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PREFACE 

Although the propagation of electromagnetic waves in metal tubes 

—or wave guides as they are now called—has been studied for 

some fifty years, until recently the subject was in the main of 

theoretical, rather than of practical, interest. However, with the 

development of the first microwave radar equipment during 

1940-1 the subject was suddenly transformed to one of prime 

practical importance, and in the following years was developed at 

a phenomenal rate, both in Britain and the United States. This 

book is written to provide an introductory survey of these recent 

developments. 

The treatment in the first six chapters is based on courses on 

microwave techniques which were given during the war at the 

Radar School of the Telecommunications Research Establishment 

(T.R.E.), and it is believed that the book has lost nothing of im¬ 

portance in content and rigour through this elementary and physical 

approach to the subject. Chapter 7 has been included for those 

readers who may prefer a more formal treatment. 

The physical interpretation, given in §5-4, of the normalized 

admittance or impedance of an obstacle or other discontinuity in 

a wave guide, in terms of scattering coefficient, has the advantage 

of relating these quantities immediately to the experimental data 

obtained with a standing wave indicator. It was the subject of a 

paper that I read before a technical colloquium at T.R.E. during 

the war. The treatment of Babinet’s Principle in Chapter 7 is 

also believed to be original. 

When this book was written, the greater proportion of the 

technical developments described were hidden in secret reports and 

memoranda which are not available to the general reader. No 

reference is made to this literature, and very few of the many 

contributors to the development of the subject have been mentioned 

by name. Accounts of confidential work done during the war are 
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now appearing in technical journals, and the reader can obtain 

more detailed information on particular matters from these. 

Attention is drawn in particular to The Proceedings of the Radio^ 

location Convention^ March-May 1946, J, Instn Elect, EngrSy 

vol. 93, part III A, nos. i, 3 and 4, 1946. 

I welcome this opportunity of expressing my appreciation of the 

considerable assistance that I received from numerous colleagues 

at the Telecommunications Research Establishment without which 

this book could not have been written, but I wish to record 

in particular my indebtedness to Dr G. G. Macfarlane and Dr 

W. Cochrane with whom I engaged in many stimulating dis¬ 

cussions on the subject of wave guides. I am also indebted to 

Mr J. A. Ratcliffe, who first aroused my interest in the subject, 

for helpful criticism of the text. 

I wish also to express my thanks to the Director-General of 

Scientific Research (Air), Ministry of Supply, for permission to 

publish this book, which follows closely a monograph written by 

me as a contribution to the Scientific War Records of the Ministry 

of Supply (Air). 

It is recorded, in conclusion, that, although the book has received 

official scrutiny before publication, I accept full responsibility for 

all opinions and statements in it. Further, I acknowledge Crown 

Copyright in respect of all illustrations in the book. 

L. G. H. HUXLEY 

DEPARTMENT OF ELECTRICAL ENGINEERING 

THE UNIVERSITY, EDGBASTON 

BIRMINGHAM 15 

28 June 1946 
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Chapter i 

THE ELECTROMAGNETIC FIELD 

OF A TEM-WAVE 

1*1. Introduction 

At frequencies less than 3000 Mc./sec., the transmission line has 

long been the standard device for conveying power at high fre¬ 

quencies from a transmitter to an aerial, or from an aerial to a 

receiver. When^however, during 1940 and 1941, radar devices were 

first developed to operate on frequencies"bT~3b66 Mc./sec. and 
greater, it was apparent thatjU these frequencies transmission lines 

possess two serious and inherent limitations. 

First, the only feasible form of transmission line in a compact 

equipment is a screened feeder line such as a coaxial cable in which 

the central conductor is retained in position by dielectric filling. 

Tt is found that even with polythene (power factor 0*0005) as the 

dielectric, the attenuation produced by such a cable is sufficiently 

great to impair the overall efficiency of a microwave radar equip¬ 

ment. For instance, the attenuation produced by Uniradio 21—a 

good-quality polythene cable designed for use at ultra-high fre¬ 

quencies—is about 0*6 db./m. at a frequency of 3000 Mc./sec., 

and at frequencies of 9000 Mc./sec. the loss is several times as 

great. 

Cables are therefore not employed in microwave radar devices 

except in short lengths, 

The second limitation of a polythene cable is its low power¬ 

handling capacity. When the mean power carried in the cable 

exceeds about 200 W. the ohmic heating of the inner conductor is 
sufficient to soften the polythene dielectric. On the other hand, 

cables possess the advantage of flexibility and therefore find exten¬ 

sive use in the laboratory and in test equipment where wastage of a 

proportion of the power is of no consequence, and where the level 

of the power is low. 
Evidently, the success of microwave radar depended, among 

other factors, on the development of a more efficient device than the 

feeder line to carry power to and from the aerial. 
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The principal loss in a cable is attributable to the presence of the 
inner conductor. Not only is the inherent ohmic loss of power 
(copper loss) in this conductor an appreciable fraction of the total, 
but this conductor is responsible for the presence of the dielectric 
whose main function is to support it in position. If, therefore, it 
were possible to carry the power along an empty metal tube devoid 
of inner conductor and dielectric it would be anticipated that the 
attenuation would merely be that due to the outer conductor of a 
cable of the same size. 

Such a tube, called a wave guide, was adopted as the practical 
substitute for the high-frequency cable in radar equipments, and in 
what follows we are concerned with the practical applications of 
wave guides, and the underlying principles of their operation. 

In comparison with cables, practical wave guides possess the 
double advantage of small attenuation coefficient (about 0*05 db./m. 
at 3000 Mc./sec.) and of high-power handling capacity (2 MW. or 
more peak power, according to design). 

On the other hand, wave guides have the disadvantage of in¬ 
flexibility and greater weight. 

Although a rigorous study of the propagation of electromagnetic 
waves along transmission lines should be based on the differential 
equations of the electromagnetic field, yet the radio engineer prefers 
to describe the relevant properties of a transmission-line system in 
the language of circuit theory which employs the concepts of 
voltage, current and impedance. Bec&use many wave-guide tech¬ 
niques correspond clo^ly to similar techniques of transmission-line 
practice, it has been found profitable to study wave guides, first, 
from the standpoint of the electromagnetic field, and then to trans¬ 
late the results into the language of circuits. In this way it is often 
possible to represent a wave-guide system symbolically by an 
equivalent transmission-line s)rstem. 

In the remaining sections of this chapter, it is shown how the 
field description and the circuit approach give completely equi¬ 
valent accounts of the propagation of the principal wave on a trans¬ 
mission line. A more critical examination of the meaning of the term 
impedance as applied to a transmission line or wave guide is given 
in Chapter 5. llie present chapter also serves to summarize some 
basic facts about electromagnetic waves in free space or guided along 
transmission lines, of which use will be made in the sequel. 
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rz. Field of a plane-polarized electromagnetic wave in 
free space 

In this section we summarize the chief features of an electro¬ 
magnetic plane wave in an unbounded medium. Here and through¬ 
out the book, the rationalized metre-kilogram-second (m.k.s.)* 

system of units is used because of its practical convenience. 

£ 

Fig. I I. 

Fig. i*i(a) shows the relative orientations of the electric and 

magnetic vectors and the direction of propagation in a plane- 

polarized sinusoidal progressive wave in an unbounded isotropic 

medium. The electromagnetic field of this wave train has the 

following properties: 

(a) The electric field E and the magnetic field H are at right 

angles to each other and to the direction of propagation. An electro¬ 

magnetic wave of this type, in which both E and H are perpen¬ 

dicular to the direction of propagation, is called a TEM-wave 

(transverse electric-magnetic). Fig. I’l (i) shows the E and H fields 

in the wave front through O (fig. i-i («)). 

* Stratton, EUctromagmtic Theory, p. i6. 



4 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

{b) The velocity of propi^tion (phase velocity) is 

where € is the electric inductive capacity of the medium and /i its 

magnetic inductive capacity. Further, 

€ = and [i = 

where and /^o ^^e the inductive capacities of free space and 
and are respectively the specific inductive capacities of the 
medium. In a homogeneous medium Kg and are called, respec¬ 

tively, the dielectric constant and the magnetic permeability. In 

the m.k.s. system of units 

//q = 47r X IQ-’ henry m."*^. (2) 

Also, from (i) the velocity of electromagnetic TEM-waves in vacuo 

V-C^ ~rz-V 

w^o^o) 

= 2*998 X io‘*'®m.sec.~^ 

4= 3 X10+^® m.sec.-'. (3) 

From (2) and (3) we find 

^0 = 8*854 X io“^2 farad m.“^ 

I 

3677 X 10®’ (4) 

The ratio •6 ohms 

== 12077 ohms. (5) 

(c) At a fixed point such as O (fig. i*i), E and H vibrate in phase 

in a non-conducting medium. Thus, if at O, 

E = E^cosiot^ 

then H — Hq cos (ot, 

(d) The amplitudes Eq and Hq, when the medium is non¬ 
conducting, are related as follows: 
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= 376-6 y^ohms. (6) 

Because the ratio EjHy as indicated in (6), has the dimensions of a 

resistance, and frequently appears in theoretical discussions, it is 

called the wave impedance of the TEM-wave. In the m.k.s. system 
the electric-field strength E is expressed in volts per metre, and the 

magnetic-field strength H in amperes per metre. 

These properties of the wave follow from the fact that the fields 

E and H satisfy Maxwell's equations of the electromagnetic field. 

It remains to state some additional properties of an electromagnetic 
field that relate to a postulated flux of power in the field, and 

to 1 he behaviour of E and H at the surface of an ideal perfect 
conductor. 

i*3, Poynting flux 

In practice we do not directly observe the fields E and H but 
forces between stationary charges, forces between moving charges 

and the heat generated when currents flow in conductors. The 

field representation provides a convenient pictorial synthesis of the 

electromechanical actions, although the fields themselves are not 

directly observed. For instance, when a force of F newtons (10® F 

dynes) acts on a charge of q coulombs it is concluded that the field 

E at the charge is A/^ lV./m. Similarly, the relation between the 

magnetic-field strength and the force on a charge q moving at 

velocity V is F = qVBsindnewtons, 

where the magnetic induction B = fiH, The force F is at right 

angles to the plane containing the directions of the vectors V and B. 

The angle 6 is the angle between B and V. In the language of vector 

algebra F = ^(V x B) (V in m.sec.-i). 

When power is delivered to one electrical system by the action of 

another distant electrical system on it, we may suppose that the 

power flows through the intervening electromagnetic field. 
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Poynting’s theorem is a postulate concerning the local flux of 
power at any point in the field. It states that if E and H are the values 
of the electric- and magnetic-field strengths at the field point and 6 
the angle between them, then there is a flux density of power W 
normal to the plane containing directions of E and H, and equal to 

P = EH sin 6 W./sq.m., 

or in notation of vector algebra 

P = (ExH)W./sq.m. (i) 

The relative directions of E, H and P are shown in fig. i*2. It may 
be observed that according to (i), if either one of E or H is reversed 
in direction then P is reversed, but that 
if both E and H are reversed together 
then P preserves its original sense. 

The actual flux of power across the 
area of A in fig. 1*2 is 

ir=(ExH).dAW. 

The energy-flow vector P defined in 
(i) is only one of many which can be 
used to describe the total transfer of 
power through the field, but for the 
study of power flux associated with electromagnetic waves the vector 
P is the most useful and convenient.* We shall find that it is 
valuable in leading to an estimate of the attenuation of waves in 
wave guides due to loss of power in the walls. 

According to Poynting’s theorem there is a flux density of power 
in the direction of propagation of the electromagnetic wave whose 
instantaneous value is EH W./sq.m. (sind =1). If E = E^costot 
and H — Hq cos (ot, this becomes 

Ef)HQCos* (Jt, 

and the mean flux density averaged over a cycle is \E^H^. 
According to 1*2 (6) this mean flux density of power is 

* See Stratton, EUctromogn*tic Theory, p. 133; Slepian, y. Appl. Phy$. 194a, 
voL 13, p. 513; J. J. Thonwon, Recent Researchet, 1893, p. 313. 
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1*4. Behaviour of electric and magnetic fields at the surface 
of a conductor 

Consider first the relation between the components of the electric- 
field strength on opposite sides of a sheet of electric charge whose 
density is s coulombs/sq.m. Let the electric inductive capacities of 
the media above and below the sheet be respectively and eg, and 

Fig. I-3. 

suppose the tangential and normal components of E to be and 
(Ei)„ above the sheet (fig. 1-3 (a)) and (Eg), and (£g)„ below it. Then 

(€iEi)„ —(€gEg)„ = j, (El), = (Eg),. (i) 

These relations are valid both for static and for time-dependent 
fields. 

We next consider the connexion between the components of H at 
opposite faces of a sheet of current / amp./m. We have (fig. 1*3 (b)) 

(/*i/fi)„ = (/igi/g)„, (//i),-(^fg), = /, (2) 

where jUi and /tg are the magnetic inductive capacities of the media 
on either side of the sheet. 

We may summarize the contents of (i) and (2) as follows: 
In crossing a sheet of charge the tangential component of the 

electric vector E of an electromagnetic field is continuous, but the 
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nonnal components of the electric induction D « eE changes dis> 
continuously by an amount equal to the surface-chatge density. 

In crossing a sheet of current the normal component of the 
magnetic induction B == /(H is continuous, but the tangential com¬ 
ponent of the magnetic field H changes discontinuously by an 
amount /, the current per unit length in the sheet. 

Ideal perfect conductors—boundary conditions. A perfectly con¬ 
ducting material is one whose coefficient of conductivity is infinite. 
Within such an ideal conductor the electromagnetic field would be 
everywhere zero. Suppose that of the two media on opposite sides 
of the sheet of charge in fig. 1-3 (a), the upper is a dielectric with 
inductive capacity e, and the lower a perfect conductor. It follows 
from 1*3 (1) with = o, that 

(e£i)„ = r, {eE^\ = 0. (3) 

Thus the tangential component of the electric field in a dielectric 
vanishes at a perfectly conducting boundary. 

Similarly, if in fig. 1*3 (b) we suppose the lower medium to be a 
perfect conductor then = o, and, according to (2), 

= (//,),= /. (4) 

Thus the normal component of H vanishes at a conducting boundary. 
Further, the current / flows entirely on the surface in an infinitely 
thin layer. The relative directions of I and are shown correctly 
in fig. 1-3(6). 

We shall later be concerned with investigating the field patterns 
of electromagnetic fields within wave guides and cavities with metal 
boundaries which we shall suppose to behave as perfect conductors. 
Whatever forms these patterns may take, they must be such that 
the electric field meets the boundary at right angles and the magnetic 
field touches the boundary tangentially. 

The perfect conductor is an idealization of actual metallic con¬ 
ductors which possess very large but finite conductivities. 

In practice the electromagnetic field penetrates from the dielectric 
into the conductor, but the field strengths and current density 
diminish exponentially with depth below the surface when the 
surface is plane (§7-14). For instance, the tangential component of 
H reaches its maximum value at the boundary and decays exponen¬ 
tially with depth as shown in fig. 1*3 (c). The depth d at which Ht 
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decays to ^ = 2^718 surface value is called the skin depth. At 

the depth znS the amplitude falls to about 1/500 of its surface value. 

The skin depth is related to the frequency / of the oscillating 

electromagnetic field and the conductivity of the metal by the 

following formula (§7-14): 

where [i is the magnetic inductive capacity of the metal which, except 
for the special instance of iron, is equal to — lo"*^. The 

frequency/is in cycles per second and cr is the specific conductivity 

of the metal in mhos per metre cube. 

The distance 8 provides a convenient index of the degree of 

penetration of the electromagnetic field into the conductor. 

To fix ideas, consider a particular application of formula (5) 
which is pertinent to our theme: we consider the penetration of 

waves whose free-space wave-length is A = 10 cm., into the walls 

of a copper wave guide. In formula (5) put/ = 3 x 10®, a* = 5*8 x 10^ 
mhos/m., /^ = = 471 x io“’ to find 

8 = 1-17 X io“®m. 

= 1*17 X io“^cm. 

Evidently all currents and fields within the metal are effectively 

concentrated into a very narrow layer near the surface. 

The surface currents are accompanied by the conversion of 

electrical power into heat. It can be shown that the power dissipated 

in heat per square metre of the surface is 

(6) 

where I is the amplitude of surface current in amperes per metre. 

This wastage of power is that which would occur if the current, 

instead of being distributed exponentially with depth, flowed 

uniformly in a surface layer of depth S. This fact further stresses 

the usefulness of the quantity 8. The equivalent surface resistance is 

therefore i/a-S ohms/sq.m. These facts are important for estimating 

the attenuation produced by the walls of a wave guide on progressive 

waves in it. 
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Whereas at the surface of a perfect conductor the tai^[ential 
component of the electric field would be zero, at the surface of a 
good conductor, such as a metal, there is a small tangential com¬ 
ponent of the electric field. 

The ratio of the tangential electric field to the tangential magnetic 
field at the conducting surface is 

Consider again the case of copper at a frequency of 3 x lo^c./sec. 
Formula (7) gives (£i//f|)copper = 2 x io“*. This may be compared 
with the corresponding ratio for a plane wave in free space which 
according to equation 1*2(6) is izon. The tangential electric field 
necessary to drive a surface current of i amp./sq.m. on copper is 
therefore {Hf = 1)2 x io“*V./m. at/ = 3 x lo*. We conclude that 
the tangential component of the electric field at the surface of a 
metal is relatively small and that we may treat the metal as a perfect 
conductor when investigating the geometrical form of the electro¬ 
magnetic field pattern in its vicinity. 

1*5. Field pattern of a principal wave on parallel conductors 
—transmission-line formulae 

We proceed to discuss (using the facts summarized in the previous 
sections) the properties of electromagnetic fields in regions funded 
by metal surfaces, and we begin with the simple case of the principal 
wave in a parallel strip transmission line. 

We consider the field pattern of fig. i*i (b) and note that it is one 
that can exist between a pair of parallel metal strips (except near 
the edges). This is, in fact, the field configuration of the principal 
wave or TEM-wave on a parallel-strip transmission line (neglecting 
edge effects). This wave is shown in fig. 1-4(0). The electric lines 
stand perpendicular to, and the magnetic lines lie tangentially 
s^ainst, the metal walls and therefore do not violate the boundary 
conditions formulated in equations 1*4 (3) and (4). It is assumed 
that in discussing field patterns we may consider metals to behave 
as perfect conductors. 

At the sections A and B, a distance half a wave-length (|A) apart 
(fig. I *4(0)), the fields are shown with their maximum wUues and 
at the section C midway between their instantaneous value is zero. 
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The whole pattern traveb from left to right at speed v — 
The wave-length on the line is the same as that in free space for the 
same frequency. 

(«) 
I 

Fig. 14. 

The properties of this electromagnetic field are identical with 
those of the unbounded field described in §§ 12 and 1*3. 

Where the field H lies against the surface of the conductor a 
surface current I = H flows either parallel to or against the direction 
of propagation. Suppose the width of each metal strip to be am. 
and the distance between them 6 m. At a section where the instan- 
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taneous field strengths are E and the corresponding total current 

flowing in opposite senses on each plate is 

I = = J/. 

The voltage between the plates at this section is 

V^bE, 

The ratio of this voltage V to the associated current i in a single 

progressive principal wave is called the characteristic impedance Zq 

of the transmission line. Therefore, according to equation 1*2(6), 

„ V bE b I. . . 
Zn = ~ I207r~ /-^-ohms. (i) 

t a H a/sj 

This formula neglects edge effects. 
The impedance Zq does not depend on the amplitudes of E and H 

but is determined by the geometry of the line and the nature of the 

medium between the plates. In this particular case, the pattern of 

the lines of force in the section is the same as that of the electrostatic 

field which develops when the plates are maintained at a fixed 

potential difference F. Similarly, the magnetic field H in the section 

is the same as the magnetostatic field that results when the plates 

are joined by a conductor at one end and a steady current i = al is 

sent along one strip and back again along the other. 
It is suggested that the field patterns of a principal (i.e. TEM) 

wave guided by a pair of parallel conducting cylinders with arbitrary 

geometrical cross-sections are also the same as the corresponding 

electrostatic and magnetostatic field configurations. This is, indeed, 

the case, and in figs. 1*4 (6) and (c) an indication is given of the 

field patterns of principal waves on transmission lines with cross- 
sections of arbitrary form. These are the electromagnetic field 

patterns of TEM or principal waves. 

We next derive a general formula for the characteristic impedance 

of any pair of parallel cylinders such as those of figs. i*4(i) and {c). 

Let dl and ds be elements of length measured respectively along an 

electric and a magnetic line of force (fig. i*4(d)). The voltage across 
a section of the field is 
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taken along a line of force from one conductor to the other, and the 

current on the surface of the conductors at this same section is 

i = ^Hds, 

where ^ is taken completely round a magnetic line of force. 

The characteristic impedance Z®, being the ratio F/t in a pro¬ 

gressive wave, is therefore 

Zo = 

Edl 

^Hds 
(2) 

If q is the charge per unit length of one of the conductors at the 

section in question, then, by Gauss’s flux theorem, 

q = e^Eds. 

The capacity C per unit length is 

e^Eds 

^ — Tr — (3) 

The self-inductance per unit length L is defined as follows: The 

flux of magnetic induction across a strip whose edge is an electric 

line of force and whose width is unity and parallel to the axes of the 

cylinders is . 

\Hdl 

Since H is proportional at each point to the total current i we have 

fi^Hdl = Li = L^Hds. 

The coefficient of proportionality L is called the self-inductance of 

the transmission-line system per unit length. Consequently, 
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The ratio L/C is, from (3) and (4), 

But at each point of the wave front of a TEM-wave 

^eE - 

Consequently equation (5) may be written 

that is, Zq = 

Further, from (3) and (4) 

V(iC) 

whence Zq = ohms. 

(5) 

(6) 

(7) 

(8) 

These are standard formulae of transmission-line theory. 

In the particular instance of the parallel-strip transmission line 
of fig. I-4 (a), 

C = farads/m.. 

L = — henries/m., 
a 

which is formula (1). 

Power carried by a progressive principal wave on a transmission line. 

As an example of the application of Poynting’s theorem we calculate 

the power carried by a progressive wave on a transmission line. 

The instantaneous flux of power across the elementary area dsdl 

shaded in fig. i’4(d) is 

dW^EHdsdlvfztta, 
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and the total flux of power across the whole section is 

W = 

= jEdl^ffds = t 

= Vt^Zoi‘. 

This is the expression for fV that we would naturally assume from 

circuit theory. 

Evidently we may use either the language of the electromagnetic 

field to study the propagation of principal waves on transmission 

lines or the language of circuits (V and /), since when confined 
to the discussion of perfectly conducting cylinders they lead to 

identical conclusions. 

The customary approach to transmission-line studies has been 
from circuit theory, but it is valuable, and at microwave lengths 

essential, to introduce field concepts if a faithful description of the 
phenomena is the aim. 

Circuit concepts are unsuitable in introductory studies of wave 

guides, but when the facts have been firmly established and described 

in terms of field theory they may often conveniently be accurately 

restated in terms of circuit theory. 

The principal or TEM-wave is not the only form of wave that 

can be propagated along transmission lines, and it will appear later 

that other forms of propagation are possible when the separation of 

the conductors is of the order of magnitude of the wave-length. 

Normally this condition does not obtain and these other waves are 

suppressed. 
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Chapter 2 

PROGRESSIVE ELECTROMAGNETIC 

WAVES IN WAVE GUIDES 

2*1. General features of electromagnetic waves in metal 
wave guides 

In an account of practical wave guides we are less concerned with 

general studies of all possible field configurations in a variety of 

wave guides than with an intimate appreciatipn of the properties of 

those few types of electromagnetic waves that are most commonly 

used in practice. 

From a pedagogic standpoint it is most fortunate that the form 

of wave most frequently used, the //^i-wave in a rectangular wave 

guide, is also the one that is susceptible to elementary analysis. In 

this chapter not only shall we study the for its intrinsic 

importance, but we shall also employ it to demonstrate some 

properties conunon to all waves in wave guides. 

Consider the parallel-strip transmission line of fig. i*4(a)- It 
can evidently be converted into a rectangular wave guide of breadth 

a and depth b, by adding a pair of metal walls parallel to the dimen¬ 

sion b. We inquire whether the TEM-wave of the strip transmission 

line is also found in the wave guide. That this type of wave cannot 

exist within the rectangular tube is easily seen, for its electric field 

would be required to exist tangential to one pair of walls and the 

magnetic field to stand perpendicular to these walls, a behaviour 

which is inconsistent with the boundary conditions f4 (3) and (4). 

Alternatively, since an electrostatic field cannot exist within a 

hollow conductor unless free charges are present in the cavity, we 

see that a principal wave cannot exist when there is only one con¬ 

ducting boundary present because its electric field pattern is that of 

a two-dimensional electrostatic field. We conclude thatTEM-wace# 

are not propagated mthin wave guides. 
However, the waves that are actually propagated in wave guides 

differ markedly in many respects from the more familiar TEM- 

waves on transmission lines, and it is convenient first to summarize 

their more salient features. It will later appear that the particular 
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type of wave that is selected for detailed discussion does in fact 
possess these properties. 

Waves propagated in wave guides have the following character¬ 
istics: 

(a) The oscillating fields E and H are not both transverse with 
respect to the direction of propagation (tube axis). Further, it is 
found that the waves in almost all instances are divisible into two 
classes: 

(1) TE- (transverse electric) or H~toaves. In these waves the 
electric field is entirely transverse, but the magnetic field possesses 
both a transverse component Hf 

and a longitudinal component Hi 

in the direction of propagation. 
The electric field E and the trans¬ 
verse component of the magnetic 
field vibrate in phase, but the two 
components of the magnetic field 
oscillate in quadrature (that is, 
with a phase difference of 90°). The magnetic field therefore executes 
elliptic vibrations (except at exceptional positions where one or 
other of its components is permanently zero). The relation of E to 
H is shown in fig. z-i (a). 

(2) TM- (transverse magnetic) or E-toaves. In these, H is entirely 
transverse, but E has both a transverse component Et and a 
longitudinal component Ei. The components of E oscillate in 
quadrature and with E, in phase with H. These facts are illustrated 
in fig. 2*1 (b). (The TE and TM nomenclature is American and 
the E and H nomenclature is British.) There are many different 
kinds, or modes, of both E and if-vibrations that may occur in a 
wave guide. 

(A) The velocity of propagation (phase velocity) of waves in 
guides exceeds the velocity of the TEM-wave of the same frequency 
in free space or on a transmission line, where e and p are the 

Fig. S'l. 

same. 
Thus, if Vg is the speed of the wave-guide wave and v that of the 

TEM-wave, then 
Vg>V 

Since Vg =‘fXg and v «/A, 
HWO 2 
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where \ and A are the wave-lengths of the wave-guide wave and 
the TEM-wave respectively, it follows that 

A„>A. 

The group velocity Vg (signalling velocity) is less than Vg. In fact 

- VgVg == o». (i) 

(c) Cut-off. Unless the TEM wave-length A = fjv is less than a 
certain value A^, called the cut-off wave-length, the disturbance 
cannot exist in the wave guide as a toave. 

Each mode (or type) of wave has its own cut-off wave-length 
which depends on the geometry and the dimensions of the cross- 
section of the tube. The frequency = ©/^is called the cut-off 
frequency of the particular cut-off wave-length A^. 

In a given wave guide there is one mode of propagation, called the 
dominant mode, whose cut-off wave-length Ag exceeds that of any 
other mode. This greatest value of A^ is of the order of magnitude 
of the smallcet dimensions of the cross-section of the guide. For 
instance, if the guide is rectangular with dimensions a and b, with 
a>b, then 

(A.)„ = 2a. 

(d) The following relation obtains between the TEM wave¬ 
length A, the wave-guide wave-length A^ and the cut-off wave¬ 
length Xg of any propagated mode: 

I _ 1 I 

A|“ A*~Ar 

Multiply each side of (2) by 1//* to obtain 

(2) 

vl ~ pXf 

Since v and A^ are independent of / it follows that the velocity Vg 

depends on the frequency. In other words, the propagation is 
accompanied by dispersion. 

2*2. Derivation of the electromagnetic field patterns of 
(TE„„) modes 

It has been remarked in the previous section that TEM- (or 
principal) waves are not propagated in metal tubes, but it remains 
to discover the form of the electromagnetic fields that satisfy the 
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basic field equations of Maxwell and also the boundary conditions 

1*4(3) (4)* choose rectangular wave guides for immediate 

study, first, because they are of the greatest practical importance, 

and secondly, because a relatively elementary mathematical analysis 

leads to^ satisfactory understanding of the basic physical processes 

both in these and in wave guides of other geometrical cross-sections. 

It will appear that by simple superposition of a pair of elementary 

plane TEM free-space waves of the type described in § 1*2, a new 

field pattern results which is of such a form that it can be fitted 

correctly into a rectangular wave guide. Further, since the fields of 

the constituent plane waves are consistent with Maxwell’s equations 

any field pattern which results from their simple superposition is 
also consistent with them. 

It should not be thought that an elementary analysis of the type 

we shall employ of necessity gives a less fundamental description of 

the basic phenomena than a more sophisticated mathematical 

approach; on the contrary, the present method leads more rapidly 

to a sound physical grasp of the subject than a formal mathematical 

treatment. For this reason the mathematical treatment of wave 

propagation is relegated to the final chapter. 

It is of interest to note that the method of resolving waves in 

rectangular tubes into elementary plane waves appears to have been 

used first by Lord Rayleigh * in connexion with the propagation of 

sound in pipes, and it has been mentioned by many subsequent 

writers of books and papers on wave guides. 

Fig. 2*2 (a) represents a section made by the plane of the paper 

with a free-space TEM-wave whose wave fronts are perpendicular 

to the plane of the paper. The wave is travelling at velocity 

t; = I in the direction indicated by the arrow. The section of 

the wave is so chosen that the magnetic field H is parallel to the plane 

of the paper. The heavy lines represent the magnetic lines and the 

arrows on them denote the directions of the magnetic vectors. The 

electric field E is represented by circles carrying a cross or a dot to 

indicate respectively that E is directed into or out of the plane of 

the section at right angles to H and to v. 
The full lines are wave fronts over which E and H are chosen to 

have maximum values alternately in one sense and the opposite 

sense. Consequently, the distance between adjacent full lines is half 

♦ Theory of Sound, vol. a, chapter xin. 
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a wave-length |A. Over the dotted lines, midway between, E and H 
are everywhere zero. The figure illustrates, therefore, the dis¬ 
tribution of field in space at a chosen instant. Fig. 2-2 (b) shows a 
similar wave train of the same wave-length A and field amplitude, 

Fig. 2-2. 

but moving in a different direction. In each case the direction of 
travel is perpendicular to the wave fronts. In fig. 2*2 (c) the wave 
trains are shown passing simultaneously through the same region 
by superimposing the individual patterns so that the points A and 
B coincide at C. The arrows which indicate the directions of the 
electric fields in the individual waves have, however, been placed 
at the edges of the diagram in order not to confuse the picture. 
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The instantaneous magnetic field at each position is the resultant 
of the two vector magnetic fields of the original plane waves. At 
certain points in the composite field of fig. 2*2 (c) the direction of the 
resultant may be seen by inspection. For instance, at all points on a 
dotted line the magnetic and electric fields of the one wave train are 
zero; consequently, the resultant field is identical with the field in 
the other wave train. Thus along any dotted line the direction of 
the field is parallel to the wave fronts of the other wave train, as, 
for instance, at P. Where two dotted lines intersect there is no field 
whatsoever. Since the original wave trains are assumed to possess 
equal field amplitudes, it follows that where two full lines cross the 
resultant is directed along the bisector of either the acute or the 
obtuse angle between them, that is, either parallel to the bisector of 
the acute angle between the propagation vectors v or at right angles 
to it. These possibilities are indicated at Q and R in fig. 2*2 (c) and 
are shown separately in fig. 2’2 {d). 

When the direction of the resultant magnetic field is indicated at 
a sufficient number of points it is possible to sketch in the lines of 
magnetic force of the composite field pattern. These are evidently 
closed curves whose precise form is determined by the angle of 
intersection of the wave fronts of the original wave trains. The centre 
of each loop is also the point of intersection of two dotted lines and is 
therefore a point where both the electric and magnetic fields are zero. 

Since the electric vectors of the original wave trains are directed 
either into or out from the plane of the diagram, the resultant electric 
field in the composite pattern is also normal to the plane of the 
paper and attains a maximum strength twice that in the separate 
wave trains. In fig. 2-2 (c) the circles with a cross or dot within 
indicate the sense of the resultant electric field. It is to be under¬ 
stood that the pattern extends in depth into and out of the plane of 
the paper. 

Over planes such as XY and X'Y' between adjacent layers of 
magnetic loops the magnetic field is everywhere tangential to these 
planes and the electric field is zero. Such planes are nodal planes 
of E, and antinodal planes of /fjongitudin«i- Conversely, over the 
intermediate planes LM, L'M', etc., the magnetic field is every¬ 
where perpendicular to them and the electric field reaches its 
maximum value on them. The distance ST (fig. 2-2 (c)) which com¬ 
prises two loops is the wave-length \ of the composite pattern. 



22 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

The pattern in fig. 2'2{c) relates to a specific instant of time, but 
as the time increases the constituent wave trains (shown separately 
in figs. 2*2 (a) and (ft)) move obliquely at velocity v and the com¬ 
posite pattern travels without distortion along at another 
velocity v^. We proceed to find Vg. 

In order to discover the velocity Vg of the pattern, all that is 
necessary is to find the velocity of some distinguishable feature of it. 
For instance, the magnetic field at C in fig. 2*2 (c) is associated with 
the point of intersection of 
two full lines (wave fronts) 
of the constituent waves 
shown separately in figs. 
2*2 (a) and (ft). These wave l 

fronts are isolated in fig. 
2*3, as CA and CD. 

As the wave fronts pro¬ 
gress at velocity v in the 
direction of the wave 
normals AB and DB respectively, their point of intersection C 
travels at a velocity, which we call Vg, along the bisector LM of the 
acute angle between the wave fronts. Since the points A, D and C 
arrive at D simultaneously it follows that 

t; /A AB 

% ~ f\ ~ CB- 

where 2a is the angle ABD between the wave normals. Whence 

Vg = vjcosa, Ap = A/cosa, (i) 

where 

We may summarize what has been done as follows: By suitably 
superimposing two plane electromagnetic waves travelling obliquely 
across each other we obtain a new field pattern which has a com¬ 
pletely different appearance from that of the original plane waves. 
The direction of propagation is along the bisector of the angle 
between the two wave normals (ray directions) of the elementary 
waves and the speed of propagation is 

= v/cma, which exceeds v. 
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The magnetic field in the composite pattern comprises a system 

of closed loops, and it is evident that at most points in the pattern 

there is a component Hi of the magnetic field along or against the 

direction of propagation. The electric field is entirely transverse 
but is amplitude modulated in the plane of the magnetic field along 

directions at right angles to the direction of propagation. 

From what was stated in §2-1 we conclude that we have syn¬ 
thesized an H- (or TE) wave in free space. 

^ /'//v7777/^/7y7777/////777757^/77777///yy/77777//f/777^//// ^ 
O/ ®l Qi 

Fig. a-4* 

We may therefore regard the system either as a single if-wave 

or as a pair of crossing TEM-waves, according to convenience. 

The //-wave is of unlimited extent, and the next task is to find 

how a portion of it can be fitted into a rectangular wave guide. We 

proceed in stages, first of all fitting a portion of it between the plates 

of a parallel-strip transmission line. 

It has been remarked that in fig. 2*2 (c) the lines XY and X'Y' 
represent planes over which E is everywhere zero and H is tangential. 

The behaviour of the electromagnetic field at these planes is pre¬ 

cisely what we require at a plane metal boundary, and it is evident 

that the pattern can be fitted between a parallel pair of metal plates 

of infinite extent provided the plates coincide with a pair of nodal 

£-planes of the pattern such os XY and X'Y' which contain one 

or more rows of closed loops between them. It follows that a com¬ 

posite wave pattern such as that indicated in fig. 2*4 is an example of 

a possible electromagnetic wave that could be propagated between 

a pair of parallel plates. 
Surface currents flow in the plates at right angles to the direction 

of propagation at those places where the tangential magnetic field 

at the plates is not zero. The pattern may still be resolved into a pair 
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of waves reflected obliquely back and forth between the plates, if 
so desired. 

Fig. 2*5 represents the propagation of a three-layer H-wavt 

between a pair of parallel plates of unlimited lateral extent. It is 
clear that the distance b between the plates is an exact multiple of 
the width, at right angles to the direction propagation, of the largest 
mimetic loops; or, more precisely, the distance 6 is an integral 
multiple of the distance between adjacent antinodal £-planes. 

When a second pair of parallel metal plates is inserted at right angles 
to the other pair and at a separation a, the resulting tube is a rect¬ 
angular wave guide. If the second pair of walls is inserted parallel 
to the plane of the magnetic loops, then it can be seen that the portion 
of the originally unlimited field which is now isolated by the four 
walls is one that can persist in the wave guide because the magnetic 
field is tangential at each wall and the electric field is perpendicular 
to one pair of walls and zero on the other pair. The pattern is con¬ 
sistent with Maxwell’s field equations and sdso satisfies the necessary 
boundary conditions. The wave guide and wave pattern are shown 
in fig. 2*6. 

Since the H- or TE-wave shown in fig. 2*6 is only one of many 
possible field patterns that can exist within the wave guide, it is 
convenient at this point to introduce the standard nomenclatures 
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by which the individual waves are designated. Refer the wave 
pattern of fig. 2*6 to a set of Cartesian coordinate axes OXYZ in 
which O coincides with the point OX with the edge AD, OY 

with the edge ABzndOZ with the direction of propagation. We note 
that in travelling across the face of the wave-guide section ABCD 

parallel to the edge AD (coordinate y remains constant) there is no 
change in the instantaneous value of either E or H due to the varia¬ 
tion in the coordinate x. However, in a displacement across the 

face, parallel to OY{y changes but x remains fixed), the field com¬ 
ponents alter cyclically because the dimension b spans three com¬ 
plete loops. Because the wave is an H-wave (TE-wave) in which 
no change of pattern is associated with the coordinate x, and a three- 
layer change is associated with the coordinate y, it is designated as 
an //o8- or TEo3-wave. More generally, when the b dimension 
parallel to OF comprises n layers, and the dimension a parallel to 
OX no loops, the wave is an i/o^-wave. Suppose the wave guide 
and its pattern to be turned through 90° so that the dimension b lies 
along OX and a along O F. We now have n layers along OX and none 
along OF. The wave, although the same wave, would be called an 
HnO -wave; that is, the first subscript is associated with OX and the 
second with OY. 

One member of the family of waves is of outstanding prac- 
ti^ importance; it is the H^i-wave and we discuss it in detail 
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below. The wave-length of these waves in the guide is twice the 
length of a large loop in the direction of propagation. 

2*3. The /for ('I'^oi) wave in a rectangular wave guide— 
dominant modes 

This wave, as the subscripts indicate, comprises a single layer of 
loops between the walls parallel to the XOZ plane. 

Fig. 2'7 represents a section of the field parallel to the ZO Y plane, 
that is, the section contains the direction of propagation and the 

Fig. 2-7. Section of Hoi-wave in a rectangular guide. 

dimension h. Not only are two of the larger loops represented but 
also the wave fronts of the two obliquely reflected elementary plane 
waves. The ray direction (wave normal) of the wave front AC is 
BO, and to be consistent with figs. 2-2, 2*3 and 2*4 we must suppose 
that BO produced intersects the lower wall at an angle of elevation 
a. As indicated on the figure, w'e may recognize the following 
dimensions: 

CO = \Xg, BO = JA, AO^\b, 

where A^ is the wave-length of the which is equal to the 
length of two loops because the fields are periodic in this distance 
along the direction of propagation. 

A is the wave-length of the elementary TEM-waves in the tube 
and b the>'-dimension of the tube. 

We find, directly from the diagram, 

sin a = A/26, 

cosa = A/A, «s vjvg. 

(0 
(2) 
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whence 

(3) is evidently a special case of 2*i (2) with the cut-off wave¬ 
length = 2b. 

We conclude that the cut-off wave-length of an H^i-wave is 26; 

that is, twice the j^-dimension of the cross-section. 

Let the TEM wave-length A = 26 = and the frequency 

/ = vjAc = /c> then according to equation (i) the angle of incidence 
of the elementary waves reflected to and fro between the walls 

is 90°. That is, the wave fronts of the elementary waves are parallel 

to the walls, the loops of the composite //o^-waves are infinitely long 

and the composite wave pattern does not progress along the axis. 
Tlius at the cut-off wave-length there is no component of the 

Poynting flux along the axis of the wave guide and no progres¬ 

sive wave is propagated. 

It is easy to see that the cut-off wave-length of the ^on"Wave is 

6/n, for b now spans n layers and in fig. 27 OA becomes ft/2n, and 

equation (3) becomes ^ ^ / n 

or Aj = zbjn. (5) 

The different field patterns corresponding to the various values of 

n are known as wave modes. Formula (5) shows that the higher the 

order of the mode (i.e. the larger n) the smaller the cut-off wave¬ 

length in a guide with fixed dimension b. In other words, the TEM 

wave-length of the disturbance must be further diminished in 

order to propagate a high-order mode down a tube than to pro¬ 

pagate a low-order mode. Also, when the frequency / is given 

(A = vlf) it is possible so to choose the dimension b such that the 

JS^Qi-wave is propagated, but the ^os~> waves cannot be 

propagated. 
In addition to the //o„-wave patterns in a guide there are also 

more complicated //-wave patterns in which the field components 

are dependent upon the coordinates x as well as y. The general 

designation for these is There is also a set of jS-wave patterns 

(TM-waves) designated in general by (TM,„«). 
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Of all these possible wave types in rectangular wave guides the 
Hn-vrave (where i ><i, and is parallel to O Y) is the dominant mt^, 

that is, it has the greatest cut-off wave-lengA. It is therefore possible 
to propagate the //oi-wave (or according as b lies along OY or 

OX) alone and to suppress all other types of progressive wave by 
appropriate choice of b. This feature of the /fm-wave gives it a 
practical importance for several reasons. First, it is of advantage 
to cany the power to and from the aerial in a single tjrpe of wave 
because the field configuration is then determinate and it is possible 
to radiate into the aerial from the end of the wave guide in a predict¬ 
able fashion. When several propagated modes are permitted it is 
impossible to know what are their relative amplitudes and what are 
the field distributions at any section of the guide. Secondly, when a 
single wave type alone is permitted, all others being suppressed, 
the wave guide resembles a transmission line in which the power is 
carried by the principal wave and other possible modes of trans¬ 
mission are suppressed. In such wave guides many transmission¬ 
line techniques for eliminating reflexions along the course of the 
guide and at the termination may be adopted with very little 
modification. 

These matters are further discussed in the sequel, but to illustrate 
what was said about the choice of wave-guide dimension it is 
pertinent to give the dimensions of a standard wave guide designed 
for use at a frequency of 3300.Mc./8ec. (A = 9-1 cm.). This is a 
rectangular wave guide, whose internal dimensions are 1x2^ in., 
that is, 2*54 X 6*35 cm. The cut-off wave-length corresponding to 
the dimension b = 6-35 cm. is (AJ^ = 127 cm., which exceeds 
A = 9 cm. of the wave to be propagated. The cut-off wave-length 
corresponding to the dimension a = 2-54 cm. is (Ae)^ = 5*08 cm., 
which is much less than 9 cm. Let the edges of length b and of length 
a be respectively parallel to OF and OX, then it is evident that the 
guide can carry an /f^-wave but not an H^^-viave. The cut-off 
wave-length of the is 6 = 6-35 cm., and this is the 
greatest TEM wave-length which can be propagated in this form 
down the tube. Clearly the 9 cm. wave cannot be so propagated. 
Therefore, in this wave guide the only wave that can be propagated 
at 330oMc./sec. is an Ho^-wave with the electric field perpen¬ 
dicular to the long edges of the cross-section and with the magnetic 
loops in planes parallel to the broader pair of faces. 



PROGRESSIVE WAVES IN WAVE GUIDES 29 

If we choose to regard the H^-vrzve as a pair of wave trains 
reflected to and fro between the narrow faces of the guide, then the 
angle a (complement of angle of incidence) is, accor^g to (i). 

The wave-length of the /f^j-wave is, from equation (3), 
Aj = 13 cm. 

2*4. Method of launching an //01-wave in a rectangular wave 
guide 

A common method of launching an //jo-wave is shown in fig. 2*8. 
A probe, whose length is JA (not JA^) protrudes into the wave guide 

through a hole on the centre line of a broad face. The probe, in 
practice, would be an extension of the inner conductor of a coaxial 
feeder line. It radiates as a JA aerial, and at a distance of some 6 in. 
away the field, which near the probe is highly complex, has sim¬ 
plified to that of the single //iQ-wave travelling down tube as shown. 
The movable plunger at the left of the figure is adjusted to act as a 
matching device for the coaxial line input, and the best position, 
found by trial, is that for which maximum power proceeds down 
the guide. This best position is roughly at a distance an odd multiple 
of JAp from the probe. 

2*5. System of wall currents of the //ig-wave 

Currents flow in the surfaces of the walls where there exists a 
tangential component of the magnetic field, the direction of flow 
being at right angles to the local magnetic field, and it is important 



30 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

to understand how the flow of current is related to the electro¬ 
magnetic field of the wave. 

There are several special applications of lengths of wave guide 
with slots cut in the walls; for instance, in testing for the presence of 
standing waves in a guide it is necessary to insert a probe through a 
longitudinal slot; further, slots one-half wave-length long are used 
for radiating directly from the wave guide into space. In all these 
cases it is important to have a clear understanding of the ‘ arterial ’ 
flow of current in the walls before making a ‘surgical incision’. 

-Magnetic lines 

Fig. 2-9. 

— Current 

Fig. 2*9 shows the instantaneous directions of flow of the currents 
in the walls of a rectangular wave guide carrying an i/oi-wave. The 
direction of flow is everywhere at right angles to the local magnetic 
field. Thus, on the face ADEF to which the magnetic loops are 
parallel, the currents conyerge towards the region P, and away from 
the region Q. The instantaneous surface charge densities at P and 
Q are zero, but their rate of change is a maximum and P is about to 
be charged positively and Q negatively with the inverse charging 
processes at the regions opposite them on the other broad face. 
At the instant to which the picture refers, no transverse electric field 
exists at P or Q. The region R and its opposite on the other face are 
fully charged and there is a transverse electric field between the 
broad faces of the guide at R. This is consistent with figs. 2’5, 2*6 
and 2*7, where the electric field is transverse and situated near the 
ends of the magnetic loops but is zero at the centres of the loops. 
The whole pattern of current flow is propagated in the direction of 
the wave-guide axis at the speed Vg. 

A narrow slot may be cut in a wall without affecting the pro¬ 
pagation of the wave provided it does not cut across the lines of 
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flow of the current. For instance, a narrow longitudinal slot in the 

centre of the broad face ADEF cut in the direction PRQ nowhere 

interrupts the flow of current in the wall and therefore has negligible 

influence on the propagation. Such a slot is used in standing wave 

measurements. Were a similar slot to be cut along the centre line 

of the narrow face ABCD it would be at right angles to the current 

and the large reflected component of the if^i^wave would be 

generated at the slot unless it were very narrow. 

2*6. Other wave modes in a rectangular wave guide 

E-waves (TM-«;auw). In these, as already explained in §2*i, the 

magnetic field is entirely transverse, but the electric field possesses 

both a transverse and a longitudinal component. In order to dis¬ 

cover the general form of the field pattern of the J?-waves in a 

rectangular wave guide we again use the technique of superimposing 

the fields of a pair of elementary waves to obtain an'wave for the 

resultant, instead of an //-wave. We then attempt to enclose the 

jB-wave in a wave guide as before. To obtain an JJ-wave it is necessary 
to change the polarization of the elementary waves, so that the 

electric field E and not the magnetic field H as shown in fig. 2*2 lies 

in the plane of the paper. The full lines in fig. 2*2 now represent E 
and the circles the direction of H except that the sense of the latter 

should be the reverse of that indicated. In the composite pattern 

2*2 (c) the closed loops now represent lines of electric force E and 
the circles (with the senses reversed) the magnetic field H. The field 

is therefore that of an E-wave (TM-wave) in space. 

A portion of this field may also be isolated between a pair of 

parallel plane metal plates if the pattern is fitted as shown in fig. 

2* 10 (a). 
It is evident that the boundary conditions 1*4(3) and (4) are 

fulfilled. An oblique view of the two-layer E-wave is given in 

fig. 2*10 (/). It is easy to see that the formulae 2*3 (i), (2) and (3) 

are also applicable here in the case of a single-layer E-wave, where 

b is the distance between the plates. The cut-off wave-length is also 

Ag == zb for a single-layer wave and (zb/n) for an «-layer wave. 

When, however, we attempt to enclose the E-wave of fig. 2*10 in a 

rectangular wave guide to form an E^^^-wave analogous to the //0,,- 

wave, the addition of the pair of side walls destroys the field because 

the planes of the E-loops are parallel to these walls and the //-lines 
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are perpendicular to them, so that the boundary conditions are 
violated. A recUa^ular wave guide cannot, therefore, carry an 
jE'o,»-wave. 

The simplest E-wsve in a rectangular wave guide is the 
(TMjx-wave), whose electromagnetic field pattern is shown in 
fig. 2'ii, but is not derived. 

Fig. 2*10. ^et-wave between parallel plates. 

Fig. 2’11 (a) represents a central section of the wave guide con¬ 
taining the axis and parallel to one pair of walls. It will be noted 
that the electric lines of force are half-loops that stand perpen¬ 
dicular to the walls. Along the axis of the wave guide the electric 
lines of force form an axial bundle. Fig. 2*11(6) is a transverse 
section of the wave at P in fig. 2*11 (a) with the wave approaching 
the observer. The centre of the section is a source of electric lines 
which diverge from the axial bundle and terminate on the walk. 
The m^netic lines are closed loops lying in the cross-section. At 
Q, the pattern is similar but with the directions of the fields reversed. 
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The theory of the propagation of this wave leads to the following 
formula for the cut-off wave-length of the -Bi^-wave in a wave 
guide whose cross-sectional dimensions are a and h\ 

and the wave-length is 

I _ I I 

as before. 

.li 
Fig. 2*11. -Fii-wave in a rectangular tube. 

The general E-wave (TM^„). The wave pattern of an £’^^-wave 
may be regarded as a number of m x n of Sj^-wave patterns fitted 
into a single tube and integrated into a continuous pattern. For 
instance, fig. 2-12 is the cross-section of the pattern of an 
(TM32) wave at a position where the magnetic field is at maximum 
intensity. The pattern resembles a tiled floor with the En pattern 
as unit. In adjacent tiles the centre of one is a source of £-lines and 
the centre of the other a sink. We could, in fact, suppose metallic 
partitions inserted between the unit patterns so that the E^-ytzve 

resolves into m x « independent iEn-waves. 
The subscripts m and n refer to the number of unit tiles along the 

horizontal and vertical dimensions a and b respectively. 
We infer from what has been said, and from formula (i), that 

the cut-off wave-length of the ^^^-wave in a wave guide with 
HWO 3 
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dimensions a and b is the same as that of an En-’wave in a wave 
guide of dimensions (a/m) and (6/n) or 

This formula is, in fact, correct. 
The wave. Like the £„„-wave pattern, that of the 

can be regarded as an m x n manifold of a simple basic 

Fig. 2*12. £,t-wave in a rectangular guide. 

pattern, that of the ^^^-wave, which is illustrated in fig. 2*13. The 
comers of the section are sources and sinks, alternately, of magnetic 
lines of force which run near the comers of the wave guide in bundles. 
Each magnetic line is a closed 
loop. The electric field is trans¬ 
verse with the electric lines of 
force spanning the comers of the 
cross-section as shown. Formula 
(2) also gives the cut-off wave- fis* »’*3- 
length of the H„^-wave. 

Of the and types (or modes) only the Hg^-mode is used 
in practice to carry power in a wave guide, for the reasons mentioned 

Hxi-wave in a rectangular 
guide. 

in §2*3. We shall therefore discuss the E„ 

this stage. 
or no further at 

2*7. Circular wave guides and higher modes in coaxial 
transmission lines 

2*7*1. Although a rigorous account of the props^tion of electro¬ 
magnetic waves in circular tubes and of the higher modes in coaxial 
transmission lines requires a more advanced mathematical treat- 
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meat than it is appropriate to introduce at this point, yet the 
physical approach employed in the previous section can be adapted 
with advantage to our present discussion. 

Supplementary waves in coaxial transmission lines 

Consider a single-layer H-wave between a pair of parallel plates 
as shown in fig. 2‘i4(d:). 

Fig, 2* 14. i/oi-wave on a coaxial line. 

Next, suppose the plates to be curved as indicated in fig, 
until finally the system is transformed into the coaxial transmission 
line of fig. 2* 14(c). The //-wave between the plates transforms into 
a wave propagated between the inner and outer conductors of the 
coaxial line of the form shown. 

When the spacing b between the conductors of the coaxial is small 
in comparison with the radius r the wave closely resembles, both in 
pattern and behaviour, the original //-wave between the flat plates. 
In particular, it would be expected that when the cut-off 
wave-length of this coaxial mode is A^=26, as obtains with the 
parallel plate //-wave. A rigorous analysis confirms this surmise 
but affords very little additional information,* 

♦ Stratton, EUctromagnetic Theory, p. 548. 
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A more general H-vrzve in a coaxial 8)r8tem is obtained by 
'wrapping up’ an «-layer ff-wave between parallel plates to give 
an «-layer wave between coaxial cylinders, whose cut-ofF wave¬ 
length is Xg=‘2bln, when b<^r, where r is the mean radius of the 
coaxial system. This more general n-layer wave in the coaxial line 
is called an Ho^-vravt, for there is here no variation with the polar 
angle coordinate 6 (which replaces the Cartesian coordinate x) but 
an «-layer variation with the radial coordinate r. 

We conclude that in addition to the usual principal wave on a 
coaxial line, other waves may be propagated whose properties are 
similar to those of waves in wave guides and very different from those 
of the principal wave. However, unless the wave-length of the 
principal wave is reduced until it is of the order of the distance 
between the inner and outer conductor these additional or supple¬ 

mentary modes are not excited as progressive waves. 

2*7*3. (TEoi) in a circular xoave guide 

Suppose the inner cylinder of the coaxial line carrying the H^^- 
wave, of fig. 2* 14(f), to shrink until it becomes an axial wire. The 

Fig. 2-15. H„-wave in a circular guide. 

magnetic loops now run parallel where they touch the surface of the 
wire and form an axial bundle. Since a parallel bundle of lines of 
force is self-supporting, the wire is superfluous and may be with¬ 
drawn leaving the wave pattern unchanged. We thus arrive at the 
pattern of an /fo,-wave in a circular wave guide. The cut-off wave¬ 
length is no longer given accurately by the formula 26, and the 
correct formula is A* = 164a, where a is the internal radius of the 
tube. Fig. 2*15 indicates the general form of the electromi^etic 
field of an H^-vrave. The /f^-wave in a circular wave guide may 
also be regarded as a limitii^ form of the H^-viave in a coaxial 
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transmission line as the radius of the inner conductor is reduced. 

These transmission modes have, as yet, found no extensive applica¬ 
tion. 

*7‘4* ^on-w«®«(TMo„) 
The field configuration of the ■^^Dn -mode on a coaxial may be 

derived from that of the n-Iayer jB-wave between parallel plates 

(fig. 2*io) by bending as before, and the cut-off wave-length is again 

Ac=26/n, 

where b is the separation of the conductors. The inner conductor is 

surrounded by half-loops of electric force whose ends stand per¬ 
pendicular to it and terminate on surface charges. Consequently, 

it is not permissible to reduce the inner conductor and to remove it, 

since its presence is required to support the pattern. 

tv->- 

Fig. 2*16. Foi'Wave in a circular guide. 

To obtain the £oi"Wave pattern in circular wave guide, we start 

with a square-section wave guide that carries an -B^-wave (fig. 2* 11) 

and suppose it to be distorted into a circular wave guide. The B^- 

wave pattern then transforms into the Bo^-wave pattern in a circular 

wave guide indicated in fig. 2-16. 

The magnetic lines of force are circles lying in the plane of the 

cross-section and the electric lines are half-loops standing on the 

surface of the tube. The cut-off wave-length of this wave is = 2*6ia, 

where a is the radius of the tube. 

The Boi-wave is of considerable practical importance because it 

is used in rotatable joints which are required to connect a fixed 

wave-guide feeder system to a rotatable aerial. This application 

will be described later. 
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An important feature common to all and A'a^-waVes in 

circular wave guides is that their fields are completely symmetrical 
about the axis of the waveguide. 

2‘7*5. Wave modes without axial symmetry 
It remains to give examples of waves in circular wave guides and 

coaxial transmission lines whose field patterns do not possess axial 

symmetry. We again derive our final pattern by transforming a 

known pattern into the one that we seek. 

Q = 2ir (r, + rt) 

(*) (c) 

Consider an i/jo-wave in a flat wave guide of the form indicated 

in fig. 2*17. Let the wave guide be bent into a coaxial system but 

one in which the original narrow faces of the wave guide meet and 

unite to form a metal septum between the inner and outer con¬ 

ductors as shown in fig. 2*17 (6) and (c). This structure is called a 

septate coaxial system. The original electromagnetic field of the 
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Hoi-wave transfonns to that shown in figs. (A) and (c) where the 

magnetic loops are bent over so that their longitudinal portions run 

in opposite senses, one on each side of the septum. The discon¬ 
tinuity in H across the septum is supported by currents in its 

surface. The electric field is radial with its intensity zero at the 

septum and a maximum opposite the septum. 

A feature of interest about the septate-coaxial system is its cut-off 

wave-length compared with the longest cut-off wave-length of a 

circular wave guide (or even a coaxial transmission line with respect 
to supplementary modes). The cut-off wave-length of the prototype 

wave guide of fig. 2’i7(a) is = 26. In the septate system the 

dimension b has become the mean circumference where 

Ti and the radii of the surfaces of the coaxial system. 

The cut-off wave-length, when the separation of cylinders is 

small compared with is, therefore, 

Ae=2w(ri-|-r2). 

This is approximately twice as great as the greatest cut-off wave¬ 
length in a circular wave guide of the same outer radius rg. 

The field configuration in the septate coaxial system is very 

similar, in the region where the electric field is greatest, to the 
pattern of the principal wave on a coaxial transmission line and is 

consequently readily excited by the principal wave on a coaxial line 

whose inner conductor forms an extension of the inner cylinder of 
the septate-coaxial combination, as shown in fig. 2*i7(rf), provided 

the wave-length of the principal wave is less than the cut-off wave¬ 

length of the septate guide. When the radius of the inner cylinder 
is reduced to zero the septate coaxial becomes a septate waveguide. 

We consider next the field configuration of the /f^i^wave in a 

circular wave guide. In fig. 2*18 (a) a pair of identical wave guides 

carrying identical //qi-waves is shown. In fig. 2-18 (ft) these are 

bent and finally clamped together at (c) to form a double septate 

coaxial with the fields transformed as shown. Since the magnetic 

fields run parallel on opposite sides of each septum, the septa are 

superfluous and may be removed, leaving the coaxial system in 

which the field pattern is identical with that in fig. 2-18 (c). The 
cut-off wave-length is approximately that of either of the prototype 

rectangular wave guides, consequently 

Ao==7r(ri + rj). 
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This mode possesses the greatest cut-off wave-length of all supple¬ 

mentary coaxial modes. When the inner conductor is shrunk to a 

wire and then removed the field transforms to that depicted in 

fig. 2'iS{d) which is.that of an /f^-wave in a circular wave guide. 

Since is zero we have approximately 

Ac=7rrg = 7ra, 

whereas a rigorous analysis gives 

A<, = 3*420, 
where o is the inner radius of the wave guide. 

Fig. 2*18. Hii-vfwe in a circular guide. 

The cut-off wave-length of the Hu-wave is greater than that of 

any other mode in a circular wave guide and this mode is therefore 

the dominant mode. 

The field pattern of an -mode in a circular wave guide is 

sketched in fig. 2*19. Its cut-off wave-length » 1*640 is the same 

as that of the H^-mode. 
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It is sometimes possible to recognize within the wave pattern of 
a wave in a given wave guide, the pattern of a wave in another wave 
guide with a different geometrical cross-section. For instance, 
consider the pattern of the /f^-wave in the square-section wave 
guide of fig. 2’2o(a). 

-H 

Fig. 2*19. Ell-wave in a circular guide. 

(o) (l>) (<•) 

- Electric lines -Magnetic lines 

Fig. 2*20. 

It is evident that thin diagonal metallic partitions AC and BD 
can be introduced without violating the electromagnetic boundary 
conditions, and that the field pattern in the triangular sections 
remain unaffected. Thus, a wave can be propagated in the quarter 
wave guide whose section is an isosceles right-angled triangle, whose 
field pattern is portion of the field pattern of the jE^-wave in a 
square wave guide. The cut-off wave-length is = 2a in each case, 
where a is the edge of the square. Fig. 2*20 (c) shows one-half of 
the 11-wave of fig. 2-18 (c) in a semicircular wave guide. 
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We conclude this subsection with a sununaiy of the cut-ofif wave- 
lei^;ths of those few wave types of practical importance: 

(i) The principal or TEM-wave on a transmission line—no 
cut-off phenomenon. 

' (2) /foi-wave (TEoi) in a rectangular wave guide with magnetic 
loops parallel to the edge of the cross-section of length b. Cut-off 
wave-length = 2b. This is the dominant mode in a rectangular 
guide when b is the larger dimension. 

(3) -fioi-wave (TMji) in a circular wave guide of radius a, 
= 2'6ia. 

(4) Dominant mode in septate-coaxial system—= 27r(ri + r^). 
(5) ^11-wave (TEn) in a circular guide of radius a, A^ = 3-420— 

dominant mode in a circular wave guide. 

2*8. Methods of launching those wave modes of practical 
significance 

We have already indicated in fig. 2-8, and § 2-4, one method of 
launching an ^ji-wave in a rectangular wave guide, and this is the 
method that is commonly used. If the power radiated is large then 
a thick probe with a spherical end is used to avoid electrical break¬ 
down of the air. The wall opposite the probe may also be recessed 
into a spherical dome. 

It should be noted that the system is reversible and that power 
may be abstracted from the wave guide by the probe and led away 
by the coaxial line, the piston position being adjusted to give maxi¬ 
mum power at the output of the coaxial line. The same method can 
be used to launch an //u-wave into a circular wave guide and to 
abstract power from the wave guide. The electric field in the /f^- 
wave is parallel to the probe. 

A modification of this method of launching these /f-waves and 

abstracting power from them is shown in fig. 2-21, which represents 

the launching section of a 2^ x i in. wave guide for operation at a 

frequency of 3300MC./SCC. (A = 9 cm.). 

It will be observed that the radiating wire extends the whole way 
across the narrow dimension of the wave guide and continues on as 
the central conductor of a coaxial stub short-circuited by a movable 
plunger. The diagram represents a central section. The wave guide 
is also terminated on one side of the input feeder by a shorting 
plunger which mdkes good contact with the walls by means of a 



PROGRESSIVE WAVES IN WAVE GUIDES 43 

fringe of small phosphor-bronze spring contacts. This plunger can 
be moved smoothly by means of a screw and control knob as shown. 
A double adjustment of coaxial plunger and wave-guide plunger is 

Fig. 2*22. 

made until a satisfactory match between the input cable and the 
wave guide is achieved. 

A method of launching an jB^-wave in a rectangular wave guide 
or an J^o^-wave in a circular wave guide is shown in fig. 2-22. 
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The wave is excited by a JA probe that protrudes into the wave 
guide along its axis and through a hole in an end-plate. The electric 
lines of force can be crudely envisaged as being shed from the probe 
as indicated. 

An interesting and important method of exciting an iPj^-wave in 
a circular wave guide by means of an fl'jj-wavc in a rectangular 
wave guide, and conversely, is illustrated in fig. 2-23. 

The device is known as an H-to-E transformer, and the demon¬ 
stration apparatus represented in fig. 2-23 (a) is one in which w 
H^-vravt excited at the input probe is first converted into an^^- l 
wave and then back again into an H^i-vrave in the output r^- 
angular wave guide. The relationship of the electric lines of force 
in the circular and rectangular wave guides is indicated in fig. 2*23 (6). 
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It can be seen that the transverse electric fields of the j^o^-waves 
become longitudinal fields in the circular guides and are able to 
excite an ^Q^rwave in it. An important feature of the J?oi-wave is its 
axial symmetry which enables it to excite an /^Q^-wave in the output 
rectangular wave guide on any aizimuth. Consequently, if the two 
transformers are separate, as indicated in fig. 2*23 (a), but held 
together by a metal sheath over their circular portions, it is found 
that the power output is independent of the rotation of the output 
rectangular wave guide relative to the input. This important result 
receives an application in a rotatable wave-guide joint, but we 
postpone discussion of this to a later section. Fig. 2*23 (c) represents 
a convenient low-power lamp (lomW.) whose leads are cut to be 
half a wave-length (4*5 cm. at 330oMc./sec.) from tip to tip. Such 
a lamp can be used to indicate the direction of the electric field in 
the wave, since it behaves as a resonant half-wave aerial. Even 
when a low-power reflector klystron with power output of 200 mW. 
at 3300 Mc./sec. is used as a source of power, the lamp should light 
brightly when placed parallel to the short edge of the mouth of the 
output wave guide and at the centre of the mouth. By removing the 
output half of the system the lamp may be introduced longitudinally 
into the circular wave guide when it will show the existence on the 
axis of the longitudinal electric field of the Eoj-wave. Visual demon¬ 
strations of this type are valuable teaching aids. 

2*9. Group velocity 

According to equation 2*2(1), the phase or pattern velocity is 

^0 = u/cosa, 

where a is the angle between the wave normals of the component 
wave fronts and the walls. This velocity refers to a steady state in 
which a continuous ff^Q-wave of constant amplitude completely fills 
the wave guide. The speed at which a limited wave train or a modula¬ 
tion of a long wave train travels along the guide is not the phase 
velocity but the group velocity Vq. A signal may be supposed to 
be transported by the constituent waves reflected to and fro between 
the faces so that its velocity resolved along the wave guide axes is 

- _!L_ 
cosa 

VgVQ = uS whence 
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as Stated in 2*1(1). This is an oversimplified account because a 
limited wave train possesses a spectrum of frequencies. 

According to a standard formula, the group velocity of a limited 
wave train is given by ^ 

where 

In a wave guide 
wave-length ' 

A,-V(a» (A,)*) (A,)*)’ 

it follows that — = X 
•I® 

»* /(L_ 

VU* {K)V 
VgVa = o*. 



Chapter 3 

FORMULAE FOR FIELD COMPONENTS— 

EVANESCENT MODES—ATTENUATORS— 

ATTENUATION DUE TO WALLS 

3*1. Introduction 

We begin this chapter with a recapitulation in mathematical 

language of the procedure used in Chapter 2, to find the field patterns 

of //0^-waves, and thus arrive at formulae for the field components 

of these waves as functions of position in the wave guide. 

Subsequently, we consider the nature of the electromagnetic 

field in a wave guide when the frequency is less than the cut-off 

frequency so that there is no propagated wave, and also the attenua¬ 

tion of a progressive wave due to the finite conductivity of the walls. 

3*2. Field components of the //^^j-wave (TE^,^) in a rectangular 
wave guide 

Let CZ), in fig. 3*1, represent a wave front and OQ the direction 

of propagation of a plane electromagnetic wave polarized with H in 

the plane of the paper and E perpendicular to it. 

Since we shall require to consider a second wave, the electric and 

magnetic fields of the first wave are 

written El andHj and those of the second 

wave E2 and Hg. 
We refer the wave to a system 

of Cartesian coordinates chosen with the 

ZO Y plane as the plane of the paper, and 

with the positive direction of OAT directed 

into the paper. If, therefore, and OQ 
(the wave normal) lie in the plane ZOY 
as shown, then E^ is parallel to + OX, 
If Hi is reversed then is parallel to — OX. 

Over the equiphase plane CD through O suppose and to be 

“ V(f) 

Y 
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where to = znf; t is the time and ^ is a phase constant whose value 

may be chosen to suit subsequent requirements. 

Let QP be the wave front through the point P{0,y,z). If the 

length of the normal OQ from the origin on to QP is s and the wave¬ 

length of the wave train is A, then, over the plane QP, 

Ei = = AiCos{a)t-ks+g), (2) 

where k = znjX. 

Let the angle QOZ be a; then we may express s in terms of a and 

the coordinates y and zoiP. 

For, if OP = r and the angle POZ = 6, then 

5 = rcos(a —0) = r(cosa cos0 + sina sin0) 

= (ysina + arcosa). 

Since the plane QP is an equiphase surface, whose phase, according 

to (2), is determined only by s, the fields Ej and Hj at all points 

{x,y, z) of this plane are 

El = Jj Hi = Ai cos {(t)t~kys,ina — kz cos a +^). (3) 

In fig. 3'2 we have the wave train with the same wave¬ 

length A and with Hj and the ray direction OQ' again in the plane 

ZOY. However, the angle ZOQ' is here equal to —a. 

Over the plane D'OC through the origin let 

£2 = Jj f/j = A2 cos {(ot + h), 

where h is again an adjustable phase constant. 

Similarly, over the wave front Q'P' through the point P{x'y'z’) 

at a perpendicular distance s' from the origin 

E,= H^ = A, COS [(i)t -f A — k{z' cos a —y' sin a)]. (4) 

Let the two waves run simultaneously across the region repre¬ 

sented in the diagram, and choose the amplitude A,^ and the phase 

constant h so that at ail times t, the resultant electric field shall be 

zero everywhere over the plane ZOX (fig. 3'3). 

We require, therefore, E E^ + Et o for all values of z along 

OZ, since E^ and E, are both perpendicular to the plane of the paper. 
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The resultant field £ at an arbitrary point z) is 

E = El + £2 

= Ai cos {(i)t — /tar cos cc — ky sin a 

-h -^2 cos — kz cos a — /t^ sin a + A). (5) 

Since y ^ o over the plane XOZy we put = o in this expression 

for £ and equate it to zero. We require, therefore, at all times t and 

for all values of ar. 

AiCos{o)t — kz+g) + A2Cos{(i)t — kz + h) = o. 

That is, Ai = A2 = A, h = (g±7r) radians. 

Fig. 3*2. 

With these values of A2 and h the expression (5) for the field at an 
arbitrary point becomes 

E = zA sin {ky sin a) cos {(ot — kz cos a -f ^ — Jtt), (6) 

where k = ztt/A. This is the equation of a plane wave propagated 

in the direction +OZ and amplitude modulated in the direction 

O F by the factor sin 

To find the resultant magnetic field H we resolve the constituent 

fields Hi and H2 components along OZ and OF and add 

corresponding components. From equations (3) and (4) and fig. 3-3 

we deduce the following expressions for the components of the 

resultant field H: 

A cos a sin {ky sin a) cos {<i)t—kz cos a 

A sin a cos {ky sin a) cos {(at — kz cos a +rr), (7) 

to which we add (6) for completeness, 

E <= Eg==‘ 2i4sin(/^sina) cos((i>t—fearcosa+^ —^tt). 

awo 4 
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The two elementary waves have evidently combined to form an 

H-wave. 

and Hy are zero when sin sin a) is zero, that is, over the 

planes y = constant, where 

nit , . 
^ = («-0,1,2,....etc.). 

We may, as before, suppose any pair of these planes to be occupied 

by a metal sheet. Choose the pair y = oandy = , = h. 

We then have an «-layer H-w2iye between a pair of parallel metal 

plates at a separation . 

When side walls at any distance a apart are inserted, we obtain 
an in a rectangular wave guide. 

Equation (8) may be written 

sina = —£, cos 
20 

and from expressions (7) the wave-guide wave-length is seen to be 

Ag = A/cosa. (10) 

Thus, from (9) and (10) we obtain the standard formula 2*1 (2) 

I_L_i. { \ 
A* “A* Ar 

where the cut-off wave-length 

Xg = {2bln). (12) 

Expression (7) may be simplified by making use of (9) and by 

putting g = There results, when zA is written as Eg, 
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This is the //o^-wave that will fit into the wave guide whose section 
is shown in fig. 3*4, 

This electromagnetic field satisfies the boundary conditions at 

the metal surface and Maxwell’s equations within the wave guide. 

oi— 
0OZ 

Fig- 3*4- 

If, instead of using the trigonometrical forms (3) and (4) for the 

elementary wave, we use the equivalent exponential representations 

£il(^-hO-k(v sin a+z cos a)]^ 1 

E2 = /l^l ^2 = ^^e’M+A+fc(V8ln<x-*cosa)l^ 

(14) 

we obtain on superimposing the fields, with A2 = Ai = A and 
h + n = g — ^TT in place of equations (13), the equivalent expressions 

where / x/ = — i and we have used the relation 

_ (cos ItT ±y sin ^tt) = ±y. 

The propagation constant y = znjXg, The field expressions in (15) 

formally satisfy Maxwell’s equations and the boundary conditions 

provided, in accordance with equation (ii), 

4-2 
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3*3. Field components of and ^mn-waves 

For completeness, the expressions for the field components of 

the H^- and F^^-modes are given below, but are not derived 
(see §7* 10*2). The field components of an /f„„-wave are 

It is easy to verify that expressions 3‘2 (i 5) for the except 

for the arbitrary constant E^, are obtained by putting m = o in 

(i) and (2). 
The corresponding field expressions for the £„„-wave in a 

rectangular wave guide are 

Tr lfmrx\ . Innyy 1 gm-7t\ 
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It is easy to see that if either m or n is zero then every component 

vanishes and therefore that an or an jB^-wave is not a possible 

type of wave in a rectangular wave guide. ^ 

It follows from (i) and (3) that the components both of and 

waves satisfy the following relationship: 

E^Hx + EyHy-^- = o, 

which is the condition that the fields E and H should be at right 

angles. The fields are such that at all places and times the resultant 
electric and magnetic fields are at right angles. 

Wave fields in circular guides and in coaxial lines also possess 

this property. 

3*4* Wave impedance and Poynting flux 

3*4*I. Wave impedance 

We require, for subsequent discussions, an expression for the 

Poynting flux associated with each wave-guide mode. 
For simplicity, consider first the //^^-wave and refer to fig. 3*4. 

The transverse components of E and H at the point Q{Xyy) are 

Ex and Hy, 
It follows from equations (15) that 

i/A> ‘-i/A*)a 

= IZOTT V( 
K. 

KJ 
1 ^ohms. 

A 
(I) 

This may be compared with the corresponding value of the 

transverse field components in a plane wave in free space which 
according to equation 1-2(6), is -Ji/ije) = i2on.^{KJfC^), and was 

called the wave impedance of this wave. 
Since the ratio EJHy in the //Q,^-wave is independent of position 

and of time it is also called the wave impedance or the intrinsic 

impedance of the wave guide for this wave. According to 3-2(15), 

Egi and Hy vibrate with no phase difference; consequently the wave 
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impedance is purely resistive. We shall denote the wave impedance 

of an /f-wave by Zh, therefore, in this instance, 

For the /f„,„-wave we find from (i) that 

We may similarly define the wave impedance of the £,„„-wave as 

Ze and find from (3) 

The expressions (3) and (4) for Zh and Ze are also valid for waves 

in circular wave guides. 

3*4*2. Poynting flux 

Let the directions of the transverse components of E and H in 

either an E„„- or an H^„-wave at an 

arbitrary point Q{x,y) of the cross- 

section be those shown in fig. 3-5. Let 

the resultant transverse field E make 

an angle d with the horizontal edge a. 

From the figure 

E- = Ecos6, Ey = Esind, I 
(0 

H„ = Hcosd.j 

The Poynting flux density of power 

along the axis at is P = EH W./sq.m. (§ i‘3 (i)), that is, from (i) 

P = {E,H,-EyH,). 

But, from 3-4 i (3) and (4), //„ = EJZ, - EJZ, whereZ repre¬ 

sents ZE or Zh according as we are discussing an E- or an if-wave. 

The expression for P becomes 

This is the instantaneous flux density of power at Q. The quantity 

Z therefore behaves as circuit impedance provided it refers to the 

field components and flux density of power at a point, and that we 
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suppose the transverse electric field E to be the voltage and the 

transverse field H the current, all referred to the same point Q on 
the cross-section. 

The mean flux density of power is 

ZZ 2 ’ 
(3) 

where and are the amplitudes of the resultant transverse 

fields. To obtain the average power crossing the whole section of 

the wave guide it is necessary to integrate (3) over the section, 

writing El = + £■§,,) and HI = 

The total mean power carried by the /f,„,^-wave of equation 

(4) 
With an or //^Q-wave the expression for W must be doubled 

sirice in the integration there is only one square sinusoidal factor. 

Thus for an //(^-wave, W = . 

E^^-wavc is, from 3-3-i (3), 

The expression for an 

[(^T (5) 

Since equations 3*3(1) and (3) give the relative amplitude of 
the components they are often given in other forms which, however, 

on examination are the same as equations 3*3(1) and (3) with 

every component multiplied by a common factor which will be 

usually different in the two cases. If A is this factor, then expressions 

(4) and (5) for W will contain an additional factor A^. 

The component of the Poynting flux perpendicular to the axis is 

found by associating and E^ with the transverse E and //-com¬ 

ponents respectively in the //- and ^-waves. Since, however, the 

-^-components oscillate with a 90° phase difference from the 

associated transverse components in a wave guide with perfectly 

conducting walls, the mean flux of power outwards is zero. 

3*5. Evanescent modes 

We have hitherto refrained from discussing the nature of the 

electromagnetic field of a mode when the frequency/ is less than the 
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cut-ofF frequency/e so that the mode cannot exist as a progressive 

wave, but it is now necessary to do so. 

The two electromagnetic fields whose components are pro¬ 
portional respectively to the expressions given in equations 3*3 (i) 

and (3) represent formal solutions of Maxwell’s equations of the 

electromagnetic field provided the conditions 3-3 (2) are satisfied. 

Every field component in 3’3(1) and (3) contains the factor 

and when the propagation constant y is a real quantity the 

electromagnetic fields are those of progressive and E„„-v/a.ves 

respectively. 

Since, from 3*3 (2), 

the condition for a progressive wave is that the quantity under the 
square root should be positive; that is the TEM wave-length A 

must be less than the cut-off wave-length A^, or in other words the 

frequency/must exceed/^ for the particular mn mode. 
Suppose the frequency / to be reduced to a value less than so 

that A exceeds A^, then the quantity under the square root becomes 

negative and y becomes a mathematically imaginary quantity. We 
may rewrite the expression for y 

where j xj = —1 and a = zn 

The exponential factor now becomes 

gj{(d±jaz) ^ gjud ^ 

Let us choose, for convenience, the negative sign before az (i.e. 

put y = —Ja) and write the exponential factors 

These factors appear in the expressions for the field components. 

The electromagnetic field is now one of a totally different character 

from that of the progressive wave. First, the amplitudes of all 

components decay exponentially with distance along the axis, and 

at a sufficient distance from the source the disturbance becomes 

relatively negligible; secondly, there is no phase dependence on 
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the distance z as there is in a progressive wave as may be seen from 

3*3 (i) and (3), remembering that A/A^ is now greater than unity. 

A given component oscillates everywhere in phase with itself 

although its amplitude diminishes as z increases. A mode whose 

frequency / exceeds the cut-off frequency so that it behaves as 

described above, is said to be evanescent (vanishing rapidly). 

The properties of evanescent modes are of theoretical importance 

in studies of the effect of obstacles and geometrical discontinuities 

in wave guides and of practical importance in the piston attenuator, 

an example of which is described in the next section. 

3*6. The piston attenuator 

We first give the theory of this device. Consider an arbitrary 

electromagnetic field oscillating sinusoidally with frequency / 

within a wave guide, and suppose /to be less than/^, the cut-off 

frequency of the dominant mode in the guide. The arbitrary electro¬ 

magnetic field can be represented as a series of coexistent evanescent 

modes whose amplitudes and phases must be chosen appropriately. 
Since it has been assumed that /is less than the cut-off frequency of 

the dominant mode, it follows that the field amplitudes in each 

mode (w, n) diminish exponentially with distance z from the source 

of the disturbance according to a factor cxp{-oc^^z)y where, 

from 3-5 (2), . 

V WC" A*) • 
If we further postulate that /<^/^, that is A> A^, then 

amn=?27r/(Ae)„„. 

Since the higher the order of the mode (mn) the smaller the cut-off 

wave-length, it is evident that the higher order modes are attenuated 

more strongly than the lower order modes; consequently, by pro¬ 

ceeding a sufficient distance z from the source of disturbance the 

residual field is effectively that of the dominant mode and exhibits 

a simple exponential dependence on distance. 
The attenuation coefficient is a = aTr/Ap, where A^ is the cut-off 

wave-length of the dominant mode. We note, therefore, that 

provided A> A^, the attenuation coefficient a of the residual domi¬ 

nant mode (and of all other modes) is virtually independent of 

frequency and depends only on the geometry and dimensions of 

the wave guide. 
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An instructional wave guide for showing the exponential reduction 

in the amplitude of an evanescent mode is illustrated in fig. 3*6. It 

comprises an ordinary piece of 2^ x i in. wave guide which leads 
smoothly into a length of narrow wave guide iff x i in. The narrow 

portion carries a longitudinal slot on the centre line of its broad face. 

The dimension of the narrow wave guide is so chosen that at the 
lower wave-length range (A = 8-6 cm.) of a reflector klystron 

(Sutton ^be) the wave-length is almost equal to the cut-off wave¬ 

length Ac, but at the other end of the tuning range (A = 9-3 cm.) the 
10-wave is fully evanescent. The /fio-mode is launched into the 

broad wave guide and becomes evanescent in the narrow guide and 

no other modes are excited. The variation of field strength with 
axial distance can be found by means of a standing wave indicator 

(§4-4) whose probe is introduced into the field through the slot. 

Fig. 3 6, 

The d.c. from the crystal of the standing wave indicator is pro¬ 

portional to the square of the amplitude of the field within the wave 

guide when the rectified current from the crystal is less than 20 /lA, 
The narrow wave guide is terminated in a reflectionless wooden 

load which excites no disturbing field. 

Fig. 37 is a plot of crystal current against distance on semi- 

logarithmic paper for three oscillator wave-lengths. The linearity 

of the curves establishes the exponential dependence of amplitude 

(here it is power) on axial distance z. The wave-lengths A are 
sufficiently near to A^ to require the full formula (i) to be used to 

check the measured and calculated values of zaiQ. 

The exponential dependence of field amplitude on distance is 

employed in the piston attenuator which is a device employed in 

special forms of signal generators at microwave-lengths for reducing 

the amplitude of the output e.m.f. by any number of decibels 

within a given range. Fig. 3-8 is a diagram illustrating how a piston 

attenuator can be incorporated in a signal generator. 

The equipment is T.R.E. Signal Generator Type 47. 
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Distance along slot from arbitrary origin 

Fig- 3-7- 
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The source of power is a reflector klystron (A = 9*1 cm.) shown 

on the left. The e.m.f. abstracted can be altered at will by rotating 

the coupling loop by means of the knob shown at the left of fig. 3*8. 
The output from the loop is fed through flexible leads to a bolo¬ 

meter that comprises a straight filament inside an evacuated glass 

tube. The bolometer filament has a double function; first, it 
launches the electromagnetic disturbance into the attenuating tube 

(piston attenuator) to the right of the diagrams; secondly, its bright¬ 

ness is used to indicate when the disturbance reaches an arbitrary 
standard strength, by turning the coupling loop to the klystron until 

the bolometer is observed through an eyepiece just to glow. At a 

sufficient distance z within the circular tube of the piston attenuator, 
whose diameter is small enough to ensure that the dominant Hu- 

mode is strongly evanescent, the disturbance is a pure evanescent 

mode. A 70-ohm resistor acts as a pick-up loop for the output 
coaxial which delivers the e.m.f. to an output plug on the front 

panel of the signal generator. The position of the pick-up resistor 
in the tube can be adjusted by a rack and pinion movement as shown. 

There is a position of closest approach of the resistor to the source 

within which the output reacts on the input, and it is arranged that 

the resistor cannot approach the bolometer filament within this 

distance. 

Let Vi be the signal output when the resistance is at distance z^ 

from the filament and V2 at distance z^- From what has been said 

it follows that 

V /V\ 
^ or log* = a(z2-sii) nepers, 

i.e. 20 logio j = 8-686a(22 - z^) db. 

The reduction of the signal strength measured in decibels is there¬ 

fore proportional to the displacement of the pick-up loop. The 

attenuation dial which controls the movement of the pick-up 

resistor can therefore be calibrated directly in decibels, the zero on 

the dial corresponding to the position of closest permissible approach. 

The maximum reduction of output of this arbitrary standard is 

100 db., and the decibel scale on the attenuation dial is linear. 

The principal use of signal generators of this type is to check 

receiver performance at wave-lengths of 9 cm. Their chief defect 
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is the small output which in this case is 6o mV. at the o db. setting, 

from an internal impedance of 75 ohms. The Signal Generator 

Type 47 (T.R.E.) is a useful field equipment for use on 5-band. 
Signal generators that incorporate piston attenuators have also 

been developed for operation in the AT-band (A = 3*3 cm.); they are 

the R.R.D.E. Signal Generator Type 8 and the T.R.E. Signal 
Generator Type 102. Instead of using a visual method of adjusting 

the bolometer current, they employ a more sensitive bridge method. 

3*7* Attenuators 

It is convenient to mention here a wave-guide attenuator of a 

type different from the piston attenuator. This comprises a length 
of wave guide into which is introduced a resistive lamina with its 

plane parallel to the electric lines of force of the i/^o-wave, and to 

the narrow face of the wave guide. Power is dissipated in the resis¬ 

tive sheet, and the amplitude of the wave is diminished as it is 

propagated past it. There are two principal forms of this attenuator, 

the ‘ flap * type and the ‘ push across’ type. In the former the lamina 

is introduced into the wave guide through a longitudinal slot in a 

broad face. It is hinged to the wave guide at one end and can be 

lowered into the wave guide to any desired degree by motion of a 
dial operating a cam. This dial can be calibrated directly in decibels 

of attenuation. A defect of this design is the fact that currents flowing 

in the resistive sheet also flow in the portion of it outside the wave 
guide and radiate into the surrounding region and cause trouble. 

As in fig. 4-29(a) this defect;is avoided in the ‘push across’ form 

of attenuator in which the resistive sheet lies entirely within the 
wave guide but can be moved normal to itself and to the narrow 

faces from a position where it is lying flat against the wall and pro¬ 

duced little attenuation (Jdb.) to the central section of the wave 

guide where it is in the maximum electric field and produces maxi¬ 

mum attenuation. A pair of thin rods run across the wave guide and 

through the resistive sheet which is rigidly attached to them as in 

fig. 4'29t4i,.(.a) 
These rods allow the resistive film to be moved across the wave 

guide by the operation of a cam and dial. The dial can be calibrated 

in decibels. 
Common forms of resistive sheet are composed of carbon de¬ 

posited on bakelite, but these do not retain their calibration well. 
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More recently, platinum-on-glass sheet has been developed in the 

United States and is very stable. A typical resistive value is zoo- 

300 ohms per square. ‘Cracked* carbon films are being developed 

for this purpose in this country and appear to be sufficiently stable. 

These attenuators can be calibrated against a signal generator 

incorporating a piston attenuator which, as we have seen, gives 

attenuation directly in decibels. 

In X-band (3*3 cm.) wave-guide test equipment it is desirable to 

decouple the^miUtSon by including an attenuating section of wave 

guide between it and the main run of wave guide. This section is an 

ordinary length of guide with a resistive strip of bakelite loaded with 

graphite which fits against one of the narrow walls. In this way a 

fixed attenuation of 10 db. can be introduced between oscillator 

and load. 

3*8. Poynting flux in an evanescent mode 

In § 3*4*2 it was shown that the component of the Poynting vector 

along the axis of the wave guide was a real quantity and that therefore 
there is a flow of power along the axis when the electromagnetic 

field is that of a progressive wave. When, however, the electro¬ 

magnetic field is that of an evanescent mode the transverse com¬ 

ponents of E oscillate in quadrature (90° phase difference) with 

those of H, and there is no mean flow of power along the wave guide. 

This may be appreciated on referring to equations 3*3(1) and (3) 

for the components of Hmn' ^mn“Waves in a rectangular wave 

guide. It will be noted that in the third and fourth expressions of 

each group the factor appears. When the electro¬ 

magnetic field is that of a progressive wave A < and the expression 

is real but with an evanescent mode, A exceeds A^ and the factor 

should be written XcY — 1], Consequently, in equations 
3*3 (i) and (3) the components of H oscillate together but in quad¬ 

rature with those of E. When the wave impedance and axial Poynting 

flux are derived, as in §3*4, they appear as imaginary quantities; 

that is, the wave impedance is a reacts|^ce and not a resistance. This 

reactance is inductive for evanescent /f-modes and capacitive for 

E-modes. 

Since energy flows into and out of the field every quarter cycle, but 

none is carried away, the fields of evanescent modes are called storage 

fields. They resemble the fields of inductances and condensers. 
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A paradox. In the piston attenuator power is transferred from the 

source to the output along a wave guide in which only evanescent 

modes exist. This fact appears to be inconsistent with the statement 

that an evanescent mode does not convey power along the wave 

guide. To resolve this paradox, refer to equations 3*3 (i) and (3). 

We have seen that whenI— A^/A^) is written = —joc 

the amplitude of each field component diminishes with increasing 

z through the factor In the of equations 3-3 (i) the 

field components and Hy therefore oscillate with a phase re¬ 

tardation of 90° on when all components vary with increasing z 

through the factor 

If, however, we use the alternative sign for the square root and 

write 4-y i) = the dependence on z is now through 

Fig. 3'9- 

the factor and and Hy vibrate with a phase advance of 90° 

on When the output loop of the piston attenuator is introduced 

into the field of the persisting mode it distorts it, and further 

evanescent modes are excited which are superimposed on that from 

the source. When the output loop and source are widely separated, 
at a sufficient distance from either, and between them, the persistent 

mode from each is the dominant mode, all others being unimportant. 

In fig. 3*9 the point A marks the position of the source (bolo¬ 

meter filament) and B the position of the pick-up loop. At a point O 

between A and B the field is that of the two persisting modes from 

A and B superimposed. The exponential decay of the amplitudes 

is indicated by the curves. Distance z along the wave guide is re¬ 

ferred to O as an arbitrary origin. Let the loop lie at a distance 

z = OB = /, and suppose that the transverse components at the 
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fields in the two modes at position z are {Eii,Hy) and 
We may write 

Hy, = Ey = x e-", j 

Ett = Z)e+“* x J 

where A, B, C and D are the amplitudes at ar =: o and is a phase 

constant of the second mode relative to the first. Since each per¬ 

sisting mode is the dominant mode it follows that 

A C 
B D' (2) 

We may assume that the amplitude of the mode excited at the 

output loop is proportional to the field E^ at this loop, and it follows 

from equation (i) that 

Ce^acAe-'^, De«‘ocBe-‘^A 

or CccAe-^, DccBe-^“^. f ^ 

Equation (3) is consistent with (2). 
Fig. 3 • I o (<j) and (b) show the representative vectors of the oscilla¬ 

tions of the fields Ey) and (i/jo ■£'a) respectively at the position 

(a) (6) (c) 

Fig. 310. 

z = 0. The resultant electric and magnetic fields E, and H, at this 

position are obtained by vectorial addition of the component fields of 

the two evanescent fields. This addition is carried out in fig. 3* 10 (c). 

The amplitude and phase of the resultant field H it z = 0 zre 
respectively LN and 6, and those of LS aDd Clearly, 

the resultant fields Hi and Et do not oscillate in quadrature. There is 

therefore a component of the Foynting vector along 0«, which is 

real and represents a mean flow of power from the source of the loop. 
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The mean flow of power is therefore proportional to 

LS.LNcos{^n-e-d') = LS.LNsm(d+d'). 

When C<^A and D<^B, this expression simplifies because 6 and 6' 
are then small angles and sin {6+d') = (d+6'). 

We have also 0=^sin/S, 6' = ^sm/S, 
A. Jt> 

SO that, from (2), d = 0'. 

Consequently the mean flow of power at = o from the source to 

the loop is proportional to 

LS. LiVsin (d + 6') = zABd = 2AD sin ^ — zA sin 

Thus the mean power delivered to the loop at position / relative to 

an arbitrary fixed origin is proportional to This is the law of 

the piston attenuator. From what has preceded, it is evident that 

exponential dependence on distance is only obtained when the 

amplitudes C and D are much smaller than A and J5, and the 
attenuator should be constructed so that the evanescent mode 

excited at the output loop is always relatively feeble at the source. 

The position of the loop corresponding to zero decibels on the 
dial is chosen to satisfy this requirement. 

3*9. Attenuation of progressive ivaves due to finite con¬ 

ductivity of the walls 

It has been supposed hitherto that the walls of the wave guide 

were perfectly conducting and consequently that progressive waves 
were propagated in it with no loss of power. In practice, however, 

the metal walls possess a large, but finite, electrical conductivity, 

and the currents that flow in them when an electromagnetic wave is 

propagated along the guide are accompanied by the generation of 

heat. The energy transformed into heat is abstracted from the 

power carried by the wave whose field components are therefore 

attenuated with axial distance z away from the source. In the 

expressions for the amplitude of each component of the electric 

field E and of the magnetic field H there must now be included a 
factor The ratio of the field amplitudes at two corresponding 

positions on the cross-section at distances z and {z^d) is therefore 

and the logarithm of this ratio to base e is this is the attenua- 

5 HWO 
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tion measured in nepers suffered by the wave. The loss per unit 

length is therefore nepers or 8*686a; db. The loss coefficient 

depends on the electric conductivity of the material of the walls, 
the frequency, the mode of wave being transmitted and the dimen¬ 

sions and the geometry of the wave guide. When the attenuation 

cciXg nepers suffered in a distance equal to the wave-length A^, is 
very much less than unity, as occurs in practice in wave guides with 

silver, copper or brass walls, the appropriate formulae for may be 

derived by the following method. 
It is assumed that in wave guides with highly conducting metal 

walls, the field components in the wave are the same as those in a 

hypothetical wave guide with perfectly conducting walls, whereas, 

in fact, there is a small component of the electric intensity E tan¬ 

gential to the metal surface. The components of E and H each 

contain the factor consequently the power w transmitted over 

a cross-section of the wave guide, which is obtained by integrating 

the product of the transverse components of E and H over the cross- 

section, contains the factor Thus 

w = 

where Wq is the power transmitted at = o, and 

dw 
-j- = —2(X,W, 

But the loss of power per unit length —dwjdz is the energy dis¬ 

sipated in the walls of the wave guide in ohmic heating. 

This energy loss per unit length can be separately calculated from 

the currents in the walls which are directly proportional to the tan¬ 

gential components of the magnetic field at the wall, and in terms of 

the conductivity of the metal and the frequency. Call this energy 
loss per unit length A, Then 

- dw 

or a, = — nepers/unit length. 

Thus, the attenuation coefficient is found theoretically by cal¬ 

culating the energy lost per unit length in ohmic heating, and 

the flux of power to over the corresponding cross-section. This 



FORMULAE FOR FIELD COMPONENTS 67 

procedure leads to the following formulae for attenuation coeffi¬ 

cients of progressive waves in rectangular wave guides (see §7-15). 

The symbols which appear in these formulae have the following 
interpretations: 

/, the frequency of the wave in cycles per second. 

/g, the cut-off frequency for the wave mode concerned. 
a and b are the dimensions of the wave-guide cross-section measured 

in metres^ the dimension a is associated with the mode integer m 
and b with n. 

Rs is the surface resistance in ohms per unit square of the metal 

surface (the quantity was discussed in §1*4; according to that 

section that is, power is dissipated in unit area 
of the surface at the rate W., where I is the total surface 

current in amperes per unit length. is found from the following 

formula (§7*14): 

Rg = 27T-^{io-'^pf) ohms/unit square, (i) 

where p is the specific resistance of the wall metal in ohms per 

inetre cube. 
For copper, p = i‘6 x lO”® ohms-m., consequently with copper 

i?, = 87rxio-V/- 
The surface resistance of any other metal may be obtained by 

multiplying this value by the factor 

N = J, Pmetal 

Pcopper 

ai is the loss coefficient in nepers per metre. To obtain the loss in 
decibels per metre it is necessary to multiply the value in nepers 

by 8-686. 

Formulaefor attenuation coefficientsin rectangular air-filled wave guides 

The HiQ-wave (electric field parallel to the edge b of the cross- 

section) : 

a, = 
R. j^i + 2 ^ ^ j j J nepers/m. (2) 

1207Tbyl{l-(JJf)^} 

To obtain a for the ifoi-mode, interchange a and b in this formula. 

The E„n-ioave: 

iR, t 
izonb >/{i -(/c//)*} (3) 
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The H^^-tvave: 

^ 2R, nbla){m\bla) + n^} ( / 

^ i207r6L {tn\b/ay + n^} \ \ 

X 

According to these formulae the attenuation in a rectangular guide 

depends on (a) the size of the tube, (b) the ratio of the cross-sectional 

dimensions, (c) the resistivity of the walls, (d) the frequency. 
We shall not, however, discuss the influence of these factors in 

detail because in radar practice at a frequency of 3000 Mc./sec. the 

only wave that is employed to carry power through a long run of 

wave guide is the /fj^^-wave in a rectangular guide, and it will suffice 

to discuss the attenuation of this wave in the actual 2 J x i in. and 

3 X I in. wave guides used in service equipments. 
The losses in copper wave guides with these standard internal 

dimensions are calculated as a function of frequency, from formula 

(2). The results are exhibited in the curves of fig. 3*11 (a) and 
(b) which give the loss in decibels per metre suffered by an 

/fjo-wave, as a function of frequency/. 

According to formula (2) the loss becomes infinite at the frequency 

/ = /c due to the factor — (Jclff) and also at / = 00 due to the 

factor We may therefore expect to reach a minimum value, 

in a given wave guide at some frequency greater than These 

properties of the curves are shown in fig. 3*11 {a) and (6). The 

asymptotic approach of to infinity as / approaches and the 

minimum on each curve, are indicated. 
The values for relate to wave guides with copper walls, but to 

obtain the attenuations when another metal is used it is necessary 

only to multiply the ordinates of the curve by a factor N = 

Thus 
Metal Brass Silver Aluminium 

N 2‘i 0*97 1*27 

With iron, the factor N is 

fif — X ^(permeability of iron). 
V xPcopper/ 

Because of the high permeability of iron and steel the attenuation 

in tubes of these metals is large. 

I Pmetel 

Pcopper 
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The position of the 5-band of frequencies is indicated on each 
curve. 

The smaller 2^x1 in. wave guide, to which fig. 3-11 (^i) relates, is 

used in R.A.F. airborne equipments at wave-length of about 9 cm., 

Mo. see 

Frequency in Mc./sec. 

(a) 

Frequency in Mc./sec. 

(b) 
Fig. 311. Attenuation coefficient a in standard copper 

wave guides as a function of frequency. 

that is, at the right-hand end of the band shown in the figure, where 

the attenuation is about o-oayiVdb./m. Ground equipments, on 

the other hand, use wave-lengths at the other end of the 5-band of 
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lo and 10*7 cm. respectively in Naval and R.A.F. ground equip¬ 
ments and Army equipments. This brings the representative points 

on to the rising portion of the curve, consequently it is desirable to 
displace the operating band along the curve towards the minimum. 

This is achieved by employing the larger 3 x i in. wave guide for 

which the attenuation curve is shown in fig. 3*11(6). This size of 

wave guide is less convenient for airborne use because of its greater 

size and weight than the 2^ x i in. guide. It can be seen that any 

further reduction in the dimensions of the airborne wave guide 
would move the operating frequency nearer to /. with a resulting 

increase in attenuation. The attenuation at the operating frequencies 

in both wave guides is therefore approximately o*025iVdb./m., 

and in a brass wave guide this is 0*025 x 2*i = 0*0525 db./m. The 

corresponding loss in the standard polythene cable, Uniradio 21, 

is about 0*6 db./m., that is, about ten times as great. 

Since the attenuation is proportional to the surface resistance it 

is important to avoid corrosion of the interior surface of the guide 

due to weather or salt spra^.^^Fpr t^s reason wave guides are often 

silver or cadmium plated ifttetnatty, br hermetically sealed at their 

free ends by cellophane diaphragms, the air within being kept dry 

with silica gel cells which communicate with the interior through 
small holes in the walls. 
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Chapter 4 

WAVE-GUIDE TECHNIQUES 

4*1. Introduction 

The two outstanding properties of wave guides that recommend 

their use in preference to cables in transmission systems at micro- 
wave-lengths are large-power handling capacity and small attenua¬ 

tion of the transmitted power. Although the general features of 

wave propagation in wave guides were well known for many years 
before the war, yet a great many subsidiary technical problems 

required solution before workable transmission systems for in¬ 

corporation in radar equipments could be achieved. 
In this and the following chapter we are concerned with those 

practical techniques which, almost without exception, have been 

developed during the war to meet the requirements of microwave 
radar. 

4*2. Choice of wave*guide geometry and dimensions 

When a wave-guide run is used to carry power from a transmitter 

to a load it is important for several reasons, that the dominant mode 

only is propagated and that all others are evanescent. It is not 
otherwise possible to ensure that the field distribution at the end of 

the wave guide, or along it, is known with certainty. If modes higher 

than the dominant can be propagated, then they may be excited by 
the dominant mode at irregularities and geometrical discontinuities 

in the guide, and appear at the output end. Further, matching pro¬ 

cedures analogous to those employed in transmission line practice 
are used in wave guides to eliminate reflected components of the 

dominant mode, and for their successful application it is essential 

that all modes except the dominant shall be evanescent. 
It is evident, therefore, that in the two obvious forms of wave 

guide that might be employed, the rectangular and the circular, 

the dimensions of the cross-sections must be such that the dominant 
mode only is propagated. In the rectangular wave guide the dimen¬ 

sions of the cross-section, a and 6, are chosen so that only the 

mode with the electric vector parallel to the shorter dimension is 



72 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

propagated, and in the circular wave guide the dominant 

would be the transmitted mode. It is essential that the polarization 

of the transmitted wave should not vary along the guide and in this 
requirement the circular wave guide fails in practice. If the cross- 

section departs from the truly circular form then in general the 

/fii-wave resolves into a pair of modes with different velocities, 
which recombine to give an mode where the tube again has a 

circular cross-section. The field pattern, however, of the reformed 

/fji-wave will be elliptically polarized, in general, with respect to 
the original. Thus, the polarization is not stable with respect to 

small deformations in the wave guide. For this reason, circular wave 

guides are used in short lengths only and in special devices such as 

rotatable joints. 

The rectangular wave guide is therefore adopted as the standard. 

It was explained in §2*3 that in a standard 2J x i in. wave guide 
operated at 330oMc./sec. the i/^Q-wave only is propagated. In 

order to reduce the weight of the wave guide it would be possible 

to reduce the long dimension from 6-35cm. (2Jin.) to any value 
greater than 4*5 cm. at which the 9 cm. wave would be cut off and 

to obtain a propagated component. There are two reasons why it is 

undesirable to operate the wave guide near cut-off. First, as may 
be seen from formula 3 9 (2), the ohmic attenuation increases 

rapidly near cut-off and the guide would therefore be wasteful of 

power. It is apparent from the curve in fig. 3-11 that in the 2J x i in. 

wave guide a 3300 Mc./sec. wave has an attenuation coefficient which 

is not excessive and not much greater than the minimum. Secondly, 

near cut-off the dispersion of the wave is excessive. According to 

equation 2-i (3) the speed of propagation depends on the frequency/. 

The rate of change of speed Vg with frequency is, from 2-i (3), 

df \A?r 
Since tends to infinity as/approaches/, it is clear that the rate 
of change of Vg with frequency becomes very large near cut-off. 

Consequently, the different components in the spectrum of a trans¬ 

mitted pulse travel at different speeds, and if the wave guide is long 
the shape of the pulse can be impaired. The size 2 J x i in. is a suit¬ 

able compromise between these competing mechanical and electrical 

requirements. For ground radar equipments that operate on a 
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frequency of 300oMc./sec. (A = locm.) it is found desirable to 
enlarge the cross-section to 3 x i in. 

Similar considerations obtain at short wave-lengths where the 
standard AT-band (A = 3*3 cm.) wave guides have internal dimen¬ 
sions of I X ^in. (British) and 0*9 x0*4in. (American). 

4*3. Avoidance of reflected waves within a wave guide 

It is undesirable in any high-frequency transmission systems to 

permit a reflected wave to return to the generator, but at centimetre 

wave-lengths it is especially important to eliminate the reflected 

wave. 

The reason is the following: Whereas at wave-lengths greater 
than a few metres the master oscillator of the transmitter is followed 

by buffer amplifiers which isolate it from the load, at centimetre 

wave-lengths the oscillator is a magnetron which is coupled directly 
into its load. When no reflected wave returns to the input the load 

presented to the magnetron can be made resistive, but if a reflected 

wave returns it adds in general a reactive component to the load. 
This is transformed by the coupling to a reactance in parallel with 

the equivalent oscillatory circuit of the magnetron. Both the 

frequency and the power output of the magnetron change with this 
reactive component. It is only possible therefore to cause the 

magnetron to behave according to specification provided the 

reflected wave is eliminated. The chief sources of reflected waves 
are, first, the termination of the wave guide where the power is fed 

to the aerial, and secondly, joints, bends and other discontinuities 

along the course of the wave guide. 
As already mentioned, one effect of a reflected wave is to shift the 

operating frequency of the magnetron. This effect is called frequency 

pulling. In addition to this there is a further phenomenon known as 
frequency splitting which occurs with long wave-guide runs and is 

caused by a wave reflected at the end of the wave guide. This wave 

introduces a reactive component at the input to the wave guide, 

whose magnitude in a long wave guide is very frequency sensitive. 

A full analysis leads to the conclusion, justified by experience, that 

an unstable state results in which the magnetron is able to oscillate 

on any one of a set of discrete frequencies, and in practice tends to 

operate at random on one or other of them. This phenomenon is 

only found when the wave guide is several wave-lengths long. The 
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ideal wave-guide installation, therefore, is short and straight with 

as few joints as possible. This ideal, however, is seldom achieved, 

and it is a matter of importance so to design joints and bends that 

reflexions from them are sufficiently weak as to be innocuous. To 

test whether or not a given design of joint or bend is free from 

reflexions a standing wave indicator is used together with a re¬ 
flexionless termination at the end of the wave guide to eliminate any 

reflected wave from the end. 

Because of the importance of these devices they will be described 
next. 

4*4* Standing wave indicators 

For work on the *S-band of wave-lengths (9-10*7 cm.) a standing 

wave indicator comprises the following components: 

Fig. 4*1. Longitudinal slot. 

(a) A short piece of standard iS-band wave guide (2J x i in. at 

9cm. and 3xiin. at 10-107cm.) with a longitudinal slot |in. 

wide and about 8 in. long cut on the centre line of a broad face as 
shown in fig. 4-1. The outer surface of this face is made as truly 

flat as possible. 

This piece of wave guide carries standard flanges at its ends which 
permit it to be incorporated in the wave-guide run to be tested. The 

slot must be cut accurately central and of uniform width if the 

standing wave indicator is to function reliably. In an A-band 

(3*3 cm.) standing wave indicator the greatest care must be taken 

to make a precision cut, since all dimensions are reduced. The slot 

in the 1 x |in. wave guide is now only ^in. wide and 3in. long. 

The piece of wave guide is made especially uniform in dimensions 

throughout, and the outer surface of the face carrying the slot is 

made accurately flat. With these precautions the probe which is 
inserted through the slot can be made to preserve the same clearance 

from its edges and to protrude into the wave guide to the same depth 

at all positions along the slot. As explained in §2*5, a longitudinal 
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slot on the centre line of a broad face does not affect the propagation 
of an J/oj-wave. 

(6) A detector unity comprising a probe for insertion into the 
guide in order to abstract an e.m.f. from the electromagnetic field 

within, a cprstal detector and a coaxial matching stub and piston, 

and the microammeter to register the rectified current from the 
crystal. The whole unit is mounted on a brass carrier with a plane 

under-surface except for a rectangular ridge that fits accurately into 

the slot in the wave guide mentioned above. The depth of the ridge 

Fig. 4*2. Longitudinal section of indicator unit. 

is the same as the wall thickness of the wave guide. The probe runs 

through a central hole in the carrier and the ridge. The construction 

of the detector unit can be understood from fig. 4-2. 
The probe of the detector projects through the carrier and pene¬ 

trates into the guide a small distance parallel to the electric field of 

the //oj-wave which induces an e.m.f. in the probe. This e.m.f. 

drives a current along the coaxial system of the standing wave 

indicator and through the crystal. The crystal develops a d.c. e.m.f. 

across the mica insulating ring that insulates the crystal holder from 
the remainder of the standing wave indicator, and this e.m.f. is 

applied to the terminals of the microammeter through the leads. 

A lock screw that fixes the carrier to the standing wave indicator 
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allows the carrier to be adjusted in position so that the penetration 

of the probe into the wave guide can be altered until a convenient 

microammeter deflexion is obtained with the particular electro¬ 

magnetic field under examination. The terminating plunger of the 

coaxial stub is adjusted until the microammeter registers a maximum 

deflexion when the indicator is stationary on the wave-guide slot. 

The extension of the probe into the guide is in practice about 

^in. only, and it disturbs the field to a negligible extent. For 

readings less than about 20 fiA. (corresponding to an r.f. input to 

the crystal of about 30 /iW.) the meter response is proportional to 

the square of the amplitude of the field. Standing wave indicators 

at .Y-band are similar, but with smaller overall dimensions. 

An alternative form of indicator for use at the short wave-lengths 

(Jf-band) is illustrated in fig. 4*3. A straight piece of i x | in. J^-band 

Prom source ^ To load 
-1_Z^Hcflcctcd wave 

Fig. 4 3. Directive feed. 

wave guide has a pair of transverse slots cut in the broad face. The 

slots are each ^in. wide and \Xg apart. A piece of curved wave 

guide is fixed to the straight wave guide so that the slots are common 
to the walls of both wave guides on the bend of the curved guide, 

as shown. 
Since the slots are transverse they interrupt longitudinal current 

in the straight wave guide, and equal and opposite line charges 

accumulate on opposite edges of each slot giving rise to a transverse 

oscillating electric field across the slots. The pair of slots radiates 
into the upper wave guide into the arms A and B, If the wave in 

the main wave guide is travelling from left to right then it can be 

seen that the radiations from the slots, because of their separa¬ 

tion, add in arm B but cancel in arm A, Conversely, if the wave in 

the main guide is travelling from right to left then the pair in slots 

radiates with arm A and not into B. When a complete or partial 

standing wave exists in the main wave guide, formed by two wave 

trains propagated in opposite selises, the amplitudes of the waves 

that travel up the arms A and B are proportional to those of the 
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progressive waves in the main wave guide. If, therefore, it were 

possible to terminate these arms in matched crystal detectors of 

equal sensitivity, the standing wave ratio in the main wave guide 

would be proportional to the square root of the ratio of their d.c. 

outputs. It is difficult to obtain a pair of crystals whose sensitivities 

remain equal for long periods, consequently it is better to match 
the arm B which is excited by the wave from the generator, and to 

use the response in arm A to indicate whether or not a reflected com¬ 

ponent exists in the wave guide. It is also possible to calibrate the 
microammeter response against standard mismatches, so that an 

indication of the standing wave ratio is given when a standard 

amount of power is fed into the wave guide. 
The pair of slots that radiate into one arm but not the other when 

a single travelling wave exists in the main guide is an example of a 

directive feed, A single pair of slots is frequency sensitive and an 
alternative directive feed which employs four or more slots or holes 

is less frequency dependent. A directive feed can also employ a 

single central circular hole of a special diameter, which depends on 
the wave-length. Directive feeds were first used on transmission 

lines to isolate the two travelling waves in a partial standing wave. 

4*5. Crystal detector 

At microwave-lengths, thermionic detectors are not used because 

a greater signal to noise ratio is obtained from a special form of 

Fig. 4*4. Section of crystal capsule. 

crystal detector, which we describe but briefly, since our chief 

concern is with wave guides and not valves. 

Fig. 4*4 is an enlarged representation of a crystal detector. 

Detection occurs at the point of contact of a tungsten wire and a 
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fragment of crystal silicon. The wire which is o*2mm. in diameter 

is formed into a spring, and the adjusting screw is turned until a 

contact is obtained with the silicon and a force of the order of 50 g. 
weight is applied. The detector is tapped until a back to front 

resistance ratio of about 10:1 is obtained, the forward resistance 

being of the order of 200-300 ohms. The ceramic tube is then filled 

with wax to hold the tungsten spring in position. These crystals 

deteriorate if peak powers exceeding about W. are passed through 
them. A typical d.c. characteristic curve is given in fig. 4*5. A typical 

mounting of a crystal in a detector is that already shown in fig. 4*2. 

A crystal holder and pick-up loop for use with a cavity resonator 

(§ 6-8) is shown in fig. 4*6. The pick-up loop is the output loop of 

the cavity and abstracts a small amount of power sufficient to give 

a deflexion on the microammeter fed through the coaxial output 

line. The coupling into the cavity can be adjusted either by variation 

of the size of the loop, by the distance it extends into the cavity, or 

by rotation of the plane of the loop. This arrangement is used on the 

5-band of wave-lengths, and it is important to limit the power to 

the crystal to a value below the ‘ bum out ’ value of the order of ^ W. 

In an X-band crystal mixery the crystal is placed directly in the 

wave guide and is mounted in it as shown in fig. 4*7. This mixer is 

used to terminate the wave guide in laboratory test experiments in 

which the power level is low and derived from klystron oscillators. 
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dimensions of the mixer are chosen so that this matching can be 

achieved by means of a single movable piston. In such a mixer 

the whole power carried by the incident wave is absorbed in the 

crystal. Since the d.c. current output is roughly proportional to 

the square of the field amplitude in the wave-guide wave, the 

microammeter reading is proportional to the power reaching the 

end of the wave guide. 
A matched mixer can be used in this way to find the attenuation 

suffered by a wave in a chosen section of a wave guide, from the 

i.f. amplifi<*r 

Fig. 4*8. iS-band mixer. 

ratio of the powers reaching the mixer before and after the insertion 

into the wave-guide run of the section under test. 

When it is required to amplify the output from the crystal, as, 

for instance, in a radar receiver, then it is necessary to change the 

frequency to an intermediate frequency, of say 45 Mc./sec., in order 

that the signal may be amplified by normal radio methods. 

The mixer of fig. 47 therefore carries a probe, not shown in the 

figure, for injecting a signal from a local oscillator into the mixer 

cavity, and the difference frequency is abstracted from the crystal 

output and led away to the amplifier. A mica disk, placed as shown, 

forms a capacity which by-passes the currents at microwave 

frequencies but offers sufficient impedance to e.m.f.’s at the differ¬ 

ence frequency for almost the full e.m.f. of the difference frequency 

to appear at the output. 

Fig. 4*8 shows a typical iS-band (9 cm.) mixer used in airborne 

radar equipments. The signal from the aerial is abstracted from the 
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wave guide by a combination of probe and plunger, such as that 

indicated in fig. 2*8, and is carried through a coaxial cable to the 

input loop of a gas-filled resonant cavity which protects the crystal 

from damage by the transmitter pulse. The signal is abstracted from 

this cell by the loop indicated and reaches the crystal. This mixer 

also carries a side probe for the local oscillator input, but this is not 

shown. Crystal capsules are marked with coloured spots to indicate 

two important characteristics, the wave band on which they are best 

operated and their resistance to ‘bum out*. 

Pl yellow spot is marked on 5-band (9* 1-10*7 cm.) crystals, but a 

green spot on Jf-band (3*3 cm.) crystals. 

A red spot indicates high resistance to bum out, and an orange 

spoty medium resistance to burn out. 

The red and orange spot crystals also carry the coloured spot 
indicating the wave band. 

Crystals with the wave band spot only have small resistance to 

bum out. 

4*6, X-hand wave-meter 

A convenient form of wave-meter for use with an -Y-band test 

set is shown in fig. 4*9. It is merely a coaxial transmission line with 

Fig. 4-9. Coaxial wave-meter fitted on wave guide. 

a movable shorting plunger. The inner conductor projects a small 

distance into the wave guide as a probe-parallel to the electric field 

of the wave, and the whole wave-meter is rigidly mounted on the 
wall of the wave guide. A micrometer screw gives the displacement 

of the plunger. At resonance the probe reflects a wave to the generator 

and the wave-guide input impedance becomes reactive and mis- 
6 HWO 
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matches the generator. The level of power delivered by the klystron 

oscillator falls, and this is indicated by a change in the meter reading 

of the crystal mixer used to terminate the wave guide. Resonant 

positions of the wave-meter plunger occur at separations of ^A, A, 

fA, etc., and from them, using the micrometer scale, the TEM 

wave-length A may be found with an accuracy of o*oi cm. 

4-7. Reflexionless terminations 

A common requirement is so to terminate a wave guide that no 
reflected wave returns to the oscillator. The Af-band mixer described 

in §4*5 is an example of a reflexionless termination which also 

indicates the power reaching the end of the wave guide. When it is 

t 
b 
\ 

(«) 

t 
6 

i 

Fig. 4*10. Refiexionless loads. 

desired merely to prevent reflexion and not to measure power, then 

it is convenient to use the simple ‘wooden loads’ illustrated in 
fig. 4*10, in which b is the long dimension. Wood strongly absorbs 

electromagnetic waves at microwave-lengths, consequently if a 

wooden ‘ clothes peg ’ (fig. 4-10 {a)) or wooden ‘ wedge ’ (fig. 4* i o (6)) 

is inserted into the rectangular wave guide which it fits closely, the 

pair of component plane waves into which the /fo^-wave can be 

resolved enter the wood at the sloping surfaces and, if the slope is 

sufficiently small, with little backwards reflexion. These waves are 

then absorbed in the butt-end of the wooden load. To ensure that 

negligible power is reflected, the sloping faces should exceed zAg 

in length, the standing wave ratio then being less than 1*05/1. 

A wooden cone with a butt-end is used with circular wave guides. 

As an alternative to wood, a composition of bakelite and graphite 
is used, and this is more suitable at AT-band frequencies. 
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Wood is unsuitable for use with high powers since it chars, and a 

mixture of carbon and sand is used instead. The principle of a 

recent model of high-power reflexionless load is illustrated in 
fig. 4*11. 

The Vave guide ends in a steel section which fans out into a horn 

with end-flanges as extensions to the broad face. Between these 
flanges is placed a large slab of ceramic loaded with carbon. The 

purpose of the horn is to reduce the intrinsic impedance of the wave 

to that of a plane wave in the ceramic so that the power enters the 
ceramic slab with very little reflexion. The surfaces of the ceramic 

slab and of the wave-guide horn are large and serve to dissipate the 

heat at a rate sufficient to prevent destruction of the load. 

At the greatest powers an all-steel load has been employed with 

success, the h.f. resistance of steel being high. 

An ideal theoretical termination which is completely reflexionless 

is a thin resistive film whose resistance per square is equal to the 

intrinsic impedance of the Hoi-wave, namely, i207r J ^ohms 

(§5*6). This film, placed in the normal cross-section of the wave 

guide and backed by a short-circuited extension of the wave, 

^jiide, will completely absorb an incident //Q^-wave. This device is 

not/^sed in wave guides, but a resistive disk is used in a reflexionless 

termination for coaxial cables. Fig. 4-12 shows a non-reflecting 

crystal mounting for terminating a coaxial cable (Uniradio 21) and 

for use on the S-band of frequencies. This termination is virtually 

reflexionless, the driving e.m.f. for the crystal being developed 

across the resistive terminating disk. A lateral tapping probe (not 
6-2 
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shown) pennits a small fraction of the power to be led away to a 

coaxial line wave-meter (§6-8, fig. 6-6) and the wave-length to be 

measured without ‘pulling* of the oscillator as the wave-meter is 

tuned to resonance. 

Fig. 4*12. Reflexionless termination for coaxial cable. 

4*8. Wave-guide test set 

A typical arrangement for the measurement of standing wave 

ratios is shown in fig. 4*13. The oscillator feeds into a section of 

wave guide carrying the wave-meter (at A-band, fig. 4*9) or feeding 

from a pick-up loop into a coaxial wave-meter (fig. 6*6). This is 

Fig. 4*13. Schematic of test equipment. 

followed by an attenuating section, such as described in the final 

paragraph of § 3*7. Then, follow in turn, the standing wave in¬ 

dicator, the element under test (bend, joint, etc.) and finally a 

section of wave guide terminated in a reflexionless load. Any 

standing wave is therefore due to the element under test and not to 

the termination. If the attenuation produced by the element is 

required, then the change in crystal output is observed with and 

without the element in the wave-guide run. At <S-band wave-lengths 
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the crystal would be fed from a loop which taps power from the 

wave guide in front of the wooden load, the crystal being supported 

as in figs. 4*6 or 4*8. At Jf-band wave-lengths, the reflexionless load 

would be replaced by the crystal mixer of fig. 4*7. 

4*9* Wave-guide couplings and plungers 

In practice, long runs of wave guide comprise several shorter 

sections held together by coupling devices. It is of the greatest 

importance to design couplings so that they do not excite a reflected 

wave, since small reflexions from a number of couplings may add 

to give an appreciable reflected wave at the input. The principal 

sources of reflexion at the junction are: (a) misalignment of the walls 

of the two sections of wave guide causing a step in the wall of the 

wave-guide run at the junction; (b) gaps between the walls across the 

junction which may interrupt the longitudinal wall currents. 

Flange couplings. The standard coupling for 5-band (9-11 cm.) 

wave guides is the plane flange coupling shown in fig. 4* 14. These are 

soldered to be flush with the ends of the wave-guide sections, and 
the bolt-holes are drilled so that when the flanges are bolted together 

as shown in fig. 4‘i4(6) the walls of the wave guides are in contact 

everywhere at the junction with no misalignment. If the flanges are 

not plane, gaps will result, as shown at G in fig. 4-15. The surfaces 

of the flanges between C and G may be considered as a pair of trans¬ 

mission lines of length I and short-circuited at C. If by mischance 

/ is approximately equal to JA (A = TEM wave-length), an antinode 

of electric field and a node of magnetic field will occur at G in the 

standing wave excited between the flanges. There is therefore no 

current flowing into or out of the gap, and if the gap occurs in the 

walls at a place where longitudinal current should flow then a serious 

reflexion will result. 
At shorter wave-lengths {X and A^-band) the tolerances are more 

strict and it is difficult to avoid reflexions with simple flange coup¬ 

lings of this type. Couplings for AT-band wave guides are therefore 

more elaborate, and a typical design is shown in fig. 4*16. The 

flanges are deep and are clamped together by a ring nut which presses 

on the one (female) and screws on to the other (male). A step at the 

junction is avoided by accurately placed locating pins. 

Choke coupling. As mentioned above, reflexions may arise from 

gaps in the wave-guide wall at a junction. In the choke coupler a 



86 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

ih) 
Fig. 4*14. 5-band wave-guide coupling. 
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gap is deliberately introduced, but its dimensions and form are 

chosen so that it effectively behaves as a perfect junction. The 
principle of the ‘ choke * joint is 

illustrated in fig. 4*17. 

CBA is an L-shaped recess 

or ‘ditch* cut into one of the 

flanges, the other flange re¬ 

maining plane. The lengths 

and BA are each JA, and when 

the flanges are in contact a 

E Wan of 

wave guide 

Fig. 4*15. 

double quarter-wave transmission-line transformer is formed be¬ 

tween them. The short circuit at A is therefore transferred to the 

gap at and in the standing wave that forms in the ditch an anti¬ 

node of magnetic field lies in the gap and is continuous with the 

Dowel pin 

t'’ave*£ujde 
all 

Ring nut 

(") (/') 

Fig. 4’16. X-band wave-guide coupling. 

magnetic field of the wave in the wave guide, or what amounts 

to the same, the full longitudinal current flows into the gap at one 

edge and out at the other in the same phase as though the gap were 

absent. The ideal ditch would be one that followed the contour of 

the wave-guide section, but this could not be readily mass-produced 

and a circular recess is the only practical form. However, the mini¬ 

mum size of the ditch is governed by the dimensions of the wave 

guide, and it is found possible to fit the circular ditch around the 

American (0*9 x 0*4 in.) AT-band wave guide, but less readily around 

the British (i x Jin.) wave guide, since the total distance from the 

centre of the long dimension, in the wall to the bottom of the ditch 

must be JA, in a pair of quarter wave steps. The double-quarter 
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wave transformer is designed so that the characteristic impedance 

of the portion CB is small (narrow gap) and that of BA large, in 

order to improve the frequency characteristic of the choke joint. 

Choke plungers. The double-quarter wave choke is also used to 

obtain a perfectly reflecting piston or plunger to provide a movable 

short-circuiting termination for a wave guide. It is difficult to 

construct an ordinary plunger so that it both makes good contact 

A 

Wave guide 

i // <- i 

Fig. 4*17. Choke coupling. 

Wave-guide 

Reflecting f 
of plunger 

everywhere with the walls of the wave guide and at the same time 

does not fit so tightly that it cannot easily be moved. In X-band 

wave guides plungers take the form shown in fig. 4*18. From what 

was said above it is evident that when the distances AB and BC are 

each JA, the face AD behaves as though the gaps at A and D were 

bridged by metal. In rectangular wave guides the recesses run 

across parallel to the broad face of the wave guide and there are no 

recesses at the narrow face. In circular wave guides the recesses 

are circular, and the diagram represents diametral section. At the 

longer wave-lengths (9-11 cm.) a suitable contact is obtained by 

using a ring of phosphor-bronze spring contacts as shown in fig. 2*21. 
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4*10. Bends and comers in wave guides 

Bends. Wave-guide bends are of the two forms shown in fig. 

4*19 (a) and (6). The bend of fig. 4-19 {a) is called an i/-bend because 

the magnetic field lies in the plane of the bend, and that of fig. 

4-i9(i) an £-bend because the electric field lies in the plane of the 
bend. 

The effect of bending the tube is to change the wave impedance 

(§ 3 •4-1) of the wave in the bend to a value different from that of the 
^io"Wave in the straight wave guide. It is found that discontinuous 

changes in wave impedance of this character generate a reflected 

wave whose relative amplitude depends on the precise circumstances, 
but in general increases with the magnitude of the discontinuity. 

Fig. 4*19. Wave-guide bends. 

When the radii of the bends are large compared with , the dis¬ 

parity in the wave impedances in the bent and straight wave guides 

is small and the reflexions are not serious. Consequently, when 

bends are used the radius of the inner face must exceed A^, and this 

requirement makes bends inconveniently bulky in 5-band wave 
guides (9-11 cm.), but at Af-band bends are entirely satisfactory 
and are in general use. A second reflexion occurs at the other end 

of the bend, and by making the mean length a multiple of |A^ the 

reflexions at the input and output of the bend can be caused to 
cancel. The total reflexion is then very small. Bends of length JA^ 

have been manufactured in the United States for use where space is 

limited and are very satisfactory. Care is taken that the section is 

not distorted, because the performance would then deteriorate. 

Bends in circular wave guides are most unsatisfactory because it 

is found that the /fn-wave entering the bend resolves into two 
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waves which travel at different speeds and recombine to give an 

ifii-wave in which the plane of polarization is rotated. This is an 
additional reason for using rectangular wave guides in preference 

to circular wave guides. 

Comers. As mentioned above, bends are too bulky for general 
use with *S-band wave guides, especially in airborne installations, 

and the cut-off comers illustrated in fig. 4*20 {a) and (6) replace them. 

Fig. 4*20. Wave-guide corners. 

Fig. 4-20 (a) and (6) represent respectively an i/-bend and an 

£-bend. In each case the corner is removed and then closed by a 
flat plate. The best value for the ratio of the distances ctodio give 

least reflexion depends on the dimensions and form of the wave 

guide and the wave-length, and is found by experiment. In a 
standard 2 J x i in. wave guide for use at a wave-length of 9 cm. the 

distance r = 6cm. and = 9 cm. for an //-corner; for the £'-corner, 

c = 2*2 cm. and d = 3-5 cm. In general, //-corners are more satis¬ 
factory than /^-corners, especially in AT-band wave guides. In fact, 

the use of corners for A-band wave-lengths has now been aban¬ 

doned. However, with a British size wave guide the optimum value 
of c is i*i cm. for J?-corner and 2*5 cm. for an//-corner. 

A satisfactory corner is obtained by using a double corner derived 

from a piece of straight wave guide by cutting it as shown in fig. 

4*21 (a), and then reassembling the pieces to form the double corner 

of fig. 4*21 (i). It is easy to prove that the angle 0 of the double 

corner is related to the angle (j) of the cut, as follows: 

?i = (9O°-J0). 

Therefore, to obtain a 90° double corner we require-an angle of 

cut ^ = 67*5°. In fig. 4'2i, <!> - 7S'’ and 6 = 58°; 90-= 75'5°. 
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Fig. 4’2i (c) is a curve showing the dependence of the mean length 

of the bend L^iean divided by on the operating wave-length A at 
which the corner gives minimum reflexioi^. The curve relates to 
the /f-bend of fig. 4*21 (6) with 0 = 90° and represents the results 

of experiments on a large-size 3 x i in. iS-band wave guide. This 

curve may be used to design satisfactory double bends for AT-band 
wave guides by scaling down A and using the appropriate A^. 

The optimum mean distance L^ean for a double F-plane bend 
proves to be and the design is also less critical than for the 

//-plane bend. 

4*11. Twists and tapers 
A rectangular wave guide may be twisted in order to turn the 

plane of the electric field through some desired angle—usually 90° 

—as indicated in fig. 4^22 (a). Little reflexion results provided the 

length of the twisted portion per 90° twist exceeds A^. 

It is occasionally necessary to employ a length of wave guide 

whose cross-section is less than that of the standard wave guide; 

for instance, when a paraboloid with a rectangular aperture is 

irradiated directly from the end of the wave guide placed at the focus, 
it is sometimes necessary to reduce the narrow dimension of the 

wave guide in order to radiate broadly into the wide dimension of 

the mirror. The transition from the standard wave guide to the 

narrow wave guide is made through a tapered section such as that 
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shown in fig. 4*22 (6). Provided the taper is not abrupt, the wave 

passes across it with negligible reflexion. Tapers are also employed 

to connect a circular wave guide carrying an ifn-wave to a rect¬ 

angular wave guide carrying an //o^-wave (fig. 4-22 (c)). 

Rectangular wave guides with cross-sections of different dimen¬ 

sions, such that their intrinsic impedances (§3 •4*1) are different, 
may be approximately matched by interposing a quarter-wave 

transformer between them. If and Zj are the intrinsic impedances 

of the two wave guides, then the interposed section, in analogy with 

Fig. 4*22. Tapers and twists. 

transmission-line procedure, is constructed to have an intrinsic 

impedance Z3 = -^(Z^Zg) and a length where is the wave¬ 

length of the //01-wave in it (§ 5-15). This analogy with transmission¬ 

line practice neglects the excitation of evanescent modes at the 

discontinuities at the junctions, whose storage fields behave like 

those of shunting reactances. In practice tapered sections are 

more convenient. 

4*12. £*01*^01 transformers and rotating joints 

It was mentioned in § 2*8 (fig. 2*23) that an ^01 -wave in a circular 

wave guide could be excited by the field of an /f^i-wave in a rect¬ 

angular guide and conversely. This device, the E-H transformer, 

finds an important application in the rotating wave-guide joint. 

The aerial systems of most centimetre wave radar equipments 

comprise a reflector, usually a paraboloid or a parabolic cylinder, 

which is required to rotate about a vertical or a horizontal axis, or 

both. Power is fed to the mirror from the end of a wave-guide run, 

and it is required to keep the main run of wave guide fixed while 
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the cnd-acction rotates with the mirror. Thus, one or more rotary 

joints must be introduced into the wave-guide run such that the 

amplitude and polarization of the waves fed to the mirror are 

independent of its orientation. 

The account given in §2*8 of the E~H transformer is over¬ 

simplified ; in addition to the JPo^-wave an is also excited in the 

circular wave guide and both waves are propagated along it. We 

may suppose that a portion of the Hoi-wave turns the comer and 

proceeds down the circular wave guide as an Hu-wave as indicated 

in fig. 4-23 {a). 

With respect to this Hu-wave the circular wave guide behaves 

as a series continuation of the rectangular wave guide. In addition, 

a portion of the wave is reflected from the face of the circular wave 

guide and superimposes on the entering wave to produce a con¬ 

centration of electric field near the axis of the circular wave guide, 

and thus excites the ^01 -wave. It is evident that the transformer 

should be designed so that the excitation of the -wave is en¬ 

couraged and that of the H^-wave inhibited. Ancillary devices are 
introduced to accomplish this. In one design of transformer a 

‘ matching step * is placed in the circular wave guide opposite the 

point of entry of the Ho^-wave from the rectangular wave guide 

(fig. 4-23 and (d)). 
By making the distance from the face of the step to the axis of the 

wave guide equal to (where is the Hqi wave-length in the 
rectangular guide) a high concentration of axial electric field is 

obtained in the circular wave, whereas the transverse electric field 

required for the excitation of the Hu-wave is reduced to zero. To 

eliminate the residual H^^-wave ring filters carried on distrene 

supports are placed in the circular wave guide, as shown in fig. 

4’26(rf). The filter is best placed JA^ (A^ is the wave-length of the 
Hij-wave) from the bottom of the circular wave guide, in order to 

avoid a resonant condition in the Hu-mode, with resulting large 

and damaging currents in the ring and a mismatch at the end of the 
rectangular wave guide. A pair of rings, as shown in fig. 4-23 (d), 

should not be placed iA^(A^-Hii), since a high Q resonant system 

results. The best spacing is an odd number of JA^. 
In a complete rotating joint as shown in fig. 4*23 (d) and (e) the 

best overall length should be such as to obtain cancellation of the 

residual mismatches at each end. The need for all these ancillary 
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requirements makes this rotating joint less convenient than a more 

iwent alternative in which the E-H transformer is designed as 

indicated in fig. 4*23 (/). The matching step is here replaced by a 

V 

n 
w 

Fig- 4 *3- 

H. 

E-ff transformers. 

(g) 

"’r”'* "“'■e guide, and d,. di«nete. 

If, in addition the nattow dintenaio* 

18 appropnately chosen, the power carried by the /f„-wave in the 

circular wave guide represents only 0 4 «/„ of the total, and thereas 
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no need for ring filters. A good match at the input can also be 

obtained by choosing a suitable diameter for the circular wave guide. 

Fig. 4*23 {e) indicates how a JA choke joint can be incorporated 

to permit free rotation of the output E-H transformer to the aerial, 

relative to the input from the fixed wave-guide run. 

The inductive irises in fig. 4*23 {d) serve to eliminate any residual 
mismatch at the input and output. Fig. 4*23 (g) shows the applica¬ 

tion of an E-H transformer to give a high-power output system for 

a magnetron feeding a wave guide. 

4*13. Coaxial wave-guide transformers 

Simple methods of transferring a wave from a coaxial cable to a 

wave guide have been mentioned in §2*8 (figs. 2*8 and 2*21). These 

methods are those of the IX probe ard the straight through coaxial, 

and they are illustrated again in fig. 4*24 and {b). 

(«) (6) 
Fig. 4*24. Simple coaxial wave-guide transformers. 

A convenient broad band transformer is the door knob shown in 

fig. 4-25(0). 

The coaxial stub of fig. 4* 24 (A) is inverted into a pedestal and the 

sliding piston is given a semicircular face. From experiment it is 

found what are the best dimensions for a wide band transformer, 
and one is then constructed to be pre-tuned in the centre of the 

band of operating frequencies. 
A modification of the door knob gives a very convenient form of 

crystal mixer. We refer to fig. 4-25 (A). The door knob here carries 

a ‘choke* recess which prevents the r.f. signal from escaping from 

the wave guide but permits the i.f. or d.c. component to be abstracted 
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as shown. Fig. 4*25 (c) shows an alternative form of piston 

attenuator (§3’6). The construction of the ‘door knob’ allows the 

pick-up loop to be moved within the wave guide carrying the 

evanescent mode. 

(b) 

Door knob transformer Choke door knob 

Fig. 4-25. Door knob transformers. 

Another construction is the bar and post of fig. 4*26 (a) and (i). 

It is a wide band system. The inner of the coaxial is joined to a 

cross-bar spanning the wide dimension of the wave guide as shown 

in fig. 4*26 (6). Since the cross-bar is at right angles to the electric 

field in the it has no longitudinal currents induced in it, 

and it may be used to abstract the i.f. or d.c. output from the crystal 
as shown in fig. 4*26 (c). 
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The bar and post can also be modified to produce a balanced mixer 

as shown in fig. 4-26 {d) and (e). The electric field E of the signal 

ib) 

Fig. 4*26, Bar-and-post coaxial wave guide transformers. 

Fig. 4*27. 5-band rotating joint. 

from the wave guide drives currents in antiphase in the two crystals, 

but the e.m.f. from the local oscillator, introduced along the cross¬ 

bar, drives currents in the crystals in the same phase but radiates 

7 HWO 
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nothing into the wave guide. By recombining the outputs from the 

two crystals in the correct sense the noise from the local oscillator 

may balance out although the i.f. outputs reinforce. In this way the 

noise factor of a receiver may be greatly improved. 

Fig. 4*27 shows a form of rotating joint suitable for *S-band 

airborne equipments. It employs a septate-coaxial combination 

(§2-7*5) which permits a considerable reduction in the diameter 

of the circular tube in comparison with the E-H system of fig. 4-23, 

with the result that the circular tube at 5-band in the septate- 
coaxial joint has a diameter of the same order of magnitude as that 

of the circular tube in the E-H transformer at AT-band. With 

A = 9*2 cm. the diameter of the circular tube in the septate system is 
only I Jin. and is small enough to run through the axis of a scanner. 

4*14. Flexible wave guides 

Gauze wave guides. The first flexible wave guide of practical value 

was the gauze wave guide. It was made by wrapping the gauze round 

a rectangular mandrel of the correct dimensions, and by soldering 
the gauze to produce a rectangular tube. This was then given a thick 

rubber covering. With the gauze wires at 45° to the axis of the wave 

guide, the guide can be bent but not twisted, and with the wires 
parallel and perpendicular to the axis the guide twists but does not 

bend. 

Tight-flex wave guide, A successful American flexible A-band 
wave guide is manufactured by winding silver plated metal tape 

about Jin. wide on tb a rotating rectangular former and at the same 

time folding over the edges of adjacent turns so that they interlock. 
The guide is then provided with a rubber covering. This gives a 

durable and flexible wave guide which performs well. The loss per 

18 in. length is about Jdb., and the standing wave ratio with 

moderate bending is better than 1-2/1. At the expense of some 

flexibility the wave guide can be made airtight by winding eutectic 

wire into the seam and then fusing it. 

Multiple choke wave guide is a flexible wave guide for use at the 

shorter wave-length (A-band and A-band). It comprises a stack of 

choke joints with some degree of movement between adjacent 
joints. The joints are choke-flange couplings mounted in a rubber 

holder which places corresponding points on adjacent joints JA^ 
apart. 
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4’*5* PToduction of circularly polarized waves 

A simple method of obtaining circularly polarized ^^-waves in 

a circular wave guide is illustrated in fig. 4-28 (a). It is based on the 

principle of the quarter-wave plate of optics. An ^^-wave, whose 

electric field is represented by E in fig. 4.28(a) is launched in a 

circular wave guide and strikes a trolitul plate set diagonally at an 

Fig. 4*28. Production of circular polarization. 

angle of 45^ to the direction of E. The //jj-wave may be regarded 

as a pair of //n-waves polarized at right angles with equal electric 

fields ^'parallel and ^parp. at the centre of the wave guide, parallel 
and perpendicular to the diameter through the trolitul plate. When 

the trolitul plate is sufficiently thick the major portion of the electric 

field of the iS'par.iiei wave lies within it. Consequently, this wave 
is propagated through the portion of the wave guide containing the 
plate, at a slower phase velocity than the E^^^ wave, and if the 

length of the plate is correctly chosen, its phase can be retarded on 

that of the other component by 90° on emergence from the plate. 

7-2 
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Since the two waves start with equal amplitudes, they recombine 

to produce a circularly polarized wave. This method has found no 

practical application. 
Another method is shown in fig. 4*28 (i). The device comprises 

a piece of circular wave guide into which an Hu-wave is launched 

from a JA probe as shown. To the end of the circular wave guide is 
attached a rectangular wave guide whose dimensions are such that 

both an Hiq- and an Hgi-wave can be propagated but at different 

phase velocities. The electric field along the diameter of the circular 

wave guide is parallel to a diagonal of the rectangular wave guide, 

and the /f^-wave in the circular wave guide therefore becomes a 
pair of waves, an H^q and an //qi, of approximately equal ampli¬ 

tudes, in the rectangular wave guide. The length of the rectangular 

wave guide is such that the phase difference between these waves at 

the open end is 90°. It follows that a circularly polarized wave is 

radiated into space in the direction of the wave-guide axis, and that 

a dipole placed on the line of the axis with its length lying in the 

plane perpendicular to the wave-guide axis will have the same 
e.m.f. induced in it whatever its orientation in this plane. Con¬ 

versely, by the principle of reciprocity, when the dipole transmits 

into the wave guide the output from the coaxial feeder is independent 

of the orientation of the dipole as it is spun in a plane perpendicular 

to the wave-guide axis. 

This device finds application in a test equipment for a particular 

pulse radar equipment in which a spinning dipole radiates into a 

paraboloid, consequently the plane of polarization in the beam 

radiated by the mirror spins with the dipole. The output coaxial 

from the circular wave guide leads to an ‘echo box’ (§6-8), and the 

same test signal is returned to the radar set whatever the instan¬ 

taneous orientation of the dipole. 

It has been mentioned that elliptical polarization results in general 

when an H^-wave is led into a length of wave guide with an elliptical 

cross-section. However, the mass production of an elliptical wave 

guide to specification is impracticable, and a simpler method of 

accomplishing the same result is to use the ribbed wave guide of 
fig. 4*28 (c). 

This comprises a circular wave guide within which are fixed a 

pair of longitudinal bars diametrically opposite. When an /f^-wave 

is sent into the wave guide with its ^-field along a diameter at 45® 
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to that joining the bars, then at the bars it divides into two waves 

travelling at different speeds. By choosing the correct length for 

the bars a circularly polarized wave results when these waves 
recombine. The dimensions given in the figure are correct for a 
9 cm. wave. 

4*i6. Phase-shifting devices 

It is convenient to have available a means of controlling the phase 

of the output at the end of a wave guide, and there are several methods 
of achieving this control. One simple method is to introduce a 

sheet of dielectric into the //Q^-wave parallel to the electric field. 

Fig. 4*29. Phase-shifting devices. 

The two methods of introducing the sheet are exactly the same as 

already described for the resistive sheets in the attenuators (§3*7). 

They are illustrated in fig, 4*29 (a) and (6). 

In fig. 4-29(tz) the phase shifter is of the ‘push across* type of 
construction in which a plate of trolitul carried on a pair of cross¬ 

bars can be moved from the wall of the wave guide where the electric 

field is zero to the central section where it is a maximum, and it 

exerts most effect on the velocity of propagation of the wave past it. 
This design is used at wave-lengths of 9-11 cm. At A^-band wave¬ 

lengths the ‘flap* design of fig. 4*29(6) is more convenient. Here a 

mica or ceramic sheet is lowered to any desired extent into the 

electric field, through a slot in the broad face of the wave guide. 

At still shorter wave-lengths (^T-band) the split wave guide of 

fig. 4*29 (c) and (rf) is convenient. It is a section of wave guide with 
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a pair of extended longitudinal slots, one down the centre of each 

broad face. By applying lateral pressure as shown, by means of a 

screw, the broad dimension of the wave guide can be changed and 
the phase velocity of the /f^i-wave altered with it. Thus the effective 

electrical length of the section can be controlled at will. 
A more elaborate phase-shifting device is illustrated in fig. 4*30. 

It uses the device of fig. 4*28 (c) for obtaining circular polarization. 

This, as we saw, is equivalent to the quarter-wave plate of optics. 

The continuous phase shifter of fig. 4*30 (a), designed at the 

Circularly polarixcd wove 

(g4(r=f=-t) Qr 
Equivalent JA plate Equivalent plate Equi\ alent -JA plate 

(«) 
Y'. .V 

polarized 
wave output 

Phaae. 
zero U 0 

Phase- (4c/r 2/9) 

X 

(b) (c) (d) 

Fig. 4*30. Continuous phase shifter. 

Output 

Admiralty Signal Establishment, comprises a quarter-wave plate, 

followed by a half-wave plate and finally a second quarter-wave 
plate. The three sections are placed together (not separated as 

shown) and coupled by choke joints. The quarter-wave plates 

remain fixed with their metal bars in line and the central half-wave 

plate is rotated. An //^-wave is fed into the first quarter-wave plate 

with its E vector along a diameter at 45"" to the diameter joining the 

ribs (fig. 4-30(6)). Consequently, the wave emerging from the 

quarter-wave plate is circularly polarized. If the angle between the 

diameter joining the ribs in the half-wave plate and the corre¬ 

sponding diameters in the quarter-wave plates is d as shown in 

fig. 4*30 (c), then the wave emerges from the second quarter-wave 

plate plane polarized and parallel to the entering wave. Its phase, 

however, can be changed by an amount proportional to the rotation 

of the half-wave section. When the latter rotates through an angle 

6 radians, then the phase of the electric field at the output changes 
by zd radians. 
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We proceed to establish this result. Choose Cartesian axes OX 

and O Y with O Y parallel to the diameter jointing the ribs of each 
quarter-wave plate (fig. 4-30 (6)). The electric vector of the //^-wave 

at the centre of the input cross-section to the first quarter-wave 
plate is polarized at an angle of 45° to OX, 

Its components at the input may therefore be written 

E, = E^ = (i) 

At the output of the quarter-wave section these components oscil¬ 
late in quadrature and become 

= (2) 

where a is the phase retardation in the absence of the ribs. 

Suppose the half-wave plate to make an angle d with respect to 
the quarter-wave plates and attach corresponding axes OX' and 

OY' to it, as shown in fig. 4-30 (c). The direction cosines of these 

axes with respect to the OX Y system are 

= cos 6^, 4 = sin6>, = — sin 6^, = cos^. 

The components {E'^ E'y) of the field , E^), referred to the OX' Y' 
system at the input to the half-wave plate are comprehended in 

the following scheme: 

1 E, , 
ni2 = COS0, \ 

4 = = sin0,| ; K I ll '«! (3) 

L5__ k nti 

that is, Ey = I2 Ej. 4“ ffl2 Ey , (4) 

where Ej. and E^ are given by (2). 
At the output of the half-wave plate the phase of £' is retarded 

by —2a and that of E^ by — (2a —tt) relative to the phases of the 

input. Consequently, at the input to the second quarter-wave plate 

E'^ = (4 + ;mi), i?; = - (4 (5) 
Refer this field, using the scheme (3), to the OXY coordinate 

system; then, at the input to the second quarter-wave plate the 
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To obtain the field components at the output multiply the and 

Ey in (6) by the factors and respectively. The output 

field is therefore 

= [cos* d — sin* 6 — 2j sin 6 cos 6] 

= ^cos 6—j sin 0)* 

Similarly, Ey — 

The //ii-wave at the output is therefore plane polarized and 

parallel to that at input, but its phase is retarded on the input phase 

by (4a 4- 20). The term 4a is a constant of the equipment and is the 

phase lag in the system without ribs, but the term 20 is variable. 

4*3** Beam swinging. 

Thus the output phase changes by 20 when the central section is 

rotated through 0. Thus a 90"^ rotation produces a 180"^ phase change. 

This affords a method of sweeping the phase of the output signal 

at a great rate by rapid rotation of the central tube. The device has 

been used to swing a beam from an aerial (Naval 980/1 set) in the 

vertical plane. This array comprises three cheese aerials fed from 

horns, in the power ratio 114: i as shown in fig. 4*31. The two outer 

cheese aerials are each fed through a phase shifter (fig. 4*30) 

whose central sections rotate in opposite directions, and the beam 
swings up and down in synchronism. 

The further discussion of special techniques is postponed to the 

next chapter, which begins with a treatment of wave-guide im¬ 

pedance. 
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Chapter 5 

WAVE-GUIDE IMPEDANCE AND 

FURTHER TECHNIQUES 

5*1. Introduction 

Although it has been stated in § 4*3 that it is important to eliminate 

reflexions it has not yet been explained how to avoid the most serious 

of the reflected components—that from the end of the wave guide. 
To appreciate the technique for eliminating this component, and 

also the principles of related techniques, it is first necessary to 

consider the theory upon which they are based. 

The practical problem of eliminating unwanted reflexions, that 

is, of removing standing waves, has long been familiar in trans¬ 

mission-line practice and a number of standard procedures em¬ 
ploying devices such as quarter-wave transformers and stubs have 

been developed to solve it. The theory of these methods of ‘ matching^ 

is based directly on the well-known theory of transmission lines 
which uses the concepts of characteristic impedance, line imped¬ 

ance and admittance and reflexion coefficient. It has fortunately 

proved possible to develop a rigorous theory of propagation in 

wave guides which is exactly parallel to the standard theory of 

transmission lines. Not only are the language of impedances and 

admittances, and the standard formulae preserved in this theory, 
but the practical methods of matching wave guides are entirely 

equivalent to those used with transmission lines. 
Before discussing the theory of transmission in wave guides it is 

convenient to recapitulate the essential features of transmission-line 

theory in a form that can be readily adapted to the requirements of 

wave guides. 

5*2. Transmission-line theory 

5'2*i. Voltage and current in a progressive wave 

In addition to the usual principal or TEM-waves, whose pro¬ 

perties were described in §1*5, other waves which are not TEM- 
waves may exist, as was explained in § 2*7. However, in practice, 

the dimensions and spacing of the conductors are such that the 
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dominant or principal mode only is progressive and all supplemen¬ 

tary modes are evanescent. 

^ In the standard theory of transmission lines it is assumed that 

the currents and voltages that appear in the formulae are those of 

the principal wave, and the theory ignores the possible existence of 

supplementary modes except perhaps to represent their effects by 
shunting reactances at the discontinuities where they are excited. 

We consider first the relation of the current flow to the associated 

voltage in a single progressive principal wave on a transmission line. 
Fig. 5*1 represents such a wave travelling from right to left on a 

loss-free transmission line with characteristic impedance Zq. 

;-1 

1 Direction of 
1 _ |/ 

' -r i ,i 

1 propagation 
1 i 

i_j 1- ' 1 
' — _L. 
' /-O + 

Fig. 5 -1. 

We note that at points on the line where the surface charge and 

voltage are positive the current i flows in the direction of propaga¬ 

tion, and that where the charge and voltage are negative i flows 
against the direction of propagation. A distribution of voltage, the 

same as that shown in fig. 5 -1, associated with a reversed distribution 

of current corresponds to a Wave travelling in the opposite sense 
from left to right. 

Distance along the transmission line measured from a reference 

section / = o, will be denoted by / and is positive for points to the 

right of / = o and negative for points to the left. Since, according to 

§ 1*5, the ratio Vji of voltage to current is the characteristic imped¬ 

ance Zq of the line, the mathematical description of the wave of 

fig. 5*1 propagated from right to left (in the sense of decreasing /) 

is the following: 
== A^co^{ii)t-\^kl) = Zq?!, (i) 

in which k = 27r/A, o) = ztt/, and the current is treated as positive 

when it flows from right to left in the upper of the conductors in 
the diagram. 
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Similarly, the voltages and currents 4 ^ progressive wave 

propagated from left to right are, from what was remarked above, 

¥2 = A2 cos {o)t — kl-h(f)) = — Zo4» (^) 

where 0 is an arbitrary phase constant. 
In what follows, it is convenient to replace the trigonometrical 

functions in (i) and (2) by their exponential representations and to 

write (i) and (2) in the equivalent form 

= Zo4, ¥2 = = -Zo4. (s) 

5'2'2. Reflexion coefficient of a terminating impedance 

We proceed to consider the distribution of voltage and current 

on the line when it is terminated, at / — o, in an arbitrary impedance 

Zt = Rt-^j^r 
Suppose a wave ^ ^ z,i, 

from the generator G (fig, 5*2) to impinge on the load Z^. We call 
this wave the incident wave. Whereas in the progressive wave the 

ratio ¥Jii = Zq, the impedance Z^ requires the complex ratio 
of the voltage across it to the current if in it to be equal to Z^; 
consequently the conditions at the termination cannot be repre¬ 

sented in terms of a single progressive wave unless Z^ = Zq. In the 
general case (in order to satisfy the conditions at the termination) it 

is necessary to introduce a reflected wave 

K, = = -Zoh 

that travels from Z^ to the generator. 
The amplitude A2 and phase constant ^ are such that when 

the currents and voltages in the incident and reflected waves are 
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superimposed the ratio of the resultant voltage V to the resultant 

current i assumes the value V/i = Z, at position of the load / = o. 
The distribution of voltage and current along the line is therefore 

Zot = Zo(»i + 4) = J 

We define a quantity 

= = (2) 

which we call the reflexion coefficient of the termination. It is a 

complex quantity whose magnitude | p | = ^2 /^i is equal to the ratio 
of the amplitudes of the reflected and incident voltages at the 

termination and whose argument ^ is the advance in phase of the 

voltage accompanying the reflexion. 

Equations (i) for the resultant voltage and current may therefore 

be written 

V = -i- pe~^^^]y Z^i = (3) 

We require the ratio Vji to equal when / = 0, whence, from (3), 

The quantity Z^/Zq is called the ‘normalized’ or ‘specific’ 
terminating impedance and is conveniently written 

— 

Zo ■ ^0 
rt+jXf (5) 

Equation (4) becomes (6) 

This important formula relates the normalized impedance of the 

terminating load to its reflexion coefficient. The formula may also 

be transformed to 
p = {Zi-l)l{Zt+l). (7) 

If the characteristic impedance is a resistance, as obtains in 

practice at high frequencies, we conclude from equations (6) and 

(7) that, since Zi is then a real quantity, the reflexion coefficient is 

also real. This means that the phase change (j) on reflexion from a 

resistive termination is, from (7), either zero (ar^> i) or 180® (zi< i). 
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Since the reflexion coefficient | p | is less than unity there is loss of 
amplitude on reflexion from a resistance. 

In the special case where {z^ =1), then p is zero and there 
is no reflected wave and the line is said to be ‘ matched \ 

When the termination is a pure reactance Zf=jX^{zi=jxi), 
then from (7) 

UXt+l){-jXt+l) (l+,jcf) 

in which p is the complex conjugate of p, 

p = I p I = j p I [cos ^ -f-y sin (J)] 

(8) 

W + I) 

Thus 

whence 

tan (J) ~ 
2X, 

(x^+i) 

2lx, 
(xj-l) {l-llx}) 

2 tan ^(/> 

(i -tan^ i^)' 

tan(l^) = ij'xi. (9) 

Thus in reflexion from a reactive load the amplitude is unchanged, 

but the phase is advanced when x^ is inductive (positive) and retarded 
when Xf is capacitive. 

When Z^ is a general impedance {Rf+jX^) the reflected wave 

differs from the incident wave both in amplitude and phase at the 
termination. 

From p = {Zf-i)l{Zf+ i) 

it is easy to show that when = r^+jx^ 

{ri+iy + xf ” " rf + xf-1 

Equations (10) include (8) and (9) as special cases. 

(10) 

5*a*3. Line impedance and input impedance 

Consider a section M of the transmission line (fig. 5*2) at a 

distance / from the load. 

The voltage V and the current i at this section are given by 

equations 5-2*2 (3), and their ratio Vji defines an impedance Z 
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which we call the line impedance at the distance / from the load. It 

follows that _ ... .. 
rpiki I np-ywn 

I +pe~^^^ 
(0 

where z is the normalized or specific impedance corresponding 

to Z. We note on comparing (i) with 5*2*2 (6) that the quantity 

Pi = ^ 277'/A) (2) 

bears the same relation to z as p does to Zi. We therefore define 

Pi as the reflexion coefficient of the line impedance z. 

It is, in fact, the ratio of the voltages in the reflected and incident 

waves at this position /. Equation (2) shows how the reflexion 
coefficient transforms with displacement / from the load. 

To express z in terms of Zi we replacep in (i) by its value in terms 

of Zi as given by 5*2*2 (7), and obtain 

or 

r {zi-{- i)e^^^-\-{zi-1) 
[fzi-f I)e^^‘^ — {zi—i) 

r Zi cos kl +y sin kn 

[_cos kl + jzi sin klj' 

tZf +y tan kl ”1 

I -\-jzitanklj ’ 
(3) 

This formula shows how the normalized line impedance z trans¬ 
forms along the line as / is increased. 

When the distance / is the total length of the line, then z is the 

normalized input impedance. The load presented to the generator 
is then ^ ^ 

Z = zZn 

rz^+yZotan/er 

\zV+jZj^kL ■ (4) 

This is a standard formula that relates the input impedance Z 
to the terminating impedance Z^ when the line is loss-free and of 
length /. 

It is often more convenient to employ admittances instead of 

impedances in transmission-line theory and practice. The character- 
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is tic admittance of the line is Yq = i/Zq, and the normalized admit¬ 

tances corresponding to the admittances Y = ijZ and F/ = i/Z^ are 

y=YIY,==ZJZ=^ilz, y, = YJY, = ZJZ,= ilz,. 

In terms of admittances formulae (3) and (4) become 

r yi+jtznkll 
^ Li+/y<tanA/J’ 

y _ yf^+i^otan^ZI 

\Yo+jttankiy 

(5) 

(6) 

They are analytically identical with (3) and (4). 

The input impedance of a line short-circuited at the termination 

is found, by putting Z^ = o, in (3), to be 

Z^=yZotanW, (7) 

whereas that of a line open-circuited at the end (Z^ = 00) is 

~ ^olj (^) 

In each case the impedance is a pure reactance which is inductive 

or capacitive according to the sign of tan kL 

5*2*4. Distribution of voltage and current in a standing wave 

The voltage and current distributions on the line terminated by 

the impedance Z^ are, according to 5-2*2 (i), (2) and (3), 

V = ^i[cos(oj^4-/e/)'f |/> 1 cos(a)^ —^ 

Zq/ = ^i[cos(o;^ + W)— 1 p 1 cos{ojt — kl-\-^)],) 

The voltage reaches its maximum amplitude I^ax. those posi¬ 

tions / where the vibrations of the incident and reflected waves 
differ in phase by znn {n = o, 1,2, etc.) radians and its minimum 

amplitude where the phase difference is {2n+i)7T, The voltage 

maxima therefore lie at the distances / such that 

kl = —kl+<p + 2n7T {k = 27r/A), 

or Z = “-4-inA. (2) 
47r 

The value of the maximum amplitude of voltage is 

I4ax. = A(l + |/>l). (3) 
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Similarly, the voltage minima are given by 

I4i„. = A(i-IpI). 

and lie at the positions 1^, where 

, Xd) InX A 
/2 = —+ —+- 

4^ \ 2 )• 

(4) 

(5) 

Thus, adjacent maxima and minima are JA apart. 
From the second of equations (i) it is easy to see that the current 

minima are i.ix t/ 

(6) _ A _1/^D _ 
*min. ^ 

and lie at the positions / obtained from (2). That is, the coin¬ 

cide in position / with the Knax.- 

Similarly, j (7) 

and the coincide in position with the 

(V) 

I 

This distribution of current and voltage in a partial standing 

wave is shown in fig, 5*3. We note that the voltage maximum nearest 
to the termination is, from (2), at a distance from it 

‘ 4^ 

Consequently, measurement of serves to determine the phase 

advance of the voltage on reflexion from the termination. 

5*2*5. Standing wave ratio 

Two quantities suffice to specify the partial standing wave. The 

first, already encountered in the previous section, is the distance 

= A^/47r of the first voltage maximum from the termination. 
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The second is the standing wave ratio S defined as follows: 

5 = 
V '^max. 

V 
^max. 

^min. 
(0 

Frequently, the reciprocal ^ = i/S is called the standing wave ratio. 
It follows from equations 5-2*4(3) and (4) that 

c _ (i + l/>l) _ I 
(2) 

Both S and are measured by means of a standing wave indicator. 

Measurements of S and are of the greatest practical importance, 

since they give immediately the value of the normalized terminating 
impedance 2^. 

To see why this is so, consider first the nature of the normalized 

line impedances, as given by formula 5*2*3 (3), at positions of 

voltage maxima and voltage minima. 

We deduce from equations 5*2*4(i), (2) and (5) that at the 

positions of voltage maxima and minima the resultant voltage and 
current vibrate in phase and that the line impedance is therefore 

purely resistive. Since coincides with I^ri. with 

/max. these resistances represent the maximum and minimum values 
attained by the magnitude of the line impedance anywhere on the 

line. Denote them by iRniax. Kmn»then 

V p »'max. y j 
^max. — 7 — ^0] 

*min. (H- (3) 

whence, from equation (2), 

= s 
I 

s' 
(4) 

and 
V i n y J 

^min. “ • “ ^0\ 
^niax. 

fl-l 

^I + l 

(5) 

or r. 
I 

^ S' (6) 

Thus ^max. ^min. ^max. ^min. ^ • (7) 

The magnitude [ [ of the reflexion coefficient of the termination 

is immediately derived from (4), 

\p\ (8) 

HWG 8 
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We remark that the quantities directly measured in standing 

wave measurements by means of a voltage standing wave indicator 

are the magnitude \p | and the phase angle (j) == of the re¬ 

flexion coefficient p of the termination. 

The relation (5*2*2 (6)) between the terminating impedance Zi, 
which we require, and its reflexion coefficient p is 

l\±p\ - 
\i-yo; \i-\p\el^}' 

Replace | p | by its value (8) in terms of S (or s) to obtain 

/ S —j tan Ml \ 
\i —jS tan MJ 

rc+JXi, yt 
(s—/tanW, \ .. 

r-jiSniw,) (9) 

The following is an alternative derivation of this result. The 

general transmission-line formula 5*2*3 (3) shows how the ter¬ 

minating impedance 2^ transforms to the value z of the line imped¬ 

ance on proceeding a distance I towards the generator. This formula 
may be inverted to express z^ in terms of z to show how an impedance 

z transforms to z^ in a displacement — / (towards the load). We find 

z —j tan /f/1 y~~J ” 
I —jz tan kl^ * _i —jy tan ' 

(10) 

But at the distance from the load the impedance z is equal to 

^max. = 5 (y = ^min. = s)- Consequently the normalized load im¬ 
pedance (admittance) is 

“ S —j tan A/j 1 _ r ^ ~ 
_i —yStan _i — js tan kly_ ’ (II) 

The formulae for r^, x^y and are derived directly from (ii). 

They are 
_ 5( i + tan^ kl^) _ (52 - I) tan kl^ \ 

{i+S^tznHl^y I 
_ 5(1+tan*Wi) , _ (i—5*)tanA/i j ^ ^ 

(I + tan* Ml) ’ ‘ (1 + f* tan* Mi)' J 

In practice these components are more readily obtained from the 
circle diagram* as shown in fig. 5*4 (see fig. 5*59). 

♦ For the theory and applications of the circle diagram see W. Jackson and 
L. G. H. Huxley,y. Instn Elect. Engrs, 1944, vol. 91, part iii, p. 10; W. Jackson, 
High-Frequency Transmission Lines, chapter vi (Methuen). 
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The Standing wave ratio S is plotted on the resistive axis at B 

and the w-circle through B is traversed counter-clockwise until the 

n-arc for which n = (0-25 — /i/A) is encountered at C. The point C 
in the complex plane is 

The value of the terminating impedance is then = Z^z^. 

5*2*6. Power carried to the terminating load 

The instantaneous flow of power across any section is IT = Vi, 

This may be written 

(V1-V2) 
Zo 

(Vi-VJ) 

^ Zo 
(I) 

The power travelling to the load is therefore the difference in the 

powers carried by the incident wave ii) and that carried by the 

reflected wave ig)- 
The mean power absorbed by the load is 

(2) 

5’2-7. Formulae for a line with loss 

We here summarize, for completeness, the standard formulae 

for a transmission line with loss. The amplitude of a travelling wave 

here decays exponentially with distance from the point of excitation. 

The incident and reflected progressive waves are now represented 

by the following expressions in place of 5*2-2 

= Zoi'i = 

—— pjudpPl 

^ ’ I (i) 
Fa = - Zoh = 

8-a 
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where the propagation constant P = a+/2zr// and 

pz=\p\eii‘ = {z,-i)l{zt-\-1) = (Zt-Zo)l(Z(+Zo) 

= {^-ytW+yi)- (2) 

The resultant voltage and current are 

V = +pe-^% Z^i = (3) 

The line impedance Z at distance / from is from (3) 

The reflexion coefficient at position /, corresponding to the im- 

pedance^.is = (5) 

Replace p in (4) by its value in terms of Zi in (2) and reduce to the 

standard form 

r g, + tanhP/-| f6^ 
Li+^<tanhP/J’ ^ Li+J<tanhP/J' ^ ^ 

5*2*8. Stub matching 

One of the commonly used methods of eliminating the reflected 
wave from the major portion of the transmission line is ‘stub 

matching’ which we briefly describe. 

It has been explained in § 5*2*5 that at positions of voltage maxima 
and minima the line impedance attains its maximum and minimum 

values respectively and that the impedance is then purely resistive. 

Further, according to equation 5*2*5 (7), 

^max.^min. ^ ^min.^max.» ^max. ^min. (^) 

where and g^^^^ = are the normalized line 
conductances at the positions of voltage maxima and minima. 

Since at an intermediate position between a voltage maximum 

and a minimum the magnitude of the line admittance y = g -\-jb is 

y = it follows from (i) that there is a position at which 

the conductance g is equal to unity, that is, the normalized line 

admittance is , . , 
y = I ±;i . 

This position is shown in fig. 5*5 at distance /' towards the generator 

measured from a voltage maximum. It follows that if a com¬ 

pensating susceptance T jV (shown dotted in the figure) is added 
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in shunt across the line at the position V then the portion of the line 

between this position and the generator is terminated in the 
admittance 

I ±jb' +jb' = I, 

from which, according to 5*2*2 (7), there is no reflected wave. If 
the voltage maximum is chosen near the load, then it is possible in 

this way to remove the reflected component from the major portion 

of the transmission line. The line then presents to the generator an 

impedance equal to the characteristic impedance Zq, Alternatively, 

I • I II 

5*5. 

we may proceed from a voltage minimum a distance /" towards the 
generator to arrive at a position where the line admittance is 

r" = I T jb" 

and produce a ‘match' by adding the shunt susceptance ±jb'\ 

The shunt susceptance in each case is almost always provided by 
a short-circuited length of transmission line whose length V" can 

be continuously varied. Such a ‘stub' is convenient for connexion 
in shunt, with its length at right angles to the line, and its input 

susceptance can be given any value between ±/oo according to 
the length /'". 

The values of the lengths /', /" and are most simply obtained 

from a circle diagram, and a description of the procedure will be 

found in the references given in §5-2'5. A circle diagram is given 
in fig. 5*59 at the end of this chapter. 

5*3. Generalization of theory to include propagation in wave 
guides 

In attempting to apply the theory of transmission lines, as 

developed in §§ 5*2, to wave guides a difficulty is encountered at the 

outset. The theory as given depends on the fact that it is possible 
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to define the voltage and current in a principal wave on a trans¬ 

mission line in an unambiguous manner (§1-5); further, jhe total 
characteristic impedance Zq , when defined as the ratio of voltage to 

current in a progressive wave, also leads to the expressions 

J72 

^0 

for the instantaneous power carried across a section of the line by 
the wave. The characteristic impedance therefore behaves con¬ 

sistently as the same resistance. 

Suppose, however, that we are concerned with propagation in a 
rectangular wave guide. We first choose its dimensions so that the 

dominant mode [//qJ ouly is propagated as a progressive wave 
(§§2*3 and 4*2) in analogy with the transmission line on which the 
principal wave is the only progressive mode. The i/^i-wave may be 

described through its electric field which, according to equation 

3-2(13), is 
(I) E = Ej, = Eq sin I 

where y = znjXg and b is the longer dimension of the cross-section, 
the shorter dimension being a. 

The difficulty arises when an unambiguous definition of voltage, 

current and wave guide characteristic impedance are sought. We 
might suppose that the current is the total longitudinal current 

flowing across a transverse line in the broad face, and that the 

voltage amplitude is the maximum field Eq multiplied by the short 

dimension a; that is, V = Alternatively, we could define the 

voltage to be the mean value of E over the section multiplied by a; 

that is, 2In E^a, Each of these divided by the current gives a different 

total characteristic impedance. 

Further, the mean Poynting flux (§3*4*2 (3)) is 

ZgHl 

where Zg is the intrinsic impedance (§3*4*1) of the i/Q^-wave. 
The total mean power carried by the wave is 

ab = 4^. W’ 
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This, with the definition V == E^a, leads to an equivalent total 

wave-guide impedance 2Zg{alb)y which is not the same as the ratio 

of (£*0^) to the total longitudinal current. 
These and other examples show that an additional criterion is 

required to determine the most suij^ble definition of total impedance 

of a wave guide. It appears in §7*6^that a convenient expression is 

We proceed to restate the theory of §§ 5*2 in a form more accept¬ 
able for our present purpose. We first note a radical difference 
between the measuring techniques adopted respectively with trans¬ 

mission lines operated at low frequencies where the wave-length is 

enormously greater than the dimensions of voltmeters, ammeters 

or wattmeters that are used to measure voltage, current and power, 

and those operated at the shorter ^vave-lengths, in particular at 

wave-lengths of locm. and less, where it is not permissible to 
determine voltage, current and power in this fashion since the 

storage fields at the evanescent modes generated at the discon¬ 
tinuities represented by the meters introduce unpredictable series 

and shunt reactances. The introduction of meters into the latter 

system produces large reflected components of the progressive 
waves, and the meter readings are unreliable or meaningless. 

At microwave-lengths, both for transmission lines and wave 

guides, the two fundamental measuring devices are the standing 
wave indicator and the calorimeter. The former is used to explore 
the distribution of relative voltage, current or electromagnetic field 

amplitude in the dominant mode and to measure the standing 

wave ratio S and the location of the maxima or minima on the line 

relative to the termination (distance of 5*2*4(8)). From such 

measurements w^e deduce the reflexion coefficient = | | 

of the termination with respect to voltage or field amplitude 

(§5*2*5) from 

IaI =(5-i)/(5+i), (2) 

Here ^ is the phase advance of the reflected vibration on the 

incident vibration at the termination / = o, and | p^ | is the ratio of 

the amplitudes of the reflected and incident vibrations. At a dis¬ 
tance / towards the generator from / = o, the amplitudes in the 

reflected and incident waves are still in the ratio | p< |, but the phase 

of the incident wave is advanced by znljX and that of the reflected 



120 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

wave is retarded by the same amount. At this distance /, the advance 

in phase of the reflected on the incident wave is reduced to 

(55 — 477’//A) = {(f) —zkl). 

The eflFective reflexion coefficient ofthe geometrical cross-section 

of the line at distance defined as the ratio of the voltage or field 

in the wave leaving the section (reflected wave) to that entering it 

(incident wave), is 

that is Pi — J ^ 

Thus, through equations (2) and (3), the standing wave indicator 

measures the reflexion coefficient Pi of the termination and the 

equivalent reflexion coefficient Pi at any distance / from it. 

It should be remembered that with a square-law response it is 
necessary to take the square root of the standing wave-meter 

indications to obtain 5. The standing wave indicator also determines 
the wave-length. 

If the line or wave guide is dissipative, then relation (3) is replaced 

Pi — \pi \ 

= (4) 

where the propagation constant P = (a+//?/). 

In order to correlate this theory with the earlier theory of trans¬ 

mission lines (§§5*2) we transform the reflected coefficients into the 

following quantities which we call the normalized impedances. 

The normalized terminating impedance Zi is defined to be 

and the normalized line impedance z at distance / is correspondingly 

defined as 
z = 

where and y are the normalized admittances corresponding to 

Zi and z. 

These normalized line impedances and admittances, it should 

be noted, are merely transformations of the measured reflexion 

coefficients and are not defined through voltage to current ratios. 
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When Pi in (6) is replaced by its value in terms of pi in (4), we find 

Eliminatefrom (7) by means of (5) and reduce to the standard forms 

z = 
2:^ + tanhP/ \ /y^ + tanhP/ \ 

I +2r^tanhP//’ ^ ~ \i +j^tanhP//’ (8) 

where P = a+yzTr/A = a-i-jkl. 

With a loss-free line a = o and (8) reduces to the standard forms 

/ Zi +y tan /j/ \ _ ( yf^j \ 

\i ■{■jzitankl)' ^ \i+;j^tan/e//‘ 

These transformed reflexion coefficients that we have called 
normalized impedances and admittances clearly satisfy the standard 

transmission-line formulae 5*2*3(3) and (5) and 5*2*7(6); we have 
therefore obtained a complete correlation with the theory as 

developed in §§5*2. 

On the other hand, the standard formulae involving the normalized 

impedances are now based on a theory which is applicable to any 
transmission system involving the propagation of a single quantity 

such as voltage, electric field strength or pressure, whose amplitude 
distribution with distance / can be found by means of a standing 

wave indicator. The theory does not require the introduction of a 

second quantity such as current and therefore is not dependent on 
the possibility of finding a suitable definition of total characteristic 

impedance of the system. If, however, the system does possess a 

total characteristic impedance Zq, as does a transmission line, then 

the normalized impedances which are dimensionless quantities can 

be converted to true-line impedances by multiplying them by Z^. 

The resulting impedances then satisfy the standard formula 

5-2-3(4)- 
The corresponding remarks apply to the conversion of the 

normalized admittances y to true admittances yY^, With wave 

guides some writers appear to consider that the normalized im¬ 

pedances multiplied by the intrinsic (wave) impedance of the guide 

are the true equivalent of transmission-line impedances (considered 

as voltage to current ratios). According to our present standpoint 
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these are merely converted reflexion coefficients multiplied by a 

quantity with the physical dimensions of an impedance. 

The normalized impedances and admittances determined from 

reflexion coefficients are in general complex numbers of the form 

2 = (lo) 

r and x are respectively called the normalized resistance and 

susceptance and g and b the normalized conductance and sus- 
ceptance. 

We note that in § 5*2*8 the information required for stub matching 

was provided by the standing wave indicator, and that we were 

concerned not with absolute impedances but normalized imped¬ 

ances alone. The method of basing the definitions of impedance 

and admittance on reflexion coefficient and the experimental data 
afforded by the standing wave indicator permits us to introduce 

matching techniques for eliminating reflected waves in transmission 

systems such as wave guides and speaking tubes (where the concepts 

of voltage and current are not readily definable) that are entirely 

analogous to the stub-matching procedures of transmission-line 

practice. An important consequence of the formal identity of the 

final formulae for the normalized impedances and admittances 

obtained by the method of §§5*2 and that of the present section is 

that it is possible in many cases to represent a complicated field 
phenomenon in a wave guide by means of an equivalent trans¬ 
mission line shunted by circuit elements. 

The second fundamental measuring device that we require at 

microwave-lengths, whether with transmission lines or wave guides, 

is a device for measuring power. At high powers this is a calorimeter 

and at low powers a bolometer or thermistor. From the power it is 

possible to estimate the amplitude A of the voltage on a transmission 

line and the amplitude Eq of the maximum field in a wave guide from 

A^ , Elab 
and W = -V- 

respectively, where Zg is the intrinsic impedance of the wave 
guide. 

It is then possible, if so desired, to calibrate standing wave 

indicators against power-measuring devices so that they indicate 
the power carried to the load as well as the standing wave ratio. 
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We note that matching and power measurement are distinct 
procedures. 

Although standing wave measurements lead only to normalized 
impedances, on the other hand, in theoretical investigations of the 

propagation of electromagnetic waves the use of intrinsic or wave 
impedances is often of considerable convenience. 

Normalized impedance in wave guides. We proceed to apply the 

theory of the previous section to propagation in wave guides. These 

we shall assume, unless otherwise stated, to be rectangular wave 

guides in which progressive waves are propagated in the /f^Q-mode 

only, other modes if present appearing only in an evanescent form. 

>'U-h- 1 1 

( 

^ 1 ! Incident 
1 ^ wave 

( ^Reflected 
i. 1 wave 

! 1 
! 1 

1 1 • 

i i/ 
/-=0 /-=0 

(a) (b) 

Fig. 5*6. 

Consider a wave guide carrying both an incident and a reflected 
//iQ-wave (fig. 5-6) whose fields can be expressed, respectively, by 

and 

£1 = ^sin 

= /9,y}sin 

(ll) 

where y = znjXg and is the wave-length of the /f^Q-wave. 

The resultant field across the section at distance / towards the 

source from that chosen as / = o (fig. 5*6 (6)) is 

£ = ^ sin j e^^ +pie-y^]. (12) 

A wave-guide standing wave indicator of the type described in § 4-4 

serves to determine the distribution of relative amplitude of the field 

E over a range of distances /, at the centre of the broad face where 

sin (nx/b) is unity. 
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When the standing wave ratio S = ^'max./^min. the distance 
of the nearest maximum to / = o are found the reflexion coefficient 

appropriate to the section / = o is 

Pi = \ Pi \ 

where |/j,| = (5-1)/(5+1) and ^ = (13) 

as explained in §§5-2 and 5*3. 

The normalized impedance and admittance at the section / = o are 

The components r^, Xf, gi and bi are obtained from formulae 

5-2*5 (12) or by means of the circle diagram as explained at the end 

of§5-2-5. 

The reflexion coefficient />;, normalized impedance s: and admit¬ 
tance y at the section at distance / are 

Pi = pie~‘^'^\y = 

i \ 
\i+;^<tan yl)’ 

/yi+jtznyl\ 

\i+;>/tan ylj’ 

(15) 

in accordance with the discussion in §5*3. 

These equations give the variation of impedance and admittance 

along the wave guide. It is assumed that the standing wave measure¬ 

ments are taken in a section remote from discontinuities so that 
evanescent modes are unimportant. 

Some examples are considered for illustration. 

Wave guide with a reflexionless termination. Suppose the wave 

guide to be terminated in a reflexionless load as shown in fig. 5*7 {a). 

There is no reflected wave, consequently the reflexion coefficient 

Pi is everywhere zero and the impedance z — ijy is everywhere 
equal to unity. 
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Wave guide terminated in a metal plate. This is shown in fig. 

5*7 (^)* field in the wave guide is 

£ = ^ sin 

and at the surface of the metal plate (/ = o) the field E is zero for all 
waves of x and y. This requires 

Pi = -i = le^”. 

Thus Ia1 = i: = 

This gives z. — — = o, 
yi 

From (15) z = - jt2Lnyl - , 
y ^0 

The impedance at distance / is therefore a pure reactance. 

! ' 

t r _1 
i / 0 !/ 1 

- inculetit wa\c 

' ' »- Heflertcd wave 

(«) {h) (r) 

Fig. 5*7- 

Wave guide open at the end (fig. 5'7(c)). It might be thought, by 

analogy with the usual assumption about an open-circuited ter¬ 

mination to a transmission line, that the reflexion coefficient of the 

open end of the wave guide would be /o = 4-1 and its impedance 
2' == 00. This surmise would be erroneous for the following reasons: 

first, the dimensions of the open end are not negligible in com¬ 

parison with the wave-length A, with the result that power is radiated 

from the end into space; secondly, since the electromagnetic field 

at the end of the wave guide is seriously distorted from the simple 

pattern of the i/jQ-wave, it comprises within the guide, in addition 
to the incident and reflected //io“Waves, a series of evanescent 

modes. At a sufficient distance / from the end the field becomes 

simply the sum of the fields of the //iQ-waves. 
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However, whereas the power lost into space puts a resistive term 

in the impedance z^y the storage field of the evanescent modes con¬ 

tributes a reactive term to it. The terminating impedance would 
be expected to be of the form -h jx^. 

Some experimental results with a 2^ x i in. wave guide are given 

in illustration. 
Oscillator TEM wave-length A = 9 cm. 

Wave-length = 13*8 cm. (twice the distance between adjacent 

minima). 

Standing wave ratio S = 2*83. 

Distance of nearest maximum E^ax. frorn the open end 
= 6-6 cm. = o*478Aj,. 

From the circle diagram we find 

= 2*46-0*89; or = 0*364-0*13;. 

This impedance is by no means infinite, and the result illustrates 

the importance of not making hasty assumptions on the basis of 
analogies with the behaviour of transmission lines at low frequencies. 

The equivalent circuit representation of the wave guide and its 

open end is a transmission line with any characteristic impedance 

Zq terminated by a load comprising a resistance 2*46Zo and a 

capacitance ; X o*89Zo in series; or, alternatively, a conductance 

0*365^0 and a susceptance o-i^YqJ in parallel. This termination 

possesses the same reflexion coefficient on the transmission line for 

principal waves, as the open end possesses for i/ig-waves in the 

wave guide. 

5*4* The addition of equivalent lumped circuit elements in 

parallel or in series with a wave guide 

The development of the theory of transmission in wave guides 

based on the concept of reflexion coefficients is still incomplete, 

because we have not yet discussed what elements in wave guides 

play the part of the lumped circuit elements that are commonly 

placed in shunt across a transmission line. 

It will appear that an obstacle placed in a wave guide which is 
able to scatter an //jo-wave, when the incident wave falls on it 

without absorbing power into itself, is completely equivalent to a 

lumped reactive element placed in shunt across a transmission line. 

In fig. 5*8 (fl) the obstacle is supposed, for simplicity, to be a thin 
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metal cylinder with its axis parallel to the electric vector of the 

i/io"Wave, although the treatment is applicable to any object whose 

thickness in the direction of the axis is small in comparison with the 
wave-length A^. The wave guide is terminated in a reflexionless 
load as shown. 

When the object is introduced, the original field in its vicinity is 
distorted from that of the incident i/jo-wave and the new field 

resolves into the following constituents: 

(a) The original incident wave (indicated by the long arrow 
in fig. 5*8 (fl) and (i)). 

(b) A pair of scattered waves^ the one propagated into the 

reflexionless load and the other towards the generator. These waves 

are indicated in the figure by the short arrows. 

Fig- 5*8. 

(c) A series of evanescent modes which are prominent near the 

obstacle but whose fields are negligible at a sufficient distance from 

it. These arise because the wave guide is constructed so that the 

is the only possible progressive mode. The storage field in these 

evanescent modes give the obstacle its reactive character. When the 

excited modes are of the E (TM) type the stored energy is pre¬ 

dominantly electric and the obstacle behaves as a capacitance; but 

when of the H (TE) type, the stored energy is mainly magnetic and 

the obstacle behaves as an inductance. If the object also absorbs 
power then a resistive term is also required to describe its be¬ 

haviour. 
At an adequate distance / away from the obstacle in the direction 

of the generator the evanescent modes may be neglected and the 

resultant field is that of the incident and scattered waves super¬ 
imposed. Take the cross-section through the axis of the obstacle 
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to be at the position / = o and represent the incident and scattered 

waves respectively by 

and £'2 = IA I ^ sin j . (i) 

= hA sin I gH<oi-ri)^ 

in which we define the complex number 

h=\h\e^^ (2) 

to be the scattering coefficient of the obstacle with reject to an 

//jQ-wave. 
It is possible, where the obstacle possesses a simple geometrical 

form, to calculate, in many cases, its scattering coefficient A, but in 

general h would be determined experimentally. 
In the arrangement shown in fig. 5-8 the section / = o, before the 

introduction of the obstacle, possesses a reflexion coefficient pt = o 

and an impedance z= i/jv= i. After the introduction of the 

obstacle, however, it acquires a reflexion coefficient pi = h and an 

admittance jV; = (i -A)/(i +A) — 
It is tempting to assume that the obstacle itself possesses an 

admittance such that when it is introduced into the section whose 
admittance is unity the resultant admittance, corresponding to the 
reflexion coefficient Pi — h, becomes 

= (i +ji)- 

We shall show that not only is this the case, but when the same 

obstacle is introduced in exactly the same way into a section whose 
admittance alone is y the resulting admittance, as judged from the 

new reflexion coefficient of the section, becomes 

yt = y+yv 

It is found that at the same frequency and in the same wave guide 

the obstacle preserves its individual admittance whatever the 

* To avoid frequent repetition of the word ‘normalized’ it will be omitted in 
most of what follows, and it should be assumed that small letters refer to nor¬ 
malized admittances and impedances and capitals to true admittances and 
impedances. 
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value of y. It is therefore possible to describe the result of intro¬ 

ducing an obstacle into a wave guide in the language of circuit theory 

and to represent the obstacle by a lumped admittance placed 

in shunt across a transmission line whose characteristic impedance 

is Zo = i/Fo- 
We proceed to justify these statements. It is convenient to 

classify the possible forms of scattering that can arise under the 
following headings: 

{a) Symmetrical scattering in which the electric fields E in the 
scattered waves are similarly directed and of equal amplitude 

at equal distances ± / on opposite sides of the scattering source. 

(The transverse magnetic fields are oppositely directed.) 

{b) Anti-symmetrical scattering. Here the amplitudes of the 

electric fields in the scattered waves at a pair of distances ± / are of 

equal amplitude but the oscillations are in antiphase. (The magnetic 
fields oscillate in phase.) 

(^:) Unsymmetrical scattering. The amplitudes and/or the phases 

in the waves at any pair of distances ± / from the scattering centre 
are unequal. 

We shall discuss cases (a) and (b) in turn. 

Symmetrical scattering. Let a partial standing wave already exist 
within the wave guide, and suppose the obstacle to be introduced 

at a section where the reflexion coefficient is p and the admittance is 

y = (i-p)/(i+p) = 

Let the scattering coefficient of the obstacle be h. The problem is to 

find the effective reflexion coefficient of the section with the obstacle 
present and from it to derive the new admittance of the section. 

Let the incident wave be 

E^ = A sin j (y = znjXg), 

and suppose the obstacle to lie at the section / = o whose reflexion 

coefficient alone is p. We shall suppose that the coefficient A = 

so that the electric field possesses unit amplitude where x = \b. 

When this incident wave of unit amplitude first impinges on the 

obstacle it excites a scattered wave whose complex amplitude at 
/ = o is A. Thus a wave of amplitude h returns to the generator and 

a wave with amplitude (i+A), composed of the incident and 

scattered waves superimposed, proceeds to the left (fig. 5*9). 

HWO 9 
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Since the reflexion coefficient of the section is p, a wave {i-\-h)p 

returns to the obstacle from the left and excites a further scattered 

wave A(i +A)p. The additional wave returning to the generator is 

A(i +A)/t) + (i +A)/0 = p{i+hf and that to the left A(i +h)p. 
A succession of scattered wave trains is thus excited, and it can 

be seen that because | A | < i, the successive scattered wave trains 

become progressively weaker and the final combined wave train 

that returns to the generator may be represented by the following 

(i+A) 

First scattered wave 

Incident wave of 
unit amplitude 

Fig. 5‘9. 

convergent series whose sum is the new reflexion coefficient of 

the section: 

whence 

Pi = A+/?(i +A)* + A/)*(i +A)*+AV®(i +A)*+ 

p _ _ h+p + 2ph 
(3) (i -ph) (i -ph) 

The corresponding admittance of the section containing the 

obstacle is 

yt 
\i+Pt) 

_ /i-A-/?-3pA\ 

\(n-A)(i+p); (4) 

If the obstacle does in fact possess a self-admittance as we are 
attempting to show, then when it is introduced at a section whose 

admittance is zero (p = +1) we should expect, if the hypothesis is 

correct, that is the value of in (4) obtained by putting /) = + !. 

_2A 
This gives >-1 = (S) 

We have, of course, here supposed the wave guide to be closed 

by a short-circuiting plate and the obstacle to be placed at a 

section an odd number of quarter wave-lengths—J(2« + i)A„— 

away from it. 



IMPEDANCE AND FURTHER TECHNIQUES 131 

If the supposition is correct, that the self-admittance of the 

obstacle merely adds to that of the section, theny^ in (5) is the self¬ 
admittance expressed in terms of the scattering coefficient. 

It remains to show that when is introduced at a section whose 

admittance has an arbitrary value y, then the resultant admittance 

y, as obtained from (4) is actually y< = (ji+jV)- 

The admittance of the section without the obstacle is 

:v = (i-p)/(n-p). 

We assume the self-admittance of the obstacle to be 

Vi = -2hl{i+h), 

whence Ji+J.= 
1 +h—p—ph — 2h — 2ph 

(i+p)(n^ 

{i-h-p-2ph) ^ 
(i+p){i+h) 

(from (4)). (6) 

This proves that^i as given by (5) is the true self-admittance of the 

obstacle, and that an obstacle does in fact possess a self-admittance 

with respect to a particular wave guide. In another wave guide yi 

would in general be different. 
Special cases. The validity of equations (4), (5) and (6) may be 

readily tested by means of simple examples. 
For instance, suppose the wave guide to be closed at a distance 

from the section containing the obstacle. Then p = -1; from 

both (4) and (6) 
' ' V. = nn = V 

When the wave guide is terminated in a reflexionless load, then 

p=:0, I, 
yi = (i 

Stub matching. To remove the reflected wave between / = o and 

the generator we first find by means of the standing wave indicator 

a position where the admittance is 

y = 1 ±/6i. 

(How to do this was explained in §5*2'8.) 
When an obstacle whose admittance y^ = is introduced at 

this place the resulting admittance of the section becomes 

yt=I ±y*i+y*i = I- 
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Its reflexion coefficient is zero and no reflected wave returns from 

it to the generator. 
The self-admittance of an obstacle is simply measured at a 

position of in a complete standing wave pattern where y — o. 

The new impedance yi = y-^ may be found by means of a standing 
wave indicator. Alternatively, the wave guide can be terminated in 

a reflexionless load and^< = i -\-y^ measured in the same way. 

It is found that any thin flat metallic object scatters symmetrically 
if its plane lies in the cross-section of the guide. Also, a thin object 

with an axis of symmetry such as a cylinder, scatters symmetrically 

if its axis lies in the cross-section. Such obstacles therefore are 

equivalent to lumped circuit elements connected in shunt across a 

transmission line. 

Anti-symmetrical scattering. Here the wave is scattered on the 
first scattering with a coefficient 4- h back to the generator but with 

— A in the opposite direction. 

We find, by the method used above, that the reflexion coefficient 
of a section whose own reflexion coefficient is p becomes p^y where 

Pi = A-fp(i-hf^hp\i 

h+p — 2ph 
(7) {i-ph) 

Here, however, the circuit equivalents are expressed more simply 
as combinations of impedances rather than of admittances. 

The impedance of the section without the scattering source is 

(8) 

and with the scattering source 

■(^) 
i+h+p-2ph 
{i-h){i-py 

To find the self-impedance Zi of the scattering source we suppose 

the wave guide to be terminated, at a distance on the side away 
from the generator, in a short-circuiting metal plate. 

The reflexion coefficient p of the section then becomes p = — i. 

Put p = — I in (9) and write Zi = z^. We find 

= 2hl(i - A). (10) 
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From equations (8) and (lo) it follows that, in general, 

z + z 2^ i+h+p-3ph 
^ li-P/ (i-A) (i-p)(i-k) 

Thus the self-impedance of an anti-symmetrical scattering centre 

combines with the normalized impedance of the section to which 

it is added according to the law of combination of series impedances. 
The equivalent circuit representation is a transmission line of 
characteristic impedance Zq with an impedance ZqZ^ in series with 

it at a section where the line impedance is ZqZ, To avoid unbalance 

of the line the correct representation is twin lines with ^ZqZ^ in 
series with each conductor. For simplicity the impedance is usually 

shown in one conductor only. 

The criterion of symmetrical or anti-symmetrical scattering of the 
electric field therefore determines whether the scattering source is 

to be considered as being added in shunt or in series. This criterion 

corresponds exactly to that for waves on a transmission line where a 

shunt-circuit element produces no discontinuity in the voltage but 

does so in the current, but a series-circuit element produces a 
discontinuity in the line voltage but not in the current. In the wave 

guide we merely replace voltage by the electric field of the jf/jQ-mode 

and current by the magnetic field of this mode to complete the 

correspondence. 
Unsymmetrical scattering. Here the equivalent circuit representa¬ 

tion requires both series and shunt elements, and, if so desired, 

could be reduced to an equivalent filter section of T, tt or lattice 

type. We shall not, however, discuss these possibilities (see §6*12). 

Illustrative experiments on wave-guide matching. To illustrate 

what has been said about the self-admittance of an obstacle and the 
elimination of the reflected wave by the introduction of an obstacle 

into a wave guide, we give some experimental results obtained with 

a 2^ X I in. wave guide and a wave-length of 9 cm. We return to the 

example at the end of § 5-3, where measurements of the impedance 

of the open end of the wave guide were discussed. The standing 

wave ratio was 5 = i/^ = 2*83 = 1/0-354. The admittance at^ 

position of i?n,ax. is a conductance 0-354 (points A in fig.5io(«^ 
and (6)). The point B in the circle diagram of admittances (fig. 

5-10 (a) and {b)) where the admittance in the wave guide is of the 
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form (i +j\) lies on the «-arc whose n value is Wj = 0*163; further, 

the length of CB is 1*07. (These values were obtained from a circle 

diagram and not from fig. 5*10 (a).) [See fig. 5*59.] 

Fig. s*io. 

We conclude that at a section a distance 

/i = tii^g = 0*163 X 13*8 = 2*25 cm. 

from any position of towards the generator the admittance of 

the section is there equal to y = i +7 x i *07. 

At the section D (fig. 5*10(6)) the corresponding point on the 

circle diagram is D whose admittance is (1-761) = 1-7x1*07. 

The section lies at distance 4 = from (represented by A 
in fig. 5* 10(a)), where — 0*337. Thus 

4 = 0*337 X 13*8 = 4*65 cm. 
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A metal screw was introduced into the wave guide through a 

narrow slot on the centre line of the broad face, at the position 4, 
and its projection into the guide parallel to the electric field was 
gradually increased. It was found that with a particular length of 

screw inside the guide the reflected wave vanished and the standing 

wave ratio in the guide between the screw and the generator was 
closely 5=1. It is therefore possible to use a metal object to 

eliminate a reflected wave by using a procedure entirely analogous 
to stub matching in transmission lines. 

In the example under discussion, the self-admittance of the 

screw which scatters symmetrically is such that 

i-;xi-o7+jVi = I, 

that is yi =+7x1-07. 

The screw, in the matching position, therefore possessed a capacitive 

susceptance = 1*07. As a check, the end of the wave guide was 
closed by a metal plate in order to produce a complete standing wave 
in the wave guide and the screw was introduced, to exactly the same 

extent, at a position of where the guide admittance y = o. 
As a result, between the screw and the generator the standing wave 

was displaced, as a whole, through a distance i*8 cm. away from the 

generator; that is, the position of each was moved i-8cm. 

towards the end of the wave guide. 
Form n' = i*8/A^ = 0-13 and locate the point F (fig. 5-10(a)) on 

the reactive axis at the end of the n-arc whose n value is equal to 
n' = 0-13. The susceptance of the screw is OF = 7 x 1-07 (as read 
from the chart). The experiment confirms the theory in showing 

that the obstacle possesses a self-admittance = 7 x 1*07. 
Thus, to summarize, although the quantities y and z that we call 

the admittances and impedances of obstacles and wave guides are 

in fact no more than transformed reflexion and scattering coeffi¬ 

cients, they are of the greatest practical convenience; first, their 
laws of combination are much simpler than the laws of combination 

of the reflexion and the scattering coefficients; secondly, these laws 

are identical with the simple laws for the addition of admittances 

and impedances in shunt and series respectively, so that it is often 

possible, as we have seen, to find exact circuit equivalents to 

describe transmission phenomena in wave guides. 
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5*5. Examples of obstacles whose self-admittances can be 

calculated 

When the obstacle possesses a simple geometrical form it is some¬ 

times possible to calculate its self-admittance by applying the 

principles of electromagnetism to the problem. In such applications 

the investigator, operating untrammelled on the intellectual plane, 

is at liberty to introduce any concept such as voltage, current, 

electric field, magnetic field, true impedance, wave impedance, 
or power, that will lead to a solution of the problem. Whatever the 

d 
W////////////A 

a 

Transmission line equivalent 

ic) 

Fig. 511. 

method, the aim is, in effect, to find a scattering coefficient or a 

reflexion coefficient that can be converted into the required self¬ 

impedance. 
Unfortunately, even the simplest of these calculations is too long 

for inclusion in the middle of this account, and we shall do no more 
than quote results. The principal methods of attack are those of 

Schwinger (U.S.A.), who employs the calculus of variations, and 

of Macfarlane (T.R.E.), who has been able to extend the powerful 
method of conformal transformation (of two-dimensional electro¬ 

statics) to find the composition of the electromagnetic field near 

simple obstacles in wave guides. Such calculations are valuable 

because, from their results, it is possible to design structures which 

possess specified self-susceptances. 

Irises. A common form of obstacle is the so-called iris (an in¬ 

appropriate name), which is merely a metal strip or pair of strips 
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of negligible thickness lying in the cross-section of the wave guide. 
Common types are: 

{a) The capacitive iris^ an example of which is shown in fig. 5*11, 
comprises a thin metal strip or pair of strips that stand perpen¬ 

dicular to the broad face of the wave guide and lie in the cross- 
section. 

In the example of fig. 5*11 {a)^ d is the narrow dimension of the 

wave guide and a is the separation of the edges of the strips. The 
direction of the electric field is indicated at E and a longitudinal 
central section of the field is shown in fig. 5*11 (6). 

The susceptance of this iris is where 

The equivalent transmission-line circuit is shown in fig. 5*11 (c). 

X 
Ant L" 

(I) Ia) 

1 
I lI 

(a) 

E 

Transmission line equivalent 

(h) 

Fig. 5*12. 

The capacitive iris is not employed in wave guides in which high 

powers are transmitted because the intense electric field at the edge 
of the strips causes electrical breakdown of the air. 

(b) The inductive iris. An example is shown in fig. 5-12. Here 

the edges of the strips run parallel to the electric field. If W and d 

are the long and short dimensions respectively of the wave-guide 

cross-section and c is the distance between the edges of the strips, 
the admittance is 

ji=y6i = -ycot<*(~j. (2) 

Since this iris is commonly used for matching, formula (a) is 
exhibited graphically in fig. 5-13. 

Other irises and reactive obstacles. Figs. 5-i4-S‘i7 summarize in 

diagrammatic form a variety of information about irises and 

reactive obstacles and their equivalent circuit representations. These 
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figures are taken from an unpublished article by Dr G. G. Mac- 

farlane. The diagrams are numbered consecutively throughout the 

series. Attention is drawn to no. 10, which represents a simple 

inductive obstacle formed by stretching a wire across the guide 

with its axis parallel to the electric field. If, however, the wire does 

cjW 

Fig. 5-13. 

not reach the whole way across, as shown in no. 8, the susceptance 

is part capacitive and part inductive, becoming predominantly 

capacitive when the post is short. It should be noted that the for¬ 
mulae refer to thin irises and are only approximately correct for 

thick irises. The effect of thickness is touched upon in §6*12. 

Irises in circular waveguides. In circular wave guides designed to 

carry only the dominant; i/n-mode as a progressive wkVo, irises take 
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the forms shown in nos. 6,14,15 and 16, to which further reference 

is made below. Formulae do not appear to be available for the 
susceptances of these structures. 

List of irises in wave guides with equivalent circuits 

5*6. Resistive impedances 

Metallic obstacles behave as shunt susceptances because they 

distort the field of the Hiq-v/zvc and thus excite a series of evanescent 

modes whose storage fields resemble those of condensers and 

inductances. There is no resistive term because the obstacle itself 
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absorbs no power. A piece of loss-free dielectric which distorts the 

field also behaves as a shunt susceptance. Conversely, a structure 
which is to behave as a pure shunt conductance must absorb power 

but produce no distortion in the field configuration. The simplest 

List of irises in wave guides with equivalent circuits 

Fig- 515. 

resistive device is a resistive film with uniform conductance G mhos 

per square at all points on its surface. Suppose this film to occupy a 

cross-section of a wave guide that is terminated in a reflexionless 

load beyond the film, and let an i/^o-wave whose transverse electric 
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and magnetic fields at any chosen point on the film are and Hq, 
be incident on it. 

List of irises in wave guides with equivalent circuits 

Fig. 5'16. 

Let and Hi be the corresponding fields in the scattered wave. 

The total electric field tangential to the film is (£o+£i)V./m. at 
this point, and the local current density in the film is G(£'o + £j) 
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amp./ni. The magnetic field on the side of the film facing the 

generator is (Ho-Hi) and on that facing the reflexionless load 

{Hq+Hi). According to equation i‘4(2) 

G(£o+Er) = (//o - - {Ha+Hi), 
List of irises in wave guides with equivalent circuits 
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Zji = 

VW A “y„ 
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is the intrinsic impedance of the wave guide, and is the intrinsic 
admittance. 

Equation (i) may therefore be written 

(3) 

But EJEq = h the scattering coefficient, consequently 

1*7" G' 

or, from 5'4 (5), the self-admittance of the resistive obstacle is 

-zh G 
(4) 

Thus, the self-admittance of a uniform resistive film is its surface 

conductance G per square divided by the intrinsic admittance of 

the wave guide. Alternatively, its self-impedance Zi = is its 

surface resistance R per square divided by the intrinsic impedance 

Zh- The equivalent circuit representation is clearly a transmission 

line with characteristic impedance Zh shunted by a resistance R. 
In the example under discussion the total admittance of the 

section containing the film becomes 

yi = (i +>-1) = (i +^)- 

Replace the reflexionless load by a short-circuiting plate and intro¬ 

duce the film at a position of f^ax. where the admittance of the 
section is zero. The resulting admittance is 

If the resistance R per square of the film is made equal to the 

intrinsic impedance of the wave guide, then g = 1 —yt and the 
wave guide is matched. Thus, the theoretically ideal reflexionless 
termination is a resistive film whose surface resistance is equal to 

the intrinsic impedance, backed by a (2n-l-i)iAy short-circuited 

extension of the wave guide. In the special case of a transmission 
line the intrinsic impedance is the same as the wave impedance of a 
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ohms, and the resistive 

film would be given a specific surface resistance of this value. When 

backed by a JA short-circuited extension such a film forms a 

reflexionless termination. 
It is interesting to note that the total resistance of the film mea¬ 

sured between the conductors of the transmission line is equal to 

the characteristic impedance Zq of the line whatever may be the 
geometry of the system. Reflexionless terminations of this type are 

I not^used in practice. 
It is useful to review at this point what is implied by the terms 

capacitive, inductive or resistive, as applied to an obstacle in a wave 

guide. We have seen that we are able to distinguish the electrical 

behaviour of the obstacles only by the differences in the waves 
scattered or reflected from them. By means of a standing wave 

indicator we observe the nature of the standing wave pattern 

produced, for instance, when the obstacle is introduced into the 
previously matched wave guide. If the partial standing wave of the 

electric field is the same, as regards standing wave ratio and the 

position of the maxima and minima, as the standing wave of voltage 

produced at the same frequency on a transmission line by con¬ 

necting a reactance in shunt across it, then the obstacle in the wave 

guide is called reactive, and its normalized reactance or susceptance 
(whether capacitive or inductive) is calculated, as explained above, 

from the standing wave ratio and the location of the maxima or 

minima. Similar remarks apply to the resistive film. When the 

obstacle possesses a simple geometrical form it may be possible to 

apply the principles of electromagnetism to calculate its scattering 

coefficient h with respect to an /foi-wave and to transform this 
scattering coefficient into a normalized susceptance, as explained 

in § 5*4. An example of such a calculation is given in § 7-11. 

It is found that the total electromagnetic field in the immediate 

vicinity of the obstacle is quasi-static, that is, it resembles a certain 

electrostatic or magneto-static field. For instance, a thin wire 

stretched across a wave guide parallel to the electric field of the 
incident wave carries an oscillating current which produces a pre¬ 

ponderance of magnetic storage field near the wire. 

The wire, as would be anticipated, behaves as an inductance 

which stores magnetic energy. Similarly, the capacitive iris of 

TEM-wave, namely J^^izonJ 
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fig* 5*^^ accumulates a concentration of charge on its edges which 
excites a local storage field of an electrostatic character. Such an iris 

possesses a capacitive reactance. In this way it is possible to judge 
the nature of a reactive obstacle from the character of the storage 

field; however, the numerical value of its normalized reactance must 

be obtained as already explained from its scattering coefficient A, 

whether calculated or measured indirectly by means of a standing 
wave indicator. 

57. Reflexion from a plane interface 

Another type of problem for whose investigation wave (intrinsic) 
impedances prove useful, is that of finding the reflexion from a plane 

(a) 

^02 

B 

Fig. 518. 

interface between two dielectric media. Consider, as a specific 
example, the situation shown in fig. 5-18(0) which represents a 

wave guide partially filled with a dielectric and terminated in a 

reflexionless load. We require to find the reflexion and transmission 
coefficients of the interface A, 

^ - M - Vfe) ^ 
impedances of the two portions of the wave guide (§ 3-4*1). 

Let the transverse field components in the incident and reflected 

waves be respectively E^y and and those in the transmitted 

wave Ef and Hi. 
HWO 10 
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The field components are related as follows: 

Ht 
= (^h)2- 

The boundary conditions at the interface require 

E, = Ei + E,, = 

or 
to

 

11 

Whence 
(Z„), (E, + EA (i+p\] 
(Z„), \E,-eJ 

or 
[(Z„y(z„)i-I] 

^ [(Z„y(z„)i+i]’ J 

where p = The tran3mission coefficient is 

4 [(ZHy(ZH)i+i]‘ 

(I) 

When we compare equation (i) with equations 5-2*2 (6) and (7) 

we note that the process of reflexion at the interface is exactly 

analogous to that on a transmission line with characteristic 
impedance {Zfj\ terminated in an impedance {Z^), 

The whole wave guide may be represented by the equivalent 

triple transmission-line system shown in fig. 5-18(6) and the 

reflexion coefficient at the terminals calculated as an exercise in the 

application of the standard transmission-line formulae. For in¬ 

stance, if the length AB is equal to the section AB behaves as 

a half-wave transformer. If, therefore, {Zfj)z = (-^h)i> there is no 
reflexion from the interface B, The idea of using wave impedance 

to reduce a problem of wave reflexion at an interface to an equivalent 

problem in the theory of transmission lines has been extended to 

the case of plane waves in space incident normally or obliquely 

on an interface and to other types of wave propagation in one 
dimension. The reader who is interested in these matters should 

consult Schelkunoff*8 treatise, Electromagnetic Wa^es. 

* Negative sign expresses the fact that the incident and reflected waves travel 
in opposite senses. 
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5*8. Resonant obstacles 

5’ ^S> panel 8, fehows the equivalent circuit of a metal post that 
projects into the wave guide with its axis parallel to the electric field. 

The equivalent circuit comprises a series combination of an in¬ 

ductance and a capacity placed in shunt across a transmission line. 
This suggests that if it were possible to alter the values of the in¬ 

ductive and capacitive reactances it might be possible to attain a 

condition of resonance, at the frequency of the if^o-wave, when the 

total impedance shunting the transmission line would vanish. There 
would then be complete reflexion at the shunt circuit and no trans¬ 

mission beyond it. The values of the reactances in the equivalent 

circuit can be altered as required, by inserting the post progressively 
farther into the guide. With a definite length of the post inside the 

wave guide complete reflexion occurs and the self-susceptance of 

the rod becomes infinite. Fig. 5-19 exhibits graphically the results 
of measurements of the self-susceptance of a rod as a function of 

10-2 
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length within the wave guide. The method employed was that 

described at the end of § 5*4, and a straight wire of diameter ^ mm. 
was inserted into an X-band i x ^ in. wave guide operated at a 

wave-length A = 3*25 cm. The wave-length of the HiQ-v/avt was 

= 4*2 cm. 
The curve shows clearly that the susceptance becomes very 

large when the, length of the rod within the guide is approximately 

equal to JA, and that in passing through this value it changes from 

a capacitive to an inductive susceptance. 

The results obtained with a wire twice as thick were very similar. 

We conclude therefore that a thin metal post becomes resonant 
within a wave guide when its length is JA and that it then throws a 

short circuit across the wave guide. 
A different type of resonance is that in which the equivalent 

inductance and capacity are thrown in parallel across the trans¬ 

mission line as shown in fig. 5*15, panel 7. 
On resonance the tuned circuit is a rejector circuit with zero 

admittance. Consequently the principal wave passes over the 

resonant obstacle without reflexion. An obstacle that behaves in this 

way is shown in fig. 5-15, panel 7. It is called a resonant iris and is 

clearly a combination of the capacitive iris of fig. 5*16, panel 2, and 

the inductive iris of fig. S'lfit panel 11. 
The storage fields of the inductive (/f-modes) and capacitive 

(£-modes) portions of the iris can, by choosing the dimensions 

correctly, be made to store equal energies in the magnetic and 

electric forms so that the stored energy is merely exchanged 
between these forms during oscillation without drawing energy 

from and restoring it to the incident i/jo'^ave. 

A rough method of finding the resonant dimensions of this iris, 
based on an approximate theory, is given in Slater's book, Microwate 
Transmission, p. 186. It is shown in fig. 5-20. ABCD (fig. 5*20(6)) 

represents the cross-section of the wave guide. The curves ALD 
and BMC are the two branches of a hyperbola that pass through 

the comers of ABCD and such that their poles L and M are JA 

apart (A = TEM wave-length). If the comers of the composite iris 

are made to fall on this hyperbola, then the iris is approximately 

resonant. The dotted rectangle is an example. Evidently there is 

an infinity of such resonant structures for any given wave guide. 

If W and bf and W' and 6' are the dimensions respectively of the 
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cross-sections of the wave guide and of the window in the iris, 

then the geometrical construction given above is equivalent to the 
following relation between these dimensions: 

u-m-'A-m 
It is clear from fig. 5*20(6) that when b'/W is made small, then 

W' is approximately equal to ^A; that is, the resonant length of any 

narrow slot centrally placed in a diaphragm with its length per¬ 
pendicular to the electric field is very nearly half a wave-length. 

The remarkable feature of these slots is that, although the section 

of the wave guide is almost entirely occupied by metal, yet the power 
is transmitted through the slot without reflexion. 

The formation of a resonant iris in a circular wave guide carrying 

the //11-mode as a progressive wave is shown in fig. 5*21. 

Capacitive iris Inductive iris Resonant iris 

Fig. 5*21. 

For this iris, when the circular gap is thin its resonant length, 

measured on the inner circumference, is almost equal to A. Fig. 

5-22 (a) shows a set of resonant structures that will transmit the 

dominant mode without reflexion. Structures III and IV have 

already been discussed. Iris I is a resonant slot for transmitting an 

Hrx -wave in a circular guide. Its length at resonance is about 4 % 
shorter than when A = 9-1 cm. The slot with the broadened ends 

shown at II is less frequency sensitive than the simple slots. 
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The Q-factor of a resonant iris. The voltage | V ( across a circuit 

whose admittance is F = G +jB, when fed from a constant current 

generator with current of amplitude 111, is, 

1F| = |*|/V(GH5*) 

At the resonant frequency/q the susceptance B is zero, but at some 
pair of frequencies (/q ± Af) the susceptance B has become equal to 

ib) 
Fig. 5*22. 

the conductance G, It follows that Af is the mistuning required to 

reduce the amplitude V to The 0-factor of the circuit is 

defined to be £ t a x \ 1 a ^ / \ 

Thus when Q is large the circuit possesses a sharp response curve 
around the resonant frequency. This definition also serves for the 

0 of a resonant iris if /q is taken to be the resonant frequency at 

which the transmitted wave has maximum amplitude and Af the 

mistuning required to reduce the amplitude of the transmitted wave 

by a factor of i When 0 is small the iris remains transparent 

over a reasonably large range of frequencies. 

Consider, for example, the irises shown in fig. 5-22 (fl). The 

experimental values of the 0-factors at A = 9*1 cm. were 0 = 25 

for slot I with a width of 0*5 mm. but 0 = 50 with a width of o* i mm. 

Thus the narrower the slot the larger the value of 0. The dumb-bell 
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slot of figure II has a much smaller Q value. In a slot whose straight 

portion was 4*2 mm. long with 1*4 mm. diameter circles at the 

ends Q was equal to 10. Such an iris is transparent over a broad band 
of frequencies. The Q values of the ring iris of figure III were as 
follows: 

Ring width in mm. o i 0 5 o-8 

Q 40 20 16 

Too much stress should not be placed on the precise numerical 
values, since the thickness of the foil forming the iris also controls 
the Q values. 

Reflecting irises. The metal post, discussed at the beginning of 
this section, provided an example of a resonant obstacle that was 
completely reflecting, unlike the resonant slots which are com¬ 

pletely transparent. There are, however, irises that are completely 
reflecting at resonance, examples of which are shown in fig. 5*22 (i). 
If each is compared with the resonant iris above it in fig. 5*22 (a), 

it will be seen that the lower iris is obtained from the upper by 
interchange of the metal and open portions, followed by a rotation 
through a right angle. A pair of diaphragms related in this way are 

termed complementary. Not only are their geometrical properties 
complementary, but their electromagnetic properties also. There is 
an underlying theoretical explanation for this statement based on 

an extension of Babinet’s principle, as used in optical theory, to 
embrace electromagnetic waves. Although it is not rigorously 

applicable to iris theory it serves as an approximate method for 

studying the properties of irises. 
The effect of the interchange and rotation is to give an equivalent 

circuit representation in which the rejector circuit of inductance 

and capacity in shunt across a transmission line becomes one in 
which they are in series. Compare, for instance, in fig. 5*17, panel 
15 with panel 16. We have seen that the circular slot is resonant and 

transparent when its inner circumference is almost equal to A; 

conversely, the ring of fig. 5-22(6) III is resonant when its circum¬ 
ference exceeds A slightly (i-iA). It then becomes a complete 

reflector. Similarly, the half-wave strips or rods of fig. 5-22(6) 

I and II are reflectors. The ring may, as an alternative, be regarded 
as a pair of half-wave reflectors bent to form a circle whose circum¬ 

ference is therefore equal to A (approximately). We note that the 

half-wave reflectors lie parallel to the electric field. The elucidation 
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of the properties of resonant irises was due, in the main, to the 

pioneer experimental investigations of W. D. Allen at T.R.E. 

5*9* Applications of resonant obstacles 

5*9*I. Resonant slots as switches and protective devices 

The electric field at the centre of a resonant slot is many times more 

intense than in the //iQ-wave at a distance from the slot. Conse¬ 

quently, when high powers are transmitted, an electrical discharge 
may occur across the gap. This property is used in the gas-filled 

resonant cell. Here the slot is enclosed in a glass capsule which is 

filled with argon or some other monatomic gas at a pressure of 
70 mm. of mercury. 

Fig. 5-23 (a) is a section through a resonant gas cell containing a 

resonant ring, but in fig. 5*23 {b) the iris is a resonant slot. The metal 

Fig- 5*23- 

of the irises projects beyond the glass walls so that they may be 

fitted tightly into a circular wave guide. Such cells are transparent 

at low powers, as, for instance, during the reception of a radar echo, 

but at high power they spark over and become completely reflecting. 

Instead of placing zero admittance across the guide they now throw 

a short circuit across it, and thus prevent all but a small fraction of 

the power from passing beyond them. The equivalent circuit is a 

transmission line (fig. 5*24) with a rejector circuit in shunt across it. 

The rejector circuit carries a spark gap G in shunt, and when the 
gap strikes the shunt admittances rises immediately from zero to a 

large value. In the CV115 cell, used at X-band wave-lengths, the 

resonant slot is of the low-jj form shown in fig. 5*22 (a) II with 

larger end circles and a much shorter intervening straight portion. 
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These cells are used both as automatic switching and protective 

devices in common T.R. systems (see later). 

A modification of these cells which provides better protection is 
illustrated in fig. 5-25. It is the American 1B24 cell for use at 

AT-band frequencies and it breaks down at lower powers than the 

CV115, acting more quickly and providing better protection to the 

receiver against the transmitter power. The cell is placed in series 
with the wave guide and is held in position by bolts through flanges 

on the wave guide. The cell cavity is separated from the wave-guide 

interior by glass windows, and the cell itself contains water vapour 

and hydrogen at a pressure of a few millimetres of mercury. It is 
tuned to resonance by adjusting the separation of the tips of the 

spikes that project into it, and the adjustment is made by means of 

a screw that pushes against a flexible area of the wall carrying one 
of the spikes. To avoid lag in the striking of the discharge when a 

powerful wave reaches the cell, a glow discharge is kept running 
between the probe and the inner surface of the upper spike which is 

made hollow. Electrons diffuse through a hole in the end of the 

spike into the cavity and thus provide initial ionization from which 

the discharge can build up without delay. A high resistance is 
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included in series with the probe in order to limit the glow dis¬ 

charge, but its value must be chosep to avoid an intermittent dis¬ 

charge which impairs the protective action of the cell. The cell thus 

transmits weak, but blocks powerful signals. This cell replaces the 

earlier British types CV221 and CV114 which were fitted to cir¬ 

cular wave guides and contained a mixture of argon and water 

vapour at a pressure of about 6 mm. of mercury for each gas. 

5’9*2, Ring reflectors as svntches 

Reflecting rings form very convenient mechanical switches for 

diverting power from one branch in a wave guide to another. The 

small inertia of the switches permits rapid change-over, and 
therefore reduction in the period during which the wave guide is 

mismatched. This is important in high-power systems where a 

serious mismatch may damage subsidiary components such as 
magnetrons and T.R. cells. 

Numerous wave-guide switches have been developed, and fig. 5*26 
shows typical examples. In rectangular wave guides the switching 

loop may be circular or rectangular. 

When a loop is rotated through 90"^ from the position at which it 

produces maximum reflexion about an axis in the //-plane it permits 

the power to pass it without reflexion. (The £'-plane is a central 

section of the wave-guide system parallel to the electric field of the 

//iQ-wave, and an //-plane is a section parallel to the magnetic field. 

The nature of the section is indicated in each part of fig. 5*26.) The 

figures {a) to (c) are almost self-explanatory. The switch of figure (a), 

although simple in principle, requires subsidiary matching devices 

that make it frequency-sensitive. The switch of figure (6) has the 

advantage that the rings are carried on a common axis and can be 

continuously rotated. The discrimination between the arms is good 

and the change-over period is short. The single loop Y-junction 

switch of figure (r) is the most satisfactory of the switches designed 

for AT-band applications. The loop should not be rotated con¬ 

tinuously. Its performance figures over ± 3 % frequency band 

about resonance are : 

Standing wave ratio in main wave guide: ^ = i/5 = 0*94 to 0*97. 

Power ratios in the transmitting and non-transmitting branches 

(discrimination): 25-35db. 

Power handling capacity: 50kW. peak at least. 



(a) (b) 
T-junction-double loop Y-junction-double loop 

Fig. 5*26. 
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The switches shown in figures (d) and (e) are not ring switches 

and are unsuitable for use at high powers because their inertia 

makes the change-over time too great for safety, but they are used 

in low-power test equipment. Reflecting JA probes have also been 

used in switches requiring a rapid rate of switching of the order of 

1000 per min. 

An important switching system is that shown in fig. 5*26 (/). Its 

purpose is to obtain a division of power between the matched loads 
D and A, such that the proportion of the total power reaching one 

of the loads may be varied continuously between zero and unity, 

while at the same time no mismatch is introduced at the junction 
with the main wave guide run from the magnetron. Although it 

employs wave-guide series stubs, which we have not yet discussed, 

it is convenient to consider the device in this section. In fig. 5*26 (/), 
D and A are loads that match their respective branches—for 

instance, D may be a dummy load and A the output to a scanner 

(aerial). The pistons and P2, although movable in the side arms, 
are linked, so that when Pi is at a distance / from the opening into 

the wave guide, P^ is at (/ -1- ^A) whatever value / may have. Since 

these side arms are series stubs they throw the following normalized 
reactances in series with the wave guide at the centres of the 

openings: 

Series reactance introduced by stub i is 

jx = j tan znljAg. 

Series reactance introduced by stub 2 is 

jx' = j tan 27r(/ + i A J/ 

= -j cot 2nll\g = I jjx. 

The equivalent transmission line representation is given in 

figure {g). The resultant impedances of the sections at L and M are 

respectively (i-h/^) and (i-hi/;^) which become transformed, 

through the JA^ section, to impedances 1/(1-f7jc) and jxl{i^-jx) 

at O. The total impedance terminating the main wave guide run 

at O is, therefore, 

{i+jx) (1.+;*) 

Thus, no reflexion arises in the main wave guide at the junction O 
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whatever the position of the pistons. The fraction of the total power 

reaching load A is il{i -f and load D is x^/{i and the first 
of these fractions changes from unity to zero as the distance / is 

increased from zero to 

As movable pistons are inconvenient they are replaced, in prac¬ 

tice, by resonant rings Ri and /?2, whose distances from the openings 

of their respective side arms again differ by We have seen that 

when the ring is in the resonant position it throws a short-circuit 
across the wave guide, but when turned through 90° its shunting 

effect vanishes. The variation of resultant impedance at the section 

of the wave guide containing the loop is similar to that produced by 
moving a piston from zero distance back to a distance JA^ from the 

section. Thus a synchronous rotation of the loops and R2 

simulates the original motion of the pistons and Pg (fig. 5*26 (A)). 

5*10. T-junctions 

T-junctions, which are of great practical importance, are of two 

kinds—the shunt or J^-plane junction and the series or P-plane 

junction. These are shown respectively in fig. 5*27 (a) and (b). 

The shunt T-junction comprises a wave guide with a side arm 
leading out from a narrow face. The break in the wall affects the 

flow of the transverse wall currents but does not interrupt the 

longitudinal currents in the broad face. As it does not introduce a 
discontinuity in the electric field of the //jQ-modes in the main wave 

guide the type of scaUering produced at the junction is symmetric^ 

(§5*4). These properties of the junction justify the nomenclature 

‘ shunt* for it. The transmission-line analogue is a straight portion of 

line with a branch line tapped to it in parallel as shown in fig. 5*27 {a). 

The series T-junction and its transmission-line analogue are 

shown in fig. 5*27 (A), 

In this junction, the longitudinal current in the broad face is 

interrupted and a discontinuity is thus introduced in the electric 

field of an /f^Q-wave incident on the junction; the scattering process 

is therefore unsymmetrical. The junction consequently behaves like 

a series element in a transmission line and is therefore called a 

series junction. 

It might be thought that the simple transmission-line repre¬ 

sentations shown in fig. 5*27 would suffice to describe the behaviour 
of each of these junctions, but unfortunately these representations 
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are inadequate and the actual behaviour is more complicated. This 

■ complexity is to be attributed to the fact that the junctions are 
major discontinuities in the wave guide at which, in addition to the 

scattered and reflected components of the progressive H^o-wave, 

evanescent modes are also strongly excited. The storage field of 

these modes behave as equivalent series and parallel reactive ele¬ 

ments which must be taken into account in an equivalent circuit 

that represents the junction. 

The electromagnetic theory of the series junction was first given 

by Frank and Chu (M.I.T.). Because of the somewhat more 
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extensive use that has been made of the series compared with the 

shunt junction and of the fact that the results of the theory can be 

presented in the form of a convenient equivalent circuit, we shall, 

in what follows, consider the series T-junction first. A more exact 

theory of both junctions has also been given by Allanson, Cooper 

and Cowling, but we shall defer discussion of their treatment. 

The case studied by Frank and Chu is that of the general series 

T-junction in which the broad dimensions a of the main guide and 

branch are the same, but the narrow dimensions b and c may be 

different as indicated in fig. 5-27 (ft). We suppose an /fjQ-wave to be 

excited in any one of the limbs at a point where the storage field of 

the junction is negligible, and that the other two limbs are ter¬ 

minated in arbitrary loads. In general, therefore, partial, or com¬ 

plete, standing waves exist in each arm. 

Suppose the distribution of the electric field of the i/iQ-mode in 

each limb to be found o\^er regions free from the effects of the 

storage fields of the junction or of the terminations by means of a 

standing wave indicator. From these measurements the distribution 

of normalized admittance y along each limb can be determined and 

extrapolated into the regions where the storage field is important. 

The theory of Frank and Chu predicts the distribution of these 

admittances y in each limb whatever the nature of the terminations. 

Fig. 5*28 (a) represents a central section of the T-junction. Let the 

admittance y in the respective limbs be extrapolated to the sections 

OC and AOB in the limbs of the main guide and of the side limb 

respectively. Replace the T-junction by an equivalent transmission¬ 

line system (fig. 5-28 (ft)) whose branches are connected at the 

terminals i, 2, 3 and 4 and whose characteristic admittances are 

each equal to unity, and suppose the distribution of normalized 
admittance y along each of the three branches to be the same as that 

in the corresponding limbs of the wave-guide system. Thus, the 

extrapolated admittances at the terminals are the same as those at 

the sections OC and OAB (fig. 5-28 (a)). 

We call these admittances, presented at the respective pairs of 

terminals, y^^y JV2S y^^. The algebraic sign of the admittances 
J23 and y^^ are determined by the convention (indicated in fig. 

5*28 (ft)) that in the formulae given below, ^23 and3^14 carry a positive 
sign when the terminals are viewed from the left, but a negative sign 

when viewed from the right. 
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According to Frank and Chu, the three admittances at the ter* 

minals are related by the following formulae: 

/s L 

(j'ga ~yi4) ~ yAytayu 
/,L 2+jMy^-y,,) J’ 
[t +M -/i +jf3yia)]y^+2Ufi +/8J12) 

^+M-fi+jfsyi2+j2yu) ■ 

These formulae are equivalent, and permit any one of the quan¬ 

tities to be expressed in terms of the other two. The quantities 

..r 

3 
^ 

-—r« 

(f>) 

Fig. s-a8. 

fi, /j and /a are always positive and are functions of bjX.g and cjb 

only, where is the smaller of the wave-lengths in either limb. 
In formula (2) y'M means either, y^^ or y^ and yu indicates the 

reverse order of choice. If 3^23 appears on the left then the negative 

sign is used of the alternatives + on the right, but with y^ on the 

left then the positive sign in the formula is on the right. 
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In most T-junctions the two limbs are pieces of identical wave 

guide and therefore 6 = c. Frank and Chu have given curves 

expressing/^,/, and/, as functions of bjXg for the case c, and these 

curves are reproduced in fig. 5-29. The limiting values attained by 

/i,/g and/g as b/Xg-^o are 

/i->o. /«-><». /a-^z. 

HWG II 
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To illustrate the use of the formulae we consider some specific 

examples: 
Power is fed in along the left-hand limb and the right-hand 

limb is perfectly matched, but the side limb is closed by a short- 

circuiting piston, that is, 

^23 = + I» >^12 = -y cot znl/Xg, 

where / is the distance of the piston from AOB (fig. 5-28 (a)) and 
Xg refers to that limb. This gives from (2) 

__ • /i-’A-'/aCOt 27r//A^ 
- >^14 - I + V r+Za] -/i +/8 cot znllXg) + zjf^ ‘ 

In the limit A/A^->o,/i->o,/2-^oo,/3->2, formula (3) gives 

(3) 

_ ^ ^ 

” (i +ytan27r//A^) “ 

which is what would be expected from the simple transmission-line 
analogue of fig. 5-27(6) where the storage field becomes relatively* 

unimportant. 

The left-hand limb is matched at the junction when = -h i. 

From (3) this requires 

cot2;r//A^ = (/i-/2)//3, (4) 

whereas the condition cot znl/ A^ = 00 (/ = i A^ or o), for the idealized 
case, neglects the storage field at the junction. Thus, the position 

of the piston for transmission past the junction without reflexion 

from the left-hand limb to a matched load at the end of the right- 
hand limb is no longer at a distance iAg or zero but at 

27T 

Suppose b/Ag = 0*19, which is its value for a 9-1 cm. wave in a 

2J X I in. wave guide. From the curves of fig. 5-29 we find 

whence 

or 

/i = 0-24, /a =11*9. /a = 2-325. 

cot znljAg — —4-96, 

/ 
A„ 27T 

= 0-47, 

where the simple theory requires l/Ag =*0*5. 
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To obtain the position of the plunger in order that no power shall 

reach the load in the right-hand limb we require complete reflexion 
at terminals i—4. The condition for complete reflexion is that 

shall be a pure susceptance. It can be shown from equation (3) that 

the position of the plunger must satisfy 

With the same values of /i, /2 and we find 

27tI * 

cot-r- = 0-138, 

~ X = Sz-z"" or (82-2+180), 
zn . 

and from (6) 

— = 0-228 or 0*728 

y = —= -0-0847. 
TJ 

Thus, the position of the piston up the side limb is not / = or 

|A^ as the simple theory suggests but at somewhat smaller distance. 

This example serves to illustrate the application of the general 

formula to a specific problem. 
We proceed to consider a very convenient equivalent circuit for 

the T-junction proposed by N. Elson and based on formula (i) of 

Frank and Chu. 

This formula may be rewritten 

f, -v 2y^yu-{y23-yu)IJf2 
hyn+jh-- • 

Add 1//2 to each side and divide throughout by 2. Then, after 

reduction, 

/sJVia , •/1^fjt\_-I _ 

whence 

i i 

Uljfi+yza) ^ -yu) 

ii-a 
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Equation (7) is Bison’s transformation and is represented by the 

equivalent circuits shown in fig. 5-30(0) and (c). 
We note that the admittance now couples in series with the 

transmission line through a transformer which increases its value 

yi2 

(*) 

Fig. 5-30. 

by the factor J/g. It is thrown in shunt with a capacitive susceptance 

y(—addition, the transmission line is shunted by a pair 

of inductive susceptances 1/7/2 as shown. 
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Fig. 5*30 (6) shows how an admittance Fg is transformed by a 

transformer to produce an equivalent circuit comprising the admit¬ 

tance Y^LJLi in shunt with the primary inductance. 
Fig. 5*30 (r) is the same as fig. 5*30(a) but expressed in terms of 

admittances. 

Fig. 5'3i. 

The behaviour of the T-junction is readily understood by refer¬ 

ence to the equivalent circuit. Fig. 5*31 gives curves for the quan¬ 

tities 1//2, i/3, appear in the circuit as functions of 

bjXg in a T-junction for which 6 = c. 
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We consider some applications of the equivalent circuit: 

(a) Suppose the side limb of the T-junction to be closed by a 

h 
sliding piston. If the piston is adjusted so that 7. 
then = i when y^^ = i and no reflexion occurs in the main wave 

guide. This result agrees with (4). If the piston.is adjusted so that 

then the capacitive susceptance is neutralized 

and an open circuit is placed across terminals i'—2'. It follows 

that jy 14 = 1///2 whatever may be the value ofyga- These conclusions 

agree with (5) and (6). 

{b) If ^23 = “(i/jTs)* which requires a reflecting piston in the 

right-hand limb, then = i/jf/2 whatever the value of ji2- Similarly 
the admittance (—jyi2) (looking into the system) at terminals i—2 

for all values of 

{c) It is impossible for ^^4 to equal unity if ^23 is a pure reactance. 
The T-junction thus affords a good example of how it is possible 

to discuss the properties of a complex electromagnetic field in terms 

of an equivalent circuit. 

The values of the circuit elements in the equivalent circuits of 

fig. 5*30 (a) may be obtained from the curves in fig. 5-31 when 6/A^ 

is known for the case b — c. When, however, the side limb and the 

main wave guide have different dimensions b and r, it would be 

necessary to return to the basic theory of Frank and Chu and to 

calculate /i,/2 and /g in terms of bjXg and bjc. 
Alternatively, the circuit elements can be found experimentally. 

The quantities required are: 

The capacitive series susceptance 

A =; 

the inductive parallel susceptances 

A = 
and the transformation or coupling factor of the transformer 

« = i/s- 

Two experimental methods have been used by E. B. Callick to find 

these quantities. 
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In the one, the right-hand limb of the main wave guide is ter¬ 

minated in a reflexionless load and the side limb in a movable 

piston. Measurements ofy^^ are made for a range of positions of the 
piston. In the second method, the reflexionless load , remains in 

(fl) 

\ ~ri2 

(na 
—y cot 

position but the piston is transferred to the laght^hand limb of the 

main wave guide and the input admittance is measured in the side 

limb. The equivalent circuits for the two methods are shown in 

fig. 5*32(0) and {b) respectively. 

First method. From the circuit it may be deduced that 

3^14 J-1-g r ^14 + y^i4» (^) 

in which the total series impedance Xi and susceptance 6, are 

(9) 



l68 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

From (8), 

On eliminating from (lo) the following equation is obtained: 

(II) 

If, therefore, the representative points of ^^4 are plotted in the 

complex plane (admittance diagram) for a range of positions of the 
stub, these points, according to (i i), all lie on a circle whose centre 

lies at whose diameter is The circle 

therefore passes through the origin. 
The parallel susceptance can therefore be obtained by finding 

the centre and diameter of the circle through the experimental points. 

To find n and bg, we note from the curves in fig. 5*31 that 6^ is 

small compared with b^ and unity, and that in equations (10) it is 

justifiable to neglect b^ in comparison with unity. When this is done 

equations (10) become 

^14 ~ 

i+{x,-bpy 
From the first of equations (12) and from equation (9) we obtain 

(12) 

ibu-b,) = -- 

When ^44 is measured for two values of / two equations are obtained 

from which n and bg may be obtained, since bp has already been 

determined. It is convenient to choose for the two values of / 

those that make cot znljAg equal to -f i and — i respectively, that 
is, / = and |A^. The second of equations (12) may similarly be 

used to provide n and bg. 

Second method. From fig. 5-32(6) we deduce 

«>'is=A+- = = «(^12 +yfti2). (14) 
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where jxi= ilj'{bp—cot znl/Xg) 

(15) 

These again, by elimination of provide a circular locus on the 

admittance diagram for the representative points of 
The equation of the circle is 

zn ) \ zn ) * 
(16) 

Thus, if n has been determined by the 6rst method, may be found 

from the coordinates of the centre and from the diameter of this 

circle when the experimental points are plotted. 

If the reflexionless termination is replaced by a piston at from 

the axis of symmetry, it throws a short circuit across the right-hand 

inductive susceptance i/j/g* 
It follows that 

yii = = -jncot2nllAg+j\b,+bp). 

If / is chosen to make cot znl/A^ in turn equal to o, -hi, — i, then n 

and {bs-\-bp) can be determined. If b^ is assumed from method i 

then bp is known. 
T-junction with unit coupling factor n = i. In order to couple the 

side limb strongly into the main wave guide the T-junction should 

be designed to place the maximum series impedance z^Jn across 

the terminals i'—2' (fig. 5•30(c)), where n = i/3. 

Since the smallest value of is unity, the greatest coupling is 

obtained when n = i. This cannot be achieved in a T-junction in 

which the narrow dimensions b and c (fig. 5*27(6)) are equal. 

However, if b and c are unequal it is possible to design a series 

T-junction for which n = i. Fig. 5*33 is a curve due to Macfarlane, 

based on the theory of Frank and Chu, from which the correct values 

of b/Ag and c/Ag for unit couplifig factor can be read. In Callick’s 
experiments a T-junction for use at A = 9*1 cm. was constructed 

with the main wave guide of standard i x 2^ in. cross-section 

(6 = 2-54) and with the dimension c of the side limb i^in. 

as obtained from fig. 5*33, with A^, == 13-2 cm. (wave-length of 
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-wave in the 2^x1 in. wave guide). Measurements on this T- 

junction gave: 
-oil b, +018 

n I ± 0*02 

Compensated T-junction, The equivalent circuit of fig. 5-30 is 

valuable in that it suggests how, by the use of compensating reactive 

cl\ 

5'33* Relative dimensions in T-junctions with unit 
transformation ratio. 

irises, it is possible to neutralize the storage field at the junction, 

that is, to compensate for the reactances and Fig. 5*34 shows 

how this may be done. 

It is not possible, however, to predict the dimensions of the irises 

exactly from the formulae given in §5*5, because these formulae 

refer to the behaviour of the iris in the field of an incident 
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If an iris is placed in a region where a storage field already exists, 

its apparent susceptance will not be the same. The capacitive irises 

in the main wave guide in fig. 5*34(6) are not used in practice 

Plain T-joint 

Fig- 5*34- Equivalent circuits of T-junctions in 
rectangular wave guide. 

because of electrical breakdown at high powers, and the inductive 

irises of fig. 4*34(c) are preferred. These are placed at a distance I 

from the central section such that cot znljAg — ibp. It can be seen 
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from the transmission-line equation that at this distance an inductive 

iris whose susceptance is will cancel the junction susceptance 

iA- . . -. 
A compensated junction behaves like the ideal series junction in 

a transmission line, shown in fig. 5*27 (ft). For instance, when 

^23 = 00 and >^12 = I JV14 = I there is no reflexion at the 
junction, the whole of the power passing to the load in the side arm. 

Fully compensated junctions are used in the switching device shown 

in fig. 5*26 (A). 

5*11. Shunt or jET-plane junctions 

In this section we shall consider briefly the treatment of T- 

junctions given by J. T. Allanson, R. Cooper, and T. G. Cowling,* 

in which both series and shunt T-junctions and Y-junctions are 

investigated. 
As already mentioned, the purpose of a theory of a three-limb 

junction is to permit the standing wave pattern and the distribution 

of normalized admittance y with respect to the dominant mode to 
be calculated when the distributions of the admittances y in the 

other two limbs are known. For this purpose it suffices to derive a 

formula relating the admittance at a fixed chosen section in the one 

limb with the admittances at similar fixed positions in the other two 

limbs. In the investigations of Frank and Chu the reference positions 

coincide at the junction (fig. 5-28) and the admittances J23 

ji4 (with respect to i/iQ-waves) are extrapolated back to these sections. 

In the treatment due to Allanson, Cooper and Cowling the 

admittances are taken at positions which they call characteristic 

points, which are not, in general, located at the junction of the limbs. 

To appreciate the significance of the characteristic points we refer 

to fig. 5*35 which shows a series and a shunt T-junction with the 
characteristic points (more accurately, characteristic sections) as 

dotted planes P^, and Pj, whose positions relative to the junction 
depend on the dimensions of the wave guides and the type of 

junction. 

We consider first the properties of these planes P^, and P3. 

Let limb 2, in either type of junction, be terminated in a perfectly 

reflecting piston, and suppose an /f^Q-wave to be propagated towards 

* *The Theory and Experimental Behaviour of Right-Angled Junctions in 
Rectangular-Section Wave Guides*, Imt. Elect. EngrSf vol. 93, part iii, no. 23, 
May 1946. 
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the junction along limb i. When the piston is set with its reflecting 

face in the plane Pj h “ found that the wave in limb i is completely 
reflected at the junction and no power proceeds into limb 3. 

Further, a complete standing wave is produced in limb i with 

nodal planes at spacings of \\g, over which the electric field of the 

/f;io-mode vanishes. Let Pj be one of these nodal planes; then P^ 

(a) 
Series junction 

{b) 
Shunt junction 

Fig* 5*35* Characteristic points. 

is also a characteristic plane of limb i, for according to theory (and 

confirmed in practice) if the piston is transferred from limb 2 to 

limb I, wheirpower is fed into limb 2, complete reflexion occurs at 

the junction provided the face of the piston lies at the plane (or 

any other of the nodal planes of limb i). Moreover, the plane 

is one of the nodal planes of limb 2. 

Next, suppose the piston to be placed at Pg that power is fed 

into limb 3. Complete reflexion again occurs and the nodal planes 

in limb 3 are also its characteristic planes. Thus, to generalize, if 
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power is fed into one limb and a reflecting piston is placed at a 

characteristic plane of a second limb, no power proceeds down the 

third limb. 
In formulating the results of the theory it is convenient to measure 

distance along the respective limbs, from a characteristic section as 

origin (usually the section in each limb nearest to the junction). 

When the limbs are given arbitrary terminations partial 

standing waves and a distribution of admittance y will exist, in 
general, in each limb. The values of the admittances in each limb 

extrapolated back to the characteristic sections, according to 

Allanson, Cooper and Cowling, are always related as follows: 

a\yi + a\y^ + dly^ = -jK, (i) 

where RndjVa admittances at the characteristic sections 
in the respective limbs, and a^y and K are real constants. The 

coefficients of the admittances are therefore always positive. 

The convention concerning the signs of the admittances is that 

in formula (i) the admittances are to be prefixed with a positive 

sign when the observer is looking towards the junction, but with a 

negative sign if away from the junction. 

The theory provides the values of the constants in equation (i). 

We consider some applications. 

Let limb 2 contain a reflecting piston, and suppose limb 3 to be 

terminated in a reflexionless load, and denote distances measured 

along the limbs from the characteristic sections by /j, 4 and 4 

respectively. When, therefore, the piston is at distance 4 from Pz, 

the admittance jy2> looking away from the junction, is 

( -yz) = -Jcot 27TlJXg, 

and, since limb 3 is matched. 

The admittance (looking towards the junction) is, from (i). 

«i>'i + «iycot27r4/Ap-ai = -jK, 

.(al cot27rlJAg + K\ 

(2) 

or yi al A 

On introducing new constants A and B this expression for yi 

becomes - i / ^ / v 
yi “ Si cot 2nl^\g + B], (3) 
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where, gi = a|/af (and is essentially positive), A = a|/af and 

B = K/al, Thusyi is of the general formy^ = 

In the special junctions shown in fig. 5*35, where limbs i and 3 are 
symmetrical with respect to limb 2, the constants ai and ^3 in (i) 

are equal 4nd^i in (3) is equal to unity. 

In this case the stub behaves as a variable susceptance 

-[A cotznlJXg + b] 

placed in shunt across the characteristic section of limb i. We have 

therefore ^ ^ 2;r/,/A, + B]. (4) 

The condition for matching at the junction is thaty^ = i, and this 

is achieved by adjusting the piston to the distance 4 from Pg 

cot27r4/A, = -BM. (5) 

The condition for complete reflexion at the junction isy^ = oo, and 

from (4) the piston must be^placed at one of the distances 4 from Pg, 

4 = o, A^, etc. 
The values of B and A as functions of 6/A^ or a/Xg have been 

calculated by Allanson, Cooper and Cowling for both forms of 

T-junction, and their results are exhibited in figs. 5*36 (a) and (6). 

Let di = ^3 and ^g be the distance of the nearest characteristic 
points in limbs i and 2 from the central sections of the junction and 

the plane of entry respectively (fig. 5 35). The distance of the face 

of the j'eflecting piston in limb 2 from the plane of entry when 

yi= I (no reflexion at junction) we call Lg, that is, from (5), 

cot[27r(L2-t/g)/AJ = -BjA. 

The quantities di/Ag, dJAg and LJAg are exhibited as functions of 

bjAg and ajAg for the series and shunt junctions respectively by the 

curves in fig. 5*37 (^i) and (A). 
For example, in a series junction made from 2j x i in. wave guide 

withA^= lyzcm.yblAg = 1-9. From fig. 5*37 (a) we find Lg = 0-47, 

which agrees with the result derived from 5-10(4). 

When the piston is placed in limb 3 and the matched load in 

limb 2, the equation (i) fory^ becomes 

+ «i( - 0 + «§[ - (-/cot 27r4/A„)] = -jK, 

_ a| .["ol cot znlJAg+/T] 

y^-al 1 «f J 
= A -/[cot znlJAg+B], (6) 
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where A and B have their previous meanings and a^/aj = i (sym¬ 

metrical junction). 
From fig. 5*36 (a) and (b) it is evident that A cannot be equal to 

unity in practice, and that therefore it is impossible to transfer 

power to the load in limb 2 from a source feeding into limb 1 without 

reflexion. On the other hand, complete reflexion occurs at the 

Series junction Shunt junction 

Fig. 5 36. 

junction when 4 = o, A^, etc., that is, when the piston lies at 

the characteristic sections of limb 3. 

The theory has been tested experimentally by its authors over a 

wave-length (TEM) range A = 7-05-io-97 cm., and good agreement 

was obtained between theory and experiment for the series junction, 

but less good for the shunt junction. 
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It has been very carefully tested at a wave-length of 3*2 cm. by 

W. J. Whitehouse, who obtained good experimental confirmation 

of the theory both for the series and the shunt junction and showed 

that it may be safely used in the design of compensated junctions 

at -Y-band wave-lengths. 

Series junction 

(«) 

Shunt junction 

Fig. 5*37. 

5*12. Junctions of circular with rectangular wave guides 

It is necessary on occasions to employ junctions comprising a limb 

of circular wave guide associated with rectangular limbs. Fig. 5*38 

illustrates types of combination that are met in practice. 

Fig. 5*38 (a) is a series T-junction of the type used in British 

AT-band T.R. systems. The purpose of the plate is both to increase 

the coupling of the side limb, and to match the junction. Fig. 5-38 (6) 

is a shunt connexion of a circular guide to a rectangular guide which 

HWG 13 
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is essentially a form of cut-off corner. The design of these devices 

is carried out empirically. 

Series junction Shunt bend 
Fig. 5 38. 

5*13. Applications of T-junctions 

Common aerial working—T.R, systems 

In most radar systems advantage is taken of the fact that the polar 

diagram of an aerial is the same in transmission as it is in reception, 

to employ a single aerial for both purposes. To do so, however, 

demands the use of special ancillary automatic switching and pro¬ 

tective devices to protect the receiver during transmission and to 

isolate the. transmitter and to reconnect the receiver during recep¬ 

tion. Such systems are known as T.R. (transmit-receive) systems 

and they were first developed by British scientists in 1940 for use 

with the i|m. C.H.L. and (later) G.C.I. equipments. 

T.R. systems were subsequently developed for use at micro wave¬ 
lengths (also first in Britain) both with coaxial feeders and with wave 

guides. The advantages of employing T.R. systems in radar equip¬ 

ments are outstanding; for instance, in ground equipments oper¬ 

ating at a wave-length of i ^ m. or less the use of a single aerial makes 

possible the use of a P.P.I. display in cases where the aerials are 

too cumbersome for two of them to be mounted on a single axis. In 

airborne microwave equipments T.R. arrangements are a necessity; 

first, the effective range is doubled at least, because it is possible to 

fit into the available space a scanner of at least twice the aperture of 

two separate scanners; and secondly, the mechanical difficulties 

of synchronizing the scanning ot two separate aerials would be 

considerable, if not insuperable. They also permit P.P.I. and similar 

forms of display to be employed. 
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"I'he T.R. devices must be so devised that in transmission the 

aerial feeder system presents a matched load to the transmitter 

while at the same time the receiver is protected, from paralysis or 

damage by power from the transmitter. Further, during the 

interval between emission of the transmitted pulse and the return 

of the echo (in some instances only a microsecond), the system must 

switch so as to isolate the transmitter from the aerial and to provide 

a matched path from the aerial to the receiver. 

It is not possible to describe in detail the great number of in¬ 

dividual T.R. systems, and it will suffice to give an account of the 

basic principles common to them all. Since these principles are 

most easily appreciated in T.R. systems employing transmission 
lines we shall first consider briefly the T.R. system employed in 

C.H.L. equipment at a wave-length of i^m. as it is probably the 
simplest of them. It is illustrated in fig. 5*39 (a), (It is assumed that 

the reader is familiar with the elements of the theory of transmission 

lines.) ABCD, the main feeder line from the transmitter, is an 

unscreened twin feeder line of 200 lb. copper wire, with a character¬ 

istic impedance of 350 ohms. The whole feeder-line system is 

strained in order to preserve the spacing between the conductors 

without the need of using a large number of spacers. At B a com¬ 

posite transformer system is placed in shunt across the main feeder. 

It comprises a half-wave transformer SE (Zq = 350 ohms), fol¬ 

lowed by a second half-wave transformer EF with a larger character¬ 

istic impedance (600 ohms). EF is bridged at its middle by a spark 

gap Gy. This double transformer and spark gap is called the 

transmitter gap unit (T.G.U.) or anti-T.R. unit, and a similar unit 

is connected to the main feeder at C, the receiver gap unit (R.G.U.) 

or T.R. unit. 
The distance BC is an odd number of quarter wave-lengths and 

the R.G.U., unlike the T.G.U., is not short-circuited at its end, but 

feeds into a balance-to-balance transformer (trombone) which 

allows the 8o-ohm coaxial cable to the receiver to be connected 

without mismatch to the twin feeder of the R.G.U. The spark gap 

is shown separately in fig. 5*39(6). 
The cycle of operations is the following. The transmitter emits a 

pulse and power is carried by a TEM-wave along ABCD. At B 

power flows into BEF and the spark gap strikes, placing a low resist¬ 

ance of a few ohms across the line. This low impedance is trans- 
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formed to a very high impedance at JS which is transferred unchanged 

to jB as a large shunt impedance across the line. Thus, little power, 
just sufficient to maintain the discharge, is diverted into BEF, In 

precisely the same manner, the spark gap strikes very rapidly 

before sufficient power can pass to the receiver to damage or paralyse 

it, and the shunt impedance at C also becomes large. Consequently, 

all but an inappreciable proportion of the power proceeds to the 

’ (b) (a) 
Spark gap Common T.R. on li m. 

Fig. 5-39. 

aerial, which is matched to the main feeder. Further protection is 

given to the receiver by a relay which disconnects it in the event of 

failure of G^. When the transmitter pulse has ceased, the spark gaps 

extinguish and the system rapidly reverts to the receiving condition. 

When, upon extinction, Gy again becomes a high impedance the 

short circuit at F is transferred to .6 as a short circuit and the input 

impedance of the line CB, in the direction CB, becomes very high. 

On the other hand, the extinction of Gjt leaves a matched path from 
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C to the receiver, and the power received by the aerial when the 

echo returns traverses the path DCHl^^d on to the receiver without 
reflexion at any of the junctions. Tne whole process is repeated 

some '500-600 times per second according to the pulse recurrence 

frequency in use. The same essential ingredients—anti-T.R. unit, 
T.R. unit and spark gaps—are to be found in almost all T.R. 

systems. We proceed to consider the principles of T.R. systems for 

microwave equipments, omitting, however, T.R. systems for 
coaxial 5-band feeders and proceeding direct to the discussion of 

T.R. with wave guides. 

Wave-guide T.R, systems. The demands on a T.R, system at 
microwave-lengths are far more severe than at 11 m. wave-lengths 

for the following reasons: 

(£i) The first stage in a microwave receiver is a crystal mixer 

(§4*5) whose crystal must be protected against ‘burn out’ by power 
from the transmitter pulse: Thus, although the power in the pulse 

proceeding down the main wave guide to the aerial may be of the 

order of 100 kW. or much greater, yet the power permitted to enter 

the crystal mixer, lodged in a side arm of the main guide, must not 

exceed iVW. 
(6) In centimetre-wave airborne radar search equipments, called 

A.I. (aircraft interception) fitted to night fighters it is important to 

achieve the smallest possible minimum range in order that the night 

fighter may, by means of the A.I. equipments, approach within 

visual range of the bomber. This minimum range should be of the 

order of 500 ft. or less. To achieve a minimum range of this order 

it is necessary for the T.R. system to revert from the transmitting 

to the receiving condition within i /^sec. after the start of the 

transmitter pulse. 
One of the most straightforward T.R. systems for wave guides is 

that shown in fig. 5*40. It is used in the American A-band A.S.V. 

(aircraft to surface vessel) Equipment AN/APS 15 (or A.S.V. 
Mark 10—British nomenclature) which is also used as an HgS 

equipment in bombers. 

The unit comprises a straight run of American size (0-9 x 0*4 in.) 

AT-band (A = 3-i-3-3cm.) wave guide (fig. 5*40(a)) into which the 

magnetron feeds on the left, and to which side arms are attached by 

series T-junctions. The one side arm leads through a i B 24 pro¬ 

tective cell (see §5*9-i) to the crystal mixer and forms the T.R. 
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unit. The other side arm leads to a resonant cell, the 724 A, 

which is essentially a resonant cylinder with coaxial tips projecting 

from its flat ends. These tips, and the central portion of the 

cavity, are enclosed in a glass envelope as indicated in fig. 5-40(4) 

(not to scale), which also shows how the cell is coupled to the end of 
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sentation by a transmission line and circuits, of the wave-guide 

system, is shown infig. 5*4o(rf). The resonantcells are represented by 

resonant L-C circuits, and their positions from the openings of their 
T-junctions are such that the effective lengths of the transmission¬ 

line series stubs are \nX, where n is an integer, which the present 

example is unity. The pair of conical projections in each resonant 
cell are represented by spark gaps Gin parallel with the tuned circuits. 

We shall use the equivalent circuit to discuss the action of the 
T.R. system. Suppose the magnetron to emit its high-frequency 

pulse. The power which enters the side arms causes a high-frequency 

discharge in the gas between the conical projections, and the effect 

of this discharge is to reduce the Q of each cavity to a small value, 

that is, in the equivalent circuits the gaps G become bridged by a 

low resistance. Thus a low impedance is transferred to the junctions 

of the stubs with the transmission line. In consequence, the power 

proceeding down the stubs is limited to the small amount required 

to keep the discharge running, and practically the whole of the 

transmitter power proceeds to the aerial. By choosing the correct 

pressure for the gas in the i B 24 cell the power reaching the crystal 

mixer can be limited to be less than xV which causes ‘burn out*. 
The gas employed is a mixture of hydrogen and water vapour at a 

pressure of 6 mm. of mercury. At the end of the transmitter pulse 

the discharges stop and the cells revert to high Q resonant circuits 

and are ready to receive the returning echo. The anti-T.R. cell 

presents a high series impedance at the end of its stub, and this is 

transferred by the ^ A length of line to A where it puts an open circuit 

in the main transmission line. This in turn is transformed by the JA 

length of line into a short circuit at B, On the other hand, the i B 24 

is now transparent to the weak echo signal. The power received by 

the aerial therefore flows direct into the crystal mixer where it is 

combined with the local oscillator e.m.f. to produce the i.f. output 

e.m.f. which is abstracted and taken to the pre-amplifier. 

The local oscillators are 723 A klystrons which can be tuned 

both mechanically and by variation of the voltage on the reflector 

electrode (§ 6*8 (iii)). The one oscillator is for normal use when the 

equipment functions as a search device, but the second klystron is 

employed instead when the equipment is interrogating a centi¬ 

metre-wave beacon which replies on a different frequency from that 

of the pulse transmitted by the airborne radar set. 
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In early researches on T.R. systems it was found that the damage 

done to crystals was due principally to the power which leaked 

through the T.R. cell before the discharge had struck. To ensure 

early and certain striking of the discharge one of the conical pro¬ 

jections is made hollow and with a hole in its tip. A wire, called the 

‘keep-alive’ electrode, runs from through the end of the glass 

envelope almost to the tip of the hollow electrode. By applying a 

d.c. voltage of about 300 negative (dropped through current limiting 
resistors) between the end of the ‘ keep alive ’ and the interior of the 

hollow cone a d.c. discharge can be maintained, from which electrons 

diffuse into the space between the tips and so provide an initial 
ionization from which the h.f. discharge can rapidly build up. In 

this way the damaging ‘spike’ leakage power is kept within safe 

limits. 
Another early difficulty was the persistence of electrons in the 

gap after the cessation of the discharge. By using water vapour, 

either alone or as an admixture, free electrons are rapidly converted 

to heavy ions by attachment to water molecules. In this way the 

absorption of the echo power in the T.R. box, near minimum range, 

is prevented and good minimum range is restored. The choice of 
gas pressure compromises between low striking voltage and rapid 

recovery time, the one requiring gas at low pressure and the other 

at high pressure. These various components of the system are 

named on fig. 5*40 (a). Fig. 5*40(c) shows how the British CV115 

cell (§ 5‘9‘i) is used in an anti-T.R. unit. In this case a series junction 
is shown, although shunt arrangements are also used. Equivalent 

spacings are indicated. The piston in the circular side tube is ad¬ 

justed to produce an antinode of electric field across the gap of the 

CV115,which therefore breaks down under the transmitter power but 

behaves as an open circuit in the wave-guide wall during reception. 

The action of the unit as a whole should now be self-evident, and 

the explanation is left to the reader. Anti-T.R. cells do not usually 

contain water vapour since rapid recovery is not of prime import¬ 

ance. The British equivalents of the 1B24 are the CV221 and 

CV114 (obsolete), with which they are identical in principle but 

differ in constructional details, mainly in being designed to fit into 

a side limb made of circular wave guide. 

We conclude this sketch of T.R. systems with a brief account of 

systems employing shunt instead of series T-junctions. These in 
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general are used at S-band wave-lengths, but recent -Y-band systems 

have been designed which employ one series and one shunt junction 

in order to economize in space. 
At 5-band wave-lengths (A = 9-11 cm.) the T.R. cell is essen¬ 

tially a Sutton tube (reflector klystron) from which the electron gun 

assembly has been omitted and the reflector replaced by a ‘keep- 

Keep-alivp 

Fig- 5*4i- 

alive’ electrode. The glass envelope contains water vapour at a 

pressure of 6 mm. of mercury. A typical example is the British 

CV43, which operates at a wave-length of 9 cm. but can be 

tuned externally by means of screw plungers. The resonant cavity 

(rhumbatron) is of the type shown in fig. 6*io (a) and (ft), and 

the general construction of the cell is indicated in fig. 5*41. Since 

these cells contain gas they are also known as ‘soft rhumbatrons’. 
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Fig, 5*41 (a) represents the rhumbatron together with the 

coupling loop and coaxial output of the crystal mixer (fig. 4*8), 

whereas fig. 5*41 (b) indicates the position of the rectangular window 

through which the field within the rhumbatron is coupled to that 

in the wave guide. The whole assembly with glass envelope and 

‘keep-alive’ electrode is given in fig. 5-41 (c). This form of T.R. cell 

is usually directly coupled to the narrow face of the wave guide 

without the intervention of a shunt side arm, and the size of window 
to give best protection and a large coupling factor is previously 

determined by experiment. A pair of such cells used in a T.R. 

system is shown in fig. 5*42 (a). The T.R. and anti-T.R. cells are 
identical except for the absence of an output loop and coaxial in 

the latter, the output orifice of the rhumbatron being closed with a 

plunger. 

The equivalent circuit is shown in fig. 5*42 (b). It should be noted 

that the rhumbatron is represented by a series L-C circuit which 

offers no impedance to the passage of a current along a transmission 

line at resonance. When, however, the spark gap G breaks down, the 

impedance at the capacity becomes small and resonance is destroyed. 

The full impedance of the inductance remains uncompensated and 

the power that proceeds down the branch is small. By placing the 

windows at a separation of an odd number of quarter wave-lengths 

[(2n-f between their centres as measured along the centre 

line of the broad face, a satisfactory T.R. system is achieved. The 

reader may easily follow the action of the system from what has been 

described previously and from fig. 5*42 (i). 
Fig. 5*42 (c) is an alternative circuit in which the resonant systems 

are represented as tuned rejector circuits in shunt with the side arms, 

but connected at JA from the main transmission line. As already 

mentioned, composite T.R. systems have been designed for AT-band 

operation, in which one of the side arms makes a series, and the other 

a shunt connexion with the main wave guide. Af-band T.R. systems 

incorporate a system of automatic frequency control (A.F.C.) by 

using as local oscillators the American SCR 723 A klystrons which 

can be tuned, over a limited range, by changing the d.c. potential 

of the reflector (§6-8(iii), last paragraph). 

The incorporation of A.F.C. is required to keep the receiver 

tuned to the magnetron frequency although the latter should wander. 

The A.F.C. is usually achieved by leading a fraction of the i.f. 



Wave-guide T.R. with shunt coupling 

Equivalent circuit of shunt T.R. system 

Equivalent circuit of shunt T.R. system 

Fig. 5-4*. 
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output of the pre-amplifier through a frequency discriminator which 

provides a d.c. potential of positive or negative sign according as 
the local oscillator frequency differs from the magnetron frequency 

by more or by less than the correct i.f. frequency. This d.c. voltage 

can be applied to the reflector of the klystron to tune it to the correct 

frequency. 

The sketch that has been given of T.R. systems has stressed 

principles rather than details of design, for to describe the latter 
would require more space than would be justified in an introductory 

survey of this character. 

5*i3*2. The magic tee 

This is the ambitious title of the double T-junction illustrated in 

fig. 5*43. It comprises a section of wave guide AB which carries 
both a series side limb C and a shunt limb D (§5*10), which form 

with it a double T-junction. Its alleged magical properties are 
these: when limbs Ay By and C are 

terminated in reflexionless loads and a 

wave is launched into Z), then power is 

propagated down limbs A and By but 

none along limb C. Similarly, when 

power is introduced into C with Ay B 

andZ> terminated in reflexionless loads, 
then power proceeds along A and B 

but none along D, If the power is 

introduced ztAoxB an ^^j-wave proceeds down each of the three 

remaining limbs when they are matched. This behaviour of the 

junction is readily understood by considering the relative directions 

of the fields and currents associated with //jq-waves in the respective 
branches. For instance, when an //iQ-wave proceeds down C 

towards the junction, the longitudinal currents in the broad face 

of C flow across the junction as longitudinal currents in the upper 

broad faces of A and B and thus excite i/iQ-waves in both these 

branches. At the centre of the broad face of D at the junction, the 

current in C is that in the narrow face, from which no longitudinal 

current flows along the centre of the broad face of D so that no //jq- 

wave is excited in D, Similarly, an //i^-wave approaching the 

junction along D does not excite an //iQ-wave in C, since the currents 

in its broad face fail to provide the necessary transverse currents in 

Magic lee 

F'R- 5-43- 



IMPEDANCE AND FURTHER TECHNIQUES 189 

the narrow face of C. It is easy to see that an /f^Q-wave m A ot B 

excited waves in both C and D, 
Consider, however, the case in which B and D are matched, A is 

unmatched and a wave is introduced at C. The wave from C excites 

waves that travel towards the terminations of A and J5, of which 

that in A is partially or completely reflected at its end. 

The reflected component on returning to the junction excites 

waves in all three limbs fi, C and D. We conclude, therefore, that 
only when both A and B are matched does no power proceed along 

D when it is introduced at C, and that a mismatch in A and/or B 

gives rise to a wave in Z). Similarly, a wave introduced at D excites 

a wave in C provided A and/or B are mismatched. 

Irises may be incorporated in limbs A and B to produce a ‘ magic- 

tee ’ into which power may be introduced along any one limb with 

no standing wave in that limb when all three remaining limbs are 

matched. 

Applications of the magic-tee, (i) Balanced mixer. Let crystal 

mixers (§4-5) be fitted to the ends of branches A and B which they 

are tuned to match (give no reflexion), and suppose that the mixers 

possess equal sensitivities. Let the local oscillator feed into limb D 

and suppose the signal (radar echo) to enter along C, so that each 

crystal mixer receives the same signal power and the same power 

from the local oscillator. 

The power supplied from the local oscillator is modulated by 

‘noise’ and this noise modulation appears in the output of each 

crystal mixer. Fortunately, when the outputs of the mixers are so 

combined that the i.f. signals add, it is found that the noise com¬ 

ponents are in antiphase and cancel. In this way local oscillator 

noise can be reduced and a considerable improvement in the radar 

receiver performance achieved. 

It is difficult to obtain crystal mixers with identical sensitivities, 

so that complete cancellation of local oscillator noise is not achieved 

in practice. Nevertheless, a worth-while reduction in noise is 

achieved by the balanced mixer. 

(ii) Magic-tee impedance bridge. Suppose branch A to be matched 

and that power is introduced into C. The signal in D is determined 

by the load at the end of B and vanishes only when B is matched. 

Thus the output from a mixer attached to D can be calibrated to 

measure directly the normalized impedance of the termination of B. 
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(iii) Magic-tee T.R. system. A balanced T.R. system for providing 

greater protection of the crystal mixer against break-through of the 

transmitter pulse is shown in fig. 5*44. The magnetron pulse pro¬ 

ceeds down C and divides equally into the branches A and B of the 

magic-tee and breaks down both T.R. cells. Since C is a series 

branch, the two waves in A and B leave the junction with their 

electric fields in antiphase. 

Since the T.R. cell in B is J farther from the junction than that 
in Ay the two waves reflected from the cel^ recombine in phase at 

the junction and send the power through D to the aerial and none 

back along C. 

To mixer 

Fig. 5-44* 

A very small fraction of the power leaks through each cell and 

proceeds to the lower magic-tee, where the waves combine to send 

the residual power into the absorbing load L and none into the 

mixer M. In reception, however, the signal enters along Z), divides 

into two waves which start from the junction in phase and reach 

the lower magic-tee in phase, unlike the leakage waves which 

arrive at ML in antiphase. Consequently, the signal from D proceeds 

along M and no power runs into L, None of the signal from the 

aerial proceeds along the branch C to the magnetron. This system 

affords good protection for the mixer against the transmitter pulse. 

5*14. Measurement of power 

Power measurements at microwave-lengths are effected by con¬ 

verting the whole, or a known fraction, of the energy carried by the 

wave into heat. The power is then obtained from the rate of genera- 
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tion of heat. A straightforward method of finding the power output 

of a magnetron transmitter is illustrated in fig. 5*45* Power from 
the magnetron enters at the left and proceeds to the flow calorimeter 

at the wave-guide termination. A rectangle of trolitul is employed 

as a matching reactance whose vs^ue can be controlled by altering 

the angle between the long axis of the rectangle and the axis of the 

wave guide. The position of the trolitul block can also be altered by 

moving its support along the longitudinal slot. 
It is thus possible to match the calorimeter to the wave guide and 

to ensure that no reflected wave retui'ns to the magnetron. The 

measured power is then the same as that produced by the magnetron 

Fig. 5*45. Measurement of power from a magnetron. 

under normal working conditions. The rate of conversion of energy 

into heat is obtained from the rate of flow of the stream of water 

and the rise in temperature indicated by the thermometers. The mean 

power is thus obtained directly. To obtain the peak pulse power it 

is necessary to measure the pulse duration and pulse envelope on a 

monitor, and the pulse recurrence frequency on a frequency meter. 

The power level is too high to permit the direct use of the standing 

wave indicators described in §4*4 to show^ when matching is 

achieved, and the usual method is to adjust the trolitul block until 

the maximum generation of heat in the calorimeter is obtained. 

Recently, however, a convenient high-power standing wave in¬ 

dicator has been developed which allows ^e matching adjustments 

to be readily made and also indicates the meali power. It is shown 

in fig. 5*46. It comprises a set of six evenly spaced glass tubes filled 
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with neon at reduced pressure, each of which protrudes into the 
wave guide through one of six holes on the centre line of the broad 

face as shown. Each tube is sheathed by a pair of metal semi-cylinders 

which are spaced to leave a longitudinal slit in front and behind, 

through which the tubes can be viewed. The tubes and sheaths are 

marked A, B, C, D, E, Fm the figure, and the sheaths are shown 

shaded. A perspex cover-plate carrying numbered horizontal lines 

_Q cm. 

Narrow face of 

wave guide 

Fig. 5 46. 5-band output tester. 

is fixed in front of the set of neon tubes. The section of wave guide 

with the neon tubes is included in the wave-guide run leading to 

the load. 

When power passes down the wave guide high-frequency dis¬ 

charges can be seen to extend different distances up the tubes when 

a partial or complete standing wave exists in the wave guide. When 

the calorimeter or load is matched then all the discharges terminate 

at the same level, whose value, read from the numbered horizontal 

graduation lines, gives a measure of th/|)oiK^er passing to the load, 
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if the scale of levels has previously been calibrated against a flow 

calorimeter. In the case of a mismatch the standing wave ratio S 
can be found by comparing the scale readings of the longest and 

shortest of the discharges in the system of tubes. This indicator can 

conveniently be included in the wave-guide run of an iS-band radar 

installation to indicate the degree of mismatch presented by the 

aerial and the mean power radiated. 
The following results obtained with a flow calorimeter serve to 

illustrate this method of measuring the output of a magnetron: 

Pulse recurrence frequency = 840 pulses per sec. 

Pulse duration (width) = i *4/^800. 
Temperature difference between inflow and outflow of calori¬ 

meter = 14*8°. 

Rate of flow = 100 c.c. in 274800. 

I joule = 0*239 cal. 

In I sec. power is passing into the water for 840 x i *4 = 1176 /^sec. 

Therefore mean power converted to heat is 

274 0*239 

Peak power (power during pulse) is 

100 14*8 10® __ ^_!_^ __ 
274 0*239 ^^76 

19*2 kW. 

The frequency, found by a wave meter, was 

3297*7 Mc./sec. 

The flow calorimeter is unsuitable for use at low powers and 

it is replaced by a thermistor, a device which has been developed 

principally in the United States. 

Thermistors are of the two types shown in fig. 5*47 (a)—the bead 

thermistor and the disk thermistor. The former, which is used to 

measure power, comprises a bead of a substance (an oxide of 

titanium) whose specific resistance is highly temperature-dependent. 

The bead is held by fine supporting wires within a glass envelope, 

as shown, and placed within a wave guide and matched (that is, it 

replaces the crystal in the equivalent of a crystal mixer). The electric 

field of the wave drives current in the supporting wires and through 

the bead; consequently, when proper matching is achieved, the 

H WG 13 
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whole of the power entering the wave-guide branch containing the 

thermistor is dissipated as heat in the bead. 
The bead thermistor is made one arm of a Wheatstone’s network 

as shown in fig. 5-47 (b). With no power entering the wave guide the 

bridge is balanced by adjustment of the zero setting resistor which 

controls the total current flowing into the network and in particular 

that through the thermistor. Since the resistance of the thermistor 

Fig. 5*47. Thermistors and bridges. 

depends on its temperature, which is itself changed when the current 

through it is changed, the zero setting resistance can be used to 

balance the bridge. When the power is absorbed by the thermistor 

bead from the wave in the guide its temperature changes and the 

bridge is thrown out of balance. The deflexion of the meter M is 

proportional to the power in the wave and may be calibrated to 

give this power direct. 

Variations in ambient temperature affect the simple bridge of 

fig. 5*47(6) in two ways. First, the balance of the bridge is upset 

even though there is no power entering the wave guide, and it is 
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necessary to readjust the zero setting resistance. Secondly, the 

sensitivity of the thermistor (change in resistance in ohms per watt 

absorbed) diminishes as its temperature rises; it is therefore im¬ 

possible, with the simple bridge, to calibrate the meter M to read 

power direct, in a manner independent of the ambient temperature. 

The simplest method of improving the stability of the bridge is to 

lag the wave guide with thermally insulating material, and this is 

generally a satisfactory procedure. A more ambitious method is to 

employ the disc thermistor, shown in fig. 5*47 (a), as a compensating 
device. 

The disc thermistor has a large thermal capacity, and its resistance 

is therefore largely independent of the current through it, but is 

determined principally by the ambient temperature. By associating 

the disc thermistor with a series resistance and a shunt resistance, 
with suitable values, a resultant resistance can be obtained which is 

temperature-dependent, in such a manner that when placed in 

series with the bridge meter M, as shown in fig. the meter 

sensitivity becomes temperature-dependent in the opposite sense 

to that of the bead thermistor. The calibration of the bridge in terms 

of power absorbed from the wave then becomes largely independent 

of changes in the ambient temperature. 

It is also necessary to introduce a similar temperature-com¬ 

pensating device in shunt across the input terminals to the bridge 

in order to obtain a zero setting resistance which is virtually self- 

adjusting with alteration in the ambient temperature. The final 

bridge is shown in fig. The meter M is 3. microammeter, 

and the order of magnitude of the maximum power that the bridge 

can handle is about 2 mW., which corresponds to a meter current 

of the order of 100 /lA, Thermistor bridges are used extensively for 

measurements at A'-band. Larger powers may be measured by 

diverting a known small fraction of the power from the main wave 

guide, by means of a directive feed (fig. 4*3) or a radiating hole, into 

the matched thermistor mount,♦ where it is measured as described 

above. 

5*x5. A wave-guide quarter-wave transformer 

The difference in dimensions of standard British and American 

X-band wave guides demands a suitable coupling section for 

joining the one type to the other. A tapered section (§4-11) can be 

13*2 
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used for this purpose but in order to avoid reflexions the taper 

should be gradual, a requirement that makes the tapered section 

too long for some applications. 

A convenient alternative is a coupling section which is analogous 

to the quarter-wave transformer of transmission-line practice, 

where two transmission lines with characteristic impedances Z^i 

and ^02 can be matched by means of a JA section of transmission 

line with characteristic impedance ^03 ~ '^{^01^02)’ 
anticipated, by analogy, that two wave guides with intemsic im¬ 

pedances (wave impedances, § 3-4*i) and Zh2 could be mjj^h^ 
through an intermediate section with length and intnftstc 

impedance ^H3 = This surmise is true in so far as the 

effects of geometrical discontinuities at the junctions are dis¬ 

regarded, but these, as we have seen, excite storage fields, which 

throw effective susceptances in shunt across the junctions. 

The practical problem is so to design the quarter-wave trans¬ 
former that the effects of the storage fields at the junctions are 

unimportant. 

The ifttfiftetc impedances of the three types of wave guide are 

and 

^Hl = 

l207Tbi y __ 12071^2 

aiv'{i-(A/2ai)*}’ “ aj V{I - 2^2)^} ’ 

7 - it 207^^3 
(0 

where a^, and are the respective long dimensions and ^2 

and 63 the short dimensions of the wave-guide cross-sections. 

The problem is, given b^ and ag, b^y to choose and 63 so that 

— ^Hl^H2- (2) 

There is an infinity of pairs of values of and 63 that satisfy this 

requirement, so that it is possible to choose a pair for which the 

influence of the storage field at the junctions is unimportant. It 

proves better to have a small step at both walls of a junction rather 

than a larger step on one wall and none on the other. First, the steps 

on the two walls contribute moderate reactances of opposite sign 

with resulting partial compensation, rather than a single large, 

uncompensated reactance. Secondly, the reflected wave from the 

reactances at the other junction tend to cancel those excited at the 

first jimction. 
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The design of wave-guide quarter-wave transformers for con¬ 

necting British and American A’-band wave guides has been studied 
by B. G. Loach, who has taken advantage of the specific dimensions 

of these wave guides to construct a very satisfactory wave-guide 

quarter-wave transformer. 

From equations (i) and (2) it follows that 

__^__V(^1^2) _ /^\ 

A particular pair of values (03,63) that satisfies (3) is the following: 

^3 ~ 

(4) 

It happens that the internal dimensions i x Jin. of the British wave 

guide are the same as the external dimensions of the American wave 

guide whose internal dimensions are 0*9 x 0 4 in. (wall thickness 

0*05 in.). Thus the American wave guide can be fitted into the British 

wave guide. To obtain and 63 for the quarter-wave transformer 

we write 

= 2*54cm., bi = i-aycm. (British), 

^2 = 2*285 cm., 62 — 1*015 cm. (American). 

From (3) 

63 = I *138 cm. = 0*447 in., ^z = 2*400 cm. = 0*946 in. 

With A = 3*2 cm. 

= A/V{i -(A/2fl3)2} = 4-30cm. 

Thus the length of the transformer = JA^3 = 1*075 cm. = 0*42310. 

Since 

(American wall thickness) = i in. — 0*05 in. = 0*95 in. == ^3, 

and 

bi (American wall thickness) = 0*5 in. — 0*05 in. = 0*45 in. = 63, 

the transformer is very conveniently constructed by removing 

0*423 in. of one narrow face and one broad face from the end of a 

piece of American wave guide and inserting it into a length of British 

wave guide as shown in fig. 5-48. 
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This transformer gave a standing wave ratio s — 0'98 over a wave¬ 

length band A = 3-20 ± 2 % and 0 99 at A = 3-20001. in one wave 

guide when the other was matched. The power-handling capacity 

is high and of the order of 400 kW. peak power. 

British 1 
t====:| 

American 

Broad faces 

■ 
Narrow faces 

cut away 

Fig, 5*48. Wave-guide quarter-wave transformer. 

5*i6. Corrugated wave guides 

This section comprises a very brief account of a novel type of 

wave guide—the corrugated wave guide—which promises to be of 

considerable practical importance. For certain applications, the 

fact that the phase or pattern velocity in a wave guide exceeds the 

free space or TEM wave velocity is an inconvenience, and methods 

for reducing the wave velocity in a wave guide have received con¬ 

siderable attention. It is known that the phase velocity of a wave 

along an actual or an artificial transmission line is 
where L and C are the series inductance and shunt capacitance per 

unit length or section. 
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Since in this instance v is reduced by increasing L, that is, by 

increasing the magnetic storage held, it is suggested that the 

physical equivalent of inductive loading would also diminish the 

D ^ 

(«) 

ib) 
Fig. S-49- 

phase velocity of a wave along a wave guide or parallel strip trans¬ 

mission line. 
The simplest example of an electromagnetic wave guided by an 

inductively loaded system is that shown in iig. 5-49(0). 

This represents the field pattern of an electromagnetic wave 

propagated over a corrugated metal sheet of infinite extent. The 
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corrugations are rectangular slots which run at right angles to the 

direction of propagation. When the depths L of the slots are less 

than J A, where A is the free-space wave-length, the input impedance 

across each slot, regarded as a parallel strip transmission line, is an 

inductive and the storage field is predominantly magnetic. It is 

found in these circumstances that the electromagnetic wave travels 
over the surface with a phase velocity less than the free space velocity 

Further features of the wave are the following: 

There is a longitudinal component Eg of the electric field in the 
direction of propagation. After a certain distance all components of 

the electromagnetic field diminish rapidly with distance from the 

corrugated surface so that the flow of energy is effectively confined 

to the immediate vicinity of the guiding surface. It is found that 

the waves still adhere to the surface even when it is curved. The phase 

velocity and wave-length are less than those of a wave of the same 

frequency guided by a plane conducting surface. 

Such a surface, for which o<L< JA, or JA <L < |A, etc., where 

L is the slot depth, is termed an inductive surface. 

If, however, JA<L<^A, fA<L<A, etc., the surface is termed 

capacitive. Such a surface is unable to guide a wave, and the flow 

of power is away from the surface into the space above and is no 

longer confined to the vicinity of the surface. 

When L = JA the oscillations in adjacent slots are in antiphase 

and a complete standing wave exists on the surface. The wave¬ 

length of this standing wave is twice the distance between the 

centres of adjacent slots. 
If the corrugated surface is gradually transformed to a flat 

surface, across an intermediate region where the slot depth is 

steadily diminished from its full value on one side to nothing on 

the other, then the guided wave expands from the adhesive wave 

on the corrugated surface to an ordinary TEM wave on the flat 

surface. 
Any irregularity on the corrugated surface, such as a metal 

projection, radiates strongly, and a row of evenly spaced projections 

or recesses can be used to produce a beamed radiation. 
An alternative method of guiding power near a surface is that 

shown in fig. 5*49 (fc) which represents a metal rod with ring slots. 

The simplest form of wave pattern along such a rod is that shown in 

fig- 5-49 W- 
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If the surface is alternately raised and depressed at spacings of 

(A, is the wave-length on the rod) then a conical beam of radia¬ 

tion is produced. When the corrugated rod is transformed gradually 

into a smooth rod the system behaves as an end-fire array. 

We next consider a rectangular wave guide in which one of the 

broad faces is corrugated as indicated in fig. 5’50. 
It would be anticipated from what has been said above that the 

energy flow along the axis of the wave guide is concentrated near 

the corrugated surface, and that the phase velocity and wave-length 
are smaller than those in a smooth wave guide of the same dimen¬ 

sions. This wave guide possesses two cut-off wave-lengths—the one 

A(,i = 20 corresponds to the normal cut-off in a rectangular wave 

guide with broad dimension o, and the other A(,2 corresponds to the 
transition of the corrugated surface from an inductive to a capacitive 

surface. That is, where L is the slot depth. The wave¬ 

length Aj of the wave is then equal to twice the distance between 
the centres of adjacent slots, since the fields in adjacent slots then 

oscillate in antiphase. 
The corrugated wave guide behaves, therefore, as a band pass 

filter. The dependence of A„ upon A (TEM wave-length) is indicated 

by the curve in fig. 5-51. 
There is a longitudinal component of E in the wave, and this 

fact gives the’corrugated wave guide its practical importance. 

The principal uses for corrugated wave guides are as flexible wave 

guides (bellows type), delay lines, transformers for changing the 

mode of transmission of a wave (for instance £01^02 i” a circular 
guide), as phase shifters and as filters. A further application, of 
outstanding importance, is the acceleration of electrons or ions. 



202 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

Since the wave in a corrugated wave guide possesses an JE^p-com- 

ponent in the direction of propagation and also a phase velocity 

which can be made less than r = 3 x io®m./sec., it is possible to 

cause an electron or ion to travel down the axis of corrugated wave 

guide at the same speed as the jB^-component of the field, by which 

it is continuously accelerated. It is necessary to accelerate the phase 

velocity of the wave so that the particle always remains in the same 

longitudinal field, and this acceleration is achieved by progressively 
grading the depths of the corrugations. 

Fig. 5*5*- 

Corrugated circular wave guides have been used for this purpose, 

and in the extreme case where the partitions between the corruga¬ 

tions are narrow compared with the width of the corrugations and 

the depth of the corrugations an appreciable fraction of the radius 

of the wave guide, the system may be regarded as a series of cylin¬ 

drical resonant cavities coupled through holes in their flat ends and 

oscillating in an ^010 resonant mode (fig. 6-i i). 
Although it would be out of place to enter deeply into the theory 

of corrugated wave guides, it is permissible, briefly, to indicate the 

theoretical procedure adopted by Slater, Goldstein, CutUer and 

others. ' 
It is assumed that the row of slots (rectangular wave guide) is of 

infinite extent and that the electric field across the mouth of a slot 

is of simple character. For instance, the field component may be 
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assumed to be of constant amplitude (independent of z) across the 

slot and zero on the walls between the slots. The phase of the 

oscillation at the centre of each slot is supposed to advance by 
from one slot to the next. The field in the wave guide is then resolved 

•into an infinite set of modes whose relative amplitudes are deter¬ 

mined from the fact that the field in the wave guide reduces to the 

Fourier expansion, mentioned above, at the slotted boundary. A 

transcendental equation is also obtained for the phase constant 

which gives the phase velocity of the composite wave, since all the 

modes are here interlocked so that they are propagated at the same 

speed. 
The complicated transcendental equation which results from 

the assumption that Eg is constant (independent of z) across the 

mouth of the slot is ^ 

d k'tznk'L _ 

where D is the distance between the centres of adjacent slots, 

d is the width of the mouth of a slot, 

k a is broad dimension of 

X is the distance from the mouth of a slot to the uncorrugated 

opposite wall of the same guide, 

kg = zn/Xg (A^ is wave-length of wave in corrugated guide), 

= kg + znmID (m = o, ± i, ±2, ...), 

The integers m correspond to the different modes in the wave 

pattern. 
When A'>4L the transcendental equation may be approximately 

represented by (w = i) 

d ktankL 
DKtsuihk^X 

This equation gives k^. from the dimensions of the wave guide 

and those of the corrugations. A, is then deduced from k^. 
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5*17. Resonant slots in the walls of wave guides 

5*i7*i. Introduction 

The elucidation of the properties of slots in the walls of wave 

guides is due principally to the work of Watson and Guptill and 

their collaborators. This section briefly reviews the results obtained 
by these Canadian workers. 

5'i7*2. Slots in wave guides 

Examples of slots'in wave guides are given in fig. 5-52. When these 

slots are given a total length of approximately they become 

resonant and may be excited by the surface currents associated with 

the /fiQ-wave in the wave guide, provided the slots interrupt the 

flow of current. For instance, the two slots shown in fig. 5*52 («) 

are not excited by an //iQ-wave in the guide and do not radiate, 

since the currents in the walls flow parallel to the edges of the slots 

as indicated by the arrows (vide fig. 2-9), whereas the slots of fig. 

5*52 (i) and (c) are excited and radiate, those of fig. 5*52(6) being 

more strongly coupled to the /f^o-wave than those of fig. 5-52 (c). 

The electric field of the hemispherical wave radiated from the slot 

is polarized at right angles to the long axis of the slot. In addition 
to radiating externally a slot scatters a wave internally within the 

wave guide and also excites a storage field in its vicinity. It therefore 

throws an impedance either in series or in parallel with the wave 
guide. The series slots are marked A in fig. 5*52 (6) and (c). It will 

be noted that at their centres the longitudinal current in the wave 

guide is intercepted. It will also be found that the internal scat¬ 
tering is antisymmetrical with respect to the electric field in the 

scattered wave (§5*4). The equivalent circuit is a transmission line 

with a series impedance Z = R-^-jX in series (with one or both lines) 

as shown in fig. 5*52 {d). The resistive term R accounts for the power 

lost in external radiation. 

In contrast, the slots marked B interrupt lateral current and 

scatter symmetrically and are represented by an admittance 

Y = in shunt across a transmission line as shown in fig. 

5*52(J). These slots are therefore called shunt slots. 
A slot, such as slot C in fig. 5-52 (c), which is both twisted and 

displaced from the centre line, intercepts at its centre, both lateral 

and longitudinal, components of the current and also scatters 

unsymmetrically. 
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Both series and shunt components appear in the equivalent cir¬ 

cuit, and it is probably most simply represented by a lattice section 

inserted in a transmission line. 
We have noted two principal methods for controlling the coupling 

of the simple series and shunt slots, namely, rotation of the axis 

-- 

Zo 

Series slots—A 

(d) 

Fig- 5 52- 

Ve = c+y B' 

Shunt slots—B 

and displacement of the centre. Suppose the slots in fig. 5-52 to be 

cut to resonance so that the reactive component of the impedance 

or admittance is small or zero, and the normalized resistance or 

admittance may be found from measurements with a standing wave 

indicator in the usual manner. 
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Consider the shunt slots B in fig. 5-52 (c). Watson showed that 

the normalized conductance g of the slot in the broad face was 
related to its displacement x from the centre line as follows: 

^ = A:isin*|~j, (i) 

where a is the broad dimension of the wave guide. 

This is what would be expected if the amplitude of the electric 

field across the centre of the slot is proportional to the component 

of the wall current perpendicular to the slot, since the power radiated 

is then proportional to the square of the electric field strength at 

the centre. 

Watson and Guptill found that the shunt conductance of a 

resonant slot ^ x 2 in. cut in the broad face of a standard American 

5-band wave guide (3 x ijin. O.D.) was represented accurately by 

formula (i) with = 0‘47S- They also found that the resonant 

length was 6 % greater at the edge than near the centre 
The series normalized resistance r of slot with its centre on the 

axis (slot A, fig. 5*52 (c)), but with an angle (j) between its axis and 

the centre line of the broad face, is 

r = K2S\n^(j> 
for small values of (j>. 

The shunt conductance of the inclined resonant slot in the 

narrow face (slot 5, fig. 5*52 (c)) is 

g = K^sw?(l>. 

The experimental conductances of an oblique resonant slot f^in. 

wide in the wall of an American A’-band wave guide were repre¬ 

sented accurately by this formula with = 0*715- 
The series resistance r of the ^ansverse slot (slot .4, fig. 5*52(6)) 

whose centre lies at distance x from the nearest edge of the wave 

guide is 

The constants K depend on the geometry of the wave guide, the 

wave-length and the slot width. 

The shunt conductances of narrow shunt slots are proportional 

to their widths. 
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One of the most important applications of slots is as radiating 

elements in wave-guide linear arrays, the two principal types of 
which are shown in fig. 5*53 (a) and (6). 

It can be seen that shunt slots are used in each case, but in the 

array of fig. 5*53 (a) the electric field in the radiation vibrates 

parallel to the long axis of the wave guide and in the second array, 
perpendicular to the long axis. Let us suppose the centres of 

(a) 
Slot array 

Fig- 5*53- 

adjacent slots to be apart, then by alternating the inclinations 

<f> and the lateral displacements x respectively, between positive and 
negative values from slot to slot, the slots in each array radiate in 

phase, and the beam proceeds at right angles to the axis of the wave 

guide. Linear arrays may be resonant, or non‘-resonant. In the 

former the end of the wave guide is short circuited at a distance 

from the last slot, but as these arrays are not extensively employed 

because they are frequency-sensitive, we shall not discuss them. In 

non-resonant arrays the end of the wave guide distant from the 

transmitter is terminated in a reflexionless load, and a travelling 

i/jQ-wave proceeds to it down the wave guide, becoming pro- 
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gressively weaker as it is robbed of power by the radiating slots. It 

is evident that if the slots were all coupled equally strongly into this 

wave, more power would be radiated from the slots near the input, 

where the amplitude of the wave is great, than from the slots near 

the termination. To ensure that equal power is radiated from each 

element the coupling of the elements is increased progressively 

down the wave guide by increasing ^ or x as the termination is 

approached. The residual power wasted in the load is about S % of 

the total power radiated. 

It has been assumed so far that the centres of adjacent slots are 

separated by This spacing is, however, not adopted in practice 

because the scattered waves from the individual slots reinforce to 

give a powerful reflected wave at the input which has a deleterious 

effect on the performance of the magnetron. The slots are therefore 

separated by o*55A^, and as a result the direction of maximum 

radiation is no longer normal to the wave-guide axis but is shifted 

by about 5^^ froqi the normal. When this shift has been determined 

it is easy to allow for it in any direction-finding equipment in which 

the array is incorporated. 

Since our subject is wave guides and not microwave aerials, it is 

necessary to resist the temptation to expatiate further on linear 

arrays whose study is now a highly specialized pursuit. 

5'i7-3. Coupling of wave guides through resonant slots 

The commonest types of simple coupling are shown in fig. 5*54. 

It will be noted that they are of the following types: 

Series-series in which the slot is a series slot in both wave guides 

(fig-5-54(0) and («)). 

Shunt-shunt in which the slot is a shunt slot in both wave guides 

(fig-5-54(*) fnd (c)). 
Shunt-series (or series-shunt) are mixed couplings in which the 

slot is a series slot in the one wave guide but a shunt slot in the other 

(fig- 5-54 (</) and (/)). 
The coupling properties of the slots in these arrangements were 

unravelled in an extensive series of researches by Watson, Guptill 

and their associates at McGill University, whose results are 

schematically summarized in fig. 5*55. 

A marked difference exists between the unmixed couplings 

(series-series and shunt-shunt) and the mixed couplings (shunt- 
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scries and series-shunt). Consider, for instance, the series-series 

coupling represented in fig. 5*55 (a). When the lower wave guide is 

closed by a shorting piston at B, at a distance from the centre 

of the slot, and the upper wave guide is terminated at C and D so 

that the impedances in the two branches have arbitrary values Z2 

Senes-senes 

{()) ‘'hnnl-.HhiiMt (r) 

Shunt-series 

5’54* Resonant slot couplings. 

and Z2 when extrapolated back to the centre of the slot, then the 

input impedance in the arm A of the lower guide, at the slot, is 

in complete analogy with circuit concepts. 
Similarly, the shunt-shunt coupling of fig. 5-55(fr), when the 

shunt impedance presented by the arm B at the centre of the slot 

is infinite, and arbitrary shunt impedances Z2 and Z2 are presented 
at the slot by C and Z), then the input impedance z^^ in arm A, is 

HWO 14 
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the side limb of the series-shunt T-junction is closed by a plunger, 

the shunt admittance placed across the main wave guide is 

—jK^cot znljAg, 

To obtain a pure shunt susceptance free from the transformation 

factors Ky it is necessary to employ the shunt-shunt coupling of 

fig. 5*54 (A) and (c). When Z2 (fig. 5*55 (b)) is made infinite by means 

of a plunger in D at from the slot, and another plunger is placed 

at distance / from the slot in C, then Z2 =j tan znl/Xg. 

If the piston at B is replaced by a reflexionless load, then 

I 

znllXg 

A simple combination of a pair of slots studied by Watson and 
Guptill is shown in fig. 5*55 (e). 

Slot is a series slot and slot B a shunt slot, and it was shown that 

the combination behaved as a 7r-section. The slots were covered in 

turn and their separate impedances were measured and were 

= 0-89+7 XO. 

The calculated impedance of the 7r-section followed by a matched 

wave guide is 0-705 +70-17. 

The measured impedance of the combination was found to be 

0-67+70-14. 

The radiation from this combination of slots is elliptically 

polarized. 

5*i8. Methods for feeding microwave aerials from wave 
guides 

This section is a brief description of some typical methods for 

feeding aerials from wave guides. These are illustrated in fig. 5-56. 

Fig. 5*56 (a) shows a simple front feed from the open end of the 

wave guide which is matched by an inductive iris. When the long 

edge of the end of the wave guide is vertical, then the radiation in the 

beam from the aerial is horizontally polarized. 
In fig. 5*56(6) and {c) are shown examples of rear feeds. In the 

one the power is fed into a box and escapes through a pair of resonant 

slots, and in the other it is scattered by a dipole placed in front of a 

\ ; tan 
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reflecting plate and supported on a metal strip. These three methods 

are used at .Y-band wave-lengths. ‘ 
The second three of fig. 5-56 show methods of feeding S-band 

aerials. 

(a) (h) ('■) 

I Slotted wave guide 

T (series slots) 

(^) 

Fig. 5 56. 

A cheese aerial is usually fed from a horn, and parabolic cylinders 

from wave-guide slot arrays which act as line sources at the focus. 

The aerial of fig. 5*56 (e) is of the type used in early warning and 
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Variable reactive probe in wave Equivalent circuit of probe 
guide. Probe is inserted Pjo system of fig. {a) 
transverse electric field 

Coaxial-wave guide transformer which may be used to shunt load 
a rectangular //,o-wave guide or a circular Hi wave guide 

w 
Equivalent circuit of coaxial-rect, wave guide. 

Transformer of fig. (c). 

Fig. 5 57. 
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coverage ground equipments, and in order to obtain a beam with 
the electric field horizontally polarized an array of shunt slots cut 
in the narrow face of the wave guide is employed as a line source 

(fig- 5*53 (W\«- 
1 : 2dlW 

j2X, 

(a) 

; W/d Xs 

Equivalent circuit of fig. 5 57 (c) when terminals A and B 
are shorted 

d [3 

3 ^^Co»3cial line of iurge 
admittance 

\b__ 

Jr 

4 4 

s 
A 

= Admittance terminating 
coaxial line A at 44 

(*) 
Coaxial-rect. wave guide transformer used as feeding system 

Equivalent circuit of fig. (b) 

Fig- S S8. 

Conversely, the height-finding aerial of fig. 5-56 (/) is fed from 
an array of series slots of the type shown in fig. 5-53 {b) in order to 
preserve the horizontal polarization of the electric field. 
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5*19. Miscellaneous equivalent circuits 

This section merely refers to figs."^ 5*57 and 5-58, which represent 
some useful equivalent circuits. 

Even when all the constituent elements cannot be calculated 

they may often be measured by giving special values to those com¬ 
ponents that are known and are variable. Fig. 5*59 is a circle diagram 

and is included as being generally useful. 

* Taken from an unpublished article by Dr G. G. Macfarlane. 
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Chapter 6* 

CAVITY RESONATORS 

6-1. Importance of cavity resonators 

It is found that electromagnetic oscillations can be excited within 

an empty cavity bounded by conducting walls in much the same way 

as hollow gas-hlled vessels can be excited into acoustical resonance. 

A given cavity resonator will resonate at a number of discrete 

frequencies each corresponding to a particular ‘mode* of oscillation 

with its own characteristic electromagnetic field pattern. These 
field patterns, like those of progressive waves in wave guides, can 

be classified into E and H types. 

Since the free-space wave-length that corresponds to the mode 
with the lowest frequency is of the order of magnitude of the 

greatest linear dimension of the cavity, it follows that at centimetre 
wave-lengths a cavity resonator has a small physical size which 

renders it convenient for laboratory use and for incorporation in 

equipments. The principal uses for cavity resonators are as: 

(i) tuned elements in oscillators in place of the conventional 

L-C-/? circuits which are physically unrealizable at centimetre wave¬ 

lengths, 

(ii) accurate wave-meters, 
(iii) echo boxes, which are equivalent to ringing circuits. 

The electromagnetic oscillations in cavity resonators in the form 

of hollow rectangular boxes or cylinders have field patterns, with 

one exception, that are the same as those belonging to standing 

waves in rectangular and circular wave guides. It is therefore 

possible to employ elementary methods to deduce many of the 

important features of oscillations in cavity resonators. 

We begin with the simple case of a rectangular resonator. 

6*2. Stationary ivaves in a wave guide 

Consider a rectangular wave guide in which a complete standing 

wave is produced by allowing two trains of //o^-waves with the 

same wave-length and field strengths to be propagated in it in 

* This chapter is included in order to illustrate in a simple manner the 
relation of the theory of resonators to that of wave guides and to mention some 
applications of resonators. It is not intended to be a complete account of the subject. 
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opposite directions. The progress of the individual waves is indicated 

successively in the first two of each of fig. 6*i(a), (b) and (c). 
The third diagram in each case gives the resultant field derived by 
superimposing the field patterns of the individual waves. We take 

the time ^ = o to correspond to the instant at which the magnetic 

loops in the two oppositely travelling patterns superimpose exactly, 

so that at / = o in the standing wave the magnetic field strength is 

a maximum at all points as indicated in the third of fig. 6*1 (a). 

Because the constituent waves travel in opposite senses, the 

electric fields are in opposition when the magnetic fields add. Con¬ 

sequently, the electric fields cancel at ^ = o, and at this instant the 

field in the standing wave is entirely magnetic. Fig. 6* i (b) illustrates 

the situation at time t = one-quarter cycle later, T being the 

period of the oscillations. The travelling wave patterns in fig. 6*i (i) 

are displaced one-quarter wave-length to the right and left 

respectively, as can be seen from the displacement of the pair of 

loops which have been distinguished by a horizontal arrow at the 

centre. When the patterns are superimposed the magnetic fields 
cancel but the electric fields add to produce a maximum. Thus at 

/ = the field in the standing wave is entirely electric. Similarly, 

from fig. 6*1 (c) we deduce that ztt ^ \T the electric field vanishes 
and that the field is again entirely magnetic but reversed in direction 

compared with the field at f = o. At ^ = |r we should again find the 

resultant field to be entirely electric but reversed in direction relative 

to that at ^ = JT. At time t = T the field is again that of fig. 6*i (fl). 

At other instants in the cycle the electric and the magnetic com¬ 

ponents are both present ; further, the magnetic loops and fixed 

electric lines, although the fields are no longer at maximum intensity, 

remain fixed in position and do not progress to right or left as in 

the constituent progressive //o^-waves. 
We may note the following features of the electromagnetic field 

of a stationary wave: 
(i) The field patterns of the magnetic and electric fields are 

individually the same as those in the progressive waves. 

(ii) In the progressive wave the field patterns are propagated along 

the axis of the wave guide at speed Vg^ but the field intensities in the 
moving pattern are unchanged; in the stationary wave the patterns 

are fixed in position but the field intensities oscillate harmonically 

between maximum positive and negative values. 
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Loops represent magnetic lines of force. 

jFfoi-wavc 
travelling.-^ 

Hoi-wave 

travelling. — 
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standing wave. 
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Electric fields 
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Corresponding 

pattern of (a) 
displaced 

to right. 

Corresponding 

pattern of (o) 
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Standing wave. 

Magnetic fields 
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(C) 1 
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Phase of magnetic field 180'^ different from that at (~ 0. 
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to right. 

Corresponding 

pattern of (n) 

displaced 

to left. 

Standing wave. 

Magnetic fields 

add. 

Electric fields 

cancel. 

Fig. 6*1. Superposition of two oppositely travelling Hui-waves of equal 
strength to produce a complete standing wave. 
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(iii) In the progressive waves the maximum transverse com¬ 

ponents of the electric and magnetic fields coincide (near the ends 

of the largest loops), but in the stationary wave the positions at 

which the transverse components of the magnetic and electric fields 

have maximum amplitudes are separated by a quarter of a wave¬ 

length (iA^). (The electric field is concentrated around the centre 
of a magnetic loop.) 

(iv) The resultant electric and magnetic fields within each 

cell of the pattern oscillate in quadrature. There is no mean flow of 

power along the axis of the wave guide, but the energy stored in each 
cell of the pattern is transformed every quarter period from the 

magnetic to the electric form and back again. The oscillations of the 

electromagnetic field are therefore entirely analogous to the 

mechanical vibrations of a pendulum or an escapement wheel in 

which the energy is transformed alternately from one to the other 

of the kinetic and potential forms. 

6*3* Field patterns in cavity resonators 

We have obtained a stationary but oscillating electromagnetic 
field; we now ask whether this field is one that can exist within a 

cavity closed by conducting walls. At the walls, the field must satisfy 

the following conditions: the magnetic field cannot intersect any 

portion of the conducting surface of the cavity, that is, it may lie 

tangentially against the surface at some places and vanish at others; 

the electric field, on the other hand, cannot lie along the boundary, 

it must either stand at right angles to the surface or vanish at the 

surface. Evidently, as appears from fig. 6-2, the standing wave 
pattern of fig. 6-i can be fitted into a rectangular box, formed by 

placing conducting partitions across the wave guide a distance apart 

equal top^A^, where p is an integer. It is then possible to fitp cells 

of the pattern into the box provided the end-walls touch but do not 

cut a magnetic loop. A possible disposition is shown in fig. 6*2 for 

the casep = 2. Fig. 6-2 (a) and (6) illustrate respectively the fields 

at times ^ = o, when the field is entirely magnetic, and at t = 

when the field is entirely electric. If we choose a set of Cartesian 

axes of reference with the origin O at the near left-hand corner as 

shown, then with respect to these axes the constituent travelling 

waves (fig. 6-i) that combine to give the stationary wave are 

ffoi -waves. Since p = 2, that is, two cells of the pattern are fitted 
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into the resonator, and the mode is derived from progressive 
waves, it is designated /foia- 

Fig. 6*2. Field patterns of the //oit"*^ode in a rectangular cavity. 

It is evident that the same procedure will lead to the field patterns 

of more general modes of oscillation both in rectangular and 

cylindrical resonators. First, find the standing wave pattern in the 

unclosed guide, corresponding to the general or//,„^-wave. The 

Field entirely mngnetic Field entirely mafnefic Field entirety electric, 

^jii-mode fi'oii-nfiode i/on-mode 

W (*) (c) 

Fig. 6-3. Examples of modes of oscillation in cavities. 

guide is then converted to a resonator by the introduction of con¬ 

ducting partitions at positions such as to enclose/>-cells of the pattern 
within the resonator without violation of the conditions imposed 

on the behaviour of the electromagnetic field at the cavity surface. 
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The resulting mode is then designated, according to the type of its 

constituent progressive waves, an or an /f^,^p-mode. Examples 

are shown in fig. 6*3 (a), (b) and (c), which show respectively the 

JE'iii-mode in a rectangular cavity, and the Eq^- and //oii-modes in a 

cylindrical cavity, at times ^ = o and t = \T. We note, again, that 

the magnetic and electric fields oscillate in quadrature and that 
they are displaced relatively by in comparison with their 

positions in the corresponding pattern of the travelling wave. 

6*4. Resonant wave-length of a cavity 

We have seen that the and //,„„p-modes have field patterns 

the same as those of sets of p elementary cells of the corresponding 

E^^ and standing waves in a wave guide. 

It follows that the length of the resonator must be p^A^, since 

each cell occupies ^A^ of the axis of the wave guide. If, therefore, 

the length of the resonator is d when resonance occurs for an 

mnp mode, then » ^ 1 ^ / \ 
d = p\\, (i) 

where A^ is the wave-guide wave-length of the associated E^^- or 

-wave in the wave guide whose cross-section is identical with 

that of the resonator. 

We know, however, that the wave-length A^^ is related with the 

free-space wave-length A and the cut-off wave-length A^ by the 

equation 

(2) 
I 

A2 

1 I 

It follows from (i) and (2) that the resonant free-space wave¬ 

length of the cavity is given by 

i- - itX 
A® \zd} 

+ 
A?- (3) 

We consider in turn rectangular and cylindrical resonators. 

Rectangular resonators. Let the linear dimensions of the resonator 

along OXy OY and OZ (fig. 6 2) be respectively a, b and d. 

The cut-off wave-length A^ of an E^^- and an i/„j„-wave in a 

rectangular wave guide whose cross-section has linear dimensions 

a and &, is given by 
/^\2 / ^ \ 'i, 

(4) 
Ac* 



224 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

Finally, the resonant free-space wave-length of the Exp¬ 
and H^^p-modes, is, from (3) and (4), 

The resonant frequency is 

where v is the velocity of the TEM-wave. We have throughout 

assumed the cavity to be empty or air filled. 

For instance, the resonant frequency of the //Qj^-mode is 

and {{ b>a this is the lowest frequency at which the cavity will 

resonate. Since there is no or ^mo -wave in a rectangular wave 

guide the E-mode of the resonator with lowest frequency is the 

Eiif^whose frequency /m is also that of the i/m: 

. _ t; /r I I 

The resonant wave-length of the i/(jii-mode is 

When the resonator is a cube (a = 6 = ) then 

I _ I ^2 

^011 2 Q 

or Aqii =: yjz a = diagonal of a face. 

This shows, as mentioned in paragraph i, that the fundamental 
wave-length is of the order of magnitude of the linear dimensions 

of the cavity. The smallest cube therefore that will resonate at a 

wave-length of lo cm. (3000 Mc./sec.) has an edge length of 7*07 cm. 

Cylindrical resonators. The cut-oflF wave-lengths of waves in 

circular guides are not given by a simple formula such as 2*3(5) 

but depend on the roots of Bessel functions. The cut-off wave¬ 

length A^ in a wave guide of radius a, for some of the lower order 

modes are 
Hii ^ot ^01 And Eli, 

Ag 3*42a 2*6ia 1*64^1 



CAVITY RESONATORS ZZg 

The resonant wave-lengths of these modes in a cylindrical cavity 
of radius and length d, are therefore given by 

6*5. Charges and currents on internal surface of resonator 

When electric lines of force begin on one portion of the boundary 

and end on another, they terminate on electric surface charges of 

Fig. 6-4. Wall currents and charges in a cavity resonator. 

opposite sign. For instance, in the resonator shown in fig. 6-2(6), 

positive charge resides on the region around A and negative charge 

on that around B, with corresponding compensating charges on the 

opposite wall. When the magnetic field is present skin currents flow 

on the interior surface everyvs'here at right angles to the contiguous 

tangential magnetic field. Where there is no surface field there is no 

current. We consider the simple case of the i/Q^^-mode in a rect¬ 

angular resonator at the moment when the field is entirely magnetic 

(fig. 6*4 (a)) and later when it is entirely electric (fig. 6-4(6)). The 

15 HWO 
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lines of current flow are shown running perpendicular to the 

magnetic field at the surface. The current is shown converging 
towards the central region of face ABCD (fig. 6*4 (a)) and away 

from face EFGH. These faces become fully charged one-quarter of 

a cycle later, as shown in fig. 6*4 (fc), and electric lines of force run 

from the positive to the negative charges. 

6*6. Method of excitation of a cavity resonator 

A cavity resonator may be excited, either by a loop (fig. 6*5 {a)) 

or a probe (fig. 6*5 (i)). In the former case the loop must be so intro¬ 

duced that lines of magnetic force can thread through it. Fig. 6-5 (a) 

Fig. 6*5. Excitation of Hoi-mode in a rectangular resonator. 

shows two of several possible positions for the loop. As shown, one 

loop could be an input loop and the other an output loop. The 

degree of coupling can be controlled by rotation of the plane of the 
loop. When a probe is used it is introduced into a plane of maximum 

electric field strength and is set parallel to the electric field. Thus in 

fig. 6*5 (b) the probe is shown projecting into the cavity from the 
face EFGH, 

Excitation to resonance can also be made by means of a slot cut 

in a face such as to interrupt the flow of current. This face could be 

made common with the wall of a wave guide from which current 

could be fed into the cavity. 

67. The 0-factor of a cavity (quality factor) 

Because of the finite conductivity of the walls, power is dissipated 

as heat in the walls and free oscillations decay exponentially. The 

0-factor of the cavity is defined by the expression 

^ _ /_Energy stored \ 

^ \Energy dissipated per cycle/ ' ^ ^ 
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In practice the walls are made of copper or silver, and the energy 

dissipated per cycle is only a small fraction of the stored energy; 
consequently Q is very large. 

Let w be the energy stored, then the energy dissipated per cycle 

is {dwjdt) T and expression (i) may be written 

whence 

Thus 

^ _ 27r w _ w 

^ “ T (d^) ~ ^{d^y 
dw 0) 

(2) 

(3) 

(4) 

where Wq is the stored energy at / = o. If, therefore, the resonator 

is shock excited and left to oscillate freely, the stored energy is 
reduced to i/e of its initial value in a time f = QIoj = QTjzn 

or Q (5) 

According to (5) an alternative interpretation of Q is that it is zn 

times the number of cycles required for the stored energy to decay 

to i/e (approx, one-third) of its initial value. 

Since Q values of 10* and greater are easily achieved, it is evident 

that a cavity will ring for a great many cycles before the stored 

energy is reduced to a small fraction of its initial value. 

A useful approximate rule which gives the order of magnitude of 

Q* in terms of the skin depth 8 of the wall currents, and the dimen¬ 

sions of the cavity is 
Volume of cavity 

5 X surface of cavity* ^ 

\ formula for 8 in terms of the wave-length and wall con¬ 
ductivity is IX 

8 = 2-82 X io~^ /-m.. 

where 8 and A are in metres and cr is in mhos per metre cube. 

Suppose the resonator to be made of copper for which 

or = 5*8 X 10^ mhos/m. 

Then 5 = 3-7 x io“®^Am. 

* The precise expression for Q depends on the mode of oscillation and the 
geometry of the cavity and requires separate calculation. Some typical examples 
are given in Sarbacher and Edson, Hyper-jand Ultra-High-Frequency Engineering, 

P- 396. 

15-2 
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According to equation (6) the Q value of a cubical resonator of edge 

am., is 

W" 6x3*7Va* 

For the //oji-mode, A = a ^2, then 

io«V^A 
^ ‘ 22*2 

For A = 10 cm. ( = i^m.), this becomes 

Q = i-oi X 10^. 

Such a cavity, if shock-excited, would ring for 

0.10^ x a 
— = — = 1*6 X 10® 
277 6 

periods before the stored energy was reduced to i/e of its initial 

value. Each period, A = locm., is 31^/^sec., so that the time of 

ring is about 0*5 //sec. 

Because they are highly selective, cavity resonators are used as 

wave-meters at centimetre wave-lengths. This, and other applica¬ 

tions of importance in radar, are described below. 

6*8. Applications of cavity resonators 

(i) Wave-meters 

Coaxial line wave-meter, A convenient wave-meter for use at 

wave-lengths of 9-11 cm. is the coaxial line wave-meter shown in 

fig. 6*6. It comprises a cylindrical cavity into which a rod can be 

intruded axially to any desired amount by means of a rack and 

pinion. The metal block serves as a guide for the rod and as a short 

circuit to the coaxial transmission-line system formed by the 

cavity and the rod. The cavity is excited by injecting an e.m.f. into 

the input loop from the source whose wave-length is required, and 

the rod is moved by means of the pinion until a position of resonance 

is indicated by the detecting crystal and microammeter fed from the 

output loop. The shortest resonant length / of the rod within the 

cavity is slightly less than JA, since the transmission-line system is 

open-circuited but with some small end-capacitance, other resonant 

positions correspond to (/-f n^A), where « is an integer, since the 

end-capacitance remains the same irrespective of the position of 
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the end of the rod. This is because the end of the rod never closely 

approaches the closed end of the cavity.,C opposite to D. The rack 

and pinion carry a scale and vernier from which the displacement 

of the rod can be measured directly in centimetres. The displace¬ 

ment of the rod between successive resonances is equal to and 

gives directly the wave-length on the coaxial line, which is the same 

as the free-space wave-length of the source. The diameter of the 

cavity is small enough to ensure that cavity modes of oscillation 
cannot occur. 

Fig. 6*6. Co-axial line wave-meter. 

Resonant cavity wave-meter. A wave-meter suitable for measuring 

changes in wave-length with great accuracy is the cavity wave- 

meter shown in fig. 6*7 (a). It is a metal cylinder whose length can 

be adjusted by rotation of the screw head to which the upper end 

of the cylinder is attached. The resonant mode employed is the 
//011-mode which is excited by an input loop near the middle of the 

cavity, as shown, and resonance is indicated by means of an output 

loop, at the same height but shifted through a quadrant, and a 

crystal detector and microammeter combination. The magnetic 

lines of force at resonance are indicated in fig. 67(a). To prevent 

the excitation of the A^n-mode, which has the same resonant 

frequency as the //on-mode, the movable end clears the cylinder 

wall with a small gap. The currents in the //on-mode flow on the 

cavity surface in circles about the axis (fig. 67(A)) and no flow 

occurs from the flat ends to the curved surface. The current dis¬ 
tribution is therefore indifferent to the presence of the gap between 

the movable flat end and the curved wall. In all other modes, except 

i/o^n^niodes, current is required to flow from the flat ends to 
the curved wall; consequently the introduction of the gap effec¬ 

tively suppresses these unwanted modes. Wire filters of suitable 

form can also be used as suppressors, but they are less convenient. 

In principle the resonant wave-length could be obtained from the 
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-Magnetic field (^=o) 
-Electric field {t = T/4) 

(o) 
Fig. 6 7. 

Amplitude 

Fig, 6*8. Use of wave-meter for examining magnetron frequency spectrum. 
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dimensions of the cavity at resonance, but in practice it is more 

accurate to measure displacement of the lid by means of a micro¬ 
meter screw and scale, as indicated. 

This scale is then calibrated against the harmonics of a crystal 

oscillator, or, more crudely, against the coaxial line wave-meter 
described above, using a tunable source of e.m.f. The wave-length 

scale is very open, and a small change in wave-length corresponds 

to a relatively large displacement of the movable end. The interior 
of the cavity is usually silvered so that a large Q and sharp resonance 

results. The wave-meter is then suitable for examining the r.f. 
spectrum of a magnetron pulse (fig. 6*8). 

(ii) Echo boxes 

It is often necessary to check the overall performance of a centi¬ 
metre-wave radar equipment in situations where it is difficult to 

obtain echoes from objects at suitable ranges. For instance, a radar 

equipment in an aircraft may have its scanner directed downwards 

so that it is impossible to obtain echoes when the aircraft is on the 

ground. The echo box is a simple device for checking roughly the 

overall performance of a set. It is merely a resonant cavity designed 

to possess a high Q, The cavity is shock-excited by the transmitter 

pulse and continues to ring and emit a signal which is spread along 

the time base for an appreciable distance after the cessation of the 
transmitter pulse, A possible arrangement is shown in fig. 6-9. 

The echo box is fed via a screened low-loss cable from a pick-up 

probe fixed near the edge of the mirror. The energy abstracted 

from the transmitted pulse is stored as a resonant mode in the box 

and is re-radiated to the receiver as an exponentially decaying signal. 

For the greater part of its duration the signal saturates the receiver 

but finally decays to a level at which it no longer does so. The 

appearance on a type A display is illustrated in the figure. The range 

at which the echo box response disappears into the ‘noise’ gives 

an indication of the overall performance of the set. 

Echo boxes are of two types—tuned and untuned. Tuned echo 

boxes are the same as the wave-meter already described and 

illustrated in fig. 67. They require tuning to the frequency of the 

transmitter which then shock excites the HQn^mode, The output 

loop is not used. Untuned echo boxes are very large cavity resonators 

whose lowest modes, ^111* correspond to wave-lengths 
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much greater than the wave-length of the radar set. They are 

usually hollow cubes with copper walls. 
The modes that are excited by the radar transmitter are therefore 

higher order and i/^^p-modes where m, n and/) are relatively 

large integers. 
Consider a cubical resonator whose edge a comprises several 

wave-lengths A. 
Aerial 

Type ‘A’ display 

Fig. 6 9. Radar system with echo box. 

It can be shown that the spacing of the higher modes is such that 

the number of modes comprised within the wave-length range A to 

(A + J A) or frequency range/to (/— Zl/) in a rectangular resonator is 

where V is the volume of the resonator; thus for a cubical resonator 

of edge a 
N=Sn 

Let us consider the case of a resonator of edge a == 1 m. excited by 

a magnetron pulse for which /= 30ooMc./sec., A =: 10cm. and 

the band width is i Mc./sec. The formula gives, for the number of 

modes covered by the band width. 

Sn X 10* Sn 
jVi-=- = —, 

3 X 10® 3 
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i«e. there are eight modes. Thus, the transmitter pulse is able to 

excite a number of resonant modes whatever its frequency /, and 
it is not necessary to tune the resonator. In the case discussed, the 

mean frequency separation of the modes is ^ Mc./sec. = 125 Kc./sec. 

Since the ratio of volume to surface of a cubical resonator is pro¬ 

portional to the edge a, these large untuned resonators possess very 

high Q values and will ring for many microseconds. 

(iii) Cavity resonators in centimetre-wave oscillators 

The usual resonant circuits of radio comprising lumped induct¬ 

ances, capacitances and resistances cannot be constructed in a useful 

form at wave-lengths of 10 cm. and less, and it is necessary to replace 

them by other resonant systems such as resonant lengths of coaxial 

transmission-line or resonant cavities. In the klystron oscillator, 

whose main application is as a low-power local oscillator in centi¬ 

metre-wave radar receivers, a resonant cavity is used in which a 

mode of oscillation is maintained by a ‘ bunched' electron stream. 

In order to bring about ‘bunching' and to abstract power from the 

‘ bunched' stream, the electrons must pass through the oscillating 

fields within the cavity against or parallel to the electric field where 

it is most intense. Further, the time of transit must be small com¬ 

pared with the period of oscillation. It is not possible to accomplish 

this is any of the resonators described so far because their dimensions 
are comparable with the wave-length A, and it would be necessary 

for the electrons to move at speeds comparable with the velocity of 

light in order that the transit time should be very much less than the 

period of oscillation. What is required therefore is a resonant cavity 

(rhumbatron) in which an intense oscillating electric field is con¬ 

centrated across a short path so that electrons can travel the whole 

extent of a line of force in a time short compared with the period. 

In one type of reflector klystron, the Sutton tube, an example of 

which is the CV 67, the resonator (rhumbatron) assumes the form 

indicated in fig. 6* 10 (6). This rhumbatron may itself be regarded 

as a distorted form of the prototype shown in fig. 6-10 (a). In 

fig. 6-10 (a), A and B represent a pair of coaxial conducting cones 

with their tips removed so as to form a small gap between them. It 

is known that when an alternating e.m.f. is applied across the gap 

the pair of cones forms a transmission-line system and that a 

principal (TEM) wave is guided along them. The lines of electric 
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and magnetic force run as shown in the figure. If a conducting 
spherical surface C of radius JA concentric with the middle of the 

Fig. 6*10. Common types of resonators. 

gap is used to close the cones, then the TEM wave is reflected 
without distortion and a complete standing wave is produced on 
the transmission line, which then forms a resonant system. The 
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equivalent twin transmission-line system is shown in fig. 6* lo {c). We 

may, however, regard the system of fig. 6’io (a) as a hollow spherical 

cavity resonator with a pair of conical projections. It follows from 

what has been said that the fundamental resonant waverlength of 

this resonator is four times the radius of the sphere. A voltage 

antinode is located at the gap AB where the electric field attains its 

greatest intensity. It is possible, therefore, to maintain such a 

rhumbatron in resonance by passing a bunched electron stream 

across the gap AB, In practice, in the reflector klystron used as a 

local oscillator, it is necessary to control the resonant frequency by 

means of external tuning screws; consequently, the rhumbatron is 

divided in two by a glass tubular envelope which is evacuated and 

contains the electron gun assembly and reflecting electrodes. The 

portion of the resonator external to the glass envelope carries the 

tuning screws. To introduce the glass envelope it is necessary to 

distort the shape of the rhumbatron to that shown in fig. 6*io(6). 

One of the cones is also distorted to bring the reflector close to the 

gap. Power is abstracted through a loop placed, as shown in 

fig. 6* 10 (a), with its plane parallel to the axis of the cones. 

QThe input impedance to the transmission-line system shown in 

fig. 6* 10 (a) is large at resonance, and it is necessary to drive the 

rhumbatron from a high-impedance sourc^ Thus the power 

supplied by the electron stream must be in the form of relatively 

high-voltage electrons and relatively small current. For instance, 

in the CV67, the accelerating voltage is 1200V. and the electron 

current is 6 mA, The maximum power output at A = 9 cm. is 

200 mW. which is ample for a local oscillator. 

The high-operating voltage is an inconvenience, and a morp 

convenient form of klystron operates on a voltage of 300 and is 

therefore able to use the same power pack as the radar receiver. The 

resonator here comprises a short-circuited coaxial transmission line 

with a gap between the inner and the end-plate of the outer at the 

top, as shown in fig. 6* 10(d). 

This end-plate has a hole in its centre, and both this hole and the 

end of the inner are covered by a wire gauze through which the 

electron stream passes into and out of the gap. The length of the 

transmission line is less than JA, and it is brought to resonance by 

the capacitance between the face end of the inner conductor and 

the end-plate. 
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The equivalent resonant system is shown in fig. 6^io{e). The 

shunting impedance of this system is much lower than that of the 

double-cone system, and the power carried by the electron stream 

can be supplied at lower voltage and larger current. Typical oper¬ 

ating values are: voltage 300, current 30mA., r.f. output 20mW. 

An important feature of this oscillator, due to the small Q value 

of the resonator, is that the frequency can be varied considerably 

by changing the reflector voltage. This makes the valve suitable for 
incorporation in systems for A.F.C. at centimetre wave-lengths. 

It should be noted that the Q value of any cavity resonator is greatly 

reduced by coupling it to a matched output cable. In the case of 
the CV 67 the Q of the loaded rhumbatron is of the order 300. 

6*9. Measurement of power factor of dielectrics 

The high-j3 properties of cavity resonators have been used in a 

method for measuring the power factor at microwave-lengths of 

low-loss dielectric materials such as polythene* (F = 0*0005). 

When a piece of dielectric material is placed in an alternating 

electric field some power is wasted as heat in the dielectric. The 

power-factor F of the dielectric may be defined to be 

Power lost 

(j) X peak energy density of electric field during the cycle 

where (o = 27r/. In many substances F is a constant independent of 

frequency, consequently, in such substances, the wastage of power 

is proportional to o). The physical interpretation of this result is 

that in each cycle of polarization the same fraction of the stored 

energy is dissipated; thus the rate of dissipation is proportional to 

the number of cycles per second, that is, to the frequency. 

Suppose a specimen of dielectric to be placed inside a resonant 

cavity. Then, to the loss of power caused by the conductivity of the 

walls, must be added the power lost in the dielectric specimen. The 

j^-factor of the cavity as defined in equation 6*7(1) may also be 

written 
^ X energy stored ^ ^ 

^ “iTPower lost)" * 

♦ * Resonant methods of dielectric measurement at centimetre wave-lengths*, 
by F. Homer, T. A. Taylor, R. Dunsmuir, J. Lamb and Willis Jackson, y. ImL 
Elect. Engrst 1945, vol. 53, part iii, p. 53. 
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The power lost is the sum of two terms, one the power lost in 

the walls, and the other Pj^, that lost in the dielectric. Equation (2) 
may therefore be written 

0 = (3) 

where W is the energy stored in the oscillation. 

The quantity is the 0-factor of the cavity when there is no 

dielectric loss, and Qd is 
Qd = 

But from (i), P/(i> = AWF 

or = (4) 
tTD 

where .4 is a constant, which depends on the size and form of the 

specimen of dielectric, the mode of oscillation, and the position of 

the dielectric in the cavity. This constant can be calculated from 

the conditions of the experiment. 

The experimental procedure is to measure Q and 0^ for the cavity, 

with and without the dielectric respectively, and to obtain from 

(3) and F from (4). 

The measurement of 0 and 0/? is based upon a definition of 0 

which is essentially equivalent to (2). If the tuning curve is taken of 

amplitude of oscillation against frequency about the resonant fre¬ 

quency /o, then the frequencies (/± Af) at which the amplitude falls 

to 1/^2 of its resonant value serve to determine the 0 of the system 

through the following equation: 

0=/o/2^/- (5) 

If resonance is indicated by a crystal detector then J/corresponds 

to a crystal current one-half maximum, since for small currents the 

crystal has a square-law rectified response. Two types of cavity 

were used; the first is a cylindrical cavity in which the PoiQ-mode is 

excited. This mode is illustrated in fig. 6*ii. It differs from the 

cylindrical modes discussed earlier in this chapter, in that it is not 

resolvable into a pair of waves travelling in opposite senses along 

the axis of the cylinder but into a pair of radial waves, one con¬ 

verging on to the axis and the other diverging from it. There is no 

variation of the pattern in the direction of the axis, nor with azimuth 

angle d, but only radially. 
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The resonant frequency is independent of the length of the 

cylinder, and the cavity oscillating in this mode cannot therefore be 

used as a wave-meter tuned by variation of its length. The tuning 

curve is here obtained by variation of the exciting frequency /. 

The dielectric specimen takes the 

form of a cylindrical rod lying along 

the axis of the cavity and extending 

the whole distance between the ends. 

A more convenient method is to 

employ a resonant cavity of the form 

described in § 6-8, in an //oip-mode of 

oscillation. Here the length of the 

cavity is variable by known amounts 

read from a micrometer screw. A 

tuning curve of crystal response in 

terms of cavity length near the reso¬ 

nant length can be translated, by a 

suitable formula, into the equivalent 

tuning curve of the cavity with fixed length but with a variable 

exciting frequency. This method is found to be more convenient 

than the former which demands a variable frequency oscillator. 

These methods also give the dielectric constant of the specimen, 

from the resonant frequency of the cavity containing the specimen. 

A coaxial line resonator is used at longer wave-lengths. 

-Electric lines t~o 

-Magnetic lines t~Tf^ 

Eoio resonant mode 

Fig. 611. 

6*10. Q-factor of a dielectric 

Instead of describing the electric behaviour of a dielectric in 

terms of its power factor F, as is the current practice, it is more 

convenient to employ, as has been suggested by SchelkunofF, a 

quality factor Q defined for the dielectric as 

Q- 
(i}€ 

g' 
(0 

where e == and g is the conductance of the dielectric material 

at the frequency (ojzn. 

Equation (i) may be written 

(i) X peak energy density 

Mean power loss )■ (2) 
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Consequently, from (2) and 6*9(1), 

For instance, if F = o*ooo6, then Q = i*66 x 10^. Thus the term 

Qd in equations 6*9(3) ^nd (4) is proportional to the 0-factor of 

the dielectric. 
This factor is also of value in describing the reflexion of electro¬ 

magnetic waves from sea water or soil. It is known that at frequencies 

much less than a certain ‘ critical frequency * reflexion from the 

surface of a partial conductor resembles that from a good conductor 

and at frequency much greater than that from a dielectric. It is 

interesting to note that the critical frequency is that at which the 

0-factor of the partial conductor becomes equal to unity. The critical 

frequency is therefore 

27T€qK^ 

The corresponding ‘free-space’ wave-length = 

(4) 

For instance, for sea water, ^ = 5, = 78, A^ = 0*26m. Thus the 
sea reflects electromagnetic waves whose wave-lengths are less than 

26 cm. as though it were a dielectric, but longer waves as though it 

were a conductor. For dry earth, ^== 10 ^ = 6, A^ = 10® m. For 

wave-lengths less than this dry earth or rock behaves as a dielectric. 

6*11. Equivalent circuit of a resonator 

The input impedance of a resonator excited through a coaxial 

cable by a loop or probe, as shown for instance in fig. 6*5 (a) and (6), 

has been investigated theoretically by Hansen, Condon, Slater, 

Schwinger and other American mathematical physicists (see 

§§7*i8*3 and 4). 

It emerges from these investigations, which are based on the 

theory of the electromagnetic field, that the input impedance to an 

unloaded cavity excited by a loop is represented by an expression 
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in which (o is the angular frequency of the exciting current in the 

loop, (Ofg that of resonance of the /rth mode and the (J-factor of 

the cavity for the ^h mode. R is the self-resistance of the loop and 

may be neglected. Mjt is called the coupling coefficient of the Mh 

mode. When o) coincides with one of the resonant values then 

the denominator of the term involving the suffix k becomes small 

and that term predominates. This implies that the corresponding 

mode is strongly excited. The input impedance then becomes 

The equivalent circuit is a chain of rejector L-C circuits in series 
with each other and the loop resistance. Each rejector circuit is 

shunted by a resistance and is tuned to resonate at one of the 

The input impedance Z, which is the total impedance across this 

chain, becomes large whenever (o becomes equal to one of the 

The coupling coefficients are proportional to the square of 

the area of the loop and inversely proportional to the fifth power 

of the linear dimensions of the cavity. The input impedance at 

resonance is therefore very sensitive to change in cavity dimensions. 

In the position of maximum coupling shown in fig. 6*5 (a) the 

value of Ml for a loop of area S feeding a cubical cavity with side a is 

Ml = 4-46 X 10^252/^5 

(when Z in (i) is expressed in ohms and all lengths are in metres 

and areas in square metres). For a cylindrical cavity of radius a 
and length / driven in the //on-mode (fig. 6 3 {c)) 

Ml = 1*06 X lo^^S^ja^L 

The corresponding input impedance with probe excitation is 

z = -ywc+y s 7 
w|- w*+y -)■ 

k / 

(2) 

The equivalent circuit is the same as before, but with the loop 

resistance R replaced by the series capacity C—the electrostatic 

capacity between the probe and the walls of the vessel. These 

expressions (i) and (2) were first given by Condon. 

When <t) does not coincide with an then Z in (i) is 

(oMl . (oMl 
{<^1 - w*) .h, - <oi) • 
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It is therefore a series combination of inductive and capacitive 
reactances. 

The equivalent result follows from (2) for the probe feed. 

6*12. Resonator method for precision measurement of wave¬ 

guide discontinuities 

When a discontinuity, such as an obstacle, is introduced into a 

cavity resonator the resonant dimensions of the cavity are changed. 
This fact was used by W. H. Pickering, D. W. Hagelbarger, 

C. Y. Meng and L. C. Snowden in a method of measuring with 

great precision the constituent elements in the circuit equivalent 

of a wave-guide discontinuity such as an obstacle or sharp bend. 

The resonant cavity (fig. 6-12 (^)), which is rectangular, comprises 

a length of accurately constructed American A'-band rectangular 

wave guide (internal dimensions 0*9 x 0-4 in.) terminated at each 

end by choke plungers. The movement of each plunger along the 

wave guide is controlled by accurate micrometer screws which are 

mounted against a coupling flange (not shown) that can be clamped 

to the flange at the end of the wave guide. The cavity is excited to 

resonance through a small hole in the face of one of the plungers 

which is made hollow and itself forms a wave guide which is fed 

from a klystron oscillator through a coaxial cable and a wave 

guide. 

Attenuators are introduced in order to decouple the resonant 

cavity almost completely from the oscillator whose frequency is 

virtually unaffected w hen the resonant cavity is tuned. The klystron 

output is modulated by a 1000-cycle square wave and resonance of 

the cavity is indicated by the 1000-cycle output signal from a low- 

frequency amplifier whose input is fed from a small pick-up probe 

that projects a very small distance into the cavity as shown. 

The micrometer screw’ readings and /?2 can be calibrated so 

that their sum indicates the distance between the faces of the 

plungers. First, consider the relation between the readings Ri and 

/?2 at resonance when the cavity is empty. Let Ri be given a series 

of values and let the corresponding values of R2 for resonance be 

measured. Then {R1 + R2) remains constant unless the wave guide 

is not uniform in cross-section. This forms a good test of the quality 

of the wave guide. Suppose that the wave guide satisfies the test 

for uniformity and that next a simple symmetrical obstacle such 

16 HWG 
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as a thin wire, iris or thin post is mounted in it with the axis of the 

obstacle in the cross-section of the wave guide. 

The equivalent circuit of the cavity is now that shown in fig. 

6-12(6). It comprises a pair of short-circuited lengths of trans¬ 

mission line with unit characteristic impedance and respective 

(d) 
Fig. 6-ia. 

lengths Ii and 4, and a susceptancejB^ all connected in shunt across 

a common pair of terminals TT. The susceptance presented by the 
lines at TT are respectively 

jbi = —j cot Ml and jb^ =—jcotkl^, 

where k = znjXg, 
The condition for resonance is that the total admittance across 

TT is zero, that is 
+ ^2 “1" ~~ (*) 

or =* cotA/j + cotA/,. (2) 
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When a set of pairs of distances 4 and 4 of the plungers from the 

axis of the obstacle has been found at resonance, the same value of 

B2, should be obtained from (2) by using any pair of values 4 and 

4 of the set. When the obstacle is thin this is what is found, but when 

the obstacle is thick, in the direction of the wave-guide axis, although 

still symmetrical, the susceptance is not found to be the same for 

all pairs of values of 4 and 4 when relation (2) is used to calculate it. 

The reason is that a thick obstacle cannot be adequately represented 

by a simple-shunt susceptance as in fig. 6*12 (6), but proves, instead, 

to be accurately represented by a filter section comprising both series 

and shunt elements. In fig. &i2{d), which is the equivalent circuit of 
a resonator containing a thick obstacle, a symmetrical T-section filter 

has been chosen, with series reactances and shunt susceptance fig- 
The terminals Tg, and coincide within the wave guide 

at the axis of the obstacle,, from which the distances 4 and 4 of the 

plungers are supposed to be measured. 

The condition for resonance is 

= o 

or Bo-h: 

Equation (3) is equivalent to 

= o. 

~h A-h - r -?_-A 

(3) 

(4) 

Equation (4) expresses -f- Ag) as a function of (A^ — Ag), where A^ 

and Ag are any pair of shunting susceptances of the wave-guide arms 

that bring the obstacle to resonance. The two branches of the hyper¬ 

bola, of which (4) is the equation, are shown in fig. 6*13, which is the 

graphical representation of the dependence of (Ai +Ag) on (Ai —Ag). 

At the points P and Q, one on each branch, where A^ —Ag = o, 

Ai + Ag = and -2fig/(2-AT^fig) respectively, or 

b,= ilX, or -.fig/(2-Xifig). 

Thus, there are two distances 4 = fii and 4 = ^2 which resonance 

occurs with the subsidiary condition 4 = 4- Further, at these 

distances 
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If, therefore, these distances can be measured the elements Xi and 

fig are derived immediately from them by means of equations (5). 
The advantage of using these special distances lies in the fact that 

they involve measurement of the total distance only between the 

plunger faces and not of the distance of each plunger face from the 
axis of the obstacle. 

Fig. 613. 

The positions of the plungers, when = 4, are found as follows: 

an extension of the theory shows that if 4 be increased and 4 be 

adjusted to give resonance then a curve in which (4 -f 4) (the distance 

between the piston faces at resonance) is shown as a function of 4 

possesses a maximum and minimum, and ^at at the maximum 

4 = Li and at the minimum 4 = ^2- It suffices to plot the sum of the 

micrometer readings (fii + fi2) against as is done in fig. 6* 14 (a). 

This curve, which is taken from an unpublished (American) 

report by Pickering, Snowden and Hagelbarger, represents the 

experimental results obtained with a metal post of diameter ^r^in., 

ratio length to diameter 0*746, a wave-length A = 3*4cm. and 

A^ = 2-0000 in. When the maxima and minima have been roughly 

located from this curve, they are next accurately found by taking 

a great number of measurements around the maximum and mini¬ 

mum and then replotting these portions of the graph on an enlarged 

scale. 
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Li and Lg are half the separations of the plungers at the positions 
of the maximum and minimum respectively. 

The equivalent filter section may be specified either in terms of 

Xi and ^2 = - 1/B2, or of quantities S = and 

which are obtained immediately from equations (5). 

/-\i yV, jS jS 

Fig. 614. 

The equivalent T-section is shown in fig. 6*14(6). 

The method was also applied to find the equivalent T-sections 

of wave-guide corners such as that shown in fig. 6* 12(c). Here the 

distances and 4 of the plungers are measured from the cross- 

sections Tg, Tg and 7^, and the equivalent T-section represents 

the portion of the corner bounded by these cross-sections. They 

correspond to the terminals Tg and Tg, in fig. 6*i2(rf). The 



246 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

distances and Lj found, as before, but here the micrometers 

move within lengths of wave guide coupled through the corner by 

means of choke flanges, the distances and 4 being measured from 

the sections 7^, and respectively. 

The following are specimen results of measurements on metal 

posts: 

Metal post: height A, diameter b = ^^in. (flat end), 
A = 3 4cm., = 2-0000 in. 

hlb 0*249 0-497 0*746 0*871 

X, -0*0045 — 0*0099 - 0*0143 — 0165 

Y, — 6*4809 -1*0147 - 1*894 -0*0345 

Bt 0-1543 0*9855 5*280 29*99 

hlb 0*921 0-934 0*993 1*000 

X, — 0*1080 — 0*0183 - 0*0195 — 0*0195 

X, 0*0160 0*0307 0*1510 0*240 

Bt — 62*60 -42*57 — 6*623 -4*151 

Metal post: height A, diameter b = = 1 in. (flat end), 
A = 3-4 cm., A„ = I-9998 in. 

hlb 0-252 0-499 0*760 0-935 1*000 

x^ -0047 — 0*101 -0*174 -0*227 -0*256 

Xt -0-1775 -0*468 — 0*166 -0*053 0*026 

Bt 0-5633 2-135 6*027 18*80 -37*76 

It can be seen that the series reactance of the thin post is negligible 

in comparison with the shunt reactance, which is capacitive for 

short posts but becomes positive on passing through resonance. The 

series reactance is important in the thick post which therefore 

cannot be represented by a simple-shunt element. 
The method gives an accuracy of a different order from that of 

the standing wave indicator. This is due in part to the sharpness of 

the resonance, and to the fact that the probe of the resonance detector 

does not require to be moved. Every care was taken to stabilize the 

oscillator frequency, the oscillator being water cooled. 

The measurements are thought to be accurate to o*i %. 
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Chapter 7 

MATHEMATICAL TREATMENT 

OF SELECTED TOPICS 

7*1, Introduction 

The preceding chapters form a survey of the subject of wave 

guides from which all but relatively simple mathematical analysis 

has been excluded. This final chapter has been added for the sake 

of those who may prefer a less physical and more formal approach 

to the subject. The chapter is, therefore, of the nature of a mathe¬ 

matical appendix in which some of the matters mentioned in the 

survey receive a more systematic mathematical treatment. As 

there is little reason to repeat in detail the treatqfients to be found in 

a number of recent treatises’ where the analysis is developed in 

terms of the field vectors E and H, and of vector and scalar poten¬ 

tials, the opportunity is taken here of demonstrating the advantages 

of using special single-component Hertz vectors from which the field 

components may be derived by theappropriatedifferential operations. 

The method that we adopt was originally introduced by Debye ^ 

in 1908, who showed that it is often possible to derive all the com¬ 

ponents of an electromagnetic field from a single scalar quantity 

which is the magnitude of a single component vector. We therefore 

proceed to examine what are the conditions to be satisfied by a system 

of orthogonal curvilinear coordinates in order that the components 

in it of an electromagnetic field shall be derivable from a single 

scalar quantity. 

7*2. Maxwell’s field equations and Hertz vectors 

Maxwell’s equations of the electromagnetic field, expressed in 

m.k.s. units, are: 

curlE = —B, divB =o,| 

curlH = D-hJ, divD=/o,f 

* Ramo and Whinnery, Fields and Waves in Modern Radio; Sarbacher and 

Edson, Hyper- and Ultra-High Frequency Engineering. 
^ Frank and von Mises, Die Differential und Integral Gleichungen der Mechanik 

und Physik, part ii, p. 873; Lament, Wave Guides, Methuen Monograph, 

chapter 2. 
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H'Acre E=£^A'„ 

and K^ and Kg are respectively the magnetic and electric specific 
inductive capacities, and and the magnetic and electric induc¬ 
tive capacities of a vacuum (§ 1-2). 

J = current density in amp./sq.m. 

p = charge density in coulombs/m.^ 

We shall define Hertz vectors from which B and E may be 

derived, assuming, however, that in (i) J and p are zero, as always 

occurs in those applications that will concern us. 

We write therefore: 
curl E = - 6, (2) 

curlH = D, (3) 

/ divB = 0, (4) 

divD = 0. (5) 

7*3, The electric Hertz vector 11 

To satisfy equation 7*2 (4), define a Hertz vector II as follows: 

B = //^curin, (i) 

whence, from 7*2(2), 

curlE = -//ecurin, 

or E = — pell 4- grad F, (2) 

where F is a scalar field function such that grad F is of the nature 

of a functional constant of integration whose curl is zero, and 

whose form may be assigned according to convenience. 

It follows from equations 7*2(3) and 7 3 (i) that 

curlH = “CurlB = e curl curl n = eE, 
F 

whence E = curl curlH. (3) 

Comparison of the two expressions (2) and (3) for E shows that 

n satisfies the following differential equation: 

curl curl H + ft = grad F. (4) 
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7*4. The magnetic Hertz vector IIo 

Since we have assumed div D = o, we may introduce a second 
Hertz vector IIq as follows: 

D =—/^ecurlllQ. (i) 

It follows from equation 7*2 (3) that 

H = - /^eiio + grad G, (2) 

where gradG is a functional constant of integration. Further, 
from 7*2(2) 

H = curl curl Hq. (3) 

Consequently, from (2) and (3) 

curl curl IIq -4- = grad G. (4) 

7*5* Derivation of an electromagnetic field from a single 
scalar quantity 

We have to consider what restrictions must be placed upon a 

system of orthogonal curvilinear coordinates in order that the com¬ 

ponents in it, of the field vectors of an electromagnetic field, may 

be derived from a single component Hertz vector of the form 

n = iiG + ig.o-f ig.o, 

where V is the scalar magnitude of the vector and ij, ig and ij 

are unit vectors in the orthogonal curvilinear coordinate system;* 

that is, if ds is an elementary space interval at an arbitrary point, then 

ds = 

where Aj, and A3 are the differential multipliers of the system and 

Ui, W3 the variables. 
Since 11 = G satisfies the vector equation 7-3 (4), we deduce 

(curl curl n)i-f/^€ni = (gradF)!, 

(curl curl 11)2 = (grad F)2, - (i) 

(curl curl 11)3 = (gradF)3. 

* Stratton, Electromagnetic Theory^ pp. 47-59; Ramo and V\liinner>’, Fields 

and Waves in Modem Radio^ pp. 84-91. 
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•Fmust be chosen to satisfy the second and third of equations (i), 
since 

curin — 

Alii Ajig As *8 

8 8 8 

8ui 8U2 8U3 

h^U 0 0 

and 

curl curl 11 = 
h-yh^h^ 

hX ti kt ^’1 s, {^1; 55;**' ^>1] 
+1^ i I A' I- (*. V)\+A- k: I a a (*. t')! ■ (3) 

*3 ^ I ^2 ^ / 
KK '^X 1^1 Aj C^Ug' AlAg^l ^ J AjAgi?!/! (AiAjC^Ug^ ■ 

It follows from (i) and (2) that F must be so chosen that 

I ^F I c [ h, i.) 
(gradF)g = 

Ag ^t/2 ^1^3 rWj 1^1 ^2 ^^2 

, / j I7X I I ^ ( ^2 ^ /I rrx) 
an (gra ^3 “//g ^3 ~ iAiAa^Wg^ ^ 

Let the orthogonal curvilinear system of coordinates possess th6 

special property (the restriction on it that in fact we are seeking) 

that is independent of Ug and of 1/3 and also that A3/A2 indepen¬ 
dent of Ui; then equations (4) reduce to 

^ 1 ^ = L 
du2 bu^ hidu^dui 

With these restrictions on the coordinate system it follows from 

(5) that the quantity F that satisfied both equations (4) is 

<*■) 
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The differential equation satisfied by U is obtained by inserting 
this value of F in the first of equations (i), whence 

Since the time almost always enters in the factor the term 

fie{d^Uldt^) usually becomes —cj^/ieU = —k^U. 

7'6. Derivation of E and H from U. £-type fields 

When a solution U of 7-5 (7) has been found, the components of 

the electric field with respect to the system of curvilinear coordinates 

are obtained from the relation 7-3 (3) 

whence 

E = curl curl 11 = curl curl (i^ U), 

E> 2 rr * ^ ^ 1 

Ai cHi \Ai cu^ 

^ _ I ^ i I cU^ , _ I dW 1 

^ Ag ^ ^2 A (U,) hih^tu^dui 

TP ^ ^ i I dU' _ I c-^U 

® “ A3 CM3 ^ [hi c:uil ' ~ AjAjfMsCMi' 

The components of H follow from equation 7 3 (i), 

B = /<H = //e curl H = jw/n€ curl (ij U), 

whence //i = o, 
. (<;e c , . .o)ecU 

. OK d , . OK dU . 

(I) 

(2) 

(3) 

In equations (2) and (3) we have taken advantage of the postulate 

that is independent of and and A^/Aj of Ui. 
These equations, (2) and (3), show that the Hertz vector 11 = i^ t/ 

leads to electric or E-type fields in which ffi is zero. It is for this 

reason that II is called the electric Hertz vector. 
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77. Boundary conditions for U at the surface of a perfect 
conductor 

In general, to obtain practical solutions of equation 7*5(7) we 

require to know how U behaves at the bounding surfaces of the 

region throughout which the solutions are valid. 

The physical bounding surfaces that occur in practice are usually 

metal walls which we suppose, for simplicity, to be perfectly con¬ 
ducting. The behaviour of U 
on such a surface is easily 

derived from the behaviour of 

E and H on perfectly con¬ 

ducting boundaries. 

In practice, solutions are 

usually only obtained in those 

cases where the bounding 

surfaces can be represented 
as surfaces = constant, 

^2 = constant, = constant in an appropriately chosen system of 

orthogonal curvilinear coordinates, as indicated in fig. 7*1. 

The components of E and H behave as follows on perfectly 

conducting boundaries: 

E^ — o over boundaries = constant and ii^ = constant, 

£*2 = 0 over boundaries = constant and = constant, 

£3 = 0 over boundaries = constant and = constant, 

Hz = o over the boundary 1/3 = constant, 

o over the boundary = constant. 

Inspection of equations 7 6(2) and (3) show the boundary 

conditions for U to be 

Us increases 

t/ = o) 

bUy 
= O 

[ over the boundaries Wg = constant and M3 = constant, 

^2 

dUg 

o over the boundaries Ug = constant, 

= o over the boundaries i/g = constant, 

provided the boundaries are perfectly conducting. 
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7*8. The scalar F—-magnetic or //-type fields 

As was explained in §7-4, electromagnetic fields may also be 
derived from a magnetic Hertz vector Hq. We suppose this also to 

be a single component vector 

Ho = iiF+ig.o + ig.o, (i) 

and seek the form of the scalar function G of equation 7*4(2), and 

the differential equation satisfied by V. 
With the same postulate, that is independent of and Wg, and 

Ag/Ag of we find, as in §7*5 

(2) 

and that V and U satisfy the same differential equation 

*18^ (*, is;) /s [iv]*s 

According to 7*4(3) and (i) the components of H and E are 

I dw 

dW 

h-^hidu^dui' 

hih^cv^dui 

.iofi ('V 

(4) 

.w// dV 
= 0, -j . - , E^=j\ . 

^ /»3 ^3 K 
(5) 

The magnetic Hertz vector IIq = ij F evidently gives magnetic 

or //-type fields. 

7*9. Boundary conditions for V 

To the boundary conditions for E and H displayed in §77 there 

is the additional condition 

o over the boundary, = constant. 
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From these we deduce the behaviour of V to be the following: 

over a perfectly conducting boundary 

Ui = constant, 

_ over perfectly conducting boundaries 

du2 «2 = constant and = constant, 

__ over perfectly conducting boundaries 

du^ W3 = constant and Ui = constant. 

y*io. Application of method to specific coordinate systems 

7*io*i. Introduction 

In what follows we apply the general theory of the previous 

sections to those few systems of curvilinear coordinates that are 

most commonly employed to study electromagnetic fields in wave 

guides and resonators. It is everywhere assumed that time enters 

in the factor and it is verified that the curvilinear system in each 

case is such that hi is independent of Wg and Wg, and A3/A2 of 

To summarize: 

Solutions are required of the basic differential equation 

1A (1 [± ( A A (h T)\ 
hidui\hidui) ^ ) 

A (^nl] + ^27 = 0, (0 

where T denotes U or V and = (o^fie = (zn/A)^, 
U and F are subject respectively to the boundary conditions 

formulated in §§7-7 and 7-9. 

In practice, solutions of (i) are usually obtained by use of the 

method of the separation of the variables and are most commonly 

obtained in the form 

T =/l(«l)/*(«2)/3(«3)«'"‘- 

The boundary conditions (§§77 and 7-9) for U and V now 
simplify as follows; 

Electric type oscillations, T =11: 

= o on the boundary u, => constant, 

“ o on the boundary «, = constant. 
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Magnetic type oscillations^ T^V: 

= o oi\ the boundary = constant, 

= o on the boundary Wg = constant. 

The field components are ; 

Electric type fields, T=U: 

dW I d^U 

2 du2 ® Ai Ag dUg dui ’ 

M w TT .(oedU H.-o, 
Ag 

(2) 

(3) 

Magnetic type fields, T=V: 

H, = A»r+f -A (Ai , //g = ~ 
* Ai ruj \ ^i/ Ai 

dW 

£,-o, 

5 li „ _ ,J_ 

(4) 

(5) 

7*iO‘2. Solutions in Cartesian coordinates 

Here - x, u^= y, Ui = z\ i. 

The condition, to be independent of Wg ^3 ^3/^2 
may therefore be satisfied by a unicomponent vector directed along 

any one of the axes, and we have arbitrarily selected the 3r-axis as 

that along which the Hertz vector is directed. The basic differential 

equation yio-i (i) becomes 

(0 

Let T = Xix)Y{y)Ziz)ei<^, 

where X, Y and Z are functions of *, y and z only. Substitute this 

expression for T in (i), then 

id*X i<PY id*Z 
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This equation resolves into the three equations 

<PX <PY 

dx^ “ dy^ '' 

where a* + -f 

but are otherwise arbitrary constants. 

X = (ojc) or 
sm ^ ' 

Y = (fiy) or - 
sm ^ ' 

cos 
Z = . (yz) or 

sm ^ 

(2) 

It follows that 

(3) 

Rectangular wave guides 
Let Oz be the axis of propagation and let the walls be the planes 

y = o and y — by xr = o and x — a. 

To obtain the expressions for E-waves put 

T = U — sinax sin/iye^^^~y^\ 

in which U is the xr-component 77.. 

The boundary conditions require U to be zero at the walls which 

are the planes Wg = constant and Wg = constant. That is, 

a = 
mn nn 

y is also determined through (2) as 

Whence 

— ^ 

"A?- 

The cut-off wave-length is therefore given by 

1 /ot\2 /n\* 

A* - \2a) \26/ ■ 

(4) 

(5) 

(6) 

Thus the component of the electric Hertz vector of the J?„,„-wave is 
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Similarly, the component of the magnetic Hertz vector of the 
is 

r. ».(!!!^) cos 

Field components 

E^„~toaves (equations y-io-i (2) and (3)): 

=I (S) - ("F) -(^F) 
. (*>- r*) c; - [(!^)V u, 

H, = H, = o, 

\ • 1 (mnx\ 1 
)sin| 

\cos(~\ 
UJ 

H^^-waves (equations (4), (5) and (6)): 

«. = !/. = K = [(^)\ (f)] F, [ 

E, = o, 

E. = -;vf =>.(V>os(=)3i„(S)c«-., 

dx 
(!^^)sin(^*)cos(«-^).<^-.> 

(8) 

(9) 

(10) 

where y *8 given by (4). 
HWO 17 
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These expressions are equivalent to those quoted in§3'3. Expres¬ 

sions (9) and (10) show that the longitudinal con^ponents vibrate in 

quadrature with the other components. 

As explained in §3-5, evanescent solutions appear when 7, as 

given by (4), is a mathematically imaginary quantity, the condition 
being 

A > Ag. or, from (5), 

We may then write y — ±ja, where 

“-yKvr-iTn-hyfe-r.)- 
The terms in (9) and (10) that are prefixed by 77 change phase by 

90® in the evanescent as compared with the progressive solution. 

The transverse components of H then oscillate in quadrature with 
the transverse components of E. 

Rectangular resonators 

Let the conducting walls of the resonator be the planes 

X — o and x — a, 7 = 0 and y — b, z — o and z ^ c, 

E^^p-modes. We consider J?-type modes first. We select terms (3) 

which make U vanish over the walls x or y = constant, but not over 

the remaining pair z = constant. 

We write therefore 

(7 = sin ojc sin fy cos yzy 

where m, n and p are integers. Further, from (2) 

The resonant wave-length of the E^^p-mode is therefore given by 

in agreement with 6*4(5). 

(”) 
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H^np-fftodes. To satisfy the boundary conditions, Z = o on the 

walls z — constant, dX/dx and dY/dy zero on the remaining walls. 
put 

with 
\ c / 

The resonant wave-length is also given by (ii). The field com¬ 

ponents are obtained directly from these expressions for U and V 

when they are differentiated according to the procedures indicated 

in (2), (3), (4) and (5) of the preceding section. 
When the expressions for the field components have been 

obtained it is easy to see that all the components of E oscillate in 

quadrature with those of H, as stated in §6*2. 

7*io*3. Electromagnetic waves on cylinders. General discussion 

We consider first a general cylinder whose axis is directed along 

Oz and whose conducting boundary or boundaries are general 

cylindrical surfaces f{Xyy) = constant. 

In 7-5 (i), we put n == iiTIg = ii T, then, since T is a rectilinear 

component, the term curl curl II can be replaced by grad div II — 

and 7-5(1) becomes 

grad - V^T-k^T = gradF. 

Thus we may choose F = dTjdz and obtain T as the solution of 

where 
In practice the boundaries will be surfaces Ui = constant or 

U2 = constant and T will be obtained in the form 

T=A{u,)Mu,)Ziz)ei'^. 

Cylindrical waves propagated along Oz 

In curvilinear coordinates = o becomes 

^ JL_ 
\_du^ U2 ^8/ ^ Us W J 

To represent a wave propagated along Oz put 

7'»/aK)/s(«,) 

(0 

(2) 
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and determine the functions and from (i) for the particular 
coordinate system under discussion. 

Suppose the walls to be surfaces = constant, then to discuss 

£-mbdes we put T = U and choose/2(u2) so that it vanishes at the 
wall or walls. For //-modes, put T V and choose so that 

vanishes at the walls. 

When U and V have been found, the field components of the £- 

and //-modes are derived from them by the standard procedure 

of§7-io-i(2), (3), (4) and (5). 

7*io*4. TEM-waves 

The condition that a wave should be a TEM-wave propagated 

along Oz is that Eg = Hg = o everywhere. This condition gives, 

from equations 7* 10*1(2) and (4), the following general results 

(^1 “ ^)* 027' 

or. 

Thus A == 7 whence 

dz^ 

(*2-7^) T = o. 

u = = 
I 

A = A„ 

The speed of all TEM-waves is therefore 

I 
V = (0 

The field components in the pattern are (from y-io-i (2) and (3)) 

E — ~ — 
* Kdu. 

I 8 

h^du^ydz ^-jy 
K 8Uf’ 

„ _ j(D€ 8T j(i)e 8T 

Thus E = —jy grad T, 

H 
jijje 

curUi^T), 

A, duy 

(i, = unit vector along Oz). (2) 
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These are the conditions that the fields E and H in the wave front 

shall be two-dimensional electrostatic and magnetostatic fields. 
Since a two-dimensional electrostatic field cannot exist within a 

hollow metal cylinder free of space charge, it is essential for the 

propagation of TEM-waves that a pair of cylinders be used, so 

that the electric lines of force may arise on the one and terminate on 

the other. This is the only means of avoiding a longitudinal com¬ 
ponent Eg. 

The wave impedance of a TEM-wave is 

Z:=^ = = ^ = A = 
7/3 H2 (06 0)6 (06 

since k =s (Oyjijie). 

The results of this section were assumed in Chapter i and are of 

fundamental importance for the theory of transmission lines. 

7'io*5s Circular cylinders 

The variables are — Zy U2 = r, u^ — O and the differential 

multipliers are Aj = 1,^2= i and = r. 
The fundamental differential equation 7-io*i(i) or 7*io-3(i) 

becomes 

dz^ 
iP/i —\ ^ (rdTV 
r \jdd \r dd]^ dr \ dr 

-hA2r = o. (I) 

Put T ^ R(r)F(d)Z{z)e^^. 

Then (i) reduces to 

I I d (rdR\ I I d^F i d^Z 

Rr dr V dT 
(2) 

Let 
I d*Z , i(PF , 
Zdz^ ~ ^ ’ Fdd^ (3) 

where m and y are constants independent of r, 6 and z, m being an 

integer in the present application. 

Then, from (3), 

Z =! (yar) or F — *'?* (m0) or (4) 
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Replace the terms in (2) by their corresponding values in (3) to 
obtain the following differential equation for R 

The solution of (5) is some Bessel function of order m which we 

shall write Zf^[yJ{k^ — y^)r]. The type of solution of (i) that we 

require is therefore 

T = (6) 

The choice of Bessel function and of the form of Z{z) is determined 

by the problem in hand. 

Wave propagation in circular wave guides 

Ey^^-modes. Put 

T=U, Z{z)^e-iy‘, 

where JfJjx) is a Bessel function of the first kind and of order m. 

It is chosen because it is finite for jc = o and does not make T 

infinite on the axis r = o. 

Thus U = - r^) r] cos nde^^^-y^\ (7) 

The conducting boundary is the cylinder Wg = ^ = « (« = radius of 
cylinder) over which we require 

/2(««) = - y‘) r] to be zero. 

Therefore — 7*) a = a root of 7„(*). 

Let be the nth root of /„(*) = o, then the value of y for the 

£„„-mode is to be obtained from 

V(**-r*)a =Pm» 

or 

A2 

il (8) 

2W/Ap, 

[znaj (9) 

!^-mode is therefore 

2na 
(to) 
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The values of for small values of m and n are shown in the 
following table: 

Ptnn 

^•s n 

I 2 3 
m 

0 2*405 5*52 8*65 

I 3-85 7*02 10*17 

2 513 842 i 1 11*62 

whence the cut-off wave-lengths of the and -waves are 
respectively 27Ta 

=-= 2'Oia 
2-405 

and ^ = ,-640. 
3-83 

The field components are obtained from (7) in the usual manner 
through 7-10-1 (2) and (3), with = A3 = 1 and h^ = r 

^ - ->yfr - 
H. = o, 

He = ^ (^) 

.a>e 8U 

The field patterns of the ^oi* ^nd A^n-waves are indicated in figs. 
2-16 and 2-19. 

H^^-modes. The boundary condition is 

^ 7m [V(** - r*) »■] = o> the cylinder r = a. 

The field is therefore to be derived from 

V^Jm »•) cos mde^'^-y*\ 



264 PRINCIPLES AND PRACTICE OF WAVE GUIDES 

where is the nth root of Jm(*) = o* The cut-off wave-length is 
derived from , ». 

or 

that is Ae = 

-\ ̂ 0 ; 

_l (f^mn 
1 [zna 

2na 
(12) 

The following table shows the roots of Jm(x) = o for the smaller 

values of m and n: 

If 

\ 
m 

X 2 3 

0 383 702 1017 

I I‘84 5*33 8-54 

2 305 6*70 996 

According to (12) the cut-off wave-lengths of the and i/,i- 

waves are respectively 

and Ae = = 3'42<»* 

The field components are obtained from y-io-i (4) and (5), and (ii) 

above, as 

ffr - -J7 (~)fm 

= 0, 

= +y(.>A^ = 

JE, =. iF, - -j^% “ 
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The patterns of the and ffu-waves are indicated in figs. 2-15 
and 2*18. 

Cylindrical resonators (hollow) 

The cylinder is bounded by the surfaces 

r = U2 = a, Ui = z = o or d. 

E^^p-modes. Put r= U fy{ui)fi{u^)f^{u^)e^'^. 
The boundary conditions require 

/x(i/i) 4= o over the ends — z — oov d, 

f^{u^ = o on the surface r = a. 

From (6) select the following expression for U: 

u = - r®) »■] cos (md) cos (yz) cK (13) 

The boundary conditions require 

— y^) = and 7 = ^ (/> an integer) 

This is the formula for the resonant wave-lengths given in § 6*4. 

Similarly, for the if„,,^p-modes 

which leads again to formula (14). 

For these modes 

v=j„, cos me sin j (15) 

The fields of the and i/„„p modes may be derived from these 

expressions for U and V by the usual method. 
We next consider briefly cases where choices from the possible 

functions shown in (4) and (6), different from those we have made 

in (7), (i i), (14) and (15), are required. These are shown in fig. 7-2. 
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Fig. 7*2 (a) shows a pair of coaxial cylinders of radii a and 6. For 
F-type waves or oscillations we require the factor — y*) r] 
in (6) to vanish both at r — a and r = 6, and for H~type modes 

7*)''] to vanish on these surfaces. 

Fig. 7-2. 

Z„ is therefore made the sum of wth order Bessel functions of 
the first and second kinds with suitable constant coefficients. 

Thus = AJ„y(k^-y*)r] + £N„y(k>~r^)r]. 

The boundary conditions for F-modes require 

Z„ = o at r — a and r == b, 

and for H-moj;les, 

• - Z'„ = o at r = a and r = b. 

The value of (At* — y*) for F-modes is determined therefore from the 
following transcendental equation:* 

and for .^f^modes from 

jvav(**-r*)0l NiM**-?’)*!' 
The ratio of the constants is 

A iVJV(A«-y«)a] 

♦ Stmtton^ Electromagnetic Theory, p, 548. 
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The^ modes are the supplementary modes mentioned in §2*7. 

When k^y and m — o the corresponding field is that of a TEM- 
mode. 

Equation (5) becomes 
d 

dr 

or R = AXogr-k-B, 

and T = {A log r+B) 

From 7* 10-1 (2) and (3) 

= E0 = o, gHU-kr)^ 

/flP 
He ==-jy 

Whence 
Er k _ Ifl 

^TEM — — — — 0)€ 0)6 

in agreement with 7-10-4 (3). 

The configuration shown in fig. 7-2(6) is a coa 

conducting septa placed radially with their plan^ 

at an angle 6. 

To find the E-modes we require to vanish on the cylindrical 

sin 
surfaces and mO to vanish on the septa at 0 = o and 6 = 

cos 

Thus mdn = SIT and the sine term becomes sin 

The order m of the Bessel function is no longer integral. The 

fields of E-waves are to be derived from 

U = Z, {snido) y{k' - r*) r] sin 

where s is an integer. The cut-off wave-lengths are to be obtained 

from (i6) with m = snjdQ. 

The ff-modes are derived from 

V = Zisnie,) [V(** - r*)»'] cos ^ j 

and their cut-off wave-lengths from (17). 

When do =» 27r the coaxial system of fig. 7*2 (6) transforms to the 

septate coaxial system of fig. 2-17 where dominant H mode is 
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indicated. The order of the Bessel functions is now 5/2 with r » i 

for the dominant //-mode. 

Fig. 7*2 (^:) shows the portion of a bend in a rectangular wave 

guide regarded as a coaxial system closed by planes at 2 » o and 

z ^ d, with the end sections of the wave guide lying in the planes 

6 — 0 and 6 = 6^. 

We are here concerned with a wave propagated in the direction 

of increasing 0*as shown by the arrow in the figure. 

The expressions for U and F, chosen from (4) and (6) to satisfy 

the boundary conditions, are 

u = - r*) A + - y*) r]} cos^ 

where y = {pTrjd) and p is an integer, and 

V = - y^) A + - y*) r]} 

Since = k^ — {p7rld)^ is now given equations (16) and (17) 

are now used to find the value / of the order of the Bessel functions 

and of the effective propagation constant. 

The fields derived from U have Hg zero and those from F, Eg 

zero. They correspond to what are termed longitudinal section waves 
in rectangular straight wave guides* (§7*io*8). When /> = o, F = o 

and in the wave derived from f/, it can be seen from 7101 (2) and (3) 

—with Ui = U2 = r, = 0 as before—that all components of 

the wave vanish except Eg and The wave therefore resembles 

an i/^Q-wave in a straight wave guide and is the one that is readily 

excited in an //-plane bend attached to a straight section of wave 

guide. It would be anticipated from this that an //-plane bend would 

give smaller reflexion than an J?-plane bend. 

Finally, in fig. 7*2(£/), we are shown a wedge bounded by con¬ 

ducting walls 2 = 0 and d, and d = ±6^2. We require the field 

components of wave propagated radially outwards from the origin. 

The problem clearly relates to wave propagation in horns. We here 

require a different type of Bessel function from those employed 

above, namely Hankel functions.^ 

These functions are of two types that are related to the Bessel 

functions J^ipc) and NJ^x) as follows: 

=ym(*)+;iVJ*). //«)(*) =Ux)-jNJix). (19) 

* Lamont, Wave Guides^ p. 58, Methuen Monograph, 
t Janke and Emde, TabUi of Funciiam, p. 134, 3rd ed. 
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There is more than a formal similarity between relations (17) and 

the well-known trigonometrical relations 

= cos X 4-7 sin jc, = cos x —j sin x. (20) 

Just as two-plane oppositely travelling waves 

gi(<d+yx) gi(<U-yx) 

can be superimposed to produce a standing wave ze^^cosyx, so it 

proves that the functions 

and e^^H(^y(k^^y^)r] 

represent respectively inwards and outwards travelling cylindrical 

waves, which according to (19) may be superimposed to produce a 

cylindrical standing wave 

2e^^Jm[^^(k^ - y^) r] + //(2)[^(*2 _ ^2) r]}. 

Thus the Bessel function of the first kind which appears in (13) 

and (15) may be regarded as a standing wave formed from cylin¬ 

drical waves incident upon and reflected from the cylindrical 

boundary. After these remarks it should be clear that the form for U 

appropriate to outwardly travelling waves in the wedge of fig. 7-2 (d) is 

U = — y^) r] cos md cos yze^*^, 

where 
\dj 

and m = 
sn 

with p and s integers. The solutions derived from U were used by 

Barrow and Chu* to discuss wave propagation in horns. 

7*io*6. Intrinsic {or wave) impedance of waves along cylinders 

The intrinsic (or wave) impedance of a wave propagated along 

Oz is F F 
-^0 “ r/ TJ • 

For waves, we put Zq = and use y-io-i (2) and (3) to obtain 

= I and = z) 

Aoe dU\ 

^ \ ^^h^dujlx ^ h^duj 

f) 
27r 

A„wV(/‘e) 

A.- 

I V 

Kl 

* W. L. Barrow and J. L. Chif, Proc. Inst, Radio Engrs, vol. zj, p. 51 (1939)- 
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Similarly, from y'lO-i (4) and (5) for /f-waves Zq = Zjj 

These results were stated in §3*4-i. 

7*io*7. Solutions in spherical polar coordinates 

The variables are; the radial distance r = co-latitude 6 = 

and longitude p = u^, and the differential multipliers are, hi — 1, 
h^ — r and h^ — rsin0. The basic differential equation 7*io*i(i) 

therefore assumes the form 

i r g / • g / i dTV 

gr* ^ r* sin 0 \ g^/^g^ \sin0 g^i/_ 
o, (I) 

where k = — 2nj\. Put 

T = R{r)S{d,P)ei<^, (2) 

where i?(r) is a function of r only and 5(0, <f>) a function of d and <f>. 
When this expression for T is substituted in (i) the variables may 

be separated in the usual manner to give the following equations, in 

which n is the separation constant: 

I d (. .es\ I g*5 , , „ 

sin 9 r" ^ 39 ) ■" sin* 9 8^• + ^ (3) 

and (4) 

Equation (3) is Legendre’s equation, and S{d,<j>) is therefore a 

surface harmonic.* 

Equation (4) may be thrown into a more familiar form by re¬ 

placing n in it by (P — i). That is, put (« +1 ) = (/> + J). 
Equation (4) then transforms to 

It is known* that the solution of 

+ o, (6) 

• Janke and Emde, Tables of Functiam, pp. i07->a5. Loc. cit. p. 146, § 7 
(equation (4)). 
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in which a, k and/> are constants, is 

y = x‘Zj,{kx), (7) 

where ZJJtx) is a Bessel function of order/>. 

Equation (5) is a special case of (6) with ct = \ and its solution 

is therefore R = r*Zp(kr). Since p = (n + ^), the solution of (4) is 

therefore, R = r^Z,^^^ikr). (8) 

Since the solution of (3) will be of the general form 

S{d, <l>) = <S^(cos 6) cos m<}>, 

where S^(cos0) is a spherical harmonic, the solution of (i) is of 

the form T = r*Z(„+|)(/!r)5“(cos^) cosw^cH (9) 

E-modes. T = U; from equations yio-i (2) and (3). 

= k^U+ 
e^U n{n + i)U 

(from (4)), 

F 
® * rdddr' 

p _ p_^ ^ 
^ ® rsin^^^^’l 

^rsindSp' 

.(oedU 
r dd‘ 

H-modes. Put T = V and apply equations y-io-i (4) and (5). 

= kW+ 
8W n{n+i)V 

I dw 

rdddr' 

H =// » 
^ ® rsind d<f>dr' 

F - F i Ee-E^- 

P P 
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Spherical waves 

To obtain the field components of general spherical diverging 

waves, give T in (9) the form 

T = S^{cos6) cos(12) 

and operate on Taccording to (10) and (i i) to obtain E and H waves. 

The simplest cases correspond to m = o, n = o and i. 

Case m = o, w = I: 

T = rmf\kr)cos.dei'^. (13) 

Since Hf{x) 

(14) 
and H%\x) =y-<»’+*>y(^)e+»*5^(-y2^). 

where 
^ i!4>' 2!(4y)* 

(4p2-i)(4p2-9)(4p2-25) 

3! (43')® 
■r ..., 

so that 

where P’p{x) 

Spi ±i^x) = Pp{2x) +jQj>{2x), 

(4/.»-i)(4j)»-9) 
2!(8*)2 

(4j>^ -1) (4/>^ - 9) - 25) (4j>^ - 36) 
4!(8*)‘ 

and e,w = . 

it follows that 

so that, in (13), 

!(8*) 3!(8*)3 

gjifU^kr) QQg Q 

a/U)[' q 

(15) 
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E-toave. Put T = U, and apply (10), with « = i, 

E^ = o, 

He = o, 

This is the radiation field of an electric Hertz doublet. 
The radiation field due to an oscillating magnetic doublet is 

similarly found by putting T = F in (15) and by using (ii). 
The case n = o, w = o which is degenerate, is not covered by (12), 

and it is necessary to return to the differential equations (3) and (4), 

with n = o, and dS/d^ = o (m = o). 

dS 
Whence, from (3), sin^^ = A 

or 
A dd „ 

= A I —Z+-®> J smp 
where A and B are integration constants. 

Thus S = A log cot ^6 + B. 

d^R 
From (4), with m = o, = — k^R. 

Whence R = Cc±’^. 

Thus, for a diverging wave, 

[A log (cot ^$) + B] 

To find the E-wave, put T = U and apply (10). We find 

Ef — U — o (since n = o), 

= - = A f?■(«<-*»•) 
® rdddr rsine 

E^ 0 = Hg, 

.0>edJU^. {-j(0€) 

^ r dd rsin^ 

(16) 

x8 
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The wave is therefore a TEM-wave and requires a pair of conductors 

to guide it. Further, since T and the field components become 

infinite for ^ = o or zr, this axis must be excluded from the region. 

Also since is zero everywhere and E = Eq, the appropriate con¬ 

ductors are a pair of coaxial cones with the common axis 0 — o 

or zr, such, for instance, as the pair of cones shown in fig. 6*io(a). 

Let the angles of the conical conductors be di and 62. The voltage 

in the TEM-wave guided by them is 

= = A{-jk) [log cot 

The current in the conductor 0^ at distance r is 

The characteristic impedance of the double-cone transmission 
line is , 

But k = (o^{fie). Therefore 

When = = Oo, Zo = i log (cot ^6,). 

Spherical resonators 

We shall suppose the sphere to be hollow and with radius a. We 
give T in (9) the form 

^ cos 

The cases of greatest interest are those with axial symmetry, that 
is, with m = o*. 

The functions 7n+*(^) ^i^e easily obtained from the Hankel 
functions in (14) with p = (n -f |) as 

Jn^iikr) = 
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From this it follows that 

- 7(4) [{(h)--«'■ 

The natural frequencies are found from the conditions F = o 

and U^o at r = a. Thus for ^f-modes: J{n^\){ka) = o, k = 

for £-modes: ['7(*")7(*«)] = o, k = ar^Ja. 

Here p^q and (T^q are the ^h rooj^s respectively of J{x) = o and 

^ [jc*7(^)] = o. Some values are;^ ^ 5*8, p^2 = 7*64, = 275. 

These are the {nqm) H- and J?-modes of a spherical resonator. 

7* 10*8. Longitudinal section waves 

If the expressions §7*io-2 (9) and (10) for the field components 

of and //^y^-waves in rectangular wave guides be examined it 
will be noted that the components Ey are, apart from constant co¬ 

efficients, the same functions of jc, y and 2r, since both types of wave 
travel at the same speed. If therefore the wave fields derived from 

and r(f)l" 

are subtracted, the component Ey disappears and a new wave 
pattern results in which E has no transverse component. This wave 

is called a longitudinal section wave. 
Similarly, by superimposing the fields of 

V. 
the resulting longitudinal section wave is one in which Hy is absent. 

The lowest order longitudinal wave is that for which m = n = i. 

7*11. Example of a method for calculating the susceptance 
of an obstacle 

Although in §§5-4 and 5-5 we have discussed the interpretation 
of the term self-susceptance of an obstacle in a wave guide, it is 
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useful to illustrate what was said, by demonstrating how the 

theoretical expression for the susceptance is actually obtained in a 
specific instance. The object chosen for investigation is a thin wire 

stretched across the centre of the cross-section of the wave guide 
parallel to the electric field of the Jf^o-wave. This example is well 

adapted to our purpose, since the analysis is relatively simple. The 

principle of the method is that employed by Macfarlane. 

Consider first the magnetostatic field excited by the plane grid 
of parallel infinitely long and evenly spaced fine wires, a normal 

section of which is shown in fig. 7*3. The currents are equal but flow 

in opposite senses in adjacent wires. Let the planes of the grid and 
of the paper be respectively XOY and XOZ^ with the origin placed 

on one of the wires. The figure indicates roughly the configuration 
of the magnetic field. 

Let the separation of adjacent wires be equal to a and the current 

in each wire /. It is known that thef two-dimensional magnetic field 
is to be derived from the following complex potential:^ 

w = u ^jv = y ^ log tanh {z +y^) J 

~ \ I + / ■ 

The magnetic field is H = — grad u, that is 

„ 8u „ du 

According to the Cauchy-Riemann equations 

du _dv du 

dz dx' dx 
dv 

Jz' 

(1) 

(2) 

consequently H is also obtained from v, as follows: 

dx' ^^~dz‘ ^3) 

Since H is curl A, where A is the eleemc vector potential of the 

field (§7'3), it follows from (3) that A is directed along OY (parallel 

• For instance, S. L. Green, Hydro and Aerodynamics^ Pitman, p. 83. 
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to the wires) and that its single component -4^ is equal to v. Thus u 

is the magnetostatic potential and v the vector potential. 
We proceed to express relation (i) in a form more significant 

for our present purpose. 

This expression is equivalent to 

W j — [log (l — — log (l + 

. / 
27T [-( 

-( 

p—27iiz-{-jx)la p—Z7T(js+jx)la 
g-n(js-\-jx)la _j_^ ^ 

^-~niz+jx)la_ 

2 3 
^-2niz+ix)la ^-2niz+jx)la 

■) 

-)] 
• ^ r I 'inz . . 'iTTz\ 

= “-7 “ ^ I cos-; sin — IH-(cos  -1 sm -— I 
•'ttL \ ^ a] 3\ a ^ a ] 

e-'^^zla / . . C7r2\ “1 
H-I cos  -1 sm -— IH-... . 

5 \ ^ ^ / J 

Whence 
(mnx) , g-^nzla 

u — y\ sm — [ a J ' m 

I ^ i fmnx\ 
V =-2 COS I — 

TTm^l ^ ( « ) ' m 

(4) 

with m an odd integer. 

Next suppose the currents in the wires to oscillate at low frequency 

(A>^) so that (4) becomes 

/ * . / (m7TX\ 
tt = — y sin 1 

Trt ' \ a J r m 

I “ i fmnx) 
► 

. p-{mn!a)z 

® = — y cos -e’"*, 
n 1 ' { a ) ' m J 

{m an odd integer). 

(5) 

We next seek to remove the restriction that o) shall be small 
(A>a) and thus obtain an expression for the field potentials valid 
at any frequency. This expression must reduce to (5) at low and 

zero frequencies. 
We recall that in a Cartesian coordinate system an electromagnetic 

field with jc- and ar-components may be derived from a scalar 
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quantity V which is the 2r-component of a Hertz vector. The com¬ 

ponents of the /f-type electromagnetic field derived from V are: 

j? ■ (6) 

When (i) is zero or small, then the field derived from (6) is static or 
quasi-static, with components 

dx\dz)^ 

When in addition this static field is two-dimensional, with Hy 
(and therefore dVjdy) zero, it is evident from (2) that —{dVIdz) 

becomes the magnetostatic scalar potential u. 
Thus, at low frequencies. 

dz 7T 
-Zsin 

/m7Tx\ nnx\ 

T~) 
>j(ut 

m (7) 

But we know, from 7-io-2(io), that the //„,„-field is derived from 

Knn = ^mn COS (8) 

in which a sine function appears here because of the choice of 

origin. Put n = o in (8) and diflFerentiate with respect to z: 

dlL . . . lmnx\ ■ . , 
= -J7m^m Sin y — - j (9) 

and the general field independent ofy is to be derived from V = 2T^. 
We require Z{dVJdz) from (9) to transform into (7) at low fre¬ 

quencies. 
Since, according to 7-10-2(4), 

at low frequencies this gives 

or 
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Thus the exponential terms in (9) become those in (7) at low fre¬ 

quencies. We also require —jy^Am = Ilum or 

A ^_ 
^ m7T^{{imTjaY-k^) 

The quantity V which represents the field due to currents in the 

grid oscillating at any frequency (t£>/27r) is, 

L r {fnnxla) -{^[(mn/a)^-k^ys} pjtd 

{tn an odd integer). 

(II) 

Fig. 7-3. 

This expression makes Vy and therefore Hgy a maximum on the 

planes x = ±(2/)+ 1)^/2, where p is an integer. These planes are 
shown dotted in fig. 7-3. The oscillating field differs from the truly 

magnetostatic field (4) in an important respect, it possesses an 

electric component 
„ . 

_ . I ^ COS (mnxla) 
(12) 

which vanishes at the planes x ^ ± {zp +1) a/2. 
We may therefore isolate a strip of the field by placing flat plates 

with infinite conductivity to coincide with the planes ^ = ± ^a, 
and the field between, which is still to be derived from (i), corre¬ 
sponds to that excited by an oscillating current in a thin straight 

wire placed parallel to and midway between planes with infinite 

conductivity. 
Expression (ii) has been written in a form which represents all 

the terms in the summation as evanescent modes and it serves to 



28o principles and practice of wave guides 

illustrate, what has been remarked in §3*8, that the storage fields 

of evanescent modes are quasi-static. 
Suppose the frequency to be increased from a small value to 

one for which the first term (m = i) in (ii) ceases to be evanescent, 

that is ^5 > (/r/a), but other terms remain evanescent. In short 

37r , TT 

a a 

The first term in (i i) may now be written 

TT jy ’ ^ 

where y = — {njaY). The electric field of this wave is 

(.4) 

This represents a progressive /f^Q-wave between the plates. 

We shall now suppose the current in the wire to be excited by 
the electric field of an /f^o-wave 

= (15) 

The wave in (14) then represents the scattered wave, and the 

remaining terms in (12) the storage field. To obtain the susceptance 

of the wire it is necessary to relate the scattered wave (14) to the 
incident wave (15). 

This we may do by noting that at the surface of the wire (radius r) 

the tangential components of the total electric field is zero. The total 
electric field comprises: 

The incident field ^01/of (15)' 
The scattered field of (14). 
The storage field, obtained from (12). 

Egy — 2 COS {mnxla) 

a 3 

The condition is Eq+E^y -h = o 

at the surface of the wire. 

The scattering coefficient h is E^yjE^^ so that (17) becomes 

(16) 

(17) 
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The admittance of the obstacle is, from 5*4 (5)> 

(i+A) 
(18) 

the fields being evaluated at the surface of the wire. 
E I A / 

From (14), at the wire isince the wire, 
j(i)/i jya jzna 

assumed thin, is at jc = o. 

We require near the wire. Since, in (i6), m ^ 3, (wTr/a)^^ 
and we make little error in neglecting in the jsr-exponent. Expres¬ 

sion (16) may now be written 

e-^^E^ ^ “ cosjmnxla) 

j(i)fi 7T^ m 

I ® [m7Tx\ r I 

^ ) \j[i - {zalmXf] ■] 
^—mnzla 

m (19) 

in which m is an odd integer. 
On referring to (4) we see that the first term in (19) is 

— (w+^ cos j . (20) 

To obtain v near the wire return to (i) and write {z+jx) = 

and let pja4,i. 

«,= u+yz;->^log(^pe^«) Then 

277 

(21) Whence 

The quantity (20) is therefore approximately 

since x and z are small when p is small. 
The second term in (19) when {xja) is small is very nearly equal to 

(22) 

/ » r I ~\i 
^ 3 *Jm’ 
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The susceptance of the wire is therefore, from (i8), given by 
(p = r = radius of wire) 

+ 2- 

00 

3 (v[i-(2a/mA)2] ^)m] 
00 

2 + 22 
3 (v[l-(2< {zajmXy] 

{zajmXy] 

-IS' 
(23) 

where m is odd. The pair of parallel plates may be converted to a 
wave guide by introducing a second pair of walls in the planes 
y = o and b. 

Expression (23) is that given in fig. 5*16(10). This example 
illustrates how, by proper choice of an electrostatic problem whose 

solution is known, it is sometimes possible to solve an associated 

problem where the fields are oscillatory. 

7* 12, The field energy 

We return to §7*10*3 where the propagation of waves along 
cylinders was discussed in a general manner. 

It was shown that it was necessary to obtain solutions of 

V^T-\-k^T = o (i) 

(^2 _ subject to the boundary conditions T = o at the 

boundary when T = U (E-modes) the normal component of T = o 
at the boundaries when T = V (ET-modes). 

Field energy in E-waves, Put T = U = E(;Kr,jy)sin(6>/-72). Then, 

from (i), d^F d^F 
(2) 

dx^ ^ dy^ 

The field components are: 

F 
* dx \ dz )- 

(f)=- 

rg-cos(wl-72), 

^F , 
y ^ co8(w<-72), 

Fz = - T®) F(x,y) sin {o)t - yz), 

dF 
= OHi COS (col — yz) 

dy' 

Hy = — <<>e COS (<<>1 — 72)- 
d_F 

dx ' 
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The mean electric energy per length = znjy of the wave guide is 

The mean magnetic energy per wave-length is 

To relate Wj,j and Wm we use the two-dimensional form of one 
of Green’s theorems: 

dy^J dx dx dy dyj dn 

where <f> and xjr are scalars, S a surface and ^ds its periphery. 

Put (j) — xjr == F{Xyy)y then using (2) 

L +(i)’ (^)l 
since F vanishes at the boundary. 

Thus 

It follows that = Wm- Thus in a progressive £-wave the mean 
electric and magnetic energies per wave-length are equal. The 

same result is valid for //-waves. 

When, however, the mode is evanescent a similar investigation 
shows that in £-modes the electric energy exceeds the magnetic 

energy and conversely in //-modes. 

7*13. Babinet’s principle 

Babinet’s principle, which is described in a number of treatises 

on physical optics,^ relates the diffraction pattern produced by a 
screen containing one or more apertures with that produced by its 

complementary screen. If we denote the screen by 5, then the 

* T. Preston, Theory of Lights Macmillan; R. W. Wood, Physical Optics^ 
Macmillan; P. Drude, Theory of Optics^ Longmans, Green and Co. 
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screen C complementary to 5 is obtained from S by interchanging 

the opaque and open regions of 5. As formulated in text-books of 
optics, Babinet’s principle is derived from the Kirchhoff theory of 

diffraction, which treats light as a scalar wave phenomenon, con¬ 

sequently this formulation is not strictly applicable to the diffraction 

of electromagnetic waves. Several investigators* have discussed 

the correct form of the electromagnetic analogue of Babinet’s 

principle, the first of whom appears to be P. Epstein (1915).^ The 
practical importance of the electromagnetic analogue of Babinet’s 

principle in the development of microwave techniques (mainly in 

the subject of aerials and radiation, but indirectly in wave guides) 
was stressed by Booker. 

Because of its importance in the theory and practice of micro- 

waves and because it affords a good illustration of the usefulness 
of the U and V functions in general discussions, we give a derivation 
of the electromagnetic analogue of Babinet’s principle valid for 

infinitely thin perfectly conducting complementary screens (the 

case of imperfectly conducting screens is also discussed by Sommer- 
feld—see reference). 

We begin with a statement of the electromagnetic analogue of 
Babinet’s principle for a simple case. Consider a pair of plane 

perfectly conducting and complementary screens S and C of infinite 

extent, so constructed that the apertures S correspond to the con¬ 

ducting portions of C and conversely, so that if the two screens 
were superimposed they would fit together to form a conAicting 

plane without apertures. That is, if the conducting regions of S are 

denoted by crj, and the open regions by 0*2, then in C, cr^ denotes 

the open regions and cTg the closed. Suppose the screen S to occupy 

the plane 2 = o of a Cartesian coordinate system and that a plane- 
polarized electromagnetic wave (Eq, Hq) is incident normally on *?, 
its direction of propagation being along OZ. 

Let the electric vector Eq of the wave oscillate parallel to O F. 
The incident wave drives oscillating currents and produces 

oscillating charge distributions on the conducting regions tr^, of 5, 

* See footnote on previous page. 
+ P. Epstein, EnzyL d. Math. Wissensch. Bd. 5, Art. 24, SS. 510-11, Leipzig, 

1915; F. Jentzsch, Handbuch der Physik, Bd. 21, Licht und Materil, Kap. 20, 
SS. 914-15; W. V. Ignatowsky, Ann. Phys. Bd. 77, SS. 622, 1925; W. Fischer, 
Math. Ann. Bd. loi, 1929; A. Sommerfeld, .Die Differential und Integral- 
gleichungen derMechanik undPhytik, Frank und v. Mises, Zweiter Teil, SS. 8 z 1-16. 
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which excite a supplementary electromagnetic field (Ei,Hi). 
Consequently, the total electromagnetic field (E,H) behind the 
screen is the vector sum of the incident and supplementary fields; 

that is, E = Eo + Ei and in particular Ey = EQ-\‘E^y. 

Suppose the conducting regions cr^ and the apertures of S to 
be interchanged so that S is transformed to the complementary 

screen C. Let the incident electromagnetic wave, propagated along 
OZ," become (Eo,Ho). This wave is chosen to be related to the 
original wave (Eo,Hq) as follows: 

Hq oscillates parallel to ± OF. 

The amplitude of is the same as E„. i.e. (ignoring physical 

dimensions) H' = E 

In other words, the second incident wave is polarized at right angles 

to the first. 
Let the supplementary electromagnetic field associated with C 

under the influence of (Eq, Hq) be (Eg, Hg). The jy-component of 

the total magnetic field behind C is 

i/, = i/'+ i/g,. 

The electromagnetic analogue of Babinet^s principle asserts that, 

under the respective influences of the two incident waves (Eq, Hq) 

and (Eq, Hq) with Hq = Eq and parallel to Eq, the total magnetic 
field behind C is equal to the j-component of the supplementary 

electric field behind S but oppositely directed if the incident waves 

oscillate in phase. 
In symbols, this statement is equivalent to (disregarding physical 

dimensions) 

Hy = /fo + //gy (jy-component of total i/-field behind C), 

= — E^y (jy-component of supplementary Z-field behind S). 

Evidently, when the supplementary (diffracted) field E, of a 
screen 5, had been found by any means, that of the complementary 

screen C may be immediately deduced for the case in which the 

wave incident normally on C is polarized at right angles to that 
incident normally on S. 

We proceed to use the U and V functions to obtain a more general 
formulation of the electromagnetic analogue of Babinet’s principle 

than that we have just considered. 
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Let an arbitrary electromagnetic J?-type field derived from a 

Hertz vector T = impinge on screen *S, and an electromagnetic 
jFf-type field derived from the same function T* = Pq be incident on C. 

That is, the generating function T is common to both fields which 

are obtained by differentiating T by the respective methods re¬ 

quired to give E- and //-fields. For instance, a simple plane wave 

incident normally on S may be derived from 

and that incident on C from T = with Hq = Eq, 

We now consider incident fields of a more general type. The field 
Uq incident on S induces surface charges and currents on its con¬ 

ducting portions cr^y which excite supplementary electromagnetic 

fields which are superimposed on the exciting field. These supple¬ 
mentary fields comprise, in general, both E- and //-type fields 

which we suppose to be derivable from potential functions and 
\\ respectively. Similarly, the field P^ excites a supplementary field 

U^y p2 when it falls on C. The resulting field components in both 

cases satisfy the following conditions at the surfaces of the screens. 

Over the conducting portions the tangential components of the 
total electric field and the normal component of the magnetic field 

vanish. Over the open portions (in the plane of the screens), since 

the screens are infinitely thin so that the induced currents and 
charges are distributed in sheets, the normal component of the 

supplementary electric field and the tangential component of the 

supplementary magnetic field, vanish. 

Denote the total field behind (on the side away from the source) 

S by (E^, H^), and the supplementary field from the screen S by 
(Ei^,Hi^), the corresponding fields for C being (E^,H(;) and 

{Eicj Hi^;). Draw up the comparisons shown in tables i and 2 of the 
field components and their behaviour at the surface of S and C. 

Suppose the problem of the supplementary fields of 5, excited by 

Uq has been solved; that is, a solution satisfying the basic 

differential equation =0 and the boundary conditions 

over Sy has been found. The problem is to find the fields associated 
with C under the influence of where the //-type wave and 

iB-type wave have the same functional form T.* An inspection 

* This is a convenient method of postulating that electric and magnetic 
fields are interchanged in the two waves with a reversal of sign of one of them. 
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of the table of components and boundary conditions shows what is 
the solution of the problem for the screen C. 

Table i 

Supplementary field behind Behaviour on S 

(E,„Hi,) = (Es,H5)-(Eo.Ho) cTi closed <r, open 

_1 /a^'v 
dx \dz / 

=4=0 

/a^\ 
dy\dz/ 

=1=0 

#=o 0 

,TS s 3 =4=0 0 

m s 3 =1=0 
1 

! 0 

i 

0 i 

Table 2 

n 
Total field (EcH,) behind C 

Behaviour on C 

cTj open O', closed 

1 /!E»\ 
dx\dz) 

=4=0 

8x\dz) 
=4=0 

4=0 0 

4=0 0 

4=0 0 

0 ♦0 

Put = + = and Uc = U^ = +^Vi, 

where Vq and Uq are the potentials of the total field behind C. 

(1) 
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Expression (i) is the solution we require because every com¬ 
ponent etc., of the C field automatically satisfies the boundary 
conditions over the screen C. For instance, consider 

According to (i) and table 2 

And the boundary conditions to be satisfied by {Hjc)c are 

over 

over <r^: 

\ezj dx\8z)' 

and these are the boundary conditions satisfied by — (Eig)* which 

we assume to be a known solution. 
On the other hand. 

{Ed 
djJ, 

dx\ dz )- 

fl d [BVA . d II' ,rr S 

We may summarize as follows: 
The magnetic field of the total field behind C is identical both 

in strength and configuration with the electric portion of the 

supplementary field behind 5 but reversed in phase everywhere. 
The electric portion of the total field behind C is (/t/e) times the 

magnetic portion of the supplementary field behind 5. 

These results can be expressed as vector equations: 

H^ = -E L8r> (2) 

but they are implicit in (i). It should be noted that in equations 

such as (2) we are comparing magnitudes of vectors and that the 
equations are not of necessity dimensionally correct. 

It is again stressed that in obtaining (2) we have postulated that 

the exciting fields L/q and Vq applied respectively to S and C are 

E-type and /f-type fields derived from a common single com¬ 

ponent (Uq) vector T of arbitrary form. (The reason why Babinet’s 
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principle is not rigorously applicable to the study of Irises in Wave 

Guides is that we cannot change the Hj„-wave into an ^XO -wave 
which does not exist in a rectangular wave guide.) 

Since Uq — + E(7 — + 

where (H^jEo) is the electromagnetic field that excites C, it follows 

from (2) that 

^ic — ““(Els + Hq) — —(Ej^-hEo) — —E^r, 

Eic = f H^-Ei = f [H^ + Ho] = f Hs. 
(3) 

The magnetic portion of the supplementary field behind C is equal 

and opposite to the electric portion of the total field behind S. The 
electric portion of the supplementary field behind C is /ije times 

the total magnetic field behind S. 
We could, of course, let an E'-type field excite C and an //-type 

field excite S and relate the resultant fields as we have done above. 

Finally, we suppose S to be excited by a field of very general type 

(?7o+ ^o)> ^ by + such that Uq and Vq are the same T 
function and Vq and Uq another function T'. 

Equation (i) is then modified to 

V^ = v, + V, = -U„ Ua=U,+ U^ = ^V„ (4) 

and reciprocally, from the appropriately modified tables i and 2 

t/^=C/,+ t/o = -F„ Fs = K+Fo=^C/„ (5) 
r 

where and are the potentials of the total field behind S when 

driven by + ^ ^2 ^be potentials of the supple¬ 

mentary field behind C when it is excited by a field (f/i + Po)» such 

t/'sr==F; Uo^T = v,. 

The sign of identity indicates functional identity leading to different 
fields according to the mode of differentiation, whether E-type or 

//-t3rpe. 
Expressions (4) and (5) are very general statements of Babinet*s 

principle, for the case >yhere the screens have perfectly conducting 

regions. 
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The supplementary fields fip)» (^2F> *5 and 
Crespectively are related to those behind S and C, as follows: 

The supplementary field in front of 5 is related as follows to the 

total field behind C: 

U^r + yc. = 
r 

Similarly, from (5), 

7*14. Skin effect and equivalent surface resistance 

We return to Maxwell’s equations 7-2(i)-(4), and suppose the 
medium to possess a conductivity cr so that the current density J 

is <rE. Let all components contain the factor and put p = o. 

The equations become 

VxE = —‘ V xH =y6>eE+(rE, divD = divB = o. (i) 

Let the coordinate system be Cartesian and form 

VxVxH = V(V.H)-V2H 

= — V^H =jco V X E. 

Put e' = or Ij(o) and use the first of equations (i), then 

V2H = = km. I 

Similarly, V^E = w^/te'E = j 

We require a solution representing a plane wave with E and H in 
the ZOY plane, and direction of propagation along OX. 

The following solution of (2) serves our purpose: 

= = V(/*)/f„ = V(e')^o. (3) 

We consider the case of propagation in a metal where crjo) at 

microwave frequencies ((r/w==3x io~®) is large compared with e 
{<rl<o^eo = 10-* Ii6n). 
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The eflFective inductive capacity e' may therefore be written 

e' = crijw, 

and the propagation constant k becomes 

k = <a^(/ie') = w 

= (i (4) 

The expression (3) for the waves become 

Thus the wave is attenuated in the direction of travel with an 

attenuation coefficient a = ^\[fi(TO)) = ^J{n/lcrf) nepers per metre 
and the amplitude of the wave is reduced by i/e in a distance, in 
the direction of propagation, 

^ J (/tcrctj) * (6) 

The effective propagation constant is 

/27r\ l/jti(ra)\ i 

Ia;;-VI~/ (7) 

That is, the wave-length in the metal is 

A^ = 27tS. (8) 

Consider the case of copper and a frequency. 

/ = 3000 Mc./sec., /I = /Iq = ^nk 10*^, 

cr = 5-82 X 10’mhos/m., Ct> = 671 x lo^ 

From (6) = i-2 x io-®m., 

from (8) = 7-4 x io~®m., 

whereas A^ir = io~^m. 

The refractive index of the metal is 

Aftir I I 
i; = 

A™ f^(jioe^){2nd) W(JvVoeo) 

I ^ 
a/ V 2weo 

since = p' 
For copper, X* i’3 x lo*. 

(9) 



292 PRINCIPLES AND PRACTICE OF WAVE CUIDES 

The ratio of the amplitudes of the electric and magnetic fields 

in the wave are 

— J~ (cos In +j sin \n) 

Thus E oscillates with a 45° advance in phase with respect to H, 
Its amplitude, however, is very small compared with that of H, 
For instance, in copper, according to (10), 

ggl H,\ Z X IO~^. 

Consider the case of a thick metal plate with a plane face above 
which is a dielectric medium (air) as in fig. i *3 (^r), and let an electro¬ 

magnetic wave in the dielectric be incident on the metal at an angle 

of incidence 6^. A transmitted and a reflected wave are produced at 

the surface, the former proceeding into the metal at an angle of 
refraction with the normal. According to (9) the refractive index 

cr 

2(i)€q 

consequently, sin^j = ♦ 

As the example of copper shows 6^ will be a very small angle even 

when 6^ approaches closely to 90°. This means that the critical angle 

in the metal is small. 

Put sin02 = 15 then the upper limit to sin^^ is ijv which for 
copper is 1/1-3 ^ ^i«77 x io“® radian = 4-4 x 10“® degree. 

We conclude therefore that whatever the angle of incidence, the 

refracted wave virtually travels into the metal in ‘the direction of 

the normal to the surface. Since an electromagnetic field of arbitrary 

form can be resolved into travelling waves it follows that an arbitrary 
electromagnetic field in the dielectric produces a single plane wave 

in the metal travelling along the normal which we take as OZ. This 

wave is highly attenuated and the amplitudes of the magnetic field 
of the electric field Ey and t)f the current density Jy « crEy^ all 
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decay exponentially with depth, falling to = 1/272 of their 

surface values in the distance 5, which is called the skin depth* As 
already pointed out, this distance is very small in a good conductor 

like copper in which it equals 1*2 x lo^^m. at A = 10 cm. Because 

the electric field is small compared with the magnetic field within 
the metal and at the surface, the reflexion coefficient of the surface 

for any wave incident on it within the dielectric is high, since the 

tangential electric field is the difference in the fields of the incident 
and reflected waves and the magnetic field the sum of the two 

magnetic fields. 

Thus, when w is large (>io®), all the electromagnetic fields 
vanish inside the metal except within a thin surface layer. In 

passing from a relatively small depth within the metal, to the surface 

the magnetic field increases from a negligibly small value to its 
surface amplitude Hq. Thus is equal to the total current flowing 

in the surface layer per unit length normal to the current (§1*4). 
Equivalent surface resistance. Let the tangential magnetic field 

at the surface be 
H = H^cosojt. 

The tangential electric field is therefore, according to (10), 

E = Hocos + J;r). 

The Poynting flux of energy into the metal is 

P = EH = JHqcos (ot cos {(ji)t + ^tt), 

watts per square metre, and the mean loss of power is 

*2nl<a 

cos (j)t cos {(Ot 4- Jtt) dt 

(>■) 

where I ^ Hq is the total surface current per metre. This is pre¬ 
cisely the power that would be dissipated in heat were the current I 

distributed uniformly in a layer of thickness S instead of exponen¬ 

tially through an indefinite thickness. It is for this reason that d is 

called the skin depth. 
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Although we have postulated a flat metal surface, yet even with 

a curved surface, unless the radius of curvature of the surface is of 
the order of magnitude of S (say less than lo^), the surface resistance 

will still be given accurately by (ii). We call 

jL - D ~ If^ 
(tS^ slzcr^ 

(12) 

the equivalent surface resistance in ohms per square (any units). 

7*15. General formula for attenuation coefficient of an 
empty wave guide 

It was shown in § 3*9 that the attenuation coefficient in nepers was 

(I) 

where A is the power dissipated in ohmic heating of the walls per 
unit length; and W is the mean flux of power carried by wave across 
the cross-section of the wave guide. 

We require general expressions for A and W, The loss A per unit 

length is the loss per unit surface integrated around the perimeter 
of the wave guide. Thus ^ ^ 

A^-kuids, 
2 J « 

For £-waves, with OZ the wave-guide axis {h^ ~ i), the tangential 

magnetic field is either or according as the portion of the 

boundary is 1/3 = constant or Wg = constant. In either case, according 
to 7*10*1 (3) the tangential magnetic field is {dUjdn) whence, if we 

omit the exponential factor from I/, 

ojh^RC (dU\^ 
2 JeX^I 

ds. 

where indicates an integration around the periphery of the 

cross-section of the wave guide. The element of surface of the 

cross-section is 
h^h^du^du^. 

The mean Poynting flux is 

P = 
2 



TREATMENT OF SELECTED TOPICS 295 

From 7’10*I (2) and (3) this is {h^ = i) 

2 Wh^duJ \h3duj S 

/lamn 

2 J s Lb-i ^a/ ^ Ua ^3/ J h^h^du^du^, 

.. R,^ 
27 j* r/1 duv /1 

J s Lba ^^2} \^3 _ h^h^du^du^ 

Alternatively, v 

R 

J s LUa ^“a/ U3 ^“3/ _ 
h^h^du^^du^ 

where Zj,j = A/A^^(/A/e) = intrinsic impedance of £-waves. 
For //-waves: from yio-i (4) 

A = y‘- 
R 

(2) 

where I indicates that the subscript 2 is to be used on boundaries 

^3 = constant and the subscript 3 on boundaries = constant, 

27 
r VII 11 u u j ^ J.LUsrJ-"ksrJJ**W“- 

whence a = 
R 

2Z. 
L[(. I dV 

hi dt4 H J7 )■] ds 

LI' (*3 dV 
dw. hi ' I 8V 

fiz :n h^h^du^du^ 

where is the intrinsic impedance of //-waves and is the 

cut-off wave-length. 

7*i6. The ^-factor of a resonator 

The following definition of the ^-factor of an air-filled resonator 
was given in §67, 

Q = o> 
Energy stored 

Mean dissipation of power’ (1) 

We shall obtain a general formula for calculating Q, 
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The energy stored is either the maximum electric or the maximum 

magnetic energy. 

From 7*io*i (3), we find for £'-modes 

Energy stored = ^ (* H^dr = ( {I(C^)T 
2jyoluma 2 Jr 11*3^8 J 

h^h^h^duidu^du^y 

Mean power dissipated in watts is (surface resistance R) 

(oh^RFC 

dti^ dtiji 

tJ*3iirface8 Ui ^ 
« constant 

J Surfaces t<, L^S ^8 J 
«• constant 

f \i^i.^^KKdu,duX 
J Surfaces u, L"2 ^2 J J ' Surfaces Ut 

•constant 

Thus, from (i) and 7’i4(i2) 

Q = zRcr f 
IPdr 

H^dS SZ 
J surface 

(2) 

where S is the skin depth. 

The same procedure is employed with /f-modes, but in the 
volume integral in (2) is replaced by + whose value is 

given by y-io-i (4). Also the surface integrals are to be taken over 
whatever portions of the boundary % = constant, = constant, 

= constant exist, with = over Mi = constant; 

= over Ug = over «, = 
constant. Evidently, the expressions for Q in particular cases will 
be complicated.. 

An approximate simple form of (2) may, however, be obtained 

by assuming that the mean value of over the surface is double 
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the mean value throughout the volume, since the variations of 

amplitude are quasi-sinusoidal. 

Then 
Volume 

8 X surface’ 

This formula was used in § 67. 

The mean energy stored in the metal is 

(3) 

HUS 

(neglecting the electric energy which is relatively small), where 

is the amplitude of H at the surface. The integral ^H^dS is the 

same as the surface integral in (2). Consequently another inter¬ 
pretation of Q is 

Q- 
Energy stored in cavity 

Energy stored in walls ‘ (4) 

7*17. Lorentz’s reciprocal theorem^ and equivalent net¬ 

works—TWvenin^s theorem 

We consider in this section some reciprocal properties of electro¬ 
magnetic fields that can exist in a given region and their significance 

for the interpretation of field phenomena in terms of equivalent 

circuits. 
For this purpose we employ a valuable theorem due to Lorentz 

which is applicable to simple harmonic fields; Lorentz’s recipro¬ 

city theorem states that: 
If (E, H) and (E', H') are simple harmonic electromagnetic fields 

that can exist in the same region, then at all points in the region 

div[ExH'~E'xH] = 0, (i) 

where x represents a vector product as usual. 

To establish this result consider the first pair of Maxwell’s 

equations yxE = -/tH, VxH = eE + (rE, (2) 

where J has been replaced by crE, the medium being assumed to 

possess conductivity cr. 
The same equations are satisfied by a field (E',H'). 

♦ H. A. Lorentz, Proc, Acad, Set, Amst, vol. 4, p. 176 (1895-6); W. Dallen- 
bach, Arch, Electrotechn, vol. 36, no. 3, p. 153 (1942) (this paper gives references 
to earlier work on reciprocity). 
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We may regroup the equations for both fields as follows: 

V X E = - /^H, V X H' = eE' + crE\ (3) 

VxE' = ~/4H', VxH = €E+(rE. (4) 

Scalarly multiply the first of equations (3) by H' and the second 

by E, subtract the second from the first and use the vector theorem 

div(PxQ) = Q.VxP-P.VxQ 
to obtain 

div(ExH') = -[ywH'.H + eE'.E + (rE'.E]. (S) 

In the same way we obtain from (4), or more simply by inter¬ 
changing the dashed and undashed symbols in (5), 

div (E' X H) = - [/iH'.H + eE.E' + (tE . E']. (6) 

Subtract (6) from (5), then 

div [E X H' - E' X H] = - [//(H. H' - H'. H) -f 6(E. E' - E'. E)]. (7) 

When (E,H) and (E',H') both oscillate at the same frequency, so 

that a factor enters into the expressions for all components, then 

the terms in the round brackets vanish on the right of equation (7) 

and Lorentz’s theorem (i) is established. It is of very general 
validity and only demands that the local current density J shall be 

a linear function of the local field E at all points. This excludes the 

ionosphere, a gas discharge and a thermionic valve, although cr 
may be a symmetrical tensor (excludes ionosphere where the 
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conductivity is skew-symmetric due to the earth’s magnetic field); 
€ and [i may be symmetric tensors or simple constants. 

Lorentz’s theorem (i) is, however, more usefully expressed in 

another form as follows: 

Let the region, throughout which (i) is valid, be bounded by sur¬ 

faces Sly ^2, etc., which are closed, and by a single large outer 

surface S' which encloses the whole region. These surfaces may be 

the surfaces of bodies or merely geometrical surfaces, according to 
convenience. Apply Gauss’s theorem to the region, with the normals 

n to the surfaces S considered positive when directed away from the 

region bounded by these surfaces as shown in fig. 7-4. We find 

fdiv[ExH'~E'xH]rfr = 2 f (ExH'-E'xH).^fS 

+J (ExH'-E'xH).<iS = o. (8) 

Suppose the sources of the fields (E, H) and (E', H') to be excluded 

from the region and to be enclosed by one or more of 5^, Sg, etc. 

Let the surface S' expand to infinity. The fields (E,H) and (E',H') 

then become spherical waves of large radius and hence TEM-waves 
such that H' = ^l{€jfi)E' and H = ^J{el/i)E. Consequently, 

(ExH'-E'xH) = y|^)(ExE'-E'xE) = 2 J^j^ExE'. 

If E' and E are parallel at infinity or if the medium is slightly 

absorbing the vector product vanishes on the infinite surface S', 
The integral over S' vanishes therefore and we have finally 

i f [ExH'~E'xH]rfS = o, (9) 
k^lj Sn 

provided the region external to 5^, S^y ,,,y S^ extends to infinity, or 

alternatively the integral over S' vanishes even when S' is finite. 

Otherwise (8) must be used. 

Let a surface Sf^ be that of a perfect conductor, then E and E' 

are normal to Sj^ and H and H' tangential to it. Thus both (E' x H') 

and (E' x H) are tangential to Sj^. The surface integral therefore 

vanishes over a closed conductor. As an example of the application 
of the Lorentz theorem consider the system shown in fig. 7*5 which 

coinprises a cavity bounded by a conducting surface 5 through which 
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coaxial transmission lines and wave guides are coupled into the 

cavity. For the sake of generality we suppose the cavity to contain 
conducting objects Sj, etc. 

The transmission lines and wave guides either feed power into 

the cavity or abstract power from it. To form an enclosing surface 

S' we employ cross-sections of the transmission lines and wave 

guides, at (Tj, etc., which with the surface of the inner and outer 

conductors of the coaxials, of the wave guides and of the cavity S 

Fig- 7-5- 

form a closed surface S' as shown in fig. 7*5. Suppose different 
fields (E, H) and (E',H') to be excited within the cavity and apply 

theorem (8) to this system of surfaces. The integrals over the 

surfaces of the conducting objects 5^, iSg, etc., vanish so that we are 
left with the integral over S', Hence 

[ExH'-E'xH].t/S = o 

or J^ExH'.rfS = J^E'xH.rfS. (lo) 

These integrals again reduce to those over cti, (Tj, etc., which are 

not occupied by conducting matter, the remainder of S contributing 

nothing since it comprises conducting surfaces. Thus, (lo) breaks 
up on either side into a sum of integrals over the cross-sections. 

Suppose these sections to be so placed in the transmission lines that 

the field is a TEM-field and in the wave guide an //^o-field, that of 
the only progressive mode. * 
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Consider the integrals taken over Both fields (E,H) and 

(E'j H') are entirely transverse at and, moreover, the E-lines of 
force run from the inner to the outer and the ^-lines form closed 

loops cutting the E-lines at right angles. 

Consequently, ExH' is directed along the normal (outwards 
from the cavity) when the central conductor is positively charged 

and the current i' flows out of the cavity at (Tj. As in § 1-5, let dl 
be an element of length measured along an electric line of force 
and ds along a magnetic line. The element of surface dS or (Tj is 

dS = dlds. 
The integrals to be evaluated over are 

and 

J(ExH').dS = JJ|Ell//'| 

J(E'xH).dS = JJlE'll^| 

dlds 

dlds. 

The former, as in § 1*5, reduces to and the latter to where 

Vy and V[ are the voltages at cXy in the two fields and iy and iy the 

corresponding currents. The other transmission lines provide 

similar terms and F2I2), etc. 
Consider cr^ to be a wave-guide section. The field of the i/iQ-mode 

{E,H) is 

Ey = ^osin 
7TX Eq . 7TX 

= y^sin—, 
Zh d 

with similar terms for (E'H'). is omitted because it contributes 

nothing to the integral. 

The integrals over are therefore 

JoJo JoJo d 

dbE,H'^ ^ bj^ 

• 

aEo is the maximum voltage across the section considered as 

product of field strength and length of field. dEJ^z is the root mean 

square voltage averaged across the dimension b. Similarly, BIIqI^Jz 
is the spatial root mean square longitudinal current. 

To bring the integral over cTj^ into conformity with those over the 

transmission-line sections it is convenient to define the wave¬ 

guide equivalent voltage and current as 

dE^ bm 
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The integral therefore is equal to Similarly, the other integral 

is Kh- 
Equation (lo) therefore becomes 

(II) 
fc-l Jk-l 

in which the summation includes contributions from all the cross- 

sections both of transmission lines and of wave guides. Equation 
(ii) is identical in form with a well-known reciprocal theorem for 

networks, first formulated by Helmholtz for d.c. networks of a very 

general character.* It shows that provided the voltages and currents 

are those of the dominant modes in the feeders and are referred to 

the same sections in all cases, the cavity will behave like a 2«- 

terminal network, and it is apparent why it is possible to find exact 

circuit representations of wave-guide systems. 
Owing to the linear character of MaxwelFs equations the V*s are 

linear functions of the f s. We may therefore write 

^ = Zii 1*14-^124+ ••• +^ln^n> 

^ = ^2lh + ^22^2 + • • • + ^2nln) 

Vic “ ••• + + ••• 

^n2^2 “1“ • •. 4“ 

Consider two distributions (1^,4) in which all cur¬ 
rents are zero except 4 in the first, and all except ij in the second. 
Apply the reciprocal relation (ii), then 

or ^jkifcij = 

that is Zjj, = (13) 

The impedance matrix is symmetrical. 
Equations (12) obtained by this method are applicable to any 

electromagnetic system including networks as a special case. 

We have, corresponding to (12), 

h = Y^iViy etc., r (14) 

with Yj^ = Y^^. (15) 

♦ F. B. Pidduck, Lectures on the Mathematical Theory of Electricityy p. 35, 
Oxford; S. A. Schelkunoff, Electromagnetic Waves, p. 104. 
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Some convention is required about the sign of the currents in 
relation to the direction of flow. In order to make the input im¬ 
pedances of a passive network positive we define a positive current 

as one that flows into the network when the central conductor of the 

coaxial is at a positive potential (which is equivalent to reversing 
the positive direction of the normal to the areas cTj^ in the integrals 

J(E X H') dS, etc.) and a negative current in (14) as one flowing out 

of the central conductor when it is at a positive voltage. The anal3rsis 

also suggests a suitable definition of voltage, current and total 

impedance of a wave guide to conform with (ii), (12) and (14). 
From what has preceded these are defined to be: 

Amplitudes of equivalent voltage and current in i/^Q-wave 

E = Ea sin j, i/ = //o sin j 

are respectively 

The total characteristic impedance of the wave guide, defined as 

= Vji in a progressive //10-wave, is 

r _ ^ ^ 

(17) 

where Z// is the intrinsic impedance of the //iQ-wave. 

According to Poynting's theorem the maximum longitudinal flux 

of power over the section is 

W = j^E^H.sm^^dxdy = 

The mean power is one-half this amount. 

To apply the Lorentz theorem to aerial systems we consider a 

system in which generators and receivers are totally enclosed in a 

conducting envelope through which they communicate to outer 

space by means of coaxial transmission lines or wave guides feeding 

aerial systems. The outer enclosing surface S* is expanded to in¬ 

finity and the surface integral over it thus made to vanish. 

It can then be seen that the reciprocal relation (ii), applied as 
before to suitably chosen sections cr^ of the feeder systems, is valid 
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for the system of aerials' which can therefore be represented in 

terms of an equivalent network. 
Equivalent four-terminal network. Relations (ii), (12) and (14), 

when applied to a system comprising two feeder systems (n = 2) 

only, are evidently represented by a four-terminal network. Examples 
would be a resonant cavity (wave-meter), with input and output 

loops joined to coaxial feeder systems, or fed from wave guides 
through holes or slots, and a system of two aerials each fed from a 
pair of coaxial feeders. We proceed to show that Th^venin’s theorem 

is valid for such a system. Refer to fig. 7*6, which represents the 

equivalent four-terminal network. 

*i 

We suppose a generator with zero internal impedance and e.m.f. 

to be applied to terminals i. When terminals 2 are open-circuited 

(4 = o) let the voltage between them be (fig. 7*6, case i). 

Since = ^12^*1 “^^22^*2> 

it follows that on open circuit (4 = o) 

= and = = (,9) 
^22 

Let terminals 2 be closed by an impedance Z (fig. 7*6, case 2). 

If the voltage and current at these terminals now become V'^ and 4, 

those at terminals i being \\ and 4, it follows that 

V2 = “-Z4 (since current flows outwards at the positive terminal) 

— Zi24‘+*^22^2> 

whence ,v _ -^12 V 

** (Z+Z^)‘^: 
(20) 

Also (21) 

Thus, from (20) and (21), 

** ^u[Z+(Z^-ZVZu)]' 

Case I 

t. 
Vi Vt 

io = 0 ii' 

Fig. 7 6. 

: - 

Case 2 

(22) 
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It follows from (22) that the current fg through the impedance Z 
is the same as if Z were connected across the terminals of a generator 
with e.m.f. Z^^V^jZ^^ and internal impedance {Z^^ — Z^^jZ-^^. 

To interpret this equivalent internal impedance in terms of the 

electrical properties of the four-terminal network suppose the 
generator to be removed from terminals i which are then short- 

circuited. Let an e.m.f. be applied at terminals 2 and suppose 
the currents at terminals 2 and i to be and 

Since = o it follows that 

The input impedance at terminals 2 is, therefore, 

= = (23) 

The internal impedance of the equivalent generator is, therefore, 
according to (22) and (23), the same as the input impedance at 

terminals 2 when terminals i are short-circuited. 

We have, therefore, established that Th6venin*s theorem is 

implicit in equations (i i) and (12). 
We may regard an aerial system comprising a transmitter and a 

receiver, or the resonator mentioned above, as a four-terminal 

network. According to Thevenin’s theorem if a voltage appears 
across the open-circuited receiver terminals then when these are 

closed by an impedance Z the current through Z is i = I^/(ZgH-Z^), 

where Z^ is the input impedance of the receiving aerial used as a 
transmitter with the terminals of the other aerial short-circuited. 

Corresponding statements apply to the resonator. 
By terminals we mean the two conductors of the coaxial feeder 

systems or the broad faces of the wave guides at the chosen sections 

which in practice are placed at the input terminals of the aerials. 

In the case of aerials, the mutual coupling between transmitter and 

receiver is frequently so small that the input impedance Z^ is 

influenced only to a negligible extent in changing from an open to 

a short circuit at the other aerial. This, however, would not be 

generally true for resonators. 

The Lorentz reciprocity theorem is of fundamental importance 

for aerial theory, and through it simple, but general, proofs of the 
identity of the polar diagrams of an arbitrary aerial system in 

HWO 20 
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transmission and in reception, and of the identity of the equivalent 

transmitting and receiving areas of aerials, can be obtained. 

As an example of a simple well-known result of resonator, aerial 

and netwoA theory, we formulate (i i) for a four-terminal network. 

Thus + (24) 

Let ^ = Ki = o so that terminals 2 are short-circuited in the first 

distribution and terminals i in the second. Equation (24) reduces to 

If therefore = then i[ = 4* That is, if the applied voltage and 
the short circuit are interchanged, the current through the short 
circuit remains unaltered. 

Enough has been given to indicate the fundamental character of 

the basic relations (i i), (12) and (14) for the study of electromagnetic 
systems of widely differing characters. These results are more 

fundamental than the Kirchhoff circuited relations from which 
they are usually derived, the latter being a species of ‘geometrical 
optics of electromagnetism*. 

7*18. Spatial and functional properties of the electromagnetic 

fields of the characteristic modes 

7*i8*i. Spatial orthogonality of the electric and magnetic fields 
of a mode 

It is easy to see that the E and H fields belonging to the same mode 

in a wave guide or resonator are everywhere at right angles. The 

condition for orthogonality, in terms of curvilinear coordinates, is 

E.H = + + = o. (i) 

Consider E-modes, whose components are derived from the Hertz 
vector n = f/ by use of y-io-i (2) and (3). It follows immediately 

from these equations that is zero; conse¬ 

quently the fields E and H are at right angles. Further, since 

E2^2 + -®8^3 ~ components of E and H in the surface 
Ui = constant are at right angles. For instance, in a wave guide 

= constant is a cross-section, and it follows that the transverse 

components of E and H intersect everywhere at right angles. 

Similarly, it can be seen from equations y-io*! (3) and (4) that the 

E and H fields of an H-mode also possess these properties, as do 

all the modes of a twin transmission line. 
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7*i8*2. Some properties of transnUssion-Une modes 

Suppose the twin system to be quasi-coaxial, that is, the two 

conductors are general cylinders == constant = c^, and Mj = c^, 

with their generators parallel to OZ. Suppose also Ug = Cg 
enclose Wg = so that Ug is a cyclic coordinate. 

Equations 7* lo-1 (2) and (3) here become, with U =f{ui, Ug) 

E^ = E^ = ik^-y^)U, //g = i/i = o, 
„ . 1 8U „ . 1 eu 

*2 ^^2 

U . I dU „ 

(0 

We define the potential difference v between the conductors at a 
given position to be the line integral of E taken along any path 

between the conductors i/g = ^2 ^2 ^^at lies in the cross- 
section at that position. Thus 

/•u,“c, rut^ct 
t; =: E*= {E^hdu2^-\-E^h^du^ 

J W,=*Ci J 

= -jy[U,-U,l (2) 

where and are the values of U at the end and beginning of 

the path ^ in the cross-section z = constant. 

But at the conductors and = q, E^ — H2 = o, whence 
from (i) 

dUo 
= o, over U2 = C2 and = c. 

Consequently, around each boundary where the cross-section 

z = constant intersects the cylinders Wg = Cg and Wg = U is 
constant independent of the remaining variable 1/3. 

These constant values differ in the two classes formed by the 

principal mode, and all other modes respectively. 
Consider, first, the principal mode in which 

^ = 7 and £*3 = //3 = o. 

We cannot make U zero over both and 2/3 == ^a> since 

the total field E = ii£i +4-^2+4^8 is here a two-dimensional 
ao-a 
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electrostatic field derivable from a potential —jyU. Consequently 

we put C/ = o at the boundary of the cross-section Mg = 
[/ == — on the outer cylinder. The potential difference between 

the cylinders at the section z = constant is therefore, from (2), 

^ ^jyU2> 

and is independent of the path between the cylinders provided it 
lies in the section z = constant. With all other modes, however, 

k^y and or do not vanish everywhere. 

We require £3 = o at the cylinders, and therefore U = oat both 

Mg = Cl and Mg = Cg. Consequently, from (2), v = o. Thus, the 
electric fields of E'-modes contribute nothing to the potential 

difference between the conductors. 

The fields of the //-modes are: 

„ . I aF „ . I 

rr . I 0V 1 dV 
= *3^8 h^dUi 

(3) 

The line integral of E between the conductors is 

j(E,h.du, + E,h,du,) . 

and this in general is neither equal to zero nor independent of the 

path between the conductors. Thus in the presence of //-modes 

the only definable potential is that due to the principal mode. This 

is because the longitudinal component makes curlE not zero 
in the section and E not derivable from a potential. 

The behaviour of the magnetic field is complementary to that of 

the electric field. Form the integral of curlH across an annulus in 

the cross-section z = constant, bounded by any two curves in the 

section. From 7*8 (7) 

In the case of the TEM- (principal) and the H-modes it can be seen 

from (i) and (3) that the surface integral vanishes, but, from (2), 
it does not vanish for E-modes. From Stokes’s theorem it follows 
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that the line integral around any closed curve in the i-ply connected 
region enclosing the central conductor is the same in the case of 
TEM- and //-modes and is equal to the total surface current 

crossing the section on one of the conductors. The line integral 
around a closed curve in the section with /^-modes depends on the 

closed path that is selected. Consequently the total longitudinal 

currents on the inner and outer conductors at the cross-section are 

not the same. This is because the presence of requires (curl H)^ 
to exist over the cross-section. 

7* 18*3. Functional orthogonality of the characteristic modes of a 
resonator 

In addition to the spatial orthogonality of the E and H fields of 

the same mode, discussed in 7*18*1, there exists a different type of 
orthogonality, namely, functional orthogonality of the fields of the 

different characteristic modes of natural oscillation of a given 

resonator. 

' To understand what is meant by functional orthogonality in this 

context, consider two field vectors A and B that exist throughout 

a bounded volume ^dr. 

Let the scalar product A. B of these vectors be integrated through¬ 

out the volume. If this integral is zero then the vectors 

A and B are said to be functionally orthogonal. Similarly, two field 

scalars (}> and xjr are functionally orthogonal if j<f>}lrdT vanishes, 

when taken over the specified volume. 

In earlier sections of this chapter we have derived expressions 
for the field components of the natural modes of oscillation of 

resonators with miscellaneous simple geometrical shapes and 
obtained them from Hertz vectors Tl = i^U and IIq = i^ V. These 

vectors were obtained as vector solutions of the fundamental 

differential equation 77(5) for the case of simple harmonic oscilla¬ 
tions and p = Oy namely, 

curl curl 11 — k^H = grad F, (1) 

where F was a field scalar whose value is assigned according to 

convenience. 
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It was found that solutions were only obtained for a given 

resonator when k* = = (ztt/A)* possessed specific values 
called the characteristic values of the problem. 

For instance, with and /f„„p-modes in a rectangular 
resonator with sides a, b and c, the appropriate values of are 

The and /f^^p-modes in cylinders, however, require different 

values of k even when m, n and p are individually the same: the 
respective characteristic values are here (7*10*5 (14)), 

We first show that if and are the electric fields of two character¬ 

istic modes of the same resonator, then Je^.E^^/t = o. 

Since we are concerned with simple harmonic oscillations 

Maxwell’s equations may be written. 

curlE = curlH =yw€E+J, divB = 0, divD = /o, (2) 

whence curl curl E = —/w/fcurlH 

= w*/teE —jo>n} 

= (3) 

Similarly, curl curl H = + curl J. (4) 

The fields (E„, H^), (E^, H^) of different characteristic modes satisfy 
equations (3) and (4) with J = o and with k equal respectively to 

the corresponding characteristic values and 

Thus, curl curl E^ =curl curl Ee, =/egE^, (5) 

with similar equations for the magnetic fields. 

Form the scalar product of both sides of the first of equations (5), 
with E5, and integrate over the volume of the resonator 

A*jE,.E„dr = Jl .curl curlE^£/r. (6) 

Similarly, on multiplying the second of equations (5) by E^ and 

integrating, we find 

Je^.E^^t = Je„. curl curlE{,dr. (7) 
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Subtract (7) and (6), then 

(^“-*g)jE„.E,dr = J [Ej,. curl curl E^,—E,,. curl curl Ej] dr. (8) 

The right-hand side of this equation may be transformed to a 
surface integral over the boundary of the resonator by means of 

the vector analogue of the second of Green’s theorems.* This 

states that if A and B are two continuous field vectors, then 

volume 
[A. (curl curl B)—B. (curl curl A)] dr 

surface 
, [A X (curl B) — B X (curl A)]. dSy (9) 

where the surface integral is taken over the boundary surfaces of Jrfr. 

The right-hand side of (8) may therefore be written as a surface 

integral ^ 
[E^ X curl — E„ X curl E J. rfS. 

According to (2) (with J = o) this is the same as 

[E(, X - Eo X . dS. 

At the boundary, E^ and E^ are perpendicular to, and and Hj, 
tangential to the plane of dS, Consequently (E^^x/^HJ and 

(E^ X /iHfy) both lie in the plane of dS and their scalar product with 

the vector dS, whose direction is along the normal, is zero. Thus 

(*5-*§)jE„.E,dT = o. 

If therefore is not equal to then 

jE^.EftdT^o, (lo) 

and the vector fields are functionally orthogonal. When E^ and E^ 

are the same field then and the integrand is essentially 
positive and equal to | |^. 

The rectangular resonator is exceptional in that the and 

fl^j^p-modes where the suffixes are identical have the same 

* Stratton, Electromagnetic Theory^ p. 250. 
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characteristic value It may be shown here, by direct reference 

to the expressions for the field components, that 

Je„.E6</t = 0, 

unless Eq and Ef, are the electric field of the same mode. Similarly, 

= jE„.H,rfT = jEft.H^dr = o. 

For instance, 

(**-A|)jE<..He,rfT = J[H6.(curlcurlEJ-E„.(curlcurlH6)]rfT 

= J [Hft X curl E„—E„ X curl HJ dr 

= X /iH„+E„ X eEft] .dS = o. 

since at the surface is parallel to H„, and E„ to E6, with the result 
that the vector products vanish. 

Thus, to summarize, if A and B represent any of the vector fields 

E^, E5, Hfl, Hft, then Ja.B^t = o, unless A and B are identical or 

A = CB, where C is a scalar constant. 

It is usual to multiply the field components by constants, so that 

the integrals which do not vanish, namely, jE„.E„dT, 

and jEj.Ejrfr, etc., are equal to unity. The vector functions 

E„,E„H„,H, are then said to be normalized. 

The vectors E^ and are now proportional to the corresponding 
vectors in the mode from which they are derived but do not them¬ 

selves constitute in general an E-H pair satisfying Maxwell’s 

equations. 
An arbitrary electromagnetic field within a resonator within 

which the charge density p and current density J are everywhere 

zero may now be represented as a linear vector function of the 
normalized vectors E^, E^, etc., H^, etc. Let the field vectors 

of the arbitrary electromagnetic field be E and H. We write 

E = ^K,E,^ ^KEI H = SMSH2, (ii) 
a a a a 
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in which the summations over the £„ and the H„ embrace all the 

possible £-modes, and those over the and HJ all the /f-modes. 
Equations (ii) therefore represent quasi-Fourier expansions of the 

vectors E and H in terms of the normalized mode-vectors. 

To obtain an expression for any one of the coeiEcients, say Kf,, 
form the scalar produce of Ej, with both sides of the first of equations 

(11), integrate and make use of the orthogonal properties (10) of 
the mode vectors; thus 

that is 

Similarly 

Je.Ej^/t = iiTftjEft.EftiT = ii:,, 

/:, = jE.E,rfT. 

ii:g = jE.Eg</T, = Mg = jH.Hg<iT. 

The coefficients etc., will in general be complex quantities since 

the constituent modes will not in general vibrate in phase. As an 

example of the use of normalized mode vectors we obtain a well- 

known result relating to the total field energy within the resonator. 

The maximum electric energy in a mode whose electric field is 

KaE-a is 
-K^K. .Kn 

and this is equal to the maximum magnetic energy, and to the total 

stored energy in this mode. is the complex conjugate of K^^,) 
The maximum total electric energy of an arbitrary oscillatory field 

(E,H) in the resonator is 

ijE.Edr = IJ [(2 A-„E„+S/^2E2)(S/i:„E„+/COE»)]c/T 

= ^ fr2S^a^6E„.E, + SS/i:„^gE„.Eg]rfT 
2J La 6 06 J 

= |2^a-^a- 

Thus the total maximum electric energy is the sum of the maximum 

electric energies in the modes as if each were present independently 
of the others. This is also equal to the total magnetic energy of the 

modes and to the total instantaneous stored energy which is 
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constant. When p or ] are not zero within the cavity, then it is 

necessary to employ further normalized functions in the expansions 

of E and H. 

These are generally chosen to be scalar functions etc., 

which are constant over the boundary and which satisfy the equations 

+ = + = (iz) 
It follows that 

= (^a grad 9^6 - 9^6 grad <l>a). dS = o, 

if and are zero on 5. 

^4>a<l>bdr o (a + i). Thus 

The (j) are normalized, so that 

j^a^bdr = 1 (a = b). 

It can be shown that the vectors = grad = grad 
are mutually orthogonal and orthogonal to the E^, E^, 

etc. 
Examples of would be (dUJdz) in a cylindrical resonator, and 

(VJr) in a spherical resonator, multiplied by the appropriate nor¬ 

malizing constants. 

7*i8*4. Forced oscillations in cavity resonators 

The orthogonal functions discussed in the previous section are of 

fundamental importance for the theory of forced oscillations in 

cavity resonators. This subject has been investigated by Hansen and 

Condon, and more completely by Slater, their treatments resembling 

similar analyses that occur in quantum mechanics.* 

The following treatment of forced oscillations in cavity resonators 

is based on those of Condon and Slater but is intended to illustrate 

the method rather than to provide a rigorous discussion. 

♦ E.g. E. U. Condon, ‘ Forced Oscillations in Cavity Resonators ^ J, AppL 
Phys, vol. 12, pp. 129-32 (1941). 
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We suppose that total electric field E, total magnetic field H 

and current density J within the cavity are expanded in terms of the 
vectors and Fg = grad as follows: 

E = H = j = i;iv„E„+iT„F„. (i) 

Here the coefficients and also include the previous K% and 

M%. Further, E and H satisfy Maxwell’s equations 
• • 

curl E = — fiVL, curl H = eE 4-J, div eE = p, div = o. (2) 

We wish to obtain formal solutions of (2) for a cavity, in terms of 

the Ef^y Ha and F^, but before we can proceed some preliminary 
results are required. 

The electric field E and magnetic field H of a given characteristic 
mode are proportional to the normalized fields E^ and of the 
mode, and we may write 

e = a:„e„, h = m„h„. (3) 

Further E and H oscillate in quadrature. The total energy of the 

mode is 

€\E\^ 

2 

whence 

= jE„.E„dr = 

eK,K^ 

2 

or 

Since E and H oscillate in quadrature it follows that 

(4) 

From (2) and (3), applied to this specific mode, we deduce (J = o 

and dldtsjco) k^cutIE^ = 

Af„curlHa =j(i}eKaEa, 

or, from (4) and (5), with 

(5) 

CurlEa = ^ Ho = ±AaHa, 

curl Ho =jo)6^E„ = ±*0^0. 

(6) 
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It is convenient to retain the + sign before that is, the negative 

sign in (4). 
Since, from (2), curlE is proportional to H, we may, according 

to (i), expand curlE in terms of the H^, 

curlE = i:C„H„, (7) 

where 

We may express (7) as a surface integral, since 

div [E X curl E^] = (curl E„). (curl E)—E. (curl curl E^). 

From (6) and 7* 18-3 (5), this may be written 

A„div[ExHJ = curlE-A2e.E„. (8) 

Integrate both sides of (8) over the volume of the cavity and use 
Gauss’s theorem, 

kA (ExH„).dS = *„C„-A2/C„ 
J surface 

or C„ = f (ExHJ.dS. (9) 
J surface 

The surface integral is taken over the boundary surface of the 

volume Jrfr. When the cavity is empty this is its interior surface, 

but if metallic obstacles are present, then the surface integral covers 

their surfaces as well and Jrfr is the volume bounded by the obstacles 

and the closed boundary of the cavity. In this case C^, AT^, etc., 

have different values from those of the corresponding mode in the 
empty cavity. 

Thus, from (7) and (9), 

curlE = + J(E x H„).dS. (lo) 

Similarly, curl H = i^DoEd = iEoJfE^. curl H) dr. (ii) 

It may be shown, as above, that 

Z)„ = J(E^.curlH)dT = J(H xEJ.dS. (12) 
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Terms in in the expansion of curlH are all found to have zero 
coefficients. 

We now replace the vectors in Maxwell’s equations (2) by their 

equivalent expansions in terms of the and F„. We have 

curlE+/iH = o, 

whence, from (i) and (lo), 

(*a^a +j(E X + = O. 

Since the field (E, H) is arbitrarily chosen, it follows that, for all a, 

k,K,+j{ExH,).dS^fi^ = o. (13) 

From curlH—eE=J 

we obtain, using (i) and (12), 

+i:F„(-e|L„-7;))=o. (14) 

whence = e^'?-J(HxE,).rfS+iV„, (15) 

e^+r.-o. (.6) 

In an empty cavity {p = o) divE = o and E is represented by terms 

E^ with all the equal to zero. This we shall assume to obtain in 

what follows. Equation (i6) is then of no significance since = o. 

From (13) and (15) it follows that (with oj^ = k^jpe) 

Similarly, 

^[Af.-/(HxE.).^]-i^J(ExH.)..S. (.8) 

These equations (17) and (18), which are equivalent and con¬ 

sistent with (4) with the negative sign on the left, are similar to the 
equations of motion of an elastically bound particle moving under 
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the influence of an impressed force. The ratio of the impressed 

force to the mass of the particle is here represented by the sum of 

the terms on the right-hand side. If, therefore, it is possible to 

evaluate the right-hand sides of (17) and (18), then, in principle, the 

differential equation for can be solved and the complex amplitude 
of the corresponding natural mode obtained. 

We consider the simple example of a resonator excited by a 

current in a small loop of thin wire fed from a coaxial transmission 
line. We suppose the outer conductor of the line to fit a circular 

window in the wall of the resonator and the central conductor to 

bend over within the cavity and to join the adjacent wall as a loop. 
For simplicity, suppose the window and the loop to be so small 

compared with the dimensions of the resonator that the E^, 

are effectively those of the empty resonator. 
Let the current i in the loop oscillate at frequency {(ojzTr), Con¬ 

sider the terms on the right-hand side of (18). By definition (from (i)) 

Ar„ = Jj.E„rfr. 

Consequently, since J = o, = o. 
Over the walls of the cavity (H x E^) is tangential to the walls, 

and (HxEJ.dS is zero. Over the window H is effectively in the 

plane of the window and (H x E^). dS is also zero. 

The only contribution to J(H xE^).dS comes therefore from the 

surface of the loop. The total field H at the surface of the loop is 
tangential to the surface, and since the loop is a thin wire of radius a, 

carrying current /, we have zTia \H \ =1. 

Let dl be an element of length of the wire, then dS in the integral 
becomes dS = znadL The integrand (H x E^). dS = (dS x H). E^. 

But (dS X H) is a vector of magnitude znadl | H | directed parallel 

to the axis of the wire in the direction of the current. Consequently, 

(dSxH).E^ = 2nadl\H\ | | cos0 = 11 ] dlcosdy 

where cos^ is the angle between E^ and dl with dl pointing in the 

direction of the current. Consequently, 

J(HxE„).rfS = ,J| E^lcosddl 

s t X (line integral of around loop). 



TREATMENT OF SELECTED TOPICS 3*9 
If we form a closed path comprising the loop and a line on the wall 

of the cavity from the end of the loop to the end of the coaxial, the 

line integral of E„ along the line is zero since is normal to the 
walls. Thus . 

j 1 I cosddl = J curlEa.dA, 

where A is the area enclosed by the loop and the line mentioned 
above. 

But from (6), curlE,, = Therefore 

J(H X EJ.dS = jH„.dA = (19) 

where is the flux of Hj, through the loop. is the effective mutual 

coupling of the loop with the normalized mode vector H„. 

It remains to discuss the third term on the right-hand side of 

(18), narpely, , . 

We obtain an approximation for this term which is sufficiently 

accurate in practice. 
We note that the total magnetic field in the forced vibration in the 

cavity is, from (i8), 

H == IMM. 

If, therefore, the resonant frequencies do not fall close together, 
the amplitude is very large compared with all other coefficient 

Mft, M^, etc., when - o)) is small. 
In this case, the field E in the integrand of the integral under 

discussion is virtually the same as E„. 

If the walls of the resonator are perfectly conducting then the 

total field E is normal to all metallic boundaries, and since E x 

is tangential to the boundary the integral is zero over the walls and 

the loop. Over the window, however, is virtually constant, and 

is tangential to the plane of the window. The tangential component 

of E in the plane of the window is approximately radial from the 

end of the centre conductor of the coaxial and the integral over the 
window is small or zero. Suppose, instead, the walls to be highly 

conducting but not infinitely conducting. 
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The integral over the metal boundary of the cavity is J(E x H J. d'S. 

Near resonance the total magnetic field is essentially con¬ 

sequently the tangential component of E is that associated with 

a field The mean value of the integral M^J(ExHJ.rfS is 

the mean loss of power to the boundary and according to 7-14(11) 

Since the other terms in (18) represent maximum values we 
require the maximum value of the integral, which is 

But according to 7-16(2) 

Qa = 

2jM^UldT 

where is the ^-factor of this characteristic mode. Consequently, 

jlP„dS^2ldQ„. 

Thus the term — i ^ J(® ^ ^ a).dS in (18) becomes, using 7*14(6), 

2 dMa _ dM„ _j(ow„ 

Qu /i(r8^Qa dt dt 

Equation (18) therefore reduces to 

M„ (21) 

■ 

fit 

or M„ = (22) 

This is an expression for the coefficient of Ha in terms of the im¬ 

pressed current i and the angular frequency o). The total magnetic 

field within the cavity is H = S ^oHa* The quantity is the 
a 

coupling coefficient between the loop and the mode that is, it 
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is the flux jH^.dA of through the loop. The flux of magnetic 

induction due to this characteristic mode is [i jM„H„.dS = 

and the contribution of this flux to the input voltage is 

which, according to (22), is 

The total input voltage is 

The input impedance to the cavity is 

z 2: 

(23) 

(24) 

This expression is equivalent to that quoted in 6*ii(i) (with 

When the field in the cavity is excited from a probe which is a 
short extension of the central conductor, equation (18) reduces to 

(25) 

As before the integral reduces to that over the surface of the probe, 
and it transforms to , - 

where i is the current at the element dl of the probe and 0 is the angle 

between and dl. 

In this case i varies along the probe, and when the latter is thin 

i is zero at the end. If the probe is short and straight as well as thin, 

then I| may be considered to be constant over the length of the 

probe. The integral then reduces to 

-^l£jco80jirf/ = -^l£Jcos0/f, 

HWG 
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where / is the length of the probe and t the average current along 

the probe. 
The coupling coefficient Xa probe with the ath mode is 

defined as 
Xa= l^olcO8 0/. 

It follows from (25) that (writing k„ = (o^^Kfie)) 

The e.m.f. induced in the probe by the «th mode is 

®a = K^EJcosd = K^Xa 

and the input voltage is u == 

The relation between the average current t and the input current i 
depends on the length and thickness of the probe. When the probe 

is thin and short we shall make little error in assuming that the 

current falls linearly from i at the input to zero at the end of the 
probe. In this case f = 

The input impedance then becomes 

It is evident that, to excite the ath mode strongly by means of a 

loop, should be as large as possible, that is, the loop should be 

placed where is a maximum and turned with its plane normal 
to H^, but with probe excitation the probe should be introduced 

where is a maximum and set parallel to E^. 

We consider the simple example of a rectangular resonator with 
sides a, b and c. 
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The normalized magnetic field of the i/011 mode is 

since these values give 

a h c 

jjj[Hl, + Hl]dxdydz=i and ^ = 
000 02 ^ 

Suppose a small loop of area A to be introduced so that it receives 

the maximum flux of Then (m.k.s. units) 

^011 == 

Thus, for a cube of side 

The term (olXa/^ in (24) here becomes 

2 

lie 

2 /7r\2 2 -2 __ _ 367r x 10® x 

€ W T 

.4-46x.o‘*^. 

Normally Since m.k.s. units have been used, A^ is ex¬ 
pressed in square metres and a in metres in this formula. The 

contribution of this mode to the input impedance is then found 
from (24). 
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LIST OF PRINCIPAL QUANTITIES AND 

THEIR SYMBOLS 

Phase velocity of TEM-wave: v = 
Phase velocity of wave-guide wave: Vg, 

Wave-length of TEM-wave: A. 
Wave-length of wave-guide wave: Xg. 

Frequency / cyc./sec. 
Angular frequency (o radians/sec. 
Electric inductive capacity of medium: e — K^Cq. 

Magnetic inductive capacity of medium: 
Corresponding quantities for vacuum: and 

IO“® 
Co = 8-854X = 

301T 

Dielectric constant or electric specific inductive capacity of medium: Kg, 

Magnetic permeability or magnetic specific inductive capacity of medium: K^. 

Electric field strength: E. 
Magnetic field strength: H. 
Electric induction D = eE. 
Magnetic induction B = fiH, 

Specific conductivity: o. 

Skin depth: d. 

Surface resistance: R, 
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Voltage: V; current: t. 
Characteristic impedance: Z©. 
Intrinsic or wave impedance: 

(a) TEM-wave: J~, 
(b) E- or TM-wave: J — = Zg. 

(c) //-or TE-wave: 

Impedance: Z == R +jX. 
Admittance: F = G +jB. 
Normalized impedance: z = Z/Zq = r+jx. 
Normalized admittance: y = VZo = YIYq= g 
Reflexion coefficient p = \ p\ 
Conjugate complex of /o is: p | p | 
Phase advance on reflexion: (f>. 
Scattering coefficient h = \ h\ 
Wave-guide dimensions: 

(а) Rectangular wave guides: a and b. 
(б) Circular-radius: a. 

Coordinates: 

(a) Cartesian: Xy z. 
(b) Cylindrical: r, 0, z. 
(c) Spherical polar coordinates: r, 0, (j) 
{d) Curvilinear coordinates: «i, W2, «3. 

Differential multipliers: /zi, h^y 
Unit vectors: ii, ia, 13. 
Standing wave ratio: = i js. 
Propagation constant of TEM-wave: k — (o v^Cpe) = (znlA). 
Propagation constant of TE- or TM-wave: y — (zn/A,). 
Cut-oflf wave-length: A^. 
Cut-off frequency: /<,. 
Attenuation coefficient: a 
Mode subscripts: m, n, p. 
Electromagnetic potentials: 

(а) Electric Hertz vector: II. 
(б) Magnetic Hertz vector: II®. 
(c) Single component Hertz vectors: II = ij t/; Ily = ij F. 

General symbol for scalar magnitudes of Hertz vectors U and V: T. 
Quality factor of a resonator: Q. 
Complementary screens: S and C. 
Charge density: p. 
Current density: J. 

normalized characteristic modes. 
5-band: A = 8-9 — 10*7 cm. 
AT-band: A = 3 —3*3 cm. 





CORRIGENDA 

p. 4, equation (3). For io~® read 10®. 

p. 5, 1*3, line 8. F6r Ejq read 'Fjq. 

p. 10, equation (7). Omit 2 under radical, 

p. 18, line 16. For smallest read largest, 

p. 22, line 22. For I) read B, 

p. 61, 6 lines from bottom. For fig. 4*29 (c) read fig. 4*29 {a), 

p. 62, line 9. For oscillation read oscillator. 

p. 70, line 3 from bottom. Cadmium plating is used externally, 
not internally. 

p. 83, line 6 from bottom. For not used read not extensively 
used. 

p. 87, lines 8 and 13. For G read C, 

p. 88. In the account of choke couplings and plungers^ it should have 
been mentioned that loose contacts between the wall and 

the plunger or between the two portions of the coupler, are 

rendered innocuous since they are placed at a node of current 
in the half wave recess. 

p. 93, line 22. For {a) read (c). 

p. 115, line 5 from bottom. For 5-2-2 (i) and (2) read of 5*2-2. 

p. 119, line6. For §7-16 read §7*17. 

p. 133, line 3 from bottom. For lo (a) read 5-10 (a). 

p. 137. Equation (2) should read = -7—cot® 

It is given correctly on the following page, 

p. 141, fig. 5-16 (9). Include term -2 within the square bracket. 

p. 141, fig. 5-16(10). For R read r and for 2«-iA read 
(2n-i)A. 

p. 144, line 8. Correction as in p. 83, line 6. 

p. 145, fig. 5*i8 {a). Reflected components should read 

p. 146. In formuh following (i) read (i -p). 

p. 146, line 14 from bottom. For read 

p. 148, line 21. For fig. 5*16 read fig. 5*14. 

P- I55» fig- 5-26 («). For ♦ read }. 



CORRIGENDA 

pp. 164,165, near bottom of page. For -7- read -7—; 
/s % 

also make corresponding correction on fig. 5*30 {a). 

p. 167, line 5. For right-hand read left-hand, 

p. 179, line 23. For DE read BE. 

p. 181, line 2. For DCHR read DCHK. 

p. 190, line 9. For cell read cells, 

p. 191, line 2 from bottom. For mean read peak, 

p. 192, bottom line. For power read peak power, 

p. 196. For intrinsic impedance read everywhere total im¬ 
pedance. (Ref. p. 119.) 

p. 198, line 3 from bottom. For V- 
I 

t;= ^- 
vlc 

p. 202, line 5 from bottom. For Cuttler read Cutler. 

p. 203, first formula. For D read d within the round bracket. 

p. 214, line 4. For (e) read («)• 
II p. 224. The i?-mode with the lowest frequency is the E^q not the 

as stated. This correction is required also on p. 258. 
The component U of the Hertz vector for the fi'no mode is 

p. 229, line 2. Omit words C opposite to B. 

p. 235, centre of page, paragraph beginning ‘the input impedance.. .*. 
Cause and effect are interchanged, 

p. 248, § 7*3. In equation above (3) for eE read efe. 

p. 253, equation (3). For — read — for first symbol within 

square bracket. 

p. 275, end of §7*107. The correct values of the roots are: 

Pu=4-49» crii^2-75. 

p. 276, second line from bottom. For electric read magnetic, 

p. 291, bottom line. For y read cr. 
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Circle diagram, 114, 216 
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239, 7 i8-4 
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245, 5-I7-2, 5*i7-3, 5-14, 717 
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E- (or TM) waves, 17 
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Flexible wave guides, 98 
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7-18-4 
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Homs, 268 
H- (TE) wave, 17 

Impedance^ 53 
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input (resonator), 239, 7-18-4 
normalized, 120, 123 
resistive, 139 
wave guide, chap. 5 
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I35> 6 12 
Iris, 5*5, 148, 151 

Joints (rotatable), 45, 92, 97 
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Klystron, 233 

Launching devices, 29, 43, 95, 213, 214 
Limitations of cables, i, 275 
Longitudinal section waves, 268,7-iO'8 
Lorentz’s reciprocal theorem, 7*17 

Magic tee, 188, 189, 190 
Magnetron, 73, 231 
Matching (wave guide), 133 
MaxwelPs equations, 7-2 
Mixers, 79 
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^mn ('T*E,n,i), 27> 34> 7*^®*^ 

^mn (TMmn)> 27» 3I> 
circular wave guides, 36, 37, 7* 10-5 
dominant, 28 
evanescent, 55, 258 
in resonators, chap. 6, 7*10-5, 271, 

718 
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Modes {conL): 
miscellaneous, 38 
orthogonality of, 7-18 
(spherical coordinates), 271 
(supplementaryon a coaxial line), 35, 

7i8-2 

Obstacles in wave guides, 126 
resonant, 58 
susceptance, 5-4, 7*11 

Orthogonality of modes, 7* 18 
Oscillators, 233 

Phase shifters, 4-16 
Phase velocity, 17 
Piston-attenuator, 3*6, 96 
Plungers, 85, 88 
Polythene, i, 236 
Power measurements, 5-14 
Power on a transmission line, 14, 

115 

Power factor of a dielectric, 6*9 
Poynting’s theorem, 13 
Poynting flux, 54 

in an evanescent mode, 62 
Principal wave-(TEM), 10 
Protective devices, 152, 183 

Q-factor: 
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of an iris, 150 
of a resonator, 6*7, 7* 16 

Reciprocity, 7* 17 
Reflexion coefficient of an impedance, 

107, no 
Reflexion from a plane interface, 145 
Reflexionless termination, 82, 143 
Resistance (surface), 9, 67, 7*14 
Resonators, chap. 6 

applications of, 6*8 
cylindrical, 224, 265 
input impedance, 6*8, 321, 322 
Q-factor, 6 7, 716 
rectangular, 223, 258 
spherical, 274 
wall currents and charges, 225 

Rhumbatron, 233 
soft, 185 

S-band, 74, 81, 325 
wave guides, 70, 72, 74 

Scalar quantities U and V, 251, 252 

253» 254 
Scattering, 127, 129 

Self-admittance of an obstacle, 130 
Septate wave guide, 38, 267 
Shunt and Series discontinuities, 133 
Skin depth, 4, 7*14 
Slots, resonant, 5-17 

coupling, 208 
equivalent currents, 204 

Spherical polar coordinates (solution), 
7 107 

Spherical waves, 272 
Standing waves, 6-2 
Standing-wave indicator, 74 

ratio, 112 
Stub matching, 116, 131 
Surface resistance, 9, 67, 7*14 
Susceptance of an obstacle, 5-4, 7*11 
Symbols, list of, 324 

Test equipment, 84 
TE (or H-) wave, 17, 255 
TEM (principal) wave, i, 266 
Thermistor, 193 
Th^venin’s theorem, 304, 305 
T-junctions, 510, 511 

applications, 5* 13 
TM (or £■-) wave, 17, 255 
TR systems, 178 

wave guide, 181 
Transformers, 92, 95, 195 
Transmission-line theory, 5 2 

adapted to wave guides, 5 3 
Transmission line, 2, 10, 260 
Twists and tapers, 91 

i/-scalar quantity, 251 

Velocity, group, 2*9 
phase, 17 

F-scalar quantity, 253 

Wave guide, 2 
dimensions, 28, 71 
techniques, chaps. 4 and 5 
wave-length, 18 

Wave-meters, 8i, 228 
Waves in wave guides (elementary 

treatment), chap. 2 
Waves on transmission lines, 1*5, 

7104 

A’-band, 73, 81, 325 
A-band wave guides (British and 

American), 73, 87, 197 

Y-junction switches, 155 








