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PEEFACE. 

j HE present volume is intended to form a sound 

introduction to a study of the Integral Calculus, 

•mitable for a student beginning the subject. Like its 

companion, tlie Differential Calcidus for Beginners, 

it does not therefore aim at completeness, but rather 

at the omission of all portions of the subject which 

are usually regarded as best left for a later reading. 

It will be found, however, that the ordinary pro¬ 

cesses of integration are fully treated, as also the 

principal methods of Rectification and Quadrature, 

and the calculation of the voWmes and surfaces 

of solids of revolution. Some indication is also 

afforded to the student of other useful applications 

of the Integral Calculus, such as the general method 

to be employed in obtaining the position of a 

Centroid, or the value of a Moment of Inertia. 

As it seems undesirable that the path of a student 

in Applied Mathematics should be blocked by a 

want of acquaintance with the methods of solving 
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elementary Differential Equations, and at the same 

time that his course should be stopped for a sys¬ 

tematic study of the subject in some complete 

and exhaustive treatise, a brief account has been 

added of the ordinary methods of solution of the 

more elementary forms occurring, leading up to and 

including all such kinds as the student is likely to 

meet with in his reading of Analytical Statics. 

Dynamics of a Particle, and the elementary parts ol 

Rigid Dynamics. Up to the solution of the genera 

Linear Differential Equation with Constant Coefii- 

cients, the subject has been treated as fully as i^ 

consistent with the scope of the present work. 

The examples scattered throughout the text liavc 

been cai-efully made or selected to illustrate the 

articles which tliey immediately follow. A consider¬ 

able number of these examples should be worked 

by the student so that the several methods explained 

in the “book-work’’ may be firmly fixed in the 

mind before attacking the somewhat harder sets at 

the ends of the chapters. These are generally of a 

more miscellaneous character, and call for greater 

originality and ingenuity, though few present any 

considerable difiiculty. A large proportion of these 

examples have been actually set in examinations, an^ 

the sources to which I am indebted for them ar. 

usually indicated. 
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INTEGKAL CALCULUS 

CHAPTER I. 

NOTATION, SUMMATION, APPLICATIONS. 

1. Use and Aim of the Integral Calculus. 

The Integral Calculus is the outcome of an en¬ 
deavour to obtain some genei'al method of finding the 
area of the plane space bounded by given curved 
lines. 

In the problem of the determination of such an 
area it is necessary to suppose this space divided up 
into a very large number of very small elements. 
We then have to form some method of obtaining 
the limit of the sum of all these elements when 
each is ultimately infinitesimally small and their 
number infinitely increased. 

It will be found tliat when once such a method of 
summation is discovered, it may be applied to other 
problems such as the finding of the length of a curved 
line, the areas of surfaces of given shape and the 
volumes bounded by them, the determination of 
moments of inertia, the positions of Centroids, etc. 

E. 1. c. A <S 
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Throughout the book all coordinate axes will be 
supposed rectangular, all angles will be supposed 
measured in circular measure, and all logarithms 
supposed Napierian, except when otherwise stated. 

2. Determination of an Area. Form of Series to 
be Summed. Notation. 

Suppose it is required to find the area of the portion 
of space bounded by a given curve AB, defined by 
its Cartesian equation, the ordinates AL and BM of 
A and B, and the x-axis. 

Let LM be divided into n equal small parts, 
QiQ^y •••> length A, and let a and b be 
the abscissae of A and B, Then i> — a = nh. Also if 
y^(p{x) be the equation of the curve, the ordinates 
LA, Qi^i, through the several points L, 

Qoj are of lengths ^(a), 0(a-h2A), etc. 
Let their extremities be respectively A, etc., 
and complete the rectangles P-^^^y ^iQzy 

Now the sum of these n rectangles falls short of 
the area sought by the sum of the n small figures, 
AR^P^y PyR^P^y etc. Let each of these be supposed 
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slide parallel to the ir-axis into a corresponding 
position upon the longest strip, say 
Their sum is then less than the area of this strip, 
i.e, in the limit less than an infinitesimal of the first 
order, for the breadth Qn-iM is h and is ultimately 
an infinitesimal of the first order, and the length 
MB is supposed finite. 

Hence the area required is the limit when h is 
zero (and therefore n infinite) of the sum of the 
series of n terms 

1l<p{(t) -f- /?,) -f- /ii/^((X"p 2///) -f- ... “f*“f*(w “* l)/i<). 

The sum may be denoted by 

a+rh~b~ h a-{-rh—h-h 

S (/> {a + rh) ,h or ^ ^(a + rh), h 
a-\-rh~a a-\-rk~-a 

where /S or 2 denotes the sum between the limits 
indicated. 

Regarding a as a variable x, the infinitesimal 
ncrernent h may be written as Sx or dx. It is 

customary also upon taking the limit to replace the 

symbol >S^ by the more convenient sign , and the 

limit of the above summation when h is diminished 
indefinitely is then written 

I (j>{x)doii, 
a 

and read as '‘the integral of (f>{x) with regard to x 
[or of <f){x)dx^ between the limits x — a and x — h” 
or more shortly " from a to 6.” 

b is called the " upper ” or " superior limit.” 
a is called the " lower” or “ inferior limit.” 

The sum of the 'n. +1 terms, 

h(l>{a) 4- h^{a 4- 4- • • • 4- {a+— 1 + h(j>{a 4- nh), 

differs from the above series merely in the addition of 
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the term or h(f>{h) which vanishes whe 
the limit is taken. Hence the limit of this seric 
may also he written 

3. Integration from the Definition. 
This summation may sometimes be effected 1 - 

elementary moans, as we now proceed to illustrate 

laldilate / < Ex. 1. C 

Here we have to evaluate 

where h = a~\-nh. 

aTifl _ 1 /i 

This — Lth. “Lfh^o(f‘'' ~ ^ “■ 

[By D(ff. Cak\ for Beginners, Art. 16. 

b r=-n-] 

Ex. 2. To find / a:da; we have to find Lt 2 (ct + rA)A, wher» 
J r--0 

nh = b —a. 

S(a + rh)h =^ah, n + P. ^ 

= 0(6 - a) + ^^^(6 - o - A), 

and in the limit becomes 

o{h — a) + 
(b~a)“ {h-((){h-\-a) _})“ 

/■ft 1 
Ex. 3. To find j we have to obtain the limit when h h 

a 

indefinitely diminished of 

\-d^ (a 4- hY (ct+‘ p] 

This is ^6(6+/J * 
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> n y _ 
\a a + hJ \a + h a-\-'2>h) \h t + A/ 

>1—L- 
a b + h 

:[ - L(a- 

<~ 

(a - k)a a{a + A) ‘ (6 - h)h. 

__1_I 
a — h a 

1 

j 

a — h />’ 

J when h diminishes witliout limit, each of these becomes 

] _1 
a h 

J .A' a V 

Ex. 4. Prove ah initio that 

j 8u\xdx = cos a — cos 5. 

We now are to find the limit of 

[sin a + sin((X + /^)4-sin(a+2/e)+... to n termsJA, 

h 

,e. of 

«+ n —1~ 

. ?i 
8in- 

2 

h where nh=^h— a. 

This expression = j^cos^a — ^^ — cos-|a4-(27i — 

= [coB(a-|)-cos(6-|)]^, 

sin- 
2 

which when h is indefinitely small ultimately takes the form 

cos a—cos 6. 
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EXAMPLES. 

Prove by summation that 

/h 

e~^dx=e~^ — e"^. 

/b 

sinh xdx — ccsh b — cosh a. 

3. I x^dx = h^-a? 

*•/ 
a 

4. J ^-dx=2(^b~Ja). 

5. j cos 0d0=sin b —sin a. 

4. Integration of x^. 

As a further example we next propose to consider 
the limit of the sum of the series 

h[a"^+(a^h)^ + (a-h 2h)^ -f... + (a 

where h = ^ 
n 

and n is made indefinitely large, m +1 not being zero 

[Lemma.—The Limit of ^— is w + 1 when h i' 

indefinitely diminished, whatever y may be, provided it be C 
finite magnitude. 

For the expression may be written 

-1 

and since A is to be ultimately zero we may consider - to be 

less than unity, and we ma^ therefore apply the Binomial 

Theorem to expand , whatever be the value of m d-l. 
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Ex. 2. The quantity whose diiferential coeihcient is cos .3; is 
known to be sin^*. Hence 

rh 

I COS X dx = sin h ~ sin a. 

Ex. 3. The quantity whose differential coefficient is e* is 
itself e* Hence 

rh 

I (fdx~d* — €^. 

.4. = 
J rtr=.0 /L- 

Ex, 

EXAMPLES. 
Write down the values of 

1, j x^^dx, 2. j x^^dxy 3. J x^'dxy 4. ~dx, 
a 0 1 ‘‘.J 

TT W TT 

5, ^ cosxdxj 6. / sec^.rdXy 7. / sec.?:tan 

"0 *0 0 

8. f—9. f -r^l . dx, 10. f (x-i-co^x)dx. 

8. Geometrical Illustration of Proof. 
The proof of the above theorem may be interpreted geo¬ 

metrically thus :— 
Let AB be a portion of a curve of which the ordinate is finite 

and continuous at all ]>oints between .1 and L, as also the 
tcingent of the angle which the tangent to the curve makes 
with the ;27-axis. 

Let the abscissae of A and R be a and b respectively. Draw 
ordinates A N, BM. 

Let the portion NM be divided into n equal portions each 
of length li. Erect ordinates at each of these points of division 
cutting the curve in P, % R, etc. Draw the successive 
tangents AP^, PQi, QRi, etc., and the lines 

AP2, PQi^ QR^i •••» 

parallel to the r-axis, and let the equation of the curve be 
y — '^{x\ and let "^'{pS) = ^x\ 
then <^(a), <^(a + /i), ^{a + 2h), etc., are respectively 

tAuP^APi, taxiQ^PQi, etc., 
B E. I. c. 
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and are respectively the lengths 

Q2Q11 
Now it is clear that the algebraic sum of 

P‘2^y <?2ft is MB~NA, i.e. T/r(6)- 

Hence 

+ §2^1 + ^4^*1+• • •+\R\P +<?!§+•••]= 

Fig. 6. 

Now the portion within square brackets may be shewn to 
diminish indefinitely with h. For if li^R for instance be the 
greatest of the several quantities PjP, QiQy etc., the sum 

[/'iP+<2i§+...] is <nRilt, Le. <{b-a)^j^. 

But if the abscissa of Q be called :v, then 

LR2=(^), R2R1 = W{x\ 

and LR^ ylr{x -f Ji) == yfr{x) + 

[Riff. Calc, for Beginners, Art. 186.] 

so that R,R=^V(.^+6h)=^<}>'{:c+eh), 

and {h-a)MJL-^)h^Xx^eh), 
A 2 

which is an infinitesimal in general of the first order. 
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Thus 

Lth^Q [^2^l + 
or X4=.o^[(^(a) + ^<x + A) + </>(a + 2A)4-... 4- h)]~yl/(h)-\l/{a). 

Also since Ltn^.Ji(^{h)—Q^ we have, bj addition, 

Lth^iih\,4^{<L) + (f^a+h)+cfi(a+2Aj +... + </>(^)] = VK^)* 

9. Interrogative Character of the Integral Cal¬ 
culus. 

In the differential calculus the student has learnt 
how to differentiate a function of any assigned char¬ 
acter with regard to the independent variable con¬ 
tained. In other words, having given y = \[r(x), 
methods have been there explained of obtaining the 
form of the function in the equation 

The proposition of Art. 7 shews that if we can reverse 
this operation and obtain the form of ylr{x) when ^'{x) 
is given we shall be able to perform the operation 

J <p{x)dx, i.e. j* \}/{x)dx, 

a a 

by merely taking the function yfrix), substituting b 
and a alternately for x and subtracting the latter 
result from the former; thus obtaining 

\lr{b)-x{r(a). 

We shall therefore confine our attention for the 
next few chapters to the problem of reversing the 
operations of the differential calculus. 

Further, the quantity b has been assumed to have 
any value whatever provided it be finite; we may 
therefore replace it by x and write the result of the 
proposition of Art 7 as 

j* <p(x)dx==\Jr(x)--\l/-(a). 
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10. When the lower limit a is not specified and 
we are merely enquiring the form of the (at present) 
unknown function whose difierential coefficient 
is the known function <p{x), the notation used is 

X — \fr{x) 

the limits being omitted. 

11. Nomenclature. 

The nomenclature of these expressions is as follows: 

I cj){x)dx or \fr(h) — \fr(a) 

a 

is called the definite” integral of <p(x) between limits 
a and b ; 

J (]>{x)dx or Yrfa;) — \/r((X) 

a 

where the upper limit is left undetermined is called 
a corrected ” integral; 

^^(x)dx or \}r(x) 

without any specified limits - and regarded merely 
as the reversal of an operation of the differential 
calculus is called an “indeflnite” or ” uncorrected ” 
integral. 

12. Addition of a Constant. 

It will be obvious that if ^(x) is the differential 
coefficient of yr(ir), it is also the differential coefficient 
of where G is any constant whatever; for 
the differential coefficient of any constant is zero. 
Accordingly we might write 

J <p (x)dx — yjr{x) + G. 

This constant is however not usually written down, 
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but will be understood to exist in all cases of in¬ 
definite integration though not expressed. 

13. Different processes of indennite integration 
will frequently give results of different form; for 

f 1 . . 1 
instance —dx is sin~^j* or — cos"^x’, for ——- 

Js/]-x- x/l-£r2 
is the differential coefficient of either of these ex¬ 
pressions. Yet it is not to be inferred that 

--cos“^T, 

But what is really true is that sin"^ir and — cos’^x 
differ by a constant, for 

sin “ -b cos " 

so that 

or 

I , ^—dx= sin-^^d-C' 

l-,-L^cfe= — cos"^a:-l-f7', 

the arbitrary constants being different. 

14. Inverse Notation. 

Agreeably with the accepted notation for the in¬ 
verse Trigonometrical and inverse Hyperbolic func¬ 
tions, we might express the equation 

as 

^(f)(x)dx — \lr(x), 

or = 

and it is occasionally useful to employ this notation, 
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which very well expresses the interrogative character 
of the operation we are conducting. 

15. General Laws satisfied by the Integrating 

Symbol 

(1) It will be plain from the meaning of the 
symbols that 

is 

f d 
but that is any arbitrary constant. 

(2) The operation of integration is distributive; 
for if u, V, w be any functions of Xy 

and therefore (omitting constants) 

dxA-^'wdx =^^{n+v+w)dx, 

(3) The operation of integration is commutative 
with regard to constants. 

d/ll, 
For if =v, and a be any constant, we have 

d, , du 
^{au)=a^ = av, 

SO that (omitting any constant of integration) 

aw=^avdx^ 

or ajv dx=^av dx. 

which establishes the theorem. 
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16. We now proceed to a detailed consideration of 
several elementary special forms of functions. 

17. Integration of x\ 

By differentiation of-^ we obtain 

d 
dx 7l+l~'"' ' 

Hence (as has been already seen in Art. 4 and in 
Art. 7, Ex. 1) 

714-1* 
\ x'‘\ix ■ 

Thus the rule for the integration of any constant 
power of X is, Increase the index hy unity and divide 
by the index so increased. 

For example, 

/:rV.r = ^; 

EXAMPLES. 

Write down the integrals of 

1. X, 1, 0, .r«», .T^ooo^ 

2. .v~^. 
18 5 

3. 
1 5 2 

4. 

^••6. ax+^, a + 6a:+^. 

\y ^ ax~^ + hx-^ + c 
Q, __ -j _O • 
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18. The Case of x~\ 

It will be remembered that x~^ or - is the differ- 
X 

ential coefficient of log x. Thus 

This therefore forms an apparent exception to the 
general rule 

f 
\x^dx=^-~ -j:. 
J n + 1 

19. The result, however, may be deduced as a limiting case. 
Supplying the arbitrary constant, we have 

1 

/■ x’'dx= -— + 6^= ■ 
n-{-i n+1 

-+-4, 

where A^C-¥ 
] 

n+1’ 

and is still an arhitrarif constant. 
Taking the limit when n+ 1=0, 

—Z_1 takes the form loff x. 
n + 1 ® ’ 

Calc, for Beginners, Art. 15.] 

and as C is arbitrary we may suppose that it contains a nega¬ 

tively infinite portion — - ^ together with another arbitrary 

portion A. 

Thus Ltn^ -1 j x^dx ~ log x+A. 

20. In the same way as in the integration of x^ 
we have 

+ 6)"+^ = (rt + l)a{ax+hy 

and 
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and therefore 

and 

[For convenience we shall often find \—^ 
JaxA- 

printed as f—\ - .^1^-^-dx sls f—etc.] 
i }ax+b’ iJa^ + x^ JJa^ + x^ ^ 

dx 

EXAMPLES. 
Write down the integrals of 

1. (iXy af-y a+.r, a~-.r, a—of, 
^ a a-{-x 1 

.r a X * a+x k 
^ jv ♦ 1 I _1_ 

' a + x^ a ~ bx^ (a - xy^ (a — ,r)"* 

4 + + 1 , 1 
' a+ x a~x x-^a^X —a {(i^xy {a — xy^ 

21. We may next remark that since the differential 
coefficients of [0(ir)]^+^ and of log are respectively 

{n + l){<j>{x)]^<j>\x) and 

we have ^\^{x)Y'<t>'{po)dx = — 

and |^^da3 = log^(a!). 

The second of these results especially is of great 
use. It may be put into words thus:—me integral of 
any fraction of which the numerator is the differential 
coefficient of the denominator is 

log (denominator). 
For example, 



26 INTEGRAL CALCULUS. 

fcota^dx ~ == log sin 
J J sin jc 

I tan jc dx = — I ? Id.t' = — log cos ^=log sec 
J J cos x 

EXAMPLES. 

Write <lown the integrals of 

1. {e' + aye^^ + ^ 

2 (f -\-e~^ sec2.r 2ajp + ^> ^ 

c* — tan (cu;2 -j- 4. cY 

3 _1_ 

tan“'y Vrr^2gin-i^’ ^log.r 

22. It will now be perceived that the operations of 
the Integral Calculus are of a tentative nature, and 
that success in integration depends upon a know¬ 
ledge of the results of differentiating the simple 
functions. It is therefore necessary to learn the table 
of standard forms which is now appended. It is 
practically the same list as that already learnt for 
differentiation, and the proofs of these results lie in 
differentiating the right hand members of the several 
results. The list will be gradually extended and a 
supplementary list given later. 

Preliminary Table of Results to be committed 

TO Memory. 



CHAPTER III. 

METHOD OF SUBSTITUTION. 

25. Change of the Independent Variable. 
The independent variable may be clianged from 

to s by the change x = F{z), by the formula 

\vd.=\rp., 

V being any function of u\ 

Or if we write 
the formula will be 

^fix)dx=^f{F{z)}FXz)dz. 

To prove this, it is only necessary to write 

then 

But 

whence 

u 

du 

-.^Vdx-, 

= F. 
dx 

dU'^dii dx__^ ydx 

dz^dx dz dz^ 
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Thus to intec(rate\/ let tsLn~^a:—2:. Then 
1-h^ 

dx 

1 +x^ dz 

and the integral becomes 

J ] +x^ dz J 

26. In using the formula 

^f(x)dx = ^f{F(z)]F'(z)dz, 

after choosing the form of the transformation x = F(z), 
it is usual to make use of differentials, writing the 
equation 

"^r^FXz) as dx = F'(z)dz-, 
dz 

the formula will then be reproduced by replacing dx 
of the left hand side by F\z)dz, and x by Flz). 

Thus in the preceding example, after putting tan~^^'=2, we 
may write 

= dz and ” ^dx = (ddz=etc. 
l+.r^ J 1-hx^ J 

27. We next consider the case when the integration 
is a definite one between specified limits. 

The result obtained above, when x = F(z) is 

^f(x)dx=^f{Fiz)}F'{z)dz. 

Let f{x) = y]^'{x), 

then ^f{x)dx = -\lr{x) + C \ 

and if the limits for a? be a and 6, we have 

^f{x)dx = y(r{b)-yl^a). 
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Now when x = a, z~F~ \a); 

and when II II 1 

Also 

and 

whence 

nF-\b) C^^~\h)d 

mz)}FXz)dz=^\ ■Ur{F{z)]dz 

F-\a) F'Ha) 

=^mF~Hb)}]^i.[F{F-\a)}] 

so that the result of integrating f{F(z)}F\z) with re¬ 
gard to 2^ between limits and F~\b) is identical 
with that of integrating f(x) with regard to x between 
the limits a and b. 

Ex. 1. Evaluate 
J 

Let and therefore d.v=2zdz ; 

J .^ij-cofi s!X dx ~ j icos2.2zdz—2 j cos z dz—2 sin z=2 sin Jx. 

Ex. 2. Evaluate Jx^cosx^dx, 

Let x^~z, and therefore 3x^dx=dz ; 

Jx^cosx^dx"i jcoszdz — \ sinz — \sin 

Ex. 3. Evaluate ( ^—dx. 
J 

Put j?=tan 0^ then dx—sed^OdO; 

when x~Oj we have ^—0, 

when :r=l, we have 5 
4 
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tan 0 cWdO — J sec 0 tan 0 d0 
sec 0 

= ["sec ^”1'^ =- sec - sec 0 = V2 — 1. 
L Jo 4 

Ex. 4. Evaluate ^ ^ [^•^* i i ^ 
0 ^ *0 

Let e* —then (fdx — dz. When r=0, 2 = 1, and when ^=i. 
2 = e. Hence 

dx _ r® dz 
C-' + C'~-‘ j I +2-^ 

= tail” — tan" ^ 1 = tan~^ 
e~l 

e+V 

The indefinite integral is tan~^e^ 

EXAMPLES. 

1. Integrate C^C03 6^ (Put e^=z). 
nx”~^co8x** (Put x"=z). 

i cos(log x) (Put log 07 = 2). 

2. Evaluate j (Puta^=,), /“ (Puta^=.). 

3. Integrate a cos x + 

4. Evaluate r 
dx 

3 
0 

5. Evaluate 

6. Evaluate 

7. Evaluate 

8. Evaluate 

9. Evaluate 

I 

I 
I 

I 

/ 

^ dx 

Vo — 2.r - x'^ 

{x - l)V.r^ - 2x 

-A __ dx 
2v.r(l +^) 

2\^ W1 — ^ 

ac^siii (f + h tank x. 

(Put x+l~z). 

(Put .a;*+l=2). 

(Put .27—1=2:). 

(Put x^z^). 
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Note on the Hypekbolk^ Functions. 

28. Definitions. 

For purposes of integration it is desirable that the 
student sliall be familiar with the definitions and 
fundamental properties of the direct and inverse 
hyperbolic functions. 

By analogy with the exponential values of tlie 
sine, cosine, tangent, et(i., the exponential functions 

(tjf'  c ~ ^ 

2“ ’ " “2 ’ + 

are respectively written 

sirih X, cosh x, tanh x, etc. 

29. Elementary Properties. 

We clearly have 

coslr'x — sinh^.r = 

sech2a, + tanli=^ = (-^,_^--) =1 

tanh X — ^ 

coth X: 

sinh 

'e^ + e~^ cosh a; 

c® 4- ^ * cosh X 1 

cosh^iT 4-sinh^^c = 

— sinh x tanh x 

2 ) 2~ 
/,2a; _j_ - 2a; 

—=cosh 2x, 

x\2 

2 sinh X cosh x — 2 —^^- 

with many other results analogous to the common 
formulae of Trigonometry. 

B. I. c. c n 
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30. Inverse Forms, 

Let us search for the meaning of the inverse 
function sinh"^.r. 

Put sinh ~^x — y, 

then 
. - ty-e-y 

X — RinJi // = 2 j 

. e-!'-2,r(!'—1 =0, 

and ey—X ± \/1 

Tlius y = log(.r ± >v/l 

and we shall take this expression with a positive sign, 

viz., log [X 4- Vl as sinh 

31. Similarly, putting cosh"^a; = 7/, we have 

ey-\-e-y 
.r = cosh2/=—2"~ 

and + 1=0 

and ey — x±s/x^—'\, 

whence y — log (x ± — 1), 

and we shall take this expression with a positive sign, 
viz , 

log {x + ) as cosh “^03. 

32. Again, putting tanh ' y, we have 

X = tanh y = - 

and therefore e22/ = 
1+a; 

-X 

^1—a; 
whence 
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Similarly = J 

33. We shall thus consider 

iXj 
sinli"^-^ synonymous with 

eosh~^^ synonymous wnth 

taiih"^^ synonymous with h 

and 

coth~^^ synonymous with h 

34. The Gudermannian. 

Again, the function cos"hsechu is called the Guder¬ 
mannian of and written gd u. 

;:K = cos"^sech n, 
cos X — sech u, 

sin rr = >v/l — sech“U = tanh u, 

, tanhtc . , 
tan X = —T— = Sinn u. 

seen u 

gd It = cos ~ ^sech u = sin “ ^tanh u = tan “ %inh u. 

35. Further, if u = log tan(^^ 

1 + tan^ 

If 

and 

Hence 

, X -f- -f- log---, 

log- 
+ >/X 

lo£r 
a + x 

' a—x' 

, x-\-a 
log ~ 

^ x — a 

we have 
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whence 

Hence 

^ * e«-l 
tan„ = , > 

2 c“ + l 

e'^l 

e“+l 

/c“-l\2 
1-tan^ + l 

X — tan ■" ^sinh u = gd u. ♦ 

TlniH log 0 = gd “ ^x, 

the inverse Giiderinaimian of x. 

EXAMPLES. 

Establish the following results 

1. f cosh O' d.v — sinh x. 4 

2. / sinh X dx ~ cosh x. 

3. / sech^A’ dx = taiih x. 

4. jcosech^xdx= ~ coth x. 

5. h^^f~dx =-^sechx, 
J cosh^^r 

6. fdx — — cosech x, 
J siiih^u? 

7. Writing ag^’ for singdu:, etc., establish the following 
results:— 

(a J eg xdx=gdx. 

(fS) jcg% dx=sg X. 

(y) f— =tgjc. 
" J caa; 
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36. Integrals of - / „ anu - 

The differential coefficient of logg' 
' + J^ ~\-a^ . 

Thus =log"' 
is/x'^+a^ ^ 

Similarly [ ^^21^,2^= 

cr + ^Jx^ + a- . . ,x 
' —m - -=smh'^-. 

^ a a 

1 x + — , .X 
log-— CObll'^'. 

^ a a 

37. In the inverse hyperbolic ibriris these results 
r dx X 

resemble that for the integral 1 , viz., sin"^-> 
IV ^ 

and the analogy is an aid to the memory. 

38. We might have established the results thus:— 
» t 

C rJr 
To find 1—7_=- put x~a sinh u, then 

dx = a cosh ii dyW and s/x^-^cd^ a cosh u. 

Hence f_^^=U = ^ = sinh->'''’. 

Similarly putting x = a cosh u, we have fa sinh u du 

a sinh u 
— Jdu = u = ( 

Integrals of s/d^—x\ s/x^—a^, 

39. To integrate 

Let X = a sin Q; 

then dx — ao^o^QdQy , 

a.
i 
^
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— x^dx — — do 

^.Jd^ — xh 

• OZl . ^ = ^sin204- ^9 

■ ha sin 0. a cos 6-{- ^9 
A 

X\/ar—‘X^ , 
- -2 +2““ a 

40. To integrate .Ja^+x^ 

Let x = a sinh 0, 

then dx = a cosh 2; dz; 

then since 1 + sinh^^ = cosh^^, 

we have — 

= ^ J(cosh 2z + l)dz 

sinh2^+^" 

^2 

= |a sinh . a cosh z -f -^z, 
JL 

J L z a ^ 

xjd^^x^ x-h-s/x^-^ra^ 
—2—+2log-5- 
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41, To integrate al 

Let x — a cosh 2?, 

then dx = a sinh z dz; 

then since cosh^^^ — 1 = sinh^0, 

cZic = a-Jsinh^^? dz 

= 2 J(cosh 2z — l)dz 

^ oj^z 
= ^-smh2^~-2 

= Ja sinh 2;. a cosh 

-7; ; Xs/x^ — a^ , -a; 
a^dx =-Pi-TT cosh ” ^ - 

2 2a 

Xs/x^ — a^ or ^ X- 

42. If we put tana? = f, and therefore sech) dx = dt, 
we have 

Jsec^^r d!ir —j a/1 + t^dt 

ts/T+i- 
—h J log(i+ 

[by Art. 40.] 

tan cc sec a; . , , . 
=-2-2 log(tan X + sec a;), 

sin aj , , 14- sin ic 

2 cos^a? ^ — sin x 
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43. Integrals of cosec x and sec x. 

Let tan W = ^ ; taking the logarithmic differential 

2 tan' 

.,.r... dz dx dz 
sec“7^aa; = - or -v—= - 

; 2 sin X z 

Thus Jcosec X dx — = log 2; = log tan 

In this example let a: = ^ -f y. 

Then dx = dy, 

and Jsec y dy — log tan 

Hence Jsec xdx = log tan jor gd" ^x, 

44. We have now the 

Additional Standakd Forms, 

= sinh“^' 

if 

=log 
is/x^A-a' ^ CL a 

=lo,r?±^^^^E^' = COsh-l-. = log- 

vs/cd — x^ 

|>v/ir^4 a^dx — 

2 2a 

-f sin-*^-. 
Zi 2 a 

—^+2’"* ;■ 
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I cosec X dx = log 

j sec xdx = log tan^^ + = gd" 

EXAMPLES. 

Write down tlie integrals of 

vii’ ^/i+v 

2. - ^-, - - j + t—?--• 
v.r-4-2r v2 + 2.r-^“ ^/*^“ —2r4-2 vl-4'r--^^ 

3 f 

4. aV^^+1, (^ + ])\/j7‘^ +1, i ,=-• 
V r- +1 

5. ^(.r^ + a^)*-, (^4-l)(^‘^ + 2.r4-3)‘'^.'^^ 

.r2 + 2.;p + 3 ^’^4-2;r+3 + + S 
\^1 —x^ ^ s! s!+1 

v4. \/£±J, \/i±£y (•>’+_lV^±2_ 
^ .f - 1 ^ 1 - .“K ^ 1 - .r Jj’ _ 2 

8. cosec 2^, cosec(a.y4-?>>), 
1 1 + tan^. r 1 

cosV~sin^’ 1 — tan%’ 3sinx~ 4sin^^ 

1;, _i_: _J_ 
&n>r+cQ3 a sin x + h cos x 

10. Deduce jcoseca;o?.r = log tan| by expressing cosec as 

i(cotf + tanfY 
2\ 2 2/ 

11. Find JseciiJcte by putting sin ar=*. 
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12. Show that j sec .ro?.r=cosh “'(sec 

13. Integrate 

_1_ 1 _1 _ _ 
X log X X log X log(log x'^ X log X log(log ^)iog[io^Og x^ 

_1 
xl{x)l\x)l\x) ... l'^{xy 

when V'x represents log loglog... j', the log being repeated 
r times. 

16. Prove j —?~<i.r=^log^-^log(a5). 

[St. Peter’s Coll, etc., 1882.] 



CHAPTER IV 

INTEGRATION BY PARTS. 

45, Integration “by Parts" of a Product 

... d . . dv , du 
Since ~ 

^dx^ dx' 

it follows that 

or 

{ dv , f du , 
rdx'^'^rWc^''' J W/X J Ivtv 

{ dv j f d;ii, 
u-dx =^uv—\v-r dx, 

J dx J dx 

dv 
If u = (j>{x) and so that v the 

above rule may be written 

I(p{^)^(X')dx = <f>{x) J — |<f>'(x) |\U{x)dx dx, 

or interchanging (p{x) and ylr{x), 

^(f>{x)-\lr{x)dx = \/r(a^) — |\/r'(a;)Q'0(a;)da;J dx. 

Thus in integrating the product of two functions, if 
the integral be not at once obtainable, it is possible 
when the integral of either one is known, say to 
connect the integral 
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with a new integral dx 

which may be more easily integrable than the original 
product. 

46. Tlie rule may be put into words thus :— 
Integral of the product y>(x)\p'(x) 

= 1st function X Integral of 2nd 

— the Integral of [Diff. Co. of Istxlnt. of 2nd]. 

Ex. 1, Integrate cos wx 

Here it is important to connect if possible cos ?i.v dr with 

another integral in which the factor j; has been removed. This 
may be done if .v be chosen as the function c/)(.r), since in the 
second integral ^•e. unity, occurs in place of x. Then 

c/)(r) ~ .r, ir(.v) — cos jylr{x)dx = 

Thus by the rule 

ir cos - fl. 
J 71 J n 

_ ^ sin nx 1 / cos tix \ 

71 n\ n ) 

sin 7ix cos 7ix 
-+ - 2 • 

47. Unity may be taken as one of the factors to aid 
^n integration. 

Thus jlo^xdx logxdx 

—xlogx — jx~{logx)dx 

—xlogx — J Idx 

:^x(logX—l)=sxloge 
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48. The operation of integrating hj parts may be 
repeated several times. 

Thus L2,os f 
J n J n 

and jx sin nxdx = x(^~ '1^) " : 

final] V, \ cos ??.r dx — 
J n 

Idfence /'^^eos + ff'1 
J n 7i-L 'it 7r J 

__.?’“sin 71T 2.r cos nx 2 sin n:v 
7i id id 

49. If one of the subsidiary integrals returns into 
the original form this fact may be utilized to infer the 
jHJSult of the integration. 

Ex. 1. I c"*sin bxdx = ?**sin hx--fc'^^cos hxdx, 
J a aJ 

f h f 
/ c'*'*^cos hx dx = --- cos bx + -- bx dx ; 

J a aJ 
and 

therefore, if P and Q stand respectively for 

] e"*sin bx dx and / (^cos bx dx. /' 
we have 

and 

' whence 

and 

aP-\- bQ — e^^dhi bxj 

— bP + aQ—e®*cos 6.r, 

i> __ sin bx — b cos hx 

= (a2+6“)~^e‘“sin ^6.r- tail”’ 

6 sin H-a coh h.r 
cd + 6^ 

(a^+5®) ^c®*cos (^bx — tan~^ ^^ 
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The student will observe that these results are the same that 
we should obtain by putting n— in the formulae 

\dx] cos ^ ^ cosV a I 

[Diff, Calc, for Beginners^ Art. 61, Ex. 4.] 

And this is otherwise obvious. For if to differentiate 

is the same as to multiply by a factor + and to 

increase the angle by tan“'-, the integration, which is the 

inverse operation, must divide out again the factor 

and diminish the angle by tan“^-. 

-_ * , 
Ex. 2. Integrate by the rule of integration by parts. 

J Va- — (Ic—xj— .r- - ^x^)dx 

=w^+ 
•' sld^ — x^ 

[Note this step.] 

=xs] ad — x^ + a^siii-— jddx; 

whence, transposing and dividing by 2, 

f r~rr~- , X^od — od d^ . ^X 
\ sfa.^ ~ x^dx —-^-(-“Sin 

J 2 2a 

which agrees with the result of Art. 39. 

Ex. 3 Integrate e'^^sin^j? cos^o;. 

Here c^sin'^.r cos^;r=™ sin^2a7 cos x = ~(1 — cos 4ai*)cos x 

—JL(2<?^'*'cos X — Zx—tf^cos bx), 
16 
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Hence, by Ex. 1, 

“jp cos’*^^ dx - 

1 
- - CO 

3\/2 

e-'^T 2 / ^ A\ - — cosi X “ tan~ ‘ - ) 
leLVio V 3/ 

[Compare Ex. IfJ, p. 55, Calc, far Beginners^ putting 
n~ — \ in the result.] 

EXAMPLES. 
Integrate by parts : 

1. .pe* x^e^^ .pcosh.r, .p^coshx. 

2. X cos .r, .2:2cos a;, x cos 2j:, x cos^jp, x cos^.p. 

3. X sin X cos x^ x sin x sin ^Ix sin 3.r. 

4. .p‘-’log.i?;, .p”log;p, ;p”(Iog xf-, 

^ 5. e®sin.pcosu?, 6^*sin j; cos .p cos 2.p. 

6. <?®*siriy).p sin gx sin r.r. 

7. Calculate j xsinxdxy / .psiit'^.pdp, / x^shixdx. 

‘o *0 “0 

8. Show that j' \^a-^ — x'^dx—^^. 
0 

9. Integrate jsin~^xdx, jxsm~^xdxy Jx^sin~Kvdx, 

50. Geometrical Illustration. 

Let PQ be any arc of a curve referred to rectangular 
axes Ox, Oy, and let the coordinates of P be (Xq, y^, 
and of Q (x^, yf). ‘ ' 

Let PN, QM be the ordinates and PN^, QM^ the 
abscissae of the points P, Q. Then plainly 

area PNMQ = rect. 0 Q — rect. OP — area PN^M-^Q. 

nxi 
But area Pi\^ifQ= I ydx. 
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Let us now consider the curve to be defined by the 
equations 

say, 

and say, 

and let and be the values of t corresponding to 
the values Xq, ;?/q, and of x and y respectively. 
We then have 



INTEGRATION BY PARTS, 49 

80 that the equation above may be written 

U io 

and thus the rule of integration by parts is established 
geometrically. 

51. Integrals of the Form 

dx, ^"'cos nx dx. 

"Reduction formulae for such integrals as the above 
may readil}^ be found. Denote tliem respectively by 
Stii, and Then, integrating by parts, we have at 

,„cos7i;r . 
.+ 

71 71 

, ^ Sin nx 
and -Sm-i- 

n 7b 

^0,0^nx . mP ^ -Sm7?.'r m — l^ H 
Sm=-X^-4-- -- S,n-2 , 

n 7iL 71 71 J 

^ sinnx mf co^7ix m-1 ^ ~] 
Cm== X'^- -h- t77n-2 , 

71 71L 71 n J 

^ COS71X , ,sin?iir rii(m —1).^ 
Sni = -^-^—^S>a-2. 

• cY cos7iir , 
^.C. Sm=—X^-[-mx- 

n 

, ^ sm nx . 
and C^a ~ x'"^-h mx^ 

n 
jCos nx m(m — 1)^ - - .— 

/VI ^ " 

Thus when the four integrals for the cases m = 0 
and m = l are found, viz., 

^ r . , cosTia; 
Sr.— \s,mnxax= --■, 

£. I. C. D 
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Gq — I cos nx dx - 

a \ . 7 coHnx . mnnx 
b. = X sin nx dx = — x-H- 

^ J n n- 

f , iAnnx , coBnx 
= X cos nxdx— X-1-, 

^ J 71 71“ 
all oth(‘i*s can be deduced by successive applications of 
the above formulae. 

52. Extension of the Rule for Integration by 
Parts. 

If n and v be functions of x and dashes denote 
differentiations and suffixes integrations with respect 
to X we may prove the following extension of the 
rule for integration by parts, 

^uvdx^ uv^ — u'v^ + n"v.^—4-... 

+ ( — 1)" ■ ~ + ( *— 1 dx, 

where is written for u with n—l dashes; for 

juvdx =uv^ --^liv-^dx, 

^u'v^dx —u'v^ —^u"v^dx, 

ju'^dx =u"v^—^vf"v^dx, 

j^6"'^;3d^r = u"'v^ - ^u""v^dx, 

etc. = etc. 

|.^(n - 2)^^ _^dx==^Vp^- -1 — " ^'^Vn - idXy 

-1 diC = Vp- - ~ |u(”>7;nCfe. 
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f 
Hence adding and subtracting alternately 

uv dx — uv^ — uv^ + uv^ — u"'i\ +... 

-f- ( — I)”" “ ~ + ( “-1 Y^u^'"'^VT^dx, 

Ex. 1. If we apply this rule to we immediately 

obtain 

/ pCtr: ^ax „a>x 
x'’^e”'^dx — ^ + w(m — 1 

a a- w 
^ax ./IX 

— m{vi ~ \){'ni — _ +... 4- (- Vj^m i j. 

Ex. 2. It will be at once seen that the integrals 

y^r^Vsi ?”^sin^?.rcir and .r”"cos 'tiNV dx 

of tlie last article may be treated in this way. 

EXAMPLES. 

Write down the integrals of 

1. X'Vosh^, ar^sinha*. 
2. j;%in.r, .r^sin.r, .?Asin^.r, .r%in,r cos.^^ 

3. Evaluate ^ ^r'^sin x dxy j ^cos x dx, j x^e^dx. 

53. The determination of the integrals 

Jsin bx dx, cos bx dx, 

may be at once effected. 

P''or remembering 

pOOC^^^T^/y, (Irp ~ 
^ cos^^^^ rcos’ 

6®^8in 
(6ir-0) 

' = >s/a2 + and tan ^ where 
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we have 

hx dx = * c“*sin {hx -<l>)- (6* - 2^) 

(?Jx —30)—... 

+ ( “ 1 (tx - TO + 10), 

{P sin hx — Q cos 6.r } 
where 

X^^ ~ ^ xytl ~ 2 
^ 2^ + 71.(7/. - ] ) COS 30 ~ ... 

^ O’.’' . ^ x'>^~2 
Q = - sin 0 - r/~-; ~ sm 20 + n(7i -^1) ^ 3- sin 30 ~ ... 

Similarly 

|;r;Vi«*cos hxdx = e^^{PcoH tx + Qsin 6ir}. 

Ex. 1. Integrate jx^<fsinxdx. 

Since j'e^sinxdx — 2~^e*siii^.;r — 

we liave l'xy^8mxdx==^x^2'''^e^sin^x -- 3.r22"Vsin^^ - 

+ 6.r. 2 Vsiii^ j - 6.2~^6?*8in(./;~- tt) 

— etc. 
Ex. 2. Prove 

J .rt*sin xdx=^(f;^(- .trn-r2"“2 

EXAMPLES. 

1. Integrate (a) id) ^ j tdiiv^xdx. 

(b) j.3?2sin-^a7c?a7. x^t&ii~^x dx. 

(c) jX sec^o? dx. 
(/) 

J 
fco8~^^dx. 
' X 
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2. Integrate (a) 
J J 

(b) 
■J J (1 _^2)i 

r.,m tnji - 
3. Integrate (a) j ^^dx. 

r .,m tan - ^x 
(r) d.r. 

r nrn tjj,n - r tjni tan - 'x 
{d) -d.r. 

■' (1 + .r2)ii 

4. Integrate {a) ^{d) j^x co^h ax sin bxdx. 

(6) j dx. (r) 11 ±v dx. 

(f;) jcx)sh ax sill bxilv. (/) J coslog-j'of.r. 

5. Integrate / log -- sin~V; cLv. 
J X 

6. Integrate j ^~-^ydxt ^ 

7. Integrate 

8. Integrate j cos 20 log(l-ftan 0)d0. 

9. Integrate (a) 
® l+cosjr 

(6) [eXzEMd:,. 
J 1-cos^ 

10. Prove that f u ^-^dx =* 4- f 
J dx^ dx dx J dx^ 

H, In tegrate j (a sin^^r -h 26 sin x cos x-{'C cos^x)e^dx, 

;> [a, 1891.] 

[7, 1882.] 

[Math, Tripos, 1892,] 

[a, 1892.] 

dx. 

[a, 1883.] 
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12. Show that if m he a rational integral function of .v. 

j c*^“M dx—ae^l“^7i — d 
where the series within the brackets is necessarily finite. 

[Tiun. Coll., 1881.j 

13. If n — je^^^cos v — Jb.r diu, prove that 

and tliat 

14. Prove that 

tan + tan 
u a 

/ .P'*(k)g x)^djc■-—(log- —— I x^(log jp)'^~^dx. 

Also that 

/x’'*(iogrf" - 
J m + lL m + \ 

_n{n-\){n-2).^,, ( - l)n-^n\. (iTnll 

{m + lf *” (7/1+1)"“^ (m+l)”^ 

where I stands for log x. 

15. Prove that 

(i.) 
J a^-\-n^b^ 

+ }ilp^ f e^'^cos^'^bx dx. 

(ii.) [e-“sin''6^cfx=‘*^^”4^.V*8in-'6.r 
J a^+nrb^ 

a^+n^b'^ J 
[Bertrand.] 

16. Evaluate l^x^log(l -xF)dxy and deduce that 

[a, 1889.] 



CHAPTER V. 

KATIONAL ALGEBRAIC FRACTIONAL FORMS. 

PARTIAL FRACTIONS. 

Algeukaic Fractional P’orms. 

54. Integration of 

and 
X. — ar 

Either of these forms should be thrown into Partial 
Fractions. Thus 

f ^ 1_I 

— 2(1, \x — a x + a. 
dx 

= ^[log («-«)- log (x+a)] 

" = log^" r= coth-i-l 2a ^x + a L a aJ 

if(4 +-!_)* 
2aj\a + x a — xJ 

"" (a+®) - log (a - x)] 

. 1 w?±* r=iteri>-.5i, 
2a a; La aJ 
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^Compa pare the forms of the results in square brackets 

with the result before tabulated for „— viz., 
+ 

dx 1. _^x\ 
-2 , “ tan 1 •) + x-^ a a / 

55. Integration of | 
dx 

ax--\-hx-{-c 

Let 
aj 

dx 

2 . ^ ^ x^A- -xA-~ 
a a 

If_dx_ 

a] / , b\^ — 4<aG 

or H- 
aJ. 

dx 

■ 4ac —6^^ 

we take the former or the latter arrangement ac¬ 
cording as h'^ is > or < 4ac. 

Thus if ¥ > 4iac, 

j_ 1 ^ 2ax -f /> — v^6“ — 4ac 

/s/¥ — iac ^ 2axA'bA-\/¥ — 4ac 

2 ,, , 2a.x + b 
or -coth " ^ ^ 

x/ ¥ — Atac s/ ¥ — Aac 

If ¥ < 4ac, 
j. 2 , 2ax-\-b 

fj 4ac — ¥ V 4ac — ¥ 

2 , 1 2aic4-fc 
or -====-- cot " 

\/ 4ac ’-¥ sj 4ac — ¥ 

These expressions differ at most by constants, but in 
any given case a real form should be chosen. 
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56. Integrals of expressions of the form 

pxA-q _ 
ax^A-hxA-c. 

can be obtained at once by the following transforma- 
tion 

j)xA-q _ p (2axA-h) ^ ^ 2a 

a'j? + hx -f G 2a ax^ + 6j; + c ax^ + hx + c 

the integral of the first part being 

and that of the second part being obtained by the last 
article. 

[The beginner should notice how the above form is 
obtained. It is essential that the numerator of the 
first fraction shall he the differential coefficient of the 
denominator, and that all the cc’s of the numerator 
are thereby exhausted,] 

5*- /G - i.flf * .> 
— h ]og(x^ + 4.37 + 5) — !2 + 2). 

57. Although the expression px + q may be thrown 
into the form 

P 
2a 

{2axA-h)A-q — 
2a 

hy inspection, we might proceed thus:— 

Let pxA-q = \{2a,x + Z>)+/x, 

where X and jn are constants to be determined. Then 
by comparing coefficients, 

2aX=p, /x + X?) = g, 

X-i md M-9-g- giving 
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EXAMPLES. 
Integrate 

j r 4. 
r (x + l)dx 

' 3 + 2a;-a^' 

f X dx 5 f 
J x^‘'2x 1’ J x^-^2x + 2 

3. d.r. 
J X^ + 4:X-{-5 

G. 

58. General Fraction with 
and Denominator. 

Rational Numerator 

Expressions of the form A-4, where f(x) and c/>{x) 

are rational integral algebraic functions of x, can be 
integrated by resolution into Partial Fractions. 

The method of putting such an expression into 
Partial Fractions has been discussed in the Differential 
Calculus for Beginners, Art. 66. When the numerator 
is of lower degree than the denominator the result 
consists of the sum of several such terms as 

A A Ax-\-B T Ax+B 

x — a' {x — aff ax^+bx+c' [{xA-af + b^Y 

And when the numerator is of as high or higher 
degree than the denominator we may divide out until 
the numerator of the remaining fraction is of lower 
degree The terms of the quotient can in that case 
be integrated at once and the remaining fraction may 
be put into Partial Fractions as indicated above. 

Now any partial fraction of the form —■ integrates 
at once into A log {x — a\ x — a 

A 
Any fraction of the form integrates into 

1 A 
r—1 (a?— 
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Any fraction of the form — ^ r ^ ^ has been dis- 
cussehn Art. 56. ax^ + bx+c. ^ 

And when any repeated quadratic factor such as 
[{x A-occurs in giving rise to partial 

fractions such as we may integrate such 

a fraction by the substitution a; -|- <x = tan d, by aid of 
Art. 67 or Art. 83. 

But it is frequently better to factorize {xA-cifA-^^ 
into its imaginary conjugate factors xA-glA-lI) and 
x-f-a —and obtain conjugate pairs of partial frac¬ 

tions of the form -+-7- V which may 
{xA-GiA-ioY {xA-a — iby 

then be integrated and the result reduced to real form 
by aid of De Moivre’s Theorem, as in Art. 63, Diff. 
Calc, for Beginners. 

69. Ex. I. Integrate 

We have 

+ q_a^Ap(Ji' + q __1 ^ 6^+Jp6 + y 1 

{x — afx ~ b){x - c) (a ~b)(a - cj X ~ a {b-c){b-a) x—b 

4..iL±f^±?., _i_ = V 1 
(c — a){c — h)x — c '^(a -• h){a -c) x —a ^ ' 

and the integral is log(x- a). 
(a - h){a - c) 

Ex. 2. Integrate 

Let 
X _ A 1 

{x—l){x^A-A)~x—i : 

Then A(x^ 4-4)+{Bx + C){x - 

Thus ^4.^=0, ^ 

(7-^=1, [ 

4A-C^0;) 

whence 1 II II 

^ _1 1 l4r-4__l _ 
{x- VYx^AA)~'b x-1 b a^AA~~b X- 

Bx±C 
J7^ + 4 

^x 4 
” . .1 + F " 
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and the integral is 

I log(^ -1) - log(x=+4) + 1 tan-*f. 

-da:. Ex. 3. Integrate 

Put ^ — 1 = ?/. 

Henct‘ the fraction becomes — ^7—' c 
y‘(2+2/) 

Dividing out until y‘ is a factor of the remainder, 

2+y) 

1 +h/ 

iy+ ?/^ 
i2/ + lv^ 

Hence the fraction 

y'±h/^_ 

(^ +.'/)! = J _ 4.? 1.11.1. i- 
8y 8 2+y 

and therefore 

1 _3_ 1 
^ H ~y~- ” ,^-y P “ 

(j?- i)3(a,'+1) 2 (i- i)2'*’8(x- ly 8(.r+1) ^ 

and the integral is 

I 

Ex. 4."" Integrate — 

Let a'”l +y ; then 

k^dx 
•’+iy 

l + 2y+y^ 
i;^^l)‘(a^ + l) y‘(2 + 3y + 3y2+yy 

We now divide _ ' 

'l+2y+^* by 2+3y+^*+y* 
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until is a factor of the remainder. To shoi*ten the work we 
use detached coefficients : 

2 + 3 + 34-1 ) 1 +2 + 1 ( + 

i +il + 5+ 1' 

. 5 _ 1 r? _ j 5 _ 5. 

S+y+l 

Hence -_--=-1. +-1 _ L 
{.V - 1 )\x''’ +1) ^ 4y^ Sy^ ^ 16y ^ 16 + i 

Now 11 — 5y ~ 5y2 = 11— r)(.r — 1) — r)(.r — 1)2= 11 + 5.r — 5.272, 

and by Rule 2, p. fil, of the Diff. Calc, for Beginners., 

11 + 5.r— 5.^2 1 XW 
(.r + l)(.272 —.r+ 1) 3(.r+ 1)~^A*2-.27+ R 

o A w N_ll+5.^^-5.r2 1 .r2-;r+l 32 + 16.27-16^2 
<11 XW - 3 

3 i+a: 3^^ 

(.r-l^V’+l) 2(x-iy'^4{a!--if 6(x-Yf 

5 1 _1 _1 (2^-1)-3 

■^16(a!-l)'^48 a-+l 6 x^-.v+l 

and the integral is plainly 

+ ^ log(^;+1) - ^ log(^ - a'+1) + ■+tan - * 
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EXAMPLES. 

1. Integrate with regard to jr the following expressions : 

{x~a)(x — h) 
(Vi.) 

{x — a)(x - b)(x — <•)' 

(iii.) xXx+ar\x + h)-K (viii.) 

(v.)_^+J_. 

Cix(■^-"X^-^X^-g) 

{x+1 )(x- - 2)(a-+3)' 

2. Evaluate 

(i.) 
C dx 

J (x'-i)Xx-fry 
(iv.) j (ax^-i-bx^)~^dx. 

(ii) 
f dx 

j (x-i)\x+iy 
(V.) j {x^— l)~^dx. 

(iii.) 
f {x+l)dx (vi.) 

f dx 

J(x-jyxx+2)^' J {x-a)\x-h)(x 

, Integrate 

(iii.) 
f x'^dx 

J (^2 + l)(2.r2+l)* 

(ii.) 
[i.v^+a^X^-^ + b'‘U 

J (x'‘+ c^X^+d^) ■ 
(iv.) 

r (x^ + l)dx 

J (x^ + 2X2x^ + l)' 

Integrate 

^ f xda: 

J x^+x^ + l 
(iii.) K±ld^. 

J Jg^ + 1 

(ii.) 
J^x^+x^+l ' 

(iv.) 
1 aP — x^+1 

(v.) j{x^-^d^Xx* -{-a^aP+a^U^dx. 

(vi.) j(x^ — a^){x^+d^xP"+a*) ^dx. 

(vii.) (viii.) 
/ X*+Xp+1 4^^ 

r dx 

1 ^+i‘ 
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5. Integrate 

xdx 
(i.) 

(ii.) -V 
x(x^~ 1) 

dx (iii.) ^ — —_ 
(x — 2){x^-^4) 

(iv.) ^ + 
x^ — x 

(V.) 
(j? — 1 )dx 

(.r+l)(j2+iy 

(Vi.) 

(vii.) 

dx 

dx 

/ ..• s. dx 

(ix.) 

(X.) 

dx 

1 4-X-{- 0(P‘ + x"^ 

x^^dx 
{x'^+\){x-A) 

6. Integrate 

/• \ x'‘^dx / • \ dx 
(x — 2)-(x^ — 2x + 4) x{x —\Y{x^+i) 

(ii.)_ *. 
(1 +^y(l 4-2^4-4;r2) 

/ X dx 
x(l'T3x‘H‘2x6y 

/... X .t'^dx 
(X-l)2(;^H4y 

(viii.)- . 

dx 

(^•+l)2(^:2+iy 
X 2x dx 

. X dx 
(xr-l)2(.r2 + iy 

Evaluate j Vtan^ci?^ and j s/cot OdO* 

8. Obtain the value of .-o^^~5- 
/ cos*;f — cos'^;f sin^j?+sin*:r 
0 

9. Investigate J (l + sin^)(2+8in^) 
0 

10. Show that —- = _-—4- 
/ (a7*+a*X'*^+^X^+^^) 2(a + 6X^> + o)(c4-a) 

*0 
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11. Prove that 

dx ^ + ^ 

J (x'^£ax + a‘‘^)(x“±bx+0-) ad(a^ + ab -h Ir) 

[CoLLFAJES 7, 1891,] 

12. Show that the sum of the iufiiiite series 

~~ 'il +^To; " “i-n +— («>o, *>o) a a 4-0 a4'2o a-^M) 

can be expressed in tlie form 

and hence prove that 

1 “ 4 + i - i\j + i‘s - iV + • • • = 4 + log,2). 
[OXKOKD, 1887.] 
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CHAPTER VI. 

SUNDEY STANDAED METHODS, 

r doc 
I. Integration of J-^ where R=ax^-{-2hx+c, 

Case I. a Positive. 

When a is positive we may write this integral as 

dx -Lf_ 

which we may arrange as 

x^ + 2^x+- 
a a 

f f 1 r dx 

b^ -~ac fj a J 
a? V(*+S 

ac — b'^ 1 "l ~~o 

according as 6^ is greater or less than ac, and the real 
form of the integral is therefore (Art. 36) 

1 , 1 ax-\-b 1 . , 1 ax + b 
~.r= or - y^sinh“^-7==^, 
\f a \/b^--ac \J a vac—6^ 

according as 6* is > or < ac. 
E. I. a E 
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In either case the integral may be written in the 
logarithmic form 

■~7= log {ax-\-h+sfasj+ 2hx-\-c), 
^ d 

the constant log Ajb^^ac being omitted. 
fja 

Also since 

and 

cosh ~^z— sinh — 

sinh ~^z — cosh " ^ , 

1 _1 s/aS 

. i • r 1 CiX-^-b 1 
and —T- sinh " . r = — 

aJ a sJac-^o^ s/d 

which forms therefore may be taken when d is positive 
and 6^ is greater or less than dc respectively. 

61. Case II. a Negative. 
dx 

If in the integral 

. Tb 

=r, a be negative, 
'dx^A~^bx-\~c 

write a = — A. Then our integral may be written 

dx 

v- 

or -Li dx 

i . , Air—6 
or —7== sin " ^’—====== 

s/a s/Ac+b* 
^.e. 

1 . aa:—6 
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or omitting a constant 

1 , ax+b 
-7-=- cos-i-zj-- 
V—a sjb^ — ac 

Also since cos 

j^for — sin"^2; = cos'^5; — ^J. 

we have cos' 

cos“=sin“1 — ^ , 

ax-{-b . ..\/ — aR 
e nave cos —7^ —- == —/to —=~* 

s/b^ — ac sjb^'-ac 

It thus appears that when R = ax^-{-2hx-]-G 

[ 1 . ,s/ — aR 
—jx:—' sm“^—77--, a negative, 
V —a s/b^ — ac 

{dx 1 . , iJaR 

Vl"! J¥-ac 

1 _ I sf OjR 
or -7-cosh '-7=——. 

> ac. 

a positive. 

< ac. 

and the real form is to be chosen in each case. 

/dx 

We ma/ write this 

*Jix 

1 • i.-i4^+3 = _^smh-^--=-, 
V'2 -^23 

te. ~_^cosh“^?^V2^ + 347+4, 

i.e. the integral=i log(4;r+3+2 *j2^2x^ + 3j?+4) 

^rejecting the constant ilog-^^ 
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Ex. 2. Integrate - 
J V4 + 3^-2^ 

This integral may be written 

_ 1 I* dx 

jp* 

and therefore is sin~^——j, 
\/2 n/4J 

wliich may also be expressed as 

-A-: COS' 4 4- 3.r - 2^. 
V2 V41 

dx 

EXAMPLES. 

1. Integrate _ 
^ V.r2 + 2ar + 3 / V^‘^ + 2a;4-3 

2. Integrate 

3. Integrate j*Ja-i-2bxA'CX^dx (e positive). 

4. Integrate j^/a+2bx—cx^dx (c positive). 

62. Functions of the Form 
_4^^+B 

\/ax^A-'2bx + c 
be integrated by first putting Ax+B into the form 

\((ix-{-h)+juL, 

wliich may be done as in Art. 57, either by inspection 
or by equating coefficients; we obtain 

Ax + B ^^(ax+b)+B^—. 
Oj Oj 

Ab ' Thus 

AxA-B _A ax+b ^ 

\/oxf+2bx+c a \/ax^+2bxA~c \/ax^+2bx+o 
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The integral of the first fraction is 

A ,_ 
77. \/ax^+2bx+c; 

and that of the second has been discussed in Articles 
60, 61. 

Integrate 

4- 

EXAMPLES. 

1 

2j?+3 

7 
\/x‘^ + 2x+S 

g ^^+^4-^+1 

*/x'^+2x+Z 

Powers and Products of Sines and Cosines. 

63. Sine or Cosine with Positive Odd Intefral 
Index. 

Any odd positive power of a sine or cosine can be 
integrated immediately thus:— 

To integrate Jsin^^+^ic dxy let cos a? = c, 

sin a; da? == — dc, 
Hence 

|sin2«+icc da; = —1(1 —c2)"dc 

, cos^a? 7i(n—l) co8^x , , cos^+^a; 
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Similarly, putting sinaj=s, and therefore Q.0Bxdx—d8, 
we have 

Jcos^^+^o; daj = |(1 — s^Yds 

sin^x , n(n — l) sin^a; 

= 2 -5" 
_ I ( iN«sin^“+^a; 

’ 2«.+l 

64. Product of form sin^*a?cos^£i7, p or q odd. 

Similarly, any product of the form sin^^a: cos^^.t 
admits of immediate integration by the same method 
whenever either p or q is a positive odd integer, what¬ 
ever the other be. 

For example, to integrate jain^a: cos^a: dx, put cos.a?=c, and 

therefore - sin xdx—dc. 

Hence jcoa^x ain^x dx—— - c^'fdc 

_cos% ^ ^oa!x cos^.r 

Again to integrate ^ sin^a?co8‘^:rdlr we proceed thus :— 

= /*8in^.r(l - sin2^)(i (sin x) 

— f sin^.r — 5^ sin^.r. 

66. When p+g is a negative even integer, the 
expression sin^'ic cos^a; admits of immediate integration 
in terms of tan x or cotic. 

For put tanaj = t, and therefore BB^xdx — dt, and let 
p -I- g = — 2n, n being integral. Thus 

sin^^a; cos^a? dxc=Jtan^^a; cosP'^^^^x dt=J^^(l + t'^Y “ ̂ dt 

taD*’+^ _.,^tanP+*a: „ .^tan^’+^aj tan^’+*”-'a; 
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Similarly, if we put cotx=c, then — cosec^a? dec = c?c, 
and 

\smPxco8^xdx 

— cot^+®a; cot^'^^a; cot^+^^-^a? 

y+l ^ 5' + 3 ^3 + 5 *' 3+2n—l’ 

a result the same as the former arranged in the op¬ 
posite order. 

Ex. 1. Integrate 
J 8in®a: 

This may be written 

— jcot2a:(l +cot2.r)c? cot a?, 

and the result is therefore 

_cot% cot^.r 

It may also be integrated in terms of tan x thus :— 

[ +tan2.r)c? ta 
J sm®:r J tan®a: 

the result being the same as before. 

tan~^.t? tan“®j? 

aec^O coaec^OdO =J tan ^ ^Od tan 0—-^ tan"^^ = ~ f cot^^. 

66. Use of Multiple Angles. 
Any positive integral power of a sine or cosine, or 

any product of positive integral powers of sines and 
cosines, can be expressed by trigonometrical means in 
a series of sines or cosines of multiples of the angle, 
and then each term may be integrated at once; for 

f , sinna; if* 7 cos^o; 
lcos7i£caa; =- and |smna?aa?=- 
J n J n 
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Ex. 1. / cos% dx — fl±l^d^=£+ 
J 1 2 2 

Ex. 2. j cos^x dx — ^3 cos X 4- cos 

Ex. 3. j cos^o? dx — 

A + 2 cos2a?4--^-i^ 

da;=I sin ^ 4-sin Zx. 

^dx 

— J(§ + J cos 2^+J cos 4x)dx 

=1.^ 4-} sin 2^4- 3^2' 

67. It has already been shown that when the index 
is odd no such transformation is necessary, thus in 
the second example 

J cos'^x dx — /<• - sin2j7)o? sin x—sin ^ — sin^^’ 
'~3" ’ 

which presents the result in different form. The 
method we are now discussing will therefore be of 
more especial value for the case of sin^a? cosmic, where 
neither p nor q are odd. 

Ex. 4. Integrate j sin*.r dx. 

Let cos x + t sin x —y ; then 

Thus 

2 cos:r ==?/4-i, 2coswa7 ='y'*4-JL 
y’ ^ y”’ 

2t8in^=y--, 2t sin = V” “—• 
y y 

2®t®sin®.r == ^y-^^ 

= (/ +^) -«(/ + +28(y‘ +^) -56(y^ + i,) + 70, 

« 2 cos 8a? —16 cos 6a? 4- 56 cos 4a? —112 cos 2a? 4- 70. 
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Thus sin®.r=^(cos 8^ — 8 cos 6^ + 28 cos Ax — 56 cos 2+ 35), 

j r • R ^ irsinS^ 081116^ I oQsm4jt7 K«sin2a; , or 1 
and / sm»^ dx = 27L~8— “ ® —4— ~ —2-^ J- 

Ex. 5. Integrate Jsin^x cos^x dx. 

Put cos X +1 sin ; then 

2®t®sin®^. 2^0082^* 

= (y-^)V+|)' [See Art. 68.] 

=-‘‘(y'++4(2^+^)+4(y^ + i ) -10 

= 2 cos 8^ — 8 cos 6:^4-8 cos 4^+8 cos 2x —10, 

and 8in% cos^^ ~ ^ ~ ct>s 4^ — 4 cos 2^ H- 5 j-, 

whence 

f ■ a 0 7 If sin8.r , .sin 6^ .sin 4^ .sin2>r , - 1 
I sin®^ cos^.ra^ = -si-+ 4-- 4-— 4- 4- 5.2^ k 

J 2H 8 6 4 2 J 

68. Note. It is convenient for such examples to remember 
that the several sets of Binomial Coefficients may be quickly 
reproduced in the following scheme .— 

1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

--1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 

1 8 28 56 70 56 28 8 1 

etc., 

each number being formed at once as the sum of the one im¬ 
mediately above it and the preceding one. Thus in forming 
the Vth row we have 

04-1 = 1, 14-5*6, 54-10*16, 104-10*20, etc.; 
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and in multiplying out such a product as 

occurring above we only need the coefficients of (1 
and all the work appearing will be 

coefficients of (1-^)® are 1—6 + 15 — 204-15-6 + 1, 

coefficients of (1-^)®(1 + /) are 1 — 5+ 9— 5- 6 + 9-5 +1, 

coefficients of (1 — i)®(l + ^)2 are 1-4+ 4+ 4 — 10+4+4-4 + 1, 

each row of figures being formed according to the same law as 
before. The student will discover the reason of this by per¬ 
forming the actual multiplication of a + 6^++... by 1 + ^, 
in which the several coefficients are a, a + 6, 5 + c, c+c?, etc. 

Similarly if the coefficients in (1 + 4^1 ~ 0^ were required, the 
work appearing would be 

1+4 + 6 + 4+1, 

1+3 + 2-2-3-1, 

1+2-1-4-1 + 2 + 1, 

and the last row are the coefficients required. 
The coefficients here are formed thus :— 

1-0=1, 4-1=3, 6-4=2, 4-6=-2, etc. 

EXAMPLES. 
1. Integrate 

sin^o:, sin®.i7, sin^^r, sin®^, sin®.r, sin’^^, sin^":r, sin^'^'^a;, 

doing those with odd indices in two ways. 

2. Integrate 

sin^^cos^jr, sin^.r cos^or, sin^a; cos^j?, sin^arcos^^, sin*^cos®.r. 

3. Integrate 
cos^x sin*.r sin^cosV sin%cos*47 

4. Evaluate j Bin^xdx^ j cos®.ro?.r, J coB^xdx, 

0 0 *0 

6. Integrate sin 2:f cos^o:, sin 3a: cos®a?, sinwa:cosV 

6. Show that 

[ sin a: sin 2x8mZxdx= — Jcos2a:-^co8 4a:+5*jcos6a:. 

7. Show that 

(i.) 
J 2(ot+») 2(m-n) 
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(ii.) [sin mj! sin nxdx = — sin(m + n)x 
2(m+n')~' 

(iii.) fcos mx cos nxdx— + sin(m+Ti)^ 
2(m-hn) 

Deduce from (ii.) and (iii.) Jsm^mxdx and Jcos^mxdx, and 

verify the results by independent integration. 

Integral Powers of a Secant or Cosecant. 

69. Even positive integral powers of a secant or 
cosecant come under the head discussed in Art. 65. 

Thus sec^ic dx : tan X, 

Jsec^a; dx = |(1 + tsin^x)d tan x 

. , tan^iC 
— tan X Q ”> 

Jsec^a: dx =1(1 + 2 tsm^x + tan^a?) d tan x 

. . ^tan^ic . ta>n^x , 
= tanir+2—o—I—^—» ^tc., 

and generally 

j*gec2"+2ajdic=j*(l + ^2)M^ where ^ = tana; 

Similarly 

/3 fS f2n+l 

= i+"C,3+-(7,^+...+^~, 

Jcosec^a^dcc = —coto;, 

Jcosec^ic dx = — J(1 + cot^aj)d cot x 

, coi^x , 
= —cotcc-g- , etc. 
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and generally 

Jcosec2^+2^-^(7,^~... 

where c = cot x. 

70. Odd positive integral powers of a secant or 
cosecant can be integrated thus:— 

By differentiation we have at once 

(7i-f-l)sec"'^^cc —nsQC^x = —(tan ic sec^ir) 

and 

(ri 4-1 )cosec”*^^^c — n cosec^x = — ^(cot x cosec’^a;) 

whence 

(nH-l)|sec’^+^ir cZx = tanccsec^a; 4*'^Jsec^ir cZx 

and !-A. 

(ti 41) Jcosec^+^oJcZaj = ~ cot x cosec^a:^ 4* nj*cosec”^aj c 

Thus as Jsec xdx = log tan^— + , 

and ^comcxdx — log tan^, 

we may infer at once the integrals of 

sec'^^iT, sec^a;, sec'^x, ...; cosec^a;, cosec^a;, etc., 

by successively putting -^ = 1, 3, 5, etc., in the above 
formulae. 

Thus jsec%ci^=J tan^ sec.a7+^iog 

j'sec^x da:~i tan ^ sec^^ 

—i tan X aec^x+f tan ^ sec + f log tan J ) ’ 

etc. 
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71. Such formulae as A are called “keduction’* 

formulae, and the student will meet with many others 
in Chapter VII. We postpone till that chapter the 
consideration of the integration of such an expression 
as sin^ircos^.r except for such cases as have been 
already considered. 

72. Since a positive power of a secant or cosecant 
is a negative power of a cosine or sine, and a positive 
power of a cosine or sine is a negative power of a 
secant or cosecant it will appear that we are now able 
to integrate any integral positive or negative power 
of a sine, cosine, secant, or cosecant 

Integral Power of Tangent or Cotangent. 

73. Any integral power of a tangent or cotangent 
may be readily integrated. 

F or Jtan^o? dx = j tan"^ ~ ^x(seQ,^x — 1 )dx 

tan” " c? tan a; — I tan" ~^xdx 

tan”-i'> 
•— Jtan” “ dx. 

: sec X, And since Jtan xdx — log t 

Jtan^iT dx = J(sec^cc — l)dx = tan x-^x, and 

we may integrate tan%, tan'^a::, tan^aj, etc 

Thus we have Jta>n^x dx—jtan — \)dx 
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j td^ii^xdx—j tan^^aec^^ — l)c?^ 

tan^o: 
-tan^F+^j etc, 

o 

By continuing this process we shall evidently obtain 

and 

tan^”x<fo 
2?i — l 2n~3 2n —5 

2n 

+ (-1 )”-Han 

ta,n2«-2^^ tan®""**^ 

2n — 2 27i —4 

+(-1 + (-1 )”log sec X. 

Similarly 

Jcot^ic dx = j*cot^"^cr(cosec^iC — l)c?a; 

cot” 
^XCLXy 

whilst ^Qoixdx =logsin£c, 

and Jcot^o? c?x = j* (cosec^a? — 1 ^dx — — cot x — x; 

and therefore we may thus integrate 

cot^ic, cot^cc, cot^a;, etc. 

Hence any integral power of a tangent or cotangent 
admits of immediate integration. 

f dtx 
74. Integration of etc. 

We may write a+6 cos x as 

a^cos^+sin*^) + - sin*|), 
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ix (a+h)cos^ + (a— 

or (a-fc)cos|[^^ + ta«|]. 

Thus 
[ dx 2 r 
Ja+6cos« a — h]a + h ^ 

2 

or 
2 f 

a —fcja-f 6 , , ' 

a —6 2 

Case I, If a > 6 this becomes 

^ 11.„- 
d — b a-hb a-{-b 

'^a-b ^a-b 

or - tan-^l tan 
Ja^-b^ lVa+6 2J 

Since 
1 

2 tan’^2 = cos —s, 
1+z^ 

we may write this as 

a — h 
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or 
1 i6'f«'Cosa; 

__ _ COS * ^_• 
'' a+hconx 

Case II. If a < 6, writing the integral in the form 

dtan^ 
-L_,.(2) 

^-“Jji±5_tan2| 
6 —tx 2 

in place of the form (1) we have in this case by Art. 54 

dx 
Ib + a , , X 

uA-b cos X b — a 
^ _ T 1/ - W 

yb — a ylb — a 
__ ._ 

.. V 6-i-a 4-V f> —<x tan ^ 
_ J- 1 2 

s/b —a v^6 + a. — /v/S — a tan ~ 

By Art. 33 this may be written 

2 

-v/52~V2 
tanh' Vb — a, X 

or, since 2 tanh" ^2? = cosh 
1-z^ 

we may still further exhibit the result as 

1 
:C08h" 

.*+5?s‘“2 
■I b — a, „x 

or 
1 , T^+acosa; 

—7^-—cosh ■ ^ —f-. 
a+boo^x 
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We therefore Imve 

r dx 

]aA-h(tosx' 

^_COSO". 

'Ja^ — b^ a + b cos x ’ 

2 ,11 — a, X 
„tanh“^/^ 

o — a, X 
h-\-a 2 

^ \fb-\-ci-]r\l/>—oxtail2 I 
i.e, ~-r^-==. log-, \a<h, 

V6TS-v/6ratan‘| 

1 , ,6 +a cos a; 
or -/===co8h“^ - 

Jb- — d^ (X-ft>cosx J 
These forms are all equivalent, but one of the real 

forms is to be chosen when the formula is used. 

75. The integral of -—--y-. —may be im- 
® a+o cosiT-f-o siriic 

mediately deduced, for 

h cos x-\-Gdmx — s/b^ + c^cos{x — tan' 

and therefore the proper form of the integral can at 
once be written down in each of the cases a greater or 
less than 

13 + 3cos:r + 4sin ^ j 13 + 6cos(.iF —a) 

^_1_cos-^^ 
Vl3^ —6® 13 + 5cos(:r-a) 

== _L cos-^' +l^cos(a:~a) 
12 3 + 5 cos(;f — of 

(where tana = f) 

ltan-(Jtan£^). 

B. I. C. 
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76. The integral j* 

by putting 

dx 
may be easily deduced 

I 
^ = ■9 + ^^ 

then -f-^.' 
ja-\-b8mx J(x+< 

dy 

- h cos y 

and therefore its value may be written down in both 
the cases a < 6. 

Of course it may be investigated also independently 
by first writing 6 sin x as 

. X X 
sm 2 cos 2, 

or 

i^cos“^+sin^l^ + 26 

cos^|(^a + 26 tan ^ tan^^. 

The integral then becomes 

1; 

d taxi 2 

X . 6\^ — 

and two cases arise as before. 

Mn • f dx 
n. The integral j—may be similarly 

treated. 
{ dx __ f_ dx__ 

a+6coshir ^^^cosh^^—sinh^^+6^cosh2? sinh^^ 

d(taxkj.^ 

y. 
6 —a 2 
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jf 6> a, this = — tan*'^A— tanh ^ 

which further reduces to 

1 ,Z>+acoshir 
_   cos ~ ^ — — * 

" aA-bcoshx’ 

and if b < a the integral is 

—— tanh " ^ tanh Va+6 2’ 

which further reduces to 

1 , jt + acoshiT 
h- ^ a + b cosh x 
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4. Prove that, with certain limitations on the values of the 
constants involved 

dx o ^ / a — A’ _ __-= 2 arc cos A/ —j.,, 
J{a-x){x — p) 

and integrate (a' —a){p — x)dx. 

5. Integrate 

^ ^ jcon a + Qo» x’ ^ ^ ja^a\n^$ 

dx 

l + cos .'C 

V C__ 
' J 3(1 — sin x) — cos ^ 

(v) f 
J 2>/2 Pcos^ + sin^ 

... f__ 
J a%in2^ + 

cosacos^ j-1^^ 
cos a + cos X ’ 

rB dx 
(viii.) prove J 

6. Integrate (i.) f =d--=^. 
\/x — a+*Jx — b 

/, 

(iii.) f 

7. Integrate / -— 
J 15 s 

^/a(x— b)+*Jh(x — a) 

__ ^ 
s/ax + b+f>ra'x+b' 

8. Integrate 

f_dO 
15 sin^^^ — lGcos 6 

f 
sin:p+8in2j;‘ 

9. Integrate fcos 2^ log 
J cos 0 — sin 0 

^10. Integrate ^ 
J 1 +00807 
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11. Integrate 

12. Integrate 
V1 + sin X 

13, Integrate f 
J 1+ cosec X 

14. Integrate /■ tn.nxdx 

J Ja-i-b tan% 

15. Evaluate r ~^dx. 
J 1 + sm X 
0 

16. Integrate 
fBecxcoaecxy 
J logtainr^- 

17, Integrate fain cos 6 

\/sin26^ 

18. Integrate 
f cot ^ — 3 cot 3^ 7^ 

J 3 tan SO - tan 0 

19. Integrate f dx 

J xsfa^-^-x" 

20. Integrate 
C x^dx 

J {x sin x-\- cos x'f' 

21. Integrate 
f aii\’2,xdx 

J (a-hb cos x)'^ 

22. Integrate f \l 1 - cos ^ 
^ y coB6(L + ooaO){2+coBO) 

23. Integrate [Jl+Bina: 2+8in:r^ 
•' ^ 1 - sin 2 - sin d7 
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26. Integrate Jsin~^-da:. 

27. Integrate J 

28. Integrate [ f ^^^^-da:y f da:, and prove thsit 
^ J sin 2a: ’ J sin 3^ J sin 4a; ’ ^ 

[Trin. Coll., 1892.1 



CHAPTER VIL 

EEDUCTION FORMULAE. 

Reduction Formulae. 

79. Many functions occur whose integrals are not 
immediately reducible to one or other of the standard 
forms, and whose integrals are not directly obtainable. 
In some cases, however, such integrals may be linearly 
connected by some algebraic formula with the integral 
of another expression, which itself may be either im¬ 
mediately integrable or at any rate easier to integrate 
than the original function. 

For instance it will be shown that ^{a^+0f:^)^dx can 

be expressed in terms of and this latter 

itself in terms of which being a standard 

form the integral of ^{a^+x^)^dx may be inferred. 

Such connecting algebraical relations are called 
Reduction Formulae. 

80. The student will realise that several reduction 
methods have already been used. For instance the 
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method of Integration by parts of Chapter IV., and 
the formulae A of Art. 70. It is proposed to consider 
such formulae more fully in the present chapter, and 
to give a ready method for the reproduction of some 
of the more important. 

81. On the integration of \y^here X stands 
for anything of the form aA-hx'^. 

In several cases the integration can be performed 
directly. 

I. If p he a positive integer, the binomial in 

x'^-\a + hx’^y vAC/ 

expands into a finite series, and each term is integrable. 

Next suppose p fractional =-, r and s being integers 
s 

and s positive. 
r/h 

II. Consider the case when is a positive integer. 

Let X — a-\-hx^ = z\ 

bnx^~'^dx — sz*~‘^dz 

and when ^ is a positive integer, this expression is 

directly integrable by expanding the binomial and 
integrating each term. 

III. When — is a negative integer, the expression 

gr+.-l 

-’?+! 
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may be put into partial fractions, and the integration 
may then be proceeded with (Art. 58). 

ly. If — H- - is an integer positive or negative, we 

may proceed thus:— 

x'^ ~ ^ (a + hx'^y dx 
-1 

(b + ax~'^ydx, 

m + rn 

and by cases 11. and III. this is integrable when —.■ 

is either a positive or a negative integer by the 
substitution That is, the expression is 

integrable when integral, positive, or negative. 

Three, cases therefore admit of integratio7i im- 
mediately or hy simple substitution, 

{V) p a 'positive integer. 

(2) ^ an integer, 

(3) — -f p an integer. 

Ex. 1. Integrate J-j- 

Here m—6, n — 3, and - ==an integer. 
n 

Let 

so that ^a;^da;=2zdz. 

Then the integral becomes 

eta 
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Ex. 2. Integrate j+ jc^yda;. 

Here w = |, n = 3, p=^, and ^+p is an integer. 

The integral is j+ a^x~'^yda:. 

Let \ + 

then — Z-.dx = 2z dz. 

and the integral becomes 

which might be put into partial fractions. If, however, z be put 
=8ec the process of putting the expression into partial frac¬ 
tions will be avoided and the final integration may be quickly 
effected (Art. 70). 

82. Reduction formulae for ^x^^-\a^hx^y^dx, 

IjQi a + hx^^ — X ] i\iQ^a^x'*^~'^X^dx can be connected 

with any of the following six integrals:— 

jx^ - ^Xp - ^dx, - ^XP-^hlx, 

- n - ^XPdx, - '^XHx, 

- n - 1Xp+^dx, - ^Xp - hfo, 

according to the following rule:— 

Let P = x^'^^X^'^^ where X and p are the smaller 
indices of x and X respectively in the two expressions 

Find Re- 
ax 

arrange this as a linear function of the expressions 
whose integrals are to be connected. Integrate, and 
the connection is complete. 

whose integrals are to be connected. 
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Ex. 1. Connect j with 

Let 
f 

Then ~f=mx'"-'X^ +x"‘pX‘-'i?- 
(XX (XX 

^+pn:xF~'^{X- a)X^~^ 

[Note the rearrangement '"‘‘as a linear function.^ etc., etc.”] 

= {m -\‘pn)x^~'^X^ — apnx”''~^X^~^. 

Hence 7^—• (m i-pn) j x*’^~'^X^dx — ap^i Jx^’^~'^X^^~^dXj 

or [x^- ^X’'dx^—^''.+-^^ jx"'-'X>-^dx. 
J ni+pn m+pnj 

Tlie advantage of this reduction is that the index of 
the usually troublesome factor is lowered ; and by 
successive applications of the same formula we may 
ultimately reduce the integral to one which has been 
previously worked, or which can be easily obtained. 

Ex. 2. Thus, for instance, to find j{x^ + a^^dx we may con¬ 

nect this integral with j{x^^ 4- oFfdx.^ and this again with 

y{x"^ + oF^dx.^ and this last is a standard form. 

As the reduction is used tvnee, we will connect 

j{x^ + oFfdx with j(x^ + dFf~^dx. 

Let P—x{x^-^ aFf, 

=(:r2 + a?f + ' 
dx 

— {x^ 4- a^y 4- n(x^ + d^ — a^)(x^4- a^y~^ 

[Note the preparatory step which might he performed mentally] 

=(;i 41 ){x^+oFy — na\x^ 4- a^y 

[which is now ‘‘ rearranged as a linear function^ etc,, etcF\ 
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Integrating, P~(n + 1) j'4- - na^j(.v^ ^dx 

and + + 
J n+\ n+lj 

Putting w —5 and ?i = 3, 

I*{x^+ oP'ydx(x^+ al)^dxy 

j(x^ 4- j(x^ 4- a^)^dx, 

and f(.r-4- a^)^dx 4.^sinh~^~ 
J 2 2 a 

Then 

f(a.'= + -<—a^ji^x^ + a^'^ 
J 6 6.4 

Ex. 3. Calculate the value of j x^^^ax — x^dx^ m being a 
•^0 

positive integer. We shall endeavour to connect 

j^x^y/2ax — ^dx with jV2ax — x^dx, 

i.e. jx”''^^(2a — x)^dx with jx”'’'\2a — x)^dx. 

Let P=x^^^(2a — x)^ according to the rule, then 

4- ^)x”*~^(2a - xy — — x'^ 
dx 

— {2m 4-1 )ax^~^{2a—x^ — {m + 2)x'^^^i2a — x)^. 

Hence 

{m 4- 2) jx”^'*'^{2a - x)^dx 

— -*;r’”'^^(2a~^)^4'(2m4-l)a j x^^\2a-‘X)^dx 
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L «t+2 Jo ot+2 ./ ’ 
0 

i.e. if J x^sl^ax- and m be a positive integer, 

0 

■j  2w/ + 1^7- _2??i + l Sw ^^2 7“ 
+ 2 ~ m + 2 ‘ 'tthT' “ 

=1”L+1 . i’”-1 . ?”* -^_,=etc. 
9;^ H- 2 + 1 m 

_ 2m 4-1 2m — 1 2m — 3 5 3 
m + 2 m+l* m’’4 3 ^ 

Now to find /() or ^ J‘'lax — xMx^ put 

() 
^ = rt(l — cos d). 

Then dx—a^\ViOdQ 

and J '•lax — x^—a sin 0, 

Also when ^=0, we have ^=0, 

when ^ = 2a, we have 6^ —tt. 

Hence -4= f a^siii^0d0=~ 0—cos20)d0 
0 'o 

Hence / _(^^+lX2m-l)...3 ^^o7r_ (2?/i+l)! 
(m + 2Xm+l)...3 2 m!(m + 2)! 2’" 

EXAMPLES. 

Apply the rule stated in Art. 82 to obtain the following 
reduction formulae (when X=a + bx”) :— 

1. f+!?L+P£±" far-'X>'*^dx. 
j an{p 4-1) an{p +1) j 

2. f3r^^X”dx L”—->jr 
J 6(m+»i?)) b(m+np)J 
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3. 
J am am J 

4 f jc”^'X»clx fx’"-’‘-\Y’‘+^dx. 
J bn(p-h’l) b7i(p-{-l)J 

5. f ^ ^ _'^P f^»^+n-ixp-^dx. 
J m m J 

6. jx) ^'dx — -y*x'*^(}og xy^~ ^dx. 

Integrate out x'^logx, x‘^(\ogx)\ 

7. Obtain the integrals of ^x'^s!(^ax — x^)dx for the cases 

m = l, wi —2, 7?1”3, and their numerical values when the limits 
of integration are 0 and 2a. 

83. Reduction formulae for \^m^xoos^xdx. 

A similar rule may be given for a reduction formula 

for Jsin^^.r cos^ir dx. 

This expression may be connected with any of the 
following six integrals:— 

I sin^ “ ‘^x cos'^x dx, 1 sin^+^a? cos^iT dx, 

Isin^a; (to^^~'^xdx, 1 sin^a; cos^+^ic dx. 

J sin^' “ ^x cos^"^ dx, j sin^+^x cos^ “ ^x dx, 

by the following rule. 

Put P = sin^"’‘^xcos^'^^x where X and /x are the 
smaller indices of sinx and cosx respectively in the 
two expressions whose integrals are to be connected. 

dP 
Find -g-, and rearrange as a linear function of the 

expressions whose integrals are to be connected. 
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Integrate and the connection is effected. 

Ex. Connect the integrals 

cos% dx^ 

j8m^~^x cos% dx. 

Let P= cos^“*‘^x, 

dP 

=( jo — l)sin^~^jr cos*^jp(l ~ sin".r) — (5' +1 )sin^.r cos<^.r 

= ( p — 1 )sin^“^^ cos*^^ — {p + q)shi^,v cos*^x 

[Note the last two lines of rearrangement as a linear function of 

sin^^cos'^.r and cos'?:?:], 

.*. P—{p — V) 18iii^~“xcos^xdx — q)jsin^xcos^xdx. 

Hence fain^xcos'^xdx—-——^ f Bm^^-^x cos^x dx. 
J p-^q p-\-qJ 

It will be remembered, however, that in the case 
where either p or q is an odd integer the complete 
integration can be effected immediately [Arts. 64, 67]. 
The present method is useful in the case where p and 
q are both even integers. 
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6. Prove that {svn^xdx— --1 rsin"~^:rcte. 
J n n j 

Employ this formula to integrate sin^.r, sin^or, sin®^. 

7. Establish a formula of reduction for I* cos”j7 dx. 

8. Integrate sin^^cos^^, 
1 

cos^x sin^.r co8^;r 

84. To calculate the integrals 

S, xdx and (L 

jsi Connect 1 sin^o; dx with 

= 1 cos^ 

0 

jsin” 

xdx. 

“ ‘^x dx. 

Let P = sin^*^"’;i;cosa:: according to the rule; then 

dP 
—- = (ti — l)sin’* ■ "^x cos^o? — sin^'^a: 

'{n — 1 )sin” — n sin^a?, 

ain”“^a? cosa? n — 

n n 
^xdx. 

Hence since sin^’^-^iccosa: vanishes when n is an 

integer not less than 2, when x = 0, and also when 

x = '^j we have 

c, n — 1 „ n—l n — 

Ti —1 71 — 3 17 — 5 
n n —2 71 — 4 

if n be even this ultimately comes to 

71-1 71-3 5 3 Ifi 

5fn-6 = etc., 

T 
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that is Sn — 

Sn = 

71-S 3 1 

and 

n —2 

[ wc similar];] 

n — i n —3 

n n — 2 

f miixdx — 

j 
0 

n — 1 7^-3 

n 7^ — 2 

L oc dx. 

4 2 
we have Sn = 

iL n,— ^ ij o 

Jn a similar way it may he seen tliat | co^^xdx has 

precisely the same value as the above integral in each 
case, n odd, n even. This may be shown too from 
other considerations. 

These formulae are useful to write down quickly 
any integral of tlic above form. 

Thus rsin^^OdO 
0 

j dO 

_9 7 5 3 1 TT 
Id 8 6 4 2 * 2’ 

8 6 4 2 

9 7 5 3* 

[The student should notice that these are written down most 
easily by beginning mth the denominator. We then have the 
ordinary sequence of natural numbers written backwards. 
Thus the first of these examples is 

(10 under 9) x (8 under 7) x (6 under 5), etc., 

stopping at (2 under 1), and writing a factor Bub when the 

first denominator is odd, in forming such a sequence it t^- 

minates with (3 under 2) and no factor ^ is written.] 

E. I. c. Q 
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85. To investigate a formula for j sin^^S cos^OdO. 
0 

Let this integral be denoted by f{p, q); then since 

[sin^dcos^0c?0 ^ fsin^- 20cos^0c20, 
J p + q p + qj 

we have, if p and q be positive integers, and p be not 
less than 2 

f(p> ^)- 

Case I. If p be even = 2m, and q also even = 211, 

/(,2m, 2n) = -./(2m - 2, 2n) 
Zm-hzn 

_ (2m-l)(2^-3) 2nWetc 
(277i4'2w)(2wi+2w —2^ ’ ^ 

(2m —l)(2m-3) ... 1 v 
(2m4-2nX2m4‘2w- 2)... (2?i + 2)' 

and 

Thus 

/(o, 2m)=y caa^ede^i 
2n 2n-2 ’ 2 2* 

/■(2m o.)-[l-3.5...(2m-l)][I.3.5...(2M-l)] 5 
^ 2.4.6...(2m+2») 2' 

Case II. If p be even = 2m, and q odd = 2n — 1, 

f(2m, 2m -1) = ^^^~^—f(,2m - 2, 2m- 1) = etc. 

and 

(2m— lX2m —3). 
'(2m-^2n - l)(2m+27i - 3)... (2?i+l)' 

/(0,2m-1), 

/(0,2m- 
f 271-2 27^-4 

271—1 271-3 
2 

3’ 

t.«. /(2771, 271-1) [1.3.5 ... (2m-1)][2.4.6 ... (27^-2)] 
1.3.6...(2m+27t-l) 
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Case III. If p he odd =2m — l and q even =27i, 
we obtain similarly 

fi^m— 1, 2n)-- 
_[2.4.6 ... (2m-2)1 [1.3.6 ... (27i-1)1 

1.3.5...(2m + 27i-l) * 

This may also be deduced at once from Case II. by putting 

for j sin^Ocos'^Sdd—j cos^<^ sm«<^( — I)d(^ 

= / 8in«<^ cos^</> d(/), 

so that /(^'. 9)=/(?-/')• 

Case IV. If be odd = 2m — 1, and q odd = 2'n. — 1, 

/(2r»-l, 2»-l) = 2/(2—3, 2»-l) 

=_2«-l)=6tc. 
(2m+27i~2)(2m-f27i-4)-'^ ' ^ 

(2m - 2X2m - 4)... 2 
( 2m+- 2)(2m+27i-4)... (27i 4-2) 

,a2nnn? 

/(l, 2«-l), 

and /(I, 2n-l)=y^ sill = 

() 

• ff2m-I gn in-[2.4.6 ... (2m-2)][2.4.6 ... (2n-2)] 
../(2m 1,271 1) 2,4.6...(2m + 2n-2) 

86. Expression in a single rule. 
These four formulae may be expressed under one 

rule as follows:— 
Let r(n+l) be a function defined by the relations 

r(«+i)='ftr(ii), r(i)=i, r(j)=V’r. 
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These relations will be found to sufficiently define 
r(7i4-1) where 7i +1 is either an integer or of the form 

2 ’ 

k being a positive integer. 

For instance, 

r(6) =5r(r))= 5.4r(4) = 5.4.3r(3)=5.4.3.2r(2) 

=5.4.3.2.ir(l) = 5! 

r(J.f)=.8r(i)= f. jr(?-)=9. |. ir(5)=? .5.5. »r(3) 

This function is called a Gamma function, but we 
do not propose to enter into its properties further 
here. 

The products 1.3.5 ... 2?i — 1 
2.4.6 ... 27^ 

TT 

which occur in the foregoing cases of |*'sin^0cos^0(i0 

0 

may be expressed at once in terms of this function. 

-p -1^ / 271 +1 \ 271—1 27i — 3 2/i - 5 1 -p /1 \ 
For -^-2--2^12)’ 

SO that 1.3. 5. ..(27i- 
an 

f 271+ 1\ 

^■“2" / 

and 
yi / 2 /I + 2 \ 271 2n- -2^ 2?^- 4 2 

V '"2~'y ”“2' 2 '”2’ 

so that 2.4. 6. .. 2n = 2’*r( 
''2?i + 2\ 

V 2 A 

Hence in Case I. 

sr(£±|±J) 
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In Case II. 
am 

1 - ri 1 2 ; 
).2"-'ri 

{ - 
'p-{-g + 2\ 

gP^jp+y + 2^ 

In Case III. we evidently have the same result. 

In Case IV. 

,-i ^-r(s±l)2-r(2±I) 

q = 271—1.) .{j 2m+n-lp/ 

It will be noticed therefore that in every case we 
have the same result, viz.. 

sin^0 cos^0 d0 = 

,(r±.j±.) 

that in eve; 

r(^)r(^) 

2r(-'’+5+i) .' 

and that the occurring in the denominator is 

y-i _l 
the sum of the ■ 

p+q 
2 

5 and the in the numerator^ 

This is a very convenient formula for evaluating 
quickly integrals of the above form. 

Thus coa^e <16 = 

Stt 
2.7.6.5.4.3.2.1 2“' 
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87. The student should, however, observe (as it has 
been pointed out previously), that when either p or q 
or both of them are odd integers, the expression 
sin^0cos^0 is directly integrable without a reduction 
formula at all. 

For instance, 

y sin®^ cos^^ dO == j8in®^(l — sin^0)d sin ^ 

T 

and j ain^O cos^O 
0 

Similarly, 

But when p and q are both even and the indefinite 
integral required, or if the limits of integration be 

other than 0 and we must either use the reduction 

formula of Art. 83 or proceed as in Art. 67. 

EXAMPLES. 

Write down the values of 
» IT T IT /¥ r~^ rH rlf 

ain^xdx, / sin^of.r, / ain^xdx, / aoa^xdx. 

0*000 

yf y? 
2. / 8in®jp 008*07 dx, / 8in®07 cob^.'T dx, / 8in^o7 cos®07 dx, 

*0 0 0 

f sin®07 co8*07 do?. 

0 

3. If Or represent the product 1.3.5 ... to r factors, 

and Er represent the product 2.4.6... to r factors, 
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prove the formulae 

(1) rsiu^eooB^"0d0 
J Em+n 

(2) [ sin””-'^cos^0rf(9. 

i i 

^ Fm-k-n-l 

4. Write down the indefinite integrals of 

jsin’'^ cos 0 dO^ jsin^^ cos^^ dOy j sin^O cos^O dO, 

^sin’’^ cos2^ dOj Jain^O cob*0 dO. 

Evaluate 
IT IT nr 

5. j sin®^ cos^^ dO, j sin^^ dO, j sin^^ cos'*^ dOy 
*0 0 0 

IT J sin^^ dO. 
*0 

f ¥ ff 
6. j 008^20 dO, J cos^3c/) d(j>^ J cos'*3<^ sin^G^ d(l>. 

nsixx \ ^ 
) a; dx from the 

cosy 
X dx from the 

r('£±l')r('i±i 
result . ->. '—V-f...,-< of Art. 86. 

EXAMPLES. 
1. Prove that 

(а) fcos®”<^d<f> — — tan (j> cos^”^ -f fcos^^^cftd^. 
J 272> \ 2yi / J 

(б) J8ec^”+^<^ =A tan ^ sec^**“^<^ + ^ 1 - jsec“”"^(/) d<t). 
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2. Investigate a formula of reduction applicable to 

J.v”^(l ■\-o^Ydx 

when m and n are positive integers, and complete the in¬ 
tegration if w = 5, 51==7. [St. John’s Coll., Camb., 1881.] 

3. Investigate a formula of reduction for 

r 

J (1 

and by means of this integral show that 

] 1 1 1.3 1 ,1.3.5 1 ^ . 

2n-f2 2 2?i4-4 2.4 2/i-f6 2.4.6 27t + 8 

2.4 2n 

3.5.7... 27«.-M* 

Sum also the series 

27i-fl’^2' 2/2 + 3"^2.4* 2//+‘6'^2V4.6 

4. I*rove that 

-^ +... acf inf, 
2/?, + 7 

[Math. Tripos, 18^9.] 

/2r<-f 1 ^ 2w-H O-jj _L 1 r 2w -1 

{d^ + x^) ‘*2 —— (a? + xr) +---a'-^ (a“ + xr) - dx. 

5. If prove - 1). 

o' 

6. Find reduction formulae for 

(a) jx\a + hx'f^‘'^dx, 

{P) /^”(^ + a") " dx, 
jxP{xP — 1) K 

/ \ f x^dx 

^ r x^dx 

/(■+- !)*’ 

and obtain the A^alue of 
[Colleges, Cams.] 

7. Find a reduction formula for je^cos^xdx, where n is a 

positive integer, and evaluate 

j e“*cos% dx. 
[Oxfokd, 1889.] 
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8. Find formulae of reduction for 

'xdx. ? dx and 

Deduce from the latter a formula of reduction for 

(cos ax sin"^ dx. 

9. If 

Jx”sm X 

er a 

oiij ^ [Colleges 7, 1890.] 

'^n= I fiiir” r dxy 
*0 

prove that = (l 

a„.l deduce u„ = - 
n(n~l) 7i{n-~l){n —2} ) 

2n{2n-2)..[A ' * 8' 

[Math. Tkipos, 1878.] 

10. Show that 

(m + 7i)(7n + ?i- 2)J*sin"‘^ QOi(^0 dO—{m — 1 )sin’”'*'^^cos’*“^^ 

— (ri —l)siii"^"^^cos”'^^^+(w—l)(?t— 1)J siQ’”~“6^cos”~'^^^. 

[Trin. Coi.l., CUmb., 1889.] 

11. Prove that 

./ ' \l+.r" 2.4,e...2?n 4 3.5.7 ... (2w +1) 2 

r”^r 
*_1. Show that 

^ \/x-l 

2.4.6...271 fi . 1 . 1 ^3 , 1.3...(2n-l)^q 
3.5.7...(27t + l)L ^2 ^2.4 '** 2.4...271 J 

where ai, as, ... are the binomial coefficients. [St. John’s, 1886.] 

13, Show that 

2”* J*cos 7nx cos^x dx 

.y , , sin2^7 . m(m—l) sin4r , , sin2?7i.r 

where m is an integer. [Colleges a, 1885.] 
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14. Show that 

coa^-^0de = 

J (4m—l)(4w —3) ... (2m+1) 

m being a positive integer. 

15. Prove that if 

[Oxford, 1889.] 

Im, sin no;dx^ 

(m + 7i)4i, n= -cos”\r cos?i^ + m/,„_i, „_i, 

in /’ [Bertrand.] 

16. If /m, « — cos’";r cos nx dx^ 

prove that „ = 

and show that 

_coa^nx d ( cos’^.r \ mi^n — 1) 
m2 — 9^2 (jix\cos nx) m^ — U' ni — v)A ' > 

rl 
17. If Um,n— cos^x ain nx dxy 

prove that „ = —-\. „_i. 
’ m-\-n m + n * 

Hence find the value (when m is a positive integer) of 

cos^^r sin 2inx dx. 
[7, 1887.] 

Prove that / ^oa^x coanx dx- 

19. If m + w be even, prove that 

[Bertrand.] 

cos’^^cos ^-1 
2^+1 m — n^ 

[OoLLEass, 1882.] 
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20. Evaluate the integral 

/•f 

/ 
dx. 

[Colleges, 1886.] 

21. If / cos”*cos 0^.37 be denoted by /(w, w), show that 

/(m, n) =-/(m -1, w +1) = 
^ ^ ^ m + ?i‘ 

[Oxford, 1890.] 

22. Prove that if be a positive integer greater than unity, 

/ cos” ~ sin 31^ ci?.r = ——. 
J n — l [Oxford, 1889.] 

23. Find a reduction formula for the integral 
J sin X 

- ~dXy where m is not less than n, and in, n 
X- 

are either both odd or both even integers, show that 

{n -l){n- ^)Um, n + n-2 - w(m - 1 )Um-2, «- 2 = 0. 

25. If 
_ C dx 

J (a + 6co8a^)”’ 

show that 
A sin X . » , 

Un — / , t' \n 1 "h“H 
(a + 0 COS O')”"* 

where A — - 
1 6 »_ (271-3)a 

71 — 1 — 6^’ {n— l)(a^ — 
_ ^1_ 
n—\ d^-6^ 

Show that r_ 
j (l-e%i 

S-Se^ + Se* tt 

(l-e2sui2<^)3 (l-e2)f 16 

e being less than unity, [St. John’s Coll., 1885.] 

- dx can be integrated in finite 
a + 6 cosa? 

terms when m is an integer. 

sin”*.!? 27. If £7„=j -dx, prove that Un can be calculated 
’ (a-i-b cos x)** 

from a formula of reduction of the form 

A U„ + R Un-i -f C fln-a—sin”*+^ j?(a + 6 cos x)~^^ ^ 

and determine the constants A, B, C, C/3,1891.] 
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28. Find a reduction formula for the integral 

(jf'dx 

J (log :r)”* 

29. Find a reduction formula for 

f x^dx 

J (ax^~i-2bx-hcy^ 

30. Prove that if 

[Oxford, 1889.] 

W 1891.} 

j 2(^i+l) 40i“}“l). 

31. Find reduction formulae for 

(a) jtfinh^xdx. 

dx. 

[St. John’s, 1889.] 

J (a + b cosx-hdsinxy^' 
(y) f^-dx. J sin”:r 

32. Establish the following formula for double integration by 
parts, u and v being functions of x, and dashes denoting differ¬ 
entiation and suffixes integrations with respect to x :— 

j j uv{dx'y ~ UV2 “ 2ii'v^+- 4u'"v^ 4*... 

4*(“ - lynJu^”^Vn+idx+(- dx ^ 

[a. 1888,] 



CHAPTER VIII 

MISCELLANEOUS METHODS AND EXAMPLES. 

Integrals of Form 

88. The integration of expressions of the form 

dx 

TJT 

can be readily effected in all cases for which 

I. X and Y are hath linear functions of x. 

II. X linear, Y quadratic. 

Ill, X quadratic, Y linear. 

If X and Y be hath quadratic the integration can 
be performed, but the process is more troublesome. 

89. Case I. A" and F both linear. 

The best substitution is:— 

Put 

f dx 

Ja\7F- 
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Putting 

we have 

fJcxA^^ — y, 

cdx 

2s/cx A-' 

-=dy, 

and ax-\-h~^{y'^ — e)-\-h, 
G 

and 1 becomes 2f—» —7-, which, beirif^ one of 
Jay^ — ae + bc ^ 

the standard forms immediately integrable. 

Integrate /= j 

Let 

then 

Thus 

)y^ 

dx 

V^A*4-2=y, 

~7=^ = 2c?y. 
v;r + 2 

'y 

= logti 

y-1 y+] 

v^J+2 — 1 
. log , 

y+l V;!7 + 2 + 1 

90. The same substitution, viz., ^Y=y will suffice 

^^(x')dx 
for the integration of when 0(a;) is any 

rational integral algebraic function of x, and X and 
Y are each linear. 

Ex. Integrate I— f-- 
J (x—l)s/x-t-2 

Writing \/x+2=y, we have 

dx 

~dx. 
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xA ^ v8-8y«+16 
.1— 1 ~ 3 

=/ - 5/ + _ 5 +-2^ 

(by common division). 

J/=/[y-V+9/-5 + ^( 1 ’ )]<iy 
“'2V3Vy-V3 y+J3jT^ 

^€-^+3y^-5y+J, 
.j j 3 V 2^3 y + <j3 

= l(a;+2)^- (^+ 2)^+3(:*:+2)^-5(^+2)^ + A 
" Vs v'47+2 + V3 

91. Case II. X linear, Y quadratic. 
The proper substitution is:— 

Putting ax-\-h — '' 

we have, by logarithmic differentiation, 

adx _ dy 

ax-\-h y 

and + c 

Hence the integral has been reduced to the known 

which has been already discussed. 
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:;r-f 2 
Ex. Integrate /= f-- - 

Let then and 
’ ;r+l y' 

^ f _ _ r 

= - f-. _= cos-‘'?^^=cos->|- 
7 \''2-(y-i)ii Va n^T+iyaJ 

92. It will now appear that any expression of the 

form I  -;—7^ /-- a' ■''' '''' 
I {ax + h)^cx^ 

can he integrated, <j){x) being any rational integral 
algebraic function of x. For by common division 

we can express in the form 
^ axA-o 

M 
Ax^’\-BxI'^A- •.- + Kx^ -, 

ax-\-o 

Ax'^A-Bx'^-'^-^ ... 4-i being the quotient and if the 
remainder. We thus have reduced the process to the 
integration of a number of terms of the class 

j \/GX^-\-exA-f 

and one of the class 

[, -^4x. 
J {ax 4- o) V cx^ + €X +y 

The latter has been discussed in the last article, and 
integrals of the former class may be obtained by the 
reduction formula 

F{r 
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where F{i') stands for f- -dx. 
J sjex +/ 

The proof of this is left as an exercise. 

Ex. Integrate /= f^ 
J (.^4 (.2?4l)V^*‘^4l 

dx. 

By division x^ + Zx+t, _ ^ 2 ^ 3 

.r4l :r4l* 

Now —dx = dx^ 41, 
Jdx^+1 

/ dx = 2 sinh~^.r, 
s/x-+l 

and to integrate f-we put .^41=- and get 
./(.a7 41)vV^4l y 

1 f ^ 
/2J Vy^~y4V 

Thus 

-(■ *_ .r 

.yV4-+'^ ^y y 

— f r —-i sinh~X2y — 1). 

I—\fx“’h 1 4 2 sinli"^?; — sinh~^— 
^/2 14.2^ 

93. Case III. A" quadratic, Y linear. 

The proper substitution is:— 

Put VF=y. 

Let 

Putting 

dx 

s/ex+f=y, 

<iy. 
edx 

'ijex+f 

and ax^-\-hx^c reduces to the form 

H E. I. C. 
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and 1 becomes 
2r dy 

Now thrown into partial fractions 

as 

__, fy_ 

+ iS^/ + y a'y^+^'y + y' 

and each fraction is iiitegrable by foregoing ruJcs. 

94. It is also evident that the same substitution 
may be made for the integration of expressions of the 
form 

[___(lx 

where (p(a^ is rational, integral and algebraic; for 

when ^ex-\-f is put equal to y, ^^‘^^^ces to 
(XX “f" ox c 

the form which by division, 

and the rules for partial fractions, may be expressed 
as 

Poi/^-^+P2y2-64.... 

, p j_A^ii_I__ 
^ ay2-p y3y-f y ay+/8'2/+ y 

and each term is at once integrable. 

E.x. Integrate I~ f-_< 

Putting V;r+l=y, we have .^5- - «= 2d! ^^dyy and 

r=2 f( ^ I —l_w 
My^+y+l y~y + l/ ^ 

+ -^tan-V3- 
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EXAMPLES. 

Integrate the following expressions :— 

^ 1 1 jT-fl + 

W^+r {x—XyTx^'i (x-V'^)^Ix—\ 

2 1 1 X x^ + x-hl 

Wx^ + 1 (x + 1 )>/x^ +1 ’ (;r + 1)4-1 {x+l)sJx^-\-2x4- 3 

3^ _ Jf_ _ 1 _^_ 

{x^ + \)fJx {x'^ + 2x-{-'I)s!x+\ {x‘^-\-2x-\-2)\Ix-{'\ 

_ x‘^-+l_ 

(x^ 4- 2^ 4- 2)*jx-^l 

95. Case IV. X and Y both quadratic. 

We do not propose to discuss in general terms the 
method of integration of expressions of the form 

}XjY 

where X and Y are both quadratic and (c/yx) rational, 
integral and algebraic, as it is beyond the scope of 
tlie present volume. We may say, liowever, that the 

lY 
proper substitution for such cases is /W y = 2/> 

student will glean the method to be adopted from the 
following examples.* 

Ex. 1. Integrate /== f--. 
J (x^ + a^)^/x^ + b^ 

Putting VStS=^- 

1 d^_ X _ _x___{a^ — y^)x 
y dx x^ + d^ {x^-\-d^){x^ + }I^^ 

dy _ {<P‘ — }P)x 

* The student may refer to Greenhill’s “Chapter on the Integral 
Calculus” for a general discussion of the method. 
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Tims I becomes + 

Also 

so that ,.j Jr — 

and = 
f-\ 

Thus I reduces further to —L _ 

i.e. T I i^y 
aslh'^-ci^ 0 

= (a<6). 
as/b^-d^ 

If a > 6, we may arrange I as 

1 f 'Ja:~jp , 

a^~bV Jay-b^ 

i.e. I-^,.k-cosh-^^? 

—-. .Lr.r ... cosll"^ (a > ft). 
ttVa2-52 ftV.r2 4-a2 ' 

Ex. 2. Integrate /= ( - 
J — 2j; +1) \/3^7^ ~ 2.a? +1 

Putting 
3x^-2x+l^ 

y‘^'^—‘2x+i 

we obtain 
1 dy _ 3j7-1 2.r-l 
y dx 3^2_2j;-j-1 2j?2~2j7-+1 

_ x{x — 1) 
(3a?2 — 2j7 4-1)(2^2 ^ 2.3? 4-1 )* 

The maximum and minimum values and y/ of y^ are given 
by J7=l and x—Oy and are resi>ectively 2 and 1, so that for real 
values of x, must be not greater than 2 and not less than 1. 
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Now 

ind 

'hus I becomes 

^2 

r(3^2_2.r+l)(21) /2!r^-2^‘+l x + 1 

3x^-2x-{-l (2^2_2^-fl)/s/3j’2-2.r+l 

- /*_5 ^2j-2 _ 2:f 4-1 dv. 
J xLv-1) J x(x- 1) 

Now 2v£‘^ — !2x + l 
x(x— 1) 

~ ( r^T~^) + 1 

_1_ 
^/2—^y2_l 

— cosh“b/4-2 cos~^-^ 
^ V2 

= cosh-^ 1 H. 2 
N2x^-2x+1^^ ^2^2x^-2x+l 

Integrate 

1. 

2. 

3. 

KPlMPLES. 

1 

1)\/5^+1 

1 

1 

1 

(^2 + 2(aw7 4- ^2 _j. 2a^ 4- c* 

1 _ 
(^~l)^(.r4-l)^ 

3a? 4-4 
(5j^ 4* 8a?)V4^ — 2a? +1 
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96. Fractions of form 
a-^h^iTiX‘\'CCO^x 

4- 6iSin x+CiCOSo? ’ 

This fraction can be thrown into the foiin 

A ^(/>jCOS.'t; —c^sin^t’) 

(a^ + t^sin X + c^cos x) {a^ + S^sin x + c^cos x) ’ 

where A, B, O are constants so chosen that 

A + Ca^ — a, — Bc^ + Oh^ = h, Bb^ + Cc^ = c, 

and each term is then integrable. 

97. Similarly the expression 

a 4“ & sin x-\-c cos x 

{a^ -f 6;^sin x -h c^cos 

may be arranged as 

A ^ £(6jCos X — c^^sin x) 

+^isin X + qcos xy^'^la-^ -f- t^sin x -f c^^cos x)'^ 

+__ 
(a^ 4- 6;^sin x 4- ^^cos x)^ " 

and the first and third fractions may be reduced by a 
reduction formula [Ex. 25, Ch. VII.], while the second 
is immediately integrable. 

98. Similar remarks apply to fractions of the form 

8inhir4-<?cosh.'r a 4-sinh a; + c cosh ic 
4^6jsinh x 4- o^cosh x' {a^ 4- 6isinh x 4- c^cosh a?)"* 

99. Some Special Forms. ^ 
It is easy to show that 

sin X 
sin(a; — a)sin(ir — 6)sin(a; — c) 

sin ct . / 
*~^sii:^(a —i)sin(a — 
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8in( j:; •— a)sin(ir — 6)sin(i^ — c) 

whence 

-^sin(a — Z>)sin(a — c) sin(x — a)’ fsin xdx 

sin(a:; — a)sin(ic — h)sm(x — c) 

=log - «). 

r sin^ic dx and { dx 
J sin(ic — a)sin(ic — 6)sin(x — c) 

sirra , x - ^ 

^sin (a — 6)sin(a —6') 2 

100. More generally Hermite has shown * how to 
integrate any expression of the form 

/(sin 0, cos 6) 

sin(d — ai)sin(~d — (x^)... Rin(0 — 

where /{x, y) is any homogeneous function of x, y of 
n—\ dimensions. 

For by the ordinary rules of partial fractions 

__fit. 1)_^ 1)_ 
{t — a^{t — — af) («i — — a,f) ... (a^ — a^) 

_/(«2. 1) 

which may be written 

^_/(^r, 1)_ 
((Ir — a^){ar — af) ... {cir— an) t — ar 

the factor a^ — ar being omitted in the denominator 
>f the above coefficient). 

Proc. Lond. Math, Soc.^ 1872. 
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Putting ^ = tan0, a^ —tana^, <X2==tan«2> this 
theorem becomes 

/(sin 6, cos d)_ _ 

sin(0 — ai)sin(0 — a^,) . •. sin(f9 — an) 

Thus 

/(sin ary cos ar) :y _,_ 
;^sin(a,. — a^) ... 8in(ar — an) sin((? — ar) 

f__,m 
Jsm(0 —Qj) ... sin(6i —«„) 

_V _JLsina.,cosa,)_, 
“,4'isin(a,-ai) ... siii(a.-a„) 

0 — Qr 
2 ' 

EXAMPLES. 
Integrate 

^ _sill X_ 

sm(,r-?)«in(.r+|) 

^ cOvS 2^ — cos 2tt 

cos^ —cosa 

g cos Zx - cos .3a 

COS.^ —COStt 

^ COS nx — cos 71a, 
cos X — cos a 

p sin 2.37 — sin 2a 
sin .37 —sin a 

^ _COS^.37_ 

sin .37(8in^.37 - sin^a)* 

General Propositions. 

101. There are certain general propositions on 
integration which are almost self evident from the 
definition of integration or from the geometrical 
meaning. Thus 

102. I. = j* <f>{z)dzy 

a a 

for each is equal to ^{h) — yf/ia) if (p{x) be the differ¬ 
ential coefficient of \l/'(x). The result being ultimately 

* See Hobson’s TTl^goTwmetry, page 111. 
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independent of x it is plainly immaterial whether x or 
2: is used in the process of obtaining the indefinite 
integral. 

103. II. J = ^{x)dx-\-^ (f){x)dx. 

a a c 

For if be the indefinite integral of (p(x) 

the left side is \/r(6) — 

and the right side is ylr{r) — yl/'{a)-\-\fr(b) — \l/(e), 

which is the same tiling. 
Let us illustrate this fact geometrically. 

Let the curve drawn be y = ci)(x), and let the or¬ 
dinates x = ay x — c, x = h respect¬ 
ively. Then the above equation expresses the obvious 
fact that 

Area = area AriiV2P2pi + area 

104. III. I ({)(x)dx = — j* <{>(x)dx. 

a 6 

For with the same notation as before 

the left hand side is — '^(a), 

the right hand side is — [\{r((i) — V^(6)]. and 
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105. IV. I (l){x)dx = 1 (p(a — x)dx 

0 0 

For if we put x — a-y, 

we have dx= — dy ; 

and if x — a, y = 0, 

if X — 0, y = a, 

pa pO 

Hence I ^{x)dx= — 1 (f)(a — y)dy 

0 a 

= ^<f,(a- y)dy (by III.) 

0 

= j <j>{a — x)dx (by I.). 

0 

Geometrically this expresses the obvious fact that, 
in estimating the area 00'QP between the y and x 

axes, an ordinate O'Q, and a curve PQ, we may if we 
like take our origin at (7, O'Q as our F-axis, and O'X 
as our positive direction of the X-axis. 



MISCELLANEOUS METHODS AND EXAMPLES, 123 

p2(i mo, 
5. V. I (l){x)dx==\ (}>{x)dxA-\ ({>{2a—x)dx. 

For by IL 
p2a -a p2a 

I (p{x)clx^\ (j){x)dx-{-\ (j){x)dx, 
0 0 a 

and if we put 2a — x=^y, 
we ]lave dx^-^dy, 
and when x = a, y = a, 
when x = 2a, y = 0. 

p2a rO 
Thus I </j(x)dx=== — i </)(2a — y)dy 

a « 

= 1 <l>{2a-y)dy 

0 

=1 <p(2a--x)dx. 
0 

p2ct ra pa 

Hence I <p{x^}dx^\ (j){^x)dx-[-\ (j>{2a — x)dx. 

We leave the obvious geometrical interpretation to 
the student. 

107. VI. Plainly if <j>ix) be such that 
(j){2a—x) — <p{x) 

this proposition l>ecomeKS 
p2a pa 

I <p{x)dx = 21 (f>(x)dx, 
0 0 

and if tp(x) be such that <p(2a—x)= 
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Thus since 

and since 

and 

sin”r = sin”(7r — 

/ sin”;*; dr=2 sin”^ ; 

0 *0 

cos2«+i^_ — cos®”+X^-.r), 

cos^”r == cos‘'^"(7r — ^), 

I cos“” ^ dx == 0, 

and j cos^*^xdr=2j cos^^xdx. 

"o 0 
We may put such a proposition into words, thus :— 
To add up all terms of the form 8in”;*;c?^ at equal intervals 

between 0 and tt is to add up all such terms from 0 to - and 
2 

to double. For the second quadrant sines arc merely repetitions 
of the first quadrant sines in the reverse order. Or geometri¬ 
cally, the curve y = sin";i7 being symmetrical about the ordinate 

x — the whole area between 0 and tt is double that between 

Similar geometrical illustrations will apply to other cases. 

108. VII. If <p(x) = ^(a+cc) 
^na pa 
1 <p{x)(ix — n I (l>{x)dx. 

For, drawing the curve y = (p(x), it is clear that 
consists of an infinite series of repetitions of the pa i 
lying between the ordinates OP^ {x = 0) and 
{x=^a) and the areas bounded by the successive 
portions of the curve, the corresponding ordinates ard 
the rr-axis are all equal. 

pa p2a p3a 

Thus J <p{x)dx~ 1 (f>{x)dx=^\ (j>{x)dx = etc. 

0 a 2a ra pa 

^{x)dx = n\ (f>{x)dx. 
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Thus, for instance, 

Fig. 10. 

Some Elementary Definite Integrals. 

109. We have seen that whenever the indefinite 

integration \<p(j')dx can be performed, the value of 

the definite integral 1 (j}{x)dx can at once be inferred. 

a 

In many cases, however, the value of tlie dc*finite 
integral can be inferred without performing the in¬ 
definite integration, and even when it cannot be 
performed. 

We propose to give a few elementary illustrations. 

Ex. 1. Evaluate d — j {2a,v - 
V 

Writing 

we have dr=—dy^ 
^(xx — = 2ay —y^^ 

and vers"^-=7r - vers“^. 
X a 
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Hence /— — j' (2ay — vers ~^*~^(iy 

‘2a 

= 7r^ (^ay ~y^"^dy-I. 

‘o 

Hence /- ^ | (2ay-y-fdy. 

^ ‘o 
Putting y = (2(1 — cos ^), c/?/=a sin 

and we obtain 7=^ sin"+^^(70 = 7ra'”+^j 

«+i —4 T ,2 1 
= -- —-... down to - or 

71 + 1 71—I 71 ~S 3 2 

according as n is even or odd. 

Ex. 2. Evaluate 1 

Let 

then 

and 

= J log si sin 

TT 

(7.r=s — dy ; 

r/jc. 

Hence 21 

~-f log cosy df/= f log cos 

i ' " 

1^ Jog sin .V dx + { log cos x dx 

‘o v 
It 

= / log sin ^ cos ;r (7.r 

0 

= ^ (log sin 2.?? —log 2)o?^ 

'0 

= sin 2xdx — ^ log 2. 

Put 

then 
2x=z, 

dx—\dz; 

then J logsin 2^61?^==^^ logsin zdz— j logamxdx=L 

tC
i 
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Tlm.j 2/=/-^log2, 

/=’^logl. 
2 ® 2 

f sin rdx- ■/' riuis I log 
0 

Ex. 3 Evaluate 1= 
i ^ 

Expanding tlie logaritlim, we have 

TT 1 
log COS^(£.^’= log , 

"2 2 

4- + —+...toco )dx 
3 4 )“ 

0 

/' 1 1 1 1 \ TT^ 
"--(,p+a5+3^+42+-;--g' 

If we put .r=l -//, ‘ 

we have I— — { dy — f I 1-^ ^ I l-x 

Hence we also ha\e 
i 1-^ 6 

Ex. 4. Evaluate I 

Put ^ = tan^, 

/. dx=sQc^0d0; 

— { log(tan ^4-cot 6^)c?^ 
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110. Differentiation under an Integral Sign. 

Suppose the function to be integrated to be 0(j’, c) 
containing a quantity c which is independent of jc. 

Suppose also that the limits a and h of the integra¬ 
tion a^re finite quantities, and independent of c. 

Then will 

For let 

Then 

and 

c)dx = dx 

a 

^6= 1 (p(x,c)dx, 

a 

= J ^(x,C + SG)dXf 

a 

Sit _ j*^ <f>{Xy G + (56*) — C), 

which, by Taylor’s theorem, 

j 

a a 

And if 2^, say, be the greatest value c f which 
be capable, 

(5c J -f-... J (iiT < (5c(6 — a)z, 

and vanishes in the limit when Sc is indefinitely 
diminished. Thus in the limit 

J oc 
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111. T])o case in which the limits a and h also 
contain c is somewhat beyond the scope of the present 
volume. 

112. This pro])ositioii may be used to deduce many 
new integrations when one has been performed. 

i/* (^ + ^>0), 
' c’H-a 

Vr + «j- 

Tlius since 

f-^ tan~^ (r + 6/>0), 
J {.T + r)»JX — a \>c + a ' cH-a 

we have, by differentiating n times witli regard to c, 

f _ L _ dv |:| ,1_ tau-'V^I- 
J (x + cf+^Jx-a «'■ oc"Wc + a ’ <' + ,7j 

Also, (lifFer'Ptitiating n times with regard to o, wo obtain 

^ -Vs}- 
(.r + c)(^ — a) ^ 

Similarly, differentiating this latter p times with regard to 
we obtain 

r dx 

■Vs:}- 

{x A- 

^ J tan-u/^l 
(p!). i . 3 ... (2>i - 1) Zc’-'darUc + a V 

EXAMPLES. 

. Obtain the following integrals ;— 

(i-) J(l + .r)'br ^dx. 
<-) 

(ii.) 1(1 + + '2>^y^dx. 
/ ’ \ f X- + X- 1 

1, TV / —^dx. 
J (.r+ — 1 

(iii.) 1 :r~X2 -3x+ x^)^dx. 

(iv.) 
r dx (vili) ., 

1 (1 +xy/l ' Ol+.r 
E. I. c. 1 
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2. Integrate (i.) 

V (ii.) 

(a^ + — b^) 
[St. John’s, 1888.] 

(:v^-h [St. John’s, 1889.] 

(iii) —- 
sin 0s/a cos^^ -i- h sin^6* + c C rwNiTT, 1888. ] 

3. Find the values of 

f sina/ds_ 

J (cos Jt’ + cos a)\/(cos .r+cos j3)(cos x + cos y) 

(ii ) f 
J cos(.r + «.)Vcos(.^‘ -f cos(.2:' + yT 1890. ] 

1i. Prove that, with certain limitations on the values of the 
constants involved, 

1 (ap + b)x+bp + c 

^ {.r — 

dx 

(x - pXax^ + %x + c)^ (- ap^ - 2hp - c)^ {x - — ary 

[Trinity, 188G.] 

5. Prove that j (cos a')'^dx may be expressed by the series 

siTi^.r , ,r siir^r ,r sinlr , , 
8in.r--iVi-+...etc., 

3 5 ' / 
n-l 

N^, iVg, ^3, ... being the coefficients of the expansion (l+a) ^ , 
and n liaving any real value positive or negative. 

[Smith’s Prize, 1876.] 

6. Evaluate the following definite integrals :— 

(i ) 
[-{-2x+2x^ -f 2.27^+oA’ 

(ii.) r 
^ (a2+;r2 

(iii.) f 
(l-{-x){2-\-xXZ + x) 

dx IT 
’^7. Prove that / -. 

•^0 (l+a;2)(l-.r2)i 2^/2 

/2V3 8 
8. Show that j 2P{z^-3fdz::=^%0M. 

[St. John’s, 1888.] 

[Oxford, 1888.] 

[Oxford, 1888.] 



MISCELLANEOUS METHODS AND EXAMPLES. 131 

Evaluate (i.) ( ~ 

0 

(-) / f 
dx 

4 + 5 sin X [1. C. S., 1889.] 

(iii.) r_ J 1 —2acosx + d^ [I. C. S., 1888.] 
0 

“^10. Prove tliat / cos'\rdx is equal to zero or Tr{n\)/2‘”(\n\y^ 

0 

accordiniT as ^ is odd or even. 
If denote the sum of the infinite series 

. o . sin^j; . sinV , 

prove that 
[Oxford, 1890.] 

"11, Prove that if r be <1, 

(i.) j sin\cc<jss-)da: + . 
0 

(ii.) i r [.sin-i(c eo8 + ^“ + +.... 
*^0 

12. Prove that 

^ 13. Find a reduction formula for pe-^ sin”j?: 

\ A 
4. Evaluate (i.) / sin,r logsinoro?^. 

\ (ii.) / tan x log sin x dx. 
"" -^0 ' 

'* f 
(iii.) J sin 2x log tan x dx. 

[St. John’s, 1888.] 

[5, 1883.] 

[St. John’s, 1882.] 

[St. John’s, 1886, 
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15. Evaluate (i.) 
[I. a S., 1887.] 

sin*6^ + cos^^ 

^ 16. Prove (i.) f’ 
J KCC JG + COS ^ 4 
0 

(ii r ^ 
a2~cos^.r 2aVa^- l’ 

a being supposed greater tlian unity. 

17. Prove (i.) T 
^ j 1+x 12 

[I. 0. S., 1891.] 

[Poisson.] 

[Oxford, 1890.] 

J7. Prove 

18. Prove that 
adz 23,2.45 2.4.67 

^ /TV J- /7» —_ rt * - a ~-a* + --- a‘ L+a‘^(l-22) 3 3.5 3.5.7 

19. Prove that 
[Oxford, 1889.] 

H oT;^„Si5" ■ 
e being supposed < 1. 

20. Prove that 
/I /y» /y*2 *7*3 ivA 

]-_^+_3_^+-_etc. 

21. Prove that 
[Math. Tripos, 1S78.] 

’ 7'^9 15 + 17—3(1+[^,1888.] 

22. If tj){x)~—^2a — x)^ j' ^x)dx—— J cli{x)dx. 
b *0 

[Trin. Hall, etc., 1886.] 

23. Prove that f ^j^^^I^dx= f provided <fi(x) 
{ 4>{c-ai) J i/^(x~b) ^ ^ 

remains finite when x vanishes. [St. John’s, 1883.] 
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24. Prove that ^ cj>{x)dx=^ f {(p(x}+<^(2a — x)}dx, 

‘o *0 

trate the theorem geometrically. 

25. If /(j;) =/(a + j:)y .show that 

J f(.v)d3P=:(n-l)J f(x)dx, 
a 0 

and illustrate geometrically. 

and illus- 

26. Show tliat ^ 
q-p q-p 

fa, 1S84.] 

[Oxford, 1888.] 

27. Determine hy integration the limiting value of the sums 
of the following series when n is indefinitely great: — 

a' ^ 1 1 

V 1 I 4. 4. 
^ +12 + 

(iii.) ——+ ■ -- 4 -4... 4 —/—5--• 
\/2vi—v4w —2^ — sj2n‘- — n^ 

[Clare, etc., 1882.;) 

(iv.) 4siir''~4sin^'‘?—4... 4sin^'‘^l, k being an 
Vi I 2vi 2vi 2n 2 J 

integer, [St. John’s, 1886.] 

28. Show that the limit when n is increased indefinitely of 

(n~m)^ (2^vi--vw)^ —m)^ —3 

[Colleges, 1892.] 

29. Show that the limit wlien n is infinite of 

1 fa+h 
hJ '^og<p{x)dx, 

IS e'*'a 

Apply this result to find the limit of 

[Clare, etc., 1886.] 
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30. Find the limiting value of {n\Yln when n is infinite. 

31. Find the limiting value when n is infinite of the Tzth part 
of the sum of the n quantities 

n-i-l n-\-% ?i+3 n-{-n. 

71 ’ n ^ 71 ’ ’ 7^ ’ 

and show that it is to the limiting value of the 7ith root of the 
product of the same quantities as 3e : 8, where e is the base of 
the Napierian logarithms. [Oxford, 1886.] 

32. If na is always equal to unity and n is indefinitely great, 
show that the limiting value of the product 

{l + an{H-(2a)<>"‘{l+(3a)nhl+(4a)n^-{l+M'}” 
[Oxford, 1888,] 



CHAPTER IX. 

KECTIFICATION, Etc. 

113. In the course of the next four chapters we 
propose to illustrate the foregoing n^ethod of obtain¬ 
ing the limit of a summation by application of the 
j:)rocess of integration to tlie problems of finding the 
lengths of curved lines, the areas bounded by such 
lines, finding surfaces and volumes of solids of 
revolution, etc. 

114. Rules for the Tracing of a Curve. 

As we shall in many cases have to form some rough 
idea of the shape of the curve under discussion, in 
order to properly assign the limits of integration, 
we may refer the student to the authors larger 
Treatise on the Differential Calcvlus, Chapter XII., 
for a full discussion of the rules of procedure. 

The following rules, however, are transcribed for 
convenience of reference, and will in most cases 
suffice for present re(|uirements:— 

115. I For Cartesian Equations. 

1. A glance wiU suffice to detect symmetry in a 
curve. 
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(a) If no odd powers of y occur, the curve is sym¬ 
metrical with respect to the axis of x. Simi¬ 
larly for symmetry about the ^/-axis. 

Thus y^ = ^(ix is symmetrical about the ir-axis. 
(h) If all the powers of both x and y which occur 

be even, the curve is symmetrical about both 
axes, e.g., the ellipse 

(c) Again, if on changing the signs of x and y, the 
equation of the curve remains unchanged, there 
is symmetry in opposite quadrants, e.g.^ the 
hyperbola xy==a^, or the cubic + y^ ~ '^ax. 

If the curve be not symmetrical with regard to 
either axis, consider whether any obvious transforma¬ 
tion of coordinates could make it so. 

2. Notice whether the curve passes through the 
origin; also the points where it crosses the coordinate 
axes, or, in fact any points whose coordinates present 
themselves as obviously satisfying the equation to the 
curve. 

3. Find the asymptotes; first, those parallel to the 
axes ; next, the oblique ones. 

4. If the curve pass through the origin ecjuate to 
zero the terms of lowest degree. These terms will 
give the tangent or tangents at the origin, 

5. Find and where it vanishes or becomes in¬ 
air 

finite; i.r., find where the tangent is parallel or per¬ 
pendicular to the ic-axis. 

6. If we can solve the equation for one of the 
variables, say y, in terms of the other, x, it will be 
frequently found that radicals occur in the solution, 
and that the range of admissible values of x which 
give real values for y is thereby limited. The existence 
of loops upon a curve is frequently detected thua 
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7. Sometimes the equation is much simplified when 
reduced to the polar form. 

116. II For Polar Curves. 

It is advisable~to follow^ some such routine as the 
following:— 

1. If possible,/orm a table of corresponding values 
of r and 6 which satisfy the curve for chosen values 

of d, such as d —0, ±^, ±y, ±^, etc. Consider both 
6 4 8 

positive and negative values of 0. 
^ Examine wlu^tlier there be symmetry about the 
initial line. This will be so when a change of sign of 
0 leaves the equation unaltered, e.g., in the cardioide 
r = a(l — cos 0). 

3. It will frequently be obvious from the equation 
of the curve that the values of r or 0 are confined 
between certain limits. If such exist they should be 
ascertained, e.g., if r^anmnO, it is clear that r must 
lie in magnitude between the limits 0 and a, and the 
curve lie wholly within the circle r — a. 

4. Examine whether the curve has any asymptotes, 
rectilinear or circular. 

Rectification. 

117. The process of finding the length of an arc of 
a curve between two specified points is called recti¬ 
fication. 

Any formula expressing the differential coefficient 
of s proved in the differential calculus gives rise at 
once by integration to a formula in the integral 
calculus for finding s. We add a list of the most 
common. (The references are to the author’s Dlff. 
Calc, for Beginners.) 

118. In each case the limits of integration are the 
values of the independent variable corresponding to 
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the two points which terminate the arc whose length 
is sought. 

Formula in the Diff. Calc. Formula in the Int. Calc. Reference. 

P. 98. 

P. 98. 

?. 103. 

P. 103. 

P. 100. 

1" rdr Pp. 103, 
105. 

P. 148. 

Observations. 

For Cartesian Equa¬ 
tions of form 

y =yi*)- 
For Cartesian Equa¬ 

tions of form 

^Ay)‘ 
For Polar Equations 

of form 
r=Ae). 

For Polar Equations 
of form 

e=Ar)- 
For case when curve 

is given as 
X =At)y y = F[t). 

For use when Pedal 
Equation is given. 

For use when Tan¬ 
gential Polar 
Equation is given. 

119. We add illustrative examples:— 

Ex. 1. Find the length of the arc of the parabola x^-^ay 
extending from the vertex to one extremity of the latus-rectum. 

V=-—, Vi =~, and the limits are .r=0 and Hence 
^ Aa ^2a 

..j-4 
*0 

1 rx4x^-\-Aofi 

\-\-~-dx 

2aL 

2 _'”|2( 
- log(.*‘ + ^x^ + 4a^)J 

= 8a^+4a^log(l + ^2)] 

=a[V2 + log( 1 + ^/2)]. 
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Ex. 2. Obtain t||f| same result by taking y as the inde¬ 
pendent variable. ^ 

X — and the limits are y = 0 and y = a. Hence 

■0 = /' 
0 

fr 

XV^dy 
y 

(Put y = atan2^, 
and o§^==2a tan ^ 

= / dO 

“tan sec ^ 
0 

= 2a| p'2^|^^+|log(tan^ + Bec0)]" 

— a[\/2 + leg( 1 4- a/ 2)]. 

Ex. 3. Find the perimeter of the cardioide r==a(l — cos 6), 

Fig. 11. 

The curve is symmetrical about the initial line, and B varies 
from 0 to TT for the upper half. 

dr 

Hence arc = 2 f cos Oy+a^sin^^ dB 

^2a.j 2sin|dJ0==j^-8acosU ™8a. 
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Ex. 4. Find the length of the arc of the equiangular spiral 
p = rsina between the points at which the radii vectores are 

and ro. 

Here 
r dr _ ^2 — 

— r^siii“a ct 

Ex. 5. Find the length of any arc of the involute of a circle^ 
whose equation in p~ Aylr + B. 

Here 

where and are the values of yjr at the beginning and end 
of the arc respectively. 

120. Formula for Closed Curve. 

In using the formula 

■^=<Tv;+W 
in the case of a closed oval, tlie origin being within 
the curve, it may be observed that the length of the 

r2»r 

whole contour is given by 1 jjd\[r, for the portion 

^ 0 ^ 
ears when the limits are taken. 

Ex. Show that the perimeter of an ellipse of small eccen- 
3g4 

tricity e exceeds by of its length that of a circle having the 

same area. [7, 1889.] 

Here =a^cos^'^ + bhinhlr=d^i\— ehin^yj/ ), 

where -xjr is the angle which p makes with the major axis. 

Hence p=a(^l~ ^ehin^yjr — ^. 

Hence = || (very approximately) 

1 3 
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The radius (r) of a circle of the same area is given by 

r2 = a6 = a^(l-6^2)^ 

and its circumference: = 27ra^l — It 
32 

.Circurnf. ellipse — circumf. circle = ( A „ 
^ \16 32/ . 

True* ~ . 27ra 
64 

= — [circ. of circle], as far as terms involving e\ 

EXAMPLES. 

1. Find by integration tlie length of the arc of the circle 
— intercepted between the points where x—a cos a and 

,v — a cos 13. 

^ 2. Show that in the catenary 3/= c cosh - the leligth of arc 

from the vertex (where j?—0) to any point is given by 

s = c sinh 
c 

3. In the evolute of a parabola, viz., 4(.v~2ay^~27a^^, show 
that the length of the curve from its cusp {.v=2a) to the point 

where it meets the parabola is 2a{Z^Jz — 1). 

'^'"4. Show that the length of the arc of the cycloid, 

.r = a(^ + sin 0),\ 

y = a(l — cos ^),/ 

between the points for which 0—0 and 0 — 2\lr, is — 4a sin 

5. Show tliat in the epicycloid for which 

x — {a + 6)cos 0-h cos 0, 

y — {a^6)sin ^- 6 sin 

, = i^“±i)co8 
•« a 26 

s being measured from the point at which 0=7rbla. 

When 6==-~, show that and that if s be 
4 

measured from a cusp which lies on the y-axis, oc 
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^6. Show that in the ellipse ^ — bsinO, the peri* 
meter may be expressed as 

.32.5 
22.42 22.4*2.62 

to 00 

7. Find the lengtli of any arc of the cprves 

‘“(i.) 7* = acos^. ^iii.) r = aO. 
n 

(ii.) r—ae'^. (iv.) ?* = a8in‘2-^. 

8. Apply tlie formula + 

whose ecpiation is r — a{l 4-cos 0). 

jp dy\r to rectify the cardioide 

[Teinitt, 1cS88.] 

9. Two radii vectores OP^ OQ of the curve 

r=2acos3^? + |^ 

are drawn equally inclined to the initial line; prove that the 
length of the intercepted arc is aa, where a is the circular 
measure of the angle POQ. [Aspaeagus, Kduc. Times.} 

10. Show that the length of an arc of the curve can 

be found in finite terms in the cases when „^--or 4.I is an 
integer, 2m 2m 2 

11. Find the length of the arc between two consecutive cusps 
of the curve == c\r^ - d^). [Epicycloid.] 

12. Find the whole length of the loop of the curve 

3ay2 _ af. [Oxford, 1889. ] 

13. Show that the length of the arc of the hyperbola xy~a^ 
between the limits x=h and x = c is equal to the arc of the 
curve = between the limits r=6, r = c. 

[Oxford, 1888.] 

14. Show that in the parabola — = H-co8^,-^ and 
T ay sm^^ 

hence show that the arc intercepted between the vertex and the 
extremity of the latus rectum is a{V2 + log(l+V^)}. 

[1. C. S., 1882.] 
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121. Length of the Arc of an Evolute. 

It has been shown Calc, for Beg., Art. 157) 
that the difference between the radii of curvature at 

two points of a cun^e is equal to the length of the 
corresponding arc of the evolute; 

i.e., if ah b^theiarc the evolute of the portion AH 
of the original <^rve^pt^n (Fig. 12) 

arcaA^-dct —p (at A) —p (at H\ 
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and if the evolute be regarded as a rigid curve, and a 
string be unwound from it, being kept tight, then the 
points of the unwinding string describe a system of 
parallel curves one of which is the original curve A H. 

Ex. Find the length of the evolute of the ellipse. 

Let a, a\ /^, be the centres of curvature corresponding to 
the extremities of the axes, viz., >4, A\ B' respectively. The 
arc ap of the evoiute corresponds to the arc AB oi the curve, 
and v'e have (Fig. 13) 

.v2 7,2 

arc a/? = p(at B) — p(at A)~- 

[for rad. of curv. of elli} Ex. 3, p. 153, Diff. Calc, for Beg.1. 

Thus the length of the entire j)eriineter of the evolute 

= 4 

EXAMPLE. 
Show in the above manner for the parabola ?/2 = 4a.r that the 

length of the part of the evolute intercepted within the ])arabola 

is 4a(3V3 -1). 

122. Intrinsic Equation. 
The relation between 6% the length of the arc of a 

given curve, measured from a given fixed point on 

the curve, and the angle between the tangents at the 
extremities of the arc is called the Intrinsic Equation 
of the curve. 
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123. To obtain the Intrinsic Equation from the 
Cartesian. 

Let the equation of the curve be given as y=f{x). 
Suppose the ^.c-axis to be a tangent at the origin, and 
the length of the arc to be measured from the origin. 

Then tan \jr =fXx),.(1) 

also 8 = J s/i+[f'{x)]\lx...(2) 

0 

If 8 be determined by integration from (2), and x 
eliminated between this result and equation (1), tlie 
recpiired relation between 8 and yjr will be obtained. 

Ex. 1. Intrinsic equation of a circle. 

If be the angle between the initial tangent at A and the 
tangent at the point P, and a the radius of the circle, we have 

POA^PTX^ir, 
and therefore s^a^Jr. 

Ex. 2. In the case of the catenary y + c = ccosh-, the in¬ 
trinsic equation is ^=c tan ^ 

For tam> = ^ = 8inh- 
a.r c 

~ sinh^-~ coah?, 
ax ^ c c 

and 

B. I. c. K 
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and therefore 5—fjsiiih-, 
e 

the constant of integration being chosen so that x and 8 vanish 
together, whence 

S—C tAJ\ -yjr. 

124. To obtain the Intrinsic Equation from the 
Polar. 

Fig. 16. 

Take the initial line parallel to the tangent at the 
point from which the arc is measured. Then with the 
usual notation we have 

r =/(d), the equation to the curve, 

ylr = e+<p,. 

tan 0 dr /{ey 

(1) 
(2) 

(3) 

*rV’"+(3s)‘=''w)?+tA»)P.(4) 
If vS be found by integration from (4), and 0, <p 

eliminated by means of equations (2) and (3), the 
required relation between s and \[r will be found. 

Ex. 

Here 

Find the intrinsic equation of the cardioide 

r=a(l - cos 6). 

■0=0+0 

tan = tang. 
a Sin 0 2 

and 
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Fig. 17. 

Also 
ds 

dO 
—sld^{\ — cos Oy + a^siii^0 

Q * ^ = 2a sm 
2 

0 , - 4a cos ^ and 5 = 

If we determine Cm that s—0 when 6=0, we have 

(7= 4a, 

s — Aa{ 

s = 4a 

(l-oosQ, 

(l-C08|), 

the intrinsic equation sought. 

We may notice that if A be the vertex, the arc A P is 4a cos Vo 
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125. When the Equation of the Curve is g^iven as 

a5=/{0. y = <f>{t)> 

we have tun= ......(1) 

.(2) 

By means of equation (2) s may be found by in¬ 
tegration in terms of t. 

If then, between the result and equation (1) t be 
eliminated, wc shall obtain the required relation 
between s and yj/-. 

Ex. In the cycloid 

.r=a(^-|-sm ^), 

y=a(l — cos t\ 

we have tan yfr=- — t 
sin t , t -- _ == tan 

1 -f- cos t 2 

t = 2ylr. 

Also ^ - == (1 + cos t)'^+sin^^ — 2a cos 
(it A 

whence 5 = 4a sin ~ if 5 be measured from the origin where ^ = 0. 

Hence 5 = 4a sin yfr is the equation required. 

126. Intrinsic Equation of the Evolute. 
Let s=f(\p') be the equation of the given curve. 

Let s' be the length of the arc of the evolute measured 
from some fixed point A to any otlier point Q. Let 
0 and P be the points on the original curve corre¬ 
sponding to the points J., Q on the evolute; pg, p the 
radii of curvature at 0 and P; the angle the 
tangent QP makes with OA produced, and \jr the 
angle the tangent PT makes with the tangent at 0. 
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Then yf/ = and 
, ds 
«-P Po» 

or s'=fXi/)~po- 

127. Intrinsic Equation of an Involute. 
With the same figure, if the curve -4Q be given by 

the equation s' wo have 

p = s'+po, P = ^> = 

whence =|{/W+po}f^'A- 
Ex. The intrinsic equation of tlie catenary is ^ = ctan\/r 

(Art. 123). 

Hence the intrinsic equation of its evolute is 

s — c sec^yjr — pQ, 
and /3q = radius of curvature at the vertex 

= c = ^ = c sec^i/r and ■\/r=oJ, 

the evolute is «=c(sec^i^-1), or 5=ctan^. 

The intrinsic equation of an involute is 

jip tan'^q- 

—- c log sec yjr+Ayjr+constant; 

and if s be so measured that ^=0 when i/r=0, we have 

s — c logCsec yfr) q- A^jr, 
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128. Length of Arc of Pedal Curve. 

If p be the perpendicular from the origin upon the 
tangent to any curve, and the angle it makes with 
the initial line, we may regard p, x current 
polar coordinates of a point on the pedal curve. 

Hence the length of the pedal curve may be cal¬ 
culated by the formula 

Ex. Apply the above method to find the length of any arc 
of the pedal of a circle with regard to a point on the circum¬ 
ference {i.e. a cardioide). 

Here, if 2a be the diameter, we have from the figure 

»= OP cos - = 2acos2-. 
^22 

Hence arc of pedal = J^2 ^sin*- cos* ^dx 

== / 2a cos Idx —4a sin ^-4-O'. 
J M J!i 

The limits for the upper half of the curve are x = 0 and x=W'. 
Hence the whole perimeter of the pedal 
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EXAMPLES. 

1. Find the length of any arc of the curve y\a — x)—oi^. * 
[a, 1888J 

2. Find the lengtli of the complete cycloid given by 

.ir=<x^+asin ^ 

y = a —a cos B. f 

3. Find the curve for which the length of the arc measured 
from the origin varies as the square root of the ordinate. 

4. Show that the intrinsic equation of the parabola is 

s~a tan \/r sec \/r-i-a log(tan i/r-f sec y/r). 

5. Interpret the expressions 

o«.)/(5 *-?. g)A 
wherein the line integrals are taken round the perimeter of a 
given closed curve. [St. John’s, 1890.] 

6. The major axis of an ellipse is 1 foot in length, and its 
eccentricity is 1/10. Prove its circumference to be 3*1337 feet 
nearly. [Trinity, 1883.] 

7. Show that the length of the arc of that part of the 
cardioide ?• — a(l + cos B), which lies on the side of the line 
4r—3asec B remote from the pole, is equal to 4a, [Oxford, 1888.] 

8. Find the length of an arc of the cissoid 

sin^B r = a- 
cos B 

9. Find the length of any arc of the curve 

10. Show that the intrinsic equation of the semicubical para¬ 
bola — is 9« = 4a(sec^^ — 1). 

11. In a certain curve 

y=e®cos B,i 

show that 8—e®Vi + C, 
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12. Show that*the length of an arc of the curve 

X sin O+y cos $=^ f (0), 
X COB 0—y^\i\d =/"(Q), 

is given by =f{d) -f/"(^) + 

13. Show that in the curve ;y —alogsec- the intrinsic equa¬ 
tion is s> — a gd“^\/r. ^ 

14. Show that the length of the arc of the curve y = logcoth~ 

between the points yi), (^21^2) is log^!^*^-^^. 

15. Trace the curve y^ — ^{a — x)‘^, and find the length of that 

part of the evolute which corresponds to the loop. 
[St. John’s, 1K81 and 1801.] 

16. Find the length of an arc of an equiangular spiral 
(^jrrry'sina) measure(l from the pole. 

Show that the arcs of an equiangular spiral measured from 
the pole to the different points of its intersection with another 
equiangular spiral having the same pole but a different angle 
will form a series in geometrical progression. [Tiunity, 1884.] 

17. Show that the curve whose pedal equation is p‘ 

has for its intrinsic equation s = a 

18. Show that the whole length of the lima^on r = «cos 0+I> 
is equal to that of an ellips^e whose semi-axes are equal in length 
to the maximum and minimum radii vectores of the lima^on. 

19. Prove that the length of the nth pedal of a loop of the 
curve r'*^=a^BmmO is 

mw-m+1 

a(mn-hl) (sin d^. 
0 

20. Show that the length of a loop of the curve 

Sx^y-y^=(x^-i-y^)^ 

[e, 1883.] 



CHAPTER X. 

QUADEATUKE, Etc. 

129. Areas. Cartesians. 
The process of finding the area bounded by any 

portion of a curve is termed quadrature. 
It has been already shown in Art. 2 that the area 

bounded by any curved liiie [y = </>(a")], any pair of 
ordinates [;x = a and x — l)] and the axis of x, may be 
considered as the limit of tlie sum of an infinite num¬ 
ber of inscribed rectangles; and that the expression 
for the area is 

nb 

\ydx or u[>{x)dx. 

a a 

In the same way the area bounded by any curve, 
two given abscissae [y = c, y = c?] and the y-axis is 

J xdy. 

c 

130. Again, if the area desired be bounded by two 
given curves \_y — ft>{^) and y = yr{jr)] and two given 
ordinates \x=^a and x = h\\i will be clear by similar 
reasoning that this area may be also considered as the 
limit of the sum of a series of rectangles constructed 
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as in the figure. The expression for the 
area will be 

- ^ (‘b 

\jPQ(lx or I \^^{x)--\lr(x)']dx. 

.y^<t>(xj 

Ex. 1 F]ij(l the area houmled by the ellipse —4-^ =1 the 
Cl- 0^ 

ordinates x^c. a'=d and the jr-axis. 

Here area = 
J a aL 2 2 aJo 

C 

= A ~ -}- «2 ^ sin _ sin"^- ^ J. 

For a quadrant of the ellipse we must put d=a and c~0 and 
the above expression becomes 

b 9 TT TTOb — . . . or ~~, 
2a 2 4 

giving TTob for the area of the whole ellipse. 

Ex. 2. Find the area above the ^-axis included between the 
curves ~2a.v-x^ and y^ == ax. 

The circle and the parabola touch at the origin and cut again 
at (a, a). So the limits of integration are from jr=0 to .a;=a. 

The area sought is therefore 

y* [\^2ax- 
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Now, putting a;=ci(l-co8^), 
V 

‘o *0 

.1-1 a 

and J Va^c?.r ~Va|r~J =S«^- 

__7r«* 
~T’ 

Thus the area required is 

lS>x. 3. Find the area 

(1) of the loop of the curve ; 
(2) of the portion bounded hy the curve and its asymptote. 

Here r a-\-x 

To trace this curve we observe :— 

n) It is symmetrical about the ^-axis. 
(2) No real part exists for points at which x is > a or 

<-a. Sit has an asymptote x+a=0. 
It goes through the origin, and the tangents there are 

It crosses the .iP-axis where ^=a, and at this point is 
infinite. 

(6) The shape of the curve is therefore that shown in the 
figure (Fig. 22). 

Hence for the loop the limits of integration are 0 to a, and 
then double the result so as to include the portion below the 
or-axis. 

(5) 
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For the portion between the curve and the asymptote the 
limits are —a to 0, and double as before. 

For the loop we therefore have 

for the portion between the curve and the asymptote, 

Then 

To integrate j a:put 

a;~a cos 6 and dx^ — a sin QdB. 

j X'J-—~dx f a cos 0 
J y a-\-x J y l-cos^^ 

0 v 

— a^j (cos 9 — co8^9)d9 

area of loop~2a2|^ 1 - and 
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Again, - I 'acos Odd 

= a'^ j (cos 0 — cos^0)d0 

[The meaning of the negative sign is this:—In choosing the 

4- sign before the radical in 2/=^\h— we are tracing the 

portion of the curve below the .r-axis on the left of the origin 
and above the axis on the right of the origin. Hence y being 
negative between the limits referred to, it is tt> be expected 
that we should obtain a negative value for the expression 

Lt 2 yS****] 
x——a 

Thus the whole area recpiired is 

2a=fl+fV 
\ 4/ 

[It must also be observed in this example tliat the greatest 
ordinate is an infinite one. In Art. 2 it was assumed that 
every ordinate was finite. Is then the result for the area 
bounded by the curve and the asymptote rigorously true ? 

To examine this more closely let us integrate between limits 
— a + e and 0, where e is some small ])08itive (piantity, so as 
to exclude the infinite ordinate at the point - a, we have 
as before 

J a^j ^(cos 0 — cos^0)d0 

I 
where ~ a + e — a C08(7r — S), 

so that is a positive small angle. This integral is 

a2[sm6l- sin 5 — 1 - 

—1 — 

r — 8 , TT , sin2S“ 
+ T + ~~;— 4 4 _ 

O , • , Sill 26"1 

which approaches indefinitely close to the former result 

when S is made to diminish without limit.] 
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EXAMPLES. 

1. Obtain the area bounded by a parabola and its latus 
rectum. 

2. Obtain the areas bounded by the curve, the :r-axis, and the 
specified ordinates in the following cases :— 

{a) y = ccosh-, to x — h. 

(b) y — .27=0 to x — h. 

(c) y = -\la^-a^, — to x—a. 

{d) y=x</., x—^ to x — h. 

(e) ;y = log;27, x—a to x — h. 

if) xy—lc^.^ x—a to x=b. 

3. Obtain the area bounded by the curves y‘^ = AaXy x'^—^.ay. 

•4. Find the areas of the portions into which the ellipse 
1 ig divided by the liney=(7. 

T). Find the whole area included between the curve 
^2y2_^2(y2_^2j 

and its asymptotes. 

6. Find the area between the curve y\a-\-x')—{a — x)^ and its 
asymptote. 

7. Find the area of the loop of the curve y^x + (^ + cC)\x + 2a) = 0. 

131. Sectorial Areas. Polars. 
When the area to be found is bounded by a curve 

r == /(0) and two radii vectores drawn from the origin 
in given directions, we divide the area into elementary 
sectors with the same small angle ^0, as shown in the 
figure. Let the area to be found be bounded by the arc 
PQ and the radii vectores OP, OQ. Draw radii vectores 
OPj, OP.,,... OPn-i at equal angular intervals. Then 
by drawing with centre 0 the successive circular arcs 

pw, Pi^^p ■P2^2> 
limit of the sum of the circular sectors OPN, 
OP^N^, etc., is the area required. For the remaining 
elements PNP^, P^iVT^Pg, PgA^g^g, etc., may be made to 
rotate about 0 so as to occupy new positions on the 
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greatest sector say OPn~\Q as indicated in the figure 
Their sum is plainly less than this sector; and in the 
limit when the angle of the sector is indefinitely 
diminished its area also diminishes without limit pro¬ 
vided the radius vector OQ remains finite. 

The area of a circular sector is 

^ (radius)^ X circular meas. of angle of sector. 

Thus the area required == the summation 
being conducted for such values of 6 as lie between 
0 = xOP and 0 = xOPn-\, ix., xOQ in the limit, Ox being 
the initial line. 

In the notation of the integral calculus if xOP=a, 
and xOQ = ^, this will be expressed as 

ijVde or \j{e)]hie. 
a a 

Ex. 1. Obtain the area of the semicircle bounded by r=acos 0 
and the initial line. 

Here the radius vector sweeps over the angular interval from 

$zr=o to 0=Hence the area is 
2 

i.e., ^radius)2 
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Ex. 2. Obtain the area of a loop of the curve r—a sin 36^. 

Tills curve will be found to consist of three equal loops as 
indicated in the figure (Fig. 24). 

The proper limits for making the integration extend over the 

first loop are ^^0 and ^ = for these are two successive values 
of $ for which r vanishes. 

IT ir 

area of loop=iI a^sui^SOdO (l—co8G0)d0 

"o 0 

a^/n _ sin tt _7ra* 

4 V ~~(f ' )o~l * 3"“1^' 

Hg. 24. 

EXAMPLES. 

Find the areas bounded by 

1. r^~a^co8^0 + h^sin^0. 3. One loop of r—a sin 40. 

2. One loop of r=a sin 2^. 4. One loop of r=asm?i^. 

5. The portion of bounded by the radii vectores 
0 = /3 and 0 = f^ + y (y being less than 27r). 

6. Any sector of r^0 = a^ (0—a to 0—/3). 

7. Any sector of rO^ — a (0—a to 0—/3). 

8. Any sector of r0=a (O—a to 0—P). 

9. The cardioide r == a(l — cos 0). 
n 

10. If s be the length of the curve r=atanh| between the 

origin and 27r, and A the area between the same points, 
show that A—a{s — a7r), [Oxford, 1888.] 



(QUADRATURE, ETC, 161 

132. Area of a Closed Curve. 
Let (x, y) be the Cartesian coordinates of any point 

P on a closed curve; (x Sx, y -f Sy) those of an adjacent 
point Q. Let (r, d), (r-f or, 6-\-S6) be the corresponding 
polar coordinates. Also we shall suppose that in 
travelling along the curve from P to Q along the 
infinitesimal arc PQ tlie direction of rotation of tlie 
radius vector OP is counter-clockwise (i.e. that the 

area is on the left hand to a person travelling in this 
direction). Then the element 

^r^SO ~ AOPQ = l{xSy — ySx). 

Hence another expression for the area of a closed 
curve is 

J {xdy — ydx), 

the limits being such that the point (x, y) travels once 
completely round the curve. 

133. If we put y — vx so that 
xdy-ydx 

— dv, we 

may write the above expression as where x is 

to be expressed in terms of v and the limits of in¬ 
tegration so chosen that the current point (x,y) travels 
once completely round the curve. As 'i; is really 
tan 9 and becomes infinite when 0 is a right angle care 
must be taken not to integrate through the value oo. 

E. I. c. L 
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Ex. Find by this method the area of the ellipse 

Putting y = vx, we have 

and area = i j"oif-dv ^ I taii'^^’-J 

between properly chosen limits. 
Now, in the first quadrant v varies from 0 to qo . Hence 

- , , ah IT 
area or quadrant=— • 

and therefore area of ellipse ^irab, 

134. If the oripn lie withoiit the curve, as the 
cui'rent point P travels round we obtain tiiangular 
elements such as OI\Q-^, including portions of space 
such as OP^Q^ shown in the figure which lie outside 

the curve. These portions are however ultimately 
removed from the whole integral when the point P 
travels over the element for the triangular 
element Ol^Q^ is reckoned negatively as 6 is decreasing 
and dd is negative. 

136. If however the curve cross itself, the expression 

^^(xdy-ydx), taken round the whole perimeter, no 

longer represents the sum of the areas of the several 
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loops. For draw two contiguous radii vectores OP^, 
OQ^ cutting the curve again at and P^, P^ 
respectively. Then in travelling continuously through 
the complete perimeter we obtain positive elements, 
such as OP^Q^ and OP^Q.^, and negative elements 
such as OPJQ^ and OP^Q^. 

Now OPiQi ~ OP.Q,+OP^Q^ - OP^Q^ 

= quadl. PiQiP^Q^-quadl 

and in integrating for the whole curve we therefore 
obtain the difference of the two loops. 

Similarly, if the curve cuts itself more than once, 
this integral gives the difference of the sum of the odd 
loops and the sum of the even loops. 

To obtain the absolute area of such a curve we must 
therefore obtain that of each loop separately and then 
add the results. 

Of course in curves with several equal loops it is 
sufficient to find the area of any one, and to ascertain 
the number of such loops. 

136. Other Expressions for an Area. 
Many other expressions may be deduced for the 

area of a plane curve, or proved independently, 
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specially adapted to the cases when the curve is 
defined by other systems of coordinates. 

If PQ be an element Ss of a plane curve, and OF 
the perpendicular from the pole on the chord PQ, 

AOPQ = ^0T.PQ, and any sectorial area = ILf'EOY,PQ 
the summation being conducted along the whole 
bounding arc. In the notation of the Integral Cal¬ 
culus this is 

[This may be at once deduced from I 

dd 

ds 
ds <f) ds 

(where 0 is the angle between the tangent and the 
radius vector) 

137. Tangential-Polar Form. 
d s dj^TJ 

Again, since p = 

we have area = ds = h^p{p + 
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a forinula suitable for use when the Tangential-Polar 
equation is given. 

138. Closed Curve. 
When the curve is close.d tliis expression adniits of 

some simplification. 

and in integrating round the whole perimeter the first 
term disappears. Hence when the curve is closed we 

Ex. By FjX. 23, p. 113, Diff. ale. for Beginners, the equation of 
the oue-cusped epicycloid (i.e., the cardioide) may be expressed as 

p —- 3a sin-^. 
^ 3 

Fig. 29. 

Hence its whole area=^^ -a^cos^^jd\fr taken be¬ 

tween limits and ■\/^==—- and doubled. 
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139. Pedal Equation. 
Again, for curves given by their pedal equations, 

we Lave 

A ~ ? Jp ds = i i Jp sec 0 dr = 

Ex. In the equiangular spiral p = r sin a. 

Hence any sectorial area 
rr2 ^ flj. 

■ij- 

140. Area included between a curve, two radii 
of curvature and the evolute. 

In this case we take as our element of area the 
elementary triangle contained by two contiguous radii 
of curvature and the infinitesimal arc ds of the curve. 

To first order infinitesimals this is and the 

area = i.e. i^p^d'xf/' or jjp ds. 

Ex. 1. The area between a circle, its involute, and a tangent 
to the circle is (Fig. 31) 
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Ex. 2. The area between the tractrix and its asymptote is 
found in a similar manner. 

The tractrix is a curve such that the portion of its tangent 
between the point of contact and the .r-axis is of constant 
length c. 

Fig. 31. 

Taking two adjacent tangents and the axis of x as forming an 
elemental triangle (Fig. 32) 

area=2.4 — 

O T T' 

Fig. 32. 

EXAMPLES. 

1. Find the area of the two-cusped epicycloid 

p —2asin^. 

[Limits \lr~0 to yfr — TT for one quadrant.] 

2. Obtain the same result by means of its pedal equation 

[Limits r=a to r=2a for one quadrant.] 
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3. Find the area between the catenary #=ctanVr, its evohite, 
the radius of curvature at the vertex, and any other radius of 
curvature. 

4. Find the area between the epicycloid s — ABinByl/, its 
evolute, and any two radii of curvature. 

5. Find the area between the equiangular spiral its 
evolute, and any two radii of curvature. 

Akeas of Pedals. 

141. Area of Pedal Curve, 
If ^)=/(-v/r) be the tangential-polar equation {Dlff. 

Calc, for BeglnnerH^ Art. 180) of a given curve, 
will be the angle between the perpendiculars on two 
contiguous tangents, and the area of the pedal may be 

expressed as ^ (compare Art. 131). 

Fig. 33. 

Ex. Find the area of the pedal of a circle with regard to a 
point on the circumference (the cardioide). 

Here if OF be the perpendicular on the tangent at P, and 
OA the diameter ( = 2a)y it is geometrically obvious that OP 

bisects the angle AOY. Hence, calling T0A=^jr, we have for 
the tangential polar equation of the circle 

p = 2aco82^. 
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where the limits are to be taken as 0 and tt, and the result to 
be doubled so as to include the lower portion of the T)edal 

Thus ^ 

A = = cos^^dO = 8^2? ~ = 8 o 
.-Tra-. 

142. Locus of Origins of Pedals of given Area. 

Let 0 be a fixed point. Let p, bo the polar eo- 
ordinatoH of the foot of a perpendicular OY upon any 
tangent to a given curve. 

Let P be any other fixed point, PY^i — 'P^ 
pendicular from P upon the tangent. Then the areas 
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of the pedals with 0 and P respectively as origins are 

and 

taken between certain definite limits. Call these 
areas A and respectively Let r, 6 be the polar 
coordinates of P with regard to 0, and x, y their 
Cartesian equivalents. Then 

Pi — P cos( — X cos — y sin \[r, 

and is a known function of i/r Hence 

2A^ — = ^{p — X cos ^jr — y sin yj/fdylr 

= ^p'^dyjr — 2x^p cos \lr dxjj' — 2y|p sin \/r dxf/' 

4- oj^Jcos^i/r dyfr + 2ir7/|cos xjr sin xj/^ d\fr 

4-^^Jsiirx/r 

Now 2^p cos >/r d.\p', 2^p sin xfr dxj/', Jcos^>/r d\}r,... 

between such limits that the whole pedal is described 
will be definite constants. Call them 

~2/, a, 2/q h, 

and we thus obtain 

2 A j = 2 A + 2gx 4- 2fy 4- ax^ 4- 2hxy + hy^. 

If tlien P move in such a manner that A ^ is constant, 
its locus must be a conic section. 

143. Character of Conic. 

It is a known result in inequalities that 
(p2 q. ^2 ^ ^2 q_ 4_ q. ^^2 q. q. /,.^2^ 

<(PPi + g^i+...4-A:/-i)^ 
Hence it will be obvious that if p, q,r, ..., stand for 
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cos/it, co8 2/i, cos3/t, , cosnh, and 2)1, ••• > 
smh, sin 2//, etc., we shall have in the limit when h is 
made indefinitely small and oih finite = \/r, say, 

\p 
cos-\J/'dxf/^ X I sin“>/^ JA/r> 

00 0 

i.a. ah > h\ 

Hence our conic section is in general an ellipse. 
Moreover the position of its centre is given by 

hxA- hy-\~/=0j ’ 

and is independent of the magnitude of Ay Hence 
for different values of these several conic-loci will 
all be concentric. We shall call this centre [1 

144. Closed Oval. 
Next suppose that our original curve is a closed 

oval curve, and that the point P is within it. Then 
the limits of integration ai’e 0 and 27r. 

Thus 

and h = 1 cos i/r sin ^ d\fr = 0. 

0 

Hence the conic becomes 

■7r(«“+'if) + 2(jx+2fy + 2{A-Aj) = 0, 

i.e, a circle whose centre is at the point 

— I pcosyfrdxjr, -1 psindi/r. 

145. Connexion of Areas. 
The point f2 having been found, let us transfer our 

origin from 0 to f2. The linear terms of the conic 
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will thereby be removed. Tims is a point such 

that the int(^grals cos yjr d\p' and sin dyj/^ both 

vanish, and if II be the area of the pedal whose pole 
is we liavc for any other 

2 j — 2n 4- cix* + ^hxy + 6 ?/- 
in tlie general case. The area of this conic is 

2^(J,~n) 

' jTih^d 
(Smith s Conic Sections, Art. I7l). Thus 

A.^ = n4-—~ (area of conic). 

For tlie particular case of any closed oval the equa¬ 
tion of tlie conic ])ecomes 

2.i, = 2II + 7r(^H?/^), 

whence = + 

wliere r is the radius of the circle on which P lies for 
constant values of i.e. the distance of P from Q. 

146. Position of the Point U for Centric Oval. 
In any oval which has a centre the point Q is 

plainly at that centre, for when the centre is taken as 

origin, the integrals cos yjr d\[r and Jp sin yp' d\fr 

both vanish when the integration is performed for the 
complete oval (opposite elements of the integration 
cancelling). 

147. Ex. 1. Find the area of the pedal of a circle with 
regard to any point within the circle at a distance c from the 
centre (a liina^on). 

Here = 11 +21* 

II=5ra* and 

Hence 
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Ex. 2. Find the area of the pedal of an ellipse with regard 
to any point at distance c from the centre. 

In this case IT is the area of the pedal with regard to the centre 

^2 ^ +6“sin^0)dO={a? + 
‘0 

H ence d i === + b- + o^). 

Ex. 3. The area of the pedal of the cardioide r —o(l - cos 6^) 
taken with respect to an internal point on the axis at a distance 
6‘ from the pole is 

(5^^ — 2ac+ 2c^). 
8 [Math. Tktpos, 187G.] 

Lot (> be the i)ole, V the given internal i)oint; p and p^ 
the two perpendiculars OF2 tangent from 0 

and P respectively ; (ji the angle YMP and (>P=c ; then 

Pi—P’~ 2d 1 = 2d — 2c^p cos </-) d<l> + j 6‘-cos"</> dcj:>. 

Now in order that p may sweep out the whole pedal we must 

integrate between limits <f>~0 and and double. Now in 

the cardioide (Fig. 30) 

p—OQsin T2QO-OQsin^scOQ. 

[Diff. Calc,, p. 190.] 
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or and 
2^2 2 2 3 

80 p = r sin ^ ~ 2a siii^ ~ ~ 2a cos-'^ 
^223 

Hence Jp cos ^ d<f> ~'^j 2a cos^^ cos cjxJcf) 

0 n 
— 4a xsj cos'^2 cos 3^^ dz 

0 

7t 
= 12a [4 cos% ~ 3 co^^ldz 

‘o 

-l^ar4- ^ ^ --3- ^ 
L (> 4 2 2 4 2 2J 4 

Also f c^cos^fji d(b — 3.2c^- ^ 
J 2 2 2 

ftT jr 

Finally 2A = 2 4a^coB^id<f> — 24a^ f cos% dz, 
*0 ’ ‘0 

A^l2d^'l ? 1 
6 4 2 2 8 

rpi „„ 4 IfiTra- 37rac Sttc- 

= ~7r(5a2 -- 2ac+2c“). 
8 

148. Origin for Pedal of Minimum Area. 
When 0 is taken as origin, it appears that 

2 = 211 + |(cc cos + 2/ sin \fEfd\p'. 

Hence as the term j*(^r co^ \fr + y sin rlrydyfE is necessarily 

positive, it is clear that can never be less than IL 
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fi is therefore the origin for which th(^ corresponding 
pedal curve has a ininiinuin area. 

149. Pedal of an Evolute of a Closed Oval. 

The formula for the area of any closed oval proved 
in Art. 138 is 

Hence 

which plainly expresses that the area of any pedal 
of an oval curve is equal to the area of the oval itself 
together with the area of the pedal of the evolute (for 

is the radius vector of the pedal of the evolute). 

This also admits of elementary geometrical proof. 

Ex. Find the area of the ]>edal of the evolute of an ellipse 
with regard to the centre. 

The above article shows that 

area of pedal of evolute — area of pedal of ellipse — area of ellipse 

= -f 6'q ~ Trah = ^(a - hf. 
2 2 
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150. Area bounded by a Curve, its Pedal, and a 
pair of Tangents. 

Let P, Q, be two contiguous points on a given 
curve, F, Y' the corresponding points of the pedal of 
any origin 0. Then since (with the usual notation) 

di) 
PY=~i^j tlie elementary triangle bounded by two 

contiguous tangents PF, QF' and the chord YY' is to 
the first order of infinitesimals 

Fig. 38. 

Hence the area of any portion bounded by the two 
curves and a pair of tangents to the original curve 
may be expressed as 

and is the same as the corresponding portion of the 
area of the pedal of the evolute, 

161. Corresponding Points and Areas. 
Let f(x, y) = 0 he any closed curve. Its area ( 
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is expressed by the line-integral dx taken round 

the complete contour. 
If the coordinates of the current point (.r, y) be 

connected with those of a second point t]) by tlie 
relations x — y = oirj, this second point will trace out 
the curve f{7n^, nrj) = 0 whose area (^2) is expressed 

by tlie line-integral j*;; taken round its con torn*. 

And we liave 

A ^ — j*i/ dx = d^ = d^—mnA 

whence it appears that the area of any closed curve 
f(x, y)~0 is mn times that oi f{mx, iry) = 0. 

152. Ex. 1. Apply tills inetlKxl to find the area of the ellipse 

Putting 

■r.+f:=i. 
a- 0“ 

a r h r 

the corresponding point 77 traces out the circle 

*2 + 772 = ^2, 

and area of ellipse = ~ x area of circle 
r- 

= ^ X 7rr2 = 7ra6. 
J.I 

Ex. 2. Find the area of the curve {m^x^ 

Let mx=7iy = 77, 

then the corresponding curve is 

62 

/y2 }fi 
or in polars ^ ^ cos2 8in26^, 

the central pedal of an ellipse, symmetrical about both axes. 
B. I. c. M 
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Hence the area of the first curve 

= -J_ X area of second 
mn 

= J_.2. ( cos2^-f-^sin2^)c?^ 
mn J \7n^ / 

2m.n\m^ n^J 

EXAMPLES. 
♦ 

1. Find the area of the loop of the curve « 

af-=a'\a-:c). [I C. S., 1882.] 
2. Find the whole area of the curve 

^ aV = a2.r2-^-4. [I. C. S., 1881.] 

3. Trace the curve ?/^(2a —y), and prove that its area is 
equal to that of the circle whose radius is a. 
^ [1. C. S., 1887 and 1890.] 

4. Trace the curve a\?/— ar^{2a — .v)y and prove that its area is 
to that of the circle whose radius is a as 5 to 4. 

'^5. Find the whole area of the curve 

2_ — V 
[Clare, etc., 1892.] 

^6. Bj means of the integral ^ydx taken round the contour 

of the triangle formed by the intersecting lines 

y^a^x^-h^y y = aa.^+62, y^a.jX-^h^y 

sliow that they enclose the area 

2(ai - ag) 2(02 - «i) 2(03 - a^) ^ 
/ [Sm. Prize, 1876.] 
^ 

7. Find the area between =-and its asymptote. 

8. If -y^r be the angle the tangent makes with the axis of 
show that the area of an oval curve is 

± Jycoay/rds or if Jx ain-y/r ds, 

the integration being taken all round the perimeter. 
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9. Find the areas of the curves 

'^10. Find the areas bounded by 

.r2+y2^2ff?/, x=a. [H. C. S., 1881.]' ¥ 
11. The parabola y^ — ax cuts the hyperbola x^-y^ — ^^la^ at 

the points ; and the tangent at P to the hyjierboia cuts the 
parabola again in R, Find tlie area of the curvilineal triangle 
P^^^- [Oxford, 1889.] 
\/'\2. Find the area common to the ellipses 

_/ ^;“ + 2y2 = 2c2, 2x^-\-y^^2c^. [Oxford, 1888.] 

1^1. Find the two portions of area bounded by the straight 
line y~Cy and the curves whose equations are . 

i/-h4:X'^=^4c^. [1. C. S., 1891.] 

14. Find by integration the area lying on the same side of 
the axis of x as the jiositive part of the axis of ?/, and which 
is contained by the lines y“ — 4(iXj x^-{-y^~2aXy .r—y + Sa. 

Express the area both when x is the independent variable 
and when y is the independent variable. [Pkterhouse, etc., 1882.] 

15. If A is the vertex, 0 the centre, and P any point on the 
hyperbola x^la^ —y'^jb^^lj prove that 

.2S , . , 2.S' 
x — a cosh ~, y — o sinh —-, 

ab' ^ ab' 
where S is the sectorial area AGP, [Math. Tripos, 1885.] 

16. An ellipse of small eccentricity has its perimeter equal 
to that of a circle of radius a. Shpw that its area is 

7ra“(l-5^c^) nearly. [a, 1883.] 

17. Find the curvilinear area enclosed between the parabola 
y‘^ = 4:ax and its evolute. 

18. Show that the area of the pedal of an ellipse with regard 
to its centre is one half of the area of the director circle. 

19. Prove that the area of the locus of intersections of 
tangents at right angles for tlje curve 

x^A-y^ — cfi is jTra-. [Math. Tripos, 1888.] 

20. Prove that if s be the arc of the curve 

r—asQca^ I 
^—tana-a,/ 

where a is a variable parameter, measured from the initial 
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line to a point P on tlie curve ; and if J be the area bounded 
by the curve, the initial line, and the radius vector to P, then 

21. Find the area of the closed portion of the Folium 

__ 3a sin 0 cos 6 
8ii?(9+cos^e' [I. 0. S., 1884.] 

In what ratio does the line a)-\-y — ^a divide the area of the 
loop? [Oxford, 1889.] 

22. Find the area of the curve r—aOe^^ enclosed between two 
^iven radii vectores and two successive branches of the curve. 

[Trinity, 1881.] 

'^23. Find the area of the loop of the curve r = aOco^ 0 between 

and ^ = 
[Oxford, 1890.] 

24. Show that the area of a loop of the curve r = a cos 7i0 is 

, and state the total area in the cases 7i odd, even. 
4?i 

'^25. Find the area of a looi> of the curve r —a cos 3^4* & sin 3^. 
y [I. C. S., 1890.] 

20. Show that the area contained between the circle r — a and 
the curve a cos 5^ is equal to three-fourths of the area of the 
circle. [Oxford, 1888.] 

27. Prove that the area of the curve 

r2(2c2cos2^ — 2ac sin 0 cos 6 -f a^sin^O) — 

is equal to irac. [I. C. S., 1879.] 

28. Find the whole area of the curve represented by the 
equation r = acoB 0 + assuming h > a. 

29. Find the area included between the two loops of the 
curve r = a(2 cos 0 -f ^3). [Oxford, 1889. ] 

30. Find the area between the curve r=a(sec ^4-cos 0) and 
it^K asymptote. 

^31. Prove that the area of one loop of the pedal of the 
lemniscate r^~a^cos20 wdth respect to the pole is aP. 
j [Oxford, 1886.] 

32. Find the area of the loop of the curve 

j [Oxford, 1890.] 

^ 33. Prove that the area of the loop of the curve 

[e, 1884.] 
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34. Find the vvliole area contained between the curve 

+y*0=«“( y- — X“) 

and its asymptotes. [Oxford, 1888.] 

35. Show that tlie area of the ellipse - ~r^ iii- 

eluded between the curve, the semi-major axis, and a radius 

vector r from the centre, is -|^^-tan“^ h beinff the 

semi-axes of the ellipse. [Clare, etc., 1882.] 

30. Show that the area included between the curve « = atan>//-, 
its tangent at = 0 and its tangent at i/r =-.</), is 

tan <f> -f a^tan — a“log(sec -f- tan <^). 

[Trinity, 1892.] 

37. Show that the area of tlie space between the epicycloid 
'p—A sin B\lr and its pedal curve taken from cusp to cusp is jird V>. 

38. Show that the curve ?* = a(W3 + cos^6^) has three loops 

whose areas are a-(f7r + 2V3), a‘(^7r-fv^3), a“(vl7r-5\^3) re¬ 
spectively, [Colleges, 1892.] 

^0, Find the area of a loop of the curve 

,T^+^* — 2a^a'y. [Oxford, 1888.] 

40. Find the area of the pedal of the curve [Evol. of Ell.] 

(fw)3 + {hy)l={a'‘ - 

the origin being taken at x=’Jd- — h'‘, y = 0. [Oxford, 1888.] 

41. Find the area included between one of the branches of 
the curve — and its asymptotes. [a, 1887.] 

'^2. Find the whole area of the curve 

[a, 1887.] 

43. Find the area of a loop of the curve 

[St. John’s, 1887. ] 

44. Trace the shape of the following curves, and find their 
areas :— 

(i.) —aocy^, 

(ii.) — 
[Bell, etc., Scholarships, 1887.] 

45. Prove that the area of 
r% ‘»/2\2 . TTC^/ 

ia - 

^ao 
IS ^(a2+t2) 
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46. Prove that the area in the positive quadrant of tlie curve 

47. Prove that the area of the curve 

{a^x- + hh/y — -y^) is tair^ -|. 

[St. John’s, 1883.] 
48. Prove that the area of the curve 

where c is less than both a and 6, is Tr{ah-c^), [Oxford, 1890.] 

49. Prove that the area of the curve aA-^ax^ + a\±c^-\-y^) — 0 
is ^irai [Math. Tripos, 1893,] 

50. Prove that the areas of the two loops or the curve 

7*2 - 2ar cos B - 8ar+= 0 

are (327r+2 4^3) a^, 

and (IGtt - 24\/3)a2. 
[Math. Tripos, 1876.] 

[Note on Ex. 46. Locus of mid-points of chords of an ellipse 
which touch a fixed circle. 

Note on Ex. 48. Locus of mid-points of chords of length 2c 
r2r 

of an ellipse. Therefore area required = 7ra6 - / ^c^dB, Hence 
result. But the student may use Art. 151.] 



CHAPTER XI. 

SURFACES AND VOLUMES OF SOLIDS OF 

REVOLUTION. 

153. Volumes of Revolution about the a?-axis. 

It was sliown in Art. 5 that if the curve y=f{x) 
revolve about the axis of x the portion between the 
ordinates and x=X2 is to be obtained by the 
formula 

f*! 
ry-.dx. 

*1 

164. About any axis. 

More generally, if the revolution be about any line 
AB, and if PN be any perpendicular drawn from a 
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point P on the curve upon the line AB and P'N' a 
contiguous perpendicular, the volume is expressed as 

Lt^irPNKNF', 
or if 0 be a given point on the line AB 

=^7rPN^d(0N). 

155. Ex. 1. Find the voliiine formed hy the revolution of the 

loop of the curve — (Art. 130, Ex. 3) about the .r-axis. 
a X 

7ri/-dx = Tr / —~dx. 
J a-hx 

0 0 

Putting a-hx=z, this becomes 

a 

— 'jrj 4az —z^'^dz 
'a 

— ttFlog 2: — tmh + j 
L oAu 

=r27ra^[log2 —§]. 

Ex. 2. Find the volume of the spindle formed by the revolu¬ 
tion of a parabolic arc about the line joining the vertex to one 
extremity of the latus rectum. 

Let the parabola be y'^~4ax. 

Then the axis of revolution is ~ 2.r, 

PN=Z!L=^ 
Vs 

and 



and 

VOLUME OF REVOLUTION. 

Also AN^^lx■‘+f-{^Isfy 
Vs 

sJx- 4- 4/ + 4/.^ / Vs =: 

Vs 

Vs 

Vs~ ^ 

dr+ 2^~a 

Vs 

volumes = / tt/W^ . 

185 

,0 = /. 

47r ^ (r^ _ 27r((^ Vs 

5 Vs () 75 

156. Surfaces of Revolution. 
Again, if be the curved sinface of tlie solid traced 

out by the revolution of any arc AB aboTit the u^-axis. 

suppose PA^, QM two adjacent ordinates, PAT being the 
smaller, Ss the elementar}^ arc FQ, SS the area of the 
elementary zone traced out by the revolution of PQ 
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about the cc-axis, y and y A-Sy the lengths of the 
ordinates of P and Q. 

Now we may take it as axiomatic that the area 
traced out by PQ in its revolution is greater than it 
would be if each point of it were at the distance PN 
from the axis, and less than if each point were at a 
distance QM from the axis. 

Then SB lies between ^.'iry Ss and 27r(y and 
therefore in the limit we have 

dS ^ ^ 
ds = ^'^y or ^ 

iis may be written as 

= ^2Tryds, 

etc., 

as may happen to be convenient in any particular 
djS d^^ dfi 

example, the values of etc., being obtained 

from the differential calculus. 

♦157. Ex. 1. Find the surface of a belt of the paraboloid 
formed by the revolution of the curve about the .r-axis. 

Here 

and surface 

dy ^1(1 ds ^ L , a 

=27r /* ^y~dx 
J ^dx 
*1 

= 47r^/aJ ^x-h adx 

= f7ra^{{x^ + a)^- {x^ + a)^}. 

Ex. 2. The curve r = a(l + cos 0) revolves about the initial 
line. Find the volume and surface of the figure formed. 

Here volume— j7ry^dx=TrJrhm^0d(rcos0) 

^TT fa%l+ cos d(coa 6 + cos*^), 
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the limita being such that the radius sweeps over the upper 
half of the curve. 

Hence volume = ( (1+cos ^)2(1+2cos 

0 

= Tra^j (l-{-4cos 66 cos^0 +2 co(i^6)shi^6d6 
0 

r\ 

= 2Tra^l (l + r)COs2j9)sin^^t/^ 

The surface = Stt jy ds = 27rj r sin 0~^10 

= 277 J a(l + cos ^)sin d\ 1 + cos df + a^sin^^c?^ 

27ra^j (1 + cos ^)siii ^. 2 cos ^dd 

- IQttci^ / cos"^— sin —dO 

=32 , 
5 0 5 * 

EXAMPLES. 

1. Obtain the surface of a sphere of radius a (i.) by Cartesians, 
(iL) by polars taking the origin on the circumference. 
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2. A quadrant of a circle, of radius a, revolves round its chord. 
Show that the surface of the spindle generated 

= 27raV2^1 — 

and that its volume 
(>v/2 

(IO-Stt). 

3. The part of the parabola y^ — A^aw cut off by tlie latus 
rectum revolves about the tangent at the vertex. Find the 
curved surfat;e and the volume of the reel thus generated. 

Theorems of Pappus or Gulbin. 

158. I. When any closed curve revolves about a 
line in its own jilane, which docs not cut the curve^ 
the volume of the ring formed is equal to that of 
a cyli^uler whose base is the curve and whose height 
is the length of the 2mth of the centroid of the area 
of the curve. 

Let tlie ir-axis be the axis of rotation. Divide the 
ar(\a (A) up into infinitesimal rectangular elements 
with sides parallel to the coordinate axes, such as 

Pip2-^3^4> ^^ch of area SA, Let the ordinate P-Jihi ■= ?/. 
Let rotation take place through aii infinitesimal angle 
60. Then the elementary solid formed is on base ddL 
and its height to first order infinitesimals is ySO, and 
therefore to infinitesimals of the third prder its volume 
is 6A . ySO. 
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If the rotation be through any finite angle a we 
obtain by summation SA .y. a. 

If this be integrated over the whole area of the 
curve we have for the volume of the solid formed 

Now the formula for the ordinate of the centroid 
of a number of masses with ordinates 

'?/i> •••? If we seek the value of 
ZjTfh 

the ordinate of centroid of the area of the curve, each 
element SA is to be multiplied by its ordinate and 
the sum of all such products formed, and divided by 
the sum of the elements, and we have 

- _Lt 'EyoA 

'^~7A'isA’ 

or in the language of the Integral Calculus 

Thus 

2/ = 
jcW A 

^ydA=Ay. 

Therefore volume formed ^A{ay). 
But A is the area of the revolving figfire and ay 

is the length of the path of its centroid. 
This establishes the theorem. 
Coil. If the curve perform a complete revolution, 

and form a solid ring, we have 

a = Stt and volume = A{2iry). 

169. 11. When any closed curve revolves about a 
line in its own plane which does not cut the curve, 
the curved surface oJHhe ring formed is equal to that 
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of the cylinder whose base is the curve and whose 
height is the length of the path of the centroid of the 
perimeter of the curve. 

Let the ;;C-axis be the axis of rotation. Divide the 
perimeter s up into infinitesimal elements such as 
each of length Ss. Let the ordinate be called y. 
Let rotation take place through an infinitesimal angle 
SO. Tlicn the elementary area formed is ultimately a 
rectangle with sides Ss and yS6, and to infinitesimals 
of the second order its area is Ss. ySO. 

If the rotation be through any finite angle a we 
obtain by summation Ss. ya. 

If this be integrated over the whole perimeter of 
the curve we have for the curved surface of the solid 
formed 

a 

If we seek the value of the ordinate (rj) of the 
centroid of the perimeter of the curve, each element 
Ss is to be multiplied by its ordinate, and the sum of 
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all such products formed, and divided by the sum of 
the elements, and we have 

^_Lt ^ySs 

or in the language of the Integral Calculus 

and the surface formed =s(afi). 

But s is the perimeter of the revolving figure, and 
afj is the length of the path of the centroid of the 
perimeter. 

This establishes the theorem. 
Cor. If the curve perform a complete revolution 

and form a solid ring, we have a = 27r and 

surface = s(27r>?). 

Ex. The volume aud surface of an anchor-ring formed by 
the revolution of a circle of radius a about a line in the plane of 
the circle at distance d from the centre are respectively 

VO lume = Tra^ x = ^ir^a^dy 

surface=2ira x Stto?=Air^ad. 

EXAMPLES. 

1. An ellipse revolves about the tangent at the end of the 
major axis. Find the volume of the surface formed. 

2. A square revolves about a parallel to a diagonal through 
an extremity of the other diagonal. Find the surface and 
volume formed. 

3. A scalene triangle revolves about any line in its plane 
which does not cut the triangle. Find expressions for the 
surface and volume of the solid thus formed. 
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160. Revolution of a Sectorial Area. 
When any sectorial area OAB revolves about the 

initial line we may divide the revolving area up into 
infinitesimal sectoi’ial elements such as OPQ, whose 
area may bti denoted to first order infinitesimals by 

Being ultimately a triangular element, its 
centroid is ^ of the way from 0 along its median, and 
in a coinph^te revealiition the centroid travels a distance 

27r(|r sin 0) or ‘^ttv sin 6. 

Thus by Guldiifis first theorem the volume traced 
by the revolution of this element is 

sin 9 

to first order infinitesimals, and therefore the volume 
traced by the revolution of the whole area OAB is 

iTrJr^sin 9 d9. 

161. If we put 

aj = rcosd, 2/ = rsm6, and ^ = tan0, 

we have r^sin 969 = r^sin 0^(tan " H) 

=r®8in 9. i-r-s=r^&^9t St=St, 
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and the volume may therefore be expressed as 

1dt. 

EXAMPLES. 

1. Find by integration the volume and surface of the right 
circular cone formed by the revolution of a right-angled triangle 
about a side which contains the right angle. 

2. ])etei‘niine tlie entire volume of the ellipsoid which is 
generated by the revolution of an ellipse around its axis major. 

[I. 0. S., 1887.] 
3. Prove that the volume of the solid generated by the 

revolution of an ellipse round its minor axis, is a mean pro¬ 
portional between those generated by the revolution of the 
ellipse and of the auxiliary circle I’ound the major axis. 

[I. a s., 1S81.] 
4. Prove that the surface of the prolate spheroid formed by 

the revolution of an ellipse of eccentricity c about its major 
axis is equal to 

2 . area of ellipse. -j^Vl ~ 

Prove also that of all prolate spheroids formed by the revolu¬ 
tion of an ellipse of given area, the sphere has the greatest 
surface. [I. 0. S., 1801.] 

6. Find the volume of the solid produced by the revolution of 

the loop of the curve about the axis of x. 

[I. C. S., 1892.] 
6. Find the surface and volume of the reel formed by the 

revolution of the cycloid round a tangent at the vertex 

/^•=a^ + a sin 

= a(l — cos Q), f 

7. Show that the volume of the solid formed by the revolu¬ 
tion of the cissoid y%2a~-x)==x^ about its asymptote is equal 
to 27rV, [Trinity, 1886.] 

8. Find the volume of the solid formed by the revolution of 
the curve {a-x)y^—a^x about its asymptote. [I. C. S., 1883.] 

9. If , the curve r—a+^cos^ revolve about the initial line, 
show that the volume generated is ^7ra{a^+b‘^) provided a be 
greater than h, [a, 1884.] 

B. I. c. N 
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10. Find the volume of the solid formed by the revolution 
about the prime radius of the loop of the curve r’^^a^^cos^ 

between ^==0 and __ _ 
2 [Oxford, 1890.] 

11. Show that if the area lying within the cardioide 

r=2a(l*f cos 0\ 

and without the parabola r(l+cos0=2a, revolves about the 

initial line, the volume generated is 187ra^. [Trinity, 1892. J 

12. The loop of the curve 2av^=.r(jr-a)^ revolves about the 
straight line y — a. Find the volume of the solid generated. 

[Oxford, 1890.] 

13. Show that the coordinates of the centroid of the sectorial 
area of r—f{6) bounded by the vectors $~a, 0 = 13, has for its 
coordinates 

f J^r^cos OdO f J^rhin OdO 

-’ 

rrHO 

14. Show that the centroid of the cardioide r~a(l —cos^) is 
• • • 

on the initial line at a distance --- from the origin. 

15. If the cardioide r = a(l--co8^) revolve round the line 
2>=r co^O — y), prove that the volume generated is 

SjottW4-17^2^3^08 y. [St. John’s, 1882.] 

16. The curve r=a{\-e cos 0), where e is very small, revolves 
about a tangent parallel to the initial line. Prove that the 
volume of the solid thus generated is approximately 

27r2a^(H-e2). [I. c. S., 1892.] 

17. The lemniscate r^—aho8 20 revolves about a tangent at 

the pole. Show that the volume generated is 



CHAPTER XIL 

SURFACE INTEGRALS. 

SECOND-ORDER E1.EMENTS OF AREA. 

MISCELLANEOUS APPLICATIONS. 

162. Use of Second Order Infinitesimals as Ele¬ 
ments of Area. 

For many purposes it is found necessary to use for 
our elements of area second order infinitesimals. 

163. Suppose, for instance, W(i desire to find the 
mass of the area bounded by a given curve, the a;-axis, 
and a pair of ordinates, when there is a distribution 
of surface-density over the area not uniform, but 
represented at any point by cr = 0(x, y), say, where 
(x’, y) are the coordinates of the point in question. 

Let Oxj Oy be the coordinate axes, AB any arc of 
the curve whose equation is i/=/(.r); {a, f{a)] and 
{6,/(?>)} the coordinates of the points A, B upon it; 
AJ and BK the ordinates of A and B, Let PA, QM 
be any contiguous ordinates of the curve, and x,x + Sx 
the abscissae of the points P and Q, Let P, U be 
contiguous points on the ordinate of P whose ordinates 
are y, y+Sy, And we shall suppose &, Sy small 
quantities of the first order of smallness. 

Draw BS, UT, PV parallel to the cc-axis. Then the 
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area of the rectangle RSTU is Sx.Sy, and its mass 
may be regarded (to the second order of smallness) 
as (p{x, y)Sx Sy. 

Then the mass of the strip PNMV may be written 

or in conformity with the notation of the Integral 
Calculus PC -i 

\(p{Xyy)dy & 

between the limits 7/= 0 and y=f{x?). In performing 
tills integration (with regard to y) x is to be regarded 
as constant, for we are finding the limit of the sum of 
the masses of all elements in the elementary strip PM, 
i.e. the mass of the strip PM. 

If then we search for the mass of the area AJKB 
all such strips as tlie above must be summed which 
lie between the ordinates AJ, BK, and the result may 
be written pC 

Lt5^=oM y)dy \6x, 

which may be written 

the limits of the integration with regard to x being 
from x=a to x = b. 
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Thus mass of area 

or 

AJKB^ rr y)dy~^dx 
a u nf{x) 

^x, y)dy dx. 

164. Notation. 
This is often written 

rf(x) ri (j)(x, y)dx dy, 

the elements dx, dy being written in the reverse order. 
There is no uniformly accepted convention as to tlie 
order to be observed, but as the latter appears to be 
the more frequently used notation, we shall in the 
present volume adoj^t it and write 

IK’ y)dx dy 

when we are to consider the first integration to be made 
with regard to y and the second with regard to x, and 

y)dy dx 

when the first integration is with regard to x. That 
is to say, the right-hand element indicates the first 
integration. 

' Ex. If the surface-density of a circular disc bounded by 
given to vary as the square of the distance from 

the y-axis, find the mass of the disc. 
Here we have for the mass of the element ^ and its 

mass is therefore and the whole mass will be 

The limits for y will be y=0 to y—fJa^ — x^ for the positive 
quadrant, and for x from ^=0 to x—a. The result must then 
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be multiplied by 4, for the dietribiition being symmetrical in 
the four quadrants the mass of the whole is tour times that of 
the first quadrant. 

Thus 

0 

~4fij — 

dx 

Putting 07 = a sin 0 and (fo;=acos OdO^ we have 
ir /ir 
sin^^ cos^^ dQ 

0 

^ 2r(3) ^ 2.2 4 

165. Other Uses of Double Integrals. 
The same theorem may be used for many other 

purposes, of which we give a few illustrative examples, 
which may serve to indicate to the student the field 
of investigation now open to him. But our scope in 
the present work does not admit exhaustive treatment 
of the subjects introduced. 
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Ex. Find the statical mmient of a quadrant of the ellipse 

= 1 

about the ?/-axis, the surface-density being supposed uniform. 
Here each element of area is to be multiplied by its 

surface density <t (which is by hypothesis constant in the case 
supposed) and by its distance x from the ?/-axis, and the sum 
of such elementary quantities is to be found over the whole 
quadrant. The limits of the integration will be from y —0 to 

y — for ?/ ; and from x — 0 to .r = a for x. Thus we have 

— [ xs!d — x^dx 
a J 

0 

(rf;r_(a2-.r2)^n“_<rf;a2 

a L 3 Jo 3 ■ 

moment: ■/7 (TX dx dy 

166. Centroids. Cartesians. 
The formulae proved in statics for the coordinates 

of the centroid of a number of masses mg, m^, ... , 
at points y^, etc., arc 

_ 'l/unx „ Smy 
a; = -=^—, y = -^-, 

zm zvi 

We may apply these to find the coordinates of the 
centroid of a given area. (See also Arts. 158, 159.) 

For if (7 be the surface-density at a given point, 
then (T Sx Sy is the mass of the element, and 

_ ll(arSxSy)x 

or, as it may be written when the limit is taken 
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Similarly 

the limits of integration being determined so that the 
summation will be eficcted for the whole area in 
question. 

Find the centroid of the elliptic quadrant of the Example in 
Art. 165. 

It was proved there tliat the limit of the sum of the ele¬ 

mentary moments about the y-axis was crha^ 

Also 

Hence 

Similarly 

j I of the q\iadrant: 

- (rba^ I (rirah 4 a 
^3 I T "" 3^' 

jnrah 

3tt 

167. Moments of Inertia. 

When every element of mfiss is multiplied by the 
s(|uare of its distance from a given line, the limit of 
tlie sum of such products is called the Moment of 
Inertia with regard to the line. 

Such quantities are of great importance in Dynamics. 

Ex. Find the moment of inertia of the portion of the para¬ 
bola y^ — ^ax bounded by the axi.s and the latus rectum, about 
the .r-axis supposing the surface-density at each point to vary 
as the ?ith power of the abscissa. 

Here the element of mass is 

fjL being a constant, and the moment of inertia is 

Lt 8y or fijjy^x^dx dy^ 

where the limits for y are from 0 to 2Vaj7, and for x from 0 to a. 
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We thus get 

Mom. '^^dx = l^^°'Sa-x^*^dx 

*' 0 0 

3 Lk+|J» 3(2m + 5) 

Again, the mass of this portion of the pirahola ia given by 

ir= r dy = p 
*^0 0 0 

‘o 

Thus we have Mom. In. about 0.x-- 
3 2n + b 

EXAMPLES. 

1. In the first quadrant of the circle = the surface 
density varies at eacli point as .r?/. Find 

(i.) tlie mass of the quadrant, 
(ii.) its centre of gravity, 
(iii.) its moment of inertia about the .r-axis. 

2. Work out tlie corresponding results for the portion of the 
parabola ;/"=4o.ir bounded by the axis and the latus rectum, the 
surface-density varying as 

3. Find the centroid of a rod of which the line-density varies 
as the distance from one end. 

Find also the monumts of inertia of this rod about each end 
and about the middle point. 

4. Find the centroid of the triangle bounded by the lines 
y~inx.f x = and the .r-axis, when the surface-density at each 
point varies as the square of tlie distance from the origin. 

Also the moment of inertia about the y-axis. 

168. Polar Curve. Second-order Element. 

For polar curves it is desirable to use for our element 
of area a second-order infinitesimal of different form. 

Let OP, OQ be two contiguous radii vectores of the 
curve r=f{Q)\ Ox the initial line. Let 0, 0 + (50 be 
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the angular coordinates of P and Q. Draw two cir¬ 
cular arcs RU, ST, with, centre 0 and radii r and 7‘-hSr 
respectively, and let SO and Sr be small quantities of 
the first order. Then 

area RSTU = sector O/ST—sector ORU 

= i(rA-STfSe-^r^S6 
= r SO Sr to the second order, 

and to this order RSTU may therefore be considered 
a rectangle of sides Sr (RS) and rSO (arc R U). 

Thus if the surface-density at each point R{r, 0) is 
(r~<p(r, 0), the mass of the element RSTU is (to second- 
order quantities ar ^0 Sr, and the mass of the sector 
is therefore 

the summation being for all elements from r=0 to am n 
a-rdr 

0 

in which integration 0 is to be regarded as constant, 
and taking the limit of the sum of the sectors for 
infinitesimal values of SO between any specified radii 
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vectores 0A{d = a) and OB{0 — ^) we get the mass of 
the sectorial area OAB 

a 0 

or as we have agreed to write it (Art. 164), n/w) 
(TV dd dr. 

a 0 

Ex. Find the mass of a circle for which the surface-density 
at each point varies as the distance of that point from a point 
0 on the circumference. 

Taking 0 as the origin, and the diameter through 0 as the 
initial line, and a as the radius, the equation of the curve is 

r=2a cos 0. 
Then we have density at li (r, 0) is ur, and mass of element 

RSTUia fiArSOSr). 

The mass of the sector is therefore 

the integration with regard to r being between limits 

OR—0 and OR=OP— 2a cos 6. 
And if these sectors be summed for the whole circle, we 

have 

raass = 
m2a CM 9 n 
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or (Art. 164) 

IT ^ 
r 2^ /•2a COB tf 

~2 I fir^dO dr 

= 2fV[3r“''‘^^=f • 8«-’- 

169. Centroid. Polars. 

The distance of the centroid of a sectorial area from 
any line may be found as before by finding the sum 
of the moments of the elementary masses about that 
line and dividing by the sum of the masses. 

Thus (ttSOSt being the element of mass and rcosO 
its abscissa, its moment about the y-axis is 

r cos 6, err SO Sr. 

Thus 

and similarly 

. w 
x== - 

r cos 0 . err dO dr 

IF ^ 
(TV do dr 

- IF” 
sin 6. <ri'd9 dr 

2/=- 
a-r do dr 

Ex. 1. Find the centroid of tjie nj>per half of the circle in 
the example of Art. 168. 

We established the result for that semi-circle that 

j f or dO dr— 

Also between the limits r=0 and 7’ = 2acos 0 for r, and ^=0 to 

^ = |for 0. 

r r r? p^“]2aoo8^ 
J J rcos 0(rrdSdr= I ftcos61|^-J dO 

4^ut*J^coB^Od0^4/M*~ ^ = 
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and ^j rein 0(rrd0dr=j 
y4'n2aco8 9 

dQ 

Hence 

= 4fjua*j sinOcos^OdO 

0 

. N cos-'^^^n^ 4 4 

5=12/^^ 10^ 
15 / 9 

/■ 9a 16 3 
—IMX-^ -= -. 
9^ ‘20 

Ex. 2. Find the centroid of the area hounded hy the 
cardioide r==a(l+ cos ^), tlie surface-density bein^^ uniform. 

Fig. 60. 

The centroid is evidently on the initial line. To find its 
abscissa we have 

r cos 9 rdOdr 

fj' 
rdOdr 

the limits for r being from r=0 to r=a(l + coB^), and for 9 
from 0 to TT (and double, to take in the lower lialf). 

The numerator 
^-Ja(l+00B^) 

cos 
- fKI 

” I (cos ^ + 3 COB^^ + 3 COS^^ -f Q.OS*9)d0 
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TT 

=I ^ (3 cos^^ 4- Go^^d)d$ 

3 V 2 2^4 2 

The denominator = 2 

_4^3,^ 5^5 
"3“ 4*44' 

y2-ja(l+co8 6) 

dO 
im 
0 

= f (1 + 2 cos 0+cos^0)d0 

*0 

T 

— 2a^ f (14- cosW)dO 

0 

1\_3 o 

2/ 2^^’ 
==2a^~[ 14- 

Hence x—-ira^ I -7ra^=-a. 
4/2 6 

Ex. 3. In a circle the surface-density varies as the ?^th power 
of the distance from a point 0 on the circumference. Find the 
moment of inertia of the area about an axis through 0 perpen¬ 
dicular to the plane of the circle. 

Here, taking 0 for origin and the diameter for initial line, the 
bounding curve is r = 2acos0, a being the radius. The density 

=fir\ 

Hence the mass of the element rSOSr is and its 
moment of inertia about the specified axis is 

Hence the moment of inertia of the disc is 

’^dO dr 

where the limits for r are 0 to 2a cos and for 0 to ~ (and 
double). ^ 

Thus Mom. Inertia = 2 f —dO 
J 71 + 4 

2/x 
71 + 4 

(2a)»+‘J' cos”+^^ dd 

= J^L(2a)"+<!^ rcoS"+^ede. 
7i-|-4 7i4 4j 
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Again, the mass of tlie disc is 

r? r2acoB0 

21=2 / fir”+^dedr 

-(2a)”cos”+^6 

Hence Mom. Inertia = 4(re + 2)(n-f3)^^2 
(n+4y 

EXAMPLES. 

1. Find the centroid of the sector of a circle 

(a) when the surface-density is uniform, 
(/3) when the surface-density varies as the distance from 

the centre. 

2. Find the centroid of a circle whose surface-density varies 
as the ??th power of the distance from a point 0 on the circum¬ 
ference. 

Also its moments of inertia 

(1) about the tangent at 0, 
(2) about the diameter through 0, 

3. Show that the moment of inertia of the triangle of uniform 
surface-density bounded by the y-axis and the lines y —miOr+Ci, 
y = W2^-f 6*2, about the y-axis, is 

6 \ — W2 / 

wliere JFis the mass of the triangle. 

4. Find the moments of inertia of the triangle of uniform 
surface-density bounded by the lines 

y = rn-^x -f c^, y = imyx 4- C2, y = ni^ -f Cg, 

about the coordinate axes ; and show that if 21 be the mass of 

the triangle, they are the same as those of equal masses — 
placed at the mid-points of the sides. ^ 

5. Show that the moments of inertia of a uniform ellipse 

bounded by -s+,o =1 about the major and minor axes are 

respectively and , and about a line through the centre 

and perpendicular to its plane, 21- ^ , 21 being the mass 
of the ellipse. ^ 
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6. Find the area between tlie circles r=a, r=2acos^; and 
assuming a surface-density varying inversely as the distance 
from the pole, lind 

(1) the centroid, 
(2) the moment of inertia about a line through the pole 

perpendicular to the plane. 

V. Find for the area included between the curt^es 

(1) the coordinates of its centroid (assuming a uniform 
surface-density ), 

(2) the moment of inertia about the .r-axis, 
(3) the volume formed when this area revolves about the 

.ir-axis. 

8. Find the moment of inertia of the lemniscate r‘^ = a\^os2^ 
about a line through the pole perpendicular to its plane 

(1) for a uniform surface-density, 
(2) for a surface-density varying as the square of the 

distance from the fjole. 

9. Find 

(1) the coordinates of the centroid of the area of the cycloid 

cr=«f(^-|-8in ^), y = a(l—cos^); 

(2) the volume formed by its revolution 

(<r) about the base (3/ = 2a), 
(6) about the axis (:r=0), 
(c) about the tangent at the vertex. 
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CHAPTEE XIIL 

DIFFEEENTIAL EQUATIONS OF THE FIRST 

ORDER. 

VARIABLES SEPARABLE. LINEAR EQUATIONS. 

170. It is proposed to add a brief account of the 
common methods of solution of the more ordinary 
forms of differential equations leadings up to such 
as are required by the student in his reading of 
Analytical Statics, Dynamics of a Particle, and the 
elementary portions of Rigid Dynamics. 

We shall not enter at all upon the solution of 
differential equations involving partial differential 
coefficients. 

171. Genesis of a Differential Equation. 
Let us examine for a moment how the “ ordinary 

differential equation is formed, and what kind of 
result we are to expect as its solution.’' 

Any equation, such as 

fix, y, a) = 0,.(1) 

in which the form of the function is known, is repre¬ 
sentative of a certain family of curves, for each indi¬ 
vidual of which the constant a receives a particular 
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and definite value, the same for the same curve but 
different for different curves of the family. 

Problems frequently occur in which it is necessary 
to treat th() whole family of curves together, as, for 
instance, in finding another family of curves, each 
member of which intersects each member of the former 
set at a given angle, say a right angle. And it will be 
manifest that for such operations, the particularizing 
letter a ought not to appear as a constant in the 
functions to be operated upon, or we should be treat¬ 
ing one individual curve of the system instead of the 
whole family collectively. 

Now a iriay be got rid of thus:— 
Solve for a; wo then put the equation into the form 

<p{x, y) = a,.(2) 

and upon differentiation with regard to x, a goes out, 
and an e([nation involving x, y and 7/^, replaces 
equation (1). 

This is th(‘n the differential equation to the family 
of curves, of which equation (1) is the typical equation 
of a member. 

In the formation of the differential equation it may 
be impracticable to solve for the constant. In this 
case we differentiate the equation 

f{x,y,a) = 0 .(1) 

with respect to x and obtain 

'dx~'dy dx ' 

and then eliminate a between equations (1) and (3), 
thus obtaining a relation between x, y, and which 
is true for the whole family. 

For example, consider the family of straight lines obtained by 
giving special values to the arbitrary constant in the equation 

y—mx. 
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Solving for w, -^ = 771, 
s 

and differentiating, 

or y=-*'7/i- 
Otlierwise, without first solving for 7n, we have 

and therefore 

This then is the differential equation of all straight lines 
passing through the origin, and expresses the obvious geometri¬ 
cal fact that the direction of the straight line is the same as that 
of the vector from the origin at all points of the same line. 

172. A gain, suppose the representative equation of 
the family of curves to be 

f{x, y, a, h) = Q,.(1) 

containing two arbitrary constants a, h whose values 
particularize the several members of tlie family. A 
single differentiation with regard to x will result in 
a relation connecting Xy y, u., h; say 

Vv ?>) = 0.(2) 

If we differentiate again with regard to x we shall 
obtain a relation connecting x, y^y a, b; say 

V^(^> =  (3) 

and from these three e(|uations a and b may theoreti¬ 
cally be eliminated (if tliey have not already dis¬ 
appeared by the process of differentiation), and there 
will result a relation connecting Xy y, ; say 

Vy 2/i. 2/2) = ^. 

the differential equation of the family. 

173. Order of an Equation. 
We define the order of a differential equation to be 

the order of the highest differential coefficient occurring 
in it; and we have seen that if an equation between 
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two imknowns contains one arbitrary constant the 
result of eliminating that constant is a differential 
equation of the first order; and if it contain two 
arbitrary constants the result is a differential equation 
of the second order. And our argument is general: 
so that to eliminate n arbitrary constants we’ shall 
have to proceed to n differentiations, and the result is 
a differential equation connecting x, y, y^y 
is therefore of the 7ith order. 

Ex. 1. Eliminate a and c from the equation 

Differentiating, x+— a. 

Differentiating again, 1 +yi+yy2~^^-> 
and the constants having disappeared we have obtained as their 
eliminant a differential equation of the second order being 
the highest differential coefficient involved), which belongs to all 
circles whose centres lie on the .r-axis. 

Ex. 2. Form the differential equation of all central conics 
whose axes coincide with the axes of coordinates. 

Here the typical equation of a member of this family of 
conics is 

Ax^+By^—\y 

and we have Ax -f- Byyi=0 

and A + 

whence 

is the differential equation sought. 

174. Elimination an irreversible process. 
Now this process of elimination is not in general a 

reversible process^ and when we wish to discover the 
typical equation of a member of a family of curves 
when the differential equation is given, we are com¬ 
pelled to fall back, as in the case of integration, upon 
a set of standard cases, and many equations may arise 
which are not solvable at all. 

We may infer, however, that in attempting to solve 
a differential equation of the Tith order we are to 
search for an algebraical relation between £c, y, and n 
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arbitrary constants, such that when these constants 
are eliminated the given differential equation will 
result. Su(;h a solution is regarded as the most 
general solution obtainable. 

Differp:ntial Equations of the First Order. 

175. There are five standard forms. 
Case I. Variables Separable. 

All e(|uations in which it is possible to get dx and 
all the xs to oiKi side, and di/ and all the y'B to the 
other, come under this head, and solve immediately 
by integi*ation. 

Ex. 1. Tima if s^ecy—aecx^JL 
dx 

we have cosxdx=co8ydy, 

and integrating, siii.j* = siny+ 

a relation containing one arbitrary constant A. 

Ex. 2. If 

we have 

and therefore 

£!±J 
y+1 

=^xi/ 
dy 

dx 

containing one arbitrary constant A. 

EXAMPLES. 

Solve the following differential equations :— 

1. X cos^y dx—y co8^.r dy. 

2. dy x^+x + l 3 ^+2[!±1±.1=0. 
dx y^+y-\-\' * dx 

4. Show that every member of the family of curves in Ex. 3 
cuts every member of the set in Ex. 2 at right angles. 

6. xy^~\l^~^ {I ^x+xP). 6. 
dx \+o(r dx 
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7. Show that all curves for which the square of the normal is 
equal to the square of the radius vector are either circles or 
rectangular hyperbolae. 

8. Show that a curve for which the tangent at each point 
makes a constant angle (a) with the radius vector can belong to 

no other class than r— 

9. Find the equations of the curves for which 
(1) tlie (./artesian subtangent is constant, 
(2) tlie Cartesian subnormal is constant, 
(3) the Polar subtangent is constant, 
(4) the Polar subnormal is constant. 

10. Find tlie Cartesian equation of the curve foi* which the 
tangent is of constant length. 

176. Case II. Linear Equations. 
[Def. An equation of the form 

^n-h ~l-h Q'l/n-2 A- ... +A’7/ = i? 

when P, Q,, K, R are functions of x or constants is 
said to he linear. Its peculiarity lies in the fact that 
no differential coefficient occurs raised to a power 
higher than the first.] 

As we are now discussing equations of the first 
order, we are limited for tlie present to the case 

yi+Py=Q- 
fp dx 

If this be multiplied throughout by c*' it will be 
seen that we may write it 

Thus 

a relation between x and y satisfying the given 
differential equation, and containing an arbitrary 
constant. It is therefore the solution required. 

The factor which rendered the left-hand mem¬ 
ber of the equation a perfect differential coefficient is 
called an integrating factor.” 
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Ex. 1. Integrate + .r?/ — .r. 

Ltix — 
Here or is an integrating factgr, and the equation 

lay be written 

X2 ^2 

yeA=e'^ +^, or 

i.e. 

Ex. 2. Integrate + 
f/.r .r' 

Jldx 
Here the integrating factor is e ^ and tlie equation 
ay be written may 

and 

or 

xy~'!^ + A, 

,/=-f + d. 

177. Equations reducible to linear form. 
Many equations, if not inmiediately of the linear 

form 
dy 

dx + Py^Q. 

may be immediately reduced to it by change of the 
variables. 

One of the most important cases is that of the 
equation 

^+Py-Qr> 

Putting = 

dz 



218 DIFFERENTIAL EQUATIONS. 

or da;+=Q(l-n), 

which is linear, and its solution is 

0.~n)fPdx xf/-! (\~n)fPdx . i 
=(1—-Ji) dx-^-A, 

. 1-n -'>i)fpdx \C/~\ 0--'n-)fPdx 7 M 
i.e. y e =:(l~7?dlQ6 dx^A, 

EX. 1. Infcegrate = ?A 
^ dx X ^ 

Here 

or putting 

dx X 

l^Z. 
V 

dz z 
dx X 

and the integrating factor being 

= -1, 

X 

we have 
dx\x/ X 

e. ~=logi+j4, 
X X 

,e. ^ 1=Ax — X log X. 

^ , 
Ex. 2. Integrate the equation ^4-^ sin 2y = ^cos^y. 

Dividing by cos^y we liave 

dy 

Putting 

we have 

sec^^+2x tan y—a^. 

tany=2, 

dx 

and the integrating factor is or e**, giving 

jx^d^'^dx+A, 
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Let x^ = a), 

tlien 

so tliat ja^<f^dx=^jwe^du) 

Thus tan y .(f^=\e^\x^ — 1) + yf 

is the solution of the given equation. 

It will be obvious that for examples of this kind 
considerable ing^enuity may be called into play in 
order to effect the reduction to the linear (or other 
known) form. 

EXAMPLES. 

Integrate the equations 

1. = 

2. ^sin 6a:. 
dx 

. dx X 0 4. - 4—=;^-. 
«y y 

5. + 

3^ 6. 
^ ^-2V-e y 

sjx ~Jxldy 

7. Show that no greater generality is obtained in the solution 
of Art. 176 by adding a constant to the index in obtaining the 

integrating factor 

8. Find the curves for which the Cartesian subnormal varies 
as the square of the radius vector. 

Integrate the equations 

(). 10. ii. 
dx X *x^ ^ dx X a:” 

11. -A xy—xy”. 
dx 

12. ^ + itan ?/ = -„ tan V sin?/. [Put v = sin~’«.] 
dx X x^ 

14, X —xd'^~'^K 
dx 

[Put 2 = 

[Put 2:-logy] 

15. Find the curves for which the sum of the reciprocals of 
the radius vector and the polar subtangent is constant. 
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16. Find tlie polar equation of the family of curves for which 
the sum of tlie radius vector and the polar subnormal varies as 
the nth power of the radius vector. 

17. Show that the curves for which the radius of curvature 
varies as the square of the perpendicular upon the normal 

belong to the class whose pedal equation is .^^-\-Ae^^, 
Jc being a given constant and A arbitrary. ^ 

18. Integrate the equations 

(1) f'+i-'*, ax X x^ ^'^dx T+x 
“(1 Ax^fseci/, 



CHAPTER XIV. 

EQUATIONS OF THE FIRST ORDER-Continued. 

IIOMOGKNEOUS EQUATIONS. ONE LETTER ABSENT. 

CLAIRAUT’S FORM. 

178. Case III Homogeneous Equations. 

Equations homogeneous in x and y may be written 

{a) In this case we solve if possible for and 

obtain a result of the form 

1=^©- 
Putting y = vx, 

(Iv _ dx 

~<f)(v)--v X ’ 

and the variables are separated and the solution thus 
comes under Case I., giving as result 

log Ax — f-77^v— • 

we obtain 

or 
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{h) But if it be inconvenient or impracticable to 

solve for we solve for and write v for and 
ax X ^ ax 

we have 
y = x^(p). 

Differentiating with respect to x, 
(1) 

p = ^ip)+X(l>X2j) 
(Ip 

dx' 

or 
dx _ (j>'{p)dp 

X ~p-<f>(py 

Integrating this equation we have x expressed as a 
function of p and an arbitrary constant 

Ax=F(2)) (say).(2) 

Eliminating /> between equations (1) and (2) we 
obtain the solution required. 

Ex. 1. Solve {x^-‘-\-y^y^-xy. 

Here dy_. ^ . 
dx ’ 

and putting y = vx, 

dv , V 

or 
^dv __ 

dx l+v“^ 

X \v^ vJ 

or log = log*’. 

r 

Ex. 2. Suppose the equation to be 

X dx \dx) ’ 

2. 
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Then p = {p-¥p‘^)-\-ai\ 4- 

or 

giving log J.r4-2 log^-~ —0, 

i.e. Axp^=e^\ 

and the jo-eliminant between 

1 
2 I 

and Axp^ — e^ J 

is the solution sought. 

This eliminant is 

But when it is algebraically impossible to perform the 
elimination of jh when, if performed, the result will be 
manifestly unwieldy, it is customary to leave the two equations 
containing p unaltered, and to regard them as simultaneous 
equations whose jo-eliminant if found would be the required 
solution. 

EXAMPLES. 

Solve the differential equations 

I ^ 
dx x+i/ 

2. (3x-h4:y) — (5x+6y)^^. 
dx 

dx 

/• 

5. y^x- 
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179, A Special Case. 

The equation readily reduced to 

Put 

Then 

the homo;^eneous form thus:— 
x — ^A-h, 

y=rj-\-h. 

dr] 

d^ Cl ^“h ^ ^ fc, ~f“ -f" c’) 

Now choose A, h so that 
ahA-l>hA-c = 0, 

Cl It -h hic -|- (I = 0 

_h _ k _ 1_ 
he' — h'c ca' — c'a ah' — ah' 

dr] _ a^A'h}] 

dy^ a'^ A" b t] 

This equation being homogeneous we may now 
put = and the variables are separable as before 
shown. 

ix. so that 

Then 

180. There is one case, however, in which hy k 
cannot be chosen as above, viz., when 

a __ b e 

Now let — = m and axA-by = r]. 

Then 
dx b\dx A 

so that a-b 
dx mrjA-c'' 

or 
dt] _ (am+b)r]+ad+be 

dx mr]A’C' * 

and ^ mr]A-d j 

"®“(am+6),+ac'+6c ’ 
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The variables bein^ now separated, the integration 
may be at once performed. 

181. One other case is worthy of notice, viz., 

dy _ ax + hy + e 

dx —/ax +//y-f c'’ 

when the coefficient of y in the immerator is eqnal to 
that of X in the denominator with the opj)Osite sign. 

For then we may write the equation thus 

{ax + c)dx -h h{y dx + x dy) = {h'y + c)dy 

an “ exact ” differential equation; the integral being 

ajy^ + -f ^hxy = h'y"^ -|- Sc'y -f A, 

A being the arbitrary constant. 

Ex. 1. Integrate® 
^ dx ,A-4-y-3 

Put + so that 

^ _ 2H- 3r; 4* (i^/i + ?A - 8) 
d^ ^ + (4 + ^ — 3) 

Choose h and k so that 

244-34-8 = 0,1 
44" 4 — 3 = 0,. 

dy) _ 2^ + 3?; 
d^ 4 4- 

Now put y)~v^, then 

^dv 24-3i^ 

^’1 i.e. 4 = 1, 4 = 2, 
0,/ 

then 

d^ 14«^ 

_d^_ 'z;4-l 

_ydv_ _2 43?;_t?2 —2v-2 
d^ ^ \-\-v v + l ’ 

dv 

_r v-\ 14 1 1 y\y 
L(v-1)-^-3"^V3Vv-1-v/3 v-1+^^JJ ’ 

-log? =1 log{(^-l)^-3}+^log^r-[^-J+^, 

where V"" 2 I and 
X-1 

K l.C. 
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Ex. 2. Integrate ^ — — 
d:v x+y-l 

Let = then 

^^=1 + 
dx Tf—l 7J—1^ 

and 

.v = ^ri-ilog{2r)-\) + A, 

where ri=-x+y. 

EXAMPLES. 

Integrate the equations : 

j dy_^2xj-^y 

dx~ Zx+’-ly 

dx 9.x-\-y — "i 

2 dy__2x+y — 2 

dx 2x-\-y~Z' 

7. (2^ + 3y-5)^| + 3^;+2y-5=0. 

^ dy _ ax + hy — a 

dx bx + ay - o 

dx x-hy-l 

2.r + 2y + l' 

8 (2^ + 3y-5)^^ + 2x+3y-l=0. 

9. Show that a particle x, y which moves so that 

^^=M+hy+g, 

dx 
dt 

= ~{hx+by+f)y 

will always lie upon a conic section. 

10. Show that solutions of the general homogeneous equa- 
dy's 

dx) 
tion /(^, must always represent families of similar 

curves. 

11. Show that solutions are homogeneous in x, 

y and some power of a single constant, and conversely that if 
the typical equation of a member of a family of curves be homo¬ 
geneous in X, y and some power of one constant, the differential 
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equation of the family is homogeneous and the family consists 
of similar curves. 

] 2. State which of the following families of curves are similar 
sets :— 

(1) (4) y 

(2) 7/ = a cosh (5) h tan ~= a + y. 
a X 

(3) = (6) 

for different values of a and h. 

182. Case IV. One letter absent. 

X absent. 
A. Suppose X absent from the differential equation, 

which then takt^s the form 

= 0, 

we now solve for or y, as may be most convenient. 

(i.) If we solve for we throw the equation into 

the form 

Then 

and the integral is 

(ii.) If this be inconvenient or impossible we may 
solve for y and obtain y — (p(j)), where 2^ stands as 

before for 
ax 
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Differentiate with regard to x, i.e. the absent letter. 

dx=—^~dp. 
V 

jr = j* ^—^dp + A. 

After the integration is performed wo eliminate p 
between this e(|uation and y = (jj(j)) and the solution 
of the given equation is obtained. 

The 

and 

Thus 

183. y absent. 

B. Suppose y absent from the differential equation, 
which then takes the form 

S)=®' 
Since -i- this may be written 

dx dx 

dy 

\fr(x. 
dx 

dy. 
= 0, 

and therefore if y be regarded as the independent 
variable the foregoing remarks apply to this case also. 
Thus 

dx 
(i.) if convenient we solve for -y-, and obtain a 

result of the form ^ 
dx , . 

,, ^ dx 
then dy = -7—r, 

and the integral is 
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(ii.) But if this solution for be inconvenient or 
dy 

impossible we solve for x and obtain a result of tlie 

form x = (j){q) where q stands for Then dilferen- 

tiating with regard to y, the absent letter, 

After tile integration we eliminate q between this 
equation and x = c()(q), and the solution of the given 
equation is obtaincal. 

The student should note that in either case, x absent 

or y absent, we solve for ^ by preference if possible. 

But when this is impossible or inconvenient we solve 
for the remaining letter and differentiate with regard 
to the absent one; thus considering the absent letter 
in either case as the independent variable. 

Ex. 1. Integrate the equation — 0. 

dy 1 
.r + - \dx, 

xJ 

^+logx-i-A 

is the solution. 

Ex. 2. Solve + 

dx 
^~dy 

where 
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Tlieii differentiating 'ivith regard to the absent letter 

or 

and 

dy^\_ 1 
dq q (f* 

y = log5-+±+^ 

and the ^^-eliminant between this equation and the original 

equation x~q-\-- is the solution required. 

EXAMPLES. 

Solve the equations : 

1 d)/ , 1 

2. f = ^ + i. 
dx X 

3. Va + ^^ + .r=0. 
dx 

4. {^Lax — 
dx 

5. (2ay H- ,y^) 3'^ = + 2rty. 
dx 

\dx/ dx' 

184. Case V. Clairaut’s Pom, 

Writing p for we have 

y=px+f{f).(1) 

Differentiating with regard to Xy 

{^+/(p)}^=0,.(2) or 

whence either ot xA'f'{p) = 0. 

Now ^ ^ gives p = C & constant. 
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Thus y — Cx-\-f{G) is a solution of the given differ¬ 
ential equation containing an arbitrary constant C. 

Again, if p be found fis a function of x from the 

.+/(rt = 0.(3) 

equation (2) will still be satisfied, and if this value of 
p be substituted in equation (1), or which is the same 
thing, if p be eliminated between equations (1) and (3) 
we shall obtain a relation between y and x which also 
satisfies the differential equation 

Now to eliminate p between 

V='px+f{p) 1 

0= x+f{p) ) 

is the same as to eliminate 0 between 

y==Gx+f{C) \ 

0= x+fXC)) 

i.e. the same as the process of finding the envelope of 
the line y = CxA-j{G) for different values of 0. 

There are therefore two classes of solutions, viz. ; 

(1) The linear solution, called the “ complete primi¬ 
tive,’' containing an arbitrary constant. 

(2) The envelope or “ singular solution ” containing 
no arbitrary constant and not derivable from 
the complete primitive by putting any 
particular numerical value for the constant 
in that solution. 

The geometrical relation between these two solu¬ 
tions is that of a family of lines and their envelope. 

It is beyond the scope of this book to discuss fully 
the theory of singular solutions, and the student is 
referred to larger treatises for further information 
upon the subject. 
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Ex. Solve y = m’ + -. 
P 

By Clairaut’s rule the complete primitive is 

m 
and the envelope or singular solution is the result of eliminating 
in between the above equation and 

i.e. y^=‘\ax. 
The student will at once recognize in the singular solution 

y'^— Uix the equation to a parabola, and in the ccunplete primi¬ 

tive y — the well known equation of a tangent to the 
in 

parabola. 

EXAMPLES. 

Write down the complete primitive, and find the envelope 
solution in each of the following cases :— 

1. y—px+p^, 4. y=px-{-Jd^p^ + (^. 
2. y=px-\-p^. 5. y~{x — a)p—p'^. 
3. y = px -f jo”. G. iy ~px){p - 1) = p. 

185. The equation 

y = x<p(2?)+i^(p),.(1) 
may be solved by differentiating with regard to x, 
and then considering p as the independent variable. 

For differentiating, we have 

p=<P(p)+J 

whence I j. i'Xp) 

dp l>ip)-p <i>ip)-p’ 
which is linear, the solution being 

^p)<ip <P'{p)dp 

'>^^-^dp+A (2) 
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If now p be eliminated between equations (1) and 
(2), tlie complete primitive of the original equation 
will result. 

Ex. Solve y — 2px . 

We have jo = 2p + 
CLaX/ CLxJC 

or — - 2«, 
dp 

gi viiig p'^x = “ T^p^ -A.(2) 

The p'diminant from these two e(]iiatioiis may now be found 
by solving e(iuation (1) for p^ and substituting in equation (2). 
Ihit if it l)e an object to ])resent the result in rational form, we 
may proceed thus :— 

By equation (2) 2p^ + Zp^x -f 3J =0,1 

fr( )m (1) + 2//vr - jtu/ — 0. j 

H ca) ce p^x — — 3 d == 0. 

An<l by cross-multiplication between this equation and 

—0, 

_\ ^ . L. 
iy^ q- ()Ax xy - 3d 2.r- + 2?/’ 

giving as the elirninant 

4(y“ q- 3da%r“ q-y) = (xy - 3d)“. 

186. The algebraic process of eliminating jo being 
in many cases difficult or impossible, the equations (1) 
and (2) are often regarded as simultaneous equations 
whose y?-eliminant is the solution in question but the 
actual elimination not performed. 

EXAMPLES. 
Solve the equations : 

1. y—p“X+p. 
2. y — axp+p"^. 
3. y=^p-x+p^. 

4. y = (jt?q-jt?2)rq-i. 

5. y={p+p'')x+^-^. 

6. y = 2/>.r-f//\ 

7. y=-apx+hp^. 
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8, Hie tangent at any point P of a curve meets the axis Oy in 
T and OT^ is proportional to the tangent of the inclination of 
PT to the axis Ox. Find the curve. [Oxford, 1888.] 

9. Find tlie differential equation of all curves which possess 
the projiertj that the sum of the intercejits made by the tangent 
on the coordinate axes is constant. Obtain as the complete 
primitive the equation of the tangent, and as the singular solu¬ 
tion the curves in question. 

10. Obtain the curves for which the area of the triangle 
bounded by the axes and a tangent is constant, 

11. Form the differential equation of curves for which the 
length of the ])ortion of the tangent intercepted between the 
coordinate axes is constant. Obtain and interpret the complete 
primitive and the singular solution. 

12. A curve satisfies the differential equation y=p\x~p)., and 
also that/? = 0 when | ,* determine its equation. 

[Oxford, 1889.] 

13. Find the complete primitive and singular solution of the 
equation 

[Oxford, 1890.] 

14. Show that by putting and 3/^ = ^, the equation 

Avyy^ + ~ Ay^ — B)y-^ ~xy=^0 

is reduced to one of Clairaut’s form. 
Hence write down its complete primitive and find its singular 

solution. Interpret the result. 



CHAPTER XV. 

DIFFERENTIAL EQUATIONS OF THE SECOND 

ORDER. 

EXACT DIFFERENTIAL EQUATIONS. 

187. Second Order Equation. 

We next come to the consideration of the difierential 
equation of the second order, 

2/.7/1. ?/2) = 0- 
Tliei'c is no general method of solution, but particular 
forms arise which present but little difiiculty. 

188. Case I. Suppose the Equation linear. 

The typical form will be 

where P, Q, R are functions of x. 
The usual method is first to omit R and try to 

obtain or guess a solution of 

Suppose y —f{x) to be such a solution. Put 

y =^zf(x). 
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Tlien j/j = zj{x) + zf{x) ; 

Vi = ^J{^)+2^i/X*)+zf''{x). 
Thus on substitution we get 

z,f(x)+2zj'(x)+zf{x) 

+ PsJ(x) + Pzf'{x) 

+ Qzfix) = R 

But f"(x)-\-Pj'(x)+Qf(x) = 0 by hypothesis. Hence 

1 It 

an e(|uation which is linear for 0^^. 
The integrating factor is 

j 
P+2- 

or {y(ic)}V 
fPdx 

and the first integral is 

^1 {f(^)} '** = jii {/{x)} + A, 

whence the second integral may be at once obtained 
and the solution effected. 

Ex. Solve — — 
dx 

Here y~o'. makes — x 

Put 

then 

Hence 

y = x makes -rR-{-x^ 'p- — x-y — 0. 
dx^ dx 

y — xz; 

y^^xz^ + z, 
yjj=^22 + 22^1. 

a* 
XZ2 + 2zi + a^{xz^ 4- ^) - x\xz) ~ * 

and the integrating factor is e*' '* or aP'e*. 
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Thus 

and 

1. e, 

vvlience 

5 
Cj.rV4 -\-A, 

2 e 4 

and the Kolntion re(^uired is 

44-/I ^dx->rB^ 

r n -^1 

5 J x- 

189. Case 11. One letter absent 
A. If X be absent, let 2/1=^, 

then 
dp d,p 

y'^=<Lrp-dy’ 
and the equation (p(y, y.,) —0 

takes the form 

and is of tlic first order. 
B. If y be the letter absent, let 3/1=p, 

then y,J£ 

and y^, y^) becomes 

P’ i)=^’ 
and again is of the first order. 

Ex. 1. Solve the equation 

Here x is absent. So putting yx^P and have 
dy 

yp^f-^-p^=^'-Iy\ or -|.?p2^4y. 
cLy oy y 

The integrating factor is e A** or y^, 

... 
or _y4_|. constant—y* + a*5 say. 
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lence ——^1= ~ dx, 

r 4- A. 

€. y^ = <2%iiih(2^-f-4). 

Ex. 2. Solve ^ +2/i~''^?hyv 

Here y is absent. So ])utting yi=p^ 

^ dx _ pdp 

X 14-p-’ 

?. log X ~ log Vl+p- + constantj 

s. 1 +p-=--5, say, 

‘ ady=‘Jx- — a-dx, 

xsfx^ — d^ X xx , j 
ay = -^-cosh--+6, 

a and b being arbitrary constants. 

EXAMPLES. 

Solve the following equations :— 

1. xyi = l. 6. y2+y/+y=0. 

2. i+yi^=yy2- ’/lya+yZ+a^^o. 

3. l+yy^—xh/.^. 8. y..+jyi-y=- e 
X 

4-%2^=4yi. 9-yy2=yi'‘-yi- [oxfokd, im] 

5. ay2 = (l+yM 

10. Solve the equation having given 

that ^ = 0 when y — 0. 
dx ^ [OXFOED, 1890.] 

11. Given that x^^ is a value of y which satisfies the equation 

.r2(log X — 1)“ -^2 log X — 1)^ + 2y log .r = 0, 

hnd the complete solution. [I. O. S., 1894.] 
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190. General Linear Equation. Removal of a 
Term. 

Let us next consider the more general equation 

Vn +l2/n - 1 + - 2 + • • • + ^ Q> 

where P^, P^, ..., Q are given functions of x. 
Putting y — vz, we have 

Vl = 
whence 

VZ^ + nVxZn- 1 + - 2 4* • •. + 

+ l^lVZ^_ 1 + (7^ - 1 )FxV^Zy,_ 2 + ... + Pi- iZ 

+ P'lVZn^ 2 + • • • + P2'^n - 2^ 

...+P,it’0=Q. 

The coefficient of Zn-\ is nv\-\-P\V, 
If then V be chosen so that 

dv __ P-^dx 
or v^e 

_[p,d 

:=P, J ^ 

the term involving Zn-\ will have been removed. 
Similarly, if v be so chosen as to satisfy the differ¬ 

ential equation 

the term containing Zn-2 will have been removed. 
The coefficient of 2^ is 

"t'n P P1'y n -1 + - 2 + • • • “h-P w» 

and if a value of v can be found or guessed which 
will make this expression vanish, we can, by writing 
2^^ = );, and therefore etc,, and ^n=^7n-ij reduce 
the degree of the equation by unity. The student 
should notice that this expression is the same in 
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form as the left hand member of the g'iven equation. 
Hence if any solution y~v can be found or guessed of 
the given equation when the right hand member is 
omitted, we can, by writing y — vz, and then = 
reduce the degree of the equation. 

191. Canonical Form. 
In the case of the equation of the second degree 

the substitution y = 

will by what has been above stated reduce the given 
equation to the sometimes simpler form 

But the general solution of this equation has not been 
at present effected. 

‘‘Exact'' Differential Equation. 

192. When ii is < q, is exact differential, 

and can be integrated whatever y may be. 

For denoting y<i’ 

\^xi’y^dx —xPy^.^— "^yq- ^dx, 

jxP - hjq .^dx=xP-hjq_^-{p-1)- ‘^yq . ^dx, 

etc,, 

Vq-P'-V 

Thus 

\^xPyqdx=^xPyq.^-pxP-'^yq.^+p{p-l)xP-^yq.!^-... 

+{-l)Pp\yq.p.^, 
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Tt will he noticed that when q—j) or < p the in¬ 
tegration cannot be effected. 

193. By aid of the above lemma we may often see 
quickly whether a given equation is “ exact.” For 
if all terms of the form in which pf is < </ be 
first removed, we can frequently tell at once by in¬ 
spection wlietlier the remainder is a perfect differential 
coefficient or not. 

Ex. -f +xy^ Ay—sin x. 

Here, by the Icimua, xhj^^ and .rb/4 are perfect differential 
coefficients, and obviously xy-^Ay is the differential coefficient 
of xy. Hence a first integral of this difiereiitial equation is 
obviously 

xhj^ ~ 4“ 2^2 + Fy^ — Zx^y^ 4- 6.ry^ - 6y A xy — - cos xA A. 

194. A more General Test. 
A more general test for an “exact” differential 

equation may be established in the general case 

Po2/n 4“ PiVn -lA^P^Vn - 3 + • ‘ + F,,?/ = F", 

whatever forms the coefficients Pq, P^, .., P^, V may 
have, provided they be functions of x. 

For denoting differentiations by dashes, we have 
upon integration by parts 

jPny dx = jp^y dx, 

^Pn-l.yidx= Pn.-i'y-^P'n-iydx, 

^Pn-iyidx= Pn-iyi—P'n-iy+^P"n -iy dx, 

^Pn-zy^x- = -P™- 33/2 - P'n - 83/1 + F'n .^y- -zy dx. 

etc. 

Hence upon addition it is obvious that if 

P.-P'n.l + PV2~P"n.3+...=0, 
Q E. I. C. 
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the ^iven equation is exact; and that its first in¬ 
tegral is 

+ (i\~3~ ••• — ^Vdx-\- A. 

Ex. Is the equation -f + 24^?/ = sin x exact ? 

Applying the test, we have 

Pi = 12.r-^ 

and /a - P2 + Pi — P^' — 24i? — 72.2; + 72.r — 24.r == 0. 
Thus the equation is exiict; and its first integral is 

(36.2?*^ — 36*.r^ +1 '2.x^)y + (12.2?^ — 4.^)?/i 4- x^y^ — — cos x+A, 

or 12x“y 4- + .nAy.^ “ — cos ^ + A. 

This again will be a perfect differential if 

12.r2-24^-24-12j;‘-^=0, 

which is satisfied. Hence a second integral will be 

(8^^ ~ 4x^)y 4-x^yi = - sin x-\-Ax4-B^ 

or 4uX^y+x^yi^—smx4-Ax+By 

which may again be tested. But it is now obvious that the 
third and final integral is 

=cos X -f 4- Bv + 0. 

EXAMPLES. 

1. Show that the equation x^y^ +1 bx^y2 + 4- 60j72y === e* ig 
exact, and solve it completely. 

2. Solve the equation 

x% + 6^y2 4- 6yi 4- sin x{y^ - 3yd 4- cos xi^y^ - y) = sin x, 

3. Write down first integrals of the following equations 

(a) 

(b) x^y^-hxyi~-y^x^(f. 
(c) x^yQ-^x^s+yyi’^x^^logx. 

4 Show that if the equation p2^/+Piyi + Poy2— V admits or 
an integrating factor /x, then p, will satisfy the differential 
equation 



CHAPTER XVL 

GENERAL LINEAR DIFFERENTIAL EQUATION 

WITH CONSTANT COEFFICIENTS. 

195. General Linear Differential Equation. 
The form of the general linear differential equation 

of the ■Titli 01‘der is 

d^y .p d”'~^y 
dx^ ^dx^'" ^ +• • •+P«.?y = .(1) 

where P^, .o., F are known functions of x. 
Let ns suppose that any particular solution 

y^A^) 

can be guessed, or obtained in any manner. 
Then making the substitution 

y=A^)+z 

we obtain 
(l^z p p ci^-% 

+ ... +Pn^ 

Suppose z~ z^, z = Z2, z = Zn to be solutions of this 
equation; then it is plain that 

Z = Aj^Zi + A2Z2 + A.^Z,^+,,,+An^n 

is also a solution of equation (2) containing n arbitrary 
constants A^, An, 
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Hence 

y ~ A. "j“ A 2^2 “h A^,^ 

is a solution of equation (1) containing n arbitrary 
constants, and is therefore the most general solution to 
be expected. No more general solution has been found. 

The portion/(.r) is termed the Particular Integral 
(iM.), and the remaining part containing tlie mi arbitrary 
constants, which is the solution when the right-hand 
]nember of the equation is replaced by zero, is called 
the Complementary Function (c.F.). If these two 
parts can be found the whole solution can be at once 
written down as their sum. 

196. Two remarkable Oases. 
There are two cases in which these solutions can be 

generally readily obtained. 
(1) When the quantities P^, ..., P^ are all 

constants. 
(2) When the equation takes the form 

. a, ,,,y 
a^, (Xg, ..., (in being constants and V any function of x. 

The solution of the second case is readily reducible, 
as will be shown, to the solution of an equation coming 
under the first head. 

Equation with Constant Coefficients—Comple¬ 

mentary Function. 

197. Let us therefore first determine the solution of 
such an equation as 

2/n+ai2/^>i-|-a2yn-2+ + = .(i) 

the coefficients being constants; i.e, for the present we 
confine our attention to the determination of the 
“ Complementary Function ” in the first case. 
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As a trial solution put y — Ae^^y and we liave 

+ a^rnnP ~ ^ ^ + ... + — 0.(2) 
Let the roots of this o<|uation be 

m^, m3, ..., rin, 

supposed (for tlic present) all diiferent, then 

are all solutions, and therefore also 

y = +A .(3) 

is a solution containing- n arbitrary constants A^, 
A.^, ..., An, and is the most general to be expected. 

* 198. Two Roots Equal. 
If two roots of equation (2) become equal, say 
— tile first two terms of the solution (d) become 
+ and since A^-jr-A,^ may be regarded as a 

single constant, there is an apparent diminution by 
unity in the number of arbitrary constants, so that 
(8) is no longer the most general solution to be 
expected. 

Let us examine this more closely. 

Put m2 = mj-f A 

Then A +A rlC-x^ “1 

+ +... J. 
Now A^ and A^ are t%vo independent arhitrary 

quantitiesy and we may therefore express them in 
terms of two other independent arhitrary quantities 
by two relations chosen at our pleasure. 

First we will choose A 2 so large that ultimately 
A^ when h is indefinitely small may be written 
an arbitrary finite constant. 
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Secondly, we will choose &o large and of opposite 
sign to A2that A^-i-A2 may be regarded as an arbitrary 
finite constant B,. Then the terms 

ultimately vanish with A since AoA has been considered 
finite and the expression in square brackets is con¬ 
vergent and contains h as a factor. 

Thus the terms A^e^^^A may, when 
be ultimately replaced by , and there¬ 
fore the number of arbitrary constants in the whole 
solution remains n, and we therefore have obtained 
the general solution in this case. 

199. Three Equal Roots, 
Consider next the case when three of the roots of 

equation (2) become equal, viz., mi = m2 = mjj. The 
terms, have already been re¬ 
placed by {B^AB^x)e^^^+A^e‘^^^. 

Let m, = “f Ic, 

Then A== + kx + ~+...J. 

Thus for A^e^^-^AA2e^^^AA^e^^^ we have 
J h2^2pmiZ 

+^.3)6“!"^+(£3+AgJc)xe'^^‘^ - 

+ + ...J, 

and we may so choose J.3, B^, and B^^ that 

B^AA^=G-^, 

A,k^ = 2C,, 
Cj, Cg, C3 being any arbitrary constants, whatever k 
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may be, provided it be not absolute zero. But AJc^ 
being cliosen a finite quantity, and the series within 
the square brackets being convergent, it is clear that 
ultimately, when k is indefinitely diminished, the 
limiting Ibrin of this expression is 

(Cj + C^x + 

200. Several Roots Equal. 
In a similar manner it will be obvious that if p 

roots of the equation (2) become equal, viz., 

mi = m2=... =:m^, 

there will be no loss of generality in our solution if 
we substitute the expression 

+ K^x^ +... + 
for the corresponding portion of the complementary 
function, viz., 

A +A +..»+ 

201. Generalization. 
More generally, if 

A^(p{m^ + A.^(j)(m^ +... + ^ n^O'^w) 

be the complementary function of any linear differ¬ 
ential equation with or without constant coefficients, 
what is to replace this expression so as to retain the 
generality when ? 

Let mg —mj+Zt. 

Then 

and the terms A^<l>{7n^+A^([>{m^ become 

Now putting ^ 2 = Aji^B^, 

two arbitrary finite constants, the remaining terms 
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ultimately disappear when we approach the limit in 
which h is indefinitely diminished. 

Thus + may be replaced by 

thus retaining the same number {n) of arbitrary 
constants A, 
in the complementary function as it originally 
possessed. 

And as in Art. 200 we may proceed to show that if 
p roots become equal, viz. — — ... the terms 

A^<p{m^ + A^(jy{m^ + • • • + Apcf){mp) 

may be replaced by 

wlien the generality of the solution will be retained. 
The results of Arts. 198, 199, 200 are of course par¬ 

ticular cases of this, the form of being 

202. Imaginary Roots. 
When a root of equation (2) of Art. 197 is imaginary, 

it is to be remembered tliat for e(|uations with real 
coefficients imaginary roots occur in pairs. 

Suppose, for instance, we have 

r)\ = a+lb, m^ —a —ih, 

where i~\/ — 1. 

Then the terms 

+Aor A 

may be thrown into a real form thus:— 

= A^e^®(cos hx + L sin bx) -f A2e®*(cos bx — i sin bx) 

— (A^+J.2)e®®cos bx+(J-i—A^ie^sm bx 

= bx -f bx, 
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whc^re tlie two arbitrary constants and replace 
respectively. 

Let B^ = p cos a, B^ = p^\n a, then 
,_ B., 

p = V 7^1“ + B^^ and a = tan " ^. 

T]len ^^cos hx+i^^in hx = p cos(bx — a). 

We may thus Lirtlier replace 

B-^e^^cos hx 4- B^e^^mn hx by (7^c‘*^cos(hx + C^), 

where and are arbitrary constants. 

203. Repeated Imaginary Roots. 
For n^peated imaginary roots we may proceed as 

before, for it has been shown that when 
may be replaced by (7^^ + and 

if m4 = ?7i3, may be replaced by 

If then v\ = 7^2 = a + ih and — a — d), we may 
leplace 

A + A 4- + A 

+ B.^x)e^^&^^+(^4 + B^x)e^=^e - 

til at is by 

e^^[{B^ + B^)cos hx 4- (7?^ — B^)i sin haf\ 

+ xF^[(B^ 4- ^Jcos hx 4- (74 — B^)i sin hx], 

and therefore by 

{?®®((73^cos hx+ f^^sin hx) -^^^-^"^(Cgcos 6xd- C^sin hx), 

that is by 

Cj 4- xG^)(ios hx 4- c®*( Cg + i^C^4)!sin hx, 

or which is the same thing by 

D^e^^cos{bx 4- B^)+D^xe^^cos{hx 4- II4). 

Any of the last three forms contain four arbitrary 
constants which replace the original four arbitrary 
constants A^, A^, A^, A^, and thus retain intact the 
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proper number (n) of arbitrary constants requisite 
to make the whole solution the most general to be 
expected. And this rule may obviously be extended 
to the case when any number of the imaginary roots 
are equal 

204. Ex. 1. Solve the equation —3^'^ + 2?/==0. 
dJC 

Here our trial solution is and we obtain 

m2 —37/1 + 2 = 0, 

whose roots are 1 and 2. 
Accordingly y = A^e^ and y = A^i^^ are both particular solutions, 

and y—A^^-\-A2<i^ 

is the general solution containing two arbitrary constants. 

Ex. 2, Solve ^ ^-a2^=0. 
dx^ ^ 

Here the auxiliary equation is Tnr — d^—O with roots in — d:a, 
and the general solution is 

or as it may be written (if desired) 

y — .^icosh ax+ax 

by replacing A^ by and A^ by 

Ex. 3. Solve ^+aV=0. 
dbX^ 

Here the auxiliary equation is m2+a2=:0 with roots 7/i= ±ac, 
Hence the general solution is 

y—A ^cos CU7+A 2sin a,r, 

or, which is its equivalent, 

y—B-^cq^<ix+ 

Ex. 4. Solve ^-4^+5$'-2y=0 or (/)-1)2(2)-2)« = 0, 
dxr dx^ dx 

where D stands for 
dx 
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Our auxiliary equation is 

+ 5m — 2 — 0 

or (m — 1 )\m — 2) = 0, 

having roots 1, 1, 2. Accordingly the general solution is 

y ^ {A ^ +A 2^)e^ H- A 

Ex. 5. Solve {ly^ +1)(/) — l)y — 0. 

Our auxiliary equation is 

(m24-l)(m~ ]) = 0 

Avith roots ±t, 1, and the general solution is therefore 

y~A icos X+A ^si nx +A 
or y = ^jcos (.r++A .yf. 

Ex. G. Solve (IP+i)+\ ){D — 2)y — 0. 

Our auxiliary equation 

/3 
has roots - | ±(Jx_- and 2, and the general solution is 

2 

or 

y = dj(?~^cos—^sin —dyr'*, 

y = ^i^“^cos +A-^e^. 

Ex. 7. Solve (/>H/>+l)X/>-2)3(/>-5)y = 0. 
Here obviously the general solution is 

y — (yij +^cos^-^+(Jg + ^4.r)c ^sin 
2 2 

+(Ar, + A 0^ “f- A +Age®*, 

containing eight arbitrary (*.onstauts. 

EXAMPLES. 

Write down the solutions of the following differential equa¬ 
tions :— 

1. 

2. 

- (a -b h)^ + aby=0. 
dx^ dx 

g-e.g+n.*-6..,.a 
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(xoif dtjc (jjOG 

4. ®^®/{-3^^^+2«=0. a (7>H1)(2)2 + -0 + 1>/=0. 
dx 

5. 9. (Z>H])*(7)-1)V = 0. 

6. g=^'- 10. (J?2+i)X/)H/)+i)2y=a 

n. (7)-l)3(i)-2)(7)24-27> + 2)2y=0. 
12. (Z>2 + a2)2(/>2 ^2)(/>4 4. c2J92 + = Q. 

The Particular Integral. 

205. Having considered the complementary function 
of such an equation as F{D)y — V where F{D) stands for 

a^, a.^, ..., an being constants, and Vany function of x, 
we next turn our attention to the mode of obtaining 
a particular integral, and propose to give the ordinary 
and most useful of the processes adopted. 

We may write the above equation as 

(or \_f{Dy\V), where is such an operator that 
r 1 n 

Tn/ f'w *• T r- TT 

206. Satisfies the fundamental laws of 
Algebra. 

It is shown in the Differential Calculus that the 

operator D ^denoting satisfies 

(1) The Distributive Law of Algebra, viz. 

D(u + v~{-tv+ ...)== Du+Dv-^Dw-i-.... 

(2) The Commutative Law as far as regards con¬ 

stants, i.e. i)(c^6) = c{Du). 
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(3) The Index Law, i,e. 
Drnj)n^^])m+nr^^ 

m and n being positive integers. 
Thus the symbol B satisfies all the elementary rules 

of combination of algebraical quantities with the 
exception that it is not commutative with regard to 
variables. 

It therefore follows that any rational algebraical 
identity has a corresponding symbolical operative 
analogue. Thus since by the binomial theorem 

{m + a'y^ = -j- 7iavi*^ ~ ^ 

we have by an analogous theorem for operators which 
may be inferred without further proof 

{D + aYy = {Z>” + ««i)" -1W" - 2 +... + a«}i/ 

= D^y + - ^y+Z)" -hj+... + iey. 

207. Operation 

It has been proved in the Differential Calculus that 
if r be a positive integer, 

Let us define the operation D"’’ to be such that 

D'^D-^u = u, 

Then D~^ represents an integration, and we shall 
suppose that in the operation B~^u no arbitrary con¬ 
stants are added (for our object noiv is to obtain a 
particular integral and not the most general integral). 

Now since lPa~^e^^ = it follows that 

Hence it is clear that for all integral 
values of n positive or negative, 
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208. Let f{z) be any function of z capable of ex¬ 
pansion in integral powers of z, positive or negative 
( = say, Ar being a constant, independent of z). 

Then f{D)e^ = (2.4 

The result of the operation f{D)e^^ may therefore 
be obtained hy replacing 1) by a. 

Ex. 1. Obtain the value of 
1 

Obviously by the rule this is 

_!_g2x ^ 
¥T¥+2 + \ 15' 

Ex. 2. Obtain the value of 
D-^l 

(I.) -h 2)(/^ + 3)(/) -f- 4) 

By the rule this is 
5.0.7 105 * 

EXAMPLES. 

(1) 

1. Perform the operations indicated by 

(2). {D-Vlf 

2. Show that 

(Z)+l)(i>+2) 

i>2 

r. (3)rn (0+2)(Z)+3)(i)+4) 

c«2 1 

cosh X. 

{D-aXD-h){D-c) 

3. Apply Art. 208 to show that 

/(i>2)ain mx —/( — m2)ain 
f{IF)co^^ Tax —f( — m^cos rtix^ 

(a — b){a-^c) D-a 
V. 

fiH 
sinh 
cosh ’ 

vSinh 
''cosh^ =/(^^)!r:i-, rax. 

209. Operation/(Z>)c“*X 

Next let where Y is any function of x. 
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Then since = a 

we have by Leibnitz’s Theorem 

Vn = Y + -^DY-\- nCJD" F+... 4- i)” F), 

which, by analogy with the Binomial Theorem (Art. 
20(1). may be written 

j)n^^ F= +aY F, 

n being a positive integer. 

Now let X-(D + ay^F, 

so that we may write 

F=(i) + a)--X. 
Then from above 

X)n^ax Y ~ + a)’^ F 

or D^e^^{D + a)' ’bY = e^^X, 

and therefore D " = e^^(D + <f') " 

Hence in all cases for integral values of 7i 'positive or 
negative 

Dn(,axx = +a)«X. 

210. As in Art. 208 we shall have 

f(D)e<^X = i:(ArDr)e^^X 

= 2(A,.Z)^e®LY) 

= e^^I,Ar{D-^ayX. 

= e^^f{DAa)X. 

That is, may be transferred from the right side to 
the left of the operator f{D) provided we replace D 
by i) 4- a. 

Ex.l. 

Ex. 2. ==——e’^in x=sin r = - e°*»m «. 
Z)2-4i>+4 D* 
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EXAMPLES. 

]. Perform the operations 

\t ’ (/t-])3 
2- Show that 

1 1 
i^D -\-(i — \ — 2) 

211. Operation 

We have Tf- 

and tlieroforo 

sin 
cos 

sin 
cos 

mx = ( ' — m^) 
sin 

\ mx, 
cos 

mx ~ ( [ — m^] 
sin 

r mx. 
cos 

Hence, as before, Arts. 208 and 210, it will follow 
that /./ sm X/ <9\ sin 

f{D^) mx = A — m^) mx. 
^ ^ cos ^ ^ cos 

.Ex. j e®®sin bx dx ~ hx=e®*(7) 4* a)~lsin hx (Art. 210) 

= s\i\bx 

fiOfX 

— - i))sin hx (Art. 211) 

__^ax<^ sin hx — h cos hx 

== + ly) ^sin{hx — ^. 

EXAMPLES. 

1. Find by this method the integrals of 

ef^cos^hx, e*sin%, e*sin^^, sinh^sin.^. 

2. Perform the operations 

1 
/)H2 

sin 2x, 1 
2>« + l 

cos X, 
/>24-1 
i>^+l 

sin 2;c. 

3. Obtain by means of the exponential values of the sine and 
cosine the results of the operations /(i))cos wm?, f{D)mx mx. 
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212. Operation 
^ P\D) cos 

Let us next consider the operation 

— Binmx 

where F{z) is a function of 2: capable of expansion in 
positive integral powers of 2;. 

Let F{I)) be arranged in powers of B, then if no odd 
powers occur the result may be written down by the 
foregoing rule of Art. 21L 

But if both even and odd powers occur we may 
proceed as follows:—Group the even powers together 
and the odd powers together, and then we may write 
the operation 

F(D) ^ 

(p( — m2)sin rnx — my( — 77i“)cos mx 

Upon examination it will be seen that in practice 
we may write — w? for immediately after the step 

1 
- . /fwx Sin mx, ^{B^)-hBx{B^) 

writing immediately 

1 
T7-^ , yw-^ sm mx, 
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<f>{ — w?) — Z)x( — m?) ■ , 
or fT/ ‘-\T2 im 'r-- etc. 

Ex. 1. Obtain the value of sin2.r. 
]y + I)^ + D + l 

This is 

or 

or 

__ 1 

1_ 
-3(r-r/>) 
n-\ 

sin 2.r, 

sin 2:r, 
-3(/>‘'5-l) 

ssin 2.r 
{j>-w 

15 

cos sin 2.r. 

Ex. 2. Obtain the value of .^_<>2^cos x. 

This expression = 

[replacing each D- by — 1] 

__1 
-/>-.V+.3y;+i' 

1 
2 D-\ 

/>+! , 
" 2 U^~\^ 

J?iUD + \fl 

: _ ~(cos X — sin x). 

EXAMPLES. 

1. Perform the operations indicated in the following ex¬ 
pressions :— 

B 
^ <?*sin cLXy , e^sin x -f e~*sin x, 

B-l i>-hl 
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2. Show that jj...je'^^Vdx ... dx, 
(I)-hay 

beiiiff 71 integral signs. 

there 

3. Show that by first expressing in partial fractions, the 

operation expressed in terms of a set of common 

integrations. 

213. Operator V Algebraic. 

If in the operation Fbe an algebraic function 

of X, rational and integral, we may expand t)y 

any method in ascending powers of 1) as far as the 
highest power of x contained in V. 

Ex. 1. For example, find —^^ 4- ^ +1)« 

This is F ^ +1), 

or {l — D + IP’-L^AGtc.){x^Ax-h}) 
— {x'^ + .v+l)-(2x+'l)—x- — x. 

Ex. 2. Again, find 

This expression is 

^ (/j+r/i + 3(/>+])^+7(2> + l)-l'^ 

"" ^To+iM+od^Ts^'^ 

= £!_L_ 
10 l + 



260 DIFFERENTIAL EQUATIONS. 

EXAMPLES. 
Perform the operations 

2. - -—riccosh^. 
(D+\){D + i) ’ J}{D-1) 

3. ^ 

214. Cases of Failure. 
In applying the above methods of obtaining a 

Particular Integral, cases of failure are frequently 
met with. We propose to illustrate the course of 
procedure to be adopted in such cases. 

216. Ex. 1. Solve the equation 

The Complementary Function is A(f, 
To obtain the Particular Integral we have 

D-\ 
If we apply Art. 208, the result becomes 

We may evade this difficulty and obtain the result of the 
operation by applying Art. 210 when we have 

which is the particular integral required. 
Instead, however, of substituting another method^ let us examine 

the operation more carefully. 

Writing .r(l +4) instead of x, we have 

JJ — 1 JJ—\ h 
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Of this expression the portion Lte^jh becomes infinite, but 
may be taken with the coyn/pUmentary function Ae?^; and A being 

arbitrary we may regard -d-fi as a new arbitrary constant 

for we may suppose A to contain a negatively infinite portion 
to cancel tlie term l//i. 

The term X(f is tlie Particular Integral desired. 
The remaining terms contain h ayid vanish when h is decreased 

indefinitely. 
The whole solution is therefore 3/= 

w/^Ex. 2. Solve the equation ‘^ + 4?/ = e* + sin 2j7. 
dx^ 

The complementary function is clearly 

3/ = ^4 sin 2.r + B cos 2.r. 

The particular integral consists of two parts 

and — sin 2.r. In this second part, if we apply the rule of 

Art. 211, we get i.e. 00, and so fail. 

We now consider the limit, when 7^=0, of sin 2.r(l +/i). 

This expression 

=1-^—r/sin 'Hx cos ‘Hhx + cos ’2x sin ^hx) 
4 — 2/i — /r 

-j^sin 2.r^ 1 — p +... ^ + cos 2x{2hx - ...)J 

1 sin 2.37 1 
.27 cos 2.27 + powers of h 

= (a term which may be included in the complementary 

function) — (terms which vanish with h\ 
4 

Thus the whole solution of the differential equation will be 

y^A sin cos 2^4-^-f 
5 4 
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Ex. 3. Solve the equation 

(/>2 + 3Z))(Z> -1)“?/ = e*++sin X+.17^. 

Here the complementarj function is plainly 

A1 + A^^e-^ A-{A.^ + A ^x)e‘. 

The particular integral consists of four parts, viz., 

1 * 1 ^ I ^ 
(/>2 + 3/))(/)-1)2 4 4 ]) 4 4 ' D- ’ '8 ’ 

[or consider 

= (a part going into the complementary function) 

+ - +(terms which vanish with A)]. 

1 2x_ 1 2ar 
10* ■ 

(2)2qr3i)p-T)i! =("1 + -iD)C^) 27) 

1 . 3-7) . 
=-^ sin x—--.-—— sin X 

6 + 2Z> 2(9-i>^) 

= (3 sin X - cos .'r)/20. 

P)^(7>-ZT).-^ = 3^(^ + 3) 0h-277+37>H...>^ 

»> 

1/^ . 6.^ . 44 \ 
= 3(3V + -9^> 

Hence the whole solution is 

y = ^ 1 + ^2® +(^3+u44.r)e* 

, , 3sinj7--cos.r , . 5x^ , 44 
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Ex. 4. Solve the equation 

The c.F. is Jisinh^+v42Cosh.r+yl 38111.^+^4008^. 

To find tlie r.i. we have —xQUix. 

which is the coefficient of i in 

{D+ty-r^ 

-4t7J ' 

Vs 8 

Thus the r.i. is 
.^^-cos X 3 

and the whole solution is 

y — A^ ainh x-\-A 2COsh .r+^ gsin .it;+4C0S .r+—5.^; sin x. 

EXAMPLES. 

1. Obtain the Particular Integrals indicated by 

(1) _ sin:.. 

(2) 

(3) 2)^ 

<4) 

(^\_L_ 
^ ^ (/J~l)(Z>-2X/>-3) * 

(6) j(sinh.a7+sin^). 

( Uf‘ - 

(:P + l)(jOH4)‘^°®2“®T' 
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2. Solve the differential equations 

(3) -+y = e~^ + cos a'+ai^ + c^sin .t. 

(4) {D^-\){n^-l)j,=xF. (5) {D-\){D + \)Dhj==x. 

(G) {D^—'dD^ — '^D + l)y = e~^ + x. 

(7) (Z)'^ - l)j/=^‘ sin X. (8) {D- - 1)^=^e''sin x. 

(0) (2)2 —l)y = cosh ^ cos j 

(10) (2)- 1 )2(Z>2-fl)2^ = sin2‘| + e* + ^. 

216. The Operator x^. 

A transformation which renders peculiar service in 
reducing an equation of the class 

—l/i» 

^2+... + A,rty= F, 

where ^2, ..., are constants, to a form in which all 
the coefficients are constants, arises from putting 

In this case : e\ and therefore 

It is obvious therefore that the operators x-^- and 
d . d 

are equivalent. Let D stand for Then we 

d'^y ( d 
= x-^- 

dx^'^ 

dj^'~^y 
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Now putting n in succession 2, 3, 4, we have 

*»g = (i>-2Kg = (i)-2)(D-l)D2/, etc. 

Hence generally 

+1X-® - + 2)- -1)^2/. 

or reversing the order of the operations 

- i)(i) -1)(1> - 2).. .(D - n + %. 

Ex. Solve tlie differential equation 

y ( + - 3,1/ = 
a.r 

Putting .r = e*, the equation becomes 

D(D - l){n - 2)//+2I)(D - l)y + 3% - 3y = «“‘ + e‘, 

or {D'^-JJ-+3D-3)ff=e^ + e‘, 

i.e. (D-l)(n-^+3yj=e'^+(*, 
t— ♦ /— tip 

giving y—AP+B cos t^lZ-\rC sin t\'Z4* - + , 

or y=Ax + B co&{>j3 logx) + C8iii(\/3 loga.’)+y 

EXAMPLES. 

Solve the diiferential equations 

2. 4. ^2^=[logsin log a; + sin g log x 
dx^ dx 

3. 3?'t:pL + Za^'^+ x'^+y=x+\ogx. 
dx^ dx‘‘ dx 

6. (a+6^)^, + 6(a + 6a?)^ + jV=0- 



CHAPTER XVIL 

ORTHOGONAL TRAJECTORIES. MISCELLANEOUS 

EQUATIONS. 

Orthogonal Trajectory. 

217. Cartesians. 
The equation f(x, a) = 0 is representative of a 

family of curves. The problem we now propose to 
investigate is that of finding the equation of another 
family of curves each member of which cuts each 
member of the former family at right angles. And in 
such a problem as this it has been already pointed out 
that it is necessary to treat all members of the first 
family collectively, so that the particularizing constant 
a ought not to appear in the equation of the family. 
It has been shown in Art. 171, that the quantity a 
may be eliminated between the equations 

f{x, y, a) = 0, 

'dx dy dx 

Let this eliminant be 

This is the differential equation of the first family. 
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Now at any point of intersection of a member of 
the first system with a member of the second system, 
the tangents to the two curves are at right angles. 

Thus if be the current coordinates of a point on 
a curve of the second family at its intersection with 
one of the first family, and x, y the current co¬ 
ordinates of the same point regarded as lying upon 
the intersected curve of the first family, we have 

rj = y, 
dj]_ _^dx 

’ di ify 

The differential equation of the second family is 

therefore rj, — = 0, 

and when this is integrated we have the family of 
“ Orthogonal Trajectories'' of the first system. 

The rule is therefore: 
Differentiate the given equation, eliminate the 

dx • d'l! 
constant, write, — in place of and integrate the 

new differential equation. 

218. Polars. 
If the curve be given in polars the angle the tangent 

do 
makes with the radius vector is r-r- , so our rule is 

dr now: 
Differentiate the equation, eliminate the constant, 

\ dr , ^ p dd 
write- 

r dO 
in place of r^, and integrate the new 

differential equation. 

219. Ex. 1. Find the orthogonal trajectory of the family of 
circles 

.(1) 
each of which touches the y~axis at the origin. 
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Here — 
dx 

and, eliminating a, 

i. e. — y2 _ Q.^2) 

Hence the new differential equation must be 

x^-2xy^-y^=^0, 
dy 

or y^ + ^xy^ - 0,.(3) 
dy 

which is a homogeneous equation, and the variables become 
separable by the assumption y — vx. 

However, this being the same as equation (2) with the ex¬ 
ception that X and y are interchanged, its integral must be 

another set of circles, each of which touches the ^;-axis at the 
origin. 

Ex. 2. Find the orthogonal trajectory of the curves 

+-^-==1. 
cfi-\r X 4* A 

A being the parameter of the faraily- 

Here : + 
ydi 

d^+k^¥-\-k 
=0,. 

and A must be eliminated between these two equations. 

(2) gives x{l^+X) + -V)=0, 

or 
. h’^x+a^yyi 
A— ' > 

x-\-yy^ 

so that a»+A= 
^+yy\ 

and 
x+yyi 

Thus the differential equation of the family is 

x\x+yy0 
{d^ — h'^)x {a^ — h^iyyi ’ 

or a^-y'^-irxy\yi - 

(1) 

(2) 

(3) 
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Hence changing into - , the differential equation of the 

familv of trajectories is 

x^-y^+xyi _ 1+yj 'j = a2- &2.(4) 

But this being the same as equation (3) must have the same 
primitive, viz. : 

a‘^ + /Lt Ir-^ix 

i.e. a set of conic sections confocal witli tlie former set. 

Ex. 3. Find the orthogonal trajectories of the family of 
cardioides r=a(l—cos 6) for different values of a. 

Here 

and, eliminating «, 

dr . n 

^dO 1 — cos 0 

dr sin 0 
tan-f. 

0 

Hence for the family of orthogonal trajectories we must have 

\ dr . 0 
— - — =tan—, 

r d$ 2’ 

log r — 2 log cos -f constant. 

or r = 6(l+cos^), 

another family of coaxial cardioides whose cusps point in the 
opposite direction. 

EXAMPLES. 

1. Find the orthogonal trajectories of the family of parabolas 
y2 _ 4^^ fQj. different values of a, 

2. Show that the orthogonal trajectories of the family of 

similar ellipses ' + for different values of w is —Ay^, 

3. Find the orthogonal trajectories of the equiangular spirals 

r —for different values of a. 

4. Find the orthogonal trajectories of the confocal and coaxial 

parabolas ~ = 1 +cos ^ for different values of a. 
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5. Show that the families of curves 

a^ — Zxy^==a\ 

Zx^y-y^ — h j 
are orthogonal. 

0. Show that the curves 

r sin'^a = a(cos 0 - cos a) and r sinli^^ = a(cosh P — cos 0) 

are orthogonal. 

7. Show that if f{x-{-Ly)=u-\-tv the curves 

u = a) 
v — h J 

form orthogonal systems. 

8. Prove that for any constant value of /x the family of curves 

cosh X cosec y — /x cot y — constant 

cut the family /x coth .r-cosech.r cos constant 

at right angles. [London, 1890.] 

Some Important Dynamical Equations. 

dhi 
220. The equation 

is the general form of the equation of motion of a 
particle under the action of a central force. 

Multiplyiug by 2^ and integrating we have 

du 

which we may write as 

and the solution is therefore effected. 

221. Equations of the form 

dhi 

--O^B 



SOME SPECIAL FORMS, 271 

have already been discussed as being linear with con¬ 
stant coefficients. 

The solution may however be conducted thus:— 

Multiply by sin nO^ 'A^liicli will be found to be an integrating 
factor. 

Integrating, 

sin ~ nu cos nd= [ f{d') sin n&dQ' + A. 
dd J 

0 

Similarly, cos 7i0 is an integrating factor and the correspond¬ 
ing first integral is 

cos + sin 7i0— f f{0') cos 7iO'dR+B. 
dd J 

0 

Eliminating 

nu = I f{0') sin n{d— &)dd' + B sin 7i9-A cos 7i0. 

*0 

222. Tlie equation of motion of a body of changing 
mass often takes some such form as 

and for this equation will be found to be an 
integrating factor. 

Kor 

leads at once to ~ j + 

or 
1 (^{xyix 

and the variables are separated. 
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Further Illustrative Examples. 

223. Many equations may be solved by reducing to 
one or other of the known forms already discussed by 
special artifices. 

Ex. 1. ^—f(^ax + hy). 

Let 11 

4- 

Then a + 4^=.‘f?. 
dx dx 

Thus a+6/(.)=J, 

j dz 

^ (i + 6/(z)’ 

or 

4:( 

} a^hf(z) 

Ex. 2. 

Put xy^z. 

Then 

o
' 

II 

II 

+
 

or 
dz . 1 

dx dz 

doc 

which is of Clairaut’s form, and the complete primitive is 

^=a:(7+i. 

Ex. 3. Solve 

Let 

Then, since this equation may he arranged as 
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we may write it as 97 - 

which being of Clairaut’s form the complete primitive may be 
written 

or 

Ex. X. 4. {x^ — Ay^- — xy = 0 

(an eq’Jation occurring in Solid Geometry). 

Put x~aJs and y = Jt 

Then the equation becomes 

or +(3 —At —— t=0^ 
yds/ ds 

giving 
dt 

B. 
M 
ds 

ds 

which is of Clairaut^s form and has the complete primitive 

BG 
t^sG~ 

l+AG' 

2 2 or 

and singular solution the four straight lines 

x±>J — Ay~ ±V5. 

Ex. 5. Solve the equation 
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Let the transformation be such that 

dx z=dt, 

then X is known by direct integration as a function of t. 

dj! 
dy dt 

Now 

and 

Tims 

dx Vl + ax^ 

dhi _ dy ax 

dx-~"i+a^~Jtd+ax4' 

dx‘ dP dt dx' 

and the given equation thus reduces to 

whose solution ia y = A sin gt + B cos qt^ 
and when the value of t in terms of x is substituted, the solution 
is complete. 

[If a be positive we have 

1 dx ,, 

-\-x^ ra yi: 
~ a 

-7= sinh“’ (W a) = t. 
V a 

If a be negative we have 

1 dx 

^{xsj - a) = t.'] 

— ^ A. / 1” 2 A A- 
» -a 

Ex. 6. Solve the simultaneous differential equations (which 
are linear with constant coefficients) 

4^+9^/ + 44x + 49y = ^, ] 
dt dt I 
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We may write these equations as 

4(Z)-f-ll)u7-)-(97)+4% = ^, ) 

(3 /> + -I- {ID+38)y = e*, j 

where D stands for v • 
dt 

Operating upon these equations respectively by 7/> + 38 and 
by 9/> + 4,9 and subtracting, we eliminate^ and obtain 

[(4/> + 44)(7i) + 38) - (3Z> -f 34)(9i> + 49)> - 7 + 38^ - bSd, 

or (/>2 + ID + (y):v = 7 + 38^ - 58^', 

giving .r = e-' + Be-« + - •'>8^'), 

or x=Ae-* + 4- J -t- ^:f-{t -1)- 

To obtain y let us eliminate ^ from the original equations. 

Multiply the first by 7 and the second by 9 and subtract. 

dr 
This gives - -f- 2.r -\-y = 7^ - 9c^ 

dt 

Thus ^ = 7^ - 9c' — 2vf - ~ 

= 7^ - 9d - 2{Ae-^-^De-^^ + 

~(-Ae-^~ 6 Be-- W) 

Thus .r — Ae~^ + Be~^*-\-V^-t — ^\j^--^>^^-e\ \ 

y=. 4Be'-f + A^e^. J 
[The student should notice tlie elimination of This avoids 

the introduction of supernumerary constants.] 

Ex. 7. Solve the simultaneous equations 

d'^x 
dt'^ 

(By 

di'^ 

+ 3^^?4-16j;=0, 
dt 

-5j+ 9^=0. j 

These equations may be written 

(i)2 4-16>r+3%==:0, \ 
— bDx-h{D^+9)y — 0j J 
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whence operating upon these in turn by + 9 and by 32) and 
subtracting, we eliminate y and obtain 

[(7)H 1 GX/)2 + 9) +15 Z)^> = 0, 

or (2)4 + 402)2 +1 44)j7 = 0, 

ie. (2)2+4)(2)2+36>r=0, 

whence jv — A sin 2^ 4-^ cos 2^4-(2 sin 6^+ 2) cos 6^. 

Differentiating tlie first equation and subtracting three times 
the second to eliminate differential coefficients of y, we have 

dy 

d£-^ 
+ 31J-27,. 

whence we obtain the value of y without any new constants^ 
viz. :— 

y——^B sin 2^ 4- 2 J cos 2t 4 ^I) sin ^t - yC cos 6^. 

EXAMPLES. 

Solve the equations 

1. 2. secVf‘21+2^/($'V + tan^,=x 
dx dx^ co^'^yxdxJ 

3. (a 4- hxY^,^ 4- ^ (a 4- hx)^- -V By—x. 
CLCC C^CC 

4. (14- ^ -hy = 0. 

5. {l—jr)^^^ — x^ + n^y—0, 6. ^ = c*“*'(e* — <?*'). 

^ du n . ix-y) (^4*y)cos.r 7, = 2 sin i cos ^-. 
dx 2 2 cosy 

8. Obtain the integrals of the following differential equa¬ 
tions :— 

® g + 8§+%-*5'**l>. 

(c) -* 4- lOy=0. 
dx^ dx [I. C. S., 1894.] 
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9. Integrate the simultaneous system 

g+]5y+ 3.+30=0, 

.72;, 
^2+ 2y + ]0z+ 4 = 0. [I. c. S., 1894.] 

10. Find the form of the curve in which the tangent of tlie 
inclination of the current tangent to the .r-axis is proportional 
to the product of the coordinates of the point. 

11. Find the form of the curve for which the curvature varies 
as the cube of the cosine of the inclination of the tangent to the 
.r-axis. 

12. Show that in the curve for which the projection of the 
radius of curvature on the y-axis is of constant length 

(1) «xlogtan^?+|y 

yociogaeci. 
a 
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(iii.) tan~^^ - —— tan~^^ mJ2. 
v2 

4. (i.) 
^/3 2.r2+l 

(iv.) _Vtan->f4- 
'''•>'•> V .^2 l-x^ 

1 

3^2 ' 

tan-i^V'3 _ _ -1 

1 V3 2.r2+r 
-4-tan 

(iv.) tan->^. 

(v.) 1 tan-i?f-4.^. 

2a ^^x^ + ax + d^' 

Jz (vii.) -i—— \/3tan .— . 
\/3 2.rHl 

(viii.) _l_log?!±£:42iU^tan-'^^2 
4\/2 2-arV2"+l 2V2 l-a:2' 

5. (i.) -log-^-- - , - 
^-l_..+_4tan-i2£+l 

(ii.) log a?-! 

^ xs/x^+l 

(iv.) .r-2log^-h |log(^-1) + ilog(ir +1) + Jlog(.r2+ l)-|tan~^.3;. 

(v.) -log(a7+l)+ilog(a;2 + i), (vi.)^log£^-itan-*|. 
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i2.r + l 

" v;r- 
(vii.) 1 log(^ + ^+1) tan- 

(viii.) i log ^ V.j. 

(ix.) Mog(^ + l) “4 log(^’2^1) + 4 

(x.) ^ + +15^ + log(.r - 4) — log(.^’2 ^ ^ A 

6. (i.) llog(^-2)-^^ ^ 1 log(a'2 - 2x- + 4) - ^-1- tan 

(ii.) |log(l+.r)-llog(] +2x+4x2)-l-~-^+^-tan- 

(iii-) ^ ^ logC*^ “ ’ ^ If ~ S ~ ^ 5 x-1 25 

(iv.) liog('^+’)-M. L. 
^ ® X-+1 2x+l 

, s 1 , x2+l 1 1 
(-) 4i"g^r)2-2^r 

(Vi.) log^-'^ + lun-'x. 

(viii.) llog(£rfLf^+ 1 

1, x^ + \ 1 x-1 
(ix.) 4^"g(,ir+y)2 + 2a,-2+i- 

(x.) 2 '"gy 4:-^2-<-2 T+^^+i (r+I-*)2‘ 

2* 

taii'^r. 

.r- 1 

_i4^+1 
;/3' ‘ 

0-5 
2’ 

9. log|. 
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CHAPTER VI. 

Page 68. 

1 . i4r —3 1 

3. (62<ac)J-r(c.r + tWe{W‘‘ + afcA:+a)+(ac-6*)sinli-'£^'L^^ 

[W>ac) -\r{cx-¥h)J(icJ^-V^hx+a)-{h^-<^^^^^^ 

26*^^ 

4, Jl-F{cx - h)\!c{a + 26.1’ - cx-) + + ac)sin 

Paqe 69. 

1. •JTv'^ + 2^’ + 3. 

2. 

3. sLv^ + d^ + h sinli“^ -. 
ct 

4. 2slx^ -1+3 cosh A’. 

_2jf +1 
5. 2^/.^''^+.t•+l+2smll■■^—y-^-. 

7. \{x-1)Xx^+^j: + X 

8. +2a; + 3)^ - (.*+1V;*•"+2a;+3 + 2 sinli 

Page 74. 

. no 1 COS^. 
j; _sm2x cos^x or -cos.^’+- - 
2 4 ’ 4 12 ^ 

8\ 4 . 

1 ( COS 5x . 5 cos 3.r Pf>» r \ .2 cos% cos^^ 
4.1^^^_®^-10cos:r j or -cos.r + —y-- 

1 ( sill 6.r 3 sin 4.r , 15 sin 2^? 

2 2 
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1 rcos *lx 7 cos bx , ^ o OK 1 
~^-+7 cos 3^-35 cos^l 

26 
!* 

or — cos X 4- cos^^ - ? cos^^ 4- i cos^^r, 
5 7 

( - 1)”/sin 27i.r _ 2nr< sin(2?^ — 2).r j^mri si^(2^2' - 4).r _ ) 
1 2 2%^ “7’ 

(-1)”/ _cos(27^4l)^ , 2n+l^cos(27^-l)a7_2„^.l^cos(2?^-3)Jr [ 
2"" 1 ''2n4l 2-'2-_3 ■*"•'7 

or -cos^4-"(7j- 
- 5 

2. J siii*%’ — J sin^o:, J sin% — J siiA, — J cos^x 4 | cos^j;, 

yjg{3.r-sin 4^4 J sin 8:r}, 

112 {4- sin 2^ — 2 sin 4r - J sin 6^ 4 i sin 8^ 4sin 10:r }. 

3. Jian^^r, -Jcot^.r, tan^~cot^, J(tair%-cot'^a7)43(tan^-cot^). 

. 77-2 43 1577444 

‘ 8 ’ 60 72’ 192 ’ 

5. - ^ cos^^, I sin^^ -1 sin^^ 4 § sin% 

- cos nx - —T-^— cos(7i 4 2).r - -cos(7i - 2):r. 
2n 4(n+2) ^ ^ 4(7^ - 2) ^ ' 

_ Page 83. 
1. 27tana7. 

3. (i.) [a^4&log(acos046sm0)]/(a2 4.52^^ 

(ii.) [(ac 4 be)$+(he — ae)log(c sin 0+e cos 0)]/(c^ 4 e^). 

4. 

6. 

8 

(i.) 
1 

a7a2 — 6^ 
tan~^f---^— tan x\ 

(u.) |tan-*(ltan|). (iii.) _^co8h-^.L+££i.“..??!j^. 
sma co8a4cosd? 
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(iv.) 
3 — n/i 6 cos(jp - taii“^ 3) 

(v.)^3tan-^tan(|_|). 

(vi.)ltan->(|tane). 

(vii.) X cos a 4- sin a cosh“^ * 
cos a + cos X 

(ii.) a{x-b)-'>Jh{x-a)->Jab^ j-. 

(iii.) —-[Vaa' + 6 — V«'a'+ 6' — 
a-a I Ja-a' 

X (taii-'-.;^E£ - tan->-/‘^' JcTTTb') |. 
\a'h — ab' \Uib — ab' /J 

if a>a' and a’b>ab\ with analogous forms for other cases. 

8. 

^ tan~^ f 1 tan ~ tanh”^ ( 2 tan - \ 
68 \2 2/ 68 \ 2/ 

1, sin .t;(l+COS./-) 

s'^^TlT^cosa-y 

sill 20 COS 6^+8in 0 

2 COS 0 ~ sin 0 
i log sec 20. 

10. cosh X tsLii-. 11. - 2\/1 — sin a:. 

12. —2a/i—siua;— Vi log tan^'^+ 

13. i log ^±5”'^+1 -J_ 
4 1 — sin X 2 1+ sin x 

1 -if. Ib-a I l4. v: - COS ^ \J-:f~COSX . 
V6-0 L> 6 J 

16. TT. 

E. I. C. 
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16. log log tan 

17. — cosh“\cos sin ^). 

19. —^sinh-^f?)^. 
V^/ 

20. sin x — x cos X 

cos 4-.37 sm^ 

21. -2|iog(a + 6cos^)+^^^}. 

c“^^2 cos^^y 22. cosec~ 

23. cos~^-^-4-2 >/3 tanh“^j^\/3 tani|^cos~^^—j-J. 

24. cosec"^! 4-sin2(9). 25. sec'^cos ^4-sec ^). 

26. 2x tan~\r — log(l 4- x"^). 

iT^^l-sin^ 1 x/2 ■, where 0 —tan'^j?. 

28. 

V2 

1. llogtanff+^l 
2 \2 4/ 2V3 \^3-tan.37 

liogk:«“-f- 1 log^ 
8 ^l4-sina7 4V2 ^ 1 

V2 
4-sin .37 

CHAPTER YII. 

Page 94. 

S {<*”'*>' ■ S:5T<“'**>’ + (ill)' " (».TI>i}- 

— j X'^fJUaX — X^dx^ 7. If 

T (x—ayj2ax — x^ , ^yx 
-%-+ 2 ? 
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Between limits 0 and 2a, 

A=7-, = T,^l7raK 

Page 95. 

1. + + BinP*^ecos<‘ed0, 
J p-hl p+l J 

and similarly for 2, 3, 4, 5. 

6. jsin% dx’ ~ 
cos.rsiir^j7 . 3/;r 8in2.r 

, and similarly for 

8. (i.) 

Jsin^o; dxj etc. 

»7 / n ^ sin .r coa”~\^ , n — \[ „_o 7 
7. / cos”.r dx --+-I cos” “J? dx, 

J 71 n J 

, 1 f sincos^A’ , l/x , sin2jr\1 , 
T—+4(5+— 

(ii.) ^ -f(.r-sin;rcos.2;). (iii.) tan.r—2cota’-Jcot%. 

Page 102. 

, TT Stt 357r 128 
4’ 16’ 256’ 315' ’ 4’ 16’ 256’ 315' ' 2»’ 693’ 693’ 60* 

4. Jsin®^, J sin®^ - sin^®^, J sin^^^ + ^ sin^^^, 

- J cos^^ + f cos^^ — ^ cos^^ + J coa®^, 

sin^^ J sin 4^+^ sin 8^). 

. 128-71^2 37r-8 37r4-4 289 « tt 2 Stt 
1680 ’ 32 ’ 192 ’ 4480* 8’ 9’ 192* 

EI.C 
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Page 104. 

2. If I.,n, n denote the given integral, 

+x"^^' m - 1 
In. 

' (.13 13.11 13.]1.9/ 

6. Witli a similar notation, 

(a) I ^ Ln-1, ir 
(p + n + 'f)h (j» + f )6 

(R\ T {‘l7i-l)a^ J 
2?i + 2j» + 2 2?i4*2p + 2 

yyiTn-—-2 
(y) (m - ?l 4-1 )/m, n =-,7--- - (w - 

(5) 7?i4n=- 1)^ 4- (m - 2)4»-3, 

^7 r a* n~\ COS X 4* U Sill X , w/w — 1) r 

/j = - .y cos .r 4- 4 sin 

+ CCS xia cos ;r+2 sin a;) 4- 2.1. lin. 
a^4-2“l a)J 

8, In — — .^”cos X 4- ?ta7”~^sin x — n{n — 1 )/„_2. 

4 = 
n^+a 

QOSX , 7i{n—l)Y 

r _ ® ^ ax+n cos x cos ax j J-n— Sin X---5----r-^n-! .-2-a2 

12. /„= 2 ^7rT+^4... 
2714-1 272+1 

17. 
3??2 3m(3772 — 2) ^ Zm{Zm — 2){dm — 4) 

I wi(m >-!)... 2 _m(7yi-l)...l _1_/ 

'^3?7l(377l--2)...(772+2; 3771(3771-2)...(771 +2) 771 V 2 /' 

777(771—1) 
v4-... 
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, 2 sinh — 

20. {m even) 2 

(m odd) 

(7r + m%n^ + (m ~ 2)'-^}.. .(?i^ + 2-) 

2 cosli — 
- 1)(??! — 2)(m — 3).. .3.2 ^ _2 ^ 

23. 
71-- 1 

,^.m + l 
28. {n - l)?^m « = - 77-^-1 )2^m. n - 1 

(log:?;)»-! 

29. amln, + (2m - 1 -i + (771 - \)clm~2^x^'V+ 2^.2^ + c. 

31, (a) .. 

(/?) Deduce from 25. 

/ V f (n - 2).77 cos .7;+sin .r , n~2 f 
W 7»= 

CHAPTER VIII. 

Page 115. 

. , +1—1 1 , Va.’4-2-v/3 

'’^V.iT+'l+1’ >/3 ”v^+2 + \^? 

2n/^+2 + -i log % - I)« + 2v/3 
VS ®v4:+2 + s'^’ 3 Vs 

2. - coseclr^jT, sinh~^isinli“^^ + sinli 
v/2 l+.r’ l+.z’’ 

\^.v^ + 2.r + 3 - sin ii 

3. J_log^±:^E±44.tan-i^, 
2s/2 \2 \—.v 

1 
s/2 s/2 

cosech 
v/2 ■ 

_L lovZL±^^.l)+.?-J- tan-'^<^±l), 
2V2 ®x-V2(:r+l)+2 \/2 
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V2 x+'i + 'J'ilx+V) 

- 3 ^4-24-1) I ^ X _iV2(.r+l) 
2V.r +1 + 5-7= log +-j= tan-^—. 

2^2 ^:r + 2->v^2(^4-l) v2 ^ 

Page 117. 

1. a^>h% 
s/a^-h^ ’/.2_A2’ 

< 62^ 1.__ log —'fSH' 

2. - J-sinh-'V^. 3. Isinh-'V^^- 

5. If a, b, c are in ascending order of magnitude 

nV-1 

with modifications for other cases, 

\ c2 — -h 2a^+ 

7. cosh-‘ 4 
V3 \ 5^'^4-8a; > 5jj?^4-8,5e 

Page 120. 

1- -4Jog- 2. 2(sin^4-^ cosa). 

3. sin2.r + 4sin:??cosa4-^4cos^a —1). 

4. Prove (?i being a positive integer) 

cos^-cos>ta^ 2 coseca'l'ainracos(n-r)x+ 
COS X - cos a r^i sm a 

f =^”2' sin(» - 
' COS COS a sina rw — r sma 
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5. 2 sin + 2 sin a log(sin ^ — sin a)+2 sin a log 
tail ~ - cot ~ 

2 2, 

tan - — tan - 
2 2 

6. ■. log cot-4- log( taii^-i^ tan -— 
sin“a 2^2sin“a 2 2 / 

Page 129. 

1. (i.) 2 tan~V-^* (iii-) —^ cosh“^— 
V2 jp 

(ii.) 2 tan~i>/l4-2.r. (iv.) — sinli"^-^ ~ 
;^/o 1 H“ t-T 

(v.) \ —4 sinh“^ sinli“^~, Luf. 
\'3 1 -i-x 

(vi.) (viii.) 2cosec-‘^ 

(vii.) —?-sinh~^(-y. 
7lJ 

2. (i.) —j-siii~^ 
^ ^ 2ab 

(ii.) li a>c 

{a^‘\-h'^)x^ — a^--h^ 
{b'-^ - a^).r‘^+ a* - b*' 

/= = |=r cosh-» 
i ^ a“ - as! s/d^ 

with a corresponding real form if a < c. 

(iii.) 
s! CL-{- 

cosli”^ 
\^64-c 

\f a +h sin‘-^0 -f c 
sin $ 

^ Ix^ + 
c x^+a^^ 

a (i-) 
_1_ 
V(cos a - cos jl3)(cos a — cos y) 

_2_ 1_1_ 
X r>/^an -iCQs ^+cos g cos a — cos /S cos a — cos y 

cos a — cos /3 cos a — cos y 

for the case cos a > cos or cos y with modifications for 
other cases. 
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(ii.)-— 
V sin(a— /i?)sin(a - y) 

2 + „._i_I 1 
tan ^ — cot a cot a — cot/3 cot a-cot y 

^ 1_1 _ ~ “ 

cot — cot a cot y — cot a 

6. (i.) J log,(2e). (ii.) 

9. (i.) 5^3- (ii-) 

■3. («>i) 

,... . 2v/'2~v/3-l 
(ill.)---TT. 

(ii.) J log 2. (iii.) 

14. (i.) log,2-l. 

(*•> is- 

27. (i.) log.2. 

29. 2e"^. 

(ii.) -5_.. 
^ ^ 24 

(iii.) 0. 

(ii.) -. (iii.) -. (iv.) — 

30. e-l 

CHAPTEE IX 

Page 141. 
1. a(j8-a). 

7. (i.) «(6l2-(9i). (iii.) |[^VrT^+sinh->^][’'. 

(ii.) (?*2 ~ ^l)-—- riv.l 2n',/^r.oft ^ — oos V (iv.) 2a(co8^i-co3.|3j. 

Page 151. 

1. 5^^/3co8h-'^x’«+2A/^^i:I^l^ 
2L a ^ a-X Jxi 

3. The Cycloid. 
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a ai- . 
L cos ^ 2 °v^l+3cos*^-VScos^Jj, 

9. i[(^^2*+y2V-(^i*+i'i*)’J- 1®- ^“• 

4a2 

CHAPTER X. 

Page 158. 

2. (a) c%inh-. 
c 

(b) e^-1. 

(c) ^ - p" 

3. 
16a2 

(d) i(e‘“-l). 

(«) 

(/) ^-“log 

3 

5. 4dK 

4 

6. 37ra^. 7. I (4-^). 

1 

Page 160. 

2, 3, 
16* 

4.  -Total area=^?^— (n even), or — {n odd). 
4n 2 4 

5 c^'^tan ctg2j8cot a^gS'yoot a _ 

7.f,osf. 
g 0,2 y8-a 

®- -2 • 

. a- 
■ 6 a»/?3 ‘ 

r, 37ra2 

1. 37ra2. 

Page 167. 

3. ^(tani^r-f tan^). 

?
i\

^
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4. — “ V^i) + sin B{ylr^ - T/ri)cos B(\lr2 + 

5. 
4 

Page 178. 

1. fta’. 2. 

9. (i.) fTrafi. (ii. 

10. a^( 
HOtt 

\ . 12 

11. a\2 log{\f 2 +1) - 

12. 4o^V2 sm“^ ■ 1 

v/3‘ 

13. 
!)■ 

22. 

23. 
16 V 6 / 

25. 
a^+h^ 

TT---. 
12 

28. 

5. (7r~2)a2. 

.. \ Ibirab 
r ^'+1 rr 

r(TO+i) 

m being supposed odd. 

r _i j. 
-) “‘^(iV+T 

14. ^'(32 + 24v'3-37r). 
6 

17. W“V2. 

21. 2:1. 
2 

' ' ' ' -,0 
+ Stt W’*’ - 47r6e^^’^ + -1 > . 

-i0i 

23. -1). 24. n even, ; « odd, 

26. 30. 39. 
12 4 4 

28. + 

29. ^lOr+9^/3). 34. a2(T+2). 41. a* 42. xa^Z. 

a2?i2 - 52^2 lOfw a6 

2 mV bm 2m'V‘ 

44. (ii.)’-^ 
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CHAPTEE XL 

Page 187. 

1. 47ra» 3. iro2{3\/2-log(^/2 + l)}, —. 
5 

Page 191. 

1. 27r“a^h. 2. AiTra^sj2y Tra^j2. 

3. If the sides be a, c ; s the semiperimeter; and ^2, A3 the 
distances of the midpoints from the given line, 

surface = 27r{ah ^ + 6A2+CA3), 

volume=^(Ai + +h^s{s — a)(« — h){s — c). 
o 

Page 193. 

1. If a=rad. of base, 

A=altitude, 

^ = slant height, 

surface = 

volume = j7ra2A. 

2. ^77db\ 

5. 27ra®(logc2--1). 

6. Surface=^7ra^, 

volume = 

8. -^ttW 

10. 
, o Ssl2Tra^ 
12. 
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3. § of length of rod from end of zero density. 

Mar M(^ Ma^ 
“2 ’ T2' 

If a —length, 

■5’ 

X — 2a- 
m + 2 
^ + 4 

Pags 207. 

1. Let 2^ be the angle, a the radius, the median the initial line, 

(„) (13) 

about tang., 
{n + i)‘(n + Q) 

about diam., , 
{n + Ay{n + &) 

4. If = and ft=”*^fs.2.^3£2 
rn^-ni^ — 

Mom. In. about x-axis=j(f{(g'2+y3)2+(y3 + yj)2+(3'j+g'2)2}/12. 

about y-axis = Jf{(p2+f)3)H(Ps+;>i)2+(^i+i?2)=‘}/12. 

& Area =(27r + 3V3)a2/6, 

Says 

2(3^/3-a•)’ 

Mom. In. 
3 3\'3 - TT 

7. (1) (I', (2) —Jfa2, (3) 

8. (1) (2) if^“. 

9. (1) ^=0, 

(2) (a) STT^a^, (c) 77r2a« 



ANSWERS. 301 

CHAPTER XIII. 

Page 215. 

1. tan X — log sec x ~y tan y — log sec y-\-G. 

2. x^ “ _L 2/^ 
3 

^x-y = C. 

3. 2xy + x-\-y + C{x-{-yi-1)=l. 

5. log —log X+tan~^x-i-C. —^ I 

6. 

a (1) y^cA (3) r(C-6^)=«. 

(2) y^ = 2ax + 0. (4) r~aO+C. 

10. X ~ + ^ log a y —a when x^O. 
2 a-\-‘Jd^—y^ 

Page 219. 

1. = 

2. (a? + h'^)y=a sin hx — h cos hx + Ce'~°’ 

3. re = a^ + C. 
n + 2 

4. Axy=y^-\-C. 

6. xe^~'^^—ta,xr^y-\-C. 

6. y£t^^*=2\^+C'. 

2 — 
8. — Ce^* 

A 

11. 
1 

yn-l l+Ce'”-"- 

12. 
1 

=—+(7. 
X sin y 2x^ 

13. 
1 

=^~+c. 
^log2 

14. = 1+C'e'"- 

15. i=i+ Cfe®. 
r a 

16. 
r"-i a“-^ 
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(2) (a^ + —aQinhx — hcoshx + Ge“*** 

(3) 8iuy/(l+A-)=e*+(7. 

(4) /W + </<.^)+l=CeW. 

CHAPTEE XIV. 

Paoe 223. 

1. |log(®Hv - l) + 2^Jog|^J-^-® + loga; = C', wlierer=y/x 

2. i Iog(6i.2 + - 3)+ log L^^tl-y^+iog 0^= C, 
2 s/73 12!> + H-\/73 

3. = 
X y 

where v—yjx. 

4. The jc?-eliminant of +P^)> 1 

and 

6. The jp-eliminant of y=^x{Ap’^-\-Bp-{-C)y and 

log ^{Ap^^ + (E -1)/? + <7} 

+ =const. 
s/AAC-iB-lf sJiAC-^B-lf 

Page 226. 

1. (y-xy^C{y'\-x), 2. {y-xf=^C{y+x-^)s 

4. (a + 6)log(y- a?4-l)+(a -6)log(y-1)= (7. 

6. x-y-\-\og{x-^y)=^C. 
6. 6y-3a7=log(3.27+3y+2)4-f7. 

7. 3.r2+4.2y4-3y2—10j7-10y+(7»0. 

8. j7+y —4 log(2j7+3y4-7)~(7. 
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Page 230. 

1. 3. y-{‘l{a-^x)^-2a{a + x^ = C, 

2. y—^ + \ogx-\-C, 4. x{x+2af=Ce^, 
A 

6. Aax—ij^ + Zay — log(2^ + a) 4- 

o i—(A—xY— y^ . 
6, cos I-^ y=A-x. 

7. ^=fi4jo2 4.2^jo+6'','| 8. ^ = (7^1 

y— Ap^+ Bp^. / Aq^-\- B(f. ] 

Page 232. 

1. y = Cx + G\ x^ + 4y — 0. 

2. y=^ Cx 4 C\ 4 4.27^=0. 
3. y = (7.274 (7«, 4{n -= 0. 

4. y = Cx+^a-(7^ 4 h^y -,^4*^^, = 1. 
0“ 

5. y — {x-a)C—C\ {x—(if=^Ay, 

6. {y-Cx'%G-\) — C^ >Jx^rsIy — \, 

Page 233. 

1. y^^p'^xA-Pi 

2. y~apxAp^i 

4 Qoi-a 
l~2a ^ 

3. y=jp2^4p^ 
^(y-"l)2=: -^3^1^2^(7 

4. y=(p4i?2>r4i, 

p^x=^\A-Ae^. 

5. y = (^4^")r4_, 

_1_ 
P^X — (22 - 1) 

6. y = ^pxAp^, 

J 
|2^= —_ /?^.27 ^n+14^. 

?i4l^ 

7. y—apxAhp^^ 
a 

xp*-^ — - 

8. A rectangular hyperbola. 

Vi ^ ' 

3 “-2'’-+^-) 
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9. Parabolae touching the axes. 

10. Hyperbolae. 

11. A four-cusped hypocycloid 

12. 8y==(2^’-l)2. 

13. y — 

3sin2(9-li 

BC 
14. y^—Cx"-— ^ series of conics touching the four straight 

lines a’±n/ — Ay — ±V^, the singular solution. 

CHAPTER XV. 

Page 238. 

1. y—xlo^x+AxA'B. 

2. y=a cosh^?+ 6^. 

3. 2?y = - a log .r + ?>. 

4. y=(£+?2)_V6. 
2/ 

5. (a? ~ A)2 4-(y — ^)2 = a2. 

6. ^+6= f 

7. y4-5 — js/ae~'‘^-\-^ — x dx. 

8. y=f(l + ^)e^’^-dj; + b. 
X J \x X^J 

9. y=6tari£±.'/±^. 
26 

10. x-{-A + 

11. y — Bx^ — Ax\ogx. 

\/l- 
-+sin"^y=0. 

Page 242. 

1. x^y—e^i-Ax^ + Bx+C. 

2. {x^ + sin = cos .;r 4- Ax"^ + Bx + C. 
3. (a) xP^y2,-'^xhj^A-^xy^-\-{x-^')y—f^A-A. 

W ^3~y2+*| = <^+^- 

(c) ^y5-4;r*y4+16.r3y3-48.r2y2 + 96.ryi 

- 96y+^{x^+y2)=^log ^-1)4-^. 
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CHAPTER XVI. 

Page 251. 

In the results of the following set all capitals denote arbitrary 
constants:— 

1. 3. + 

2. y = + 4. ^ = (A + B:vy+Ce-K 

5. y — Aa^A-Be ^ sin + (7g~^ cos 

6. y = Ae* + ^e~*+C sill cos 

7. y=(A + Bxy + (C+ Bx+Ear)^. 

8. y=A 8111^4-i?cos^ + (7<^ De ^cos 
2 2 

9. y—(A + ^:p)sin ^ + ((7+ i>.r)cos .r 4- ( 

10. y=(A 4- Bx 4- C.ir^)8iu xA‘{I>-\- Ex 4- Fx'^)co^ x 

+ {0 + Hx)e''^shi^L!^+ (/+ Jx)e~^costjl^. 
2 2 

11. y — (A 4- 4- Cxr)e^ADe^+{EAFx)e~'^Qin. 4- ((7 4- i7>)6’~*cos J7. 

12. y = (A 4- i7^)sin or+(<74- Dx)cos ax+E sin hxAF cos hx 

CX>JZ, rr "? CJP ^3 4-6'e ’^sin - 4-i/e *cos—^- 
2 2 

+ /e^sin 
2 2 

Page 254. 

1. (1) 
120'^ 

e~* 

T2‘ 

Page 256 (First Set). 

60’ 

- e*sin ar, 
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Page 256 (Second Set). 

1. c“*(a^+52)~^cos('5^-tan“^-Y ~ cos(2^—tan“^2), 
\ ctJ 2 2 kj^ 

^sin X cosh .r - cos :r sinh x), 

2. -^sm2^, ^cos^, — f\sin2^. 

e*(sin X — cos x\ 

Page 258. 

^4a(a^ - 1 )8in ax-^{a^ — +1 )co8 ax 

a{d^ + \) * 

— 2 cos X cosh X. 

Page 260. 

1- 2 “"2 ■^4’ 1+^. 

2. ^(I'¬ 
5 , 19 \ 

, e^(^- 
x^ 

\ + e-4 ^+?\ 
Ve 18 108/’ \4 2> ' \4 8/ 

3. ie*(irsin^+cos:r) —y^|^^2a? + ?^cos^— + 

j ^ 1 ^ ^ COS x \ ) ~ —2 

^sm2^ 

(3) ^cosher. 

<*> 

Page 263. 

(5) 

(6) ^(cosh^+cos^). 

(7)_f_ 
' ^ 2(a2-62)Va 2b J 2(a2-62) 

(8) ^sm^sin2|. 

2. (1) 4^^* 

(2) y===Aie* + A2e^*+j^xsmh.x. 
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A 

+ ^(sin X — 2 cos x). 
5 

(4) 2^ = (^i + iljx)e*+^3«-*+^4e”’sin^^ 

+ Jje’^cos - 9x2). 

(6) y=Ai + A^+J3T^ + J,e’+A^e-‘^-^. 

(6) 2/=A -f A ^ef^+v3)x j^(2-VS)* ^g-* _j_ ^ _j_ 3^ 
6 

(7) y=^ie'+Jae'^Binl^+^je'^oos—^ 

+^{(*r — 3)cos ^ sin a:}. 

(8) y=^ie*4*^2^~*’“^{(10*^+2)cos.2:4'(5^-* 14)8m^}. 

(9) y = ^i6*-f cos ^cosho: 

4-1 sin ^ siiih x 4-—-—. 
log(ae)log(?j 

(10) y=(+ A 2a:)e* + (^13+i44.r)8in x -f (.^5 4 ^g^)cos x 

+ i- ^^ 4^42. 
o 

Page 266. 

y = i4i8in(5r log :r) 4 log ^)- 

y = ^ isin(g log .r) 4.42Cos(g' log x) 4 ^ 

, 9'2gin(log ^) — 2 cos(log x) log x GO^{q log x) 

y~^ sin log x^ + JjVx cos^-^ logx^ +?+logx. 
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CnAPTER XVII. 

Page 269. 

1. 3. 4. — = 1—cos' 

Page 276. 

1. Vw-ty^ — xz] y^ — x^--2x^-{-'^x^Cxe~’* 

2. put tany=2 ; taii3^ = ^ cos^r + i^sin jr + .r. 

3. Put a + hx — e^] •J'~ 

where m.j, are the roots of the equation 

h‘^)m + .5 = 0. 

4. Put 2 = tan"^.r ; y~{Ax-¥B)lsfl-]rx^. 

6. Put z = sin”^r ; y = A siii(??. 8in~^.r) + B coa(n sin“^^). 

6. Put e^ = ^, = ((f ~e^+l)e^^ = A. 

7. Put sin jr = ^, sin ?/ = r; ; (siny - 8in.r+l)e®^“* = ul. 

8. (a) y = Ae~^ + 5<?‘“"’sin 3x+Oe-^cos 3x. 

(b) y=(A + Bx)e~^'^+2 cos .r+g sin x. 

(c) y = Jar3sin(log x) + 5a;‘''^cos(log x). 

9. y + 2 = sill 3.r+5 cos 3.r + G sin 4.r+D cos 4a;, \ 

32 = - 6(A sin 3a;+5 cos 3a^) A-(Csm 4x + D cos 4a;). J 

10. y^A^^\ 11. y==^kx''^-¥Ax+B. 
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