when the two middle quarters are in 
quadrature with one another and the two outer quarters are cophased 
but differ by 45° from -the middle quarters. Here the side lobes are 
unsymmetrical, enormous, and reduced in number. The pattern is 
slightly reminisoent of Fig. 14.3. 
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It is hoped that the selection of examples which has been given will 

serve as templates with which to match and compare experimental 

patterns. Consideration of them, combined with judgement and 

experience, should enable engineers to recognize that a particular 

pattern (obtained experimentally) denotes that the maladjustment of 

phase resides in a determinable portion of the array and is of a recogniz¬ 

able kind. By the help of these templates it ought to be possible to 

proceed in a systematic way in correcting the cables: use of the tem¬ 

plates ought to reduce the loss of time and patience which is attendant 

on blind experimentation. 

14.4, An example of a 16-member curtain in front of a flat 
reflector 
Fig. 14.12 shows the observed pattern for a certain curtain array 

of 16 half- wav^ aerials mounted in front of a flat copper sheet and 

operating at A = 50 cm. Each dipole was mounted on a brass tube, 

which was perpendicular to its axis, and the feeding cables passed up 

the centre of this tube. The tube passed through a bush in the copper 

back-plate and the distance between the dipoles and the back-plate 

could thereby be adjusted. The junction boxes for the feeding cables 

were provided with matching sections’, and these had diameters 

such as to lead to the expectation that the two outer groups of 4 aerials 

would be fed with half the current fed to the middle 8 aerials. The 

radiation resistance of each member depends on the distance between 

the curtain and the back-plate; hence adjustment of this distance must 

affect the impedance which the group of 16 (together with their feeding 

cables, junction boxes, and matching sections) presents at the end of 

the main cable feeding the whole array. The match to the main feeding 

cable (70 ohms characteristic impedance) was most nearly correct when 

this distance was 11 cm.: and for this reason the distance 11 cm. was 

deemed to be the proper distance between the curtain and the back- 

plate. 

To estimate the effect of the back-plate on the pattern we must 

derive the pattern due to the curtain together with its image distant 

22 cm. (0-46A) from it. This amounts to multiplying the expression for 

the equatorial pattern, for the isolated curtain, by the factor 

2sin(i;cos0), 

where k is here equal to 0*467r. Since the distance between the curtain 

and its image is here less than A (it is less than JA), there is no bearing 

angle at which the field will be zero other than those angles when it 
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would be zero if the curtain were isolated. Thus the back-plate cannot 

produce any new lobes and can do no more than reduce the amplitude 

of the lobes: the said reduction will be appreciable only for the far-out 

lobes. 
The sensitivity of the receiving apparatus did not suffice to show 

whether the field passed through zero or merely fell to a minimum. 

Fig. 14.12. Equatorial pattern of a certain 16-member curtain array, mounted in 
front of a flat reflector: and distant 0*22A from it: A = 60 cm. 

Accordingly all the lobes in Fig. 14.12 are plotted on the same side of 

the base line. Indeed, field could not be detected if it was less than 

about 8 per cent, of the field at 0 = 0. Hence Fig. 14.12 purports to 

give more information than could be observed directly and, apart from 

the main beam, it was not possible to do much more than locate closely 

the five tnaximn, from it and to find that on bearings greater than about 

46° field could be detected only near +60°. 

If the currents had been cophased and the loading 1:2:2:1, then the 

pattern should agree with Fig. 2.4, save that the 10 per cent, lobe 

centred on 70° would be reduced by the back-plate. Reference to 

Fig. 2.4 will show that a peak should have been observed at 26° and 

36° and nowhere else; the observations do not agree with this prediction. 

Now compare the pattern with Fig. 14.6, in which there are maxima at 

20° and 42° and with Fig. 14.6 in which there are maxima at 22° and 42°. 

Neither of these agrees with the observed pattern and yet, on the whole, 

the trend of the change of bearing is in the right direction. Fig. 14.12 

shows that the phase distribution is not symmetrical and si^gests that 

the outer members have an appreciable quadrature component of 

current. It would seem probable that the middle 12 members did in 

fact carry more current than the remainder because the widtii (at its 

base) of the main beam is about 17°, instead of 14° as it ought to be 
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for uniform loading. The pattern is, perhaps, a little better than the 

ideal for uniform loading but very much worse than for cophased 

1:2:2:1 loading. It is very doubtful if the extra complication of the 

matching lines, intended to produce 1:2:2:1 loading, was justified 

unless the pattern without them would have been worse than the ideal 

for uniform loading. 

160 120 80 40 40 80 120 160 
Angle of elevabion 

Fig. 14.13. Diffraction pattern in the other principal plane for Rame array as 14.12. 

Fig. 14.13 shows the observed pattern in the other principal plane 

and is the only example, from experiment, of this pattern which we 

are able to give in this book. If the curtain consisted of 16 isolated 

doublets, then this pattern would vary as cos^, where <f> is the angle 

of elevation. If it had consisted of isolated half-wave aerials, then it 

would have varied as 003(^77 sin ^)/cos <f>. If it had consisted of half-wave 

aerials in front of an infinite plane, then this last factor should be 

multiplied by sin(A;cos^), where k is here equal to 0*467r. The outside 

curve in Fig. 14.13 represents cos^: the middle curve represents 

cos(i7TCOs^)/cos^, and the third curve is the second curve multiplied 

by the factor which allows for the array being distant 0*22A (i.e. 11 cm.) 

from an infinite flat plane. Twelve observed values of field strength 

are marked with a cross and these crosses lie very close indeed to the 

inside curve in the figure. This shows that all three expected corrections 

make successively closer approximations to reality. There is field in 

the range of ^ from 90® to 180® because the back sheet was not infinite 

(its width was about equal to A): the front-to-back ratio was about 9 to 1. 
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14.5. Measured performance of horizontal dipole arrays at A 
about 20 m. 

We will now draw from the experience of Mr. H. Pagef and explain 
first the excellent notation he uses for describing an array. If there are 
n rows^ each consisting of m aerials the lowest at height hX above the 
ground, then the array is described by the symbols H mlnjh. The letter 
H denotes that the polarization is horizontal: for example, H 4/4/1 
denotes 4 rows of dipoles, the lowest of which is at height A above the 
ground. Each row consists of 4 half-wave dipoles with small clearance 
between their tips and they are often fed as two columns of whole wave 
aerials. The letter R, before H, denotes that the array has a reflecting 
curtain: an additional letter S denotes that the column need not be fed 
cophasedly and thereby the beam can be ‘slewed’ to one side. 

The vertical polar diagram was observed by measuring the e.m.f. 
induced in a loop carried by a balloon which was distant about 60A 
from the array and could ascend to an angle of elevation of about 40®. 
The observed field strengths are reduced to mV/metre at a distance of 
1 km., for an input of 1 kW. 

Fig. 4 of Mr. Page’s paper (loc. cit.) records the horizontal diffraction 
pattern for an H.R.S 4/4/1 array at a frequency of 16-31 Mc/s. The 
number of rows is not relevant to the horizontal pattern, which must 
be the same as for a single 4-element in-line array. It can readily be 
calculated that the first zero of a 4-element array occurs at 0 = 30® 
if gjX = J or 0 == 28-1 if gjX = 0-53. Mr. Page’s figures give both the 
ideal and the observed pattern. The observed field strength falls to a 
minimum value, of about 2-5 per cent, at 28-2®: his ideal pattern falls 
to zero at 30®. Since there must have been some clearance between the 
tips of the dipoles it would seem that gjX must have been greater than 
and hence it is not obvious why he makes his ideal pattern pass through 
zero at 0 = 30®. It seems probable this array agreed more closely with 
the ideal than Mr. Page implies. The magnitude of the observed side 
lobe is in substantial agreement with the ideal. Since the field does not 
fall quite to zero at 28® it is to be inferred that th0 two outer columns 
were not precisely cophased with the inner two but that the discrepancy 
of phase was only of the order of 2®. His Fig. 6 shows the front-to-back 
ratio was about 14 to 1: there are indications that the field did not fall 
to zero at 0 = 90® and this accords with expectation, since the reflecting 
screen had finite width. 

His Fig. 3 records the vertical pattern on the centre line of the beam 
t See Journal I,E,E, 92 (1945), Part III> 68. 
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and is reproduced here as Fig. 14.14: the full line curve in the figure is 

the ideal pattern for a 4-element array whose members carry equal 

cophased currents, and which is above a flat and perfectly conducting 

ground. It may be seen that there is very marked discrepancy between 

the observed and ideal patterns and it is necessary to discuss critically 

the reason for it. It is stated (loc. cit.) that the ground sloped down¬ 

wards at a substantially constant slope of 2-3° for a distance of some 50A 

from the array. The figure shows the field does not fall to zero until an 

angle of depression of about 2-7° and doubtless this is accounted for by 

the ground slope. But it is very noticeable that the field does not pass 

through zero at any angle of elevation but passes only through minima 

whose fractional values are by no means small. Such minima are 

characteristic of an array in which the currents are not all cophased: 

the problem here is to decide whether the departure from cophasedness 

is in the currents, in the actual array, or in the currents induced in the 

sloping ground, which may possibly differ appreciably from a perfect 

conductor. In discussing the pattern in the horizontal plane (loc. cit., 

Pig. 4) we have already decided that the four columns of the array were 

very closely cophased, and indeed suggested that the phase discrepancy 

was not more than 2°. It might perhaps seem, at first sight, that this 

showed that the discrepancies between the observed and ideal patterns 

in Fig. 14.14 are not due to incorrect phasing of the currents in 

the array and therefore must be due to effects of the ground. But 

careful consideration will show that this does not necessarily follow. 

The pattern in the horizontal plane shows the current is cophased 
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along each row of the array, but it does not show that the four 

rows are mutually cophased with one another. In other words, 

the pattern in the horizontal plane is the pattern of one horizontal 

4-element in-line array at any distance above the ground: any number 

of such in-line arrays, acting simultaneously, will give the same pattern 

irrespective of the relative phase and magnitude of the current in them. 

If all four rows are not mutually cophased, then the 

only effect will be that the absolute value of the field, 

on all bearings, will be less than if they had all been 

cophased. Fig. 14.15 (reproduced from Fig. 1 of 

Mr. Page’s paper) shows that the half-wave elements 

were fed at one end (not from their mid-point) and 

thus each consecutive pair in a row formed what is 

called a whole wave aerial. Fig. 14.15 could be de¬ 

scribed as two columns of whole wave aerials fed by a pair of vertical 

cables, branching symmetrically from a central feeding cable. The 

feeding system has perfect symmetry about the mid-vertical line of the 

array: the observed pattern in the horizontal plane shows the current 

does in fact divide symmetrically between the two vertical feeding cables. 

But since the main feeder is connected at the bottom of the array and 

because the array is in the presence of the ground, the feeding system 

is not symmetrical about the mid-horizontal line of the array. It may 

well be that there is a progressive change of phase from row to row, 

and that the current in the top row is less than in the bottom row, 

since each vertical feeding cable has four loads (the four whole wave 

aerials) spaced at equal intervals along it. 

It is helpful to consider the structure of the ideal pattern in Fig. 14.14. 

This pattern is the product of the pattern of an isolated 4-element 

curtain and the pattern of an unlike pair of currents separated by |A 

(see Chapter II, p. 98). The field of a 4-element curtain (side spacing JA) 

carrying equal and cophased currents can be zero only when the path 

difference between alternate members is ^A. Since sin 30° = 0*5 the field 

will be zero at an angle of elevation of 30°, no 'matter what is the 

height of the curtain above the ground. Accordingly the zero at 0 = 30° 

in Fig. 14.14 is due to the array per se: the other two zeros in this figure 

are due to the height of the array above the ground (there is another 

such zero at 58*2°). But it may be seen that the observed pattern is a 

maximum at d = 30° and a minimum at 33° and this suggests that the 

currents in successive columns are neither equal nor oophased. The 

observed minimum a,td^ 26*2° is presumably the attempt to produce 
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the zero at 0 = 30° and if 2-7° be added, for the ground slope, then the 

bearing is very nearly correct. But still it is not a zero but only a 

minimum of 10 per cent, magnitude. 

Fig. 14.16 is very instructive in demonstrating that the minima of 

the pattern are very sensitive to the relative phase of the current in the 

top row of the array. Curve A in this figure is the pattern for an H 4/4/1 

array in which aU currents are equal and cophased, and it is the same 

as the dotted curve in Fig. 14.14. Curve B is the pattern for a single 

horizontal wire at a height 2^A above the ground and it may be called 

the pattern of an H4/l/| array. Curve C is the pattern which would 

result if the patterns A and B coexisted in phase quadrature with one 

another. Thus it is the pattern of an H 4/4/1 array in which the current 

is cophased along every row, and in which the top row carries a current 

whose R.M.S. value is {l+(i)*}^ times that in the other three rows and 

with a phase difference of 7'1° with respect to them. The shape of 

pattern C can be varied considerably by altering the relative magnitudes 

of curves A and B. However, the example chosen in Fig. 14.16 bears 

a strong resemblance to the observed pattern in Fig. 14.14 and serves 

to show that the discrepancy between the observed and ideal patterns, 

recorded there, may be due to a comparatively small change of phase 

from row to row and is not necessarily due to the slope or the imperfect 

conductivity of the ground. 

It should be noted that Fig. 14.16 can be used to derive readily the 
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pattern which will result from any specified current in the top row. 

Thus, suppose its R.M.S. value is to be 0-71 of the other three currents 

and with a phase lag of 45®. First derive a curve D which is the differ¬ 

ence between curves A and B: then make a quadrature addition of 

curve B and curve D\ the result will be the required pattern. 

We have discussed at length the discrepancies between the observed 

and ideal patterns in Fig. 14.14 in order to make an exercise in analysing 

observed patterns. For many purposes these discrepancies are of no 

practical importance and the discussion may appear to be mere pedan¬ 

try. The loss of power which results from the observed pattern in 

Fig. 14.14, as compared with the ideal pattern, is negligible and, in this 

respect, the observed pattern is very nearly as good as the ideal. The 

time and trouble required to bring the two into coincidence (always 

supposing the discrepancy is not due to the ground) by successive and 

systematic small changes in the feeding cable would not be justifiable. 

Much of the writer’s experience has been on Radar aerials in which 

special precautions had been taken to reduce the side lobes, and there 

it was important to try to make the observed side lobes agree with the 

ideal. They never did agree in the first instance, and the consequent 

adjustments were hampered and prolonged by inadequate knowledge 

of how to analyse an observed pattern. For Radar purposes the side 

lobes are very objectionable because of the spurious echoes they are 

liable to produce: the power wasted in them is never significant, per se, 

A reader who is concerned with Radar aerials, operating at a wavelength 

between 50 and 100 cm., may not feel this discussion has been mere 

pedantry. The response of a given person to a given discussion on 

aerials is coloured enormously by that person’s particular needs of the 

moment: let his operational duties be changed slightly in respect of 

wavelength or kind of service and his response to the discussion of a 

given problem may well change out of all recognition. 

14.6. Analysis of the effect of ground slope 
(a) Uniform slope 

Masts are erected vertical, and not perpendicular to the surface of 

the ground on which they stand. We can simulate the conditions which 

arise from a uniformly sloping ground by solving the problem of a 

curtain whose plane is not perpendicular to an infinite conducting plane. 

This solution follows at once from the general solution of a current 

filament placed anywhere in a Vee and given in § 3.10. If we put n ^ I 

in (3.20) we have the field of a wire parallel to a fiat ground but referred 
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to an origin which is not at the foot of the perpendicular from the 

filament on to the plane. If there are several parallel filaments all in 

one plane, inclined at a to the normal, which meets the infinite plane 

at the origin of polar coordinates, and if the distances of the successive 

filaments from the origin is denoted by etc., then (3.20) gives 

E 
TYT 2^/3(i)cos3acos30+...}— 
4i^^o 

—{2 2 J4(i)sin4asin40+...}. (14.1) 

The form of (14.1) shows that \E\, the R.M.S. field, is symmetrical in 

both quadrants. This is immediately obvious since each component 

pattern is, by its very nature, symmetrical in both quadrants and hence 

the addition of the component patterns can be unsymmetrical only in 

phase: it also conforms with the general principle (see p. 163) that the 

beam cannot be turned off centre when n is an odd integer. Since both 

components in (14.1) will not pass through zero at the same value of d 

it follows that the pattern must have minima and not true zeros. Hence 

the experience recorded in Fig. 14.14 may have been due to the slope 

of the ground and not to lack of perfect cophase adjustment of the 

currents in the four rows of members. On substituting the numerical 

values appropriate to an H4/oo/l array we have 

E 
= j|_0-07 co8acos04-O-13cos3acos30—O-I9coe5acos60— 

4^q 

—0-34 cos 7a cos 70+0-20 cos 9a cos 90—...}— 

—{—0-13 sin 2a sin 20—0-08 sin 4a sin 40+ 

+0-40 sin 6a sin 60—0-27 sin 8a sin 80+...}. 

It would be necessary to go up to the term in sin 210 m order to 

reduce the coefficients to less than 0-01 and the process of evaluation 

by this method would be intolerably laborious. Equation (14.1) has 

served its purpose by showing that a uniformly sloping ground will, 

ipso facto, convert the zeros into minima even if the currents are truly 

cophased. Thus, if a horizontally polarized array were mounted in a 

ship, then the pattern in the vertical plane would vary cyclically with 

the pitching of the ship, quite apart from the direct effect of the undulat¬ 

ing surface of the ocean. Thus, with an H4/»/l array, if an aeroplane 

was flying at an angle of elevation near 16°, then its Radar echo would 

wax and wane with the pitching of the ship, being always a maximum 

when the ship was momentarily stationary. 
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(b) Two uniform slopes 

Fig. 14.17 is the polar diagram (see Page, loc. cit., Fig. 9) in the 

vertical plane of an H4/6/0-3 array, transmitting over ground which 

sloped downwards at an angle of 3-5° for a distance of 6A, when the 

slope changed quickly to T down. The feature of interest is the 

minimum at 0 = 4°. Mr. Page obtains an interesting approximate 
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solution by means of ray-treatment; he points out that the portion of 

ground whose slope is —3-5° will provide that part of the pattern which 

lies between d = 10'6° and 9°. While the more sloping ground provides 

the portion of the pattern between 6 = —7-5° and -|-3-5°, in the range 

between d = 3*5° and 10’5° there will not be any reflected ray (if the 

change of slope is abrupt) and accordingly the field strength will be 

half the maximum in this range. This general description accounts 

for the possibility of a minimum such as that at 9 = 4° in Fig. 14.17 

and no doubt the explanation is substantially correct. 

However, the whole problem can be solved, at least formally, by 

classic methods and without ray-treatment. The groupd can be regarded 

as a Vee having an angle of {180°4-3'6°) = 183'6° and accordingly 

n = 0-982, and a = (91-76°—arctan 0-25) = 77-76° and 

h == 2ffXVl7xl-66 = 40-6. 

The labour of evaluating the pattern from the, Fourier series would be 

prohibitive; however, the full expression would consist of two com¬ 

ponent Fourier series in phase quadrature. Now exanuhe 1%. 14.17 

with the understanding that it is probably the quadrature additum of 
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two distinct patterns. It suggests strongly that one of these patterns 

has its first maximum near 1*5® and a zero near 5®, while the other has 

its first maximum near 6°. The quadrature addition of two such patterns 

would give a minimum, of large fractional value, near 4®. Thus it is not 

surprising, from the classical approach, that the pattern should have" 

the general form of Fig. 14.17. 

14.7. The fields close to a curtain: method of estimating the 
power output 
At a short distance from a wide curtain of high vertical wires the 

field must approach that of an infinite fiat sheet and then be expressed 

by the equation 
-- ~ — cos ar+i sin ar. 
ZTTi 

The field must approximate to a plane wave at short distances and to 

a spherical wave at !arge distances: our purpose now is to assess the 

range within which the field strength is approximately constant and 

independent of distance. It is necessary to give separate consideration 

to the inphase and the quadrature component of field. At the surface 

of a continuous sheet the quadrature component is zero, but this can 

scarcely be so in the plane of a curtain of separate wires. The quadra- 

. ture component at the surface of each wire must be very dependent 

upon both the radius of the wire and the condition of tuning, presumably 

being zero if the wire is tuned precisely. We shall be content here with 

studying the field near a grid of N equal and cophased current filaments 

and shall not specify the quadrature field at points very close indeed 

to their plane. If each filament carries a current I and the side spacing 

is gr, then the average current density over the plane of the grating 

will be i = Ijg. If this density had been carried on a continuous sheet, 

then the field at its surface would have been given by the equation 

cE 

27ri 
— 1, whence 

cE _ 2 

anl ag' 

But this is a grating, and not a continuous sheet, and therefore the 

inphase component of field at its middle wire is given by 

= l+2{t^(agr)+Jo(2agr)+...}. 

In most arrays the side spacing g is equal to ^A, which makes ag equal 

to TT. We shall take ag because doing so greatly facilitates the use 

of tables: it is near enough to the most common value, which is ogr = tt, 

to serve for the comparison we require. If ag = 3, then --cElarrI f, 
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and this must give the limiting value to which Ep approaches at the 

middle wire of a grating in which ag = Z. Table 14.2 records the value 

of Ep at the mid-wire of gratings having 1, 3, 6, etc., wires and shows 

that a grating of 9 wires has approached very close indeed to a con¬ 

tinuous sheet, in respect of the inphase field at the middle wire. 

Table 14.2 

Number of wires 1 3 5 7 9 infinite she^et 
-^cEplanl 10000 0-4798 

i 
I 0-6004 0-6666 

We now want to examine how the field strength depends on distance 

from the plane of the curtain and to assess the range in which it is 

substantially constant. Fig. 14.18 shows the distribution of |F{ in the 

normal mid-plane of a 3-wire curtain and also the asymptote to which 

the field must approach when ar is large. It may be seen that \E\ has 

reached the asymptotic value when ar exceeds about 9 and thus the 

wave front is virtually cylindrical when r/A exceeds about f. But in 

the range of ar between about 2 and 6 the field strength is substantially 

constant and in this region the propagation is akin to a plane wave. 

Fig. 14.19 shows \E\ in the normal mid-plane of a 7-wire grating and 

also the asymptote for ar large and the asymptote for a grating of 

infinite width. In the range of this figure \E\ does not approach close 

to the asymptote for ar large but fluctuates about the asymptote for 

infinite width: with 7 wires the propagation is akm to a jdane wave 

over about the first 3A of distance. So much for the distribution of \E\ 
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in the normal mid-plane, what of its distribution in planes which are 
parallel to the grating ? 

Fig. 14.20 supplies the answer to this question and shows the distribu- 

Fi«. 14.19. Distribution of \E\ in normal mid-plane of 7-wire grating. 

Fio. 14.20. Distribution of \E\ in planes parallel to a 6-wire grating. 

tion of |.B| across various planes parallel to a grating of 5 wires. It 

shows that the value of | jS?| at a given distance from this grating is not 

constant, as it would be if the grating was propagating a plane wave. 

But it also shows that \E\ is sensibly independent of distance in 

the normal planes which intersect the grating xnidway between the 
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component wires: it is in such planes that the field is most akin to a 
plane wave, and in them the figure shows that c\E\l(a7Tl) is very nearly 
equal to f, the value appropriate to a grid of infinite width. 

This is a discovery which has an important bearing on the measure¬ 
ment of output by means of a monitor aerial. If output measurement 
by this means is to be reliable and trustworthy, then it must be 
insensitive to the exact position of the monitor and depend little on 
the width of the curtain. Near the beginning of § 9.2 we have likened 
the use of a monitor aerial to the use of a current transformer of large 
ratio and this is a very just and proper simile: the problem is to deter¬ 
mine the magnitude of that ratio in any given application. Here we 
have shown that c\E\gl27rI == I in a normal plane between two wires, 
and this gives the required ratio when it is combined with a monitor 
aerial designed in accordance wdth the principles explained in Chapter 
IX. In any given application in practice it will be desirable to explore, 
by means of the monitor aerial, the distribution of \E\ in a normal 
plane between two wires near the middle of the curtain. Having proved, 
by experiment, that |-E| is indeed constant over a considerable range 
of distance from the curtain it will remain only to choose some particular 
point, within that said range, which is convenient and suitable for the 
permanent location of the monitor. It is rare good fortune to be free 
to locate the measuring instrument at a point whose position is not 
dictated by electro-technical considerations and can be determined 
solely by convenience of mechanical construction. Having decided the 
distance between the monitor and the array it might be well to explore 
1^1 as a function of position parallel to the array, in the manner corre¬ 
sponding to any two of the curves in Fig. 14.20: interpretation of the 
result of such a test would give a cross check that the spot chosen for 
the monitor was effectively situated in a mid-plane. In all this we are 
working on the justifiable assumption that the output of the uniformly 
loaded curtain was equal to the output from the same area of an 
infinite sheet. Accordingly the output is c\E\^j2TT per unit area of 
curtain, where | is the field strength deduced from the monitor aerial: 
hence the output in watts is 

P = -^2 ^ (volts/m.)^ X (area of curtain in square metres). 
oOtt 

Perhaps the reader may feel there is an imjustified step in passing 
to the output of the whole curtain from a field-strength measurement 
which must be on a mid-plane between two wires. But it is in the^ 
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planes that the field has the value corresponding to a plane wave, 
provided all the currents are equal and cophased. Perhaps the validity 

of the treatment will be justified more clearly by the help of Fig. 14.21, 

which relates to a sheet of total width 1*9A (i.e. ar = 12 and thus corre¬ 

sponds to the 5-wire grid in Fig. 14.20) which is carrying a constant and 

cophased current density. The figure shows the distribution of Ep and 

Fig. 14.21. Distribution of Ej» and Eq across a uniformly loaded 
sheet of width 1*9A. 

Eq, across the half-width, at the surface of the sheet. If the sheet were 

infinitely wide, then Eg would be zero and Ep would have the constant 

value shown by the dotted line. The output of work is given by 

since i is constant, by hypothesis. It is obvious from the figure that the 

mean value of Ep across the sheet cannot be appreciably less than that 

shown by the dotted line: the output per unit width is not constant, but 

the fluctuations are above and below the output per unit area of a 

sheet of infinite width. It is interesting to note that Eq twice chcmges 

sign across the sheet: this implies that the successive wires of a curtain 
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will require different tuning adjustments if the currents are to be equal 

and cophased.f 

When the wavelength is such that a conventional ammeter cannot 

be used in each member of the curtain it is not easy to discover the 

relative currents carried by them. It is tempting and natural to 

attempt to use a monitor aerial to explore the current loading; and 

natural, at first sight, to place the monitor very close to each member 

in turn in the hope that its response will then be dominated by the 

current in that member. However, consideration will show this hope 

has no foundation. The quadrature component of field very close to 

the wire must be very small when the wire is correctly tuned and a 

small change of tuning must be competent to make a very large change 

in the quadrature component of field. The inphase component of field 

rises slowly to a finite value at the wire, and reference to Table 14.2 

will show that the total value of Ep is due largely to the remainder of 

the curtain. Thus it is clear that the total field close to a wire will 

depend dominantly on the precise state of tuning of that wire, and 

accordingly the response of a monitor placed close to a wire is not likely 

to be a good measure of the R.M.S. current in it. The net quadrature 

field is brought to zero, by tuning, through the agency of the contribu¬ 

tion from the charges distributed along the wire, and we need to ehmi- 

nate the effect of the field due to these charges. Such fields, arising from 

charge distributions, have no curl; hence an indicator must be used 

which responds to the curl of the field and not to the field itself, and 

this means using a monitor loop rather than a monitor aerial. This can 

be put more directly as follows: the magnetic field at the surface of the 

wire, of radius 6, must tend to the value H = 2//6 as compared with 

the value H = 27Tllg in the plane wave front. Thus the magnetic field 

near the surface of the wire must be dominated by the current in that 

wire, and accordingly it is the magnetic field which must be used to 

explore the current loading: the magnetic field can be measured by the 

e.m.f. it induces in a loop. A monitor loop is essentially the right tool 

and a monitor aerial essentially the wrong tool to use for exploring the 

current loading. If tests by a monitor loop have shown that all the 

currents are substantially equal to one another, then the response of a 

monitor aerial, placed close to each wire in succession, should be a sensi¬ 

tive test of the relative phase of the currents. The writer has vivid 

recollections of being called upon to test the current distribution across 

t For a more complete treatinent of all this section see Journal IMM, 91 f Fairt III 
(1944), 23. 
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a 16-element curtain at A = 60 cm. and being provided with a primitive 

monitor aerial, colloquially called a ‘probe’, for the purpose. The factors 

governing the response of the probe, which have just be analysed, had 

not then been thought out. Tests by the probe showed that the response 

fluctuated by at least two to one, in a random manner, in passing from 

aerial to aerial across the curtain, even though it was fed through a 

cable system which had been designed and made with great care. It 

seemed highly probable that the probe tests gave a very wrong and 

pessimistic account of the current distribution. He noted that the, 

response from any given aerial could be increased about twofold by 

lengthening it slightly, by slipping on a short length of copper gauze 

sleeving. These early and primitive tests now seem readily intelligible. 

The response of the probe was due mainly to Eq, and this should be 

modified very much by adjusting the length of the aerial, even though 

such adjustment did not change the R.M.S. current very much. It was 

found that the main beam of the polar diagram of this array had 

substantially the correct width, and this showed the current distribution 

was very much more uniform than the probe tests had suggested. The 

moral is that a probe test shows up the phase and not the magnitude 

of the currents in the members. Thoughtful interpretation of the results 

of a systematic exploration by both monitor loop and by probe aerial 

should be capable of disclosing a great deal of information about the 

magnitude and phase of the current distribution across a curtain array 

and should help much with the final tuning adjustments of individual 

members. It is perhaps worth remarking here that it is a monitor aerial 

which ought to be used for measuring and monitoring the power output 

of the whole array. The loop is not suitable for this purpose because it 

is subject to an incalculable error resulting from ‘aerial effect’ and this 

would vitiate the absolute value of field strength deduced from the 

measured current in the loop. 

14.8. Measurement of the power output from a Vee reflector 

We have discovered the region in which the field of a curtain differs 

insensibly from a plane wave and shown how the total output can be 

deduced from the field measured in this region. While we are on this 

subject it seems appropriate to discuss the corresponding problem of 

measuring the output from a single aerial in a Vee reflector. For this 

purpose it is required to know the distribution of field in the vicinity 

of the aerial and to discover a station where the field changes slowly 

with distance, because the monitor aerial must be placed at such a 
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station in order that its response shall not be unduly sensitive to its 
exact position in the Vee. In the idealized case of infinite sheets it is 
easy to calculate the field distribution when the source is either a 
current filament or a single doublet. 

We will start with the case in which a doublet is on the bisector of 
a 90° Vee and distant from its apex. The field at any point, in the 

equatorial plane, can be found by adding the inphase components due 
to the doublet and its three equivalent images and likewise for the 
quadrature components: these two sums can then be added vectoriaUy. 
When iJ/A = J it has been shown that the power gain is 10 and it can 
readily be shown that the field at a very distant point on the bisector 
is the same as if a single doublet of fourfold strength were situal^ at 
the apex of the Vee, the Vee having been removed. Accordingly it is 
appropriate to compare the field distribution along the apex of the Vee 
with the curve e\E\j2a'^Xo — ^jar, since this curve must be the asymp¬ 
tote of the distribution along the said bisector. Curve A in Fig. 14.22 
shows the calculated distribution along the bisector while curve B 
shows the asymptote over the same region. The difference between the 
two curves is not very considerable, and this is still another example 
showing that the modulus of the field very rapidly approaches the 
value corresponding to the ai^unptote at infinity. In Chapter XQ we 
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decided it was unwise to place a monitor closer than about JA from the 

excited half-wave aerial; for this reason the region between the aerial 

and the apex is forbidden territory. Accordingly the monitor would be 

placed at in front of the aerial and at this point \E\ is 1*12 times 

the value given by the asymptote curve. At this point |JS?| is varying 

sensibly as the inverse of the distance from the apex and accordingly 

a small and unsuspected displacement of the monitor would not affect 

its response very violently: in short, the field distribution is favourable 

for measuring the power output by a monitor aerial. 

Fig. 14.23 shows corresponding graphs for a doublet at EjX = 1*45 

(k = 9) from the apex of a 90° Vee, a station where the forward power 

gain is near a maximum, having a value of about 20: our comments on 

the previous figure should suffice for this one. 

The corresponding graphs for a doublet distant 0-48A from the apex 

of a 60° Vee shows that the curve oi \E\ oscillates slightly above and 

below the asymptote in the range of ar from 4-5 to 10; the general 

form of the distribution is well suited to the emplo3nnent of a monitor 

aerial for measuring the power output. 

It is much more simple to evaluate corresponding curves for a current 

filament because they are expressed in the Bessel series. It has been 
4ma xk 
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done for a filament in a 60° Vee at JB/A = 0*48 and the curve of |.®| is 

found to lie everywhere slightly above the asymptote but has small 
undulations: the figure does not merit reproduction. 

Fig. 14.24 shows corresponding graphs for a doublet |A from the apex 

of a 60° Vee. The corresponding curves for a current filament were very 

5 10 o/>—► 15 20 

Fig. 14.24. Doublet on 60*^' mirror, i?/A — f. 

similar to those for a doublet: the maxima and minimn, at ar = 4 and 6 

respectively were relatively larger and smaller with regard to the 

asymptote and the minimum at ar — 12 was relatively larger. It is 

obvious from Fig. 14.24 that the monitor ought to be placed between 

the doublet and the apex and at ar = 4-6: it would be necessary to 

settle by experiment that the monitor had been stationed on the fiat 
top of the maximum. 

We must now find how to deduce the output from the field measured 

at any point in the forward direction and this will involve the calculated 

value of the gain 0. The output of an isolated aerial is given by the 
formula 

P = kX% watts, 

where I; is a factor depending on the length of the aerial and the current 

distribution along it. For a doublet fc = 0-666, for a half-wave 
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aerial with sinusoidal distribution k = 0*6095, and for a half-wave aerial 

with triangular distribution k = 0‘616. Accordingly for short aerials k 

is sensibly independent of length and distribution and so P is sensibly 

proportional to Z§. Again, for a short aerial 

XI == (a^)^ if dr > 77, 

P == 30c2|P|Vfc, if r > JA. 

If the forward field of an aerial and refiector is F times that of the 

isolated half-wave aerial (having the same and the gain is G, then 

where |jEf| is tlie measured field at a large distance r in the forward 

direction. But the system of measuring the power by a monitor aerial 

depends on measuring the field at a small distance: both because the 

field must be large enough to infer directly from the response of a 

thermocouple and because it is inconvenient to have the monitor at an 

appreciable distance from the aerial, especially when the aerial and 

refiector revolve on a turntable. Let a be the ratio of |jE7| for an 

isolated doublet to the field of that doublet in the given ideal 

refiector, at a given distance r from the isolated doublet or from the 

apex of the reflector: the value of a is to be read from Figs. 14.22 to 

14.24. Then we have t 
P = |{Pra|P|'}2. 

Presuming that the monitor is placed at JA in front of the aerial in the 

reflector then we have the values shown collected in the following table: 

Table 14.3 

F Q (X ar {aFaryjO 
Field for 
given P 

Isolated balf-aerial . 1 1 n 77* 1 

on® / ~ ^ 
4 0-9 2'07r 5*2077* 

U/A=l . 4 0*77 4*077 7*6077* 
3-7 1*1 2*077 4*2077* 

U/A = 4 5 0*56 6*477 7*0077* 0*38 

This table shows that, for a given power, the field at JA in front of 

the aerial depends little on or JB/A. But if the field is measured behind 

the aerial, at at == l*47r, in a 60® Vee in which Bj\ == f, then the 

relative field per unit power is 1*2. 

The values recorded in the above table relate to infinite sheets and 
«mA K k 2 
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accordingly we must inquire how much they are likely to be affected 

by sheets of finite width, and this inquiry will require some experiments. 

For this purpose a pair of screens 8 ft. high were covered with copper 

gauze and used to form a Vee excited by a half-wave aerial, at 

A = 126 cm., on their bisector and parallel to their junction line: the 

screens were thus 2A high, in the direction parallel to the aerial. The 

screens were set at 90° to one another and then had a width of 2A and 

so the aperture was 2’82A wide and 2A high. A half-wave aerial was set 

at ^A from the apex (i.e. 62"6 cm.) and the monitor aerial (JA long) was 

used to measure the relative values of \E\ along the bisector in the 

range of distance between 100 and 250 cm. from the apex, and thus 

extended beyond the aperture plane. Taking r/A = 1 as the fiducial 

point (i.e. JA in fi’ont of the aerial), it was found that the relative field 

strengths agreed perfectly with curve A in Fig. 14.22 in the range of ar 

between 5 and 13. The relative agreement being within the limits of 

experimental accuracy, it is not necessary to record these experiments 

in a figure, since Fig. 14.22 serves this purpose completely. Comparison 

of curves A and B in this figm^ shows that l.E| departs appreciably 

from a 1/ar law in this range. This experiment shows that, with BjX = 

sheets 2A X 2A sufi&ce to produce a field distribution along the bisector 

which has, in the range explored, just that departure from the \jar law 

which would obtain if the sheets extended to infinity. Then presumably 

we may have confidence, in these circumstances, in the value deduced 

for P from a value of |P| derived from a monitor aerial. 

The aerial was then placed at P/A = f and the width of the screens 

was increased from 2 to 3-6A. The observed relation between current 

in the monitor aerial and distance along the bisector is shown by 

curve A in Fig. 14.26. Curve B in the same figure shows the current 

which would have obtained if the sheets had been infinite the current 

scale bemg chosen to make the two curves agree at r = 240 cm. (i.e. 

0'42A in front of the aerial). Here the plane of the aperture was 310 cm. 

from the apex and this was about one A in front of the aerial. Taking 

the chosen fiducial point makes the agreement good oh most of the 

region behind the aerial, and especially so at and near that maximum 

which occurs at ar = 60 cm. The experimental curve passes through 

a maximum at ar = 140, whereas the calculated curve is shown as 

rising without limit. The discrepancy here is to be expected and 

doubtless arises mainly from the method of calculating the field of the 

doublet in the Vee. The field would rise to infinity at the doublet, but 

would attain a finite value very near the surface of the tuned half-wave . 
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aerial. The discrepancy in the range between 140 and 160 cm. is due 

to the source being a half-wave aerial and not a doublet and is unlikely 

to be due to the finite size of sheets. On the other hand, the discrepancy 

in the range 240 to 320 cm. is almost certainly due to the finite size of 

the sheets, for we see that the field decreases much more rapidly with 

distance than it would do in the ideal problem. A general view of the 

0 40 80 120 160 200 240 280 320 360 
Distance oF monitor from apex 

Fig. 14.25. Doublet in 90° mirror, B/A = |, A == 125 cm. 

comparison suggests that the relative distribution up to r/X — 2 is m 

substantial agreement with the distribution in the idealized problem 

and that, accordingly, a monitor aerial may be placed at any suitable 

point inside this range. Unquestionably the most suitable point is at the 

maximum at r = 60 cm. It seems probable that the output of the aerial 

wiU then be the same as that of an aerial in an idealized 90° Vee and 

producing the same field strength at that point of maximum. This 

process will probably give the correct output of the aerial, but this will 

not suffice to give the correct value of the forward field at a distant 

point: indeed, this is shown up in the figure by the discrepancy in the 

range r = 240 to 320 cm. If a measure is then made of the power 

required to produce the same forward field by an isolated aerial, then 
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the gain of the given reflector should equal the ratio of these two power 

measurements. 

Screens 2A x 2A were then set at 60° to one another and excited by 

an aerial at ^A from the apex. The current induced in the monitor 

aerial was recorded as the monitor was moved continuously from 80 to 

240 cm. from the apex, being then 30 cm. in front of the aperture plane. 

In the range of observation the current varied precisely in the inverse 

ratio of the distance from the apex. The test was repeated with the aerial 

distant 0'42A and 0-58A from the apex and in both cases the product of 

the monitor current and distance from the apex was constant. These 

last experiments show all that it is necessary to know about the depen¬ 

dence of the response on the position of the monitor, and it seems likely 

that the field strength has the value appropriate to infinite sheets and 

thus will serve for the purpose of deducing the output. 

The width of the screens was then increased from 2A to 3'5A and the 

aerial was placed at f A from the apex. The curve relating the observed 

values of monitor current and distance is reproduced in Fig. 14.26: this 

figure bears a marked resemblance to Fig. 14.24 which relates to 

r/A = I (vice |). The value of \E\ was calculated for r/A = |, and 1, 

and these values are marked with crosses in the figure, the scale being 

chosen so as to fit the experimental value at r/A = 2. Such points show 

that the relative agreement is well maintained over the scope of the 

figure. The proper place to locate the monitor is clearly at r/A = 0*65, 

the exact location of the maximum being found experimentally in any 

given application. 

When screens 2A x 2A were inclined at 45° to one another and the 

aerial was at r/A = J the monitor current was found to vary precisely 

in the inverse ratio of the distance from the apex in the range of distance 

between 0'60A and 2A. 

The analyses and experiments have disclosed much about the distri¬ 

bution of field in the vicinity of an aerial in a Vee and told us where 

an aerial ought to be situated for monitoring the power output. The 

existence of a maximum between the apex and the aerial, if this is more 

distant than A from the apex, is very germane to our problem and 

requirement. For the flat top of a maximum is a very favourable spot 

at which to locate the monitor because then the response will be 

independent of small accidental displacements, such as may well occur 

in service. Moreover, the monitor will then be snugly housed in a place 

where it is very unlikely to be damaged or tampered with; its mponse 

should then be a very reliable measure of the temporal variations of 
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output, from any causes whatsoever, over a long period of time. It 
seems highly probable that the field at this point is independent of the 
size of the sheets, and accordingly the response of the monitor can be 
converted to read in terms of the total output, the conversion factor 
being calculable from the solution of the idealized problem. 

Fig. 14.26. Doublet in 00® mirror, i?/A = f, A = 125 cm. 

During recent years much good work has been done on the develop¬ 
ment of wattmeters for measuring the power passing along a coaxial 
cable. It would be very instructive to make a systematic comparison 
of the power supplied through the coaxial cable, feeding the half-wave 
aerial, and the output deduced from the response of the monitor aerial. 
Such an exercise should include an exploration of the effect of the 
height and width of the screen. If the work was carried out exhaustively 
it would ultimately make it possible to detect any unsuspected losses 
in the aerial mounting or in moisture films on the screens themselves. 
The time will come when it will be desired to specify ‘acceptance tests’ 
bn the output from the aerial, and it seems likely such tests could be 
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based on the response of a suitably constructed and situated monitor 
aerial. 

14.9. Yagi arrays 

In § 2.21 we examined the pattern of a curtain in which adjacent 

currents are equal and opposite. In such circumstances the distant 

field along the normal to the curtain must be zero (if the number of 

members is even), and the field in the plane of the curtain will be N times 

that of one member alone if the side spacing is ^A. Equation (2.24) 

showed that the power gain tended to the limiting value of 0‘7SN and 

the resistance of each member to 93 £2. The system commonly called a 

Yagi aerial is an attempt to excite a curtain in this manner by means 

of a single driven aerial, forming one of its members. Like refiecting 

screens it is a device for reducing the number of feeding cables demanded 

by a conventional broadside array. 

If a curtain, of conventional form, has only its middle member fed 

with power, then experience shows that the dominant field strength is 

in the plane of the curtain, and this means that the driven Eieiial excites 

currents which are successively substantially in antiphase with one 

another. This being so it is natural to excite the end member of the 

curtain and to place a refiecting screen, or its equivalent, perpendicular 

to the plane of the curtain and near the driven member. Then the 

resulting pattern will be mamly in one sense only and in the plane of 

the array. The sharpness of the beam will increase with the number 

of members, but it is not surprising to find that a limit is approached, 

because the induced current is likely to diminish along the length of the 

curtain. The device was described by Hidetsugu Yagi in 1928t who 

referred to the row of aerials as a ‘wave canal’. He records a polar 

diagram resulting from 20 undriven members (see Fig. 13, loc. cit.), and 
its beam width, at half-height, is about 8°. 

Though the writer has often used Yagi aerials he has not had 
experience of developing them and therefore shrinks from writing 
much on the subject. The process of development must consist of an 
ad hoc determination of the length and spacing of the members to give 
the best over-all performance. He will draw from the experience of 
Mr. E. V. Aired.$ Fig. 14.27 shows a drawing of an 8-member Yagi 

aerial developed for use in the Royal Navy at A = 60 cm. Polar diagram 
(6) in the same figure relates to the field strength in the equatorial 

t See Ptoc. Inst. Rad. Engs. 16, 716. 
t See Joum. I.E.E. 43 (1947), Part, TTT 
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and diagram (a) to the field in the plane of electric field. The first 

‘director rod’ was distant 0‘28A from the driven dipole and the distance 

between successive directors was 0'37A, these spacings having been 

found to give the best polar diagram: the length of the directors was 

0"40A and it is said that this length was not very critical. The main 

beam was included within an angle of 60° and the pattern was very 

similar to what would have been obtained from a 60° Vee, or trough, 

with the aerial at |A from the apex: the side lobes were larger than 

would have obtained with a Vee. The bearings for zero field were at 

30°, 60°, and 80° from the axis of the main beam. The equation for the 

pattern of a 9-member array with equal and opposite currents and JA 

spacing is given in (2.22), and for it the bearings of zero field are 39°, 56°, 

70°, and 84°. To allow for the reflector this pattern must be multiplied 

by the pattern for an unlike pair of currents separated by about 4*6A, 

and then the first zero of field would be at 12° from the plane of the 

array. Looked at in this way it would seem that the width of the main 

beam in the equatorial plane of a Yagi should depend very much on 

the size and position of the reflector. 

The general principle of action of a Yagi aerial seems quite clear. 
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Basically it is a curtain array in which successive currents should be 
equal and opposite and spaced |A apart: then the field will be zero along 
the normal to the curtain and N times that of one current in the plane 
of the curtain. A reflecting sheet, or its equivalent, at one end will 
restrict the field to one direction in the plane of the curtain. If the 
curtain is excited by only one driven aerial it is unlikely that successive 

currents will in fact be equal even if they are substantially opposite, 
and the advantage of additional members is likely to be subject to 
diminishing returns: the optimiun spacings and the total number of 
members must be determined by ad hoc experiment. 

Fig, 14.28 (Aired, loo. cit.) is very instructive in showing the mn.Tinftr 
in which the equatorial pattern changes with firequency: Fig. (c) in it 
shows that a narrowing of the main beam is accompanied by an increase 
in the size of the first pair of side lobes, and doubtless this corresponds 
to an approach to a condition of zero forward field, when the mg-iTi 
beam is replaced by a bifurcated beam. It suggests that (a) in thia 
figure is the nearest approach to the pattern inherent to an ideal Yagi 
(i.e. successive currents equal and opposite), but that (6) might 1^ 
deemed a preferable pattern for practical appUoations. 
. As a device for producii^ a reasonably sharp beam from one driven 
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aerial the Yagi system does not appear to oiler any technical advantage 
over the use of reflecting sheets and it must require more development 
by process of blind experimentation. It does, however, offer an alterna¬ 
tive method of mechanical construction which might offer advantages 
in some given application. However, it is worth remembering that a 
Vee in which the reflecting sheets are represented by a comb of rods 
(see Tables 11.2 and 11.3, pp. 396, 397) would have precisely the same 
mechanical construction as a Yagi and would not require any develop¬ 
ment by experimentation, since its behaviour is known to be very near 
that of an ideal Vee. Thus it would seem that the comb Vee is a better 
technical solution than the Yagi, while employing the same mechanical 
construction. 

A metal tube is often used as the rod to support the members of a 
Yagi and then they are welded to it. 

Aired (loc. cit.) describes experiments in which several parallel Yagi 
arrays were operated in parallel, and he shows that the resultant 
pattern is substantially the product of that for one isolated array 
■with the pattern for a curtain ha'dng the same number of members 
as there were Yagi aerials. Thus his experiments w'ere the counterpart 
of our experiments -with two Vee’s side by side and these are described 
in § 12.2. 

For a valuable analysis of the design and behaviour of Yagi aerials, 
the reader is referred to a paper by R. M. Fishenden and E. R. Wiblin, 
Proc. I.E.E. 96 (1949), Part III, 6. 



TABLES OF BESSEL FUNCTIONS 

From N. W. MoLaohlan, Beaael Functions for Engineers 
(Oxford: Clarendon Press, 1934) 

e 0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 

0 1-0000 0-9975 0-9776 0-9604 0-9885 0-9130 0-8812 0-8468 0-8075 

1 0-7852 0-7196 0-6711 0-6301 0-5669 0-5118 0-4554 0-3980 0-S400 0-2818 

2 0-2289 0-1666 0-1104 0-0555 0-0025 -0-0484 -0-0968 -0-1424 -0-1850 -0-3248 
8 -0-2601 -0-2921 -0-8443 -0-8648 -0-8801 -0-8928 -0-8098 -0-4086 -0-4018 
4 -0-8971 -0-8887 -0-8766 -0-8610 -0-S42S -0-S305 -0-2961 -0-2698 -0-3404 -0-2097 
8 -0-1776 -0-1443 -0-1103 -0-0768 0-0270 0-0917 0-1220 

6 0-1506 0-1773 0-2017 0-2238 0-2433 0-2601 0-2740 0-8851 0-2981 0-2981 
7 0-8001 0-2991 0-2951 0-2882 0-2786 0-2663 0-2516 0-8846 0-2164 0-1944 
8 0-1717 0-1475 0-1282 0-0960 0-0692 0-0419 0-0146 -0-0125 -0-0898 -0-0658 
9 -0<0903 -0-1142 -0-1367 -0-1577 -0-1768 -0-1939 -0-2090 -0-8218 1 -0-2328 -0-2408 

10 -0-2459 -0-2490 -0-2406 -0-2477 -0-8484 -0-2366 -0-2276 -0-2164 -0-2082 -0-1881 
11 -0-1712 -0-1528 -0-1830 -0-1121 -0-0902 -0-0677 -0-0446 -0-0218 ! +0-0020 0-0250 
12 0-0477 0-0697 0-0908 0-1108 0-1296 0-1469 0-1686 0-1766 0-1887 0-1988 
18 0-2069 0-2129 0-2167 0-8188 0-2177 0-2150 0-2038 0-1943 0-1836 
14 0-1711 0-1570 0-1414 0-1345 0-0875 0-0679 0-0271 0-0064 
15 -0-0142 -0-1650 

Whenz > 16‘9, 

0-7979 < 1 > 
== -^|sin(67-296*-f 46)“ + ^ 8m{67-29fo - 46)“|. 

J,(z) 

z 0 0-1 0-2 0*8 0-4 0-5 0-6 0-7 0-8 0-9 

0 0-0000 0-0499 0-0995 0-1488 0-1960 0-8488 0 2867 0-3290 0-8688 0*4059 

1 0-4401 0*4709 0-4988 0-5220 0*5419 0-5579 0-5699 0-5778 0-5815 0-5812 

3 0-5767 0-5688 0*5560 0-5899 0-5808 0-4971 0-4708 0-4416 0*4097 0-8754 

8 0-8891 0-2618 0-2207 0-1792 0*1874 0-0955 0-0538 0-0128 -0-0272 

4 -0-0660 -0-1088 -0-1886 -0-1719 -0-2028 -0*2811 -0-2566 -0-2791 -0-2985 -0-3147 

5 -0-8276 -0-8871 -0-8482 -0*8460 -0-8458 -0-8414 -0-8848 -0-8241 -0-8110 -0-2951 

6 -0-2767 -0-2550 -0-2889 -0-2081 -0-1816 -0*1588 -0-1850 -0-0958 -0-0658 -0*0849 

7 -0-0047 +0^»252 0-0548 0-0826 0-1096 0-1852 0-1598 0-1818 0-2192 

8 0-2846 0*2476 0*2580 0-2657 0-2708 0-2781 0-2728 0-2697 0-2641 0-2559 

9 0*2458 0-2824 0-2174 0-2004 0-1816 0-1618 0-1895 0-1165 0-0928 0*0684 

10 (HM85 0*0184 -0-0066 -00818 -0-0555 -0-0789 -0-1012 -0-1284 -0-1422 -0-1608 

11 -0-1768 -0-1918 -0-2089 -0-2148 -0*2325 -0-2284 -0-2830 -0-2888 -0-2828 -0-2290 
12 -0-2284 -0-2157 -0-2060 -0-1948 -0*1807 -0-1655 r-0-1487 -0-1807 -0-1114 -0^)919 

13 1 -0-0708 -6*0489 -0*0271 -0-0052 +0-0166 0-0590 0-0791 0-0984 0-1165 
14 0-1814 0-1488 0-1628 0-1747 0-1850 0-1984 0-1999 0-2043 0-2066 0-2069 
15 6-2051 0*2018 0-1955 0-1879 0*1784 0-1672 0-1544 0-1402 0-1247 0-1080 

When z > 15*9* . 

*P ^^;^{«li(«7-29te-45)“+gj8m(67-29e*.f 4«)*|. 
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Yoiz) 

f 0 0*1 0*3 0*3 0*4 0*6 0*6 0*7 0*8 0*9 

0 -00 -1*684 -1*081 -0*8078 -0*6060 -0*4445 -0*8086 -0*1907 -0*0868 +0*0066 
1 0*0883 0*1683 0*3881 0*3866 0*3879 0*8834 0*4630 0*4774 0*4968 
3 0*5104 0*6183 0*5808 0*6181 0*6104 0*4981 0*4813 0*4606 0*4869 0*4079 
3 0*8769 0*8431 0*8071 0*3691 0*8396 0*1890 0*1477 0*1061 0*0646 0*0384 
4 -0*0169 -0*0561 -0*1396 -0*1683 -0*1947 -0*3336 -0*3494 -0*8738 -0*3931 
6 -0*8086 -0*3816 -0*3313 -0*3874 -0*3403 -0*3396 -0*8364 -0*8383 -0*3177 -0*3044 
6 -0*3888 -0*8694 -0*3488 -0*3361 -0*1999 -0*1733 -0*1463 -0*1163 -0*0804 -0*0668 
7 -0*0369 *f 0*0048 0*0889 0*0638 0*0907 0*1178 0*1434 0*1668 0*1878 0*3066 
6 0*8335 0*3381 0*8601 0*3696 0*2663 0*3703 0*3716 0*3700 0*3669 0*3693 
9 0*3499 0*3383 0*8346 0*3086 0*1907 0*1713 0*1603 0*1379 0*1046 0*0804 

10 0*0557 0*0307 0*0066 -0*0198 -0*0487 -0*0676 -0*1133 -0*1336 -0*1616 
11 -0*1688 -0*1848 -0*1977 -0*3091 -0*3188 -0*3363 -0*2399 -0*3833 -0*3833 -0*3398 
13 -0*3353 -0*3184 -0*3096 -0*1986 -0*1868 -0*1713 -0*1661 -0*1876 -0*1187 -0*0989 
IS -0*0788 -0*0569 -0*0368 -0*0184 +0*0086 +0*0801 +0*0613 0*0918 0*1099 
14 0*1873 0*1481 0*1676 0*1703 0*1812 0*1903 0*1974 0*3036 0*3066 0*8066 
16 0*3066 0*3033 1 0*1978 0*1903 0*1818 0*1706 0*1584 0*1446 0*1295 0*1183 

When 2 > 15*9, 

5#{*) =j= y(^){«“(*-Jw)-^sm(*+Jw)| 

0*7979/ 1 ^ 
4= sm(67*296z-45)®-- ~sin(67-2962-f46)M. 

Tii^) 
t 0 01 0*2 0*8 04 0*5 0*6 0*7 0*8 0*9 

0 — 00 -6*459 -3*324 -3*298 -1*781 -1*471 -1*103 -0*9781 -0*8781 
1. -0*7813 -0*6981 -0*6311 -0*6486 -0*4791 -0*4138 -0*3476 -0*3847 -0*3387 -0*1644 
3 -0*1070 -0*0617 +0*0016 +0*0638 0*1006 0*1469 0*1884 0*3876 0*2636 0*3969 
8 0*8347 0*8496 0*8707 0*8879 0*4010 0*4103 0*4154 0*4167 0*4141 0*4078 
4 0*8970 0*8846 0*8680 0*8484 0*8360 0*8010 0*2787 0*3446 0*2186 0*1813 
6 0*1479 0*1187 0*0793 0*0446 0*0101 -0*0838 -0*0668 -0*0887 -0*1193 -0*1481 
6 -0*1760 -0*1998 -0*3338 -0*3433 -0*3696 -0*2741 -0*2867 -0*3946 -0*8003 -0*8039 
7 -0*8037 -0*3996 -0*3984 -0*3846 -0*3781 -0*3691 -0*3438 -0*8348 -0*3039 -0*1817 
8 -0*1681 -0*1881 -0*1073 -0*0806 -0*0686 +0*0011 Emm 0*0644 0*0799 
9 +0*1048 0*1376 0*1491 0*1691 0*1871 0*3033 0*2171 0*3387 0*3879 0*3447 

10 0*3490 0*3608 0*3503 0*3471 0*3416 0*3337 0*3886 0*3114 0*1978 0*1818 
11 0*1687 0*1446 0*1348 0*1039 0*0679 0*0848 0*0114 -0*0118 -0*0847 
13 0*0571 -0*0787 -0*0994 -0*1189 -0*1688 -0*1689 -0*1881 -0*1986 -0*3088 
13 -0*3101 -0*3163 -0*3163 -0*3190 -0*3140 -0*2084 -0*3007 -0*1913 -0*1798 
14 -0*1666 -0*1889 -0*1186 -0*1008 -0*0810 -0*0613 -0*0408 -0*0303 
16 0*0311 0*0418 0*0609 0*0799 0*0979 0X148 0*1306 0*1676 0*1686 

When * > 15*9, 

^iC*) ^ y{^{«“(*-|«-) + ^s>n(c-Jir)| 

=• ?^^^|8iii{67-29te-136)° + ^8in(67-2d«*-46)°|- 



A SHORT LIST OF FORMULAE 

(For a more complete list, see McLaclilan, Bessel Functions for Engineers, p. 167) 

1- = (-1)V„(5); J„{-z) = (-1)V„{«); = J^(-z). 

2. zJ'„{z) = vJ,(z)—zJ,^y(z). 

3. = —i\7„(«)+sJ,^i(z). 
4. TJ'Jiz) = •4u.i(2)—<44-1(2), by addition from 2 and 3. 

2j/ 

5. —^,,(2) “ by subtraction from 2 and 3. 

6. ^1,(2) satisfies reciurence formulae of the type given in 2-5 inclusive; YJ^z) 

satisfies the form given in 1. 

7. Ifz) = i-''JA^iy, /„(2) i''J„(-zi). 
8. zr,(z) = —v/„(2)-fsL_i(s). 

9. 2r,(z) = /_i(2)+/h-i(2)- 

10. ^Ifz) = J,_i(2)-7^,(s). 

11. r,{z) = Ji(s). 

12. zKy(z) = vK^{z)—zK^^i{z). 

13. zKv(z) — —vKy(z)—zK^_-^{z)e 

14. 2Kv(z) = — [jRrp_i(2)+/iy4i(2)], from 12 and 13 by addition. 

2v 
15. ~Ky(z) — Ky^^(z)—Ky_i(z), from 12 and 13 by subtraction. 

16. A'i(2) = ~Ai(2). 

17 = _. 1 
■ ’ r(v+l)l (v+l)'^2!(v+l)(v+2) 3'!(i/+l)(v-f2)(v+3)''‘"7‘ 

18. Jj(s) == = Y_^^z) = H_j(z). 

19. 7_j(z) = y(|)eosz = -r,(z) J(^)-H,iz). 

20. r,(z) =|{y+log(i2)}7.(z)-| 

r=l 
21. cos(2sin^) = jQ(z)+2{J2{z)coa26+J^{z)co8 4:d~\-,.,}. 

22. 8in(2sin^) = 2{Ji(2)8in^+J3(s)sin 30+•••}• 

23. cos(2cos0) = Ji(2)—2(^2(2)008 20—Ji(2!)cos 40+...}. 
24. sin(2cos0) = 2{Ji(2)cos0—di(2)cos30+...}. 

26. cosz — «^(*)—2{t/2(2)—t7Ji(2)+Ji(z)—...}, from 21, 0 = Jtt, or from 23, 0 = 0. 
26. sinz = 2{Ji(z)—t73(z)+J5(z)—...}, from 24, 0 = 0, or from 22, 0 = Jtt. 
27. 2 = 2{Ji(z)+3J8(2) + 6J3(2) + ...}. 

28. J,^i(z)YUz)-J,(z)Y^,(z) = 2I7TZ. 
29. i«(25)K’,H,l(z)+ij8^.l(z)ir,l(2) = 1/z. 
30. tH(z) tends to —ii(z), when z 00. 
31. Ji(z) tends to Io(«f)» when z -> 00. 
32. Jv^i(z) tends to *—J,^i(z), when z -► 00. 

83. JJ^z)YJiz) = —i-, when z tends to zero, for all values of n save n = 0. 
Hfff 

34. Ii(z)Ki[z) # when z tends to zero. 
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36. h(z)KJ,z) 4= l(l_<i!^^), for * large. 

36. A{z)+Yi{z) > ^ < * > «• 
Z (Z* — w®)» 

00 00 ® 

37. I J,{z)dz = 1; J Y^{z)dz= 0; ) ^ 

® ® 0 

? . 38. J t7o(a«)sin hzdz ^ | oo 

f fl/V(a*~62) 

39. J jQ(az)oo^hz dz ^ joo 

(02) dz i 
-== -, n ^ 0, 

z n ^ 

40. J Y^(az)(io^hz dz = 0. 
0 
00 

41. J K^(az)eosbz dz = 

7 
42. J J^{az)Ji{bz) dz = 1/(26) 

« [l/b. 

43. Jt{-J{xZ+y^—2xyoosd} = J(,i?':)Jti(y)+2'2,J„(x)J„(y)Dosnd. 
1 

44. roW(a^+J/*-2a:2/cos«)} = Mx)Y^(y)+2fjJix)Yn(y)cosnd, for y > x. 

46. JiW(**+2^*)} = Ji(*W2/)-2^.(»W$^)+2Ji(x)Ji(i/)-.... 
46. Mx+y) = Mx)J^{y)-%ri(x)J^(y)+2Jt(x)J^(y)-.... 
47. Ji(»+y) = Ji(x)/i(j/)+7i(x)Ji(y)-Ji(a:)J,(y)-Jj(®)J.{y) + .... 
48. Interesting series are obtained by putting x — ±y in 43-7. For example, 

Ji(2*) = Jl{z)-2J\{z)+2Jl(z)-... 
and 1 = J?(s)+2J!(*)+2J-i(*)+.... 
49. 1 = J„(*) + a/,(z)+2J!i(*) + .... P«t 6 = 0. in 21. 
60. l-2di(*)+2di(2*)-2J.(3z)+2J.(4*)... = 0, if z < n-. 

61. I (-l)V,(nz) = for * > ^ < 2,r. 

62. Jo(*)+di(2z)+Ji(3z)+... = i-i, if z < 2»r 
Z M 

j/l I - 2 ) 1 
zl V{l-(2jr/*)*}' 2’ 

or if 47r > z > 2w. 



INDEX 

Aerials with large capacitance roof, SSS-O. 
Aired, R. V., 91, 504, 506-7. 
Ampere, A. M., 2, 3, 7, 10, 12, 21-5, 27, 35. 
Array, curtain, 425-8, 470-6. 
-alternate elements in antiphase, 111- 

12. 
-of half-wave aerials, 105. 
-, parallel to half-plane, 196-8. 
-, pattern at any angle of elevation, 99. 
-, power output, 489-95. 
-, with binomial loading, 90-3. 
-, with non-uniform oophased loading, 

85-6. 
-, with sinusoidal loading, 89-90. 
-, with symmetrical but not cophased 

loa^g, 470-6. 
-, with triangular loading, 86-9. 
-, with uniform loading, 82-5. 
—, high curtain, 110-11, 144. 
—, horizontal dipole, 482-6. 
—.in-line, 97-9, 106-10, 122, 145, 150, 

154, 176, 241, 326, 465-70. 
— — in Vee reflector, 150-4. 
— of Vee reflectors, 283-5. 

Back-to-front ratio, 193, 195, 215, 234, 
235, 386-8, 396, 416, 421, 481-2. 

Baker, B. B., and Copson, £. T., 294. 
Ballantine, Stuart, 330. 
Barrow, W. L., and Lewis, F. D., 450-1. 
Bessel, F. W., 31. 
Bessel functions, general form, 137-9. 
-tables, 508-9. 
— series for forward field, 13^44. 
Bessel’s equation, 31. 
Blodget, Miss, 294-5. 
Bouwkamp, C. J., 325, 327-8. 
Breadth factor defined, 83. 
-, 83, 84, 88-91, 98. 

Coaxial tube resonator, 342. 
Comb aerial, 395-7. 
Cornu spiral, 194. 
Current components, distribution in a half- 

plftne. 201—2. 
— denaty, 190-203, 227-32, 237, 242-3, 

252, 256, 258-65, 272-4, 280, 291, 296, 
301-7, 423, 457-62. 

-at Vee apex, 286-8. 
-induced in flat infinite sheet, 122-5. 
-induced in half-plane, 303-7. 
-in saniciroular oylmders, 457-62. 
— — Varickhle across infinite plane, 58-62. 
Oyhxuler, current flowing rotmd ciroum- 

fereitee, 258-4 

I Cylinder, external field of current, 263-4, 
— perpendicular to electric vector, current 

in, 218-20. 
—, plane wave incident on, 241—51, 261-3. 
—, semicircular, 457-62. 
Cylinders, 218-20, 265-323. 

Darbord, R., 447. 
Diffraction pattern defined, 81. 
-at finite distance, 165-7. 
— patterns, 235, 238, 245, 263, 282, 316, 

320, 391, 404-15, 418, 420,426, 427, 428, 
437-46, 454-5, 459, 465, 469-76, 477-8, 
481. 

-and polar diagrams, 81-117. 
Displacement current defined, 9-12, 
Doublet, electric, 324-9. 
-, isolated, 66-70. 
— line, 218-20, 260, 264. 
-, field of, 54-5. 
-, in Vee reflectors, 184-6. 
-, parallel to flat sheet, 184-5. 
—, ring, 78-80. 
Doublets, 121. 
— in mirrors, 496-8, 501. 

Echoed field, 248, 250, 264. 
Edge effect, 199-203. 
Equipment for fieldwork, 341-62. 
Euler, L., 20, 30. 
Ewing, Sir J. A., 360. 

Faraday, M., 6, 7, 9, 10. 
Feeding cables, 144, 145, 217, 484. 
Filament between two parallel conducting 

planes, 64-6. 
— carrying current I co8(97^/g]sinjpi(, 38- 

44. 
— current, parallel to infinite plane, 119- 

26. 
-, field of isolated, 28, 38. 
-in presence of half-plane, 188-96. 
-parallel to metal cyUnder, 228-40. 
—, isolate, origin not on wire, 60-1. 
Filaments, pair of, 45-8. 
-, oppositely directed, 48-50. 
Firing through arrays, 206. 
Fishenden, R. M., and Wiblin, E. R., 507. 
Focus treatment, 249, 250. 
Folded roof aerials, 339. 
Forward field, 233, 234, 240-69. 
-, Bessel series for, 128, 139-44. 
-curves, 133-44, 225. 
-of parabolic cylinders, 481-4. 
--of troughr^eetor, 416*1 
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Forward field tests of Vee reflectors, 
363-8. 

— gain, see Power gain. 
Fourier, J. B., 20, 21. 
Franklin coils, 169, 214. 
Fresnel, A. J., 20. 
Fresnel’s integrals, 142, 194, 308. 

Galvani, L., 2. 
Galvanometers, experimental, 343-6, 357. 
Gardiner, M., 34 n. 
Gauss's theorem, 13. 
Grating, 490-1. 
—, infinite plane, 62-4. 
Gray, A., and Matthews, G. B., 142. 
Grids, currents induced in, 216-18. 
Ground slope, effect of, 486-0. 

Half-wave aerial, 97, 100, 101, 105, 106-7, 
145, 164, 171-87, 326-9, 431, 447. 
-- field explored by monitor, 358- 

62. 
-forward gain, 377. 
-inphase component of electric 

force, .326. 
-in plane of sheet, 389-92. 
-in Vee reflector, radiation resis¬ 

tance, 172-6. 
-opposite middle of rectangular 

sheet, 386-9. 
-perpendicular to junction of re¬ 

flecting sheets, 181. 
-, power gain of, 175-7. 
-radiation resistance, 70-2. 
-resonant length, 332-8. 
-, the Q of, 332-8. 
HaUen, E., 325, 337. 

* Harrison, C. W., 325, 338. 
Heaviside, O., 3, 5. 
Heaviside current element, 4, 5, 6, 9, 66. 
Hedgehog patterns, 178, 179, 180, 282, 

453-6. 
Height factor, 330. 
Hills, aerials on, 265-75. 
Hipparchus, 19. 
Huygens, C., 18-20. 
Huygens' principle, 294. 
Huygens-Fresnel technique, 275. 

Image systems, 121, 127, 130, 131, 163, 
178. 

Impedance of short thin aerial, 350-8. 
Infinite sheet, 192, 195-8, 213, 302, 312, 

318, 321-3. 
-field of. 55-62. 
Ii!|olai^ aerial, 324-40. 

g|ir J., 14 n., 113. 

Kelvin, Lord, 9. 
King, L. V., 338. 
King, R., 325, 338. 
Kirchhoff, 294. 
Kirchhoff *8 theorem, 453. 
Kottler, 294. 
Krauss, J. D., 395, 410. 

Lamb, Sir H., 206. 
Langley, mean energy of sunlight, 258. 
Larmore, Sir J., 206. 
Lommel, E. C. J. von, 142. 
Long current filament, 188-96. 
Lorentz, L., 17, 18, 25. 
Lorentz’s equations, 15. 

Macdonald, H. M., 335. 
McLachlan, N., 34 n., 116, 272, 508, 510. 
McPetrie, J. S., 349, 352, 355. 
McPherson, W. L., and Ullrich, E, H., 447. 
Maxwell, J. Clerk, 8, 10, 20, 21. 
Maxwell h3pothesis, 7-13, 36, 463. 
— law, 9, 10, 11. 
Maxwell’s equations, 13-15, 31, 34, 129, 

459. 
Metre-amperes, 98. 
Michelson, A. A., 91. 
Monitor aerial, 349-62, 492, 494-504. 
Morse, P. M., and Rubinstein, P. J., 321* 

Nagy, A. W., 395. 
Netting sheets compared with continuous 

sheets, 393-7. 
Network reflectors, 188-221. 
Neumann, 6. 
Newton, I., 19. 
Non-reflecting chamber, 288-95, 298. 

Obliquity effect, 182. 
Oersted, H. C., 2, 3. 

Page, H., 482, 488. 
Page, L., and Adams, N. I., 324. 
Parabola, 425. 
— compared with trough reflector, 446-7. 
-Vee reflector, 440-7. 
Parabolic reflectors, 429-62. 
Parasitic aerial, 389, 397-400, 405-6, 447- 

9. 
-, improvement of pattern by, 160. 
-with reflector, 447-9. 
— rod, see Rod reflectors. 
Pidduck, F. B., 351, 355-6. 
Pierce, G. W., 339. 
Pistolkors, A. A., 105. 
Plane wave incident on oylind^, 241-51> 

261-3. 
--—on half-plane, 300-1, 307-21. 
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Poisson^s equation, 17. 
Polar diagram defined, 81. 
— diagrams, 226, 226, 236, 246-6, 262-4, 

270, 376, 378, 399, 463, 482. 
Porcupine, set Hedgehog patterns. 
Power gain defined, 100. 
-, 106, 211, 233-7. 
-of curtain of half-wave aerials, 105. 
-of half-wave aerial in Vee reflector, 

176-7. 
-of high curtain, 110. 
-of in-line array in Vee reflector, 150- 

4. 
--of in-line arrays, 106-10. 
-of linear aerial, 330. 
-of non-uniform loading, 105. 
-of parallel half-wave aerials, 101-4. 
-, reciprocity in, 168-70. 
Poynting’s theorem, 62, 78, 106, 113-17, 

127, 128, 161, 178, 183, 225, 235, 255-7, 
291, 336. 

Priestley, J., 10. 
Proctor, R. Faraday, 125. 

Radiation resistance, 194, 226, 233, 234, 
265. 

-of circle radius JR, 72-8, 
-of filament in Vee reflector, 144-50. 
-of half-wave aerial in Vee reflector, 

172-5. 
-of linear aerial, 329-32. 
Ratcliffe, J. A., 258. 
Ray theory, 231, 232, 237, 240, 243, 301. 
Reciprocal properties of cylinders, 240-1. 
-of Vee reflectors, 167-70. 
Reflecting sheets at right angles, 125-7. 
-at any angle, 127-33. 
-, resistivity of, 124r-5. 
-, semi-infinite, 130. 
Reflector with convex back, 281-2, 421. 
Retarded functions, 17. 
Rod reflectors, 210-18. 
Rods, comb of, 306-7. 

Screening properties of parallel wires, 203- 
7, 394-7. 

Screening properties of squirrel cage, 207. 
Semi-infinite sheets, 188—221, 236, 304, 

306, 309, 313-21, 388-9. 
Shadow field, 247, 250-7, 264, 278, 319-21. 
— ratio, 206, 393. 
Shunt excitation, 331. 
Side lobes, 444, 448, 452-6, 468, 470, 471, 

473-8, 486. 
-flexibility, 97. 
-of curtain array, 425-8. 
-, power radiated in, 115. 
-rigidity, 97. 
Solenoid, field of, 51-4. 
Stokes, G. G., 20. 

Trough-shaped reflectors, 416-23, 445. 
Tubes, 8t€ Cylinders. 
Turning the main beam, 93-7, 401-9, 437, 

476. 
-of Vee reflectors, 161-5. 

van der Pol, B., 329. 
Vee reflectors, equatorial pattern, 369-85. 
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