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PREFACE 

This book was written with a double purpose. It is intended to serve 
the needs of those who approach the fascinating study of atomic and 
molecular structure for the first time, and portions of it are therefore 
written in full and simple style for these newcomers. It also seeks to fur¬ 
nish workers in the field with an up-to-date account of the laws of quan¬ 
tum theory and with a general account of the important experimental 
researches in the field. Parts of the book have been used by one of us 
as the basis of lectures to graduate students of chemistry at the Johns 
Hopkins University. 

We believe that the conception of a planetary atom, governed by 
ordinary mechanics, will remain a useful qualitative tool for many years, 
whatever the theoretical developments may be. To appreciate the new 
mechanics and to use it effectively, one must first acquire an understand¬ 
ing of classical mechanics, with which the older quantum dynamics is 
identical except for the addition of the quantizing conditions. In fact, 
the classical kinetic and potential energies serve as the starting point 
for the new quantum mechanics. It is for this reason that the first part 
of this volume presents the approximate mechanical models of atoms and 
molecules and copious experimental facts, while the new mechanics is 
reserved for later chapters. 

Orbital models are probably the nearest approach to an adequate 
description of atomic systems which can be secured in terms of our 
ordinary mechanical concepts. At the present time an earnest effort 
is being made to lay aside models and to focus attention on the connec¬ 
tions between purely experimental quantities. We are in sympathy with 
this effort. It helps to emphasize the enduring quality of experimental 
facts, independent of the form in which they are expressed. On the 
other hand, a very large number of physicists and chemists do not wish 
to eliminate models from their methods of thought, nor to rely entirely 
on mathematical connections between their observations. In the past 
these models have consisted of particles moving on selected orbits, and 
now they consist largely of the more useful waves and nodes of the 
Schrodinger theory. It is only human nature to construct a new picture 
of a hidden mechanism as soon as an old one is discarded. 

Chapters I to XIV inclusive are concerned mainly with the history 
and the chief experimental facts of the quantum theory and with the 
progress of atomic and molecular structure prior to the introduction of 
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PREFACE viii 

the new mechanics. Certain auxiliary subjects, such as Hamiltonian 

dynamics, are also developed early in the book. In these chapters we 

have sought to attain clarity at any cost. The reader is repeatedly 

reminded that the theories set forth are only a first approximation to the 

true state of affairs, and references are given to later chapters where the 

subject matter is treated by the new mechanics. 

In Chaps. XV to XX we develop the fundamental ideas of quantum 

mechanics, while Chap. XXI gives an account of the wave properties 

of material bodies. It is a disappointment to us not to have been able 

to include chapters on quantum phenomena within the nucleus, and on 

the new statistics. Both of these subjects were omitted for lack of space. 

We hope that the reader of this volume will experience a pleasure 

akin to that which we have enjoyed while recording the wealth of experi¬ 

mental data now available on the structure of the atom and the striking 

correlation of much of this data by the new mechanics. 

A. E. Ruark. 

H. C. Urey. 

P1TT8BUROH, Pa., 
New York, N, Y., 

January, 1930. . 
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ATOMS, 
MOLECULES, AND QUANTA 

CHAPTER I 

INTRODUCTORY 

1. THE NATURE OF ATOMIC THEORY 

Once, when the famous Boltzmann had concluded a lecture on atoms 
and molecules, the equally famous Mach arose and said, in effect, You 
do not know that molecuh'S exist.Boltzmann replied, know that 
there are molecules.^^ Mach answered, ‘'You do not,’^ and so the debate 
ended. Today, the most ardent lover of modern atomic theory would 
side with Mach, but he would add, “I know that the hypotheses I use 
about the nature of the atom and the light it emits give me a deeper 
understanding of the Ixdiavior of gross matter in my experiments. They 
help me to predict the existence of phenomena which otherwise would 
remain shrouded in mystery.^^ Today, no physicist worthy of the name 
would claim that we have certain knowledge of the path of an electron 
in the atom even in the simplest case, provided we mean by certain 
knowledge the kind of understanding we gain from our everyday sight 
and sound perceptions; but he would claim that we possess today a set 
of very ingenious and reasonable statements and equations dealing with 
atomic behavior. 

If we put our confidence in these fundamental laws of atomic dynamics, 
they enable us to calculate accurately the observable quantities character¬ 
istic of each type of atom or molecule—the frequencies of light it can 
emit, the relative intensities of the lines in its spectrum, its behavior 
when it collides with electrons or other atoms, its reaction in the presence 
of light or X-rays, and its behavior in electric or magnetic fields. These 
remarks will suffice to make our position clear. Wherever definite 
statements of a theoretical character are made in this book, the reader 
must keep in mind the situation we have just outlined. 

2. THE PERIODIC SYSTEM AND THE ATOMIC NUMBER 

We begin our study of atomic structure by calling attention to certain 
important regularities in connection with the periodic classification 
of the elements, as shown in Table 1, which is a modernized version of the 
Mendel^eff table. Several anomalies in the periodic system were noted 

1 



2 INTRODUCTORY [Chap. I 

by Mendel^eff himself; the eighth group of ^elements consisting of three 
groups of triads does not fit well into the table; the rare earths have no 
satisfactory position in the table at all; and finally, certain elements^ 
A and K, Te and I, Co and Ni, would be placed in the wrong groups if the 
arrangement according to atomic weight were strictly adhered to. 
Moreover, the vacant spaces in Group VIII might be taken to indicate 
the existence of yet undiscovered elements for these positions. All 
these imperfections, except that of inversion of order, are eliminated 
in a table suggested by Bagley and improved by Julius Thomsen, and 
now of especial interest because it is most nearly in accord with the 

modern theory of atoms. This table 
(Chap. IX, Fig. 1) is almost self-ex¬ 
planatory. The successive periods are 
not of equal length, but consist of 2, 8, 
8, 18, 18, 32, and an incomplete period 
of 6 elements, respectively. Similar 
elements are joined by lines as far as 
possible though this cannot be done in 
all cases. For example, the similar 
valency of Cu, Ag, and Au, and K, Rb, 
and Cs cannot be shown. In general, 
it is less convenient to refer to this table 
than to the Mendel6eff table; but the 
former does show that a greater sym¬ 
metry exists than is indicated by the 
latter, and gives spaces for the iron, 

‘ Fio. 1.—The X-ray spectra. {AStcr palladium and platinum metals, and also 
Moadey,) the rare-earth elements. It has no 

vacant spaces like those in the VIII 
group of the Mendel^eff arrangement. The inverted order of A and K, 
Te and I, Co and Ni, when arranged according to increasing atomic 
weights indicates in itself that atomic weight is not the fundamental prop¬ 
erty with respect to which the remaining properties are periodic. 

The study of the X-ray spectra of the elements by Moseley (1913) 
showed that the X-ray wave lengths characteristic of the elements vary 
in a continuous manner from element to element as arranged in the 
periodic table. Figure 1 shows photographs of the X-ray emission 
spectra of several elements as given by Moseley. It will be seen that 
Fe, Co, and Ni have an order fixed by the X-ray spectra exactly the 
same as that given by a study of their chemical properties and not that 
required by the order of increasing atomic weights. Now, if the elements 
are numbered in the order in which they occur in Table 1, that is, in the 
order determined by their X-ray spfectra, the integer belonging to each eje- 
lOent is called its ^'atomic number.^^ The usefulness of such a numeration 
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was first pointed out by Rydberg. He numbered the elements beginning 
with 3 for hydrogen, assuming that two unknown elements preceded 
hydrogen. Moseley’s work indicated, and Bohr’s theory of atoms has 
shown conclusively, that this is not correct. The atomic numbers at 
present accepted are those given in Table 1. Rydberg pointed out that 
the atomic numbers of the inert gases obey the following regularity. 
Consider the series 

Z = 2(1^ + 22 + 22 + 32 + 32 + 42 + . . . ), 

in which Z is the atomic number. If the series is broken after any 
member, we obtain the atomic number of an inert gas. The successive 
terms give the number of elements in the periods of the Thomsen periodic 
table. The reason for this is explained in Chap. IX. 

The simple but all important physical meaning of the atomic number 
is this: The element in the Zth place of the periodic table consists of a 
positive nucleus endowed with the electric charge +Ze, together with 
Z electrons, each having the charge —e. The quantity — e is called the 
electronic charge and is equal to —4.77 • 10"^° electrostatic units. And 
now we encounter the question of the arrangement and motion of these 
parts. 

3. VALENCY AND STATIC MODELS OF THE ATOM 

It is natural to suppose that valence is connected with the number 
of loosely bound electrons in the atom. Thus, one would be inclined to 
say that the inert gases represent very stable configurations, that the 
alkali metals have one loosely bound electron, the alkaline earths 2, and 
so on. On the other hand, if the atom lacks one electron of the number 
required to complete an inert gas configuration, we have a monovalent 
electronegative element (a halogen), while a divalent electronegative 
element would require two electrons to form the inert gas configuration. 

In aqueous solution, atoms standing near the inert gases in the periodic 
table tend to lose or gain electrons until the positive or negative ions 
thus formed resemble the nearest inert gas. Similarly, the stability of 
the electron configurations of Ni, Pd, and Pt explains the existence of 
monovalent ions of the elements following them, Cu, Ag, and Au. 

It is in accord with our present views to assume that the so-called 
outside shell’’ (or “ring” or “layer”) of a rare gas atom (other than 

helium) has 8 electrons. In 1904, Abegg emphasized the importance 
of the number 8 in the periodic table of the elements. He regarded this 
as the number of points on the atom which could be occupied by electrons. 
In the same year. Sir J. J. Thomson proposed a theory in which electrons, 
assumed to be small compared to the size of an atom, were embedded in a 
sphere of uniformly distributed positive electricity of the same order of 
magnitude as the atoms themselves. He found that the electrona in 
’sneh a sphere, considered as lying in a plane, for simplicity, would arrange 
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themselves into stable configurations of concentric rings, and noted the 
application of this to the periodic law. Though the actual numbers 
which he secured for the populations of successive rings did not follow 
the Rydberg formula at all, this model led him to suggest the above 
views in regard to valence. Though he considered only the arrange¬ 
ment of electrons in a plane because of its mathematical simplicity, he 
recognized of course that the electrons would distribute themselves in 
concentric shells. The model is no longer tenable, simply because we 
have others which are in much better agreement with experimental data. 
In 1916, G. N. Lewis and Kossel elaborated the views of Abegg and 
Thomson in regard to the periodic law and polar valencies. Lewis 
proposed a static model of the atom and limited his discussion to the 
first two short periods of 8 atoms, while Kossel accepted a dynamic 
model proposed by Bohr and also considered the polar valencies of the 
atoms of the long periods. Langmuir (1919) extended the Lewis theory 
to the long periods.. 

The stability of the organic compounds generally, and the existence 
of stereoisomers and optical isomers, prejudice chemists in favor of 
static models of atoms, for it seems difficult to believe that such great 
stability is underlaid with a highly mobile dynamical system of electrons. 
Though static models have been somewhat satisfactory for the qualitative 
explanation of chemical valence, it must be admitted thatHhey have 
yielded few quantitative results. The postulates thus far stated for 
such theories do not lead to exact mathematical treatments and quan¬ 
titative checks against experimental data. Thus, they tend to become so 
flexible that they can explain qualitatively any new results but are quite 
unable to stimulate new experiments. Practically all advances have 
been made by the consideration of dynamical models, and, in particular, 
the models proposed by Bohr which have held the center of the field 
from 1913 to 1925. In the latter year, an improved system of atomic 
mechanics was introduced, and it became apparent that the Bohr model 
is a first approximation to the models suggested by the new theory. We 
must emphasize, however, that it is an excellent approximation—so 
excellent, in fact, that we shall study it to the exclusion of all others 
in the first portion of this book, reserving later chapters for consideration 
of refinements introduced by the new mechanics, which cannot be 
appreciated without a knowledge of what went before. Similarly, before 
we can prbperly study the Bohr atom we must address ourselves to the 
currents of thought which brought it into being— the development of the 
electromagnetic theory of light and the rise of the quantum theory. 

4. THE ELECTROMAGNETIC THEORY OF LIGHT. MOTION WITHIN THE 
ATOM 

In 1864, Maxwell proposed the electromagnetic theory of light, which 
first showed a relation between light and electromagnetic phenomena in 
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general. The theory showed (see Appendix VIII) that an accelerated 
electric charge would radiate electromagnetic waves and that these 
would travel through space with a velocity equal to the ratio of the 
electromagnetic to the electrostatic units of charge. This ratio is equal 
to the velocity of light and, immediately, it appeared probable that light 
consists of such electromagnetic waves. Since that time, a vast amount 
of experimental evidence has accumulated in favor of the theory as 
applied to gross matter. In the atomic realm, too, it has had striking 
triumphs, though we know today that modifications are necessary in this 
domain. 

Emax, VSI 

The simplest electromagnetic model of a light source is the variable 
electric doublet, composed of two equally and oppositely charged particles 

together by an elastic force, so that they ©oscillate with respect to each other with simple 
harmonic motion. MaxwelFs theory of light re¬ 
quires that such an oscillator should emit unifre- 
quentic radiation with the following properties at 
distances large compared with the size of the 
oscillator and the wave length. The surface of 
any individual wave front is very nearly a sphere 
moving out from the oscillator with a constant 
velocity. If the poles of the sphere are defined as 

Fio. 2.—Electric and the points at which it is pierced by the prolonga- 
magnetic forces m the field doublet axis (Fig. 2), then the ampli- 

tude of the wave is zero at the poles and a maximum 
at the equator. The wave consists in a variation of electric intensity 
accompanied by a variation of magnetic intensity; the two intensity 
vectors are perpendicular to each other and to the direction in which 
the wave is moving. The electric force is always in the meridian, while 
the magnetic force is in the direction of the lines of latitude. 

Thomson’s model of an atom having but one electron imbedded in a 
sphere of positive electricity of equal charge would behave like such an 
oscillator. The force acting on the electron would be proportional to its 
distance from the center of the sphere, provided the positive charge 
distribution is not altered by the presence of the electron. The electron 
would oscillate in a straight line through the center of the sphere. If 
the damping forces are so small that they do not change the motion 
appreciably during a time which is large compared with the* period of 
an oscillation, then, during such an interval, its distance x from the 
center at an instant t is 

a: = a cos 2rcot (1) 

In the light waves emitted by such an oscillator the electric and magnetic 
intensities vary according to the law of simple harmonic motion with 
frequency that is, the light is monochromatic. 
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If the charges comprising the doublet are not held by a force varying 
directly as the displacement, the motion will not obey equation (1). 
For many simple force laws, however, it will be periodic. If the motion 
of the particle contains the frequencies w, 2o;, . , . , i.e.j a fundamental 
frequency and its overtones, then the wave of light emitted also contains 
these frequencies and the spectrum emitted by the doublet would be as 
shown in Fig. 3. Such a spectrum is obtained from radio circuits. 
Certain molecules yield a similar spectrum in the infra-red. If several 
independent frequencies are present in the motion of a , 
charged particle, or, if there are several oscillating { 
charges, the displacement of the electrical center of ^ 
gravity of the charges, and also the light waves emitted, 
will contain frequencies of the type, 

TiCOi + 720)2 + • • • + rnO)n, (2) 

where 0)1 . . . o)„ are the fundamental frequencies of the system ;ri . . . Tn 
are any whole numbers from — to +«», except that they cannot all 
be zero, and the summation must be positive. Such is the complex 
spectrum predicted by Maxwell’s theory for atoms containing many 
electrons. One other point is essential; the frequencies depend, in 
general, on the energy of the vibrating system and so, as the system 
loses energy, these frequencies change. Thus, instead of a spectrum 
consisting of only a few frequencies, we should predict, on the basis of 
electromagnetic theory, that more or less continuous spectra would be 
emitted. True enough, the light emitted by liquids and solids when 
heated or when excited to luminosity by radiation, by the impact of 
electrically charged particles, or in other ways, consists of a continuous 
range of wave lengths, and the emission of monochromatic light from such 
bodies is a rather special, but by no means infrequent phenomenon. 
The emitting atoms in liquids and solids, however, are disturbed by the 
atoms near them. We should expect that the light from gases and 
vapors at low pressure would be truly characteristic of isolated atoms. 
Such light consists of many sharply defined wave lengths (atomic line 
spectra and molecular band spectra) and the emission of a continuous 
spectrum is to be considered as an accessory phenomenon. All lines of 
evidence point to the conclusion that atomic spectra are not of the type 
which are predicted by classical mechanics and electromagnetics* 

6. THE LIMITATIONS OF CLASSICAL MECHANICS AND 
ELECTRODYNAMICS 

We know that gases do not emit light spontaneously, as required by 
Maxwell^s theory for any system of charged particles subject to acceler¬ 
ations. Further, the frequencies emitted when gases are excited electri¬ 
cally do not agree with equation (2), so that the simple model on which 
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this expression is based cannot be correct, in spite of its proved capacity 
for explaining many of the electromagnetic and optical properties of 
material media. The interesting generalization which has emerged 
from the study of spectra is this: To each atom or molecule can be 
assigned a number of frequencies called spectral terms,” say . . . 
Pn . . . , such that the actual frequencies Vnm in the light emitted are 
always differences of these terms, that is, 

Vnm = Vn — Pm- (3) 

This fundamental truth is known as the ‘'Ritz combination principle.^^ 
Equation (3) suggests at once that the frequencies of the atomic motion 
are vi , , , y and that for some reason the frequencies of the radiation 
are only the beat (or heterodyne) frequencies between them. However, 
the values of the Vnm!Sf obtained experimentally, are radically different 
from those belonging to any gross physical system of point charges, or 
rigid charged bodies, which are of the type of equation (2), if the system 
is multiply periodic. This is a troublesome situation. (The type of 
system which does have such frequencies is discussed in Chap. XV, ff.) 

The discovery of the negative electron and the proof that it is a 
constituent of all atoms was followed closely by the discovery of radio¬ 
active phenomena. The development of this latter subject, especially 
in the hands of Rutherford and his associates, showed that the positive 
charge within an atom is concentrated in a region very small compared 
to the size of the atom deduced from kinetic gas theory, and indicated 
that the atom must be similar to a miniature solar system; but, if ordinary 
mechanics and electrodynamics were applied, such an atom would show 
an instability at variance with the facts, quite apart from the question 
of radiation losses. The favorite illustration is a comparison with the 
way in which the solar system would behave if it were to pass near a 
cbld star. The initial state of the system could be chosen in any way 
we wish. All mechanical constants of the system would be changed^ 
and their new values would depend on the exact nature of the encounter- 
But all evidence indicates that an atom can have only a discrete set of energy 
values, 

El, E2, • • • En * * * 

When an atom suffers a collision (see Chaps. Ill and XIII), it emerges 
from the encounter with its internal energy equal to some one of these 
values; and quite generally, whenever a transient disturbance of any 
kind affects the atom, it is left either in its original state of energy or in 
one of the other states in the sequence. This is only one illustration 
of the failure of our customary mechanical ideas in dealing with the 
atom. More evidence of this failure is obtained from a study of heat 
capacities at low temperatures, and from the distribution of energy 
in the black-body spectrum. 
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6. THE EQUIPARTITION LAW AND HEAT CAPACITIES 

According to the kinetic theory of gases, the average kinetic energy of a 
gas molecule at the absolute temperature T is 

+ Vy'^ + »/) = 2 JV "" 2 

/? is the gas constant per mole; k is Boltzmann^s constant—that is, the gas 
constant for one molecule (1.37 • 10“^® ergs per degree Centigrade)—and N 
is Avogadro’s number. The mass of the molecule is m and Vx, 

are the components of its velocity in the directions of the F-, and 
Z-axes, respectively. The bar over the expression on the left indicates 
an average value. Thus, the kinetic energy of the molecule is the sum 
of three terms each representing the kinetic energy contributed by its 
motion in the direction of one axis. From considerations of symmetry, 
it is evident that in a body of gas containing many molecules the mean 
values of these three terms are equal to each other and equal to one third 
of the total mean kinetic energy, so that 

mvx^ __ 
“ 2 “ “ 2 “ T" " 2 ’ 

that is, the mean translational kinetic energy is equal to kT/2 for each 
degree of freedom. 

The heat capacity of a gas at constant volume is defined to be the 
rate of increase of the energy of the gas with respect to temperature, 
i,e., (dE/dT)v and this is Nk/2 ~ K/2 per mole for each degree of freedom 
of the molecule. Then for a gas composed of molecules which do not 
rotate and whose parts do not vibrate with respect to each other, the 
heat capacity per mole at constant volume should be 37^/2. Furthermore, 
in the case of an ideal gas, the molar heat capacity at constant pressure 
exceeds that at constant volume by Ry and so should be equal to 5R/2. 
These deductions have been verified for monatomic gases and, therefore, 
we may conclude that the motions of the particles which compose the 
atoms are not affected by temperature to an appreciable extent over the 
entire range in which measurements have been made, so that there is no 
contribution to the heat capacity due to changes in the internal energy 
of the atom. This is strong evidence that internal energy cannot be 
taken up continuously by the particles of the atom. There is a similar 
effect in the case of molecules. Let the state of a molecule be defined 
by giving the values of a number of coordinates . . . Qn- If the 
variation of the coordinate Qn gives rise only to a squared term of the 
form in the kinetic energy, Cn being independent of then we 
can prove by the methods of statistical mechanics that the average of 
this term is kT/2, Thus, the average contribution of such a term to the 
kinetic energy is the same, regardless of the precise nature of the coordi- 
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nate q. This is called the ^^equipartition theorem.’’ Now, the number 
of degrees of freedom of a molecule is equal to three times the number of 
particles it contains. Thus, if we count the atoms composing a molecule 
as particles (disregarding the electrons for the moment), the number of 
degrees of freedom of a molecule having n atoms is equal to 3n, and we 
should expect the heat capacity associated with the kinetic energy of 
all the particles to be SnR/2 per mole. If potential energy is associated 
with any of these degrees of freedom, which is generally the case, the 
heat capacity will be greater than 3nR/2 and, therefore, this is only a 
minimum value. 

This consequence of the law of equipartition of energy is not obeyed 
even approximately as we can easily see by considering a diatomic gas. 
The two atoms have six degrees of freedom so that its minimum heat 
capacity at constant volume should be But the ordinary diatomic 
gases, such as H2, O2, N2, etc., have heat capacities nearly equal to 
5/2/2 at ordinary temperatures. Why does this discrepancy exist? 
Boltzmann assumed that the molecule rotates in space but that the two 
atoms do not vibrate with respect to each other. There are three 
degrees of freedom associated with the translation of the molecule as a 
whole and two degrees associated with its rotation. The energy of such 
a molecule is entirely kinetic. Its mean energy is therefore bkTf2 
according to Boltzmann’s assumption and the heat capacity 5/2/2 per mole, 
in agreement with experiment. But it should be noted that ordinary 
mechanics does not explain the ‘^freezing up” of the vibrational motion. 

In the case of solid bodies, each atom has three degrees of freedom 
and is bound to an equilibrium position by a force which varies directly as 
the displacement in the case of small vibrations. With this law of force 
the mean kinetic energy is equal to the mean potential energy, so that the 
mean total energy will be equal to twice SkT/2j and, therefore, the heat 
capacity per mole will be 3/2 or 5.96 calories. This is Boltzmann’s 
explanation of the law of DuLong and Petit, discovered empirically. 
This law holds approximately for many substances at ordinary tem¬ 
peratures but it does not hold for the lighter elements, as, for example, 
carbon where the deviation is large; nor does it hold for any substance 
at low temperatures. 

The law of equipartition of energy requires that the heat capacity be 
constant for all temperatures, at least if the energy is entirely kinetic. 
This prediction also is not true, for the heat capacities of all solid bodies 
approach zero as the temperature approaches absolute zero. More¬ 
over, the heat capacity of hydrogen gas decreases very markedly below 
room temperatures and reaches a constant value of 3/2/2 at about 36® 
absolute. Here again, we are dealing with “frozen” degrees of freedom. 
Another difficulty is that the electrons and nuclei of the individual 
atoms do not contribute to the specific heat* 
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The equipartition law is derived by the use of Newton’s laws of 
mechanics and the assumptions of statistical mechanics. We are driven 
to the same conclusion which was reached in the last paragraph, that 
classical mechanics cannot be applied without modification to the 
motions inside atoms and molecules. 

7. BLACK-BODY RADIATION 

The theory of electromagnetic radiation and the theorem of equi¬ 
partition of energy lead to the following conclusions in regard to the light 
energy radiated from a black body, i.e., a body which absorbs all light 
falling on it, neither reflecting nor transmitting any of this light. If 
the energy lying between the wave lengths X 
and \ + dk, emitted from unit area of a black 
body in unit time is SxdX, then we have 

sxdX = 
2TrckTd\ 

(4) 

J 
1 
\ 

\ 
\ 

J "b 
\ 

■ / 

1 
V 

1/ s 
/ 

□ 

Fio. 4.—Wave-length dis¬ 
tribution of black-body 
radiation. 

c being the velocity of light. 
This is the Rayleigh-Jeans radiation law. 

The energy carried by all wave lengths from 0 
to CO is 

s = r* sxdX = 2TrdkT f* }rH\. (5) 

At all temperatures, the first equation requires 
that the energy radiated per unit range of wave 
length shall approach an infinite value as the 
wave length decreases (see Chap. Ill, Sec. 1, 
however). The second equation states that 
the total energy radiated per unit time and unit 
surface should be infinite. Both conclusions 
are obviously wrong. Lummer and Pringsheim 
(1897-1899) measured the distribution of energy in black-body radiation 
with respect to wave length and temperature. Their results are shown 
graphically in Fig. 4. The most recent measurements are those of Rubens 
and Michel. ^ The experimental results follow the Rayleigh-Jeans formula 
at long wave lengths but depart very decidedly from it at shorter wave 
lengths. Stefan (1879) discovered empirically that the total energy 
radiated from a black body at temperature T follows the law 

s = <rT\ (6) 

where <r is known as ^^Stefan’s constant.” Boltzmann subsequently 
deduced this law by thermodynamical reasoning. Thus, the total energy 
emitted must be finite at all temperatures, and not infinite as given 
by the Rayleigh-Jeans law. 

^ Berl Akad. Ber,, p, m (mi). 
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The invalidity of equation (4) is the crucial phenomenon which led 
Planck to introduce the quantum theory. The theory deals with 
processes in which energy is interchanged by atomic systems in definite 
parcels, instead of continuously, and it takes its name from this circum¬ 
stance. The word quantum comes from Latin quantus, meaning how 
much. It signifies a fixed amount of any manifold or extent. 

8. INTRODUCTION AND EARLY DEVELOPMENT OF QUANTUM THEORY 

The above examples of the failure of our usual laws have one common 
feature—the systems dealt with are in rapid oscillatory motion, and the 
discrepancies between theory and experiment are pronounced at high 
frequencies but become small at low frequencies. The laws of electro¬ 
dynamics can be used with confidence at radio frequencies, but they 
cannot account for the characteristics of light waves as emitted by atoms 
and in particular for the absence of overtones in the light. Anomalies 
of heat capacity behave in the same way. Carbon atoms in diamond 
vibrate with a high frequency because of their low mass and the firmness 
with which they are held in place, while copper, atoms vibrate with a low 
frequency because of high mass and weak binding. Finally, the classical 
formula for black-body radiation holds for low frequencies of light but 
not for high. This calls attention to a useful condition which the true 
laws of atomic dynamics must satisfy. They must merge into the older 
laws when applied to large masses or low frequencies. 

The first step toward an appropriate modification of classical theory 
was a startling hypothesis of Planck (1900) which yielded the correct 
law of distribution of black-body radiation. He assumed: 

1. A black body contains simple harmonic oscillators like those 
described in Sec. 4, vibrating with all possible frequencies. 

2. The frequency emitted by an oscillator is the same as its motional 
frequency. 

3. The emission (or absorption) occurs during very rapid changes 
in the amplitude of the oscillator, taking place at intervals. Between 
these transitions the amplitude remains constant, so that no radiation 
is emitted or absorbed. 

4. An oscillator emitting a given frequency v can exchange energy 
with the radiation field only in units called quanta, having the magni¬ 
tude hv, where /i is a constant named after its discoverer. 

Planck^s constant 3s A = 6.547 • 10“^^ erg seconds. 
The essential novelty lies in assumptions (3) and (4). Postponing 

proofs to Chap. Ill, we may state that these assumptions lead to the 
distribution law, 

2irc ch 1 
fix - yr Y ^ > 

_ 1 
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instead of equation (5), and this gives for the Stefan-Boltzmann law, 

® J 15cW ■ ^ • 

Both equations agree with the facts within the limits of experimental 
error. 

Einstein (1907) used Planck^s assumptions to derive an expression 
for the heat capacity of a solid body, assuming that the oscillators are 
the atoms composing the body. The mean energy of an atom with 
three vibrational degrees of freedom is found to be 

instead of 3kT and the heat capacity per mole at constant volume will be 
hv 

The weakness of this theory lies in the assumption that the actual 
solid body can be represented by a group of oscillators having only one 
frequency, which must be determined by comparison with experimental 
data. However, when suitable values of v obtained in this manner are 
substituted in the formula for Cv, it gives fairly good agreement with 
the experimental heat capacities for a number of elements. For low 
frequencies and high temperatures, Cv approaches the value 3R required 
by DuLong and Petit^s law, but for high frequencies or low temperatures 
the heat capacity is lower than 3R. In 1912, Debye published a theory 
of the specific heats of the elements in a solid state, in which the atomic 
oscillators can possess all frequencies up to a certain maximum, 
We may note here that the agreement with experiment leaves little to 
be desired. 

Another important step, in the early development of the theory, was 
Einstein's explanation of the photoelectric effect—the ejection of electrons 
from a metal surface by light or by X-rays. For a given surface illu- 
rainated with monochromatic light of frequency v, the maximum kinetic 
energy of the electrons, mv'^12, is not a function of the light intensity, 
but a straight-line function of the frequency. The physical basis of 
this was recognized by Einstein, and can be expressed by the equation 

^ = ft. - p. 

The significance is, that P is the work required to separate the electron 
from the metal surface. An amount of energy hv is expended on each 

^ See for example, Eucken, Jettb, and LaMer, ^‘Principlesof Physical Chemistry,” 
McGraw-Hill Book Company, Inc., New York (1924). 



14 rNTRODVCTORY [Chap. I 

electron in separating it from the surface and in giving it kinetic energy. 
This shows that assumption (4) above, originally stated for fictitious 
linear oscillators, can be extended to cover the present case. 

The experimental facts in regard to the photoelectric effect also led 
Einstein to his hypothesis of unidirectional light quanta, or photons. 
Experiments showed that the photo-effect begins at once when a weak beam 
of X-rays falls on a metal plate. However, the energy density in some of 
the beams actually used was such that several hours would have to elapse 
before an amount of energy equal to hv could fall on the area of one of the 
atoms in the surface, provided that the energy is spread uniformly over a 
spherical wave front. To explain this discrepancy, Einstein assumed 
that the quantum of energy hv emitted by a single atom is not propagated 
in the form of a spherical wave, but passes out in a single direction. 
There is no lateral spreading and the whole quantum can be absorbed 
by another atom, however far it may have traveled. The experimental 
evidence at our command today favors this hypothesis. How it can be 
reconciled with the usual electrodynamic theory of light will be explained 
in Chap. Ill, Sec. 13 and Chap. XV, Sec. 17. Suffice it to say that the 
older theory can no longer be interpreted as it was before the advent 
of the new quantum mechanics. Thus, the photo-effect offers strong 
support for Planck^s original assumptions, and the way was open for a 
broad and rational extension of those assumptions to atomic systems in 
generalo 

9. BOHR’S THEORY OF ATOMIC STRUCTURE 

This extension was made by Bohr in 1913, following the work of J. W. 
Nicholson and of Arthur Haas (Chap. V, Sec. 2) which was only partially 
successful. Bohr obtained a quantum theory of the spectrum of atomic 
hydrogen, based on the following postulates, which are more precisely 
stated and fully explained in Chap. Ill; 

1. Atomic systems exist only in a number of stationary statesj sepa¬ 
rated from each other by finite energy differences so that any gain or loss of 
energy by the atom results in a complete transition from one stationary state 
to another; 

2. Radiation emitted or absorbed by the system is monochromatic and 
its frequency Vnm is determined by the relation 

__ Rn Em 
^ 

where En emd E^ are the energies possessed by the atom in the nth and mth 
states, respectively. 

It is an essential feature of Bohr^s theory that the frequencies emitted 
by an atom are generally different from all the frequencies in its motion. 
And now we must make an assumption as to the laws of motion %jaich 
govern the particles in the atom when it is not radiating. An excellent 
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first approximation to the true state of affairs is obtained if we assume 
that these particles can be treated as point-charges and that they obey 
the ordinary laws of mechanics. In many problems the nucleus can be 
considered at rest, while the electrons move around it like planets around 
a sun. Let us discuss the hydrogen atom, which is the simplest of all, 
and the best understood. It is the first element in the periodic system, 
and its atomic number Z is 1, that is, the atom has only one electron of 
charge —e moving around a massive nucleus of charge +e. We assume 
that the force betw(^en the two varies as the inverst? sciuare of the distance 
—the usual law of force in electrostatic problems. Then the electron 
can move on an elliptical orbit with the nucleus at one focus of the 
ellipse, as illustrated in Fig. 4, Chap. IV. It will suffice for our purpose 
here if we consider only the circular orbits. 

If the electron could move on any orbit whatever, then, in a shift 
from one orbit to another, the atom could lose any amount of energy 
whatever, and by the second postulate above, an aggregate of such atoms 
would emit a continuous spectrum. Since this is not the case, it is clear 
that the electron is not free to choose any path whatever. It moves only 
on certain privileged paths, which obey a set of equations called the 
quantum conditions, not derivable from the ordinary laws of mechanics or 
electrodynamics (Chap. Ill, Sec. 8). Such is the picture given by Planck 
and Bohr to explain the inherent stability of the atoms in general; the 
electrons move in certain configurations picked out by the aid of the 
quantum conditions, and are said to occupy quantized orbits. When 
the atom is exposed to a transient disturbance of any kind, it either 
shifts to another stable quantized state, or returns to its original one 
after the disturbance has passed. Results like these lead easily to the 
impression that natural phenomena are (essentially discontinuous; but 
this is a question for philosophy. The important point for the physicist 
is that quantized atoms show a behavior which is simple compared with 
what we might expect if classical mechanics w(?re valid. A world of 
atoms having the capacity to exist in all states of energy would be a 
world of chaos! 

So strong was the evidence in favor of Bohr^s theory, that, until about 
1923, it was believed that his concepts would persist unaltered; but 
from that time on, it became increasingly apparent that the values of the 
energy predicted by the usual rules for picking out the orbits were not 
always quite correct. Now this trouble might have been conquered by 
simply altering the laws which were used for picking out the actual 
orbits. Many such attempts were made, but none were quite acceptable; 
the subject languished, and many bizarre papers were published. Then, 
in 1925, the ^^way out^’ was discovered by Heisenberg. That way 
consisted of a thorough generalization and revision of the laws of mechan¬ 

ics. Independently, the same goal was reached by Schreidinger uk 
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1926, following suggestions of de Broglie which date from 1923. The 
ideas involved are simple enough—illuminating in fact—but to appreciate 
them fully a more intimate knowledge of Bohr^s theory is required. We 
shall give a more detailed account of the Heisenberg-Schrodinger 
mechanics beginning with Chap. XV, and the curious reader may turn 
to it now with profit; but here we begin a detailed study of atomic 
science as it was before 1925. For years to come, physicists will talk 
in the language of the Bohr theory and it will suggest new pathways to 
further knowledge. 

REFERENCES 

(All the following were published prior to tlu^ development of the new mechanics, 

and therefore are based on Bohr’s theory. Texts on the now mechanics are listed at 

the end of Chap. XV.) 

Recent Treatises: 
SoMMERFELD, A., “Atombau und Spektrallinicn,” 4th ed., Vieweg, Braunschweig 

(1924). This is perhaps the best known reference work on atomic physics. The 

third edition was translated into English and there is also a Fren(;h edition. 

Andrade, E. N. Da C., “The Structure of the Atom,^’ 3rd ed., Bell, London (1927). 

Tliis is the most comprehensive treatise in English. Mathematics is much less 

prominent than in Sommerfeld. About one-fourth of the book deals with the study 

of the nucleus, and the other three-fourths with the extranucloar structure. 

Darrow, K. K., “Introduction to Contemporary Physics,” D. Van Nostrand 

Company, Inc., New York (1926). This book, intermediate between an advanced 

treatise and a popular account, is suitable for the educated layman or for the scientist 

who wishes to orient himself in the field of atomic structure. 

Pauli, W., Jr., “Quantentheorie,”a part of Vol. 23 of the Geiger-Scheel Handbuch 

der Physik, Springer, Berlin (1926). This deals with the essential points of the 

mathematical theory, including both thermodynamic and statistical applications of 

quantum theory as well as the study of atomic structure proper. Molecular spectra 

are not discussed. 

Van Vleck, J. H., “Quantum Principles and Line Spectra,” Bull. 54 of the 

National Research Council, Publication Office, National Research Council, Wash¬ 

ington, D. C. (1926). The same remarks apply to this book as to Pauli’s “Hand¬ 

buch” article. It is out of print, but mimeographed copies can be obtained from the 

publishers. 

Reiche, F., “The Quantum Theory,” 2nd ed. E. P. Dutton and Co., New York. 

Birtwistle, G., “The Quantum Theory,” The Cambridge University Press 

(1926). 

Gerlach, W., “Matter, Electricity, Energy,” translated from the 1926 German 

edition by F. J. Fuchs, D. van Nostrand Co., Inc. New York (1928). This is experi¬ 

mental in attitude and contains very little mathematics. 

Richtmyer, F. K., ^‘Introduction to Modern Physics,” McGraw-Hill Book Com¬ 

pany, Inc,, New York (1928). 

Older Treatises: 

Foote, P. D., and Mohlee, F. L. “The Origin of Spectra,” The Chemical Catalog 

Co., New York (1922). It covers the excitation of spectra and the phenomena of 

energy interchange between electrons and atoms, principally from an experimental 

standpoint. It is out of print at present. 

Sn4BEBSTBiN, L., “Report on Quantum Theory of Spectra,” Adam Hilger^London 
(1920). 



REFERENCES 17 

Brillouin, L, Theorie des Quanta et TAtome de Bohr/* Blanchard, Paris 
(1922). 

Lewis, W. Q. McC., ^^Quantum Theory,** forming Vol. 3 of “A System of Physical 
Chemistry,** 2nd ed., Longmans Green and Co., New York (1919). 

Berthoud, *^The New Theories of Matter and the Atom,*’ The Macmillan Com¬ 
pany (1924). 

Cranston, “The Structure of Matter,** D. van Nostrand Co., Inc. (1924). 



CHAPTER II 

THE ELEMENTARY CONSTITUENTS OF ATOMS^ 

1. FARADAYS LAW AND THE ATOMIC NATURE OF ELECTRICITY 

In 1833, Faraday announced his laws of electrolysis, which are as 
follows: (1) The amount of material deposited at either electrode of a 
cell is proportional to the quantity of electricity which passes; (2) equal 
amounts of electricity deposit equal numbers of gram equivalents of 
different substances. In 1874, Stoney gave an address before the British 
Association, pointing out that it is almost a necessary consequence of 
this law and the atomic theory of matter that electricity should be 
atomic in character. Helmholtz emphasized the same fact in his Faraday 
lecture in 1881. To Stoney we owe the name ^^electron,’^ which was 
first applied to the elementary unit of electricity of either sign, but now 
is limited to the negative unit, while the positive unit of equal magnitude 
is called a proton.” 

Faraday^s law does not prove that electricity is discontinuous but it 
makes this assumption very probable. If electricity is continuous, it 
seems very strange that all ions must become charged with equal amounts 
or with amounts which are in the ratio of simple integers. This appear¬ 
ance of simple integral numbers is just as valid an argument for the 
atomic character of electricity as it was for the atomic theory of matter 
as shown in the law of multiple proportions, but it is not a proof. 

The elementary charge can be calculated from the amount of electricity 
required to deposit one gram-atom of a substance, the valence, and the 
number of atoms in a gram-atom. The quantity of electricity required 
to deposit a gram equivalent from an electrolyte is called the ^^faraday” 

and is equal to 96,489 ± 7 absolute coulombs or 9,648.9 ± 0.7 electro¬ 
magnetic units. So, if e is the elementary unit of electricity and N 
is the Avogadro or Loschmidt number—the number of molecules in a 
gram-molecular weight. 

9,648.9 ± 0.7 
electromagnetic units. 

However, e can be determined directly with greater accuracy than N 
and so the value of the latter has been calculated by this equation with 
the use of the experimental value of e. 

‘ The more elementary facts about electrons and positive nuclei are so widely 
known that our account of them will be brief. For .detailed accounts we refer the 
reader to the general references given at the end of the chapter. Much of the present 
chapter will deal with accurate methods for studying these particles, 
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We do not know why all electrons have the same charge within the 
limits of experimental accuracy, but such is generally admitted to be 
the case. Nor do we know why the charge of the hydrogen nucleus 
is equal to the electronic charge, but of opposite sign. When these 
facts are accepted, however, we arrive at a partial understanding of the 
fact that other nuclei have charges which are multiples of the electronic 
charge. We believe these nuclei are composed of hydrogen nuclei 
and of electrons, and that the charges of these particles are not altered 
when they combine. 

2. THE ISOLATION OF THE ELECTRON 

Sir J. J. Thomson and his collaborators showed that gases become 
conducting when illuminated by X-rays and that positively and nega¬ 
tively charged ions are formed. Sir Wm. Crookes obtained more detailed 
information by a study of the conduction of electricity through gases 
at low pressures (0.01 mm. of mercury). When currents driven by high 
potentials pass through gases at low pressures, electrons are shot out 
from the cathode. Under suitable conditions their path through the 
evacuated space can be followed by the light emitted by the small amount 
of gas present and appears as a straight bright beam perpendicular to the 
cathode. They cause many objects on which they fall to phosphoresce 
and the point where they strike the glass wall of the bulb may be observed 
in this way. Such beams cast well-defined shadows of objects placed in 
their paths. They are deflected by electric and magnetic fields and the 
direction of deflection shows that they carry a negative charge, also they 
impart a negative charge to insulated objects on which they fall. The 
electrons of these beams are able to penetrate thin sheets of metal and 
can be led out of the discharge tube through an aluminium window as 
Lenard first showed. These fast electrons have the same properties 
regardless of the metal used for the cathode and of the kind or pressure 
of gas in the discharge tube. The evidence is conclusive that they are a 
common constituent of all matter. 

3. RADIOACTIVE DISINTEGRATION 

Certain elements of high atomic weight, as well as K and Rb, are 
unstable in the sense that they spontaneously change to elements of 
lower atomic weight with production of heat and with the emission of 
alpha, beta, and gamma rays. The alpha rays are helium nuclei, having 
a mass practically equal to th£d} of the helium atom, and a positive 
charge, +2e. The beta rays are electrons, and the gamma rays are 
light quanta of very short wave length. These phenomena were 
first observed by Becquerel, in 1896, in compounds of uranium and are 
known as the phenomena of radioactivity.^^ In 1898, the Curies' 
succeeded in isolating the element radium and following this many new 
radioactive elements were discovered until at the present time about 



20 THE ELEMENTARY CONSTITUENTS OF ATOMS [Chap. II 

forty are known. The average lives of these elements vary from about 
10“^^ seconds in the case of thorium C' to 2.4 • 10^^^ years in the case of 
thorium. 

The study of radioactivity has followed two main courses: first, there 
has been the study of the disintegration phenomena, the radiations 
emitted, the laws of transformation of elements, and the properties 
of the radioactive elements themselves; and second, the radiations 
emitted have been found to serve as very powerful tools for the investiga¬ 
tion of the structure of atoms in general and in fact have furnished the 
key for the solution of the atomic structure problem. It is this latter 
study which is of interest here and, therefore, the properties of the 
alpha, beta, and gamma rays will be described quite briefly (see general 
references on radioactivity at end of chapter). 

The alpha rays can be recognized experimentally in a number of ways. 
They ionize gases through which they pass, breaking the molecules up 
into positively and negatively charged bodies, and thus cause them to 
become electrically conducting. For example, an electroscope is dis¬ 
charged if alpha rays pass through the gas about the leaves. They 
blacken a photographic plate on which they fall and cause certain sub¬ 
stances such as zinc sulfide to fluoresce. If a fluorescent screen, on 
which a weak beam of alpha rays is falling, is viewed through a low 
power microscope, it is possible to observe faint but distinct star-like 
flashes of light which give very realistic evidence of a rain of particles 
on the screen. They are deflected by electric and magnetic fields in the 
directions to be expected for rapidly moving positively charged particles. 
The rays are able to pass through a few centimeters of gas at atmospheric 
pressure, or through very thin foils of light metals before they are com¬ 
pletely stopped. The distance alpha particles penetrate into gases, 
known as the range, is very nearly the same for all the particles from 
one radioactive element, and varies from 2.53 cm. of air at normal 
temperature and pressure in the case of uranium to 8.17 cm. for thorium 
C'. The range varies inversely as the pressure, and directly as the 
temperature, and, therefore, each alpha particle is stopped by nearly 
the same number of collisions with molecules of the gas. 

A simple calculation shows that a particle moving in a straight line 
through a gas at standard temperature and pressure would pass through 
thousands of molecules in each millimeter of its path if the molecules 
have the radii deduced from kinetic theory. The alpha particle appar¬ 
ently does pass through molecules in this way and produces thousands 
of ions in each millimeter of path. C. T. R. Wilson^ used this fact in 
devising a method for making the paths of alpha particles visible. If a 
gas saturated with water vapor is suddenly expanded, it becomes super¬ 
saturated. Wilson’s method consists in rapidly expanding, by means 

1 Proc. Roy. Soc. 87, 277 ri9J2). 



Fiq. 1.^—A Wilson cloud-track apparatus used by Blackett. 

serve as nuclei for the condensation of water vapor from the super¬ 
saturated gas and, under proper illumination, an easily visible white line 

(a) 

(&) (c) 
Fio. 2.— (a) Paths of electrons ejected from atoms by X-rays. {After Wilson^ Proc, 

Roy. Soc. 104, 1 (1923).) (b) a-ray tracks in helium. {After Blackett, Proc. Roy. Soc. 107, 
360 (1924).) The angle between the forked tracks is very close to 90°. (c) a-ray tracks in 
oxygen. {After Blackett, Proc. Roy. Soc. 103, 78 (1923).) 

appears which can be photographed (Fig. 2). For the most part, the 
tracks are straight lines of nearly constant length, but, sometimes, 
near the end of the track, a sharp break appears, just as though the 
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particle had collided with a heavy body. In a few cases the deflection 
is larger than 90°. Further, the track is sometimes branched, indicating 
that the atom struck has recoiled with enough energy to produce ions 
on its own account. Deflections of alpha particles through large angles 
are also observed when they fall on thin metal foil. Whatever be the 
cause of the deflection, the phenomenon is termed scattering.” The 
energy of the particle is used up in ionizing the molecules and it is finally 
neutralized by picking up electrons. The number of pairs of ions 
produced in a centimeter of path varies greatly with the velocity. In 
air, at 15°C. and 760 mm. pressure, the maximum value of about 71,000 
ion pairs per centimeter is reached when the alpha particle has a velocity 
of about 8.3 • 10** cm. per second. 

The beta rays also ionize gases, though not so intensely as alpha 
particles, affect the photographic plate, and cause substances on which 
they impinge to fluoresce. They are deflected by electric and magnetic 
fields in the directions to be expected for negatively charged particles. 
They can pass through thick layers of gases and through thin metal 
foils. 

While alpha particles have paths of very nearly the same length 
so that a very sharp range is found, the absorption of beta rays by matter 
follows an exponential law just as in the case of cathode particles (Chap. 
II, Sec. 16) and they are half absorbed by a few hundredths cm. of alu¬ 
minium. The paths of beta rays can be made visible by Wilson^s 
method and are found to be much more tortuous than alpha-ray tracks 
and to have fewer droplets showing that fewer ions are formed. Beta 
rays are in fact identical with cathode particles except for their higher 
velocities, the fastest known being those of thorium C with a velocity 
equal to 0.999 times the velocity of light. For convenience we shall 
refer to either beta rays or cathode rays as fast electrons. 

The gamma rays are the most penetrating radiations emitted by 
radioactive substances. They pass through long distances in air and 
even through many centimeters of metals such as lead. They are weak 
ionizers of gases, and affect the photographic plate. They are undeflected 
by electric and magnetic fields and generally behaVe like light of short 
wave length. 

4. MOTION OF A CHARGED PARTICLE IN ELECTRIC AND MAGNETIC 
FIELDS 

In order to investigate directly the charge, mass, and velocity of 
electrons and positive ions, we observe their motions through electric 
and magnetic fields combined in suitable ways. By definition, a particle 
with charge e in a steady electric field of intensity £ is acted on by a 
force 

f = £6, 
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Its potential energy at some so that E is the force per unit charge, 

point Q in the field is 

V = -^jyads = — eJ^Esds = e^. 

Here the integral is taken along any path from oo to Q, and /, is the 

component of f parallel to ds. ^ is the electrostatic potential at the point 

Q—the potential energy per unit charge. 

The equation of energy for a charged particle moving in an electric 

field is 
mv~ 
"2 

+ ^e ^ E, 

where E is the total energy. Suppose the particle is initially at rest at a 

point where its potential energy is ^iC. If it moves under the action of 

electric forces to another point with potential <1*2, its kinetic energy at 

the latter point is 

- <I>2). (1) 
7nv^ 

2 

Jietween two parallel condenser plates charged to a potential difference 

the uniform electric field has intensity Y = ^^/d, if their distance 

apart is d, where d is v(uy small compared to the dimensions of the 

plates. Figure 3 shows such a pair 

of condenser plates, A and IL Let 

a charge moving with a velocity v 
along the X-axis, parallel to the plates, 

enter the field at 0, which is taken as 

the origin, and be deflected as in¬ 

dicated. No force acts on the particle 

parallel to the X-axis, so its x-com- 

ponent of velocity remains unchanged, 

and the distance traveled by the particle in time t is such that 

X = vt. 

The equation of motion for the 7/-coordinate is 

md'^y 

FiliF- 
Y\ 

1 

A E 

A —i—t ,t_ 

”1 
Fig. 3.- -Deflection of a negative charge 

in an electric field. 

(2) 

= Ye, 

so 

mdy 
= Yet, my = (3) 

Yd^ 
dt ^ 2 ’ 

the constants of integration being zero, since y and dy/dt are both zero 

at ^ = 0. The elimination of t from equations (2) and (3) gives the 

equation of the path, which is parabolic between 0 and C, 

y (4) 
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Beyond C the path is again a straight line CE with the equation 

. /Ye\, y/.lNJ!. ^ (x - 1)1. 

At Ey the particle can be detected by methods soon to be described, so 
the values of y and x for one point on the path are known. If v is known, 
all the quantities in equation (4a), except c/m, can be measured and thus 
the value of e/m can be determined. 

We now show how v can be determined from the deflection in a uniform 
magnetic field. The force exerted on the particle by a magnetic field 
H is 

/ = evH sin (v, H) ^ (5) 

where sin (v, H) is the sine of the angle between v and H. In particular, 
if the particle moves at right angles to the lines of force, the force is 
Hev. It is always perpendicular to v and to H, and is directed in the 
sense in which a right-handed screw moves if so rotated that it brings 

the velocity vector v into coincidence with H (Fig. 4). 
Therefore, the magnetic force can alter the direction of 

fzvHsin(v,H) ^he velocity but not its magnitude. If v and H are per¬ 
pendicular to each other, the particle will move in a 
circle with a radius determined by the condition that 

centrifugal force and the force exerted by the field 
/ ^ shall be equal, 

Fio. 4.-The ^ mvl 
force acting on a ^ ' 
positive charge 

neti^^id*' ^ ^ measured, giving us the value 
of e/mv. An experiment with the same particles, having 

the same initial velocity, in an electric field will yield e/mv-y and so the 
values of both v and e/m can be obtained. By combining the effects of 
electric and magnetic fields upon moving charged particles, it is possible to 
determine the ratio e/m. If the force, due to a uniform electric field, is 
balanced by magnetic force, the particle moves in a straight line, as though 
both fields were absent, and the forces obey the equation. 

Ye = Hev, (7) 

so that V == Y/H. The experimental method is to place the condenser 
plates of Fig. 3 between the poles of an electromagnet in such a way 
that the direction of H is perpendicular to Y and v, that is, perpendicular 
to the plane of the page. The values of Y and H are so chosen that they 
cause the particle to move along OX when both fields are acting; this 
gives us V. Now the electric field is removed, and the particle moves on a 
circle of radius r. Substituting v in equation (6), we have 

e ^ Y_ 

m Hh (8) 
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The quantities on the right can all be measured. Again, the deflection 

in the electric field alone may be measured, and substituting v = Y/H 

in equations (4) or (4a), we obtain e/m independently. 

It is difficult to obtain high precision in rneasurcmients of this kind. 

The electric field is not uniform near the edges of the condenser plates, 

nor is the magnetic field near the edges of the pole pieces. The equations 

given are only approximate for these reasons and it is difficult to derive 

the equations for any given apparatus, or to dc^termine them experi¬ 

mentally. Deflection experiments give values of e/m for cathode rays 

varying from about 1.71 to 1.85-10^ e.m.u per gram, (e.rn.u. means 

electromagnetic units.) The most probable value lies m^ar 1.76 • 10^ 

6. THE DEPENDENCE OF e/m ON VELOCITY 

Simple deflection experiments on beta particles give results agreeing 

closely enough with the above figures to leave little doubt that they arc 

identical with catlKide particles except for their higher velocities. How¬ 

ever, some indications that the ratio e/m decreases with the velocity 

were secured from such determinations. The Lorentz theory of the 

electron, and also the theory of relativity, requires that the mass m 

of the electron shall vary with its velocity according to the equation, 

. (9) 
m = 

c (1 - 

where mo is the mass of the electron at rest and c is the velocity of light. 

The mass m differs very slightly from mo except for values of v approach¬ 

ing the velocity of light, so that we are practically limited to the use of 

high-speed electrons in testing equation (9). Experiments by Kaufmann^ 

showed definitely that e/m does vary with the velocity of the particles 

and that it probably approaches zero as v approaches c. His experi¬ 

mental method, due originally to J. J. Thomson, is y 

shown diagrammatically in Fig. 5. B and N are 

the poles of an electromagnet and A and B the 

plates of a condenser arranged so that they can be 

charged to different potentials by a battery. A 

narrow beam of beta particles is aimed downward, 

normal to the paper at the point P, Below, a 

photographic plate is placed perpendicular to the 

direction of the beam of beta particles. The mag¬ 

netic field displaces the particles toward the right 

while the electric field causes them to be displaced toward the positive 

plate. Assuming that the ratio e/m is constant, we can show from equa¬ 

tions (4) and (6) that for small displacements the deflection in the 7- 

direction due to the electric field is 

T. 

I 

Fig. 5.—Kaufmann’s 
apparatus for determining 
e/m. 

I Ann. Phyaik. 19, 487 (1906). 

a* eY 

^ ■ 2 mv^’ 
Final results. 
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where a is the length of the condenser plates, and that in the x direction, 

due to the magnetic field is, if x is small, 

ell 
X - j 

2 m.v 

where h is the length of path between the pole pieces. The particles 

fly some distance in a field-free space and then hit a photographic plate. 

The displacement y at the photographic plate is proportional to {e/m) 

{Y/v^^) and the displacement, x, to {e/m){H/v). Eliminating the 

velocity we have, 

2/= (7)*' (10) 

where K is a constant depending on a, /), and other dimensions of the appa¬ 

ratus. Therefore, the particles fall at various points on a parabola through 

P as shown by the dotted line PD, depending on their velocities. Revers¬ 

ing the direction of the el(‘ctric field causes them to fall along PC. Kauf- 

mann found that the photographic plate was darkened along the solid 

curves. The shape of these curves indicates that the mass increases 

as the velocity increases and that it approaches a very great value as 

the velocity approaches that of light, but the experiment did not deter¬ 

mine the exact way in which the mass changes with velocity. 

The method of compensated rays, used by Bestelmeyer,^ Bucherer^ 

and others, is illustrated by Fig. 6. It mokes use of electric and magnetic 

fields, perpendicular to each other and 

to the direction of the beam of electrons. 

The uniform magnetic field extends over 

the condenser plates and the space 

about them, and has a direction normal 

to the plane of the paper. Photoelec¬ 

trons from the plate Pt, entering at the 

left with a velocity v = F///, move in 
Fig. O.—Compensatod ray apparatus a straight line through the region of the 

for m<^8uring e/m. condouser plates C but electrons of all 

other velocities are deflected to one plate or the other. The emerging 

beam is then deflected by the magnetic field alone and follows one of the 

curves a or a\ The radius of this circular path is 

With the aid of a photographic plate P, r is determined, and so we obtain 

m/e. Knowing v and m/c, we can use equation (9) to calculate e/mo. 

If equation (9) is correct, this should be a constant, whatever be the 

value of V. Table 1 shows the results of a number of Bucherer’s deter- 

1 Ann, Physik, 22, 429 (1907). 

s Ann. Phyeik, 28, 613 (1909). 
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minations of e/rriQ. The constancy of this ratio is commonly interpreted 

as favorable to equation (9). It is desirable, however, that new deter¬ 

minations be mad(', usinji; all the n'sources of modern high vacuum 

technique, because^ of the importance of equation (9). 

Table 1 

v/c 

e/nio in 

Elect ronijig notici 

Units 

0.3173 1.752 X 10’ 

0 3787 1.761 

0.4281 1.760 

0.5154 1.763 

0.0870 1.767 

The ratio of charges to mass for the hydrogen ion is 9,580 e.in.u. per 

gram, from electrochemical data, so that the e/m ratio for the electron is 

about 1,847 times as great as that for the hydrogen ion. 

In 1901, Rutherford attempted to deterniine the e/ni ratio of alpha 

particles from their deflection in electric and magnetic fields and showed 

that they were deflected as though they carried a positive charge. Later, 

he deposited the i*adioactive elements resulting from the decay of radon 

on a fine wire; the active material is radium C, Since the alpha particles 

from any sample of radium C have the same velociticis, masses, and 

charges, the effects of (dectric and magnetic fields were studied separately. 

The value of e/m is 4.82 • 10^, about one-htilf the value for hydrogen. 

The discovery by Ramsay and Soddy that helium is produced when 

radium disintegrates showed that the alpha particle is a doubly charged 

helium atom, that is, simply a helium nucleus with an atomic weight 

of 4. We know today that these particles are emitted by the nucleus 

of the radium atom (atomic weight 226) when it disintegrates, leaving 

behind the nucleus of an atom of weight 222. 

6. THE ELEMENTARY UNIT OF CHARGE 

The first attempts to determine the elementary unit of charge e, follow¬ 

ing Stoney^s estimate of 0.3 • e.s.u., were made by Townsend, 

J. J. Thomson, and H. A. Wilson. The methods of Townsend and 

Thomson are essentially the same. A charged cloud of water droplets is 

produced by expansion. The charge carried by the cloud is measured 

and its total mass is determined by absorbing the water and weighing 

it. The average radius of the droplets is determined by observing 

the rate of fall of the top surface of the cloud under gravity. According 

to Stokes' law,^ the velocity of fall of a sphere of radius r through a 
viscous medium of density do is 

2gr^{d — do) 
(11) 

'Bee Lamb, ‘^Hydrodynamics,'' 5th ed. Sec. 337, Cambridge Universitv Press. 
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where g is the acceleration of gravity, rj the viscosity of the gas, and d 
the density of the sphere. In this way we obtain the average mass of a 
droplet, and therefore the number of droplets. Assuming that each one 
carries a single elementary charge, its value can be calculated from the 
total charge and the number of droplets. Townsend secured 3 • 
e.s.u. while Thomson obtained 6.5 • and 3.4 • e.s.u. in two 
sets of experiments. Since only the average mass of the droplet is 
determined and there is no way of knowing that each droplet carries 
one elementary unit of charge, the method cannot be expected to give 
precise results. Wilson modified this method by observing the rate of 
fall Vi under gravity alone, and the rate V2y under the combined forces 
of gravity and of an electric field. In this case, the condition for uniform 
fall is, by Stokes^ law, 

mg + Xe = Cnrrrjvo, (I2a) 

mg being the apparent weight of the drop in the medium of density do, 
while in the absence of the electric field. 

We have also 
mg = 

m = 
Airr^D 
‘3 ’ 

where Z) = d — do. 

(126) 

In these equations, the quantities observed are X, Z>, 17, vi and m 
and r can be eliminated and 

ixm \^2g/ (13) 

The deviations for this method were large and the results of the same 
order of magnitude as before. In determining and v^y it is necessary 
to assume that the size of the droplets is the same and the variations in 
the results indicate that this is not true. 

The most exact determination of e is that of Millikan. In repeating 
Wiison^s work he found that individual droplets could be kept in the 
field of a telescope for appreciable lengths of time. This made possible 
the elimination of many uncertainties, such as the assumption that each 
droplet has only one unit of charge and that they are of the same size. 
He observed drops of water, mercury, and oil, and found the oil drops 
most satisfactory. The electric fields used were higher than those used by 
Wilson and were mostly in a direction to oppose the force of gravity 
so that the condition for steady fall was 

— mgr + Xe = QTrrjV2. (14) 

The particle moves upward or downward, depending on whether Xe is 
greater or less than mg. The special case in which Xe ^ mg is known 
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as the “balanced-drop method.” Dividing equation (126) by equation 
(14) and solving for e we obtain 

mg{vi -f Vi) 
^ Xvi ' 

(15) 

Millikan’s apparatus is shown in Fig. 7.^ An oil mist is produced by 
an atomizer; some of the drops fall through the opening in the upper 
condenser plate, and pick up charges from ions in the gas produced by a 
beam of X-rays. The particle selected for observation is viewed through 

Fig. 7.—Millikan’s apparatus for determining e. (Rejyroduced by permission of the Univer-- 
situ of Chicago Press from “ The Electron'".) 

a telescope equipped with horizontal hair lines so that the time of fall 
between known levels can be determined. When a droplet has fallen 
below the bottom crosshair, an electric field is established between the 
condenser plates and the time of rise of the same particle is determined. 
In this way, one droplet can be observed for long periods of time. 

The experiment can be best understood by considering the actual record of a 

droplet. The time required for it to fall a distance of 0.5222 cm. under gravity was 

13.593 seconds, the average of 17 determinations varying only by amounts to be 

expected in stop-watch measurements. The times required for successive trips 

upward were 12.5, 12.4, 21.8, 34.8, 84.5, 85.5, 34.6, 34.8, 16.0, 34.8, 34.6, 21.9 seconds. 

After two trips, the time changed to 21.8 seconds, showing that a negative ion had 

been captured, since the particle was positive. The other changes also indicate the 

capture of ions, some positive and some negative. According to equation (IS) the 

charge is proportional to Vi + and, if the charges carried by the droplet are all 

multiples of a certain unit, this sum should always be an integral multiple of the value 

of Vi -f Vi when the elementary cliarge is carried. Table 2, wliich is an abridgement of 
one given in Millikan’s book ‘^The Electron,” shows that such is the case; Vi = 

0.03743 cm. per second. 

1 Millikan, R. A, “The Electron/' University of Chicago Press (1924). 
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t V2 -h V2 n A(vi + Vi) An 

12.45 0.04196 0.07939 9.06 

0.01806 -2.06 

21.5 0.02390 0.06133 7.00 

0.00885 -1.01 

34.7 0.01505 0.05248 5.99 

0.00891 -1.01 
85.0 0.006144 0.04357 4.98 

The column n gives the number of elementary charges carried by the droplet and An 

the number of charges gained by the droplet on successive trips. The experiment 

proves conclusively that tlie (jharge on the droplet is an integral multiple of an ele¬ 

mentary unit and that the charge changes only by multiples of this unit. 

The determination of the value of the charge requires the use of Stokes^ 
law. It is given by equation (13) with the sign of Vi changed, since 
the particle in Millikan^s experiments rises against gravity when the 
field is applied. All the quantities in this modified equation can be 
determined by Millikan’s method, observing one particle. The number 
of elementary charges on a droplet is obtained by the method just 
described and then the absolute value of the charge is obtained by deter¬ 
mining all the unknowns in equation (13). However, Stokes’ law applies 
only when the droplet is large compared to the mean distance between 
the molecules of the gas. Since the droplets used were very small, it 
was necessary to use a corrected form of Stokes’ law. 

2 gr^D/ 

9 v\ 
1 + A 

where A is an empirical constant, and I the mean free path of the gas 
molecules. With this correction, consistent values for the elementary 
charge are obtained. 

Millikan’s value for e is (1.591 ± 0.002) • 10“-® e.m.u. or (4.770 ± 
0.005) • 10“^° e.s.u. Together with the value of e/ this permits a 
calculation of the mass of the electron, 

mo = (8.994 ± 0.014) • 10”^^ gram. 

Avogadro’s number can be calculated from the relation 

F Q fi48 0 
= iii 10- - (6.064 ± 0.006) • 10- 

The mass of any atom can be calculated from its atomic weight and 
Avogadro’s number iV. That of the hydrogen atom is 

1 00777 
6:ferribT* * (1-6618 ± 0.0017) 10— gram. 

The 80-called radius of the electron can be calculated on the assump¬ 
tion that the mass is electromagnetic in origin. By this we mean, that 

(1.6618 ± 0.0017) 10-- gram. 
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the resistance to acceleration is supposed to be due entirely to the 
reaction of the electron’s own electric and magnetic fields upon it, when 
it is subjected to a force. Further, it is supposed that the electron 
at rest is spherical, and that its charge is uniformly distributed on the 
surface of the sphere. The mass is given by 

(17) 

where a is the radius.^ We find that a = 1.69 • 10““^® cm., a value 10® 
times smaller than atomic radii. On a similar basis, the radius of the 
hydrogen nucleus would be only 0.92 • 10~i® cm., since it is much heavier 
than the electron. These values must not be taken too seriously. When 
the unsettled subject of models of the electron is discussed, it is cus¬ 
tomary, following Poincar6, to postulate a system of cohesional forces 
inside the electron, non-electromagnetic in character, but the existence 
of these forces makes doubtful the calculation of the radius referred to 
above. It seems probable, however, that in close collision with other 
entities the electron behaves more or less as a particle of radius 2 • 10~^® 
would do. This is the only sense in which it has any meaning to speak 
of its size. 

7. EARLY RESEARCHES ON ISOTOPES 

Soddy and Fajans (1913) first pointed out that certain radioactive 
atoms having different masses and different radioactive properties 
should occupy the same position in the periodic system, and suggested 
that non-radioactive elements might consist of several atomic species 
having different atomic weights. Soddy called these species '‘isotopes.” 
They stated that they would be chemically inseparable and further 
pointed out that lead from uranium minerals, produced as the end 
product of the radioactive decomposition of uranium, should have a 
lower atomic weight than lead obtained from the radioactive decom¬ 
position of thoriunr The first of these statements explained the results 
of Boltwood,^ Man 1 wald and Keetman,'^ and Auer von Welsbach^ who 
showed that mesothorium and ionium cannot be separated chemically. 
Similarly, m-esothoriurn and radium in the alkaline earth group and 
uranium I and II of the sixth group have been shown to be inseparable. 
The second statement was verified by careful determination of the 
atomic weight of lead from different sources as shown in Table 3. Table 
4 gives data in regard to atomic weights and other physical properties, 

collected by T. W.-Richards. 

^ See Jeans, ‘‘Electricity and Magnetism,p. 586, 4th ed. 

2 Am. J, Sci,, 22, 537 (1906); 24, 370 (1907). 

»Jahrbuch /. Radioaktivim, 6, 269 (1909). 

i TFiew, Her. iia, 119, 1011 (1910), 
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Table 3 

Source Atomic Weight 

Ceylon thorite. 207.77 
Norwegian cleveitc. 206.08 
Australian mixture. 206.34 
Camotite. 206.36 
Pitchbleiid (Morogoro). 206.046 
Norwegian thorile. 207.9 
Uranium lead (theoretical). 206 
Thorium lead (theoretical). 208 
Ordinary lead. 207.20 

Table 4 

Property 

Common 
lead 

Australian 
mixtur(i ^ 

Norwegian 
cleveitc 

Per(;entage 
difTerenctes 

A B C A ~B B - C 

Atomic weight. 207.19 206.34 206.08 0.42 0.54 
Density. 11.337 11.280 11.273 0.42 0.56 
Atomic volume. 18.277 18.278 18.281 0.01 0.02 
Melting point. 600.53 600.59 0.01 
Solubility (nitrate). 37.281 37.130 0.41 
Refractive index (nitrate). 1.7815 1.7814 0.01 1 

1 

It can be seen from Table 4 that the various samples described differ 
only in those properties which depend on atomic weight. This difference 
in atomic weight is due to the fact that the nuclei of the various isotopes 
of a given element have identical charges, but different masses. The 
configuration of the outer electrons depends only on the charge of the 
nucleus, aside from extremely minute effects due to its mass and possibly 
to a small magnetic moment, 

8. THE SEPARATION OF ISOTOPES 

In the case of the radioactive elements and the stable elements 
derived from them, such as uranium lead and thorium lead, nature 
furnishes us with pure atomic species, but, in the case of the non- 
radioactive elements which have several isotopes, we are always con¬ 
fronted with a mixture of constant proportions. Careful and extensive 
researches^ have shown that the atomic weights of materials taken from 
widely separated sources on the earth^s surface, from igneous rocks, 
from sedimentary rocks, and from the sea, are identical within the errors 
of measurement. Still more striking is the fact that, the atomic weight 
of nickel from meteorites is the same as that of terrestrial nickel; the 
same is true for other elements investigated. On the basis of this work, 
Aston suggested that the evolution of the elements ocourring when 

^ See Aston^s ‘'Isotopes/^ 2nd ed., pp, 141-142 for a detailed account. 
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the sun was in its youth ^^must have been such as to lead to a propor¬ 
tionality of isotopes of the same element which was constant from 
the start/’ The radioactive isotopes are an exception, for their 
disintegration alters the proportions in which they were present in 
former times. 

The separation of the non-radioactive isotopes is a problem of consider¬ 
able interest because of the information about the nucleus which could 
be obtained by transmutation experiments on a single isotope (Sec. 16). 
Methods for separating isotopes can depend only on the difiference in 
mass. Those which have been used with success are diffusion through 
porous walls, and evaporation at low pressures. Fractional distillation 
in the usual sense of the word cannot be used, for the boiling points 
of the various isotopes are too close together. The first method was 
used by Aston to show that neon can be separated into two fractions 
having different densities and by Harkins (using HCl) to produce samples 
of chlorine having different atomic weights. Stern and Volmer^ have 
applied this method to show that H and O are pure elements. The 
evaporation method was used by Bronsted and Hevesy^ and by Mulliken^ 
to obtain partial separation of the Hg isotopes. The mercury was 
evaporated so slowly that the rate of diffusion of the atoms within the 
liquid was great enough to maintain approximately an equilibrium 
mixture of isotopes in the surface, and at such low pressures that the 
evaporated atoms could be caught on a surface cooled with liquid air 
before they collided with other atoms in the vapor phavse. Under these 
conditions the rate of evaporation is inversely proportional to the square 
root of the mass and thus the lighter isotopes evaporate more rapidly, 
resulting in a slight fractionation. By repeating the process a number 
of times, extreme samples of mercury were secured having densities 
differing by 0.05 per cent, and combining weights differing by 0.1 of a 
unit. Other ingenious methods, described in detail in Aston’s ‘iso¬ 
topes,” depend on centrifuging, ionic migration, electrolysis (the discharge 
potentials being supposed slightly different for various isotopes), and 
fractional crystallization. These methods have not been successful. 
None of the methods so far mentioned can be used to separate isotopes 
in the pure state nor to show how many isotopes make up a given chemical 
element nor their individual masses. The study of the positively 
charged constituents of atoms, however, has made it possible to investi¬ 
gate the non-radioactive isotopes in detail, and the methods of vseparation 
described above provide confirmatory evidence. 

^ Ann, Physiky 69, 225-238 (1919), Oxygen has three isotopes 16, 17, and 18, 

but the latter two are present in too small amounts to be detected by this means. 

Mag., 43, 31 (1922). 

«/. A. C. S., 44, 2387 (1922); and 46, 1692 (1923). 
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9. THE PARABOLA METHOD FOR STUDYING POSITIVE RAYS 

In every discharge tube there are positively charged particles which 
move toward the cathode. The presence of such particles was first 
demonstrated by Goldstein by boring a small hole in the cathode (called 
by him a canal), and, thus, allowing these particles to stream into the 
space behind the cathode. Their track appears as a bright pencil of 
light, due not only to their own emission but also to that of the molecules 
which they strike. J. J. Thomson has summarized the results in this 
field in his ^^Rays of Positive Electricity” (see reference at end of chapter). 

Fiq. 8a.—J. J. Thomson’s positive ray apparatus. A is the anode, K the cathode, P and Q 
the magnetic poles, LL the condenser, and R the photographic plate. 

The principal experimental method used by Thomson (Fig. 8a) is nearly 
^ identical with that used by Kaufmann in his experiments on electrons. 
As in the experiments of Kaufmann (Sec. 5), the particles will fall on 
curves which are approximately parabolas. The particles of high velocity 
are deflected only slightly and, therefore, fall nearer to the apex of the 
parabola, while those of lower velocity are deflected more, and so fall 
farther from the apex. If particles of all velocities were present, the 

curves would be complete, as shown at 
OA and OB in Fig. 8&. If the direc¬ 
tion of the magnetic field is reversed, 
the particles will be deflected down¬ 
ward, as shown by the curves OC and 
OD. The directions of the electric and 
magnetic fields which deflect the par¬ 
ticles to each of the four branches of 
the parabolas are shown by the arrows 
E and H. If negative particles are 
present, the positions at which they 
fall can be secured by reversing the 
directions of both E and H in the 

figure. Particles moving with ^^nfinite” velocity would pass through 0. 
Since the particles cannot have a velocity greater than that given to them 
by falling through the entire potential difference across the cathode ray 
tube, i.c., between A and K in Fig. 8a, only incomplete parabolas will 
iSrCtually appear on the photographic plate, as in Fig. 9. 

Pig. 86.—Diagram of positive ray 
parabolas. 
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The deflection due to the electric field is inversely proportional to 
the kinetic energy of the particle and, therefore, will be the same for all 
particles which have the same charge and have fallen through the same 
potential, regardless of any difference in mass. The deflection due 
to the magnetic field is inversely proportional to the momentum of the 
particle, and, since the momentum is larger for heavier particles of the 
same kinetic energy, these will be deflected less than the lighter particles. 
Curve OB is produced by particles of larger mass than those which 

^C02+ 

V/Ve-2^ 
Ne20 

9—The parabolas of neon. (After Thomson. Taken from Aston’s "Isotopes" p. 28.) 

produce OA. From the shape of the curves it is possible to determine 
both the velocity of a particle falling on any point of the curves and 
also the ratio of charge to mass. The calculation is troublesome and, 
due to uncertainties in the distribution of the electric and magnetic 
fields, is not very precise. Experiments of this kind show definitely 
that the masses of particles carrying positive charges are of the same 
order of magnitude as the masses of the atoms, and that chemically pure 
elements may consist of a mixture of atoms of different masses. Figure 

P shows curves due to two isotopes of neon. 
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10, DEMPSTER’S METHOD 

Dempster^ has used the so-called magnetic spectrograph for studying 
positive particles and for determining the ratio of charge to mass. A 
diagram of his apparatus is shown in Fig. 10. The positive ions of 
charge € are produced at A by causing electrons from a heated filament 
to fall on a salt of the element to be investigated. These fall through 
a small electric field and pass through the slit at C. Between C and iSi, 

Fig. 10-—Dempster’s api^aratus for doteetiriK isotopes. 

there is a large electric field which causes the ions to pass through >Si 
with a velocity 

V 
/2^€\H 

[m) ’ 
(18) 

where $ is the potential difference between C and Si. The apparatus below 
♦Si and S2 is placed between the poles of an electromagnet so that the 
ions, after entering at Si, move in a semicircle to S2. The radius of the 
circle r, equal to half the distance between Si and S2, depends on 
the magnetic field strength and velocity of the particle in the way given in 
equation (6), if m is replaced by M and e by e. Eliminating the velocity 
from equations (6) and (18) we have 

M i/V 

The experimental procedure is usually to fix H at a convenient value 
and to vary until the ions fall through S2 and discharge the 
electrometer. 

1 Phys. Rev,, 11, 316 (1918) 
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11. ASTON’S MASS SPECTROGRAPH 

Aston^ devised another arrangement of electric and magnetic fields 
(Fig. 11) which proved to be most convenient for the analysis of positive 
ions and has improved it until a very high precision in the determination 
of atomic masses is possible. A narrow beam of positive ions is selected 
from a source at the left by means of the slits >Sj and This beam 
passes l)ctwcen the charged plates Pi and P2 and is spread into a fan 
falling on />, the deflection depending on the charge and velocity 
of the ions. Only those ions will pass through the slit D which have 
charge and velocity such that they fulfill thc^ relation 

Fi(}. II.— ABton’s muHS a]>ec1n)grjiph. 

where 0 is the angle of deflection, which is always small and fixed by the 
position of D; V the velocity of the ions; I, the length of the path between 
the plates Pi and P2; and P, the electric intensity between these plates. 
These ions then pass between the poles of an electromiignet arranged 
so that it deflects them in the direction opposite to the deflection caused 
by the electric field. The angle of deflection (p can be obtained from 

equation (6) and for small deflections, is given by 

t being the length of path in the magnetic field. Eliminating v from 

equations (20) and (21), 

1 PhiL Mag., 38, 709 (1919); also his book “Isotopes” (reference at end of chapter), 
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The great advantage of this method lies in the fact that ions having 
a certain value of e/M but slightly different velocities due to the finite 
width of the slit D will nevertheless be focused on the same point of a 
photographic plate placed at GFj because an ion which is bent slightly 
less than the average by the electric field and has therefore a slightly 
higher velocity, is bent back proportionately less strongly by the magnetic 
field, while the opposite is the case for a strongly deflected slower ion. 
Therefore, the paths of slow and fast ions will intersect at some point. 
The locus of this point is found as follows: 

By differentiating equation (20), 

v^dd + 26vdv = 0, or 
0 V 

and by differentiating equation (21), 

vdip + <pdv == 0, or 
if V 

Therefore, dO/d = 2dip/ip, an expression which is true for all values of 
the velocities. If dd is the angle defined by the slit Z), the width of the 
beam after traveling a distance equal to the total length of path will be 
{h + r)d6j neglecting the effect of the magnetic field, where b is the 
distance OZ and r is approximately OF. The effect of the magnetic 
field is to decrease this width by an amount —rd(p and therefore the 
total width is 

(6 + T)d6 — rd<p *= bdd + r{d0 — dip) = d6[b + 

If the rays are to be brought to a focus, this width must be zero and this 
will be true when 

This is the equation of a straight line GF making an angle 6 with the 
original direction of the beam, in the sense opposite to the direction of 
deflection of the ions. Ions with the same e/M but of slightly different 
velocities will fall on the same point on this line, as shown in Fig. 11, 
making it possible to secure very sharp images on the photographic 
plate. The theory as presented is not exact since the variations of the 
fields near the edges and the different paths traversed by the ions are 
not considered. By taking these into account, Aston has made this 
so-called mass spectrograph an instrument of high precision. He has 
studied the isotopes of a large number of elements, with the results 
shown in Table 5, which also includes the data of other investigators. 

The nearly integral atomic weights of isotopes, the emission of alpha 
and beta particles by radioactive elements, and the artificial trans¬ 
mutation of elements with emission of protons (Sec. 16) indicate that 

Prout's hypothesis was not fa,r from correct; the nuclei of all atoms are 
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probably constructed of protons and electrons, and it is likely that these 
particles form groups similar to the helium nucleus. Of course, the 
mere fact that alpha, beta, and hydrogen particles are emitted by nuclei 
does not prove their independent existence before the emission, but, 
with mental reservations, we shall speak as though such were the case. 
On this basis, we find the numbea- of electrons in the nucleus as follows: 
The mass is almost entirely due to th(^ protons, the number A of which is 
therefore nearly equal to the atomic weight. If there are N electrons, 
the nuclear charge will be 

A - N Z, (23) 
in terms of c as a unit. 

12. REGULARITIES IN THE SYSTEM OF ISOTOPES 

Table 5 abounds in interesting regularit ies, which must be accounted 
for by any successful theory of nuclear structure. We shall now review 
some of these r(‘gulariti(\s, basing our discussion, in part, on Chaps. IX 
and X of Aston’s '‘Isotopes”: 

Table 5‘ 

Kleniont 
Chemical 

atomic 
w«‘ight 

immV.)crH of isotopes 

H 1. 1 0078 1 
Hu 2. 4 002 4 
hi 3. 0 9U) 7, 6 
Be 4. 9 02 9 
B 5. 10.82 11, 10 
O (i. 12.000 12, 134 
N 7. 14.008 14. 15S 
C) 8. 10.000 16, 18,2 172 
F 9. 10 00 19 
Ne 10. 20.183 20, 22, 213 
Na IJ. 22.997 2.3 
Mg 12. 24.32 24, 25, 26 
AI 13 . 20 97 27 
Si 14 . 28.00 28, 29, 30 
V ir>. 31.02 31 
S 10. 32.00 32, 33, 34 
Cl 17 . 35.4.57 35, 37 
A IS. .39.9 1 to, 36 
K 19. 39.10 39, 41 
Ca 20. 40.07 40, 44 
Sc 21. 45.10 45 
Ti 22. 47.90 48 
V 23. 50.96 51 
Cr 24. 52.01 52 
Mn 25. 54.93 55 
Fe 26. 55.84 56, 54 
Co 27. ,58 94 59 
Ni 28 . 58,09 58, 60 
Cu 29. 63.57 63, 65 
Zn 30. 65.38 64, 66, 68, 67, 65, 70, 69 
Ga 31. 69.72 69, 71 
Ge 32. 72.60 74, 72, 70, 73, 75, 76, 71, 77 
As 33. 74.96 75 
Se 34. 79.2 80, 78, 76, 82, 77, 74 
Br 35. 79.916 79, 81 
Kr 30. 82.9 84, 86. 82, 83, 80, 78 
Rb 37. 85.44 85, 87 
Sr 38. 87.63 

1 
88, 86 

1 See Aston, Proc. Roy. Soc., 115, 487 (1927) and referenooB there given; Nature, 122, 167 and 345 
28). The istopes are given in the order of decreasing abundance. 
“GiAUOtTK and Johnston, Nature (1929); J. A. C. <8. (1929). 
■ Hoonbss and Kvalnks, Nature, 122# 441 (1928). 
4 Kino and Biros, Nature, 124, 127 (1929); PAya. Kev., 84, 376 (1929). 
ft Naxjd^, PAv». Rev., 34, 1498 (1929). 
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Table. 5.— {Continued). 

Element 
Chemical 

a tomic 
weight 

Mass numbers of isotopes 

Y 39. 88.92 89 
Zr 40. 91.22 90, 94, 92, (96) 
Ag 47. 107.880 107, 109 
Cd 48. 112.41 114, 112, 110, 113, 111, 116 
In 49. 114.8 115 
Sn 50. 118.70 120, 118, 116, 124, 119, 117, 

122, 121, 112, 114, 115 
Sb 51. 121.77 121, 123 
Te 62. 127.5 128, 130, 126 
I 63. 126.932 127 
X(« 54. 130.2 129, 132, 131, 134, 136, 128, 

130, 126, 124 
Cs 55. 132.81 133 
Ba 60 . 137.36 138 
La 57. 138 00 139 
Ce 58. 140.13 140, 142 
Pr 59. 140.92 141 
NdOO. 144.27 142, 144, 146, (145) 
HgW). 200.61 202, 200, 190, 198, 201, 204 

208. 206, 207, (209), (203), 
(204) 

Pb 82. 207.22 

Bi 83. 209.00 209 

1. Nuclei of even atomic number are more numerous than those 
of odd atomic number. Nuclei with mass numbers divisible by 4 are 
much more abundant than those with mass numbers not divisible by 4. 
Those containing even numbers of electrons are more numerous than 
those having odd numbers of electrons. 

2. The atomic weights are generally very close to integers, on the 
scale 0 = 16, though definite divergences occur. 

3. With the exception of hydrogen the atomic weight of a nucleus of 
charge Z is at least 2Z, or, by equation (23), N ^ Z. There is never 
less than one electron to every two protons, and the proportion of electrons 
rises as Z increases. 

4. The number of isotopes of one element and their range of mass 
numbers are both rather small. 

5. ipiements of odd atomic number never have more than two isotopes, 
and the mass numbers of these usually differ by 2. 

6. Tsobars, that is, nuclei with the same weight but different charges, 
are comparatively rare. 

13. DISTRIBUTION AND ABUNDANCE OF ISOTOPES 

There are several interesting points in regard to the distribution 
of isotopes, first pointed out by Harkins. The total number of elements 
listed in Table 5 is 57, 29 of even and 28 of odd atomic number. There 
are 108 isotopes of even atomic number, but only 38 of odd atomic 
number. The* isotopes having an even number of electrons within the 
nucleus, as calculated from equation (23), exceed those having an odd 
number of electrons in the ratio 115:31. The number of isotopes for 
the four possible combinations of these factors are as follows: 
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Even Z Even Z Odd Z Odd Z 

Even N Odd N Even N Odd N 

80 28 35 3 

Harkins^ has pointed out that the first 29 elements of the periodic 
system compose 99.85 per cent of the lithosphere, 99.98 per cent of the 
stone meteorites and 100 per cent of the iron meteorites, and that the 
even-numbered elements are far more abundant than the odd. Figure 
12a is a diagram by Harkins, showing the percentages by weight (this 

Fig. 12a.—Proportion by weight of (‘le- 
ments in the stone meteorites. {After 
Harkins.) 

is equivalent to the percentage of 
protons) of the elements in the stone 
meteorites. It will be noted that in 
every case, the even-numbered ele¬ 
ment is more abundant by weight 
than either of the odd-numbered 

3/ 

La CePrNd IISmEuQdTbDtfEoErTBCfbCp 

Fig. \2h.—The relative abundance of the 
rare earths. (After Ooldsmidt and Thom- 
assen.) The numbers indicate the relative 
abundance of atoms, yttrium being taken 
as 100. 

elements preceding and following it. Perhaps the most striking illustra¬ 
tion of this type of variation is the relative abundance of the rare earths 
as shown in Fig. 126, from the work of Goldsmidt and Thomassen.^ 
Moreover, the five most abundant elements (either by weight or in 
number of atoms), 0, Mg, Si, S, and Fe, make up nearly 96 per cent of 
the total number of atoms in these meteorites and, if we take account of 
the relative numbers of isotopes in these elements, we find that 90.6 
per cent of the total number of nuclei have mass numbers divisible by 
4, namely, S®-, 

iHaekins, W. D., J, a. C. S,, 39, 856, 870 (1917); Phil Mag., 42, 305 (1921), 
Harkins also classified isotopes into the four groups given above. 

* Videnskahs. Skrift. I, Math. naUi/rw. KL, 4 (1924). 

♦Harkins, Phil Mag., 42, 305 (1921). 
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As a first hypothesis we may assume that the more abundant atomic 
species are also the more stable, though this is not necessarily true. An 
instance is the fact ascertained by Biltz and Ziegert^ that the less abundant 
isotope 41 of potassium is responsible for its radioactivity. They compared 
the radioactivity of ordinary potassium with that of a sample in which 
the isotope 41 had been increased 4.8 per cent, finding a difference in 
activity of 4.2 ± 0.8 per cent. 

14. PRECISION MEASUREMENTS OF NUCLEAR WEIGHTS 

The latest instrument constructed by Aston^ is capable of an accuracy 
of one ten thousandth unit in the atomic weight scale, and by its use he 
has shown that very few nuclei have exactly integral mass numbers. 
The value, 16.0000, is assigned arbitrarily as the atomic weight of the 
oxygen atom. In this work, the mass of the planetary electrons carried 
by the ions must be taken into account, for the ^‘atomic weightof the 
electron is 

W (electron) = 0.000546. (24) 

The atomic weights which have been accurately determined with the 
new spectrograph are listed in Table 6, together with the packing fraction. 

Table 6 

Atom 
Atomic 
weight 

Packing 
fraction 

xio* 

Prob¬ 
able 
error 
xio^ 

Atom 
Atomic 
weight 

Packing 
fra<;tion 

xio^ 

Prob¬ 
able 
error 
xio* 

H. 1.00778 77.8 1.5 36.980 
1 

-5.0 1.5 
He. 4.00216 5.4 1 

. 
A-*®. 39.971 -7.2 1 

Li®.. 6.012 20.0 3 As. 74.934 -8.8 1.5 
LT. 7.012 17.0 3 Kr^8. 77.926 -9.4 2 
BIO. 10.0135 13.5 1.5 Br79. 78.929 -9.0 1.5 

11,0110 10.0 1.5 Kr*®. 79.926 -9.1 2 . 
C. 12.0036 3.0 1 Br8‘. 80.926 -8.6 1.5 
N. 14.008 5.7 2 Kr»2. 81.927 -8.8 1.5 
0. 16 0.0 82.927 -8.7 1.5 
F 19.0000 0.0 1 

. 
Kr«4. 83.928 -8.5 1.5 

Ne“. 20.0004 0.2 1 Kr8®. 85.929 -8.2 1.6 
Ne»2. (22.0048 

30.9825 
2.2 ?) 

1.5 
. 119.912 -7.3 2 

P. -5.6 I. 126.932 -5.3 2 
Cl»5. 34.983 -4.8 1.5 133.929 -6.3 2 
A“. 35.976 -6.6 1.5 

. 

. 200.016 +0.8 2 

^Physik. Z., 2% 197 (1928). 
^Proc, Roy. Soc.y 116, 487 (1927), 
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which is defined as the difference between the atomic weight W and 
the number of protons A divided by the number of protons: 

{W - A) 
A 

Packing fraction 

The data on lithium are thovSe of Costa/ as recalculated by Aston. 
The difference between the packing fraction of hydrogen and that of 

any other element is the decrease in mass of 1 gram-molecule of hydrogen 
nuclei when they are combined to form atoms of that element, assuming 
that heavier elements are compounds of protons and electrons. This 
decrease in mass is a measure of the loss of energy in the synthesis of 
atomic nuclei, for according to the relativity theory the mass M and 
energy E are connected by the equation 

E = cW, 

where c is the velocity of light. It is now quite generally believed that 
such syntheses are going on in stars, and it has been suggested that the 
energy given up forms the highly penetrating radiation which comes to 
the earth from outside sources. The greater the energy loss which 
occurs in the formation of a nucleus, the more stable we expect it to be. 
Unfortunately, the limit of experimental error of the packing fraction 
is so large that it is not quite possible to compare the stability of nuclei, 
as determined in this way, with their relative abundance except perhaps 
in the case of boron and less certainly in the case of lithium. and 
Li® have odd Z and odd iV, whereas and Li"^ have odd Z even iV, and 
are more abundant than the lighter isotopes, as shown by the chemical 
atomic weights. Therefore, we expect that B^® and Li® should be less 
stable than B^^ and Li^ respectively, both because they are representa¬ 
tives of an infrequent type of nucleus and because they are the less 
abundant isotopes. This is indeed the case, for the boron isotopes, 

and B^^, have the packing fractions 13.5 ± 1.5 X 10“^ and 10.0 ± 

1 Ann. Physique^ 4, 426 (1925)* 
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1.5 X 10“"'*, respectively, and the limit of error is not as great as the 
difference between them. The packing fractions of the isotopes of 
lithium also agree with the conclusion that Li® is the less stable isotope, 
but the probable limit of error is as great as the difference between them. 
The method of determining the atomic weights of isotopes, however, 
is such that the difference in atomic weights is probably much more 
precise than their absolute values, and, therefore, we can be quite certain 
that the packing fractions of the lithium isotopes confirm the conclusions 
in regard to stability drawn from their relative abundance in nature. 
Figure 13 shows a plot of packing fractions against at omic number. The 
abundant even-numbered elements below neon are characterized by 
smaller values than the odd-numbered elements, which indicates, in a 
statistical way, that the former are more stable. Beck^ has constructed 
a classification of isotopes somewhat similar to the periodic table of the 
elements, which brings out many interesting regularities. 

16. METHODS OF STUDYING THE NUCLEUS 

Up to this point we have assumed the existence of atomic nuclei 
carrying most of the mass of the atom. We shall now consider the 
proofs for this assumption and the experimental methods for studying 
other properties of the positively charged constituents of atoms. The 
investigation of the nucleus depends on the detailed study of the scatter¬ 
ing of alpha particles and high-speed electrons when passing through a 
gas or a thin metal foil, and on the determination of wave lengths and 
intensities of gamma rays. Alpha particles move with velocities varying 
from 0.0456c to 0.0688c, depending on the radioactive element emitting 
them, while fast electrons are available with velocities up to 0.957c. 
The energy of the alpha particles ranges from 6.2 • 10~® to 1.41 • 10~® 
ergs. That of the fastest beta rays is smaller, namely, 2.1 • 10~® ergs. 
As mentioned previously, the introduction of matter, either as a gas or a 
thin metal foil across the path of a beam of alpha rays or electrons, 
causes it to become diffuse. The particles are scattered mostly through 
small angles (up to 3®) though a few are scattered through very large 
angles (90° and greater). Lenard^ has shown that the absorption of 
electrons by matter is due mainly to their removal from the beam by 
scattering through large angles and that the intensity I of the beam 
after passing through a layer of matter x cm. thick is 

I = (25) 

where h is the original intensity; a is called the absorption coefficient 
and depends on the velocity of the electrons. It becomes smaller as the 
velocity increases and is approximately proportional to the density of the 

1 Z. Physiky 47, 407 and 60, 648 (1928). 
* Ann, Physiky 81, 94 (1926) and earlier papers. 



Sec. 15] METHODS OF STUDYING THE NUCLEUS 45 

substance D, or what is the same thing, to the number of atoms passed 
through times their atomic weight. Lenard gives a table showing the 
variation of a/D with the velocity of the fast electrons. According to 
kinetic theory, if a number of particles be fired into a layer of stationary 

billiard bair^ atoms x cm. thick, arranged at random, with a total 
cross-sectional area of all the atoms in unit volume equal to a, the fraction 
of the particles emerging will be a is therefore a measure of the total 
projected area of all the particles in 1 cc. of the absorbing substance 
and the variation in a as seen in the table means that the effective area 
of these particles decniases as the velocity of the fast electrons increases. 
The value of a/D for particles with a velocity equal to 0.9c is 6 g"^ 
cm.2 and therefore for nitrogen gas at standard temperature and pressure 
a is 6 • 0.00125, or 0.0075 cm.^; but using the radius 1.9 * 10“^ cm. 
obtained from kinetic theory of gases, the total projected area per cm.® 
should be about 3 • 10"^ cm.^, so that the effective cross-section of a mole¬ 
cule of nitrogen for fast electrons of velocity 0.90 of that of light is only 
2.5 * 10~^ of its effective cross-section for collisions with other molecules 
of nitrogen. The ratio of the effective radii for the two cases is 5 • 10"“*. 

Variation of Absorption Coefficient with Velocity 

li a/D g.“i cm.2 II a/D g. cm.' 

0.90 G 0 10 8.0 X 105 
0.80 13 0.08 14 X 105 
0.70 29 0.06 25 X 105 
0.60 83 0.04 58 X 105 
0.50 2.2 X 102 0.03 86 X 105 
0.40 7.4 X 102 0.02 130 X 105 
0.30 
0.20 

29 X 102 
360 X 102 

0.01 180 X 105 

To explain this discrepancy Lenard assumed that atoms were composed 
of electric doublets which he called ‘‘dynamids,” consisting of a positive 
and a negative electric charge bound closely together. When the 
experiments of Rutherford established the nuclear atom the assumption 
was made that the scattering of fast electrons is due to collisions with 
the nuclei and also the electrons within the atoms, and that those parti¬ 
cles have effective radii small compared with the gas-kinetic radius of 

the atom. 
To account exactly for the scattering of fast electrons is a much 

more difficult problem than that of the scattering of alpha particles, which 
we shall consider next. Since the flashes produced by individual alpha 
particles impinging on a phosphorescent screen can be observed, it is 
possible to study the distribution of scattered particles by simply 
counting the numbers scattered at various angles from the direction of 
the original beam. The scattering may occur in two ways: first, it may 

be the result of small deflections produced by collisions with many atoms, 
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or second, it may be produced by a single large deflection due to a colli¬ 
sion with one atom. The distribution of the scattered particles will be 
very different depending on which of these mechanisms is the correct 
one. The first alternative recjuires that the number scattered through 
a given angle shall be proportional t o the square root of the thickness of 
the metal foil through which they pass, while the second requires that 
the number be proportional to the thickness. The following table' 
shows that the scattering is very nearly proportional to the thickness 
and, therefore, is decisively in favor of single scattering at the larger 
angles for most of the particles. The dist.ribution of the particles scattered 

Number of foils 
Equivalent thickness 
in centiiiK'tors of air 

(- T) 

Num])cr of scintilla¬ 
tions in a giv('n i 

direction ( — N) 

N 
f 

1 O.U 
1 

21 .9 200 
2 0.22 38.4 175 
5 1 0.51 84.3 165 
8 0.81 121.5 150 
9 0.90 145 160 

through small angles obeys the law^s of probability and is compatible with 
the theory of multiple scattering. If tlu' probability of scattering through 
a large angle is calculated from this distribution on the basis of multiple 
scattering, it is found that the number to ]>e expected, theoretically, for 
an angle of 90°, say, is so small that the large angle scattering would 
never have been observed, and is, therefore, in disagreement with 
experiment. These two results are the starting point for Rutherford^s 
argument that the scattering is due to single collisions with particles in 
the metal foils used. 

As we have seen, Rutherford then assumed that the atom consists of a 
massive nucleus carrying all the positive charge and electrons of smaller 

mass at fairly large distances from 
the nucleus. Such an assumption is 
necessary in order to secure the large 
fields necessary to scatter alpha par¬ 
ticles through a large angle. Let the 
charge on the alpha particle be 2e, and 
that on the positive nucleus of an atom 
in the metal foil be Ze where Z is the 
atomic number and e the absolute 

Fig. 14.-—Scattering of an alpha particle 
by a heavy nucleus. 

value of the electronic charge, and let the particle move along the lineP/S 
(Fig. 14) when at a very large distance from the nucleus at K, The orbit 
of the particle is an hyperbola with K at one focus, possessing the equation 

^ Geiger and Marsden, Phil Mag,j 26, 615 (1913). 
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given in equation (29), Chap. IV. Remembering that e = 4.77 • lO*-''; 
we put ei = 2e, and 62 = Ze, in equation (29), obtaining 

where 

-p,\'2,xZe^ 

i — eCOS {Q 4- @0)’ 

^ 2ix7Je^' 

(26) 

and po, are the initial angular momentum about K and the initial 
energy, respectively. We can use the mass of the nucleus M in place 
of the reduced mass )u and regard the struck nucleus as remaining sta¬ 
tionary if we limit ourselves to collisions of alpha particles with heavy 
atoms as we shall do at present. In order that 6 shall be the angle 
between KA and r, as shown in Fig. 14, do must equal 0. For r = oo, 
B = angle POA. Then from equation (26), 

or, 

1 
€ 

= cos {POA) 

tan {POA) = / Vo \/2EoY 
\2Zey\M) ’ 

Now 2EqIM = and po = Mvp^ if v is the initial velocity, and p the 
perpendicular distance from the line PS to K. Further, the angle tp 
is the angle of deflection and it follows that 

__ Mv^p 
cot 

2Z€^ (27) 

This determines the angle of deflection in terms of the original velocity 
of the alpha particle, the mass M, the charges on the nucleus and alpha 
particle, and the perpendicular distance p. 
The deflected particles are usually observed 
on a screen placed perpendicular to the 
direction of the scattered beam, as shown 
in Fig. 15. S is the source of alpha par¬ 
ticles, F the scattering foil, P the phosphor¬ 
escent screen, and M the microscope used in 
the observations. The number of scattered 
particles is expressed in terms of the number falling on unit area perpen¬ 
dicular to the direction of scattering. Supposing that Q particles fall on 
the foil, this number, dN^/dAf falling between the scattering angles, (f 
and (p + d<pf is, 

dN^ ^ , ZH^ cosec^ {ipl2) 
„ = -^2—' (28) 

where n is the number of atoms per unit volume, i the foil thickness, 
and r the distance from the atom to the point where the alpha particle 
hits the screen. 
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To prove this, we shall modify slightly the treatment in Andrade's ‘^Structure of 

the Atom," page 22. Since matter is extremely open in its structure, the overlapping 

of the spheres of action of the nuclei need not be considered. The number of nuclei 

per unit area of the foil is ntj so the area belonging to one nucleus is l/nt. The chance 
that a particle passes at a. distance between p and p -f dp from a nucleus is 

2vpdp 
(l/nty 

and when Q particles hit tne foil, the number satisfying this criterion is 

Qni • 2Tpdp, 

After being scattered, these particles will lie in an angular range between <p and tp + 
d<pj and from equation (27), 

Substituting this in the /eding equation, the number between (p and ^ 4- is 

found to be 

(i) 
The area covered by these on a screen perpendicular to r will be 27rr* sin (pd(p = 

4irr^ sin (<p/2) cos (ipl2)d<Pj and the number per unit area will be the value given in 

equation (28). 

If the total number of particles falling on the foil Q is counted, it is 
possible to determine the absolute charge on the nucleus since all other 
quantities in equation (28) are measurable. Geiger and Marsden showed 
that when p is not too small, equation (28) is verified within the limits of 
experimental error and so have proved the nuclear atom to be in accord 
with their experiments. Chadwick, using equation (28), has determined 
the charges on the nuclei of Cu, Ag, and Pt and found that Z for these 
elements is 29.3, 46.3, and 77.4, while their atomic numbers are 29, 47, 
and 78, respectively, showing that the atomic number is the number of 
positive units of charge on the nucleus. 

The alpha particle will approach nearest to the atomic nucleus if it is 
fired directly at it so that p = 0. It will come to rest at some distance 
b where the potential energy is equal to the total kinetic energy of the 
particle when at a large distance from the nucleus. Then, if the inverse 
square law holds true. 

2Ze2 Mv^ , 4Ze2 
__ =_;or5 = ^,. (29) 

If equation (28) holds for scattering through angles close to 180®, we 
must conclude that the inverse square law of force holds down to distances 
as small as b. It has no very definite meaning to speak of the radius 
of the nudeufi, but if we define the nuclear radius as the distance at which 
the inverse square law of force breaks down, then scattering experiments 
give us a means of estimating this quantity. The value of b for the gold 
nucleus (Z » 79) and the alpha particles of radium C, which have a 
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velocity of 0.064c, is 3 ‘ 10"^ from equation (29). -rHe distribution 
of scattered particles predicted by equation (28) holds true for gold up 
to angles of 150*^; for this angle the alpha particle must approach within 
about 3 • 10~^2 cm. so that this distance is an upper limit for the radius 
of the gold nucleus. Similar experiments in which hydrogen is bom¬ 
barded with fast alpha particles show however that the inverse square 
law no longer holds at distances of about 3 • lO-^^ cm. 

DC parftcle 

16. THE DISRUPTION OF THE ATOMIC NUCLEUS 

In collisions between alpha particles and atoms of high atomic weight, 
it is permissible to regard the struck nucleus as remaining stationary. 
This cannot be done when we consider collisions between alpha 
particles and nuclei with masses of the 
same order of magnitude. Figure 16 shows’ 
the paths of an alpha particle and a light 
nucleus during a collision. Let the masses ho ,_- 
m and Af, respectively, and the initial and ccparf/de '^\\ .9 
final velocities of the alpha particle be 2;o and 
Vi, while the final velocity of the nucleus is w. \ 
After impact, let the alpha particle move at an ^ 
angle <p and the nucleus at an angle B with the fig. le.—The ecattcriiig of 

original direction of the particle. The laws alpha particle by a light 

of conservation of momentum and energy re¬ 
quire that 

mv{) = mvi cos <p + Mu cos By 
0 — sin ip + Mu sin B, 

mvo^ = mv\^ Mu^y 

u Wltn tne Fig. 16.—The Bcattcriiig of 

The laws alpha particle by a light 
nucleus. 

u = 2vo-i—^ cos By 
m + M 

M sin 2B 
rn — M cos 2B 

For the hydrogen nucleus M = m/4, and 

Uh = 1.6?;o cos B, (31) 
while for He, 

Uh^ == Vo cos By tan ip = cot B, (32) 

This shows that for scattering by He, <p + B = Tf2, Branched tracks 
of alpha particles in helium gas photographed by Wilson^s method are 
found to have an angle of 90° between them. The angle B can be cal¬ 
culated only if the law of force is known. Assuming that the inverse 
square law holds, it can be shown that 

VVo^ mM 
tan e - 2Ze»(mTl^' 

The velocity of the hydrogen nucleus can be calculated as a function of p 
and, just as in the case of the scattering from heavy atoms, the probability 
of the hydrogen nucleus being shot out at any angle 6 can be calculated. 
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Experiments designed to test whether the scattering obeys the formulas 
derived on the assumption of the inverse square law of force have been 
carried out by Rutherford/ and Chadwick and Bieler.^ The conclusion 
is that the inverse square law holds down to about 2.4 • 10“’cm. for 
collisions between hydrogen nuclei and alpha particles. If p is smaller 
than this amount, many more hydrogen nuclei are thrown forward than 

the theory predicts. 
The range R of a positively charged particle such as a hydrogen nucleus 

or an alpha particle has been shown experimentally to be proportional 
to the third power of the velocity of the particle and Bohr*’ has deduced a 
theory showing that to a first approximation the range is proportional 
to its mass and inversely proportional to the square of its charge. If the 
collision between the alpha particle and the hydrogen nucleus is head on, 
so that 6 of equation (82)^is zero, Vn = l.Oro, and 

Rii _ ^ 

Rile 

Therefore, the range of a high-specal hydrogem nucleus produced by an 
alpha particle with a range of 31 cm. in hydrogen would be 127 cm. The 
more exact theory makes this range somewhat less, about 117 cm. The 
range of such a high-speed hydrogen nucleus in air is about one-fourth 
of this, or 29 cm. This is the maximum range possible for if ^ > 0, Un 
will be less than l,6vo and the range will be less than this value. The 
maximum range of any other fast nucleus of higher mass than hydrogen 
produced by collision with an alpha particle will be less than this as can 
be seen from equation (30). If any particles having a range greater 
than 29 cm. of air are produced by bombarding a substance with alpha 
particles of radium C, they must be ejected from the atomic nuclei.'’ 
Rutherford first showed that such long-range particles exist and Ruther¬ 
ford and Chadwick have shown that they are produced from a number 
of elements and that they are deflected by magnetic fields to a degree 
expected for hydrogen nuclei. Furthermore, these high-speed particles 
are ejected backward as well as forward with respect to the direction of 
the bombarding nuclei. 

Certainly in the case of some elements, part of the energy of the 
high-speed H particles must be supplied from the internal energy of 
the nucleus. Kirsch and Petterson and their co-workers have extended the 
study to other elements and have devised methods for detecting H- 
particles of smaller range. In this way they have shown that other 
elements are disintegrated, but with the ejection of slower H-particlee. 

^ Phil Mag,, 37, 537 (1919). 

^im., 42, 923 (1921). 

^Phil Mag,, 26, 10 (1913); 30, 581 (1915). 

* See Handbuch der Physik, 22,140-178, for complete references to the literature on 
this subject. 
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Moreover there are indications that alpha particles unite with nitrogen 
atoms when they are bombarded by alpha particles of radium C. 

Table 7 gives the list of elements^ which are reported to be disinte¬ 
grated by bombardment with alpha particles, together with the packing 

Table 7 

* Kara-Michailova, Em Hand. d. Phymk, 22, 
* KiRSen, Gm and H. l*ErrEi<80N, Milt. Ra.-Inat. 167; W^enrr Ber. (Ila) 133, 235 (1024); Miti. Ra.~ 

Jnst. 176a and 180; Wiener Ber. (Ha) 134, (1025). 
* Rutherford, E,, and J. Chadwick, Proc. Roy. Soc., 36, 417 (1924); Phil. Mag. 48, 809 (1921); 44, 

417 (1922). 
* PBT'rBRSON, Hm Mitt. Ra.-Inst, 173; Wiener Ber. (ITa) 133, 573 (1924), 

® Kikrcu, G., Mitt Ra.-Inst. 169, Wiener Ber. (Ila) 183, 401. 

* These elements are quite certainly disintegrated but there is some disagreement 

between workers in this field as to the ratio of the number of disintegrated atoms to 

alpha particles. This has been critically discussed by Bothe, Naturwis.j 16, 204 

(1928). 
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fractions, and the forward and backward ranges determined by Ruther¬ 

ford and Chadwick. 

The energy relations involved in these disintegrations have been con¬ 

sidered by Rutherford and Chadwick. In the case of the elements 

P, Al, and F the energy of the H-particle is greater than that of the alpha 

particle causing the disintegration so that the internal nuclear energy 

must supply part of the energy. Until the nature of the nuclear frag¬ 

ments is known and until the packing fractions of all light elements 

are determined, it is impossible to say anything with certainty in regard 

to the energy balance in these disintegration processes. Even the ques¬ 

tion of whether the nuclei are disintegrated or the alpha particle combines 

with one nuclear fragment to form an atom of higher atomic weight is 

uncertain, though this seems probable in view of experiments of the type 

illustrated in Fig. 2.^ 
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CHAPTER III 

THE FOUNDATIONS OF THE QUANTUM THEORY AND THEIR 
EXPERIMENTAL JUSTIFICATION 

1. BLACK-BODY RADIATION 

It is curious but true that the detailed study of a single experimental 
law led Planck to propose the quantum theory. That law describes 
the way in which the radiation'from a so-called black body, having wave 
lengths between X and X + dX, depends on wave length and on tempera¬ 

ture. By a black body, we mean a hypothetical body which absorbs 
all incident radiation, transmitting and reflecting none. While no such 
object exists in nature, the radiation which it would emit is very closely 

approximated by that emerging from a very small hole in the wall of a 
uniformly heated hollow body. Such a hollow body is often called a 
^^black body,^' or sometimes a ^^hohlraum.’^ Interest in the radiation 
emitted by a black body has grown steadily since Kirchhoff discovered 
a law, named after him, which will now be explained. Let S\d\ be the 
rate of emission of radiation with wave lengths between X and X + dX, 

from unit surface of a given body, at a certain temperature. Let Ax 
be the coefficient of absorption for rays of the same wave length falling 

on the body. Then the law states that. 
At a given temperaturej S\/A\ is a constant^ independent of the 

nature of the body. 
(This law, as well as the other laws of radiation stated here, is proved 
in Planck^s “Warmestrahlung,^^ referred to at the end of this chapter.) 

Now when Ax = 1 (perfect absorber), S\ = so that 5x d\ is the rate 
of emission from unit surface of a black body. Kirchhoff^s law shows, 

therefore, that the rate of emission from a black body depends only on 

the wave length considered and the temperature but not on any property 

of the black body itself. 
It can be shown that at temperature T, S\ is identical with the radia¬ 

tion which passes in a given sense through an imaginary unit surface 

drawn inside a hollow enclosure with walls at temperature T. The 
radiation at any point inside such an enclosure is quite independent of 

the nature and shape of the walls, and the streams of radiation in aU 
directions are equal. Further, the condition of the radiation at all 

points inside the enclosure is identical In particular the energy per 
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unit volume of the radiation in the range dk is uniform, and is denoted by 

p\d\. 

It is a matter of mere geometry and integration to show that 

(1) 

where c is the velocity of light in vacuum. 
Thus, it is immaterial whether we use px or .9x in our calculations and 

we choose to use the former. By the aid of classical thermodynamics, 
together with the value of the radiation pressure in terms of energy 
density, we can deduce Wie'ds displacement law that 

PX = 6-iX-^/(xr), (2) 

where Ci is a constant and /(XT) an arbitrary function, p may also be 
written in the form CiT^F(\T), where 

F{\T) = 
/(XT) 
X6T-5 

From this, we can deduce the Stefan-Boltzmann law by integration, 
without knowing’ the form of /. The total energy density carried by 
radiation of all wave lengths is 

p = /"p.rfx = fyi\T)di).T) = aT\ (3) 

a being constant. 
This is as far as we can go in determining px by the aid of general 

principles. To proceed further, we must study the equilibrium of 
radiation with some form of absorbing and emitting matter. The type 
of matter we deal with is of no consequence, provided it is endowed with 
certain characteristics which are common to all species of atoms or 
molecules, and provided that every wave length can be absorbed and 
emitted by a reasonable number of the particles. For this reason, Planck 
discussed a very simple case—a collection of harmonic oscillators having 
all possible frequencies. His treatment is quite long, so we shall give 
another proof of the radiation law, due to Jeans and explained in his 

Kinetic Theory of Gases,^' fourth edition. The underlying idea is to 
break up the radiation field into monochromatic wave trains; to find 
the number of trains which have wave lengths between X and X •+■ dX; 
and to determine the energy carried by each wave train when a steady 
state is reached by applying thermodynamic criteria which must be 
satisfied in the equilibrium condition. Consider a cube of unit volume 
having perfectly reflecting walls, with one corner at the origin, containing 
plane electromagnetic waves moving parallel and antiparallel to the 
X-axis, but not in any other direction. Suppose these waves are plane 
polarized, with electric force parallel to the F-axis. A boundary con¬ 
dition is imposed by the fact that the walls are perfect reflectofS; namely, 
the tangential components of the electric and magnetic force must be 
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zero. If this were not true, radiation would penetrate the walls. There¬ 
fore, at the planes a; = 0 and a; == 1, the electric and magnetic forces 
vanish. In the ideal case considered, equilibrium has been attained, 
and the field of radiation must be composed of stationary monochromatic 
waves. As a function of x and t, the electric force is of the type 

Ey = sin imrx cos {Trrrict — (4) 

where nothing is known, as yet, about the amplitude constants and phase 
constants, A m and The slowest mode of vibration is represented by 
the standing wave shown at 1 in Fig. 1, where the ordinates represent the 
values of the electric vector. It is composed 
of two sine vibrations of wave length 2, one 
passing to the right and the other to the left. 
Similarly, in the other cases shown, the wave 
lengths of the sine vibrations which form the 
stationary waves are etc. Each 
stationary wave, that is, each term in the 
expression for the electric force, is called a 
^'mode of vibration.’’ Although the decom¬ 
position of the force into sinusoidal constit¬ 
uents is a purely mathematical process, we 
are at liberty to consider each monochromatic 
standing wave train as an entity possessing 
energy, momentum, and other physical 
characteristics. The justification lies in the 
fact that the time average of the energy of the whole system is composed 
of a sum of terms, one of which is contributed by each wave train. 

I ^ 
»^c<x>ooooco^ 

Fig. 1.'—Standing waves in a 
hollow enclosure. 

The electromagnetic energy density at a given point is {E^ + //*)/87r, H being 

the magnetic force. The time averages of the two terms arc equal so the energy is 

the average of E^ (iontains square terms of the type AJ^ sin^ mwx cos** 

{irmct — am)y and also cross-product terms. The time average of each cross-product 

term is zero, and the average of cos** {irmct — is so the total energy density is 

equal to 
sin* TTlTrX. 

From this, the energy of the whole cube can be obtained by volume integration. 

We need to know how many modes of vibration have their wave 
lengths in the range between two fixed wave lengths, X2 and Xi, where 
Xi > X2. Because we know from experiment that in practical cases 
most of the energy density will reside in wave lengths short compared 
with 1 cm., we limit our investigation to large values of m. Suppose 

2 2 2 
that in the sequence of possible wave lengths, ^ f’ * ’ ‘ 

term 2/mi is the first value smaller than Xi and 2/(m2 ~ 1) is the last 
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value larger than X2. That is, excluding cases where Xi and X2 are 
equal to some of the allowed wave lengths, 

2 
mi — 1 

> Xi > — > 
mi 

> 
m2 — 1 

> X2 > 
m2 

Then the number of modes of vibration with wave length greater than or 
equal to X2 and less than Xi is obviously m2 — mi. Now, 

X1X2 

If Xi and X2 differ by a very small quantity dX, then the number is 

2dX 
X^ * 

If we take into account the vibrations in which the electrical force is 
parallel to the 2-axis, the number must be doubled. This quantity is 
referred to as the number of vibrations per unit length in the wave length 
range dX, for the reason that if the enclosure is expanded to a length 
of Z cm. parallel to the x-axis, it can contain I times as many stationary 
vibrations in the range dX. The typical wave train is given by the 
expression Am. sin {mrx/l) cos {mirctll — am)- 

We pass now to the three-dimensional analogue of this calculation 
and consider the waves which pass in all directions inside a vessel of 
volume V, When a wave train is reflected at the walls its direction is 
changed, and all in all the situation is very complicated. However, it 
will always be mathematically possible to break the waves up into 
monochromatic trains and to determine the number for which the wave 
length lies in the range dX. This number is found to be proportional 
to the volume of the enclosure so it is reasonable to speak of the number 
per unit volume just as we spoke of the number per unit length above. 
It is found^ to be 

87rX-*dX. (5) 

The amplitudes of the modes of vibration vary in an irregular way, so the 
energy associated with each one is also variable from wave train to wave 
train. However, the average energy of each wave train can be obtained 
by the methods of statistical mechanics. As mentioned in Chap. I, 
Sec, 6, the average kinetic energy associated with a squared term 

in the kinetic energy of any dynamical system is kT/2, In 
classical electrodynamics a monochromatic wave train may be considered 
as a dynamical system having kinetic energy H^/Stt and potential energy 

per unit volume, so the time averages of its potential and kinetic 
energies are equal, whatever the amplitude Am may be. If we consider 
many such wave trains with different amplitudes, the mean energy of a 
single train, obtained by averaging the square of the amplitude of the 

1 Juans, loc. ci<!. 



Sec. 2] PLANCK^S DISTRIBUTION LAW 57 

electric force, will therefore be kT, Multiplying* this by the number of 
modes in the range d\, we obtain the radiation density, 

Pxd\ = SwkTX-^dX. (6) 

This is called the Rayleigh-,Jeans distribution law, after its discoverers.^ 
Although it agrees quit(‘ well with experiment in the region of large 
wave lengths and high tcanperatures, in oth(a* words, for large values of 
XT, it breaks down for small values of XT. Of course, it cannot be used 
when dealing with wave leiigi hs of the saiuc^ magnitudes as the dimensions 
of the hollow enclosure, since the approximations involved in deriving 
equation (5) are then unjustifiable. As to tlu' situation at very small 
wave lengths, it is often stated that the Itayleigh-Jeans law predicts an 
unlimited accumulation of (UK'rgy in this region, and so it doi's, because 
of the factor So far as we know, there is no lowm* limit to the 
possible wave length of radiation, and, therefore, no upper limit for 
p\ as X decreases. The trouble is that in this region the average energy 
of a wave train is not kT (se(‘ ecpiaJion (9)). Also, the use of a perfectly 
reflecting enclosure in our proof is an unjustified abstraction. In 
actuality, the wave trains owe their existenci^ to the matter in the walls 
or in the enclosure itself. Now, thc' molecules which can absorb and 
emit high frequencies must be ch;ira.cteriz(‘d by larger internal forces, 
and it may occur that such molecules do not exist in sufficient numbers 
to justify a continuous statistical analysis in discussing the mean energy 
of a molecule or of a wave train. Th(‘ bn^akdown of Ihe formula at 
wave lengths large enough so that theses considerations do not apply 
is suflScient, however, to show that something is wrong with the assump¬ 
tions used in our proof. The experimental (widcnce as to this breakdown 
was described in Chap. I and is conclusive. 

2. PLANCK’S DISTRIBUTION LAW 

The preceding paragraphs give a suflPicient description of the diffi¬ 
culties into which we fall by applying classical theory to derive the 
distribution law of black-body radiation. Planck was led by an ingenious 
argument to the assumption that the energy of a linear oscillator can 
assume only the discrete values 

O^hp, 2hp, • • • nhvf • • • . 

Let us apply this idea to the modes of vibration of the Hohlraum, con¬ 
sidering each mode as a linear oscillator. The assumption that the 
energy of each mode can take only the values nhv invalidates the result 
that the average energy associated with each wave train is kT. Now, 
when we are dealing with an aggregate of quantized systems, the follow¬ 
ing extension of Boltzmann's law holds true. If the possible energies of a 

1 Rayleigh, Phil. Moq., 42* 539 flOOO); Jeans, ibid. 17, 239 (1909). 
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quantized system are i?i, J!?2 . . . , then the numbers of atoms in these 
energy states are proportional to 

p^Q-Ei/kT^ • • • , • • • . (7) 

The quantity Pn is a number called the a priori probability of the state. 
Generally, it is equal to the number of possible states of motion of the 
system in which it has the energy En> In the case of the oscillator, 
each energy state corresponds to one definite state of motion, so all the 
p„^s equal one. Now let the number of oscillators, i.e.j modes of vibra¬ 
tion, in the state of lowest energy be Nq. From equation (7), the total 
number will be 

iV = iVo + Noe Noe -nhv/kT^ * • • , 

since — Ex = Ez — E2 = • • • = hv. The energy of the modes 
carrying n quanta is 

— nhv/kT 

nhv Noe , 

the total energy is 

^nhvNoe 
— nhv/kT 

and so the average energy of one mode will be 

E =- 
2nhv ♦ Noc-^^l^^ 

= hv 
Zne 

0, (8) 

where we have written x = hv/kT. 

The denominator is a geometric series and is equal to 1/(1 -• e*”*). 
The numerator is the derivative of the denominator with its sign changed, 
that is, 6“V(1 ““ e~^y. Therefore, 

hv ( hv 
(9) 

To obtain Planck^s distribution law, we need only multiply E by the 
total number of modes of vibration having frequencies between v and 
V + dvj secured from equation (5) by substituting X = c/v. We get, 
for the energy density between these frequencies, 

ppdv = pxdX = 
STv^dv^ __ Sirhv^dv 1 

C® ^hv/kT __ j 

SwhcdX 1 

The energy density per unit frequency range p„ is not the same as px, for dv «=* 

—cdX/X*. It is quite customary to write px in the form 

px = CiX — T* 

The value of Ci, calculated from the universal constants involved, is 4,93 • 10“^® if X 

and d\ are in centimeters, and 4*93 • 10*® if they are in Angstrom units. The value of 

C2 in c.g.s. units is 1.432 cm. degrees, as calculated from the universal constants. This 

is in excellent agreement with the experimental value of Coblentz,^ There is some 

1 Bureau Standards, Bidl. 16, 529 (19^0). 
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confusion as to the definition of Often it is given as 14,320, with the implication 
that X is to be expressed in microns, which is the usual procedure in experimental 
papers on this subject. 

It is important to examine the form assumed by for long wave 
lengths or high temperatures, perhaps, it is better to say, the region 
of high values of \T. In this domain, — 1 approximates to hv/kT 

and E is nearly equal to the value kT derived from the equipartition 
theorem. This carries with it the validity of the Ilayleigh-Jeans law in 
this region, in agreement with experimental results. The physical 
basis for the asymptotic approach of Planck^s law to the classical dis¬ 
tribution is easily seen. When we deal with large wave lengths, the 
step hv between adjacent energy levels is small, and conditions must 
approach those characteristic of systems with their energies distributed 
continuousl3^ Likewise, at high temperatures, the ratio of hv to the 
average energy of a mode of vibration is smaller, and the effects intro¬ 
duced by the discrete character of the possible energy values are less 
prominent. The reader can easily show that Planck’s law approaches 
the Rayleigh-Jeans law if h approaches zero. Now let us consider the 
form assumed by Planck’s law when the expression in the denomi¬ 
nator is large compared with unity—that is, when XT is small. It 
becomes 

Pp = Px = = CiX“® 

which is Wien’s law.^ 

This approximation is an excellent one throughout the visible region, up to very 
high temperatures; for example, if X = 6,000Aan(l T ~ 3,000°K, is about 2,200; 

under these conditions the difference-between the two law\s is below the limits of 

present day errors of measurement. It is useful to have an appreciation of the energy 

distribution which is the basis of Wien’s law. If the energy -step hv is large and T is 
small, then the number of molecules in the second quantized level is small compared 

with the number in the level of zero energy and the number in all higher levels can 

be neglected entirely. The average energy is approximately 

hve'~'^vfkT 

i -|" crhv/k'F 

or ^ since the second term in the denominator is negligible. Multiplying 

this by the number of modes of vibration between v and v we get Wien’s law. 

3. STEFAN’S LAW 

The total energy density of black-body radiation is given by 

r 
WJo 

(hu/kry d{hu/kT) 
^y/kf ZT 

1 Ann, Physikj 68, 662 (1896). 
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PJxpanding by actual division, we have 

- ]) c^(] - 

and integrating by parts, term by term, we find that 

+ + 

^ 00 

I {e~-^ + + 

Therefore, 

• )d^'dx - 6^1 + 

p — (iT\ when' a = 

+ 

StT'Vv^ 

miV 

+ 
n y r 

15 

(12) 

The total radiation per second from unit surface of a black body is cp/4. 
Thus, the constant in Stefan's law tak(‘s the value ac/4, that is, if the 
total radiation is then 

a = = (5)714 ± 0.006) 10-^ (13) 

in c.g.s. units. The exp('rim(‘ntal .value's obtained for (t show a dis¬ 
quieting range of variation.^ A reasonabh' mean value is 5.74 • 10“^ in 
absolute e.g.s. units, while we obtain 5.71 • 10“*^ from equation (13), 
using the values of the universal constants given in the appendix. The 
latter value agrees with that of Coblentz {he, cit.). 

Differentiating Planek^s law, with respect to X, holding T constant, 
and setting the result equal to zero, we find the condition which deter¬ 
mines \maxT. Writing x = hv/kT as before, it is (1 — = 1* 
By trial, the only real root of this equation is 4.9051, whence 

^maxT = 4 = 0.2884 CTu. dcgrces. 

The value of XmaxT found by Luniiner and Pringsheiin^ was 0.294 
cm. degrees. 

4. EINSTEIN’S DERIVATION OF PLANCK’S DISTRIBUTION LAW 

The above proof of Planck’s law may be criticized because it depends 
on the use of classical theory in getting the number of modes of vibration 
per unit wave-length interval, and upon non-classical assumptions in 
getting the average energy of each mode. Einstein® has given a proof 
which depends only on the most general assumptions of the quantum 
theory, of thermodynamics, and of statistical mechanics. Following 
his original treatment, we consider the entities in a black-body enclosure 
which give rise to ttie constituent pydv of the radiation. Let us suppose, 
for simplicity, that they are atoms existing only in discrete energy 
states. Consider two quantized states of energies Ei and E2, where 

^ See Planck, “ Warmestrahlung,” 5th ed., p. 64. 

2 Verh, d, Devisch. physik. Ges, 2, 176 (1900). 

3 Verh. d, Deuisch. physik. Ges. 18, 318 (1916); Physik. Z., 18,121 (1917). 
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Ei > El, having a priori probabilities pi’and pj. In the Hohlraum at 
temperature T, the numbers of atoms in these states are 

, E7 
Hi = UoPie-kT and Ui = naPie—ja, 

where no is the number of atoms which would be in a state of zero energy 
having unit statistical weight. We postulatey that there is a probability 

A.2\dt 

that in time dty an atom in state 2 will pass spontaneously to state 1 
with the emission of light. A^i corresponds to the existence of the 
radiation loss from an accelerated electron in classical theory. We 
define a probability 

Bi2pvdt 

that an atom in state 1 will pass to state 2 in time dt by absorption of 
radiation in the neighborhood of the frequency v. Bx2 is supposed to 
contain a factor which depends on the width of the range of fre¬ 
quencies which are capable of carrying the atoms from the lower state 
to the upper state. Other frequencies are not supposed to affect the 
atom in state 1. There is also a probability, 

B^ipydty 

that an atom in state 2 will pass to state 1 in time dt because of the 
presence of radiation of frequency v. The quantities B12 and B21 are 
called the coefficients of positive and negative absorption positive 
und negative Einstrahlung^')- The introduction of the coefficient 
B21 corresponds to the fact that on the classical theory the rate of emission 
of an atom may be increased when radiation falls on it with appropriate 
phase relations. (Example: Left-handed circularly polarized light falls 
on a right-handed circular rotator, opposing its rotation, so that the 
deceleration of the rotator is greater than that due to the damping forces 
of its own field, and its rate of radiation is increased.) 

When thermal equilibrium is attained, the number of transitions 
from state 2 to state 1 must be equal to the number of transitions from 

state 1 to state 2. That is, 

'^12(^21 "f B21 Pv) = 'f^lBi2 Pvj 

or 

'' kt/ 
El 

P2e '“^(^21 + B21 Py) == J^12 pv 

Now at very high temperatures, p„ varies directly with T, 

displacement law requires that 

(14) 

(15) 

Wien’s 
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The variation of F at high temperature for a fixed finite v is the same 
as its variation with v when p is small compared with a fixed finite value 
of T, The Rayleigh-Jeans law shows that in the region of small p/T, F 

is proportional to p'^/T^ and varies directly with 7\ Therefore, at 
very high tempc^ratures, A2\ may be neglected in comparison with 
B21PP and equation (15) reduces to the form, 

V2B21 = P1R12. (16) 

From equations (15) and (16) we see that 

E^t - Ejl 

- 1 

(17) 

But Wien's displacement law, equation (2), shows that we must put 

and therefore. 

A 21 

R21 

aP^y 

E2 - El - hPy 

OLP^ 
Pp hy * 

- 1 

(18) 

(19) 

(20) 

At the present stage, h and a appear only as constants of proportionality 
which must be evaluated by experiments, or by an appeal to limiting 
cases where more complete information can be obtained. In the region 
of small p/Ty the Rayleigh-Jeans formula holds true, and 

StpW 
P*' — ' ^3 ' 

so that we must have 
Sirh 

rv — -• 

The important point is, we have here a proof of Planck^s law and of 
AE = hp, depending on the first and second laws of thermodynamics, 
Boltzmann’s distribution law, the hypothesis of detailed balance between 
the absorption and emission processes, the existence of quantized states, 
Wien's displacement law, and the validity of the Rayleigh-Jeans formula 
for small p/T, All of these underlying relations are extremely well 
founded. The reasoning is essentially an application of the law of mass 
action to the equilibrium, 

excited atom ^ atom + quantum. 

BuPy and A21 + B2iPy are proportional to the velocity coefficients 
of the two opposing reactions, so that the equilibrium constant is the 
ratio of these quantities. The emissions corresponding to the term 
B21PV are catalyzed" by the incoming quanta which cause them, for 
these quanta are simply scattered and therefore lose no energy. 
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Einstein’s proof of Planck’s law does not depend on the hypothesis of 
unidirectional quanta, since no mention of the nature of radiation is 
made in the above demonstration. However, in another section of his 
1917 paper, he showed that if the quanta are unidirectional, the pressure 
they exert on molecules which absorb or emit them will just suffice to 
maintain the average translational energy at the value 3fcr/2, predicted 
by statistical mechanics. This result is misinterpreted frequently, and 
is supposed to be a proof that the average energy cannot be maintained 
at this value by any other type of quantum. The truth is that the best 
evidence for the existence of unidirectional quanta comes from other 
fields of investigation, such as the photoelectric effect, now to be dis¬ 
cussed, and the experiments described in Secs. 13, 14, and 16. 

6. THE PHOTOELECTRIC EFFECT AND THE INVERSE PHOTOELECTRIC 
EFFECT 

The ejection of electrons when light, X-rays, or gamma rays fall on a 
substance is a phenomenon which is by no means confined to metals; 
but in the case of ordinary light it is much more prominent and easily 
studied for metals than for non-conductors. It is often thought of as a 
surface effect, although radiation can also free electrons from their 
usual positions in the interior of non-conducting substances. The 
essential facts are these: 

1. For every substance there is a wave length called the “photoelectric 
threshold” above which no emission occurs. This is large for electro¬ 
positive elements and decreases as the element becomes more electro¬ 
negative. However, the threshold value depends on the state of the 
surface as regards crystal structure, adsorbed gas, etc., and the results of 
different investigators may vary by large amounts. For the alkali 
metals, the threshold lies in the visible; for most other metals and for 
solid non-metals it is in the ultra-violet. Some typical values^ are as 
follows: Li, 5,200 - 5,260 A.: Na, 5,830 - 6,850; K, 6,120 - 10,000; Fe, 
2,870 - 3,150; Ni, 2.700 - 3,030; Zn, 3,020 - 4,010; Rb, > 10,000; 
Cs, > 10,000; W, 2,300 - 2,735; Pt, 1,850 - 3,020. 

2. The electrons emerge with all velocities from zero up to a maximum 

value Vj such that 

hvo, (21) 

where pq is the frequency corresponding to the threshold wave length. 
The reason is that hpo is the minimum work required to bring an electron 
through the surface. If the electron comes from a deeper layer of atoms, 
the velocity will be smaller, since work must be done to bring it to the 

surface. 

1 Taken from Gudden, ‘‘Lichtelektrische Erscheinungcn’^, Springer, Berlin 
(1928). 
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3. The photoelectric current is proportional to the intensity of the 
light over a range of as much as one-million fold. 

4. In a general way, photoelectric efficiency is small. Several hun¬ 
dred absorbed quanta are required to eject one electron from many metal 
surfaces. 

5. The effect begins within 3 • 10“^ second after the light strikes the 
surface, as Lawrence and Beams^ have shown. This is an upper limit 
to the possible lag. 

The validity of equation (21) is closely connected with the existence 
of light quanta of energy hv. Careful tests of this equation have been 
made by Millikan^ in the region of ordinary light, using Na, K, and Li 
surfaces prepared in vacuum. The method is to determine the back 
electromotive force ^ between the sensitive surface and a receiving 
electrode, connected to a quadrant electrometer, which is just sufficient 
to prevent the fastest photoelectrons from reaching this electrode and 
causing a deflection of the electrometer. If there were no contact 
potential between the alkali metal surface and the receiver, the work 
which would have to be done on each electron to reduce its velocity 
to zero should be 

= hv ~ hvo, (22) 

where <i> and e are measured in electrostatic units. But, if a contact 
potential 4>c accelerates the electron a greater stopping potential must 
be applied, such that 

- ^c)e = hv - hvo. (23) 

Of course, niay be either positive or negative. Since is unknown, 
this equation cannot be used to test equation (21) directly, but, if the 
stopping voltages are determined for a number of different wave lengths, 
the curve showing as a function of v should be a straight line and its 
slope should be h/e. Since e is known, this offers a method of deter¬ 
mining h. Millikan^s data lie very accurately on a straight line, and 
yield the result h = 6,56 • 10’"27. 

In the X-ray region, the law of equation (21) is also closely verified. 
Here the term hv is very large compared with the energy required to 
remove an electron from the surface, and the term hvo is often left 
out of consideration. In this region, however, the best way of proving 
that a quantum has the energy hv consists in a study of the inverse 

photoelectric effect. If a fast-moving electron is stopped by the metal 
target of an X-ray tube, part or all of its energy may be changed into 
radiation. This radiation is called the ‘‘Bremsstrahlung'' (literally, 
deceleration radiation) or ‘^continuous radiation.^' Assuming that 

1 Phys, 82, 478 (1928). 
^Phys. Bev,f 7, 362 (1916). See also his book ‘*The Electron/' referred to at the 

end of Chap. II. 
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all the energy of an electron can be transformed into a single quantum, 
the rnaxiirmm frequency which that quantum can possess will be given by 

(24) 

which is called the equation of Duane and Hunt. ’ As a matter of fact 
the continuous X-ray spectrum excited by electrons falling through a 
potential has a sharp limit on the side of short wave lengths. Duane 
and his collaborators^ have used equation (24) to measure /i, finding 
the value 6.556 • In conclusion, all the experiments described 
support the expression hv for the energy of a quantum of frequency v. 

While the accuracy of numsurement of h is in no case very great, the 
evidence favors the belief that h is really a constant over the whole range 
from the infra-red to the shortest gamma rays. 

6. BOHR»S FUNDAMENTAL POSTULATES 

We come now to the two fundamental postulates which Bohr used in 
working out his theory of the hydrogen atom and which he enunciated 
as the basis for studying the structure of all atoms. Each postulate 
arose from careful consideration of experimental data. He was con¬ 
fronted by evidence that the hydrogen atom contains a single electron 
revolving around a positive nucleus, and that both electron and nucleus 
are surrounded by inverse square force fields. But also, the hydrogen 
atom gives a spectrum of well-defined lines and the question arises, how 
can any atom so constituted produce a line spectrum? We saw in Chap. 
I, Sec. 4, that a line spectrum can be produced by an atomic model made 
up of independent harmonic oscillators, for the frequency of such an 
oscillator does not depend on its amplitude and will not change as the 
motion dies away. But under the inverse square law, if the laws of gross 
electrodynamics apply, the loss of energy due to radiation will cause the 
electron to spiral into the nucleus, in contradiction with the high degree 
of permanence so characteristic of matter in general. As the orbit 
becomes smaller, the frequency should increase and a broad band of 
wave lengths should be emitted. 

It must not be thought that this disagrees with the result that a 
stable elliptic orbit is pursued by a particle moving under the inverse 
square law. In the derivation of this law (Chap. IV, Sec. 6), forces 
due to radiation are not taken into account. In treatises on electricity 
(such as Richardson's ''Electron Theory of Matter," p. 266) it is shown 
that a charge which is subjected to an acceleration x experiences a 
force 2e^x/3c®, which is generally so directed as to retard its motion. This 
is the so-called radiation force and is independent of the charge dis¬ 
tribution and the nature of the motion, so long as dx/dt is not too close 

Rev., 6, 166 (1917). 
» Blake and Duane, Phys. Rev., 10, 625 (1917); Duane, Palmek, and Chi-Sun- 

Yeh, 0. A., 5. 376 (1921). 
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to c. Now the computation which shows the existence of this force 
depends on the validity of the laws of mechanics and of electrodynamics, 
as well as the expression (Appendix VIII) for the force on a charge in 
terms of the electric and magnetic field strengths which act upon it. 
Bohr saw fit to question this computation, because of the experimental 
truth that atoms do exist in stable states without radiation and that 
they do emit sharp spectral lines. The result is the first fundamental 
postulate of the quantum theory of atomic structure, a rational gener¬ 
alization of Planck’s assumption that his oscillators could have only 
certain discrete amounts of energy. 

1. Among the conceivable states of motion of the parts of an isolated 

atom there is a set of stationary states in which the atom can remain a finite 

time without radiating. When in these states, the atom possesses a stability 

unexplainable on the basis of classical mechanics and electrodynamics, of 

such a sort that every spontaneous change from a stationary state of motion 

results in a transition to another stationary state. 

The words, stationary state,” do not imply that the particles of the 
atom are at rest. By stationary ” is meant that the motion of the 
particles is periodic, the energy of the system being constant. These 
conditions of the atom are often called ^^steady states” or quantized 
states,” or ^^energy levels,” just as in the case of the Planck oscillators. 

Bohr’s second assumption deals with the emission of radiation and is 
a generalization of Planck’s assumption in regard to emission by linear 
oscillators: 

2. The emission of radiation by an atom or a molecule occurs during a 

transition from a stationary state of energy to another having a lower 

energy Ei. The quantum emitted can be absorbed completely by a similar 

atom, in the stationary state of energy E\, and raises it to the state of energy 

j&2. In its interaction with spectroscopic instruments the quantum behaves 

as though it consisted of a nearly monochromatic wave train whose wave 

length X is given by the relation 

€ = £^2 - = V = (25) 

The absorption of radiation by an atom or molecule occurs during a 

transition from a stationary state of energy Ei to another having a higher 

energy E2. The frequency of the absorbed radiation is given by equation (25). 

In postulate 1, the word ^‘spontaneous” is an essential one. If an atom is tem¬ 

porarily exposed to light of a wave length which it cannot absorb, its state of motion 

is altered, but after the disturbance has passed it returns to its original scheme of 

orbital motion. Even in this case the stationary state is a different one, if we agree to 

consider the velocity of the atom as a necessary datum in describing the stationary 

state. It must be emphasized that Ei and Ei include the kinetic energy of transla¬ 

tion. When an atom initially at rest absorbs a quantum, it recoils, for the quantum 

carries momentum as well as energy. The energy of the quantum is divided between 

giving the atom kinetic energy of translation, and increasing its internal energy. 
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These postulates are well constructed and have stood the test of time, 
for they are the expression of experimental truths and do not depend 
in any way on the detailed structure of the atom or the nature 
of radiation. They enable us to treat many questions without any 
reference to a detailed mechanism of the processes occurring. With 
the aid of equation (25) we can often read out of spectra the energies 
of the stationary states of an atom, and thereby can predict the possible 
transfers of energy in collisions between atoms and electrons, or we can 
study these energy transfers in discharge tubes and can state with 
confidence that certain lines will occur in the spectrum of the material 
studied. But there is a limit to the information that can be gained in 
this way, and the directions in which progress can be made are best 
seen by writing down the questions which suggest themselves, relative 
to the choice of an atomic model: 

1. What is to be our picture of the constituent parts of the atom? 
2. What are the dynamical laws governing the motion of these parts? 
3. What conditions are imposed to determine the stationary states of 

motion which actually exist? 
4. What is our idea of the emission process, of the quantum of light 

emitted, of the interaction of matter with radiation, or of matter with 
matter, as in a collision of two atoms? 

The fact is emphasized that a great variety of theories might be 
proposed to answer the above questions, all of which would yield the 
same relations between observable quantities. Clerk Maxwell pointed 
out long ago that an infinity of hidden mechanisms can be imagined, 
all of which will produce a given motion of the observable parts of a 
dynamical system. This is obvious from the equations of motion; 
suppose that some of the quantities occurring in them spi^cify the position 
of a body while others determine certain forces acting on the body, 
since they describe the configuration of the bodies which exert these 
forces. The geometrical interpretation of the latter coordinates could 
be changed in any way, and still the former would vary in the same 
fashion, since the mathematical connections are unchanged. There is 

'probably no unique physical solution of the problem of atomic structure. 

Indeed it is problematic whether we need to answer some of the above 
questions at all. It seems possible (Chap. XVII) to obtain equations 
which describe the connections between observable quantities without 
referring to any model, but it helps greatly if we have a model to think 
about. An excellent explanation of a vast body of experimental facts 
is obtained if we use the model proposed by Bohr. He assumed that 
electrons and nuclei inside the atom maintain their independent existence 
as point charges surrounded by inverse square fields of force and that 
Newton's laws of motion are obeyed. The accepted answer to question 
(3) can be understood better after we have given some illustrations. 
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7. THEORY OF THE HYDROGEN ATOM AND THE TWO-DIMENSIONAL 

OSCILLATOR 

Anticipating a complete discussion in Chap. V, we give the simplest 
conceivable theory of the hydrogen atom and others of similar structure. 
Consider a single electron of mass m, revolving in a circle of radius a 

about a nucleus having the charge so heavy by comparison that 
it may be assumed to be at rest. If Z = 1, we are dealing with the 
neutral hydrogen atom; if Z = 2 we have a singly ionized helium atom, 
and so on. Since the electrostatic attraction, directed toward the 
nucleus, is equal to the mass of the electron times its radial acceleration, 
we have 

a ^ 
(26) 

where v is the velocity of the electron. The kinetic energy is mv^l2. 

The potential energy is —Ze^/a provided we arbitrarily make it equal 
to zero when the electron is at infinity, for we must do an amount of 
work Ze^(a on the system in order to remove the electron, initially at 
rest in the orbit of radius a, to a position of rest at an infinite distance. 
Therefore, the total energy E is given by 

1 Ze^ 
E = ~ . (27) 

2 a 

Let p be the angular momentum of the electron about the nucleus, 
that is 

p = rnav, (28) 

By equations (26) and (28) we eliminate v and a from the equation 
for the energy and, thus, 

E 
me^Z^ 

2p^ 
(29) 

At this point we postulate that the ‘^allowed orbits which actually 
occur in nature are those for which 

2tp = nhy (30) 

where n is an integer. This quanturn condition is a pure assumption. 
It is introduced independently to supplement the postulate 1, above. 
It leads to the energy values, 

2w^me^Z^ 
En - n = 1, 2, (31) 

In a transition from the orbit characterized by n = ^2 to that for which 
n « niy (where n2 is greater than wi), the frequency emitted can be 
calculated by the aid of postulate 2, 

hv En^ ““ En^ 
2T^me^Z^/ 1 _ J \ 

(32) 

Now it is a fact (Chap. V) that the most conspicuous lines in the 
visible and near ultra-violet spectrum of hydrogen—the famous Balmer 
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series have the frequencies which are obtained from equation (32) by 
substituting the usual values of m, e, and h, and placing Z 1, ni «= 2, 
and n2 = 3, 4, 5, • • • . In fact, all the lines of hydrogen, ionized helium 
etc., predicted by equation (32) which lie in regions accessible to observa¬ 
tion have actually been found at the expected places. 

From equations (26), (28), and (30) we obtain the radius of the orbit 
as a function of the quantum number n: 

'iT^Zehn Z ' 
(33) 

where ai is the radius of the innermost orbit of the hydrogen atom, 
obtained by putting n = 1, Z = 1. Equations (28), (*30), and (33) 
together show that the velocity decreases as the radius increases, and 
the limiting case n —> oo corresponds to an atom with its electron at 

rest^i an infinite distance from the nucleus. The total energy is zero, 
since w’e so det(Tmined the constant in the potential energ^ that it 
approaches zero when a approaches ». 

In addition to these quantized orbits, the electron can move on orbits 
(hyperbolas or parabolas) in which it can scarcely be said to belong to 
the nucleus, since it passes near it only once and moves away to an 
infinite distance. Such orbits are usually called unquantized, because 
their shapes and dimensions may vary continuously and thus they 
have a continuous range of energies. The quantum conditions are not 
applied to systems wliieli are not periodic. A simple calculation shows 
that for such orbits the total energy of the nucleus and the electron 
(we can scarcely refer to the combination as an atom) is always positive. 
From an unquantized orbit, the electron can pass into one of the quan¬ 
tized orbits with emission of radiation. If the transition begins when 
the electron has velocity v and is at a distance r from the nucleus, the 
initial energy is — ZqP‘It and the final energy is given by equation 
(31). The frequency of the emitted radiation is the difference of these 
energies divided by /?, for Bohr’s second postulate applies to all emission 
and absorption processes, whether the orbits are quantized or not. 
In particular, if the electron falls into the lowest quantized orbit we have 

hv 
Zf_ 2frm^Z^ 

r . 
(34) 

Equation (34) predicts a continuous spectrum because r and v can take 
all values. The continuous spectrum lies at frequencies higher than 
any which can be emitted in a transition between quantized orbits. 

The whole situation is summed up neatly by the use of an mergy 

diagram, in which horizontal lines are plotted at ordinates proportional to 
the energies of the atom in its various quantized states. The state of 
zero energy (ionized atom with the missing electron at rest at infinity) is, 
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placed near the top. Figure 2 is such a diagram for hydrogen, 
energy equation (31) is more often written in the form, 

RhcZ^ 

The 

(35) 

where R is the Rydberg constant^ 2’K^me^lh^c. The energies are written on 
the left. It is customary, however, to use another quantity as a measure 
of the energy, namely, the wave number. If an electron falls from the 
infinite orbit to an orbit of energy jS, the wave length emitted is given 
by /fcc/X = or 1/X == Ejlic^ 1/X is the number of waves per centimeter 
Mnd is a quantity of convenient magnitude (20,000 cm.“^ for green light 

of wave length 5,000A). It is called 
the wave-number^^ or ^'spectroscopic 
term^^ of the orbit, and is denoted by 
V or T. Quite similarly, a light 
quantum is often described by giving 
its wave number, in which case only 
the symbol v is used. In the energy 
diagram, a spectrum line is designated 
by drawing an arrow from the initial to 
the final level. In the diagram for 
hydrogen, beginning at the left, we 
have a series of arrows ending on the 
lowest level of the atom; the corre¬ 
sponding wave numbers are given by 
the formula, 

msTd-m 
■ Lyman 

Series 

Fio. 2.- ~Thc energy diagram of the 
hydrogen atom. - Kj' ^ i)’ ” - 

and the lines emitted in these transitions are collectively known as the 
Lyman series, after their discoverer. The wave lengths in this series 
converge to a limiting position as n—and the wave number R/V is 
called the limit of the series. Next, we come to the Balmer lines, the 
final orbit being the one for which n = 2. The formula giving their 
wave numbers is 

so that the limit is at R/2^, A few other transitions are marked. On 
the extreme right, we have two arrows representing transitions from 
unquantized states (indicated by a shaded band) into the two most 
firmly bound orbits of the atom. Obviously, transitions of the kind 
shown by the longest arrow correspond to a continuous spectrum begin¬ 
ning at the limit of the Lyman series and extending toward higher fre¬ 
quencies. Similarly, the other arrow represents a typical emission 
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process giving a continuous spectrum on the short-wave side of the 
Balmer series limit. Both of these continuous bands are actually 
observed. 

We now take up a problem with two degrees of freedom—the two- 
dimensional analogue of the linear oscillator. Let a mass m be acted on 
by a force —/cix parallel to the x-axis, and a force -~/c2?/ parallel to the 
2/-axis. Write py = my, so that the kinetic energy is 

T = + P/)- (36) 

The potential energy is 

F - }4(hx^ + (37) 

Since the x-component of force depends only on the x-coordinate, and 
the ^/-component only on the ^-coordinate, the motion is a superposition 
of two simple harmonic vibrations performed at right angles, 

X = A cos {2TrPit + a), (38) 
y = B cos {27rv2t + 6), 

where vi = (fci/m)^V27r, V2 ~ {k2/m)y^l2T, 

In agreement with Planck's postulate about the possible energy 
levels of harmonic oscillators, we assume that the energy of the first is 

El = tllhviy 

and that of the second is 

E2 = n2hv2. 

This illustrates a general feature of such problems. We need one extrane¬ 
ous equation, or quantum condition, for each degree of freedom, to 
determine the values of the constants of integration introduced in the 
solution of the equations of motion, so that the allowed energy values can 
be calculated. 

Applying the frequency condition of Postulate 2 to this problem we 
see that the theory leads us to expect that light will be emitted and 
absorbed having the frequencies, 

, = = (n/ - m")v, + W - (39) 

where n/ and n2 are the quantum numbers for the initial state and n/' 
and Ui" those for the final state. Spectra of this kind are known in the 
infra-red; thus hydrogen chloride which has only one vibrational degree 
of freedom and therefore only one characteristic frequency of vibration, 
vx, has absorption bands at XX3.46m and 1.76;u, or wave numbers v = 2,877 
and 5,657, respectively, corresponding approximately to the prediction of 
equation(39),ifr2 = 0,i'i = 2,877cand«i' - n” = 1 and2,respectively. 
Further examples of this type of spectrum will be given in Chap. XII. 
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8. THE QUANTUM CONDITIONS 

The allowed energy levels of the hydrogen atom are picked out by 
assuming that its angular momentum is a multiple of A/27r, while the 
oscillator is quantized by setting its energy equal to a multiple of hv. 
The problem is, what is the general rule of which these assumptions are 
special cases? A set of rules which is found to yield a great variety of 
correct formulas was discovered independently and about simultaneously 
by W. Wilson,^ Sommerfeld,^ and Ishiwara.^ They are usually referred to 
as the Sommerfeld quantum conditions. They apply to systems having 
periodic coordinates, like isolated atoms and molecules. Consider such 
a system, having n degrees of freedom.^ Suppose we can choose coordi¬ 
nates q such that each generalized momentum pk is a function only of the 
corresponding qu. Then the stationary states are those for which 

§Pkdqk = nji, (40) 

where Uk is an integer and each integral is extended over a complete cycle 
of the variable qk. The symbol f is used to indicate that the integral 
extends over a cycle of qk. In the case of a coordinate which does not pass 
through a cycle of values, like the azimuth (p of the electron in hydrogen, 
the integral is taken over a range which brings the system back to its 
original configuration. The important thing is the physical periodicity 
of the system, not the periodicity of its coordinates. 

Let us apply these conditions to the examples just given. For the 
hydrogen atom with its electron on a circular orbit, the kinetic energy is 

T = }ima^(p^, (41) 

where (p is the azimuth. We have, 

dT 
Pv- = ^^ == maV; (42) 

so that the momentum variable conjugate to <p is simply the angular 
momentum. There is only one quantum condition because the system 
has only one degree of freedom. It is 

Now Ptp IS constant so 
. 2TPtp = nhy 

which is exactly the condition used in our previous treatment. 
In the case of the two-dimensional oscillator, 

T = 4- y®), 

(43) 

(44) 

»Pha. Mag., 29, 795 (1913). 

* Ann. Physik, 51, 1 (1916). 

* Tokyo Math. Phya. Proc., 8, 106, (1915). 

* If unfamiliar with generalized coordinates, the reader should refer to Chap. IV. 
Sec. 8. 
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„ ST dT, 

We must now express these quantities in terms of the coordinates, as 
given by equation (38). We have 

mx = —2TrvimA sin {2TVit + a) = —2TVim{±\^AJ~’^^)f (45) 

and a similar equation for my. Since depends only on x, and Py only 
on 2/, we see that x and y are coordinates suitable for use in applying the 
quantum conditions, in the form 

fpxdx = riihj fPvdy = n^h. (46) 

The range of integration for x is one complete oscillation, from 0 to +4, 
to and back to 0 again. A similar statement holds for y. The 
question now arises, how can this integration yield a finite result, since 
the upper limit x = 0, is the same as the lower limit? The point is, 
Px is a double valued function of x, as indicated by the ± sign in equation 
(45). At each abscissa, the momentum px ^ 
can be either positive or negative, depending ^ 
on whether the direction of travel is right or -f 
left. The situation is easily understood by ^ ^ I ^ ^ 
plotting Px as a function of x (Fig. 3). This riST 
must not be confounded with a diagram of 
the actual motion. Starting at x = 0, with ^ 

p. positive, we pass to X = +4, and the con- diagraL for the 

tribution to the integral is represented by the harmonic oscillator, 

area Q in the first quadrant. At A the veloc¬ 
ity reverses, px becomes negative and the areas R and S in the diagram 
are traversed from right to left. At —A the velocity reverses again and 
area T is added to the value of the integral as x passes from —A to 0. 
Withoxit carrying out the integration we can get the result from simple 

geometry, for the area of the ellipse is 
jT • A • 27ri'iTOA = 27r^>'imA^ (47) 

and this must be equal to fiih. Finally, the quantized values of the x- 

and ^-amplitudes are given by 

4. Wi/i _ nih 

4-, 

3.'—Phase diagram for the 
harmonic oscillator. 

2Tr^Viin 2Tr^V2m 

We can get the energy in a variety of ways. By use of equations (45), 
(47), and (48), the contribution to the energy due to the motion parallel 

to OX is found to be 

Ex = -f kix^) = — x*) -|- kix% 
= 2jr*j'i®mA* = fiihvi. 

Similarly, the contribution due to the p-oscillation is njivi. These 
results agree with Planck’s assumption mentioned at the end of Sec. 7. 
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Summing up, the spectral evidence discussed here is overwhelmingly 
in favor of the fundamental assumptions and of the quantum conditions. 
We now discuss evidence of a quite different kind bearing on the Bohr 
postulates, but not on the quantum conditions. 

9. THE RITZ COMBINATION PRINCIPLE AND THE CONSTANCY OF h 

Long before Bohr gave his theory of the hydrogen atom, careful 
studies of spectra had revealed a regularity which was clearly formulated 
by Ritz. It bears his name and may be stated empirically as follows: 
If Va and are the wave numbers of two lines in the spectrum of a certain 
atom, it often happens that lines also occur at the wave numbers + 
Vb or Va — h. This was a powerful tool in the analysis of spectra. It is 
explainable at once by means of the second Bohr postulate. If the energy 
levels involved in the emission of are E\ and ^"2, and those involved 
in the emission of h are E2 and £3, where Ei < E2 < -6/3, then 

hcVa ~ E2 E\y 
hcvb ~ ^3 — ^2; 

and hc{va + ?/>) = E^ — Ei, 

so that Va + vh will be emitted in the jump from £"3 to £1. Obviously, the 
emission of the difference frequency Va Vb will not occur in this case. 
With the aid of an energy diagram like Fig. 2, the reader can easily see 
under what circumstances a difference frequency will be emitted. More 
often than not, lines which are predicted by naive application of Ritz’s 
principle do not occur. This failure to appear may usually be ascribed to 
the dynamical impossibility of a direct transition between the orbits 
in question. 

The combination principle may be invoked to prove that in the 
equation e = hc/\ the quantity he is constant, within the accuracy of 
our spectroscopic measurements over the entire range from the infra-red 
to the shortest X-rays. This is reassuring, for quantum theory would 
have to be altered considerably if h were variable. Of course, the 
accuracy with which this is known to be true will vary in different parts 
of the range. What we know experimentally is that spectral lines 
a, 6, c, are often found for which Vn + h = Vc, Starting with this, the 
proof that he is not a function of wave length depends on our acceptance 
of an equation of the form € = hc/\ for each spectral line, where € simply 
means a definite number belonging to the initial state minus a definite 
number belonging to the final state. 

The degree of reliance to be placed on the combination principle 
may be seen from an example of its application to the iron spectrum by 
Meggers.^ Below, we compare the sum of the wave numbers of two 

^ Astrophys. J., $0, 60 (1924). ' t 
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lines with that of two others which should yield the same value if the 
Ritz principle is correct. 

18,184.979 - 19,404.864 
V,,. = 19,169.445 = 17,949.554 

37,354.424 37,354.418 

Today, the spectroscopist uses the Ritz principle as a sharp criterion, 
in deciding whether four lines arise from a group of four energy levels 
in the way described above. 

10. CRITICAL POTENTIALS 

When an atom or molecule is struck by a moving electron, the collision 
may or may not result in the transfer of energy between the electron 
and the int(^rnal mechanism of the atom. If the energy exchanged is 
entirely energy of translation of the collision-partners, the collision is 
termed elastic,^' while, if the atom gains or loses internal energy, the 
collision is designated an ‘inelastic one.^^ A similar nomenclature is 
applied to encounters between atoms and molecuh^s. Inelastic collisions 
are further classified according to whether translational energy of the 
atoms or electrons is transferred to the internal mechanism of the atom, 
or the reverse. These two cases are termed collisions of the first and 
second kinds,respectively. 

The way in which these energy transfers occur has been studied 
principally by bombarding the atoms of a rarefied gas or vapor with 
rapidly moving electrons, though recently the interaction of excited 
atoms with unexcited ones has claimed much attention. This is partly 
due to the ease with which electrons can be obtained from a hot cathode, 
but principally to the fact that they are quite insensitive to elastic 
collisions, from the standpoint of energy loss, so that effects due to 
inelastic collisions can be clearly distinguished. A simple calculation 
based on the conservation of energy and of momentum gives us the 
loss of energy of an electron in an elastic collision with an atom of mass 
M originally at rest. Relative to stationary coordinates, on the average, 
the electron will lose a fraction of its energy equal to 2m/M. Even 
for a gas of H atoms, this is only while for Hg atoms it is 200 times 

smaller. On the other hand, the fractional kinetic energy changes in a 

collision between two atoms are much larger. 
Judging from our observations on macroscopic bodies, we should 

expect energy to be interchanged between electrons and the internal 
mechanism of atoms, regardless of their relative velocities. As mentioned 
in Chap. I, this is not true, a fact which furnishes one of the strongest 
supports of the theory of stationary states. The collisions of electrons 
of sufficiently low velocities with atoms or molecules are elastic. In 
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describing what takes place at higher velocities it will be best to restrict 
ourselves here to the phenomena characteristic of atoms. As the energy 
of the electrons is increased a point is reached where the collisions are 
inelastic and energy is transferred to the atoms. This results in a 
quantum transition, in which the atom is carried to a stationary state 
of higher energy, and the potential at which this first occurs is called 
the ‘^resonance potential.” Often, though not always, the level reached 
by the atom is the one lying nearest to the normal energy level. At all 
potentials above the resonance potential, inelastic collisions occur which 
may have the same result as far as the atom is concerned, but the bom¬ 
barding electron has kinetic energy left over after the collision. Increas¬ 
ing the potential further, we reach a value at which the energy of the 
electron is sufficient to raise the atom to another stationary state, and 
so on. Each potential at which a transition to a new energy level 
becomes possible is called a '^resonance potential. ” The various resonance 
voltages are distinguished by calling them first, second, and so on, 
beginning with the lowest. All energy levels other than the one normally 
occupied are called ‘‘excited states” or “excited energy levels.” When 
the atom has been brought into one of these states by direct electron 
impact, usually it can return to the normal level by emission of light. 
Sometimes, however, there are dynamical restrictions which prevent 
its return, in which case the atom is said to be in a “metastable” state. 
Eventually, a voltage is reached at which the bombarding electrons 
can completely separate an electron from the atom, leaving a positive 
ion which is eventually neutralized by picking up a stray electron^ The 
minimum potential at which this occurs is called the “ionization poten¬ 
tial,” while critical potential is a more general term referring to both 
resonance and ionization. Obviously, an atom or molecule has many 
resonance potentials. Except in the case of hydrogen and helium, it 
also has a number of ionization potentials, since different electrons are 
bound to the atom with different amounts of energy. 

In experiments on inelastic collisions, the energy of the electrons 
is imparted to them by allowing them to fall through known electric 
fields, so that the kinetic energy is given by the relation 

V'e = (49) 

where F' is the potential applied in electrostatic units. Now 300 volts 
correspond to one electrostatic unit of potential, so we have V «= 300 F', 
if F is the value of F' expressed in volts, and the relation above becomes 

Fe _ mv^ 
300 2 * 

(50) 

An electron which has fallen through a potential difference of 6 volts is often 
called a ff-volt electron, and it is customary to refer to the critical energies required for 
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inelastic collisions in terms of volts. Thus, we say “mercury has a resonance poten¬ 

tial of 4.9 volts,’’ or “the energy of the electrons was 60 volts.” Of course, the volt is 

not a unit of energy, but convenience dictates this practice. There has been some 

talk of introducing an energy unit called the electron-volt, equal to the energy of an 

electron which has fallen through a potential difference of 1 volt. From equation 

(60), this unit is equal t^ 1.591 • 10”^^ ergs. It is used but little at present, 

11. EXPERIMENTS ON CRITICAL POTENTIALS 

Long before the advent of Bohr’s theory, it was believed that a 
definite amount of energy is necessary to ionize an atom, and various 
experiments were devised to measure this quantity. An estimate 
which is correct as to order of magnitude can be obtained from studies 
of the discharge in an ordinary tube with two cold electrodes, combined 
with an approximate theory of the complicated phenomena of such 
a tube. Details of such studies are given by Townsend.^ 

Bergen Davis ^ approached the matter in a simpler way, by the use of 
the electrodeless ring discharge. If an alternating current of high 
frequency (perhaps several hundred kilocycles) is passed through a few 
turns of wire wound loosely around a bulb containing gas at a pressure 
of a few hundredths of a millimeter, a bright ring of luminosity is formed 

"in the plane of the coil. Under suitable conditions this is due mainly 
to the electromotive force induced in the gas by the change of magnetic 
flux through the coil. The maximum potential gradient is easily cal¬ 
culated from the current in the coil and the constants of the circuit, 
so the energy acquired by an electron in traversing its mean free path 
can be found. If the pressure is gradually increased, the mean free 
path becomes smaller, imtil at last the great majority of the electrons 
have energies insufficient to ionize the atoms, and the discharge ceases 
to be luminous. The maximum potential gradient occurring during a 
cycle of the current multiplied by the kinetic theory value of the mean 
free path at this pressure of extinction may be taken as a measure of the 
voltage required for ionization. 

The difficulty with all such methods is that the energies of the elec¬ 
trons are distributed over a broad range, and that it is difficult to ascertain 
the nature of the distribution. An arrangement in which the current 
and the potential can be varied independently is essential, and it is also 
very desirable that the velocity distribution of the electrons reaching a 
given point should be a narrow one. An apparatus satisfying these 
requirements was devised by Lenard,^ the essentials of which are shown 
diagrammatically in Fig. 4. F is a hot-wire cathode, heated by a battery 
A. (? is a metal gauze or grid. A voltage Fi, variable by means of a 
potentiometer arrangement Bi is maintained between F and (?, the 

^ “Electricity in Gases,” Clarendon Press (1916). 

Rev,, 20, 129 (1905). 

» A««. Phyeih, 8, 149 (1902). 
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positive side being as shown, so that electrons are accelerated from 
F to (?. The gas pressure in the apparatus is so chosen that the mean 
free path is comparable with the distance between electrodes. An 
opposing field 1^2, greater than Fi, is maintained between G and a metal 
plate P. Electrons which pass through the grid are thrown back by 
V2, and do not reach P. If some of these electrons cause the atoms to 
radiate, and if the wave lengths emitted are short enough, the light 

ejects photoelectrons from P, charging the electrometer quadrants Q 
positively. If some of the electrons ionize the atoms, the ions pass to P 
and also charge the quadrants Q, positively. At certain values of Fi 
the rate of charging shows fairly abrupt increases, which are interpreted 
as due to the occurrence of inelastic collisions. Breaks due to resonance 
and to ionization cannot be told apart by this method. 

Vj»V2 
. about ^2 vott 

I I 

Fig. ,5.—Frarifik and Hertz’ critical potential apparatus. 

The first work on critical potentials which yielded results of impor¬ 
tance for quantum theory was done by Franck and Hertz. ^ Figure 5 
shows the arrangement of their apparatus. It is similar to that of 
I^nard, except that a galvanometer is used, and the retarding potential 
F2 is made small—about 0.5 volt, say. Further, the spacing of the 
electrodes and the pressure of the gas in the apparatus are so adjusted 

^ Franck, J., and Hertz, G, Verh. d. Phys. Ges, IS, 10 (1914). 
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that the average electron makes many collisions in passing from F to G, 
V1 is varied by small steps from zero up, and the galvanometer current is 
noted for each value of V i. 

As long as the collisions of electrons with gas molecules are elastic 
they lose little energy, and those which pass through openings in gauze 
G are able to move against the small opposing potential F2, and will 
cause a current to flow through Ga. (The conventional direction of this 
current in the metallic parts of the circuit will be toward P,) But when 
the collisions become inelastic energy will be lost and many of 
the electrons will not have sufficient energy to reach P. Figure 6 
shows a plot of galvanometer readings against Fi, in an experi¬ 
ment with Hg vapor. At first the current increases v('ry much as the 

current from a filament in a high vacuum does, approximately in accord 
with the F^'^ law (see Chap. XIII, Sec. 1). At a point slightly above 5 
volts the current starts to decrease quite suddenly, showing that inelastic 
collisions begin to occur at this point. It falls to a minimum and rises 
again. This means that many electrons having initial energies somewhat 
in excess of 5 volts do not lose all their energy in an inelastic collision. 
They retain enough to reach P against the voltage F2. When the voltage 
Fi becomes equal to twice the resonance potential, the electron loses its 
energy in two successive inelastic collisions and again cannot reach 
the plate P, causing the second drop in the curve. The third and higher 
maxima are explained in a similar way. The value of the first maximum 
on this curve cannot be taken as the critical potential since the electrons 
emitted by the filament have an initial energy distribution which is 
unknown. This is due not only to the normal Maxwellian velocity 

distribution of electrons obtained from a thermionic source, but also 
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to the contact potentials between the electrodes. However, the dif¬ 
ference between two successive maxima should give a correct value of the 
resonance potential. Franck and Hertz found it to be 4.9 ± 0.1 volts. 
Similarly, experiments on helium give a first resonance potential at 
19.75 volts, and several others slightly higher. Helium has a higher 
first resonance potential than any other atom. The lowest value is 
that for cesium at 1.48 volts. 

12. THE CONTROLLED EXCITATION OF SPECTRA 

n27€ 
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Consider the conditions when the bombarding electrons in a hot 
cathode tube have just enough energy to raise the atom from the normal 
level to the nearest excited state. For example, referring to the simplified 
energy diagram of sodium (Fig. 7), which is very similar to the diagrams 
of all other alkali metal atoms, the lowest level is called IS by spectro- 

scopists, and the nearest excited state is 
called 2P for reasons discussed in Chap. 
VII. Experimentally, it is found that 
electrons which have fallen through a 
potential difference of 2.1 volts can raise 
sodium atoms from IS to 2P, When 
this has been done, the atoms are in a 
position to return to IS, and so they do, 
emitting the yellow D-lines, and these 
alone. This emission is referred to as a 
single-line spectrum. (Strictly, there 
are two D-lines forming a narrow 
doublet, because there are two levels at 
2F, close together. See Chap. VII. 
For our present purpose we may treat 
these two levels as though there were 

but one.) The energy transformations are these. When a bombarding 
electron falls through a voltage F, it gains an amount of energy Fe/300. 
This is transformed into internal energy of the atom which is struck, 
except for a small fraction which increases its translational energy, and 
then this energy is given up as a quantum hc/'K, We have therefore. 

-IS 
Exifafionby Emission 
Bombarding "J)Vint»,^= 
flecfrons 5996and 

339QA 

Jonizodion 

Fig. 7- -Simplified energy diagram 
of sodium. 

V^^hc 
300 Y 

(51) 

Substituting V — 2.1 volts in this equation, we obtain X = 5.88 • 10~* 
cm. >= 5,880 Angstrom units (designated by A), which agrees with the 
observed wave lengths 5,890 and 5,896A., closer than could be expected 
considering the limits of error of the experiment. Similarly, if the atom 
is raised to a still higher level (e.g,, ZD), it can return to the normal level 
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in a series of transitions emitting spectral lines with the wave numbers 
i'l, hf etc. In this case, the equation replacing equation (51) is 

Ve ^ 
300 

^ihcvi. (52) 

This is the fundamental equation in correlating critical potentials with 
spectral data. 

The ideas presented here lead to the (expectation that a spectrum 
can be excited step by step, one group of lines after another coming 
in as the voltage of the bombarding electrons is increased, and such is 
indeed the case. The first investigation in this fic^ld which yielded 
definite results was that of Franck and Hertz, already referred to. A 
good illustration of the important results which can be oi)tained is the 
work of Foote, Meggers, and Mohler^ on the excitation of the magnesium 
spectrum, described in Chap. XIII, Sec. 3. 

13. UNIDIRECTIONAL QUANTA 

In discussing the photoelectric effect we mentioned Ein8tein\s sugges¬ 
tion that light of frequency v consists of units called ‘‘photons,having 
the energy hv^ each one traveling in a definite direction without dividing, 
as though it were effectively a particle. It is a theorem of eiectro- 
dynamies that a. unidirectional beam of light, carrying energy E, has 
momentum E/c associated with it, so each quantum should have the 
momentum hv/c. Special relativity leads us to associate the mass 
hv/c^ with the energy hv. We shall see that there is much utility in 
treating light quanta as particles having these properties. 

This theory had a vast handicap to overcome, for the electromagnetic 
theory of light was successful in explaining nearly all gross optical 
phenomena on the assumption that each emitting atom sends out a 
spherical wave. When it became evident that this picture could not 
account for the absorption of energy by distant atoms in quanta, or 
for the photoelectric effect, attempts were made to imagine emitting 
mechanisms which would produce directed quanta. These attempts 
to provide the atom with an ideal parabolic reflector have all been very 
unconvincing. Gradually, the opinion spread that neither wave theory 
nor photon theory could explain all the phenomena. It was often said 
that physics was confronted with an impasse; that the wave theory should 
be used in studying problems of diffraction or interference, while the 
hypothesis of light quanta should be used to describe the photoelectric 
effect and others of similar nature with which we shall soon become 
acquainted. We may say at once that the two theories may be reconciled 
by reinterpreting the electric and magnetic forces E and H which charac- 

Maa^. 42, 1002 (1921); 43, 639 (1922). 
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terize a radiation field. In classic electrodynamics, it is supposed that 
+ IP is a measure of the ener^^y density in the radiation field. E 

and H serve as a ^Aghast fieldxokich determines in a staUsiical way the 
paths which the cpianta are to take. On a screen which receives an inter¬ 
ference pattern, the value of E'^ //- at any point is proportional to the 
number of quanta which strike at that point. ^ 

14. EXPERIMENTS WITH WEAK LIGHT 

We now present exptirimental evidence bearing on these views. 
G. I. Taylor^ performed the following experiment. The rays of a very 
weak light source (Fig. 8) pas.sed through absorbing scn^ens A and fell 
on a slit S, Behind this slit were two others at E, arranged as in Young’s 
interference experiment. A photographic plate P was so placed that 
it would record the interference pattern. Ivnowing the constants of the 
absorbing screens, the incident intensity and the number of screens 

A 

Fig. H.—Taylor’s nrrtingement for studying the iiiterf(*reiice of weak light. 

were so chosen that only a few quanta per second would pass the first 
slit S, If each of these passes through only one of the slits B, it is difficult 
to see how interference can occur. As a matter of fact, the weak-light 
interference pattern was identical with that produced by strong light. 
This experiment allows us to conclude that either the spherical wave 
theory is correct or the original form of the light-dai’t theory needs 
to be supplemented by a statistical postulate prescribing the density 
of quanta along any path in space. According to this picture, the 
significant factor in the production of the interference pattern is the 
structure of the ghost electromagnetic field, determined by the slit 
arrangement and the behavior of the emitting atoms. Taylor’s result 
is supported by the experiments of several other investigators. For 
example, Dempster and Batho® found that the diffraction pattern of an 
echelon grating showed no observable peculiarities when formed by very 
weak light. 

^ In the case of radio waves, this ghost field has a certain physical reality. Jt 
seems certain that E does represent an intensity of the electric field in the case of such 
long waves. 

2proc. Camb. Phil Soc,, 16, 114 (1909). 
/2ev., 80, 644 (1927). 
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16. JOFFfrS EXPERIMENT ON THE UNIDIRECTIONALITY OF QUANTA; 

THE RAPID INTERRUPTION OP A LIGHT BEAM 

It is customary to say that the light quantum does not spread sidewise 
as it passes through space—that it is rigorously unidirectional. If we 
could be sure that a light quantum strikes only a single atom when 
it ejects an electron from a metal surface, this would be satisfactory 
proof of its unidirectionality. We cannot be quite certain, however, 
that the energy is not collected by the whole metal surface and delivered 
to a single atom in some unexplained way. Jofi6 and Dobronravoff' 
performed an experim(mt to show that a quantum can be received by a 
viiTy minute metal surface. A small X-ray tube was constructed, with 
a thin sheet of aluminium forming one of its walls. This was used as the 
anticathode, and also as the lower plate of a Millikan condenser. 
Conditions w(‘re so arranged that the tube emitted only about 10 
quanta per second. A bismuth particle, positively charged, was caused 
to float in the Millikan condenser, close to the anticathode. Stray 
effects were satisfactorily eliminated and then it was found that about 
every 30 minutes the charge of the particle increas(^d, due to the ejection 
of an electron by the X-rays. The particle was between 1 • 10and 
5 • 10“^ cm, in diameter, so the whole quantum was absorbed inside a 
circle of this diameter. At the source, such a circle subtended a solid 
angle smaller than 10~*\ 

Then' is also good evidence that the quantum behaves as though it 
were very short in the direction of its propagation. Lawrence and 
Beams"’ constructed an electromagnetic shutter capable of interrupting 
a beam of light more than 10^ times a second. The shutter consists of 
two crossed Nicol prisms with two Kerr cells placed between them at 
right angles to each other. The Kerr cell consists of two condenser 
plates with a suitable organic liquid, usually carbon bisulfide, chloroform, 
or nitrobenzene, placed between them. If an electric field is placed 
across these condenser plates, plane polarized light passing between 
them l>ecomes elliptically polarized. The second Kerr cell perpendicular 
to the first and with the same field across its plates just compensates 
for this so that plane polarized light emerges from the second Kerr 
cell; this cannot pass through the second Nicol. As long as the fields 
across the two cells are equal, no light can pass the shutter, but if these 
fields differ the elliptical polarization introduced by the first cell is not 
exactly compensated by the second and thus the light emerging from 
the second cell has a component which can be transmitted by the second 
Nicol. A spark gap and the two Kerr cells arc wired in parallel to each 
other across a transformer. At a certain potential the spark jumps 

1 Z, Physik, 34, 889 (1925). 
2 See Phys. Rev.y 32, 478 (1928) and J. Franklin Inst. 206, 169 (1928), where the 

latest results are pn^sented and references to earlier work are given. 
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which starts light quanta through the shutter, lowers the potential 
across the transformer, and starts a potential wave down the wires 
to the Kerr cells. No light can pass the shutter until this potential wave 
reaches the first cell; then light can pass the shutter until it reaches 
the second cell, after which no light passes the shutter again. Thus, 
the shutt(jr is open only during the time that the potential wave takes 
to travel from the one cell to the other. By this arrangement, Lawrence 
and Beams found that quanta passed through the cells in less than 10~* 
seconds, so that the quanta are not over a few centimeters in length. 
Similar experiments were performed by Breit,^ using frequencies up to 
about 10^ seconds"^ Now if the quantum emitted by a single atom 
were longer than cf, where t is the time the shutter remains open, it 
seems reasonable to believe it would be cut when the shutter closes. A 
very naive consideration suggests that the division of a quantum would 
give rise to two quanta of smaller energy and therefore of greater wave 
length. However, Breit, Ruark, and Brickwedde'-^ showed that a 
correct application of Bohr^s postulates leads to the same result as optical 
theory, which predicts a very slight frequency change due to the modu¬ 
lation. The experiments are in agreement with this view, and a treat¬ 
ment in terms of wave mechanics also supports it. 

16. THE COMPTON EFFECT 

The theory of unidirectional quanta has received extremely strong 
support from studies arising out of a fundamental discovery by A. H. 
Compton.*^ He found that if the monochromatic X-radiation of molyb¬ 
denum of wave length 0.7 A. is allowed to fall on light elements, the 
spectrum of the scattered X-rays contains not only the incident wave 
length, but also a greater wave length, very ciose to the original one, but 
generally separated from it. The apparatus is shown diagrammatically 
in Fig. 9. Light from the X-ray tube strikes a scatterer of carbon, let 
us say, which is made quite small to avoid multiple scattering within 
the block, and to fulfill the condition that the rays incident on the block 
must come from a definite direction. The radiation scattered at a given 
angle 6 with the incident rays passes through a system of slits and is 
allowed to fall on the crystal of a Bragg spectrometer (see Chap. VIII 
for a description of the methods for studying X-ray spectra). Figure 
10 illustrates Woo’s** measurements on scattering from graphite at 
various angles. It shows the spectral distribution of the scattered 
light. In each diagram, the peak on the left occurs in the position of the 

1 Nature, 119, 280 (1927). 

^FhiL Mag,, 3, 1306 (1927). 

3 BvM. Nat. Research Council, 20, 10 (1922); Phys. Rev,, 21, 483 (1923). 

4 Phys, Rev., 21,715 and22,409 (1923);Compton ''X-Raysand Electrons,” p, 263, 

P. Van Nostrand Co., Inc., New York (1926). 
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original unscattered wave length coming from the X-ray tube, while 
that on the right is shifted in the direction of greater wave lengths by an 
amount which increases as the scattering angle becomes greater. At 
90®, the difference in the wave lengths of the two peaks is 0.024 A. 

Simultaneously, Compton published a theory of the effect, based 
on the unidirectional quantum. Dcbye^ developed a similar theory 
independently. The simple classical theory 
of X-ray scattering is based on the conception 
that the bound electrons in the scatterer are set 
into forced oscillation by the electric force of 
the incident waves. They send out radiation 
having the same frequency as the incident waves 
in all directions. This picture contains no pro¬ 
vision for a shift of wave length. On the other 
hand, if the scattering entities are free, they 
will be accelerated in the direction of the in¬ 
cident X-ray beam by radiation pressure. Their 
velocities will continually increase until reduced 
to zero by a collision. This forward component 

Fig. 9.—Experimental arrangement for studying the Fig. 10.—Compton effect. 
Compton effect. The MoKa line scattered by 

graphite at different angles. 

of velocity gives rise to a Doppler shift in the scattered light. The fre¬ 
quency V (6) scattered at an angle 0 with the direction of the incident 
beam when the forward velocity is v, is obtained as follows, neglecting 
modifications due to relativity. If frequency j^o is incident on the 
electron, it oscillates perpendicular to the line of motion with the 
frequency, 

Pe = J'oCl ~ /3), ^ 

Radiation scattered at the angle 0 will have a frequency given by 

= f'W • (1 — cos 6), 

as seen by a resting observer, whence 

u(0) • (i - ^ cos 0) - Po(l - 13). 

1 Phpstk. Z., 24, 161 (1923). 

(53) 
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From this equation, radiation scattered parallel to the original beam 
suffers no change of wave length. As 6 increases, v{d) decreases to the 
value v{l — ^)/(l + /3), for scattering at 180°. As we shall see, the* 
Compton wave-length shift behaves in this fashion, and E. Bauer,^ 
followed by others, attempted to'interpret the shift as above. The 
difficulty is that the electrons should have a continuous range of velocities 
and at each value of 0 a continuous band of frequencies should be 
observed, extending from the original spectrum line toward greater wave 
lengths. Such a band is not observed. The shifted line is definitely 
separated from the position of the incident wave length. Compton^s 
treatment of the effect accounted for the experimental results so accu¬ 
rately that it was generally accepted until the advent of wave dyi\atnics. 
It is as follows: 

Let V{) be the freciuency of the original X-ray quantum and v be its 
frequency after a collision with an electron. Figure 11 shows the paths 

11.—C'oliiBiori between a light quantum and an electron. («) Energy rolation«, {b) 

momentum diagram. 

of the original quantum hvo and the electron e and quantum hv after the 
collision. S is the angle between the direction of the original quantum 
and the scattered quantum and <p is the angle between the direction of the 
original quantum and that of the electron struck. The directions of 
the quanta and the recoil electron must lie in a plane in order that 
momentum may be conserved. Conservation of energy and of the 
X- and ^/-components of momentum (as illustrated by the momentum 
triangle in Fig. 1 lb) yields the equations, 

hvo = Ap + (54) 

hvo hv _ , mv 
^ cos e + cos V, (55), 

A hv ... mv , 
0 = - - sin e + 

In equations (55) and (56) we transpose the terms in B to the left, square, 
and add, to eliminate (p. Then, eliminating v between the result and 
equation (54), we find, 

V 
_ Vj__ 
1 + a(l — COS 6) 

^ _Vp__ 
1-f- 2a sin^ 0/2 

where a = 
mc^ 

(57) 

1 Comptm rmdusj 177, 1031, (1923). 
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The wave-length shift of a quantum scattered at angle B is 

AX = ^ ^ (1 — cos ?), (58) 
V me 

It is worth noting that this change in wave length is independent 
of the frequency of the light scattered, h/mc is the change in wave 
length of the light scattered at right angles to the original beam and has 
the numerical value 2.42 • cm. or 0.0242 A. This is frequently 
called the ^^wave length of the Compton shift.It is the wavelength 
which would be produced if the energy of an electron were transformed 
entirely into a light quantum. Using equations (55), (56), and (57), 
we find that 

tan ip — 
cot (^/2) 

1 + a ^ 
(59) 

SO that the recoil angle decreases from 90° to 0° as the scattering angle 
is altered from 0° to 180°. {v = 0, and ip is indeterminate, when 0 = 0.) 

shift. coil electrons. 

Figure 12 is a polar graph in which AX is plotted as a function of 0, while 
Fig. 13 is a diagram of Debye, showing the energy of the recoil electron 
and of the scattered quantum for ten different directions of scattering, 
the incident wave length being h/vic. Any radius vector of the upper 
solid curve, such as the one marked 3, is proportional to the energy of a 
quantum scattered through the angle which that radius makes with 
the direction of the incident beam. The energy of the corresponding 
recoil electron is shown by radius vector 3 of the lower curve, drawn 
at the appropriate recoil angle ip. 

The agreement of eouation (58) with the wave-length interval between 
the peaks in Fig. 10 is excellent. It is probable that the original wave 
length appears in the scattered light because some quanta are scattered 
by atoms as a whole. When this occurs, the mass of the electron must 
be replaced by the mass of the atom in the equation for AX, and the 

shift becomes negligible. 
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It remains to examine why the above theory based on the recoil of free electrons is 

satisfactory, for the electrons in the carbon atom are certainly not free. If the quan¬ 

tum must give up energy to eject the recoil electron from the atom, we should expect 

a greater shift than that given above. As a matter of fact, the shifted peak is usually 

broader than the unshifted one, so this factor must be taken into account. Its 

effect is relatively unimportant, however, when the ionization potential of the average 

electron in the atom is small compared with the energy of the incident quantum. 

Such is the case in the experiments quoted above, where the A-rays were of fairly 

short wave length and the scatterer was an element of low atomic number. See Chap. 

XI, Sec. 6. 

17. THE CONSERVATION OF ENERGY AND MOMENTUM IN THE 

SCATTERING OF X-RAYS 

If X-rays are scattered by the atoms of a gas or vapor, it should 
be possible to detect the recoil electrons by the Wilson cloud-track 
method (Chap. II). Independently, C. T. R. Wilson^ and Bothe^ 
showed that such electrons are present by photographing their tracks. 
Compton and Sirnon*'^ made use of this fact to show that the direction 
of recoil and the direction in which the scattered quantum move are 
related in the way required by the light-quantum theory. A beam of 
X'-rays was allowed to enter a Wilson cloud-track chamber, and photo¬ 
graphs were taken in the usual way in order to detect any recoil electrons 

produced in the scattering process, and 
also any secondary electrons ejected by 
the scattered light quantum from the 
walls of the chamber. In order to 
make this latter process more probable, 
they suspended thin sheets of lead in 
the chamber. In most of the photo¬ 
graphs only the path of a recoil electron 
was observed, but in a small fraction of 
them there appeared also the track of 

the photoelectron ejected by the scattered light quantum. The origin of 
the recoil electron path showed the point at which the scattering took place^ 
and the initial direction of this path showed the direction in which the re¬ 
coil electron was ejected by the light quantum. The direction of the scat¬ 
tered light quantum was secured by drawing a straight line from the point 
of scattering to the beginning of the photoelectron path. Since two photo¬ 
graphs were taken at an angle to each other, the angles between the direc¬ 
tion of the original beam and the directions of the scattered light quantum 
and of the recoil electron could be determined. The relations are shown 
diagrammatically in Fig. 14. In this way, it was possible to see whether 
the angles <p and ^ were related to each other according to equation (59). 

1 Proc. Roy. <S>oc., 104, 1 (1923). 

^Z.Physik, 16, 319 (1923). 

26, 289 (1925). 

Fig. 14.—R is the recoil electron path 
and P the photoeiectrun path. 
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Within the limits of experimental error, which were necessarily quite 
large, the experiments agreed with the requirements of this equation 
and they show that energy and momentum are conserved when a light 
quantum is scattered by an electron. It should be noted that the 
experiment could not determine the energy of the recoil electron. Tlui 
energy of the scattered quantum is known from the experiments on 
the Compton effect described in the preceding paragraph. 

Bothe and Geiger^ showed that the ejection of the recoil electron 
and the deflection of the quantum occur at the same time. Their 
apparatus consisted of two point counters one of which was open, while 
the other was closed with a thin platinum foil. These were mounted 
facing each other, with a narrow space between. A beam of A"-rays 
passed between the counters. If a scattering process occurs in the 
neighborhood of the platinum foil, and the scattered quantum is absorbed 
in the foil, the electron which it ejects may enter the closed counter, 
while the recoil electron is recorded by the other counter. Therefore, 
a certain fraction of the ev(mts recorded by the two counters should be 
simultaneous. The fraction observed by Bothe and Geiger agrees well 
with what we might expect from the constants of the apparatus, and 
the assumption that each scattenul (quantum produces one recoil ehictron. 

These experiments disproved the theory of Bohr, Kramers, and 
Slater,2 who suggested that energy and moirumturn are not conserved 
in the interaction of a single light quantum with a single atom, but are 
only conserved statistically for large numbers of such processes. 

18. THE STERN-GERLACH EXPERIMENT 

The orbital motion of the electrons in an atom produces a magnetic 
field of such a kind that the atom may be considen^d as a permanent 
bar magnet when discussing its behavior in an external field constant 
in time and uniform in space. We consider first an atom with only one 
electron.® By Kepler’s law of areas, the rate dA/dt at which the radius 
r drawn from the nucleus to the electron describes area is such that 

2'mdA 

dt 
= = V) m 

ip is the azimuthal angle and p the angular momentum. Integrating 
for one complete period T we get, 

Tj) 
Area of orbit = A = ^ • (61) 

1 Z. Phyaik, 32, 639 (1925). 
* Z. 24, 69 (1924). 
* The theory developed in this section neglects the intrinsic magnetic moment of 

the electron (Sec, 19) j^nd must be in the manner indicated in Chap. X, 
Sec. 8. 
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As a consequence of the quantum conditions, the angular momentum of 
any atom is 

jh 
2r 

(62) 

where y is an integer or an integer plus and is called the inner quantum 
number, so equation (61) can be written 

The electron passes a given point on its orbit 1/T times a second, and, 
therefore, is equivalent to a current i = —elT, We shall express 
e and i in electromagnetic units. Now, if a current i flows in a closed 
circuit of area A, then at a great distance it produces a field practically 
identical with that of a magnet having a moment 

ix = iA, (63) 

Proof of Equation (63).—The pattern of force lines at a great, distance does not 

depend appreciably on the shape of the circuit, so we shall supposes the current flows 

in a circle of wire, for simplicity, and shall (joinpare its field at a point P on its axis OP 

, fl 
] p ^ 

Fio. 15,—The magnetic field of a rotating 
charge. 

of the components perpendicular to the axi 

would be 2^L/r^ and this will be the same as 

with that of a. magnetic dipole having a 

moment a* directed along OP, By sym¬ 

metry, the force at P is along OP (Fig. 

15). The field at P, due to an element 

ds of the circnilar current, is ids/r^, by 

Ampere’s law, and the component of 
force along the axis is aids/r^. The 

component along the axis due to the 

whole circle is ^iraH/r^ and the sum 

is zero. But the field due to the dipole 

hat due to the current if m == == iA, 

From equation (63), 
]he 

Ainne 
.ri, 
2mc 

(64) 

where e is now in electrostatic units. 
This is easily generali;5ed for an atom having several electrons by 

simply summing the contributions of all of them. If jh/27r now denotes 
the resultant angular momentum of all the electrons and y the magnetic 
moment of the atom, we obtain an equation identical with equation 
(64). It is to be noted that this is a vectorial equation, and that |i is 
opposed to p in direction because the charge of the electron is negative, 
as shown in Fig. 15. This simple theory requires therefore that the 
magnetic moments of atoms shall be multiples (or half-multiples, if j 

is an integer plus 3^) of an elementary unit called the ^‘Bohr magneton, 
given by the equation, 

eh 
Mb = ~ gauss centimeter, (65) 
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with e in e.s.u. Often, it is more convenient to deal with the 
magnetic moment associated with a gram-mole, without regard to the 
orientations of the separate atoms, that is. Mu times the Avogadro numl)er 
N. This quantity is 

iXB — 5,589 gauss centimeter per mole. (66) 

However, magnetic moments are usually reported in the literature 
in terms of the Weiss magneton which is an empirical unit equal to 
1,123.5 gauss centimeter per mole, so that it is almost exactly one-fifth 
of jLt/f. This unit was introduced by Weiss as a result of careful measure¬ 
ments of the magnetic susceptibility of Te and Ni. It w^as believed 
that the magnetic moments of all mole¬ 
cules were multiples of ixw/N. The fact 
is, they are not multiples of either ixw/N 

or 11b/N, The true state of affairs is more 
complicated due to the magiudJc moment 
of the electron (Chap. X, Sec. 8). 

Stern and Gerlach^ proved by ingen¬ 
ious experiments that certain atoms have 
magnetic moments oqmil to the Bohr 
magneton. Their first experiments dealt 
with the magnetic moment of the silver 
atom in the vapor state. The work was 
later extended to many atoms and mole¬ 
cules. It is very interesting to know that 
the result was predicted before the experi¬ 
ments were carried out. In order to 
understand these remarkable expert- ,, magnetic field, 

ments, it must be point(‘d out that 
while,jaccording to the classical theory, all orientations are possible for 
atoms in a uniform magnetic field, the quantum theory predicts discrete 

orientations such that the component of the total angular momentum vector 

directed along the lines of force is a multiple or a half-multiple of h/2'jr. The 
argument for discrete orientations can be easily seen by considering the 
hydrogen atom (again without the spinning electron, Sec. 19) • In the pres¬ 
ence of a magnetic field, the motion of the electron is changed in a very 
simple way. To a close approximation, the plane of its orbit rotates uni¬ 
formly around an axis drawn through the nucleus parallel to the lines of 
force. A person rotating with the same angular speed around this axis 
would say the motion of the electron in its orbital plane was the same as it 

1 Stern, Z. Physik, 7, 249 (1921); Gerlach and Stern, ibid., By 10 (192i); 9, 349 
and 353 (1922); Stern, ibid., 39, 751 (1926); KNAUERand Stern, ibid., 39,764 (1926); 
Leu, ibid., 41, 551 (1927); Stern, ibid., 41, 563 (1927); Wrede, ibid., 41, 569 (19^7); 
Lett, ibid.y 49, 498 (1928); Gerlach, Ann. Physih, 76, 163 (1925), 
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was in the stationary reference system before the field was applied. In 
Fig. 16, the normal to the plane of the orbit always makes the same angle 
with the direction of the field, and so the component of angular momen¬ 
tum parallel to the field is constant. Let us call this (p being an 
angle measured around the axis OZ, Then, as we shall see in Chap. 
X, Sec. 8, 

mh 
(67) 

where ni is called the magnetic quantum number^’ and takes the value 
0, ±1, • • • ± y. In the case of other atoms, silver being an example, 
m can take the values ± ±?2, • • • ± i; for such atoms y is always 
an integer plus one-half. The angle between the field H and the vector 

j is such that cos a = m/j and the atom can take up only 2j + 1 orienta¬ 
tions in the field. This restriction was first pointed out by Sommerfeld^ 
and Debye, 2 and the atoms are said to be space-quantized. 

The experimental proof of space-quantization depends on the deflec¬ 
tion of elementary magnets moving through an inhomogeneous magnetic 
field. There is no resultant force on a small magnet placed in a honao- 
geneous magnetic field, for the force exerted on one pole will be exactly 
equal, but opposite in direction, to that exerted on the other. If the 
field is inhomogeneous, however, it will experience an acceleration. 
Consider an inhomogeneous field having force lines of the type shown in 
Fig. 17, where conditions do not vary perpendicular to the diagram. 
Such a field may be obtained with the aid of pole pieces having the 
cross-section shown in the figure. A unidirectional beam of atoms is 
produced in vacuo, by heating the metal to be studied in a furnace, and 

1 Physik, Z., 17, 491 (1916); Ann, PhyHk, 61, 1 (1916). 

«Pkysitc, Z., 17, 607 (1916). 
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passing the vapor stream which comes from its mouth through minute 
apertures in accurate alignment. The beam passes close to the edge 
of the wedge-shaped pole piece (Fig. 18) and is received on a glass plate 
P. Along the path of the beam the lines of force are nearly parallel 
to OZ and the field strength changes rapidly in that direction. At any 
instant, an atom of moment /i will be deflected along OZ, by the force 

m, , dH. , dH, 
(68) 

where fixj and nz are the components of y along the axes. 

Proof.—Let tlie atom be represented by a bar magnet with poles of strength m, 
with its south pole at the origin. The south pole is urged along OZ by a force mHg 
(Hz being evaluated at the origin), while the north pole, at x, ?/, z, experiences a force 
along OZ equal to 

dlJg dill dlls , 

dx dy dz 

the derivatives being taken at the origin. The liigher terms are neglected and the 
resultant force along OZ is 

SHz dHg 
mx -h my ^ 

dx dy 4- mz 
dHg 

dz 

which is equal to expression (68) because mx — etc., by definition. 

As explained above, the atom will precess about the Z-axis, the value 
of fMe remaining constant. Now dHz/dy is zero over practically the com¬ 
plete trajectory of the atom; BHgldx is zero in the median plane of the 
magnet and is small for positions very close to this plane and dHz/dz is 
constant over small distances. But still better, the mean values of 
Hx and fjLy are zero over a period of the precession, which is small compared 
with the time the atom is in the field, so the average force on the atom is 

very nearly 
- dHg dHg . 
/ = cos 0, (69) 

$ being the constant angle between and the lines of force. Accordingly, 
each atom moves on a parabolic path, with the axis of the parabola 
parallel to OZ, and if we take its 2J-coordinate to be zero when it enters 

the field, after a time t it will be 
_ 

^ 2m 

If the velocity is v, and the distance traveled through the field in reaching 
the plate is I, then the deflection at the plate is 

s = 
2m\v 

(70) 

Since, in actuality, the atoms have a rather broad velocity distribution, 
the deflections at the plate cover a range of values. The z-coordinate 
of the centroid of the spot thus formed will be obtained by using in 
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equation (70) the average value of l/v^ for all the atoms in the bcani; 
which is ni/^kT from kinetic theory.^ 
Substituting in equation (70), 

1 Ml, P 2 M cos e - (71) 

In this equation, all quantities except ix cos B can be measured, and 
so this combination can be evaluated. Figure 19a shows the pattern 
obtained in the case of silver, when no field is applied, and Fig. 196 shows 
the pattern obtained when the field is present. Twenty scale divisions 
correspond to 1 mm. The Z-axis runs horizontally through the center 
of the pattern and the drawn-out unsymmetrical portion on the right is 

(a) (?>) 

Fia. 19.—The deflection of silver atoms in the Sterii-(Terhich experiment. {After Stem and 
Oerlach.) 

due to the very large value of dll,/dz in the immediate neighborhood of 
the edge of the wedge-shaped pole piece. Above and below the Z-axis 
the value of dH,/dz rapidly decreases to zero with a corresponding 
diminution in the'deviation of the beam. From spectroscopic evidence, 
there is every reason to believe that the silver atom in its normal state 
can take only two positions with respect to the field, namely, with its 
magnetic moment parallel or antiparallel to the force-lines, so cos ^ = ± 1. 
From measurements of dH,/dz in the plane of symmetry of the magnet, 
made by use of a thin bismuth wire mounted parallel to the edge of the 
wedge, the following values of 5 were computed, assuming that g is one 
Bohr magneton. (See Chap. X, Sec. 8.) These agree excellently with 
the observed values. 

Deviation a 

Observed Computed 

Millimeters Millimeters 

0.10 0.11 

0.15 0.15 

This experiment is excellent proof that the silver atom is space- 
quantized. If it were able to take up any orientation whatever in 

‘ SriiBN, Z. Phyaik, 8, 49, and 3,417 (1920). 
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the field, the two lines in Fig, 19 would be replaced by a continuous 
deposit filling the entire region which these lines enclose. Indeed, we 
should expect the densest part of the deposit to be in the center, for 
the number of atoms whose axis makes an angle between 6 and 0 + dd 

with the lines of force is nearly proportional to sin 6; thus a large fraction 
of the atoms are oriented nearly transverse to the field and will suffer very 
small deflections. 

Similar experiments were performed by Phipps and Taylor^ and by 
Wrede,2 using a hydrogen discharge tube as a source of monatomic 
hydrogen and a plate coated with molybdenum oxide as a detecting 
screen. Two reduced areas of the molybdenum oxide show that the 
beam of hydrogen atoms is split by the field into two parts and the dis¬ 
tance between the two reduced spots agrees very closely with that cal¬ 
culated on the assumption that the hydrogen atom has a magnetic 
moment of one Bohr magneton when in its state of lowest energy, 

19. THE MAGNETIC MOMENT OF THE ELECTRON 

While a model of the electron can be very useful in guiding our ideas 
of electrical phenomena, all attempts to endow it with an extended struc¬ 
ture should be regarded as a conventional way of summing up its properties. 
When we say the electron has the properties of a point charge, we mean 
by definition that in its neighborhood nuclei and other electrons undergo 
accelerations toward or away from a very small region of space, and 
that the acceleration depends only on the distance from that region. The 
great utility of attributing to the electron not only charge but also 
7nagnetic moment^ not only mass and momentum but also angular momen¬ 

tum f has become apparent through the study of atomic spectra, so it is 
natural to think of the electron as an extended charged body in rapid 
rotation, which will possess these properties if the laws of gross mechanics 
and electrical theory can be applied to it. The phenomena which led to 
the hypothesis of the spinning electron can not be fully explained until 
we reach Chap. X, but the main facts will be stated at once. Studies 
of the behavior of spectral lines when a magnetic field is applied to a 
luminous gas or vapor give us the ratio of the magnetic moment to the 
angular momentum of the atom. According to equation (64), this 

should be 

(electrostatic units). (72) 
p 2mc 

Sometimes the spectral data also give this value, but in the majority of 

cases the result is 
M_^ 
p ^2mc^ 

^Phys, Rev., 29, 309 (1927). 

Pkysik, 41, 669 (1927). 

(73) 
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where jf is a ratio of two integers. The lowest value of g is 0, often 
it is in the neighborhood of 1, and values higher than 2 are rare. It is 
natural to explain this behavior as due to the presence in the atom of 
entities for which the ratio of magnetic moment and angular momentum is 
not given by equation (72). Independently, Uhlonbeck and Goudsmit^ 
and Bichowsky and Urey^ assumed that these entities were the electrons 
themselves. On this view, the contribution of an electron to the angular 
momentum of the atom consists of that due to the motion of its center 
of inertia around the nucleus and that due to its own internal motions 
around its own center of inertia, which may be called its intrinsic^' 
angular momentum. 

Experiment has shown that the intrinsic angular momentum of the 

electron is 
1 
2 27r 

and its magnetic moment is one Bohr magneton^ 
h e 

2t 2mc 

Thus the ratio /x/p is e/mc for the electron, twice as great as the value 
of equation (72) belonging to a point charge revolving around a fixed 
center of force. The value of g depends on the way in which the external 
and intrinsic angular momentum vectors of the several electrons in the 
atom combine to form its resultant angular momentum vector. 

Evidence that positive nuclei have intrinsic angular momenta and 
magnetic moments has been obtained by Hund and others from band 
spectra, by Back and Goudsmit from the fine structure of spectral lines, 
and by Stern and Knauer from measurements of the magnetic moments 
of molecules. These moments are small compared with a Bohr magneton. 

In conclusion, it is not surprising that the discovery of the electron 
spin was delayed until 1926. Most of the effects it produces are quite 
small, and some of the more prominent ones could be explained by other 
hypotheses. 

References 

1. Black Body Radiation: 
Jeans, J. H., “Report on Radiation and the Quantum Theory,” 2nd ed.. Fleetway 

Press, London (1924). Also “Kinetic Theory of Gases,” 4th ed., Cambridge Univer¬ 

sity Press. The Report gives an excellent but brief account; that in “Kinetic Theory ” 

is more complete. The only detailed book on this subject is Planck's “ Wkrmestrah- 

lung,” 5th ed., Barth, Leipzig (1923). There is an English translation by M. P. 

Masius. 

2. Photoelectricity: 
Hughes, A. L., “Report on Photoelectricity,” BvlL 10 of the National Research 

Council, Washington (1921). 

Allen, H. S., “Photoelectricity,” 2nd ed,, Longmans, Green and Co,, New York. 

Gudden, B., “lichtelektrische Erscheinungen,” Springer, Berlin (1928). 

1 Natwre, 117, 264 (1926); Physica 5, 266 (1925). 

* Proc, Nat, Acad, Sci., 12, 80 (1926). Owing to an algebraic error, the ratio of 

angular momentum to magnetic moment given in this paper is incorrect by a factor 

of 4. 



REFERENCES 97 

3. Unidirectional Quanta; Compton Effect: 
Compton, A. II., “X-rays and Electrons," D. Van Nostrand, Inc., New York 

(1926), 
4. Stern Gerlach Experiment: 

Stoner, E. C., “Magnetism and Atomic Structure," Dutton, New York (1926). 



CHAPTER IV 

REVIEW OF DYNAMICAL PRINCIPLES 

Note to the Reader, Much of the material in this chapter is not essential to the 

understanding of the Bohr th(^ory, although it is extensively used in Chap. VI and in 

the chapters on the new mechanics. Exceptions to this statement must be made in 

the case of generahzed coordinates, Sec. 3; the motion of a particle about a center of 

force, Sec. 6; the inverse square law of force, Sec. 6; and the Harnilton-Jacobi differ¬ 

ential equation, Sec. 10. The subject matter of these sections is constantly applied in 

the remainder of the book. If desired, the reader may })ass at once to the study of the 

hydrogen atom, with the understanding that from time to time it will be necessary to 

refer tp the results in the present chapt(n\ 

1. APPLICATION OF MECHANICS TO ATOMIC STRUCTURE 

In so far as the atom can be treated by ordinary mechanics, the 
problems of its structure are very similar to those of astronomy. We 
deal with the orbits of bodies which are very small compar(‘.d with the 
distances between them. In many cases these bodies may be treated 
with negligible error as mathematical points possessing mass. First, 
we study the Lagrangian form of the equations of motion and then tiie 
so-called canonical equations of Hamilton.^' Both are formulations 
of the physical content of Newton^s second law of motion, and can bo 
applied in any system of coordinates, however complicated; both are 
well suited for the easy proof of general theorems. Next, we discuss 
canonical transformations of variables, which are the most general trans¬ 
formations leaving the form of the Hamilton equations unaltered. Then 

the concepts of aciion and of Hamilton's principal func¬ 
tion are introduced, in preparation for a discussion of 
the Hamilton-Jacobi differential equation, which is 
especially suited for treating the problems of quantum 

Y theory. 

2. CHOICE OF AXES 

Fig 1 —Coordinate Throughout the book we use a right-handed system 
systems used in this of Cartesian axes, and polar coordinates related to them 

in the fashion shown in Fig. 1. By right-handed, we 
mean that when we look along the positive Z-axis, a rotation of x toward y 

will cause a right-handed screw to advance along z, 

8. GENERALIZED COORDINATES AND LAGRANGE’S EQUATIONS 

Even for comparatively simple systems, it often happens that a great 
deal of geometrical reasoning and resolution of forces are necessary to 

9B 
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obtain the components of force acting on one of the particles of the 

system; often, when this has been accomplished, the expressions for these 

components are so complicated that they cannot be used for solution of 

the dynamical problem, and the labor must be repeated, using another 

type of coordinates. Much of this difficulty can be avoided, and the 

method of so doing is especially easy for conservative systems. In such 

systems, the equations of motion can be derived from a knowledge of the 

Lagrangian function L, which is equal to the kinetic energy T minus the 

potential encjrgy F, both bcang expressed as functions of the velocities 

and coordinates, hjssentially, the method is to express the equations of 

motion in a form which is valid in any system of coordinates. The 

configuration of a Systran of r particles having n degrees of freedom 

(where n = 3r) is completely d(^termiDed when the values of n quantities, 

9i, Qh • • • Qn, are specified. These 7i quantities are called the generalized 
coordinates of the system. They must be so chosen as to determine 

its configuration uniquely. In a Cartesian frame of reference, these are 

lengths; in polar coordinates, they are lengths or angles; and in other 

systems, they may have still other dimensions. The Cartesian coordi¬ 

nates of a particle of the systcan arc^ functions of all or part of the g’s 

and possibly of the time also, as in the case where we transform to a 

moving system of coordinates. In the study of the atom we shall 

often wish to transform to a rotating system, or to a system moving 

with the center of mass of the atom, so we consider the general case. 

Let any Cartesian coordinate Xy or 2: of a particle of the system be 

represented by Xi and the component of force acting on it in the direction 

of that coordinate by A\-. Unless otherwise specified, all summations 

are to be extended from i = \ to i = fc., over all the x-, y-, and z-coordi- 

nates of all the r particles. We have then 

Xi = Xiiqi, • • • (1) 

At ~ 

First, we shall give some definitions and develop auxiliary equations, 

(5), (7), (8), and (9). The work which would be done on the system if 

the coordinates could be changed by the amounts dxi, , , . ,dXn with t 

held constant is 
bW = :!:XibXi. (2) 

t 5 I I 

But 

(3) 
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so that 

+ ■' 

0 
- I + X^-- 

dqi dqi 

that is, 

where 
bW 

Qk 

dx 

dq, >) 

+ 

+ 

+ x, 

X, 

+ 

/dx„ 

"U. ■ 

^a;„V 

dXl dX2 + 

— ^kQkbqky 

^dXi ^ dXn 

dqk ^Qk 

• ■ • ^■■S;K 

(5) 

and is called the “generalized forcecorresponding to the coordinate 
qk, Qk has the dimensions of a force only when qk has the dimensions of 
length; if qk is an angle, Qk has the dimensions of a moment of force. Its 
dimensions must always be such that the product of Qk and qk has the 
dimensions of work. 

Example.—Consider a single particle referred to Cartesian and to i)olar coordi¬ 

nates. Let Xi - Xj X2 ~ Vy X3 - Z, qj = r, - $ and q^ - (p; the quantities A"i - 

A'', Xi = Yj and A3 = Z are the Cartesian components of force, and^i = H,Q.i ~ 0, 

Qz — ^ are the ^‘generalized components of force.” Then, 

xi = x(r, dj (p) — r sin d cos v?, 

X2 — 2/(r, By ip) — r sin B sin tp, 
Xz — z(r, By ip) = r cos B. 

We follow through the transformation just as above: 

bW = Xbx 4* Yby -f ZbZy 
bx =* sin B cos ipbr -f- r cos 0 cos ipbB — r sin B sin ipbip, 
by = sin B sin tpbr -h r cos B sin ipbB r sin B cos ipbipy 
bz = cos Bbr ~ r sin BbB, 

Substituting in 5 W we get 

where 
bW Rbv -j- ObB 4" ^bipj 

R - X mi B cos V? -f 5^ sin ^ sin v? 4- ^ cos By 
0 = r{X cos B cos ^4-1^ cos B ^ — Z sin 0), 

$ = r( — A sin 0 sin 4“ sin B cos tp). 

(la) 

(2a) 

(3a) 

(4a) 

(5a) 

In this simple case the values of the Q's could be obtained just as easily from geo- ’ 

metrical reasoning, by observing that R is the component of the force in the direction 

of increasing r; that ^ is the moment of force about the .^-axis in the direction of 

increasing tp; while 0 is that component of the moment of force which causes an 

increase in dy i.e.j it is the moment of force about a line perpendicular to the ^-axis and 

the radius vector r. To specialize still further, A, F, and Z may be the components 

of a force F directed toward the origin, so that 

X « -F sin B cos ip, V » -F sin B sin tp, Zt sr, cos 6, 
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Substituting these values in (5a) we secure 

101 

= -F, e = 0, - 0. 

The last two sets of equations show that in the case of central forces polar coordinates 

are generally much more convenient than Cartesian. 

For convenience, let Xi, and represent the Cartesian coordinates 
of the first particle; X4, x^y and x^y those of the second, and so on, while 
mi, m2, m3 are all equal to the mass of the first particle, and so on. Then 
the kinetic energy of a system of n/3 particles is 

T = X-?-'• (6) 
* = 1 

Differentiating equation (1) with respect to ty 

Xi 
dXj 

dqi 
qi + 

dXj, . 
dq. ~di 

(7) 

Thus each Xi is a linear function of the and also a function of the 
g’s and of ty since the partial derivatives are functions of the ^'s and of 
i. Usually Xi does not depend on the time explicitly. When such is the 
case, we find from equations (6) and (7) that 

dXi dXi . . 
+ 2 ~ -- quqi + 

dqk dqi 

(60 

so that r is a quadratic function of the 5’s; the coefficient of each product 
of the form qkqi is a function of the g^s. 

The components of momentum when Cartesian coordinates are used 
are equal to the partial derivatives of T{Xy) with respect to the corre¬ 
sponding velocity component, 

= mxi. (8) 

By analogy, we call the partial derivatives of the kinetic energy r(g, g), 
with respect to the g’s generalized momentay 

dqk 
Pkiqjfj) 

dXi dXi. 
-~qu 

dqk dqi 
(9) 

(We use the notation !r(g,g) in place of T(gi, . . . gn, gi, . . . Qn) for 
brevity.) The p's are sometimes called ''momentoids," for pk has the 
dimensions of momentum only if qk is a length. For example, in space 
polar coordinates pe and p^ have the dimensions of angular momentum. 

In forming the partial derivative of Xi with respect to one of the variables on which 

it depends, we shall adopt the convention that all other variables are treated as con¬ 

stants during the differentiation. For example, when writing out dXi/dq^, we hold 
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Qh ' • 1 ^1, . . . qk-.li Qh+h . . . <7n, and t all constant. The reader who is 
unfamiliar with such a convention will object that Xi will not change when the 

coordinates and the. time are held constant. This is true; but we are not considering 

what happens in nature if the coordinates and the time are kept fixed. We are simply 

holding certain symbols constant in a mathematical expression. All partial deriva¬ 

tives occurring in the discussion of Lagrange’s equation are to be understood in this 

sense. The point is that we can consider the relations of two similar systems of 

particles occupying the same positions but having different velocities or two systems 

having the same velocities but not located at the same positions. The kinetic energies 

of two systems having the same q's but slightly different velocities,—say q and q -f 

Ag,—will differ by AT. By definition, dT/dqk is the limit of A'T/Aqk when 
approaches zero. 

From equation (7), by actual differentiation, 

Also, 

dXi 

dqk 

dXi __ d /dXi • I . . , 
dQk dqi\dqi^^ 

+ 

dXi 

dqk 

dx 

(10) 

to<\ 
dt} 

- • ^ ju ... JL. ■ ^-I. 
^’'dg„\dgk) dt\dgk)’ 

which tells us that 
dXi _ d dXi 

dgk dt dgk 

So much for auxiliary relations. Now wc are in a position to prove 
that the equations of motion m the coordinates g are 

(11) 

d/dT 

dAdgk n Ik/ 

dT 
dgk 

Qk, A: = 1, 71. (12) 

dXi dqk 

Xi , d 

Here T must be expressed as a function of the q's, g's, and of t. If written 
in any other way, equation (12) is not valid. To do this we shall prove 
that the left side of equation (12) is identical with the right side of 
equation (5). 

= '^dT(x) dxi _ ^dxi 

dqk 
and, therefore, 

^ _ dT _ . . . dXi , V d/dxi\ dT > . 
dt dgk dgk f ■ dqk + ^”^*^'dt[dfk) dqk 

By the ordinary equations of motion, 

^(m,x,) 
~di 

= Xi. 

This relation, together with equations (10) and (11), enables us to recast 
the right side of equation (13) in the form 

d^ 

hk 
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The middle term here is Thus it is equal to the last term 

and the right side of equation (13) is simply as we see froni the defini¬ 
tion of this quantity, in equation (5). This completes the proof of 
Lagrange^s equations (12). 

The solution of equations (12) yields the same information as the 
solution of the Newtonian equations in C'artesian coordinates. They 
are n in number and of the second order. Their solution gives the values 
of the g\s as functions of the time as soon as we specify the values of 2n 

constants of integration, which may be the values of the q^s and at a 
given time. The values of the x’s are then found from equation (1). 

Example.—We continue the example used above, where the transformation of the 

forces from Cartesian to polar coordinates is carried out. To express T in polar 

coordinates, we abandon the procedure outlined above, and use the relation T ~ 
(m/2) (ds/dty, where the scpiarc of the ehunent of arc, equals dr^ + r^dd^ 4" 

sin^O yields, 

T ~ (m/2)(r* + -f r* sin^0 (^®). (6a) 

This is a quadratic function of f, 0, and <py and the coefficients are functions of the 

coordinates—in this case of only two of the coordinates, r and 6. No cross-product 

terms of the kind rO, etc., appear in the expn^ssion for the kinetic energy in polar 

coordinates. This is the case whenever the coordinate system is orthogonal, i.e.y 
when the coordinate lim^s an^ perpendicular to each other everywhere in space except 

possibly at a limited number of singular points, lines, or surfaces. In the present 
example, the origin is such a singular point and the ^-axis a singular line through which 

an infinite number of coordinate surfaces pass. The generalized momenta are 

dT 
,,, = mr = pr, .A <■>7’ , • ■ 

— - = rnr^d = pOy , = mr^ Bin^9<p ~ p^. 
39 dip 

In these coordinates Lagrange’s equations are 

d or 
dt Or 
d 3T 
dt oe 
d dT 
dl Oip 

To prove the right side of these e(iuivalent to the expressions given in equation (Ba) 
above, we could follow the method given above. Written out in full, equation (12a) 

becomes, 
m(r — r$^ — r sin® $ = Ry 

— mr® sin d cos 0 = 0, (126) 

^(mr® sin® di>) = 4>. 

. Equations (12) are very general but they have some limitations. 
They must be replaced by others if parts of the system are obliged to 
remain on certain surfaces-like a ball rolling in a trough—-or if there are 

oT 
Or 
OT 
06 
dT 

R, 

= e, 

= 4>. 

(12a) 
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Other constraints which prevent the possible changes of the coordinates 
from being independent and quite arbitrary. These cases are seldom met 
in atomic problems.^ 

There is a special case of equations (12) which is worth mentioning. 
If we are dealing with a conservative system in which the Cartesian 
components of force are functions of the coordinates alone, then they are 
expressible in the form 

where V is the potential energy. Then equation (5) reduces to 

dV dxi 

dxi dQk 

dV dXn __ 
dXn dqk dqk 

(56) 

Remembering that dV/djk = 0, we can write equation (12) in the form, 

dd(T - V) _ d{T -_F) 

dt dqjc dqk 
(14) 

The function T — F is called the Lagrangian function and is usually 
denoted by L. The Lagrangian equations become 

d dL 

dt dqk 

dL 
dqk 

= 0,/c = l,2, (15) 

From equation (15) we can obtain the equation of energy. 

(15) by Qk, obtaining 

. d dL dL . ^ 
dqk dQk^^ 

Add the identity, 
dL.. dL.. ^ 

Multiply equation 

and sum the result over all values of k to obtain 

dL/dqk is the same as dT/dqk. T is a quadratic function of the velocities, so by Euler’s 

theorem the summation in this equation is equal to 27". Integrating, 

2T - L ^ T -VV E. 

The constant of integration E is the total energy. 

Equation (15) shows us that the whole motion of a conservative 
system can be derived from the single function L together with the initial 
conditions. Sometimes it may occur that equation (12) can be thrown 
into the form of equation (16) even when the forces depend on the 

1 See Chaps. II and VIII of Whittaker's ''Analytical Dynamics.” 
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velocities and on higher derivatives of the coordinates. Then, of course, 
these derivatives will appear in the function F. These cases are not 
unimportant, but have received very little attention.^ A case in point 
is a charged particle moving in a magnetic field, so that the force acting 
on it depends on its velocity. The equations for this problem are given 
in Appendix VIII. 

4. LAGRANGE’S EQUATIONS IN RELATIVITY MECHANICS 

When the mass varies with the velocity the above proof must be 
It might be thought that the relativity expression for the modified, 

kinetic energy, namely, should be substituted for 

the Newtonian expression in writing Lagrange’s equations for non¬ 
relativity mechanics; but this is not the case. One of the most valuable 
properties of the classical expression for the kinetic energy is that its 
derivative with resoect to a generalized velocity is the expression fdr the 
corresponding generalized momentum; but this is not true of the rela¬ 
tivity expression for the kinetic energy. Therefore, we define a new 
function which does have this property. For a system of particles it is 

T* = - VT-= 
Vi 

(16) 

where the summation is extended over all the particles of the system. 
The radical can be expanded for small values of 0, and then T* reduces to 

For small values of this approaches 

dT* 

Now 

dqk 
= n- (17) 

= Px 

In Cartesian coordinates, we have 

dT* _ m,Xi 

~ (1 - 

This expression is the actual mass multiplied by x, which is defined to 
be the i-component of momentum. Using T* instead of T, the equations 

(5). (7), (10), (11), and (13) are unaltered and we find that 

ddT*_dT* 

M dqit dqk 
If we write 

L = T* - V, 

Lagrange’s equations for a conservative system take the form of equation 

(15), as before. 

> See Whittakee, loc. cU., pp. 46 and 26B. 

= Qk- (18) 
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6. MOTION OF A PARTICLE ABOUT A CENTER OF FORCE 

Suppose a particle P is acted on by a force directed toward or away 
from a fixed point 0, the magnitude of the force F being some function 
of its distance r from the fixed point. At any moment the particle is 
moving in a plane determined by r and its velocity r, and it continues 
to move in this plane, for the total force acting upon it lies in the plane. 
We, therefore, use coordinates r, in the plane of motion, the fixed 

Y point being taken as the origin. The velocity is re- 
solved into components r and rip^ as in Fig. 2. We 
have, 

^Fig. 2.-Panido while the potential onergy is 
moving in a central 
field. r = - Fdr. (20) 

Lagrange’s function is 
L ^ + rV^) — 

and the Lagrangian equations of motion are 

d/dL\ dL d. 
n -. - 

The integration of the first equation gives 

d.t \<9v? 

where the constant p is the total angular momentum of the system. The 
energy integral may be secured by multiplying equations (22) by ipdi = 
dip, and rdl = dr; but this, is unnecessary for we know the result will be 
T + V = E, that is, 

Km(r2 + y,2^2) = E. (24) 

Eliminating v? from equations (23) and (24), 

When the value of V is substituted in this equation it can be integrated, 
thus giving r as a function of the time. This value of r substituted in 
equation (23) gives a differential equation for v? as a function of the 
time. To secure the differential equation for the orbit we eliminate the 
time from equations (23) and (25). 

di dip di dip mr^ \ m m . mVy " ^ 

The last equation can be integrated when V is known as a function of 
r, and gives the polar equation of the orbit. 
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6. INVERSE SQUARE LAW OF FORCE 

The force acting between two electrically charged particles varies 
as the inverse square of the distance between th(^m and is proportional to 
the product of their charges. The force is positive, i.e,, in the direction 
of increasing r, if the charges are of like sign and n(^gative if of unlike 
sign. The electrostatic unit of charge is so chosen that the constant of 
proportionality is unity so that for two charges, Ci and e^, 

C1C2. ^1^2 
- d r = -? rz ^ 

The potential (‘nergy is, therefore, 

the value of V being taken equal to zero for r = 00. 

Let the masses of the two particles ^ 
be Ml and m2 and their coordinates with ^11 ^ 
respect to their center of gravity as 
origin be Vi, ipi and r2, <^2; and let r = r\ 
+ r2 (Fig. 3). Then, 

niiTi = rn2r2 and (pi — (P2 +Trj 

(27) 

and 

m2 mi 
ri = r- , - - w’2 = r ■ 

nil + m2 nil + m2 

m,2 • . mi . 
ri = r - 7*2 = r - , —> == ^2. 

nil + m2 mi + m2 

The kinetic energy is 

+ riVi^) + + 7’2V2®). 

On substituting the above values for ri, 7*2, v?i and v?2, 

T = + rV^), (28) 

where ip = = ipi, and p = mim2/(m.i + rn^); m is called the reduced 
mass. 

Equations (27) and (28) show that r varies just as though we were 
dealing with a particle of mass n, moving about a fixed center under forces 
having the potential F(r). Having solved this problem, the behavior 
of ri and is obtained from the relations preceding equation (28). The 
nxignlar momentum of the system is m,ri^ipi + miri'^ipi which is equal 
to nr^ip. It follows that the equations for the motion of a body about a 
fixed center of force will hold for the motion of one body about another 
if the reduced mass m is substituted for m throughout. When the value 



REVIEW OP DYNAMICAL PRINCIPLES 108 [Chap. IV 

of V is substituted in equation (26) and jjl is used in place of m, we have 
on integrating, 

V eiCj 
fJLT p 

(v+'$’T 
= cos {(P + <po). 

Rearranging, this gives 

where we have written 

— 

r = 1^2_ 
1 — € COS (vP + >Po) 

(29) 

6= = H- 
2Ef 

neiW 

Equation (29) is the equation of a conic section with parameter — 
and eccentricity t. The semimajor axis a is such that 

a(l ,2) = _ . V 
peie2 

In order that ^ = 0 may coincide with the major axis of the conic, ^ 
must be equal to 0 or tt. 

The conic is an ellipse, parabola, or hyperbola when € is less than, 
^ equal to, or greater than 1, respectively; 

that is, when E is negative, zero, or posi¬ 
tive, respectively. 

We shall consider the case in which the 
energy is negative and the path an ellipse. 
Figure 4 shows the orbit; a and h are the 
semimajor and semiminor axes, respec¬ 
tively, € = cos J, and c is the parameter. 
The maximum value of r is OA and is 

secured by substituting v? = 0 in equation (29) when <po is set equal to 0; 

O 

Fig. 4.—Kepler ellipse. 

The minimum value of r is 

rinin 

Further, 

2a s r 

peie^il — €) 

peye^il + €) 

tieM^ - **)' 

whence, from the definition of e, o = eiei/2E. The distance OB is equal 
to o so that 

h = OJ5 sin { = a(l — 
Substituting the values of a and «, we have 

h ZB__ 

(-2£m)^ 
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Thus, the semimajor axis depends on the total energy but not on the 
angular momentum; the semirninor axis, on both the energy and the 
angular momentum; and the parameter on the angular momentum alone. 
All orbits having the same major axis have the same energy though the 
angular momentum may be different and all orbits having the same 
parameter have the same angular momentum though the energy may 
vary. 

By substituting V = ^1^2//* in equation (25), and integrating between 
the limits and we get the time required for a half revolution, 

or 
___ — 27reie2/i^^ 

where r is the period. The frequency is 

{-2Ey^ 

The frequency depends on the energy, but not on the angular momentum. 
If instead of the energy we substitute the semimajor axis a, the frequency 
is 

The three laws of Kepler for the motion of the planets about the 
sun apply to this motion: (1) the path of one body with respect to the 
other is an ellipse; (2) the area swept out per unit time by the line joining 
the bodies is a constant. This follows from equation (23), for rip is the 
base of a triangle swept out per unit time and its altitude is r, so that 
the area is Yzr^ip. Since ixr'^ip is a constant, and /x is a constant, this law 
is true; (3) the frequency of the rotation is inversely proportional to the 
^-power of the semimajor axis. All the results of this section are 
useful in the study of the hydrogen atom (Chap. V). 

7. HAMILTON’S EQUATIONS 

The Lagrangian equations are n in number, and are of the second 
order, so that 2n constants of integration are introduced in their solution. 
Often it is convenient to replace them by 2n equations of the first order, 
as follows: When the equations of motion are of the form of equation 
(16), pk is defined to be dL/dqk, whether dL/dqu = BT/dqk or not. This 
definition replaces equation (8). 

Vk 
dqk 

(30) 

so that Lagrange’s equations are 
. _ dL{q, q) 

dg* 
(31) 
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We introduce a new function 

11 = :!:pkqk - L(qy q). (32) 

At first sight this is formally a function of the //s, ^’s, and but taking 
its total differential wo have, 

dll = Zqkd-pi, + Y-pudgk - - 2 

By equation (30), the second term cancels the third, and 

dll = 

This shows that H depends only on the //s and g's. But then 

Each differential is quite arbitrary, so the corresponding coefficients in 
these equations must be equal. Using equation (31), 

dt dpk ^ dt dqk 

It is essential that H be a function of the p^s and g^s; otherwise, the 
equations are not valid. These equations of first order are equivalent 
to the Lagrangian equations of second order and are called the canonical 
form of the equations of motion^ of Hamilton's equations, //(p, q) is called 
the Hamiltonian function and qk and pk are said to be canonically conjugate 
variables. Taking the derivative of U with respect to the time and using 
equations (33), 

so that // is a constant. The meaning of this constant is easily seen 
when T is a homogeneous quadratic function of the velocities, for then by 
Euler^s theorem 

^Vkqk = = 2r, 
and 

// - 2r - L = T + F, 

which is the total energy of the system. We derived Lagrange^s equa¬ 
tions for the case of conservative forces. As far as the above reasoning 
is concerned, then, Hamilton's equations have been proved only for 
conservative forces. However, it is true that the equations of motion 
can often be thrown into this form even when the system is not con¬ 
servative. When such is the case, the relation H » constant always 
furnishes an integral of the equations, whatever H may be. 
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8. HAMILTON'S PRINCIPLE 

With a view to applications in this chapter and in Chap. XV ff, we 
now discuss Hamilton's principle, which is a statement of the laws of 
dynamics in integral form. This principle has the advantage that it is 
the same in form for all systems of coordinates. Let a dynamical 
system move from a fixed configuration A at time to a fixed configura¬ 
tion B at time ^2. Hamilton's principle states that the path chosen 
in nature is such that 

takes an extreme value as compared with all conceivable neighboring 
paths. The condition for this is that 

5 fldt = 0, (34) 
Jh 

where djLdt means the variation which the integral undergoes if the 
system moves from A to B, on a path infinitesimally different from 
the natural one (Fig. 5). Suppose the coordinates and velocities on the 

natural path are qi, ^2, . • • , 9i> 92 

... at time t. At the same instant 
the coordinates and velocities on a 
neighboring path are qi + ^qu ^2 + 
dq2, . . . 92 + 5^2, • • • 

We wish to express 5fLdt as a 
function of the g's and q’s and their 
variations. In varying the path the 
time is not changed, and so the order 
of the variation and integration can be interchanged. That is, 

PosjHon qj 

7irn^ Ij 

^ posjlionq^ 
Ti'rnet^ 

Fig. 5.—Actual and varied paths. 

b^Ldt = ^bLdt. 

Now 

On integrating, the first term yields 
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which is zero because thei'VttriatianfeCOf all the Coordinates are zero at 
/i.ai»d f2j, by, hypothesis. T^jft^fore, , ■ , , ,, , ,, . 

pL'dt 

and this mUist'be zero, regianMSss of oiii*'choice of'the qn&ntities^^^ife, thkifc 
is, ^all variod pa-thS. Choosing *all the e^ccept th 
“'ive TOO that the coefficieht of rriUst and Sfttiiliarljf for the 
coefficients of all the other Therefore, the equations ' - i .r i i 

^ i 
d\bqkj \ 

dL 

■dq,c. 
0, 

holditruq if HaniUton's requirement, equation (34), js fo-be;^tiaj5ed, 
and these are simply the Lagrangian equations,, £rQ^Tn5i>!«hioh we deifypji 
the canonical equations, above. By substituting ^pkqk — H for L in 
equation (34), and finding the? conditions, which // must satisfy, we can 
derive the canonical equations (33) direbtly from ecjuation (34), 

9. canonical TRAliSFORMATlONS ^ ' 

\ It is often convenient to solve the equations of motion byfintroduciiig 
new variables Pk and Quy having, following, properties: (l)rThe 
transformation equations are /. ' , . 

/pk^VkiQhQ^y • - -P\yi% 
^V, > - 02, • • * /V/^2,- • , 0. • - ^-09) 

This transformation is much more general than^ thkt of equation 
(1), where the hew coordinates depend only on the old coordinates and 
perhaps on t. (2) In the new variables the equations of rnotiOii iVnfst 
be injithe Hamiltonian form - ' ‘ ' m . / 

dPk dH^ dQk ‘ d//* 
•:,(36) 

where H* is not necessarily theisAme ^ /f, the Hamilton function in the 
original coordinates. When equations (36) are obeyed, the transforrn^tipn 
is said to be canonical. 

We now proceed to determine-tb®* rhktion b^twdo^ 71* aj-j^d H, and 
the conditions which equation (35) rhUSt^tisfy in bTder that the trans¬ 
formation may be canonical. S|nae rtfie ca^nonicni jH^ations can be 
derived from the variational priiiQiple't^ ^hdt steflUbiave an extreme 
value for the,actijgtl mot^n^s^rp^gar(^lps|.of the coordinati^ used, we have 

i7(^i7p^ • t • di^reme, ny; 
Jh Jh 

[SP*Q* - j- t)]dt = extreme. 
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The integrals are taiken betw^n fixed values of<4 and the final and Jnitial 
eonfigiirations are fixed. The la,si e(|uation will Ix' true if th^'diffenettw 
heiwccii f-he two integrands is the tohil derivative with respect to time 

of a function which depemds on I and on any group of 2n variables chosbn 
at will from both the old and new coordinates. Usually, this function 
is taken in one of the four forms, 

^ ' nQ.P,t),F(g,QytlF{p,PJ^ 

The first of these four form.s is most often used and wo shall illustrate this 
one only. If 

^pkQh P(g\i P\ ' ' ' i) — ^PkQk P*(Qi, Pi, • • * 4 "b 

, ^ :SF.Q0, ‘m) 

then multiplying by dt and integrating we havci 

• • ■ t)\(U ^ U*{(h,P„ ■ ■ -1)^1 + 

(F - 
. I 

Therefore if the l(^ft hand side of the (Kiuation is a maximum or mini¬ 
mum, the right hand side exijoys the same property^ T^e yariatiqn 
of the last term depends only on the variations of its independent 
variables at the times fi and tn but the variation of th(| integral depends 
on their variations at all times from t\ to (2. We may conclude that at 
all times, with the possible exception of 4 and 12 the equations of motion 
will be of the canonical form in the new coordinates. Rewriting, 

^PkQk - H{qh Pu ' • * 0 = 

This is true whatever be the values of the qp and the Pp. Therefo^re,, the 
coefficients of thes(‘ (piantitios on both sides must be equal and the terms 
free of them must also be {'qual, which yields the relations, 

and 

dF ^ dF ’ 
P'‘ ^ ^ W,’ 

II = II* - . 

i i 5 

(38) 

. (39) 

‘^e2ne<iuati6]is'(38) when solved t*he p* k’nd g't, yJeld'the tirkhsforiha- 
tion relktioiik dF equation (3§). All equations of' t'ranafdhiiatibii'i^ the 
Fdfih‘of' eqiiatidli (38) preSeiwe the ‘'cahbhicW;f6Vm ' 6f'' t^^ Ifamilttm 
equatibii’A aWn bqd'ktioh (36); Yeghrtflefe'of the Mui^'bf ‘ ' tt’riitist'Tbt^ 

reipembered in applying equatioi^ (38f (39) that F is a function of 

q, P, and t. \ ' 
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Illustration.—In transforming from plane polar to Cartesian coordinates, the 

appropriate function is 

F - px ^ COB ^ 4- Pi/ r sin 

whence 

Pr = Px COS <p 4 py sin <p, p^ = r(-px sin <p 4 Py cos <p), 
a: = r cos <p, y = r sin <p. 

10. ACTION, HAMILTON'S PRINCIPAL FUNCTION, AND THE HAMILTON- 
JACOBI DIFFERENTIAL EQUATION 

The action function S is defined by the equation 

S (40) 

where to is an arbitrary initial value of the time-variable. A change of 
to results in adding an unimportant constant to S. We shall set = 0 
for simplicity. Now 2T = so that 

and, therefore, 

S = f ^pkdqk 

as 
Vi< = ^ * aqk 

(41) 

(42) 

Thus, for a single particle moving with constant velocity, 

S == jVxdx 4 Vydy 4- Vzdz 

= VxX + Vy ij 4 VzZ, ' 

if we so choose the coordinates that x = ?/ = 2 = 0 when i = 0. Obvi¬ 
ously, equation (42) is verified in this case. For all dynamical systems, S 
is an increasing function of the time. The Hamilton principal function 
is closely related to S and is defined by 

so that 

W ^ -Et + 8, 

aw aw 
dq, dt 

-E. 

(43) 

(44) 

These functions owe much of their importance to their appearance 
in the Hamilton-Jacobi differential equation. Consider the relation 

//(p, q) = E, 

which is an integral of the Hamilton equations of motion for a conserva¬ 
tive system. If we substitute the values of the p^s from equation (42) 
in this relation, we have the Hamilton-Jacobi equation for the deter¬ 
mination of S, as a function of the g^s and of n constants of integration. 
It will often be referred to as the H. J. equation, and has the form 

E, (45) 
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For a single particle, the equation q) = E takes the form 

+ V/ + + V = E, (46) 

and the H. J, equation is 

1 
2m (af)’+ Q’+ (If)’] 

where ^ is a constant of integration. To solve this, we must know the 
form of V. 

Example 1. V = 0, Free Particle.—We solve equation (47) by the usual device of 

separation of varial^les. Multii)lying by 2w assume the solution is of the form, 

/S' = /S'x Sy d" *S£, (48) 

where is a function of x alone; of y alone; and Sz, of z alone. Then dS/dx — 

dSx/Ox and this is a function of x alont;; similarly, dS/Oy == and is a function 

of ?/, etc. Transposing all terms except {dS/dxy to the right, we have on the left a 

function of x alone and on the right a function of y and z. But a function of x can 

be equal to a function of ?/, and z only if both arc constants. Calling the constant 

value of each side 2mEx we have, 

Solving, and omitting an unessential additiv(‘ (a)nstant of integration, 

= {2m,Exy'% 
and likewise, 

Sy = C2mEyyhj and A. - {^viEzpz, 

where 
Ex + Ey Ez = E. 

From equation (49), (2mF*)l‘' - px = constant so A’may be written 

A = + p,/y -i- VzZ- 

Hero the constant- p’s ])lay the rok^ of integration constants, of which there must be 

three since tlie II. J. equation is of first order and has three variables. 

Example 2. V = —e Vr- Particle Attracted to Origin by the Inverse Square Law 
of Force; the Problem of the Hydrogen Atom.—Plane polar coordinates are especially 

suited to tliis problem. Equation (47) becomes 

2me^ 

(49) 

(50) 

(51) 

We have, 

since the force is radial. 

But 

Then, 

and 

+ ' (470 

dS 
dtp 

= constant, say 

This can be shown also by the method used in example 1. 

A = Sr 4" A^. 

A^ = 

so that finally, 

(t)’= 2mE -f- 

A = cup*p + ^ ^2mE + 

2me^ 
r 

2m€* -?■)’ dr. (52) 

A is a function of and two constants of integration, and E 
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-jj! - CYCLIC VAMABhES 

jrtie function S ow^s mu,ch. of its importance to the fact that it is 
useful in reducing the Hamilton equations to an esf)ecially simple form. 
Suppose we try to find a transformation of the type given in eqmationS’(?8j!f 
and (39), such that dF/dt = 0 and the funption //* depends only on the 
lie^ momenta Then ' j ‘ . ; i 

,(53), 

Then the equations of motion (33) tell us that 

so that all the moment am vanahle.i arc. constanU, say ai, . . . a„; 

Pk — otk — constant. (55) 
Nb'w'' 

dQk ^ dfl^ 

* *., 

and so dQk/dt is a function only of tlu' P’s. We call its constant value 
<V/fc,i and then 

Qk — o)kt -V (^h) 
The great advantage of using such coordinates is seen at oncC, for the 
equations (55) and (56) represent the complete solution of the problejn. 
The apparent simplicity of equation (56) is misleading; often the coordi¬ 
nates Qk have a very complicated meaning. Coordinates of this kind,, 
which do not appear explicitly in the Lagrange equations (54), are called 
^‘cyclic variables’- To find such variables we begin by requiring thati 

(53') 

a special case of equation (53), so that the energy constant E is one of the 
jqipi^^enta, Froni^ equation (38), we havp pk = dF/dcpy But the 

action^i/S- obeys the same relations^, .so that .aside from a possible tei:Tn 
containing the time, the transfornmtitm fuMion F is the action S.- The 
procedure for finding cyclic variables is therefore the following: 

Solving the H. J. equation. ^ 

....... 
we obtain as a function of the ^^s, of P, and of n — 1 other constants pf 
integration, . . . oi^, which wo make our new momentum variables, 
P2 ‘ • * Pn; so that I 

= S{(p . . . r/„, E, a„ / . • (57) 

Then, because' of equation (53')., we have f^atisfied equation (53), and 
equations (54) to (56) follow. To get the fornyuhis of transformation, 
we use the relations ,, 

n U ,OQ/\ 

. 
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T6e spliliticw.fofiijhc givien;,by,iequa<j«ms .(5S() and 
where i, , „ . .. 

dir* , ' 
' ' “1 = Qp =? h “* =•'•■ ■■ 03n = 0, 

s6 ih^' alV the (3’s 'at^e cbhstiant*'a>ccept Q\, and Qj ^ t +' ii. • Thfe prb-"' 
cedute has Ib'd to the disbovet^ of 2h — 1 fdhctions of 'the originai' 
cohrfiftatea iihd'momferita^ ‘ Pn, Qa, . . . <?„, Whibh reiriaiti ’ 
cphstapt duriiig the riiotion and andther'function Qi ■a^hiCh'Incrbasfes 
dniforihly.‘‘ ' -'' ■ ^ . ■. • 

Example.—In (;xamj)le 1 of the preceding section,, the appropriate transformation 
wlifch makes all coordinates c.crtistant except Qi is georhetrically obvious. We need 

only pass to new Cartesian coordinates, X, K, Z, wit!) the axis of X parallel to the 

motion of the particle. TIkj axes of Y and Z can o(‘cupy any positions in the plane at 

right angl'es to ^AV. As foC ifie scale ofHHe X-coordinate, we chi)ode: it iso that the 

velocity f.;I = dX/4t is puiiy, that is the.unit of length is,equal,te -f -f 

To, obtain .tips t^ransformation by the analytic methofl outlined above 

would be (piitf^ tedious. In all sindi problems, it is well to remember that ifi the ttew* 

fr4.m(i of refhrdhee the path of the particle is'a eodhiinate line. ' ' ^ 

Of^pn it is convenient to replace the variables P by othbr vari^blcB 
P', each P' being a function only of the P\s. Then new cPordinateB 
cdnjaigate to the P' can be found. It can be proved that each Q' is a 
linear function of the (^'s, with coefficients depending .op the old P'sj.^ 
Thus each Q' is a cyclic variable and the Hamilton function is of the 

form(iFP(P'X 

t2,,A GENERALIZATION OF THE HAlvnLTON-JACOBI EQtTATION 

ilfhc transformation theory of the preceding section refe^^s^ to problems 
in ^whiofe // does not contain that it.has the significance of the ;to|;^ 
energy. When // does contain I, another artifice is adopted. , We spejlfi 
to fi'hd a moving frame of reference in which all, the ne?y,coordinates 
and momenta'are donsiant, bo the equations of transforma,tion,.mi]^|tr 
involve t. (In the case of a. freely moving particle, for instance,, wo 
choose any set of curvilinear, coordinates, which has a translational 
motion like that of the particle.) Now, when the coordinates and 
rnx^ttienta are all constant, we see from the canonical equations in these 

coordinates that 
dH^ 

dPk 

THe^&ore, dobs hot'deh^hd On thO afid Fs, Although it mhy^»b^ W 
free to choose /(? because any function t 

which might be chosen can be inciirporated in dF/dt in equation (39). 

Adopting this assumption wp have, ^ ... 

. . , II.ip,Q,i)+..: 
t’-oii . ;; s: ' ri •:* f.r / 

1 Bokn, Atotnmechaniky*’ p. 36. 
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Replacing pk by dF/dqky we have a generalization of equation (45). If 
H doess not contain we put 

F = (59) 

Substituting this in equation (58), we find that the equation to determine 
S is equation (45), so that S is the action; and since dF/dt = — we 
conclude that F is the Hamilton principal function W, When H contains 
ty the solution of equation (58) cannot generally be put in the form of 
equation (59), but it is still convenient to define the Hamilton principal 
function as the solution of 

13. ANGLE VARIABLES; CONDITIONALLY PERIODIC SYSTEMS^ 

A particular kind of cyclic variables called ^^angle variables’^ are very 
frequently used in the mechanics of the atom, which has borrowed them 
from astronomy. For simplicity, we shall suppose the system is con¬ 
servative, and that its motion has n distinct fundamental frequencies, 

. . . Wn. By distinct^ we mean that there is no relation of the type 

nOJi + . . . -f TnWn = 0 (61) 

where the r^s are integers. The concept of distinctness is a generalization 
of the idea of the incommensurability of two frequencies. When the 
frequencies are distinct, the system is said to be non-degenerate; otherwise 
it is degenerate. There are important differences in the methods of 
treating these two classes of systems. We call the angle variables Wi 

. . . Wni and the corresponding momenta Ji, . . . «/n, and require 
that they satisfy the following conditions, the first two of which apply 
to any set of cyclic variables as described above: 

1. The time does not enter in the equations of transformation from 
the variables p, q to ic, J, so that //*, the new Hamilton function, is 
the energy E, 

2. H* is a function of the /’s alone, so that 

Jk ^ constant = aky Wk == (jokt "f* ook = 
dll* 

dJk 
(62) 

3. The system returns to its original configuration when any one of 
the w’8y varying separately, increases by unity. This means that any 
one of the coordinates Qi can be expanded in a multiple Fourier series, 

qi = SAr, • • • Tn cos [27r(TitCi -f- . . . -f. Tnt^n) -j- Cr^ ’ • • tJ. (63) 

Here the quantities ti, t2, etc. are integers, and the summation is n^fold, 
with each of the Fs running from — oo to + oo. 

^ An excellent treatment is given in Van Vleck^b Quantum Principles and Line 
Spectra. 
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4. The action S can also be expanded in a Fourier series of this kind 
when expressed in terms of the w’s and J^s. 

In these Fourier series the amplitudes and phase constants are 
functions only of the J’s. A system whose coordinates are of the type of 
equation (63) is called conditionally periodic. It must be understood 
that in general such a system is really not periodic. The system never 
passes twice through the same configuration if it is non-degenerate, 
simply because the periods arc distinct. However, it can be proved 
that it passes indefinitely close to any specified point. The term con¬ 
ditionally periodic is to be understood as meaning that if the frequencies 
were allowed to become commensurable the system would be truly 
periodic. 

The reason for the name angle variables is that the w/s actually are 
dimensionless. The J’s have the dimensions of angular momentum, or 
action. 

14. ANGLE VARIABLES FOR A SEPARABLE SYSTEM 

Suppose that we can put S into the form 

Si{q\, q;,, . . . 0£n) -f S2{q‘l] ai, • • • ttn) + • ' ‘ , (64) 

and that each q varies between a maximum and a minimum value, like the coordinate 

of a linear oscillator. Then, writing 

as 
<)qk 

Fkiqk', 0-1, «n), 

(65) 

it is possible to define n phase integrals by the relations 

Jk = ^^'kiqk’y ai, • • • an)dqk. 

The symbol § indicates integration around a complete cycle of qk, that is, from the mini¬ 

mum to the maximum value and back again. Each t//; is a function of the constants 

of integration, and the equations 

Jk — Jkictiy a2, as, * * • ) 

may be solved for the a's so that 

ai; — ak{J\y J’ly Jzy • * • )• 

Then these values may be substituted in S. Ordinarily, we obtain S from the func tions 

F, so that 
n 

S ~ Jn)(^Qk' 

The function S determines a canonical transformation of variables, 

such that 

as as 
= agk’ = aJk’ 

H = H(Ji, A A • • • 

(66) 

(67) 
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lolusfc tke eqmtiqli,. (67|), en^qy, jpjrqpjerty ;tihat^ the 

system repeats its configuration whep-^n>'j ^s cliar^^6d |fi^y tii^e others b,eh|g heW,, 

constant. Consider the change of one pf the w’h,^ s&y .Wi, wluux any one o^ the old 

cpoi-dihate,, bay g*, is caMed through a ttih bthei* 'q*B beih^ cbiistaht. ' It’ ib 

bu,t by eqpatipp^ (67) and (64), 

80 that 

{ d 
dj. dqiti 

and since the J^s are independent varialxles, dJk/SJi is unity wiien k = afid'KOrOl 

otkhrwibe.’ That ife, when gk passes through a cycle, Au^n,- *= iy and the change of the 

other w’s. is'zero; -They^may vary .during, the-process, but at‘the end; th^y have, 
returned to their original values. This proves that the uX& fulfill the third condit^ipn. 

mentioned in 8ec. 13. 

16. THt' k^dtE VAilABLUS OP tHE HARMO^JIci OSCILtXxOR 

As an illustration of the use of cyclic variables \ve shall consider the 
liht^r harmonic'oscillator. If we draw a circle using the path of vibration 
a& a? diameter,, tie motion, of. thQ, projection pf .a point rotating, pnifonnly 
on this circle describes a simple harmonic motion^ Then the variable 
which increases uniformly with the time is the, angle between the radius 
vector to the moving point tod the path of the particle. If we set this 
angle equal to 2TrWy w will increase by unity during one oscillation so that 

w = <0^*,+ 5, ,, , 

where co is the frequency of vibration and 5 a phase constant. Thus 
isangle variable fhr. the oscillatorv < ; ^ i 
• Wh now Show this independently by the methods developed iri the 

preceding paragraphs. Here V — kx^l2, so that the H. J. equation 
(47) becomes 

and thus, 

M ..■. 4!^)”:?“-'(*%/5)' 
The oscillation takes place between two liniits for which the momentum 
is zero and this dccui^b^kt Ih^’Vallles f ^HicH hSf6it' TftetiMbth,' 
jf ;^^ries between the limits i:p>E./kyK‘'' Now 

' a'.''' 

- f (If)* - Ki)    
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or 

2mE = 
T 

Substituting this value of E in,o(}pat}roiu ^^8]), we have 

5';v:; 
CT / 

{kky 
L ^ 

find IS the amplitude of the vibration.' The value of w obtained in this 

way is the same as that derived above by direct consideration of the 

motion. This method, though more ^ivolved for this simple case, is a 

most powerful method when applied to more complicated pi^echanical 
systems. ' : ' :> 
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CHAPTER V 

HYDROGENIC ATOMS AND THEIR SPECTRA 

1. THE SPECTRA OF HYDROGEN AND IONIZED HELIUM 

The first clew to our present knowledge of the quantized character 
of atomic systems and their radiations came from Balmer's discovery 
(1884) of simple numerical relations between the frequencies of hydrogen 
lines. The spectrum of a hydrogen vacuum tube is quite complex, but 
among all its lines there are four which catch the eye by their intensity. 
These lines are brightened relative to the others by increasing the current 
and can appear under conditions where the gas is largely dissociated, 
as in certain stars, so they are definitely assigned to the neutral hydrogen 
atom. Their names, wave lengths and wave numbers are tabulated 
below: 

Ha..... X = 6,562.79 k p ^ 15,233.22 cm.-i 
H/?. 4,861.33 20,564.79 
Hr. 4,340.47 23,032.54 
H5... 4,101.74 24,373.07 

The series can be followed with diminishing intensity to 35 lines in the 
solar chromosphere. In Fig. 1 is shown the series as absorption lines 
in the spectrum of a star. The lines become closer together in the 

Fig. 1.—Spectrum of a star (a Lyrac) showing the Balmer lines of hydrogen in absorption. 
{After Hulhurt.) 

neighborhood of a limiting wave length, namely, 3645.98 A. In certain 
stellar spectra a continuous absorption begins at this point and extends 
to shorter wave lengths, rising to a maximum of intensity and then 
fading away again. ^ Balmer was acquainted with six of these lines and 
found a formula for their wave lengths, which converted to wave numbers, 
is 

Rh is an empirical constant called the ^' Rydberg constant for hydrogen/' 
having the value^ 

Rff = 109,677.759 ± 0.06 cmrK 

^ Hartmank, Pkysik. Z., 18, 429, (1917). 
a HqVbton, Phys. Rev., 80, 608 (1927). 

122 
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We place m = 3 to obtain the wave number of //a, m = 4 for ///3, and 
so on. Placing m = oo we get the wave number of the series limit, at 
3645.98 A. 

Investigations in the ultra-violet and infra-red showed that similar 
series exist in these regions. Lyman^ found a series which can be repre¬ 
sented by the formula, 

while Pascherr’ and Brackett discovered^ series in which of the 

Balmer formula is replaced by and \-4\ respectively. More recently 
Pfund"* found the series having as the first term and Poettker-^ has 
extended the Paschen series to 8 members. All lines known to be due 
to the H atom are given by 

n < rriy (3) 

where n and m are integers. Similarly, it is found that all observed lines 
of singly ionized helium are given by the formula, 

V = \ = 109,722.403 ± 0.05 cm.-‘ (4) 
m.J 

If n = 4, m = 6, 8, etc., equation (4) yields wave numbers which lie 
very close to those of the Balmer series of hydrogen; for this reason 
the whole series for which ra = 4 was attributed to hydrogen when first 
discovered." In the spectra of other elements a great many series have 
been found, which are in many cases rather similar to those of hydrogenic 

atoms. 
When examined with spectroscopes of high dispersion, the first few 

members of the Balmer series can be resolved into very close doublets. 
The difference in the wave numbers of the two components is nearly 
constant for all these doublets. Ionized helium lines of the series with 
n = 3 and n = 4 have been studied by Paschen and by Leo, under high 
dispersion, and are found to consist of a number of components (Sec. 
6). Theory predicts that all the lines of a hydrogenic atom (that is, an 
atom with one electron) should be multiple, although experimental diffi¬ 
culties make it impossible to observe their structures except in a few 

instances. 

2. BOHR’S THEORY OF HYDROGENIC ATOMS 

In Chap. Ill we derived equation (3), by quantizing the motion 
of an electron on circular orbits around a nucleus. We now treat the 

* See references at end of Chap. X. 
* Ann. Physik, 27, 537 (1908). 

* Astrophys. J. 56, 154 (1922). 

* J. 0. S. A. 9, 193 (1924). 
to., SO, 418 (1927). 

* A detailed account is given in Fowler’s “Report on Series in Line Spectra. 
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'prnblc^h iniaJ m^m gertferkl way ensentiaHy a-^ did, tornia^'e ()lPar tbo 

pli;^sical idoiiH whif.h j(^d hiim'<w) pix)p(Mji(» hi?^ tliijary* HtvKi?>pp(>H^^d tkat tlw^ 

(iiinonsions of fh(^ particles in the atom are so small in compatispa M*th 

tho distaaooibetweeii them that;leffncts due to their iinite wize d0 not 

rnttuence the fM'dblom. (A later this restriction will be• removed 

and we vshall study the modifications due to the spin of tto ei^^tron.,).' iHe 

i^sumed that they attract each other with a force varying as the inverse 

square of the distance between them. Let the distances of the nucleus 

atid ielectron fi^soni their center of mass be ri and r2,.respectively, and,th.e 

di^nce between thoxp .be r. The kiik'tic and potential energies, a^e 

' " '■ ’ ' -^'T^ rV) anrt r = '"•■•-(S) 

tvhere /jl is the reduced mass ^wA7/(m + 1/), and the total energy is 
E ~ T + V. This dynamical problem was solved in Chap. IV. The 
Titicleiis and the electron move on A'epkr' c//?p«fis just as the planets ilo. 
(Chap. IV, Fig. 4; and Fig. 6 of this chapter.) The equation descrlbihg 
their relative iiiotion is , , . 

1 , /. , 2EpX^ 

p being the total angular inomentum of the sytem about its mass center. 
This can be put in the form, - ^ 

1 — e COS <p )r 

Where the ecoentricityis'’-;,' ■■■ . ■ < ; ;/ 

‘ ^nd the Semimajor axis'is ' 

= 1 +: 

^1- T2#: 

Z*eV 

i - ;.l ir- ; 'o! "T ja 
5<^¥’t^n4?.9ns,qktfepucleus :^d. electron the center of gravity ar^ 

-aiid r2 =- 
m + M m + M 

The frequenijij^is■■ h ■e" v>iw',.rTi .'V-Pioja 

noAnr mm; v;S Ci .q-o") <!i (g\ 
■j'iii '/'Ml M*/' MUM'i-jio’f /: ■ n.t i\n )<> 

1 PhU, Mag., 26, 1, 476, and 857 (1913). U ll^'l'O, XtIhW the 

formula for Rydberg s constant (Sitz. Ber. der Wiener'A119) 

while Nicholson (Monthly Notices of the Royal Astr^t^fel had 

applied the quantum condition to the rotator; bowever^th'cVih^Watkcal ffeq\j[edcy was 
set equal fp thqemission frequency in his theory. ■M-tO ; ^<11 /Jt ./VviVl 

.4^Tj;rh|q >,mul m mn-jd nn .'J yrM-iWoM iU fivvJ;'< UiiJOa A « 
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if the dlectfon rfetdia’ted eher^jr aeeordi^^ to thd Maiwt^lI theory <)f 'Jight 
it would eMt the freftitencie?^ co, 260,’ et^i, white the observed frequencies 
of the (emitted light are given by equation (8). We have’seenUba>t 
classical el('ctrodynajnics agrec^s very well with experiment in the region 
of long wave lengths. Theref()re, Bohr made the very probable assump¬ 
tion that the classical expression fUr the frequency should agree with the 
experimental values for the region of low frequencies. Equation (3) can 
bp. written , , 

where n + An has been substituted for m. This is equivalent to’ 

J „ {M ^- An)An 
cRZ^ ) 

■ n'*(n + An)^ 

and for the region'of low frequencies where An is ‘small coinpardd 'to n, 
we have approximately, 

1/ - cRZ^- 
2An 

Putting An = 1, the fundamental frequency is 2c/2ZVn'\ 
with equation (8), we have 

Combining 

1 ( SEy ^ ^ 2cRZJ 
.(9) 

On the.other hand, Bohr’s second postulate and the Balmer formula give 

, ' ' -E„ ' ' cRZ^ , cR$^ ' 
fi (n + An)2 

so that aside from an additive arbitrary constant which we take equal 
to zero, we must have 

1 RhnZ^ 
.1 ^ I 

febstituting this value of En m e(iuation (9) and solving for Rj we have 

(10)' R = 
. ■ '. 

^20,2/ ^2023 ^0*34 

The substitution of the> values , of the 
; universal.. donstants j determinedbyi 
methods independent.of spectroscop)^^' 

. gives -10^ cmiTth a: result in * 
agreement with ithei/.'^pedtrf)S)ct)pic ( 

b'J. ?. . .- 
V ^ IN. 

1, j 

■ ^‘^£0 , 

, ,, ...j,;, j 

value of R within the limits of experimental error. Figure 2 shows the 
asymptotic agreement between the actual frequencies and the multiples of 
w. The upper spectrum is that calculated from equation (3) for n == 20, m 

! yahdtfHdlbwef''sp^cfhim 

^ An ^ 1, 2, A 
..l[ MdJ 

a>20" 20» 
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R varies with the mass of the nucleus since m depends on M as well 
as m. Precise spectroscopic values of R for hydrogen and ionized helium 
are known. Thus, 

Rn 

Rlie 

Mu 

m + Mii 
m + ilfne __ Mun 

Afue 11^' 

^ Mn 

and using the known values of m, Mh, and Mm this ratio is 0.999596, 
while the value calculated from Houston's spectroscopic measurements is 
0.999593. This accounts at least qualitatively for the difference in 
wave length of the Balmer lines and the ionized helium lines. Bohr^ 
predicted in 1913 that this difference should exist. The subsequent 
experimental confirmation was one of the striking triumphs of the theory. 
If the mass of the nuchms is very large R approaches the value 

__ 2T‘^me^ 

This can be calculated from the spectroscopic value of Rn using the 

Mu 
relation Ru = Roo , r » or from the value of Ru^ in similar manner. 

m + Mu 

The best value is 
R^ = (109737.42 ± 0.06)cm.“^ 

The theory as developed by Bohr requires then, that only those 
orbits exist for which the total energy is given by the equation 

■ 
E = n = 1, 2, 3, (11) 

The relation of equation (7a) shows that the possible values of the senu- 
major axis of the elliptical orbits are 

a 
nW 

47r^Ze‘V ^ 
= 1, 2, 3 . . . (12) 

In this computation the value of the angular momentum is not fixed and 
thus the semiminor axis and the eccentricity may vary continuously, so 
that associated with each energy level there should be an infinite number 
of possible elliptic orbits having the same semimajor axis. The energy 
levels required by the theory are shown in the energy diagram, Chap. 
Ill, Fig. 2. As mentioned in Chap. Ill, the quantity 

T = 
he 

is called the spectroscopic^^ term, or ‘Herm-value,’^ corresponaing 
to the energy En. If the atom passes from higher levels to the lowest 

^ Nature, 92, 231 (1913). 
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level, the Lyman series lines are emitted. If from higher levels to the 
second level, the Balmer series lines are emitted and so on for the Paschen, 
Brackett, and Pfimd series. In the absorption of light the atom is 
raised to a higher energy level and the frequency of the light absorbed 
is the same as that of the light emitted when the reverse transition 
takes place. 

3. THE PROOF OF BOHR’S THEORY BY THE METHOD OF ELECTRON 
COLLISIONS 

The resonance potentials of the hydrogen atom can be calculated 
from its energy levels by Bohr^s theory, or from the observed spectral 

t-- 

J r ~ 

4^ 

$ 
s VO Oi 5 

Fig. 3.—Transitions corresponding to the resonance? potentials of hydrogen. 

lines. These potentials are the voltages required to raise the electron 
from the first orbit to the higher orbits. They are indicated in Fig. 3 
and are given by the equation 

The constant 300Ehr/e = 13.54 volts. ^ The resonance potentials and 
corresponding wave numbers from this equation are given in Table 1. 

Table 1 

n V Volts (calculated) Volts (observed) 

2 82,258 10.154 10.15 

3 97,491 ^ 12.034 12.05 

4 102,823 12.692 12.70 

6 105,291 12.997 13.00 

6 106,631 13.162 13.17 

7 107,440 13.262 13.27 

00 109,678 13.639 13.64 

iBirge gives a slightly different value, 13.6299 abs. volts. 
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The Iap?t coliiriin gi^es the critical fyot^i^tials observ^Cd^lyj^’OhnRt^ad anti 
’CdniptenA Ai the pressure and temfieraturC used h3idrogen 
$9 ceji^ dissociated. No critical potentials that cbu^d^be assi|i;ned 
‘t6'molecular hydrogen Were ob^ierVed. The agreement ^between Cal- 
ciilated and bbserved valtle.V is e'xtretnely satiSfaiitPiy In view 6f the 
experimental difficulties. 

; I >\,) » . . . i 

4. QUANTIJM CONDITIONS ANI^TtiE QUANTIZATION OF ELLIPTIC ORBITS 

J 

Wo have seen that <Bohr s method of quantising the hydrpgen atom 
involves the following steps: (1) solving the two-body problem, we 
obtain the frequency of revolution of the electron in terms of the energy; 
(2) we equate the fr(‘queiicy of revolution to tli(‘ frequency of the light 
emitted in the region of high quantum numbers and small quantum 
transitions, f.c., the region of low frequencies. The possibility of using 
this method depends on our possession of an accurate empirical formula 
such as that of Balmer. In principle, similar methods could be applied 
to dynamical s3'stems having sovitTal degrees of freedom, but usually 
we do not have a sufficiently precise empirical formula for the emission- 
frequencies. This prevents an a|j)pliGatioii of the method to the fine 
structure of the liiu's of hydrogcnic atoms. Instead, we utilize th(‘ 
Sommerfeld quantum conditions described in Chap. III. P"or conven¬ 
ience we repeat them here: If there are coordinates for a mechanical 
system such that (‘uch generalized momentum, 

ai 

i I ' ' 
is a function of the corresponding qi only^ then the ^tatJouary staije^ gre 
those for which 

f pidqk = nkh, 'fh =, 1, 2, 3 • , (13) 

>where each integral is tQ'l>e extended over a complete,eycl’e of thej^ariabje 
qk. df cue of the g’s is the azimuthal angle (p of an electron, tfee Mte^al 
is extended over the interval 2w, The^e equations, one for each degree 
of freedom, ^jerve to determine a number of constants of integration 
equal to the number of degreed of freedom of the ^stenm The reasons 
underlying the adoption of these cquations^are described in Chap, VI. 

Let Us quantize the elliptic orbits of the hydrogenic atom’ following 
Somiherfeld.2 The en^f^y yquatipn is^^pArable iiji polar coordinates 
r, <p (^hap. IV). The Is^ipetic energy is , ) ; 

22,1559 (19^).''^ 

2a + pi 
1 'T 

(14) 

I 
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;.whHEirn p‘r an^^iillarj 
turn conditions an' ^/r.!';?/: (o di 

'^)ip(hp =5 M, ^ji-dr ^ 

.Here Ji ifiiqalled the f-azimuthaj qi^^antiim miml)er^^ bacaiaB^iit^flepeiidb'foi 
its value on the variation of <p, while Ur is called the ^Vadial quantum 
number/^ The second intej2;ral js /exte^pded ifrorri the minimum value 
of r to the maximum value and hack • a^^aii: When the electron is 
receding from the nucleus, both pr and dr are +, while they are both — 

tte electron apprbaches tKe niiefeus. We haVe - ■ ' ’' ’' ' ■ ' ^ 

= (10) 

V 3h/^jr—--^^ 

.... 

1- 
Fig. 4.‘--Radial momentum diagram , Fia. T).—Angular momentum diagram 

for hydrogen. h;r hy^^cogen. 

To obtain an expression for pr we write the Hamilton equation, 

II = ~ ^ 

The radial quantum (?QnditioB:.t,hen qan be wfitten, , ,, ; ;, ,, u,.-; 

f,.* - <>« 

where and r„,a* arc the ofw ^.heB,?)r 

of the equation pr = 0, that is, , , ,, 

, E ^ . 

' Se' inteiratiop caD,,bq; c^rriq^ |qvit >y, Prfiiqary methqd^,, ^ 
meaning of tVe phapetfft^Sratis:;^,^^ 
Pr is plotted against r for the case of a hydrdgen 6rbit with = 1 and 

1 The quaiiturii conditibn requires tliat the q^iergy and eccentne- 

itv of the orbit shdll be such thkVfwice th#Ml'nclosed within the curve 
shall henh Similarljq thte^ phase integ^ for^the coordinate <p requires 
’“tt ^ e.cted’^wa thJrSiW#*.^ Fi^. 5 ^11 be equal to kk. 
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It is more convenient to evaluate the radial integral by expressing 
it in terms of <p as follows: 

dv . dv 
Prdr = prdr = 

and on substituting <p and dr/d<p from and r from equation (6), 

we get 

sin^ (pd(p 

(1 — € COS <p)^ 
= Urh. (19) 

After substituting p^ = khl2Tr, the integration of this equation gives 

(k + TirY 
(20) 

where n has been substituted for k + Ur. 

To prove this we observe that 

2w p2Tr COS (pd(p 
+ € I --—• 

0 Jo 1 e COS tp 

^2 sin2 (pdip __ — € sin "I 

0 (i — € cos (fY 1 — e cos 

The integrated term is zero and the second may be written 

1_ 
e cos *p 

which is equal to 

1 ... (1 - sin <P T’ -r: tan ^ -; -- 
(1 _ ^2)^12 ~e -f- COS ip Jo 

2ir, or — 
(1 ■ 

27r 
27r, 

since the inverse tangent in this expression increases by 27r when its argument runs 

through its cycle of values from 0 to +to — =0 and back to 0 again. 

The energy is obtained from equation (20) by using the expression 
of equation (7) for e in terms of the energy. Then, 

k^ If 
^2* 

(21) 

{k + UrY 

Remembering that p^ = k}il2'K^ this gives 

_^ 
h^(k + UrY * 

which is the result secured by the original method. Using the expressions 

for the semimajor axis a, the semiminor axis b( = uy/T — €®), the 
parameter c and frequency w, respectively, we have 

^ nkh^ . b ^ k^ 
a = ;6- 

C =a 

(22) . 

0) 
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Next, we have the possibility n = 1, fc = 1. The li orbit is the 
normal state of the hydrogenic atom, and is of course a circle, since 
6 = 0. If n = 2, we have a circular 2^ orbit and an elliptical 2i orbit. 
The following table gives the values of the energy, eccentricity, and 
semimajor and semiminor axes of several orbits of the H atom. The 
radius ai of the li orbit is 0.528 * 10~® cm., a value consistent with kinetic 
theory estimates of the size of atoms. 

E nk 1 
1 

k rir a/ai h/ai 

— Rhc. li 1 ! 
1 

1 0 0 1 1 
-J^Ac/4. 2t 2 1 1 (1 - W) 4 2 

-Mc/4. 2-2 2 2 0 0 4 4 

-/e;ic/9. 3i 3 1 2 (1 - m;) 9 3 

-Rhc/<A. 32 3 2 1 (1 - 6 

~-Rhc/9. 3, 3 
1 

3 0 0 9 9 

It is customary to refer to an orbit having principal quantum number 
n and azimuthal number k as an rik orbit. In conclusion, equations (20) 
and (16) determine both the major axis and the eccentricity of an rik 

orbit. Figure 6 illustrates a few of the possibilities. If A; = 0, e = 1, 
and the ellipse degenerates to a straight line so that the electron would 
hit the nucre^us,.^ This state is customarily excluded as dynamically 
impossible, and, in fact, it is generally stated that orbits with k = 0 

do not occur in any atom. J. W. Nicholson^ suggested that orbits 
passing through the nucleus are dynamically possible and gave a deriva¬ 
tion of the energy of such orbits, arriving at equation (21). His calcu¬ 
lation is probably at fault, because in the quantum condition fmMx = 
nhf he uses the rest mass of the elec¬ 
tron instead of the actual mass. 
When the actual mass is used, diffi¬ 
culties are encountered because of the 
way in which mx approaches infinity 
in the neighborhood of the nucleus. 
R. B. Lindsay^ showed that the law of 
force can be modified in such a way 
that these difficulties are avoided and 
yet the energy levels coincide with the 
Balmer terms except for quantities 
which cannot be detected experiment¬ 
ally. There is no indication from 
either spectroscopic or X-ray data, 
however, that such energy levels exist. 

Fig. 6.—Orbits of the electron m 
hydrogen. 

iPAiZ. Mag., 46, 801 (1923). 
* Proc, Ned. Acetd. Sct.^ 13? 413 (1927). 
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•>[t f ,1 <^J8. THE~J^L^TimY^’'CSOaimcriC»l!r ^ ’/ l / 

> A.t sight; the oliiy '6f ihe* 

n&ibf> arXife^ oati ^occ^ur ^Se^nis^ tb ^^p^rMeniat Yetifica'IiOn/ 

sitttje tte 'fbUftyula te- the eiietgy of ah hrblt in ind^pti^bd^nt *of 

tl^ifeity. Ih fsict/'thd ^nhrgy Ifi Keplerian motion do’pends^ Only bh th^ 

maljof* ^Jtis of orbit. ^ In his earlieist* pajWr^, Bbhi* duggefeted that 

relativistic variation of mass of the electron^ shotild be takendnlo ac'ecmttt^ 

in determining the energy levels, since its velocity on the innermost 

orbit pf hydrogen is 0.007 of the velocity of light. In the paper^ in which 

Sommerfeld introduced the use of two quantum numbers to determine 

elliptic orbits, he algo treated the problem from the standpoint of spe(Wil 

relativity. . With this improvement, it is found that the energy depends 

not only on n but also on ky so that ellipses of different eccentricity haVe 

different energies.^^^J^^^"^ gives rise to slightly different frequencies when 

the electron passes between orbits of the same principal quantum num¬ 

bers, depending on the azimuthal numbers of the orbits involved, so 

that every line in the spectrum of a hydrpgcnic atom should be complex 

Th!^ h^dictibii i^ verified by experiment.^ 

^ ^^he relativistic ei«cptessibn fur the kinetic energy of an electron ^ 

moving ^tiboht'the nucleus (assumed to be at rest) with velocity v ^ cfiy is 

u (1 

Tfeet ppteqtial energy is —Ze^/r, as before, and the Lagrangian function; 

(Chw^ IV„?ex:. 4),is 

1 , J^, = tmoc^\l (I - j 

i ' ' T ^ 

Replacing by (r-* + and writing J,lie Lagrangian p(y4a^K>n,jinf' 

motion for <p, we have ,i , f . ' / 

d jnor^<l> _ , 

dt (1~- 

that ^h*e ahgUlar'momentum i$ a constant': 

wiorV' 
'(1 - 

/ !M t U / ^ t1 > 

« ' a 

f 'vii # 

The quantum condition for'the <p <«oi*<BllJrtei'ife 2iip M, 'id Shfoki* 
The radiaLmomentum is - '!'■ ' ’ i t • il't t ^ 

fP t 1 PP > 1 

Ul > ll t t»i ^ 1 t flUuizL,* nit f<J f i t 

X 10 ‘ dr 
1 >pl' ^ //OaI 
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By direct calculation we find, 

1 

\ / . i *_ 

Solving thiH for v- and substituting in oquation, (23b wc have 

133 

2, 2 _L P 
nim,A ^ 

'/ .lA'': 

T ~ moc- 

The sum of the kiuetio and pot-ential energies is equal to the Hamiltonian 
function: 

i I II = V ■ mo 
This ec^uation, solved for p, ^ gives 

1 + + "r) - 

Ze^ 
= E. (25) 

p- = Em,(2 + + 2m„Zc^(l + i - V^(l 

This is a function only of r and the fundamental constant;^, so wo oan 
apply the (quantum condition of equation (13) directly* hut ,we shall 
first secure the equation of the orbit. ^ To siipplify ,tbe computation 
we introduce the variable u — \/r. Then. 

mr 
(Jr ni du 

m, ip ^ — 2 ^ 
dip dp 

and substituting p for rnplu^^ we have pr *= ‘-pd'wfdp» Making tbe^o 
substitutipns in the e(ination for p,*", it becomes 

/M.? i 2 a- V, 4-^"^'/2 4- ^ V 

Writing 

1 pV2 = 7^ 
(26) 

it)’ - +i) 

Letting yip = we get , ^ l ' ■ ' 

' 2, 9,,'^^Wl -1- A’V-'^W2 4- ' 

Tq Bolve this equation, W6 add the Square of the coefficient qf Sw to both 

sides of the equation. It takes the form , r » < 

I .\. I # ' / 

U '' Oi‘* ^ 
Y ■ ‘ 

■< yY\,^micd^ tVsV > WV ' I 

lift 
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If X = (u — A)/By this becomes 

which has the integral. 

(dxY 2 

Uv 
{u — A) . , , 

X — -—— = sin ^ or cos yp. 
iS 

Returning to the coordinates r and and measuring ip from a position 
where r is a minimum, we have the equation of the orbit, 

1 1 + e cos ^ ail - e^), , . 
r a(l — 1 + e cos yip 

where the constants a and e are such that 

a(l-e^}=^, (29) 

Now r does not return to a given value when (p increases by 27r, but only 
when it increases by 27r/7, which is greater than 27r since y is less than 
one. The perihelion of the orbit processes in the same direction as the 
rotation of the electron. It is incorrect, however, to describe the orbit 
as a uniformly rotating ellipse, so e cannot be regarded as the eccentricity 
of an e llipse but only as a constant having a geometrical meaning 
some what similar to an eccentricity. The advance of perihelion per 

revolution is 27r(7“^ — 1). Substituting 
p = M/27r, in equation (26), and introducing 
the dimensionless fine'-structure constanty 

(7.284 ± 0.006) • 10- 

we get 

5.305 • 10-^ 

When Z^/k^ is small, the advance of perihe¬ 
lion per revolution approximates to 

mj-o 
Fig. 7.—Relativity precession 

of an orbit in the H atom. 

<!)■ 
5.305 • 10“® radians. 

of an orbit in the H atom. Figure 7 shows the approximate character 
of the orbit. The radial quantum condi¬ 

tion could have been applied by using pr expressed in terms of r in equa¬ 
tion (13), but*can be calculated more easily by expressing pr and dr in 
terms of <p. Then 

prdr = j - P« 7 (1 ^ ^ 
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The limits of integration are from 0 to 2Tr/y, since r passes from its 
minimum to its maximum value and back again when tp increases from 
0 to 2Tr/y. This is equal to 

r*2T 
py 

Jo 
sin^ 

(1 + € cos Xpy 

and since kh/2Tr = p, 

= 2Tpy(^j-^ = nrh, n, = 1, 2 • • • , (32) 

1 - £2 = 

J^2y2 

{rir + kyy 

6. THE RELATIVISTIC ENERGY LEVELS AND THE FINE STRUCTURE OF H 
AND He^^ LINES 

Using equations (27) and (29) to obtain E in terms of e and p, we find 

(33) 

and substituting the value of e we have 

1 + 
E 

rrioC^ 

yn 

[nV+ 
(34) 

An expression for J? can now be obtained to any desired degree of accurac}' 
by expanding the radicals of this (Kpiation in ascending powers of the 
small quantity The term value, -—Elhe, which results from this 
computation is 

RZ^ , RZ^ 
Tin, k) = + 

Z'^a^/n __ 3\ 
\k “ 4/ 

3/n 
+ RZV 

R7Ja^ 

+ • • • 

+ 

+ 

4\k, 
3/w' 

S\k. + 

3/n 
2V/c 
1 

8\k 

+ 
8, 

15/n 
'sV^. 

+ 
15 

8\k, 
35] 

64j 
(35) 

The term in a® is the only one of importance in visible and ultra-violet 
spectra, but the higher terms are useful in discussing X-ray spectra, 
where large values of Z come into play. Dropping these higher terms 
for the present, the change of the n* term of a hydrogenic atom due 
to the variation of electronic mass with velocity is given, in cm.-*, by 

AT{n, k) = Ra^ (36) 

This is always positive for k is always less than n. We shall calculate 
only the shifts of the hydrogen terms since the shifts for other atoms are 

* The work is given in detail on p. 420 of Sommekfeld’s “Atombau,” 4th ed. 
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wijiply in;^rt^iig the factor ReJirieiiibering^ thlafeTtfrbitj^' 
wMh iA: ?F 0 Qxolud^d^ We haVe theioHowingivalues of i 

..«...Up„ ^---vlTlrpL 

1 
1 

1 ^ 

--Vi-— 

3 

... 1'*"* t < 

4 
1 i 

1 1 

^ 1 1 

( " 

2 
4 

1 5 
U i ' 

2^ 4 2* 4 

3 1 q 1 3 I 1 
3^ 4 3^ 4 S" 4 

- 4? 1 13 1 5 J 7 1 1 , 
4« 4" 4< i 4* 44 1 

These results are illustrated by Fig ^ in which horizontal distances from 
the left are proportional to AT* If the relativity correction were neg- 

JK-i 

JL. -L. JL. Ju -L. 
001 0,02 0 03 0 04 0i)5 006 007 008 

—Rccy 
03645 - - 

Fig 8—{Shifts of hydrogon torms causod by rol itiyoly 

XX 

{ 

h 

1. 

■—33 Cct) 

'^3i (<^) 

lected, all the levels in each diagram would coincide with the dotted 
line on the left, which represents the 
tioA of the Balmer tprni Actually they 
ate shifted to the positions indicated by 
the solid vertical lines The shifts are 
given ip terms pf both apd 1 cm.~^ 
as units. We omit ihe figure forn = 1 to 
avoid an unfavorable scale for the more 
complicated patterns. No*w we wish td 
obtain the positions of the line® emitted 
in tHansitions between th^ise relatiVfistiof 

^ energy lerels. We begin ^With thejilmpl 

-r/2^ 
2t(l) 

iL, 

t 

U i 
0 BB5cm=^Vg 

i; b'; (; 

frdm orbits of totaJirqhaMutm numbers^to} 
those with totals number 2, which yield the 
finfe structii^e liu^ Figure 9 
shows the energy levels for this emission^ 
taken dlt^ctly Thk ai^oW 
reitire^efit trkiisitldiii, ind WouW b^^^thou- 

sandl^iof ethnos long^ ff draw® to seale. ‘ The light dotted Hues represent the 

i Stm^iuro «f » ( 
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Bialmeir IctbIs, and —/?/3®. ■ Below the energy diagram isiahoisf. 
zoatal soak? of wave numbers on which the 8pf?etral lines are plWted in' 
their tnre relation. Each arrow in the upper diagram j« placed above the* 
line arising in the cxjrreaponding transition. BecauHe' of the coirtpara- 
tively small separaticni of the li-quantum levels, the? lines'fall into two 
groups of three. Proceeding similarly with other lihes of the Balmor 
.series, we should o.x'poct that H/S would eonsi.st of Iwo groups of four 
linos each (Fig. 10), earih group being narrower tiian tliose in Ha because 
of the factor v* in th(? denominator of equation (36) and so on. As a 
matter of fact, these groups arc so narrow that they have not been 
resolved even for Ha. All the Baliner lines appear as doublets when 
examined with spectroscopes of high resolving power. This is due mainly 

/ E 

» • • * I I I I 

j eba 

---^- 

- 
10. Fino elrtiFbun* of H/3. 

to the small mass of tln^ II~atom^ which (mdows it with high thermal 
velocity so that its lines show a largo Doppler effect. Further, the 
velocities ac(|uireU by light atoms in collisions with fast (dectrons cause a 
broadening which is large enough for detection with the best interference 
spectroscopes. 

The interval of the hydrogen doublets Ls discussed in Sec. 19. Here 
we consider (he data on the lines of ionized helium, obtained in an 
investigation liy Paschen^ an<l in later work by Leo.’* In hhlitim, 
pattern of a line arising in a certain transition is sixteen times as broad 
in the wave-nitmber scale as that of file corresponding line in hydrogen,’ 
bnt it lies at a wave length four times smaller, so that the brC^itdth Ife 
constant in the wave-length scale. Thus the pattern of the 
line pf helium, at 1,6^0 A, will be of no more help to us than that of Ha. 
The lines wliich Paschen investigated belong to the Fowler series ' 

‘P «= X 4,686, 3,203, 2,733, etc.; 4, 5, 6, etc., 

m<t the Pickering series 

?■= 47?/'.* X =.]0.123, (5,560, 5,411, 4,859, etc.;u = 5, G;7,’8, ptc.’ 

shall restriel o\ir disettssion to (he line at 4,686, the first' 
tile three-quantum .series. 4'h'is line s’hotild'Have tWelvf eVnn^onc^rits, 

I ^i^n. SO, 001 (lUUi). , , , , , 
2 Ann. Phyfi'ik, 81, 757 (1926). * ; r- 
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whose positions, obtained from equation (36), are shown in Fig. 11. 
Below these components we plot curves showing the intensity distribu¬ 
tion in the lines which Paschen observed in a strong discharge (Funken- 
entladung), and still further below, the lines observed in a direct current 
discharge.^ The agreement of calculated and observed line positions 
may be considered as very good. The trend of the intensities merits 

A ^ Ami 6^0 5S se 5A 5^2 5.0, " 

Fig. 11.—Structure of X 4686 of heliura. 

careful notice, however. We observe that components arising from the 
transitions 44 —> 3i and 43 —> 3i are extremely weak in the direct-current 
discharge. It is probable these components would be entirely absent 
in a very weak discharge. This is due to the action of so-called selection 
principles, which will now be explained. 

7. THE SELECTION PRINCIPLES FOR THE INNER AND AZIMUTHAL 
QUANTUM NUMBERS 

The total angular momentum associated with the electrons of an atom 
may always be expressed as j/i/27r, where j is either an integer or an integer 
plus one-half, and is referred to as the inner quantum number. Before 
the spinning electron was discovered, the inner quantum number of the 
hydrogen atom was thought to be identical with the azimuthal quantum 
number of its electron. Now, we know that it is the resultant of the 
^^spin^' angular momentum of the electron and that due to its revolution 

^ The curves are redrawn with ordinates somewhat reduced from photometer 
curves obtained by Paschen and reproduced in Sommerfeld’s ‘^Atombau,^^ 4th ed., 
p. 439. 
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around the nucleus. It is found (Chaps. VII and X) that the spin 
vector must be either parallel or antiparallel to the vector khf2iry in 
hydrogeriic atoms. Here a peculiar circumstance shows itself. It is 
found that the inner quantum number takes the values {k — 1) ± 

instead of fc ± }4, as we should expect, and we shall have to postpone 
explanation to Chap. XVI, where the hydrogen atom is treated by the 
new mechanics. The important point for our present purpose is that 
the inner quantum number of an atom can change by only +1, —1, or 0 
when light is emitted or absorbed. 

Aj = ±1 or 0. (37) 

This is the selection primdple for j, which applies to all atoms. Further, 
there is a selection principle for ky which is as follows for hydrogenic 
atoms and certain other simple atoms (see Chap. X, Sec. 3 for a 
generalization): 

The azimuthal number of the electron of a hydrogenic atom can change 

only by ±1 when light is emitted or absorbed. 

Me = ±1. (38) 

These two principles go a long way toward explaining the fact that 
in all spectra the majority of th(i lines predicted by naive application 
of the Ritz combination principle fail to appear. In 1918, Rubinowicz^ 
and Bohr^ gave (explanations of this behavior by two different methods. 
Bohr^s procedure is based on his correspondence principle, and is 
explained in Chap. VI. It yields restrictions on the possible changes 
of both the azimuthal and the inner numbers during a quantum transi¬ 
tion. The reasoning of Rubinowicz specifies only the possible changes 
of the inner quantum number. At the outset we call attention to the fact 
that both restrictions are altered in the presence of an external field, 
so that exceptions to the rules derived are frequently met with in practice, 
due to the use of high electric fields or to the disturbances caused by 
atoms and ions in the neighborhood of the emitting atom. Rubinowicz 
(and also Bohr, independently) applied the law of conservation of 
angular momentum to the system consisting of an atom and its field 
of radiation as specified by classical (dectrodynarnics. The most impor¬ 
tant term in the force exerted upon a moving charge by its own radiation 

is 

f _ _ B = " (SQ) 
3c»(i - ^ c’ ' 

where v is the velocity. In general, this force has a component at right 
angles to v so that the angular momentum of the system is altered. The 

1 Physik. Z., 19, 441 and 465 (1918). 
“On the Quantum Theory of Line Spectra,” Det Kgl. Danske Videnskab 

Selskabs Skrifter, 8th series, vol. 4, No. 1. In English. 
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lost hiust app<*ar tt^ain as ahgulat* mofnc'nt/tiio^of tho 

field of radiahon Let us lake our oeij2.in at the cetiter of tlu' eirnttm^ 

Mom, and eousider the angular iuoitieTikiin aboul flit^ on^iu as^^oolated 

With an element of voliirtn* e/l at a distanee i\ At this (‘leinent there 

is a flow of radiattt energy in a diieetiort perpendicular to the electric 

tod magnetic i^ectors E and H, Since it can ex(*rt pressure iii the 

direction of propagation, immihrytuin is associated with it, and the 

' momentum vector lies m the direelion of flow The momentum reckoned 

per unit volume, ? e , the momentum density, iH, 

M - 
[EHl^ 

^TTC 

where [EEQ is a vector perpendieulai to the plane of E and H haviiig 

magnitude EH sin 6, and wheie d is the angle Vu'tween E and H. This is 

called the vector pnuluet of E and H. Associated with dV there is a 

hiomentum MofF, and this will have a certain hwer arm r sin a about 

the oiigin. Its angular momentum is theiefoie AfdVr sm a in exact 

toalogy to the expression nj}-6 applying to a particle l^y definition, 

|;hc angular momentum vectoi is peipendicuUir to MdT and to r, so it 

is Ihe vector pioduet of these two quantitie,s, [rMdl]. The reader 

may find it difflcult to see how the waves sent out by an atom can possess 

angular momentum about tfieii ongin, for at first sight it seems that 

g and H are always at right angles to the wa\e front, so tliat tlie vector 

M IS directed straight an ay trom the origin, Thus, the vector product 

of M aiKl r becomes zero Except m speqial cases, this view is wrong 

becauise of the inooire(*t supposition that ^ and H are perpendicular 

to r. In the equatqiial plane of the fi(dd due to a rotator, the vector 

IS tangent to a spiral of Arclumedcs, not to a circle copcentnc with 

the path of the rotatoi, and the prolongation of the vector M does not 

pa^ through the ongm, In the field of a linear oscillator howey^r, 

thn tuta) angular momentum is zero, a*^ it mus,t be since the toscillatpr 

has zero angular momentum at all stages of its motion 

I fW^ shall illustrate the physical ideas involved by considering the 

eni^fc^iQU ,from an elliptic rqtator with coordinates 

t — d cos 27rr^, y ^ Vhih %rvt (46) 

Let A£ be the loss ot energy m a quantum transition and AP the loss of 

* ^anfeular momentum Then it can be proved, following Rubinowicz, that 

M f 1 I 

a'I .5 ( 
Putting AP = hv, 

AP ^ 2ab , , 

AP S‘)%rv 

AP -V2ir/i 
2_2«&i _ 
(fl? 4- ^)' 

'{41) 
V \\ 
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Considerations of symmetry show 'that the plane of the tot^tor is^ ttdt 
chkng^d during the emission so Aj is collmear with AK Since the angular 
momentum of the rotator muM be a multiple of /?'/2t, the oMy yalues 
Aj’ can taTi^ ate ±1 or 0, which is the selection rule. Ih Chap. Vf; we 
show that the same rule is obtained by other methods in a nlbre gehefgil 
case. Of course, it is somewhat illogical to apply a theory of this kind, 
based mainly on classical considerations, to a quantized atom. The 
above treatment is very useful, however, in trying to understand how 
the selection rule arises. 

8. POLARIZATION RULES 

From the selection principle we can obtain information as to the 
state of polarization of the emitted light Huppose, first, that Aj — ±1. 
Then AP — /i/27r, and we must have a — h, so the electron moves in a 
circle, and the axis of the circularly polarized eimssion is normal to the 
plane of its-orbit. Suppose now that Aj = 0. Then AP = 0, and we see 
that either a = 0 or 6 = 0. The rotator becomes a linear oscillator, 
and emits a linearly polarized wave with axis parallel to the direction 
of motion. In the absence of an external field, the atoms arc oriented 
at random, and these predictions cannot be tested. When a field is 
applied, a test becomes possible, for the atoms then take up definite 
orientations with respect to the linet^? of force, as we saw in the discussion 
of the Stern-Gerlach experiments (Chap. Ill, Sec. 18). Before passing 
to the study of the spinning electron, we take up the behavior bf the 
hydrogenic atom as a spatial configuration, both in the absence and 
piiesence of external fields. 

j 9i SPACE QUANTIZATIOJS[ 

Consider a hydrogen atom subjected to a weak :§elfl 
to indicate a fixed direction in space. In general, the nmtion of the 
qlectron will be three-iiiinensional and will contain fh^^ee frequencies, 
so that three quantum^conditions are necessary for fixingUhe energy 
equates. * One of these quantum conditions restricts the Atom to A fihtte 
number of possible orientations in the external fields iF(^ uniforrA 
elhctrio and magnetic fields, the oomponem of ^he total angular niomeh^ 
4um4n the dirfotion of the Bold in WUstant^ though the plane coaitaiiiliig 
ihe^nueleds and the velocity* vechor Of the electron eontihuaiiy oHanges 
its position. In these and similar cases it is customary to speak M^kii 
Ol^^entatipn of the at^m. or to say the ato^ is'spage.gj^iantized. 
Anticipating, we may say that when the field is very ^slowly reduced to 
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zero the expression for the energy becomes identical with that obtained 
by quantizing the undisturbed atom and the atom is left with its angular 
momentum vector in one of a discrete set of possible positions with 
respect to the direction of the original field. The positions may not 
be the same for all types of force fields. 

In Fig. 12a, let OZ be the direction of the lines of force. Let the 
angle y determine the position of the electron in the plane of the orbit. 
(p and 6 are the space polar coordinates of the electron with OZ as the 
pole. The kinetic energy in terms of r and y is 

rp _ (Pri- + Pyj) --, 

Fig. 12o and 127).— Spatial quantization of hydrogen. 

while in the space polar coordinates r, <p, and it is 

(prr + peO + p^^) 

so that 

and, therefore, 
Prr + pyy = prV + pt,e + 

Pydy = podd + p^dif. 

-4P-rdy = §PedB + jp^dip. 

The quantum conditions require that 

Pydy = kh, I p^d(p = kih and cp pedO = 
0 Jo J 

(43) 

(44) 

(45) 

and therefore that k — ki + k^, p^ is the angular momentum about 
the line OZ and is constant as can be shown from the Lagrangian equation 
of motion; py is the total angular momentum of the electron and is also 
constant; py and p^ are connected by the relations p^ = py cos a, where 
a is the angle between p^ and the direction of the field before its removal. 
That is, 

cos a = ki = ±(1, 2, 3 • • • fc), A: = 1, 2, 3 • • • ra. (46) 
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Figure 126 shows the possible orientations of the angular momentum 
vector with respect to the (vanishing) external field for the value k = 3. 
The numbers placed at the end of each vector are the values of ki. 

The expressions for the energy and the constants of the orbit are the 
same as before but in addition the orbits are oriented in such a way 
that the cosine of the angle between the angular momentum vector 
and the direction of the field can take only the values required by equation 
(46). 

An experimental test of the existence of space quantization in the 
case of the hydrogen atom was carried through by Phipps and Taylor, 
and by Wrede (Chap. Ill, Sec. 18), who performed the Stern-Gerlach 
experiment with a beam of atomic hydrogen produced by allowing the 
atoms to escape from a discharge tube, through a systcjn of narrow slits. 

10. CLASSICAL THEORY OF THE ZEEMAN EFFECT 

We now proceed to study the behavior of the hydrogen atom in a 
magnetic field, and especially the effect of such a field on its spectrum. 
Zeeman discovered, in 1896, that if a 
light source is placed in an external 
magnetic field of a few thousand gauss, 
each line of its spectrum (with few ex¬ 
ceptions) is split into a number of 
polarized components. In the case of 
hydrogenic atoms (and in the singlet 
series of other atoms), a so-called 

normal triplet is observed if the line 
of vision is perpendicular to the lines of 
force. As shown'in Fig. 13, the elec¬ 
tric vector of the outer components is 
perpendicular to the lines of force; 
that of the undisplaced, parallel. The 
letters s (senkrecht) and p (parallel) 
are used in referring to the components. 
Along the lines of force, the s-components are circularly polarized; the 
p-component is absent, as in Fig. 13. 

The displacement of an 5-component in the frequency scale is 

Normal Zeeman Triplef 
Transverse Effect 

Fig. 13.—Normal Zeeman triplet. 

Lv 1JL 
m 

where L is called the frequency of the Larmor precession, for reasons 
now to be explained, and in the wave-number scale, 

H 
A? = 

m 4tc* 
= 4.70.10-' H, (47) 
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where e is the absolute value of the electronic charj2;e in electrostatic 
units. 

The classical interpretation of Lorentz is based on the motion of an 
oscillator carrying the charge e and having the fundamental frequency 
V, The component of its motion parallel to the field is unchanged in 
frequency. The radiation due to this component is a spherical wave, 
plane polarized parallel to H. An observer looking along H will receive 
no energy from this wave; seen perpendicular to the field, it yiedds the 
p-components in the Zeeman patterns of all lines emitted by the atom. 

Now Larmor^s theorem (Appendix VIII) tells us that when a uniform 
constant magnetic field is applied to a system of particles having identical 
e/m ratios, the resultant motion is the same as that which is performed 
in the absence of the field, except that a uniform prec(ission of the whole 
system around the lines of force is superposed. This uniform rotation 
is called the Larmor precession. In the case of the harmonic oscillator, 
the fixed center of attraction is the center of rotation. Looking along 
the Z-axis, which is chosen as the direction of the field, consider th(^ 
projection of the motion of the field free atom on the xy plane. If the 
coordinates of the electron are 

= A cos {27rvt — a), y' = B cos {'Zwvt — (48) 

then, by Larmor’s theorem, after the field is applied these are also the^ 
coordinates in axes which turn around the direction of H with frequency 
L, so that the coordinates in resting axes will be 

X — cos 2TrLi — y' sin 27rL^, y — x' sin 27rLt + y' cos 27rLt. 

Substituting equation (48) in (49), we have 

X = C cos [2Tr{v -[" L)t H- 5] -|” Z) cos [27r{v —-f* e], 
y ^ C sin [27r{v -j- Ij)t “f“ — Z) sin \2Tr(^v — Z/)/- -f" €]> 

where C, 5, Z), and e are found from the defining equations, 

2Ce^^ = Ae-'^ + Be^^ , 2De'-^ = Ae^ + Be . 

(49) 

(50) 

Since the axes are right-handed, the vibration with frequency 
V A" B 
V — L 

represents a 
I right-handed 
1 left-handed 

circularly polarized wave when the observer 

looks along H. Seen from a position in their equatorial plane, these 
waves appear plane polarized and give rise to the ^-components of the 
triplet. 

In the absence of the field, the resultant amplitudes of each spectral 
line parallel to the x-, ?/-, and z-axes are equal. From this fact 
and the above equations we find that the Zeeman pattern as a whole 
should show no polarization. Experimentally, this is true in many cases 
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although exceptions are known, and have been studied by Wiechert 
and his collcaguesj The t heory ont]ine<l here was considered a striking 
triumph since it yields a coinplote explanation of the normal triplet. 
Its defect is that it pn^dict-s normal triphd/S for every atom, since x, 2/, 
and 2 can be regarded as the coordinates of the electric center of gravity 
when there are several electrons, in complete disagreement with the 
existence of so-called anomalous Zeeman effects in which more 
complex patterns are observed (Chap. X, Sec. 8). This is a defect 
of the model used, and not of electrodynamic theory. We can see this 
from the fact that Voigt arrived at an interpretation of the Zeeman 
pattern of th(‘ jD-lines of sodium by the use of coupling forces depending 
on the velocities of the electrons. 

11. QUANTUM THEORY OF THE ZEEMAN EFFECT OF HYDROGEN 

In quantum theory, the splitting of a spectrum line into several 
components must be trac('d to changes in the allowed energy values of 
the emitter. The energy levels of hydrogenic atoms in the presence of a 
magnetic field were obtained independently by l)(d)ye^ and Sornmerfeld.® 
In agreement with (experiment, the result is the normal triplet. This 
is a lucky coincidence, for the same rc^sult is obtained when the electron 
spin is taken into account. Such is not the case in non-hydrogenic 
atoms, where the spin must be considered in order to get correct results. 
However, we shall giv(‘ here a theory which applies to any atom, neglect¬ 
ing the electronic magnetic moment. Let r, 6, (p, be the polar coordinates 
of an electron in a resting frame of reference and r, 0, x? its coordinates 
in a frame which turns around the axis d — 0 (the direction of the field 
H) with angular velocity 27rL. When the field is zero, the kinetic energy 
of the system is given by 

2To = 2m(r^ + sin^^ <p^), (51) 

where the summation extends over all the electrons. 
If we replace <p by x? this becomes the kinetic energy measured in the 

rotating system when the field is H, The kinetic energy referred to 
the resting system Th is still given by the function on the right side of 
equation (51), but the value of <p is changed. In fact, ipi = Xi + 27rL, and 

2Th = sin'^ 0 T sin^ B x • ^ttL + 
r^sin^^. 4x21/2). (52) 

Neglecting the term in L2, this shows that 

ATH TH To = 27rLpx_^ (^^3) 

^ See Summary in Graetz’ “Handbuch d. Elek. und. Mag.” 
8 Physik, Z., 17, 491 (1916) 

Z., 17, 507 (1916) 
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For an observer in the rotating system, the space quantization of Sec. 9 
will be valid and if j denotes the inner quantum number, 

Px = —j ^ m ^ m = 0 excluded. (54) 

The level m = 0 does not occur for dynamical reasons (Compare 
Sec. 13). The potential energy depends only on the distances between 
the particles and is the same in both systems of coordinates, so that the 
change of the total energy is equal to AT//; 

AE = mhL. (55) 
Consider two stationary states, with energies Ei and E/ in the absence 
of the field, which combine to give a spectral line 

hv — Ei — E f. 

The frequencies emitted in the presence of the field will be 

h(p + Ap) = Ei + AEi - Ef - AEf. 
Therefore, 

Ap = (nii ~ m/)L. (56) 

(Often the symbols o/27r or Avn are used in place of L; the subscript n 
indicates that Avn is the value of Ap appropriate for the normal triplet.) 
This equation predicts lines which lie symmetrically on either side of the 
original line, at intervals of the magnitude L. Thus, if the greatest 

values of \mi\ and|m/| arc ji and j/, we should expect 
lines at the positions, 

0, ±1, ±2, • • • ± (ji + ;'/), 
times L, with the origin at the position of the field-free 
line. In general, each line could arise from several 
transitions. As a matter of fact, only the normal 
triplet is observed. 

Aside from very small oscillations in magnitude 
and direction occurring with the orbital frequency of 
the electron, the vector j processes uniformly around 
H with frequency L; to the same approximation, its 
component along the field is constant, as shown in 
Fig. 14, It must be noted that the quantum con¬ 
ditions of Sec. 4 are applied in the rotating coordi¬ 
nates. However, it is customary to refer to the angular 

momentum vector and its ^-component in the resting coordinates as m and 
jj though they are neither quantized, constant, nor identical with the m 
and j used in the paragraphs on space quantization. This is justifiable 
to a high degree of approximation. 

The fact that only the components 0, ± 1 exist is due to the action 
of a selection principle. Considerations of the angular momentum lost 

I* 

diagram for hydrogen 
atom in a uniform 
magnetic field. 
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in the radiation process cannot be applied here, because conservation 
of angular momentum holds true only for the system composed of the 
atom and the apparatus producing the field. The correspondence 
principle yields a definite result. The reader may refer to Chap. VI, 
Sec. 6 for an exposition of the basis for the following remarks. To 
derive the selection principle for m, we note that the ^-component of the 
electric moment contains only the original frequencies of the motion. 
The coefficient of 2'KLt in the Fourier series for the 2-component is zero, 
so that the corresponding (quantum number m must remain unaltered 
in any transitions giving light polarized with the electric vector parallel 
to H. But 2TvLt appears in the series for x and y with the coefficients 
+ 1 and — 1, so m must change by ± 1 in transitions giving light with the 
electric vector perpendicular to 11, that is, 

Am = 0 /or p-components, ±1 for s-components, 

and we have the Lorentz triplet. The circular polarization of the waves 
giving the 6‘-components is concluded from the amplitudes and phases 
of the corresponding terms in 
equation (50). In very strong 
fields, this selection principle is 
violated, and components appear 
at ±2, and ±3.^ This was pointed 
out by Bohr, who detected the 
additional components in photo¬ 
graphs published by Pasclum and 
Back, and is explained as due to 
the increasing importance of terms 
in for L is proportional to H. 

The physical significance of our 
results will be clear from Fig. 15, 
which shows the Zeeman splitting 
of the levels 83 and 22 of hydrogen. 
At the left are the field-free levels. 
The allowed orientations of j in the 15.~Magnetic energy levels of hydrogen. 

field are shown in the center and the corresponding energies on the right, 
as given by equation (55). The selection rule allows only the transitions 
Am = ± 1 or 0 as indicated by arrows. 

12. THE STARK EFFECT 

It is rather surprising that the influence of an electric field on spectral 
lines was discovered many years after the Zeeman effect, for the shifts 
of wave length which can be produced with usual laboratory facilities 
are large compared with those due to the strongest magnetic fields. 

1 Paschen and Back, Ann. Physik, 39, 897 (1912), and 40, 960 (1913). 
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In 1913, Stark^ demonstrated that in a field of the order of 100,000 volts 
per centimeter the hydrogen Balmer lines observed transverse to the 
field are split into a number of linearly polarized components. The 
difficulty which had thwarted previous attempts was twofold: First, 
the Stark effect is much smaller in non-hydrogenic atoms than for hydro¬ 
gen; and second, it is difficult to increase the potential gradient in the 
ordinary discharge tube because any attempt to raise the applied potential 
simply increases the ionization and decreases the resistance of the tube. 
Stark overcame this trouble by placing an auxiliary electrode E close 
[)ehind the cathode C, which is perforated, as shown in Fig. 16. Then, 
due to the fact that this electrode is inside the cathode dark space, no 
discharge takes place in EC. Positive ions are accelerated toward C 

and some will pick up electrons on the way, forming neutral H atoms. 
The fast atoms (and ions also) whicli pass through the perforations 
and emit light in EC are called canal rays.’^ Soon after Stark’s dis¬ 

covery, Lo Surdo^ found that the faint light emitted in the cathode 
dark space also shows the effects described above^ For descriptions 
of- experimental details and for an account of the Stark effect in non- 
hydrogenic atoms, we refer the reader to Chap. XI. Here we shall 
calculate the energy levels of the H atom in a uniform electric field 
and the orbits of its electron. The field is supposed so strong that the 
modifications due to relativity and electron spin may be neglected. 
(The energy levels in a weak field are discussed in Sec, 16.) The solution 
of this problem was obtained independently by Schwarzschild'^ and 
Epstein^ in 1916 and was a real triumph for the quantum theory because 
classical theory was powerless to attack the problem. Suppose the 
field is directed along the positive Z-axis. Then, the potential energy 
of a positive charge e may be taken as and that of an electron will 
be eFz. To solve the problem, we use the Hamilton-Jacobi equation. 
This is not separable in polar or Cartesian coordinates, but becomes 

1 Berl. Siizun^sberichle (1913), A?in. Phiysik^ 43, 965, 983 (1914). 
2 Acccui. dei Lincei, 23 (1914). 
3 Berl, Sitzungsberichte, April (1916). 
^ Ann. Physik, 30, 489 (1916). 
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so in parabolic coordinates, v?, which are defined by the relations _ „2) 
x = $77 COS <Pyy = sin (P, z = ^' (^7) 

from which we see that (p is the polar angle in the xy plane. If we write 

p- = + 7/2, r2 = + y^ + 
we have 

^ = r + z, 7]^ = r — z, r = (58) 

The coordinate surfaces ^ = constant and rj = constant are paraboloids 
of revolution. Figure 17 shows the parabolas in which they intersect 
the yz plane, having the equations 

2 - 2};*/“ = + (59) 

2 

Fig. 17.- -Parabolic foordiiiate's. 

The origin is the focus of all these curves; the segment of the 2/-axis 
intercepted between the two branches is the latus rectum; for the first 
family it is 2^^ and for the second 27/2. This property helps us to visualize 
the positions of these curves. The curve 77 = 0 is the positive 2:-axis 
(twice covered), while ^ = 0 is the negative z-axis. As f and 77 increase, 
the parabolas become wider, with vertices farther from the origin. To 
find the expression for the element of arc, it is convenient to consider 
its familiar value in cylindrical coordinates, 

ri,s2 = dp2 + pHip^ + dz\ 

whence, by equation (58), 

= (^2 -F 7/2) (df2 ^ ^^772) + (60) 
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and the kinetic energy is 

T = (61) 

From this we find the momenta, 

= mo(^^ + Pr, = mo(f2 + v^)r]j p^ = (62) 

Thus, p^ is the component of angular momentum around OZ. The 
significance of p^y is not simple; but they may be rewritten as 

T T 
Pi = mo(r + i) p, = nioir — z) -■ 

? 

When T is expressed in terms of the p’s, we get for the energy function 

1 

2m,(e + 
vi^ + p,“ + 

Ze^ 

(i!_+ v'^) 
2- 

+ eF (e - r,^) = E. (63) 

Since (f> does not appear in this, we see from the canonical equation, 
dp^/dt = —dHfd<p, that p^ is constant. Multiplying equation (63) 

by 2mo(^^ + if), we get 

Vi^ + Vf + + V~^)p<p^ — 4mo^e^ + moeF{^* — ri*) — 

2m.o(?^ + ii^)E 

which is separable. We can write 

pf = 2m.«Ee + 2a, - - m,eF^\ 

pf = 2moEri^ + 2a2 — ^^2 + WocFij'', 

where 
Ot\ *4” 0(2 ^ ^ITIqZc^, 

0, (63a) 

(64a) 

(646) 

(65) 

Then the quantized orbits arc picked out by applying the conditions 

^p^d^ = riihy ^PndT) = n^hy ^)Pipd<p = mh, 

whence we have 

P<P = 
mh 

To obtain the range of integration for the other two integrals we note 
that pt(or pr^) is the square root of a rational function of J(or 77). Since 
the p^s must be real, the limits of variation of f and rj will lie at the points 
where the values of p^^ and are changing from plus to minus, that 
is, at points where they are zero. When F is zero, the expression on 
the right of equation (64a) becomes quadratic after multiplication 
by and therefore gives us two limiting values of On taking the 
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square root, we have 4 limiting values of f, but the negative ones have 
no physical meaning, so we restrict our attention to the positive roots. 
When F is not zero, there is a third root of the equation which is very 
large and which does not concern us when dealing with values of F 

obtainable in the laboratory. We arc interested only in the two roots, 
and Jmia, which correspond to the pair existing when F = 0. These 

considerations show that the orbit is restricted to an annular space 
bounded by the surfaces f f rj = t; = 

If we substitute = x or = x both integrals reduce to the form 

= + + Dx^ dx, (66) 

where in the integral for 

A = 2mo£’, 5 = ai, (7 = D = —moeF, (67) 

and in the integral for 77, 

A = 2mi)E, B — a2f C = — D = +moeF. (67a) 

Evaluating these integrals, we have two equations containing E, ai, and 
a%. Using equation (65), we eliminate the as and obtain 

E = ~ (68) 

where the total quantum number n, is given by 

n — ui + 712 + (69) 

States for which m takes a specified value —a have the same energy 
as those for which m = +a. Therefore, we restrict m to positive 
values in this formula. 

A term in the energy proportional to has been computed by 
Epstein, and gives rise to effects which have been observed at very high 

fields by Takamine and Kokubu. 

The details of obtaining equation (68) are as follows: 

Integral 66 is evaluated in Appendix II by expanding the integrand in powers of the 

small quantity D. The result is 

2nh = -2,ri(C’^ - BA-«) + “ f^)' (666) 

Since the term containing D gives the Stark effect it is small compared with the first 

two terms. Without appreciable error wc may use an approximate value of B^/A in 

this term. To get this we drop the terms in D and solve the resulting equation, 

obtaining 

A 
= (cH _ ^y, 

and 
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Putting this in the last term of equation (66h), and solving for By we have an equation 

giving B in terms of Ay Cy and D. It represents two equations, in which B and D take 

the values given in equations (67) and (67a), respectively, while n takes the values 7ii 
and n2y respectively. Writing down these two equations and adding them we have 

2m,Ze^ = 

Now, we put ~ —mhi/2Try and calculate an approximate value of A, neglecting 

the terms in F: 

^ 
h-{ni + n? + rn)- 

W e use this value in the correction term in equation (66h). Writing /?i + as -f rn ~ n, 

we calculate a new value of Ay and then, by equation (67), we arrive at the energy 

equation (68). 

13. ENERGY LEVELS, SELECTION PRINCIPLES, AND POLARIZATION RULES 

IN THE STARK EFFECT 

As mentioned before, Stark and Lo Surdo found that in the electric 
field each Balmer line is split into a number of components. When 
the line of vision is transverse to the field, all components are linearly 
polarized. For some components, the electric vector vibrates per¬ 
pendicular to the field (,s’-components), and for others, parallel to it 
(p-components). Observing longitudinally, only the .^-components 
appear, and these are unpolarized. These facts are fully explained 
by ideas similar to those in Secs. 7 and 8. The application of the field 
does not alter the angular momentum component of the electron around 
the z-axis, although the two components at right angles to it are 
continually changing, for the force on the (dectron is parallel to the 
2;-axis. If we suppose the atom replaced by a harmonic oscillator 
radiating the actual emission frequency, having amplitudes a, 6, and c 

parallel to the x-y ?/-, and ^:-axes then the ^-component of the impulse 
moment of the radiated quantum will be 

a and fi are the phases of the x- and ^-components of the electric moment. 
This must be equal to the change of /v, namely hAml'Zwy and by reasoning 
like that leading to equation (42) we arrive at the following possible 
cases: 

1. Am = -|-1, a — by c = Oj and sin(a — /?) = ±1. 

This corresponds to circularly polarized light with axis parallel to OZ. 

Observed at right angles to the lines of force, such waves appear linearly 
polarized with electric vector perpendicular to OZ, and give rise to the 
s-components. In the longitudinal Stark effect these components are 
unpolarized, for there is no preferred direction of rotation around the 
lines of force, For each atom yielding a certain frequency there will 
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be another yielding the same frequency which is the mirror image of the 
first in a plane parallel to the force-lines. 

2. Am = 0; a or h or sin(Q! — 13) must be zero. There is no preferred 
direction in a plane perpendicular to the lines of force. Therefore, 
there is no reason why sin (a — /?) should be zero, and no reason why 
a should be zero while b is finite, or vice versa. The only way to avoid 
giving preference to some one direction is to make a = 6 = 0. Then 
we have only a linear oscillation parallel to OZ which gives rise to the 
/^-components in the transverse Stark effect, and is not observed in the 
longitudinal effect. Summarizing, the sel(‘ction })rinciple for the equa¬ 
torial number states that Am = ± 1 or 0; transitions in which Am = ± 1 
yield s-components; those in v)hich Am = 0 yield p-components. 

By the energy equation (68), the Balmer energy level having a given 
total quantum number n is split by the field into a number of neighboring 
levels characterized by different values of ni, no, and m. The wave- 
number interval between one of these levels and the Balmer level is 

If F is in volts/crn., this has the value 

A? = 6.45 • - Ux). (71) 

Let us consider the possible values of ni, no, and m for a given n. The 
value m = 0 is excluded. It corresponds to an orbit located entirely 
in a plane through the nucleus, parallel to the lines of force. The 
limits of its motion are determined by finding the roots of equations 
(64a) and (646) after putting /v = 0. The minimum values of ^ and 17 

are zero, and this means that the orbit will cross the negative and positive 
z-axes. The region swept over by the orbit is contained between two 
parabolas 97 == and ^ = Inmx- It can be proved’ that if the system 
is not degenerate, the electron will eventually pass indefinitely close 
to any point of this domain, and so it must approach arbitrarily close to 
the nucleus. For this reason, such orbits are considered impossible 
and arc excluded from further consideration. It follows that and 
712 can take values from 0 to n - m inclusive, subject to the condition 
ni + 7?2 + m = n. For each positive value of 712 — ni in equation (71), 
there is a negative value, equal in magnitude, which means that the 
displaced terms arc disposed symmetrically about the original term, 
and thus the pattern of displaced lines is symmetrical about the original 
line. We illustrate this by listing the possible combinations of 7ii, 712, 
and 7n, together with the corresponding values of nin^ ui) for the 

initial and final orbits of Ha. 

1 Born, “Atomrnechanik,” p. 342. 
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ni Ui m n(n2 — ni) 

2 0 1 -6 

1 1 1 0 

0 2 1 +6 

1 0 ! 2 -3 

0 1 2 +3 

0 0 3 0 

1 0 1 -2 

0 1 1 ! +2 

0 0 2 ! 0 

Figure 18 illustrates the facts presented in the table. The displacements 
of the lines emitted from the field-free Balmer line are obtained from the 
formula, 

Ap = 6.45 • 10- [n/(n2/ — riif) — n,(n2» ~ (72) 

derived from equation (71), The sub¬ 
scripts i anf / refer to the initial and 
final quantum states. Figure 19 shows 
the parallel and perpendicular com- 
ponents of the first four lines in the 
Balmer series. Lines which were 

n^-nj m n(n2-nj) 
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Fig. 18.— Energy diagram: Stark effect of Ha. 
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Fig. 19.—Components of Ha, H0 and 
Hy in an electric, field. 

observed by Stark are drawn in full, while additional components 
predicted by the theory are shown by question marks. Intensities 
are indicated roughly by the heights of the lines. Photographs of the 
Stark effect of Hy, obtained with a Lo Surdo tube,^ are presented in 
Fig. 20. These are reproduced from plates kindly placed at our disposal 
by Dr. J. S. Foster. The separation of the lines is due to the increase 
in field strength as the surface of the cathode is approached. To give 

^Phys. Rev,, 23, 667 (1924). 
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an idea of the scale of these patterns, it may be stated that the strong 
outer parallel components of Ht are displaced by 0.23 k and 0.19 1, 
respectively, when the field strength is increased 1 kilovolt per centimeter. 
At 38 kilovolts per centimeter, the total spread of the parallel pattern 
in Fig. 20 is more than 17 1. Foster found that the displacements are 
rigorously proportional to field strength up to this value, in agreement 
with theory. 

The agreement between theory and experiment in the Stark effect of 
hydrogen may be described as practically perfect and has been one 
of the strongest supports of Bohr’s postulates and the quantum 
conditions. 

(a) Qi) 

Pio. 20.'—Stark effect of Hy; a, p-components; h, s-coniponents. {After Foster.) 

14. THE MOTION OF THE ELECTRON IN THE STARK EFFECT 

In certain cases, the motion of the hydrogen electron in a vStrong 
electric field is very simple. If ni = n2 = 0, then n — m and the orbit 
is a circle perpendicular to the field. It lies upheld from the nucleus, 
and both the radius and the energy are changed only by quantities 
of the second order. In other cases, the motion is more complex. As we 
have mentioned, the orbit eventually fills up the ring-like space between 
two paraboloids of the rj-family and two of the Hawiily. lu a single 
circuit around the nucleus the orbit varies but little from a Kepler 
ellipse, but in the course of time the eccentricity of the orbit and its 
inclination to the lines of force will vary, and the orbital plane precesses 
around the direction of the field. Methods of calculating the secular 
changes of the ellipse have been given by Bohr,^ Lenz,^ and Klein.® 

1 “Quantum Theory of Line Spectra,” Kopenhagen Academy (1918). 

^Z.Physik, 24, 197 (1924). 

»Z, Physik, 22,109 (1924). The papers of Lenz and Klein discuss the more general 
case in which both an electric and magnetlG held are present. 
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lief erring to Fig, 21, B is the olaincal renier oi the orbit. If the electron 
were f)ernianently located at- /I, its potentiial (*nergy in the extenuil 
field would be ecjual t-o the average polent.ial eiu^gy, taken with respect 
to time over the unperturbed orbit. That is, if z is the 2:-coordinate 
of B, then 

<1? 
is the period of the undisturbed motion. 

Sea cos a 

" 2 * ’ 

The result is that 

where e is the eccentricity of the ellipse, and a its semimajor axis, while 
a is the angle between OZ and the major axis. Thus, for reasons of 

EH I plica! Paih 
of PoinfB 

, Oppos/fe pQcus 
of Ellipse 

■ - 'EJecirica! 
Confer 

0B^2B0'=§ea. 

Fi(i. 21.—Orbit of the hydro*?on oleetrori in an electric field. 

symmetry, B lies on the major axis at a distance from the nucleus. 
Since the average potential energy over a revolution of the electron is 
the same for all its revolutions, z is constant, and the electrical center 
moves in a plane perpendicular to Z. As a matter of fact, the path 
of the center is an ellipse, which it traverses with simple harmonic motion, 
having the frequency 

From this we can obtain the energy change caused by the field. The 
center of gravity of the charge moves like a Planck oscillator, and the 
energy due to this motion must be AiJ == nphvp^ where up is a new quan¬ 
tum number. In fact AE is found to be identical with the value in 
equation (68), if we put 

niF - ni — (76) 
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16, THE STARK EFFECT IN WEAK FIELDS 

Up to this point, the precession frequency vp due to the electric 
field was supposed to be large in comparison with the frequency of the 
relativity precession. In the opposite case of a very weak field, Kramers^ 
showed that the formula for the energy change is 

= -X2)) 
n and k are the total and azimuthal numbers, while m is a quantum 
number measuring the component of angular momentum parallel to the 
field. At intermediate field strengths, the formula contains terms 
in both F and F'\ The reason for the absence of a term proportional 
to F in e(}uation (77) is easily explained. When the field is strong, it 
suppresses the relativity precession, and the electrical center of gravity 
lies always on one side of the plane through the nucleus and perpen¬ 
dicular to the field (Tig. 21); but when the field is very weak, the relativity 
precession carries the electrical center first to one side of this plane and 
then to the other. Thci first-order term in the energy is first positive 
and then negative and its time average is zero, so that the quadratic 
term, equation (77), is the largest term in AE. 

16. THE EFFECT OF ELECTRON SPIN 

As stated in Chap. Ill, Sec. 19, the electron behaves to a high degree 
of approximation as though it possessed an intrinsic angular momentum 
h/^TT and a magnetic moment of one Bohr magneton, {h/2T){e/2mc), 
Abraham- calculated the ratio of angular momentum and magnetic 
moment for a rigid spherical shell having a charge c uniformly distributed 
over its surface, obtaining the result c/rm;, which agrees with the ratio 
of the quantities assigned above. Since the charge of the electron is — Cj 
we have the vector e((nation 

(78) 

expressing the fact that the spin vector ps and the magnetic moment 
vector are opposite in direction. Now the electron moves with velocity 
v through the electric field E of the nucleus. If it were uncharged, its 
velocity would not change in either amount or direction, and the electron- 
magnet |i would behave as though it were subject to a magnetic field 

H' = 
[vE] -, 

c 
(79) 

where [vE] means the vector product of v and E. (See Appendix VIII; 
H' is analogous to the field E' = [vH]/c which acts on a charge moving 

1 Z. Phyfdk, 3, 199 (1020). The results of this paper are discussed in Van Vleck's 

“Bulletin’' and Pauli’s Handbuch article in considerable detail. 
Mnn. Phydk, 10, 105 (1903). 
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with velocity v through a magnetic field H.) However, the motion 
of the electron is not uniform and so the energy change is not obtained 
from equation (79). At first, this fact was overlooked and the energy 
change caused by the existence of y was calculated as follows: 

In the magnetic field H' the moment will precess around the lines 
of force with angular velocity co' = elV!me in accordance with an easily 
proved extension of Larmor’s theorem (Appendix VTII). Just as we 
found the change of energy LTh in equation (53), neglecting electron 
spin, so we prove that this precession gives rise to an instantaneous 
energy change 

A£' =(6>'-pJ= (80) 

where (w' • ps) stands for the scalar product of w' and ps. The pre¬ 
cession will not be uniform because H' varies as the electron traverses 
an elliptic orbit. We shall assume that it follows the change of H' 
without appreciable lag. 

The procedure is nearly the same when the non-uniform motion of the 
electron is taken into account. We shall see in Sec. 18 that the velocity 
of precession of the spin vector, as seen by an observer at rest with respect 
to the nucleus, is 

^ eir 
2mc 

(81) 

which is just one-half the value used above, and so equation (80) is 
replaced by 

= (u-ps) = 
(y-HO 

2 
(82) 

Pig. 22.—Motion of the spinning 
electron. 

In Chap. VI, Sec. 10, it is proved that 
the presence of a small perturbing term 

AJ? gives rise to a change AjB of the 

total energy, where KE is the time 
average of Ai?, taken over the unper¬ 
turbed orbit; so we proceed to calculate 

AJ5^. Since the components of the elec¬ 
tric vector are 

E. 

the vector itself may be written 

and 

(83) 

c 
(84) 
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but m[rv] is the angular momentum vector pk associated with the revolu¬ 
tion of the electron around the nucleus, and is directed perpendicular 
to the plane of the orbit, as shown in Fig. 22, so 

H- - (85) 

Putting the values of equations (81) and (85) into equation (82), we have 

" 2-5o2,.3(Ps-Pk)- (82a) 

Now Pa = sh/2Ty where s = ±1^; pk — kh/2w] and so 

(p..p.) (86) 

where d is the angle between ps and pk. As a matter of fact, ps is space 
quantized in the field H', and ^ = 0^^ or 180°, so that the total angular 
momentum of the atom is 

j/i _ (k ± s)h 

and 
j ^ k ± 

Therefore, by equation (82a), 

^ Zehkh^(\\ 

(87) 

For a Keplerian ellipse of semiminor axis 5, 

and by equation (22), 

so finally, 

1 _ 1 
fZ l)Z’ 

^E = Rhca^Z^^f,- 

(88) 

Adding this to the relativity correction of equation (36), the correction 
of the energy value due to both relativity and electron spin is found to be 

AE{n, k, s) 
Jihea^ZyS 

n* \4 
n . sn\ 

k ky' 
(89) 

It is understood that s is positive if p, and pk have the same direction. 
The alteration of the spectral term is 

A3’(n, k, s) 
Ra^^/n _ 3 _ sn\ 

n* \k 4 fcy 
(90) 

As emphasized in the preceding sections and in the sections on X-ray 
spectra, the first two terms of equation (90) are in good agreement with 
experiment, so there does not appear to be room for the existence of the 
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iorin m/k^y which splits each relativistic level into two levels, corre- 
spondinii; t o the values .v ~ ± * 2. 

17. MODIFICATIONS OF THE ENERGY FORMULA CAUSED BY THE NEW 
MECHANICS 

Preparatory to th(i removal of this difficulty, it will be convenient to 
rewrite the last term of equation (90) in a more general form. Let us 
suppose for the instant that 6 is not zero or tt. Then in accord with* 
principles (\stablished in Chap. X, Sec. 14, the vectors and will 
process around their resultant, which will have only certain quantizi^d 
values. Calling the resultant j/?/ 27r, we see that 

^ ^.2 2ks cos Oy 

and 

cos e = -• (91) 

Using this value in equation (86), the result is that the last term of 
equation (90) is changed to 

Ra^ZXP - k- - §2) 

2n^ 
(92) 

Heisenberg and Jordan’ and also Richter^ showc^d by the new mechanics 
that equation (90) must be replaced by*^ 

AT 4_ ^ - 

7C \ 4 Z + LI 

n\jU +1) - l(l + 1) - s(.9 + 1)J\ 

The number n takes the same values as before, but Z = A: — 1, and takes 
values from 0 to n — 1 inclusive; the definition of j is now the vector 
sum of I and ,s*, • • ♦ that is, j = Z ± If Z = 0, the third term in 
equation (93) is replaced by —n/2(Z + V2)' "The levels predicted by 
equation (93) are identical with those obtained from the relativity 
correction of Sommerfeld, so we can say that the spin correction in 
equation (93), superposed on a relativity correction term in which k 

is replaced by k — }-2, gives results in agreement with experiment, a 
fact which is essential for the interpretation of both X-ray and optical 
spectra. As an example, we may compute the displacements of the 
hydrogen energy levels when n = 2, expressing them as multiples of 
Ra^Z^ln"^. The terms of Sommerfeld^s theory are given by the values 

jx 3 
of Putting & = 1 and k = 2, these terms lie at the positions 

and J4, measuring down from the position of the Balmer term in 
the energy diagram, Fig. 23. The following table shows how these 

1 Z. Phydky 37, 263 (1926). 
Pev,y 28, 849 (1926); Proc. Nat. Acad. S(d.y 13, 476 (1927). 

* Here «is always taken positive. 
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sarae tonns arise from the combination of the relativity correction 
n 3 

I + ^ 
of P"ig. 23 also show their origin: 

and t lie spin correction, while the second and third columns 

l - " -- _ a 
1 + '•'i ' 

S j 
Spin 

correction 
Total 

correction 

1 Viz 

+
 

1 

¥2 y* 

% 
0 H -2 ¥4. 

Fig. 23.'—ICffent of relativity and electron spin on the terms of hydrogen. 

We see that the term arises from two combinations of quantum 
numbers. In the case of X-ray spectra, the effect of the other electrons 
in the atom is to separate these two coincident terms, because of the 
different shapes of the orbits involved, a matter which is discussed in 
detail in Chap. VIII. 

For a considerable time the riddle which is solved in this section caused 
great confusion. One set of facts seemed to point conclusively to the 
relativistic origin of the hydrogen and helium fine structures and their 
analogues in the X-ray region. Evidence drawn from the spectra of 
non-hydrogenic atoms indicated just as strongly that these phenomena 
originated from the presence of a magnetic moment within the atom. 
The combination of the two explanations, using quantum numbers 
which apparently take half-integral values, seemed artificial until the new 
mechanics demonstrated the validity of the procedure* 
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18. THE PRECESSION OF THE SPINNING ELECTRON 

In this section we prove that the angular velocity with which the spin vector 

precesses as seen by an observer at rest with respect to the micleus is given by equation 

(81). This proof is not needed for the understanding of what follows, and it may be 

passed over if the reader desires. FrenkeP and Thomas* proved equation (81) inde¬ 

pendently. We shall give a treatment like that of Thomas, but much simplified. 

Let Xf yy Zy t be coordinates and time in a frame of reference R in which the nucleus is 

at rest, and in which the electron is momentarily at the origin, whiJe xo, 2/0, ^o, and ioare 

measured in a frame 0 which moves with the instantaneous velocity of the electron at 

zero time, measured in R. For simplicity, we take z perpendicular to the orbital 

plane, and both x and :co parallel to the velocity vector Vo (Fig. 24). We pass from R 
to 0 by a Lorentz transformation, 

Xq = ko(x - V(it)y ya = y, zo = 2, k = (94) 

where 

*0 = (1 - (95) 

Fig. 24.—Coordinate systems for study of electron spin. 

Similarly, let xi, 1/1, zi, h be measured in a system 1 in which the electron is instan¬ 

taneously at rest at the origin at time M measured in R. As before, the axis Xi is 

parallel to x. The relative velocity of the two systems is given by 

Vi == Vo -f f (96) 

where f is the acceleration of the electron, and since Vj is not parallel to the x- and 

xraxes, the formulas for Lorentz transformation from R to I are more complicated. 

In R let the coordinates of the electron be a*, a^, a*, and let r and X\ be vectors with 

the components x, z and Xi, yu 21, respectively. Then the transformation^ is 

ti = r - a -f (A;i ~ kiVi{t - At) 
Vi* 

= (97) 

By eliminating x, y, z, t, between equations (94) and (97) we obtain the formulas 

of transformation from 0 to /. The result is this: / can be obtained from 0 by apply¬ 

ing two transformations in succession: first, a rotation around the z-axis through an 

angle 
(ko - l)[VoCfVo] 

--' (98) 
»Z. Phyrik, 87, 243 (1926). 

»PAt7. Mag., 8, I (1926). 

* MADXlipNa. Math. Hiifsmittel des Physikers, 1st ed., p. 209. 
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where dvo = f«d<o, and second, a Lorentz transformation characterized by the vector 
velocity 

h dvo + - 1) (99) 

The second does not concern us. In the first, the vector product of Vo and dvo has 

the value [Vofo]d< and A;o — 1 = ?^o^/2c2, so equation (98) takes the form [Vo f()]dt/2c®. 

Therefore, an observ(;r in R believes that the axes of 0 and I are parallel to his own, 

hut an observer in 0 is equally sure that the x-axis of 1 makes an angle with his own 

x-axis. This result of relativity kinematics cannot be understood in terms of our 

usual ideas of space and time except with the aid of specially constnicted hypotheses 
like the Fitzgerald contraction. 

Suppose for the sake of generality that the atom is exposed to an external magnetib 

field H parallel to the ^-axis, and let Eo and Ho be the electric and magnetic field 
strengths as measured in the system 0. To a first approximation, 

mfo — —eE„ 

and the rate of precession of the spin ve(dx)r is 

eoo 
eH, 

me 

(100) 

(101) 

when measured in 0. Suppose that tlie projection of s on the oToyo plane is directed 

along xo. For the ^‘resting'’ observer it will be along x. After time di, an observer 

in / will find by equations (101) and (98), that the projection of s has rotated through 
an angle 

dA — Ci^od/' — - 
[vofoldi 

2c2 (102) 

(aside from negligible quantities introduced by the Ix)rentz transforniation of the 
time). The resting observer will conclude, applying the transformation (97) in the 

reverse direction, that s has rotated an amount dA with respe(;t to R. Now dA is 

expressed in terras of the field strengths Eo and Hq. We proceed to express it in terms 

of E and H/as measured in R. To a sufficient approximation, the transformation 

equations are 

Ed = /co ^ E + 
c / 

(103) 

in accord with the explanation given in Appendix VITL 

(101), and (103), we obtain 

dA ^ e I jj_ko [vE] I I jj _ 
di me ( 1 + Ajo c J mc\ 

Using equations (100), 

The first term gives the Larmor precession of the electron in an external field H. If 

H = 0, |dA/dfj reduces to the value w of equation (81). 
In conclusion, we must point out that Dirac^ has developed a more general theory 

f)f the electron. According to his conceptions it behaves like a spinning body only 

under certain simple circumstances. However, this does not affect any of the appli¬ 

cations we shall make. 

19. REVISED SELECTION PRINCIPLES FOR HYDROGEN 

In Sec. 7, we stated that the selection principles for a hydrogenic 
atom are Aj = +1 or 0; Afc = ±1. The introduction of the spinning 
electron makes it necessary to distinguish between k and j, and therefore 
new components arc predicted in the fine structure of hydrogen and 

> Proc. Roy, Soo., 117, 610 and 118, 351 (19281. 
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ionized helium lines. Even before the advent of the spinning electron 
this revision was suggested by Slater^ and by Sommerfeld and Unsold,- 
independently. 

As an illustration, we shall consider the fine structures predicted 
for Ha by the two theories. Let us compare Fig. 9 with a similar energy 
diagram constructed in the same way as Fig. 23 with the aid of both 
relativity and spin corrections. This diagram is shown in Fig. 25. 
Levels which correspond to two configurations of the atom are shown 
slightly separated for the sake of ease in listing the various possible 
transitions, although they are actually coincident. Three quantum 
numbers n, and j (or s) are now required to determine a (luanturn state, 
and the values of these numbers are shown on the right of each level. 
In discussing X-ray levels it is convenient to use the symbol nkx,k2 

where fci is identical with the azimuthal n imber k. These symbols ar(5 

^kjk2 

3.2,% 33,£ 
3, 4 

3, 4 % ^2 1 

3A% 3,,, 

4 4 % 22, z 

2, 4 % 2 2 t 
2.0,'/2 Z,,, 

New Componeni- 

Fio. 25.—Fine structure of Ha on the spinning electron theory. 

also shown in the diagram. The transitions allowed by both selection 
principles are shown by full lines while those which are forbidden by 
one or both of the principles are indicated by dotted lines. Whereas 
the lowest initial level was formerly assigned the azimuthal number 
A; « 1, it now consists of two coincident levels for which /c = 2 or 1. 
The transition from 3, 1, to 2, 0, is allowed, and furnishes a new 
component. Similarly, a jump from 3, 2, % to 2, 1, yields a new line. 
The relative intensities of the permitted transitions as predicted by 
wave mechanics are given by the numbers placed on the^ arrows. We 
are now in a position to compare these predictions with experiment. 

^Proc. Nat. Acad. Sei.^ 11, 732 (1925). 

*2'. Pkydk, 86, 259 and 88, 237 (1926). 
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Only one of the new components, namely, 3,1,34 2,0, is far enough 

from its nearest neighbor to give us hope of detecting it. As a matter of 
fact, experiments which are not inconsistent with the existence of this 
component have been made by Hansen/ Kent, Taylor and Pearson,^ and 
W. V. Houston.'** The results of Kent and his colleagues will be discussed 
here. .Density measurements of plates showing the Ha doublet were 
made with the aid of a microphotometer. One of the curves showing 
density as a function of wave length is reproduced in Fig. 26, with 
wave lengths increasing toward the right. The amplitude of the 
original microphotometer curve for the }x\ak of shorter length 
was about 15 cm. Th(^ asymmetry of the shorter component is attributed 
to the existence of the faint line ate', predicted by the spinning electron 
theory. Houston's curves ar(‘ similar. 

The new theory predicts additional components of other B aimer 
lines. On the basis of the older selection principle we should expect 
each Balmer line to consist of three components, corresponding to the 
changes 3 2, 1 2, and 2 —> 1 of the azimuthal number k. The 
sep5,ration between the first two components should be very small 
compared wuth their distance from the third, and should approach zero 
as we pass to higher series members, because the spread of the ?2-quantum 
terms decreases as n grows larg(^r. All the lines should appear as doublets 
with separations which approach 0.365 cni.~^* for the higher series mem¬ 
bers. The changes predicted by the new theory are not so prominent 
as in the case of Ha. Kent, Taylor, and Pearson have obtained density 
curves for HjS and H7. In the case of H/?, these favor the new theory 

^ Ann. Physik, 78, 558 (1925). 

^Phys. Rev., 30, 266 (1027). 
^Astrophys. J. 64, 81 (1926)? Phys. Rev., 30, 608 (1927). 
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but the data for H7 do not permit any definite conclusions. The slight 
increase in width on the wave number scale as we pass to higher series 
members is borne out by the data. 

The measurement of these small doublet differences is beset with many sources 

of error which have been successively discovered and eliminated by a number of 

careful investigators. Kent and his colleagues give references to the older literature. 

To show the status of the subject, we lijst the results of five recent investigations, giving 

the separations in milli-Angstroms. Below, the mean values of the sc^paratioiis are 

compared with those obtained witli the aid of theoretical intensity computations. 

Observers Ha 
1 

PIt 

Shrum and Janicki, Ann. Physiky 76, 561 (1925)... 130 76 ' 60 

Hansen {loc. cit.). 135-8 75 62 

Janicki and Latt, Z. Physik, 36, 1 (1925). 132 72 59 

Houston {loc. cit.). 135.8 78.2 66.5 

Kent, Taylor, and Pearson {loc. cit.). j 137.0 79.1 66.6 

Means... 134.5 76.1 62.8 

Observed means in cm.~^. 

Predicted means: 

0.313 0.322 0.334 

Old theory. 0.328 0.350 0.357 
Spinning electron theory. 0.320 0.345 0.354 

More definite evidence in favor of the new selection principles can 
be obtained from the lines of ionized helium, as Slater pointed out 
(loc, cil,). Referring to Fig. 11, we may note the following alterations: 
On the new theory, 16, lie and Illd are allowed, though previously 
forbidden. In fact lie and Illd can each arise in two ways. II6, Ild, 
and IIIc each have two possibilities of realization as against one before. 
Most of these changes are not amenable to test by the aid of Fig. 11, 
but the presence of Illd in considerable strength is favorable to the new 
selection principles. Previously, its presence was explained by assuming 
an external electric field. 

20. SUGGESTED CORRECTIONS OF THE HYDROGEN ENERGY LEVELS 

The evidence in favor of equation (36) obtained from the H and 
He'^-spectra, interpreted with the aid of the correct selection principles, 
may be considered fairly conclusive. Various refinements and modi¬ 
fications of equation (36) have been proposed. The alteration of E 

due to possible asphericity of the nucleus was thoroughly discussed by 
Silberstein^ who obtained a result applicable to any rigid axially sym¬ 
metrical nucleus. To explain the fine structures of the Balmer lines 
and the lines of He on such a basis it is necessary to assume a nucleus 
whose dimensions are of the order of 2*10“^^ cm. Even then it is difficult 
to force the data into the frame provided by the theory, H. A. Wilson^ 

^Phil Mag., 89, 46 (1919); Pw, Roy. A, 98, 1 (1920). 

^Astrophys. J„ 66, 34 (1922), 
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suggested that the potential energy of the atom should be regarded as 
distributed through the space surrounding it, so that this energy (endowed 
with mass in the sense of the theory of relativity) will partake of the 
motion of the electron. This theory predicts shifts of the spectrum 
lines which are too large to escape detection, but which have not been 
observed. H. S. Allen^ calculated the correction due to a nuclear 
magnetic moment for the case of circular orbits. His results were 
extended to elliptical orbits by Ruark,^ The calculation unfortunately 
is in error, but a reconsideration of the question shows that the final 
result is of the correct order of magnitude. The conclusion drawn 
was that experiment decides against the existence of a nuclear moment 
as large as one Bohr magneton. This is in agreement with our present 
belief that the moment of the nucleus is Bohr magnetons. In 
the same paper, effects due to a possible asphericity of the electron are 
discussed, and all the above corrections are shown to be in disagreement 
with experiment. 

There is a slight error in the relativistic quantization presented in 
Sec. 6. The motion of the nucleus is neglected, and cannot be taken 
into account by modifications similar to those used in the classical 
calculations, because in special relativity the theorems concerning the 
motion of the center of mass break down, and are replaced by equations 
which are so complicated as to be useless. Then too, retarded potentials 
and magnetic forces due to the translational motion of electron and 
nucleus have not been used in our derivations. All these defects were 
remedied by Darwin.^* Schwarzschild'* showed that the equations of 
motion of a charged particle in an cdectromagnetic field can be put in the 
Lagrangian form if we use for L an expression given in Appendix VIII. 
Darwin generalized this result for any number of particles, obtaining a 
Lagrangian function which is symmetrical in the coordinates and angles 
characteristic of each particle. He then applied this Lagrangian to the 
case of two bodies, and found that the term in parentheses in equation 
(36) should be modified to read 

A: 4 4 (Af 

The last term is too small to detect in visible spectra, and in X-ray 
spectra other terms arise which mask its effect. 
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CHAPTER VI 

GENERAL THEOREMS OF THE OLDER QUANTUM THEORY 

Most of the gen(*ral theorems of the older quantum theory must 
be modified in the light of the new quantum iiK^chanics, and it might 
seem that they are now of little value. However, they are often very 
useful in giving hints as to the solution of problems in the new mechanics, 
for Bohr’s theory is a first approximation to wave dynamics, and they 
form a necessary l)ackground for reading papers which appeared prior 
to 1925. Orbital models, both atomic and molecular, as treated by 
ordinary dynamics, give concrete mental pictures which are very valuable 
in thinking about atomic systems, though exact relations must be 
secured from mathematical formulas of quite another kind. A numlxir 
of theorems based on the Bohr theory will be presented in this chapter. 

1. CLASSICAL THEORY OF LIGHT EMISSION 

We begin with a study of the light emitted by a conditionally periodic 
system (Chap. IV, Sec. 13) on the classical theory. As stated in Chap. 
I, Sec. 4, it is assumed that the emission frequencies are identical with 
those occurring in the various terms of the Fourier series representing 
the coordinates of the charged particles in the atom. 

As shown in Appendix VIII, electromagnetic theory requires that the 
instantaneous rate at which an accelerated charge radiates energy shall be 

-dE __ 
dt ~ 3c^ ' (1) 

where v is the vector acceleration and c the velocity of light. For a 
harmonic oscillator, x = A cos {27rwt + a? being the frequency, and 

X = — Ax(27ra))- cos {2Tro3t + dx). (2) 

There are similar expressions for the y- and 2:-components of acceleration 
and 

+ y2 ^ 22, 
SO that equation (1) becomes 

dF ~ 
“h Ay2 C0s2 (2fC0^ -}~ 8y) -f- Az^ C0s2 {2TrO)t “f* 5a:)]. (3) 

The average rate of emission by the oscillator is 

dt ~ s'* 

for the time average of the cosine squared is }4- 
168 

(4) 
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A similar result is obtained for a conditionally periodic system 
having the fundamental frequencies By the methods 
of Chap. IV it is possible to express the coordinates of a particle in such 
a system as functions of the canonical variables, the J's and w’s; the 
former are constants and the latter linear functions of the time of the 
form, 

Wk = + 
h 

27r (5) 

where is the frequency of oscillation of the A-th coordinate and dk 

is a phase quantity. In general, a coordinate will be represented by a 
multiple Fourier series containing th(‘ /e’s only as arguments of the sine 
and cosine terms and having coefficients which are functions of the J s; 

thus 

qk = SAn, • • • T.ik cos 27r[(7iwi + • ‘ * T,o:,)t + (5i + • • • 5,.)a:], (6) 

where each r ranges over all integer valines from — oo to -j- ^ subject 

to the restriction that nwi + etc, rnusi be positive. We shall usually 
employ the following abbreviations: 

• • • r,,k == (5i + 

so that 

Then, 
qt = :SAr,k cos (27rl>a)f. + 

X = cos (jlTT^Ti^t + 

and 
X = -2:A^.A27rlW)2 cos + ^b^) 

Sra>, (7) 

(8) 

(9) 

(10) 

and there are similar expressions for the y- and z>coiTiponents. Inspection 
of equation (10) shows that x- contains squared terms of the form 

/C,/(27rlVw)^ COS“ (27r2i^TC0^ + 25 J 

and cross-product terms of th(‘ form. 

Ar\xAr^x(27^2CTCo)“(27^IV'a')” cos (27rwraj^ + '^bx) C0s(27r2i)rW + 25'^), 

which give rise to rapid fluctuations of the rate of radiation. Similar 
terms will occur in jr and zL The mean value of each squared term in 
equation (10) is equal to one-half its coefficient, while that of each cross- 
product term is zero. Therefore, the mean rate of radiation by an 
accelerated charged particle is 

T ^ (3^)22 (11) 
r 

This represents the simult aneous radiation of a number of frequencies of 
the form riwi + • » . r^w,. The rate at which energy is carried 
away by one of these is given by the corresponding term in the summa¬ 

tion of equation (11). 
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If the system contains several charged particles, equation (1) is 
replaced by 

-dE ^ 

^ dt 3c^ ’ 
(12) 

where P is the electric moment vector of the atom, whoso components are 

7 —n i = n ?“n 

Px = Py = P, = (13) 
i = l i~\ 

The summations extend over all the particles of the system with due 
regard to the signs of the charges . . . e^. Just as before, we express 

the function P- as a multiple Fourier series in order to obtain the rate of 
emission of light of a given frequency, obtaining 

“i? = + PrJ + Pr.:-){2T^r0^y. (14) 

Usually, it is convenient to use exponential notation in dealing with 
multiple Fourier series. In place of (xpiation (8), we write 

qk = ^Cr,k exp 27r/ZTa;/, (8a) 

where the rs now take all integral values both positive and negative. The 
two terms, 

Cr,k exp 2Ti^T(jit + exp 27r/w(-~ra))<, 

must be identical with 

Ar,k COS (27rISrco^ + ^bk) 

which is a real quantity. This will be the case if 

2Cr,k = Ar,k exp mbky 2C-r,k = Ar,k cxp - iX8k. (15) 

In place of equation (9), we write 

X = 2Cr.x exp 27ri'E,ro)t. (9a) 
Then 

X = exp 27r?:2rcot, (16) 
and 

X^ == ]^^(7T,xC'r',x(27r]Src*;)^(27r Sr'w)^ CXp 27rT2(r + t')co<. 

T t! 
The average of each exponential term is zero unless r = —r', which means 
Ti = —Ti', • • • , Ta = —r/. Thus, the double summation reduces to a 
single summation, and, since there are two terms with frequency Sroj 
in equation (8a), we finally get. 

~~dr “ + Gr.yC^.y + a..C_,,.)(2TSra.)^ (17) 
T 

which, by using the relations in equation (15), is found to be identical 
with equation (11). In equation (17), r runs only from +1 to + <». 
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2. THE CORRESPONDENCE THEOREM AND THE CORRESPONDENCE 

PRINCIPLES 

We have seen that on the classical theory each atom simultaneously 
emits all its spectral lines. In the absence of definite quantum conditions 
the amplitude of a given harmonic in the motion might vary from atom 
to atom. If a light source were actually made up of a vast number of 
atoms radiating in this fashion, the intensity of a spectral line of frequency 
CO would be proportional to 

(27rco)VS^‘^ 
-- 3,1" (18) 

where A is the amplitude of the corresponding harmonic in the motion of 
a typical atom, and the summation sign now indicates addition of the 
contributions of all atoms. (We add intensities because the atoms 
radiate with random phases.) Therefore, 

(27rco)^e2^^ 
(19) 

where i is the intensity per atom and is the average squared amplitude 
of the harmonic of frequency o). 

On the Bohr theory the picture is quite different. The emission 
frequencies are not usually identical with those assumed to be present in 
the motion of the charged particles. Further, the intensity is calcu¬ 
lated on the basis of a radically different mechanism. An atomic system 
remains in a steady state without radiating energy for some finite length 
of time and then radiates one quantum, presumably in a very short time, 
after which it remains in the state of lower energy for a finite time with¬ 
out radiating or absorbing additional energy. The time an atom remains 
in an excited state is, in the absence of a radiation field, governed by a 
probability which depends only on the internal structure of the atom 
in the two steady states. Einstein represents this probability by An 
and thus the rate of emission of light per atom by a gas containing Ni 
atoms in the higher state will be 

Jip dN, 
N] (it 

dE , . 
-dt = 

(20) 

In spite of these differences, it is possible and extremely useful to 
trace a correspondence between the frequencies and amplitudes of orbital 
models and those of the light they emit. This is especially true in the 
region of large quantum numbers and small changes of the quantum 
numbers—which usually means that we are dealing with large wave 
lengths—^for in this region both the exact wave mechanics and the Bohr 
theory yield frequencies which approach those of classical theory. 
Bohr’s derivation of the Balmer formula (Chap. V, Sec. 2) is an excellent 
illustration. As regards intensities, the statistical formulas of Bohr 
theory approach those of classical theory in this region. For example, the 
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Raylei}2;h-Joans fontuila foi’ distrilnition of iniensily in the sprctrimi 
of a black body aj»;r(‘(\s wilh Planck’s iorniiila in the rcj^ion of p;roat wave 
lengths, and tlu^ valii(‘S of (‘([ualions (19) and (20) api)roach equality. 
There is no implication that 1 lie mf'chanisni of (unission from an individual 
atom merges Jnto that of classical theory. 

While it is customary to speak of the coiriplex of facts associated with 
this asymptotic agreement as tlu* Bohr correspondence principle, it is 
important to state accurately the various hypotht\ses and theorems 
which are invoha^d, as van Meek has dom^ in ‘'Quantum Principles 
and Line Spectra.’^ We shall discuss this subject under three headings— 
the correspond(mc(> theorem for fre(juenci('s, the correspondence hypothe¬ 
sis for intensities, and the corr('spond(mc(‘ hypothesis for polarization. 

3. THE CORRESPONDENCE THEOREM FOR FREQUENCIES 

Consider an atomic system which pass(\s from a state characterized 
by the quantum inti'grals, 

y/ = n.li, . . . J: = njh, (21) 

to a state for wdiich tlu'se integrals take the values, 

- //V'A, • . • J/' - ///7l (22) 
The frequenc}^ emitted in th(' transition is given by the frequency 
condition, 

A,(n', n") = E{J,\ • . . J/) - E{J," • • • J,/') = LE (23) 

while by Sec. 1 and Chap, IV, Sec. 13, the classical frequencies appearing 
in the Fourier (‘xpansion of the motion of the charged particles and 
emitted according to electromagnetic theory are 

dE dE , 
+ T, 

dE 

d.L 
(24) 

If the quantum numl)ers involved are large and tlu; changes of the 
quantum numbers are small, wt; have 

hv{n', n") = AE ^ + • • • ^^AJ,. (25) 

Setting 

A/j = (m' ~ ni")h, AJ2 = (ns' ~ ns'OA, • • • AJ, = (n/ -- n/')/i, 

gives 

p(n',n") ^ coi(ni' ~ n/') + o)2(n2 - n2") + • • * w,(n/ - n/'), (26) 

and this is equal to Sreo of equation (24), if 

n = m' — n/', 72 ~ n*/ — n2", • • • r, = n/ — n/'. (27) 

The quantum frequency, determined by equation (26), approaches 
asymptotically to the classical frequency, Ztw, for which the r^s are given 
by equation (27). The frequencies p(n', n") and Srw related in this 
way are said to be corresponding frequencies* 
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Regardlef^s of the magnitude of the quantum numbers ami their changes^ 

the quauturn frequency is a mean, value of the frequency in equation (24) 

averaged over all intermediate orbits in such a way that the J's vary linearly 

from the one state to the other. To prove this let 

Jk = Uk'h + \{7ik — ni-')h, dJk = hfrik — nk")d\^ (28) 

where X is a quantity which increases from 0 to 1. Then the mean 
j 

value sought for is j ^o)Td\ but using equations (21) and (27) this 
,/\c=0 

takes the form, 

dE ex 
(n/ 

Substituting from e(]uation (28) this becomes 

ri + • ■ • , = v(n,n'), 
1 p-ya/i; 

^Jx.o ' djr y ^ h 
which is the correspondence theorem for frequencies. 

(29) 

4. THE CORRESPONDENCE PRINCIPLE FOR INTENSITIES 

The correspondemee principle for intensities is not a theorem, but a 
postulate, which may be stated as follows: 

In the region of high quantum numbers and small changes of the 
quantum numbers, the rate of emission p(^r atom approaches the value 
given by the classical formulas. That is, if we compute the frequencies 
and amplitudes of the various harmonics in the motion of the atom in 
either the initial or the final state, and substitute them in equations 
(11) or (13), a correct result is obtained. The frequencies and amplitudes 
in both states are nearly (H]ual because of the restriction to high quantum 
numbers and small quantum number changes. Therefore, equating 
the right member of equation (20) to the corresponding term in the 
right member of equation (14) and substituting for its approximate 
value V we have 

+ PrJ + Pr/) (30) 

for the relation between the probability constant A12 and the Fourier 
coelficients Pr,xj Pr,yy Pr,z belonging to the terms of corresponding fre¬ 
quency in the components of the electric moment P. Knowing A12, 
it is possible to calculate the coefficients of induced emission and absorp¬ 
tion by the relations AnjBu = SThr^/c^ and piBi^ == P2B21, derived in 
Chap. Ill, Sec. 4. When the attempt, is made to ext,end the relation 
in equation (30) to the region of small quantum numbers, it is necessary 
to use some means of averaging the amplitudes of the correjsponding 
harmonics. Almost without exception, the various suggestions made 
prior to 1926 as to the proper type of average failed to yield results in 
agreement with experiment, so we shall not discuss them here in extenso. 



174 THEOREMS OF THE OLDER QUANTUM THEORY [Chap. VI 

However, there is a very important special case in which exact 
results are obtained. If the classical Fourier coefficient of a certain 
harmonic is zero, both for the initial and final states, then we may expect 
that the probability of spontaneous transition between these two states 
will also be zero and light of the corresponding frequency will be neither 
emitted nor absorbed. This gives a method of deriving the selection 
rules for spectral lines, which are only special cases of the more general 
problem of relative intensities. 

6. THE CORRESPONDENCE PRINCIPLE FOR POLARIZATION 

This principle is a postulate, due to Bohr, which states that for high 
quantum numbers and small changes of the numbers, light of a given 
frequency v has the polarization predicted by classical theory for the 
corresponding frequency For example, consider the emission of 
a group of atoms all of which are similarly oriented, as in the Zeeman 
effect. The amplitudes of the electric vector parallel to the a;-, ?/-, and 
2-axes for a certain spectral line are proportional to Pr,xy Pr,y and Pr,z* 

Further, the phases of the x~ and ?/-components are such that we observe 
circular polarization in the longitudinal Zeeman pattern. 

6. THE SELECTION PRINCIPLES FOR k AND j 

Let r and <p be the coordinates of an electron moving in a central 
field of force. Because the force field is symmetrical about a center, 
each loop of the orbit will be similar to every other loop (Fig. 7, Chap. 
V). The motion may therefore be described as a periodic motion in a 
closed orbit with frequency cor, upon which a uniform rotation is super¬ 
posed, such that in the time of one complete oscillation from maximum 
r to minimum r and back again, the orbit is carried forward by an amount 
equal to the actual advance of its aphelion point per revolution. Let 
the angular velocity of this rotation be 27rw^. Then, in a system of 
coordinates y', rotating with this angular velocity, any coordinate 
is expressible as a Fourier series of the type ^Ar cos (27rrw,< + 6r). Now 
if a = 2TO)^t, then 

z = x' cos a — sin a, 

2/ = sin a + l/ cos a, 

which may be written for purposes of easy computation in the form 

X + iy = {x' + iy') exp (27^^a;^^). 
But 

+ iy' = exp {2Tiroirt)j 
and so, 

X + iy — SDt exp [2Tri{TiOr + (31 j 
Similarly, 

X — iy — lEr exp [2Ti(T03r — (32) 

We may add these equations to get Xy and subtract the second from the 
first to get y. When this is done, we see that both x and y contain terms 
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with the frequencies rccr ± co^. ^ Since appears only with the coefficients 
±1, we conclude in accordance with the assumption of Sec. 4 that the 
azimuthal number changes only by ±1. On the other hand, r can take 
any value whatsoever and then?fore the changes of the radial quantum 
number are unrestricted. The above argument is valid only when the 
electron moves on a plane orbit. If its interaction with the remainder 
of the atom causes the motion to be of a more complex kind, we expect a 
breakdown of the selection principle. 

The selection principle for the inner quantum number is derivable 
in much the same fashion for an atom with one valence electron. The 
resultant angular momentum vector y/?/27r is compos(‘d of the contribu¬ 
tions kh/2Tr arising from the orbital motion and .s7//27r due to electron 
spin. These two vectors must process around th('ir resultant, which 
is fixed in magnitude and direction, and it can b(i shown (Chap. X, 
Sec. 14) that this precession is uniform, that is, the orbital i)lane processes 
around the direction of j. Just as before, w(» obtain the Fourier expan¬ 
sions of the electronic coordinates, and find that the. pn^cessional fre¬ 
quency CO appears with the coefficients ± i or 0, and these alone. The 
conclusion is that Aj can be ± 1 or 0, for it can be shown that the quantum 
integral jh is the momentum variable conjugate to 2to), However, a more 
general proof requiring no detailed knowledge of the atomic motions 
is the following: 

To describe the position of the /^th electron let us use cylindrical 
coordinates (pp, where Zp is the distance of the electron from the 
invariable plane perpendicular to the vector j, and <pp is its azimuth 
in that plane. Then we can arrange that one of the <,^’s (say (pi) shall not 
appear in the expression for the energy; for the ^’s do not occur in the 
kinetic energy and the potential energy di^pends only on the relative 

azimuths 4>2 — ip<i — <^i, <1^3 = (Pz — <^i, etc. We take and these relative 
azimuths as new coordinates. The kinetic energy is 

T = yi\m,iT{^ipi^ + • • • ] (33) 

= + • • • ] 
and 

ST 
= miriVi + m2r2"('j'2 + ^i) + • • • 

Oipi 
= miriVi + ni2rY^2 + • • * , 

for the partial differentiation is carried out holding the <i>^s constant. 
We see now that ST/dlpi, the momentum conjugate to is the total 
angular momentum, which takes the quantized value jkl2Tr. Now, 

+ iVv = ^xp i(pp = Vp exp exp i% (34) 

1 Alternatively we could prove this without the use of itnaginaries by using the 

relation 2 cos a cos b - cos (a -f 6) -f cos (a — 6), and similar triggnometric formulas. 

An excellent alternative discussion is given in Van Vleck’s “Bulletin,’* p. 294. 
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where x and y are coordinates taken in the invariable plane. If and 
/\j are components of the electric moment, we have 

+ iP, == exp •/>, • r) (35) 
r). 

The functions F and G can be expressed as Fourier series which do not 
contain ipi. Thus, Px and Py contain sine and cosines t('rms with argu¬ 
ments of the type 

27r('^rojt ± <^i), 

in which <pi has the coefficient +1 or —1. On the other hand, <pi does 
not occur inP.. We conclude that Aj may take the values ± 1 or 0, and 
these only. As to polarization, the terms of a given frequency in P* 
and Py have phases and amplitudes such that they represent a circular 
motion in the xy plane, while each term in Pz represents a vibration 
parallel to the 2:-axis. By the correspondence principle for polarization, 
we conclude that quantum transitions in which Aj — ±1 give rise to 

circularly polarized light with its oscillation plane parallel to the invariable 

planej while those in which Aj = 0 give rise to light Imearly polarized 

perpendicular to that plane. 

Enough has been said to illustrate the spirit of the correspondence 
principle in its application to the derivation of selection rules. Other 
examples will be given throughout the text, as the nec(^ssity aris(\s. 

7. THE ADIABATIC PRINCIPLE 

We have emphasized the fact that after a transient disturbance 
has passed over an atomic system it will be found in a quantized state, 
in contradiction with classical mechanics. Similarly, if an external 
field of force is established and is then maintained at a steady value, 
the atom is still in an allowed state. This fact imposes certain restric¬ 
tions on the quantum conditions. The energy of an atom depends on the 
charges and masses of its constituent particles, and on the strength of 
any external fields of force which may be present. Any quantity of this 
kind which is treated as a constant in solving the, equations of motion 
will be called a parameter.'' The parameters ci, C2, . . . will appear 
?n the quantum conditions, which will therefore be of the form 

F](Ci,C2, . • • ) = 

F2(cx,C2, . • • ) = n^hj (36) 

and so on. If the parameters are very slowly changed, the left members 
of these equations retain their values because the system is in a state 
characterized by the same quantum numbers. Since this is true for any 
alterations of the c's, we must have 

dFi ^ dF2 

dci ' da 
0, etc., (37) 
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where is any one of the c’s. In other words, the functions F which 
appear in the quanttirn conditions must, be invariant during changes 
of the kind described. 

In g(‘neral, as we said a})()ve, classical nundianics does not predict 
that the atom will be in a quantized state after a disturbance, but under 
special circumstances now to be (explained the changes in its motion 
can be calculated with the aid of the usual equations. Consider a 
quantized atom which is not degenerate^ that is, the fundamental fre¬ 
quencies in its motion are all distinct, and are f‘(|ual in number to the 
number of dc^grees of fnuxlom. We change its condition infinitely slowly 

and in a way not systematically corrc'lated with the motion of the system, 
either by altering the strength of an external field of force, or by changing 
the internal constitution of the system, at least in imagination if not in 
actuality. For example, we may suppose the charge on the nucleus 
of the H atom is increased to +2c, or we may alter the distance between 
nuclei in a diatomic molecule. 

It can be proved that the new state of the system is the quantized state 

appropriate to the new values of the parameters, such as the external field, 

and the quantum numbers are the same as those of the original system. 

This is the principk* of slow mechanical transformability introduced 
by Fihrenfest^ and called by him the adiabatic hypothesis because of 
thermodynamic applications which he made. It is not an hypothesis 
however, but a definite theorem. 

Proof.—The following demonstration is essentially due to Burgers.^ It employs 

straightforward mot hods to find an expression for the change* of each quantum integral 

J when the atom is distuibed, and to show that this change is zero. Let the Hamil¬ 

tonian function of the system be //{q, c) where r; is a parameter whicii we intend to 

vary. Holding c constant, w(^ transform to the angle variabkis w and the associated 

momentum variables ./. Instc'ad of making the transformat ion function W a function 

of the g’s and .7’s, as we did in (diap. TV, Sec;. 9, we give it the form Wiq, m, t). Then, 

an argument exactly like that in (^liap. IV gives us the relations between the old and 

new variables and the form of the n(;w Hamiltonian function, II. They are, 

OW 
Owk 

li = H + (38) 

The m‘w equations of motion tell us that 

dJk ^ ^ 
dt dwh dwk dy'k\ cit ) 

(39) 

When forming dW/dt in equations (38) and (39), W must be written as a function of 

q, w, and i; but we must then transform dW/dt into a function of w, J, and f, before 

carrying out the differentiation with respect to Wk', for in the new Hamilton equations, 

II must be written in terms of w and J. As long as c is constant dJk/di = 0, because 

W is so chosen that the J’s will be constant, and the quantum conditions state that 

/a = njth. But when c is allowed to vary, the system is no longer conservative and the 

1 Ann. Physik, 36, 91 (1911). 

2 Dissertation, Leiden, 1919. 
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situation is changed. To compute the cliange in one of the J’s, we note that H, the 

energy, is independent of the s, and so 

d /OWdc\ 
<)iVk\ dc dt) 

(40) 

The change in Jk in a specified time interval, v(*ry long compared with any period of 

the system, will be 

(41) 

It was stated above that the change in c must be quite unsystematic. That is, we 

must not apply the increments in any definite relation to the phases of the atonuc 

motion, as we would in starting a swing })y appropriate pushes at the moments when 

it comes to rest. This condition will be satisfied, foi- example, if we give dc/di a 

constant value. With t his understanding, AJ/. will be of the same order of magnitude 

as the quantity 

dc r a /Oil \ 
dtj ()iOk\ dc ) 

dt. (41a) 

where dc/dt is an averages value of dc/dt. Now dW/dc can be represented by a multi¬ 

ple Fourier series containing tlio ve’s, and so the integrand in equation (41a) is a similar 

series without a constant term. This is the ess(‘ntiaJ point in the proof, foi- it means 

that the integral always remains below a (Uirtain finite value. Thus it is possible to 

make AJ4 as small as we phrase by deci-easing the rate of variation of c. Special atten¬ 

tion must be paid to the restriction that tlu‘. systcun must not IxM'ome degenerate. If 

it were to happen at sonic stage of the jirocess, that the frequencies obeyed a relation 

of the type, 

Ti0)1 H- ••• -f TuOin ~ 0, 

the r’s being integei’s, then a term in the Fourier series for OHV/dcdiCk^ containing this 

combination of frequencies, wn>uld reduce to a constant. The valium of the integral 

would then imu’ease without limit, and we (‘ould not make AJ^ as small as we please. 

The result of this section may bo expressed by stating^ that the 
quantum integrals of a non-degenerate system are adiabatic invariants. 

This is a theorem of great power w^hich enables us to avoid lengthy 
calculations in many problems. For example, if an atom is subjected 
to a weak magnetic or electric field, the component of angular momentum 
parallel to the field is equal to a (luanturn integral divided by 27r. We 
can conclude at once that the same will be true in a very strong field. 

8. THE ADIABATIC INVARIANT 2r/w 

The following theorem of Ehrenfest is often very useful. Let T 

be the average kinetic energy of a singly periodic system, and co the 
common frequency of all the coordinates. If the system is altered 
adiabatically by changing parameters Ci which occur only in the potential 
energy function, 2J'/a? is unaltered. 

The proof is very simple. Each coordinate q may be expressed as a Fourier series 

containing terms of the type cos (2irric -f hr), where w = id. In equation (39), 

dW/dt will be a Fourier series similar to those for the coordinates q. d^W/dtdw will be 

a Fourier series without a constant term. Further—and this is the crucial point— 

none of the terms cos (27rrw< + hr) can reduce to a constant unless w itself vanishes. 
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If that were to occur there would be no motion. Leaving this trivial case aside, we 

can prove as before that the momentum variable conjugate to w is invariant. This 

variable, J, can be found from the definition-equation 

S being the action (see (Jhap. IV, Sec. 13). Now 

= jj^dw = J-, (42) 

but XI /« 
2Tdt 

(43) 
1 /to 

and so 27Vco is adiabalically invariant, being equal to J. 

9. JUSTIFICATION OF THE QUANTUM CONDITIONS 

If wo assume the quantum condition J = 7ih for the Planck oscillator, 
it is possible to justify the conditions 

Ji — z = 1, 2, • • • (44) 

which are applied to conditionally periodic non-degenerate systems with 
any number of degre(vs of fn^edorn. Let such a system be altered adia- 
batically, by changing the forces acting on its particles, or in other ways, 
until the motion of each particle is a superposition of three simple 
harmonic vibrations, mutually at right angles. The physical signifi¬ 
cance of th(^ J’s will alter until they become identical with the momentum 
components of tlu^ particles along the axes of their vibration. This 
follows from the way in which th(^ J’s and le’s are found. The trans¬ 
formation equations connecting the sets of variables p, q and w are 
(hitermined by solving the Hamilton-,)acobi diffe^rential equation. As 
the potential eiKTgy is adiabatically altered, the value of the trans¬ 
formation function S (or If) of Chap. IV, Sec. 10 is also changed, even¬ 
tually becoming identical with the action function for an assemblage of 
oscillators. Since the ,/'s and w;’s are completely determined by 
they must merge into the values appropriate to the oscillators. Further, 
the J’s are unaltered in value if the change is made in such a way that 
the system never bf'comes degenerate. But each component oscillation 
is independent of the others, and is quantized by applying the condition 
J = nhy which justifies the equations (44). 

10. A THEOREM FOR CALCULATING ENERGY PERTURBATIONS 

Consider a non-degenerate atom described by variables w, J, the 
energy function being lh{J). Let it be disturbed by conservative 
forces which contribute a term X//i(J, w) to the energy, so that it takes 
the form 

II ^ Ho + X//j, (45) 
X being a small quantity which measures the strength of the force field. 
Then, the additional quantized energy in the preeenm of the field is equal 
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to the average value of X77i, take7i over the unperturbed motiony except for 

negligible terms containing and higher powers of X. This theorem 
enables us to obtain the energy without any knowledge of the changes 
in the motion. 

The following derivation is nearly the same as oik‘ given b\' van Vlet^k.^ Although 

it is stated for a single parti(dc the extension to othm' systems is easy. Ivot the total 

(*nergy be 

E = + iF 4- + r + \Hu (46) 

where V is the unjjerturbed potential energy, and Huppos(^ for the purposes of this 

I^roof that X increases slowly and uniformly from zero to its final value. The rate of 

change of the energy is 

(IE 
dt 

~ ^nxx zr X + X J 
Ox ax j 

(47) 

but the equations of motion tell us that mx -b — 6, etc.. Therefore 

dE - 77,dX. (48) 

Let Hi be the time average of 771 ovc^r an interval which comprises many periods of 

the undisturbed motion, but which is small compared with the interval in which X 

attains its final value. 771 is expressible as a Fourier series, with periods etjual to 

those of the atomic motion corresponding to the instantant'ous vahu' of X. Hi is equal 

to the constant term of this series, and so Hi — 7/i is a Fourier scries witho\it a con¬ 

st/ant term. 

Therefore, 

/(//,- a J/w,-//,)* 

The last integral remains finite because the integrand is altcunately positive arid 

negative, and dX/dt can be chosen as small as we like. Therefore, in obtaining the 

change of E we may replace^IhdX by ^77idx, and 

E H\d\. (49) 

77i will (diange as X increases, and we may write it in the form 

//, =• (//.)x = 0 + - 0 + • • • (50) 

The second temi and all higher ones contain X^ and higher powers of X, and may bo 

neglected for our present purpose, so 

E — E\) = x77io. (51) 

(The subscript zero indicates that Hi is taken over the unperturbcHl motion.) This 

proves our theorem. If we desire closer approximations, we use additional terms in 

the expansion in equation (50), obtaining 

= + 
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CHAPTER VII 

INTRODUCTION TO OPTICAL SPECTRA 

1. THE TYPES OF SPECTRA EMITTED BY ATOMS 

The line spectra emitted by atoms or atomic ions when they pass 
from an excited stationary state to another of lower energy are very 
different from the spectra of molecules; the latter consist of regular 
series of lines, usually quite closely spaced, wdiich have the appearance 
of continuous bands under low dispersion and therefore are called ^'band 
spectra.’^ (See ('hap. XII and especially Fig. 1.) The line spectra 
of the neutral atoms in the first and second columns and the second 
subgroup of the third column of the periodic tabic, are especially simple, 
being characterized by scries of lines not unlike those of hydrogen. 
The wave numlx'rs of the lines in a series can usually be calculated with 
fair accuracy from the so-called Rydberg formula,” 

(1) 
. . HZ'* 

In this formula, 7? is a constant nearlv equal to the Rydberg constant 
for infinite mass; Z = 1 for neutral atoms, 2 for singly charged ions, etc,; 
m is an integer, and is a common fraction which is reasonably constant 
for all lines of the series, while v is the wav(^ number of the series limit, 
obtained by placing m = co. The obvious interpretation of equation 
(1) is that the atom has a sequence of h'vels with the energies 

Zyihe 
{m + ipp' 

and that it can pass from any of these to a lev('l with the energy — v^hc. 

While well-defined series are to be expected in all atomic spectra, 
they are usually short and difficult to tracts for elements in the center 
and on the right of the periodic table. The characteristic feature of 
these spectra is their richness in lines, brought about by the existence of 
many energy levels, which, in turn, is due to the manifold possibilities of 
internal arrangement arising when the atom possesses several loosely 
bound valence” electrons. Such spectra contain groups of lines called 

‘'rnultiplets,” which arise from transitions between groups of physically 
related energy levels, referred to as multiple or polyfold levels. 

The discovery and interpretation of spectral regularities is a science 
in itself. Given a table of the spectral lines characteristic of a substance, 
the modern spectroscopist wishes to gain all the information he can about 

181 
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the entities which emit that spectrum. We shall outline the procedure 
he follows, and shall then describe the structure of some simple spectra, 
the modes for exciting and studying them, and their interpretation: 

1. The wave-length table will contain lines due to impurities. These 
must be eliminated by careful experiments, and by comparison with 

published spectral tables. 
2. The revised table will contain lines due not only to the neutral 

atom but also to the singly charged ion, and quite frequently, lines 
belonging to the atom in still higher stages of ionization. The relative 
intensities of lines, due to different emitters, are changed by almost any 
alteration in the physical conditions, such as variations of the voltage 
or current when the spectra are excited electrically; or changes of tem¬ 
perature in the casc^ of flame spectra or furnace spectra; or the addition 
of varying amounts of a foreign gas or vapor. There are many ways of 
separating the lines into classes each of which is due to only one type 
of emitter. Among the more powerful and trustworthy methods we 
may mention the study of the influence of a magnetic field on the lines 
(Zeeman effect), and the determination of the energy which an electron 
must possess in order to excite a given group of lines (Chaps. Ill and 
XIII). In the case of furnace spectra, the study of the growth of 
intensity with increase of temperature is particularly valuable for 
elements of rather high, but not too high, boiling point. 

3. The separation accomplished, let us fix our attention on the 
linos due to a givcm emitter, the neutral atom for example. It is necessary 
to ascertain wiiether the wave lengths are exT)ressed in Rowland’s scale, 

o o 

or in International Angstroms (l.A.) The latter have superseded the 
former. Descriptions of both scales are given in Fowler’s ‘^ieport 
on Scries in Line Spectra,” described in Chap. X, Sec. 1. Assuming 
that the wave lengths are in International Angstroms, they have been 
measured with respect io those of a standard element such as cadmium, 
and the latter are determined in dry air at 15°C. and 760 mm.; so we 
must reduce the tabulated values to the values which would be obtained 
if our experiments were carried on in vacuo; reciprocals are then taken 
to obtain the wave numbers of the lines. Now the real task begins—to 
discover from these wave numbers the arrangement of energy levels 
which can give rise to the lines in accordance with the relation, A£ = hv. 
This is an empirical process. In the case of the more complicated spectra, 
it consists mainly of searching for constant differeMces between pairs 
of wave numbers in the table, although Zeeman-effect data, physical 
characteristics of the lines, critical potential data and indications of a 
theoretical character are almost indispensable aids. At some stage 
in the investigation it may appear probable that certain energy levels 
are so d^tributed as to form a sequence of levels, wfith energies given 
by equation (2). After the identification of series of lines arising in 
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transitions from such a sequence of levels to other lower lying levels, 
the problem is one of interpretation. In general, it will be found that 
many of the mathematically possible transitions between energy levels 
do not actually give rise to spectral lines. It is important to explain 
such absent lines, hy showing that if they appeared some dynamical 
principle would be violated. Theories must be constructed to predict 
the existence as well as the energy values of the observed stationary 
states, and to explain the absence of missing lines. 

2. METHODS FOR PRODUCING LINE EMISSION SPECTRA; SPECTRAL 
CHARACTERISTICS OF VARIOUS SOURCES 

The reader should understand clearly that by the spectrum of a 
neutral atom we mean the spectrum emitted due to the return of an 
electron after the atom has been singly ionized; or, the spectrum emitted 
when the atom has been raised to a high energy kwel and performs 
transitions to lower energy levels. Similarly, the spectrum of a singly 
charged ion is the aggregate of lines emitted by atoms which have been 

doubly ionized and to which an electron is returning; and so on. It 
must be observed that two electrons of a neutral atom can be raised to 
higher orbits simultaneously; the lines emitted when one or both return 
are a part of the spectrum of the neutral atom. 

In genera], it may b(^ said that when atoms are excited by subjecting 
them to th(i act ion of high temperatures or to bombardmemt by electrons, 
any increase in th(^ strength of excitation is accompanied by greater 
complexity of the sp(H;trum and by a shift of the center of intensity 
toward the shorter wave lengths. To take the simplest possible case, 
the introduction of a tiny bit of NaCl into the Bunsen flame causes the 
abundant emission of th(^ familiar yellow /Mines (X = 5.890-6 A) 
while other lines are so faint that they are completely lost in the weak 
background of continuous radiation. In the spectrum of sodium, 
obtained by heating the metal in a carbon tube furnace in vacuo,^ these 
are the first lines to appear. On raising the temperature other lines 
due to the neutral atom are observed. 

If we study the spectrum of an arc between carbon poles which are 
bored lengthwise and packed with a mixture of carbon dust and some 
sodium salt, we obtain practically all the lines which have been definitely 
identified as due to the neutral Na atom; since this is approximately 
true for many elements, the spectrum of a neutral atom is often called 
the ‘^arc spectrum,’^ regardless of the means by which it is produced. 
If an element is caused to emit light by passing a high tension discharge 
between poles of the material, the spectrum contains, in addition, the 
lines of the singly charged ion, and very frequently the lines due to atoms 
in still higher stages of ionization. The spectrum of the singly charged 

1 King, A. S., Asirophys. 27, 353 (1908); and numerous later papers. 
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ion is often called the spark spectrum/' and that due to the doubly 
charged ion the ^‘double-spark spectrum." It is desirable to abandon 
these ambiguous terms and to designate Mae spectrum of neutral Hg, 
for example, as Hg I; that of once ionized Hg, as Hg II, etc. 

3. THE SPECTRUM OF A NEUTRAL ALKALI ATOM 

In the spectrum of a neutral alkali atom, such as cesium (Fig. 1),^ 
one readily picks out three main sequences of lines, known as the “prin¬ 
cipal," “sharp," and “diffuse” series. This designation arises from I the fact that the principal series is espe¬ 

cially strong in the alkalies, while sharp 
series lines are really quite narrow, and 
diffuse series lines quite broad. There is 
also a “Berginann" series, or “funda¬ 
mental" series, lying entirely in the infra¬ 
red excc'-pt in the case of cesium. The 
term “fundamental" is a misnomer, 
arising from the mistaken idea that the 
frequencies of the lines in this series 
represent the lowest frecpiencies asso¬ 
ciated with the motions in the atom. 
This t(U’minology is extended to scries 
arising from the same types of electron 
transitions in other atoms, even though the 
physical characteristics of th(5 lines may 
be radically different from the simple 
state of affairs described above. The 
next point to be noticed is that each 

aI652l-d94z) member of the principal, the sharp, and 
Fig. 1.—Thr spectrum of cesium, the diffuse series is double. The early 

members, at least, of the diffuse series 
may be described as doublets in which the component of longer 
wave length is accompanied by a faint companion, or satellite. (The 
term satellite is used also in another sense, see Chap. XI, Sec. 3.) 
In the higher members the satellite fuses together with the main line. 
Further information is easily acquired from Table 1. The first column 
contains the wave lengths of the more prominent lines due to the neutral 
cesium atom. In succeeding columns the wave numbers of the lines 
are listed under the names of the series to which they belong, and doublet 
diffcrtmces are given. The wave Icngtlis of series limits arc placed in 
parentheses. These limits cannot be directly observed, except in the 
principal series, the limit of which can be clearly seen in the absorption 

1 This spectrum was kindly prepared for us by Dr, F. L. Molilcr, 

I 36JJ-I7 As-S^P 
\ 

3376^88 1^S-4^P 

Impuriiy 

4555-93 l^S-S^P 

\Z^P-W^D and 
\2^P-rn^S,6964A 
\io about-5200A 

(J^S-2^P 
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Table 1.—Series in the Spectrum of Neutral Cesium 

Wave lengths, 
International 
Angstroms 

36,127.0 

34,892.0 

30,100.0 

14,694.H 

13,588 1 

10,124 J 

10,025 4 

9.208 40 

9,172 23 

8,761 35 

8.943 4()R 

8,521 12R 

8.079 24 

8,015.90 

7.944 11 

7,609.13 

6,983.37 

6.973.17 

6.723.18 

(3,586.94 

6,354.98 

(5.948.23) 

(5,913.77) 

(5,081 88) 

(4,942.67) 

4,593,16 

4,555.20 

3,888.65 

3,876.39 

3,617.41 

3,611.52 

(3,183.33) 

Principal series Sharp series Diffuse series Bergmann series 

1 Ai; if AJ> - A? if Af; 

2.767.3 

2,865.2 

3.321.4 

97.9 

554.1 

6,803.3 

7,357 4 
554 1 . 

9,874.8 

9,072.0 
97.2 

10.856.7 

10,899.5 

11.410.7 

42.8 

554.0 

11.178.3 

11.732.3 
.554.0 

12,374 0 

12,471.8 
07.8 

12.584.5 

13.138.5 
554.0 

14,315.8 

14.336 7 
20.9 . 

14,8(ii).S 
554.0 

1 15,177.4 

15,731.4 
554 0 

32/>5 
97.9 

T-Pu 

2^Py, 

2’P.y, 

2P\^ 
554.0 5.54.0 

21.705.4 

21.946.5 
181.4 

25,709.3 

25,789.9 
1 80.0 

27.636.2 

27.681.3 
45.1 

PSi,',, limit. 

sp(^ctruin of cesium vapor. This s{)ectrum contains only the principal 
.series liiK^s. Bevan ^ was able to obtain 31 members of the principal 
series of cesium, while Wood^ photographed 57 members in sodium. 

1 Ptoc, Roy. Soc., 83, 421; 86, 54; and 86, 320 (1910 to 1912). 
2 Astrophys. 43, 73 (1916). 
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The cesium sharp series has been photographed to 7 members; the diffuse 
to 10; and the fundamental to 9. 

There are several important facts in regard to the doublet separations 
in alkali spectra: 

1. In the principal series, the difference of the wave numbers of the 
components of a doublet decreases rapidly as we pass toward the ultra¬ 
violet. 

2. The wave number differences Avs of sharp series doublets remain 
constant as far as the series can be followed, and in the diffuse series 
the same is true of the difference Avd between the shorter component 
of the doublet, and the satellite. 

3. Avs = Avd- 
4. The wave-number difference of the first doublet in the principal 

series is equal to Ap^- 

Let us now consider the interpretation of these regularities. Many 
facts in regard to the are spectra of alkali atoms can be explained by 
assuming that each stationary state corresponds to a different orbit 
of a single loosely bound valence electron. In a transition giving rise 
to an arc line only the quantum numbers of the valence electron are 
changed.^ 

The arc spectrum of cesium, or of any alkali, arises in transitions 
between stationary states occurring generally in close pairs, as shown 
in the energy diagram (Fig. 2), In this diagram, horizontal lines are 
drawn at ordinates proportional to the energies of the atom in its various 
stationary states. We start with zero energy at the top, which corre¬ 
sponds to complete removal of one electron. At the left is a scale from 
which we can read off the wave number T of the quantum which would 
be emitted if the valence electron fell from a position at rest at infinity 
into any given orbit. If E is the energy of the atom when the valence 
electron is on that orbit, then T = —Elhc. T is called the “term^^ 
or the ^^term value’’ belonging to that state. 

This gives us a schematic method of indicating transitions between 
states by drawing an arrow to connect their representative lines. Down¬ 
ward arrows correspond to emission; upward, to absorption. To aid 

1 For many purposes, the details of the motion of the other electrons may be 

neglected, and the atom may be treated as though it consisted of a single electron 

moving in a central field of force. For this reason it became customary during the 

early development of the subject to think of optical energy levels in general as deter¬ 

mined by the nature of the orbit of a single electron called the “light electron,” and 

to speak of an energy level as an orbit. Thus, we may say, “the atom is on the 2P 
orbit.” These practices present no difficulties in dealing with the arc spectra of the 

alkalies and some portions of the spectra of the alkaline earths, but in other cases, 

they lead to confusion because, in general, several electrons play an active part in 

determining the energy levels. In our study of alkali spectra, then, we shall vSpeak 

freely of the orbits of the valence electron. 
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the eye in picking out the levels which belong to a physically related 
sequence of states, such as the initial levels for the emission of a series, the 
horizontal lines are separated into several groups. The lowest stationary 
state of an alkali atom is single, and is designated as for reasons 
partly historical and partly logical. This symbol is read ^^one doublet 
S sub one-half or ^^one doublet S one-half.’’ It is the first or lowest 
state of a set designated as the S sequence. The letter S shows that 
this sequence of levels consists of the initial states for the emission of the 
sharp scries. The superscript “2” shows that the state belongs to a 
sequence of levels denoted by and giving rise to a doublet spectrum. 
The particular state under discussion happens to be unaccompanied 

\ 

by another state of closely neighboring energy. The reason why the 
S states are not double will soon be given. In these states the atom 

\ h 1 
possesses a total angular momentum 2 ^ that; = The subscript 

indicates the inner quantum number. (Many authors use j + y instead, 
when j is half-integral, in order to avoid the use of fractional subscripts.) 

We come now to the closely neighboring sequences designated as 
and where m is an integer. The lowest pair of states 

belonging to these sequences is called 2^P>j' and The number j 
varies as we pass from level to level within the limits of a given multiplet 
level. The reader will see that the states are the initial levels for 
the emission of the principal series, whence the letter P, and will recognize 
sequences labeled and rrPD^, with m = 3, 4, • • • , which are 
initial orbits for the diffuse series. Other sequences are also present, 
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such as m/^, m/r, m//, . . . , with m starting at the values 4, 5, 6, , 
res[j(^ctively. All the terms of the secjinuices (/, II, etc., li(i extremely 
close 1-0 the F-terms and cannot well be irulicatiMl in t he figure. 

Symbols such as an^ customarily ustid, not only to designate a 
spectral term, but also to mean the actual numerical value of the spectral 
term, 7\ Thus the term values for the states and 2’^I\ of sodium 
are 41,449 and 24,493. The wave number of the line omitted in a fall 
from to 1^8^^ is 

? = 41,449 - 24,493 = 16,956, (X = 5,S96A) 

which is expressed by 
p = l%h,- - 2^/^,^ 

Therefore the line itself is referred to as l“xS\^ — 2=Ph- 
Where no confusion can arise, we shall omit the superscript which 

shows the degree of multiplicity of the spectrum (doublets, triplets, 
etc.) and also the subscript indicating the angular inonumtum of the 
atom. To summarize, an alkali spectrum contains the following main 
series: 

S(^ries 

1 

Satellite 

(.-Ol II pot KM it of 

greater wave 

leiigtli 

(VanpoiKMit of 

siiialltM’ wave 

j length 

Principal. 

Sharp. 

w ^ 2 
^ 2 

rn ^ 3 
rn ^ 4 

\S}..i ~ 
— mS).^ 

2P^, - inOrL' 

ZDr,.' — 
I 

US'1.2 — m.P^.^ 
2Pi.^ — 

- mlh,.^ DitTijse. 

FundaTuerital. 

i 

l''he number rn runs parallel to the total quantum number of the valence 
electron, but often is not equal to it. The connection between ?n and the 
total number is discussed in Chap. X, Sec. 1. The energy diagram 
shows clearly why only the principal series lines appear in the absorption 
spectrum. In the absorption of light the atom is raised from a level 
of lower energy to one of higher energy and since at low temperatures 
all but a negligible fraction of the atoms must be in the lowest energy 
state these lines must arise in transitions from this lowest level to higher 
ones. We see also, from Fig, 2, that the variation of the doublet dif¬ 
ference in the principal series, and its constancy in the sharp and diffuse 
series, is at once explained. The p-difference of the lines L8 ~ 
and L8 — is simply mP^^ — wP^i, which decreases as m increases. 
On the other hand, the frequency difference of the members of the sharp 
or diffuse doublet arises from the fact that the two lines have different 
final orbits, 2Pi.^ or 2P^^, the same for all members of the series. 
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4. SELECTION PRINCIPLES 

The question now arises, why do many lines which seem to be possible 
from consideration of the energy diagram fail to occur? Prior to the 
introduction of the spinning electron, it was supposed that the electron 
of an atom in an S-level has the azimuthal quantum number A* = 1; 
while the P, JD, P, etc. orbits wt^re assigned the azimuthal numbers, 
2, 3, 4, , respectively. Borne authors preferred to assume azimuthal 
numbers for the aS, . . . levels, for reasons connected 

As a purely empirical rule to be 

SS4Jcm~' 

with the energy of the various states, 
justified later, we may say: 

Only those transitions ordinarily occur for which the change in k is ±1. 
Thus we have the combinations S ~ P, P — P — D, but such series 
as bS^ — niS, or 2P — mP are either entirely 
lacking or very faint. It remains to mention 
a rule governing the non-appearance of the 
lines 2‘^Py^ — which would be satellites 
of the shorter main coniponcmts in the diffuse 
series: 

Qyily those transitions ordinarily occur for 

which the change in the inner quantum number 

j is ± 1 or 0. 
Thus, we have in Fig. 3 the following 

transitions of j: 
’^‘i. satellite; 

'"^2 *4) longer main component; 
shorter main component; 

but the line for which j changes from b? to ^ 2 l^^ds to appear. A diagram 
of the spectral lines produced in these transitions is given at the bottom 
of the figure. 

I! 
Fh;. ;i.— 7'ho 

cesium multiplet. 
H 

6. THE QUANTUM STATES OF A ONE-ELECTRON SYSTEM 

In Chap, X, we shall describe a scheme which enables us to predict 
with almost complete success the existence of every term in the X-ray 
and optical spectra of the atoms. Here we describe its application to 
atoms with only one valence electron. Many features of a doublet spec¬ 
trum can be interpreted by considering the orbits of a single electron 
moving about a kernel which has an electron configuration like that of a 
rare gas atom. It is an empirical fact that the electrons of the* kernel 
have zero resultant angular momentum. The existence of the terms 
in the energy diagram can be deduced almost without reference to the 
structure of the kernel, and many of their properties can be expressed 
entirely by means of the quantum numbers of the valence electron. As 
mentioned in the case of the hydrogen atom, four quantum numbers must 
be assigned to this electron. They are as follows: 
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1. n, the total quantum number of the electron orbit, which takes 
integral values and does not measure a vector magnitude. 

2. I = k — I, which takes the values 0, 1,2 for P, D, etc. terms, 
respectively. The number I is found to behave exactly as we should 
expect k to behave if the old quantum mechanics were valid. The 
reason for this cannot be understood in terms of the model we are using, 
but is easily understandable when using the model suggested by wave 
mechanics (Chap. XVI). 

3. s, a vector having the magnitude The theory can be applied 
independent of any assumption about thi: physical nature of Sj and the 
method was freely used to predict spectral terms before any hypothesis 
was made to explain this quantum number. However, sh/27r is the 
angular momentum of the electron spinning about its own axis. 

4. j, defined as th(^ vector sum of I and s. We now inquire for the 
possible valiK's of j. Both I and s have fixed values, and their vectorial 
sum j must be constant in the absence of an external field since it repre¬ 
sents the total angular momentum of the atom. This means that both 
the normal to the orbital plane and th(i spin axis of the electron must 
process about the vector j. The strict application of Sommerfeld’s 
quantum conditions to this motion requires that j should be an integer. 
The new mechanics leads to th(‘ result that j can take the values 

I + .s, ? -f- .S’ — 1, • • • \l — s\, (3) 

That is, for a one-electron system, 

j = l± (4) 

These quantum numbers apply to hydrogen as well as to the alkalies. 
The enumeration of the possible spectral terms is now only a question 

of listing all the possible values of the (|uantuiri numbers n, Z, and j, 
for H is always ^ 2. When I and .s- are given, the corresponding j values 
are found by using equation (4). In the case of atoms with more than 1 
valence electron, this procedure usually results in the prediction of 
some terms which do not exist. To exclude these terms, we must apply 
the so-called Pauli exclusion principle to the (mergy levels in a magnetic 
or electric field, introduced to make the system non-degenerate, as 
described in Chap. X, Sec. 10. This difficulty is not encountered in our 
discussion of alkali atoms in the absence of a field. Table 2 illustrates 
some of the possibilities for those low-lying terms of cesium in which 
the total quantum number is 6 or 7, as well as a few others. 

The reader will observe how naturally the singleness of the S terms 
fits into the scheme. When I = 0 there is only one possible value for j, 
that is, the value of 5 itself. The S term is single in all other spectra 
for a similar reason. The numeration of the terms in column six of the 
table is purely conventional and is explained in Chap. X, Sec 1. 
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Table 2.—Quantum Numbers for the Terms op Cs 
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6. ZEEMAN PATTERNS OF ALKALI ATOMS 

We now describe the Zecnnan pat¬ 
terns of the principal and sharp series 
in alkali spectra. Only the patterns 
observed perpendicular to the field will 
be discussed since the longitudinal pat¬ 
terns do not show components polarized 
parallel to the field. If the frequency 
changes due to the field are large (or 
small) compared to the doublet inter¬ 
val we say that the field is strong (or 
weak). Obviously, no hard and fast 
distinction is intended. As we increase 
the field, the patterns undergo a change 
known as the ^‘Paschen-Back effect.^' 
Hence, we must describe the weak- and 
strong-field patterns separately. In 

sp 
1 1 

ps 
i 1 

s s pp s s 

1 1 III M 
Mill 1 1 III 1 1 
J J J J J J 1 3 J J 

weak fields, the line of greater wave Fi 
length in a principal series doublet 

CL 4.—The Zeeman patterns of a prim 
cipal series doublet in a weak field. 

yields four components as shown at the bottom of Fig. 4. Expressed in 
terms of the wave number L corresponding to theLarmor precession (Chap. 
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V, Sec. 11) as a unit, their wave number displacements from the postion of 
the field-free line are ± -^3, ± ;^3, respectively. Similarly, the shorter mem- 
Ixir has components at ± ^ 3, ±?;j, ±^3, respectively. The energy levels 
from wliich the components arise are shown above by full lines, while the 
energy levels in the abspnce of the field are represented by dotted lines. 
The letters -s (senkrechi) or p (parallel) indicate the components polarized 
perpendicular and parallel to the field respectively. The atoms are 
space-quantized in the field, in accordance with Chap. V, Sec. 9, and each 
energy level in the figure corresponds to a definite orientation of the 
vector j with respect to the lines of force. The component of;/ parallel 
to the field is which is called the magnetic quantum number. The 

facts in regard to these patterns may be summed 
up by saying that the displacements of the energy 
levels are given by the formula 

Av = rrigLj (5) 

where m takes half-integer values from —j to +j 
and g = 2.^ for >1.3 for 2 for This 
formula differs from that for the normal Zeeman 
effect only tlirough the factor g (Chap. X, Sec. 8). 

Equation (5) is valid when the forces due to the 
magnetic field do not appreciably affect thci cou¬ 
pling between I and ,s', which causes them to form 
a (quantized resultant j. This condition is not 
met if a strong magnetic field is applied to 
the atom for then the electron will orient itself 

with its axis of rotation parallel to the field so that the projection 
of its angular momentum vector along the field is identical in value 

with the vc^ctor itself, being either ^ ~"2 ‘V projection 

7nshl27r, so that the magnetic quantum number of the electron in such 
a field is m«. Further, in a strong magnetic field the orbit of the valence 
electron is independently space-quantized, so that the component of 
I along the field is nu. Hence the restriction If Z = 0, 
we may suppose the orientation is indeterminate. The energy levels 
in a strong field are obtained exactly as in the treatment of the Zeeman 
effect of hydrogen (Chap. V, Sec. 11) and are given by the formula 

Ap = (mi + 2m,,)L. (6) 

The factor 2 appears here because the electron has a magnetic moment 
of one Bohr magneton though its s is so that it processes with twice 
the frequency of the Larmor precession. As an illustration, we show 
in Fig, 5 the strong-field patterns of principal and sharp series lines, 
as given by equation (6). The values of m?, and mi + 2m, are 
indicated at the sides of the figure. 
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Fig. 5.—The Zoonuin 
pattern of a priiici[)al 
series doubh'.t liru' in a 
strong field. 
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7. SERIES FORMULAS FOR ALKALI ATOMS 

As we said at ilie beginning of this chapter, Rydberg^ showed in 
1889 that the terms of the series spectra known at that time and belonging 
to the elements of the first few columns in the periodic table follow a 
formula 

T - 
117/^ 

{m + <^)“ 
(7) 

TIer(‘ we shall follow the numeration of Paschen, in which the terms 
of the various s(‘quences are numbered as follows: 

rnS: m = 1, 2, - • • 
niP: m == 2, 3, • • • 
ml): m, = 3, 4, • • • 
niF: ni = 4, 5, • • • 

A rdsurn^^ of the various systems of numeration is given in Chap. X, 
1. Only the combination ni + ip is dc^termined by the magnitude 

of the term, so that the value of m is quite immat('rial. This number 
serves only for the convenitmt identification of the terms in a sequence. 
ip is very nearly constant for all the terms of a given sequence such as the 

,, or terms of th(^ alkali metals, but changes when we pass to 
another sequence. Since these are associated with different values of 
this means that <p is a function of I and also of s. Ritz^ modified the 
formula (7) to give dcifinite expression to the variation of ip with the 
running numb(U’ iri, and showed that it was capable of representing 
many series tc'rms with high accuracy. His formula is 

T - 
RZ'^ 

{m + a +'bTY 
(8) 

where a and h are constants. Usually it is quite satisfactory to use the 
alternative formulas 

T = 
_R^_ RZ^ 

(8a) 

In fact we may regard a + hT in equation (8) as the first two terms of a 
series in ascending powers of which reduces to its first term a as m 

approaches infinity. Both a and b are functions of both I and s, and 
approach zero as I increases. The same remarks apply to the formula 

of Hicks, 

T^r 
I rn 

RZ^ 

+ , aV ad-I 
mf 

^ K. Stvenska Akad. Handl., Vol. 23. 

2 Ann, Physik, 12, 264 (1903); Phydk, Z., 9, 521 (1908). 
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Ordinarily we shall use the Ritz formula. The Rydberg and Ritz 
terms are customarily indicated by the symbols (m, ip) and (m, a, 6), respec¬ 
tively. It is often convenient to write m + a + 61" in the form 

n + A+ BT, (10) 

where n is the total quantum number of the valence electron. The 
quantity in equation (10) is sometimes called the “Rydbergor ‘‘Ritz 
denominator/^ although it is actually the square root of the denominator 
of equation (8), but more often we speak of it as the eifective quantum 
number, n*. Further, the so-called “quantum defectis 

Q = n - n* = -A - in\ (12) 

Rewriting equation (8) in the form 

T = 
n ^ 

we see that the quantum defect is a measure of the departure of the 
spectral term from the hydrogenic term having the same total quantum 
number. Without exception, the terms of neutral alkali atoms are 
greater than the corresponding hydrogenic terms, so n — n* is positive 
for these atoms. Table 3 gives effective quantum numbers for certain 
terms of alkali atoms. The value of n for each doublet level can easily 
be found with the aid of this table, and of approximate atomic models 
now to be explained. 

8. APPROXIMATE MECHANICAL MODELS 

Many ingenious attempts have been made to calculate the energy 
levels of the simpler non-hydrogenic atoms with the aid of classical 
mechanics and the quantum conditions. Of course the mathematical 
difficulties are great. Even the three-body problem can be solved only 
by successive approximations and then only for certain special con¬ 
figurations, such as that in which both electrons move on identical orbits 
or one moves on a much larger orbit than the other. The problem 
of the lithium atom is still more difficult and no attempts worthy of 
serious consideration have been made to obtain the term values of atoms 
having three or more electrons. Calculations for the helium atom, assum¬ 
ing that the two electrons move on identical orbits, have been made by 
Bohr,^ Van Vleck^ and Kramers.^ It is found that none of the models 
studied give the observed value of the ionizing potential and moreover the 
models are dynamically unstable; f.e., the electrons will not continue to 
move on orbits which are even approximately identical if their motion is 
slightly disturbed. Born and Heisenberg^ have calculated the excited 
terms of helium and find that these also do not agree with the observed 
values. 

* Phil Mag,, 26, 476 (1913). 

^Phys, Rev,, 21, 372 (1923). 

»Z. Physik, 13, 312 (1923). 

4 Z, Physik, 16, 229 (1923). 
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If the laws of mechanics held, atoms having many electrons would 
exhibit similar instability. Thus the energy of one electron in such an 
atom might increase, while the others lost energy until it was spon¬ 
taneously ejected from the atom, in evident contradiction with fact. 
Or, one electron might move so close to the nucleus that it would collide 
with it. The experimental behavior of atoms is characterized by a 
regularity and relative simplicity which cannot be explained on the 
basis of ordinary mechanics. These facts alone point out the necessity 
of the new systems of dynamics. 

In order to secure approximate models of the alkali metal atoms and 
thus a partial explanation of the energy levels, we can make non-mechan¬ 
ical assumptions which simplify the problem. An alkali atom can readily 
lose its valence electron to form a singly charged positive ion, a fact 
which led us to conclude that this electron alone is responsible for the 
doublet spectrum of the neutral atom. Similarly, the divalent elements 
of the second column of the periodic table and the trivalent elements 
of the third column readily lose two or three electrons, forming doubly 
and triply charged ions, respc^ctively. 

The singly charged ion of a second group metal or the doubly charged 
ion of a third group metal has a single valence electron moving about a 
very stable electron group. Thus, the ions Mg^^ and Al'^++ have the 
same electron configuration as ihe very inert gas neon, while and 
Tl"^*^"^ must be similar to platinum, which is also very inert chemically. 
Mg"*", Hg*^, Al"^^, and Tl'^'^ are called alkali-like’^ because they possess a 
single valence electron. The stable electron group obtained when this 
electron is removed is called the kernel” or the ^^core.”^ 

The model of atoms (or ions) with one valence electron, used first 
by Sommerfeld,^ rests on the assumption that the force field of the kernel 
is central in charactc'r so that the electron moves in an orbit similar to a 
processing ellipse; whatever the law of central force between the kernel 
and the electron may be, the successive loops of the orbit have the same 
shape (Fig. 6). Therefore, the same energy and angular momentum 
are to be associated with the electron at corresponding points of these 
loops. Thus, the difficulties of spontaneous ionization or of collision 
with the nucleus do not arise with this model. At large distances 
from the kernel, its force field should approximate to the inverse square 
law. The kernel is not to be considered as a uniformly charged spherical 
surface of definite radius. The electrons within the kernel are rather 
to be regarded as moving (approximately) on elliptical or circular orbits 

1 We shall use the term ^‘kernel'’ as the equivalent of the German atomrest or 

Tumpf. It was first used by Lewis {J. Am. Chem. Soc.y 10, 1121 (1916)), and we 

believe that it is a better English equivalent than ether terms suggested since that 

time. 
* Ann. Physik, 61, 15 (1916). 
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of differing semimajor axes and eccentricities, giving rise to an average 
field not unlike that of a spherical volume charge with density which 
varies in a radial direction. The electron will induce a polarization 
of the kernel so that the field at points outside will be somewhat greater 
than the inverse square. At internal points, some of the electrons 
of the kernel will not “ screen the nucleus and therefore the force 
exerted on the valence electron will be much greater than the force 
outside. Within the innermost shell of electrons the nucleus is not 
screened by any of the electrons of the kernel and therefore the force 
will be 

Fig. 6.—A penetrating orbit. J'la. 7. 

where Z is the atomic number. It is convenient to represent the force 
at any distance from the nucleus as 

F 
Z(r)e;^ 

(13) 

where Z(r) is a function of r, which decreases from the value of the atomic 
number at r == 0 to a value of 1, 2, 3 • • • at r = oo for neutral, singly 
or doubly charged atoms, respectively. However, in order to show 
qualitatively the various types of orbits of an electron moving in the 
field of an atomic kernel, we can use a simpler model for the kernel, 
namely, a positive nucleus surrounded by a uniformly charged spherical 
surface, so that the net attracting charge is Z'e outside of the spherical 
surface and Ze inside this surface. To determine the possible types 
of orbit, consider the situation when the path of the valence electron 
lies entirely outside the kernel. Its minimum distance of approach is 

(14) 

for an elliptical orbit of semiraajor axis a, where the energy is negative 
and n is finite, ax is the radius of the first orbit of hydrogen. For 
the parabolic orbit, where the energy is zero and n is infinite, this becomes 

2Z' * 
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All orbits having the same value of k have the same parameter, 

kHi 
c = 

An orbit having n finite and the orbit with n infinite are shown in Fig. 7. 
If for some particular value of k, the radius of tbe splu'Hcal shell p is 
less than k^ail2Z\ all the orbits of a sequence having the azimuthal 
quantum number k will lie outside the shell and will be elliptical orbits 
just as in the case of the inverse square field of force of a bare nucleus. 
If p is greater than c, all orbits with azimulhal number k will pcmetrate 
the shell, and the circular orbit for wliicli ti = J:. will lie completel}^ 
inside. Finally, if p lies between c and c/2, the orbits of low total quan¬ 
tum num})er will not penetrat(‘ the shell but those of higher total quantum 
number will do so. Examples of all three of these types are known, 
although the types are not as sharply defined as this simple model would 
predict, since the kernel may have s(^veral shells of ek^ctrons and the 
valence electron may penetrate more than one of these shells. We 
now consider these three cases in turn. 

9. NON-PENETRATING ORBITS 

These will have energy values lying very near thos(' of the hydrogenic 
atom having an atomic numb(T equal to the number of charges on the 
kernel. For such orbits the effective quantum number must lie very 
close to integral values and it is possible to pick them out in most cases 
from tables similar to Table .‘h Thus the -7^, and levels of the 
single electron spectra of Li 1 and th(', other elements in the first 
horizontal line of the periodic table have (Tfective quantum numbers 
lying very close to the hydrogenic values. The ‘^D terms of Na I, K I, 
Mg II, A1 III, and Si IV and the ;,74 terms of these spectra as well as 
Rb I, Cs I, Ca II, Sr JI, Ba II, Zn ifand Cd II have effective quantum 
numbers which are nearly integral, and, therefore, belong to non-penetrat¬ 
ing orbits. These terms follow the Ritz formula fairly well, although 
there are some minor deviations. This behavior is predicted by simple 

theory. 
The field of force outside the kernel may be represented by a series 

in descending powers of r, 

F = (1 + + Ci'V Ca V 
r- r ‘n 

(15) 

It may l>e, of course, that cc^rtain terms in this series are much mon^ 
important than others. Born and Heisenberg^ came to the conclusion 

^ Z, Ph7jsik, 23, 3S8 (1924); Born, “ Vorlesungen iiber Atommcchanik/' p. 189. 

Springer (1925). 
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that the term containing is probably more important then any of the 
others except the inverse square term. The inverse fifth power term 
appears because the kernel is polarized by the field of the valence electron. 

Table 3.—Effective Quantum Numbers for Neutral Alkalies and Ionized 

Alkaline Earths 

Li Na 1 K lib Cs 

iSb. 1.58<S 1.626 1,771 1.805 1.869 
2Sy>. 2.596 2.643 2.802 2.846 2.920 

3Sh. 3.598 3.647 3.800 3.856 3.934 

Q. 0.40 1.35 2.18 
1 

3.14 4.06 
1 

. 1.966 
1 

2.11G 2.232 2.280 2 392 
SPy.. 2.956 3.133 3.263 3.317 1 3.374 

■iPh.; 3.954 4.138 4.272 4.329 4.390 

Q.i 0.05 0.86 
1 

1.72 2.66 3.60 

. 2.999 
1 

2.990 2.854 2.767 2.548 
4/)3.. 3.998 3.988 3.797 3.706 3.528 
5Dru,. 5.000 4.987 4.770 4.684 4.526 

Q.'. 0.001 0.02 0.25 1.33(?) 2.47(?j 

. 4.000 3.999 3.994 3.989 3.977 

.1 5.005 5.000 4.991 4.984 4.975 

Q. 0.001 (?) j -0.00 I 
1 

O.Ol 0.01 0.03 

Mg+ Cd+ Sr-< Ba^ 

. 1.903 1.791 2.222 2.333 

. 2.920 2.868 3.267 3.403 
SSy. 3.925 4.286 4.404 

Q. 1.07 3.10 2.70 3.60 

2Py... 2.265 2.181 2.595 2.696 
3Pv.i. 3,286 3.245 

4P^.i. 4.293 4.276 

Q. 0.70 2.71 2.4 3.3 

SD:y. 2.9701 3.066 2.431 2.407 
40%. 3.9621 4.093 3.513 3.557 
50%. 4.9601 5.104 [ 4.536 4.588 
bDy. 5.957’ 6.108 5.552 5.603 

e.... 0.04 1.89 1.45 2.40 

. 4.00 3.962 3.962 3.681 

. 5.00 4.966 4.495 

. 6.00 5.9.53 5.970 • 5.209 
Q. 0.00 0.05 0.03 0.79 

^ Theeo refer to the levels 
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To a first approximation the electric moment p of the induced dipole is 
proportional to the intensity of this field at a distance r from the center 
of the kernel so that 

(16) 

where a is a constant called the ^^polarizability.^' The dipole can be 
regarded as two equal charges of unlike sign and 
magnitude p/I at a small distance I from each , 
other. The axis of the dipole always points toward ^ 
the electron (Fig. 8) and the force tending to increase 
the distance between them is 

__ ^_ —_ \_ QT) 

The expression for the total force between the kernel and electron is 
therefore 

jp = 

The potential energy is 

- -//* - 
and the kimitic energy is m('r^ + rV“)/2. The radial and azimuthal 
quantum conditions are thus 

^Prdr = ^ 2„E + + "f' dr = Urh (20) 

p^dip = 2'kp^ = kh. 

The integral in equation (20) is evaluated in Appendix II and leads 
to the energy value, 

RhcZ’^ _ _ Z^a 
( gA"' ' (22) 
I n +• + „ ) 

‘Ak^a/ 4.kW' 

where cii is the radius of the first Bohr orbit of hydrogen. The constant 
can be calculated from the experimental values of 6i and 62 independently 
and may then be compared with a value found in the following way. 

The kernel of each of the alkali metal atoms has the same number 
of electrons as one of the inert gases and undoubtedly has the same 
electron configuration. The electrons of the inert gases are bound less 
firmly however than those of the kernels of the alkali metals immediately 
following them in the periodic table, because of the smaller charges 
on their nuclei. Therefore, the polarizabilities of these atoms should 
be greater than those of the alkali metal kernels, though we can expect 
that the constants will be of the same order of magnitude. The value 
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of the constant a for a rare gas can be calculated from its dielectric 
constant 6 or from its refractive index n for infinitely long wave lengths 
by the Lorentz-Lorenz formula, 

3 € - 1 ^ 3 - 1 
“ 47riV e + 2 4tN + 2’ 

where N is the number of atoms per unit volume; n is obtained by 
extrapolating the refractive index curve to very large wave lengths. 
In the following, Table 4, the first row contains values of a calculated 
from refractive indices. The second shows values obtained from spectro¬ 
scopic data, assuming that A: = 1, 2, 3, • • • for the Sy P, Z), • • • 
sequences, respectively. The third row is obtained in the same manner 
as the second row except that k is taken equal to ^2, 4*2, ^ etc. Rubid¬ 
ium is not included because of the irregular character of its terms. 

Table 4.—Polarizability Constants 

IruB't gases. • ■ i Ho I Ne A Kr X 

. 0.20 j 0 39 1.63 2.46 4.(K) 

Alkali inetal ions . i.C ! Na+ ; Os+ 

With A integral, IO^^ck. 0 314 j 0.405 1 0.6<S 6.48 

or, with k half-integral, .. . ! 0.075 ! 0 21 1 0 S7 [ 3.36 

It will be noted that the half quantum numbers for A: give values 
of a lower than those of the corresponding inert gases, as they should 
be, while whole quantum numbers do not. This appears to be an argu¬ 
ment for the half quantum numbers but it cannot be taken as conclusive. 
Hartree^ and Schrodinger*^ pointed out that different values of a can be 
secured by using different sequences of terms. The calculations show 
that the order of magnitude of a calculated with either set of values of 
k is that to be expected from the refractive indices of the rare gases. 

10. PENETRATING ORBITS 

Schrodinger^ first showed that the orbits of the alkali valence 
electron must penetrate the kernel. In order to understand the difference 
between the energy values of penetrating and non-penetrating orbits, 
we may assume that the kernel consists of a nucleus surrounded by a 
spherical shell, with the charge of q electrons uniformly distributed 
over its surface. Schrodinger considered the more general case of several 
shells with different radii, but the essential points can be understood 
by considering a simple model for the sodium-like atoms and then extend¬ 
ing the results to atoms of higher atomic number. L(?t us suppose 
that a sodium-Ukc atom consists of a nucleus of charge Ze (Z = 11, 12, 

^ Proc, Camh. Phil. Soc., 21, 025 (1923); 22, 409 and 464 (1924); Proc, Roy. Soc., 
106, .552 (1924). 

2 Ann. Phydk., 77, 48 (1925). 
3 Z. Physik, 4, 347 (1921). 
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13, ... for Na I, Mg II, Si III, . . . , respectively) surrounded by a 
very small sphere carrying a charge —2e and a larger shell of charge 
— 86, and radius p. This distribution is based on the facts in regard 
to X-ray spectra presemhal in Chap. VIII. The two electrons of the 
inner shell may be considered as coincident with the nucleus for our 
purpose. OuUide the kernel the effective charge attracting the valence 
electron is Z,„ where 

- Z - 10, (23) 
while inside the kermd if is 

Z. - ~ 2. (24) 

Neglecting the efh^ct of polarization, the potential em^gy of the system 
when the valence* electron is outside the shell is 

■ zf <)C 
» 

r 
wliihi inside the shell if, is 

,• . + r ,,, 

r > P, 

~ p ~ r p ’ 

(25) 

r < p. (26) 

The tof-al en(‘rgy and angular momentum of tlie ek^cfroii are the same 
both inside and oufside, and ifs path eoiisists of sections of ellipses 
(Fig. 6). The eciuations of th(^ oufsid(‘ and inside orbits and their 
semimajor axes are, respc'ctively, 

and 

where 

r 1 
7nZoe'^ r 

1 
mZid^ r 

1 

- E - 

2Eir 

niZ.h’^ 

2Ey 

viZi^e^ 

1 + 

1 + 

cos 0, do — 

cos Of cii — 

2E~' 

_Z^e^ 

2E7 

(27) 

In applying the azimutlial quantum condition to this orbit the range 
of integration is 27r, and so 

l> = (28) 

but the range of integration for thci radial quanluin condition is made up 
of an outer loop and an inner loop, for after traversing this path the 
electron repeats its motion. Th(' radial integral is 

'■L 
2mEi + 

2mZ,c- 
dr 

+ 2 
p'' 1 illHX + -K 
J. 

r ?- 

dr - Urh. (29) 
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The integration can easily be carried out, but the graphical method 
used by Wentzel,^ Sommerfeld,*'* and others shows more clearly the 
meaning of this integral. In Fig. 9, which is a modification of one 
given by Somrnerfeld, p,- is plotted against r so that the area under the 
curve ABCD is the radial integral and according to the quantum con¬ 
ditions must be equal to Urh. The radial integral of another orbit is out¬ 
lined by the curve A'B'C'jy^ and that of an orbit which just falls within 

the kernel by the curve A"C"D". 

Tho energy E of the quantized orbit 
must be such that the azimuthal and 
radial quantum conditions are ful¬ 
filled. The area under the curve ABF 

is the radial integral of an orbit having 
the same energy and angular mo¬ 
mentum as the actual one but which 
lies entirely in the inverse square field 
of force of a positive charge 

The area under this curve is not a multiple of Planck’s constant. 

Fig. 9.—Kadial phase integrals of ptaie- 
tratiiig orbits. 

We set 

§[2me+<=■ - 
1/2 

dr = (30) 

and then 
Rhc _ Rhc 

(31) 

where r?r* and n* are not whole numbers and n* is obviously the effective 
quantum number defined in Sec. 7. Further, 

nh ~ nVi + Qhy (32) 

where Q is the quantum defect defined in equation (12), and so 

Urh = rir^h + Qh. (33) 

The geometric meaning of Qh is now clear. It is the area FBCDF, 

The figure shows that this area is nearly independent of the total quantum 
number; that is, Q is nearly constant for all lines of a given spectral 
series. 

When the approximate distribution of the inner electrons is known, 
the radius p of the electron shell can be specified roughly; curves like 
those of Fig. 9 can be constructed and the value of Q can be determined 
for each orbit. Approximate considerations of this kind were extensively 
used by Bohr in determining the total quantum numbers of the alkali 
valence electrons in their normal orbits. Anticipating, these numbers 
are 2, 3, 4, 5, and 6 for Li, Na, K, Rb, and Cs, respectively. Cu, Ag, and 

iZ. Physik, 19, 53 (1923). 
^‘‘Atombau,” 4th ed., p. 537, 
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Au have the valence electron in the states in 4, 5 and 6 quantum 
orbits, respectively. The values of Q assigned to the energy states 
of the doublet spectra considered here are given in Table 3 and the 
values of the total quantum numbers of the orbits are obtained bj’' adding 
Q to the effective quantum number and taking the nearest whole number. 

11. PARTIALLY PENETRATING ORBITS 

As stated above, it may happen that the orbits of higher total quantum 
number in a sequence may penetrate the kernel while those of lower 
quantum number do not. This occurs, if the radius of the kernel lies 
between h}a\ and as shown in Fig. 7. An example of this was 
found by Wentzel (/oe. cit.) in the secpience of terms of the mercury 
arc spectrum. The higher members of this sequence have large quantum 
defects while the lower terms have small quantum defects. This 
sequence b(4ongs to an atom with two valence (electrons, however, and, 
therefore, the irregularity of the effective (quantum number may be 
partly due to causes other than the one considered here. 

12. MODELS OF MORE COMPLICATED ATOMS, AND THE RITZ FORMULA 

The results obtaimnl from our penetrating-orbit model of the sodium¬ 
like atom, such as the derivation of the Rydberg formula, are surprising 
in view of its simplicity. Of course many modifications suggest them¬ 
selves. Th(i force field outside the kernel is not exactly an inverse 
square field as assumed, partly because of polarization forces and partly 
because the electrons of the k(*rnel cannot be rc'placed by a uniformly 
charged spherical surface. Moreover, in dealing with more complicated 
atoms, the effect of the electrons should be approximated by several 
shells of charge. The orbit of a valence electron would then consist 
of parts of several ellipses with different major and minor axes. It 
can be shown by methods like those of Sec. 9 that the spectral terms of such 
a model are given by the Ritz formula (8). According to the theory 
the constant a should be negative, and b positive. Ordinarily this is 
found to be the case. 

Much attention has been devoted to the computation of spectral 
terms on the basis of the shell model, and in simple cases fair agreement 
with the spectra has been attained. Appropriate distributions of the 
inner electrons must be determined with the aid of information gained 

Irom X-ray spectra. 

13. THE ORIGIN OF THE ALKALI DOUBLETS 

We have seen that the difference between the orbits and 
and rn^Pyz of the valence electron of an alkali lies in the orientation 
of the electron-spin vector with respect to its angular momentum. The 
quantum numbers n, i, and s are the same for both orbits, but s and ^ 
are parallel and antiparallel for these two states, respectively. Therefore, 
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we should bo able to calculate the wave-number difference of these 
terms by a method like that mini in (■hap. V, Se(;s. 16 to 19, to obtain 
the difference of the terms 2, 1, 92 2, 1, ^2 of hydrogen. The paral¬ 
lelism of the two cases is most easily seen by cousidf'rinfz; the (dement 
lithium, whose F orbit.s do not penetrate the kernel, th('. t(Trn values 
being very close to those of hydrogen. At the kdt- of Fig. 10 the positions 
of the two-(|uantum states of hydrogcoi are indicated on a much exagger¬ 
ated scale. The 2, 1, 3 2, fh ‘ 2 terms an^ shown sc^parately though 
they are actually coincident. The slight displac('m(Hits of these terms 
from the positions predicted b^^ th(' simple* Halmer formula are due to the 
combined effects of relativity and electron spin, as suiiim(*d up in equation 
(93), Chap. V. The corresponding terms of lithium are shown on the 

right, also on a distort(‘d scale. Th(i 
-^>^4 orbit penet,raters the kernel, as we recognize 

immediately from Table 3. Its quantum 
numbers are n — 2, / = 0,;/ = 3 2, l^bat it 
corres})onds to the 2, 0, ^ 2 orbit of hydrogen 
and is denoted ])y the same symbol. Sim¬ 
ilarly, th(' 2-y^i:, and 2H\. orbits correspond 
to 2, I, * 2 and 2, 1, '^2 of hydrogen. The 
interval betwwn these two states is small, 
for the orbits have the same total and 
azimuthal numbers, and an^ practically coin¬ 
cident. In fact, the interval is due to the 

electron spin. The energy of the penetrating 2, 0, * 2 orbit is also affected 
by the electron spin and the r(‘lativity change of mass, though these are 
small compared to the increase of the term due to penetration. The 
interval between IS and 2F is usually called a ''screening doublet,” for 
the difference of their eni^rgies is due to the fact that on the average an 
electron on a LS' orbit is not scr(‘,en(;d from the powerful attraction of the 
nucleus to the extent it would be in traversing a 2P orbit. Likewise, the 
interval between the 2“Pi4 and 2'^Fi^ orbits is called a "spin doublet.” 
A better name would be '‘spin-relativity doublet.” 

A quantitative test of the adecpiacy of this explanation is easily made. 
From equation (93) of Chap. V, the interval between two levels with 
quantum numbers n, 1,1 + n, I, I — 3 2 

nH{l + 1)' 

Now, in dealing with lithium, instead of employing an effective quantum 
number, we may think of the non-penetrating 2F orbits as hydrogenic 
orbits moving in the field of a nucleus with an effective charge so 

that the spectral term is 

T — 
~ ““2^ ■ 

'-!S//^ 

Ufhlum 

Hydrogen 

Fig. 10.—Tiio (iDrri'Iat ion (tf 
hydrogen and litliuini 

(34) 
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Using the known value of T, namely 28,582.5, we find that = 1.021. 
This value is used in (‘(luation to calculate the relativity and spin 
corrections of the two orbits in question. The r(‘sult is 

A?u. = (35) 

where Apyj is the separation of the two quantum orbits of hydrogen, 
0.365 cm. "b Therefore', 

Apl. = 0.386 cm."b 

Kent^ has found the separation of the 2P orbits to be 0.34 cm.'^b 
which is a satisfactory agreement in view of the^ approximate natures 
of our model. 

In order to apply these ideas to the penetrating orbits of the other 
alkalies, it is necessary to consider the contributions of the inner and o»itcr 
parts of the orbits. On the outc'r part of its orbit, the electron moves 
in a field corresponding to an effectiv(' atomic number Zo and in an orbit 
whose dimensions are determined by the quantum numbers n* and L 

For an electron moving in a complete orbit of the same shape as this 
outer loop, the difference in wave number for the two possible orientations 
of the electron spin relative to the orbital angular momentum will be 

Ap., 
1)‘ 

(36) 

Similarly, the wave number separation for the two orientations for an 
electron moving in a complete ellipse having the same constants as the 
inner loop will be 

nm + 1) 
(37) 

To get the value of Ap for the actual orbit consisting of an outer and 
inner loop (Fig. 6), we weight these two values in proportion to the 
relative times spent by the eh'ctron in the two parts of the orbit. This 
procedure is partially justified by the fheorem of Chap. VI, Sec. 10. 

The time r required for the electron to move from the position of 
maximum distance from the nucleus to the minimum distance and back 
again in the actual orbit is nearly equal to the time To required for it to 
traverse the whole outer ellipse, a result easily verified by the study 
of a few examples. Therefore, 

Similarly, the time spent in the inner loop of the orbit is very nearly equal 
to the time of revolution in a completed internal orbit, so that 

Ui^h^ 
Ti = (39) 

1 Astrophys. J., 46, 343 (1^)14). 
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Av Avo + Avi 
T T 

Avo + Api^* 
To 

Ra^Zo^ 
n*H{l + 1) 

(Zo^ + Zi^). (40) 

14. THE CALCULATION OF ORBITAL PROPERTIES FROM DOUBLET 

SEPARATIONS 

If Zo is small compared to Zt, the first term in the parenthesis can 
be neglected. In this form Lande^ used equation (40) to calculate 
values of Zi for the penetrating P levels of a large number of atoms and 
found that Zi diffen^d from the atomic number by only a few units 
in all cases. This was interpreted as showing that the electron penetrates 
close to the nucleus in all these orbits. 

For the doublet separations of ionized atoms of low atomic number 
it is not justifiable to neglect Zo^ in the equation above. The Zi values 
for the doublet spectrum of Na and for ions which have the same number 
of electrons as Na (namely, 11), are given in Table 5. 

Table 5 

Zo 2^Pi^ - 22P., n* j - 3^/% n* Zi 

Na T. 1 17. IS 2.117 7.58 5.49 3.134 7.55 
Mg 11. 2 91.55 2.265 9.34 30.05 3.287 9.36 
A1 III. 3 238 2.370 10.58 80.13 3.392 10.50 
Si IV. 4 460 2.450 11.37 162.06 3.471 11.38 
P V. 5 795 2.509 12.14 
S VI. 6 1279 2.556 |12.85 

42Pt., - n* Zi 
Average 

Zi 
Z - Zi 

Na T. 
Mg 11. 

2.49 
14.07 1 

4.139 
4.294 

7.72 
9.57 

7.62 
9.42 

3.38 
2.58 

A1 III. 39.15 4.399 10.85 10.62 2.36 
Si IV. 75 4.478 11.34 11.36 2.64 
P V. 12.14 2.86 
S VI. 

. 
12.95 3.05 

I 

The last column of the table gives the value of the so-called screening 
constant for the inner part of the orbit. It is the difference between 
the atomic number and the calculated value of Zi for the orbits of 
these atoms. The data indicate that the P orbits of these atoms plunge 
inside a shell of about 7 electrons and remain outside the region occupied 

1 Z. Phydk,, 25, 46 (1924). See also Millikan and Bowen, Phys. Rev., 24, 209 
(1924). 
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by about 3 electrons. This agrees fairly well with the arrangement 
of electrons discussed in Chap. IX, according to which there is an inner 
shell of 2, and a second shell of 8. Since the quantum defect Q is greater 
for the levels it seems very probable that the electron in these steady 
states penetrates the inner shell. 

Such calculations make possible the extrapolation from the known 
doublet separations of atoms to unknown separations of other atoms. 
Bowen and Millikan^ used this method to aid in identifying the series 
lines of P V and S VI, used in making the calculations of Table 5, and the 
method has been particularly useful in studying the doublets of stripped 
atoms of the long periods.^ The cause of the separations of systems of 
higher multiplicity (triplets, quartets, etc.) to be taken up immediately 
is similar, and similar methods can be used for extrapolating from known 
to unknown multiplet separations. 

16. BOHR-GROTRIAN DIAGRAMS 

In studying approximate orbits, it is very convenient to use energy 
diagrams like those in Fig. 11. The energy increases toward the right 

^ I_2 3 4 S 6 j I 
I 7 ! ^ I n I I 

s 
J 1 4 \ .5-1 e \ 7 
--—1- yz 0 

P'k 
J \4 '5 \ 6 
-f*-f*-- / 

Pv, ~Sodium / 1 U I4 If 5 J . 5/ 
/ 

D - (II) *-f- %•% 2 

F 1 1 ;■#_i/._ 
! • 1 T 

3 
‘ I_!_I_j_:_i:£ 
V109700 27400 12200 6650 4390 3050 

^ J 4 S 6J I 

Fig. 11.—Bohr-Grotrian diagrams. 

and the point of zero energy is represented by the line at the extreme 
right of the diagram. The energy values of the terms aS, P, P, etc., 
as given at the left, or of the I values 0, 1, 2, etc., as given at the right, 
are indicated by dots. The vertical lines represent the energy levels 

> Phys. R&)., 26, 295 (1926). 
• Gibbs and White, Froe. ATot. Aa^d^ 12, 075 (1920). 
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of hydrogenic atoms. The total (luantum numbers n are written beside 
the terms. If an energy level falls close to the corresponding hydrogemic 
level, the orbit is ordinarily assumed to bo non-p(uietrating and is given 
the same quantum numbers as the corresponfling hydrogenic level; 
the doublet separation must also be small in order that this may be 
justifiable. Thus in Cu I, the levels fall near the two-quantum level 
of hydrogen so that they might be avssigned the numbers n, Z = 2, 1. The 
doublet separation is large, however, and it is probable that this is a 
penetrating orbit with the quantum numbers r?, Z = 4, 1. The assignment 
of total quantum numbers is largely determined from such general studies 
of the building up of the entire periodic system of the elements, which 
will be taken up in Chap. IX after X-ray spectra have been discussed. 

16. THE SCHEME OF QUANTUM NUMBERS FOR AN ATOM HAVING ANY 

NUMBER OF VALENCE ELECTRONS^ 

We are now in a position to discuss the spectra of atoms having 
several valence electrons. New phenomena will be encountered because 
the properties of the atom, e.g.y its energy, and its behavior when external 
fields are applied, will depend on the quantum numbers of all the electrons 
in the uncompleted outside group. In the pn^sence of a uniform external 
force field, which we assume to be magnetic for simplicity, each electron 
in the outer group may be characterized by five (quantum numbers. 
We denote the quantum numbers of the pth electron by 

^'pj "^Jpy ^Pt 

Here rip is the total number. Ip the reduced azimuthal number, and rriip 

the component of Ip along the lines of force; Sp is the spin quantum 
number while m^p is the component of Sp along the lines of force.When 
there is no external field, the system is degenerate and the situation is 
simplified. Let us suppose that the values of rip and Ip for each electron 

^ The quantum numbers Z, s, and j are vectors and .should be indicated in bold-face 

type; but, since this is not customary, they have been indicated in this way only when 

it was especially necessary to emphasize their vector charac^ter. 

* These five quantum numbers do not constitute a unique choice, and we shall 

sometimes use other systems, e.g.y we shall replace Sp hy jp, where jp is the resultant of 

Sp and Ip. The reader may wonder why the spinning electron is assigned only five 

quantum numbers. The fact is, there should be six quantum numbers if we think of 

the electron as a rigid body spinning on an axis. To specify the position of such a 

body, we may give the coordinates of a point on the axis, and three other coordinates 

which specify the motion of the electron about its center of gravity. The quantum 

numbers for the motion of a symmetric rigid body in the absence of a field of force are 

discussed in Chap. XII, Sec. 24, A third quantum number specifying the orientation 

of the angular momentum vector is necessary when a field of force is applied. This 

corresponds to In the case of the spinning electron, it appears probable that the 

other two have the same physical significance, so that apparently we deal with only 

one of theii*. 
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aro spocifiorl. The value of Sj, is always This will not make the 

(uiergy of th(‘. atom (l(‘terminat(^, for the / and .s vectors of th(i various 

electrons may assume various orientations with resi^ect to each other, 

each one corresponding to a different ent^rgy level. In practice, many 

of these possibilities are not realized at all; or, if they are, they give rise 

to very weak sp(^ctral lines. We have seen that in the case of the alkali 

metals, the Ip and Sp vectors of the valence electron combine to form a 

quantized resultant jp, but in an atom with several valence electrons 

it is not generally true that the Ip and vectors of (iach (dectron combine 

to form a quantized resultant, because of the influence of the other 

electrons. Two limiting cases are to be distinguished: (1) that in which 

the vectors Sp are closely coupled, and the vectors Ij, are also closely 

coupled, with little interaction between the Sp and Ip of each electron; 

(2) that in which the and Ip vectors are closely coupled while there 

is little interaction between the individual electrons. Between these 

extremes, all possible intermediate strengths of coupling are supposed 

to exist. The exact nature of the coupling is immaterial in enumerating 

the spectral terms, because either case (1) or (2) leads us to predict 

the existence of the same number of terms. The relative positions 

of the terms in these two cases, however, will be ejuite different. Case 

(1) corresponds to the term arrangements found in the spectra of elements 

in the first three columns of the periodic table and in many multiplet 

spectra, while case (2) is well illustrated by neon and other rare gases. 

All the spectra considered in the remainder of this chapter can be 

explained on the basis of case (1). Therefore, we assume, as an apjyroxi- 

rnation, that when no external field is present, 

(1) The spin vectors Sp will form a quantized resultant 

S = (42) 

and each .s„ will precess about this resultant. 
(2) The reduced azimuthal quantum number l„ likewise form a 

quantized resultant 
I = (43) 

and each Ip processes about the resultant 1. 
(3) The vectors I and .s- form a resultant j around which they process, 

j = 1 + s. (44) 

The behavior of these vectors in the presence of an external field will be 

discussed in Chap. X, Sec. 8. 
We must now explain the part played by the numbers I, s, and j 

in the analysis of spectra, anticipating the descriptions to be given in 
the next few sections. Before the discovery of the spin of the electron, 
the study of spectra emitted by atoms with several valence electrons had 
led to the introduction of an azimuthal number k and an inner number 
for each spectral term, just as in the case of alkali metal spectra. The 
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term sequences were given the names, P, />, etc., and the values 

k — 1, 2, and 3, etc. were assigned to these sequences, exactly as described 

in Sec. 3. Naturally, it was believed that the azimuthal number of a 

spectral term was actually the azimuthal number of a single electron, 

called the ^^leuchtelektron^^ or ‘^emitting electron.” Today, we know 

that — 1 is identical with I, the resultant of the Ip^ so that / = 0, 1, 

2, • • • etc. for the S, P, D, etc. terms, respectively. When s = 0, 

1, etc. we are dealing with singlets, doublets, triplets, etc. The multiplicity 

of the system of terms is indicated by a superscript in front of the symbol 

S, P, etc. Thus a triplet term for which I = 1 and j = 2 is written ^P^. 

17. DESCRIPTION OF SECOND-GROUP SPECTRA 

The spectra of th(^ neutral atoms of second group elements are more 

complicated than those of th(‘ alkalies b(‘cause there are two sets of 

energy levels, a singlet system and a triplet vsystem. We have spectral 

lines due to the combination of 

single levels, and groups of sp(ic- 

triim lines, thn^e or six in number, 

due to the combination of triplet 

levels with other triplet levels. In 

addition, there are linens caus(^d by 

the change from a triplet level to 

a single level, and vice verm, which 

are calked intercombination lines.” 

In these spectra, the tc^rms and their 

combinations may be described by 

means of numbersZ, j, and s, justasin 

th(? case of the alkali atoms. These 

numbers are characteristic of the 

It is found empirically that when 

they are assigned to the terms in the way indicated in the energy diagram 

(Fig. 12), the selection rules as given above for doublet spectra hold 

true, i.e.j I changes by ±1, except in the case of combinations with the 

so-called primed terms, which will be discussed presently; and j changes 

by ± 1 or 0, with the additional restriction that the change 0 ■—> 0 is 

forbidden. 

We use the Hg spectrum (Fig. 13) as the first example because of its 

importance in experimental work. The physical properties of Hg are 

such that it is widely used in testing spectroscopic theories as well as in 

photochemistry and biological work, and the reader cannot be too 

familiar with its spectrum. Anticipating, we may say that all the terms 

which we shall define in discussing this element correspond to con¬ 

figurations in which one of the two valence electrons is on an excited 

orbit, while the oiner m on an unexcited orbit. The frequency 

V 

U 
10,000 

eo.ooo 

30,000\ 

40,000 

so,000 

60,000 

70,000 

00000h 

1 s J 

fn Z / 32] 
2 OZ 

2'So 0 0 0 Q J J 
/ 0 / 

-Z^Si 
-2^P, 

-2^ / / Z 
/ / / 
f f 0 

l^So 0 0 0 

Fig. 112.—The energy diagram of mercury. 

term and not of any single electron. 
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es36.7e j^Sq-z^p^- 

265SJ3 2^Pf-4D^-l 

2806.64- 2^P^ ~S^D2 - 

3027A8 Z^P^-4'D2'- 

Zf31.64 

366Z.Z6 Z^P^-z'D^X 

4077.63 2^PrZ^Sf\ 

pe9.eo z’Pj -3\-\ 

-2462 

Resonance Line 
2^Pf-5%2 

differences between the components of the more important triplet levels 

of Hg are very large; e.g., 2'^Pi — 2^P2 == 4,631 cm.~h Quite generally, 

the separations of the components of multiple terms increase as we pass 

from low to high atomic numbers in a given group of the periodic table. 

The large v diff(u(uice of the 2^P terms of Hg causes successive groups 

in the sharp and diffuse triplet series to overlap, so that it is difficult 

to detect series in this (4(unent by 

eye. The lowest term of the spec¬ 

trum is th(i singlet t(‘rm which 

lies at 84,178 crn. 'h There is no 

triplet S stat(‘ having a term value 

comparable with 1 hS'o. 2^80 is found 

at 20,353 cm." ^ and an S level of the 

tripled system lies nearby at 21,831 

cm. h Because of the close agree- 

merit in energy value with the 258,, 

orbit, this state is also given the 

numbfu' 2 and is called 2'V8,. The 

first lines of the singhd and inter¬ 

combination principal series, lh8o — 

2P, at 1,849 A, and 158,, - 2Vhat 

2,536.7 A, are the important m*e- 
7iarice UtieH. They are the only 

lines in the absorption sp('ctrum 

which lie in accessible regions. 

Often conditions are such that 

Xl,819 is the strongest line of the 

emission spectrum. The most important series of Hg are as follows: (In 

reading across a horizontal line the wave length decreases.) 

2652-5 Z\P,-^ 
Z69e8'8?^P2-e^D/23 
2752.78 2^Po-3^6i ' 

2805-4-5 2^5^Pj25 
2893.60 2^Pf ~3^S/ ' 
2967.28 Z^Po-5^D, 
m5-232l2^P^-~4^Df25 
'5125.66 pJd ... 75 n - ^ n 13541.46 Z^P2-3^S, 

5650. J5 
3654.83 Z^Pp-S 
3662.86 ' 

\4046.5e 2^Po-2^Sj 

14558.54 Z-^Pj ’Z^Sj 

\-S460.74 Z^P^-Z^S, 
\-5790.66 2P,-5^D2 

I’u}. 13.- The mercury six'ctriim. 

Singlet Sydem: 

Principal. m ^ 2 P^Sn — mlPi] m ^ 3, 2'/So — ni^Pi. 

Sharp. w ^ 2 2^Pi — irPSo. 

I3iffuso.w, ^ 3 2Pi — 7n^D‘2. 

Triplet System: 
Principal. .; w ^ 3, 2'\St — ?w’^Po, 1,2. 
Sharp. m ^ 2 23F, - nPSp, 2^P, - nPSr, 2«Po - m^Si. 

Diffuse. w ^ 3 2P2 ~ w-^Di,2,3; 2®Pi — Tn3Di,i) 
2’Po - m^D,. 

I nte rc.vmhmation: 
Principal. m ^ 2 Pa8o — inZPi. 

It is unnecessary to illustrate the nature of the singlet series, so we 
begin with the first triplet of the sharp scries. The wave lengths, wave 
numbers, and wave-number differences of its three lines are as follows; 
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(Classification X p Ap 

23P2 ~ 2^Si 

2^Pi - 

2^Po - 2^Si 

Higher members of the series are similar and, obviously, have the wave 

number differences listed for the first triplet. A diffuse triplet is more 

complicated, since it is obtained by the combination of two triplet levels. 

Thus it would be expected to contain nine lines, but three of these are 

5,460.74 
4,358.34 
4.046.56 

18,307.5 
22,938.1 
24,705.4 

4,630.6 
1,767.3 

eliminated by the operation of the selection principles for j. In Fig. 

14 we see how this occurs. Numerical data for the diffuse triplet 2^P — 

3^D of the related clement cadmium are given below: 

Classification | X V AP8/> 

- 3^/h. 3,614.43 27,659.0 

- 3‘Di. 3,612.89 27,670.8 
11.8 

- 3^3. 3,610.51 27,689.0 
18.2 

- SWi. 3,467.61 28,830.1 
18.9 

~ 3«P2. 3,466.18 28,842.0 

- 3‘V>),. 3,403.60 29,372.3 

AP2p 

1,171.1 

542.2 

As for the intercombination principal series, the lines VSq — are 

ruled out by the^ selection principle, while VSq m^Po is absent because 
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of the additional restriction that transitions do not occur between states 

for both of which j = 0. 

In addition to the series systems mentioned in the above tabulation, 

any second-group metal has sequences of so-called primed terms, 

corresponding to configurations in which both valence electrons are on 

excited orbits. Mf^cury does not furnish a good illustration of these 

terms so we shall study them in magnesium instead. Before discussing 

the primed terms, however, it will be best to study the combinations 

of quantum numbers giving rise to the terms already described. 

18. ORDINARY SERIES OF A TWO-ELECTRON SYSTEM, ILLUSTRATED 
BY MAGNESIUM 

We deal first with t(‘rms of magnesium in which 1 electron remains 

on an s orbit, starting with the lowest t(‘rm. The quantum numbers 

of this electron are indicated by the subscript 1, those of the ^^excited^’ 

electron by the subscript 2. Referring to Table 6, consider the assign¬ 

ment of quantum numbers writbui in the first line. The resultant 

of li and I2 is zero, whik' that of .s j and S2 may hav(^ the values zero or one, 

according as the spin vectors of the 2 electrons are opposed or parallel. 

In the first case, thc^ vectorial sum of I and s is zero, and this is the value 

of j. In the second case, this sum is one. The level arising from the 

first arrangement is a singlet term. It is an S term, for I is zero, and its 

subscript giv(‘s the value of the; inner quantum number. The second 

is called a tripk't term for reasons similar to those given’ in Sec. 3 

where the S levels of an alkali were called doublet S terms, even though 

they are single. The formation of the remainder of the table will be 

obvious. It should be noted that the triplet terms owe their threefold 

Table 6.—Quantum Numbeus fou OuDiNAiiv Series Terms of Mg 

ni S\ h ri-j ^‘1 b « ? j Term 

0
 

CO 3 0 1 0 0 0 IVSIo 
1 0 1 IVSfj (absent; ex- 

plained in Sec. 19) 

3 H 0 3 K 1 0 1 1 2ip, 

fo 

1 1 1 1 2^Pi 

2 

3 }4 0 3 >2' 2 0 2 2 31D2 

[1 
1 2 ■ '2 

[3 ZW, 

3 >2 0 4 Vi 0 0 0 0 i 
1 0 

etc. etc. 

1 j 

etc. 
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character to the three possible quantized orientations of the 5 vector 

with respect to the I vector. In general, the number of levels corre¬ 

sponding to a given I and s is 2s + 1. 

The part of the table above the solid dividing line exhausts the 

possibilities of obtaining terms from a 3, 0 electron and a second three- 

quantum electron; the highest value of I which can arise from such an 

arrangement is 2 since Ip < Up, To obtain F terms, we must place the 

second electron on a four-quantum orbit. Then, I ~ I2 = 0, 1, 2, or 3, 

and we obtain the second meunbers of the P, and D sequences as well as 

the first member of the F sequence. In all the terms in this table, h — 

so that I2 determines the azimuthal character of the terms. In any atom 

containing only one valences electron with an I value different from zero, 

that electron may be considered as the ^Teuchtelektron,’^ and all the 

others may reasonably be referred to the kernel; but, on the whole, 

such a distinction is of little benefit. 

19. PAULIES EQUIVALENCE PRINCIPLE 

In the energy diagram of Hg and in Table 6, we note that the triplet 

system has no deep-lying level which might be called I’^Si in analogy 

to the lowest lev(d of the atom, IVS^o. This is due to the operation of 

Pauli’s^ equivalence principle, a far-reaching hypothesis now to be 

explained. In order to understand this principle we must become 

acquainted with the behavior of an atom in a magnetic field, discussed 

in Chap. X, Secs. 8 and 9. In the presence of a weak field the vector j 

processes about the direction of the lines of force. Just as in the cases of 

hydrogen and of the alkali metals, the atom is space-quantized in the 

field and the component of j in the direction of the field is called the 

magnetic quantum number in. On the other hand, in the presence of a 

very strong field the coupling of the various Ip and Sp vectors is broken 

down, and each of these vectors is independently space-quantized in the 

field. Their orientations follow the usual quantum rules, so that mip 

takes integral values obeying the conditions, 

— Ip^ miy g l,„ (45) 
while has the values, 

Sp ^ m,p g Sp, or m,p = ±}4- (46) 

It is often more convenient to consider the case of a strong field 

because each electron is then definitely characterized by the five quantum 

numbers np. Ip, Sp, m«p, and rnip. The assignment of numbers for an 

intermediate field is not so simple as in either a weak or a strong field. 

Paulies principle is as follows: 

There are never two or more equivalent electrons in the atom, such that 

the values of all five of their quantum numbers will be identical when a 

strong magnetic field is applied. 

* Z Physik. 31, 7fi5 a925). 
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This assumption limits the number of ways in which the electrons 

in a field-free atom may be coupled, and also explains the structure 

of the periodic table of the elements (Chap. IX). We may use it at 

once to explain the absence of the PSi term in Table 6. For this state, 

the total quantum numbers of both valence electrons are equal. Their I 

vectors are each equal to zero, and their s vectors are parallel. The 

orbits of these electrons are therefore completely equivalent, and if a 

strong field is applied parallel to the common direction of the 5 vectors, 

both electrons would be characterized by the magnetic quantum numbers 

m/ = 0, rus = +12, = d, for both of them must behave 

similarly. This configuration would not be in agreement with Pauli\s 

principle and, therefore, the level VSi does not occur in the absence of a 

field. Other illustrations will be encoimten^d continually. 

20. QUANTUM NUMBERS FOR THE HIGHER SERIES SYSTEMS OF SECOND- 

GROUP ELEMENTS 

Let us now return to the study of the Mg spectrum. If we place 

the first electron on a 4, 0 orbit and the second on a 8, 0 orbit, we obtain 

the terms 2^So and 2’SSt, as before; but the configuration of a 4, 0 orbit 

together with any possible orbit other than 3, 0 yields a series system 

similar to that in Table 6. Of course, all the terms lie at much higher 

levels on the (uiergy diagram than their analogues in Table 6, and the 

series conv(^rges to a different limit. The triplet S term corresponding 

to the arrangeiiKuit 4, 0; 4, 0 is missing, by Pauli’s ruhn Similar systems 

are obtained if the first electron is on the 5, 0 orbit, and so on. Even 

the 4, 0 system must be expected to be extremely weak, and in Mg no 

such terms are known. They might be discovered by using a high- 

current arc. Series of this type are well known, however, in the spectra 

of other elements. 

When the first electron is on a 3, 1 orbit instead of its normal position 

3, 0, we encounter new relationships. Corresponding to given values 

of the /p’s, we can have different values for the resultant Z; that is, spectral 

terms having varions I values are found to correspond to one and the same 

set of Ip values^ the difference between them arising from the various possible 

orientations of the vectors Ip. The way in which such terms arise is shown 

in Table 7, In this table some of the term symbols are provided with 

primes. The meaning of this notation is given in Sec. 21. 

It is not convenient at this stage to explain in detail the exclusions 

mentioned in the column of remarks for such explanation involves a 

knowledge of the strong field Zeeman effect of these terms, but we may 

describe the way in which these terms could arise, neglecting the fact 

that some of the possibilities listed are excluded. The resultant, s, of 

Si and S2, may take the values }4 — H or li + H- The first value 

yields singlet terms; for when s == 0, the resultant^ of I and s is I itself; 
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Table 7.—Spectral Terms of Mq with 1 Electron on a 3, 1 Orbit 

712 h s 1 1 ^ 
Term V llemarks 

fo. 0 Undiscovered in Mg. 
3 1 0 1 1 Pi' Excluded by Pauli’s principle. 

b 2 T).> 3,649 Identical in position with 
in tlie ordinary 

series. 
1 •vs\ j Excluded by Pauli’s principle. 

3 1 1 ' 1 0, 1, 2 P/ 3,79S-3,S60 ■‘’P-/. 1, 0 in Pasclicn notation. 

b| 
1. 2. 3 -v;,, 

i 
Excluded by Pauli’s principle. 

that is, only one j-vahic arises from this set of values of I and .s. But 

the value .9=1 gives rise to triplet terms. What(‘ver I may be, the 

addition of the vector .s* = 1 to the vector I gives three (piantized result¬ 

ants, / + !, /, and / — 1; except that when I = 0, we have only one 

quantized resultant and j = ,9. This givc's an isolatc'd S term, 

called a triplet S term because it has th(‘ sam(‘ .s* value as all the actual 

triplet terms. Now in the table the possible resultants of the vc^ctors 

Zi = 1 and /•> = 1 are Z = 2, 1, or 0. Taking (\ach of these / values with 

each of the possible .v values, we get the 6 multiple terms of Table 7. 

For experimental information on these terms th(^ i‘ead('r may consult 

a paper by Green and Petc^rsen,^ and anot her by lluark,- d('aling with 

the excitation potentials of lines involving soira^ of these levels. We 

do not list terms in which the first electron is in a state of higher excita¬ 

tion, such as the 3, 2 orbit, for such terms are not known in the Mg 

spectrum. Terms due to a configuration consisting of one n, 2 and one 

1 electron are strongly developed in Ca, Sr, and J^a. 

21. PRIMED TERMS AND DISPLACED SEQUENCES 

In the spectral tables for second-group elements there are many 

illustrations of terms which arise from electron configurations of the 

kind described in the last section. As an illustration we shall consider 

groups of lines in second-group spectra which may be interpreted as 

combinations of two triplet P terms. An excellent illustration is the 

strong multiplet near 4,300 A in the Ca spectrum, which has the structure 

shown in Fig. 15. The lower level involved in the emission of this 

group is a level, which belongs to a sequence corresponding to that 

described in Table 6. When the atom is in one of these states, one valence 

electron is on a 4, 0 orbit and the second has th(i quantum numbers 

1, where n is equal to or greater than 4. If we put n = oo, the second 

electron is removed, and the ion which remains is similar to an alkali 

atom in its normal state. If we assign the wave number zero to this 

1 Astrophys. J., 60, 301, (1924). 

a /. 0. A„ XX, 199 (1925). 
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state in the customary fashion, the levels of calcium are found to 

have wave numbers w^hich obey a Ritz formula. However, this is not 

true of the upper levels for the emission of the multiplet at 4,300 A, 
which are designated by rwP'j with m equal to 2, 3, etc. It was formerly 

customary to refer to such levels as primed levels, or primed terms, but 

the meaning of the term has biHui alb^nnl in recent years. Its present-day 

significance is described in Chap. X, Sec. 3. 

L(4- us now examine the origin of the P' levels 

of calcium. Wh(ui the atom is in a P' state 

the valence electrons are on 4, 2 and /?, 1 orbits, 

respectively, with the undersi.anding that n is 

greater than or ecpial to 4. When n becomes 

infinite, the atom is ionized; as before, the ion 

is similar to the atom of potassium, but it is not 

in the normal state, for th(‘ valenc(‘ electron is 

on a orbit. The energy of this state is 

povsitive and its wave number is negative, if 

the normal state of the ion is tak(ui as the 

origin and therefore the wave numbers of the 

7tiP' levels converge to a negative value and can¬ 

not be exp(‘cted to follow a Ritz formula. 

For (‘xample, the terms of the m‘P' scHpience of Ca have been assigned 

the following wave numbers by Russell and Saunders:^ 

Fig. 15.—The 2^P — m'P' 

rliultiplet of calcium. 

2'^P'. 10,753, 10,S10, 10,SS7 

'm*'. 741, 767, 7S1 

. - 5,000, - 4,0H4, - 4,07S 

h-P'. - S,334, - S,313, - 8,306 

63p'. -10,086, -10,063,. 

The fact that these terms (‘xtend into th(' region of negative wave 

numbers is worthy of notice. When the term is negative, the atom 

possessc^s more energy than would be nMiuired to eject a singki valence 

electron from the unexcited atom. 

All sequences which converge, as this one dex^s, at an excited state 

of the ion, may be called ^‘displaced;” th(^y are neith('r anomalous 

nor infrequent, and it often happens that tiunr wave numbers will oliey 

a Ritz formula if the origin is shift(‘d to th('. limit of thf^ sequence. Thus, 

in the case of calcium, Russell and Saunders showed that the lines 

2^P2 — m^P^ are well represented by the formula 

V = 47,950 - 
R _ 

[m ~ 0.S202 + 3.75 • 
(47) 

Since the final orbit involvc^l in the emission of these lines is 2^/^2, 

having the wave number 33,989 the series limit lies at 2^P2 

1 Astrophys. 61, 38 (1925). 
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00 = 33,989 — 47,950 = —13,961 cm.""^ Let us now examine the 
evidence in favor of the statement made above, that the ooP' state 

is the ^2) state of the ion. We see that the ion will emit a quantum 
V = 13,961 in falling to its normal state which has wave num¬ 
ber zero in our present scheme of reckoning. The lowest terms 

of Ca"^ (with zero at the principal series limit, corresponding to 
removal of the valence electron) are as follows: 1\S at 95,740, 3^P at 

82,028 - 82,089, and 2^^ at 70,325 - 70,548 cm.^k Now 1%, - = 
13,711, and this agrees with 13,961 within the error involved in deter¬ 
mining the limit for the rnP' sequence, which is somewhat irregular. 

This alone would not be sufficient proof of the assignment of quantum 

numbers cited above, but similar relationships are found in strontium 
and barium, and the (question may be regarded as settled. In the 
elements Be and Mg, on the other hand, the situation is different, and a 

controversy arose before the matter w’as completely understood. Some 
authors claimed that the terms of all second-group elements arise 
from the configuration h = 2, U = 1, while otluTs believed that the I 

values of both electrons arc equal to one. Theoretically, there should 

be term systems corresponding to both configurations, and the question 
involved is really that of their relative prominence. For example, 

there should be Mg terms arising from the electron grouping 3, 1; 3, 2, 

but lines involving them should be very faint for these terms lie much 
higher on the energy diagram than those corresponding to 3, 1; 3, 1. This 
is due to the fact that the 2-P level of Mg"^' is lower than S'^D. On the 

other hand, in the spectra of Ca, Sr, and Ba, 3^1) is very close to 2^P, 
and in Ba, 3^D is actually lower than 2'^P. Further in the spectra 

Ca II, Sr II, and Ba II, 3^1) is greater than 2“P. Therefore, in these 

three ions this term lies closer to the normal k^vel, 1\S, than any other 
level, and is metastable because of the operation of the azimuthal selection 
principle. It is well adapted to give rise to prominent terms when 

an electron is picked up by the ion to form a neutral atom. 

22. SELECTION PRINCIPLES 

Anticipating the explanations given in Chap. X, Sec. 3, we may 
state the following selection principles for second-group spectra, which 

are a generalization of the ones used up to this point. The selection 

rule for j is Aj = ± 1 or 0; that for I may be expressed by saying that only 

those transitions occur in which the Ip of one electron changes by ±1, 

and that of a second by 0 or ± 2. If the I value of only one electron is 

altered, then it changes by ±1. This rule is obeyed with only a few 
exceptions in all spectra. 



CHAPTER VIII 

X-RAYS AND X-RAY SPECTRA 

1. THE DISCOVERY AND PRODUCTION OF X-RAYS 

While experimenting with a cathode ray tube, Rontgen' discovered 
that rays capable of passing through opaque objects originate wherever 
the cathode particles fall on the glass walls of the tube. These rays 
cause the air through which they pass to become ioriizfjd and thus con¬ 
ductive, affect a photographic plate, and cause mari}^ substances to 
fluoresce. They spread from the point of origin in all directions in 
straight lines and are not deflected by electric and magnetic fields. 
Because of these properties, Rontgen gave the correct explanation that 
they are electromagnetic waves, 
similar to ordinary light but of 
much shorter wave lengt h. How¬ 
ever, experimental difficulties pre¬ 
vented him from demonstrating 
any interference phenoriKUia such 
as are known for light. He 
observed that the ability of the 
rays to pass through thin layers 
of any substance varies greatly 
when the pressure of the residual 
gas in the tube is chang(Hl. Low 
pressure is favorable to the pro¬ 
duction of more penetrating or 
'‘harder’’ radiations, which have 
the shorter wave lengths. The 
stopping power of different elements for rays of the same hardness 
increases rapidly with the atomic number. 

X-rays are emitted by any substance upon which high velocity 
electrons fall, the kinetic energy of translation of the electrons being 
converted into the energy of the X-rays. In present practice, the 
electrons are caused to impinge on a metal disk, the anticathode^ instead 
of on the walls of the tube. The many types of tubes designed for the 
study of the rays themselves, of crystal structure, or of medical problems, 
vary in the means used for producing the free electrons and in the 

1 Sitz.^Ber. phya.-med. Gcs.y Wiirzhurgh, 1895. English translation in The Eleo 
irician* Jan. 24, 1896, and Apr. 24, 1897. 
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Fiu. 1.—An ion X-ray tube. {After Siegbahn.) 
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arrangomont of the electrodes. We shall distinguisli two main types, 
differing in the n)anner of producing the e)(^ctron current. In ion tabes, 

the electrons ar(‘ liberated when ions bombard the cathode. Such a 
tube is illustrated in Fig. 1 and consists of a disk-shaped cathode C, 

and anticathode A s(‘aled in a glass bulb containing hydrogen at low 
pressures. A high potential (10 to 3(X) kilovolts), supplied by a trans¬ 
former and rectifier or by a battery of cells, is placed between C and A. 

The residual positive ions present in the gas are accelerated toward 
the cathode and cause the emission of electrons from the cold metal 
when they impinge on it with high velocities. The free electrons pro¬ 
duced in this way fall on the anticathode causing the emission of X-rays. 
By colliding with the Ho niok^cules they maintain an abundant supply 
of ions which in turn maintain the electron supply. The (dectrons 
leave the cathode along liru's perpendicular to its surface since nearly 
the entire potential drop from the cathode to the anode is very near the 
cathode and the electric force is nearly perpendicular to its surface. By 
making the cathode concave, the electrons can be focused on a small 
area of the anticathode. X-rays emitted at A can pass out through 
the glass walls or through a window of thin metal foil (usually aluminium) 
at L. Th(‘ anticathode is often water-cooled as in the figure and can 
be removed from the tube so that diff(u*ent substances can be placed 
upon it. The kincUic energy of the electrons hitting the anticathode 
depends on the applied potential, and on the energy loss t.o molecules 
of the gas, that is, on the pressure. When the voltage across the tube, 
which determines the liardmvss of the radiation, is varied, the current 
is changed. The impossibility of varying these two factors independently 
is a marked disadvantage. 

Highly evacuated X-ray tubes differ from the ion tubes in that few 
gaseous ions are produced. Practically no electrons are liberated from 
the cathode by ionic bombardment. Other means are used to secure 
free electrons from the cathode such as thermal or photoelectric emission. 
The most common method is to use a hot filament, usually tungsten,, 
as the cathode. The advantage of this type of tube over the ion tube 
is that both the potential drop and electron current and thus the hardness 
and intensity of the X-rays can be easily and exactly controlled. 

2. THE NATURE OF X-RAYS 

When a beam of X-rays falls on matter a portion of its energy is 
dissipated in a variety of ways. This energy is usually said to disappear 
by a process of absorption or by one of scattering. In absorption 
processes the energy is taken up by the atoms, raising them to higher 
quantized states or ionizing them. In the return to the normal condition 
these atoms can emit radiations which are definitely characteristic 
of the type of atom involved and are commonly called the fluorescent^’ 
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It may be 

or ^^characteristic radiations.” In scattering processes the atoms and 

(electrons of the scattering material s(‘rve merely to d(?flect the X-ray 

quanta and in some cases to change their energy slightly, as explained 

in our discussion of tlie Compton effect in Chap. IV. Aside from this 

iiiinor alteration of wave length, the properties of the secondary X-rays 

are determined by the character of the primary beam. 

We now discuss the experimental proofs that X-rays possess all the 

essential properties of ordinary light; in fact, many of their properties 

can be successfully predicted over a wide range of wave lengths by the 

electromagnetic theory of light. The existence of polarized X-rays was 

first demonstrated by studying the properties of scattered rays. In a 

beam of unpolarizt^d X-rays, the electric vector shows no preference, 

on the average, for any direction perpendicular to the beam, 

resolved into two components a a 

and bb perpendicular to each 

other. In Fig. 2, OA represents 

the direction of the beam. At 

A is placed a body which par¬ 

tially scatters this primary beam. 

According to electrodynamic 

laws, electrons in A vibrate with 

the frequency of the light beam 

and send out secondary wavelets 

in all directions whicli have the 

intensity and polarization re¬ 

quired for the light emitted by 

an oscillating doublet (Appendix 

VIII). The component of motion of an electron which is due to the 

aa component of the electric vector produces light with electric vector 

in the direction of the meridians of a sphere, having its poles in the direc¬ 

tion aa, as shown in Fig. 2, Chap. 1. At a distance r from the scatterer 

in a direction making an angle 0 with aa, the intensity of this light should 

be proportional to 
sin“ ^ 

Fkj. 2. - 'J'ho polarization 
scattoriiiK. 

of X-rays by 

where v is the acceleration produced by the electric field of the primary 

beam. From this formula the intensity of the light excited by aa is zero 

in the direction AB' and a maximum along AB. Similarly, the bb 

component of the primary beam will give rise to scattered light with its 

electric vector in the direction of the meridians of a sphere having its 

poles in the direction of bb. The intensity of this light is zero in the 

direction JB, and a maximum in the direction AB' perpendicular to this. 

Thus the beam scattered along AB, perpendicular to the primary beam 

should be completely polarized with its electric vector parallel to aa, 
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while that in the direction AB' should be completely polarized along 

hb. The light scattered along the primary beam and that scattered 

backwards should be unpolarized, and in intermediate directions partial 

polarization should occur. The polarization of the scattered rays can 

be detected by allowing them to fall on a second scatterer, either at B or 

B'. Reasoning similar to that above shows that the light scattered 

at B should have its electric vector along the meridians of a sphere 

with poles in the direction aa and this should have zero intensity along 

BC' and maximum intensity along BC. Similar relations hold for the 

beam scattered at B\ Barkla* detected a difference in intensity for 

the beams BC and BC' which 

indicated that the beam AB 

was 70 per cent polarized. 

A. H. Compton and Plagenow, 

repeating this work, took pre¬ 

cautions to avoid multiple 

scattering at A and B. They 

found polarization which was 

complete, within an experi¬ 

mental error of 1 or 2 per 

cent, showing that in this 

respect X-rays obey electro¬ 

magnetic theory. 

Additional evidence can be 

obtained from interference 

phenomena. R 6 n t g e n a t- 
Tig. 8.—The Lauc pattern of ZnS. {After Lauf, 

Friedrich, and Kmpjnn{j.) 
tempted to observe X-ray dif¬ 

fraction but was unsuccessful. 

Haga and Wind® and Walter and PohB detected a slight broadening 

of a beam of rays which had passed through a wedge-shape^d slit having 

a width of about 0.001 mm. at the broad end. Sornmerfeld calculated 

the wave length of the X-rays used by these investigators as 1.3 • 10“^ 

and 0.4 * 10~® cm., respectively. The experiments showed that the 

harder X-rays had the shorter wave lengths. Walter^ and Rabinov^‘ 

have made further studies of this subject. 

Definite evidence of another kind was provided by Laue/s discovery 

(1912) that X-rays can be diffracted by crystals. It occurred to him that 

regularly spaced layers of a;toms separated by distancf^s of the same order 

iProc. Roy. Soc., 77, 247 (1906). 

® J. 0. S. A. and R. S. 8, 487 (1924). 

3 Ann. Physikf 68, 884 (1899). 

^ Ann. Physik, 29, 331 (1909). See also Sommerfeld, Physik. Z.y 2, 59 (1900); 

SoMMERFELD and Koch, Ann. Physiky 38, 507 (1912). 

5 Ann. Physiky 74, 661 (1924); 76, 189 (1924). 

«Proc. Nat. Acad. Sci.y 11, 222 (1926). 
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of magnitude as the wave length of the X-rays should act as a diffraction 

grating. At Laue/s suggestion, Friedrich and Knipping performed an 

experiment to test the idea which was immediately successful.^ A 

beam of X-rays, selected by narrow slits, fell on a crystal of ZnS about 

0.5 rnm. thick and struck a photographic plate mounted perpendicular 

to the beam. Most of the radiation passed the crystal without deflection, 

and a part was scattered in all directions, but beams of high intensity 

were scattered in certain definite directions so that a point diagram’^ 

appeared on the plate as shown in Fig. 3. The theory of this pattern 

was developed by Lane, assuming that the atoms of the crystal were 

arranged regularly in space and that they acted as point charges in 

scattcu-ing the rays. Such patterns are valuable in the study of crystal 

structure but are not adapted to precise measurement of X-ray wave 

lengths. Arrangements for this purpose are discussed farther on. 

3. REFLECTION AND REFRACTION IN THE X-RAY REGION 

Recently, the wav(' lengths of X-rays have been measured without 

the use of crystals, the results agreeing with crystal determinations. 

The two methods used an^ refraction in prisms which may be either 

crystalline or amorphous, and diffraction at the surface of a ruled grating. 

In consid(^ring the results of both typers of experiment, we must 

remember that the refractive indices of solid substances (and presumably 

also of substances in other states) for X-rays are in general very slightly 

less than unity, for the same reason that we encounter refractive indices 

less than unity in the case of ordinary light—namely, we are dealing 

with a region lying at smaller wave lengths than a strong absorption 

band, a region of so-called ‘^anomalous dispersion,” though it- is not 

in any way anomalous. As we can see from Chap. VII, Sec. 9, the 

refractive index 7i of an amorphous substance is given by the equation 

where N is the number of molecules per unit volume, and a the electric 

moment induced in a single molecule by unit electric field. If the 

medium contains harmonically bound electrons, 

t 

in a region of slight absorption, r,- being a typical resonant frequency 

of the electrons. The constant Fi corresponding to each frequency v, 

is the number of electrons in each molecule having that frequency. 

^ Sitzungsher. Bayer. Akad. JFm. {Math.- Phys. Klasse), p. 303 (1912); Ann, 
Physik, 41, 971 (1913). 
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n will be gTcatcr or loss than unity depending on whether a is positive 
or negative and this dep{‘nds on the r(‘]ativ(^ magnitudes of vi and u. 

If V is less than all v,, n is grc'at.er than unity, but if v is greater than all 
or a part of the resonant frequencies, n may be less than unity. In 
most of the refractive index experiments discusscHl here the wave lengths 
used are shorter than the resonance wave lengths of all the electrons 
in the atom; a is small and negative and, therefore. 

•'“S, 2Tin V" 

In deriving this equation, vr is neglectinl in comparison with The 
last term in this (equation is of the order 5 X 10~^’ for the refraction 
of the wave length 1.3 A. in a glass prism of density 2.5. This formula 
is well confirmed by tlie measurenuTits of Davis, Siegbahn, Compton, 
and their colleagues. This extension of the dispersion formula to the 
X-ra}^ region could not have Ix^en expectcxl confidently, since the assump¬ 
tions for its derivation are so simple that we might well feel inclined to 
distrust an extrapolation of such great ranges 

The refraction of X-rays by solids has befm used by Larson, Siegbahn 
and Waller^ and by Davis and Slack^ to secure prism spectrograms of 
iv-series X-rays. The refracted beam is bent toward thi) apex of the 
wedge, because n is less than one. This method confirms the results 
of the more precise cr3^stal grating methods of Sec. 7. 

Laby, Shc'arer, and Binghanf^ have recently made the discovery 
that X-rays having a wave kmgth of about 50 A. are reflected regularly 
from glass and quartz up to glancing angles of 45 degrees. (The glancing 

angle is the complement of the angle of incidence.) They state that 
the angle of incidence' is accurat(‘ly equal to the angle of reflection. The 
reflection coefficient is about 50 per cent for glancing angles up to 35 
degrees. Check experiments were made to show that the radiation 
dealt with does not consist of electrons, or of light of longer wave length. 
These observations are especially interesting because they open the 
possibility that X-rays can be reflected from spherical surfaces and 
brought to a focus. If this is correct, it makes possible new methods 
for the study of long X-rays. For shorter X-rays, such reflection has not 
been observed, but since n ~ 1 is small and negative, it is possible to 
secure total reflection, if the glancing angle is sufficiently small— 
of* the order of 30'. At any interface, total reflection occurs on the side of 
higher refractive index, which is the air side in the case of X-rays. Work¬ 
ing within this small angle where total reflection occurs, Compton and 

^ P/iys. Rev.j 26, 235 (1925); Naturwisaniachaficny 62, 1212 (1024). 

2 Phys. ReiK, 26, 881 (1925); Ibid., 27, 37 (1926); also Slack, ibid., 27, 691 (1926). 

3 Nature 122, 96 (1928). See also Henderson and Laird, Proc. Nat, Acad. Sd.f 
14, 773 (1928). 



Sec. 4] DIFFRACTION OF X-RAYS BY CRYSTALS 225 

Doan’ succeeded in securing an X-ray spectrum from a ruled speculum 
grating. Their photographs show an unreflected beam and diffracted 
iK^ams of sev(‘ral ordt'rs at th(‘ positions predicted by the simple theory 
of the diffraction grating. The wave length of the Kai line of molyb¬ 
denum was found to be 0.707 A. Within the error of experiment, 
this agrees with the value 0.70759 A., obtained with crystal gratings. 
Similar spectra have been obtained by Thibaud,^Hunt,*'’and Weatherby/ 
who photographed lines with wave lengths between 6 and 46 A. Figure 
4 is a spectrogram, the original of which shows three orders of the carbon 
line known as Ka, at 44.0 A. The direct beam (D) and a reflected beam 
(B) are also shown. 

I 
J £ ; R D 

C Kcc 
Fig. 4.—X-ray spootropram of the carbon K a line. {After Weatheriyy.) D is the 

direci beam, U tbo roflcclod ])caiii, .and 1, 2, and 3 an‘ the first, second, and third order 

By a clever use of the phenomenon of total reflection, Prins^ has 
brought forward evidence of anomalous dispersion in the X-ray region. 
His method consists in the determination of the limiting angle of total 
reflection of the X-rays at the surface of a mirror, with X-rays of various 
wave lengths. If the refractive index of the mirror is 1 — 5, then the 

limiting angle is approximately y/2b. Prins was able to show that 
this anghi varices considerably when the wave length passes through 
certain critical regions. 

4. DIFFRACTION OF X-RAYS BY CRYSTALS 

There are many useful arrangements of apparatus for studying the 
diffraction of X-rays by crystals. Some are especially adapted for 
the determination of crystal structures, the wave lengths utilized being 
known from the results of previous work, while others are especially suited 
to the independent determination of wave lengths. The methods intro¬ 
duced by W. H. and W. L. Bragg with their many modifications are 
equally useful in both these fields and depend on the use of a well-formed 
perfect crystal placed in definite orientations with respect to the incident 
X-ray beam. The method associated with the names of Debye and 

^ Proc. Nat Acad. Set, 11, 598 (1925). 
nt R., 182, 1141 (1926); Revue d'optique, 6, 97 (1926). 

3 Phys. Rev., 30, 227 (1927). 

^ Phys. Rev., 32, 707 (1928). 

^ See Naturwis., 16, 555 (1928) for bibliography and for a summary of the results 

obtained; also Z, Physik, 47, 479 (1928). 
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Scherrer and of Hull and frequently called the ''powder method’^ has 
its main applications in the field of crystal structure and has the advan¬ 
tage that it depends on the use of a diffracting sample having numerous 
small crystals arranged at random, e.g.^ a powder or a piece of steel. 
Before describing these methods, we shall first recall some of the leading 
facts of crystallography. 

6. THE NATURE OF CRYSTAL LATTICES 

The natural regularity of external form and the homogeneous charac¬ 
ter of crystals led Haiiy (1784) to suggest the modern theory of their 
structure in a primitive form; namely, that they are built up by the 
repetition of unit cells having the same size and orientation throughout 
the crystal. The unit cell may be taken as the smallest group of atoms 
such that the entire crystal can be built up by repeating it in a definite 
way throughout the crystal. Isotopic atoms are regarded as equivalent in 

forming a cell. Such a group can 
be chosen in many ways, but in 
practice this leads to no confu¬ 
sion. Let us fix our attention on 
some arbitrary point within a cell, 
such as the nucleus of a certain 
atom. The assemblage of simi¬ 
lar points in all the cells of an 
ideal infinite crystal forms a 
regular array which is called a 
"spacelattice.” Whatever point 
in the unit cell we take to start 
with, the resulting space lattices 
are identical except for a transla¬ 

tional shift. In Fig. 5, we show a possible space lattice. Its points may 
be connected in a variety of ways by three sets of parallel lines, so that 
every point lies at the intersection of three lines, one from each set. 
This is simply to aid the eye in following the symmetry of crystals 
possessing such a space lattice. The lines themselves have no 
physical significance, and in general will be drawn in a simple way, 
so that the resulting parallelepipeds have edges of the same order of 
magnitude. For example, in a crystal with cubic symmetry the lines 
may be drawn at right angles. Having chosen a particular method of 
drawing the lines, we choose a lattice point as origin and take the lines 
passing through it as coordinate axes (Fig. 5) which will be called 
the axes of the crystal. We now introduce a method of naming 
the different planes of atoms in the crystal Let ABC be a typical 
plane on which a set of points lie, including the points at A, B, and C 

Fig. 5.—A space lattice and a typical piano. 
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themselves. OA, 05, and OC are then multiples of the smallest distances 
a, 6, c, between lattice points in the directions Oxy Oy, Oz, respectively. 
(We say the distance between lattice points, not the distance between 
particles. The distinction is apparent at once from Fig. 16, which shows 
the unit cell of NaCl, containing two species of atoms.) Then the ratios 
OAIqj OB/by OC/c are the integers, ^'i, 4, ii and 

OA * OB * 00 ^2^’^ * ^ (,oj 

Dividing the integers ioi^y i:d\y iiii by their largest common factor we 
arrive at a triplet of integers /?., A:, I called the ‘^Miller indices,” used to 
dc^signate the plane ABC and all similar planes of lattice points parallel 
to it. For a cubic crystal where o = h — c, these indices have a simple 
physical meaning. Taking tlu^ axes OA, OBy OC at right angles to 
each other the equation of plane ABC is 

lx + my + nz — P (6) 

Cube Octahedron Dodecahedron 

Fig. 6. Fio. 7. Fig. 8. 

where I, m, n are the direction cosines of its normal and P its perpen¬ 
dicular distance; from 0. The intercept equation is 

^ I y ^ ^ 
OA ^ OB OC a 0 

'?1?2 . . . 
- Z — 
C 

(7) 

So' if n = 6 = c., then l:m:n = hn-iik, which is the ratio of the 
indices. Even for crystals whose axes are not at right angles, and for 
which a, h, c are not equal, this relation will serve as a rough means of 
visualizing the positions of the planes, although the above derivation 
does not hold for such crystals. In Figs. 6, 7, and 8, we show three 
common forms in which cubic crystals occur in nature. The symbol 

111 indicates the plane with indices 1, 1, -1; the minus sign is custom¬ 

arily written above to save space. 
Study of the external symmetry of crystals has shown that it is 

possible to classify all known crystals into six systems distinguished 
by the relative lengths of a, b, c and by the angles a, /3, y, which the 

axes mftke with each other, as follows: 
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I. Cubic. a = a = /3 = 7== 90° 
11. Tetragonal. a — a — - 90° 

III. Rhombic. a = i£i = 7 = 90° 
IV. Monoclinic. ay^h^Cja^jS — 90°, y 9^ 90° 
V. Triclinic. a^^9^y 9^ 90° 

VI. Hexagonal. a — b9^Cja~P = 90°, 7 = 120°. 
Rhombohedral. The axes may be chosen as for th(‘ hexagonal, or 

a = b = Cya~^ = y9^ 90°. 

These six systems of symmetry can be further subdivided into 
thirty-two classes on the basis of partial suppression of the maximum 
symmetry which the system can possibly possess. Both the system 
and class can be determined from the macroscopic crystalline form, 
but little can be said about th(' arrangement of the atoms within the 
unit cell without the aid of X-rays. 

6. THE REFLECTION OF X-RAYS FROM CRYSTALS 

It must be understood that the word reflection is not used here 
in the same sense as in optics. If a parallel beam of X-rays of a given 

Fig. 9a.'—The reflection of X-rays from Fig. 9h.-—The diffraction of X-rays by a 
lattice planes. simple cubic lattice. 

wave length impinges on a crystal, there is an angle of incidence 7r/2 — By 

(or better, several such angles), upon any set of crystal planes we may 
care to consider, such that a strong diffracted beam is sent off making 
an angle of 7r/2 — 6 with the normal to these planes, just as in the 
optical case (Fig. 9a). The angle B is called the glancing angle. The 
X--rays penetrate deep within the crystal, and the diffracted beam is 
formed by the interference of elementary beams scattered from all planes 
of the set under consideration. In position it obeys the ordinary law of 
reflection, but the mechanism of its production is not the same as that 
of a reflected beam of light. In some respects the action is like that of a 
diffraction grating with its spacings perpendicular to the surface of the 
crystal. 
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For simplicity, in giving the explanation of these facts, we begin 
with the case of a crystal having axes at right angles, the scattering 
centers being concentrated at the lattice points. Let a parallel beam of 
monochromatic X-rays bo incident on the crystal. How can we choose 
its direction so that the s(‘Condary waves from all the atoms will reinforce 
to form diffracted beams of high intensity in definite directions? The 
answer is easily found if we assmm^ that each lattice plane ndlects in 
accordance with geometric optics. For, in Fig. 9n, reflected” rays 
from the individual layers will interfere unl(‘ss tlu' paths of the beams 
diffracted by th(i su(‘.cessiv(‘ layers diff(‘r by a whole number of wave 
lengths of the incident radiation, i.e., 

Nir + B'M - 2d sin 0 = u\, (8) 

which is known as ^Hb*agg’s law.” The integer v, must be less than 
2d/\ because sin 0 is less than J; n is cali<Ml the order of the spectrum. 
This derivation has tlie di^-advantage that one cjuinot be sure that it 
gives all tin* possible diffracted beams. Thus w(‘ ndglif ('xp(‘ct each 
layer of atoms to act as a two-dirtumsional grating, so that th(a’(^ would 
bo additional diffracted })ean)s. One might (‘xpiat that such higher 
order beams from successive laycu’s of atoms would nanforce in c('rtaiii 
directions. II()W(‘V(‘r, a rigorous treatmcmt (givaai l)eiow) shows that 
all of th(‘se higher oiaku’ beams are destroyed by interference^ and that 
Bragg’s formula gives all the possible r(d](‘c(ions from the crystal. 

Alternative Derivation of Bragg^s Law.—In Fig. Ic't cy(,, /ju, to, he lh('. direction 

(‘O,sines of the incident beam and a, (3, 7 thosr' of the reth'cfc'd la'ani. ('oiisider wave 

fronts of this Ixatni which ar(‘ .sej)arat(‘d by tlie distance X. \\ (^ draw tlic inteiseciious 

of these wave fi’onts vtth the YZ plane at arjy instant ainl find th(' condition that a 

pair of adjacent scattering c(‘nters on tlie Z~M\is .sliould !)e exc ited in the same phase 

by thcvse wav(‘fronts. It is 

('} — 7o)e =■-- LX, 

where L is a positive integer or zero, for as we see from the figure, tlie differcmcc* in 

path of the beams which strike adjacetit. atmns is cy — C70. Similar conditions are 

obtained for reinl’oreement. along tlie A- and Y-nxvn, so tliat 

{a -- a,))n — //X, — ddh ~ K\, (7 — 7o)c - LX. (9) 

But if these'(conditions are sati.sfied, tlH*r\ the waves from all pairs of atoms reinforce, 

heeause for any such pair the p.'Uh dilference is a .sum of multiples of the three ele¬ 

mentary ])ath differeuees written on the left side of ecpiation (9). W(' have. 

= ait -h ’ 
a 

S(|uaring, adding, and utilizing tlie relations, a'* Y (F d- 7^ 

we get, 

X 

>( 4- -1 
(I h r 

1, a{Y “h "b 70^ ” b 

(11) 

Here we exclude the simple case H == K = L 0, giving the uri(l(dlected beam for 

whicli or ^ tto, ^ /3(,, 7 ^ 7(1. This beam is pres(‘iit regardless of tlu' w^ave length 
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used, but in all other cases, if ao, /3o, 70, are given, by orienting the crystal in a particu¬ 

lar way with respect to the incident beam, a diffracted beam can arise only if X has 

one of the values obtained by substituting a possible set of values of H, K, and L into 

this ecpiation. At first sight it appears tliat H, K, and L could always be chosen to 

satisfy this condition, since after all the light used is not strictly monochromatic. 

However, if very high values are (chosen for any or all of II, K, and L, the diffracted 

beam is found by experiment to be very weak, a result quite analogous to the faintness 

of higher orders of diffraction grating spectra, which is easily explained by optical 

consideratioiis. 

For given values of 11, K, and L, the angle 2e between incident and reflected 

beams is given by 

2 sin 0 -f -f \ a- 6“ 0"^ (12) 

for squaring the relations in equation (10) and adding we have 

2 — 2{aoio + -f 77n) = + ^2“) 

or, since 

(xoio d- /3^o d~ 77o = cos 20, 

4 sin 2 e 
Va- b‘ J’ 

and equation (12) follows.* Thc^se relations are valid only for crystals having their 

axes mutually perpendicular.^ 

We can now prove that the diffracted beam behaves as though reflected from a set 

of atoini(; planes within tiie crystal. To do this, we write a (condition which must 

satisfied by the coordinates x, y, z oi a, point P in a plane which bisects the angle 

between the incident and diffracted beams and is perpendicular to the j)lane in which 

they lie. The line OP makes equal angles with these two beams. The equality of 

the cosines of these angles is expressed by 

ax + A- yz -f- (ioy -h 702. (13) 

Ck^mbining with equation (9), 
II .K = 0, (14) 

which must be the equation of the r(‘fl<H*ting plane. 

H/a, K/b, and L/c are proportional to the dire^ction (cosines of its normal, defer¬ 

ring to equations (6) and (7), we see that this plane is parallel to the lattice planes 

having Miller indices proportional to IT, K, and L. Thus if n is the greatest common 

factor of //, K, and L we put 

n - nh, K = nk, L - nl, (15) 

and h, k, and I are the Miller indices of the plane. The X-rays are diffracted ao 

though they were reflecdod from a lattice plane of Miller indices h, k, and 1; thus 

equation (12) takes the form of Bragg’s equation (8), if we put 

“>2 
(16) 

for this expression is the distance between two successive lattice planes of indices h, k, 
and I, 

7. METHODS AND APPARATUS FOR X-RAY SPECTROSCOPY 

The X-ray spectrometer used by the Braggs consists essentially 
of a system of slits which selects a narrow beam of rays from the radiation 

^ The general formulas holding for any crystal will be found on p. 99 of Wyckoff, 

Structure of Crystals/’ Chemical Catalogue Co., 1924. 
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of the X-ray tube, a crystal mounted on a revolving table carrying a 
vernier and a graduated circle so that its position can be accurately 
determined, and a device for detecting the beam reflected from the crystal, 
also mounted so that it revolves about the same vertical axis as the 
table and carrying a vernier to determine its angular position (Fig. 10). 

The Braggs used an ionization chamber as a detecting device. This 
is a metal chamber containing a vapor which absorbs the rays readily. 
Methyl bromide and SO2 are often used. An electrode is mounted in 
the chamber just out of the way of the entering beam. The chamber is 
insulated and raised to a high potential and the electrode connected to a 

Fig. 10.—The Bragg spectrometer. Fio. 11.—The inhMisity of reflection of the Pd 
Kai, and Kai lines as a function of the angle, 0. 
(After Bra(fy.) 

sensitive electrometer. When X-rays enter, ions are produced, and the 
electrometer is discharged. In operation the crystal is set at an angle 
with the direction of the primary beam and the detecting device at twice 
this angle, since the reflection angle must be equal to that of incidence; 
the crystal is rotated through successive small angles, the detecting 
device being rotated always through twice the change of the crystal 
angle. The ionization current is determined at each position and is then 
plotted as in the spectra of Fig. 11, which show the intensity of reflection 
of the K radiation of palladium from three natural faces of KCl and 
NaCl crystals. It is to be noted that all the peaks on the curves occur 
in pairs. This as well as other evidence shows that the K radiation 
consists of two wave lengths lying very close together and that these 
pairs of peaks are due to these two wave lengths. Figure 11 also shows 
the relative intensities for different spectral orders for the more intense 
wave length. W. H. and W. L. Bragg estimate that the intensities 
of the first five orders are approximately in the ratio 100: 20: 7: 3:1. 
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A photographic plate may be used to detect the reflected beam. 
An arrangement suited to this means of detection and known as the 
rotating crystal apparatus of de Broglie is shown in Fig. 12. X-rays 
enter at C and fall on crystal D which is continuously and slowly rotated 
about axis O by clock work. At some position 1 making angle 6i with 
the original beam, a spectru/n line is obtained due to X-rays of wave 
length \i — 2d sin 6i/n, The rays, deviated through an angle 261 arrive 
at position I on the photographic plat(‘ AA'. As the crystal is turned 
to another position 2 at an angle O2 from the direction of the original 
beam, another wave length Xo = 2d sin will be reflected through 
an angle 202 to another position IT, and so on. The photographic plate 
is mounted on an arm so that its position can be determined relative 
to the direction of t he original beam. Since each wave length is diffracted 

to a different position a spectrum similar 
to the usual optical spectrum appears on 
the photographic plate and the wave 
hmgth can b(‘ d(4.ermined very accurately 
from the position of the line on the plate. 
This method has the advantage that it 
is largely automatic in operation and 
requires little attention, but it is not 
so sensitive as the ionization chamber 
method. 

In order to avoid the necessity of 
rocking the crystal, M. de Broglie^ 
has used a curved sheet of mica, and 
Trillat“ made use of a similar device 

in studying the orientation of the molecules in a thin film of fatty acid 
on the surface of a liquid. The film is allowed to spread over the curved 
surface of a small drop of the liquid (mercury, for example), and the drop 
is placed in the beam of X-rays in the position ordinarily occupied by the 
crystal. 

8. THE DETERMINATION OF CRYSTAL STRUCTURE BY THE USE OF 

X-RAYS 

We must content ourselves with a few brief examples of the use 
of X-rays in studying the structure of crystals. References to many 
excellent treatises are given at the end of the chapter. Potassium 
chloride and sodium chloride have very simple space lattices, but they 
illustrate practically all the essential features involved in determining a 
structure. They may crystallize in cubes and on the basis of this 
crystalline form they must be assigned to the cubic system. The 

^ C. R., 167, 924 (1913). Verhandl, d. D. Phys. Gea.j 16, 348 (1913). 

a C. R., 187, 168 (1928). 

Fig. 12.—Tho do Broglie rotating 
crystal arrangement. 
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elements of symmetry of these crystals as determined from a study of 
all the forms in which they occur, are shown in Fi^. 13 J The planes 
drawn in the figure are so-called “reflection planes’’ dividing the crystal 
into two halves which are mirror images of each other. The lines con¬ 
necting the face cent(‘rs are fourfold 
axes of symrnetjy, since rotation 
about these ax(\s through one-fourth 
of a revolution t)ririgs the crystal to 
a position indistingiiishabk' from its 
first position. Similarly, lines con¬ 
necting the opposite corners of the 
cube are threefold axes of symm(‘try 
and lines connecting the middle 
points of opposite edg('s ar(‘ twofold 
axes. The center of a cuIk^ is a c(mter 
of symmetry since a lin(3 drawn from 
it to any point in the cryst-al, when 
extended in the opposite direction 
an equal distance, will locate a point 
with properties similar to those of 
the first point. The possi^ssion of 
these elements of symmetry plac(*s a 
crystal in the holohedric class of the cubic system, by definition. We 
attribute to the unit C(dls of Na( d and K( d all of the symmetry properties 
of a cube. There are thn^e possible space lattices having the type of 
symmetry exhibited by the hololuKlric class of the cubic system. These 
are the simple cubic, face-centc^red cubic, and body-centered cubic 

Fiti. KF- syininotiy proportios of .i 
rork s;ilt cryhtul. (After Wyckoff.) 

%- 

-4 
/ 

/' k -4 

(b) CC) 

FitJ. 14.- Sinipl(‘, f;i.c(*-c('iit<*red, and body-ooTiterod rubio lattices. 

lattices shown in Fig. 14. The problem is to decide which of these L 
actually present in KCl or NaCl. 

A possible procedure is to mount the crystal in a Bragg spectrometer, 
illuminate it with monochromatic X-rays (a reasonable amount of con¬ 
tinuous background is not objectionable), and measure the glancing 
angle for reflection from various sets of atomic planes. The ratios 

1 Wyckoff, “The Structun^ of Crystals,” Chemical Catalogue Co., New York 
(1924). 
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of the interplanar distances for two sets of reflecting planes can be 
determined without a knowledge of the wave length used. For the 
two peaks to be considered we have 0-values given by 

so that 
2di sin 01 = TiiXj 2^2 sin 02 = n2\, 

di _ rii sin 02 

^2 ti2 sin 01 

(17) 

(18) 

Care must be taken in assigning the values of 7i for the different 
peaks. By inspecting the diagrams of the three possible lattices, or 
from the relation 

d kki 

a 

VV+ 

(obtained from equation (16) by putting a = 6 = c), wc find that for 
each lattice 

dioo-diio*diii = 1:—y \—j-y 

V 2 V 3 

At first sight, then, we should predict identical Bragg diffraction patterns 
from all three lattices, as in Fig. 15tt where the abscissa is proportional to 

(m) m □ m ]~ Ooo) □ IT n I [T 1“ (wo) n □ 3 y] 

wo) 
T. 

1 ,1 j (no) r ft 1 L ri (no) TLl_ t n ! 

(til) i: n r (lit) /] 1_ 
r [j an) ID 

->-smO —>'sinG 

(0.^ (b) (c) 

Fig. 15.—Reflection patterns from simple, face-centered and body-centered cubic lattices. 

sin 0 and the diffraction peaks of various orders from the three sets of planes 
considered are drawn in sc'parate rows. The spaces between orders for the 
three types of planes are in the ratios 1: a/2 : \/3. The heights of the heavy 
lines indicate roughly the decreasing intensity. The simple cubic lattice 
actually gives a pattern of this kind, but with the face-centered lattice 
some of the peaks due to 100 and 110 planes are destroyed by inter¬ 
ference, caused by atomic planes lying midway between those predicted 
by the formula and having the same number and arrangement of atoms 
as the latter planes. (This does not contradict the formula, for it was 
derived by considering an imaginary lattice, formed by taking one point 
in each unit cell, while the intermediate planes of which we speak are 
due to structures within the cell.) For all diffractions of odd order 
the length of path of the light diffracted by these intermediate planes 
will differ by one-half wave length from that of the light diffracted by the 
planes considered in deriving the formula. The light from these two 
sets of planes interferes and thus the diffraction beams of odd order are 
completely extinguished. The result is the same as would be secured 
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by reducing the interplanar distances in a simple cubic crystal to one-half 
their value. The diffraction patterns for the 100, 110, and 111 planes 
of the face-centered lattices are shown in Fig. 156. The 111 pattern is un¬ 
altered. Similarly, the body-centered lattice gives the patterns of Fig. 15c 
with odd orders missing from the 100 and 111 reflections. The diffraction 
patterns of the 100, 110, and 111 faces of NaCl arc similar to those for the 
face-centered cubic lattice except that th(i odd-order diffractions from the 
111 planes are relatively weaker than those predicted for this lattice. 
This pattern can be explained by the lattice of Fig. 16 where black dots 
represent positive metal ions and circles negative chlorine ions. The 
positive and negative ions are each placed on face-centered lattices 
which are displaced relative to each other by one-half their body diagonal. 
The diffractions by the 100 and 110 planes are the same as would be 
obtained if ions of either sign were present alone; for 
the addition of the negative-ion lattice to the positive- 
ion lattice produces no new 100 or 110 planes; but it 
does introduce new 111 planes, of negative ions only, 
midway between 111 planes of positive ions. The 
presence of thcise intermediate planes will reinforce 
the even-order diffractions and will cause only partial 
interference of odd orders, because the electron density 
near planes of positive charge is smaller than that near 
negative planes in the ratio 10:18. Thus, the weakening of odd 111 
orders is explained. 

With this definite information as to the arrangement of the atoms, 
we can compute the distance between 100 planes, which is called the 

grating constant.^’ Inspection of Fig. 16 shows that 4 molecules of 
NaCl are to be considered as belonging to each unit cell, and knowing 
the number of molecules in 1 cc. of rock salt from its density, molecular 
weight, and the Avogadro number, we find the number of unit cells in 1 
cc., and, therefore, the side of each cell. Proceeding in this way we 
obtain the value 5.628 A. Since relative measurements of X-ray wave 
lengths can be made to six significant figures, the grating constant is 
taken as 5.62800 A. with the understanding that the last two digits 
have no physical significance. 

Let us now consider KCl. Evidently, if the electron densities in 
planes containing only povsitive and negative charges are identical, 
the odd 111 orders disappear completely and the pattern becomes the 
same as that of a simple cubic lattice having the lattice constant dioo/2. 
KCl presents a case of this kind, for and Cl~ ions contain the same 
number of electrons and therefore should have nearly equal scattering 
powers. A glance at Fig. 15 shows that the diffraction pattern is that 
of a simple cubic lattice. The grating space as obtained from this 
pattern appears to be 3.138 A. If KCl really has a face-centered lattice. 

ff 
— 

ff 
_ r 

Fig. 10.—The NaCA 
lattice. 
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its constant is twice iliis value, 6.276 A, a,n(l r/(KCl)/Vi(NaCl) ~ 1.115. 
This is much mon‘ reasonable than t he ratio obtaiiual l)y using 3.138 A, 
for the K-ion should have a larger volume than the Na-ion. 

By equation (8) we can now calculate t he wave lengths of the X-rays, 
using the observed values of d. Thus, for the S(^cond order, 

^ 2d sin 6 2 X 5.62800 ^ \ =- - =r X (J.uyoo, 
n 2 

X = 0.576 • 10-^cm. = 0.576 A. 

The theoretical maximum wave length whicli can be measured by using 
a given set of crystal planes is equal to 2d divided by the lowest value 
of n. This corresponds to sin t? = 1 or = 90°. For intensity reasons 
60° is about the working maximum so that the longest wave length 
which can be measured is considerably less than the theoretical limit. 
To avoid the excessive use of decimals it is customary to record X-ray 
wave lengths in terms of the X unit (abbreviated to X.U.) which is 
10”’*^ Angstrom units or 10”^^ cm. Thus, the strong palladium line 
called Ka has the wave length 0.576 X 10~^ cm. — 0.576 A = 576 X.U. 

Before leaving this subject, attention should be directed to X-ray 
diffraction patterns of liquids. While many investigations of these 
patterns have been made, the subjecf. lias developed rapidly only in 
recent years. We owe to C?. W. Stewart and his colleagues, Morrow 
and Skinner,^ the first extensive and systematic studies of X-ray diffrac¬ 
tion in organic liquids, with spectrographs of adequate resolving power. 
Th(i results give interesting information on the size and arrangement 
of molecules in the liquid state, 

9. DISCOVERY OF THE A' AND L RADIATIONS BY ABSORPTION 
MEASUREMENTS 

Before Laue^s fundamental discovery, some information about the 
wave lengths of X-rays was obtained by Barkla through study of their 
absorption. Just as the intensity of a monochromatic beam of light 
falls off exponentially as it penetrates an absorbing medium so X-rays 
follow the law 

I = (19) 

where I is the intensity at depth d, Jo the intensity at depth d = 0, 
and jw the absorption coefficient which depends on the absorbing material 
and the wave length. The values of fM for different substances are not 
directly comparable, for densities vary widely and in an irregular manner 
as we pass through the periodic system. It is convenient to substitute 
m/p for d where m is the mass contained in a column of length d, 1 cm.^ 
in cross-section, and p is the density. Then 

I ^ loe ^ . (20) 
1 Series of articles in Phys, Rev. (1927) and (1928). See especially 30, 558 (1928) 

for a summary of theories concerning liquid diffraction patterns. 
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The (x/p value for any monochromatic constituent of a heterogeneous 
beam is called the ‘‘mass absorption coefficient for that wave length.” 
It is a measure of the absorption in a beam of 1 sq. cm. cross-section in 
passing through unit mass, while p measures the absorption of such a 
beam in unit volume. When many wav(^ lengths are present, equation 
(20) is replaced by 

/ = > + ..., * (21) 
and for continuous radiation the sum becomes an integral. 

The primary rays produced in the anticathode cause a substance 
absorbing them to emit both electrons and secondary X-rays. The latter 
consists of two parts of diffenuit origin; the scattered radiation, which 
has an intensity distribution with respect to wave length de'.termined 
primarily by the source of the primary rays, and the characteristic 
radiation, which varies with the material of the absorber. 

Barkla showed that the absorption of secondary X-rays follows 
the law in equation (21) and that the characteristic radiation consists 
mainly of two types of rays which differ greatly in hardness. The harder 
constituents are calked the K radiation and the softer the L radiation. 
Table 1 gives the values of the mass absorption coefficiimts in aluminium 
for the K and L radiations of a few elements. 

Table 1.—(Coefficients of Mass Absoiiption in Alitminium {After Barkla) 

Atomic 
1 

1 A-radialion 
number 

1 A'-ra(liatir)n 

20 
1 
j 435 

24 I 136 

2S i 59 1 

33 22.5 

37 10.9 

42 4.S 

47 2 5 700 

51 j 1.21 435 

56 O.S i 224 

74 30.0 

78 22.2 

82 17.4 

90 s.o 
92 

_1 
7.5 

For example, silver produces a characteristic X radiation whose absorp¬ 
tion by aluminium is given by equation (21) using p /p = 2.5 and m'Vp - 
700. These two coefficients are characteristic of the K and L radiations, 
respectively. The corresponding thicknesses of aluminium which would 
reduce the K and L radiations separately to half their initial intensities 

are 0.103 and 3.7 X cm. After the rays pass through a small 
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thickness of aluminium foil, say 0.037 cm., the intensity of the L radiation 
will be reduced to a fraction of a per cent of its original value. That 
of the K radiation is practically unchanged. After this the K radiation, 
if monochromatic, should obey equation (20), and is found to do so. 

The mass absorption coefficients in aluminium for the characteristic secondary 

radiation decrease continuously as the atomic number of the emitting element increases 
and show no periodic variations corresponding to the periodic variation in chemical 

properties. Facts of this kind led quite early to the spiiculation that X-rays arise 

from the inner portioiis of the atom, where th(^ influence of the nucleus preponderates 

over those due to the electrons in the outer shells. However, this simple dependence 

of /i upon atomic number is not encountered in general. It occurs only when the 

atomic number of the absorber is leas than those of the emitters under consideration, 

which is true for the combinations listed in Table 1. We shall return to this subject 

in Sec. 12. 

10. GENERAL SURVEY OF X-RAY EMISSION SPECTRA 

The study of characteristic radiations recenved a great impetus 
when Moseley, ^ using de Broglie’s method, first photographed the K spectra 

of a number of elements between Ca and Zn (Fig. 1, Chap. I). He used 
the second and third reflections from a crystal of potassium ferrocyanide. 
In agreement with Bragg’s ionization measurements, the K radiation 
was found to consist of two distinct wave lengths for each element. 
The work of later investigators with higher dispersion shows that the 
typical K spectrum contains four strong lines known as iCai, Kpi, 
and For atoms of atomic numbers less than 16 (sulfur) the Kai 

I Phil Mag., 26, 1024 (1913); 27, 703 (1914), 
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and K<X2 lines lie so close together that they have not been separated by 
X-ray methods. K^2 has not been observed in atoms of atomic number 
lower than 22(Ti). In addition to these strong 
lines, a number of very much weaker ones have 
been observed, due, it is believed, to doubly 
ionized atoms and, therefore, having analogy 
to the spark lines of optical spectra. The order 
of decreasing intensity of the four strong lines 
is, Qfi, a2, ^2- Moseley’s work showed that 
the X-lines shift toward shorter wave lengths 
in a regular way with increasing atomic num¬ 
ber. The law connecting wave length and 
atomic number is most easily seen by plotting 

\/p/R against the atomic number, where R is 
the Rydberg constant, inserted for reasons 
soon to be explained. Such a graph is called 
a ^‘Moseley diagram.” Figure 17 shows 
Moseley diagrams for the X-series lines, with 
circles indicating the experimental values. 
(They can be extrapolated to atoms of lower 
atomic number, but this is not done here since 
the structure of the spectra becomes more 
complex in this region, as described in Chap. 
X,) The curves of this diagram are very nearly 
straight lines, so that for each line we have 

^^ = A(Z-s), (22) 

where A and s are constant. Therefore, 

i? = (Z - syRA\ (23) 

For the X lines, s is approximately one, A^ 

is about equal to p — ^2 

and is roughly equal to -p 32 

other words, the lines obey Bohr^s formula for 
the lines of hydrogenic atoms, a result of pro¬ 
found importance. 15 

The general structure of the Z/-series, ^ 
which consists of many more wave lengths | 
than the X-series, is illustrated by the dia- | 
grammatic spectra in Fig. 18 together with ^ 
two commonly used systems of designating the lines—neither system 
has any theoretical basis. The brackets indicate line groups which 
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appear successively as the tube voltage increases. The lines of group 
1 in the case of tungsten are excited by potentials higher than 10.16 
kilovolts, and those of group 2 come out above 11.6 kilovolts, while group 
3 lines appear only at potentials higher than 12.0 kilovolts. ^ The relative 
intensities are indicated roughly by the weights of the lines. The regular 
shift in position of the Zy-series lines is shown by the Moseley diagram of 

Fio. 19.—Moseley diagram of the L-series. 

Fig. 19. The number of lines decreases below about Z = 50, due to the 
smaller number of electron shells in the atom. 

In 1916, Siegbahn^ discovered the ikf-series, lying at much greater 
wave lengths than the I/-lines, while Dolejsek^ demonstrated the existence 
of an A^-series at still greater wave lengths. In no case do the series 
so far mentioned overlap. The existence of 0- and P-series lying in 

^ Webster, D. L., and H. Clark, Phys, Rev., 9, 571 (1917). Hoyt, Proc, Nat, 
Acad, Sci,, 6, 639 (1920). 

» Fer. d. Deutsch, Phys. Ges., 18, 278 (1916). 
* Z. Phydk, 10, 129 (1922). 
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experimentally difficult regions is made certain by a study of the energy 
levels which give rise to the above mentioned series and by critical 
potential measurements and other special methods. The observed 
Af-series spectra consist of many lines which are usually designated 
by the symbols of the two energy levels involved, since they were first 
discovered after the energy levels were fairly well known. iV-series 
spectra have been measured only for a few heavy elements.^ 

Just as the i^'-series lines obey approximately a formula like that 
of the Lyman series of hydrogen, so the stronger lines of the L, and N 
spectra are representcnl in a rough way by formulas of the typt^ 

. . (Z - - A); (24) 

7ii = 2, 3, 4 for the 7^-, J7-, and iV“.series, respectively, is an integer 
greater than rii] and for each series, s is a constant. 

11. ABSORPTION SPECTRA 

The intensity of the darkening of a photographic plate due to the 
action of light will depend among other things on two factors, the inten¬ 
sity of the light and the coefficient of absorption of the silver bromide 

Fig. UO.—The K- and L-absorption limits of Ag and Br. {After de Broglie.) 

for that light. De Broglie^ noted on his first photographs of X-ray 
spectra a very sharp change in the darkening of the plate caused by the 
continuous spectrum, at two distinct wave lengths as shown in Fig. 20. 
These are the so-called ^‘absorption limits'' of Ag and Br. Large 
absorption means intense darkening, so we see that rays of shorter 
wave length than these limits are absorbed strongly by the Ag or Br, 
respectively, while those of longer wave lengths are absorbed only slightly. 
It is certain that these limits are associated with silver bromide, for 
their positions are independent of the anticathode material. 

Similar abrupt changes in absorption coefficients can be detected 
by studying the absorption spectrum of the element in question. To do 
this, a thin layer of the element (or of a compound containing the element) 
is placed between a source of continuous X radiation (e.gf., a tungsten 
target) and the slits of an X-ray spectrograph. Absorption of certain 
wave-length regions by the layer is indicated, of course, by absence of 
darkening in certain parts of the spectrum plate. 

1 Hjalmab, Physikf 16, 55 (1923). 
* Jour, de Physique^ 6, 161 (1916). 
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Figure 21 shows photographs of the iiC-absorption spectra of several 
elements. The edge marked ‘^Ag^^ is due to silver in the plate, i.e.j 
wave lengths shorter than this are strongly absorbed by the silver 
(plate darkened) while longer wave lengths are absorbed only slightly. 
This limit is present in all the photographs. In addition, there is a 
limit due to the absorbing element. Its frequency is denoted by vk, 
its wave length by Xa', and it is called the ^'K-absorption limit.” Fre¬ 
quencies greater than vk arc strongly absorbed; smaller frequencies are 
only slightly absorbed. The simple interpretation is that quanta 

Ag-Bdge Cd-Edge W:K'Senes CdEdgeAg-Edge 

\ / \ / 

t j t t 
Aq-Ba-Edge 1 Ba-Ag-Bdge 

Fig. 21.—The iiT-absorption limits of a number of elements. {After dc BroijCie.y 

greater than hvK can eject tightly bound electrons, which cannot be 
removed by smaller quanta, from the atoms of the absorber. The 
darkening of the plate falls off rapidly with increasing v in spite of the 
increased number of electrons which can be removed. This shows that 
as long as the number of electrons which can be ejected from each atom 
remains constant, the absorption coefficient decreases continuously 
with wave length. In fact, the absorption coefficient per atom is given 
approximately by the empirical formula, 

+ 0.8Z(ro, 

for wave lengths between 0.1 and 1.4 A, for all elements having atomic 
number greater than 5. Z is the atomic number, and k and (Tq are con- 

1 Fig. 21 is taken from Siegbahn, “ Spektroskooie der R5ngenstrahlen/’ p. 130, Springer 
Berlin, (1924). 
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stants. The first term arises from the ejection of photoelectrons and 
the second from scattering. 

Similar relations are found in absorption spectra covering the range 
of the L-series lines, but, here, three distinct limits are observed. The 
M-absorption spectra of a few heavy elements have been studied and 
five absorption limits have been observed. The general nature of the 
absorption by a given element as a function of wave length and the 
relative positions of the absorption limits and the emission lines are 
illustrated in Figs. 22a and 226 for the K- and L-series, respectively. 

fC 

I mil I II1111 I 
L's Te ^_V 

Fig. 22a.—I'he iC-absorption limit and the X-sories lines. 
Fig. 226.- The L-absorption limits and the y^-series lines. 

The X-absorption limit lies very slightly to the short wave-length side 
of the shortest emitted wave length, The three L limits are often 
designated Li, Ln, and Lm in the order of increasing X. The Li limit 
has a wave length slightly shorter than the shortest L-cmission line, 
but the Lii and Liu limits fall among the Z/-emission lines. Closer 
examination shows that in Hoyt’s classification of the lines according 
to their excitation voltages (Sec. 10) Ln lies on the high frequency 
side of groups 1 and 2, and Lm on the high frequency side of group 1 
only. Similarly, designating the M limits as Mi to My in the order of 
increasing wave length, the Mi limit lies slightly to the short wave length 
side of the shortest M emission line, the others falling among the emission 

lines. 



244 X-RAYS AND X-RAY SPECTRA [Chap. VIII 

12. KOSSEL’S EXPLANATION OF X-RAY SPECTRA 

The experimentally ascertained regularities just described can be 
explained by a very simple theory, the foundations of which were laid 
by Kossel.^ He thought of the atom as built up of successive aggregates 
of electrons, often loosely referred to as shells. All the electrons in a 
given aggregate are supposed to have the same ionization potential. 
We may think of these aggregates as containing the maximum number 
of electrons which they can possess without dynamical catastrophe, 
except that the outer shells, having very small ionization potentials 
from the standpoint of X-rays, may be incomplete. Because of this 
situation, it will generally be impossible to move an electron from a 
tightly bound to a more loosely bound shell, either by electron impact, 
or by the absorption of X-rays. Any excitation of a deep lying shell 
of the atom must consist in the removal of one of its electrons to the 
exterior of the atom. If this is done by radiation, the energy of the 
quantum must be equal to or greater than the ionization potential of 
the shell in question, which yields an immediate explanation of the 
absorption bands just described. The sharp discontinuity in absorption 
at the long wave-length limit Po of such an absorption band gives-a 
direct measure of the ionization potential V of a shell through the equation 
Ve = hpo- A quantum having the frequency Po will eject an electron 
and leave it at rest outside the atom; a higher frequency p will eject an 
electron and give it kinetic energy k(p — po). 

Similarly, a bombarding electron must fall through a potential at 
least as large as /iPo/e in order to ionize the shell in question. This 
explains Webster and Clark's observation of well-defined excitation 
potentials for the L-lines of tungsten.'^ When a certain shell of the 
atom has been ionized, an electron may fall from an outer shell into 
the vacant place, causing the emission of light. It is important to remem¬ 
ber that the X-ray spectrum originates in an ionized atom. 

Evidence for this relation between the absorption and the emission 
spectra is found also in the variation of the absorption coefficients 
of an element for the characteristic X-rays of other elements immediately 
preceding and following it in the periodic system. Table 2 gives Barkla's® 
determinations of the absorption coefficients for characteristic X-rays of 
elements from Cr to Se using Fe and Ni as the absorbers. 

A sharp increase in the coefficient of absorption for the characteristic 
X-rays occurs at the element having atomic number just two units 
higher than the absorber. Coincident with this increase in absorption 
there is a marked increase in the number of photoelectrons emitted 
and the characteristic K radiation of the absorber is first excited. 

1Z. Phyaik, 1, 124 (1920). 
* hoc. cit. Sec. 10. 
»PhiL Mag., 17, 740 (1009). 
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Table 2 

Emitter 

Absorber 

Fe Ni 

Or. 103 8 129 
Fe. 66.1 83.8 
Cx). 67.2 67.2 
Ni. 314 56.3 
Cu. 268 62.7 
Zu. 221 265 
As. 134 166 
Sp I 
.1 

116.3 141.3 

The reason for this is evident from KosseTs theory of the absorption 
limit and its relation to the emission lines. The X-absorption limit 
of Fe is at 1,737.7 X. U. and the X-emission lines of Fe, Co, and Ni 
are as follows: 

1 1 , <*2 1 011 

1 1 1 
^2 

Fe. 1,936.51 

1,789.56 i 
1,658.54 

1,932.30 

1,785.28 

1,654.61 

1,752.72 

1,617.13 

1,497.03 

1,740.60 

1.605.4 

1.485.4 
Co.i 
Ni.. 

The Ni radiation, having wave lengths shorter than the Fe absorption 
limit will be absorbed by F"e with the removal of one of its K electrons 
and the entire K spectrum of Fe will be excited. The Fe radiation and the 
strong ai and a2 lines of Co will not be absorbed. Thus Barkla’s experi¬ 
ments are in accord with the predictions of the theory. 

18. THE GENERAL FEATURES OF X-RAY ENERGY LEVELS 

In discussing X-ray energy levels, it is customary to assign zero 
energy to the normal state of the atom, in contradiction to the con¬ 
ventions used for optical energy diagrams. Approximate formulas 
for the wave numbers of X-, L-, and Af-series lines were given in equation 
(24). The similarity of these formulas to those used in describing the 
spectrum of hydrogen leads at once to an arrangement of the X-ray 
energy levels, shown in Fig. 23, not unlike that for hydrogen. It must 
be understood at once that this figure is a diagram of ionizing energies, 
the different levels representing the energies required to remove electrons 
from the different electron groups. Alternatively, the levels represent 
the energies of the atom ionizied in various ways referred to the normal 
atom as an origin. Let us suppose the neutral atom is ionized by remov- 
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ing one of its most firmly bound electrons belonging to the so-called 
shell/^ It will then be in the energy level marked K in Fig. 23 

which we shall call the state.An electron in any of the looser- 
bound shells, which are called the L, Af, etc. shells in order of decreasing 
ionization potential, could then fall into the K shell with emission of a 
iT-series line. If this electron comes from the L shell, the line emitted 

has the wave number RZ' 
I 
P 

it has the wave number 

-K 

Kp 

-M 

I-yvV 
Normal A f 'om 

Fig. 23.—Sim¬ 
plified X-ray en¬ 
ergy diagram. 

and is called Ka; if from the M shell, 

and is called and so on. 

(As we shall see farther on 7/ and Z" may be considered 
to be effective nuclear charges.) When any one of these 
events has occurred, the shell from which the electron 
fell is incomplete and may be filled by the transition of 
an electron from any shell of smaller ionization potential. 
Such jumps continue in cascade fashion until the out¬ 
ermost shell has lost an electron and is replenished by 
picking up a stray electron from regions outside the 
atom. 

From the diagram, we can read off many combi¬ 
nation relations at once. For example, the frequency 
of the line is the sum of the frequencies of the Ka 
and the La lines. It is customary to use the names of the 
lines and the levels to denote their frequencies, or better, 
the corresponding values of v/R^ which are of convenient 
magnitude. Thus, the K level of uranium has a, v/R 
value of 8,477, corresponding to a wave length of 0.1075 
A; this is the highest value encountered. Using this 
notation, we have relations of the type 

Ka = K - L, K0 = K - M, La = 
L - M,Kp = Ka + La, 

Let us now consider X-ray transitions in more detail. If we ionize 
the atom from the L shell to begin with, leaving a full complement of 
electrons in all others, transitions from M to L, N to L, etc., will occur, 
giving rise to the emission of L-series lines. The principle is now obvious, 
and we may determine the energies of the various states in Fig. 23 
referred to the normal atom as an origin. They are given approximately 
by the values R{Z — sY/n^ where 8 is in the neighborhood of unity 
for the jX state and assumes larger values for the other states. Each 
of these values is identical with the amount of energy required to remove 
an electron from an orbit of a hydrogenic atom having the nuclear charge 
Z — 8. The explanation of this approximate regularity is very simple. 

The motion of an electron in the innermost shell of an atom of reasonably 
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high atomic number is governed almost entirely by the overpowering 
attraction of the nucleus. The inner shell has 2 electrons as we shall 
see in Chap. IX, and the effect of each electron on the other is practically 
equivalent to a reduction of the nuclear charge by one unit. That is, the 
repulsive force which one electron exerts may be considered to screen off 
one unit of nuclear charge. This is the meaning of the value one assumed 
by the constant s for the K state. As for the other electrons in the 
atom, we shall see that their penetrating orbits (Chap. VII, Sec. 10) 
may pass very close to the electrons of the K shell; but in these portions 
of the orbits their velocities arc very high and they remain between 
the K electrons and the nucleus only a very small fraction of the time. 
The result is that the kinetic energy of a K electron plus its potential 
energy with respect to the nucleus and the oth('r K electron is practically 
that of an electron in a hydrogenic atom of nuclear charge Z — This 
energy is approximately the amount required to bring the neutral atom 
to the K state. Similar statements may be made in regard to the 
ionization of any other shell. 

14. THE COMPLETE SCHEME OF X-RAY ENERGY LEVELS 

The preceding description is only a rough approximation to the facts. 
The interaction of the electrons in the atom is very complicated, and 
we have not discussed modifications due to relativity and to electron 
spin, which may be quite large because of the high velocities of the 
electrons in the interior of the atom. These influences give rise to the 
existence of several classes of electrons in each shell except the K shell, 
each class having its own ionization potential. We said above that 
there are three L-absorption limits in the region covered by the Zy-series 
emission lines, five absorption limits corresponding to the ejection of 
M electrons from the atom by light, and so on. This complexity of the 
energy levels brings about a considerable increase in the complexity 
of the emission spectra. For example, there are two Ka lines close 
together produced in transitions from the K state to two of the three 

L states. 
An illustration will make these facts more concrete. We may 

determine the L levels of tungsten from its absorption spectrum; on 
numbering them Li, Ln, Lm in descending order on the energy diagram, 
we find the v/R values shown in the tabulation below. In this tabulation 
we also list the p/R values for the individual lines of the L-series, divided 
into groups in accordance with the work of Webster and Clark and of 
Hoyt described in Sec. 10. All the lines in group 1 arise in transitions 
to the Lm shell and are excited at 10.16 kilovolts, which is not far above 
the theoretical ionization potential of this shell, 9.7 kilovolts. The 
discrepancy is due to the fact that the probability of excitation is low 
when the energy of the bombarding electrons is very close to the value 
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required for ionization. Similarly, the other two groups arise in transi¬ 
tions to the Lii and La shells and appear only when these levels are 
ionized. 

Table 3.—v/R Values of the L Limits and L Lines of Tungsten 

U li /34 

Group 3. 889.9 887.77 723.23 701.66 

! Lii 7i ! /3i V 
Group 2. 849.69 831.81 712.39 642.78 

Liii 1 ^7 ^2 ai Ol2 t, 

Group 1. 750.88 751.56 746.45 
1 

733.76 618.46 613.85 544.03 

Table 4 gives the X-ray levels of uranium, thorium, and tungsten, 
obtainable by removing a single electron from the atom. The v/R 

values for all observed emission lines are expressible as differences between 
these numbers, except for certain lines which have their origin in the 
doubly ionized atom. However, not all the differences give rise to 
emission lines because of selection rules similar to those found in optical 
spectra, 
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Table 4.—p/R Values op Uranium, Thorium, and Tungsten 

Level U Th W 

K. 8,477.0 8,073.5 5,113.8 

1,603.5 1,609,7 893,0 

Lii. 1,543.1 1,451.5 850.6 

Liu. 1,264.3 1,200.6 752.1 

Ml. 408.9 381.6 208.1 

Mil. 382.1 354.4 191,3 

Afiii. 317.2 298.0 169,8 
Miv. 274.0 256.6 138.3 

Mv. 216.0 244.9 133.7 

Ni. 106.6 97.8 44.1 

Nil. 95.7 38.0 

Viji. 77.1 33.0 

Niy. 56.3 51.2 18.8 

Ny. 53.6 47.8 18.4 

Nyi. 28.4 24.8 2.9 

Nyn. 27.6 24.1 2.8 

Oi. 26.2 5.7 

Oil HI. 15.4 5.2 

Oiv.v. 5.8 5.7 

The combinations which occur can be seen in Fig. 24 which shows 
the levels of the rare gas radon on an exaggerated scale. (The correct 
scale has been used in the small diagrams at the left.) For example, 
the diagram indicates that only two of the three possible transitions 
between the L levels and the K level occur with emission of radiation, 
so that there are two Ka lines and not three. On the right are the 
symbols and quantum numbers for the levels, n and I are the total 
and reduced azimuthal numbers, respectively, j is not a quantum 
number of the removed electron but is the inner number of the ionized 
shell, and therefore of the whole atom, as we shall see in detail in Sec. 20* 
Further, I is the vectorial sum of the angular momenta of the electrons 
in the ionized atom, due to their revolution around the nucleus. This 
is numerically identical with the I value of the missing electron. In 
the earlier attempts at an interpretation of X-ray terms, the numbers 
I and j were often thought of as belonging to the missing electron.^ 

As an empirical fact, the following selection principles are obeyed 

with extreme fidelity in X-ray emission spectra; 

Al -■= ±1, Ai = f>r 0, (25) 

1 Several different sets of quantum numbers have been used in place of the I and j 
\i8ed here. Before the complete .scheme of quantum numbers now used to describe 

multiplet spectra was evolved, the quantum numbers k and j were used, and these are 

found in most treatises on X-ray spectra; k is equal to ^ -f 1 and was assumed to take 

the values 1, 2, . . . n;j as commonly used is equal to our jf plus 
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or in the older notation of Sommerfeld, 

Afci == ± 1, = ± 1 or 0. 

These rules appear to be identical with the selection principles for the 
azimuthal and inner quantum numbers in optical spectra, and I and j 
are often called by these names in spite of our more detailed and exact 
knowledge^! their significance. Few exceptions to these rules are 
known. A weak tungsten line, has been observed at the position 
expected for the K -- Li transition. The quantum number I docs not 
change in this transition and therefore this is a violation of the first 
selection rule. 

Using the transitions indicated in the diagram, which obey the 
selection rules, very good agreement is obtained between the v/R values 
of the emission lines and those calculated from the experimentally 
determined absorption limits. When we have established the origin 
of a set of emission lines by comparison with the experimental absorption 
limits, using elements in which both are easily studied, the regularity 
of the Moseley diagrams enables us to classify the corresponding lines 
of other elements with confidence even though some of the absorption 
limits are inaccessible. Then, from the known absorption limits and 
the v/R values for the emission lines, we can find the unobserved limits. 
For example, we can secure the M levels of W and other elements whose 
M-absorption limits have not been measured. It is known (using 
Siegbahn’s notation) that 

Li —• L/?4 = Mil, Li — LPz = Min' 

Substituting the numerical values from the tables of Siegbahn or Lindh,^ 
we have 

893.0 - 701.7 = Mn = 191.3, 
893.0 - 723.2 = Mm = 169.8. 

Using these values it is possible to show that the K0i line represents 
the combination of the Mm levels with the K level. Thus, 

K - Mm = 5,113.8 - 169.8 - 4,944.0 

while the measured value of K^i is 4,942.9. 
Thus, the building up of the complete X-ray energy diagram requires 

the use of the usual spectroscopic methods of searching for combination 
relations, and needs no further illustration. 

The values given in the case of these three elements refer to the 
atoms in chemical combination, for the spectra are obtained from their 
compounds. Experimentally this makes little or no difference, for the 
energy of interaction of an inner incomplete shell and an outer incomplete 
shell is of the same order of magnitude as the doublet or triplet differences 
occurring in optical spectra. From a theoretical standpoint, however, 

1 For reference, see end of chapter. 
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the number and arrangement of levels in Fig. 24 would be considerably 
altered if outer electrons were present. As it standvs it applies only 
to an atom or ion having complete subshells, that is, having the electronic 
configuration of radon. Fine structures of the X-ray lines due to the 
existence of incomplete shells are well known in a number of cases, 
as we shall see in Sec. 22. It will be understood that lighter atoms 
do not possess all the ionization potentials implied by the levels in 
Fig. 24 because they do not have as many electron shells. The X-ray 
spectra of the lightest atoms are very simple, and there is a steady 
increase in complexity as the atomic number increases. This will be 
discussed in the following chapter, since the exact number of levels cannot 
be deduced entirely from X-ray data but requires the use of facts and 
theories derived from the study of optical spectra and the periodic table. 

For detailed tables of wave length and of v/R and {p/Ry^ values, 
the reader should consult the references at the end of the chapter. 

16. THE EMPIRICAL LAWS OF X-RAY DOUBLETS 

Some of the most useful advances in our knowledge of atomic 
structure have come from the critical study of Moseley diagrams^ showing 
the dependence of the {v/RY'^ values of the X-ray levels on the atomic 
number. Figure 25 is such a diagram showing data for the X, L, and M 
levels, and Fig. 26, a similar diagram showing the M, A, and 0 levels 
on a larger scale. For the present, we may confine our attention to 
those portions of the curves which are quite uniform. It will be seen 
that the lines for the levels Lu and Lm diverge, but that the lines Li 
and Lii are parallel. We shall refer to the frequency difference between 
two neighboring levels as a doublet. Intervals which behave like that 
between Lu andLm are called ^^relativity doubletsor ‘‘relativity-spin 
doublets'' and were first discovered by Sornmerfeld, while those which 
resemble the interval between Li and Ln are screening doublets, and 
were discovered by Hertz. At the right of Fig. 24 we indicate the 
character of the various doublets. It will be noted that spin (R) and 
screening (S) doublets alternate in passing down the energy diagram, 
a fact which is helpful in memorizing these regularities. It is apparent 
that the two levels belonging to a spin doublet have identical azimuthal 
numbers, but different inner numbers. On the other hand, the levels 
of a screening doublet have different azimuthal number, but the same 
inner number. These relations are recapitulated in Table 5. 

The frequency difference Ap of a spin doublet increases as the fourth 
power of the atomic number diminished by a certain screening constant 
d. In fact, the data are well satisfied by an empirical formula of the type 

4^ = az - + a{Z - dy + h{Z - d)^]. (26) 
R 

^See Bohb and Costeb, Z. Physik, 12, 342 (1923). 
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Table 5.—Quantum Numbbus op X-ray Levels* 

Level 
Type of 

doublet 
n k ^ ki 1 ^-k - 1 

K. 1 1 0 

Li. 

S 
2 1 0 

Lii. 

R 

2 o 1 

Lin. 2 2 1 % 

Ml. 

S 
3 1 0 M 

Mu. 

R 
3 2 1 

ikfiii. 

s 
3 2 1 

il/iv. 

R 
3 3 2 % 

Mv. 3 1 3 2 % 

Ni. 

S 
4 1 0 K 

iVii. 

R 
4 t 2 1 

A^iii. 
o 

4 2 1 % 

Ni\. 
o 

R 
4 3 2 % 

N\. 

S 
4 3 2 

N\i. 

R 
4 4 3 % 

N\ii. 4 4 3 K 

0,. 

S 
5 1 0 

* R » relativity-spin doublet; S *= screening doublet. is the older azimuthal number assigned 
by Sommerfeld to these levels; I is the true azimuthal number. 

Retaining only the first term in this formula, it is equivalent to the 
statement that AX is constant for the spin doublets as we pass from 
element to element. We see this at once from the relation AX == 
— Au/P, together with equation (24). As an experimental fact, easily 
interpreted by the theory we are about to outline, this law also holds 
approximately for the emission doublets. For example, in passing 
from uranium to silver the wave lengths of the Ln and Lm limits change 
by a factor of 6, but the wave length difference of L-series emission 
doublets which involve these limits changes by only 40 per cent. The 
law followed by the screening doublets is explained at once by the 
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Moseley term values, equation (24). If we have two levels for which 
the empirical screening constants are si and S2, we may write 

and, therefore, 

= a(Z — S2) 

= a{si - S2); 

(27) 

(28) 

that is, the difference of their (yjRyA values should be a constant, 
and their representative lines on the Moseley diagrams should be parallel. 
That this is approximately but not exactly true is evident from Figs. 
25 and 26. A more exact theory of these doublets will be given in Sec. 18. 

16. SOMMERFELD^S FORMULA FOR THE SPIN-RELATIVITY DOUBLETS 

We pointed out in Sec. 13 that the magnitudes of the X-ray energy 
levels are equal to the ionization potentials of electrons in the inner 
shells of the atom. The approximately hydrogenic character of these 
spectral terms is explained by the controlling influence of the nucleus; 
the effect of the other electrons on the one which is to be removed to 
give rise to an X-ray energy level is practically equivalent to a simple 
reduction of the nuclear charge. When an electron moves on an orbit 
of low total quantum number in the field of a nucleus of high atomic 
number its velocity may not be neglected in comparison with the velocity 
of light, and it is essential to use a formula for its energy, which takes 
account of the variation of mass with velocity. 

Sornmerfeld^ showed that it is possible to obtain excellent agreement 
with the observed X-ray energy levels by using a modification of the 
relativistic formula for the energy of the hydrogenic atom. This 
modification consists in replacing Z by Z — s in equation (35), Chap. V, 
so that 5 represents the screening of the nucleus by other electrons. 
WentzeF further modified this by replacing Z by Z — s in the first term 
of equation (35), Chap. V, and by Z — d in the other terms, so that the 
formula becomes 

R(Z - 5)2 R{Z - dYa 

+ 

+ 

R{Z - dYaA\ 

R{Z dYa^ 

n’’ 

l/n\^ 
8[k 

'{I -!) 
l/nV 3/n 
iVA;] i\k + 

+; 
S/nV . l/nV 15/nV 15/n 

8U 

(29) 

w 
64 

+ • • • 

‘ An excellent resum4 is given in the chapters on X-rays in “Atombau,” 4th ed. 
0 Z. Physik, 16, 51 (1922). 
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The reason for the introduction of the two screening constants 
and d can be seen from a consideration of the origin of the terms in 

this formula, using the simple shell model of Chap. VII, Sec. 10. We 
can see that the screening constant .s in the first term depends on the 
distribution of ejectrons in shells both inside and outside the one con¬ 
taining the electron in question. All other terms in equation (29) aris€^ 
from the variation of mass with velocity and from electron spin. In 
accord with Chap. V, Sec. 16, the values of these terms depend essentially 
on the velocity of the electron and this is determined by the field in 
which it moves, that is, on the screening due to the inner shells, regardless 
of the distribution of the outside shells. We may call s and d the total 
and partial screening constants, respectively. 

17. DATA CONCERNING THE L AND M DOUBLETS 

To obtain the formula for the separation of the L doublet, we write 
down the term values for Ln and Lm, as obtained from equation 
(29) by substituting the values of k and n given for these levels in Table 
5. Assuming that tV is the same for both these levels, the term con¬ 
taining (Z — s) drops out in the difference and we obtain 

Av Lii — Liii 
R~~ 

AZ - d) 1 + 5 j(z - *■ 

The equations for the M doublets are 

- (30) 

Av Mit — MxjC 
-d) 

R R 3<<^ - 

Av Miv _ My _ 
-dy 

R R 
— 3.(Z- 

+ 32 3 
v2 

,(z - dy + 

2 + 72 + 

(31) 

and other doublet formulas are obtained similarly. 
The precision with which the theory accounts for the spin doublets 

can best be seen by substituting the experimental values for the spin- 
doublet separations on the left-hand side of equations (30) and (31), 
and solving for the values of d. The degree of constancy of d for a 
given doublet, as the atomic number changes, is a measure of the 
applicability of equation (29). The constancy of the screening number 
for the Z/-doublet is shown by Table 6 which is an extract from a more 
extensive table compiled by Sommerfeld.^ 

Similar calculations for the M and N doublets give values which are 
nearly as constant as those for the L doublet. It is natural that the 
departure from the Sommerfeld formula should become greater for the 
outer shells where the physical conditions necessary for its validity 

^ “Atombau/* 4th ed., p. 447. 
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Table 6 

z Element MIR d 

41 Nb 6.89 3.50 
45 Rh 10.48 { 3.47 

50 Sn 16.73 3.50 
56 Ha 27.70 3,54 
60 Nd 37.86 3.51 
67 Ho 62.46 3.50 
74 W 98.54 3.51 
82 PV> 160.02 3.44 
92 U 278.71 

i 
3.49 

are not so well fulfilled. The screening constants for the L, M, and N 
doublets are assembled in Table 7. 

Table 7 

Lovel d 
Lu, Lni. 3.50 

Miif Mm. 8.5 
MiYy My. 13.0 

Nuf Nui. 17.0 
Niy.Ny. 24.4 

A^vt. Nvu. 34 

18. SCREENING DOUBLETS 

The values of the constant d can be secured by the method given 
in the preceding section, for all X-ray levels except X, Li, Mij Njj Oi, 
etc. In these cases there is no relativity doublet and, therefore, the 
constant s cannot be eliminated as for the other levels. The values 
of s for the doublet levels can be calculated by substituting the values of 

d (Table 7) in equation (29) and solving for the term — ^ • This 
Tlf 

is known as the ^'reduced terrn^' and is represented by it is the same 
for both levels of a relativity doublet. Following the reasoning used in 
deriving equation (28), but using the reduced terms instead of the actual 
terms, we secure the equation 

(32) 

When the reduced terms for the and the ilfiv.v levels are sub¬ 
stituted in this formula it is found that As/n is constant, with no 
indication of a trend such as we found in Sec. 16. The same is true for 
the Nn,m and iViv.v screening doublets, though the erratic variations 

of As/n are greater. 
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To secure the reduced terms for the Li, Mi, Ni, etc., levels further 
assumptions are necessary. It seems most natural to assume that 
As/n should be constant, with increasing atomic number, for the screen¬ 
ing doublets Li — Ln.m, Mi — Mnjn, Ni — iV^ii,in, Oi — Oh ,111, 
as well as for the screening doublets Mij,m — Miv,v and JVii.m — 
Niv,y- Wentzel chose a value '’or d for the Lj level in such a way as to 
satisfy this assumption. That is, we calculate the reduced Li term, by 
substituting WentzePs d in equation (29), and call it vi; we also calculate 
the reduced term P2 corresponding to the Lu and Lm terms. Then, using 
equation (32) we obtain a value of As/n which is practically independent 
of the atomic number. The same method was applied by Wentzel to the 
other single levels. The values of d thus secured are as follows: 

Li Mx Ni 
d. 2.0 6.8 14 

By comparison with Table 7, it will be seen that these values fit in with 
the trend of those for the other levels. The values of As/n calculated 
from equation (32) for a number of elements are listed in Table 8, which 

Table 8.—Differences of the Square Rootb of Reduced Termb for Screening 

Doublets 

z 
(Li, 

Lii,iii) 
(Ml, 

Mu,Hi) 
(Mil,Illy 

AiiVjv) 
(Ni, (Nllylll, 

NlVyV) 

(NlVyV 

NvlyVU) 

(Oi, 
Ou,m) 

(Oil,III, 

Orv,v) 

74 0.54 0.60 1.12 0.56 1.15 2.57 0.58 1.70 
78 0.55 0.63 1.11 0.45 1.17 2.47 0.53 1.51 
79 0.57 0.61 1.12 0.53 1.27 2.40 0.09 1.81 
81 0.57 0.57 1.16 0.63 1.09 2.21 0.54 1.42 
83 0.54 0.63 1.08 0.63 1.05 2.11 .... 1.97 
90 0.60 0.61 1.12 1.95 
92 0.60 0.62 1.13 0.56 1.14 1.94 1.20 1.51 

is similar to, but briefer than a table given by Wentzel. The constancy 
of these differences with respect to atomic number is very satisfactory; 
it is also evident that they are approximately multiples of 0.58 so that 
the reduced terms are given by the equation, 

g - 
In this formula Sn is that value of s which will give the reduced term, 

for the Li, Mi, Ni, Oi . * . levels when n equals 2, 3, 4, 6, . . • , 

respectively; for these terms (pit) is zero. We cannot expect Sn to be 
independent of atomic number, since it depends on the number and 
distribution of electrons both nearer and farther from the nucleus than 
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The empirical relations developed here for the dependence of the 
X-ray levels on the atomic number and the quantum numbers can 
be summarized in one formula due to Wentzel, partly theoretical and 
partly empirical, which gives an excellent representation of the experi¬ 
mental X-ray energy levels. This formula is, 

(p{l) and d{n,l) take the values 

^(0) = 0, ^(1) = 1, ^(2) = 3, . . . , 
d(2,0) = 2.0, d(2,l) = 3.5, 
d(3,0) - 6.8, d(3,l) = 8.5, d(3,2) = 13.0, 
d(4,0) = 14.0, rf(4,l) = 17.0, d(4,2) = 24.4, rf(4,3) = 34. (34) 

The values of s(Z,n) are those given in Fig. 27. 
As yet there is no complete theoretical explanation of these very 

striking empirical relations. Fues^ and Hartree^ have shown that 
it is possible to account for the X-ray levels approximately by assuming 
stationary electron orbits in a central field and especially Fues has 
shown that it is not possible for electrons to be bound in orbits having 
the quantum numbers n = 4, = 4, in the cesium atom, but that 
it is possible for such electrons to be present in atoms having atomic 
numbers only slightly higher than that of cesium. An investigation 
by Sugiura and Urey^ shows that this is also true if k is assigned half¬ 
integral values and that the values of the inner screening constant, d, 
calculated on this basis agree fairly closely with the experimental values. 
The calculated and observed constants for cesium are 

LufUi Mil,III 

d: calculated. 2.8 9.2 12.4 
d: observed. 3.5 8.4 

1 
13.0 

Using similar assumptions, Pauling^ secured values which agree about 
as well with the observed values as those given above. 

PhyHk, U, 364 (1922); 12, 1 (1923); 13, 211 (1923); 21, 266 (1924)*. 
»Proc. Camb. Phil Soc., 21, 625 (1925). 
* KgL Dan. Vidsk, Selskab. Math.-fya. Medd.^ VII, 13 (1926). 
* Z, Fhydkj 40, 344 (1927). Pauling has also applied the new mechanics to this 

problem. See J. A. C. S.^ 30,1036 (1928) and Proc, l^y. Soc., 114, 181 (1927). 
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19. COMPARISON OF THE RELATIVITY AND THE SPIN-RELATIVITY 
THEORIES OF X-RAY DOUBLETS 

We are now in a position to understand how and why Sommerfeld^s 
original interpretation was replaced by another which takes the spin 
of the electron into account. We have seen that in Somrnerfeld^s 
theory it was necessary to assign the azimuthal number 1 to the Li 
and Lii orbits, and the number 2 to Lm, and that similar assignments, 
conflicting with the spin theory, must be made for other levels. This 
leads to difficulties. The two levels associated with a relativity doublet 
have the same total screening constant, as we assumed when equations 
(30) and (31) were obtained by subtracting two equations of the form 
of equation (29), having the same value of s. It is difficult to see how 
this can be the case except in the case of a hydrogenic atom, for electrons 
having the same total but diflFerent azimuthal numbers will move on 
orbits of dififerent shape. Even if this difficulty were overcome, there 
is another which may be illustrated by referring to the L levels. Li 
and Lii form a screening doublet which obeys Hertz^ law. If the total 
screening constants are different for these two levels, it seems reasonable 
to suppovse that the relativity corrections should be different for them. 
As a matter of fact, the data would not permit this, as we see by 
considering the parallelism of the Li and Ln curves on the Moseley 
diagram. Even in the region of high atomic numbers where the rela¬ 
tivity doublet separation becomes large compared with the screening 
doublet there is no indication of such an effect. 

It is possible to overcome the first difficulty by a different inter¬ 
pretation. We may suppose that the interval between Li and Lm is 
a combined relativity and screening doublet, in which the difference of 
the screening constants is directly traceable to the difference in the 
azimuthal numbers. The difficulty is that we then are still confronted 
by the same trouble as before in attempting to explain the interval 
between L\ and Lm. Similar remarks may be made in regard to doublets 
of other series. 

Further difficulties arise when an attempt is made to correlate the 
energies of the X-ray electrons with those of the valence electron of an 
alkali metal. The correlation is based on the similarity of the X-ray 
diagram and the energy diagram of a typical alkali atom. In Chap. 
VII, Sec. 13, we discuss the empirical laws describing the separations of the 
doublet levels in alkali atoms, and in ions having the same number of 
electrons as the neutral alkalies. The outstanding fact is that these 
doublets obey approximately the same law as the X-ray spin doublets, 
especially when we are dealing with highly charged ions. Because of 
the inhomogeneity of the field through which the electron moves in the 
case of the optical spectra it is necessary to introduce screening con- 
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stants for both the inner and outer parts of the orbit, as we showed in 
equation (40), Chap. VII. 

Even before the discovery of the spinning electron it was practically 
certain from evidence based on the Zeeman effect that the alkali doublets 
were principally due to differences in the orientation of two or more 
portions of the atom with respect to each other, and that the forces 
which held these parts in their quantized orientations were magnetic 
in origin. Because of the definite connection between magnetic moment 
and angular momentum, it appeared necessary to say that the levels 
forming an optical doublet have identical azimuthal numbers but 
different inner numbers. The selection principles for these numbers 
are identical in form with those for the X-ray quantum numbers 
by I and j in equatibn (25). Therefore, it appeared reasonable to call 
these numbers by the same names as the analogous numbers in optical 
spectra, and this is in complete disagreement with the assignment of 
quantum numbers based on the relativity theory. 

For a time this difficulty remained unsolved. Tt appeared that 
the magnetic explanation, using the two possible orientations of a 
magnetic spinning electron relative to the magnetic moment of the 
orbital motion of the electron, left no room for the relativity correction, 
and vice versa^ for either alone was able to yield a quantitative inter¬ 
pretation of the levels. As stated before, the true explanation lay 
in the fact that the combination of relativity and magnetic corrections, 
as calculated by the new mechanics, gives the original relativistic 
energy levels of Somrnerfeld. The validity of the first-order term of 
Sornmerfeld’s formula was established by Heisenberg and Jordan^ 
and by Richter.^ Darwin^ has proved that the wave-mechanical 
theory of the electron introduced by Dirac yields precisely the expres¬ 
sion given by Somrnerfeld. His formula is derived in such a way that 
the spin quantum number of the electron does not explicitly appear, 
but the selection principles appear in their usual form. 

20, THE QUANTUM NUMBERS OF THE X-RAY LEVELS 

Although the preceding discussion was based on a study of the 
energy of a single electron in the field of a partially screened nucleus, 
we must remember that this procedure yields only approximate 
results; for the negative energy of such an electron on its normal 
orbit, as determined by Sommerfeld’s formula and measured from the 
state in which it is removed to infinity, is only approximately the same 
as the energy of the atom on the corresponding X-ray level, measured 
from the unexcited state as an origin. In Sec. 14 we stated the selection 

i Z, Physik, 37, 263 (1926). 
^Phya. Rev,, 28, 849 (1926) and Proc, Nat. Acad. Sd., 18, 476 (1927). 
® Roy. Soc.y 118, 654 (1928), Also Gordon, Z. Phystk,, 48, 11 (1926). 



263 Sec. 20] THE QUANTUM NUMBERS OF THE X-RAY LEVELS 

principles for X-ray spectra and compared them with the strikingly 
similar rules for an alkali atom. Further, we have pointed out the 
similarity of the alkali metal and X-ray energy diagrams. The reason 
for this similarity was first clearly stated by Pauli J When a single 
electron is removed from an atom, the number of X-ray levels which 
may result is equal to the number of essentially distinct ways in which 
the remaining electrons may be coupled to yield quantized states. 
I-^et us suppose that we are dealing with an atom in which the I vectors 
(Chap. VII, Sec. 6) of the individual electrons are coupled so as to form 

a quantized resultant Z, and that similarly the s vectors form a quantized 

resultant s. Further, we suppose that the vectors I and 8 are so oriented 

with respect to each other that their resultant j is quantized. If the 
atom is built up of successive electron shells each of which has no resultant 
angular momentum or magnetic moment, i.e., with the I and ^ vectors 

adding up to Z == 0 and s = 0, then the removal of one electron whose 
quantum numbers are V and s' will leave an incomplete electron shell 

with its I and 5 values equal to Z' and .s', so coupled as to give a certain 
quantized resultant j'. Thus, the shell from which one electron is missing 
must have the same number of possible combinations of the Z and s 
vectors of its electrons as the single electron removed from the shell 
and for this reason the X-ray levels are doublet levels just as in the case 
of the optical spectrum of an alkali. 

The exact optical analogues of the X-ray energy values are the 
energies required to ionize atoms having completed subshells of electrons, 
such as the alkaline earths and inert gases. We may take neon and 
magnesium as the simplest examples. In Chap. IX, we shall see that 
the numbers of electrons in the two- and three-quantum shells of these 
elements are the following: 

Element 

Subsholl 

2, 0 2, 1 3, 0 

Ne. ! 2 6 0 
Mg. 2 6 2 

The energy required to remove one of the 3, 0 valency electrons of Mg 
is the energy of the Mi X-ray level of magnesium. The 3, 0 subshell of 

Mg has Z == 0, 5 = 0 and j = 0. Each of the electrons of this subshell 

has the quantum numbers Z = 0, 5 = 3^2 3 = If one electron is 

Physik, 31, 765 (1925). 
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removed, we obtain the quantum numbers of the incomplete subshell 
left behind by subtraction, as follows: 

1=0 6=0 j=0 
J = 0 j^y2 

i - I = 0 6 - 6 =-y j-j ^-M 

The values in the last line are in fact the quantum numbers of the remain¬ 
ing electron of this subshell. The level is, therefore, a level from 
the standpoint of optical spectra, so that our assignment of quantum 
numbers for the Mi level in Sec. 16 is verified. The removal of one of 
the 2, 0 electrons of neon gives an exactly similar optical level except 
that the total quantum number of the remaining electron is 2 instead 
of 3, and the ionization energy of this subshell is the energy of the L\ 
level of neon. 

The removal of one of the six 2,1 electrons from either of these elements 
may leave the incomplete subshell with an angular momentum of V2 or 
in terms of h/'Iw as a unit. That is, the electron removed may carry 
with it an angular momentum corresponding either to j = y or j ^ ; 
so that the quantum numbers of the ionized atom are formed as follows: 

] = 0 .s = 0 j = 

^ = 1 J "" y j ^ H 
/ - Z - -1 5 - .s- - j ~J ^ -H orj - j = 

We conclude that two different ionizing potentials will be observed 
depending on whether the incomplete shell is left with j equal to or 
to As we shall see in Ghap. X, Sec, 10, these two levels of the ion 
are and levels. They are the Ln and Lm levels of neon, 
respectively. The Ln and Lm ionization potentials correspond to the 
two limits for the optical series spectra described in Chap. IX, Sec. 6. 
Ln with j = ^ 2 is higher than Lm on the optical energy diagram so that 
these levels are an inverted ^P level of Ne"^. The same is true of the 
low-lying ^P levels of the halogens. This is not true of the alkali metals 
in their ^P states, for here the level with j — % has the greater energy. 
Quite generally, the low-lying states of atoms with incomplete subshells 
are similar to the X-ray energy states in their multiplicity, and just 
as in this simple example the levels correspond to inverted doublets 
of optical spectra. Table 9 gives the number of electrons in each of the 
subshells of the argon atom in its normal state and each of its X-ray 
states. That the assignment of electrons to the subshells of the normal 
atom is correct will be proved in Chap. IX. In the last two columns 
of the table we give the optical symbol for the level and the atom whose 
normal or low-lying state is similar to the X-ray level. The addition 
of completed subshells to the outside of the atom does not change the 
multiplet character of the level. 
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Table 9 

X-ray level 
1,0 2,0 2,1 3, 0 3, 1 

Optical 

symbol 

Analogous 

atom 

Normal state. 2 2 6 2 6 '*80 A 

K. 1 2 6 2 6 H 

Li. 2 1 6 2 6 li 

Ijii , Till... 2 2 5 2 6 F 

Ml. 2 2 6 1 6 Na 

Mil, ^iii. 2 2 f) 2 5 
\ 

Cl 

21. X-RAY SPECTRA OF HIGHER ORDER 

In addition to the lines of the K- and L-series which agree so well 
with the energy level scheme developed in the preceding paragraphs, 
a considerable number of weak lines have been observed, which cannot be 
fitted into this scheme without seriously altering it. In general, they 
lie on the short wave-length side of the stronger lines of the K- and 
L-series. In the X-series the^se weak lines are resolved for elements of 
atomic numbers 12 to 29 and in the/^-scries for elements of atomic numbers 
lower than 51. Such additional lines were first discovered by Siegbahn 
and Stenstrom and were greatly extended in number and in precision 
of measurement by Dolejsek, Hjalmar, and Coster,^ while Foote and 
Mohler^ have recorded critical potentials in the soft X-ray region which 
may be related to some of these lines. 

The Kot group of lines consists of three doublets a^a\^ and 
in the order of decreasing wave lengths, and a line a/ lying between the 
aia2 and doublets. This complete group is observed only in the 
elements Na, Mg. Al, and Si. The resolution of the a;ia4 and 
doublets becomes more difficult with increasing atomic number, and, in 
this respect, they differ from the 0:10:2 doublet. The latter is due to 
combinations between the K and the Lu and Lm levels. The five lines 
oLi, as, a4, as, and ae may be arranged in three pairs such that the fre¬ 
quency differences of the pairs is approximately constant; 

as — ai ^ as ^ ae ^ «4. (35) 
Furthermore, the last of these differences for any one element is very 
closely the same as the first of these differences for the element immedi¬ 

ately following in the periodic system; 

(ao — a4)z = («3 «i)z4-i* (36) 

These relationships expressed by equations (35) and (36) are illustrated 

in Table 10. 
Siegbahn, “ Rontgenstrahlen,” Springer, pp. 9S, lOS, 180-185, for a review 

of the experimental data up to 1924, and Lindh, Phy^iik. Z,, 28, 93 (1927) for moi'e 

recent work. 
* **Origin of Spectra,’’ p. 200^. 
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Table 10‘ 

Na Mg AI Si 

0.52 yrO.71 yrO.83 

OCg — 0£8 .. 0.67 / 

^0.64 

0.67 / / 0.76 / 
/ 
^ 0.91 

iXe —. 0.65-^ 0.76*'^ 0.83"^ 0.94 

1 Wetterblad, Z. Physik, 42, 611 (1927). 

Similar regularities are found in the L-series satellites though they 
are not so clear as the X-series relations, probably because of the more 
complicated structure of the L and M shells. 

WentzeP proposed that these faint lines represent the spark X-ray 
spectra emitted by atoms which have more than one electron removed. 
The X-ray spectra emitted by singly, doubly, and trebly ionized atoms 
may be referred to as the first, second, and third spectra, respectively. 
Two electrons may be removed from the same or different shells of the 
atom and the spectrum emitted by such multiply ionized atoms when 
electrons of outer shells fall to the inner shells will be of different character 
from that emitted by the singly ionized atom. A doubly ionized atom 
will have an energy diagram of the singlet and triplet type, and the trebly 
ionized atom or ion will have doublet and quartet multiplicities. These 
conclusions follow from the study of multiplicities of optical spectra to 
be described in Chap. X. 

A word of explanation is necessary, however, in this connection. 
Many of the X-ray spectra ascribed to atoms are really characteristic of 
ions having closed subshells of electrons, or compounds with closed 
subshells, in the sense that the incomplete valence shell of one atom couples 
with those of other atoms in such a way that there is no resultant angular 
momentum or magnetic moment. For such ions and compounds the 
system of levels must be of the doublet type. But in many elements 
of transition groups, as for example the rare earths, the subshells are 
not all closed even for stable ions, as indicated by measurements of 
magnetic susceptibility. The X-ray levels of such an ion cannot be a 
doublet system; there must be closely spaced groups of levels in the 
neighborhood of each of the doublet levels. 

Aside from these facts on which there is general agreement, the 
subject of X-ray spark spectra is rather involved and controversial. 
A description of the various theories proposed in regard to the transitions 
which give rise to the Ka group would be quite lengthy, and we shall 
content ourselves with giving references to the more recent papers on 
the subject.^ 

1 Ann. Phydk, 66, 487 (1921); iUd., 73, 647 (1924); Z. Phydk, 31, 446 (1924). 
® BXcklin, Z. Phydkf 27, 30 (1924); Drxtyvbsteyn, ibid., 43, 707 (1927); Tornbr, 

Phya, Rev., 26, 143 (1925); Kichtmyer, Phil Mag,, 6, 64 (1928). 
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22. THE EFFECTS OF CHEMICAL COMBINATION ON X-RAY SPECTRA^ 

Thus far, we have not considered changes in the spectra due to the 
state of chemical combination; they have been assumed to be charac¬ 
teristic of the individual atom and independent of its chemical com¬ 
bination with other atoms. This is found to be far from true when the fine 
structures of the absorption limits and lines and their exact wave lengths 
are determined. Though these effects have not been extensively investi¬ 
gated, it may be said that the absorption limits and emission lines of an 
element are different in position in nearly all of its chemical compounds 
and often there are differences in structure as well. The causes of these 

IS 
Si 
SI 

mum wm 
4320 4340 4360 4380 4400 

Fig. 28.“ -FT-absorpiion limits of chlorine of different valoTiOOs. {After Lindh.) 

changes arc imperfectly understood and the experimental data are as 
yet too meager for systematic classification. 

Figure 28 gives the structun^ of the iv-absorption limits of chlorine 
in its different valencies, according to Lindh, and illustrates two general 
features: the absorption limit is shifted toward higher frequency as the 
valence increases, and a distinct fine structure appears, the nature of 
which depends on the valence. In some cases, the fine structure con¬ 
sists of fairly sharp absorption lines. There are two distinct absorption 
limits for each valence, except in the case of HCl, though these two limits 
are not observed for all compotinds having a particular type of valency. 
The average wave lengths of these limits, Ki and K2^ observed in many 
compounds, and their variation with valence, are given in Table 11, 
together with the energy differences of these limits for free chlorine 
and for the element in combination. The change in wave length between 
the longest and shortest wave lengths is about 0.5 per cent, which is far 
from insignificant, though it corresponds only to an energy change of the 

1 For complete summaries, see the following papers and references there given: 
Lindh, Physik. Z., 28, 98 and 111 (1927); Stelling, Z.f. anorg, Chem.y 131, 48 (1923); 
Z, f, Phys. Chem., 117, 161, 175, 194 (1925); Chem. Ber., 60, 650 (1927); ^^Uber den 
Zusammenharig zwisclieri chcmischer Konstitution and K-Rontgen Absorptionsspek- 
tren,'' Lund, May (1927); Z. Physik, 60, 506 (1928). 
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Table 11 

Wave length 
AT (volts) relative to 

CI2 Kt - K, 
(volts) 

XTi K, 1 K2 

C12. 4,393.8 4,381.6 0 0 

1 
7.8 

HCl. 4,385.3 5.4 
Cl-. 4^382.9 4,360.0 7.0 13.8 14.6 
CP+. 4,376.9 4,357.4 10.8 15.5 12.5 
CF+. 4,369.8 4,347.8 15.3 21.6 14.1 

order of magnitude of the binding energies of the compounds. There 
is some variation among the individual compounds containing the 
chlorine in any one valence type, though they group themselves rather 
closely about the values given in the table. 

A study of the K limits of chlorine and sulfur compounds, as well 
as others, shows that there must be specific effects of the metal ions 
with regard to both the wave lengths of the limits and their fine structures. 
Stelling^ pointed out that the variation in the wave length of the limit 
depends on the crystal structure, the interionic distances, and the electron 
configuration of the metal ion, and Fajans'*^ has found that the experi¬ 
mental results agree fairly well with the assumption that the wave-length 
difference between the absorption limit of the free ion and of the ion in 
the crystal is proportional to the inverse fourth power of the interionic 
distance r if the metal ions have similar outside electron shells and the 
crystals have the same lattice; that is, 

where X^o is the wave length for the free ion and X that for the ion bound 
in a lattice, and k is a constant. The following table shows how well 
this formula agrees with the experimental data on three sulfides, if 
Xoo(>S—) is taken as 5,009.3 X. U. 

Table 12 

Compound 1 ^ 
r P 8 1 11 

MgS. 5,005.3 2.594 45.3 4.0 180 
CaS. 5,006.6 2.843 65.3 2.7 176 
BaS. 5,007.5 3.184 103.0 1.8 185 

1 Loc. dt, 
2 Z, Physik, 50, 531 (1928). 
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The change of refractive index of the ions due to binding in a crystal 

follows a similar law^ and this indicates that the variations due to the 

metal ions depend on the deformation of the outside electron shells 
of the negative ions. The complete explanation of these phenomena 

has not been given. It will prol)ably be necessary to consider, in addi¬ 

tion, the lattice energy with normal ions, with ions having a K electron 
missing, and with free electrons in the lattice, as has been done by 
Aoyama, Kimura, and Nishina,^ and also to consider the deformation of 

the ion by the neighboring atoms or ions. 

The dependence of emission spectra on the compound containing 
the element is even more prominent than that of the absorption edges, 

for here there appears to be a dependence on the metal of the target 

supporting the compound as well. Lines which appear when a compound 
is supported on a target of one metal will be absent, if the same compound 

is supported on another target, and the relative intensities of the lines 

may be changed. These spectra require much more research before 

any satisfactory classification and interpretation of the results can 

be made. 
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CHAPTER IX 

THE PERIODIC SYSTEM OF THE ELEMENTS 

1. THE ARRANGEMENT OF ELECTRONS IN ATOMS 

The periodic system of the elements consists of six completed periods 
and one incomplete period containing 2, 8, 8, 18, 18, 32, and 6 elements, 
respectively. Each increase in the length of period brings with it a 
number of elements with properties different from those of the preceding 
periods. The types of elements which first appear in the periods of 18 
are known as the transition elements, and the period of 32 also contains 
the fourteen rare earths. 

Figure 1 is the periodic table of Julius Thomsen^ which agrees well 
with the structure of the electron configurations deduced by Bohr, 
which we shall now describe. In this table the rare gases, which were 
postulated by Thomsen before their discovery, the transition groups, 
and the rare earths have logical positions. Thomsen pointed out that 
the numbers of elements in the periods of the table, omitting the inert 
gases, are given by the expression 

1 + 2X3 + 2X5+ • — , 

which can be modified on including the inert gases to read 

2X1+2X3 + 2X5 + 2X7+ •••; (1) 

by breaking this series at different points, the numbers 2, 8, 18, 32, 
etc., mentioned above are secured. 

The approximate but unmistakable repetition of chemical and 
physical properties with these periods and the increasing length of 
the periods has been believed to be due to a regular building up of succes¬ 
sive electron shells with increasing numbers of electrons since the original 
proposals of Sir J. J. Thomson to account for them in this way. We 
are confronted with several questions: (1) How many electrons are 
there in each shell or subshell? (2) What limits the number of electrons 
in a given shell? (3) How are the periodic properties of the elements 
related to the exterior electron configurations? These questions can 
now be answered in a broad way, as a result of our knowledge of the 
optical and X-ray spectra of the elements. 

Bohr^ first proposed a distribution of electrons into different shells 
and subshells which was based on an attempt to correlate spectral data 

1Z, anorg, Chem,, 9, 190 and 283 (1895). 
. Ann, Phydk, 71, 228 (1923); Z, Physik, 9, 1 (1922). 
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with the periodic system; this explained a wide range of phenomena. 
Bohr^s assignment of the numbers of electrons in the shells defined by 
the total quantum number, n, for the atoms of the different periods has 
not been modified, but his assignment of the numbers in the subshells 
defined by the azimuthal number, Z, has been modified by Stoner^ and 

I Q m nr v vi m 

ZHe-JONe-18A -dGKr - 54-Xe - deRn 

Fig. 1.—The Thomson-Bohr perifxJio table (modified). 

Main-Smith.* Following this work Pauli proposed his equivalence 
principle, which limits the possible numbers of electrons in each shell 
or subshell. There are two factors which are effective in determining 
the electron configuration of the normal state of an atom; first, the 
electron configuration must be one permitted by the Pauli equivalence 
principle, and second, it must be that which makes the energy of the 
atom a minimum. These two factors will now be taken up in order. 

^ PhU. Mag., a, 719 (1924). 

* J. Chem. Ind., 43, 323 (1924); “Chemistry and Atoniio Structure,” London 

(1924); Pka. Mag., 30, 878 (1925). 
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2. THB PAULI EQUIVALENCE PRINCIPLE AND THE ELECTRON SHELLS 

Paulies principle requires that no two electrons of an atom shall have 
all of their five quantum numbers identical (Chap. VII, Sec. 19). These 
five quantum numbers may be taken as those required to fix the steady 
states of an atom in a strong magnetic field, since there is a one-to-one 
correspondence between these and the quantum numbers required to 
fix the steady states of the atom under any other conditions where the 
atomic system is not degenerate. These five quantum numbers and 
their possible values have been defined and illustrated in Chap. VII, 
but will be briefly reviewed here. They are, 

n = 1, 2, 3, • • CO, 
J = 0, 1, • • • n — 1, a vector, 
s }'2 y Si vector, 

Ml ^ —ly —i -|- 1, * • * , 0, * • • Z — 1, Z, 

m, = ±M- 

Such a set of quantum numbers is required for each electron of an atom 
to fix the steady states in a strong magnetic field. In a weak magnetic 
field another set of quantum numbers must be used but there will still 
be bZ such numbers. One of these will be the resultant angular momen¬ 
tum of all the electrons of the atom, in quantum units, and another 
the projection of this in the direction of the field. These two numbers 
are j and m, respectively. When the field vanishes, m loses its meaning, 
since the orientation in space becomes indeterminate. the absence 
of the field many of the quantum numbers are no longer characteristic 
of the individual electrons, but of a group of electrons^However, 
the n, Z, and s quantum numbers can still be assigned to individual 
electrons, and, therefore, the shells and subshells can be designated 
in terms of these numbers. Since s is always it is unnecessary to 
use it in designating the shells. (To no\^wish ^ find the maximum 
numlters^f electrons having,given values of n and Z, whi^ ah atbrn^cah 
"posses with(mt violatii^the P^i prinHple."^ 

We consider" first the smallest values of n and Z and proceed to the 
larger values, considering, at present, only the numbers of electrons 
which may enter any shell and not the question of whether these numbers 
are actually present in the case of any given atom. Taking n = 1, Z 
can take only the value 0, and, therefore, mi only the value 0, while 
m, may take two values, ±H; therefore there may be two electrons 
in an atom with n, Z = 1, 0, one for each of the two possible values of m,. 
These two electrons complete the first shell. If n equals 2, I may be 
either 0, or 1; with Z equal to 0, mi must be 0 and m, may be ± 3^, and 
thus two electrons may occupy the 2, 0 subshell; with Z equal to 1, mz may 
be — 1, 0,1; and, as before, may be ± for each of these three values of 

so that six electrons may occu py the 2,1 subshelL The eight electrons 
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of the second completed shell have the quantum numbers given in Table 
1, if it is placed in a V(^ry strong magnetic field, and, as this field is 
allowed to vanish, thcjy arrange themselves in two closed subshells 
of two and six electrons each. 

Table 1 

n 1 mi 

2 0 0 
2 0 0 + 'A 
2 1 
2 1 -1 -f-t'2 
2 1 0 -Yi 
2 1 0 
2 1 1 ~Y 
2 1 1 

Similar reasoning can be applied to the other electron shells. It 
is immediately evident that m-i takes 2^ + 1 values and that always 
has 26* 4* 1 ( = 2) values, so that there will be 2(2/ + 1) electrons in any 
subshell. Summing over the possible values of /, the number of electrons 
in the nth shell is 

/ = n-l 

2(2i + 1) = 2n\ (2) 
I =0 

Table 2 

X-ray syrrihol j ^ 2(21 + 1) 2n2 

K. 1,0 2 2 
L\. 2,0 2 

. 2, 1 6 8 
Ml. 3, 0 2 

Mil,III. 3, 1 6 
MIV,V. 3, 2 10 18 

Ni. 4, 0 2 

Nn,iu . 4, 1 6 
Niy,y. 4, 2 10 

Nyij\u .! 4, 3 14 32 
Oi. 5,0 2 
On,III . 5, 1 6 

Otv,v. 5,2 1 10 

Ovi,vii. 5, 3 1 14 

Ovin,tx. 5,4 1 18 50 * 

Pi.. 6, 0 2 

PxXi. 6, 5 
1_:_ 

22 72 
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This equation is equivalent to Thomsen^s rule given by the expression (1). 
It is interesting that the correct formula for the numbers of electrons in 
subshells was secured so many years before its theoretical interpretation. 
Table 2 gives the numbers of electrons in the completed shells and sub¬ 
shells to the sixth shell. The electron groups are not filled in the order 
in which they occur in this table. 

The P and 0 levels having high I values are hypothetical, as we shall 
soon see. The numbers 2, 8, 18, and 32 appear here as the maximum 
numbers of electrons in the shells, but the repetition of the 8 and 18 
periods found in the periodic system does not follow from the equivalence 
principle alone. 

It is convenient to introduce a symbol to represent the numbers 
of electrons in each shell and subshell of the atom. This can be done by 
using a whole number to represent n and the letters s, p, c?, etc. to indicate 
values of I equal to 0, 1, 2, etc., respectively. Superscripts on these 
letters indicate the numbers of electrons of each kind in the atom. The 
symbol will be clear from the following example: An atom having the 
following configuration; 

n,l. 1, 0 2, 0 2, 1 3, 0 3, 1 3, 2 

Number of electrons. 2 2 6 2 6 4 

would be represented by the symbol, 

Ls*22.s-22//av23p^3d^ 

3. BOHR»S THEORY OF THE PERIODIC SYSTEM^ 

Bohr attacked the problem of assigning quantum numbers to the 
individual electrons of the atom by considering the building up of the 

1 The principal arguments of this section are due to Bohr, but the assignment of 

electrons to the subshclls was given essentially by Stoner and Main-Smith {loc. cit.), 

Bohr divided the electrons in each oompleted shell equally among the subshells so 

that the assignment was the following: 

n,l. 1,0 2,0 2, 1 3,0 3, 1 3,2 • — 
Number of electrons.,. 2 4 4 6 G 6 • • • 

At the time there appeared to be no way of deciding whether this was correct or not. 

Stoner and Main-Smith assigned them as follows: 

n,lj. 1,0, 2, 0, M 2, 1, M 2, 1, K 3, 0, K 3, 1, K 3,1,?^ 
Number of elec¬ 

trons . 2 2 2 4 2 2 4 
3, 2, % 3, 2, ... 

4 6 

The division of the subshells for i > 0 into two parts is not justified for the relativity 
doublet levels -^ivjV^ are due to two possible ways of orienting 
the vectors of the incomplete shell relative to each other. The quantum number j is 
not characteristic of the individual electron removed from these shells, but is a vector 
sum of the I and 9 vectors of all the remaining electrons and takes two possible values 
for a shell with one electron removed, if 1 > 0. See Chap VIII, Sec. 20, and Stonbb, 
Proc, of Leed9 PhiL Sec,, 1, 226 (1928), particularly p. 229* 
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electron shells starting with a bare nucleus of charge +Ze and adding 
electrons successively to this nucleus. \ He postulated that each successive 
electron could be added in such a way xhat th^ f? andTcjW:^^ numbers 
of the previously bound electrons would not be changed. This is called 
the“^construcfibn principle(Aufbauprinzip). Further, the normal 
state of the atom has that electron configuration which gives the atom 
as a whole the least possible internal energy of all possible configurations. 
Tt will not be true always that ions and atoms having the same total 
number of electrons, whatever their nuclear charges may be, will have 
the same number of electrons in each of the shells and subshells, and 
cases in which they do not are especially instructive; but in many cases, 

the Z — 1 electrons of the singly charged ion of an element are bound 
in the same way as the electrons of the neutral atom immediately pre¬ 
ceding it in the periodic system. For this reason, and in order to proceed 
from simpler to more complex atoms, it is well to begin the discussion 
of the building process with hydrogen. 

In discussing the building up of the electron shells of elements with 
low atomic numbers, it is convenient to refer to the energy required 
to remove the most loosely bound electron. Unfortunately, this energy 
is unknown for many elements, but Fig. 2 is a plot of the known values 
against the atomic number for the elements of the periodic table. 
The most striking features of this curve are the very sharp decreases 
between each inert gas and the following alkali metal. The features 
of this curve will now be correlated with the electron configurations 

of the atoms. 
The electron of the hydrogen atom and of the singly ionized helium 

atom, in their normal states, is known from their spectra to have the 
quantum numbers n == 1 and I = 0. The binding energies are equal 
in wave numbers to Rh and respectively. Though the spectra 
of only these two hydrogenic atoms have been observed, one electron 
bound to a bare nucleus of any atomic number would enter the 1, 0 steady 
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state, for this state has less energy than any other with higher quantum 
numbers. The second electron of heliqm is also bound in a 1, 0 orbit, 
as we can see from the following evidence. 

An electron brought to the helium ion is attracted by the field of 
one unit of positive charge at large distances, and by a field of two 
positive units as a maximum at small distances. Therefore the energy 
liberated in binding the second electron in the 1, 0 shell should lie some¬ 
where between R and 4ii, while the energy of binding in a state with 
n == 2 would be of the order of magnitude of R/i.. The actual energy 
of binding calculated from the ionizing potential of 24.5 volts is 1.81J?, 
which shows that both electrons have the quantum numbers n, Z = 1,0. 
The configuration of the atom is represented therefore by the symbol 

This is a possible configuration according to the preceding section 
and Table 2. Only the higher terms of the LilT spectrum are known, 
and these are similar to the higher terms of the Hel spectrum. 

The third element lithium has an ionizing potential of 5.37 volts, 
so that the third electron is bound with an energy of 0.40 R, If the 
third electron entered the 1, 0 shell, its binding energy should be greater 
than R and probably larger than the energy of binding of the second 
electron of helium; if bound in a state with n = 2, its energy should 
be approximately that of the hydrogen atom in its orbits with n = 2, or 
about Y^R> The energies of the states of lithium are very 
nearly equal to this (Chap. Vll, Table 3). The larger energy of binding 
of the normal state, is in agreement with its assignment to a 2, 0 
orbit, for due to its ellipticity such an orbit will pass very close to the 2 
inner electrons or perhaps within the region of their orbits and, thus, 
be in the field of three positive charges for a part of the time, i.e., the 
orbit is a penetrating orbit (Chap. VII, Secs. 10 and 11). The lithium 
atom, therefore, has the configuration l6'‘'^28. The normal states of 
Be"^, and C^"^ are known and these as well as the excited states 
show that the third electron is bound in the 2, 0 shell. The 1, 0 shell is 
evidently completed at helium and is filled with two electrons in all other 
atoms. 

The fourth electron of beryllium, boron, or carbon is also bound 
in the 2, 0 shell. The normal states of these 4 electron atoms are 
states as they should be according to the theory of multi plets given in 
Chap, X. The energy of binding of this last electron increases above 
that of the lithium electron, for reasons similar to those which explain 
the increased binding energy of the second helium electron as compared 
with that of hydrogen. The normal beryllium atom and and 
as well have the configuration l6*^2^2. The mostdoosely bound electron 
of boron requires considerably less energy for its removal than that of 
beryllium (Fig. 2). This indicates that it is bound in another type of 
orbit. The normal state of boron is a level showing that the last 



Seo. 3] BOHR^S THEORY OF THE PERIODIC SYSTEM 277 

electron is bound on a 2, 1 orbit. Thus, the 2, 0 subshell is completed 
with 2 electrons and the next one enters the 2, 1 subshell. 

The assignment of quantum numbers to the electrons of the remaining 
elements in the second period can be made from the study of their optical 
spectra. These spectra are of the more complex type considered in 
Chap. X and, therefore, we shall not discuss these assignments here. 
The following configurations are in accord with the known spectroscopic 
data: C, U‘^2s^2p2; N, O, \s‘^2h'^2p^] F, ls“2s^2p^] and 

Fk.}. 3.—Optical Moseley diagram of the energy levels of the iiinetoenih electron. 
Grotrian. See reference at the end of Chap. X.) 

'^I'he numbers preceding the symbols ede. are the total ciiiantum numbers, 
the state of this figure is the P*S state in our nomenclature. 

{After 

Thus, 

Ne, l.s^2s*2p®. The binding energy of the last electron increases from 
boron to neon except for a slight decrease at oxygen. 

The ionizing potential of neon is 21.47 volts and that of sodium 
only 5.13 volts. This large change in the energy of binding indicates 
that the last electron of sodium does not enter the 2,1 subshell and there¬ 
fore it has a total quantum number, n = 3. The binding energy of this 
electron is considerably greater than that of an electron of the same total 
quantum number in hydrogen, indicating that its orbit penetrates 
the completed shells. The normal level is a state and so the eleventh 
electron must enter a 3, 0 orbit. The electron configurations of the 
remaining elements of this period are similar to those of the preceding 
period. Argon has the configuration 3s*3p®. 

Figure 3 illustrates certain regularities of optical spectra, which have 
been partly discussed in Chap. VII, Secs. 13 and 14. The doublet separa- 
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tions (not shown in the figure) follow the law for the relativity-spin doublets 
of X-ray spectra. In addition, the screening-doublet law of X-ray spectra 
holds very well for these optical levels of stripped atoms. Thus the curves 
for and states with total quantum number 4 are very nearly 
parallel to each other, showing that the screening constants for these 
levels differ by a constant amount. Such regularities have been used to 
extrapolate from the known levels of certain atoms to unknown ones of 
others. ^ 

4. THE LONG PERIODS 

The first 18 electrons are bound in the order of increasing n and I 
and the subshells have the numbers of electrons required by the theory 
of Sec. 2. The curve of ionizing potentials (Fig. 2) shows that there 
is a very marked decrease in binding energy with increasing n, as in the 
case of He and Li or Ne and Na. There is a smaller decrease with 
increasing L as we see by comparing Be and B, and Mg and Al. In fact, 
it is quite generally true that an increase in n produces a greater decrease 
in the binding energy than an increase of L At potassium we meet 
the first irregularity in this respect. The quantum theory permits 10 
electrons to occupy the 3, 2 subshelb but it is not filled in argon or potas¬ 
sium and from the spectrum of potassium we know that its last electron 
enters the 4, 0 subshell. The normal level is with the configuration 

while the levels with the configuration 3.s^3p^3d 
have a higher energy. This is also true in ionized calcium and the second 
valence electron of calcium as well is in the 4, 0 subshell. But in doubly 
ionized scandium, the normal level is a level, showing that the 
nineteenth electron in scandium enters the 3, 2 subshell. The change 
of the configuration from an excited level of K and Ca'^ to the 
normal level of Sc^*^ and other ions following it can be clearly seen from 
the Moseley diagram of Fig. 3. The normal states of the elements 
from Sc21 to Ni28, inclusive, have electrons in both the 3, 2 and 4, 0 
subgroups and the variable valence and magnetic properties of these 
elements are due to these partially completed shells. Copper is the 
first element having enough electrons to fill completely the 3, 2 subshell, 
and 1 valence electron in addition. Its normal state is a state 
and its electron configuration is Ss^Zp^Sd^Hs, The building up of the 
4, 0 and 4, 1 subshells from Cu29 to Kr36 is similar to that of the second 
and third periods. Krypton has the configuration 4s®4p®. 

The electron configuration of copper differs from that of potassium 
only in having the third shell completed by the addition of 10 electrons 
to the 3, 2 subshell, and the different chemical properties of the two 
elements must be due to the different underlying shells. Since copper 

^ See, for example, Millikan and Bowen, Proc, Nat. Acad. Sci.^ 13, 531 (1927) and 
references given there, and Gibbs and White, Phys. Rev.^ 31,309 (1928) and references 
given there; Proc, Nat. Acad, Sd.j 12, 598 (1926). 
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may be divalent, 1 electron of the 3, 2 subshell can be removed fairly 
easily, while in potassium, the electrons of the 3, 1 subshell are not thus 
easily removed. Moreover, the kernel of copper is undoubtedl}’^ much 
smaller than that of potassium. This can be seen to be in accord with 
theore^tical expectations. The screening constants for the Afi, Mu,in, 

and Miv,v, that is, the 3, 0, 3, 1, and 3, 2 subshells, are 6.8, 8.5, and 13.0, 
respectively (C'hap. VIII, Secs. 16 to 19), so that the effective nuclear 
charges for the 3, 0 and 3, 1 subshells of potassium are 12.2 and 10.5 
while those for the 3, 0, 3, 1, and 3, 2 subshells of copper are 22.2, 20.5, 
and 16.0, respectively. Under these higher fields, the third-shell electrons 
will lie closer to the nucleus in the case of copper. At least part of the 
difference in chemical properties of potassium and copper and also of 
calcium and zinc and other similarly related elements of the long periods 
is due to this difference in size of the respective kernels (Sec. 7). 

The fifth period is built up in the same way as the fourth period. 
The 4, 2 and 4, 3 subshells are both unfilled in Kr36, and in the second 
transition group of elements the 4, 2 subshell is completed with 10 
electrons at Ag47; the 4, 3 subshell is still unfilled. Rb37 has the con¬ 
figuration 4.s'H//’55 and its normal state is a state; but has the 
configuration 4sHp^4:d and the normal state is the state. Ag47 
has the configuration, 46‘^4pH(i!^°56*, and Xe54 the configuration, 4^^- 
4p«4riio56*257;«. 

In the sixth period, Cs55 and Ba56 are similar to K and Ca, and 
Rb and Sr in the structure of their valence shells. With La57 one valence 
electron enters the 5, 2 subshell and the other two the 6, 0 subshell and 
throughout the rare earths the numbers of electrons in these two subshells 
remain the same. Beginning with Ce58 the additional electrons enter 
the 4, 3 subshell until La71 is reached, when this subshell has its complete 
quota of 14 electrons. Hf72 has the configuration, 

this is similar to that of Zr, namely. 

The marked similarity of these elements is undoubtedly due to this 
circumstance and the additional fact that the atomic volumes are very 
nearly the same. The effect of the additional charge of the Hf nucleus 
on the size of the kernel has just been compensated by the additional 
electron shells of higher total quantum number. From Hf72 to Au79 
the 5, 2 subshell is filled to 10 electrons, so that this group of elements 
is similar again in chemical properties to the first and second transition 
groups. From Au79 to Rn86 the process of building the 6, 0 and 6, 1 
shells to two and six electrons, respectively, is completed. Rn has the 

configuration, 
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The seventh group consists of the missing alkali metal 87, Ra88, 
Ac89, Th90, UX91, and U92. The properties of radium are similar to 
those of Ba and it undoubtedly has the Rn86 configuration with two 
additional valence electrons in the 7, 0 subshelL Thorium and uranium 
are similar to Hf and W in properties indicating that the additional 
valence electrons enter the 6, 2 subshell. They certainly are not similar 

Table 3 

Element 

K L M i ^ Normal 
term 

(theo¬ 

retical) 
h 0 
Is 

2, 0 2, 1 
2p 

13,0 
l3« 

1*3, 1 
1 3p 
1 

3,2 
M 

4,0 
4s 

4, 1 
4p 

H 1. 1 ^Si, 13.64 
He 2. 2 •• 1 • . hSo 24.48 

Li 3. 2 1 • • 5.37 
Be 4. 2 2 9.48 
B 5. I' ^ 2 1 8.4 
C 6. 2 2 2 11.24 
N 7. 2 2 3 14.48 
0 8. 2 2 4 ^P2 13.56 
F 9. 2 2 5 •• 2/^3,', 16.9 
Ne 10. 2 2 6 21.5 

Na 11. 1 5.12 
Mg 12. 2 VSo 7.61 
A1 13. 2 1 6.96 
8i 14. 2 2 8 19* 
P 15. configuration j 2 3 ^Sh 

S 16. 2 4 10.31 
Cl 17. 2 5 ^Pu 12.96 
A 18. 2 6 15.69 

IC 19. “F i ^Su, 4.32 
Ca 20. 2 hSo 6.09 
8c 21. 1 2 6.57 
Ti 22. 2 2 ^F, 6.80 
V 23. Argon 3 2 *Fh 6.76, 7.04^ 
Cr 24. configuration 5 1 VSs 6.74 
Mn 25. 5 2 7.40 
Fe 26. 6 2 7.83 
Co 27. 7 2 7.81,8.25^ 
Ni 28. 8 2 .. ! 7.64,8.65« 

Cu 29. 10 1 7.69 
Zn 30. 10 2 9.36 
Ga 31. 10 2 1 2Pl/> 5.97 
Ge 32. Argon 10 2 2 7.85 
Aa 33. configuration 10 2 3 9.4 
Se 34. 10 2 4 >pt 
Br 35. 10 2 5 *Ph 12.2 
Kr 36. 10 2 6 13.940 



Sec. 4] THE LONG PERIODS 281 

Table 3.—{Continued) 

N 0 P Normal 

Element Configuration — term 
Yi 

of inner shells 4,2 4,3 5,0 5,1 5,2 6,0 (theo- 

id 4/ 5« 5p 5d 68 retical) 

Rb 37. 1 4.16 
Sr 38. 2 5.67 
Y 39. 1 2 6.5 
Zr 40. 2 2 
Cb 41. Krypton con- 4 1 
Mo 42. figuration 5 1 7.35 

43. (0) (1) mo 
Ru 44. 7 1 7.7 
Rli 45. 8 1 7.7 
Pd 46. 10 >So 8.5 

Ag 47. 1 7.54 
Cd 48. 2 '-So 8.95 
In 49. 2 1 'Pm 5.76 

Sn 50. Palladium configu- 2 2 '1\ 7.37 
Sb 51. ration 2 3 * ‘ *Sh 8.5 

52. 2 4 

I 53. 2 5 'Ph 10 

Xe 54. 2 6 1 • • ■-So 12.078 

Cs 55. 1 1 1 3.88 

Ba 56. '-So 5.19 

bn 57. 1 ' 2 'Dm \ 4 

Ce 58. 1 The shells 5s 1 2 4 

Pr 59. 2 to 5p con- 1 2 4 

Nd 60. 3 tain 8 elec- 1 2 ‘Po 
4 

11 61 ... 4 trons 1 2 
Sa 62. 

Xenon configura¬ 
tion. The shells 

5 1 2 4 
! 

Ell 63. 6 1 2 
Gd 64 .. 

Is to 4d contain 
7 1 2 4 

Tb 65. 
46 electrons. 

^ 8 1 2 4 

Dy 66. ' 9 1 2 4 

Ho 67. 10 1 2 ‘P'94 
Er 68. 11 1 2 ‘Pio 

Tu 69. 12 1 2 ‘Xl7/, 

Yh 70. 13 1 2 ‘//o 4 

Lu 71. 
_ 

14 1 2 
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Table 3.—(Continued) 

Element 
Configuration of 

inner shells 

0 P Q Normal 
term 

(theo¬ 

retical) 

Vi 
5,2 
5d 

.5,3 

5/ 

6, 0 
O.s 

6, 1 
{jp 

6,2 

6d 

7,0 

7s 

Hf 72. 2 2 

Ta 73. 3 2 'Ey, 

W 74. 4 2 

Re 75. 5 2 

Shells Is to 6p con- 6 1 

Os 76. tain 08 electrons 0 2 HJ, 

7 1 

Ir 77. 7 2 *F9/, 

8 1 *Fy 

Pt 78. 9 1 

Au 79. 1 9.20 
Hg 80. 2 hSo 10.39 

n 81. 2 1 6.08 

Pb 82. Shells Is to 6d contain 2 2 • • 7.39 

Bi 83. 78 electrons 2 3 VSf.v, 8.0 

Po 84. 2 4 ^P2 
85. 2 5 nhy, 

Rn 86. 2 0 1 

87. ' ■ 

Ra 88. 2 VSo 

Ac 89. ] 2 
Th 90. Radon configuration. 1 The shells 1 2 

The shells to 5d 6.8 to i)p 2 2 ^F, 

UX91. contain 7 8 electrons 2 contain 8 1 2 ^Kiy 

electrons 3 2 ^F% 
Ur 92. 3 1 2 

4 2 

’ Ki is the energy in volts required to remove one electron and leave the ion in its lowest energy state 
except in the cases noted. 

2 McLennan and 8havek give 7.94 for the ionization potential of silicon. 
® In the case of vanadium, cobalt, and nickel, values are given for ionization by two different routes; 

and gz —These t-wo values are given in this order in the table. 
* Estimates of the ionization potentials of a number of rare earths were made by Rolla and PiccardI 

(Phil. Mag., 7, 296 <1929)1 using a method depending on the relative degrees of ionization produced in 
flames of equal temperature when known amounts of salts of these elements were vaporized. Their 
results are as follows: La, 5.49 volts; Ce, 6.91; Pr, 6.76; Nd, 6.31; Sa, 6.55; Gd, 6.65; Tb, 6.74; Dy, 6.82; 
Yb, 7.06. 

to the rare earths, thus indicating that they do not enter the 5, 3 subshell. 
At Ce58 the configuration is^ more stable than the 
configuration but even at U92 the configuration with 
the valence electrons in the 6, 2 and 7, 0 subshells is more stable than 
that with one or more electrons in the 5, 3 Asubshell. Calculations made 
by Sugiura and Urey^ indicate that electrons should first enter the 5, 3 

^ Kffl, Danslce Videnskab, SeUkdb^ Math.^fys. Medd.j 7, No. 13, 3 (1926) in English, 
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subshell at the element 94. None of these arguments are conclusive, 
however; the configuration can be fixed only by more spectroscopic 
evidence. 

Table 3 gives the electron configurations of all the elements so far 
as they are known at the present time. The detailed assignments 
of the electrons of the transition elements to the electron shells can 
be made only from their spectral terms, which are of the complex multi- 
plet type described in Chap. X. In Chap. X, Sec. 4 the assignment 
is carried through for the chromium atom. It is there proved that 
chromium has the configuration as given in the table. The 
configurations of other atoms have been determined in a similar way 
(see Chap. X, Sec. 17). 

5. X-RAY EVIDENCE FOR THE ASSIGNMENT OF ELECTRON 
CONFIGURATIONS^ 

The order in which the electrons enter the shells and subshells of atoms 
as the atomic number increases will affect the X-ray energy levels in 
two ways: (1) an X-ray energy level cannot appear until there is at 
least one electron in the subshell corresponding to that level, and this 
level cannot be of the regular doublet type until the subshell is completely 
filled, though the higher multiplicity may not be detectable experi¬ 
mentally; (2) the change in numerical values of the X-ray energy levels 
of completed subshells with atomic number shows irregularities at the 
elements where the electrons begin to enter a given subshell and where 

that subshell is completed. 
In Table 4 are listed the elements where an electron first enters 

each subshell and where that subshell is first complete. If, after the sub¬ 
shell is completed, it becomes incomplete again in some clement of higher 
atomic number, the element where it is finally completed is also listed. 
The last row of the table gives the element of lowest atomic number 
for which the level has been observed by the methods of crystal spectro¬ 
scopy. The X-ray term is first observed for atoms of higher atomic 
number than that at which the shell is first occupied. We cannot expect 
the second and fourth lines to agree, for the electron configurations of Table 
3 apply to gaseous atoms, while the X-ray terms are usually observed for 
the elements in chemical combination and in the solid state. In the 
case of metals, we do not know how many and which electrons are free, 
so that we do not know whether we are dealing with an atom or ion. 
In the case of salts, there is the question of lattice energy of the normal 
ion, the ion with an inner electron removed, and of the electron in the 
crystal, all of which must be considered. Deviations from the regular 
doublet type also produce complications, especially for soft energy levels 

1 Bohr and Coster, Z. Physik, 12, 350 (1923). 
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Table 4' 

liCvel K Ll i 

1 

/4i,iri M\ 1 Mu,HI Miv,V Ni Viijiir Viv,v Vvj,vil 

n,l. 1, 0 2, 0 2, 1 3. 0 3, 1 3, 2 4, 0 4, 1 4, 2 4, 3 
Subshell en- 

tered at. ... HI Li3 B5 Nall A113 Sc21 K19 Ga31 Y39 Ce58 

Subshell com¬ 
pleted at.... He2 He4 NelO Mgl2 A18 Cu29 

/ Ca20 1 

t Zn30 j 
Kr36 Pd46 Lu71 

First observed 
at. Nall Cr24 Mgl2 Fe20 P16 Cr24 Ill>37 Cu20(?) Zr40 Dy66 

i 
Level 

1 
Oi On, in OiVjV Pi PlI,III 

i 
PiVjV <2i Qn,ni 

n, 1. 
Subshell entered at. 

Subshell completed at. .. 

First observed at. 

5. 0 
Kb37 

f Sr38 1 
\ Cd48 / 

Sn50 

5, 1 
In49 

Xe54 

Sn50 

5, 2 
La57 

Au79 

Pt78 

I 6, 0 ! 
Cs55 

fBa50 1 
1 HgSO / 

Th90 

0. 1 
T181 

Rn86 

Bi84 

6, 2 
Ac89(?) 

7, 0 
87 

Ha88 

7, 1 
Ac89(?) 

J See Thoraetjs, Phil. Mag., 2, 1007 (1926) and references at the end of Chap. VIII. 

like those of the incomplete subshells. Only approximate values can be 
secured for these soft levels by the usual X-ray methods. Thus, the 
interpolation of levels between those determined by X-ray spectroscopy 
methods and those determined optically or by critical potential methods 
is not justified. Moreover, there are many experimental difficulties 
which sometimes prevent the observation of absorption limits or of the 
emission lines necessary to calculate all the terms. In general, however, 
there is a marked parallelism between the appearance of an electron shell 
and the observed X-ray term. 

The K energy levels have been determined by the usual methods 
of X-ray spectroscopy only for Na 11 and elements of higher atomic 
number. The Moseley diagram of Chap. VIII, Fig. 25 rises uniformly 
with no evidence of sudden changes in slope and bends toward the {v/R) 
axis due to the change of mass with velocity and the spin of the electron. 

The ionizing potentials of neutral lithium and beryllium are the 
Li levels of these atoms, though the ions in the solid salts, theoretically, 
should not have such levels. From boron to neon the Lir,iii shell is 
built in and the true X-ray Ln.m levels begin with neon. The observed 
ionizing potential of neon is 21.6 volts; but there are two sets of levels 
which approach different limits for large values of the quantum numbers. 
These two limits are separated by 782 and therefore the atom 
really has two ionization potentials separated by this amount. Grotrian^ 

e. U6 (1021). 
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suggested that these two limits are due to two steady states in which 
the neon ion is left by the removal of the electron, namely the Lu and 
Liu states. Granting this hypothesis, the doublet separation should 
be given by equation (30) Chap. VIII, and therefore. 

782 

R 24(^ *" 

Solving this for the screening constant d, we secure d = 3.2, which 
is in fairly good agreement with the value 3.5 secured from the Ln, Lut 
doublets of elements of higher atomic number (Chap. VIII, Sec. 17). 

The curves (not separated at first in Chap. VIII, Fig. 25) rise 
rapidly from neon. There is a decided decrease in slope beginning 
with Sc21 and an increase in slope beginning with Cu29, as can most 
easily be seen by applying a straight edge to the curve. Other such 
changes in slope occur, but they are not so sharp as these two. Up to 
Sc21 electrons enter outside shells of the atom, but at this element, 
they begin to enter the underlying 3, 2 shell and this process continues 
up to Cu29, after which they again enter the outside shells. 

To see, qualitatively, why tlie slope decreases, we must remember that the total 

screening constant s depends on the distribution of electrons outside the region of the 

orbit, as well as within this region, and, therefore, changes in the distribution of outside 

charge influence the energy. Consider the simple model of an atom with a number of 

electrons in an L shell surrounded by a spherical surface, having one unit of negative 

charge, to represent an electron in a higher shell. If an electron is taken from the L 
shell, it must be removed against the attractive force of a positive charge Z^ne until 

the charged sphere is passed, after which it must be removed against a field of {Zeit — 

1) positive charges. The work of removal will therefore be greater, the larger the 

radius of the negatively charged sphere. Thus, if the twent5^-first electron of scan¬ 

dium entered an outside 4, 1 orbit instead of an inner 3, 2 orbit more energy would be 

required to remove an L electron. The electron actually enters a 3, 2 orbit and the 

energy of the level should be lower than the value secured by extrapolating the 

Lit^iii curve from lower elements to scandium. This effect actually appears first at 

Ti or V probably because the X-ray levels have been determined for the ionized ele¬ 

ments in the solid state and not for the gaseous atoms. The actual atom is not so 

simple as this model but the qualitative predictions of the model are followed. Also 

we can expect that the slope of the curve will increase when electrons begin again to 

enter outer shells. This happens at copper just as it should. 

The Ml and the Mn,m shells are built up from Nall to A18. The 
curves show a very marked break at Cu29, where the slope increases. 
The Mw,\ shell is filled in from Sc21 to Cu29. The M curves show well 
defined breaks at Y39 and Ag47, due to the building in of the 4, 2 sub¬ 
shell, and at La57 and Ce58 due to the beginning of the 5, 2 and 4, 3 
subshells. The break at Au79 is not so pronounced because the com¬ 
pletion of the 4, 3 subshell at Lu71 and of the 5, 2 subshell at Au79 
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are so close together that the net effect is a gradual change in slope in 
this region. 

The Ni and siibshells, which are built up from K19 to Kr36, 
show very sharp breaks in their Moseley curves at Y39, Ag47, and 
La57 and Ce58 and a pronounced break at Lu71 or Hf72 and a less definite 
one at Au79. Sharp breaks occur in the Niv,v curves at La57 and 
pronounced but gradual changes in slope between Lu71 and Au79. 
The A'vijvii shell is filled in at the rare earths. Its curve cuts the Oi 
and On,111 curves because these levels appear first at lower atomic 
numbers than the Nvh\ii levels, but the energy of binding of the A^vi,vii 
electrons increases more rapidly with increasing atomic number. 

Summarizing these facts, we see that the X-ray energy levels do 
have periodic variations. New levels appear at different points in the 
periodic system and the points at which this occurs are related to the 
periodic properties of the elements; the square roots of the terms do not 
increase uniformly with increasing atomic number, but show decided 
breaks which are also related to the periods of the system. 

6. VALENCE AND THE PERIODIC SYSTEM 

The subject of the valence of the elements is very involved and 
has been the subject of innumerable researches. At the outset it is 
well to classify as clearly as possible the various types of valence. There 
are certain terms applied to the types of binding between the atomic 
constituents of a compound, which must be carefully defined. The 
binding between the atoms of a compound is said to be an “atomic 
binding,if the adiabatic separation of the atomic nuclei to large dis¬ 
tances gives uncharged atoms as the final products; the binding is said 
to be “ionic,if the end products of this separation are positively and 
negatively charged ions. As an example of the first type we may take 
H2. As the distance between the nuclei increases, the molecule separates 
into two neutral atoms. This can be deduced from the vibration states 
of the molecule as deduced from its band spectrum (Chap. XII, Sec. 
10). As an example of an ionic type of binding, we may take NaCl, which 
in the gaseous state probably separates into two ions as the vibrational 
energy increases. Examples in the solid state are diamond and copper 
(atomic binding) and NaCl (ionic binding). The crystal structures 
of diamond and copper show that the atoms are equivalent and symmetri¬ 
cally arranged relative to each other and on evaporation they probably 
give a vapor of single atoms. The crystal structure of NaCl (Chap. 
VIII, Sec. 6) shows that the sodium and chlorine ions are arranged in a 
lattice, where the sodium ion is placed symmetrically relative to the 
chlorine ions with no evidence of any pairing of sodium and chlorine 
ions. On evaporation, this type of crystal gives molecules such as 
NaCl 
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Table 5 
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The atomic valence types in the solid state may be furthc^r differ¬ 
entiated as (1) metallic, (2) diamond type, (3) non-metallic, and (4) 
inert gas type. Copper is an example of (1). This type is found in 
the elements at the top of Thomsen’s table and also in compounds 
between these elements. Diamond, carborundum (SiC), aluminium 
nitride (AIN), and other compounds of two elements near the carbon 
group, such that the sum of the valence electrons is 8, are examples of 
atomic binding of the diamond type. They crystallize in the cubic 
system; the hardest known substances and those which arc least volatile 

; occur in this group. ^ The non-metallic valence type occurs in H2, CI2, 
’'and other compounds of elements toward the bottom of Thomsen’s 
table. These solids contain the molecule as a unit in the crystal lattice 
and evaporate in the form of molecules. They are in general low boiling 
and soft compounds. Finally, the inert gases in the solid state have 
atomic lattices. The salts with their ionic type of binding are formed 
by one element from the top and one from the bottom of the table. 
They conduct the electric current in both the fused and solid states by the 
transfer of ions. These characteristic binding types for substances 
in the solid state are very well summarized and illustrated by Table 
5 due to Grimm. 2 This gives the valences toward hydrogen of the 
elements of the third period. The maximum valences toward hydrogen 
and oxygen as we pass from element to element through the short periods 
are illustrated by the following tabulation, where the elements in question 

1 Bee Grimm and Sommerfbld, Z, Physik, 36, 49 (1926); Huggins, Phys, Rev., 27, 

286 (1926). 
* ^‘Handbuch d. Physik,'* 24, 489. 
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are in combination with hydrogen and oxygen and not with more electro¬ 
positive and electronegative elements as in Table 5. 

Hydrogen valence. 1 2 3 4 3 2 1 

LiH Bella BHa CH4 NH3 OH2 FPI 
NaiO 

1 

MgO AhOs SiOo P3O, SO3 CI2O7 

Oxygen valence. j r 1 

2 
^ 1 

4 1 5 6 7 

These valences are mostly of the atomic type. The increasing valency 
toward oxygen also occurs in the h subgroups of the Mendel6eff table 
(Chap. I, Sec. 2), that is, in the half periods beginning with Cu, Ag, 
and Au. 

So far we have discussed only binary compounds, but obviously 
the same definitions will apply to those which contain more than two 
eleipents. In such compounds it may be possible to have both ionic 
and atomic bindings. Thus the solid salt ammonium sulfate undoubtedly 
consists of positive ammonium ions and negative sulfate ions, while 
the bindings between the nitrogen and hydrogen atoms and between the 
sulfur and oxygen atoms are probably of the atomic type. 

The terms, polar and non-polar valences,^’ have also been used 
with the meaning that we have given to ionic and atomic bindings. 
We reserve the terms polar and non-polar to indicate whether the mole¬ 
cule has an electric moment or not. Thus in the absence of water, 
the HCl molecule is polar in the sense that it has a permanent electric 
moment, but the binding between the hydrogen and chlorine atoms is 
probably atomic so that the separation of the two nuclei would result 
in a hydrogen atom and a chlorine atom, and not in hydrogen and chlorine 
ions as has often been assumed. The hydrogen molecule is non-polar 
and has an atomic binding, while NaCl in the gaseous state is polar and 
has an ionic binding. It could hardly happen however, that a non-polar 
molecule should have an ionic binding.^ 

We are now in a position to discuss the relation of valence to the 
periodic table. Figure 4 gives a diagram of the kind first introduced 
by Kossel^ and by Langmuir*"^ showing the possible valences of the known 
elements. The valences toward hydrogen are shown as negative and 
those toward oxygen as positive. This arrangement is really quite 
arbitrary for the hydrogen valences are probably all atomic and therefore 
not due to a transfer of an electron from hydrogen to the element; 

1 See Chap. XII, Sec. 11 and the references there given on HCl, NaCl, and similar 
molecules. 

* Ann. Physikf 49, 229 (1916). 
» J. A. C, 5., 41, 868 (1919). 
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also many of the valences toward oxygen are certainly of the atomic 
type and not of the ionic type. Often it is impossible to be certain 
whether a binding is atomic or ionic. The positive and negative 
valences in the figure may therefore be regarded simply as valences 
toward more electropositive elements or more electronegative elements, 
whether they are ionic or atomic. 

Lewis^ and Langmuir^ have emphasized the great tendency of elements 
from the extreme top and bottom of the Thomsen table to form ions 
having complete shells of eight outer electrons, and thus having the inert 
gas electron configurations. This is easily the most prominent feature 
of Fig. 4. Almost equally prominent is the tendency to form ions with 
completed shells of 18 electrons. There is also a tendency on the part 
of elements not belonging to the transition groups to have valences 
toward oxygen which differ by two units. However, this tendency is 
far less prominent than those mentioned above. Lewis pointed out 
the extreme rarity of molecules with odd numbers of electrons, the so 
called ‘^odd molecules,^^ This means that the number of electrons 
entering into the chemical bonds will be even and those electrons of 
each atom not so directly concerned with the bond must also be even in 
number. In general, atoms of odd atomic number have odd stable 
valences and those of even atomic number even valences. Still less 
prominent is the regularity that atoms having four valence electrons not 
entering into chemical combination are less common than those having 
two such valence electrons; thus, sulfur does not form compounds in 
which it is divalent nor phosphorus those in which it is monovalent. 

These even numbers are due to the fact that the ultimate electron 
shell consists of two electrons with all quantum numbers identical except 
that the electron spins are reversed in direction.*^ The electron pair 
proposed by Lewis as a model for the chemical bond is probably such a 
pair of electrons. 

In the transition groups indicated by solid circles we find the cases 
of multiple valence. In general, these valences fill triangular areas 
in Fig. 4 and suggest the possibility that the triangles may be filled in 
solid in the future. Some of these valences are more stable than others, 
at least in the sense that in the presence of oxidizing and reducing agents, 
the ‘‘unstable^' ions readily change to others with other valences. (In 
practice, chemists mean by a ^'stable” compound one that is not readily 
decomposed by water, oxidized by oxygen, or reduced by common 
reducing agents, i.e.^ that the compound is easily isolated.) Within 

^ J, A. C, S,f 38, 762 (1916). Also, ^‘Valence and the Structure of Atoms and 
Molecules.Chemical Catalogue Co., New York (1923). 

* hoc, dt. 
* London, Z. Physik, 46, 455 (1927) and Pauling, Proc, Nat, Acad, Sci.f 14, 359 

(1928). 
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limits, the filling in of these triangles appears to be mostly a matter of 
skill in isolating the compounds. 

7. THE EFFECT OF SIZE AND CHARGE OF THE KERNEL ON CHEMICAL 
PROPERTIES 

A great many chemical properties are characteristic of ions and 
not of neutral atoms and therefore in considering the relation of chemical 
properties to the periodic system, we should construct a periodic table 
in which all known ions have a place. Figure 4 is in reality such a table 
and the addition of the strictly atomic valences as positive and negative 
ones can be justified because the properties of compounds in which 
they occur can be related to the size and charge of the kernel, and to the 
configurations of their electron shells. 

On the basis of the electronic structure of the kernel, ions may be 
classified in the following groups: 

1. The kernel has a rare gas configuration. This group may be 
further subdivided into ions with the closed shell of two electrons, 
ions of the elements in the first period of eight, and those with the closed 
shell of eight electrons. 

2. The kernel has a closed shell of 18 electrons immediately beneath 
the valence shell. 

3. The kernel has incomplete shells and subshells. 
The hydrogen ion is unique in having no electrons in its kernel 

and its many remarkable properties can undoubtedly be explained 
as due to this structure, as, for example, its high catalytic activity.^ 
The marked differences between second period elements and similar ones 
in higher periods are to be ascribed partly to the fact that the outer 
electron shell of the kernel has two electrons, though perhaps more directly 
to the small radius of the kernel. The evident diffidences of elements 
in the a and b subgroups of the Mendel4eff table are at le^st partly due 
to the electronic structures of the shells immediately beneath the valence 

shells. 
The dependence of chemical properties on the ionic radius has been 

emphasized by Grimm,^ v. Hevesy,^ and Pauling,*^ among others. Evi¬ 

dently the relative sizes and charges of ions are the predominating 
factors in determining the crystal structures of salts. The TemoVal of 
electrons from even a very electropositive element reqliires a large 
expenditure of energy, which must be partly compensated by the energy 
liberated in the formation of the negative ion and partly by the crystal 
lattice energy of the solid. The lattice energy of an ionic solid is greater, 

* See for example, Bronsted, Chem. Reviewsj 6, 231 (1928). 

2 ‘‘Handbuch d. Physik’^ (see end of the chapter). 

anorg. allgem, Chem.^ 147, 217 (1926). 
A. Vr 60, 1036 (1928); Proc. Roy, Soc,, 114, 181 (1927), 
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the more closely the ions approach each other. Also, the properties 
of ions in water solution are largely determined by charge and radius. 
The energy of hydration increases with decreasing radius and increasing 
charge of the ion and this energy partly compensates for the large energy 
of ionization in the case of aqueous solutions of salts. 

Cartledge^ has observed that the physical properties of ions in the 
solid state and in solution can be correlated very well with the ratio 
of charge to radius, which he calls the ^4onic potential.^’ In fact, many 
properties of both ionic and atomic compounds can be correlated with 

Fig. 5,—The ionic potentials. {After Cartledge.) 

the ionic potential of the kernel obtained by removing all the valence 
electrons. Thus, the ionic potentials of and Cl~, and of and 

may be calculated by using the radii of these ions as obtained theo¬ 
retically by Pauling,^ or as determined from the distances of nearest 
approach in crystals; from these ionic potentials certain properties of 

PCI* and CI2O7 can be correctly predicted. 
In order to work with numbers of convenient size, the ionic potential 

4> may be expressed as the ratio of the number of elementary units of 
charge on the kernel divided by its radius in Angstrom units; further, 
the square root of this quantity is more convenient for plotting against 
the number of electrons in the ion. This plot is given in Fig. 5 for ions 
whose radii have been estimated by the above methods. All those 
cations having < 2.2 are basic in water solutions, those having 

^J. A, C. S,, 50, 2855 and 2863 (1928). 

*Lac, c^. 
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>3.2 are acidic and those whose values lie between 2.2 and 3.2 
are amphoteric. The fused chlorides of those elements for which < 
2.2 conduct the electric current, while those for which > 2.2 do not, 
and it will be noted that this limit is exactly the same as that for the 
change from acidic to amphoteric properties of the positive elements. 
Probably both these breaks in properties are duo to a change from the 
ionic to the atomic type of binding. Cartledge has been able to show 
that, in general, other properties such as heat of hydration, discharge 
potential in the fused state, and hardness, vary continuously with the 
ionic potential, even though the ions differ in kernel structure and in 
valence. The values of Zr'*+ and Hf^+ are 2.24 and 2.25 and those 
of Cb‘^“^ and Ta^+ are 2.60 and 2.65, respectively. Those facts, together 
with the similarities of the underlying kernels (complete shells of 18 
electrons), undoubtedly account for the marked similarity in chemical 
properties. 

The justification for classifying the oxygen valences in Fig. 3 as 
positive is now evident. If a CF+ ion is introduced into water, its ionic 
potential is so large that it can remove 0““ from water leaving ions 
in solution and therefore it forms a negative Cd04~ ion with atomic 
bindings between the (d and O atoms, and is acidic. On the other hand, 

can only remove from water if a base is present to remove the 
ions formed, and it is therefore amphoteric. Finally Na"^ has a low 

ionic potential and evcm in the presence of strong bases do(^s not remove 
the 0^“ from water. 

8. THE NUMBER OF THE CHEMICAL ELEMENTS 

It has often been suggested that elements with higlier atomic niimbors than 02 are 

so unstable that they did not long survive the genesis of the earth, but, this is simply 

a speculation, and there is no adequate reason for believing uranium to bo the heaviest 

element. However, there is fairly good evidence for a definite upper limit to the 

periodic system. 
There are several ways in which it is possible to obtain an approximate upper limit 

to the atomic number. One of these, discussed by Bohr, depends on a peculiarity of 

tfie relativistic^ energy levels of the hydrogen atom. The inner electrons of a heavy 

atom are supposed to be on orbits which are approximately hydrogenic., so that equa¬ 

tion (34) of Chap. V holds true for them. If the atomic number becomes so largo 

that the square root in the denominator of this formula becomes imaginary, the orbit 

will no longer be stable. When n = 1 the value of Z for which this occurs is 137. 

It is probably incorrect to treat the problem in this fashion. Modifications of t he 

law of force should be taken into account at such small distances. KosseF has made 

an attempt to take this into account in an approximate way. He assumes that the 

magnetic attraction of two electrons is proportional to r-\ while the electrostatic repul¬ 

sion is proportional to Thus, if the diameter of a if orbit becomes too small, an 

electron on such an orbit might fall into the nucleus, reducing the nuclear charge. 

1 Naiurum., 16, 298 (1928). 
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Flint and Richardson’ have approached the question from another standpoint. 

Certain considerations based on relativistic mechanics indicate that there is a mini¬ 

mum possible radius for a circular electron orbit. The limit obtained by their theory 

is Z = 98. 
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CHAPTER X 

GENERAL THEORY OF ATOMIC SPECTRA 

1. HISTORICAL INTRODUCTION 

Before we proceed to a systematic study of the laws of spectra, the 
reader must be acquainted with some of the puzzling marches and 
countermarches which have brought us to our present position of mastery 
in this subject. In particular, he must understand the changes in term 
notation which have clouded the subject in recent years before he can 
read and understand the great majority of papers on spectra. 

At the risk of some repetition we shall now review the salient points 
in the history of this subject in a connected manner. The analysis of the 
more complicated spectra began to make active progress in 1922, with 
the publication of Catalanos paper on the manganese spectrum^ and that 
of Miss Gieseler^ on chromium. Up to that time, only singlet, doublet, 
and triplet spectra had been studied systematically, and terms of higher 
multiplicity could not be satisfactorily described by the simple notation 
in use. Two books on series spectra appeared, in 1922, by Fowler, 
and by Paschen and Gotze,^ and even now both of them are essential 
to a thorough knowledge of the subject. They contain discussions 
of the laws of spectral series, as well as a table, due to Rydberg, which 
is very useful in the discovery of series. However, the main part of 
each book consists of tables of all lines which had been classified in series 
up to 1922, arranged according to elements. The so-called revised 
Paschen notation has been used in the past much more widely than that 
of Fowler, and indeed it is occasionally used today, although it is now 
practically superseded by the notation adopted in this book. These 
notations are as follows: 

Singlets Doublets Triplets 

Fowler. S P D 1 ^ 7r2 TTi d' 5 s Vz,2,\ ds.a.i 

Pa.2,1 ^8,2,1 

^P 0,1,2 1,2,8 

Paschen. s P D 8 J)2 Pi da di 8 
Modern. ^Pl *2)., *5^ ^Si 

In the modern notation, we use the actual value of j as a subscript but it 
must be remembered that many authors use j + in the systems of 

^Phil Trans. A, 223, 127 (1922). 

»Ann. Physik, 69, 147 (1922). 

^ Fowler, A., “Report on Series in Line Spectra,'' London. 

* “ Seriengesetze der Linienspektren," Berlin. 
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even multiplicity to avoid fractional subscripts. The correlation between 
the Fowler and Paschcn notations, on the one hand, and the modern 
notation, on the other, must be altered when we meet with inverted 
multiple terms. The inner quantum numbers of the levels belonging 
to an inverted multiple term increase as we pass down the energy diagram; 
those of a normal term decrease. However, the subscripts of the Fowler 
and Paschen notations always increase as we pass down the energy 
diagram. 

As a result of studies of simple ring models, the belief arose that 
the S, Pj Dy . . . states correspond to azimuthal numbers 1,2, 3, ... of 
a single valence electron, so that the minimum total quantum number in 
a sequence should be equal to the azimuthal number for that sequence. 
Thus, in the Rydberg term R/{m + ipYy it seemed reasonable to write 
m = 1, 2, • • - in the S sequence, m = 2, 3 • • • for the P terms, etc. 
Paschen adopted this plan, throwing all the burden of accounting for the 
deviation from the Balnier formula on the quantity (p. This was correct 
for many D and F sequences and it led to reasonably small <p values in a 
large number of P and 8 sequences, so that the actual values of the total 
quantum numbers remained long undiscovered. Fowler thought it 
best to choose the m. values in such a way as to make the value of p 
fairly small. Thus, in his Report we encounter such terms as IZ) and 
3F. The trouble is that this principle is not followed with complete 
consistency throughout the Report.^ 

Beginning in 1922, Bohr showed that the total quantum number of 
the valence electron in the S or P levels of an alkali atom is not closely 
related to the value of m which makes ^ as small as possible, but varies 
from atom to atom (Chap. IX). After this discovery many authors 
used the actual quantum number of the valence electron for the value 
of m, in discussing one-electron spectra and those parts of the spectra of 
second-group elements which arise when one electron is unexcited. The 
trouble was that attempts were made to do the same for terms in which 
two or more electrons are excited. Then came Land^\s discovery that 
many characteristics of multiplet spectra can be derived from a model 
consisting of a ‘^leuchtelektron^^ with azimuthal number k and total 
number n, and kernel (atomrumpf) with impulse moment rh/2Tr.' The 
term symbol n'^kj was introduced, but difficulties of printing made it 
appear preferable to use n^Sjy n^P u etc. (When it is impossible to specify 
the quantum numbers of terms discovered empirically, it is quite usual to 
assign them arbitrary symbols pending a correct classification.) 

The Land4 model was inadequate in many respects and was soon 
superseded. The first step in this direction came from Russell and 

^ Foote and Mohler give a clear treatment of this subject in ‘^Origin of Spectra,” 
p. 43. 
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Saunders’^ study of the primed terms of the alkaline earths. Their 
paper introduced the idea that the characteristics of the spectroscopic 
term are determined by the resultant quantum numbers of the atom as a 
whole, and not by the numbers of some privileged electron. This was 
followed by Pauli^s^ assignment of four quantum numbers to each 
electron, and by the introduction of the spinning electron, as described in 
Chap. VII, Sec. 16. These ideas were immediately applied to complicated 
spectra. In the hands of Goudsmit,*^ Heisenberg,^ and especially of Hund^ 
they showed their capacity to predict the existence of spectral terms 
with almost complete success. 

The most recent treatise on spectral regularities is that of Hund.*'' 
It is devoted mainly to the study of the laws of spectra, and gives only 
as much information on individual spectra as is necessary to the proper 
illustration of the laws. A summary of various systems of quantum 
numbers is presented in Table 1. 

2. MULTIPLEX STRUCTURE 

In Chap. VII, Sec. 16, we have described the quantum numbers 
belonging to each electron in the atom and have mentioned the most 
important ways in which the angular momentum vectors of the individual 
electrons may be coupled. In the early part of this chapter we shall deal 
almost exclusively with the so-called normal multiplets, which may bo 
described on the assumptions that the Ip are strongly coupled to form a 
quantized I, that the Sp are likewise coupled so as to form a quantized 
5, and that the inner quantum number is the resultant of I and s. When 
cases of this kind have been studied there is little difficulty in tracing 
the corresponding relations for the other extreme type of coupling in 
which the Ip and .Sp of each electron form a quantized resultant, let us say 
jp for the pth electron, and j is the vectorial sum of the jp. 

For the present, we shall pay no attention to Paulies principle, 
contenting ourselves with a simple enumeration of all the possibilities, 
regardless of whether they are allowed or not. In this connection, 
diagrams of the kind shown in Fig. 1 may be used to give us an idea of the 
arrangements of vectors which give rise to the various values of j when I 
and s are specified. We draw an arrow having a length proportional 
to and place at its tip another arrow representing s on the same scale. 
The maximum value of namely, i + 5, occurs when these arrows are 
parallel. In Fig. la, this value is 5, in Fig. 16, it is Yi. The arrangement 

1 Antrophys. J., 61, 38 (1925). 

8 Z. Physik, 31, 765 (1925). 

8 Z, Physik, 32, 794 (1925). 

*Z. Physik.Z^SmmB). 
«Z. Physik, 33, 345 and 856; 34, 296 (1925). 

* ^^Linienspektren uiid periodischfis System der Elemente,” Berlin (1927). 
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of I and s giving rise to the next smaller j value (4 or % in the two cases, 
respectively) is obtained by laying off a circle with radius s + I -- I 

around the point A as center. The intersection of this circle with one 
having radius s and center B is the end of the j vector of magnitude 
6‘ + ^ — 1. Continuing the process, we obtain all possible configurations 

Fig. 1.—^Qiuintizoa .‘irrancornonts of ^ and s vcctons. 

of I and 5. T3y constructing a few diagrams of this kind, or by simply 
counting up the possibilities, the reader will easily verify the list of j 

values corresponding to each pair of values of I and s presented in Table 
2. The maximum multiplicity in an odd system of spectral terms is 
first encountered when we meet the value j = 0, and is equal to 2s + 1. 

Table 2.—j Values fok Normal Mui.tiplets 

0 0 Singlets Doul)lets s 
1 1 .s = 0 .'■2 - bi p 
2 2 D 

3 3 % F 

0 1 Triptd.s Quartets S 
1 0 1 2 s = 1 '■i ¥2 8 = ^2 P 

2 1 2 3 'i ¥ ¥ D 

3 2 3 4 K.. Ji. F 

0 2 Quintets /2 Sextets S 
1 1 2 3 s - 2 ^2 Ji S = P 

2 0 1 2 3 4 h ®/2 14 0 ^ 
■ 2 D 

3 1 2 3 4 5 ¥ F 

0 r j 3 8ept(4s ¥ 
_ 

Octets ~'s 
1 2 3 4 s = 3 % ¥2 « - 14 P 

2 1 2 3 4 5 •’-2' ¥ ¥2 ¥ D 
3 0 1 2 3 4 5 6 . ^ ¥ % ?4 F 

Av = 1 2 3 4 5 6 2 ^ K 
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For example, a quintet S term has only one level, the P term, three, 
and the D term,^ five. Similarly, we reach the maximum multiplicity in 
an even term system when the azimuthal number has grown sufficiently 
large to give us a term with.; = *2, for example, etc. 

To summarize, when the number of electrons outside of closed shells 
is even, the values of s are integers, and we have odd spectral systems, 
but when they are odd in numb(‘r, the values of s ar(^ half integral that is, 
integers plus J i, we have even spectral systems (Sec. 6). 

A complete picture of an atomic configuration requires a statement 
of the value of n and Z, as well as a description cf the orientations of 
the I and .s vectors, for each electron. Thus, we give n, J, m/, and Ms 

for each electron in the presence of a magnetic field. But frequently the 
value of n is immaterial. When so, we use a notation, due to H. N. 
Russell, writing the small letters s, to indicate electrons for which 
Z — 0, 1, • • • , and indicating the number of each kind by a superscript; 
€,g.y we write d'^s to describe a system of three (dectrons of the types ni, 2, 
^2, 2; and ns, 0, respectively. If necessary, this notation may be modified 
to include the total quantum numbers; thus, M'^5s. 

Now, we must determine the various Vs and ,s’s which can arise 
from a given number of electrons. If there are n electrons, the highest 
possible value for s is n/2, neglecting Pauli’s principle. We might 
expect to have also the values 1), ^ 2(n — 2), etc. The highest 
multiplicity to be expected would be n + 1. In practice, Pauli’s principle 
prevents the occurrence of such prodigious values of the multiplicity 
(93 in the case of uranium!). The existence of terms of such high multi¬ 
plicity would require the « vectors of many electrons to coincide in 
direction. To avoid violations of the equivalence principle we should 
soon be obliged to utilize a great variety of values for vh. But since mi 

is always less than Z, this involves high Ip values for the various electrons. 
Finally, np is greater than Ipj so extremely high stages of excitation charac¬ 
terized by large quantum numbers would be involved. In actuality, 
as the nuclear charge increases and more electrons are added, a given 
electron becomes more and more firmly bound. There is less possibility 
that the means of excitation at our disposal will change its state. Closed 
groups are formed, such as the rare gas shells, due to the equivalence 
principle, and the system of multiplicities starts over again. 

3. THE AZIMUTHAL SELECTION PRINCIPLE AND THE DISTINCTION 
BETWEEN PRIMED AND UNPRIMED TERMS 

It is found that the selection rule for j in multiplets involving primed 
or unpriraed terms is Aj = ±1 or 0. A rule governing the changes of 

^ Strictly, we should call this a multiple term or set of terms. However, it has 
become customary to call such a set of levels a term, as though it were a single level. 
In practice, this causes no difficulty. 
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I was proposed independently by I^aporte^ and Russell^ on the basis of 
experimental regularities. They observed that the terms of any atom 
may be divided into two great classes which they called primed and 
unprimed; such that the following rules hold true with relatively few 
exceptions; Primed terms combine with unprimed terms in such a way 
that AZ = 0 or ± 2, and with other primed terms according to the restric¬ 
tion AZ = ±1 (or sometimes ±8). The latter rule is the same as the 
selection principle for combinations between unprirned terms. 

These rules are not quite correct and may be replaced by others 
derived by Heisenberg"* on the basis of the correspondence principle. 
We have seen (Chap. VI, Bee. 6) that the motion of each electron in an 
atom contains the frequency vi with which the perihelion of its orbit 
processes. Heisenberg shi)wed that the freriuencies vi ± 21^2 also occur 
prominently, being the corresponding preccission freciuency of a second 
electron. By the correspondence principle, we may expect that transi¬ 
tions will occur in which the Ip of one electron changes by ± I, while that 
of a second changes by 0 or ±2. This rule is obeyed with few exceptions 
in all spectra, and makes no mention of primed or unprimed terms, 
so that the separation of the terms into those two divisions appears 
superfluous. However, this is not the case from a practical standpoint. 
Heisenberg’s rule operates in such a way that when a spectrum is being 
analyzed, it is very convenient to divide the terms into the two great 
classes, mentioned in the rule of Russell and Laporte, in the absence of 
information about the Ip values which characterize a given state. The 
rule itself furnishes no criterion for deciding which half of the term system 
is to be called primed. After the work is done, it is usually possible to 
state definitely the quantum numbers belonging to each term, and then 
we can determine which group is to be called ‘^primed” by applying a 
convention adopted by Russell, and very generally by others. This 
convention is based on a definite physical distinction and is as follows: 

Terms for which the sum of the absolute values of the Ip is even^ belong 

to the categoryj 
S P' D F' G . . . , 

while those for which the sum, of the absolute values of the Ip is odd, belong 

to the category, 
S' P D' F G' , . , 

The reader may verify the fact that the primed terms of the alkaline 
earths are in agreement with this convention. 

More recently, a committee of American spectroscopists^has proposed 
the replacement of this notation by another in which all terms with even 
Ip sums are left unprimed while those with odd Ip sums are provided 

1 Z. Physik, 28, 136 (1924). 
* Science, 61, 612 (1924). 

Physik, 841 (1925). 
^Phys. Rsv., 88, 900 (1929)* 
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with a superscript'', as The selection rules, where this nomen¬ 
clature is used, are: 

Odd —^ odd, and even —» even: = 0, +2. 
Odd —> even, and even —> odd: A/ = ± 1 (or ±3). 

To be consistent, the P, P, etc. terms of the alkalies and the unprimed 
terms of the alkaline earths should be written P°, Z), etc. This is 
not done in these simple cases unless it is necessary to distinguish the 
two kinds of terms. 

4. A TYPICAL MULTIPLEX SPECTRUM—NEUTRAL CHROMIUM 

We shall now illustrate these abstract considerations by applying 
them to the spectrum of chromium which displays most of the interesting 
features of multiplet spectra. 

Chromium stands in the sixth place after argon in the periodic table 
and has atomic number 24. At this stage in the development of the 
periodic system, the 3, 0 and 3, 1 shells are complete. In potassium 
{Z - 19) and calcium (Z = 20) two 4, 0 electrons are added to the atom, 
for they are more firmly bound in these orbits than they would be in 3, 2 
orbits. However, when the nuclear charge is increased sufficiently, 
the 3, 2 orbits become more strongly bound than the 4, 0 orbits. Thus, 
the most stable state of once ionized Cr has five valence electrons on 3, 2 
orbits and none at all on 4, 0 orbits. 

Most of the important terms of the CrII spectrum, giving rise to 
strong lines, arise from the above electron configuration, and from two 
others, obtained from it by raising one and two electrons, respectively, to 
4, 0 orbits. These three configurations are referred to as d'^s\ and 
dh\ 

The spectrum arising from the excitation of one or more of the five 
valence electrons contains quadruple and sextuple terms. Table 3 
shows the terms to be expected in this spectjrum on the basis of Hund's 
theory, soon to be explained, and their observed positions. One of the 
terms on the energy diagram is given the arbitrary value 90,000.00 cm.~\ 

Table 3 

Electron 
configuration 

Terms of 
CrII i 

1 1 

Observed terms 

. 102,498,31 
81,900 

«Z) 90,000.00-90,634.78 
. 82,472.76-82,968.43 

4H' 72,104.87-72,338,75 
4p/ 71,277.20-71,413.74 

dV. 71,632.23-72,544.53 
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on the busis of an expert guess as to its probable value. It is recorded 
here to 7 significant figures because the wave numbers of the lines are 
measured with great accuracy, and only their differences are involved 
in the analysis of the spectrum. 

The second column is derived by considering all the possible I and 
5 values which can be obtained by vectorial additions of the Ip and Sp 

of the individual electrons, and excluding those which violate Pauli\s 
principle. The third shows the highest and lowest levels of the multiple 
terms which result. 

Practically all the prominent terms of CrI are obtained by adding 
an electron in an 5 orbit (i = 0) to the and configurations of Cr"*”, a 
surprising state of affairs when we consider the comph^xity of the spec¬ 
trum. Partial classifications of the CrI spectrum have been published 
by Catalan,^ Kiess and Kiess^ and Gieseler.*^ 

New measurements and extensive studies of the spectrum have been 
made by Dr. C. C. Kiess, to whose kindness we owe the opportunity to 
use much of the data as well as the illustrations in this section. Further, 
the absorption spectrum of chromium vapor has been obtained by 
Gieseler and Grotrian.^ 

Between 26,232 A. and 1,994 A., about 1,950 chromium lines are listed 
in Vol. 7 of Kayser^s Handbook.’^ This list is by no means complete, 
for many faint and doubtful lines were omitted. On the whole, the arc 
spectrum and the spark spectrum are quite similar, both as to the general 
distribution of the lines which occur and the intensities of those lines. 
It is safe to say that little progress could be made in separating the spectra 
CrI and CrII on the basis of the listed intensities, but much information 
can be obtained from two papers by King® on the vacuum furnace spec¬ 
trum of Cr. King measured the intensities of the stronger lines at 
temperatures of about 2000, 2300, and 2600°C. From 7,000 to 2,800 A. 
the lines were observed in emission, while the region from 2,780 to 2,360 A. 
was obtained in absorption. A supplementary list contains lines which 
appear in a prolonged exposure at 1730°C., the lowest temperature at 
which photographs could conveniently be obtained. All the lines on 
the supplementary list (except possibly 5,022.04 A.) involve the three 
lowest multiple levels of the atom. Practically all the lines of the larger 
list have proved to be due to the neutral atom. The division of these 
lines into temperature classes has been of great value in classifying the 

^ PhU. Tram, A, 223, 127 (1922) Anales de la Soc, Eapanola defis, y. chim.j 21,84 
(1923). 

* Science, 66, 666 (1922). 
»Z, Physik, 22, 228 (1924). 
*Z, Phy8ik,22, 246 (1922). 
® Astrophys, 41, 86 (1916), and 60, 282 ('1924); or, ML WiUon Contributions, 04, 

(1916) and 282 (1925). 
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^seo4.si %-^Pf 
-S2O6.05^Se-'^P3 

-52^7.SS^Do-% 

,5264./8^D,-'^Pf 
%:.S26S.T3%--^P2 

^S275.n^Pp-^D3 
>:-627S.76 ^Pg-'^Dp 
''■5276.07''P2 -fDj 

.S296S9^D>-^Pi 
^ ■5297.89 ^Pj -’’Da 

\^;:'S29B.o2y>s~lD3 I \-.\S29a.29^£>2 -'iPz 
* '>i529e.45''Pj-p2 

SdOO-H^Dz-^P^ 

,S323.34 ^P^-'^Ds 
\t 3329.15'^P4-^D4. 
' ' S329.ao''P4-''D3 

^..334S.80^D3-^P2 
'^•■■5343.3pDy ^Pj 

*-S409.8l^^-^P;^ 

Fio. 2.—The chromium spectrum between 5,200 and 5,400 A. 
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Bpectrum. Thus, all lines classified by Catalan which involve the three 
lowest terms belong in temperature classes I or II. 

With the aid of these physical characteristics of the lines, the spectrum 
has been analyzed into triplets, quintets, and septets, of which the two 
latter systems are by far the most prominent. When a set of levels 
belonging to a multiple term combines with another such set of levels, 
the closely related lin(\s which result are called a ''multiplet.'' Much 
of the complex appearance of such a spectrum is due to the overlapping 
of the multipk^ts which compose it. In Fig. 2, we show the region 
})etween 5,400 and 5,200 A. The lines of thn»e important multiplets 
are marked in the figure, their wave lengths, wave numbers, intensities, 
and designations being as follows: 

X 1 P 
1 

Intensity Classification 

5,204.51 19,208.8 

06.05 203.1 m 
08.42 194.3 lOR 

5,247.55 051.2 40 ! ^Du~^P, 
()4 18 18,9»1.0 50 

65,7.3 , 985.5 25 oDi-^Pt 
75 17 951.5 20n 

75 76 949.4 15h 
70 07 948.3 20n 

96.69 874 4 50 

97.39 1 872.0 20n 

98.02 869.7 I5n 

98.29 868.7 60 >D2~^P2 
98.45 868.2 Calculated 

5,300.71 860.2 25 

28.34 762.4 50?i 

29.15 759.5 20n 
29.80 757.2 5n 
45.80 701.1 70 

’ 48.31 692.3 50 

5,409.81 479.8 100 

In the remaining tables and diagrams of this section, the wave 
numbers of the terms increase as we pass to higher energy, beginning at 
zero for the normal state of the atom. In spite of precedent, it is very 
convenient to proceed in this way when analyzing multiplet spectra. It 
is usually very easy to discover the relative position of the terms giving 
rise to strong combinations, but the difficulty of establishing series 
relationships prevents a determination of the distance of these terms 
from the normal energy state of the singly charged ion. (This remark 
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does not apply to our example, chromium, for series have been established 
in its spectrum.) Further, in atoms with several valence electrons 
there are several ionization potentials and there is little point in locating 
the zero of energy at a state of the ion which is obtained by removing 
any particular electron. 

With wave numbers increasing upward, the levels involved in the 
production of the above multiplets are as follows: 

W, 42,261.3 cm.-i 

W4, 42,258.4 
42.256.2 

7D2 '42,254.5 
7/)i 42,253.3 

26,801.8 
26,796.1 

26.787.3 
7/^4 23,498.9 

23.386.4 
7^2 23,305.0 

8,307.5 
8,095.2 
7,927.4 

«/>i 7,810.7 
‘‘Do 7,750.7 

7,593.1 

The quintet P levels are the initial levels for the emission of 5,204- 
06-08, while is the final level. The remaining lines.arise in transitions 

j 

Fig. 3.—Energy diagram for three chromium multiplets. 

from the same ®P level to the levels, and from an initial level 
to a final ^P level. The combinations occurring are shown in Fig. 3. 
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The wave-number separations of the levels are indicated by their values, 
and the inner quantum numbers are seen at either side. The selection 
rule Ay = ±1 or 0 is obeyed; all missing combinations would violate 
this rule. To avoid the use of lists and the trouble of making energy 
diagrams, it is customary to illustrate a multiplet by a rectangular array 
like that in Table 4. At the left are written the names of the initial 
levels; at the top, those of the final levels. For each combination, X, 
and the intensity, in brackets, are written in the body of the table, below 

Table 4.—A ®P®/) Multiplet of Neutral Cr 

^Di 6/^8 I 6/)2 ‘Z)i 6i)o 

6/>, 5,296.69 [50] 
18,874.4 (116.6) 

(5.7) 

5,264.18 [60] 
18,991.0 (60.2) 

(5.5) 

6,247.55 [40] 
19,051.2 

»P2 5.345.80 [70] 
18,701.1 (167.6) 

(8.8) 

6,298.29 [60] 
18,868.7 (116.8) 

(8.6) 

5,265.73 [25] 
18,986.3 j 

5,409.81 [100] 
18,479.8 (212.5) 

6,348 31 [50] 
18,692.3 (167.9) 

5.300.71 [25] 
18,860.2 

Table 5.—Relation of Prominent Cr and Terms 

Cr*- Cr 

Ip Term 
Empirical 

term value ip Term 
Empirical 

term value 

^S 0 dH. 0 . 
VSf 7,593 

d^p. 
ipo 23,305-23,499 

j 1 

ipo 26,802-26,787 

. 11,964-12,498 sd^H. 7,750- 8,307 

sd^d. HI 20,517-20,519 

not found 

24,277-24,282 
6p 21,841-21,857 

sd^p. 
7po 27,729-27,935 

I 
7/)o 27,825-27,300 
rpo 24,971-25,771 

spo 29,421-29,825 

33,338-33,816 
6po 

30,787-31,280 
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the final term and to the right of the initial term. The intervening 
numbers in parentheses are empirical values of Ai? for the various pairs 
of levels. 

In a case like this it is important to consider the various I values which 
arise by combining the Ip of the valence electrons. Table 5 shows how 
low lying terms of neutral chromium arise by adding a 4,0 electron to the 

configuration of Cr'+', or by adding a 4, 0 or 3, 2 electron to the d^s 
configuration. The terms listed are those which survive when Paulies 
rule has been applied. Higher lying terms are gotten if the sixth electron 
is on an orbit 4, 1. Still higher stages of excitation are possible, giving 
rise to weaker lines 

0 

0,000 

"g 20,000 

.£ 

I 30,000 

40,000 

50,000 

Fig. 4.—Complete eiu'rgy diai;ram of neutral chromium. 

In so far as it has been analyzed, the spectrum corresponds in every 
detail with the theory developed in this chapter. The empirical energy 
diagram is given in Fig. 4, To avoid detail, each multiple term is 
represented in the diagram by a circle drawn at the position of its center of 
gravity. For the lower levels, the character of the terms is known, and 
even and odd terms are distinguished by black circles and hollow circles 
with crosses, respectively. The combinations which occur are indicated 
by drawing solid lines between the circles representing the terms, and 
the electron configurations from which the terms arise are shown by the 
dotted lines, which run to the appropriate designations at the right of the 
diagram. At the bottom, the azimuthal character of each term is shown, 
and the division into primed and unprimed terms is indicated. 

It will be observed that, in a general way, the terms fall into three 
groups, which are often called ^Mow,’^ middle/^ and “high,” respectively, 
though no sharp distinction is intended. The addition of an s electron 
to the configurations or sd* of the ion results in terms having even 
Ip-sums; for the I value of each s or d electron is itself even. Further, 
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the addition of a df electron to sd^ gives ^'even^^ terms. These three 
configurations are responsible for the prominent low-lying terms. In 
accordance with Sec. 3, they are of the types Sj P, Z), P, etc. 

The middle group is composed of ^*odd^’ terms of the types S®, P®, 
P®, P®, etc., which have their origin in the configurations and sd^p. 
Their position is accounted for by the fact that the binding energy of a 
4, 1 electron is considerably smaller than that of a 4, 0 or 3, 2 electron. 
Finally, the highest terms are obtained when one of the electrons is 
raised to an orbit of type 5, 0, or 4, 2. 

In general, the low terms do not combine among themselves, but 
combine freely with the middle group of terms. The reason is easily 
seen, when we remember that the low terms belong to the types P, 
P, etc. The selection principle forbids combinations of S with P, P with 
P, S with P°, etc.; but low S terms may combine with P® terms, which 
occur in the middle group; low P terms may combine with middle S° and 
P® terms; and so on. For similar reasons, the middle terms do not 
usually form combinations among themselves, but are free to serve as 
the final states for transitions from the high levels. Further, the high 
terms do not combine with the low terms. Exceptions to all these rules 
are encountered but the preceding statement gives a good idea of the 
general trend of affairs. 

6. SERIES IN THE CHROMIUM I SPECTRUM 

It is usually difficult to trace long series in the spectrum ot an atom 
with several valence electrons, and this circumstance prevents us from 
calculating accurate term values for such atoms. However, RusselF 
made estimates for all elements in the first long period, based on a few 
related terms in each spectrum. 

Just as in the case of the alkaline earths, it is possible in these atoms 
to have series which converge to different limits. Suppose we assign 
the wave number zero to a state in which a given electron—call it A— 
has been removed, all other electrons remaining on their normal orbits. 
The removal of another electron P, not having the same ionization 
potential, while A remains in its normal orbit, will leave the atom in a 
state whose term value is not zero. That is, the term sequences in 
which electron B is on large orbits do not converge to zero, as a limit. 
Again, it may occur that electron B remains on an excited orbit while 
A occupies one of a sequence of large orbits, or is removed. The term 
values for such a sequence of states will converge to an excited state 
of the ion. More complicated situations can easily be imagined. In 
the case of most of the atoms of the iron group there are many metastable 
states. The number of ionization potentials is also large, each one 

^ A$tropky8, J.f 66, 283 (1927). ' 
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corresponding to a different state of the ionized atom which can be 
reached by removing one electron. It is sufficient, however, to consider 
only those routes of ionization which involve the normal and the lowest 
metastable states of the atom or ion. The following summary of the more 
important methods of ionization is modeled on a discussion by Russell 
(loc. cit.) If an atom with n electrons outside the argon shell is doubly 
ionized, we have an ion with the electron configuration Let us 
consider only the lowest multiple term arising from this configuration. 
By adding a 4s electron we obtain a singly ionized atom in the con¬ 
figuration The lowest multiple terms coming from this arrange¬ 
ment are of the same name as the parent terms, but of multiplicities 
1 unit greater and less, due to the fact that the incoming s electron 
does not change the resultant I value of the atom but increases or 
decreases s by 3 *2 unit. These terms are denoted by (a) and (6) in the 
second line of the following diagram: 

Doubly ionized atom: 

(a) (h) 
Singly ionized atom: , , 

-1 .. r 
Neutral atom: (a) 

The addition of a second s electron gives rise to a single low multiple 
term, due to the configuration of the neutral atom, for others are 
excluded by Paulies principle. (Of course, other terms may be obtained 
by adding the second s electron to the atom while it is in one of the higher 
multiple terms of the arrangement but such cases need not be 
considered for our present purpose.) Similarly, the addition of a d 
electron to the doubly ionized atom gives the configuration for 
which the lowest term is usually of a different name, and is of multiplicity 
higher by 1 unit, unless n exceeds 6, in which case it is lower by 1 unit. 
Adding one 46' electron gives two terms of the same name as the lowest 
term of the arrangement. These are marked (a) and (b) in the 
third lines of the diagram. This shows that there are four principal 
routes of single ionization in these atoms. Four of these have been 
traced in the case of chromium. 

We are indebted to Dr. Kiess for the following account of these 
series: The four sets of terms which form these series are marked 
in Fig. 4 by a small + sign placed to the left of the dot representing the 
term. It is seen that in each set only two terms have been definitely 
recognized as being in sequence; therefore, we cannot hope to calculate 
the series limits with the same precision as is done in the case of the 
alkalies or the alkaline earths. 

The relative separations of these terms are obtained from the meas¬ 
ured wave lengths of lines resulting from the combination of these 

I 
-1 

(6) 
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series-forming terms with other terms. For example, the two terms 
combine with a common term ’^Pz to give the lines at wave lengths 
4274.80 A. and 7400.27 A., respectively. The vacuum wave numbers 
of these lines are 23,386.4 and 13,509.3 and their sum 36,895.7 gives 
the separation of the two terms. In like manner, we find from the 
combinations of the two series-forming terms with the same ’Py 
term that they are separated by 30,290.1 wave number units, and that 
the lower of the two lies 7,593 units above the low ^aS. For the two ^1)4 

terms, we find a separation of 40,517.0 units and a distance of 8,307 
units between the lower ^1)4 term and the base term 

The series of ^5, and ^P terms converge to the limit of the 
Cr ion, as is indicated in Table 5. The terms, however, converge 
to of the ion, the component ^1)4 in particular, having as its limit 
®Z>%, and this lies 12,498 wave-number units above as we find from 
an analysis of CrII. Our problem is, therefore, one of finding the 
distances sepfarating each series term from the appropriate limit. And 
this is easily accomplished by solving for each series a pair of simultaneous 
equations obtained by substitution of the known data in Rydberg’s 
formula, as illustrated in Chap. IV and Appendix I of Fowler’s Report, 
or in our Chap. VII, Sec. 7. Since the values of the series terms have been 
calculated and tabulated for all possible pairs of values of the parameters 
of the equation, we most readily effect our solution by simple interpolation 
from such a table (Table III of Fowler’s Report). 

With the value 36,896, the separation of the two terms, we inter¬ 
polate from the table the values 55,933 and 19,037 for the terms and a 
value 0.4003 for the constant ip, to be used in Rydberg’s formula for the 
calculation of the higher members of the series (Chap. VII, Sec. 7). 
We thus conclude that the basic term ^8 of neutral Cr lies 55,933 units 
below the basic term of the ion. With the separation 30,290 of the 

terms we again find from the table that they lie 47,586 and 17,296 
units, respectively, below ^8, and that for the series ip = 0.5182. 
However, we have seen that the low \8 and terms are separated by 
7,593 units. The sum of this and 47,586 gives 55,179 as an alternative 
value for the distance between and ®aS. A third series converging 
to consists of two terms. From the separation, 18,778 of the two 
^P4 terms, we find, from the table, 32,369 and 13,591, respectively, for 
their distances below ®aS, and a value 0.8408 for <p. Since the lower 
T4 lies 23,499 units above we get from this series a value of 55,867 

for \8. 
We again enter the table with the value 40,517 for the two ^1)4 terms 

and find that they lie 60,423 and 19,906 units, respectively, from their 
limit, ^D% of the ion, and that for the series, <p = 0.3473. To find 
their distances from the term we decrease these numbers by 12,498, 
giving 47,925 and 7,408. But we have seen that the term ^Da lies 8,307 
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units above We thus find 56,232 as a fourth value for The 
disagreement between the four values is not large considering that only 
two members are available in each series and we therefore adopt as the 
most probable value of ^aS the mean of the four, 55,803. In case more 
than two members of a series are known, a m.ore rigorous solution is 
obtained by solving three simultaneous equations and using a formula, 
such as that of Ritz, which employs an additional parameter. In such 
a solution, it would then be desirable to use for the Rydberg number 
the value for the element in question and not that of hydrogen, although 
the error introduced by using the hydrogen value is not great. 

6. ALTERNATION LAW, DISPLACEMENT LAW, AND BRANCHING RULE 

Rydberg conjectured long ago that the spectra of neutral atoms 
alternate between doublet and triplet structure as the atomic number 
increases. This statement received many modifications, as the subject 
developed, which culminated in the generalization that even and odd 
multiplicities are found alternately as we pass through the periodic 
table, a regularity referred to as the ‘^alternation law.^^ 

Further, Kossel and Sommerfeld^ promulgated the displacement 
law, namely—the spectrum of a singly charged ion resembles that of the 
neutral atom of the preceding element; the spectrum of a doubly charged 
ion resembles that of the element two places lower in the scale of atomic 
numbers^ etc. In general, the spectra of systems having the same number 
of electrons but different nuclear charges are similar. By “similar,” 
we mean that, in general, they have the same multiplicities, and that the 
order and relative spacings of the terms are somewhat alike, but no hard 
and fast rule can be laid down; there are many exceptions to the statement 
about order and spacings. Much can be said as to the spectrum of a 
neutral atom from a knowledge of the spectrum of its singly charged ion, 
or of the preceding neutral atom. A knowledge of the ionic spectrum 
usually gives us a more reliable idea of the energy values of the neutral 
atom than a knowledge of that of the preceding neutral atom. 

A correct statement of both the alternation and the displacement 
laws, applying for any element in any stage of ionization is, 

Even (odd) spectral multiplicities occur when the number of electrons 
is odd (even). 

In practice, we need only count the number of electrons outside 
completed rare gas shells, for the total number of electrons will be 
odd or even according as the number of electrons in uncompleted shells 
is odd or even. Starting with an alkali, each I value of its valence 
electron has associated with it two j values, because the s vector has 
two possible orientations with respect to L Now raise the nuelear 

1 Verh. d. Phya. Gea., 21, 240 (1919). 
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charge by 1, and add one more electron. The possible values of s are 
0 and 1, and we obtain singlet and triplet terms. 

Consider an atom in a singlet state {s = 0) and add one more electron, 
the arrangement of the two others remaining the same. The resultant 
s value is 3^12 > and we obtain doiiblet terms again. Also, consider a 
triplet term of the two-electron system (a* = 1). Add one electron, again 
keeping the quantum numbers of the first two invariable. The s vector 
of the new electron can be oriented parallel or opposed to the vector 

+ ^2. The resultant .s* values are 3 2 and giving doublets and 
quartets, respectively. The question arises whether these doublet 
terms will be identical with those mentioned before. In general, they 
will not, for although the « vector is composed of contributions which 
we may write +32> +3^2; and hi both cases, the accompanying 
values of the other quantum numbers are not the same for both arrange¬ 
ments. For example, the third-group metal thallium has prominent 
doublet terms arising from the following quantum numbers of the three 
valence electrons, 

6 0 0 
6 0 0 

71:1 I'i +3''2* 

Other doublet terms could arise from the arrangement, 

7Xp Ip Tttip TTlup 

6 0 0 
6 1 ±lor()+J^ 

Ms h nin -}i. 

The general principle is clear. Adding one electron with azimuthal 
number to an atom with quantum numbers and jr we have the 
following I values: 

Jr hf Ir L ~~ I, • * ‘ \lr ~~ 
Each of these I values may be combined with the resultant .9 values, 

namely, Sr ± 3^, to form all possible j vectors. For example, the reader 
will easily find that the addition of an electron for which I = 1 to the 

term of an ion similar to an alkali atom gives rise to /S, P, and D 
terms of both singlet and triplet systems. 

Similarly, each term of a singly charged ion gives rise (at least theo¬ 
retically) to two groups of terms of neighboring multiplicity in the 
spectrum of the neutral atom. This is the so-called ‘'branching nile'' 
(German, Verzweigimgsprinzip), first proposed by Land6 and Heisen¬ 
berg.^ An exception occurs for singlet terms, which give rise only to 
doublets. This process will certainly show us all the terms which can 
arise, but it will often occur that some of these are excluded by Pauli’s 

1 Z, Phyaik, 26, 279 (1924). 
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principle. More satisfactory methods of predicting terms are discussed 
in Sec. 10. 

7* THE INTERVAL RULE 

It was early noted that the separations of the levels making up a 
triplet P term are approximately in the ratios 2:1. Writing AP21 = m^Pi 
~ m^P2 and APio = m^Po — we have, AP21: APio = 2:1. For 
example, the separations of the 2^P terms of cadmium are 1,171.1 and 
541.9, which are in the ratio 2.16:1. Heisenberg generalized this 
regularity, pointing out that to a rough approximation we often have 

AD32:AZ)2i = 3:2, 
AP43: AP32 ==4:3, etc. 

With the discovery of multiplet spectra, similar relations were quickly 
found by many workers, and Land4^ proposed a more general interval 
rule, which bears his name and may be stated as follows: 

The wave-number difference between two terms belonging to the 
same multiple term and having inner numbers j and j — lis proportional 
to j. This leads to the ratios of term intervals written in the bottom 
lines of Table 2. By way of illustration, the levels of a term have 
inner numbers from 4 to 0, inclusive. Beginning with the pair having 
inner numbers 4 and 3, we should have wave-number intervals in the 
ratios 4: 3: 2: 1. As a matter of fact, the quintet D term of chromium 
listed in Sec. 4 shows the separations, 

212.3:167.8:116.7: 60.0 = 4: 3.16: 2.20:1.13. 

This illustration is neither very bad nor very good. Sometimes 
a set of terms will obey the rule within 1 or 2 per cent; again, we meet 
with terms in which the individual levels are not in the order to be 
expected from their inner numbers. The theory underlying this rule is 
postponed to Sec. 13, and will include the explanation of the so-called 
^^inverted terms.^^ In elements which lie near the end of a period, such 
as the iron group or the halogens, the normal situation is that the j 
values of a multiplet increase as we pass down the energy diagram. 
Thus, the lowest multiple level of neutral iron is a level with the 
following structure: 

j Term 
0 59,022 
1 59,112 
2 59,296 
3 59,584 
4 60,000 (assumed). 

Multiplets in which the j values decrease as we pass down the diagram 
are called ^‘regular” to distinguish them from the inverted type. We also 
encounter multiplets in which the j values first increase and then decrease, 
or vice versa. 

J Z. Physik, 15, 189 (1923). 
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8. ZEEMAN PATTERNS IN WEAK FIELDS AND LANDfi^S g FORMULA 

In Chap. VII, Sec. 6, we described the Zeeman effect of the principal 
and sharp series of doublet lines, and the energy levels which give rise 
to the patterns obtained in the presence of a field. The behavior of lines 
of a normal multiplet spectrum in the presence of the field is qualitatively 

(a) 

(6) 
Fig. 5.—Typical Zeeman patterns. 

similar to that of doublet lines. Each energy level of the atom splits into 
several components, which we shall call magnetic levels, equally spaced 
and symmetrically disposed with respect to the position of the field-free 
level. The combinations of these levels, suitably controlled by a selection 
principle and a polarization rule, give rise to a line pattern which is 
S3rmmetrical with respect to the position of the parent line. 

In Fig. 5/ we have illustrations of the Zeeman effect in chromium 
(Fig. 5a) at a field of about 32,000 gauss and in vanadium (Fig. 56) 

^This figure was kindly , placed at our disposal by Dr. H. D. Babcock of the Mt. 
Wilson Observatory. 
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at about 29,000 gauss. In Fig. 5a, the first and fourth strips show 
the chromium spectrum in the absence of a field. The third strip 
was taken through a polarizing prism so oriented that only light polarized 
with electric vector perpendicular to the field was transmitted. There¬ 
fore, this spectrum shows only the .^-components of the Zeeman patterns. 
Similarly, the second strip shows only the p-components. In Fig. 56, 
the upper strip shows the p-components; the center, the s-components, 
and the comparison spectrum is below. 

Such patterns are most easily explained by discussing the energy levels 
which give rise to them. What we shall say about these levels applies 
only to the case of an ideal multiplet spectrum. In practice, many 
exceptions are encountered because the conditions for the validity of 
our theory are not fulfilled, but on the whole it works surprisingly well. 
Most of the exceptions occur in elements of high atomic number. For 
hydrogenic atoms and for lines belonging to singlet systems of other 
atoms, the weak-field Zeeman pattern is a normal triplet, arising from 
energy levels whose positions relative to the original level are given 
by the formula, 

Ai? = mLh. (1) 

L is the frequency of the Larmor precession (Appendix VIII) and is 
given by the formula 

cll 
Awnic (2) 

where e is measured in electrostatic units. Energy levels of other 
multiplicities in normal multiplet spectra give rise to magnetic levels 
expressed by the formula 

AE = mgLhf (3) 
so that the term shift is 

AT = —mgL, (4) 

As before, m is the magnetic quantum number, defined as the component 
of j along the field when seen from the rotating coordinate system 
described in connection with Larmor's theorem; g is known as Tandy’s 
splitting factor, and depends only on /, s, and j for the spectral term 
under consideration. Land6^ discovered the correct formula for g 
empirically and gave a classical calculation which led to a similar formula. 
We know today that the new mechanics is required to derive the 
17-formula correctly, but it is of great interest to go as far as we can 
with the old mechanics. Consider an atom as represented by the 
aggregate of the vectors Ip, Sp, jp belonging to its electrons, and let the 
coupling be that characteristic of a normal multiplet spectrum. Suppose 
that the coupling of the I and s vectors is so strong that it is not appre- 

' Z, Physik, 16,189 (1923). See also E. Back, and A. Land6, “ Zeemaneffekt und 
Multiplettstruktur der Spektrallinien,” Springer, Berlin (1925). 
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ciably disturbed by the magnetic field. Then the vectors I and s process 
about their resultant j (Sec. 14), and j processes about the direction of H, 
To obtain the energy of this configuration, we recollect that the potential 
energy of a magnetic doublet having the moment ju in a field H is —/iH 
cos (m, H), or —ixhH, where nu is the component of fx in the direction 
of the field. The change in energy of a perturbed system is equal to the 
perturbing potential averaged over a cycle 
of the unperturbed motion (Chap. VI, Sec. 
10) so that 

AE = —HfXjfy 

where the bar denotes a time average. To 
obtain the value of /u//, we consider Fig. 0. 
The magnetic moment due to the spin¬ 
ning electron with its angular momentum 

Therefore, the mag- 

netic moment associated with the vector 

The minus sign is introduced because the magnetic moment vector due 
to the rotation of a negative charge is antiparallel to the angular momen¬ 
tum vector for that rotation. Further, the moment associated with 1 is 

-<2t)(i)' (6) 

so that 

- /liH = (, )[l COS (HI) + 2s cos (sll)] (7) 
\ — / 

while 

AE = Lh[l cos (IH) -1- 2s cos (s//)] (8) 

by equations (2) and (3). To calculate I cos (///) we split I into com¬ 
ponents parallel and perpendicular to j, having magnitudes I cos (jl) 
and I sin (jZ), and project these components on the direction of H. Since 
1 processes uniformly around j, the average value of the projection of 
1 sin (Jl) is zero (aside from terms proportional to //, which are negligible), 
but the projection of Z cos (jl) on H is constant. 

Finally, _ 
/ COB (IH) == Z cos (Jl) cos (jJT). (9) 

Similarly, 
8 COS (sH) = s cos (js) cos (jH), (10) 

From the geometry of the triangle formed by j, 1, and s, 

COS 
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Using equations (9), (10), and (11) in equation (8), we obtain 

AE = mLhl 1 + 
p_+ s' 

(12) 

Comparison with equation (4) shows that 

g = I 
9 + 2f 

As a matter of experimental fact this formula yields correct results only 
in the region of large quantum numbers, a situation which we might 
expect from the correspondence principle. The formula found empir¬ 
ically and by wave mechanics is very similar, however. It is 

1 4_ + 1) — i{i + 1) 
- 2/(i + 1) 

3 ,v(.s‘ + 1) - l{l -f 1) 
2^ 2i0'+l) 

3 (-v - /)(.v + / + 1) 
2^ 2i(i"+l) 

(13) 

In Table 6, the g values for the Zeeman effects of normal multiple 
levels are collected. (As a matter of fact, some of the most important 
earmarks of normality are obedience to the g formula and to the interval 
rule.) The value of g becomes indeterminate when the second fraction 
in equation (13) does so; that is, when s == I and j = 0. In this case the 
energy levels should not be changed by the field, for m = 0 when j = 0. 
This conclusion is confirmed by experiment. By way of illustration, we 
may derive the g factor for the S terms of alkali spectra. For these 
terms Z = 0, 5 == ^ = 34, and substituting in equation (13) we have 

g = 2, Therefore, the magnetic levels arising from a -N term will lie 
at the positions 

LT = -2mL. 

Since m is the component of j along the field it can assume only two values, 

namely, ±3^^, so that AT ~ ±L, in agreement with Chap. VII, Sec. 6. 
This arrangement is identical with that to be expected in the absence of 
electron spin, as we see from the treatment of the Larmor precession in 
Appendix VIII, Sec. 3, but has its origin in a very different mechanism. 
The Zeeman pattern for any term may now be predicted, if we pay due 
attention to the selection principle for the magnetic quantum number. 
Empirically, and also as a result of the new mechanics, the magnetic 
quantum number can change by only ±1 or 0. When it changes by one 
unit, we have s-components in the transverse Zeeman pattern, and when it 
retains its value, we have p^omponents, A further restriction is that 
when j remains unchanged, the levels for which w = 0 cannot combine. 
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Table 6.—The Splitting Factor g 

x 0 12 3 4,5 0 7 H H H 'M 

Singletfl Doublets 

0 H 5 - 0 2 s = 5 
1 1 P 

2 1 H H D 
3 1 F 
4 1 a 

I'ripletH Quartets 
0 2 a - 1 2 3 =» s 
1 % p 
2 H 0 H D 
3 H ‘Hu ”Siis 1 F 
4 H H H ‘Hb 0 

Quintets Sextets 

0 2 3 = 2 2 3 « ^2 8 
1 M % P 
2 5^6 ^2 H H D 
3 0 1 K H -H *^36 F 
4 H ^*'12 ^^2 0 0 H *»'4l48 G 

Septets Octets 

0 2 3 = 3 2 3 = h S 
1 H ^?'12 K P 
2 3 2 H n{i5 D 
3 % ^2 M ^2 ^2 ? ' 4 2 F 
4 H li ^^2 -H ^^5 «5^t53 0 

In using the (j formula and the selection principle to predict a Zeeman 
pattern, the following arrangement of the work is advantageous. Write 
in a row all the values of m which will be used, as in Table 7. 

Table 7.—Calculation of Zeeman Pattern for 

m =. - K - % -}4 +K -f 5^ 

; a ^ H. -H 

Ks 
2H5 

-fi % ^Pa,; : 0 = ji. 
jyi, — 1 —. -^Hs 

rn m] p. /'f 5 — /tf 5 

m A- ^ ] 8. 1. /1 5 '^5 

Below each value of m put the displacement mg of the magnetic level 
of the initial spectral term which has that m value. (It is customary 
to express the displacements of the levels in terms of the separation 
between the s- and p-components of the normal triplet as a unit. Note 
that this unit is not fixed, but is proportional to J/.) Write similarly 
the displacements of the levels belonging to the final term, in the next 
line. The cross-lines indicate the combinations which obey the selection 
rules. Subtraction of any displacement in the lower line from a dis¬ 
placement in the upper line yields a component in the Zeeman pattern. 
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Below each m value we can write (in separate rows) the positions of the 
lines corresponding to the transitions m ~~ 1 —> m, m —^ m, and m + 1 
m. The line positions may be expressed as multiples of l/r, where r is 
called the Runge denominator and is the least common multiple of the 
denominators in the values of mg. Thus, in Table 7, all mg values for 
the initial level are multiples of ^ while those for the final levels are 
multiples of The Runge denominator is 3 X 5 ~ 15. The usual 

Fig. 7.~Zeeman pattern for — *Z)>, 

notation for a Zeeman pattern consists of a long line with the Runge 
denominator beneath it and with integers above to show at what multiples 
of 1 /r the components lie. Parallel components are enclosed in paren¬ 
theses. For example, the symbol for the pattern obtained in Table 7 is 

(1) (3) 15 17 19 21 
- 15 

or, in decimals, ± (0.07, 0.20), 1.00,1,13,1.27, 1.40. The energy diagram 
(Fig. 7) shows all details of the way in which this pattern is produced. 

Back and Land6 give a table which shows the g values as decimal 
fractions, and tabulate a great many Zeeman patterns for lines of multi¬ 
plicities from 2 to 7, inclusive. Kiess and Meggers^ have published 
very extensive tables of theoretical g values and Zeeman patterns. These 
are believed to be extensive enough to cover all possible term com- 

^ Bur. Standards /. Research^ 1, 641 (1926). 
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binations which are likely to occur in the spectra of elements other than 
the rare earths. By considerations based on the correspondence princi¬ 
ple, Lande showed that the most intense parallel components should 
arise from configurations in which the angle between the vector j and the 
direction of the field is a maximum, while it should be a minimum for 
the most intense perpendicular components. Of course, there is some 
ambiguity in applying a rule like this in the region of small quantum 
numbers, for two atomic configurations are involved. Kiess and Meggers 
formulate the following approximate rule for determining the strongest 
components: 

In case the j’s of the combining terms are not equal, the vertical differences 
in the middle of the scheme and the diagonal differences at the ends give, respec¬ 
tively, the strongest p and s components. In case the/s are equal, the vertical 
differences at the end of the scheme and the diagonal differences at the center 

give, respectively, the strongest y and s components, with the added requirement 
that for terms of odd multiplicity the p-components corresponding to the transi¬ 
tion m = 0 to rn — 0 are forbidden; that is, their intensity is zero. 

9. ZEEMAN PATTERNS IN STRONG FIELDS 

In Chap. VII, Sec. 6, we saw that a strong magnetic field breaks 
down the coupling between the I and h vectors of the single valence 
electron in an alkali atom, with the result that the Zeeman patterns 
of its lines are completely altered. A similar phenomenon occurs in the 
case of atoms with several valence electrons, and is known as the 
“ Paschen-Back effect.’^ The original observations of Paschen and Back^ 
were made on a number of rather narrow doublets and triplets. In a 
general way it is true that changes of Zeeman patterns with the field 
strength are most prominent in the case of narrow rnutliplets. In this 
connection it is important to state just what we mean by the terms strong 
and weak. If we consider a line which is produced in a transition between 
two multiple levels with separations of the same order of magnitude, then 
we shall say the field is strong (weak) if the frequency changes produced 
by the field are large (small) compared with the multiplet separations. 
The Paschen-Back effect is encountered when the field strength is in the 
transition region. Consider also a line produced in a transition between 
a narrow multiple level and one which is broad. If the magnetic field 
is so chosen that the magnetic shifts are intermediate between the 
intervals characteristic of these levels, then the field may be coDusidered 
strong with respect to one set of levels and weak with respect to the other. 
We shall not concern ourselves here with the complicated phenomena 
of the transition region between weak and strong fields, but shall examine 
the arrangement of the angular momentum vectors in the presence of 
a strong field. The coupling between the electrons is broken down, and 

1 Ann. Physik, 39, 897 (1912), and 40, 960 (1913). 
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the Ip and Sp vectors of each one take up quantized orientations with 
respect to the lines of force. This means that the Sp vector of each 
electron is oriented either parallel or antiparallel to the field. It follows 
as in Sec. 8 that the change of energy in the presence of the field is 

AE = -~^hH = (mi + 2ms) (1"^) 

where mi is the sum of the magnetic quantum numbers mip corresponding 
to the orbital motions of the individual electrons, and m^ is the sum of 
the numbers m,,p corresponding to their spins. We may refer to mi + 
2ms as the strong-field magnetic quantum number. In a transition it 
usually changes only by ±1 or 0, though exceptions have been noted. 
These changes correspond to the emission of perpendicular and of parallel 
components, respectively. This selection rule has the consequence that 
the strong-field pattern of all types of levels is a normal Zeeman triplet. 
The location of this triplet with respect to the original multiple! is 
described in Sec. 12. 

10. THE ENUMERATION OF NORMAL MULTIPLET TERMS 

We are now prepared for the problem of finding the terms which 
arise from a given configuration of electrons. This problem is attacked 
with the aid of Pauli’s principle (Chap. VII, Sec. 19), namely, there 
are never two or more equivalent electrons in the o/om, such that the values 
of all five of their quantum numbers comcide when a strong magnetic field 
is appliedj and cases which can he derived from one another by interchangmg 
the quantum numbers of two electrons give only a single term. 

Equivalent electrons are those which have the same total and azi¬ 
muthal numbers. We begin by considering the case of two such elec¬ 
trons, and shall place them first on s orbits. For each one mi = 0, and 
therefore the resultant mi is zero. In order to avoid having all five 
quantum numbers of both electrons the same, we must assume that m^i = 
+ yns2 == and so the resultant ms = 0. The array of possible 
pairs of mi amd values reduces to only one pair, namely 0, 0, which 
yields a single undisplaced level, representing the Zeeman pattern of a 
term. On removing the field, the single magnetic energy level passes 
adiabatically into a field-free term. This furnishes a complete expla¬ 
nation of the fact that the lowest singlet S term of an alkaline earth atom 
is not accompanied by a triplet S term. There cannot be more than two 
equivalent s electrons, for the values of at .least two of them would 
have to coincide. 

The method of enumerating possible terms is quite similar in other 
ca^es. For example, Table 8 gives all the possible values of mi and m, 
which can arise from two p electrons having the same total quantum 
number. 
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Table 8.—Quantum Numbers for Two Equivalent p Electrons 

mu mi2 
1 

m^2 Ml rria 
Possible values of 

Ml A- 2m, 

1 1 }4 2 0 2 
1 0 ±H ±i'2 i 1 p

 
p

 

-1 3, 1, 1, -1 
1 -1 ±>2' 0 1,0,0, -1 2, 0, 0, -2 
0 0 K -^2 1 0 0 0 
0 -1 ±M + ?2 -1 1, 0, 0, -1 1, -1, -1, -3 

-1 -1 -3-2 -2 0 -2 

The quantum numbers of the two electrons are distinguished by the 
subscripts 1 and 2. We have, 

= ^2 — 1 . 

If 
mil = m/2 = 1, 

then and m«2 must have opposite signs, and therefore, 

mi = 2, = 0. 
But if, 

mix — \ and m/2 = 0, 

then m,\ and m,2 can be either plus or minus, independently, so that 
there are four possible ways in which the resultant can be formed, 
giving the values 1, 0, 0,-1, in the second row of the column. We 
do not obtain any new terms by considering the case mn = 0, mn = 1, 
for this is obtained from the previous one by simply interchanging 
the two electrons. Similar statements may be made for the combinations 
of mip values occurring in the third and fifth lines of the table. We 
must now consider the magnetic terms arising from these two p electrons. 
Each mi value may occur with any of the m,, values which appear in the 
same line of the table; every such combination of mi and values gives 
rise to a physically distinct atomic configuration which must be counted 
as a separate term even though its energy may coincide with that of 
several other terms. The positions of the terms are given by the expres¬ 
sion {mi + 2ma)i, the values of mi + 2ms being listed in the last column 
of the table. 

To find the field-free terms, we must determine what Z and 5 values 
would give us the array of mi and m* values shown in the table. In 
the first place, the terms will all be even, since 'Lip = 2. While there is a 
perfectly definite procedure for solving such problems, based on the 
dynamics of an atom with several magnetic parts, it is possible to answer 
the question also by the following method. The highest value of s 
must be the same as the highest value of m,. In the case under discussion 
this is 1; now the magnetic levels for which m, = 1 or arise from 
field-free levels for which s *= 1, since there is no tendency for the indi- 
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vidual 8 vectors of the electrons to change their orientation if they are 
all either parallel or antiparallel to the lines of force at the beginning. 
We now look for the highest rrti value which goes with an value of 
unity; this is also 1, and this must be the value of I for at least one 
term characterized by s = 1; so we see that some of the magnetic levels 
arise from a triplet P term (J = 1, s = 1). But we can write down at 
once all the combinations of mi and ms values which arise from a 
term, and can strike them out of the table. This eliminates nine integers 
from the column in Table 8, for mi and can take on the values ± 1 or 
0 independently.^ The remaining mms combinations are 2, 0; 1, 0; 
0, 0; 0, 0; —1,0; —2, 0; and we treat them by the same process. All the 
magnetic levels belonging to these combinations of integers have m, == 0, 
and so we must have 6* = 0 for all the corresponding field-free terms, 
which are therefore singlets. The highest nu value in the list is 2, and 
this must coincide with the value of I for one of the field-free terms, 
namely a singlet D term. As before, we construct the array of 
combinations of a term, namely, 2, 0; 1, 0; 0,0; —1,0; —2,0. Striking 
these out of the above list, we are left with 0, 0, which must belong to a 

term. Summarizing, the field-free terms arising from two equivalent 
p electrons are ^P, and \S. 

The principle is now obvious. Table 9 analyzes the combinations 
of mi and which arise from three equivalent p electrons. The terms 
in this case are odd, since 2?,, = 3. 

Table 9,—Quantum Numbers for Three Equivalent p Electrons 

mn mi2 j miz m,i 1 
j m.i j 

i 

I 
I mt 
I 

1 ! m* 
1 

1 1 0 +}4 -H ±H 2 ! 
1 1 - 1 : +}^ -H ± hi 1 ± hi 
1 0 0 ! ± hi -y2 1 

1 0 -1 ±y2 + H 0 ±3-', ±>2, Lhi 

1 -1 -1 “h hi -H -1 ±h2 

0 0 -1 -H ±H -1 ±H 

0 -1 I -1 -K| -2 ±}4 

Considerable thought is essential to the understanding of this table. 
For example, we may ask why the combination mn = nin = = 1 is 
absent. Let us consider what the ms values must be if all the mi values 
are equal to 1. In order that the first and second electrons may not 
violate Pauli's rule, we must have = +}ij ms2 - — or = 
— Whichever possibility we choose, the third electron 

* The reader will note that we can strike out the combination mi - 1, =« 0 
from the second line of the table in two independent ways, and the same situation 
occurs for the combinations 0, 0 and —1,0. In each case only one of the two w »ys is 
correct, but for our present purpose it does not matter which one is chosen. 
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will then have all its quantum numbers the same as those of the first 
or the second, and so we cannot avoid breaking the rule. The conclusion 
is that the above combination of m values does not occur. 

The configuration of three p electrons gives the terms ^S°. 
The same process can be carried through for four, five, and six p electrons. 
These configurations have the same terms as those with two, one, and zero 
p electrons, respectively, which is a special case of a reciprocity theorem 
stated in Sec. 16. 

Nothing new in principle is introduced when we consider several 
equivalent d or f electrons. The tabulations are more complicated and 
more field-free terms are obtained. Table 10 summarizes the terms 
which arise from any number of equivalent p electrons; Table 11 does 
the same for d electrons. The case of one s and any number of equivalent 
d electrons, which is quite important, is obtained from Table 11 on 
replacing each term by two terms of the same azimuthal number, but of 
multiplicities greater and less by one, respectively. For example, 
is replaced by and ^D. 

Table 10 

Number of p Terms 
electrons 

1 
2 
3 

4 
5 2po 
6 

Table 11 

Number of d Terms 
electrons 

1 W 
2 
3 4P‘‘P2//2(72P2/)2P 

6 ^F*P^HHI^FW^P W 
6 ^DHI^^F^D^P^JG^FW^S ^F^PG'D 
7 ^F*P^HG^FW^P W 
8 W^PG^D 
9 

10 ' 

IX. CORRELATION OF MAGNETIC AND FIELD-FREE ENERGY LEVELS 

In the case of two equivalent p electrons we showed how one can deter¬ 
mine the aggregate of field-free terms from a knowledge of the strong-field 
magnetic levels. However, dur discussion did not always give us the 
correlation between the field-free levels and those observed in a strong 
field. Now, we already possess complete knowledge of the connection 

between the field-free and the weak-field terms, so our problem reduces 
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to finding the correlation between the terms in weak and strong fields. 
Pauli ^ solved it by studying the motions of ra simple atom model con¬ 
taining two magnetic parts, which he called the electron and the core. 
The principal results of his theory are valid in a sufficient number of 
cases to make them very valuable,, and we shall state them here without 
proof and without qualifications. If we specify a certain weak-field 
level by giving the values of s, and m, the mi and values of the 
corresponding level in a strong field are as follows: 

For Regular Multiplets: 
li m ^ s — ly then ^ j — ly mi ~ m — (j — 1). . 
If m ^ s ~ ly the^i — m — {s — j)y nii = s ■— j. (15) 

For Inverted Multiplets: 

If m g — 5, thep Ms .= I — jy Ml = (j — 1) + m. 
If m ^ I ~ Sy then ma = (s — j),+ m, mi == j ~ s. (15a) 

For partially inverted multiplets, where the values of j first increase, 
and then decrease, no general rule can be given, although any definite 
numerical case could be treated by a direct study of the vector-precessions 
in Pauli’s model. 

As an example we take and ^Py2f for which s - and Z = 1. The rris and 

mi values belonging to each weak-field level are tabulated below, together with 2m^ + 

miy which determines the energy. Figure 8a shows the correlation (liagrainmatically. 

Term j m Mi 2w« 4- mi 

1 
1 2 

■“M 

0 
-1 1 

1 
0 

[ -H -H -1 -2 

’Ph... 
/ , 
\ 1 

1 1 
0 

0 
-1 

The strong-field levels are measured from the center of gravity of the multiplot. The 

dotted connecting lines serve to show the correlation and do not indicates the rather 

complicated course taken by the energy levels as the field changes. 

Breit^ has given a speedy and easy method for carrying out such 
correlations. Suppose we specify the multiplet to be studied, giving 
its I and s values. We then draw up an ari^y, having 25-+ 1 rows 
and 21+1 coluipns. In the spaces of this array we write all the possible 
m values of the multiplet, arranged in a way which will be obvious on 
inspecting the following example: ‘ 

1 Z. Physiky 20, 371 (1924). 
2 pev.y 20, 334 (19^). 
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Each m value is written in the form m, + mi. It 
will be understood that the entries s + (i — 2) and 
(s — 2) + I symbolize different atomic configu¬ 
rations. The former means that == s, mi =5 Z — 2; 
the latter, that m^ == 5 — 2, mz == Z. We now assert 
that beginning at the upper rights the m values blocked 
off by the division lines belong in succession to the 
various terms of the multiplety beginning with the term 
of highest j, provided that the muUiplet is regular; 
butj if it is inverted^ the division lines must he drawn 
in the shape of the capital latter L. Then the left 
side and bottom edge of the array belong to the lowest 
term, which has the highest j, and so on. From these 
schemes we can read off at once the m, and mi 
values arising from a given term, and can find the 
positions of the strong-field levels with ease. For 
a normal ^‘multiplet” the m array appears as 
follows: 

M + 1 H 3/2-1 
-H + i ■-yn -K-i 

From this we construct an array showing the cor¬ 
responding values of 2m, + mi, thus: 

2 1 0 
0 -fn -2. 

On comparison with the tabulation following the 
equations (15), we see that this gives the correct 
result. For an inverted ^P multiplet (like that of 
helium), the numbers in the m array and the energy 
array are the same as before, but the correlation is 
as follows: 

Values of m: 32 + 1 I 3 2 3^ — 1 
-14 + 1 ^14 

Values of 2m« + mz: 2 | 1 0 
0 -r -2 

This case is further illustrated by Fig. 85. 
There is another interesting way of carrying out 

these correlations, depending on the hypothesis that 
levels which have the same m do not cross when the 
field strength is increased. Shenstone^ has recently 
shown that certain incorrect predictions of the 
series limits approached by an atom, when one 
electron is removed, can be traced back to the 

^ Nature, 122, 727 (1928), 
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inadequacy of this hypothesis. His paper should be consulted for a 
statement of the cases in which it is known to be correct. To illustrate 
the use of this hypothesis, we may consider all levels arising from a given 
regular multiplet, which have a certain value of mi. These levels will 
have different values. The highest m, yields the highest energy 
in this selected group of magnetic levels, and must be correlated with 
the highest level of the field-free multiplet—that for which j = jmax- 
The next lower value is correlated with the level for which j jmax 

m 
4- 

h- 

y 
(a) 

"i- 
/ 

2n 

rn 

0 

-/ 

'‘yy 
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/ 

9 1 //,_ 
_ 

1 

1 // 
0 1 1 

/ 

(b) 

— ^ h 

/ 0 

■ 0 4 -/ 

-/ 4 

Fig. 8a.“ "Correlation of strong-and weak- Fig. 86.—Correlation of strong- and weak- 
field levels for regular ^P terms. field levels for inverted ^P terms. 

1, and so on. These facts are most easily dealt with by drawing up a 
table similar to Table 12, which refers to doublet levels. 

Table 12.—Correlation of Strono-field and B^ield-free Levels for Doublets 

mi. . 

m,. . 

-3 -2 

>2' 

-1 
1 / \/ 

— >2 >2 

0 1 2 3 

S.. . ^2 h' 
P... H % 
D.. i 

i 
^'2 ^2'- .2 ?-2 % I % H 

I I I 

To illustrate the construction of this table, let us take the second 
row, referring to the P levels, and ^Pj^. Consider the magnetic 
levels for which mi = 1, arising from both these terms. For one of these 
magnetic levels will be aiid for the other it will be —3-^. The 
first is higher on the energy diagram and is therefore assigned to ^P^^; 
the second, to ^Pi^. To indicate this, the inner number Yi is written 
in the body of the table under mi = 1, } while the inner number 

is written under mi = 1, w* = —3^* We follow through the same 
reasoning with the two magnetic levels for which m = 0, but when we 
come to the pair of levels for which mi — —1, the procedure must be 
changed. As before, we assign the higher level = — 1, »= 3^^, 
to the term of higher energy, but the other level, mi ^ — 1, m, = 
— cannot now be assigned to ^P^, for if the field is decreased it 
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passes into a weak-fiold level with m — This must be assigned 
to since a level with m — cannot arise from a term for which 

3 = 

Hund^ has given correlation tables similar to our Table 12, for terms 
of all multiplicities up to 8. The modifications to be introduced in 
the case of inverted multiplets are simple; the magnetic levels of lowed 
nis belong to the highest j values, and so on.^ 

12. THE ZEEMAN EFFECT IN INTERMEDIATE FIELDS AND THE 
PERMANENCE RULES FOR g SUMS AND y SUMS 

We now consider the changes which take place in the Zeeman patterns 
of normal multiplet lines when the field becomes so large that the Zeeman 
separations are of the same order of magnitude as the separations in the 
field-free multiplet. The wav(^ number of a given magnetic level may 
always be written in the form 

p = p. A- 7w + niglj (17) 

where in = + m,,, and g is a generalization of the Lande splitting 
factor. In this expression the first term in equation (17) is the wave 
number of the optical center of gravity of the multiple term and is an 
average of the wave numbers of the individual levels. In taking this 
average, each level is assigned the weight 2j + 1. o) is the wave number 
corresponding to the frequency of precession of I and 6" about jj and y 
is a quantity introduced by Lande and called by him the interval factor; 
e.g.j for an alkali P doublet the level j = :^2 the weight 4, while the 
level j — 12 has the weight 2, and so the center of gravity lies at a dis¬ 
tance o)/S from the former line, d? being the doublet difference. Hence 
the inte^rval factor is } s for "P^ and for ^Fi^. Table 13 gives the 
values of the interval factor in weak fields for all multiplicities up to 8. 
This table is taken from Back and Lande’s*^ book on the Zeeman effect, 
and is computed from the formula 

„ (i + liy - (s + HY -0 + HY + M _ 
- 2'Cs + H)(1 + ^'2) 

jU + 1) ~ s(s + 1) — IQ + 1) /.jjN 
.2ii+}i)Q + }i) 

which may be derived in much the same fashion as the g formula. 
The effect of increasing the field until the Paschen-Back effect sets 

in is to change both g and y. F'or doublets, a classical theory governing 
this change was long ago worked out by Voigt. ^ It is very remarkable 

^ Table 36, at the end of his hook ''Linieiispoktren.'’ 

2 See, however, a pai)er which diseusses the matter more thoroughly: Hund, Z. 
Fhysik, 62, 601 (1928). 

3 ^‘Zeenianeffekt iind Multiplettstniktur der Spektralliiiien,^’ p. 73, Sprmger, 

Berlin (1925). See also LandiS, Z. Fhysikf 19, 112 (1923). 

* Ann. Fhydky 41, 403 and 42, 210 (1913). 
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that he was led to a formula which can also be derived on the basis of 
the older quantum theory as Sommerfeld^ has shown. The formula 
for the position of a level, referred to the doublet center of gravity is 

Au 

L 
m 

V 

HI + ±2' 

2mv 

i+Ji + (19) 

where the plus (minus) sign refers to the higher (lower) level. This 
formula is well established by experiment. Much remains to be done in 
generalizing it to other multiplicities and in testing such generalizations. 

The ^’s and 7’s obey two interesting laws known as the permanence 
rules for ^ and 7 sums, and associated with the names of Heisenberg, 
Pauli, and Land4. The gf-sum rule may be expressed as follows: Having 
chosen a multiplet, we fix our attention on all magnetic levels with the 
same magnetic quantum number. For each of these components, 
there will be a different depending on the value of j for the corre¬ 
sponding field-free level. Summing these g values over all /s, the value 
is found to be independent of the field strength. This may be otherwise 
expressed by stating that the sum of the energy values which belong to 
definite values of Ij 5, and m is a linear function of the field strength. The 
permanence of g sums is a phenomenon extremely well verified by experi¬ 
ment. Its validity extends beyond the case of normal multiplet spectra, 
and it is interesting from another standpoint, for it gives an alternative 
means of calculating the g'^ in weak fields from those in strong fields, or 
vice versa. For this application it is more convenient to write the 
principle in the form 

^mg = constant, with m, Z, and s fixed. (20) 
/■ 

For example, we may consider the triplet P terms. The strong-field 
values of ^mg may be obtained by methods given in Sec. 11, which do not 
involve a knowledge of the weak-field g'^. The values found for m = 2,1, 
and 0 are 3, 3, and 0, respectively. Applying equation (20) to each of 
these cases, and letting g2y gu be the g's for the ^P2, ®Pi, and ®Po states, 
respectively, in a weak field, we have, 

^92 = 3, 0f2 + = 3, 0(5^2 + + 9o) = 0. 

We must remember that only ^P2 can give a term with m == 2, that both 
IP2 and can give terms with m = 1 and that all three of the ^P levels 
can give terms with m - 0. These equations lead to the values g^ = 
Qi = Hi 9o indeterminate, in agreement with Land^^s table. 

Similarly, the sum of the 7 values for levels having fixed Z, s, and m, 
but variable j, is independent of the field strength: 

2^7 — constant, with m, Z, and s fixed. 
J 

1Z. Physik, 8, 257 (1922), 

(21) 
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The value of 7 in a strong field is found to be 

msMi 

^ (-s* + + I'i) 
(22) 

Other interesting regularities are these: 

M
 

II 0
 

(23) 

= 0. (24) 
in j 

As mentioned by Back and Lande/ these relations lead to the following 
conclusion: If we attribute tlu^ w(‘ight one to every magnetic level, 
then the position of the center of gravity of all magnetic levels arising 
from a rnultiplet is independent of the field. 

13. EXPLANATION OF THE INTERVAL RULE AND OF INVERTED TERMS 

The interval rule of Lande may be explained by ideas very similar 
to those used in deriving the g formula. Let us represent the atom by an 
aggregate of angular momentum vectors, k and Each electron, say 
the pth, will be considered as a magnet of moment iiiheliwm:. We 
suppose that the average field acting on this magnet to orient it is com¬ 
posed of two parts. First, there is a torque due to all the other Si vectors, 
which causes the Si vectors to form a quantized resultant s. Second, 
there is a torque on Si due to the revolution of the mine electron on its 
orbit with quantum number U. It is supposed to be insensitive to the 
fields produced by the revolution of other electrons, for reasons not 
fully understood. Under these circumstances, the potential energy of 
interaction of k and Si is equal to (Chap. V, Secs. 16 and 17) 

Ei = fiKcaHi^i cos (‘-^5) 

Zt is the effective nuclear charge to which the electron is exposed when 
at a distance r from the nucleus and a is the radius of the first hydrogen 
orbit. To a first approximation, the vectors k have a precessional 
motion around their resultant /, the nature of which is explained in more 
detail in Sec. 14, and the vectors s, precess around s; while I and s turn 
much more slowly around the resultant j. In general, the frequencies 
of these precessions will all be different and will be of an order of magni¬ 
tude quite distinct from that of the orbital frequency. If we write 
each term under the bar in equation (25) as a Fourier series, then on 
multiplying these series and averaging, all the terms will vanish, except 
the first one, which does not contain the time. This term is the product 
of the constant terms in these series, that is, the product of the average 
values of the individual series. This proves that the average in equation 

‘ ‘‘Zeemaneffekt,'' p. 74. 
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(25) is equal to the products of the averages of each of its factors. We 
write 2Ci for the average of Ttia^lr^. Further, 

cos (4s‘i) = li cos cos (sis) cos (Is). (26) 

Proof.—lifii cos is th(^ scalar i)ro(luct flj • si). Since the precession of I and 

8 around j is supposed to V)e slow compared with the precessions of the k and Si vectors, 
we may obtain a first approximation to this scalar product 
by calculating just as though I and s were fixed in space. 

P'igure 9 illustrates the case of two electrons. We resolve L 
int a component U cos (LI) parallel to I, and a component 

li sin (Id) perpendicular thereto: s, is resolved similarly. 
In the scalar product (b • Si), we write each vector as the 

sum of its two components. Multiplying out, we have the 

sum of four scalar products. Now, in taking the time 
average only the product (b cos (hi) • Si cos (si.s)) yields a 
finite contribution to the result, namely, the expression on 

the right of equation (26). This is true because the 

frequencies of the h and Si are supposed incomnunisurable. 

The cosine of the angle between the vc(*tors h sin (Id) 
and 8i cos (sis) is as often positive as it is n(‘gative; and 

similar statements may be made concerning the products 

(h cos (Id) ' St sin (sis)) and (b sin (Id) • s,sin Cs.s)), so that 

their time averages are zero. 

Summing over all the electrons, and remember¬ 
ing that Si is always *'^2, we have the total magnetic arrangements of h and 

« , 1 , vectors. 
energy of the atom: 

E = cos (ls)'£^Cdi cos (hi) cos (27) 
P 

When the sum in this equation does not depend materially on the relative 
orientations of I and s, we may replace it by its approximately constant 
value, C. Then, replacing cos (Is) by its value in terms of the sides of the 
triangle i, /, s, we have, 

E = hlica^C^— 

The new mechanics requires us to replace this formula by 

Fig. 9..Quantized 

E = hRca^C 
(j + M)" - (« + ’-0'^ - (« + + H 

2(s + 1^) ^ 

- 2(S + H)(l + H) 
(29) 

The difference of energy of two terms having the same I and s, but j’s 

which differ by unity, is, 

Ei - Ei^ ■ hRca^C 
(1 + W)(s'+ 

(30) 
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The linear dependence of this energy difference on j gives us the interval 
rule (Sec. 7), and consideration of the assumptions on which equation 
(30) is derived gives us insight into the physical conditions which exist 
when this rule is approximately fulfilled. Many interesting conclusions 
may be drawn from equation (27), such as the following: 

If we have two outer electrons, one of which is on an s orbit, the sum 
in equation (27) reduces to a single term, let us say C2I2 cos (s2s), and 

E = hRca^ cos (Zs)C2^2 cos (,s*2s). 

For a triplet, cos {s^s) takes the value +1, and therefore the interval 
between the outside levels of the triplet is 2hRcaK\l2, which is to say, 
the total spread of the triplet is the same as that of a doublet term 
of the same Z, and having the same effective total quantum number. 
This is often found to be the case. Other regularities which are pre¬ 
dicted by equation (27) have been studied by Bechert and Catalan.^ 

We come now to the explanation of inverted terms. A multiplet 
will be regular or inverted, according as the summation in equation (27) 
is positive or negative. Now for excited states in which the constants 
Ci may be quite different for the various outer electrons, the possibilities 
are numerous and complicated. Let us limit our attention, therefore, 
to the case of equivalent electrons, for which U = X and all the C/s are 
equal to a constant /c, let us say. If all the Si vectors are parallel, cos 
(SiS) is positive in every term of the summation of equation (27), and it 
reduces to k\^ cos (Id). But this sum must be positive, for there are 
more electrons with U in the direction of Z than in the opposite direction. 
This means that there cannot be inverted terms having the highest possible 
value of Sj that is, having a multiplicity greater by one than the number 
of equivalent electrons involved. Therefore, we must consider terms of 
lower multiplicity. Perhaps the simplest illustration is that of the 
lowest terms of the sixth group elements, O, Se, and Te. We need 
only consider the four p electrons of the outer shell. In discussing these 
terms, Slater assumed (Sec. 14) that the vectors are all either parallel 
or antiparallel to their resultant, no reason being given save that this 
supposition leads to correct results. Since we are dealing with triplet 
terms, three of the Si vectors must be parallel to 5, the fourth being 
antiparallel. Thus for three of the terms in the summation of equation 
(27), cos (sis) is positive, and for the fourth it is negative. Slater was 
able to show that for a simple vector model of this kind the resultant 
V of the k vectors which have their Si vectors parallel to 5, is conjugate 
to an angle variable, and must be a multiple of h/2'jr; and the same is 
true of Z", the resultant of the U vectors which have their vectors 
antiparallel to s. For the term under consideration, Z" = 1, since 
there is only one electron for which s* is antiparallel to s, but V may be 

^Z.Phynh, 37,658 (1926). 
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2, 1, or 0, and the whole problem is to find which of these possibilities 
actually occurs. Slater answered this question by making a new assump¬ 
tion—that Paulies exclusion principle applies separately to I' and V\ 

so that no state is allowed which would become a forbidden state by 
simply removing electrons from the atom. On this basis, the three 
electrons giving rise to V must form an allowed configuration for which 
5 = Looking at Table 10, we see that the only term of this kind is ^Sy 

so that V = 0. Thus, the sum in equation (27) reduces to a single term, 
— Cih cos iUl), and cos (hi) is unity because U = 1. Therefore, we 
have an inverted term. 

By applying the same method we can determine the nature of the 
lowest term in every case. So long as we are dealing with normal 
multiplet spectra, the result is as follows: Consider, first, an atom with 
an outer shell composed entirely of p electrons. If there are less than 
three of them, it is possiple to have terms for which the multiplicity is one 
greater than the number of electrons without violating Pauli’s principle 
(see Table 10). Since the energy of interaction of the .s,; vectors is 
ordinarily greater than that of the U vectors, these terms of highest 
multiplicity must be the lowest terms. As stated above, a term of the 
highest multiplicity must be regular. Now, if there are exactly three p 

electrons, we have a term, and if there are more p electrons we have 
= 0.^ From this it follows that all surviving terms of the summation 

of equation (27) are negative and we have inverted terms. Similar 
relations are encountered in the case of atoms which have only equivalent 
d electrons or equivalent / electrons. The general statement is this; 

In building an outer suhshell of equmilent electrons we have regular 

terms in the first half of the subperiodj an S term at the middlcy and inverted 

terms in the second half. 

To make this more concrete, we may say that regular terms are 
obtained from less than three p, five d, or seven / electrons, and so on. 

14. A DYNAMICAL MODEL FOR A COMPLEX ATOM 

In preceding sections we have made free use of a model in which 
the atom is replaced by a set of angular momentum vectors. Slater^ 
has made a thorough investigation of the motions in such a model on the 
basis of certain simplifying assumptions. Any one of the vectors is 
supposed to act on another with a torque which is proportional to the 
sine of the angle between them. To show that this assumption is a 
natural one, we may recall that under these circumstances the potential 

^ This follows because in the lowest term s must have as large a value as possible 

consistent with Pauli’s principle. The largest value of s is obtained when as many Si 
vectors as possible are in the direction of s; but when this is the case, on taking away 

the electrons with Si vectors antiparallel to a, we are left with a configuration giving 

rise to a term with V » 0, just as in the illustration dealing with sixth-group elements, 
88, 291 (1926), 
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energy of any pair of vectorn will be proportional to the cosine of the 
angle between them, just as in the case of two magnets. It may be well 
at this point to consider the .sign of the energy of such a pair of vectors. 
The fact that the alkali doublets are regular shows that the state of 
higher energy corresponds to the case in which I and s are parallel. Now, 
before the advent of the spinning electron, it was difficult to understand 
this as Breit^ first clearly pointed out. His argument is as follows: 

The vector s is supposed to represent the angular momentum of the 
kernel and is, therefore, localized, at least approximately, at the center 
of the atom. At the center there is a magnetic field H, due to the orbital 
revolution of the valence electron. If the magnetic moment of the 
kernel is y, and if makes an angle 0 with the din‘ction of H, the magnetic 
energy is —/u// cos 6. But when 1 and s are parallel, H and |i are parallel, 
so that the state of higher j should have the lower energy. This difficulty 
was abolished when it was found that s is located on the electron itself, as 
we may see by considering the calculations in Secs. 16 and 17 of Chap. V. 

The practical consequence for our discussion of Slater’s work is that 
we must choose the proper signs for the torques between the vectors 
in his rather abstract model, guided by our knowledge that the alkali 
doublets are regular, and by other pertinent facts. In order to restrict 
the discussion to normal rnultiplet spectra. Slater begins by assuming 
that the coupling of the 1 vectors among themselves, or of the s vectors 
among themselves, is strong compared to that between the Vs and s’s. 
In other words, the separation between multiplets is to be large compared 
with that between adjacent levels of a rnultiplet. It is assumed that the s 
vectors are all either parallel or antiparallel to their resultant. Further, 
the problem is simplified by the assumption that there is no torque 
between the 1 of one electron and the s of another. With these restric¬ 
tions, Slater obtains the motions of the vectors for a shell of equivalent 
electrons and for such a shell in combination with another non-equivalent 
electron. His method of attack is as follows: 

Suppose that p, is one vector and p, another. The torque exerted on p,- by 
p/ is proportional to the sine of the angle between, if the energy is proportional 
to the cosine. It is a vector, at right angles to p» and p,. That is, it can be 
written as a constant times the vector product: A,,[p*p,]. Taking the torque 
as the vector product of the force and the lever arm, it is readily verified that a 
positive Aii means that pi is being pulled toward py. The total torque on p* 
is then the sum of the torques from all other angular momentum vectors: 

The equation of motion for p, now is simply that the time rate of change of 
the angular momentum equals the torque acting: 

Sept. 16, 1923. 
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The law of action and reaction states that the reaction of p, on p*, i4y»(p,pil, is 
equal and opposite to the a(;tion of py on py, so that An = .lyy. 

The device used in solving the equations of motion of this type is 
very simple in principle. First, we neglect the interaction of the I's 
and s^s and consider the system of 1 vectors independently. As stated 
several times before, the motion of the Ts consists in a uniform rigid 
rotation around their resultant. The proof is very simple for the case 
of a shell of equivalent electrons: The constant An will be the same for 
(^ach pair of electrons and may be written as A. Then the ec|uation 
for h is, 

f - [MSI,I, 

where the summation sign indicates a vectorial sum which extends over 
all the electrons except the fth. Now the vector product, AfUt], is zero, 
and so it may be added to the right side of this equation, which becomes 

- Mil, (31) 

since = I. It is well known^ that when a vector is subject to a law 
of this kind, its motion is simply a uniform precession around the vector 
A\ with angular velocity Al, which we shall call Similarly, in the case 
of the s vectors, the whole system rotates around s with angular velocity 
Bs = o>«. Now we introduce a small coupling torque of the form 

in the equation for h, and a similar term in the equation for Sy. 
This causes a slow precession of both 1 and s around j. The detailed 
solution shows that small periodic terms of higher frequencies are also 
present in the motion; but still more important, it turns out that new 
quantities suitable for use as quantum integrals make their appearance. 
They are, 1', the vector sum of those ly’s which have Sy's parallel to s, and 
1", the vector sum of those 1,'s which have Sy^s antiparallel to s, so that 
1 = 1' + 1". To show that these vectors are suitable for quantization, 
we only need to prove that they are constant (except for quantities 
of the order of and this is easily carried through. The motion of the 
ly may be described as follows: Each ly processes with angular velocity 
o>i' about 1', or u>i" about 1", as the case may be; further V and 1" process 
about 1 with velocity wy, where 1 is a vector differing from 1 only by a 
quantity containing the first power of g; 1 has the interesting property 
of processing uniformly around j, although 1 does not. The energy of 

the atom is finally shown to be 

1 For example, see Page, ‘introduction to Theoretical Physics,” D. Van Nostrand 

Company, New York (1928). 
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By taking the derivative of E with respect to j we obtain the angular 
velocity of the precession around j, and co/, etc., can be obtained simi¬ 
larly (Chap. IV, Sec. 13). 

The results are more complicated when one non-equivalent electron 
is added to the atom, and they will not be quoted here. Further study of 
Slater's paper is recommended to anyone who wishes to appreciate the 
great value of the vector model in giving qualitative explanations of 
spectral phenomena. 

16. DETERMINATION OF THE SERIES LIMIT APPROACHED BY A 
MULTIPLET TERM 

Let us suppose that the total quantum number of one electron in an 
atom is adiabatically increased until it is very large. The state of the 
atom approaches that of a singly charged ion. In general, this ion will 
have a number of low-lying states, and we desire to know which one 
of these will be attained when the electron in question is completely 
removed. The answer depends on the nature of the multiplet level in 
which the atom was found when the process began. In some cases it is 
possible to examine this question experimentally by observing the 
behavior of individual terms of successive multiplets in a series. The 
simplest case would be that of the sharp or the diffuse series of an alkaline 
earth where the sequences head for the same wave number and the atom 
approaches the same ionic state regardlcvss of the j values of the terms 
through which it passes. The question involved here may be formulated 
as follows: 

Considering the case of two electrons solely to simplify the notation 
(a quite unimportant restriction), what is the correlation of the terms 
described by the quantum numbers 

hj hf Sly S2, Sy ly aud j (33) 

with the terms of the ion, described by the numbers 

^1) 

This question can be answered by the following artifice, introduced 
for the sole purpose of allowing us to use the results of Sec. 12 and others 
like them. If we expose the neutral atom to a strong magnetic field, 
we can follow in detail the way in which each term described by the 
quantum numbers of expression (33) gives rise to magnetic levels character¬ 
ized by certain sets of values of 

lly Sly ITlliy ^2) ^2j 

The atom will now occupy a state specified by a definite set of these 
quantum numbers; which one it occupies is of no significance. Now, 
with the field still applied, we take away the second electron, leaving 
an ion with the same values of ii, mn, and m«i. Finally, the field 
is removed, and we have the ion in the state hsiji which is approached 
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by the atom as a series limit when 712 is gradually increased. The physical 
principle involved here is very simple, but in practice the details of the 
correlation are complicated and we shall illustrate it by the simplest 
possible case, that of an atom with two electrons on p orbits. The prob¬ 
lem is attacked in reverse order. First we consult a table, showing the 
correlation of pairs of values of Zi, ji with pairs of values of mn, 

(Table 12 is an example.) We then begin the construction of the scheme 
shown in Table 14, writing down the chosen I values, and the possible 
mil and values. Now with each mzi, we can have mi2 = +1, 0, 
or —1, and for each of these possibilities there are two possible values 

Table 14.—Series Limits for Terms Arising from 2 /z-Electrons 

h U j\ fni-i I Terms 
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of w«2, namely and (It must be remembered that we are 
dealing with a case in which the electrons are not equivalent, and that 
Paulies rule does not apply.) We list all these cases, and form the result¬ 
ants, mi and Ma. These are the strong-field values of mi and Ms for the 
terms of the neutral atom arising from the ionic configuration Zi, ji. 

The first twelve lines of Table 14 give the m/ and values belonging 
to the magnetic levels of the neutral atom which arise from the ionic 
configuration Zi = 1, ji = ji; and the remainder of the table contains 
those coming from the ionic term Zi = 1, ji = The next problem is 
to pick out the field-free terms to which these magnetic levels belong. 
This is done in the following way: 

We know that the terms coming from two p electrons must be triplet 
and singlet S, P, and D, We construct Table 15 in precisely the same 
way in which Table 12 was obtained, to show the correlation of m/, nia 

pairs with the field-free terms of the neutral atom. 

Table 15.—Correlation of Field-free Tripi.et Terms with Strong-field 

Levels 

l).I 3 3 3 ' 2 2 3 i 1 2 3 i 1 2 3 ^ 1 2 3 

We see that the combination mi = 2, m., = 1, belongs only to the 
term. In Table 14 this combination stands only in the group of magnetic 
terms arising from the spark term Ji = ^^2- From inspection of Table 
15 we find that also gives rise to the combinations 1, 1; 0, 1; —1, 1; 
— 2, 1; —2, 0; and -2,-1. We strike all of these out of the table and 
turn our attention to '^1)2. Here we find that the highest magnetic level 
belonging to this term, namely that represented by the combination 
2, 0, is in the part of Table 14 belonging to the spark termyi = ji. 

Again we strike out all magnetic levels of and continue the process, 
first for the triplet and then for the singlet terms. At the end we see 
that four of the terms go to the limit ^Pi/,, namely ^^2, and ^Po*, 
the others approach the limit 

The principle by which such questions are attacked is now clear. 
It will be seen that the limits approached by inverted terms arising 
from two p electrons are different from those approached by regular terms 
of the same name. For a discussion of some of the difficulties which 
arise, in the case where the series electron is a p or d electron, we may 
refer to papers by Shenstone^ and Hund.* 

» Nature, 121, 619, and 122, 727 (1928). 

»Z, Physik, 52, 601 (1928). 
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16. RECIPROCITY THEOREMS 

Consider the energy levels of an atom in which one electron has been 
removed from a completed group, and (for simplicity) all other groups 
are closed. We have already considered such levels in our study of 
X-ray terms and it is our present purpose to generalize the remarks 
made in that section. 

For a closed group, 'LiUsp = 0 and = 0. If we remove an 
electron characterized by the numbers Zi, vin while the remaining 
electrons retain their numbers, the resultant m., and mi of the ionized 
group will be — and —mn. To every set of quantum numbers rii, Zi, 

mil of an atom with only one electron in the n-quantum group, there 
corresponds uniquely a set of numbers «i, Zi, — —mn characterizing 
an energy state of an atom in which that group lacks only the electron 
with numbers ?ii, Zi, m«i, mn. The generalization to the case where the 
group has lost r electrons is obvious and constitut(^s Paulies reciprocity 
theorem. In the absence of a strong external field a somewhat similar 
statement may be made, as we see from the fact that when the field is 
removed adiabatically the statistical weights of the various states are 
unaltered. However, the situation can be better appreciated from the 
following statement: For a closed group 1"Z = ICs = = 0. If an 
electron having numbers ni, Zi, ,s‘i, ji is removed the remainder is charac¬ 
terized by the numbers ?q, —Zi, —,s'i, —ji. Similarly, to every config¬ 
uration of r electrons of total quantum number n, characterized by the 
resultant numbers Z, .s, and i, there corresponds a configuration of 2n^ — r 

electrons occupying all the places left vacant by the r electrons and having 
the quantum numbers —Z, — .s, and — 

17. THE NORMAL STATES OF THE TRANSITION ELEMENTS 

The spectral characteristics of the lowest lying terms of the elements 
of the first and second transition groups are known from studieSi of 
the type described in the preceding sections and from these the number 
of electrons in each subshell can be determined. Figure 10a taken from 
Gibbs and White^ is a plot of lower lying terms corresponding to the 
different numbers of electrons in the 4, 1 and 3, 2 types of orbits in the 
elements from K to Cu, inclusive. The terms as given are referred 
to the term with one s electron and n — \ d electrons as zero, since the 
ionizing energies of these atoms are not known accurately, and therefore 
the more usual method of referring to the ion and electron as having 
zero energy cannot be used. The curves are designated by the number 
of d, s, and p electrons which combine to give the terms. There are 
usually many terms for each of these configurations; the plot shows the 
lowest term of each configuration. 

1 Proc. Nat. Acad. Sci., 14, 559 (1928). 
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The assignment of electrons to the subshells for the normal states 
is now evident. Ca, Sc, Ti, V, Mn, Fe, and Co have two valence electrons 
in the 4, 0 orbits and the remainder in 3, 2 orbits. Cr has one 4, 0 elec¬ 
tron and five 3, 2 electrons. The assignment in nickel is two 4, 0 and 
eight 3, 2 electrons, though the energy levels of this configuration and 
those of the configuration consisting of one 4, 0 electron and nine 3, 2 
electrons lie very close together. Figure 106 is a similar diagram for the 
second transition group and the electron configurations as given in Table 
3, Chap. IX follow from these curves. It is interesting to note the 

P^iG. 10a.—Plot of low terms of K to Cu, Fig. 10b.—Plot of low terms of Rb to Ag, 
inclusive, {Aflrr (Jihhs and U'hiU.) inclusive. {After Gibha and White.) 

similarity of these two sets of curves though they show that the normal 
states of the Fe, Co, Ni and Ru, Rh, Pd triads have quite different 
electron configurations. 
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CHAPTER XI 

SPECIAL TOPICS IN SPECTROSCOPY 

1. THE STARK EFFECT OF NON-HYDROGENIC ATOMS 

The Stark effect of non-hydrogenic atoms is qualitatively similar 
to that of hydrogeiiic atoms presented in Chap. V, Secs. 12 to 16. In 
weak electric fields the energy change of the atom is proportional to the 
square of the field strength, but in sufficiently high fields it becomes 
proportional to the first power of the field. This gradual transition 
from the second-ordc^r to the first-order effect occurs, in general, at much 
higher electric fields in the case of non-hydrogenic atoms than in the 
case of hydrogenic atoms. Further, it occurs at greater fields in the 
case of energy levels which differ by large amounts from the corresponding 
hydrogenic levels. In Chap. V, Sec. 14, we showed that the additional 
energy due to the external field is equal to the mean value of the perturba¬ 
tion term in the potential energy taken over the unperturbed orbit. 
This term is eFz, where z is the displacement of the electron from the 
nucleus in the direction of the field. The orbit of an electron uioving 
in a central field of force, which deviates from the inverse square law, 
is not closed, but processes in a plane. (In the hydrogenic atom, the 
precession is caused by the change of mass with velocity.) In the case 
of a processing orbit,.2: is as often positive as negative and the mean value 
of eFz is zero. Therefore, an energy term proportional to F is absent. 
The largest energy tejni must be secured by taking account of the small 
changes in the orbit and is proportional to F-. If the field is sufficiently 
large, it will displace the electron relative to the nucleus by an appreciable 
distance. If it is strong enough to suppress the precession, the energy 
term proportional to F becomes important and, in fact, much larger than 
that proportional to The smaller the quantum defect is, the less 
is the deviation from the inverse square field and the more easily is the 
electron displaced in the direction of the field; therefore, only those 
levels having small quantum defects will be expected to have large first- 
order Stark ^effects in electric fields which can be produced by present 

experimental methods. 
The effect of an electric field on the spectra of non-hydrogenic atoms 

has l)‘een investigated by Stark^ and his pupils,^ by Nyquist,® Talicindne 

1 Ann. i’fevsifc, 43, 965 (1914); 66, 677 (1!)18), 
®Leibekt, Ann. Physik, 66, 589 (1918). 
*Phys. Rev., 10, 226 (1917). 
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and Kokubu,^ Ishida,® and a number of other physicists. The most 
complete investigations of this kind are those of J. S. Foster^ on the He I 

spectrum, and of Foster and his colleagues 
on neon and the secondary spectrum 
of hydrogen. The work on helium is of 
special interest because Foster has also 
given the theoretical explanation using 
matrix mechanics. Figure 1 is a repro¬ 
duction of one of Foster’s photographs 
showing the Stark effect components 
of the 2^P - 4T, 2^P - 4ii), and 2^P - 
4^F lines, for which he used a modi¬ 
fied Lo Surdo^ tube as a source. The 
polarizations are marked at the side of 
the two figures. In the case of a maxi¬ 
mum field of 44.5 kilovolts per cen¬ 
timeter the corresponding maximum 
displacements of the 2^P — parallel 
components are 15.5 and 16.8 cm.-^ 
respectively, which gives the order of 
magnitude of the displacements secured. 

Table 1 classifies the various com¬ 
binations of field-free terms on the basis 
of the number of parallel (p) and per¬ 
pendicular (s) components observed in 
the field. It is always possible that 
the maximum number of components 

Fig. i.-8tark effect of helium lines. been observed, for their separa- 
{After J. s. Foster.) tions may be too small to be resolved. 

The ^P — transition has only one parallel and two perpendicular 
components according to Foster’s experiments'(Fig. 1), and therefore 

Table 1 

pis H H % 

Term combinations. ^S - hS 
_ ZJg 

IS - ip 

i ip - hS 

ip _ ip 
sp _ ip 

»P - »/>(?) 

ip ^ 1/) 

^P - W(?) 
ip - 1P(?) 
zp ^ ip 

^ Takamine, Astrophys. 60, 23 (1919); Takamine and Koktjbtj, Mem. Coll. 

Sci.f Kyoto, 8, 276 (1919). 
* Nature, 122, 277 (1928). 
^Proc. Roy, Soc. 114, 47 (1927); 117, 137 (1927); Sea also Fujioka, Inst, of Phys. 

and Chem. Res., 181, Toklo, (1929). 
* See Foster’s original article for the experimental details, and Chap. V Fig. 10. 
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does not belong in any column of Table 1. Theoretically, it belongs 
in the % column and it is placed there for that reason. Similarly, 
the lines have two parallel and two perpendicular observed 
components though theoretically they belong to the % column. They 
have been placed in both columns and the uncertainty has been indicated 
by question marks. 

Figure 2 is the theoretical energy-level diagram calculated by Foster 
for the transitions from the levels of total quantum number 4 to those 
of total quantum number 2. The arrows indicate the permitted trans- 

ti6h urn Hydrogen 

r-0 F^IOOKVcrrf^ 

Fig. 2.—Energy diagram for Stark effect of helium. 

itions; the perpendicular components Am = ±1 are indicated by broken 
lines and parallel components, Am = 0, by solid lines. At the right 
we show the energy diagram of the corresponding levels of hydrogen 
calculated from equation (70) of Chap. V; the broken connecting lines 
show the correlations between the levels of the two atoms.^ The formulas 
for the energy levels of helium are not simple and the calculation can be 
made only by the perturbation methods of quantum mechanics. The 
diagram shows the number of parallel and perpendicular components 
to be expected and the agreement with the experimental data of Table 
1 is complete except for the P — and P -* combinations as already 
mentioned. Moreover, the theoretical values agree quantitatively with 
the observed displacements. 

Similar patterns are to be expected in the case of atoms of higher 
atomic number. It is to be noted, however, that large effects are secured 
only when the orbits do not penetrate the kernel. In lines belonging 
to a diffuse series, it often happens that almost the entire displacement 
of a Stark effect component is due to the D term, Conversely, in a 

1 See Kramehs, Z, Physik^ 3, 199 (1920), 
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sharp series, for which the initial states correspond to penetrating S 

orbits, the final P term may contribute most of the displacement. This 
is well illustrated by the work of Foster and Rowles^ on neon. As for 
non-penetrating orbits, they find that the displacements D of the diffuse 
terms of neon in theoretically low fields are well represented by Z) == ,a — 
hxy where a and h are constants and x is the wave-number difference 
between the field-free term and the corresponding hydrogen term. 

In this element most of the patterns of the sharp, diffuse, and com¬ 
bination lines are identical with those observed by Foster in parhelium. 
Foster and Rowles observed a phenomenon like the Paschcn-Back 
effect for a number of neon lines. At sufficiently high fields the various 
levels of a multiple term fuse together, yielding an unsymmetrical Stark 
effect. Now, the electric field brings out new lines corresponding to 
violations of the azimuthal selection rule (Sec. 2) and the group of Stark 
patterns, belonging to a group of such lines, shows a symmetry like that 
encountered in the Paschen-Back effect. 

The quadratic Stark effect of the sodium D lintis was studied in 
absorption by Ladenburg.- At a field strength of 160,000 volts per 
centimeter, the 2)-components for the two lines were displaced to the red 
about 0.025 A. The s-component of — 2'^Py, is shifted a similar 
amount, but that of — 2‘^P^ is displaced by a smaller amount. 
Grotrian^ has found that the second and third members of the sodium 
principal series are displaced to the violet. Grotrian and Rarnsauer^ 
studied the principal series of potassium, and found that their results 
agree well with a theory of Becker^ as extended by Thomas. 

Ions, which are present under the more common experimental 
conditions used for exciting atoms, may cause a Stark effect of the lines 
emitted by atoms in their neighborhood. The ionic fields, in which 
the atom finds itself, are not homogeneous and vary with time. The 
net effect is to broaden the line emitted by the many atoms in diffei;ent 
fields. This is certainly one cause for the diffuse character of certain 
lines. The sharp series lines, so called because of their narrowness, are 
emitted by transitions between two penetrating orbits, which are very 
slightly affected by electric fields; the diffuse series line, on the other 
hand, are broad because the initial non-penetrating D orbits are strongly 
affected by electric fields of neighboring ions, Holtzmark^ has used such 

1 Pfoc, Roy, Soc.y 123, 80 (1929), The Stark effect in neon was studied also by 
Ntquist, Pkys. Rev,^ 10, 226 (1917). 

2 Phynih, Z,y 22, 549 (1921); Z, Physiky 28, 51 (1924). 

»Z, Physik, 49, 541 (1928). 

*Phy8ikZ.y 28,846 (1927). ' 

5 Z, Phyaik, 9, 332 (1922). 

«Z, Phyaiky 34, 586 (1925). 

’ Ann, Phyaiky 58, 577 (1919); Phyaik, Z,y 25, 73 (1924). 
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considerations in calculating the observed widths of spectral lines and 
obtained good agreement with experimental values, while Hulburt^ 
has discussed the broadening of the Balmer lines from a similar point 
of view. 

In the derivation of the formula for the first-order Stark effect of 
hydrogenic atoms in Chap. V, Sec. 12, we found that the dynamical 
problem is separable in parabolic coordinates 77, and that the limits of 
libration are secured by setting cubic expressions in and r/^ equal to 
zero, and solving these equations. Only two roots were considered, 
namely, those of importance when the field intensity F is small. The 
third root leads to significant solutions, when F is large, as in the cases 
considered in this section, and when the electron is on an orbit of high 
total quantum number. Robertson and Dewey^ have considered the 
limitations of the derivation more closely and find, that non-periodic 
orbits with negative energy can exist. Thus, no quantizable orbits 

exist whose energy is greater than 

8/ me 

9V(3^) 

2y nC- ) 
and then only, if < 

This means that with sufficiently large fields and angular 

momenta, continuous energy states with negative energy are possible. 
The same conclusions can be drawn in the case of non-hydrogenic atoms. 

It is well known that the continuous spectra usually found on the 
shorter wave-length side of the series limits extend in many cases well 
to the long wave-length side of these limits. This continuous spectrum is 
due to the recombination of electrons and ions. The minimum energy 
available for emission is the energy of recombination of an electron and ion 
at rest relative to each other to form an atom in a quantized state; this 
energy is that of the series limit. Oldenberg^ suggested that this exten¬ 
sion of the continuous spectrum into the longer wave lengths might be 
due to a Stark effect displacement of the series limits. Robertson and 
Dewey show that the existence of continuous energy states with energy 
less than zero as required by their theory accounts for the overlapping 
of the continuous and discrete spectra, assuming that the Stark effect 
is due to neighboring ions present under the conditions of excitation. 
Mohler's recombination spectra, described in Chap. XIII, Sec. 6, and 
illustrated by Fig. 14R, Chap. XIII, were taken under just such con¬ 
ditions and illustrate the effect very well. Sharp lines also appear along 
with the continuous spectrum, probably because many atoms radiate 
at considerable distances from ions and thus have sharply quantized 

energy states. 

^ Astrophys, J.^ 56, 399 (1922); and 69, 177 (1924); Phys, Rev.f 22, 24 (1923). 

2 Phys. Rev., 31, 973 (1928). 
Pkysik, 41, 1 (1927). 
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2. EXCEPTIONS TO SELECTION PRINCIPLES 

In our study of the Stark effect (Sec. 1) we saw i.hat the seU^ctioTk 
rule for the azimuthal number breaks down if a strong electric field is 
present. As pointed out above, atoms may be subjected to (electric 
fields of other atoms or ions under the usual conditions of excitation, 
and therefore derivations of selection rules for isolated atoms based 
on the correspondence principle, which are qualitative at best, or by 
means of the new mechanics, may not be applicable. 

As a general rule, violations of the azimuthal selection principle 
alone are quite frequent. Cases where and Aj both take anomalous 
values are less often encountered but are still numerous, but violations 
of the rule for Aj alone are very rare and it is especially hard to pro¬ 
duce lines for which j is zero in both the initial and final orbits. 

Leaving the effect of external magnetic and electric fields out of 
account, let us discuss the exceptions which occur in ordinary spectro¬ 
scopic practice. The production of forbidden lines is usually more 
difficult, the greater the amount by which Al or Aj deviates from the 
prescribed values. In the tables there are many instances of series 
such BiS P — P, S — Dy and P — F. There are only a few instances, 
however, in which it was definitely proved that the applied potential, 
or the fields of ions and electrons in the discharge are not responsible 
for or at any rate connected with the production of the lines. Foote, 
Meggers, and Mohler’^ observed the potassium lines 
in the low voltage arc, in a space which was shielded from the applied 
potential of 7 volts. This observation was made at rather high currents, 
but the line was also found by Mohler^ with a current density of the 
order of amperes per cm.^ Datta** obtained the first two members 
of this series in absorption at a vapor pressure of 2}<2 mm. At this 
pressure, lines due to the potassium atom were very sharp, but this 
does not indicate that breakdown of the selection rule is not due to the 
fields of neighboring atoms. It is in accord with our knowledge of the 
effect of weak fields on atoms to assume that even in this case inter- 
molecular fields are responsible. 

In many cases, violations of the selection rule for I are necessarily 
accompanied by failure of the rule for j. Hansen, Takamine, and 
Werner^ obtained mercury lines for which Al = S in the condensed 
discharge. For metals of Group 2, all lines ending on P orbits for which 
AZ ^ 4 involve a violation of the rule for j. Fukuda, Kuyama, and 
Uchida® excited Zn and Cd lines which violate both rules by the use of 
heavy currents in the vacuum arc at only 30 volts. 

1 Astrophys. J., 66, 145 (1922); PhU, Mag,, 48, 659 (1922). 
* Sci. Papers, Bureau of Standards, 20, 167 (1925). 
»Proc. Roy, Soc,, 101, 539 (1922). 
* Del KgL Danake Viiknakaberriea SeUkah, Math,-fya, MeddeleUer, 6, 3 (1923). 
•Sci\ Paperst Iiist, Phys, Chem. Beaearoh, Tokyo, 4| 177 (1926). 



Sec. 2] EXCEPTION.^ TO StElEOTlON PRlJXCfPLES 340 

Hansen, Takamine, and Werner obtained P/So — 2^p2 of Hg in a con¬ 
densed discharge, but concluded that it cannot be produced by either a 
homogeneous electric or magnetic field alone. This line was obtained 
in Zn, Cd, and Hg by Foote, Takamine, and Chenault^ using a hot 
cathode arc having a low voltage gradient. Only in the case of Cd 
was it possible to excite VSo — 2^Po by this method. Finally, 
Fukuda^ obtained this line in both Cd and Hg by the use of a heavy 
condensed discharge in a Geissler tube with a narrow capillary, but 
was unable to excite the line in Zn except by using a high-current 
vacuum arc. 

Wood and Gaviola® have shown that this line of mercury is especially 
intense relative to lines which are not forbidden when Hg vapor is excited 
with its 2,536.7 A. line in the presence of nitrogen or water vapor. Colli¬ 
sions of the second kind (Chap. XIV) between nitrogen or water molecules 
and mercury atoms in the 2^Pi state are very effective in throwing the 
mercury atoms into the 2^Pq state, so that a high concentration of 
such atoms is secured. In this case no ions or electrons are present 
and the electric fields must be due to neutral atoms. It may be that 
transitions to the normal state occur only during collisions with other 
atoms. The line observed is sharp, however, so that, if such is the case, 
none of the energy of excitation appears as translational energy of the 
atoms; the Stark effect of the energy states involved would be small, 
because the electrons are moving in penetrating orbits. 

These violations of the selection rules are only apparent violations, 
if the radiating atoms are in high electric fields. In such fields the 
azimuthal number I is no longer a quantum number, for the quantum 
numbers of the field-free atom must be replaced by m, ni, and n2 of 
Chap. V, Sec. 12, and analogous numbers in the case of atoms with more 
than one valence electron. The selection rule is now Am == ±1, or 0. 
The j of the field-free atom must also be replaced by a number equal 
to the vector sum of m and s, and it is this number which must change 
by ± 1 or 0, instead of j. While for convenience we have spoken as 
though the selection rules for I and j break down in strong fields, this 
is not an accurate statement of the situation. The quantum numbers 
of the atom have changed and the selection rules apply to the new num¬ 
bers. The question is then whether or not the new rules are obeyed. 
In some of the experiments referred to above, high fields are present, 
and in these cases the violations of the rules are probably not real; 
but, in others, it would seem that the electric fields must be quite small 

and thus that true failures of the rules occur. 

1 Phy8, Eev.f 26, 166 (1925); see also Takamine and Fxjkuda, Phys. Rev., 26, 23 

(1926). 
* Sci, Papers, Inst. Phys. Chem. Research, Tokyo, 4, 171 (1926)., 
* Wood, Phil, Mag,, 4,466 (1927); Wood and Gaviola, ibid,, 6, 271 (1928). 
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Forbidden lines appear strongly in the spectra of certain nebulas, a 
discovery we owe to Bowen' and Fowler.^ Prior to their work, inkny 
lines in nebular spectra were of unknown origin and were often ascribed 
to elements unknown on earth. It is certain that only light elements 
occur in an extremely tenuous galactic nebula. The Balmer series of 
hydrogen and the spectrum of helium are prominent features of many 
nebular spectra and lines belonging to the spark spectra of carbon, 
oxygen, and nitrogen are also frequently found. Bowen has found 
that many of these unknown lines arise from transitions between metas¬ 
table states of ionized oxygen and nitrogen and their lower lying energy 
levels. Two strong nebular lines have the wave lengths 4,363.21 and 
7,325 A.; while the calculated wave lengths for the transitions ’D2 kS'o 
of (>2+ and of 0^+ are 4,362.54 and 7,326.2, respectively; the 
agreement is within the limits of error of the calculated values. The 
strong nebular lines at 5,006.84 and 4,958.91, known respectively as 
the iVi and N2 lines, have a wave number separation of 193 cm.“', which 
agrees with the separation of ^Pi — ^P2 of namely, 192 cm.~'. This 
quite certainly identifies these lines as due to the ^P2 — 'P2 and ^Pi — 'Po 
transitions of this ion. Similarly, the 6,583.6 and 6,548.1 A. nebular 
lines are emitted in the analogous transitions of In all these trans¬ 
itions the Vs of the individual electrons remain unchanged, in violation 
of the selection principle stated in Chap. X, Sec. 3. The 'P2 — 'S,, 
transition of is also a violation of the selection principle for j. On 
the other hand, the line due to the transition '^Po — 'P2 of 0^"^ is not 
observed. Intercombination lines of this type are comparatively rare 
and weak^ in the case of these light elements. 

These lines appear in nebulas having a density of about or 
10-18 grams per cm.^ For an atom of oxygen or nitrogen in a gas of 
this density and at the probable temperatures of nebulas (10® to 10® 
degrees) the mean free path will be of the order of 10® kilometers and 
the mean free time 10® or more seconds. A metastable atom may radiate 
spontaneously in these long times and this accounts for the appearance 
of forbidden lines in nebulas. The presence of lines of unknown origin 
in the solar corona led to the assumption of a new element, coronitjim. 
This too will probably find its explanation in forbidden transition® of 
elements present in the corona, 

8. FINE STRUCTURES OF SPECTRAL LINES 

Shortly after Michelson constructed his interferometer, he discovered 
by its aid that some spectral lines have a complex structure. Since that 

1 Nature, 120, 473 (1927); Astrophys, /., 67, 1 (1928). 
* Nature, 120, 617 (1927). 
* Croze and Mihul, Comptes Rendue, 185, 702 (1927); Fowler, Nature, 120, 617 

(1927). 
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time the structure of many lines has been investigated with spectroscopes 
of high resolving power, such as the Lummer-Gehrcke plate and the 
Fabry-Perot etalon. In some cases, the lines of a multiple! lie so close 
together that they are referred to as a single complex line. Such is the 
case with the line 5,876 A. of helium, for example. However, we are 
concerned here with the structure of individual lines of a multiplet, 
which is not predicted by the theories of Chap. X, and which is often 
referred to as hyper-fine structure to distinguish it from multiplet struc¬ 
ture. To illustrate the type of results which are obtained, let us consider 
the fine structure of the 2,537 Hg line as measured by Wood^ and later 
by Macnair.2 Earlier investigators had reported a structure which 
differs considerably from that recorded here, due to self-reversal of the 
components and false lines produced by the spectroscopes employed. 
It is now certain that the line consists of five components, as follows: 

om 0BZ 
f- 

\om 
jl 

T 
0.397 

ZOMO 

— 25.6, —10.3, 0.0, +11.6, and +22.1 milli-Angstroms. 

It is customary to use the milli- 
Angstrom and one-thousandth of 
the reciprocal centimeter in dealing 
with fine structures. 

Much of the earlier data on fine 
structures is untrustworthy for ex¬ 
perimental reasons. They have 
been studied by Joos’"^ and by Ruark 
and Chenault,*^ who showed that fine 
structures of the spectral terms are 
responsible for the fine structures 
of the lines. A fine quantum num-- 

beVj /, was introduced to distinguish the various levels of a complex 
spectral term, and showed that in some cases this quantum number obeys 
the selection rule A/ = ±1 or 0. Kimura^^has analyzed a number of 
terms of thallium, using the data of Back® and of Mohammad and 
Mathur.^ He was able to explain the observed pattern on the basis 
of th% above rule, together with the restriction that transitions between 
levels for which / = 0 are forbidden. A fine-structure energy diagram 
for the three cadmium lines at 5,085, 4,799, and 4,678 A. is shown in,Fig. 3, 
taken from a paper by Macnair.* The phenomena of fine structures 
are extremely varied, and it is perhaps impossible to explain all of them 

Fig. 3.- “Energy diagram for fine structures 
of three cadmium lines. 

1 Phil Mag., 60, 761 (1925). 
»Proc. Nat. Acad. Sci., 13, 430 (1927). 
‘Physik. Z., 26, 380 (1925). 
* Pha. Mag., 60, 937 (1925). 
* Sd. Papers, Inst. Phys. and Cliem. Research, Tokyo, 9, 61 (1928). 
* 4nn. Pfti/nfc, 70, 333 (1923). 
'Pha. Mag., 6, 1111 (1928). 
*PhxL Mag., 2, 613 (1926). 
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by the use of a single principle. Nagaoka, Sugiura, and Mishima’ 
suggested that the various components of a spectral line are emitted by 
different isotopes. It seems, however, that this is generally not the case. 
Fine structures are found both in elements which consist of a mixture 
of isotopes and those which do not. To be sure, there are changes in 
atomic spectra due to variations in the mass of the nucleus. Aronberg® 
showed that the wave lengths of 4,058 A. obtained from ordinary lead 
and from radio lead are different by 0.0044 A., and Merton^ measured 
shifts of the same order of magnitude for 4,058 A. and other lead lines. 

Pauli^ suggested that the origin of the fine structures may be explained 
by assuming that the nucleus possesses angular momentum and magnetic 
moment. It may be well to point out that if the angular momentum 
is of the order of /i/27r, the magnetic moment is much smaller than one 
Bohr magneton. The ratio of magnetic moment to angular momentum 
contains the mass in the denominator and, therefore, the magnetic 
moment of a nucleus of mass M will be of the order of m/M Bohr mag¬ 
netons, m being the mass of the electron. This assumption leads to 
frequency differences of the proper order of magnitude. If it is further 
assumed that the relative motion of the electronic and nuclear structures 
is a uniform precession around the vector representing the total impulse 
moment of the atom, a simple theory of the possible quantized states 
leads us to expect that complex levels will resemble tiny multiplet levels, 
which is sometimes true, but not always. Pauli states that these assump¬ 
tions as to the origin of satellites require that in an external magnetic 
field they should undergo a transformation. In weak fields they should 
have a new and perhaps complicated Zeeman pattern, which should 
change, in stronger fields, into the anomalous Zeeman pattern appropriate 
to the spectral line in question. There are data which are in good 
qualitative agreement with these predictions. In particular, the Zeeman 
patterns of certain complex mercury lines show a behavior like that 
predicted above.^ Further evidence in favor of Pauli’s hypothesis 
has been obtained by Goudsmit and Back® in a study of the fine structures 
of bismuth lines. They conclude that the fine quantum number is to be 
interpreted as the resultant impulse moment of both the nucleus and the 

9 h 
electron shells, and find the value ^ 2^ moment of the bismuth 

nucleus. There is nothing impossible about this value, considering 
the high atomic number of bismuth. While Pauli's hypothesis seems 

' Japanese J, Phps.j 8, Nos. 6~10 (1923). 
* Aatrophys, </., 47, 96 (1918). 
^Proc, Roy. Soc., 96, 388 (1920). 
^ Naturwis., 19, 741 (1927). 
* Data of Nagaoka and Takamine, PhU, Mag., 27, 333 (1914) and 89, 241 (1915); 

analysed by Ruakk, PhU. Mag., 61,977 (1925). 
(1927). 
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likely to be of very general application, it may not be amiss to point 
out some of the difficulties which confront it. Fine structures are quite 
capricious in their occurrence, and analogous elements do not have similar 
fine structures. Chopper and silver, cadmium and mercury offer good 
illustrations. Further, we should anticipate that different isotopes 
of an element would have different nuclear moments, and therefore would 
have different fine structures. Data which bear on this point are few 
in number. Jenkins^ compared the spectra of ordinary Hg and Cl 
with those of samples in which certain isotopes were enriched. In 
the case of mercury, the proportions of isotopes 198 and 204 in these 
samples differed by about 20 and 27 per cent from their normal values, 
respectively. No wave-length shifts greater than 3 • 10“"* A. were 
observed in the lines 5,461, 4,358, 4-,078 and 4,047 A.; and the relative 
intensities of the satellites were visually identical. In the case of chlorine 
the two specimens differed by 0.097 atomic-weight units, and distinct 
evidence of wave-length shifts was obtained. The chlorine lines exam¬ 
ined probably have no satellites. 

With few exceptions, elements which have abundant fine structures 
lie in those parts of the periodic table in which either the valence shell 
or the next underlying shell is well on its way to completion. It is 
worthy of note that nearly one-fifth of the lines of lanthanum have fine 
structures, which have been studied by Meggers and Burns.^ 

4. THE POLARIZATION OF RESONANCE RADIATION 

Wood and Ellett^ observed that the resonance radiation of mercury 
and sodium is polarized, and that this polarization is related to the 
plane of polarization of the exciting light and is changed by a magnetic 
field. Figures 4 and 5 show the experimental results of Wood and 
Ellett,^ except that the angle of 54° for zero polarization in Fig. 5 is 
that obtained by Hanle^ and by Ellett in his later work, instead of 45° 
originally reported by the former authors. The incident light comes 
from the left in the direction of the Z-axis; its electric vector is shown 
by arrows. The direction of the magnetic field H is indicated by an 
arrow and the polarization of the light observed along the axes is shown 
by crossed double-headed arrows which are not drawn to scale, and by 
the percentage of polarization. This is defined as 

P = 
“V J 8 

> Nature, 117, 893 (1926); Phys. Ren., 29, 60 (1927). 
2/. O. S. 14, 449 (1927). 
>Phys. Rev., 24, 243 (1924). 
* Wood a.nd Ellett, loc. cil.,* Ellett, J. 0. S. A., 10, 427 (1925). 

‘ Z. Pftysifc, 80, 93 (1924). 
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where Ip and are the intensities of the components parallel and per¬ 
pendicular to the magnetic field respectively, or, in the absence of the 
field, of the two components referred to the axes as shown. This polar¬ 
ization changes in most cases with the field intensity and the recorded 
values are the maximum polarizations observed. In the case of the 
mercury 2,536.7 A. line the maximum is reached at a few gauss, and 

PiCakultxhd) 6.B 33.3 0 0 0 33.3 33.3 

FCCakuMed) 6.2 3J.3 /^-3 U.5 SO 0 33.3 0 

Fig. 4.—Polarization of Resonance Radiation of Sodium. 

P(Cakulahd)0 tOO 100 0 
PCObsertredi) 0 60 60 0 

P(Ob$eryed) SO </ 60 SO 0 
P(Calcu!afed) 100 0 100 100 0 

Fig. 5.—Polarization of Resonance Radiation of Mercury. 

in the case of the sodium D lines at 60 gauss; higher fields do not change 
the polarization. The experimental errors are fairly large and within 
,the limits of these errors the results of Wood and Ellett are in substantial 
agreement with other work by Hanie and by Gaviola and Pringsheim.^ 

The theory of this effect was developed by Breit,^ Pringsheim,^ 
Joos/ Gaviola and Pringsheim (ioc. cit,) and Van Vleck,® following 

1 Z. Physik, 24, 24 (1924). 
^Pha. Mag., 47, 832 (1924). 
^Naturwis., 12, 247 (1924); Z. Physik, 23, 324 (1924). 
«Physik. Z., 2C, 130, 298, 400 (1924). 
® Proe. NcU. Acad. Set., 11, 612 (1926). Van Vleck has applied more recent inten¬ 

sity rules for the Zeeman components of the two D-lines to the previous calculations 
and it is largely his numerical results that are quoted here. 
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somewhat the suggestions of Foote, Ruark, and Mohler^ and Hanle.^ 
Since most of the observations have been made for the cases in which the 
magnetic field is zero or lies in the plane defined by the electric vector 
and the direction of the incident light, i.e,, the XY plane (Fig. 4), we 
shall develop the theory for this case only. The other cases are handled 
quite simply by similar methods. 

Let the angle between the direction of the electric vector and that 
of the magnetic field be 6. The magnetic field is assumed to- be suf¬ 
ficiently intense to orient the atoms and to split the lines into parallel 
and perpendicular Zeeman‘Components, but it must not be sufficiently 
intense to change the energy levels to such an extent that the outside 
Zeeman components fail to fall within the band of frequencies covered 
by the exciting line. The probability of absorption of linearly polarized 
light by a parallel Zeeman component is proportional to the square 
of the electric vector component parallel to 
the direction of the magnetic field, that is 
cos^ 6, where E is the electric intensity of the 
light. The corresponding^^ circular oscil¬ 
lator which absorbs a perpendicular com¬ 
ponent can be resolved into two linear 
oscillators at right angles to each other as 
shown in Fig. 6. The one oscillator is per¬ 
pendicular to E and, therefore, the prob¬ 
ability for the absorption of the linear light by this component is zero; 
the probability of absorption by the other is proportional to E^ sin^ 6. 

It is necessary to consider the relative probability of absorption 
by the corresponding linear and circular oscillators. The so-called 
principle of spectroscopic stability is a statement of the experimental 
fact that the percentage of polarization and the total intensity of the 
light emitted by a gas excited isotropically or absorbed by a gas' do not 
change when a magnetic field is applied. With isotropic excitation 
the sums of the intensities of the parallel oomponents and of the circular 
components viewed perpendicular to the field must be equal a'lid the 
sum of the intensities of all components when viewed perpendicular 
to the field must be equal to the sum of the intensities of the circular 
components viewed parallel to the field. This requires that the intensity 
of the circular components viewed parallel to the field must be twice 
that of the same components viewed perpendicular to the field.' inte¬ 
gration of the intensities over all directions in space shows that the total 
energy emitted by the circular components in all directions is twice 
the energy emitted by the parallel components in all directions so that 
the sum of all the probabilities of spontaneous transition for the circular 

I/, 0. .S'. 4., 7, 416 (1923). 

* Naturms., 11, 690 (1923). 

Fio. 6. 
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components must be twice the same sum for the parallel components. 
Obviously, the same relations must hold for the probabilities of absorption 
of unpolarized light. ^ 

Let Ai and a* be the probabilities of spontaneous emission in all 
directions in transitions from the 2th excited Zeeman level for the per¬ 
pendicular and parallel components, respectively. There is at most 
only one such perpendicular component and one such parallel component 
in the cases we are considering. Then, because of the requirements of 
spectroscopic stability just considered, the probabilities of absorption 
of unpolarized light from a direction perpendicular to the field, by the 
tth parallel and perpendicular components are a, and respectively, 
and taking account of the factors cos^ 6 and sin^ S arising, from the use 
of plane polarized light with angle 0 between the electric vector and the 
magnetic field, the probability of exciting the 2th level is proportional to 

cos- 6 + Bin^ 6. (2) 

To see how the polarization of the emitted light may be obtaint'd, 
we shall consider a representative case. The magnetic energy levels of 
the VSyi — transitions of sodium are as given in Fig. 7. The 
relative probabilities of emission A or a, and the relative intensities / of 
the various Zeeman lines when viewed in a direction perpendicular to the 
magnetic field are indicated beneath the diagrams (Chap. XX). Sub¬ 
stituting the values of Ai and ai in expression (2), we get the probability 
of exciting an atom to the 2th state. If the states with m == ± 
are exqited, the atom can return to a lower level by one transition only, 
but in the case of all other excited levels there are two such transitions. 
To secure the resultant probability of the return to a lower level by one 
route, we divide the emission probability (either Ai or ai) by Ai + 
and multiply by the probability of excitation of the higher level. In 
the case of perpendicular components we must multiply by Yi to get 
thIJ intensity as compared to the parallel components, for the reasons 

^ The requirements of the principle of spectroscopic stability are readily derived 
for the case of classical linear oscillators. Three linear oscillators of unit amplitude 
oriented parallel to the X-, K-, and Z-axes, respectively will emit unpolarized light with 
equal intensity in all directions. In the presence of a magnetic field parallel to the 
^-axis, the motion of the three oscillators will be changed as follows: (1) the linear 
oscillator parallel to the field will be unchanged; (2) each of the other two oscillators 
will be split into right and left circularly polarized components of amplitude ]4- 
The* total emission of the linear component is proportional to 1* and the intensity of 
light emitted by this component perpendicular to the Z direction is also proportional 
to 1*. Each circular oscillator may be resolved into two linear oscillators with ampli» 
tude yii emission of each of these is proportional to making the total 
intensity due to all circular components proportional to 2. Similarly, the intensity 
of each circular component viewed perpendicular to the field is proportional to Kr 
and the intensity of each circular component viewed parallel to the field is proportional 
to 1. Thus the requirements of spectroscopic stability are met. 
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given in the preceding paragraph. The intensities of the light due to all 
transitions polarized parallel and perpendicular to the field are, therefore, 

/p a . ^ (a, cos* 6 + sin* d)E^, 
<Ai “T (Z* Z 

/, 0=2 ^ ^ a ® 

The percentage of polarization secured by substituting the numerical 
values of the .d.’s and a,’s and simplifying is 

P = ioo('~ ^\ 
/p + /« 3 -f- cos^ 6 (4j 
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Fig. 1.-—^Magnetic energy levels of sodium. 

% 

This is the polarization at all azimuths in the plane perpendicular to 
the direction of II. The angle for zero polarization is secured by setting 
this expression equal to zero. This gives 

cos* 6 = e = 54.7°. 

The polarizations calculated from this formula for the cases for which 
it applies are given in Fig. 4. The calculation for the case when H is 
perpendicular to E and to the direction of illumination is made by exactly 
similar methods, with the results given in the figure. In this case the 
parallel components are not absorbed. The calculation for the case of 
zero field has been made by using an assumption due to Breit, namely, 
by calculating the average effect of magnetic fields oriented at random. 
The value for the case of unpolarized light is obtained by combining 
the results for two beams linearly polarized at right angles to each other. 

The agreement between calculated and observed values is quite 
close, but not exact, and seems to be outside the experimental limits 
of error. All known sources of error cause depolarization. Such is 
the effect, for example, of foreign gas, and of divergence of the exciting 
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and the excited beams. In fact, the observed values are all too small, 
except that determined in zero magnetic field. 

•The 2,536.7 1. resonance radiation of mercury is almost completely 
polarized in the absence of a magnetic field and it may safely be assumed 
that the deviation from complete polarization is due to unavoidable 
experimental difficulties. The polarization does not change when a field 
is applied parallel to the electric vector of the exciting light; this is in 
marked contrast to the behavior of sodium. This line is split by a 
magnetic field into two perpendicular components and one parallel 
component. The levels are given in Fig. 8. If the field is in the direction 
of the electric vector only the parallel component is excited, the atoms 
are raised only to the upper magnetic level m — 0, and only the parallel 

component should be emitted; that is, the 
light emitted should be completely polarized 
parallel to the field, in good agreement with the 
observed value of 90 per cent. If the field is 
parallel to the direction of the exciting beam, 
or perpendicular to both this direction and the 
electric vectot, only the perpendicular com¬ 
ponents should be excited and emitted and 
the light should be unpolarized when viewed 
along the field. This is in agreement with 
experiment. Further it should be completely 

polarized perpendicular to the field when viewed perpendicular to the 
field, but the ob.served percentage of polarization is only 60 per cent. 
The semi-classical method of calculating the polarization in the absence 
of the field used in the case of sodium resonance does not agree with 
the observed value of 90 per cent. Heisenberg^ suggested that the polar¬ 
ization should not change when a magnetic field is applied parallel to 
the electric vector of the exciting light. This appears to be correct 
in the case of the mercury 2,536.7 A. line, but not for the D-lines of 
sodium. The depolarization angle for mercury should be 54.7°, as in 
the case of the sodium D-lines, while Hanle obtained 54°. 

A weak magnetic field perpendicular to the electric vector and the 
direction of the illuminating beam might be expected at first sight to 
destroy the polarization of the (unresolved) light observed along the 
field, for with this, arrangement we are dealing with the longitudinal 
Zeeman effect. However, this is not the case. The polarization meas¬ 
ured relative to two axes to the electric vector and the direction 
of the incident beam, respectively, decreases with increasing field. Th^* 
explanation ie as follows. Tfie number of atoms of mercury in the 2®Pi 
state which radiate during the time ttot + dt after excitation is 

dN sa ^ANdt - •-ANQe’-^^dtf ' 

81, 617 (1925k 

tS.— Masnctic levels for 
X2.537 of Mercury. 



Sec. 4] THE POLARIZATION OF RESONANCE RADIATION 359 

and during the time t a linear oscillator attached to such an atom will 
be rotated by the field through an angle 

(f> — 

where g is Land^^s splitting factor and L the frequency of the Larmor 
precession. 

The intensities of the components along the two axes parallel and 
perpendicular to the electric vector of the incident light contributed 
by atoms radiating in the time dt are, 

dly = hvAN^e-^^ cos^ {2TgLt)dt, dl^ = kvANoe~^^ sin^ {27rgLt)dt. 

The percentage of polarization is 

The integrals are extended from t — 0 to t = ^ since at any instant 
we are observing the effect of all atoms previously excited. However, 
the plane of maximum polarization is displaced about the axis of the 
magnetic field in the direction of the Larmor precession. The angle ^ 
between the plane of maximum polarization in the presence of the field 
and that in its absence varies with the field according to the equation 

tan 2^ = (6a) 

and the percentage of polarization measured relative to axes parallel 
and perpendicular to the direction of maximum polarization is, 4 

where Po is the per cent polarization with zero field. ^ These formulas 
show that = 45° and P = 0 at // = oo. 

Equations (6a) and (66) can be derived in the following way. Let the 
angle (p{ = 2TrgLt) be the angle between the direction of polarization in 
the absence of the field and the direction of polarization of the light 
emitted by atoms emitting in the time t to t + dt and let ^ be the angle 
defining the direction of maximum polarization (as yet unknown). 
Then the components parallel and perpendicular to the direction of ^ are, 

hvAN^e"^^ cos^(^ — <p)dt, Is = I hvANoe-^* sin^ (<l> —(p)dt, 
two 

Then, " 

p (a cos 24> + 2 sin 2^)100 (66') 
ill + + 4 

* For the relations given here see Eldhidoe, Phys. Rev., 24, 234 (1924); Bbeit, 
J, 0, S, A., 10, 439 and 11, 465 (1925); and v. Kbussleb, Phys. Zeit., 27,313 (1926). 
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where a = kl2TrgL, By taking dP/d^ and setting this equal to zero, 
we secure a value for ^ which makes P a maximum and this gives (6a). 
Substitution of (6a) into (66') gives (66) with the factor Po = 100. In 
order to secure (66) for any value of Pq it is necessary to consider 
the contribution to In and 11 by other oscillators at right angles to the one 
considered, which must be present if Po is not 100. 

6. THE RAMAN EFFECT 

It has been known for many years that light is scattered without 
change of wave length by small particles suspended in a gas or liquid; 
this phenomenon is the so-called Tyndall effect." The fraction of the 
incident light which is scattered decreases rapidly with decreasing radius 
of the particle; the fraction is small in the case of molecules, but is still 
observable and constitutes a molecular" Tyndall effect. The scattered 
light is highly polarized perpendicular to the direction of the primary 
beam and is coherent. Its intensity varies as the inverse fourth power 
of the wave length, so that shorter wave lengths are scattered with much 
greater intensity than long wave lengths. Rayleigh first recognized 
that molecular scattering is the cause of diffuse daylight and that the 

. greater scattering in the shorter wave lengths causes the blue color of the 
sky. Kramers,’ in connection with his quantum theory of dispersion, 
predicted that the displaced frequencies, vo ± should appear in the 
scattered light in addition to the incident frequency, ro; here Vi represents 
one of the characteristic frequencies absorbed or emitted by the molecule. 
jlmekaP extended the argument of Compton and Epstein (Chap. Ill, 
Sec. 16) in regard to collisions between atoms or molecules and light 
quanta to include possible changes in the internal quantized energy. 
He suggested that the incident quantum might give up part of its energy 
to increase the internal energy, the remainder being scattered as a 
quantum of lower energy and therefore of lower frequency, or that energy 
might be added to the incident quantum and the scattered quantum 
might have a correspondingly greater energy and higher frequency. 

Raman* observed that such displaced frequencies do appear in 
scattered light. He found that this effect is shown by many liquids, 
by the gases CO2 and N2O under high pressure, and by transparent 
solids. The effect in the case of solids was discovered independently by 
Landsberg and Mandelstamm.^ This displaced radiation resembles 
the undisplaced radiation in several important respects. Its intensity 
follows the intensity of the undisplaced radiation rather closely in its 

^ Nature^ 113, 673 (1924); also Kbamers and Heisenberg, Nature^ 114, 310 
(1924). 

2 Naturwis.j 11, 873 (1923). 
* Indian Journal of Physics^ 2, 1 (1928). Discovered Feb. 28, 1928. 
* Naiurwis., 28, 557 (1928). 
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dependence on the wave length of the incident light. Some of the 
displaced lines are more highly polarized than the Tyndall scattering, 
but others are only slightly polarized. 

Raman and Krishnan’ and other investigators have studied the 
spectrum of the scattered light. The principal experimental difficulties 
are due to the vc^ry low intensity of the displaced light. The spectra 
contain the undisplaced lines of the incident light, new lines displaced 
mostly to the long wave-length side and also weaker lines displaced to 
shorter wave lengths. These lines are often referred to as the Stokes 
and anti-Stokes lines/' in analogy to similar lines in fluorescent spectra. 
Figure 9 is a rc^production of a photograph by Raman showing the 
spectrum of the light of the mercury arc scattered by carbon tetrachloride. 
The pattern is particularly clear in the neighborhood of the 4,358 A. line. 

Fits. 9.—Raman spectrum of CCU. {After Raman.) 

(There is a weaker line of the mercury arc at 4,347 A. whose Raman lines 
are so much fainter than those due to the 4,358 A. line that they are not 
observed.) There are four lines on either side of this line, those on 
the long wave-length side being decidedly more intense than those on the 
short wave-length side. Th(^ latter decrease in intensity as we go farther 
from the 4,358 A. line and in fact the fourth line is barely visible on the 
original. The displaced lines are usually quite sharp. Wood'^ has 
found that some of the displaced lines of benzene are only twice as 
broad as the exciting line. In other cases, the displaced lines are very 
broad. Figure 10 (also after Raman) shows such an effect in the case 

of water. 
Each line of the exciting spectrum is accompanied in the scattered 

spectrum by its own group of Raman lines and if the exciting spectrum 
contains many lines, the scattered spectrum is so complex that it is 
difficult to correlate the Raman lines with the correct exciting line. 

1 Indian Journal of Physics^ 2, 399 (1928). 
^ Private communication. 
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Wood^ has devised a method of excitation in which only the 3,888 A. 
line of helium is effective. A tube containing the scattering liquid is 
surrounded by a tube of nickel-oxide glass and then by a coiled helium 
discharge tube. The glass transmits only the 3,888 A. line and a few 
very weak lines in its neighborhood and the Raman lines observed are 
due to 3,888 alone. Figure 11 is a reproduction of the spectrum of 

Ity arc 

Hg arc 
scaffered 

Fig. 10.—Raman spectrum of water. {After Raman.) 

benzene secured in this way, using a high dispersion spectrograph and 
quite narrow slits. It will be noted that the spectrum is very simple 
and that the fainter displaced lines are very narrow. 

The phenomenological explanation of the Raman effect is that 
given by Smekal. The lines displaced toward longer wave lengths are 
due to quanta which have made inelastic collisions of the first kind with 
the molecules, while those displaced to the shorter wave lengths have 

9K 4^ 5*1 6 a ^u, 8M9UI0II 15 15 1713 50 
.2 .4 .6.8 1 A ^ 12 (4 161820254 

J .5 .5 .7 .9 .1 A A .7 .9.1.3.5.7.9 .5 .5 

9 50 50 80 
2025 40 60 100/4 

'7^^.B£NZeA/£ 

8153r37S5<3TS5l9 793l ^7 5 51 9 7 5 3 1 3 7 
8842 8642 8642 8642 8442 8642 8 « 

4500 4400 4300 4200 4100 4000 3900 

Fig. 11.—Raman spectrum of benzene excited by He 3888. {After Wood:) 

made collisions of the second kind with excited molecules, so that their 
energy has been added to that of the incident quantum; and, finally, the 
undisplaced line is due to quanta which have made elastic collisions. 
The Raman effect presents another good example of similarity between 
the behavior of light quanta and electrons (Chap. XXI). At ordinary 
temperatures only a small fraction of the molecules will possess energy 
associated with any degree of freedom for which the energy steps are 

^ Private communication. 
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more than a few times the mean thermal energy; thus, the anti-Stokes 
lines are less intense than the corresponding Stokes lines. For Stokes 
lines of about the same intensity, the intensity of the corresponding 
anti-Stokes lines decreases as the frequency difference between these 
lines and the exciting line increases. This is in agreement with observa¬ 
tion, as shown by Fig. 9.^ 

A comparison of the wave lengths of infra-red bands, calculated from 
the Raman displacements and observed in the infra-red, brings out some 
very striking facts. With few exceptions, the displaced Raman lines 
correspond to observed infra-red bands, but there seems to be little or no 
correlation between the relative intensities of the displaced lines and 
the intensities of the corresponding infra-red absorption bands. Thus 
benzene has a very strong absorption band at 9.75iu, toluene one at 
6.86/i, and chlorbenzene at 6.77^, while Pringsheim finds no evidence 
for any scatbired lines displaced by the corresponding frequencies. 
Moreover, the most intense Raman lines of these substances are displaced 
by frequencies corresponding to the 10.3, 10.2, and lO.O^u infra-red 
bands, respectively, and these are not the strongest infra-red bands of 
these substances, Pringsheim has further observed that cases in which 
the vibrational energy changes by 2viy Svj, . . . , are very rare. 

Langer^ and Rasetti*^ have given the following explanation of such 
peculiarities. Let v be the frequency of the incident light, and let vm 

be the frequency corresponding to a transition of the scattering molecule 
from state k to state Z. Further, let Akn and Ain be the amplitudes 
corresponding to the intensities of th(^ lines emitted in jumps from k to n, 
and from Z to n, respectively. Then it is a consequence of wave mechanics 
that the intensity of the Raman lines v ± vu is proportional to a sum 

of terms of the type 

AknAl n 
—\-1— h— 
Vkn ± y nn+ V 

{vki + vyK 

Thus, the Raman lines v ± m will appear only when we can find at 
least one level n such that both Akn and Ain are different from zero; 
that is, when there is at least one level with which both k and I can 

combine. 
These considerations show that we may have a Raman shift corre¬ 

sponding to an infra-red transition forbidden by the selection rules, so 
that we have the possibility of getting energy levels of molecules which 
cannot be detected in other ways. Langer has analyzed his data on 
the Raman effect in CCI4 from this point of view and finds excellent 

agreement. 

1 See also Pringsheim, Z. Physik, 60, 741 (1928). 
* Nature, 128,346 (1929). 
*jProc. Nat, Acad. Sei, 16, 234 (1929). 
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Rasetti^ has secured the displaced mercury lines scattered by CO 
and CO2 at atmospheric pressure. ("O gives a line displaced by the 
frequency of its infra-red band, while CO2 does not. Instead, the 
observed Raman line of CO2 is displaced by the difiference in frequency 
of two infra-red bands. McL(‘nnan and McL(‘od have secured Raman 
lines from liquid ox3^gen, nitrogen, and hydrog(m. The observed changes 
in frequency correspond to changes in the vibration quantum number 
from 0 to 1 and from 0 to 2 in the case of oxygcui and nitrogen, and from 
0 to 1 in the case of h^^drogen. In addition, changes in frecpiency corre¬ 
sponding to changes in the rotational quantum number from 0 to 2 and 
1 to 3 are observed in the case of hydrogen. None of the corresponding 
infra-red bands have been observed and in fact these transitions are 
violations of the selection rules for band spectra, 

Ramdas- has found that the Raman effect is less intense in gaseous 
CO2 than in liquid C()2 at the same density, that is, near the critical 
temperature, and he succeeded in getting the effect in ether vapor. 
Wood'^ has observed a displaced line corresponding to the 3.46 g band 
of HCl, by illuminating this gas at one atmosphere pressure by an intense 
mercury arc. The Raman line is very sharp, and is displaced slightly 
less toward the red from the exciting line than would be expected for a 
line at the middle of this band. It appears that the Q branch of this 
band is excited; this is the group of lines for which the vibrational quan¬ 
tum number changes from 0 to 1 and the rotational quantum number 
does not change. Using formulas which will be developed in Chap. XII, 
the frequencies of these lines can be calculated; the line corresponding 
to a transition from the rotational state present in largest numbers at 
ordinary temperatures should have a wave number about 3.5 cm.“^ 
less than that of the middle of the band, which agrees with Wood^s 
observation. As we shall see in Chap. XII, this Q branch is not observed 
in the infra-red. 

It is important to consider whether the displaced radiation is coherent 
or incoherent. Brickwedde and Peters^ have shown that it is incoherent 
in the case of scattering from quartz by studying the variation of intensity 
of the displaced lines as a function of the temperature. Undisplaced 
radiation scattered by crystals at low temperatures is very weak, because 
it is destroyed (except in the direction of the original beam) by inter¬ 
ference between wave trains from the regularly arranged atoms of the 
crystal; its intensity increases with the absolute temperature because 
of the increased irregularity in the crystal. 

1 Nature, 123, 205 (1928). 
* Indian Journal of Physics, 3, 131 (1928). 
* Private communication. 
‘ Private communication of work done in the cryogenic laboratory of the Bureau 

0! Standards. 



Sec. 5] THP. HA MAN EFFECT 365 

For an incoherent scattering, in which there is no phase relationship 
between the light scattered by different particles, local variations in 
density of the crystal would have no effect upon the intensity of the 
scattered light. Thus we have an experimental test for determining 
whether the modified scattering is coherent or incoherent. Figure 
12 is a spectrogram obtained by Brickwedde and Peters, showing Ilaman 
lines of quartz excited by 2,537 of mercury, which is greatly overexposed. 
These lines, marked AS21)Lt and A21fif are shifted by a frequency corre¬ 
sponding to an absorption band at 21.5ju. The figure shows the large 
increase in the intensity of the anti-Stokes line in going from 55 to 525°C. 
The Stokes line, however, decreases slightly in intensity with rising 

SS^'C. 

300''C. 

szsX. 

Fig. 12.—Raman spectra of quartz. {After Brickwedde anti Peters.) 

A S 
21/1 Elfi 

temperatures. The intensities of the mercury lines increase with rising 
temperatures because they come from the Tyndall scattering. Comparing 
the intensities of the Stokes line aS21 and the mercury line 2,564, it will 
be seen that at 55°C, >S21 is more intense than the mercury line 2,564; 
at 300°C. they are of about equal intensity, and at 525*^0,, the mercury 
line 2,564 is more intense than aS21. The temperature variation of the 
Raman scattering in crystalline media is, therefore, different from that 
of the Tyndall scattering which increases as the absolute temperature. 
The results obtained are in qualitative agreement with the explanation 
that the intensities of these Raman lines vary as the density of population 
of the initial states which give rise to them, the density of population 
varying with temperature in accordance with the Boltzmann distribution 
law. If the Raman scattering were coherent, the intensity of the Stokes 
line S21 should increase with temperature and it should be more intense 

than 2,564 at 625°C. 
There is the further question of a possible time lag in the scattering 

process, though it seems doubtful if there is any lag of the order of that 
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observed in fluorescence (10“® — seconds).^ It seems more likely 
that the cause of the incoherence lies in the random phases of the scatter¬ 
ing molecules,^ i.e., at the same time that the energy changes there is a 
random change of phase. 

6. DISPLACED X RADIATION 

Davis and MitchelP discovered that scattered X radiation may be 
displaced toward longer wave lengths in a way similar to the Raman 
effect for ordinary light; this was made independently of Rainan^s 
discovery and almost simultaneously with it. They studied the Mo 
Kaij a2 radiation, scattered from metallic beryllium and aluminium, 
and from graphite, with the double X-ray spectrometer developed by 
Davis and Purks.^ In addition to the undisplaced Kai and Ka2 lines, 
the latter being very weak, they found lines which were displaced toward 
longer wave lengths by amounts to be expected, if part of the energy 
of the incident quantum of Kai was used to ionize the K shell of the atom 
and the remainder scattered as a quantum of less energy. The displaced 
lines are very na-rrow so that the electron removed from the atom must 
receive only a small kinetic energy, or always the same kinetic energy. 
The agreement between the values for X-enc^rgy levels secured from 
the change in frequency of the scattered light and from other measure¬ 
ments is especially good. 

If no kinetic energy is given to the electron, the shift in wave length 
will be 

AX = 
X2_ 

(X/c X) (7) 

where X is the wave length of Mo Kai and \k is the wave length of the 
X-absorption limit of the scattering element. In the case of carbon and 
aluminium the observed displacements in wave length and those calculated 
from equation (7) are: 

C Al 
AX(calculated) 0.0117 A. 0.069 A. 
AX(observed) 0.0113 + 0.00015 A. 0.069 ± 0.002 A. 

The agreement is so good that there can be little doubt that the inter¬ 
pretation is correct. They have also observed lines displaced by smaller 
distances and the energy lost by the quantum is of the order of magnitude 
of the L-absorption limits of these atoms, though we cannot make an 

^ Rxjabk, Nature^ 122, 312 (1928); Gaviola, Z. Physikj 42, 862 (1927). 
2 PRINGSHBIM, Naturvns.y 16, 44 (1928). 
^Phys. Rev. 31, 119 (1928); 32, 331 (1928). The discovery was made on Mar. 9, 

1928. The authors are indebted to Mr, Mitchell for the privilege of seeing another 
nuuausoript before going to press. ' 
^ tfroc. Acad. Set,, 18, 419 (1927); 14, 172 (1928), 
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exact comparison because the L-absorption limits for the solids under 
consideration are not known with sufficient precision. 

In the case of beryllium, a line is observed displaced toward shorter 
wave lengths by an amount to be expected if the energy of the quantum 
is increased by 16 volts. The ionizing potential of gaseous beryllium is 
about 8 volts. Considering our uncertain knowledge of the binding 
of outer electrons in metallic beryllium, it may be that the 16 volts 
is the energy liberated when an electron falls into the outer shell of 
beryllium. This would be the X-ray effect analogous to the anti-Slokes 
Raman effect. Due to the small number of ionized atoms which should 

nresent. this exolanation cannot be accepted with confidence. 
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CHAPTER XII 

MOLECULAR SPECTRA 

Molecular spectra are rivaled in complexity and number of linoiL 
only by the most complex atomic spectra. Under low dispc^rsion they 
appear as continuous bands, and for this reason they are often called 

band spectra.'^ Usually a band has a sharp intense edf>:e or head on one 
side, and gradually decreases in intensity toward the other side. Under 
higher dispersion a band can usually be resolved into groups of mono¬ 
chromatic lines, well ordered according to fairly simple laws. Near the 
intense head of the band these lines are close together and in some 
instances, they overlap completely, forming a continuum. As they recede 
from the band head, the lines become more widely sepanited and also 
weaker. The names, band and line spectra used to distinguish molecular 
and atomic spectra are therefore not distinctive, since both types are 
in reality composed of monochromatic lines having approximately 
the same width. Figure la and 16 show the emission bands of the 
NO and C'N molecules under low and high dispersion, which may be 
compared with the atomic spectra of Figs. 1 and 13, Chap. VII. 

In point of experimental methods and theoretical significance, 
molecular spectra fall into three groups according as they lie in the far 
infra-red (20 — 150ft, let us say), in the near infra-red, or in the visible 
or ultra-violet regions. The first two groups are simple in structure and 
theory, and their study leads naturally to an understanding of the more 
complex and extensive visible spectra. Therefore, we take them up 
in the order in which they are named. Anticipating the experimental 
evidence, these three types of bands are correlatcid respectively with (1) 
changes in the rotational energy; (2) simultaneous changes of the rota¬ 
tional and vibrational energy; and (3) simultaneous changes in the 
rotational, vibrational, and electronic em^rgy of the molecule. Most 
of the data and theoretical considerations available^ at present deal with 
diatomic molecules, which therefore take up the major part of the dis¬ 
cussion in this chapter. 

Under heading A, dealing with infra-red rotation and rotation- 
vibration spectra, all the molecules discussed are of the HCl type, and 
have closed electron shells lijie those of the inert gases. The simple 
theories developed for them must be modified when we consider molecules 
whose electron shells have a resultant electronic angular momentum, 
ander heading J5. Further modifications in the theory of rotational 

aas 





A. Infra-red Spectra 

1. ROTATION SPECTRA 

The far infra-red spectra are known only in absorption, and only 
for the molecules HCl, HBr, HI, HF, H2O, and NH3 have they been 
studied in any detail. The H2O lines have been only imperfectly resolved 
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and the classification is uncertain.^ Recently, Badger^ has observed six 
absorption lines of NH3 which follow a simple formula. We cannot 
obtain much information about the structure of such a complex molecule 
from this spectrum because it must be incomplete (Sec. 24). The 
absorption spectra of the hydrogen halides have been investigated by 
Czerny'^ who finds a number of lines in the region from 40 to ISOg. 
For each molecule these lines are nearly equally spaced in the frequency 
scale and can be representc^d by the formulas 

HF; = 41.086M - 0.011879M^ M = 2, 4, 5, 
HCl; P = 20.8411M - 0.0()1814M\ M - 4, 6, 7, 8, 9, 10, 11, 
HBr; P - 16.7092Af - 0.001457^1/^ M - 5, 6, 7, 10, 11, 12, 13, 14, 

HI; - 12.840M - 0.000820M'‘, M = 6, 7, 8, 9. (1) 

Lines of greater wave length are to be expected with wave numbers given 
by substituting M values beginning with 1 in these formulas, but the 
region in which they would lie has not been investigated by spectro¬ 
scopic methods. The wave numter for M = 1 for HCl would be 20.84 
and the corresponding wave length would be 480/x or about 0.5 mm. 
Radiations having approximately this wave length have been produced 
electrically by Nichols and Tear,^ who analyzed them with an inte- 
forometer arrangement, but such methods have not yet been applied 
to the study of absorption spectra. A plot of wave numbers observed by 
Czerny for HCl is shown in Fig. 4. 

Long before this work was done, much evidence had accumulated 
indicating that there should be infra-red spectra due entirely to changes 
in the rotational energy of molecules. The most conclusive evidence 
that Czerny’s bands arise in this way cpmes from the detailed study 
of the near infra-red bands, to be described in Sec. 3. The quantum 
theory of the rotating molecule, which will now be given, toother with 
the Bohr frequency condition, gives an exact explanation of the structure 
of the far infra-red spectra. 

2. THE THEORY OF THE ROTATING DIATOMIC MOLECULE 

The energy of a rotating rigid diatomic molecule may be considered 
entirely kinetic as a first approximation. Using plane polar coordinates; 

the energy is 

E-T- - V, (2) 

' Sleatou and Phelps, Astrophys. J., 62, 28 (1925). 

» Nature, 121, 942 (1928). 
Physik, 34, 227 (1925); 44, 235 (1927); 46, 476 (1927). 

* Phys. Rev., 21, 587 (1923). 
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where r is the distance between the nuclei and jx the reduced mass. 
Applying the quantum condition 

/ = 2vp^ = jh, j = 0, 1, 

we have, if [ is iiie moment of inertia, 

r-h^ _ 
Ej 

SttV" 

(3) 

(4) 

This formula is modified by quantum mechanics (Chap. XV, Sec. 9) 
to the form 

Ej = + a constani. indiqjendent of J, (5) 
o7r“i 

j = 0, 1, . • . . 

If we use the so-called ‘‘half-integrar^ values j = • • • in 
equation (4) instead of j = 0, 1, • • ♦ , we obtain a sequence of energy 
levels identical with those obtained from + l)/i‘V87r2/, except for a con- 

1 
stant term ^ ^ This follows from the fact that {a + == a(a + 

1) + 14. Since the differences of the energy levels determine the spectral 
frequencies, both formulas give identical spectra. As a matter of fact, 
we must use equation (4) with half quantum numbers or equation (5) 
with whole quantum numbers to explain formula (1), for either supposi¬ 
tion tells us that the wave number emitted in the transition from j + 1 
to j is 

. ^ -- Ej ^ U + l)h 

" he 47r2/c 

The use of equation (4) with j equal to an integer would give j + in 
place of y + 1 in this formula, which would then disagree with the fact 
that the empirical ordinal number M is an integer. We shall adopt 
the formifla (5) in all that follows. 

The model assumed above is inadequate, for the molecule cannot 
be truly rigid and the centrifugal force due to rotation changes the 
distance between the nuclei slightly. To take this into account, we 
write the energy in the form 

E -1;;, + F. rs) 

As a first approximation we assume that 

(7) 

where Vq is the equilibrium distance between the nuclei when the molecule 
is not rotating and fc is a constant, so that the law of force is harmonic. 
The centrifugal and centripetal forces must be equal when the new 
equilibrium is attained and so, 

p,r<p^ ~ k{r — ro). 
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The angular momentum will again be constant, and, therefore, 

— ru). (8) 

Let r — Tii = A. An approximate valine of A/ro may be obtained from 
equation (8) on replacing by ro^ It is, 

The energy is api)roximat cIy 

A ^ p/ 

+ F = (\ ~ 4- 4 
and to a sufficient approximation for our purpose w(‘ may substitute the 
above value of A/rn, obtaining 

\ ju/croV 

Using the quantum condition (equation (3) 

E BJicm - 
where 

o __ j j. h 
“ Stt^oC 

The new mechanics modifi(‘s this formula to 

E = Bohc[j(j + 1) — + 1)“],:/ = 0, 1, • ' • , (12) 

and this is the expression we shall use. This procedure is nearly equiv¬ 
alent to the use of half-integral /s in equation (10). 

The selection rule for j may be derived by the correspondence prin¬ 
ciple. The molecule rotates with uniform angular velocity in a plane 
which may be taken as the xy plane. If it has an electric moment P in 
the direction of the line of nuclei, the x- and ?/-components will be 

P:, — P cos 27rco^, Py = P sin 27rco^, (13) 

where co is the frequency of revolution and is equal to dE/djh and 27rco/ 
is the angle between the x-axis and the line of nuclei. Since only the 
fundamental frequency occurs in these expansions, the quantum number 
will decrease by 1 in emission and increase by 1 in absorption. This is 
the selection rule for rotation bands. Molecules which do not have a 
permanent electric moment such as O2, Jhy etc. will not absorb in 
the infra-red, for in this case, P = 0 and the rate of emission is zero. 

(Chap. VI, Sec. 4). 
Using the Bohr frequency condition, equation (12), and the above 

selection rule, the wave numbers which will be absorbed by a rotating 

hydrogen halide molecule are, 
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This is of the same form as equation (1), if ilf = j + L Equating the 
constants of this equation to those of equation (1) it is possible to secure 
values for the constants Zo and u, and thus the distance between the 
nuclei. The results of such calculations are given in Table 1. In 
particular, from equations (9) and (11) 

^ (15) 

and from the values of u given in the table it is evident that the assump¬ 
tion that A/ro is small in equation (9) is justified. 

The transitions involved in the absorption of these far infra-red 
lines are shown by the arrows at the left in Fig. 5. The permitted 
transitions are 0 —> 1, 1 —> 2, 2 —> 3, etc., and neglecting the effect of the 
small term in the energy proportional to j-(j + 1)'^, the wave numbers of 
the light absorbed are 2^o, 4/^o, 6Bn, etc., respectively. These are plotted 
in Fig. 4 for the case of HCl, taking into account the cubic term of 
equation (1) or equation (14); the lines plotted in this way become 
closer together as we go to higher frequencies. 

3. NEAR INFRA-RED ROTATION-VIBRATION SPECTRA 

Lord RayleiglT showed that a rotating vibrating diatomic molecule 
having an electric moment should emit and absorb light of frequencies 

± with approximately eqxial intensities; and ur are the frequencies 
of vibration and rotation, respectively. Bjerrum^ pointed out that as a 
result of the Maxwell-Boltzmann distribution law there should be a 
most probable value for co,, + and for o)y — Thus the number of 
molecules dN having frequencies of rotation between ccr and Wr + dur is 

dN 
-2irnu>r^\ 

~~kT ) kT 
0)/doir^ 

The intensity of absorption for aj„ + cor or — cor should be proportional 
to dN/doir and this will be zero for cor = 0 and = <», and a maximum 

for COr 
1 

2r[ f) ■ The absorption band will have a minimum inten- 

1 /kT\ 
sity at o)v and two maxima on either side at a distance -j~ j 

Vi 

in the 

frequency scale.® Figure 2 shows a band at 4.7;u discovered by Miss von 
Bahr,^ who found that the separation of the two maxima increases approx- 

1 Phil Mag., (5) 34, 410 (1892). 

2 ‘^Nernst Festschrift,^’ Halle (1912). 

3 Kemble, in the Btdl of the National Research Council entitled Molecular 

Spectra in Gases”; see references, end of chapter. Henceforth this publication will 

be referred to as “Molecular Spectra.” 

* Verh. deut. Physik. Ges., 15,710, 731 (1913). See aliso Spence and Hallbt, J, 0. 
S. A. and R. S, /., 7, 169 (1923). ^ 
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imately as the square root of the absolute temperature. This doublet 
character has now been established for many of the near infra-red bands. 

Under higher dispersion, the rotation vibration bands of a number 
of molecules have been resolved into fairly narrow lines; of these the 
hydrogen halide bands have been most carefully studied, and will be 
considered in detail, since they illustrate very well the general structure 

Fig. 2.—'fho vibration-rotation band of CO. {After von Bahr.) 

of the bands of diatomic molecules in the infra-red, as well as in the 
visible and ultra-violet. Iines^ has studied the fundamental bands of 
HF, HCl, and HBr and the first harmonic of HCl. Colby, Meyer, and 
Bronk" have extend(^d the HCl fundamental band at 3.4/z to twenty 
lines on either side of the mid-point of the band. In Fig. 3, we reproduce 
their absorption curve for this band and, in Fig. 4, we show a plot of the 

Fig. 3.’—The 3.4 n absorption band of HC3. {After Cot by, Meyer, and Bronk, Reprinted 
by permission of the University of C^hioago Press.) 

frequencies of the lines together with a plot of Czerny’s rotation spectrum 
placed so that the zero frequency coincides with the ^‘missing line” 
of the 3.4ju band (shown broken in this figure and indicated by the weak 
absorption at the mid-point in Fig. 3). The band consists of approxi¬ 
mately equally spaced lines which become closer together toward the 

^ Astrophys. J., 60, 251 (1919). 
^ Astrophys. 67, 7 (1923). See also Czerny, Z. Physik, 46, 476 (1927). 
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high frequency side; at the mid-point the intensity is very low (probably 
zero) and the intensity increases to a maximum on either side and then 
decreases slowly to zero. These two branches, as they are called, are 
of nearly equal intensity, the low frequency branch being slightly weaker 
than the other. The high frequency branch is known as the branch, 
and the low frequency branch as the branch.^' The wave numbers 
of these two branches can be represented by the formula, 

V - 2,886.20 + 20.5379M - 0.30318- 0.001814Jlf3, (16) 

where ilf = 1, 2, 3, • • • for the R branch and —1, —2, —3, • • • 
for the P branch. This formula contains the first, second, and third 
powers of the ordinal number M and, in order to account for its structure, 
it is necessary to consider the model of the diatomic molecule in greater 
detail. 

v=o 
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Fig. 4.—Diagram of the rotation and vibration-rotation bands of IKM. 

i. KRATZER»S THEORY OF THE VIBRATING ROTATING DIATOMIC 
MOLECULE 

Kratzer^ has calculated the energy states for a diatomic molecule 
taking account of both the rotation and the vibration of the nuclei, 
assuming that the molecule is not rigid, and that the force acting between 
the nuclei is harmonic to a first approximation. Using plane polar 
coordinates, the energy of a diatomic molecule is 

E - + V, (17) 

where r is the internuclear distance, (p the angular coordinate, and 
M the reduced mass. Our first concern is to determine a suitable form 
for y. Kratzer assumed that the hydrogen halides have an ionic binding, 
7.e., the molecule passes to two ions when the distance between the two 
nuclei becomes large, and he therefore assumed that the force between 
the two nuclei consists of an attractive force proportional to l/r^, a 
repulsive force proportional to 1/r^, and of smaller terms proportional 
to higher negative powers of r. All investigators who have recently 
studied the question of whether the binding of these molecules is atomic 
or ionic have concluded that it is atomic, and that the expansion of the 

^Z, Physik, 8, 289 (1920). 
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force as an inverse power series should begin with higher negative powers 
of r than l/r^. Kemble’ used an expansion in powers of the displacement 
of the nuclei from the equilibrium position. The two potential energy 
curves are identical over the range used by Kratzer.^ It is convenient 
to use Kratzer’s expression for the potential energy which will hold 
true for small oscillations regardless of whether the binding is atomic 
or ionic in character. 

His potential energy function may be written, 

where C, /c, cs, and C4 are constants and tq is the equilibrium distance 
between the nuclei. Setting r = ro, we have 

= C - 2- (19) 

which is the energy of dissociation if we take V equal to zero for r = 00. 
If the distance r = ro is to be an equilibrium position, (dV/dr)r^r^ 
must equal zero and this is easily found to be true. The frequency of 
vibration for an infinitesimal amplitude wo is given by 

(27ro)oy = (20) 

and, thus, k = (27rco(,)2/n. The kinetic energy is 

T = 3^iM(r^ + rV); (21) 

and substituting ST/dr = Pr and dTld(p = p, the Hamiltonian function 
becomes 

// = 4. + K = E, 
2m ^ 2Mr2 ^ 

(22) 

The quantum conditions are 

and 

2wp = jhf (23) 

^Prdr = ^ 

■(' 
--f I 
(27rcoo)='Zi)/ 

2^{E - C) + 

1] 
The terms in i j and { -—— | are small compared to the 

\ n J \ ro / 

dr. (24) 

remain¬ 

der of the bracket; therefore, the integrand may be expanded in terms of 
these small quantities and the integration carried out term by term. 

' J. O. S. A., la, 1 (1926). 
* Kemble did not compare his potential energy curve with that of Kratzer but 

Prof. R. T. Birge has informed us that he has done so, with the above result. 
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(See Appendix II for an illustration of this procedure.) 
solving for Ej and neglecting an additive constant, we have 

where 

and 

E = nh(*>o{l — xn) + j 2) __ jhiahj 

X = um + 

3o)qU^ 
oc = —2— “1“ “t" ), 

u = 
h _ 

iw'^loCVo 

Finally, 

(25) 

(26) 

The energy of the diatomic molecule has been calculated by Fues, 
using wave mechanics and employing the potential energy given in 
equation (18) (Chap. XIX, Sec. 4). The formula obtained is identical 
with Kratzer’s except that half integral quantum numbers must be used 
throughout. However, if we wish to use integral quantum numbers, 
Fues’ formula can be secured by replacing n and j of equation (25) l)y ?i + 

and j + respectively. The equation for the energy then becomes 

E = 

18x^7 0 

uW 

lex^/'o 
ah'\ 

"2 '^J(j 

aknJU + 1) + - 4) (27) 

where n = 0, 1, 2, • • • and jf = 0, 1, 2, • • • . This equation can be 
further simplified by writing 

hojo 4- Aw, and 
ah ^ 

2 8x2/’ 
(28) 

80 that CO is an effective” frequency of vibration for zero amplitude 
(n = 0), and I is an “effective” moment of inertia for zero rotation 
(j == 0); finally, the constant term of equation (27) may be neglected 
for most purposes since it drops out in taking the difference of two 
energies, which determines the frequency of the radiation. Then since 
a and u are small, equation (27) becomes 

E = (n + ^^w - xho(n + ly + ^i(i + 1) 

- + 1)^ - cihnjU + 1). (29) 

It is convenient to substitute the simpler symbol B for h/Sr^Ic. Then 
equation (29) becomes 

E ^ {n + J^)Aw — xhu{n + J^)* + hcBj(J + 1) — u^hcBj^ij + 1)* 
— cehnjij + 1). (30) 
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We see from equation (26) and the definition of B that 

^ 2Bc ^ 2B 
O) 03 

For most purposes equations (29) and (30) will be satisfactory, though 
there may be occasions when it will be necessary to use equation (27) 
or even more complicated formulas containing higher powers of {n + 3^) 
and j{j + 1). The change from equation (27) to equation (29) means a 
change in the el(Hitronic energy by the amount of the last constant 
term of equation (27). 

Tiie total energy Ei is 

Et=^Ee+ E, 

where Er is energy of the electronic motions and E is given by equation (27). 
We see that tin; energy for n — 0 and j — 0 is 

E,(7t = 0, j - 0) = 4- ^ -h 
327r2/„ 

From the study of (‘leeironic bands (f.e., bands the emission of which is accompanuMl 

by a change in the (dectronic configuration of the molecule), it is possible to secure 

the difference between Ei(n = 0, j = 0) for two electronic states of the molecule. 

It is, 

f:/(7/. =: 0, y = 0) - Et"{n = 0, y - o) - ej - ej' -f - a,o") 

_ (ei ~ ^h\ ^ (1 _ J ^_ 
4 y'^ 327rVo' hr) 1287;2V/o' /o'V* 

Primed quantities refer to tlie higher electronic level and are in general different from 

tlie corresponding douhle-pi innHl quantities, which refer to the lower electronic level. 

If the molecule is c.omposed of atoms having isotopes, the values of Ee and E/' for 

the isotopic molecules formed from them will differ only by very small amounts of the 

order expect(;d for the isotojie effect in atomic spectra (Sec. 7). The constants a>o', 

coo", ol'j etc. dfqjendon the masses of the nuclei, equation (28), and differ appreciably 

for different isotopic molecules, so that it is possible to decide whether the constant 

terms of equation (27) arc present or not. Mulliken showed in this way that the 

term /icoii/2 must be present and it is included in equation (29) for this reason. The 

preserua? of the other constant terms has not been proved experimentally, probably 

i)ecause t,he constants themselves are small, so that the alterations of frequency result¬ 

ing from their differences cannot be detected. For the sake of brevity these unproved 

terms have been omitted from equation (29). 

6. SELECTION PRINCIPLES FOR ROTATION-VIBRATION BANDS 

The selection rules may be derived by extending the reasoning of 
Sec. 2. The electric moment increases and decreases as the nuclei 
vibrate. The Fourier expansion for the vibrational motion of the nuclei, 
when the force holding them to their position of equilibrium is nearly 

harmonic will be assumed to be of the form 

7* = t-q 4- r*! cos 27rcov^ + r2 cos 2ir2o)4 + • • • , 

where co„ is equal to dE/dnh. Though the electric moment of the molecule 
may not be exactly proportional to this displacement, we may assume that 
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the same frequencies will appear in the Fourier expansion of this moment 
and, therefore, we write 

P == Po + Fi cos + P2 cos 27r2aJv^ + • • • (31) 

The substitution of this expression for P in equation (13) gives equations 
for the X- and 2/-components of P as functions of the time and of oiv and 
ojr. The result is, 

P 
Px — Pu cos 2Tr<x3rt + Q^[C0S 27r(a)„ + Oir)t + cos 27r(cOv — a)r)^] 

H—2 “h ^r)^ "j“ cos27r(2aji, — cor)/] “b • • • j 

p 
Py = Po sin 27ra),./ + 2“[siii 27r(cot, + oir)i — sin 27r(a)^, — Wr)^] 

Po 
+ -“[sin 27^(2co^, + cor)^ — sin 27r(2aJv — aJr)^] + * • • (32) 

Z 

The frequencies appearing in these expressions are cor, ± corj 2c»)v ± 

etc., and according to classical theory these frequencies will occur in the 
light emitted. By the correspondence principle, the following changes 
in the quantum numbers will occur with the emission of light; 

An = 0, Aj = 1, 
An = 1, Aj == ± 1, 
An = 2, Aj = ± 1, 

. (33) 

and the same changes with opposite signs will occur in the absorption 
process. 

6. APPLICATION OF KRATZER’S THEORY TO THE HYDROGEN 
HALIDES 

If we calculate the frequencies emitted, using equation (30), and 
the first selection rule of equation (33), we secure equation (14) previously 
derived for the rotation bands. From the other selection rules of equa¬ 
tion (33) we secure the wave numbers of the rotation-vibration bands; 

vin', 7i"\j + 1,;) = {n' - n'')u - xi)\{n' + }4Y - {n" + H)-] 

+ (25 - “(«' + + 1) - “(// - n")(i+ 1)“ - ^u^BU+\)\ 

i = 0, 1, 2, ■ • • , for = +1, (34a) 
and 

v{n', n”;j - 1, j) = (n' - n'')u - x«[(n' + HY - (n” + 

- (2B - “(n' + n"))i - “(n' - n")Y + iu^Bf, 

i = 1, 2, • • • , for Aj = -1. (346) 

In these formulas j is the quantum number of the lower energy state. 
These relations are of the same form as the empirical equation (16) for 
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the 3.46m HCl band, if we use the equation (34a) with M — j + I for the 
R branch, and the equation (346) with M — —j for the F branch. The 
R branch consists of lines emitted when j decreases by unity, and the P 

branch of lines for which j increases by unity; therefore, the R branch 
extends toward higher frequencies. The values of n' and n" for the 
absorption bands of HCl can be determined as follows: The application 
of the Maxwell-Boltzmann distribution law shows that all but a small 
fraction of the molecules will be in the zero vibrational level at ordinary 
temperatures; thus the fraction of the 
molecules in the second vibrational state 
will be 

where LE is the diffcnmce in energy 
between the levels with vibrational 
quantum number 1 and 0. The fre¬ 
quency of the missing line of the 3.46m 

band is about 2,886c, so that for a tem¬ 
perature of 300° A", AA//c7" 14 and thus 
exp( —AA/^7’) is a small quantity of the 
order of 10" ^ Transitions in which the 
wave lengths 3.46m and 1.76m are 
absorbed must originate from the lowest 
level and terminate on the first and 
second vibration levels as shown in the 
diagram, Fig. 5. This assignment is 
made because there is no band between 
the one at 3.46m and the rotation bands. 5.—The vibrational and rota- 

tiunal energy levels of HCl. J he 
The numerical values of the con- rotational levels are plotted on ten 

stants of equation (34) are obtained by the vibrational 

comparison with equation (16a) • 

(n' - m")w - + Hy - in" + MY] = 2,886.20 

2B - “(w' + n") = 20.5379 

“(«' - n”) = 0..30318 
c 

Aum = 0.001814. (35) 

The equations can be solved for the values of 5, a, and as soon as the 
values of n' and n" have been decided upon, but Ci and xeb cannot be 
calculated from one band. Using n' = 1, n" = 0, we find the values, 

2B = 20.8411, “ = 0.30318, u = 6.592 • 10-». 
c 

(36) 
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The value of B calculated here and that found from the rotation bands 
equation (14) are identical, but this is because the empirical equations 
(1) and (16a) were calculated by Czerny so as to make them agree. 
There is some slight systematic error in the experimental data of either 
the rotation band or the rotation-vibration band. Because of the 
experimental difficulties such an error is easily possible. 

The wave number of the missing line of the band is secured by 
setting {j + 1) in equation (34a) or j in equation (346) equal to zero. 
This gives 

p(a', n") = (n' - rn^ - x^[(n' + (n" + (37) 

and, for the case of the absorption bands for which n" = 0, this reduces 
to 

p(a', 0) = n% — xo)n'(7i' + 1). 

For n' = 1, 2, 3, • • • we obtain the wave numbers 

- 2x), 2<i(l - 3:r), 3^(1 - 4r).i 

The theory predicts, therefore, that the centers of the rotation-vibration 
bands should be nearly, but not exactly, multiples of a constant oj. 
The missing lines for the 3.46 and 1.76^ bands of HCl have the wave 
numbers 2,886.07 and 5,667.0. From these it is possible to calculatci 
CO and xchf for 

CO — 2xco = 2,886.07 and 2^ — 6xc) = 5,667.0. 

By solving these equations simultaneously for cb and x6oj they give 

w = 2,991.3, a-w = 52.6. 

The energy levels represented in Fig. 5 have been calculated by 
substituting the values of the constants obtained above in equation 
(30). The vibration levels are nearly equally spaced, while the spacing 
of the rotational levels increases with increasing j. The latter are 
shown on a scale ten times as great as that for the vibration levels. 
The wave number of the light absorbed, during a transition indicated 
by an arrow, is plotted immediately below it. The missing lines are 
shown at the middle of the bands and the corresponding forbidden 
transitions immediately above them. At the left, we see the transitions 
for the rotation bands which form an R branch without a P branch. 
The effect of the small terms in the energy proportional to x, a, and 
is to depress each of the energy levels below the value given by the larger 
terms alone; the small terms also bring the lines of the R branch closer 
together, and cause those of the P branch to draw farther apart, as j 
increases. 

1 These differ from the formulas given by Kratzer, which are widely quoted. 
Kratzer gave v(l, 0) — w(l — x)^ v(2, 0) ~ 2a>(l — 2x), etc. The difference is due 
to the changes made necessary by the use of (n + J^) instead of n, i.c., the use of 
half-integral instead of integral numbers. Only the data of Imes (Sec. 8) were 
available when Kratzer developed his theory. 
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Though no absorption should be observed at ordinary temperatures 
for bands which have n" greater than zero, we may expect such absorption 
at higher temperatures. At 600^ if, about one molecule in a thousand will 
be in the first vibrational state. Five weak lines of a band involving 
this level were observed by Colby, Meyer, and Bronk^ at this tem¬ 
perature. They fit well into the formula (346) for v{2, 1; j - 1, j) 

obtained by using the constants we have just derived in equation (36), 
provided we make j equal to the integers 9 to 13, inclusive. 

Table 1 gives the values of the fundamental constants of the hydrogen 
halides as derived from their infra-red spectra. The moment of inertia 
is given by the relation, I = = 27.66 • and the 
equilibrium distance between the nuclei is then secured from the relation 
J = where fx is the reduced mass, u may be found from spectroscopic 
data, as in equation (36), and may also he obtained from the relation, 

= 2B/d). o) for III has been calculated from this relation together with 
the observed value of u. 

Tabi.k 1 ’ 

Molecule I ■ i()« 

1 

u (oh- u (eiil- 

served) ic.ulated) 
i 

r . lOS CO XO) 

HF. 1 348 0.0120 0.0102 
1 

0.929 4,037 50 
HCl. 2.658 0.00659 0.00697 1.282 2,991.3 52.6 
HBr. 3.316 0.006(M) 0 00631 1.421 2,647 44 
HI. 

! 
4.3146 0.00565 1. 1 6170 -2,270 

I The values for /, u (observed), and r for UT, IICI, and MBr and d? for HOI listed in this table are 

calculated from the data of Czeuny, Z. Phynik, 45, 470 (1927). The remaining values are taken from 

Bikobj, “International Critical Tables,” Vol. 5, corrected as he directs for the normalization of quan¬ 

tum numbers used here. 

Schafer and Thomas^ have observed the higher harmonics of HF^ 
HCl, and HBr. The wave numbers of the missing lines of the hydrogen 
halide bands from all sources are listed in the following table: 

1 d>(l — 2.r) 2*(1 - 3.r) 1 3d;(l - 4j) 

HF. . 3,962.6 7,880 

HCl. . 2,886.2 , 5,667 8,400 

HBr. . 2,559.1 

HI. . 2,270 (calculated) 

7. THE EFFECT OF-ISOTOPY ON THE VIBRATIONAL AND ROTATIONAL 
ENERGY OF DIATOMIC MOLECULES 

The change in the energy of a diatomic molecule produced by altera¬ 
tions in the masses of its nuclei call be seen at once from equation (25) 
or (27). These equations contain the nuclear masses implicitly, through 

^ Astrophys. 68, 303 (1923); loc. cU. 
* Z. Physik, 12, 330 (1923). 
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the presence of the reduced mass iu, and, therefore, the emission and 
absorption frequencies of molecules containing different isotopic 
nuclei will not be identical. Now x, iij and a are small quantities and 
the percentage of change in them due to differences in the nuclear mass 
is also small, so the terms in which they occur may be neglected in making 
comparisons of the frequencies due to isotopic molecules. Then equation 
(29) becomes 

E.(n + + 1), 

where A = wo. While ii is different for 
Mi + Mt \4tT^ixJ 

chemically identical molecules which contain different isotopes of the same 
element, ro and k are the same for all such molecules, for the equilibrium 
distance and the force binding the atoms together depend only on the 
electric forces between the nuclei and the electrons, and may be considered 
the same for all atoms having the same atomic number. 

It is convenient to discuss the rotational and vibrational isotope 
effects separately. Let us consider the simplest case, in which the 
molecule consists of one pure element and one with two isotopes—for 
example hydrogen chloride, which consists of the molecules HCP'^ 
and HCl^^. Let the reduced masses for the two molecules be /xi and ^2 

with IJL2 > Ml and let p = (mi/m2)^^- The rotational energies of the two 
molecules will be 

The wave number emitted in a change from f to/' is 

Pu- = + 1) - B.'Tij" + 1) 

for the first type of molecule. For the second, it is hr where 

hr = P^Vlr, (40) 
so that 

Vlr — hr = AJr = (1 — p®)?ir. (41) 

Similarly, the vibrational energies will be, 

Eu = (n + E,. = (« + 2)Ksril)^ = 

so that 

and 

^^21; 
\4irV2/ \ 4x^2 / 

Vu — ~ Ai'v — (1 — m)piv. 

(43) 

(44) 
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From equation (41) it can be seen that the wave-length differences due 
to isotopy in rotation spectra are beyond the limit of detection with 
apparatus of the kind used up to the present. Equation (44) predicts 
that it should be possible to detect it in rotation-vibration spectra, and 
in fact it has been observed in the 1.76m band of HCl. On the long 
wave-length side of each prominent peak of the absorption curve of 
Fig. 6 Imes found a smaller peak or hump in the curve. Independently, 
Loomis^ and Kratzer^ pointed out that this small break could be explained 
as due to the molecule HCF^. The weaker peak should be due to the 
isotope present in smaller amount (i.e., the heavier one in this case, 
since the atomic weight of chlorine is 35.46) and should have a larger 
wave length than the main peak. According to equation (44), = 

1 — p = 0.0007715 and AX = - = —13.5 A. The experimental 

value is 14 ± 1 A. 

Fia. G.—-'I'he 1.76m band of HCl. {After Imes, RepriiUed by permission of the University 
of Chicago Press.) 

Meyer and Levin® have also resolved the lines of the fundamental HCl 
band at 3.46m into close doublets and find that the separation and relative 
intensities are those expected from the theory and the atomic weight of 
chlorine. 

Mulliken^ first applied the development given here to electronic 
bands, in the case of the molecule BO. Some very striking results 
came from this study: these bands were definitely shown to be due 
to BO, and not to BN as was previously supposed; it was found that 
the vibration quantum number must be half integral as in equation (27) 
and not integral as in equation (25), and that in the lowest vibrational 
state the energy is feco/2. The calculated value of 1/p for B^®0and B“0is 
1.0292, while for B^^N and B^^N it is 1.0276; the value determined from 
the spectra is 1.0291 ± 0.0003, in definite agreement with the former. 
The question of half-integral quantum numbers will be discussed later. 

»NaJtme, 106, 179 (1920); Asirophys. 62, 248 (1920). 
« Z. Physik, 3, 460 (1920); 4, 476 (1921). 
* Phys. Rev. 34, 44, (1929). 
^ Phya. Rev. 26, 269 (1926). 
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B. Electronic Bands 

8. DEFINITIONS OF ELECTRONIC, VIBRATIONAL, AND ROTATIONAL 
ENERGIES 

In order to explain visible and ultra-violet bands, we are led to the 
assumption that they are due to changes in the electronic quantum 
numbers of the molecule. The structure of the individual electronic 
bands is similar to that of the infra-red rotation-vibration bands, and the 
frequency differences between the many bands of a related group (or 
so-called “band system”) are of the same order of magnitude as the 
infra-red vibration frequencies. Thus, even the gross sti’ucture of such 
systems indicates that at least three quantum numbers must change 
simultaneously in the emission of one line, namely, the electronic quantum 
number (or in many cases several electronic quantum numbers), the 
vibration quantum number, and the rotation quantum number. We 
have tacitly assumed that the energy of vibration and rotation can be 
fixed by the quantum numbers n and j, introduced above, and that this 
energy is independent of the electronic energy of the molecule. Strictly, 
it is impossible to speak of electronic, rotational, or vibrational energy, 
for the total energy of the molecule is a function of all its quantum 
numbers and it is impossible to localize energy in the various degiees of 
freedom. Thus the energy of rotation and vibration of the molecule 
is a function of n and j, and of certain constants, such as the moment 
of inertia and the characteristic frequency of vibration for small ampli¬ 
tudes. These constants are functions of the electronic quantum numbers 
and it would be just as correct to refer to this energy as electronic. 
For convenience, however, it is arbitrarily separated into electronic, vibra¬ 
tional, and rotational energy, and so we must carefully define these terms. 

We represent the total energy of the molecule as 

E = E(e, n, j), (45) 

where e represents all the electronic quantum niimbers, n, the vibrational 
numbers, and j, the rotational numbers. (There are several n’s and j’s 

in the case of polyatomic molecules.) The electronic energy is defined 
as the value of E{e, n, j) when j is zero and n is — thus, 

E, = E{e, -H, 0). (46) 

The vibrational energy is then defined as 

En = E{e, n, 0) — E, (47) 

and the rotational energy as 

Ej = E{e, n, j) - E, - E„. (48) 

According to these definitions, the energy of’rotation of the diatomic 
molecule as given in equation (29) is 

Ei = + 1) - + D* - cJinjij + 1), (40' 
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and the vibrational energy is 

En ~ {n Yz)ho3 — xho)(n + * (50) 

The term ahnj(j + 1) is treated as part of the rotational energy although 
it contains the vibration quantum number n. 

Kratzer^s formula was derived by assuming that /, a, a>, x, and u 
are constants for all vibrational and rotational states as long as the 
molecule is in its normal electronic state; but, obviously, these assump¬ 
tions should be equally valid for any electronic steady state and we may 
expect that his formula will hold for the rotational and vibrational energy 
in both the initial and final states involved in the emission of electronic 
bands. Only one modification need be considered, namely, the changes 
necessary if the electron system has a resultant angular momentum when 
the nuclei are not rotating; this alters the rotational energy states of 
the molecule by changing the form of Ej and also by limiting the possible 
values of j as will he sliown later. 

9. BAND SYSTEMS AND VIBRATION TRANSITIONS 

It is easy to recognize from experimental evidence that certain 
large groups of bands are very closely related to each other. Thus, 
either the entire group or a large part of it appears under given experi¬ 
mental conditions or none of it appears, and the relative intensities 
of different bands are approximately the same for different methods of 
excitation, or vary in a regular way. Deslandres made the first attempts 
at classification of such band groups, which are now usually called 
^^systerns,^^ A system is the aggregate of bands emitted in transitions 
having common initial and final electronic states, including under this 
term all the electronic states corresponding to a multiplet in atomic 
spectra. Each mjdem will consist of many hands^ such as those discussed 
under infra-red spectra, whose positions are determined by the changes in 
vibrational quantum number, and each band will consist of many sharp 
lines, whose spacings are determined primarily by changes of the rota¬ 
tional quantum number. The electronic energy differences and therefore 
their contributions to the frequencies are usually much larger than those 
of the vibrational energy changes and these, in turn, are much larger 
than the changes in rotational energy. The general position of the 
system is therefore determined by the electron transition. The sys¬ 
tematization of the electronic levels is not thoroughly understood at 
present. Usually, attention is directed toward finding the quantum 
numbers of the electronic levels, which are similar in some respects to the 
atomic azimuthal and inner quantum numbers. This is accomplished 
by studying the rotational structure of the individual bands. The 
electronic levels and transitions will be discussed, therefore, after we have 

treated the detailed structure of the bands. 
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We begin with the gross structure of the band systems as determined 
by the vibrational quantum changes. The individual bands, in most 
cases, have not been resolved into their individual lines and thus the 
position of the origin of the band, i.e., the missing line of the vibration- 
rotation bands, is unknown. For most systems only the frequencies 
of the band heads are known, and these have been used to secure the 
vibration levels of the initial and final electronic levels. Deslandres 

first showed that it is possible to 
arrange the band heads in progressionsy 

such that in a given progression the 
heads are approximately equally 
spaced in the frequency scale, and such 
that the frequency differences between 
the bands of one progression will be 
almost exactly equal to the differences 
of other progressions. Further, he 
showed that the wave numbers in a 
progression may be represented rather 
closely by the formula, 

p = a + + cn^y (51) 

where n may take integral values either 
positive or negative, and a, 6, and c are 
constants. Such progressions in any 
band system can be selected in two 
ways; in one, the frequency interval 
between bands increases toward the 
violet, and in the other, toward the 
red. Deslandres designated these as 
first and second progressions, respec¬ 
tively. The quantum theory of band 
systems leads to a clear understand¬ 
ing of these empirical relationships. 

For brevity, we shall neglect the 
rotational energy at first and shall 

say that an electronic band system is emitted in transitions between 
electronic levels, each consisting of a series of vibration levels of the same 
kind as those necessary to account for the infra-red bands of HCl, etc. 
(see Fig. 5). The simplified energy diagram we shall employ consists 
of two groups of vibration levels with different spacings, which may or 
may not overlap. Figure 7 shows such an energy diagram, with arrows 
indicating the transitions. A group of transitions from one of the 
vibration levels of the higher electronic level B to the different vibration 
levels of the lower electronic level A is called an progression^'; and 
a group of transitions from different vibration levels of B to one vibration 

ME 1 
Fig. 7.—Progressions and a sequence, 

I is a first progression, II a second pro¬ 
gression, and III a sequence. 
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level of A is called an progression.^^ Such progressions are shown 
under I and II of Fig. 7. Since there are many progressions of each 
kind, we may specify each n" progression by the number of its common 
initial level, and each n' progression by the number of its common final 
level. It is immediately evident that the differences in frequency 
of the transitions of any n" progression, multiplied by A, will be the 
energy-differences of the vibrational levels belonging to and similarly 
such differences in any n' progression, multiplied by /i, will be the energy- 
differences of B. It is further evident that the differences for the varioxis 
7i" progressions must be equal, and those for the v/ progressions must 
be equal. In all cases where the band origins have been exactly located 
and have been used in place of the band heads, this is found to be true 
within the limits of experimental error. The transitions for which 

jo—J \(yij 10-0 -^r—n^rogreasionCn-O) 

J/-5 \/-J (/-*/ |/-*0 

" - - 
r ,, If 

k-c5 
W |3^3 \3-2 jjW 

‘ progression(n-6) 
I Sequence 

lu II mill IIII imTII1111111 
35,000 40‘000 4S.000 

Fici. S.—The iirogresaioiis and sequences of the (i Jt”0 bands. 

\4~l 
5-W 

n" — nMs a constant arc called “sequences.” The sequence n' n" — 1 
is illustrated in the energy diagram of Fig. 7. The appearance of such 
sequences as observed in the spectrum can be seen from Fig. 1 for the 

case of the |8 NO bands. 
The problem of the spectroscopist is to arrange the bands in progres¬ 

sions and to assign the propei values to initial and final quantum numbers 
for each band. The relations of progressions and sequences are illus¬ 
trated by Fig. 8, which shows the band heads of the 8 band system of 
B'^0 arranged according to progressions.^ The n progressions are 
arranged in horizontal rows, the diagonal broken line shows an n' progres¬ 
sion for n" = 6, and the diagonal solid line shows the sequence, +1. The 
numbering of the transitions is fixed by the position of the 0 -^0 transition, 
which occupies a unique position in the scheme, and by the equal differ¬ 
ences of the progressions. These transitions having been classified, the 
energy diagram can be constructed by taking the frequency of the 0 0 
transition as the difference in the electron levels of the molecule, the differ¬ 
ences of the n" progressions as the intervals between vibration levels of 

> MvrtoKEN, Phys. Rev., 25, 259 (1926). 
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the lower electron level, and those of the n' progressions as the 
intervals of B. 

The vibrational energy levels belonging to a given electronic level, 
as defined in the preceding paragraph, will obey a formula of the type of 
equation (50), approximately. Writing this formula with different 
constants for the initial and final states, we have 

py = EJ + (n' + 

and 
= EJ' + (n" + (52) 

and the wave number of the light emitted in a typical transition will be 

where Pc = (EJ — EJ')/hc. If n" is held constant, equation (53) gives 
the formula for an n' progression and, if n' is held constant, the formula 
for an n" progression. These formulas are: 

P = A' + B'n' - C'n'^ (54) 
where 

A' = Pc + “ l(n^' + ~ a:"w"(n" + )i)‘^], 
B' = J;'(l - x'), C = xV, 

and 
P - + C"n"\ (55) 

where 

+ [(n' + - x'<i'(n' + 30^], 
= d)"(l - .r"),C" - .r"w", 

respectively, and are of the form of equation (51). The n' progressions 
extend toward the violet and the bands become closer together in the 
wave-number scale as n' increases, so that if becomes sufficiently large, 
5'n' C'n'^ would reach a maximum and then decrease. The 
progressions extend toward the red with decreasing distance between 
bands as n" increases, and —B"n'' + C^'n"^ would reach a minimum 
value and then increase. The n' progression is therefore similar to the 
Deslandres' ^^second progression,'^ and the n" progression to his ^^first 
progression."^ The maximum and minimum values for these progressions 
are approached in only a few cases; the extension of the progression 
beyond these values has never been observed and is theoretically impossi¬ 
ble, because the molecule dissociates if it has more energy than the amount 
corresponding to either of them, as will appear later. The formula (61) 

\ 1 For a detailed discussion of the relations between these progressions see Birgk, 
Molecular Spectra,’^ p. 73» 
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would hardly be expected to be valid for large values of the vibration 
quantum number, wsincc it was derived on the assumption of small vibra¬ 
tions, though it does hold quite accurately over a large range for many 
electronic steady states. By using a graduated scale the reader can see 
that the bands of the B^K) progressions shown in Fig. 8 do become closer 
together in the way described. 

How closely the parabolic equations (54) and (55) are followed can 
be seen from Table 2, where the wave numbers of the B^’O bands are 
listed. The first difference's are given in parentheses between the wave 
numbers of the bands. At the right and bottom the averages of these 
first differences are listc^d, together with the differences of these averages, 
i.e., the second differences. According to equation (54) the first and 
second differences for the n' progressions are 

A,(n' + t-0 = p(n' + 1) - Kn') = ~ C'(2n' + D, 
Ao(n') = Ai(n' + H) - Ai(n' - j^) = -2C' 

and for the n" progressions, from eciuation (55), we have 

Ai(n" d- }i) = P(n" + 1) - P(n") = -ir + C"(2n" + 1), 
A2(n") = A,(n" + - A,('^" - H) = 2C". 

Thus, if equations (54) and (55), and therefore equation (51), arc correct, 
the second differences should be constant and equal to —2C' and 2C", 
respectively. The values in Table 2 show that they are very nearly 
constant as the formula requires, even for fairly large values of n' and 
n". This is also true for a majority of known electronic levels, but there 
are a few very definite exceptions. In these cases the differences between 
the band frequencies or, what is the same thing, the differences between 
the vibrational energy levels, decrease more rapidly than the parabolic 
law (equation (51)) requires. This behavior seems to be associated 
with an instability of the molecule. 

10. HEATS OF DISSOCIATION OF DIATOMIC MOLECULES DETERMINED 
FROM THEIR VIBRATIONAL LEVELS 

Kratze^^s theory of the diatomic molecule (Sec. 4) is limited in 
application to small displacements from the equilibrium position. Such 
a theory cannot be used to discuss displacements which are so large that 
the molecule approaches the dissociated state, and, therefore, it is 
necessary to reconsider the problem, with special attention to large 
values of the rotational and vibrational quantum numbers and the 
transition of the molecule into two isolated atoms. 

This problem has been considered by Born and Franck^ using classical 
mechanics, which furnishes an especially good approximation in this 
region of large quantum numbers. If two atoms, A and jB, are brought 

iZ. Physik, 31, 411 (1925). 
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to a definite distance from each other and ihought of as stationary, the 
energy of the system will contain terms due to the action of the field 
of each atom on the electron motions of the other, an effect which will 
resemble the ordinary Stark effect to a marked degree, since the atomic 
fields are largely electrical in origin. This energy of the system will be a 
function of the distance between the atom centers, say F(r). This 
may be considered as the potential energy for the displacement of the 
atoms relative to each other. Tlie general behavior of this function 
can be seen from general considerations. At r = oo, F is equal to the 
total energy of the two isolated atoms, which may be set equal to zero since' 

Fia. 9.—Potential energy curves for two atoms: (a) the atoms attract at largo distancics 
and repel at small distances; (h) the atoms repel each other at all distances. 

we are interested only in the changes of energy in the process of molecule 
formation or of dissociation. In general, two atoms at a fairly large 
distance apart will attract each other, though it is also possible that 
they may repel each other at all distances. '■ At small distances the forces 
will always be repulsive. If the force at large distances is one of attrac¬ 
tion, there must be a distance n at which there is neither attraction nor 
repulsion, and this is the equilibrium distance of the two atoms; and since 
the radial force between them is — dV/dr, we see that V must always 
decrease as r increases, over the region of repulsive force, so that it must 
have a minimum at ro. On the other hand, if the force is repulsive at all 

' It seems likely that all atoms attract each other at least slightly at large distances 

due to van der Waals forces. 
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distances, the curve V{r) falls continuously as r increases. These two 
cases are illustrated by the curves a and h of Fig. 9. In the second case, 
a molecule cannot be formed, while in the first, a molecule may exist 
having an energy of dissociation equal to the difference of the values of 
F at r = 00 and r = tq. 

In polar coordinates, the Hamiltonian function for the motion of 2 
atoms relative to each other, either in collision or as a permanent molecule 
is, 

H Fl 4- 

2m 2tir^ 
+ V. (56) 

The quantized energy levels for the undissociated molecule can be secured 
in the usual way, if V is known as a function of r. Kratzer's calculations 
in Sec. 4 accomplish this for the special case of small oscillations in 
the neighborhood of r = ro, and for low rotational energies. Also, the 
problem of two ions revolving in large orbits with respect to each other is 
almost exactly the same as that of the hydrogen atom, the largest term 
in the energy being 

E = — . ^ constant, (57) 

where t is the charge on one ion, ix the reduc(*d mass, and n and j the radial 
and angular quantum numbers, respectively; tlius the energy becomes 
zero only when n + j is infinite. The gcmeral case cannot be handled in 
any simple way, but Kratzer^ has shown that the following stat(mient 
holds true for the vibrational states without rotation: if V is an inverse 
power series, and the largest term is the inverse first or second power 
in the region of large values of r the energy reaches the dissociation 
value only when n becomes infinite (see equation (57)); but if the most 
prominent term for large r is the inverse third, or a higher power, the 
energy becomes sufficient for dissociation at a finite value of n, let us 
say no. The way the vibration energy levels may be expected to run 
as a function of n is shown by Fig. 9, for the atomic type of binding. 
The horizontal lines represent the energies of the vibrational states 
for the values of n given at the right. The curved line represents F, and 
the points of intersection of V and the horizontal lines give the values 
of r when J? = F, or when the kinetic energy is zero, so that the inter¬ 
sections of these lines with the curve F are the limits of oscillation. 
In Fig. 9 the horizontal lines become closer together as n increases, 
but at no, which is finite, they are separated by finite differences of energy. 
Without knowing the detailed law of force between the atoms it is possible 
to secure the energy of dissociation from empirical band spectrum data. 
Thus, consider the problem of the molecule solved and the energy 

126, 40 (1924). 
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expressed as a function of the rotational and vibrational quantum 
numbers, 

E - E(n, j), (58) 

The molecule will be considered as dissociated if the two atoms are at 
rest relative to each other or are moving with respect to each other at 
infinity. These conditions will be met when the frequency of vibration 
of the non-rotating molecule is zero, for then the period is infinite, 
corresponding to a fall of the atoms from rest at infinity, a collision 
and a return to an infinite distance. Thus, the condition for dissociation 
is 

I- "•(“> - “• (59) 
and knowing E as a function of n from the empirical band formula it is 
possible to solve equation (59) for n, substitute in equation (58) and thus 
secure the energy of dissociation. In some cases a plot of co.o(n) against n 

is mor(^ useful; the energy of dissociation is then taken to be 

hJ o){7i,)rhi = Z), (60) 

which is the area under the curve from ii — 0 out to the abscissa of 
the maximum 72,1. 

Essentially, this method was used by Ilulthtm’ for the normal state 
of the HgH molecule. Franck^ and Dyrnond'^ also used it in securing 
the energy of dissociation of the I2 molecule from the absorption spectrum. 
The absorption bands of 12, the energy diagram of the molecule and the 
transitions giving these bands are shown in Fig. 10. All the bands 
of the figure are produced in transitions from the lowest vibration level 
of the normal electronic state to the vibration ](wels of the first excited 
electronic state; they arc the 71' progression with 72/' = 0. The bands 
approach a limit at the broken line where dP/dti' becomes equal to zero. 
Beyond this the spectrum is continuous. This limit corresponds to an 
energy of 2.47 volts which is evidently too high for the dissociation energy 
of the iodine molecule into two normal iodine atoms in the state. 
Franck explained this by assuming that one iodine atom is left in the 
metastable state having an energy of excitation of 0.94 volt.-* This 
gives t.53 volts for the energy of dissociation into normal atoms which 
is in fair agreement with the thermochemical value of 1.6 volts. 

This excited iodine atom cannot be detected by the emission of 
characteristic lines since the transition ^Py, does not occur, in 
accordance with the selection rules. Turner® found that atomic iodine 

1Z. Physik 32, 32 (1925). 
2 Trans. Faraday Society, 21, Part 3 (1925). 

»Z. Physik, 34, 553 (1925). 
* Turner, Phys> Eev.f 27, 397 (1926). 
^ Phys. Rev.y 81, 983 (1928). 
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lines whose lower energy state is are absorbed by strongly illuminated 
iodine vapor, but found no evidence of absorption by atoms in the ^P^ 

state under these conditions. The excited iodine atoms in this latter 
state must quickly revert to the state by collisions of the second 
kind (Chap. XIV). Urey, Dawsey, and Rice^ have found that the 
absorption of hydrogen peroxide vapor is entirely continuous so that in 
this case dissociation of the molecule must always occur. Light in the 
range 2,100 to 2,200 A. has sufficient energy to dissociate the molecule 

Fig. 10. Tho absorption hands and co^^ospondirl^2: transitions of iodino; the w'-jirogression 
with n" = 0.2 

into two normal OH molecules and simultaneously to excite one of these 
to its state, which is the initial state for the emission of the 3,064 A. 
water band. This actually occurs, for the band was obtained in fluo¬ 
rescence when H2O2 vapor at low pressures was so illuminated. Thus 
evidence for dissociation of this halogen-like molecule by light has been 
secured. 

This method of determining dissociation energies was also applied by 
Birge and Sponer^ to a number of compounds of oxygen, nitrogen, and 
carbon in different states of excitation. One of the most striking features 
of this work is the fact that coin) is almost a linear function of n, even 
for large values of n, for nearly all molecules with atomic binding, and 
especially is this true for their normal states. This is exactly the require- 

1 J. A. C. 8., 61, 1371 (1920). 
2 From the data of Meoke, Ann. Phydk, 71, 108 (1923). 
^Phijs. Rev., 28, 259 (1926). 
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rnent of Kratzer’s equation (50) for the energy. Although his theory 
was derived only for small oscillations, it proves to he a very good approxi¬ 
mation over a considerable range for this class of molecules. 

The O2 and moleciihis in their normal and excited states furnish 
very neat examples of this method of determining dissociation (mergies. 
The known electronic vibration levels of these mole¬ 
cules are illustrated in Fig. 1J, taken from Birge and 
SponerA Since only a few of the vibration levels of 
the A electronic state arc known, any calculations 
based on it will be inaccurate, and therefore we on)it 
all discussion of this state. The vibration levels of 
the normal O2 molecule (A" state) can be represented 
over the known experimental range by the equation 

P = l,5()5.37n - 11.37/^2. ((>1) 

Applying the condition of equation (59) for determin¬ 
ing no, the value of n for which bEjbn •■=■ 0, we have, 

~ = 1,505.37 - 22.74n„ = 0; no = 08.81. (02) 

Substituting this in equation (Gl), the wave number 
corresponding to the dissociation energy is 

V == 53,850 cm."\ 

which is equivalent to 0.t)5 volts or 153,280 calories 
per gram molecule. As we see from Fig. 11 the 
assumption of the linearity of dP/dn over the entire 
range to dissociation represents a v(ny great extra- D 

IX)lation and the calculation based on this assumption 
may be expected to be in error by a ratht?r larger 
amount. The dissociation energy may also be secured 
by using the vibration levels of the B electronic state. 
These levels do not follow a parabolic equation such 
as equation (61), so that dP/dn is not linear. By 
plotting the values of dP/dn against n it is found that 
the known vibration levels extend to values of n veiy 
close to the limiting value no for dissociation. The^ 
value of the dissociation energy is secured by taking 
the integral of equation (60) graphically. The value 

Vm. 11.—The (‘i>- 
orgy levels of Oa and 
(J2"^. (Afler Hirye and 
Sponer,) The sym¬ 
bols for tho levels are 

so secured is 0.96 + 0.01 volts. Tho difference between 
the X and B levels, with n = 0 in each case, is known 
to be 6.09 volts, from the ultra-violet bands of 

those assigned by 
Mnllikeri {Phys. Rev. 
32, 200 (192S). 

oxygen. The sum of the energy of excitation to the B level with 
n = 0 and the dissociation energy of the O2 molecule in the B state 

1 Lac. cit. For references tc the original literature on the hands from whieli t4)e 
energy levels are derived, as well as the numerical values quoted in the followitig 
paragraphs, the reader should refer to this article. 
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is thus 6.09 + 0.96 == 7.05 volts. This is in fairly good agreement 
with the value 6.65 volts secured by extrapolating from the vibration 
levels of the normal molecule, and indicates that the products of 
dissociation by the two ways must be very nearly identical in energy 
content. The normal state of the 0-atom is a level with the separa¬ 
tions 0.01 and 0.02 volts^ and the next level or ^S) lies a few volts 
higher on the energy diagram. It is evident, therefore, that the normal 
and excited oxygen molecules both separate into atoms which differ at 
most by only 0.01 to 0.03 volt of energy, and the disagreement between 
the two values secured for D must be due to the error in extrapolating 
from the vibration levels of the normal electronic level and the better 
value for the energy of dissociation is that secured by using the data on 
the excited state of the molecule. It is uncertain whether 7.05 volts 
is the energy of dissociation of the molecule into two normal atoms 
or into atoms either or both of which are excited. If both arc excited, 
this energy of excitation is at most 0.06 volt (2 • 0.03 volt), so that the 
energy of dissociation into two normal atoms may be as low as 7.05 — 
0.06 = 6.99 volts. Birge and Sponer give 7.02 ± 0.05 volts as the best 
value. 

The vibrational levels of the O2+ molecule are given accurately over 
the experimental range, by the parabolic formulas, 

if(X') == l,859.86n - 16.53n2, (63) 
and 

v(B') = 885.23n - VS.lnK (64) 

The corresponding values of no are 56.26 and 32.31, and the dissociation 
energies, calculated as above, 6.46 and 1.76 volts,” respectively. Adding 
the excitation energy of the B' level, 4.73 volts, to 1.76 volts, we get 6.49 
volts, which agrees closely with the value 6.46 volts secured from the 
normal X' level. Again, it appears that an excited molecule may 
dissociate into normal atoms or atoms with only small amounts of 
energy.^ These results may be in error by several tenths of a volt 
because of the large extrapolation used (Fig. 11). 

Note added in proof: Birge^ has recently revised the value 6.65 volts for 
the energy of dissociation of O2 calculated from the vibration levels of the 
lowest electronic state and concludes that the energy of dissociation into 
two normal atoms is certainly less than 7 volts and gives 6 volts as the 
most likely value. Thus 7.02 volts is the energy required to dissociate 
the molecule into one normal and one excited atom. 

Attempts have been made to determine the energy of dissociation 
of diatomic molecules by applying similar methods to the rotational 

1 Hopfield, Astrophys, J., 69, U4 (1924). 
* This conclusion is not in accord with theory and may be wrong. See Mulliken, 

Fhys. Urn., 82, 210 (1928). 
» 84, 1062 (1929). 
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states.^ However, the coupling of vibrational and rotational energy 
and other complications are involved in any complete discussion of the 
problem, and it will be best to omit further discussion in the present 
uncertain state of the subject. 

11. INTENSITIES IN BAND SYSTEMS 

Birge^ has pointed out that for many band systems the bands of 
each progression have two maxima of intensity with a minimum between 
them; there are thus two especially favored transitions from each higher 
or lower vibration energy level. In other cases there is only one maxi- 

Fia. 12.—Intensities of the AlO bands. {After Uirge.) 

mum which may be regarded as a superposition of two maxima lying 
very close together; and in yet other cases only one maximum is observed, 
which, from the general distribution of intensity, seems to be due to the 
two maxima being very widely separated so that only one of them falls 
in the observable region. The intensity distributions for AlO, SiN, and 
I2 are typical illustrations of these intensity relations. 

Figure 12 is a square array of the bands of AlO with intensities 
given in place of the wave numbers. Otherwise, the arrangement is 
the same as that of Table 2 for the B^^O bands. The rows are the n" 
progressions and the columns the n' progressions. The n" progression 
with n' = 0 and the n' progression with n" = 0 have only one maximum 
in intensity, namely the (0, 0) band, but all other progressions have two 
maxima. The zero sequence is very nearly at the minimum intensity, 
with two maxima on each side. Many other band systems show similar 
distributions, but are not usually so symmetrical as the AlO bands. 

' Born and Franck, Ioc. dt; Ludloff, Z. Phydb, 39| 628 (1926), 
* BmoR, Phyi. 26» 240 (1926), 
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The bands of the SiN system — 24,234.2) have one region of maximum 
intensity in the neighborhood of the zero sequence, while the iodine bands 

== 15,598.29) have an unusual distribution (Fig. 13). Still other 
molecules, such as the hydrogen halides, show only continuous emission 
and absorption. The absorption spectrum of HCl is continuous with 
no evidence of a band structure. There are regions of maximum absorp¬ 
tion, however, which lie at 2,150 — 1,850 A., 1,750 — 1,650 A., 1,580 — 

1,290 A. and in the region from 1,270A. 

to a point beyond the region of obser¬ 

vation: these' are probably due to differ¬ 

ent electron transitions.^ 

Fig. ]3.“-The intensities of the I2 Fig, 14.—IllustrutiiiK the Frtinck-CLondon 
bands. {Adapted from Birge,) theory. 

The explanation of these intensity distributions was first given by 
Franck, 2 who applied his theory primarily to transitions causing the 
dissociation of the molecule. Condon^ extended Franck’s ideas to 
explain the intensity distributions in band spectra. It is assumed that 
in the process of absorption the light acts for the most part on the electron 
system of the molecule and only to a small extent on the nuclei. There¬ 
fore, the action of the light quantum is to raise the electron system to a 
higher energy level, but not to change the position of the nuclei nor 

^Leifson, Asirophya. J., 63, 73 (1926), 
* Trans, Faraday 21, Part 3 (1926). 

28, 1182 (1926). 
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their velocities relative to each other. In the excited state, the nuclei 
find themselves acted on by different forces and so oscillate with fre¬ 
quency and amplitude different from those characteristic of the lower 
energy state, ?.e., they are brought to a state with a different vibrational 
quantum number. The change in the vibrational quantum number is 
determined by the relative shapes of the two potential energy curves 
for the displacement of the nuclei relative to each other in the initial 
and final electronic levels. The curves V' and F" of Fig. 14 represent 
two such potential energy curves. The energies EJ' and EJ are the 
electronic energies for the two steady states having zero vibrational 
energy. The solid horizontal line represents one vibrational energy 
level for the lower electronic state. The curves F' and F" approach two 
horizontal lines at large values of r, which represent the energies of the 
system when dissociated in two independent ways—firstly, into two normal 
atoms and, secondly, into a normal and an excited atom. We consider 
the absorption of light by a molecule in the vibration state indicated 
by The nuclei oscillate with respect to each other in such a way 
that T oscillates between the limits a and h. At any point r it has kinetic 
(mergy equal to the difference between the ordinates of the line ah and 
the curve F". Now, when the nuclear separation corresponds to the 
point c, a quantum of light is absorbed, which for the instant does Uot 
change the kim^tic energy of the nuclei, nor the value of r, and so the 
system will be carried to a point d on the energy diagram, where dl is 
equal to cf, f.c., the kinetic energy remains the same as in the lower state. 
The molecule will then be in a state (not a quantized energy level) 
having energy equal to the ordinate of d. In this way the curve gdh 

can be traced, giving the locus of the energi(‘s of the molecule after the 
absorption of light by a molecule in the ??/' state. Since the nuclei 
remain in the neighborhood of a and h for comparatively longer times 
than at points between these, the transitions to the region of g and h will 
be more probable than to other points on the curve gdh. Another maxi¬ 
mum in the probability curve for the transitions may be present near 
the point d, for though the molecule spends less time in the neighborhood 
of c than near a and 6, yet for a considerable distance on either side of c 

it will be transferred to the same quantum states near d, because of the 
flatness of the curve gdh at this point. Thus the theory predicts that 
there will be two very probable transitions, or in certain cases three, 
if there is a maximum in the curve gdh. In general, the transitions 
arrived at by using classical mechanics are not quantized states, and, 
therefore, we must content ourselves with assuming that the actual 
changes of the vibration quantum number lie in the neighborhood of the 
unquantized ones required by the above discussion. 

The theory as developed does not take into account the distribution 

of molecules in the various excited electronic and vibrational stateS| 
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which depends on the mode of excitation of the gas and therefore will 
vary with the experimental conditions, such as pressure, velocity of the 
exciting electrons, etc,^ For this reason the comparison of the theory 
with bands observed in discharge tubes can only be qualitative. 

The general types of intensity distribution in band systems can be 
accounted for by the different possible shapes of the potential energy 
curves F' and F". If these curves were of exactly the same shape and the 
values of ro' and ro" were the same, the vibration number would not 
change. This condition is approached in the case of the SiN band 

Fig. 15.—Approximate potential energy 
curves of the Cl2 type, 

d)' = 127.5, = 213.67, 7' = 

system, as can be seen from the 
values of the moments of inertia and 
frequencies of vibration in the two 
states: 

dj' = 1,016.3, d>" - 1,145.0, r - 
38.0 • lOr'o, V' = 37.4 • lO-^o. 

In the case of the AID band system, 
the curves do not differ greatly in 
shape, but the equilibrium distances 
between the nuclei are different in the 
two states, thus accounting for the 
two maxima of intensity in the pro¬ 
gressions. The constants for these 
bands are: 

co' = 864.4, w" =: 970, 7' = 
46.02 • 10-^^, 7" - 43.38 • 10“'o. 

The constants for the iodine band 
system are in agreement with its 
unusual intensity distribution: 

: 951.6 • 10-40, 7" = 742.6 • IQ-^o. 

In this case, both the shape of the F' and F" curves and the values of 
To and To" are very different for the two states. 

The relations of the potential energy curves for CI2 are certainly 
of the type shown in Fig. 15. In this case, discontinuous absorption 
bands involving the normal state of the molecule are unknown,^ though 
absorption bands for transitions from the first vibration state have been 
observed. How this may occur is indicated by the arrows m, n, and o. 

The transitions from the normal state will transfer the molecule to the 
continuous energy levels in the neighborhood of the arrow n, while 
transitions from the first or higher vibration levels may go to the quantized 
higher vibration levels, as shown by the arrow o, or to the continuous 

^Hbrzberq, Z. Pkysik, 49, 761 (1928). 
* Kton, Z. Phyiik, 5, 130 (1921); 89, 77 (1926). 
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region, as indicated by the arrow m. This is certainly a possible mecha¬ 
nism for the photochemical decomposition of some molecules. The 
reverse process in which two atoms combine to form a molecule with the 
emission of light should also be possible. The recombination spectra 
of the halogens have been observed by Kondratjew and Leipunsky' 
and by Urey and Bates. ^ Not every collision between two suitable atoms 
should result in the formation of a molecule with the emission of light. 
The probability per sec of such a transition taking place will be about 10^ 
at the most, but the duration of a collision is only about seconds, so 
that only one collision in 10,000 should result in recombination. 

The shape of the F' curve for the excited state of the HCl type of 
molecule (such as the halogen hydrides and alkali halides) is unknown, 
since no vibration levels of these molecules in excited states have ever 
been detected. It may be that it is similar to that of Fig. 15, but with 
its minimum displaced to a larger value of r relative to ro for the lower 
electronic level. But since only continuous absorption spectra are 
knovvrn for these molecules,^ it may be that the V' curve for these molecules 
has no minimum and therefore approaches the horizontal line from the 
high energy side. In this case both absorption and emission spectra 
will be continuous, with no possibility of a band spectrum, which agrees 
with the known experimental facts. 

12. THE APPROXIMATE ROTATIONAL STRUCTURE OF AN ELECTRONIC 
BAND 

The structure and gross appearance of an electronic band differ 
considerably from those of the infra-red bands such as those of HCl. 
The differences are due principally to two effects: (1) the distance between 
the nuclei of the molecule may be quite different in the initial and final 
states, because of the different electron structure of the two states; and 
(2) the molecule in either or both states may have a resultant angular 
momentum due to orbital motion of the electron or the electron spins. 
The first of these influences the gross structure and appearance of all 
electronic bands and will be discussed in this paragraph, while the latter 
affects the formulas for the energy levels, the possible values of the 
rotational quantum number, and the selection rules. 

Consider a molecule which has moments of inertia /' and /" in the 
states of larger and smaller energy, respectively. If higher terms in j 
are neglected, and effects due to electronic angular momenta are not 

1 Z. Physifo, 60, 366 (1928). 
^Phys. Rev., 33, 279 (1929); Dec. (1929). 
8 See Franck and Kuhn, Z. Physik, 43, 164 (1927); 44, 607 (1927); Franck, 

Kuhn, and Rollefson, ibid., 43, 155 (1927); Hogness and Franck, ibid,, 44, 26 
(1927); Dymond, ibid., 34, 553 (1925); Gibson and Ramsperger, Phya. Rev., 30,598 

(1927). 
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included, then from equation (5), the rotational energies for the two 
steady states will be, 

Er' = + 1) = E'chj'if + ]). 

and 

Er" = + 1) = + 1). (65) 

Accordingly, the wave numb(;rs of the lines emitted will 

5 = + E'fif + 1) - E'Tir + 1), (66) 

where Pe and Pn are the contributions to the wave number due to the 
changes in electronic and vibrational energy. In many electronic bands 
j may-change by 0 as well as by ± 1. The wave numbers corresponding 
to the three possible values of Aj are as follows: 

R{j) = ?. + Pn + (B' - B")(j + 1)^ + (B' + B"){j + 1); 
-~l;i = 0,1,2 . . . , (67) 

QU) - P. + Pn + (B' ~ B'')f + (B' ~ B")i; 
A; = 0;i = 0, 1, 2 . . (68) 

P{j) = P. + Pn + (S' - B'^IP - (B' + 
Ai- +l;i = 1,2,3, . . . , (69) 

where now in each case j is the qua/ntnm number of the final rotational 
statej 2.C., This convention is used throughout this chapter. The 
possible values of .7 in equations (67), (68), and (69) are limited by the 
condition that neither j' nor j" can become less than 0. The sets of 
lines described by these formulas are called the It, Q, and P branches, 
re}3pectively. It is convenient to rewrite them in the forms 

R{j) = A + 2B(j 4- 1) + C(j 4 l)^ (70) 

Q{j) = A 4 Ci 4 Cf, (71) 

P{j) = A - 2Bj 4 (72) 
where 

A - P, + Pn, 2B = B' + B", C ^ B' - B", 

If S' and S" were equal, so that C would be zero, the formulas for 
the R and P branches would not have the quadratic term and Q{j) 
would reduce to p« 4 P«, so that the Q-branch would consist of a single 
line. Figure 16 shows the wave numbers for the three branches plotted 
against the values of j for this simple case. Such a plot is known as a 
“Fortrat diagram.” The continuous straight lines joining the points 
serve only to guide the eye in following the diagram. The R branch 
is similar to the rotation bands in arrangement and in numbers of initial 
and final states, but the P branch has no counterpart in the rotation 
spectrum, since energy cannot be emitted by an increase in the rotational 
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quantum number alone. A P branch is possible only when either the 
vibrational or the vibrational and electronic numbers also change. 

Figure 17 is the Fortrat diagram for the P, P, and Q branches when 
C is negative, f.c., P > /". The relations are similar to those of the 
preceding case, except that the spectral lines are no longer equally spaced, 
and there is a genuine Q branch. 

The curves for the P and R branches, shown in the figure and given 
by equations (70) and (72), intersect at j = ^^nd those for the P 
and Q branches at .7 = 0; th(Te is no P branch lim* for which j = 0, since 
this would mean that j would be minus 1 in the initial state. The R 

and Q branches intersect at j === —1. The curve for tlie Q branch is a 
parabola whose slope is zero at j = The P branch lines draw 

.Flu. IT),—Furtrat diut'zraiu Fk;. 17, -Fortrat 
ill case r — 1". in ca.s.* J' > /". 

further apart as j increases; the R branch lines draw closer together 
until 2B{j + 1) + C{j + 1)^ becomes a maximum and then draw apart 
again. After the maximum is passed, the wave number decreases with 
increasing j. This doubling back of the R branch causes an increased 
density of lines near the maximum and accounts for the existence of the 
band head on the high-frequency side. Formerly, the lines were num¬ 
bered from this point instead of from the band origin at = A as we do 
at present. If C is positive, this doubling back will occur in the P branch 
when — 2B'j + Cp is a minimum and the head will lie on the low fre¬ 
quency side. Bands having the head on the violet side are said to be 
degraded to the red, and those having the head on the red side to he degraded 

to the violet. Visible and ultra-violet bands may be degraded either way 
for changes in the electron configurations and vibration numbers may 
be such that C is either positive or negative. C is always negative for 

the infra-red bands, since it equals as can be seen from 

^ The shape of these curves is ino<lified if the molecule possesses electronic angular 

momentum, as we can see from Fig. 23, for example. 
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equations (34a) and (346), and n' must always be larger than n". How¬ 
ever, C is small for these bands and the doubling back of the R branch 
would occur only at large values of j. For this reason none of the 
infra-red bands so far studied have observable heads. 

IS. THE RIGID GYROSCOPIC DIATOMIC MOLECULE; KRAMERS-PAULI 
MODEL 

The problem of determining the rotational energy states of a diatomic 
molecule which has a resultant electronic angular momentum even for 
zero rotation of the nuclei has been considered by Kramers and Pauli,’ 
Kratzer- and Kemble/^ using the old mechanics, and recently by Hill 
and Van Vleck,^ using wave mechanics. By means of the formulas they 
have developed it appears possible to account for the structure of all 
known rotational en<‘rgy levels. 

(a) (b) CO Cd) Ce) 

Fio. 18.—Vector combinations of the Ryrosoopic diatomic moleciile^—Kramcrs-Pauli 
model. 

Kramers and Pauli assumed that a diatomic molecule may have 
a resultant electronic angular momentum vector, rigidly oriented with 
respect to the line of nuclei at an arbitrary angle, which is supposed 
to be the same for all rotational states. The components of this angular 
momentum parallel and perpendicular to this line are represented by 
cr'/j/27r and €/i/27r, respectively. It is assumed that the electronic angular 

2 

momentum s, which is equal to (cr' + in quantum units, and the 
total angular momentum of the molecule j, are quantized. In the 
rotation of this molecule, the vector s lies in a plane determined by 
the line of nuclei and the direction of j. 

The vector diagram for such a molecule is shown in Fig. 18c. Since 
j is the resultant of a-', e, and m', we have 

p = 0-'^ + (m' + eP. 

Therefore, 

ffl' =! (p — — €, 

1 Z. Physik, 13, 351 (1923). 

2 Ann, Physikf 71, 72 (1923). 

3 “Molecular Spectra,'’ p. 318; Phys. Rev,, 80, 387 (1927), 

«Phys. Rev., 32, 250 (1928). 
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and so the angular momentum of the nuclear rotation, is not 
ordinarily an integer. The energy may still be written in the same 
form as for the non-gyroscopic molecule, namely 

In the special cases cr' = 0 and e = 0, this becomes 

® “‘I ® 

respectively. To secure the formulas required by the quantum mechan¬ 
ics it is only necessary to replace by j(j + 1) and (j ~ by {j — e) 
(jf — € + 1) in equations (74). Figure 18, ahe^ shows the arrangement 
of the vectors for these two spcicial cases and the general case, respectively. 
The arrangeiiKUits of vectors shown in Fig. were excluded by 
Kramers and Pauli, since they are dynamically unstable, in the sense 
that a slight displacenumt of the vectors would cause a rearrangement 
into one of the first three types. They were included by Kratzer, 
however, because they are necessary to account for the number of observed 
energy levels. We secure the additional formulas for the energy in 
cases d and e by using the ambiguous sign before e in equations (73) and 
(74), and shall always consider e as a positive quantity. 

Kratzer introduced an additional term in the energy proportional 
to the first power of m'. Its theoretical justification has been given by 
Hund^ and Hulth^n.^ For simplicity consider the arrangements shown 
in Fig. 18a and d, and let the electronic angular momentum e be due to 
the spin of a single electron, so that € = s= and the magnetic 
moment is one Bohr magneton. Further, assume that the nuclei have 
the same charge and mass. The rotation of the nuclei with m' units of 
angular momentum will produce a magnetic field at the center of mass 

equal to ^ m' where Ze is the effective charge of either nucleus, 
^ fxcr^ Air 

r the distance between them, and jx the reduced mass. The mutual 
magnetic energy, due to the coupling of an electron with magnetic 
moment ekfAirmoC with the magnetic field will be. 

This neglects the magnetic field due to the rotation of the electrons 
along with the nuclei; this field is opposite to that due to the rotation 
of the nuclei. Therefore, the expression for should be replaced 
by a summation which includes the term due to the nuclei and other'- 

1 Z, Physik, 42, 93 (1927). 

» Z, Physik, 45, 331 (1927). 
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due to the magnetic fields produced by the rotation of the individ¬ 
ual electrons. This summation will not be zero in general because of 
the different values of r for the nuclei and electrons and will be equal 
to a constant multiplied by w/. The additional term in the energy may 
be positive or negative for either orientation of m' and .s, and examples 
of both cases are known. Using the ambiguous sign before 6 in equation 
(73), and adding a term proportional to m', and choosing the ambiguous 
sign before the last term so that the constant 6 is umally positive, we have 

E = + er ± 25Kf - c'^) + .]. (75) 

The last term, linear in [(j^ — 0-'“)’“ + «], is necessary to account for 
the number of energy levels observed in many molecules; and the theo¬ 
retical value of 5, which can be secured by comparison with Em^ above, 
is of the right order of magnitude. The case of the hydrides is partic¬ 
ularly simple for in this case we can consider the rotation of the positive 
hydrogen nucleus about the heavier atom. The separation of the levels 
for parallel and antiparallel m' and .s is of the order of magnitude expected. 

However, the formula (75) does not yield the energy levels of mole¬ 
cules satisfactorily. Some molecules have rotational energy levels which 
follow approximately but not exactly, the requirements of the theory, 
as for example the OH molecule.^ The reasons for this failure are that 
classical mechanics cannot be expected to give the correct formula, and 
that the electronic angular momentum vector is not rigidly bound to any 
orientation in the molecule, but changes its orientation with changing 
rotation of the molecule. Before taking up these modifications of the 
theory (Sec. 16), it is well to consider the origin and nature of the elec¬ 
tronic angular momentum, which first became possible with the intro¬ 
duction of the spinning electron. 

14. SIMILARITIES OF THE ELECTRONIC LEVELS OF ATOMS AND 
MOLECULES 

Mulliken- showed that the first excited level of BO and other mole¬ 
cules with 9 outer electrons is a doublet level, with a separation of the 
order of magnitude to be expected, if the cause of the multiplicity is 
the same as that of the alkali metal doublets; and Hulth6n^ showed that 
the doublet separations of the ZnH, CdH, and HgH molecules were of 
the same order as those of the Zn, Cd, and Hg atoms. Mecke^ inde- 

1 See Birge, “Molecular Spectra,'^ for a detailed comparison of the OH bands 
with this formula. 

2 Phys. Rev., 26, 259 (1925); 26, 561 (1925). See also Mecke, Z. Physih, 28, 261 
(1924). 

« Nature, 116, 642 (1925). 
* Naiurwiss., 18, 698, 755 (1925). 
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pendently pointed out certain analogies between the alkali metals and BO^ 
CO’^, CN, and N2‘^. He also noted a similar analogy between these 
metals and the alkaline earth halides. Birge* summed up the evidence 
previously presented and pointed out that quite generally, definite 
analogies could be drawn between molecules and corresponding^^ 
atoms; that molecular electronic levels are found to follow a Ritz formula 
and are arranged in multiplets just as in the case of atoms. Examples 
of thi) first of these points of similarity are the electronic levels of the 
hydrogen and helium molecules,^ which follow a Ritz formula. The 
A level of N2 is a triplet with spacings approximately 20 and 42, while 
those of the level of Mg are 41 and 20.’^ Also, in the case of a doublet 
level of CO+ the separation is 126, as compared with the separation 
91.5 for the 2-P level of Mg*^. Subsequent work has amply justified 
Birge's conclusions. 

16. VECTOR MODEL OF THE DIATOMIC MOLECULE WITH AN 
ELASTICALLY BOUND GYROSCOPE 

Hund^ first applied the methods of describing atomic multiplets by 
the use of the I and 6" vectors, as given in Chap. VII, to diatomic molecules. 
In the theory of the Stark effect (Chap. V, Sec. 12), we find that the 
quantum numbers n2, and m, (where Ui + equals the total 
quantum number, n) must be used to fix the steady states of a hydrogen 
atom, which in the absence of the electrostatic field has the quantum 
numbers n and k. According to this theory, m may take all integral 
values from —A; to +A;, except zero. Wave mechanics (Chap. XVI, 
Sec. 7) similarly requires the use of three quantum numbers in the pres¬ 
ence of the field, but the allowed values of m are all integral values 
including zero from —I to +i. The quantum numbers k of the older 
theory and I of the new theory lose their original significance because there 
is no constant angular momentum vector which processes uniformly 
about the direction of the electric field. 

Two atoms in close proximity will influence each other in a way 
similar to that in which an electric field acts on an isolated atom, for 
each atom finds itself in the strong inhomogeneous electric field of the 
other. (The magnetic field in the neighborhood of an atom having a 
magnetic moment will be negligible compared to its electric fields, in 
its effect on the energy states of neighboring atoms.) The effect of 
the field of one atom on the other is to cause a torque on the electron 

1 Nature, 117, 300 (1926). 
2 Fowler, Ptoc, Roy. Soc., 91, 208 (1915); Curtis and Long, ibid,, 108, 513 

(1926); Birge, Proc, Nat. Acad. B<d., 14, 12 (1928). 
3 The close agreement between these figures is probably not significant. 
^ Z, Physik, 36, 667 (1926); 40, 742 (1927); 42, 93 (1927). 
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system and nucleus of the latter about a line perpendicular to the line 
joining them. This causes a precession of the electron system of the 
second atom about the line of nuclei; the second atom causes a similar 
precession of the first. This means that one of the angle variables of the 
system is the frequency of precession multiplied by the time. The 
angular momentum about the line of nuclei is constant and must be 
quantized. Let this quantum number be X. Just as in the case of the 
Stark effect in a strong electric field, where the component of angular 
momentum parallel to the field may take all integral values from —I to 
+Z, so here X takes the values —Z, —Z + 1, * • • Z — 1, Z, where I is a 
hypothetical quantum number which would be the azimuthal number if 
the two atomic fields were replaced by a central field. The total number 
of X values for given Z is thus (21 + 1). There is no indication from the 
Stark effect that the electron spin vector is caused to precess with an 
appreciable angular velocity in the presence of an electric field, and there¬ 
fore no such precession of s about the line of nuclei is to be expected, and 
the orientation of s in the non-rotating molecule will depend only on its 
coupling with X. If this is zero, it should be free to orient itself in any 
direction whatsoever. However, when the molecule is rotating, there 
will be a coupling between the s and X vectors on the one hand and the 
magnetic field due to the rotation of the nuclei on the other hand, as 
described above (Sec. 13); but since the X vector is strongly oriented by 
large electric fields the coupling between it and this weak magnetic field 
can be neglected. Also, even neglecting this weak magnetic field, there 
is a coupling between the X and s vectors and the j vector, arising from 
the kinetic reactions in a rotating gyroscope, which tend to orient the X 
and s vectors parallel or antiparallel to j, as will be shown presently; 
but in most cases these effects tending to orient X in the direction of j 
are much smaller than the effects due to the electrical fields of the 
atoms. The orientation of X is therefore practically unaffected by 
the rotation of the molecule as a whole. This is not true with respect 
to the orientation of s; the strength of coupling between X and 6’ may be 
weaker or stronger than the strength of coupling between the 5 and j 
vectors, or approximately equal to it. For this reason Hund distinguishes 
the cases: 

Case a,—The coupling between X and s is very much stronger than 
that between j and s, so that the orientation of s depends principally 
on X and only slightly on j. The quantum numbers for this case are 
J, 8f X and (t; <r is the projection of s along the line of nuclei and (in case a) 
it takes all values from — s to +«. We shall denote the vector sum of X 
and <r bj^ i. The meaning of these vectors can be seen from Fig. 19. 

Ca^e 6.—The coupling between the X and s is very much weaker than 
that between j and s. In this case we have the following quantum 
numbers: X as before; k, which is the resultant of X and the rotational 
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number m!, (not quantized) as shown in Fig. 19; andj which is the vector 
sum of k and s. The s in this case takes quantized orientations with 
respect to k and is only slightly influenced by X. 

There is also the intermediate case where the strengths of coupling 
are nearly the same. Then for low values of j, the rotational states will 
follow those required for case a, and for large values of those required 
for case b; between these two extremes there will be a transition from 
case a to case b. Since the coupling between s and j is always fairly 
weak, this transition case will not occur unless the coupling between 
X and s is weak. It will be necessary therefore to correlate the arrange¬ 
ments of vectors for case a with those for case 6. The circles 
of Fig. 19 indicate the precessions of the vectors. In case a, m' and t 
precess about j with the same frequency while in case 6, m' and X process 

Fig. 19.—Vector combinations and precessions of the gyroscopic diatomic molecule. 
Hund’s ca8<*8 (a) and (6). 

about k with the same frequency, m' is determined by jf and t or by A; and 
X in these two cases, respectively, and, therefore, is not quantized. 
It must be understood that we are dealing with a model in which I and s 
are not directly coupled to form a quantized resultant, as they are in the 
normal multiplet levels of atoms. The s vector does not couple with 
Z, which is not a quantum number, but only with X which has the direc¬ 
tion of the line of nuclei in case a, or with k in case 6. 

The total number of quantized states will be the same for case a 
and case b. In case a, the total number of values of a for a given value 
of s is 26' + 1. Combining this with the total number of X values, we 
have (2s + 1)(2Z + 1) possible steady states. For case b, there will 
be 2Z + 1 possible values of X, as for case a, and 2s + 1 possible orien¬ 
tations of s with respect to k and thus a total of (2s + 1)(2Z + 1) com¬ 
binations for each j value, in this case as well. Some of these levels 
will have identical energies if the molecule is not rotating. Changing the 
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sign of both cr and X in case a, or X in case h should result in no change 
of energy if the molecule is of this kind. Simple considerations show 
that as a consequence the number of levels observed should be (2*s‘ + 1) 
(Z + 1). On the other hand, if the molecule has rotational energy, 
this degeneracy is removed and two steady states w^ith a small energy 
difference occur if X 0 (Chap. XIX, Sec. 9). This results in the 
appearance of the full number of levels expected, namely (2s + 1) 
(21 + 1). They are arranged in close pairs, except that the level for 
which X — 0 is single. It was known that the interpretation of experi¬ 
mental facts required this doubling of the levels before the cause was 
understood, and the phenomenon was called “o--type doubling’' or, 
better, using the symbols of this chapter, X-type doubling. It is always 
present if X is not zero. The explanation was first given by Huiid,^ 
and has been discussed also by Hultln^m^ and Kronig.*^ States for which 
X is different will usually be widely separated because of the large Stark 
effect” (see Chap. V, Sec. 12 and Chap. XVI, Sec. 7). 

The resultant X which we have used may be regarded as the vector 
sum of Xi, X2, X3, . . . Xr . . . , characteristic of the individual electrons. 
Each of the electrons is influenced by the large inhomogeneous electric 
field of the two nuclei so very strongly that the coupling between the 
Z's of the individual electrons is broken down and each behaves to a first 
approximation as though the others were not present and thus, 

X = Xl -f- X2 X3 • • • Xr d” • • * . 

These two cases, a and b, occur most frequently and are the only 
ones discussed in detail in this book, but other ways of combining the 
I and s vectors may occur. It may occur that the coupling energy of 
the I vectors among themselves is greater than the energy of the “Stark 
effect” due to the two nuclei. In this case, the Ts will form a quantized 
resultant I and the s’s another resultant s. These two vectors will form 
a J which .will be entirely similar to the atomic J and this will precess 
about the line.of nuclei. Its projection on this line will be t, which will 
then combine with the m' to form the resultant j of the molecule. This 
is Hund’s case c. 

Again it may happen that the molecule consists of a kernel having only 
closed shells of electrons and the two nuclei, and one or more “valence” 
electrons moving at relatively large distances from the kernel. In this 
case, there will be, first, a rotation of the kernel with a resultant angular 
momentum and, second, a resultant angular momentum of the outer 
electron system made up by a vector sum of the Z's and s's of the electrons. 

1Z. Physik, 42, 93 (1927). 

* Z. Physik, 46, 369 (1927). 

»Z, Pkysik, 46| 814 (1928); 60, 347 (1928). See also Van Vleck, Phys. Rev,, 38, 
467.(1929). 
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Finally, there will be a coupling between these vectors. Several cases 
may be considered here depending on the way the vectors are coupled. 
Weizel has shown that this uncoupling of the X from the lino of nuclei 
occurs in the case of certain He2 levels.^ 

16. ENERGY OF THE ELASTIC GYROSCOPIC MOLECULE; CORRELATION OF 
CASES a AND b 

Having considered the origin of the resultant electronic angular 
momentum we wish to secure the formula for the rotational ent^rgy and 

Normal Doublefs Inverted Doublets 

l^A-s L~X-f-s L'Ms 

Fig. 20.—The correlation of cases (a) and (?>) when s = 

to decide how the states of case a are to be correlated with those of case h. 
In other words, if a molecule belongs to case a and has certain values 
of the quantum numbers j, X, <r, and l for small values of j, and if it 
becomes a molecule of case b for large j, what will be the values of the 
quantum numbers j, X, s and A, which correspond to the values of the 

iZ.FAyaifc, W, 321 (1929), 
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quantum numbers for case a? This correlation is given graphically 
in Fig. 20 for normal and inverted doublets (where s == so that 
c — ±y2). In the normal doublets the higher energy level for no 
rotation of the nuclei is that for which 6 = |X| + |(t|, and the lower, 
that for which t = |X| — |(r|, while the reverse holds for the inverted 
doublets. Thus, for example, if X = 1 and o- = ±3^^, t or 3^, the 
molecular states are similar to atomic states, and the rule for 

normal and inverted doublets is the same. For normal doublets, those 
states of case a which have X and <t parallel go into states of case h having 
k and s antiparallel; and those states of case a having X and a- antiparallel 
go into states of case b having k and .*? parallel. For inverted doublets, 
parallel X and cr go over into parallel k and s; and antiparallel X and a 
into antiparallel k and s. One apparent exception to the rule for normal 
doublets will be discussed later. 

The essential features of the argument both for the energy levels 
and the correlation of the two sets of quantum numbers for the two cases 
can be understood from the mechanical model considered by Kemble.^ 
We shall consider only the special case where s = y and therefore 
O’ = ± J 2 small values of j, which is the case of a doublet system of 
electronic levels. The two possible arrangements of vectors for the 
case intermediate between cases a and h are given in Fig. 20, with the «s* 
slightly displaced from the position parallel or antiparallel to X in the 
way expected for normal and inverted doublets. The resultant electronic 
angular momentum does not lie along the line of nuclei, but it does lie 
in the plane determined byj and the line of nuclei so that as stated above 
there is no component of electronic angular momentum perpendicular to 
this plane. The coordinates B and ^ fixing the position of X, s, and j rela¬ 
tive to each other are shown in the figure. It is assumed as a first approxi¬ 
mation at least that the energy of coupling between X and s is proportional 
to these numbers and to the angle between them; let this energy be 

V{B) = Ah\s cos 6, (76) 

where A is positive for normal doublets, and negative for inverted 
doublets. The torque tending to increase 0 will be 

" -. - = Ah\s sin 6, 
oB 

(76a) 

This must be equal to the torque due to the precession of the gyroscope 
about j in a state of steady motion; this is known from the theory of 
the gyroscope to be equal to the angular velocity of precession multiplied 
by the component of angular momentum perpendicular to and is, 
therefore, 

wsA sin 0, 
1 Rev,, SO, 387 (1927). 
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where o) is the frequency of precession of the nuclei about j. Equating 
this to the right member of equation (7Ga), we have 

sin 6 = sin (d + tp), (77) 

since the angle (j, s) = 0 ^ as can be seen from the figure. 

These results may be better understood by the following geometrical argument. 

The torque due to the coupling between s and X is in a direction to increase the angle 6 

for the two vector arrangements of Fig. 20 when A is positive, i.e., for normal doublets. 

This torque if not balanced by an opposing one would cause a rotation of s in the 

direction of increasing 0, In time dt^ it would contribute an additional angular 

momentum, upward from the plane of the page in (20a) and downward in (20/^), 

equal to the torque times dt. This additional angular momentum is perpendicular to 

s. In the absence of any coupling with X, s would keep its orientation in space 

unchanged. Therefore, s is changed in direction relative to the line of nuclei, by the 

rotation of the molecule as a whole, at a rate equal to the projection of s on the 

plane perpendicular to j multiplied by the angular velocity of precession, 2x^0. This 

will be downward from the plane of the page in (2()a) and upward in (20/51), so that 

these (diangcs due to the rotation of the molecule are alwaj^s opposite in direction to 

the angular momenta contributed by the coupling torque. When these two are equal 

no pre(;essiou of the s vector about the line of nuclei will occur, and it will be held in 

kinetic equilibrium at the angle 6. This is the meaning of equation (77). The angle d 
decreases with increasing j in (20a) and increases wdth increasiiigy in (20/5). Finally, 

s be(5omes parallel or antiparallcl to k, thus proving the correlation of states given for 

normal doublets. The correlation for inverted doublets is similar; here A is negative 

so that the direction of the coupling torque is opposite to that for normal doublets 

and a similar argument applied to the inverted doublets will give the correlation of 

the cases a and b as before. 

The kinetic energy of rotation of the nuclei is 

T = >2M^a'(27ra;)2 sin^ ^ = ^^(2x0;)' sin^ (78) 

where ro is the distance between the nuclei, m the reduced mass, and I 
the momeiit of inertia of the molecule. The angular momentum of 
rotation about a line perpendicular to the line of nuclei and in the plane 

of j and this line is 
/xrf)^(27ra)) sin p — /(27raj) sin <p 

and this must be equal to 

{j sin ^ + s sin (?) , 
Ztt 

so that 
h{j sin + .9 sin 6) 

iirU sin (p 
(79) 

Further, from the geometry of the figure, we have 

j cos V? == X + 5 cos 6, (80) 

To secure the energy as a function of j, X and s, we must eliminate <fl, oi, 
and 9 from equation (78) by means of equations (77), (79), and (80). 
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This cannot be done except for the limiting oases of very small and 
very large values of j. The formulas agree fairly well with the experi¬ 
mental data for the state of OH secured from the water 
band at 2,811 A., but again we shall make use of the more exact and 
simpler formula of Hill and Van Vleck^ secured from matrix mechanics 
using the matrix analogue of Kemble^s model. This formula is 

E = [(i + ViY ~ + K{4(i + >0^ + 4)X‘^lM]5/ic, (81) 

where a = A/Be and B = h/^ir^Ic as used before in this chapter. This 
formula holds throughout the region of transition from case a to case b 
for both normal {A positive) and inverted (^4 negative) doublets and 
agrees very well with experimental data to be presented in the following 
paragraphs. 

17. NOTATION FOR ELECTRONIC LEVELS AND BANDS^ 

The notation used to describe molecular levels is an outgrowth of the 
methods of designating atomic levels, but is more complicated because 
of the greater number of quantum numbers. Undoubtedly, it will be 

1 Phys. Rev., 32, 250 (1928). 

2 Many symbols have been used for the quantum numbers of rnolecuhjs and it 

appears that there may be still further changes. Below we give some of these systems 

and that used in this book. We list under Washingt.oiC’ a set adopted by an unoffi¬ 

cial group of spectroscopists at the April meeting of the American Physical Socnety. 

Prof. R. S. Mulliken tells us that he is using a set somewhat diffi^rent from this which 

we list under ‘^Mulliken (revised).’^ The symbols used in tliis book an^ partly chosen 

because we had used small letters instead of capitals in preparing the book and felt 

that the labor of changing all our symbols was too great to justify our doing so. Also, 

we rather prefer small letters because of the greater ease of writing them. We believe 

the set used is sufficiently similar to the others to make comparison with other works 

comparatively easy. 

Quantum Numbers for Case a. 

This book. .. K X a 1 J m s 

Wigner and Witmer. X V 1 J T 

Hund. . . ilr ii u i V S 

Mulliken. . . <rkr(<rir) crk((ri) O', (T J m s 

Washington. .. X(Xr) A I J M S 
Mulliken (revised). .. X(Xr) A s Q J M S 

Quantum Numbers for Case b. 

This book. .Xr X k J m s 

Wigner and Witmer. X 1 j r 

Hund. . f/r ii Vi V s 

Mulliken. .O-A^Co-Ir) (Tkicri) jkijt) j m 8 

Washington. .X(Xr) A K J M S 
Mulliken (revised). . X(\r) A K J M S 

In addition to these, Dennison and Kronig have used n for X, and Sommerfeld 
(Ergfinzungsband) has used r for X. The use of Greek symbols was first introduced 
by Wigner and Witmer. References to the papers of the authors cited are given 
throughout the text. 
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modified in the future, as the subject grows. The detailed symbols 
introduced by Mulliken,^ Hund‘-* and Wigner and Witmer^ for electronic 
levels of molecules will be developed as different types of bands are 
described and the necessity for them becomes evident. The symbols 
S, IT, A, etc., will be used to indicate levels for which X == 0, 1, 2, etc., 
respectively. Bands are indicated by giving the symbols for both the 
initial and the final electronic states. We now proceed to give illustra¬ 
tions of various typ(is of electronic bands. The selection rules will be 
derived empirically from the experimental data. 

18. BANDS OF THE TYPE 

The infra-red rotation vibration bands of HCl, discussed in detail 
in Sec. 6, are examples of this type of band. The rotational energy 
for both the initial and final states is approximately proportional to 
j{j -f 1), j = 0, 1, • • • . The levels are single, which indicates that 
there is no electronic angular momentum, so that X and a are zero. 
Only P and R branches are known, so that the selection rule is Aj = ±1. 

Electronic bands of this type are known, of which the CuH bands 
at 4,280 L are a good example. A least square computation'* of the best 
empirical equations for the two branches yields the results, 

R{M) = 23,311.080 + 14.6072M - 1.07834Af2 - 0.001155M« + 
0.0000364M^ 

and (82) 

P{M) = 23,310.976 - 14.4439M - 1,09105M2 + 0.00365771/'^ + 
0.000013871/S 

where 71/ = 1, 2, • • • . The difference between the constant terms in 
these two equations is probably not significant, but the differences in the 
other constants are certainly real. These bands can be accounted for 
approximately by assuming terms {v — E/hc) given by the equations 

* - r/ + h' + F'(i'), F\f) ^ By(i' + 1), 
i?" = + h" + /’"(i"), ^ + 1), (83) 

with / or j" = 0, 1, • • • and the selection rule, Aj = ±1. The energy 
level diagram required for the band is entirely similar to that of the HCl 
bands (Fig. 5). The arrows showing the transitions for the P and R 
branches are numbered in accordance with the usual convention by 
giving the j value of the lower energy state. The first R line is R(0) and 
the first P line P(l); their wave numbers are given by equation (82). 
with 71/ = 1. Equation (82) can be rewritten, using j instead of the 
empirical running number M by substituting 71/ = j + 1 in RiM) 

^Phys. Rev,, 30, 785 (1927). 

» Z. Phyaik, 51, 759 (1928). 

Phyaik, 51, 869 (1928). 

* BiaoE and SH»i^ ** Molecular Spectra,” p. 87* 
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and ikf = j in P(M) in the right hand members so that R{M) and 
P{M) equal Rij) and P{j) of equations (70) and (72) respectively. 
The so-called double differences of the rotational terms/^ defined 
as F{j + 1) — F{j — 1) and represented by the synibol 2AP, can be 
secured by taking differences between the wave numbers of suitably 
chosen lines of the P and R branches. From the figure, it is easily 
seen that these differences arc given by the following combinations: 

2AF'(i) = P'(i + 1)-F\3 ~ 1) = im) ~ P{M) = P(i) - P(i) (84) 
= 13.632 + 26.891 Ij + 0.009463^2 - 0.004666j'' + 0.000022()i4, 

2^^'{j)=F''{2 + l)^F'\j--\)^R{M~\)-P{M+\)^R{j~-\)~P{j+\) 
= 15.635 + 31.2222i + 0.001656r - 0.004867p + 0.000022(^1 

From these equations we can determine the functions F'{j) and F"{j), 
Except for an unknown additive constant independent of j, they are, 

P'(i) = 6.8144i + 6.7239^2 + 1.5753 • - 5.832 • 10 
+ 2.26 • 10-*^/, 

F"(j) = 7.8172i + 7.8068j2 + 2.685 • 10"^ - (>.084 • 
+ 2.26 • (85) 

The first two terms on the right of these equations could be replaced by 

6.7239i(i + 1) + 0.0905;, 
and 

7.8068i(j + 1) + 0.01()4j, (86) 

respectively, and thus these equations are approximately, but not 
exactly, in the form to be expected for a rotating non-gyroscopic diatomic 
molecule. Kemble^ has suggested that this deviation is due to an 
orientation of the electron spin vectors relative to j in such a way that 
they do not exactly add up to a resultant zero. This would occur 
because of the kinetic torque due to the rotation and would give a small 
component of electronic angular momentum parallel to j. The additional 
term in the energy proportional toj arises for the reasons given in Sec. 13. 
This deviation is quite frequent in this type of level, but the approximate 
agreement and the singlet character of the levels lead to the conclusion 
that neither of the electronic states has any resultant electronic angular 
momentum. The transition is therefore classified as ^ S. 

The CuH molecule has an even number of electrons and 2 of these, 
one from the copper atom and 1 from the hydrogen atom may form a 
^Walence^’ group similar to that of the alkaline earths. Thus we may 
expect the levels to be single and triple, as in these atoms. The known 
singlet bands are in accord with this expectation; j takes integral values 
for this level of odd multiplicity, just as the atomic j does in the case of 
odd atomic multiplets. 

^ ** Molecular Spectra,” pp, 345-^46, 
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19. THE 4,241 A. BAND OF AlH; A -* '2 TRANSITION* 

This band consists of a P, a Q, and an R branch, and, therefore, the 
first and most obvious assumption to make is that it is emitted in transi¬ 
tions between two sets of single rotational levels, following the selection 
rule Aj = +1 or 0. This is not true, for on following through the assump¬ 
tion, we find that a doubling of the levels must be assumed. A doubling 
of levels is to be expected in accordance with the preceding theoretical 
discussion for a singlet 11 state, for here X = 1 and «• = 0; two states of 
slightly different energy will be present for each value of j, due to the 
two possible orientations of X, which can be explained only by means of 
the new mechanics (Ohap. XIX, Sec. 9). To see how this doubling is 
detect(Hl in practice, we return to the original erroneous assumption for 
the present. That is, w(? assume that the wave numbers of the three 
observed branches ar(^ given by the following differences, omitting for 
simplicity the contribution to the wave numbers by the change in elec¬ 
tronic and vibrational energy, 

P{j) = R’ij - 1) - F"(j) 
Q(I) = F'ij) - F"{j) 
Rij) = F'ij + 1) - F"ij). (87) 

Then the first differences designated by AP(.7 -f- \'j) and defined as 
f'Xi + 1) ~ P(y) are for (In* two electronic levels, 

NF'ij + 1^) = F'ij + 1) - F'ii) = Rij) - Qij) = Qij + 1) - Pij + 1), 
AP"(i + I 2) = F"ij + 1) - F"ij) = Qij) - Pij + ]) = Rij) 

- 00’+1). (88) 
If our assignment of transitions is correct, the two expressions for AF' 
and similarly the two for AF" should agree. That they do not agree 
exactly is evident from Table 3. The amount of the discrepancy is 
known as “the combination defect,” and its existence proves that the 

Table 3 

j 

F'(j + 1) - F’(j) F"(j + 1) - - F"{j) 

R<j) - Qij) 5' 
i 
Qij + 1) - Pij + 1) QU) - py +1) 6" Rij) - Qij + 1) 

0 . . . 1 12.8 

1 24.1 0.2j 23.9 25.1 0.2 25.3 

2 36.2 ! 0.3 35.9 37.6 0.3 37.9 

3 4S,3 i 0.5 47.8 50.2 0.5 50.7 

4 60.3 0.9 59.4 62.3 0.9| 63.2 

9 107.1 0.9 106.2 112.2 0.9 113.1 

10 118.7 1.8! 116.9 123.9 1.8 125.7 
14 173.5 3.5 170.0 171.2 3.8 174.0 

19 220.3 5.5 214.8 227.6 5.6: 233.2 

‘ Ebiksson and Hulth^n, Z. Physik, 34, 776 (1926), 
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B. 
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9 

B. 
A- 

A- 
A- 
Fio. 

J 

= / 

assignment of levels is not quite correct. There are no observed lines for 
Q(()) or P(l), showing that j for the initial state cannot take a value less 

than 1. 
The combination defect can be satisfactorily accounted for by 

assuming that the higher energy levels are close doublets. Figure 21 
illustrates the first few rotational levels for the two electronic states. 
According to Mulliken/ the lower ^2 levels are designated as A levels 

and the higher double levels as A and B 
levels, in such a way that a B level com¬ 
bines with an A level, when Aj = ±1, and 
an A level with an A level when Aj = 0. 
Further cases of this will be met and the 
more general statement of the selection 
rule is that 

B A or A -*-» P, when Aj = ± 1, 

and 

A —» A or P —> P, when Aj = 0.^ (89) 

The levels and transitions of Fig. 21 have 
been drawn so as to be in agreement with 
this rule and the experimental data of th(i 
band. 

The three branches are due to the fol¬ 
lowing combinations: 

PsAij) = F,'{j - 1) - F/'O’), 
QaaO’) = PAi) - F/'U), 
Rba(J) = F/ij + 1) - F/'O'), (90) 

where the meaning of the subscripts 
of the F' and F" is evident, and those 
of the P, Qj and R indicate the character 

of the initial and final levels involved. These symbols will be used in 
the following discussion to indicate levels and transitions, where this 
so-called X-type doubling'' occurs. The differences of the second column 
of Table 3 are really Fe'ij + 1) - and of the fourth column 
Fa^J + 1) ~ Fb'U), so that they should not be identical. In the fifth 
and seventh columns are the differences 

21.—Energy levels for the 
4,241 A AlH baud. 

(F/'O- + 1) - F/'O')) + iF/(j) - F/U)) 
and 

(F/'O' + 1) - F/'U)) + (F/0' + 1) - F/ii + D), 

respectively, which again should not be identical. The differences S' and S" 
should be equal to each other in agreement with observation, and equal to 

{Fb'U + 1) - F/(J + 1)) + (F/(i) - F/(i)). (91) 

1 Phyn. Rev., 30, 786 (1927). 
2 In this tvoe of level j and k are identical. 
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From these differences, Fs'U) — F^'O*) can be secured as a function 
of j. It appears that it cannot be a linear function of the rotational 
quantum number and that the B levels lie higher than the A levels as 
shown in Fig. 21. 

By using only the P and R branches, expressions could be secured 
for Fb'U) and F/'U) as functions of j, by exactly the same methods 
which were used in discussing the CuH bands above. The differences 
Fb'U + 1) F/i'ij — 1) are found to follow a fairly smooth formula 
of the type iB(j + ^), which shows that Fb^J) = B'j(j + 1). Because 
the lines 0(0) and P(l) are missing, the level for j = 0 must be absent. 
The lower levels follow a formula of the form F/'{j) ~ + 1) with 
j = 0, 1, • • • , very closely. Thus, the energy diagram meets all the 
requirements necessary to account for this band. 

The initial state is evidently a ’ll state with X = 1 and (7 = 0. The 
final level is evidently a level of the same type as those of the HCl 
bands or the CMH band; X == 0 and one would expect that its rotation 
levels might behave as either A or B levels and would combine with 
both these types of levels, which is not the case. The selection rule 
for this band is that given in equation (89). It is to be noted that j 
takes integral values for this system of odd multiplicity, as it should. 

20. THE B BAND OF CaH; A 2^ TRANSITION 

The CaH molecule has an odd number of electrons so that the spin 
number ^ must be half integral. If two of the three valence electrons form 
a closed shell, only one electron is involved in the emission process and we 
may expect a doublet system of levels similar in some ways to those 
of the alkalies. In order to avoid confusion, certain points developed 
in the preceding theory of the gyroscopic molecule may be repeated 
here. For a X level, X is zero and therefore the s vector, which is 
in this molecule, will not tend to orient along the line of nuclei at all since 
electrostatic fields do not influence its orientation. Therefore, it is 
free to orient itself parallel or antiparallel to k. However, since X is 
zero, k is the angular momentum of rotation of the nuclei, and j will 
be equal to {k + Vz) c>r ik t^), for the two orientations of s with 
respect to fc. The energy of rotation will therefore be proportional to 
k{k + 1) for both these orientations, with only a slight difference due 
to the two orientations of s in the weak magnetic fields produced by the 
rotation of the nuclei. This effect was discussed in connection with 
equation (74), and the theoretical formula for this case, neglecting the 
small magnetic energy, is secured from equation (81) by setting X = 0 
and a ~ 0, Thus, the terms should follow the formula, 

F = B[{j + VtY ± (i + H)] ± 26* 
= Bk(k + 1) ± 25* (92) 
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where 
i = A + or j = A - 3^. 

(Compare equations (74), (75), and (81).) The ambiguous sign is chosen 
so that the energy is maximum when k and s have the same direction. 
Those terms which have the same k will evidently form close doublet 
levels whose separation becomes zero for A: = 0. 

The known bands of Call have been measured by Hulth^n^ and 
Mulliken'-* and are called the Aj B, and C bands. The B bands are two in 
number and are probably the zero sequence with vibration numbers 
0 0 and 1 1. These bands and also the C bands are to be classed 
as a 22 2^ transition. The A bands are a ‘^H —> 22 transition. This 
type will be considered later. The B bands consist of two R and two P 
branches, and perhaps two short Q branches. All of them can be satis¬ 
factorily accounted for by assuming two energy levels for each value 
of both for the initial and final electronic states. The observed lines 
are given by the combinations, 

Pn(j) = + F/{J - 1) - 7^/'(i), 
RuU) = + F/(j + 1) - F,"{j), 
P22(j) = + FAj ” 1) - /^\"(i), 
R22(j) =ye + F^{j + 1) ~ F,'\j), (93) 

The subscripts 1 and 2 of the F’s distinguish the two sets of terms for 
which is parallel and antiparallel to k, respectively; and the subscripts 
of the P's and P's indicate the orientation of the .s for both the initial 
and the final states involved in the.emission of the line. The double 
subscript is unnecessary here since Pj2(i), R\2(j), etc. are not observed 
in these bands, but the full symbol will be used, because it will be required 
in more complex band types. The subscripts A and B are unnecessary 

Table 4^ 

Pn J /mi P 22 j R22 

0 15,761.91 

1 15,745.12 % 15,770.73 H 15,773.07 
2 36.53 79.91 15,737.87 83.20 

3 28.13 89.51 30.86 93.75 
4 20.70 99.54 24.11 V2 804.53 

5 13.48 809.93 17.78 r2 15.73 

^ Hulth60 gives lines which would be designated P22{H) and Rai — f'i) in the present numeration, 
with wave numbers 15,745.12 and 16,763.17 respectively; but Mulliken, Phys. 80, 145 (1927). 
gives reasons for believin'? that these should be classified as Qii(H) and Qsi(H) lines and they are there¬ 
fore omitted from the table. See discuwion below. 

' Pkffs. Rev., 29, 97 (1927). 

«Phl/s. Rev., 26, 509 (1926). 
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because X = 0, and all the levels are A levels. Both systems of subscripts 
will be needed when both X and s are not zero. 

The wave numbers of the observed lines are given in Table 4 for 
small values of the rotational quantum numbers. The fs and 
given are those for the final state in each case. 

Using this assignment of the lines to the branches and the inter¬ 
pretation of the branches expressed by equations (93) we can secure 
the double differences of terms as before. 

2AF/0*) == F,'{j + 1) - F,'{j - 1) = RuU) - Pn{j) 
2AF/'0*) = F,"(j -f 1) ~ F,"U - 1) - Ru(j - 1) ~ PnU + 1), 

and there are similar equations for 2AF2(j) and 2AF2"(i)- These 
differences are given in Table 5. 

Table 5 

k 3 (U 2AA\' 3 
1 

3 

1 

2AFi" d" 2AF2" 3 

1 % 25.61 

1 

25.37 
2 y2 43.38 -1.95 45.33 42.30 0.09 42.21 Vz 
3 K 61.08 -1.81 62.89 % 59.21 0.12; 59.09 y 
4 Vz 78.84 -1.61 80.47 % % 76.03 0.06 75.97 % 
5 96.46 -1.50 97.95 92.83 0.05 92.77 % 

For the higher energy state the differences for the F2 terms are larger than 
those for the Fi terms, showing that the Fz set is more widely spaced 
than the Fi set. Thus the F2 term lies higher in the energy diagram 
than the Fi term having the same value of fc. The opposite is true for 
the lower energy state, and this is the more usual order of these two 
sets of terms for electronic levels. 

The assignment of these branches to the transitions indicated in 
equation (93), where Fi{j) and F2{j) are the rotational terms for parallel 
and antiparallel k and s, respectively, cannot be proved unique from a 
study of this band alone. Thus we might interchange the two P branches, 
or the two R branches in Table 4, for the two doubtful lines at 15,746.12 
and 15,763.17 (see footnote of Table 4) are known, which may make the 
number of lines identical, and in this way values entirely different from 
those of Table 5 would be secured. Moreover, there is no proof for the 
assignment of the k values to the fs as given in Table 5. The assignment 
of lines to the combinations given in equation (93) and the assignment of 
j values given above are proved to be correct by the study of other bands 
of CaH which are emitted in transitions from other energy levels to the 
final levels of the B band. The double differences for the lower energy 
state are the same as those secured from this band and the selection rules 



MOLECULAR EPECTRA 424 [Chap, XII 

require the assignment of j — k + s to the terms Fi'{f), and j ~ A — «to 
the terms in accord with our assignment here. 

The energy diagram for this B band of CaH, and the first few transi¬ 
tions for the observed branches, are illustrated in Fig. 22. The 
separations of the doublet levels arc exaggerated in comparison with 
the rest of the diagram. In addition to the transitions accounting for the 
observed lines listtnl in Tabl<^ 4, there are two transitions indicated by 
broken lines, whicii represent the combinations, 

C>i2(i) == + F/U) “ F,"{j), 
Q2i(i) = ro + F,'(j) - F^'U), (94) 

with j ~ Two lines are known, which agree 
with t he posi tions expected for these lines. From 
Fig. 22, it is seen that Q\2{}4) will lie close to 
Fn(:S) ‘^nd ^21(^2) close to R'liOi), and that 
higher members of these branches will lie close to 
the Pu and Rn branches. For this reason, 
Hulthen classified these two lines in the Pu and 
R]i branches,^ although Aj is certainly zero for 
these lines, and strictly they must be called Q 
branches. To meet this situation, which is 
encountered also in other molecules, Mulliken^ 
has introduced a symbol for branches which 
must be callc^d Q branches in that Aj = 0, l)ut 
which look like P or R branches because of the 
arrangement of energy levels. The two branches 
defined by equation (94) are represented by the 
symbols and respectively. The 

Q in these symbols shows that Aj — 0, while P 
and R show the empirical appearance of the 

branches; the first follows an empirical formula with a negative term 
proportional to the ordinal number, and the second, one with a positive 
term. Quite similarly, we may have branches which are designated as 

«Q, ^'P, etc. 

From formula (92) we get for the double term differences, 

2AF4j) = B(Ak + 2) + 45, j = /c + 
2AF2U) - Bi4k + 2) - 45, i = /c - (95) 

and so 
2AFx{j) - 2AP2(i) = 85. (96) 

These differences are listed in Table 5, under d' and d", for the initial 
and final sets of levels, respectively, and are very nearly constant as 
required by the theory. But for the higher energy state, 5 is negative 

^ Roe footnote to Table 4. 

Pkys, 30, 783 (1927). 

0 — 

Fig. 22.—Enerj^y lovols for 
the B band of CaH. 
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Ro that we have here an inverted doublet.^’ From equation (95) we 
see that 

4Bk + 2B = AT\U) + AJMj), 

and thus B can be calculated. The values of the constants required to 
give the best agreement with the empirical data are given by Hulth^n and 
are: 

/i' = 4.400, 5' - -0.250, n/ - 1.9() X lO-^jn. 
B" - 4.225, 5" - 0.011, u" = 2.01 X 10~«cm. 

Vc = 15,753.84. 

The selection rules for the band are: 

Aj = Ak ~ ±1, intense lines: 
Aj — 0, Ak ~ :i: 1, weak or forbidden lines; 
Ak — 0 docs not occur. ^ (97) 

The CN bands of Fig. 1 are due to a transition of this type, but the 
separation of the doublet levels for parall(d and antiparallel k and s is 
so small that the two lines with the same k cannot be separat(^d. The 
unusual intensities of the lines for k' — 4, 7, 13, and 15 are due to some 
unknown cause associated with their excitation by the action of active 
nitrogen on organic compounds. 

21. THE GIT BANDS; A '^12 TRANSITION 

In bands of the ^2 —> *II typ(‘, the levels for small values of j, f.c., 
for Hund’s case a, will havci X = 1, o- — ± j 2, also will show th(‘- X-type 
doubling, depending on the two possible orientations of X with respect 
to the two atoms. Four rotational stat(\s will thenifore be expected for 
each value of j. The doublet may I)e called normal or inverted, according 
as ^n.>4 or Hh/^ is the higher energy lev(4. For the region of large values of 
J, we have the quantum numbers j, kj and X; j will be equal to k + 
or fc — 1^, just as for the ^2 levels. 

We select for a detailed example the so-called “water bands^^; the 
higher energy level is a ^2 level similar in every way to the levels of the 
CaH B band, while the lower level, which is believed to be the ground 
level, is an inverted ^II level. For small j we ar(^ dealing with a case a 

molecule, and for larger the behavior approaches that of a case b 
molecule. The formula for its energy levels will be given by equation 
(81) with X = 1, if the X-type of doubling and also the small effect of the 
magnetic field of the rotating nuclei are neglected; thus, 

FiiJ) = B[{j + 1^)^ - 1 + + Hy + a(« - 4)}H], (81«) 

where i = 1 or 2, depending on whether the positive or negative sign is 
used; i.e., on whether k and s are antiparallel or parallel for large j, or X 
and ff are antiparallel or parallel for small j, respectively. 
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The water bands^ consist of five bands with the following vibration 
numbers for the initial and final states: (0, 0), (0, 1), (1, 0), (2, 0), and 
(2, 1). Thirteen branches have been observed, though the data required 
for our purpose here are not complete for any one band; those for the 
(0, 0) band at 3,064 and the (1, 0) band at 2,811 A. are most nearly com¬ 
plete. In many cases, the structure of these thirteen branches and the 
first line of each one have been determined from several bands. The 
reasoning by which the energy levels have been constructed is similar 
to that used above for the CaH B band, but is more involved because 

of the more complex structure of these bands; it will not be given here 
because of the impossibility of briefly summarizing the intricate details. 
Figure 23 is the Fortrat diagram for the (1, 0) band. The more intense 
branches known as the main branches are above the line for /c = 0 and 
the weaker ones known as satellite branches are below this line. The 
branches are indicated by Mulliken^s symbols which have been described 
in preceding paragraphs. The reader will see the meaning of these 
symbols more readily by studying Fig. 24, which is the typical energy 
diagram for these bands. It is drawn to scale for the (1, 0) band 
at 2,811 A., except that we have exaggerated the doubling for the 
Fi and levels in the higher electronic state, and the X-type doub- 

^ We owe the experimental data on these bands to Grebe and Holtz, Ann. Physik 
89, 1243 (1912); Fortrat, J. de Phys., 5, 20 (1924); Watson, Astrophys. J., 60, 145 

(1924); and Jack, Proc. Roy. Soc. 116, 373 (1927) and 118, 647 (1928) and their 

theoretical interpretation to Dieke, Proc. Acad. Set. Amsterdam^ 28, 174 (1925); 

Birqe, ‘^Molecular Spectra in Gases,’'; Kemble, Phys. Rev.^ 30, 387 (1927); Mulli- 

KEN, Phys. Rev.f 32, 388 (1928); and Hill and Van Vlbck, Phys. Rev., 82,250 (1928). 
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ling indicated by the A and B levels for the lower electronic state. 
The arrows indicate the first lines of observed branches except that 

has not been observed. Although it is expected according to the 
selection rules, it should be weak and hidden by other lines. The j, 

kf X, and a quantum numbers are given for the levels, though k has no real 
meaning for the levels with small j, nor has cr for the levels with 
large j. 

Kemble has shown that the formula secured by clasvsical mechanics 
gives approximate agreement with the empirical energy levels for the 

Fig. 24.'—Energy diagram of thc^ OH molccmle. {After Mulliken.) 

zero vibrational state, and Hill and Van Vleck have shown that equation 
(81a) can be made to agree with these levels over the entire range by 
using B = 18.58 and a{a — 4) = 21.79 or a = —3.078, and adding a 
small term —0.00177 k^, to make an approximate correction for the 
change of moment of inertia with rotation. A slight disagreement for 
the higher values of j is probably due to neglect of the X-type doubling, 
which is not included in the theory, and of the energy contributed by the 
coupling between s and the magnetic field of the rotating nuclei. 
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The changes of j and k, the B combinations, and the observed 
branches are listed in Table 6 and from these the empirical selection rules 
can be stated. 

Table 6 

A; Ak 
Type of AB 

coinbiniition 
Bran(‘hes 

1 1 A RlAUh R'lA'lli 

-1 A H P\A\B) P'lAJ:Ii 

0 0 A — A QtAlA 

-1 0 A A QP 
^ ‘XA\A 

1 0 A ~> A 

0 1 A -> B 
j 

0 -1 A -> B 

1 2 A -> A h‘Hp 

-1 “2 A A 
^^\A‘iA (Not yet obscuwed.) 

0 0 A -> B Q\A\}i) QiA'lB 

j may change by 0 or ±1, and k by 0, ± 1, or 4 2, but the simultaneous 
changes of these two numbers cannot differ by more than unity; the 
strong branches are those for which Aj = 0, ±1 and Aj = Ak. In 
addition, AB, if Ak = ±1, and A—>yl, if Ak = 0 or ±2. The 
QiAUi and Q2A2B branches are (exceptions to this last rule, though others 
may actually occur in these bands and not luive been observed. 
The more gcmeral form of this selection rule, applicable to bands where 
X-type doubling occurs in both stat(xs, is that A B or B Aj if Ak = 
± 1, and A —» /I, or B —> B, if Ak — 0 or ±2. The values of t for the 
lower state and for stnall valuers of j can always be secured from the 
correlation between the states defined by j and k and those defined by j 
and ff] this correlation for the inverted doubk^t type is, 

j — k + s: i = X + cr, 
and 

j ~ k — s: L ~ \ — <T, 
The same selection rules hold for the normal doublet type except that 
in this case the correlation^ betweem the j and k and the j and cr states is 

j = /c + s: t = X — (7, 
y = ifc — t = X + cr. 

The /?NO bands^ illustrated in Fig. 1 are due to a transition between 
two ^II states in which the cr and X are strongly coupled (case a). In 
this case the selection rules are: 

Aj = 0, +1, Ac = AX = 0 

^ The correlation, liolds exactly, but the energy of the lowest F2 states (for which 

y « A; 4- « when j is large), approaches a value for large doublet separations which 

places it more naturally in the Fi set of rotational levels. See Mulliken, P%s. 

82, 388 (1928), particularly Fig. 1, p, 391. 
»JENKINS, Barton, and Moewkun, PXp. Bev*, 80, 160 (1927), 
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and the usual selection rule for the A and B states. Since the coupling 
between the c and X is strong, two bands, in which t = and t = 
respectively, are widely separated and thus have the appearance of 
separate bands instead of the complex structure of the OH bands. The 
values of j given in the figure are for the final electronic state. 

22, SYMMETRIC AND ANTISYMMETRIC TERMS AND ALTERNATING 

INTENSITIES^ 

A review of the examples of (‘lectronic bands presented in the pre¬ 
ceding paragraphs shows one espc^cially interesting fact, which lias 
not been emphasized. In all the bands studicnl it is possible to arrange 
the rotational levels into two sets, such that transitions in which light 
is emitted always occur between a level of one s(‘t, and one of the other. 
This may be seen from discussions of Hund,^ Hulthen,^ Kronig,^ and 
Wigner.*'’ 

Hund first showed that two sets of steady stales are to be expected 
on theoretical grounds for molecules consisting of two lik(^ at on is; these two 
sets are referred to as symmetric and antisymmetric states. HultlKui 
pointed out that two sets of levels should be expectcnl for all diatomic 
molecules on the basis of experimental data. Kronig, and also Wigner 
and Witmer, showed that wave mechanics requires t wo sets for diatomic 
molecules consisting of unlike atoms, and that the selection rule stated 
at the l,)eginning of this paragraph should hold; th(^y may be called the 
‘^plus (X) and minus ( j ) sets,^^ respectively. It then Ix^came theoreti¬ 
cally clear that diatomic molecules with like nucku should have symmetric 
and antisymmetric types of levels and that (‘ach of these types may be 
divided into plus and minus sets. Symmetric and antisymmetric 
terms never combine and plus terms combine only with minus terms, 
or the reverse. (Chap. XIX, Sec. 9.) 

The permitted transitions of the quantum numbers defining the 
rotational steady states for the types of bands described above, can be 
shown very clearly by plotting the energies of the rotational steady 
states horizontally. The two plots for the two (dectronic states involved 
are placed one above the other. This has done in Fig. 25, for all 
the types of bands discussed here, except in the case of the type, 
where the states are placed between the hli,, and the states for 
convenience. The levels are represented by the symbols X and | for 
the plus and minus terms, respectively, and the transitions permitted 
by the above selection rules are indicated by diagonal lines. 

1 See Chap. XIX for a further diseussiou of this subject. 

Physik., 46, 349 (1928). 

Physik., 46, 814 (1928). 

* Z. Physik, 60, 347 (1928). 
® Z. Phydk,, 43, 624 (1927); Neumann and Wigneh, iUd, 61,844 (1928); Wigneb 

and Witmer, ibid., 61, 869 (1928). 
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There is no irregularity in the energy values as we go from one set of 
terms to the other, and there is no variation in the intensity of the lines 
emitted. In fact, there is no known experimental method of differentiat¬ 
ing between them. It should be noted from the figure that this classifi¬ 
cation of levels robs the A and B assigned to the X-type doublets of any 
physical meaning, but these letters are still convenient for classifying 
the experimental data. 

In the case of molecules having like nuclei theory requires that the 
plus and minus states may also be sipumetric or antisymmetric as 
well. These are well illustrated by the helium bands investigated 

by Curtis and Long.^ Figure 26 illustrates these two types of levels 
for the ^ transition. The branches observed are similar to those 
of the AlH bands (Sec. 19) except that all the transitions involving 
the symmetric levels are missing, so that only half the lines we should 
expect to find are present. The resulting spectrum is represented in 
Fig. 27 where the broken lines indicate the missing lines. Except for 
these missing lines the structure of the bands and the formulas for 
the energy levels are exactly similar to those described in the preceding 
paragraphs. Here we have a case where one set of levels is differentiated 
from the other by being altogether absent. Mecke was the first to 
explain this structure of the helium bands by assuming that alternate 

levels are missing. 
The spectrum of the hydrogen molecule investigated by Werner^ 

and especially by Hori® in the far ultra-violet is similar in some respects 

1 Curtis, W. R, Proc. Roy. Soc., 101, 38 (1922); 108, 315 (1923); Curtis and 

Long, tfeid., 108, 613 (1926). 
* Froc. Roy> /Soc., 113, 107 (1926). 
• Z.P%«i&,44, 834 (1927). 
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to the helium bands. Again we expect singlet and triplet electronic 
levels since it is an even molecule, whose normal state will be ^2. Two 
ultra-violet band systems are known, which are assigned to 
and transitions. Figure 28 is the energy diagram for the Werner 
bands with broken lines and solid lines to indicate the symmetric and 
antisymmetric levels, respectively. The doublets of the level are 
due to X-type doubling. The permitted transitions are exactly of the 

type of the AlH band (Sec. 19 
^ ^ ^ j and Fig. 21), and only symmetric 

V—► 

Fig. 27. 

levels combine with symmetric 
levels, and antisymmetric levels 
with antisymmetric levels. 
There is one very marked dif¬ 
ference between the AlH bands 
and these Ha bands, namely, 
that in these bands the spectral 
lines emitted in transitions be¬ 
tween symmetric levels are much 

Fig. 26.—Energy level diagram for the UI —>^23 Fig. 28.—The transitions of the 
bands of He2. Werner bands of H2. 

Fig, 27.—The observed lines of the He2 bands. 

weaker than those due to transitions between antisymmetric levels. It 
will be noted that this is similar to the behavior of the helium bands. 
In fact, the latter represent a special case of intensity alternation in which 

the weaker lines are entirely absent.^ 

1 See Chap. XIX, Sec. 10. We really do not know whether it is the symmetric 
or the antisymmetric levels which are absent in the case of Hej. 
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There is no irregularity in the energies of the levels, but only a 
difference in the intensities of the lines emitted. This might be due 
either to a difference in the number of symmetric and antisymmetric mole¬ 
cules, or to a difference in the probabilities of the transitions. The former 
postulate is in good agreement with other experimental facts, which will 
now be presented. 

The a priori probability of a state of the rotating molecule is given by 
the number of nondegenerate states into which it splits, when placed in a 
suitable external field. This is equal to the number of different orienta¬ 
tions pf the j vector in this field, namely, 2j + 1. The probabilities for 
the states with j == 0, 2, 4, • • • are therefore proportional to 1, 5, 
9, • * • and those for the states with j = 1, 3, 5, * • • are proportional 
to 3, 7, 11, • • • , but the relative probabilities of these two sets of states 
are not one-to-one for otherwise the intensities of the band lines would 
not alternate as they do. Light is thrown on this question by studies of 
specific heats. The heat capacity of a diatomic gas due to its rotational 
energy is given by the formula 

It ^ 
where 

"" ST^kf’ ^ ^ 

and Pj is the a priori probability of the jth state. Hund^ considered 
the heat capacity of hydrogen, using this formula and adjusting two con¬ 
stants to fit the experimental data; the first of these is the moment of 
inertia of the hydrogen molecule, unknown at the time but now known 
from the work of Hori, and the second is the relative probability of the 
symmetric and antisymmetric rotational states. By equation (99), 

Q == fi[l+ + 96-20- +...] + 36-2- + 7^-.i2a + . . . (loo) 

where 0 is the ratio of probabilities of the symmetric and antisymmetric 
states. By taking equal to 2 and the moment of inertia I equal to 
1.54 • IQ-'*^ g,cm.2 he secured fairly good agreement with the experimental 
heat-capacity curve. The value of the moment of inertia is 4.66 • lO""**^ 
g.cm.2 and no value of ^ can be chosen so that the heat-capacity curve is 
even approximated by equation (98) using the above formula for Q; 
therefore, some modification of the theory is necessary. 2 

The theory used by Hund assumes that symmetric or antisymmetric 
molecules may be readily changed to the other type in collisions. Denni¬ 
son® made the interesting assumption that this is not true, but that the 

1Z, Phynik, 42, 93 (1927). 
2 See Bikoe and Jeppersen, Naturej March 22, 1930. 

*Proc. Roy, Soc,, 116, 483 (1927). 
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time interval during which a given molecule retains its type is long 
compared to the time required to determine the heat capacity. If this 
is true, we have to deal with the heat capacity of a mixture of two gases, 
whose heat capacities are separately given by the formulas, 

Q. = 1 + + • • • , 

Q„ = + 7e-'^ + • • • . (101) 

C. 
R 

Ca 
R 

The measured heat capacity for a gram molecule is that of a mixture 
of p parts of the first gas, to one of the second, namely. 

C ^ pC. + Cn 
R (1 + p)R 

(102) 

Using these formulas with p ~ ^ 3, the experimental curve is checked very 
well and the moment of inertia required is 4.04 • in excellent 
agreement with Hori’s value. Hund’s original theory requires that at 
low temperatures all the molecules should be in the symmetric quantum 
state with j = 0. According to Dennison’s theory, only one molecule 
is in this lowest state for every three in the antisymmetric state with 
j — 1. Even collisions with other molecules and with the walls of the 
containing vessel only slowly change symmetric to antisymmetric 
molecules, or the reverse. 

Further proof of the inability of one set of rotational levels to change 
to the other set in collisions is given by the work of Wood and Loomis ‘ 
on the fluorescent spectrum of I2 vapor. When iodine vapor is illu¬ 
minated with monochromatic light only those states will be excited, 
whose energy of excitation above one of the low-lying energy levels 
present in the gas at ordinary temperatures coincides with the frequency 
of the exciting line within the limits of the Doppler broadening. Thje 
transitions from these excited levels to the low-lying levels must conform 
to the selection rule that Aj— ±1 (the band is a ^2) —> ^2 type), while 
many changes in the vibration quantum number are permitted. An n" 
progression of bands will be emitted with only two lines in each band, 
one for Aj= 1 and the other for Aj = — 1. The addition of helium to 
the iodine gas causes many more lines of these bands to appear, due 
undoubtedly to molecules losing or gaining rotational energy in collisions 
with helium atoms, giving rise to other excited states and thus to other 
transitions for which Aj = ± L These additional excited rotational 
states are symmetric states only. By way of illustration, the green 
mercury line excites the molecule to the state n' = 26, / = 34. In 
the absence of helium, n changes by large amounts but j by only ±1, 
and thus the final rotational states have j" = 33 or 36. In the presence 

1 Pha. Mag. 6, 231 (1928). 
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of helium at a pressure of 0.5 mm. of mercury, fairly strong bands are 
found for which n' = 25 and 27 and weaker bands with n' = 24 and 28, 
in addition to the strong bands with n' = 26 so that n' has been changed 
by ± 1 or ± 2 in collisions. Much larger changes in the j' occur, but lines 
are found only for even values of f so that collisions carry the molecule 
from the state, f = 34, to other even (symmetric) states only. It has 
been assumed that the even numbered rotational states of the excited 
electronic level are symmetric. If this is also assumed for the normal 
electronic state and if the transition is ^2), it would be necessary 
to have transitions between symmetric and antisymmetric terms, 
contrary to the rule stated above. Wigner and Witmer^ showed that 
the symmetric states of 2 electronic levels may be either odd or even 
numbered. In the case of iodine we do not know which states are 
symmetric, and which antisymmetric. Loomis and Wood arbitrarily 
assigned them in the way adopted hero. 

Though the rate at which the symmetric form of hydrogen changes 
to the antisymmetric form or vice versa may be very small, it should be 
finite, and if hydrogen gas is kept at a very low temperature for a suffi¬ 
ciently long time, it should change to the symmetric form. The two 
varieties of hydrogen should have different boiling and melting points, 
heat capacities, etc. Giauque and Johnston‘S have found that the triple 
point pressure for hydrogen which was kept at liquid air temperatures 
for 197 days was lower than that of hydrogen prepared and kept at room 
temperature. The two pressures observed were 5.34 and 5.38 ± 0.01 
cm., respectively. This demonstration that two forms of hydrogen 
exist with different physical properties furnishes convincing proof of the 
existence of symmetric and antisymmetric diatomic molecules. 

Bonhoeffer and Harteck^ have succeeded in producing large changes 
in the properties of hydrogen by cooling it to liquid air or liquid hydrogen 
temperatures in the presence of charcoal. While the equilibrium ratio 
of symmetric (para) to antisymmetric (ortho) hydrogen at ordinary 
temperatures is 1: 3 at liquid air temperatures this becomes^ 1:1 and at 
liquid hydrogen temperatures hydrogen in equilibrium should consist 
of nearly 100 per cent symmetric molecules. Using charcoal as a catalyst, 
they prepared mixtures of symmetric and antisymmetric hydrogen 
varying in composition from 25 per cent to nearly 100 per cent of the 
symmetric form. Some properties of the two forms and of ordinary 
hydrogen (the 1:3 mixture) are given in the following table. The 
properties of the antisymmetric form have been secured by extrapolation 
from properties of the mixtures. 

^ Lqc. du 
S J. A. C. S., 60, 3221 (1928). * 
* Z, physik. Chemie, 4B, 113 (1929); Naturms, 1, 182 (1929). 
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^ Ordinary 
Symmetric Antisymmetric Hydrogen 

Triple point. 13.83° A 13.99° A 13.95 A 
Vapor pressure at 20.39° A... 787 ± 1 mm. 751 mm. 760 mm. 

The heat of vaporization of the symmetric hydrogen is 0.65 per cent 
less than that of the antisymmetric form. Independently Eucken^ 
secured an enrichment of the symmetric hydrogen by cooling hydrogen 
at high pressures to liquid air temperatures and has shown that the heat 
capacity of different samples so treated differ widely from that of ordinary 
hydrogen in accordance with Dennison's theory. 

Hund suggested that the presence of both the symmetric and anti¬ 
symmetric levels is to be associated with a spin of the nuclei similar to 
the spin of the electron. The relative probability of 1 to 3 for symmetric 
and antisymmetric states is due to the proton having an angular momentum 
of hi quantum units. The relative probabilities of two states, one 
of which has the two spins in the same direction and the other of which 
has the two spins in opposite directions, are 3 to 1; for, if the two spins 
have the same direction, the resultant spin of 1 may orient in an external 
magnetic field in three directions; but if they have opposite directions, 
the orientation of the resultant vector zero is indeterminate, and this con¬ 
dition is assigned the probability one. For the symmetric states, the 
nuclear spins are antiparallel with a resultant of 0 and for the anti¬ 
symmetric states they are parallel with a resultant of 1. In the case of 
the helium molecule, we assume that the helium nucleus has no spin 
and thus there is no orientation of the nuclei relative to each other. 
Such a case is to be associated with the entire absence of one set of 
states (Chap. XIX, Sec. 10). In the case of iodine alternating line 
intensities have not been observed; for some reason the probabilities 
of the symmetric and antisymmetric states are very nearly equal in 
this case, due perhaps to a large nuclear spin. 

The alternation of line intensities is very characteristic of molecules 
having like nuclei. The phenomenon is known in the bands of C2, N2, 
N2‘^, O2, CI36 — CI36 and F2, in addition to H2 and He2, but does not 
occur in the I2 and Na2 bands. 

C. Polyatomic Molecules 

23. THE INFRA-RED SPECTRA OF POLYATOMIC MOLECULES 

Studies have been made on the infra-red rotation-vibration spectra 
of a number of polyatomic molecules, ^ but none have been investigated 
with sufficient dispersion to separate the individual lines except 
methane^ and ammonia, phosphine and arsine.^ The latter appear 

1 Naturms. 1, 182 (1929). 
* See Hbttner, Z, Physiky 1, 345 (1920). 
® Cooley, Astrophys. 42, 73 (1926). 
* Robertson and Fox, Proc. Roy. Soc., 120^ 128-211 (1928), 
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to be somewhat irregular, which may be due either to the presence of 
unresolved double lines or to difficulties of classification. The spectra 
of such molecules are necessarily more complex than those of diatomic 
molecules, because of the larger number of degrees of freedom. If we 
neglect electronic and nuclear spins, there will be 3n degrees for an 
n-atomic molecule. In general, three may be assigned to the translation 
of the molecule, three to its rotation as a whole, and the remaining 3n — 6 
to its vibrations. Therefore, three rotational and 3n — 6 vibrational 
numbers are required to fix the states of the molecule. Thus, for a mole¬ 
cule of five unlike atoms, three rot^j^tional and nine vibrational quantum 
numbers will be required, and the number of energy levels and transitions 
will be so great that the task of separating the spectral lines in the 
infra-red becomes almost hopeless. If several atoms are of the same kind 

Fig. 20.—The 3.31 n methaiio band. {After Cooley. Reprinted by porndsaion of the 
University of C’hicago Press.) 

so that the molecule has a high symmetry, the molecule may be highly 
degenerate, so that a much smaller number of quantum numbers will be 
required. In the case of methane, if we assume the tetrahedral model, 
only four incommensurable vibrational frequencies should be present, 
instead of the nine expected for an unsymmetrical non-degenerate 
molecule. 

It is for this reason that detailed work on infra-red rotation-vibration bands has 

been limited chiefly to symmetrical molecules. Those with small moments of inertia 

are best for this work, for the moments of inertia appear in the denominator in the 

equations for the energy, equations (115) and (116), and thus a smaller moment of 

inertia means a greater separation of the lines of a band. At present, with most infra¬ 

red spectrographs, it is impossible to separate lines that are much closer together 

than those of the halogen hydrides, and for this reason the well-known infra-red bands 

are practically limited to hydrides and other compounds containing hydrogen. 

Cooley^ observed eight absorption bands of methane and Ellis* has 
extended their number to fifteen. The frequencies of the maxima can 
all be accounted for by the formula 

TiVi + 72^2 + raPg + r4P4 = V, 
where the r^s are integral numbers and v\ ... Vi are four fundamental 
frequencies. Two bands, in the neighborhood of 3.31m and 7.7m, 

• hoc. cU. 
» Proc. Nat. Acad., 18, 202 (1927). 



Sec. 24] THE HEAVY SYMMETRIC TOP TYPE OF MOLECULE 437 

respectively, were partially resolved into lines by Cooley and his absorp¬ 
tion curve for the X3.31m band is reproduced in Fig. 29. This curve as 
well as the one for X7.7/x, has a structure similar in some respects to the 
HCl absorption curves of Colby, Meyer, and Bronk (Fig. 3) and of 
Imes (Fig. 6). There is one marked difference; in the central region of the 
HCl band the absorption is weak, showing a missing line distinctly, 
while methane shows strong unsymmetrical absorption in this same 
region. This appears to be due to an unresolved Q branch. The wave 
numbers of the P and R branches of these two bands are 

5 = 1,320.4 + 5.409M - OMllAP, (104) 
and 

V - 3,019.3 + 9.7711/ - 0.03511/S (105) 

for the bands at 7.7 and 3.31/x, respectively, where M equals 1, 2, . . , 
for the 72 branches and — 2, — 3, • • • for the P branches. (The lines for 
1/ = — 1 are probably present, but are masked by the intense Q branches.) 
The peaks in the absorption curve for the 7.7^ band are very regular and 
symmetrical, but those of the 3.31/x band are somewhat irregular and 
may not be completely resolved. 

24. THE QUANTUM THEORY OF THE HEAVY SYMMETRIC TOP TYPE OF 
MOLECULE 

In order to relate the constants of these empirical equations to the 
constants of the molecule, it is necessary to consider the rotational 
energy of the polyatomic molecule. In our study of the rotational 
levels of diatomic molecules we proceeded as though all the mass of the 
atoms were located in a mathematical line joining the nuclei; so that 
the model has two equal principal moments of inertia about two lines 
perpendicular to each other and to the line of nuclei, and zero moment of 
inertia about the line of nuclei itself. But when a molecule consists of 
several atoms, the nuclei usually do not lie in a straight line and thus it is 
necessary to treat the molecule as a rigid or semirigid body with three 
principal moments of inertia, usually all different. If the molecule 
possesses an axis of symmetry, two of the moments will be equal, and for 
a few molecules, such as the tetrahedral model of methane, all three 
principal moments may be equal. We consider here the theory of a rigid 
molecule having two equal moments of inertia, and the third unequal to 

these, but not equal to zero. 
This problem was first solved by Reiche^ and was further considered 

by Epstein.^ Later, a gyroscope, such as a spinning electron, was added 
to the model.® Further it has been considered on the basis of the new 

1 Phyaik. Z., 19, 394 (1918). 

2 Physik. Z., 20, 289 (1919). 
« Kramers, Z. PhysiK, 13,343; and Kramers and Pauli, Z. Physik^ 13,351 (1923); 

WiTMBR, Proc. N(U, Acad. Sct.^ 12, 002 (1927). 
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mechanics by several authors (Chap. XIX, Sec. 6). Here we shall give 
a solution in terms of the old mechanics. For convenience, we first 
obtain the rotational energy states, then the vibrational levels of the 
non-rotating molecule, and finally the selection rules. 

Let and C be the moments of inertia about the principal 
axes x'y y\ and z* fixed in the molecule, and let the components of angular 

velocity about these axes be p, and r. The kinetic energy is given by 

2T = Ap^ + Aq^ + Cr^ 

_ (P^ + Q^) , R'^ 
~ A C 

(106) 

where P = Ap, Q ~ Aq^ and R = Cr. P, Q, and R are the components 
of angular momentum about x\ y'y and 2', respectively. Instead of these 
coordinates we shall use the Eulerian angles shown in Fig. 30 and defined 
as follows: 6 is the angle between the fixed 2;-axis and the axis z'] (py the 

Fig. 30.—The coordinates of the symmetric top. 

angle between the x'-axis and the nodal line; and the angle between 
the nodal line and an arbitrary line fixed in the nodal plane, which is taken 
as the fixed i:-axis. Then 

p = q cos <p -h sin q sin <p, q == — 9 sin ^ sin 0 cos (p 
and 

r = ^ cos q, (107) 

Substituting these in equation (106) 
2T ^ A{e^ + ,^2 sin + C(<p2 + cos (9 + cos^ B), (108) 

and the momenta conjugate to By and ip are 

dT . . 
p, - 

BT 
p. --- Q eos B{^ cos B + (p) + A^ sin® By 

d\(/ 
BT 

=» C{ip + ^ COS e). (109) 
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On eliminating By and ^ by means of equations (107), using the defini¬ 
tions of P, Q, and P, equations (109) become, 

pe — P cos <^ — Q sin ^5, = P cos $+ P sin 8 sin <p + 

Q sin 8 cos (p, p^ = P. (110) 

Expressing the kinetic energy in terms of the momenta, equation (109), 
we have the Hamiltonian, 

2H - - 2E. 
AC A sin^ 8 

Since (p and \j/ do not appear in this equation, 
p^ and Pvt are constants. By choosing the 
2;-axis fixed in space as the invariable axis, 
zx., the direction of the resultant angular 
momentum, 

J = (P2 + Q2 ^2)^^ (112) 

pe will be zero. In this case, 

R — J cos 8j P ~ J sin 8 sin ip^ Q ~ 
J sin 8 cos (Py 

and substituting these in equation (110), we 
secure 

Pvt = Jy Pve = J cos 8; 
8 must be constant and the quantum conditions 

^Ped8 = 0; = 27rJ = jh] = ^ttJ cos 8 = X/i, 

and thus 
X 

(111) 

Fiu. 31. -The relation between 
J and X with j == 4. 

are 
(113) 

therefore. 

cos^ = (114) 

(115) 

By substituting these values of J and cos 8 in equation (113) and then 
these expressions for pe, p^, and p^ in equation (111), the energy as a 
function of the quantum numbers j and X is 

X = 0, 1, • • • J. 

Wave and matrix mechanics* give a formula which can be obtained by 
simply replacing p by j(j + 1) in equation (115), except for additive 
constants (Chap. XIX, ^c. 4). Thus the correct energy formula is 

X - 0, 1, 2, . . . j, (116) 

Figure 31 illustrates the possible X values when j = 4; the broken ellipses 
show the precession of X about j. 

Since and p^ are constant and p^ is zero, it follows from equations 
(109) that and ^ are constant and 8 is zero. This means that the 

1 Dennison, Phys. Rev,, 28,318 (1926); Kronig and Rabi, Phys, Rev,, 29,262 (1927). 
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motion of the symmetric top is one of uniform rotation about the z'-axis 
with frequency = dE/hd\ together with a uniform precession of z' 
about z with frequency = dE/hdj, and thus 

“f- 5^, (p = OiTTOi^t -f- B = 6$, (117) 

If an electric moment P oscillating with frequency has a component 
along z' equal to Pz' cos 27rcov<, and a component perpendicular to z'y 
say along x'y equal to Px' cos 2ir<jjJy the components in the directions 
Xy yj and z are 

Px = Pz' cos 27ra)v< sin ^ sin ^ + Px' cos 27rcov^(cos p cos ^ — 
cos B sin (p sin ^), 

Py = —P/ cos 2TroiJ> sin B cos ^ + Px' cos 27rc.;v/(co8 sin ^ + 
cos B sin ip cos 

p, = cos 21^0^4 cos B + Px' cos 2Tr(j)4 sin B sin ip. (118) 

Substituting and p from equation (117), and using trigonometric 
formulas of the type 2 sin .4 sin P = cos (A + B) — cos (A — P), we 
find that P* and Py contain sine and cosine terms having the frequencies 

OJv + £0^, COv — 0)^y COv + £0^ ± 0)^y £0^ £*?^ ± 03^. 

The first two arise from the coefiicients of P,' and the last four from 
the coefficients of Px'. Pz contains 

03vy (^V ± 0)ip} 

of which the first arises from the coefficient of P*' and the last two 
from that of Px'- If the oscillation is parallel to the figure axis so that 

= 0, only the frequencies a;^ and £0^ ± £*?,/, are present, and the possible 
changes of the quantum numbers are, 

Aj = 0, ±1; AX - 0. (119) 

On the other hand, if the oscillation is perpendicular to this axis, the 
active frequencies are oj® ± ± and £o» ± u)^y so that 

Aj = 0, ±1; AX = ±1. (120) 

25. APPLICATION OF THE THEORY TO THE METHANE BANDS 

The selection rules of equation (119) predict a type of spectrum 
similar to that of the diatomic liiolecule, except that a Q branch should 
be present. The methane band at 3.3m has very sharp and symmetrical 
absorption peaks and strong absorption slightly to the long wave length 
side of the center. This simple structure seems to indicate that it 
arises from transitions following these selection rules. The selec¬ 
tion rules of equation (120) would give a more complicated type pf 
band; in place of each line of the simple band required by the rule of 
equation (119) there would be a complete band with P and R branches 
corresponding to AX = ± 1, with the possible values of X limited by the 
condition X ^ j. The structure of the 7.7m band does not seem to be as 
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complicated as this, but the peaks are not so sharp and symmetrical. 
The appearance would lead one to suspect that they are composed of 
unresolved lines and it may be that the selection rule, equation (120), 
applies to this band. The empirical formulas, equations (104) and (105), 
show that the spacing of one band is nearly double that of the other so 
that the moment of inertia in the first case should be about half that 
in the second. It is diflBcult to explain this structure on the assumption 
of a tetrahedral model for methane, where any differences in the principal 
moments of inertia must be due to the vibration of the nuclei, and for 
this reason must be small. Most probably the correct explanation 
of the unequal spacings is not contained in the theory of Sec. 24. It is 
possible that the double spacing of the 7.7ju band may be similar to 
that encountered in the case of symmetrical diatomic molecules such as 
He.) (Sec. 22). 

(Juilloniin' and others^ Imve proposed that methane lias a pyramidal structure 

with the four hydrogens at the four ctoriiers of the base and the carbon at the apex. 

If it is assumed that the selection rule for the 3.3ju band is 

Aj == ±1, 0, AX = 0 

and for the 7.7n band is 

Aj = 0, AX = 1-1, 

then from equation (115) and the empirical equations (104) and (105) we see that 

-4^,0 = « and ^ 5.41 

From these relations the values of A and C and the dimensions of the molecule may bo 

calculated, with the result that the distance between the carbon atom and one hydro¬ 

gen atom is 1.15 X 10 cm. and that between two hydrogen atoms, 1.05 X 10~® cm. 

The model, however, is not convincing because of the strong evidence for the sym¬ 

metrical tetrahedral mod(^l.* 

26. THE VIBRATIONAL STATES OF METHANE 

Dennison^ calculated the vibration frequencies for small amplitudes 
of the methane molecule assuming, (1) that in the equilibrium positions, 
the hydrogen nuclei are at the corners of a tetrahedron and the carbon 
nucleus at its center, (2) that the forces are functions of the distances 
between the nuclei alone. This assumption may be questioned because 
the double bond in the unsaturated hydrocarbons can sustain a torque 
about the line joining the two nuclei; this cannot be explained as due to a 
force along the line of nuclei. 

1 Ann. Physik, 81, 173 (1926). 
2 See Henri, V., Chem. Rev.y 4, 189 (1927) for a review of the arguments for the 

pyramidal model. 
8 See Glockler, G., J. A. C. S.^ 48, 2021 (1926), for a review of properties indi¬ 

cating a highly symmetrical structure similar to that of the inert gases. 

Astrophys. 62, 84 (1925). Our solution does not follow that of Dennison 

exactly. 
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The potential energy F is a function of the four distances from the 
hydrogen nuclei to the central carbon atom ri, r2, ^3, r4, and of the six 

distances between the hydrogen nuclei gi, g2, . . . g'e; 

V = Fi(gi, ‘ • ge) + V2(rr, • • ^ r4). (121) 
Ten coordinates are used to describe a system having only nine degrees 
of freedom and, therefore, there must be a relation between V] and F2, 
which permits the elimination of one of these coordinates. Expanding 
in the neighborhood of the equilibrium position and neglecting terms 
above the second degree, we have^ 

F - Fa + Su + + 

(122) 

It is necessary to express F as a function of nine independent coordinates 
and also to select normal coordinates, such that the kinetic energy is a 
sum of terms proportional to the squares of the velocities and the potential 
energy a sum of terms proportional to the squares of the coordinates. 
One such coordinate is the radius of a sphere passing through the four 
hydrogen nuclei. For displacements of all the hydrogen nuclei toward 
or away from the carbon nucleus which remains stationary at the center 
of mass of the four hydrogen nuclei. 

and therefore 

or dq = 
\/6 

dr 

but the coefficient of the term in dr must vanish for otherwise the position 
will not be one of equilibrium; therefore, 

dF2 A. dFi 

dr = dq 
To simplify our symbols, let 

\ *■ “ (.dW,/dr%' ” r, (i’VJiTij, 

Then the expression for the potential energy is 

F = Fo + + 2)5n) + Ha^dq,^ + 
LV 1 1/ 1 1- 

(123) 

^ Crossed terms of the form 

_i!Z_ 
dqi dqj ^qi ^qi 

are not included in this expression because it is assumed that the force between two 

particles is not changed by the relative positions of the other particles. 
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The energy for the mode of vibration in which all the hydrogens move 
simultaneously toward the carbon atom is 

' = Fo + + (8a + 2)KbT\ 

and the frequency is 

"■ = + «)”• 
The resultant electric moment is zero since the molecule is always 
symmetrical, and, therefore, the correspondence principle leads us to 
expect that light of frequency o), will not be emitted. 

Another mode of vibration can be described by means of a normal 
coordinate <^, the angular displacement between two perpendicular 
planes formed by taking the hydrogen nuclei in pairs and passing planes 
through each of these pairs and the carbon nucleus. These pairs may be 
chosen in three ways, and the displacements represent torsional displace¬ 
ments about the three axes, though only two of these are independent 

Fi(}. 32.—The methane molecule and coordinates of the hydrogen nuclei. 

since the torsional vibration about the third axis may always be resolved 
into two components, one about each of the other axes. The potential 
energy for such a vibration can be obtained by expressing hr and bq in 
terms of ^p and q and substituting in equation (123). It is 

where is the equilibrium value of q. Then, 

E = + Ik(^cx - 

and the frequency is 

This mode accounts for two degrees of freedom. It is not active, for 
the molecule is always symmetrical with respect to the central atom. 

There is one mode of vibration in which all four hydrogen atoms move 
simultaneously in the direction of one axis, say the o^-axis, while at the 
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same time the two with positive ^-coordinates (see Fig. 32) move toward 

this axis and the two with negative ^-coordinates move away from it. 
There is another mode of vibration, in which all four hydrogen atoms 
move as before in the direction of increasing Xy but the two with positive 
:r-coordinates move outward from the axis and thovse with negative 
x-coordinates move toward it. The same modes of vibration may also 
occur independently along the y- or 2:-axes and therefore they account 
for six degrees of freedom. 

The displacement of the hydrogen atoms in the positive x direction 
is accompanied by a displacement of the carbon atom, 4:Mn/Mc as great, 
in the direction of decreasing x. This will be expected to cause the 
appearance of an isotope effect in these two frequencies in the case of 
methane-like molecules whose central atom is not a pure element. Also, 
the unsymmetrical character of these vibrations gives rise to an oscillating 
electric moment, so that the molecule may be expected to absorb or emit 
light of these frequencies. 

Let the arithmetic sum of the displacements of the carbon atom 
and the hydrogen atoms along x be p, and the displacement of the hydro¬ 
gen atoms perp(indicular to x be where g is positive if away from x, 
and negative if toward it. By calculating the values of 5r and bq in terms 
of j) and (7, and substituting in equation (123), the potential energy is 
found to be 

V = 7o + + 2hj)g + 
where 

a = kI{\ + m, h = + /3), c = K + 4a + 

and the kinetic energy is 

where 
T 

M 

2Mp2 + 2MHg% 

“Mc Mu 

We form the Lagrangian function L and secure the equations of motion in 
the usual way. These are 

so that 

... a . h . 
" + 2/+ 2/-" 

^ 2K’’ 2J7/ ■ 

p - A COS 2T<jot and g - Af cos 2iro)t, 

(120) 

where / is a quantity now to be determined. 
Substituting in equation (126) and solving for/, we find 
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these are the two values of the cotangent of the angle between the direc¬ 
tion of vibration and the x-SLxis for the two modes of vibration. The fre¬ 
quencies of vibration are found to be 

0)3,4 
^ 1/ K 

a^ + c± 
M 

H 
(127) 

Substituting Mn/fXy (which equals for the methane molecule) and the 
values of a, 6, c in terms of a, /3, and X, this formula become^s 

0)3,4 
1 

27r 
a + 

5 
9 

27<' + «’ 
(128) 

which is equivalent to the formula derived by Dennison. 
To summarize, the normal coordinates are: 6r; two <p^s measuring 

the torsional displacement about any two axes; three coordinates each 
of which is measured along a line at an angle to one of the x-, or 2-axes, 
whose cotangent is / using the positive sign; and three coordinates 
measured along lines making an angle with the axes whose cotangent is/ 
using the negative sign. 

The three principal moments of inertia of the molecule will still be 
equal if the molecule is vibrating with the frequency of equation (124). 
In the case of the torsional modes of vibration with the frequency of 
equation (125), the mean moment of inertia about the axis about which the 
oscillation takes place will differ slightly from the other two and, similarly, 
the mean moment of inertia about the axis along which the oscillations 
with frequencies given by equation (127) take place will differ slightly 
from the other two, but these variations cannot be large enough to explain 
the very large difference in the spacing of the lines in the two methane 
bands. 

Dennison has found it possible to select the constants a, Sy and K 

in such a way that approximate agreement between the observed and 
calculated frequencies is secured. Table 7 gives the calculated and 
observed fundamental wave numbers. 

Table 7 

Observed 

wavenumber 
Calculated 

wavenumber 
1 Percentage, 

1 error 

4,217 3,020 -7.1 
1,520 1,532 +0.8 
3,014 3,190 +5.9 
1,304 1,304 0.0 
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The frequencies 3,014^ and 1,304 are taken as those of the two frequencies 
of equation (127) since these bands are much more intense than any of 
the others and therefore may be expected to correspond to the vibrations 
with the largest electric moments obtained in our discussion of Dennison^s 
model. The agreement is not very close. This may be due principally 
to the failure of the assumption that the forces depend only on the 
distance between the atoms.^ 

27. ELECTRONIC BANDS OF POLYATOMIC MOLECULES 

The detailed analysis of the electronic bands of polyatomic molecules 
has only been begun and progress is slow because of their much greater 
complexity. In general, the ultraviolet bands of formaldehyde which 
have been described by Henri and Schou^ have a structure similar 
to those of diatomic molecules, with modifications due to the greater 
number of vibrational degrees of freedom and to the existence of three 
different moments of inertia. The phenomenon of predissociation, as 
it has been named by Henri, is found in the^se band spectra. This is a 
common feature of these bands, which occurs rather seldom in the spectra 
of diatomic molecules, though it is found in the spectrum of 82- An 
excellent example of this is given by the naphthalene bands investigated 
by Henri and de Liszlo/ 

These absorption bands may be divided into three parts: the first 
extends from 3,200 to 2,820 A. and consists of narrow bands with a 
rotational fine structure; the second, from 2,820 to 2,5(X) A., consists of 
narrow continuous bands with no rotational fine structure; and the third 
is a continuous spectrum extending further tov/ard the violet. These 
three parts of the spectrum are due respectively to transitions from the 
low-lying vibrational and rotational states of the normal molecule (1) 
to a higher electronic state in which both the vibrational and rotational 
motions are quantized, (2) to a higher state in which vibrational but 
not rotational motions are quantized, and (3) to a higher state in which 
neither vibrational nor rotational motions are quantized, so that to all 

^ The wave number 3,014 is that which is observed in all organic compounds in which 

we have the C-H linkage. (See Ellis, Phys. Rev., 23, 48 (1924); Marton, Z. Phys. 

Chem., 117, 97 (1925), and also Chap. XI, Sec. 6.) Andrews {Chem. Rev., 6, 633 

(1928)) has shown that the observed heat capacities of a large number of organic 

compounds containing hydrogen linked to carbon are consistent with this value of a 

characteristic frequency. 

2 Recently, Dickinson, Dillon and Rasetti {Phys. Rev. 34, 582 (1929)) have studied 

the Raman effect of methane and give reasons for believing that 4217 cm.*”^ is not a 

fundamental, but is the sum of 1304 cm.*“^ and a fundamental of ^2913 cm.“i. It is 

interesting to note that this agrees very closely with the fundamental generally 

postulated for the C — H bond. 

* Z. Physik, 49, 774 (1928). 

^ Proc. Roy. Soc., 106, 662 (1924), 
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intents and purposes the molecule is dissociated. The first and third 

of these conditions have been described in connection with the band 

spectra of diatomic molecules. Henri proposed that the second spectrum 

is due to the absorption of light in a transition to a molecular state, 

where the molecule is unstable and dissociates soon after absorption. 

Kronig^ showed that the rotational states of a molecule will not be 

quantized if the molecule has an appreciable probability of dissociating 

in a time of the order of magnitude of one rotation, but that the vibrational 

motion will be quantized if the dissociation does not occur within a 

time sufficient for many vibrations. Since the vibration frequencies are 

much larger than the rotational frequencies this condition is fulfilled. 
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CHAPTER XIII 

CRITICAL POTENTIALS OF ATOMS AND MOLECULES 

The simpler facts in regard to critical potentials have been presented 
in Chap III, and the present chapter will be devoted principally to 
recent developments and important results in this interesting field. The 
existence of a National Research Council Bulletin entitled Critical 
Potentials,’^ by Compton and Mohler, and the book by Franck and 
Jordan, called ^^Anregung von Quantenspriingen durch Stosse,” make 
it quite unnecessary to give a detailed systematic account of the earlier 
developments. 

In Chap. Ill, we pointed out the distinction between collisions of the 
first and second kinds. If, in a collision, between an atom (or molecule) 
and an electron, the internal energy of the atom is raised at the expense of 
the relative translational energy of the collision-partners, we are dealing 
with a collision of the first kind, while if the converse is true, we have a 
collision of the second kind. We must also consider encounters between 
excited and unexcited atoms, in which the possibilities are more compli¬ 
cated. Here the collision is of the second kind if the more highly excited 
atom loses internal energy, whatever the distribution of that energy 
between translational and internal degrees of freedom may be. If both 
atoms are excited, this nomenclature is scarcely worth applying, because 
it does not give an adequate idea of the process. Collisions of the first 
kind and a few miscellaneous topics form the subject matter of this 
chapter, while those of the second kind are treated in the following one. 

1. ELECTRON SOURCES FOR STUDIES OF CRITICAL POTENTIALS AND 
RELATED PHENOMENA 

The first requisite in nearly all experiments on the collisions of 
electrons with atoms and molecules is a copious source of electrons, 
usually of low velocity and having a reasonably narrow range of velocity 
distribution. Only photoelectric and thermionic sources enter into 
practical consideration. The use of the former presents many experi¬ 
mental difficulties, for it is necessary to employ noble metals because of the 
difficulties in removing gases from the more common metals; but the 
photoelectric ejection of electrons from noble metals requires the use of 
ultra-violet light since their photoelectric threshold values lie in the 
ultra-violet and in some cases beyond the limits of transmission by glass, 
so that it is necessary to construct at least a part of the apparatus of 
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fused quartz. It is usually more convenient to use the electron emission 
from an incandescent metal strip or filament, and much larger currents 
can be drawn from such a filament than from a photoelectric source. 
Under certain conditions, the electrons leaving a hot cathode have 
velocities distributed according to the Maxwell distribution law. The 
experiments of del Rosario* show that Maxwellian distribution is secured 
in a high vacuum but not in the presence of a gas or vapor. In correcting 
for initial velocities of the electrons, the usual procedure is to determine 
their velocity distribution experimentally. This may be done by varying 
a retarding potential applied between the hot cathode and a collecting 
electrode. The electron current which reaches this anode is plotted 
against the retarding potential. The number of electrons having 
energies lying between Ve and (F + dV)e is proportional to the slope 
of this curve at the point with abscissa V. Often, the voltage corre¬ 
sponding to the highest ordinate of the slope curve is applied to the 
measured voltage as a correction, provided the velocity distribution 
curve is fairly narrow. There is no theoretical justification for this, but 
it is usually satisfactory, since great accuracy is not ordinarily sought in 
critical potential measurements. Another method is to evacuate the 
apparatus and introduce a gas or vapor of known ionization potential. 
Often mercury vapor from the diffusion pumps can be used. If the 
known ionization potential is /, and the value obtained is I', then the 
quantity / — 7' is added to all measured voltages. This method suffers 
from the objection that the velocity distribution is not the same 
in the presence of the calibrating gas as in the presence of the gas 
which is to be studied. In using either method of correction, the con¬ 
tact potential between cathode and anode is automatically eliminated 
by subtraction. 

It is instructive to consider the electron current which flows from a 
hot cathode to a metal plate in a thoroughly evacuated bulb. Figure P 
shows the dependence of this current on the potential V applied between 
the two electrodes. For low values of the potential the current i is quite 
accurately proportional to the % power of the potential corrected for 
the initial velocity of the electrons as they leave the hot cathode. As the 
potential is further increased, the current increases more slowly than the 
% power of the potential and finally approaches a constant value called 
the ^'saturation current.'' The law that i is proportional to (F — Fo)'^"" 
for low values of F was derived theoretically by Child'^ and has been 
especially studied by Langmuir.^ It can be derived theoretically, and 
holds true whatever the geometry of the apparatus may be. At low 

^Phys. Rev., 27,811 (1926). 

*0. G. Found, Phys, Rev, 16, 41 (1920)* 

^PhyB. Rev., 32, 492 (1911). 

^PhvB. Rev., 2, 450 (1913). 
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values of the potential the current from the cathode is limited by negative 
space charge which accumulates in its neighborhood until the potential 
gradient at its surface is zero. This condition holds because the 
current flow due to the impressed potential does not remove the electrons 
from the neighborhood of the cathode as fast as they evaporate from the 
hot metal. At higher potentials this is no longer the case, and the 
gradient near the cathode becomes greater and aids the initial emission, 
although space-charge effects still play a role. Finally, the gradient 
becomes large enough to remove the electrons as fast as they leave the 

Fig, 3 .— -The variation of thermionic current with potential. The crosses represent the 
observations in vacuum and the circles observations with mercury vap<jr present. {After 
Found,) 

metal, and the limiting value of thfe current is determined by the capacity 
of the hot filament to emit electrons. The saturation current varies with 
the temperature according to the empirical formulas, 

/ = aThf, (1) 

or 

I ~ a'(2) 

Usually, either of these laws can be made to fit the observed points within 
the experimental error by proper choice of the constants, a, 6, a', and 
6'. The second expression can be reasonably well justified by a simple 
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theory. According to Fowler^ the current should be given by the 
equation 

/ = 2A(1-r)rexp(^^) (3) 

where 
. 4iT^k^me 

A = 

r is the reflection coefficient for electrons which fall on the metal, and 
Fo is very nearly equal to the thermionic work function, the average 
work required to move an electron from a position of rest inside the metal 
to a position of rest outside.^ When the current is in amperes per 
square centimeter, the value of a in (1) may be taken as about 60 for 
tungsten, platinum, and molybdenum in a very pure state. The total 
current from a given material increases with the temperature, and in 
comparing different metals, the lower Fo is, the greater the current at a 
given temperature. Fo varies from 1.34 volts for cesium to 5.2 ± 0.3 
volts for platinum, and increases roughly as the electropositive character¬ 
istics of the metal decrease. 

The choice of a suitable material for a hot cathode is governed by 
several factors -"'the magnitude of the currents required, the possibility 
of dissociation or catalytic recombination at the filament in studying 
moh^cular gases, the effect of the gas on the filament itself {e.g., tungst(m 
should not be used in oxygen), length of time the fil;^ment must retain its 
original properties, etc. The most usual materials are platinum, coated 
with thin layers of al]<aline earth oxid(^s, tungsten, thoriated tungsten, and 
molybdenum. In the more exact determination of critical potentials, 
it is important to use electrons which have a narrow velocity distribution. 
This problem has been partially solved by several methods. Foote and 
Mohler^ showed that nickel and platinum surfaces coated with ce^sium 
emit electrons copiously at red heat. Kingdon and Langmuir^ and 
Williamson'^^ then showed that tungsten and platinum surfaces adsorb a 
monomolecular layer of such metals as the alkalies or thorium, and that 
such metal surfaces emit electrons in accordance with formula (3), the 
work function being that of the adsorbed metal. 

The retention of an alkali atom on a metal surface is due to the 
loss of one of its electrons. This will occur if the thermionic work func¬ 
tion of the underlying metal is sufficient to remove an electron. Thus, 
cesium has an ionization potential of 3.87 volts while the thermionic 

1 Ptoc. Roy Soc., 117, 549 (1928). 
2 Warner {Proc. Nat. Acad. Sci., 13, 56 (1927)) has shown that tlie thermionic 

work funcjtion of tungsten is very nearly equal to the photoelectric threshold value. 

8 Phil Mag., 40, 80 (1920). 

4 Phys. Rev. 21, 380 (1923). 

^Phys. Rev. 24, 127 (1924). 
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work function of tungsten is 4.7 volks, and, therefore, cesium ions will be 
held tightly on a tungsten surface. Since the work function of tungsten 
is 4.7 volts, and that of cesium 1.34 volts, the temperature of a cesiated 
filament need be only about 1.34/4.7 of the temperature of a bare tungsten 
filament in order to secure approximately the same current per square 
centimeter. This low-temperature source yields electrons with a narrow 
velocity distribution. A mixture of alkaline earth oxides has a similar 
effect on the work function and is very often used to increase the elec¬ 
tron emission from platinum filaments. 

In addition to the natural energy-distribution of thermionic electrons, 
we must consider the distribution due to the potential drop along the 
filament, which may amount to several volts. Hertz and Kloppers^ 
have used an equipotential source made by fusing a small nicked body 
to the middle of a tungsten filament. Due to its high electrical con¬ 
ductivity, the potential drop across it is very small. When covered with 
alkaline earth oxides the nickel body emits electrons much more copiously 
than the filament. A third wire attached to the nickel is used to apply 
accelerating potential. This method is a .variation of the old scheme of 
covering a small spot on a platinum strip with a mixture of oxides. 

Lawrence*'^ used the method of magnetic resolution (Chap. II, Sec, 
10) to select electrons of a given velocity from an inhomogeneous beam. 
In this way he secured a beam of electrons with velocities having a sharp 
upper limit, and determined the ionization potential of mercury with 
high precision. His value is 10.40 ± 0.04 volts, while the spectroscopic 
value is 10.392. 

2. METHODS FOR DETERMINING CRITICAL POTENTIALS 

The electrode arrangements which have been used in critical potential 
work are very numerous and we must refer to the treatises of Franck 

and Jordan and of Compton and 
Mohler for detailed discussion. Here 
we shall content ourselves with a brief 
statement of the principles underlying 
the more usual methods, and with 
descriptions of a few arrangements 
which possess special interest. 

I. Lenard’s Method and Its Modifications.—This method has been 
described in Chap, III, Sec. 10. In the simple arrangement of Fig. 4 
(Chap. Ill) collisions between electrons and atoms occur throughout 
the space between the filament and first gauze. The energy of the 
electron depends on the potential through which it has fallen and thus 
varies from zero to the full accelerating potential, depending on the point 

Physik, 31, 463 (1925). 

* Phys, Rev,, 28, 947 (1926). 

I' A 

Fig. 2.—Modified Lenard method. 
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at which the collision occurs. It is possible to remedy this defect by 
the use of an additional gauze //, mounted close to the filament as shown 
in Fig. 2. The accelerating potential is applied between the filament 
and this gauze so that the electrons enter the space HG at full potential 
and here collide with atoms in a nearly field-free space. It is usually 
advantageous to maintain a potential of a few tenths of a volt between 
H and G. A negative space charge due to the electrons applies a retarding 
field to the electrons entering this space. A small accelerating potential 
between 11 and G reduces this space charge and removes positive ions 
and slow electrons so that secondary effects such as inelastic collisions 
between ions and fast electrons are decreased. This arrangement was 
used by Franck and Einsporn^ and many subsequent workers in this 
field. ^ 

II. The Method of Franck and Hertz and Its Modifications.—This 
is also described in Chap. Ill, Sec. 10, and can be improved by adding a 
gauze in the neighborhood of the filament, just as described in the case 

Fig. 3.—Critical potentials of mercury. {After Einsporn.) 

of the Lenard method. In Fig. 6 of Chap. Ill, we gave a curve obtained 
with the three-electrode arrangement in mercury vapor at such a pressure 
that each bombarding electron makes many colhsions in traversing the 
apparatus. At the pressures used all but a small fraction of the electrons 
will collide with a mercury atom before acquiring much more than 4.9 
volts energy. If the pressure is decreased this will no longer be true. 
Figure 3 shows a curve secured by Einsporn® under such conditions, 
using mercury. The peaks on this curve occur at spacings which agree 
very well with the hypothesis that they are combinations of two poten¬ 
tials, 4.9 volts and 6.7 volts. It is possible to interpret some of these 
critical potentials, however, as due to combinations of other resonance 
potentials of the mercury atom. 

Table 2 shows the agreement between the observed peaks and the 
calculated values, using the combinations shown in the second column, 

1 Z. Physik, 2, 18 (1920). 
* See Foote and Mohler, '‘Origin of Spectra,’' p, 137. Chem, Cat, Co., New 

York (1922). 
9Z. Physik, 6, 208 (1921). 
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In the first column, a correction of 1.1 volts has been added to the experi¬ 
mental values because of the mean energy with which the electrons leave 
the cathode. 

Table 1 

Observed voltage 

(corrected for initial 

velocities) 

Combination of 

a — 4.9 volts and 

6 = 6.7 volts 

Difference between 

calculated and ob¬ 
served values 

4.9 a = 4.9 0 
I h = 6.7 

9.8 2a = 9.8 0 

11.2 a + 6 = 11.6 -0 4 

13 5 2b = 13.4 +0.1 

14.7 3<i = 14.7 0 

16.0 2a -f b = 16.5 -0.5 

17.6 a -f" 26 = 18.3 -0.7 

19.3 4a = 19.6 +0.3 
20.2 36 = 20.1 +0.1 

21.2 3a -{- 6 = 21.4 -0.2 

in. The Methods of Davis and Goucher and of Compton.—The 
experimental methods described above do not distinguish between 
ionization and resonance potentials, since both are associated with loss of 

Gg\ 

6alvQnom$fer 

P 

Fig, 4.—The Davis and Goucher apparatus. 

energy. Davis and Goucher^ carried out experiments which distin¬ 
guished between these two effects, by using an apparatus shown dia- 
grammatically in Fig. 4. Two gauzes were used between the filament 
F and the plate P with fields Fi, 72, and Fs accelerating and decelerating 
the electrons as shown by the arrows. Fi is increased by small steps 
and the current flowing between Gz and P is measured by a galvanometer 
for each value of Fi. When atoms are caused to radiate by inelastic 
impacts of the electrons in the neighborhood of Gi, the light emitted 
falls on P, and photoelectrons are ejected which are returned to P by the 
field Fs, contributing nothing to the current through the galvanometer. 
Any light falling on the side of G^ nearest to P by reflection, or otherwise, 
will cause electrons to be emitted from G^, which will fall to P and register 
on the galvanometer. If now the potential Fi is increased until ions are 
produced near (?i, these will be accelerated toward (?2, and passing through 

1 p%5.10, 101 (1917). 
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the gjEtuze, will reach P if Fs is less than V2. An ion current from G2 to P 
will deflect the galvanometer in the sense opposed to that in which it is 
caused to move by the electron current. If the supply of ions is suSi- 
ciently great, the original deflection caused by the light emitted at 
resonance collisions will be reversed. In the lower curve of Fig. 5, the 
galvanometer current / obtained under such conditions is plotted against 
the potential Fi. If the direction of F3 is now reversed the photo¬ 
electrons from P pass to (?2. A negative current flowing from P to G2 is 
equivalent to a positive current flowing from G2 to P. The inelastic 
collisions producing light will therefore register a current in the same 
direction as those producing ions. The upper curve of Fig 5 shows 
the plot of the galvanometer current I against 
F for this arrangement of the fields. This 
experiment was carried out with mercury vapor. 
The shape of the curves shows clearly that the 
two critical potentials at 4.9 and 6.7 volts are 
associated with the production of light following 
inelastic collisions in which the atom is raised to 
an excited state. The break at 10.4 volts is 
associated with the formation of positive ions. 4- 

Compton’ has devised a modification of the -h 
Lenard method which makes it possible to dis- Z 0 

tinguish between radiation and ionization poten- ^ 
tials. The arrangement of potentials is un¬ 
changed, but the receiving electrode is a hollow 
box, one side of which is covered with metal 
gauze. The gauze side or the solid side can be 

turned toward the other electrodes by a magnetic 5.~-The resonance 
device. On rotating the box, the positive ion and ionization potentials of 

current to the electrometer will not change, for and 
the gauze is just as efficient in collecting 
ions as a solid plate; but the photoelectric current from the box 
will be smaller when the gauze side is turned toward the other electrodes, 
because a large part of the radiation passes through the meshes and 
strikes the inside of the box, from which few photoelectrons escape. 
Suppose we plot the ratio R of the currents obtained with solid and 
gauze sides toward the other electrodes, against the accelerating voltage. 
If we were dealing entirely with positive ion current this ratio would be 
unity; if with photoelectric current, it would be larger than unity. At a 
radiation potential we expect an increase of /i, and at an ionization 

potential we expect a decrease. 
IV* Hertz’ Space Charge Method.—This is adapted to the detection 

of ionization potentials. ^ Electrons are accelerated through a gauze 
1 Phil Mag. 40, 653 (1020). =* Z. Physik, 18, 307 (1923). 
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into a metal cylinder, where collisions take place. In this cylinder there 
is a very small filament which is run so hot that the current from it is 
limited by space charge. A small potential is applied between the 
filament and the cylinder, for reasons already explained. The galvanom¬ 
eter is connected to one leg of this filament and measures the emission 
current from it. This remains constant as long as the accelerating 
voltage is less than the first ionization potential of the gas, but increases 
greatly as soon as that voltage is passed, because the negative space 
charge is neutralized. The filament is so small that radiation cannot 
cause an appreciable photoelectric current from it. 

V. Another Method Due to Hertz.—This method is especially adapted 
for the accurate determination of critical potentials, and minimizes 
effects due to inelastic impacts occurring at lower voltages. The experi¬ 
mental arrangement used by Hertz* is shown in Fig. 6. Electrons of 
known velocity and having a narrow velocity distribution were shot into a 

field-free space containing a helium- 
neon mixture, where they collided 
with the atoms and diffused through 
the gauze sides to the electrode P. 

Two current measurements were 
made, one with no field between the 
cage and the electrode P, and the 
other with retarding field of 0.2 volts 

between them. The difference between these two currents is a measure 
of the number of electrons which have made inelastic collisions and have 
lost nearly all their energy, so that they cannot move against the small 
retarding field of 0.2 volts. Hertz took the critical potentials of helium 
as known from spectroscopic data and determined the potentials of neon 
relative to these. By way of illustration. Hertz found resonance poten¬ 
tials at 16.65 and 18.45 volts. The first of these corresponds to two 
resonance lines at 744 and 736 A., which were discovered spectroscopi¬ 
cally by Hertz. ^ The calculated excitation potentials of these lines 
are 16.58 and 16.77 volts. 

In practice, it is often convenient to use a combination of several 
methods. Thus, we might measure the first resonance potential of 
a metallic vapor by the Franck-Hertz method, locate the ionization 
potential by noting the sudden increase in total current which occurs 
when ionization begins, and study the spectrum of the discharge to 
determine what lines are emitted just above the resonance voltage. 
Often it is possible to gain additional information by observing the 
dependence of line intensities and of breaks in the curve on the current. 
For example, when the voltage slightly exceeds the first ionization 

^Loc. eit. 
»N<Uurim., 18, 489 (1926); Z. Phydk, 82, 938 (1926). 
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Fig. 6. The Hertz arraiigenient. 
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potential, it is possible for lines of the spark spectrum to appear, due to 
ionization by one electron and excitation of the ion by another. The 
intensity of strong lines of the spark spectrum produced in this way 
should therefore be proportional to the square of the current density. 
Thus we see the value of using low currents when it is desired to get 
rid of effects due to successive impacts. 

VI. Special Devices Used with Molecular Gases and Vapors.— 
Special methods must be used for studying the critical potentials of the 
atoms of elements which are in the molecular form at ordinary tempera¬ 
tures and pressures. In Chap. V, Sec. 3, we have described the work of 
Olmstead and Compton on the critical potentials of the hydrogen atom, 
in which they used a tungsten vacuum furnace to dissociate the gas. 
Smyth and (bmpton^ have used a discharge tube raised to a high tem¬ 
perature in their studies of the critical potentials of the iodine atom. 

VII. Kurth’s Method for Studying Soft X-ray Potentials of Solids.— 
In this method radiation is produced at a target bombarded with electrons 
of controlled energy. This radiation falls on a detecting plate producing 
a photoelectric current. 

An essential feature of Kurth’s^ apparatus consists in an elaborate 
set of shields, which serve to suppress secondary effects due to ions 
produced in the residual gas. Studies similar to those carried out by 
Kurth have been made by Rollefscm,'^ Compton and Thomas'^ and others. 
Their experiments show that many radiating potentials can be observed 
in such solid bodies as iron, nickeb copper, and carbon. For the most 
part, it has been found impossible to arrange theses in any systematic 
order and it seems very probable that future investigations of these 
soft X-rays will be made principally by using gratings ruled on glass. 

3, CONTROLLED EXCITATION OF SPECTRA 

As indicated in Chap III, Sec 12 it is often advantageous to supple¬ 
ment our studies of critical pobmtials by investigations of the light 
emitted when a gas or vapor is bombarded by low-voltage electrons. 

A tube suitable for experiments of this kind is shown in Fig. 7, 
taken from a paper by Ruark^ on the step-by-step excitation of the 
magnesium spectrum. The hot filament is closely surrounded by a spiral, 
which in turn is surrounded by a concentric cylinder at a relatively great 
distance. This is often maintained at the same potential as the outer 
cylinder, but usually a small accelerating voltage—say a few tenths of 
a volt—may be applied between them with advantage. The main 

1 Phys, Rev., 16, 501 (1920). 
^Phys. Rev,, 18, 461 (1921). 
8 Phys. Rev., 23, 35 (1924). 
< Phys. Rev., 28, 601 (1926). 
8/. 0. S. A., 11, 198 (1925). 
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accelerating potential is applied between the filament and the spiral 
If the spectrum of a metal is to be studied, a piece is placed inside the 
cylinder, and the central part of the tube is heated. The pressure is so 
chosen that relatively few electrons collide with atoms in the space 
between filament and spiral, while a much greater number undergo colli¬ 
sions in the force-free space between the spiral and the cylinder In this 
way, nearly all the electrons reach this space with the energy corre¬ 
sponding to the full potential between filament and spiral. The light 
from the force-free space is focused on the slit of a spectroscope through 
the fused quartz window, which is placed a considerable distance away 
from the discharge, to avoid the deposition of a metal film. The cylinder 
is nearly closed, to keep the metal where it is wanted. The small tube 
at the right keeps the direct light of the filament from reaching the 

Fig. 7,-—Apparatus for the controlled excitation of spectra. {After Ruark.) 

spectroscope. It also serves to isolate the light coming from regions 
close to the anode cylinder, where the potential must be nearly that 
of the anode. 

Usually, the current is held constant by varying the temperature 
of the filament; further, it should be chosen very low, let us say 1 to 3 
milliamperes, for the purpose of minimizing effects due to successive 
excitation of an atom by two or more electrons. Even if these conditions 
are satisfied, the spectra obtained at different voltages will not be com¬ 
parable in intensity, for several reasons. First, the percentage of the 
collisions which are inelastic is a function of the electronic velocity. 
Second, an electron having 10 volts energy, for example, can undergo two 
inelastic collisions in a gas having a resonance potential of 5 volts, while 
an 8-volt electron could excite only one atom. Third, the electronic mean 
free path and, therefore, the total number of collisions, depends on the 
velocity. Other factors could be enumerated. For these reasons, 
the time of exposure is reduced, at constant current, to keep the product 
of voltage and exposure time constant. With these precautions, spectra 
are obtained at a number of different voltages. Figure 8 shows magne¬ 
sium spectra obtained by Foote, Meggers, and Mohler,^ at voltages 
from 3,2 to 30. At the first resonance potential, an electron should be 
carried from the normal level USo to the levels 2®Po,i,2. In magnesium, 

^Fha, Mag,, 42, 1002 (1921); 48, 639 (1922). 
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these P levels lie close together and the corresponding resonance potentials 
cannot be separated electrically. While electrons are carried to all 
three levels, they cannot return from 2*P2 and 2‘^Po with emission of 
radiation. These states are metastable, and atoms cannot leave them 
except by colliding with the walls, with other atoms, or with electrons. 
As to 2®P2, it is higher than but spontaneous transitions between 
these levels will not occur because of the selection principle for the azi¬ 
muthal quantum number. The result is that only the line PSo — 2*Pi 

6JNGLB UNE SPECTRUM 
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Tm L tNE SPECTRUM 

6.5 VoHs 

ARC SPECTRUM 

ENHANCED SPECTRUM 
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Fig. 8.—Development of Mg Spectrum. (After Foote, Me^jgers, and Mohler.) 

at 4,571 A. should be emitted when the bombarding electrons have 
voltages slightly higher than the first resonance potential. The minimum 
voltage required for the excitation of the 4,571 A. line, should be 2.70 
volts, by the relation Ve = hv. It is recorded at 3.2 volts (Fig. 8) 
and no other line is found, even when the plate is very much over¬ 
exposed. The larger value of the observed voltage is due to the fact that 
the intensity of the light excited at exactly 2.70 volts would be so small 
that it would be difficult to photograph. The next line to appear should 
be PSo — 2^Pi at 2,853 A., which requires 4.33 volts for its excitation, 
and it appears when the energy is increased to 6.5 volts. 



460 CRITICAL POTENTIALS OP ATOMS AND MOLECULES [Chap. XIH 

Other lines due to the neutral atom appear progressively as the 
voltage increases. When the ionization potential of 7.61 volts is exceeded, 
the whole arc spectrum is emitted, as in the 10-volt exposure of Fig. 8. 
The energy required to ionize the Mg+ ion corresponds to 14.97 volts and 
when this is accomplished, the complete Mg II spectrum should be 
emitted. This spectrum is observed in a low voltage arc run at high 
currents, at potentials slightly in excess of 15 volts, and is due principally 
to doubly charged ions produced by the successive impact of two electrons. 
Now, collisions of singly charged positive ions with the bombarding 
electrons are proportional in number to the square of the current, and 
so all spc^ctrum lines produced in this way will decrease in intensity 
relative to lines produced by single iryipacts, if the current is made lower. 
At low currents, therefore, we should expect that the Mg II spectrum 

yy 

IBVolfs 

^/fs-Z^Pomg^ 

/3VoHs 

Fiq. 9.—The spectrum of Mg'*' excited by single electron impacts. {After Ruark.) 

would be quite faint until we pass the voltage 22.58 (= 7.G1 + 14.97) at 
which two valence electrons may be removed in a single impact. Ruark’ 
showed that such is the case, using current densities of the order of 0.1 
to 0.2 milliamperes per cm.^ As a typical result, we may consider the^ 
excitation of = the first principal pair of ionized magnesium, VSi^ — 

at 2,802.7 and 2,795.5 A. If a singly charged ion is present, 
these lines could be excited by 4.4-volt electrons, but 7.61 volts are 
required to produce such ions, and therefore these lines should appear 
first at the first ionization potential when the current is relatively high; 
but, if the current is relatively low, these lines should appear at 12.01 
volts, due to a type of impact in which one electron is removed and the 
second is raised to one of the 2^P levels. The existence of such impacts 
is proved by the 12- and 13-volt exposures in Fig. 9. While there is no 
trace of these lines in question at 12 volts, they are strongly developed at 13. 

The simultaneous excitation of two electrons may also be studied 
by the same method. If it is possible to raise both valence electrons 
of magnesium to 3,1 orbits by a single impact, leaving the atom in one of 
the 2®P' states, we may expect that the lines 2^P — 2^P' will be emitted 

*Loc. dL 
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as a result. The voltage required for this excitation is 7.14, corre¬ 
sponding to the wave number P^So — 2^P'. Our expectation is verified, 
for at low currents the 2^P — 2®P' lines are absent at 7.5 volts, but present 
at 7.9. The difference between the theoretical excitation voltage and that 
observed is attributable to the fact that the initial velocity correction 
has not been applied. Recently, the hot cathode arc has been used by 
K. T. Compton, Boyce and RusselP in studies of the extreme ultra¬ 
violet spectra of neon and argon. In this region, classification is often 
made difficult by the decreased accuracy of wave-number measurements, 
and any method of separating successive stages of excitation is very 
useful. 

Very close checks of theoretical potentials have been obtained by 
Hertz^ in work on helium, neon, and mercury, by the use of low currents— 
never greater than 0.1 rnilliarnpere. Neon lines which are d(‘finitely 
absent at 19.2 volts are quite strong at 19.6. Later, Hertz and Hcharp 
de Visser^ made photometric measurements of line intensities as a function 
of voltage. The curves obtained cut the axis of zero voltage at consider¬ 
able angles in some cases, and yield quite 
definite values of the critical voltages for the 
appearance of these lines, 

4. THE DETERMINATION OF IONIZATION 
POTENTIALS WITH THE MAGNETIC 

SPECTROGRAPH 

A very powerful method for studying the 
potentials at which various types of ions are 
first produced has been developed by Smyth'* 
and Hogness and Lunn,*^ by combining a hot 
cathode tube with a magnetic spectrograph 
like that of Dempster (Fig. 10, Chap. II). The 
arrangement of electrodes used by Hogness 
and Lunn is illustrated in Fig. 10. The 
source of electrons is the filament E, The potential Vi is fixed through¬ 
out the experiments and F2 is varied. The electrons collide with the 
molecules in the space F producing ions if Fi + F2 is sufficiently large; 
these are drawn through the gauze 7 by a small potential F3. F4 is a 
large variable potential which accelerates the ions through the gauze 
J and slit JS, where they enter the magnetic field. Their paths are bent 
into a circle and the ions arrive at the slit M and the electrometer 

^Proc. N(U, Acad. Set., 14, 280 (1928); J. Frank. Inst., 206, 497 (1928); Phys. 
Rev., S2, 179 (1928). 

a Z. Physik, 22, 18 (1924). 

»Z. Physik, 81, 470 (1925). 

^Proc. Roy. Soc., 102, 283 (1922), and later papers. 

^Proe. Nat. Acad. Sd., 10, 398 (1924); Phys. Rev., 26, 786 (1925). 
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Fig. 10. — Magnetic spectro¬ 
graph arrangement. {After 
lIounPHs and Lann.) 



462 CRITICAL POTENTIALS OF ATOMS AND MOLECULES [Chap, XIII 

electrode. In order to bring ions of different ratios of charge to mass to 
the slit it is necessary to vary either V4 or the magnetic field strength. 
In practice it is convenient to vary F4 in order to detect the different 
ions produced. By varying the potential F2, the energy of the exciting 
electrons can be varied. Thus, it is possible to observe the exciting 
potential at which any ion is produced and also the relative numbers of 
ions of different kinds produced by electrons of any particular energy. 

Figures 11a and 116 are plots of electrometer currents against the 
potential F4, when the apparatus is filled with No, and electrons enter 
the space F with energies of 23 and 84 volts, respectively. ^2"^ ions 

Fig. 11.—Magnetic spoctrograr)h curve.s; (a )\vith an accelerating potential of 23 volts; (h) 
with an accelerating potential of 84 volts. (After Hogneas and Lunri.) 

are present in both cases but N+ ions only in the latter. The relative 
abundance of the ions can be estimated by the heights of the peaks of 
these curves. It is found that N2+ ions appear first at 17 volts, and in 
greater numbers at 23 volts; ions appear above 23 volts, but in, small 
numbers relative to the N2"*' ions. Increasing the pressure of nitrogen or 
the addition of helium gas increases the relative number of N+ ions; 
further, the ratio of N+ to N2'^ ions approaches zero as the nitrogen 
pressure approaches zero. The conclusions that can be drawn are: two 
types of N2'^ ions are produced, one at 17 volts and another at 23 volts; 
the second of these is unstable and at collision with other molecules or 
helium atoms dissociates into an atom and an atomic ion. 

Similar studies have been made with H2/12,^ HCl,^ NO,^ 62,^ CH4® and 

^ Smyth, Phys. Rev,, 25, 452 (1925); Hogness and Lunn, Phya, Rev,, 26, 44 (1926); 
Kallmann and Bredig, Z, Physik, 34, 736 (1925). 

* Hogness and Harkness, Phys. Rev,, 32, 784 (1928), 
* Barton, Phys. Rev, 30, 614 (1927). 
* Hogness and Lunn, Phys, Rev., 30, 26 (1927), 
* Hogness and Lunn, Phys. Rev., 27, 732 (1926). 
® Hogness and Kvalnes, Phys, Rev. 32, 942 (1928). 
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H20.^ a summary of the principal conclusions of these studies is given 
in Table 2. The method promises to give further valuable information 
on the processes of ionization in molecular gases. 

Table 2 

Molecule Primary process 
Excitation 
potential 

volts 

Secondary and tertiary 
processes 

Negative ions 
observed 

[ H2» -P P H N one 
Hs. H2 H2" + c 1() 1 H-P H+ p- H 

1 + H2-* H3+* 

Nt. 
f N2 N2MI7) -f c 17 
1 N2 N2+(23) -f c 23 N2+(23) N^- P N No- 
[ NO NO+ + 9 NO-, N“, 0 ' 

NO. 
1 NO 0+ -j- N -f c 21 

[ NO 0 + N * + c 22 
f O2 —>■ (>2^ -f <’ ! 13 02~, ()- 

ih. 
1 O2 0 * + 0 -f c 20 

UaO. H2O H2O+ + 1 J r 1120^ 011+ p Ht None 
lo 1 l IlaO^ + H2O — II3O+ P OHt 

l2 I2+ e 1 [ p + I2 - p 1 I, I2', I3- 
Li. \ h--*V 1 e 1 

*f . 0 

0 *4 1 l2‘ + 12--^ I3' + I 
[ I2 -P f —-f I I- + l2-> I2 - + I 

, I2- + l2-^ I3 + I* 

HCl. 
J f HCl HCl ‘ + c 13 I 
1 1 UCl 11 -f cit Cl + r -4 C1-* a- 

CH4 CH4+(14.r)) 
+ e 14.5 

CH4-> CH3* + H 

CH4. + c 15.5 

or 
i CH4 -►CII4HI5.5) 1 
i + c 15.5 CH4^ ->CH3^ + H + c 1 

♦ Processes are tertiary, 
t Thermal dissociation at the filament. 

Somewhat similar methods have been used to separate the spectra 

of ions from those of neutral molecules. 
If an electric field is applied transversely to a beam of canal rays 

passing through a high vacuum, ions in the beam can be deflected 
sufficiently to separate them from the neutral particles. In this 
way Wien^ and Kerschbaum® obtained a physical separation of the arc and 
spark spectra of 0 and N and showed that the second positive bands of N2 

are emitted by the neutral molecule while the negative bands are due to 
Wien has also studied the spectra of canal ray beams deflected by 

magnetic fields. Brasefield^ has used this method to separate the 
spectrum of H2^ from that of the neutral molecule. In this way he has 

^ Barton and Bartlett, Phys, Rev.j 31, 822 (1928). 
* Ann. Physik, 69, 325 (1922); ibid., 81, 994 (1926). 
* Ann. Physik, T9, 465 (1926). 
^ Pfoc. NaL Acad, li, 686 (1938). 
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succeeded in finding bands which are characteristic of the ion and has 
found that they follow a Rydberg series with the changes in the quantum 
numbers 8 4, 9 —» 4, 10 —> 4, and the Rydberg constant character¬ 
istic of singly ionized atoms, namely, 4iS//. The method is difficult to 
use because of the low intensity of sources secured in this way, but 
promises to be a powerful method for separating arc and spark spectra. 
Maxwell has made studies, of the mercury spectrum with electric deflec¬ 
tion, using a tube with a hot cathode, which enables him to obtain 
much brighter spectra.^ He finds that the intensity of the arc lines is 
independent of the electric field, which indicates that recombination of 
electrons and positive ions contributes very little to these lines. 

6. CORPUSCULAR SPECTRA 

The first investigation in which a magnetic spectrograph, in the usual 
sense of the word, was used to bend the paths of charged particles, was 
that of Danycz’-^ who employed this instrument to determine the velocity 
distribution of /3-rays from radioactive substances. Robinson and 
Rawlinson'^ used this method to determine the velocities of secondary 

cathode rays produced by X-rays 
and, Rutherford,^ in collaboration 
with these two authors, employed 
it to inve^stigate the velocities of sec¬ 
ondary /^i-rays produced by 7-rays. 
De Broglie^ and Ellis‘S have brought 
this method to a high state of per¬ 
fection. A typical arrangement 

Fiq. 12.-Corpuscular spectrograph. apparatus is shown in Fig. 12. 

Electrons are ejected from the point C in all directions by X-rays or 
gamma rays; a magnetic field bends the path of each electron into a 
circle and those that pass through the slit finally fall on a photographic 
plate PP. The arrangement of slits is such that all electrons of the same 
velocity are focused on the same point of PP, those of lower velocity 
falling nearer to the slit S. The result is a spectrum which is often 
referred to as a magnetic spectrum. 

The energy of the electrons leaving C is determined by the frequency 
of the rays falling on the target, the photoelectric threshold value, 
the energy necessary to remove the electron from one of the shells of an 

^Phys, Rev., 32, 715 and 721 (1928). 
2 Compt. Rend., 163, 1066 (1911); Le Radium, 9, 1 (1912). 
^Phil Mag., 28, 277 (1914). 
^PhU. Mag., 28,281 (1914). 
«J. de Pkys. et Le Rad., 2, 265 (1921). 
• iVoc. Roy^ Soc., 99, 261 (1921); 101,1 (1922). 
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atom and, finally, the loss of energy of the electron as it passes through 
the substance before it escapes. The photoelectric equation for those 
electrons which lose no energy by this last method is 

Ve =^hv - Voe - hv', (4) 

where v is the frequency of the incident radiation, Ve the energy of the 
ejected electron, Voe the photoelectric threshold value and hv' the energy' 
necessary to remove the electron from an atom. The latter energy may 
or may not be zero, depending upon whether the electron was free or was 
bound in one of the electron shells. The effect of any loss of energy 
of the electron in passing through the metal will be to decrease Ve, 
Using X-rays of known frequency and determining Ve from the strength 
of the magnetic field and the radius of curvature of the electron path, 
it is a simple matter to deduce the various values of hv' from the 
discontinuities of the blackening on the plate. This method has been 

Iniensity-^ SO 3 Z5 lO I 

Fig. 13.—Corpuscular spectrum of RaD. {After Cvrfisn.) 

used to determine the K and L energy levels, soft X-ray energy levels, 
and, when applied to beta rays ejected by gamma rays, the energy levels 
within the nucleus itself. When studying gamma rays the radioactive 
material is deposited on a wire which occupies the position of the 
point C. The electrons, ejected by the gamma rays during the radio¬ 
active disintegration process, come from the electron shells of the dis¬ 
integrating atom itself. It is found that the process of disintegration 
of radium B and also radium D is first the loss of a /8 ray from the nucleus, 
leaving a nucleus of the atomic number 83 which is an isotope of bismuth; 
then a nuclear rearrangement of this newly formed nucleus takes place 
with the emission of a gamma ray, and, finally, this gamma ray in passing 
through the electronic shells of the atom may eject an electron from one 
of these shells. The result will be a corpuscular spectrum of electrons 
having the energy hv of the gamma-ray quantum, or this energy dimin¬ 
ished by that required to remove an electron from one of the X-ray 
levels of the bismuth atom. It is found that the electrons have velocities 
corresponding to these energies rather than those to be expected if the 
electron were ejected from one of the shells of an atom of atomic number 

82, which is an isotope of lead. Studies of this kind have been mad^ 
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on Ra, RaB, RaC, and RaD.' Figure 13 is a reproduction of a cor¬ 
puscular spectrum of RaD taken by Curtiss. 

Jones and Whiddington*-* have applied this method of corpuscular 
spectra to electrons which have made elastic and inelastic collisions with 
molecules. Electrons accelerated by 25 to 150 volts are shot through a 

.Faraday cage containing hydrogen at a pressure of about 10“^ mm. of 
mercury where they collide with hydrogen molecules. Some of the 
electrons will make elastic collisions and will retain their original energy 
while others may make one or two inelastic collisions and thus lose part 
of their energy. The result will be that the electrons emerging from 
the cage will consist of several groups differing in energy by the amounts 
lost in these inelastic collisions. If these electrons are then accelerated 
by a fairly high field and passed into a corpuscular spectrograph a 
spectrum similar to those described above is secured. The photo¬ 
graphic plate shows a fairly sharp line corresponding to electrons which 
have made elastic collisions, and others corresponding to those which 
have made one or two inelastic collisions. They have investigated at 
present only those electrons which after the inelastic collision move on in 
nearly the same direction as the original beam. 

The distances between the spectral lines show that the electrons have 
lost 12.6 volts of energy or approximately double this amount; and, in 
addition, there is some evidence for inelastic collisions in which 8 or 9 
volts and 14 or 15 volts are lost. The 12.6-volt loss of energy is in 
agreement with observations on the resonance potential of hydrogen 
made by other methods. The energy changes in the hydrogen molecule 
corresponding to the 8- or 9-volt and the 14- or 15-volt loss of energy 
are doubtful, though there is reason to believe that the latter loss is due 
to the dissociation of the hydrogen molecule. From the relative inten¬ 
sities of the two lines corresponding to the loss of 12.6 volts in one collision, 
or twice this amount in two collisions, it is possible to calculate the 
probability of excitation by electrons; this has been done for electrons 
which are deflected only slightly from their original paths by collisions. 
The probability that an electron will make one and only one collision in 
traversing the distance d, through the Faraday cage is (d/X) exp (—d/X), 
where X is the mean free path of the electron in the gas. If p is the 
fraction of these collisions which are inelastic, the number of electrons 
which have made one inelastic collision will be 

7i = const, exp ^ (5) 

' Ellis and co-workers, Proc. Roy. Soc., 99, 261 (1921); Ellis, C. D., Z. Physikt 
10, 303 (1922); Ellis, C. D., and H. W. B. Skinner, Proc, Roy. Soc,, 105,186 (1924); 
Ellis, C. D. and W. A. Wooster, 114,276 (1927); Black, Proc. Cambridge Phil, /Soc., 
SO, 832 (1926); Curttss, Phye, Rev.^ 27, 267 (1926). 

> PM. 6,889 (1928X 
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The probability of an inelastic collision while traversing the path from 

a: to X + is ^ ^ probability of one and only one encoun¬ 

ter in the remaining distance, d ~ a;, is exp —and the 
L ^ J L ^ J 

and the 

probability of this being inelastic is p. Multiplying, and integrating 
from zero to d, we have for the number of the electrons which have made 
two and only two inelastic encounters 

Li = const. ( fj' (6) 

and therefore, by equations (5) and (6), 

COC:)- 
Since each of the quantities on the riglit of equation (7) can be calculated 
or measured the probability p can be determined. It was found that 
1 or 2 per cent of the collisions of 150-volt electrons with hydrogen 
molecules are effective in exciting the molecule to the 12.6-volt level. 
The critical potentials determined in this way are no more precise than 
tliose obtained by other methods, but the method can be used for finding 
the probabilities of incdastic collisions and can be applied to the electrons 
which leave the molecule in other directions after collision. 

6. THE PHOTOELECTRIC AND INVERSE PHOTOELECTRIC EFFECTS IN 
GASES AND VAPORS 

The photoelectric effect for gaseous atoms has been placed on a 
secure basis only within the past few years because of the great exper¬ 
imental difficulties. The phenomena involved, however, are very much 
simpler from the standpoint of theoretical interpretation, than those 
occurring when electrons are ejected from metal surfaces by light. 
Williamson^ secured definite evidence of the photoelectric effect in 
potassium vapor. The chief difficulty in such experiments is the fact 
that photoelcctrons from the walls of any apparatus used are greater in 
number than those from the gas or vapor, unless extreme precautions are 
taken. Because of the relatively high vapor pressures of the alkali 
metals and their low energies of ionization, these metals have been used 
almost entirely in experiments of this sort. Williamson, by using a jet 
of potassium vapor which was condensed on a liquid air trap and by 
illuminating this jet by a beam of light, was able to secure evidence of 
true photoionization, and found that ionization first began in the neighbor¬ 
hood of the theoretical wave length of 2,856 A. Samuel^ used almost 
predisely the same method and secured the same result, while Kunz and 

1 Phys. Rev., 21, 107 (1923). 
2 Z. Physik, 29, 209 (1924). 
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Williams’^ determined the photoelectric efTect in cesium vapor as a 
function of the wave length. They took great care in shielding the metal 
electrodes used for determining the conductivity of the gas from the beam 
of light which produced the photoionization, and found the longwave-length 
photoelectric limit of cesium vapor to be very close to 3,180 A. which is the 
theoretical limit. Lawrence,^ using a method similar to that of William¬ 
son, found evidence that no ionization occurred in potassium vapor at 
wave lengths greater than 2,610 A., which is considerably smaller than 
the limit calculated from the known energy of ionization of potassium. 
He suggested that this was due to the photoionization of the molecule 

Fig. 14o.^—The Foote and Mohler tube for detecting the photoelectric effect; h. Recombina¬ 
tion spectrum of cesium. {After Mohler.) 

Kg which may be much more sensitive to photoionization than the atom. 
Recently, Williamson has confirmed this work of Lawrence and has 
found that a weaker ionization of potassium vapor occurs at wave 
lengths below about 3,100 A., which also does not agree with the cal¬ 
culated limit. The effect which begins at about 3,100 A. is probably 
due to ionization of the Kg molecule without dissociation, while that 
which begins at about 2,600 A. is probably due to dissociation of this 
molecule and ionization of one of its atoms. The 2,600 A. and the 
2,856 A. quanta differ in energy by about 0.4 volt, which agrees fairly well 
with an estimate of the energy of dissociation of the Kg molecule made 
by Carelli and Pringsheim,^ namely 0.61 volts. 

A very sensitive and useful method for studying the effect was 
devised by Foote and Mohler.^ The tube used, shown in Fig. 14a, 
is of the type described by Kingdon® and is made of quartz for photo¬ 
electric experiments. The filament is very small and is located on the 
axis of a cylinder which is entirely closed except for a small hole in one 
end through which the filament leads are inserted. The other end is 

^Phys, Rev., 22, 456 (1923). 
2 Phil. Mag., 60, 345 (1925). 
3 Z. Physik, 44, 643 (1927). 
*Phy8. Rev., 26, 185 (1925); 27, 37 (1926). 
<^Phys. ftet;., 21, 408 (1923). 
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closed by a gauze which permits light to enter. The current from the 
filament is limited by the space charge in its neighborhood. If a photo¬ 
electron is produced in the vapor within the cylinder, the positive ion 
formed is drawn toward the filament by the electric field. However, 
if there were no gas present it would not reach the filament, except in 
the rare case that it had no angular momentum about the filament axis; 
w^hen it possesses angular momentum relative to the filament it will 
describe an orbit about the filament and as Kingdon showed it may 
make several hundred trips around the filament before it falls into 
it and is neutralized. Because of this long life in the neighborhood 
of the filament, each positive ion neutralizes the space charge of many 
electrons and greatly decreases the negative space charge. Thus, a 
relatively small number of positive ions causes a great increase in the 
electron current from the filament. The change in current when the 
light falls into the tube is so great that it can be read on an ordinary 
microamrneter. At the same time, photoelectric emissions from the wall 
are of no importance, since the electrons are driven back to the walls 
by the electric field. The tube is sensitive enough to permit the use of 
light from a monochromai-or, so that it is possible to study the photo¬ 
electric effect as a fTinction of wave length. 

* The ionization potential of cesium, which was used in these experi¬ 
ments, is 3.88 volts, corresponding to a wave length of 3,183 A. The 
simplest possible picture of the effect would lead us to expect that 
the current would increase sharply when the incident wave length is just 
inferior to this value. I^xperirnent shows, however, that the increase 
begins at longer wave lengths; that there are distinct maxima on the 

long wave-length side of 3,183 A.; and that the intensity of these maxima 
grows rapidly as the pressure and temperature of the vapor increase. 
Moreover, the wave lengths at which the maxima occur coincide with 
those of the principal series lines of cesium. These facts may be inter¬ 
preted in the following way: Light having the samci wave length as a 
principal series line excites a cesium atom, and before the energy stored 
up can be reemitted as light, the atom makes a collision in which the 
transfer of translational energy is sufficient to ionize the excited atom. 
The probability of ionization by this mechanism should increase with the 
pressure and temperature, as it is observed to do. There are sufficient 
collisions of this class to account for the observed ionization. The 
probability of direct photoionization is a maximum at the wave length 
3,183 A. and decreases rapidly as the wave length becomes shorter. 

The inverse photoelectric effect in gases has been observed by Mohler, '■ 
using a tube of the type employed for stud3dng photoionization. In 
the inverse effect the process which occurs is 

Cs+ + Cs + hv; 
^Phys. Rev., 31, 187 (1928). 
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that is, an electron falls into a cesium ion, causing the emission of a 
light quantum whose energy is equal to the relative translational energy 
of the cesium ion and the electron, plus the energy required to ionize a 
cesium atom from one of its steady states, which may or may not be the 

. normal state. Since the probability of ionization by a light quantum is 
a maximum when its energy just exceeds the ionizing potential so that 
the kinetic energy of the photoelectron is small, it follows from the 
principle of microscopic reversibility that the probability of combination 
is greatest when a slow electron collides with an ion.^ 

Mohler looked for the recombination spectrum of cesium in the 
neighborhood of the small filament of a photoionization tube, the vapor 
pressure being higher than 0.08 mm. of mercury and the current greater 
then 70 milliamperes. Under these conditions there should be a very 
high concentration of ions near the filament. Similar experiments were 
also performed with potassium. By using these metals it was possible to 
secure a very large emission of electrons from the filament at low tem¬ 
peratures due to the layer of alkali atoms on the filament and, because 
the ionizing potentials of these elements are small, comparatively slow 
electrons could be used to produce the ions. A photograph of the 
spectrum emitted near the filament is reproduced in Fig. 146, and shows 
two distinct continuous bands extending toward the violet from the 
limits of the subordinate series and the fundamental series. These* 
bands show that the reactions taking place with the emission of this light 
are, 

Cs+ + Cs(22P^.;j^) + hv 
and 

Cs+ + + hv, 

Mohler and Boeckner^ have shown that the intensity of these spectra 
depends on the ion concentration, rather than the ion current. They 
find that the intensity distribution can be explained on the basis of 
simple recombination. Further they have studied the relative prob¬ 
ability of recombination as a function of electron energy, and find it 
to be independent of other conditions in the discharge. 

Under the conditions of these experiments series lines due to transitions 
from the higher levels are relatively more intense than they are when 
excited by other methods, and some higher series lines were observed 
for the first time. These lines are also more diffuse than they are when 
excited in other ways. These effects as well as an afterglow lasting for 
about seconds were observed by Miss Hayner® in mercury vapor, 
and have recently been found by Kenty^ in argon. Miss Hayner 

^ For further discussion of a case quite similar to this see Chap. XIV, Sec. 1. 
2 Bureau Standards, J, Researchj 2, 489 (1929). 
3 Z, Physik, 85, 365 (1925). 
^ Pkys, Rev.^ 82, 624 (1928). 
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explained her observations as due to the recombination of ions and elec¬ 
trons; the afterglow occurs because a finite time elapses before a positive 
ion can pick up an electron; the prominence of the subordinate and 
fundamental series points to the existence of large probabilities for 
recombinations in which the electron goes into orbits of high total 
quantum number; and broadening results from the perturbing effect 
of the high ion concentration. Mohler^s experiments confirmed these 
views entirely. 

Mohler^ has used this method of detecting the photoionization 
of a gas, to determine ionization potentials. His procedure consists in 
bombarding the gas molecules with electrons of known but variable 
energy; when the accelerating potential is increased to a value at which 
ionization occurs sufficient light will be emitted to ionize the gas in a 
photoionization chamber mounted in one end of the experimental tube. 
Gauzes are placed between the region in which ionization is produced 
and the photoionization cell, to prevent the diffusion of ions and electrons 
to the latter. 

In this way he investigated Cs, Rb, K, A, and Ne, and detected 
ionizing potentials above that corresponding to the removal of the most 
loosely bound electron. The observed potentials for the alkali metals 
and the processes which occur at these potentials are given in Table 
3. (ft) and (c) for potassium and the corresponding values for argon agree 
very well with values expected for two M levels of the X-ray energy 
diagram as determined by comparison with the values for neighboring 
atoms in the periodic system. 

Table 3 

Potentials Process 

Cs Rb 

_
 

a. 3.88 (calculated) 4.16 (calculated) 4.32 (calculated) Removal of the valence 
electron 

ft. 13.0 ± .5 16.0 ± .5 10 ± 1 Ionization of rare gas 
shell, 1 — 1 

c. 18.5 ± 1 21.6 ± .5 23.8 ± 1 Ionization and excita¬ 
tion of the ion 

d. 21.5 ± .5 25.2 ± .1 31.8 ± 1 Double ionization 
e. 39.0 ± 1 48.0 ± 1 Ionization of the rare 

gas shell, 1 — 0 

7. CRITICAL POTENTIALS OF MOLECULES 

The excitation or ionization of a molecule by electron collision is 
similar in some ways to excitation or ionization by light. Franck has 
suggested that the primary effect pf excitation is to change the electrop 

^ Phys. Rev., 28, 46 (1926), 
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configuration without altering the internuclear distance or the kinetic 
energy of vibration; and this applies to excitation either by the absorption 
of light or by electron collision.^ The reasoning employed in Chap. 12, 
Sec. 11 applies equally here, and leads to the conclusion that resonance 
and ionizing potentials will measure the electronic energy changes of 
molecules only if that part of the potential energy which is a function 
of the internuclear distance is very closely the same for both the normal 
and excited states. If the equilibrium distance between the nuclei in the 
normal and excited states and the corresponding nuclear vibration 
frequencies are very different, the molecule will experience a considerable 
increase of vibrational energy when it is raised to a higher electronic 
level. One of the best examples of this case is the hydrogen molecule. 

The extreme ultra-violet band systems of hydrogen have been 
analyzed by Witmer,^ Dieke and Hopfield,'^ Werner,* and Hori*"^; and 
Birge® has deduced the complete energy diagram from these bands and 
others in the visible and near ultra-violet. Knowing the equilibrium 
distances between the nuclei, their vibration frequencies, and the energies 
of dissociation in the different electronic states, it is possible to construct a 
curve representing the potential energy as a function of the internuclear 
distance for each electronic state of the molecule.'^ 

Potential energj^ curves for the KS, 2^2, and C states of the hydrogen 
molecule and the normal state of the hydrogen molecule ion are illustrated 
in Fig. 15. Integral vibration quantum numbers are used for reasons of 
simplicity, since we are interested only in the qualitative validity of the 

' Franck and Jordan, '^Anregung von Quantensprungen durcli Stosse,’* p. 252, 

Springer, Berlin (1926). 

Nat. Acad. Sci., 12, 238 (1926). 

8 Z. Physik, 40, 299 (1926). 

*Proc. Roy. Soc., 113, 107 (1926). 

6 Z. Physik, 44, 834 (1927). 

«Proc. Ned.. Acad. Sci., 14, 12 (1928). 

^ The shape of such a curve in the neighborhood of the equilibrium distance 

between the nuclei is determined by the vibration frequencies of the nuclei, for this 

frequency is where y is the reduced mass. The potential energy for small 

displacements is then V — Yz ' k{r — ro)^. The distance between the minimum of 

the curve and the horizontal line representing the value of V for the dissociated mole¬ 

cule is obviously the energy of di.ssociation for the state in question. The remainder 

of the curve can be sketched in roughly for we know its general shape. Its correctness 

can be tested by applying the quantum condition ^p^ir ~ nh, where pr is equal to 

a/2mj^” 2/xF. The first term in this radical is the energy of vibration in some steady 

state, say the nth, and the second is given by the curve F(r). We may plot the value 

of this radical for different values of r, and may perform a graphical integration to 

determine fprdr; the result must then be equal to nh. Morse (Washington Meeting 

of the American Physical Society, Apr. 20, 1929) has shown that the vibration energy 

levels of a diatomic molecule will be of the form an — hn* 4- a constant if the potential 

energy function has the form 
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Franck-Condon theory. The arrows indicate the only transitions from 
the normal state of the molecule, namely—the lowest vibration level 
of the PS electronic state—to the 2^S and C electronic states for 
which the distance between the nuclei is nearly unchanged during 
transition. Though the energies required to bring the molecule to the 
lowest vibrational levels of the and C states are only 11.1 and 12.23 

Fig. 15.—The iiotential energy curves of normal and excited and of Ha*^. 

volts, respectively, the energy changes indicated by the arrows are 11.6 
and 12.9 volts, respectively. The latter value is as close to the observed 
value of 12.6 volts for the resonance potential as can be expected from 
the approximate theory. Direct excitation of the 2^2 state by electron 
impact does not occur, according to Hori (loc. cit.)^ though according to 
the reasoning used here this level should be excited by 11.6-volt electrons. 

The observed ionization potential of H2 is 16.1 volts, while the value 
calculated from the H2 spectrum is about 15.4 volts. The arrow in the 
figure shows that according to the theory this transition should occur at 
15.9 volts, which is in close agreement with the observed values. There 
is another critical potential of hydrogen at 11.5 volts which seems to be 
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fairly well established. Condon and Smyth^ assign it to the transition 
from the 1^23 state to the state predicted by Heitler and London.^ 
The potential energy curve shown in the figure has no minimum and for 
large distances between the two atoms the potential energy approaches 
that of two normal hydrogen atoms. Transitions to this state result 
in dissociation of the molecule into two normal atoms with a large 
relative kinetic energy. Evidence for the existtmee of this process will 
be presented in Sec. 10. 

There is a marked difference in the vibration frequencies and moments 
of inertia of the I2 molecule in its normal and excited states (('hap. XII, 
Sec. 11), and therefore it should exhibit effects similar to those observed 
for hydrogen. Hogness and Harkness*^ observed such effects in th(‘ir 
studies of the ionization of iodine. They find that the and lo'^ ions 
appear at the same critical potential, 9.3 volts, and that they are primary 
products of the inelastic collision. It is probable that the potential 
energy curve for the normal I2 molecule is similar to that of the Lw 
state of hydrogen and that the 12'^ molecule has one state similar to the 
2^2 state of hydrogen. In this case, the energy of vibration would be 
increased when an electron is removed, and might become so large that the 
molecular ion would split into a neutral atom and an atomic ion. The 
probability of an inelastic collision in which an 12"^ ion with large amounts 
of vibrational energy is produced appears to be about equal to that of a 
collision which results in an atom and an atomic ion. 

8. THE PROBABILITY OF INELASTIC COLLISIONS 

Consider a collision between an atom and an electron, in which the 
initial values of the energy, momentum and angular momentum are 
all specified, and the orientation of the atom with respect to the original 
direction of motion of the electron is given. On the basis of classical 
mechanics, we expect that every such collision will lead to the same final 
state, determined by definite values of these same quantities. The 
statistical interpretation of the new mechanics, however, introduces 
the possibility that several final states can result from the same initial 
state (Chap. XVIII). Thus we may speak of the probability of an 
elastic or an inelastic collision of a 4.9-volt electron with a mercury 
atom in the ESo level. However, this is not the usual sense in which 
the word probability is used in connection with such problems. So 
far as the experimental data are concerned, the question of the appearance 
of pure probability in determining the results of collisions need not be 
considered, for these data deal with collisions for which the initial and 
the final states are only partly known. The object is to fix the initial 

1 Proc. Nat. Acad. Set., 14, 871 (1928). 
* Z. Pkysik, 44, 455 (1927). See also Stjgiura, Y, ibid., 46,^484 (1927). 
^Phys. Rev., 82, 784 (1928), 
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and final states as closely as possible and then determine what fraction 
of the collisions is elastic or inelastic, and to determine how this fraction 
depends on various circumstances. The determination of such prob¬ 
abilities is of interest in studying the details of the collision process 
between electrons and atoms. 

In some ways the probabilities of inelastic collisions may be expected 
to parallel the Einstein probabilities for the absorption of light quanta. 
Thus, if an atom can pass from one state to another by the absorption 
of radiation, its behavior with respect to this transition is similar to that 
of an oscillating dipole; but if it can not pass from the one state to the 
other by the absorption of light, it behaves as a quadrupole. Quite 
similarly it is to be expected that an electron will interact more strongly 
with an atom to produce a transition if the atom has a dipole character 
than if it has quadrupole character, and thus the probability of an 
inelastic collision which excites the atom will be greater for transitions 
pKirmitted by sehiction rules than for those which are forbidden. On 
the other hand, because of its highly inhomogeneous field, the electron 
can interact with a quadruple more strongly than the light quantum, 
and thus transitions forbidden by the selection rules will be relatively 
more probable in electron collisions than in the absorption or emission 
of light. ^ 

In collisions of atoms and electrons, the angular momentum must 
be conserved, as Blackett-^ has emphasized, and this brings with it the 
requirement that the probability of excitation must be zero when the 
relative kinetic energy is equal to the energy of excitation. Consider 
for example, transitions from a normal 1 kSi„ state, such as that of helium 
or mercury, which has zero angular momentum, to the 2kSo state by 
means of an inelastic collision. If the collision is to take place in such 
a way that the kinetic energy of atom and electron relative to their 
center of mass is equal to zero after the impact, then their angular 
momentum after the impact will also vanish. In order to secure this 
condition the electron and atom must collide head on, so that the angular 
momentum before collision will be zero. Only an infinitesimal fraction 
of the collisions will occur in this way and therefore the probability of 
such a transition is zero when the kinetic energy is just equal to the 
energy of excitation. Similar considerations hold for the transition 
to the 2^Pi state, for here the relative angular momentum before collision 
must be exactly h/2r. In the case of a transition to a triplet state the 
problem is more complicated, for the spin vectors of the electrons within 
the atom must change their relative orientations. This case can not 
be considered simply or precisely by classical mechanics. It appears, 
however, that the probability of excitation by electrons which have 

1 Franck and Jordan, ^‘Anregung von Quantenspriingen durch Stdsse, ’ p, 170. 
* Froc. Camb. Phil. Soc., 66 (1923). 
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exactly the necessary energy to induce a transition will be zero in all 
cases. 

It has long been known that in experiments on critical potentials 
of the type described in this chapter most of the effective collisions 
take place at potentials fairly close to the critical values; in other words, 
the probability of such inelastic collisions is relatively high for potentials 
slightly above the critical values and decreases fairly rapidly with 
increasing potential. This is shown by the shape of such curves as those 
secured by Davis and Goucher (Fig. 5). Above 4.9 volts the curve is 
concave toward the potential axis indicating that the probability of 
excitation is smaller for electrons of higher energy. The same is observed 
immediately above the 6.7 volt break in the curve. On the other hand, 

curves showing the ionizing 
potential are convex to the 
voltage axis in the region just 
above the critical value; this 
indicates that the probability of 
ionizing collisions increases, at 
least until the energy is con¬ 
siderably in excess of the critical 
value. This is also illustrated 
by the curve of Fig. 5. 

Dymond^ has determined the 
probability for the excitation of 
helium to the state by 

electron impact, as a function of the potential of the exciting electron. 
This was done by a method similar to that used by Hertz (Sec. 2) 
for the measurement of excitation potentials. The method consists of 
shooting electrons of known velocity through a gauze into a Faraday 
cage (Fig. 6). The electrons make a number of collisions with the 
helium gas in the field-free space before they diffuse through a gauze 
at one side. The number of collisions which they make before leaving 
the cage in this way can be roughly calculated from a knowledge of its 
dimensions and the mean free path of the electron in helium gas. The 
electrons which leave through the gauze consist of two groups: those 
which have made only elastic collisions with the helium atoms and 
therefore have the original velocity with which they entered the cage, 
and those which have lost all but a small fraction of their energy due to 
one inelastic collision. By determining the relative numbers of electrons 
which leave the cage with velocities corresponding to 0.1, 0.2, . . . 
volts, and also the distribution of velocities of electrons which have 
made only elastic collisions with the helium atoms, it is possible to 
calculate what fraction of the electron collisions of any particular velocity 

Soc. lot, 291 (1924)* 

Fi<3. 1G, —The excitation function for the 
1*S~^23S transition of He. (After Dymond,) 
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are inelastic. The results secured by Dyrnond in this way are illustrated 
in Fig. 16. The probability seems to be zero at the critical potential; 
it rises very rapidly, reaches a maximum two or three tenths of a volt 
above the critical value and then decreases rapidly. Moreover, .only 
about of the collisions are inelastic at the maximum. This low 
probability is to be expected, for the transition does not occur with the 
absorption of light. The curve could only be observed to 0.5 volts 
above the critical potential, because the next critical potential lies 
only 0.8 volts above the first one. Recently Glockler^ has reinvestigated 
this same transition and observes the same general variation of prob¬ 
ability of inelastic impact with potential, but finds a maximum proba¬ 
bility of 0.002 at 0.18 volt above the critical potential. 

The probability of inelastic impact between 150-volt electrons and 
hydrogen molecules, as determined by Jones and Whiddington (Sec. 6), 
is considerably larger than that determined by Dyrnond in the case of 
helium. The transition of the hydrogen molecule investigated by the 
former authors may be caused by light absorption. Accordingly we 
expect that the probability for this transition to occur in collisions with 
electrons should be greater than the probability for the transition studied 
by Dyrnond. 

The probability of ionizing collisions has been determined by a 
number of investigators, for electrons of energy considerably larger 
than the ionizing potential of the gases investigated.^ The experiments 
are in substantial agreement, considering the many experimental difficul¬ 
ties. With increasing electron energy the probability of ionization rises to 
a maximum value, after which it decreases. The maximum ionization 
probability varies between 15 and 60 per cent, depending upon the 
gas. When 100-volt electrons collide with molecules of the commoner 
permanent gases, several different ionization processes are possible, such 
as the removal of different electrons, double ionization, or ionization 
together with excitation of the ion. Because of this the significance 
of the data is not easily seen. 

9. IMPACT POLARIZATION 

When radiation is excited by collisions of a unidirectional beam of 
electrons with gaseous atoms, it may be expected, quite independently 
of any detailed theory of the excitation process, that the radiation emitted 
will be polarized either parallel or perpendicular to the electron beam, 

1 Phys. Rev., 33, 175 (1929). 
2 Hughes and Klein, Phj/s. Rev. 23, 460 (1924); Mayeh, Ann. Phys.y 46, 1 

(1914); Jesse, Phys. Rev.y 26, 208 (1925); Compton and van Voorhuis, Phys. Rev., 
26, 436 (1926); 27, 1724 (1926); Anslow, Phys. Rev., 26, 484 (1926); Langmuir and 
Jones, Science, 59. 380 (1924); Phys. Rev., 31, 357 (1928). 
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since the excitation is non-isotropic in character. That such polarization 
should exist was suggested by Kossel and Gerthsen/ who investigated 
the polarization of the sodium D-lines excited in this way with negative 
results, and independently by Ellett, Foote, and Mohler/ who confirmed 
the negative results of the former authors and secured positive results 
with the 2,537 A. resonance line of mercury. On the basis of a simple 
theory, they expected to find the light partially polarized, with the 
maximum electric vector parallel to the electron beam, for the electron 
should be able to increase the angular momentum of the mercury atom 
in a direction perpendicular to the direction of its motion, and, on 
the average, such atoms should emit more light polarized parallel to the 
electron beam than perpendicular to it. They found, however, that the 
2,537 A. line was perpendicularly polarized. Skinner,Appleyard,^ and 
Quarder^ have investigated many other lines of the mercury spectrum 
and have found marked regularities in their results. 

The experimental method of all these authors consists in exciting 
the atoms by a stream of electrons from a heated filament, accelerated 
through gauzes into a field-free space. The light is usually observed 
in a line perpendicular to the direction of the electron stream and the 
polarization parallel or perpendicular to the stream is determined in the 
usual way. Skinner used a Helmholtz coil to neutralize the earth^s 
field and constructed the filament in such a way as to avoid a magnetic 
field due to the heating current. Other Helmholtz coils were used to 
produce magnetic fields parallel and perpendicular to the direction of the 
electron stream. The percentage of polarization is defined as the 
intensity of the component polarized parallel to the electron stream minus 
that polarized perpendicular to this direction, divided by their sum, and 
multiplied by 100: 

II = 100 {‘-7-4^- (8) 
i 1 -r i2 

This is positive if the net polarization is parallel to the stream, and 
negative if perpendicular to this direction. For all lines investigated, 
the percentage of polarization is found to approach zero as the energy 
of the exciting electrons approaches the energy of excitation; as the 
energy of the electrons increases, it passes through a maximum or mini¬ 
mum and then, in the cases of most lines, becomes zero again or even 
changes sign. The general character of these variations in the polariza¬ 
tion can be seen from Fig. 17, in which we reproduce four of the curves 
of Skinner and Appleyard, each illustrating one type of variation of 

1 Ann. Physih, 77, 273 (1925). 
2 Phys. Rev., 27, 31 (1926). 
«Proc. Roy. Soc., 112, 642 (1926). 
* Proc. Roy. Soc., 117, 224 (1927). 
^Z.Physik., 41, 674 (1927). 
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polarization with the energy of the impacting electron. These four 
types may be described as follows: 

(a) The polarization of the light excited by electrons of low energy 
is positive, i.e.^ parallel to the beam; (b) the polarization is negative, i.e., 
perpendicular to the beam; (c) the polarization is positive when excited 
by electrons of low energy and does not change sign as the energy of the 
excited electrons increases, and (d) the line is not polarized at all. 

A magnetic field parallel to the direction of the electron stream does 
not change the polarization, but a magnetic field of a few gauss per¬ 
pendicular to this direction produces two effects: first, the light is depo¬ 
larized, the effect being a maximum for the light viewed in the direction 
of the field, and second, there is a rotation of the plane of polarization 
about the axis of the field. The theory of these effects is practically 
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Fig. 17.—The polarization of impact radiation as a function of the electron energy. (After 
Skinner and Applejjard.) 

the same as that for the similar phenomena observed in the case of 
resonance radiation excited in a magnetic field (Chap. XI, Sec. 4). 
The influence of a magnetic field in changing the orientation of the 
excited atoms before they emit the light should be independent of the 
way in which they are excited, for its only effect is to cause the atoms 
to process about the direction of the force-lines during the time between 
excitation and emission. The apparent rotation of the plane of polari¬ 

zation is given by the equation. 

tan24> = 
AwgL 
-j-’ (9) 

and the depolarization by the formula, 

% 
(10) 

where ^ is the angle through which the plane of polarization is rotated. 
A is the probability for spontaneous emission by the excited atom, L the 
frequency of the Larmor precession, g the Land6 factor, and n and Ho 
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the percentages of polarization in the presence and absence of the field, 
respectively. The experimental facts confirm these formulas and permit 
a calculation of ^1, or its reciprocal r, which is the mean life of the excited 
atom. The mean lives of mercury atoms in the and states 
are found to be 2.85 and 2.88-10"® seconds, from the observed rotation 
of the plane of polarization and the observed depolarization, respectively; 
these values are of the order of magnitude found for other atomic states 
and by other methods. The magnetic field parallel to the electron beam 
does not change the polarization because it can only cause a precession 
of the atoms about this line and thus cannot destroy the symmetry 
of the excitation process. 

A theory of this polarization which explains most of the experimental 
results qualitatively was proposed by Skinner. Opptuiheimer^ has 
developed the theory of the process using quantum mechanics, accounting 
for many features of the effect not explained by the older theory. Lack 
of space prevents detailed discussion but the following physical features 
of Skinner^s theory may be pointed out. The velocity vector of the 
electron and the nucleus of the atom df^termine a planer, and the initial 
relative angular momentum of the two is perpendicular to this plane; 
likewise, after the collision the velocity vector of tlu^ electron and the 
nucleus of the atom determine a plane and the final relative angular 
momentum is perpendicular to this plane. If the collision is elastic, 

Table 4 

Line X To k max 
n, 

obsorved, 

Quarder 

lb 
observed 

at k max9 

Skimier 

and 

Applevard 
1 

lb 
calculated, 

Skinner 

2'Pi - 4*7)2. 4,347 9.5 15 45 35 60 
2»/*2 - 3*7)2. 3,663 8.8 14 -45 -41 -100 
2^Pi - 41D2. 2,655 9.5 15 50 27 60 
2^Pi ~2KSo. 4,078 7.9 10 0 0 
2iPi - . 4,108 9.5 10 0 0 
2^7*2 - 3>7),. 3,650 8.8 11 15 18 50 
2^P2 - 3»i)2. 3,655 8.8 14 -35 -100 
2»p, - 3»D2. 3,126 8.8 14 20 28 1 60 
2*Pi - 48D1. 2,654 9.5 (-17) -100 
2^Po - 33/>i. 2,967 8.8 14 33 25 100 
2^P2 ~ 2hS,. 5,461 7.7 7 • 0 14 
2H\ ~ 2^Si. 4,358 1 11 1 15 -12 -100 
23Po - 238i. 4,047 7.7 11 33 8 100 
I'So - 2»P,. 2,537 

i 
4.9 6.7 -30 

L-f” 
100 

^Z.Fkynk, 48, 27 (1927). 
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these two planes coincide and there is no change in the relative angular 
momentum, but if the collision is inelastic, in general they do not coincide 
and are not parallel, and there is such a change. In case the electron 
has just sufficient energy to excite the atom to a certain level, it will 
have zero velocity after the inelastic collision and the relative angular 
momentum after the collision will be zero. In this case, the angular 
momentum transferred to the atom is perpendicular to the velocity 
vector of the electron before collision, and, therefore, can change the 
component of angular momentum of the atom perpendicular to the 
direction of the electron stream, but not the component parallel to it. 

If a small magnetic field is present parallel to th(> electron stream 
the normal and excited atoms will be space quantized in this field. 
The mercury atom in its normal state has j ec^ual to zero. Therefore, the 
magnetic quantum number m is zero, and 
since the electron cannot increase the com¬ 
ponent of angular momentum in the direction 
of the field, all the excitc'd states must also 
have m equal to zero. In the emission of 
light the magnetic quantum number may 
change by zero, in which case the light is 
polarized parallel to the magnetic field and the 
electron stream, or by ±1, in which case the 
light will be circularly polarized about the 
direction of the magnetic field and electron 
stream and will appear perpendicularly polar¬ 
ized when viewed in a direction perpendicular 
to the magnetic field. Knowing the relative 
probabilities of these transitions, it is possible 
to calculate the percentage of polari¬ 
zation to be expected. Similar arguments can be carried through in 
the case of other lines. Figure 18 illustrates the transitions involved 
in excitation and emission from the VD2 state. Only the state with 
m equal to zero is excited, but three emission transitions are possible; 
the relative intensities due to these three are given at the top of the 
diagram and it is easily seen that the percentage of polarization is 

n = lOOg ~ ^ = 60 per cent. 

' / 

“ 0 

Fig. is.—Excitation of the 
3‘D2 state of mercury by elec¬ 
tron impact. 

Table 4 gives the results of measurements for a number of mercury 
lines and the theoretical polarizations calculated as above. For most 
of the lines the theory predicts polarization of the correct sign, but the 
observed polarization is always less than that predicted. In the case 
of other lines, for all of which the initial state has an inner quantum 
number equal to 1, the observed polarization is much less than predicted. 
The observed and predicted polarizations are of opposite sign in the 
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case of the intercombination resonance line, 2,537 A. These differences, 
as well as the maximum in the curve of polarization against energy of the 
bombarding electrons, cannot be accounted for by the simple theory, 
but are in agreement with the predictions of quantum mechanics. 

Before leaving the subject of impact polarization, we shall call 
attention to a related effect which has not been observed up to the 
time of writing. Dorfrriann^ suggested that when atoms absorb light 
from a circularly polarized beam they become oriented in such a way that 
the medium as a whole should possess a magnetic moment. Pie has 
called this phenomenon the ^^photomagnetic effect.’^ About the same 
time Rashevsky^ calculated the magnitude of such an effect on the 
basis of classical electron theory. He attribut(^d the idea to P^itzgerald, 
whose work incited Righi to attempt the detection of the magnetic 
moment produced in NO2. The experiment did not succeed in spite of 
the fact that Righi’s magnetometer could detect a field of 1()~^ gauss. 
It appears that the moment produced should be proportional to the 
intensity of the light and that it should be a maximum at an absorption 
wave length. For cesium vapor under favorable conditions, the pre¬ 
dicted ratio of the moment to the intensity is 10using C'GS units. 
Of course it would be much larger for a liquid or a solid, and it schutis 
not improbable that the effect could be detected in a favorably chosen 
case. Ruark and Urey*'^ have discussed the possibility that the light- 
quantum may have an intrinsic impulse moment. The existence of 
such a moment appears to be easily amenable to test, but so far the 
necessary experiments have not been performed. In case it does exist, 
the theory of the photornagnetic effect would have to be modified. 

10. CHEMICAL ACTIVATION BY ELECTRON IMPACT 

That hydrogen molecules are dissociated by electron impact has 
been proved by the experiments of Hughes and Skellett'^ and of Glockler, 
Baxter, and Dalton.^ The former authors studied the pressure change 
in a tube containing hydrogen, so arranged that the gas was bombarded 
with electrons and the hydrogen atoms produced were condensed on a 
glass wall cooled with liquid air. The pressure ffrst decreases when 
the electrons have an energy of 11.5 volts and the rate of decrease is 
proportional to the pressure of the hydrogen. The latter authors found 
that hydrogen bombarded in this way reacts with copper oxide, resulting 
in the formation of water, and that this first occurs with 11.4-volt 
electrons. This value agrees with the first critical potential in hydrogen 
and might be explained either as due to the formation of an excited 

1 Z. PhysiJc, 17, 98 (1923). 
2 Z. Physik, 20, 191 (1923). 
«Proc, NaL Acad, Set, 13, 763 (1927). 
^Pkya. Rev,, 80, 11 (1927). 
•J, A. C, 49, 68 (1927), 
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hydrogen molecule which then dissociates into atoms Spontaneously, 
or to the formation of atoms as a direct result of electron impact. As 
mentioned in Sec. 7, it appears probable that the latter process is the correct 
one. Glockler, Baxter, and Dalton also found that the amount of atomic 
hydrogen produced increases with voltage up to the molecular ionizing 
potential. There is evidence that a second process may become impor¬ 
tant at these higher potentials. Independently, Blackett and PTanck^ 
suggested that the continuous hydrogen spectrum, which extends from 
the visible to the far ultra-violet, is due to the emission of light by excited 
molecules when they dissociate either into normal or excited atoms. 
The continuous character of the spectrum is due to the fact that part 
of the energy of the excited molecule appears as kinetic energy of the 
dissociated atoms and the remainder is emittc'd as light, and since the 
translational energy takes continuous values, the frequency of the light 
quanta must also vary continuously. That hydrogcm atoms with high 
velocities are produced is shown to be the case by studying the breadth 
of the Ha line, which can only be accounted for by assuming it is due 
to the Doppler effect of atoms moving with 0.3 to 0.0 volt relative energy. 
Winans and Stueckelberg^ show that the distribution of the intensit}" 
of this continuous spectrum can be explained by the Franck-Condon 
theory (Sec. 7) applied to the transition from the higher 2’^2:} state to the 
lower 2’^^ state (Fig. 15). Fxcitation to the 2’^]S state will occur at 12 or 
13 volts. Therefore, at these higher potentials it appears probable that the 
primary process of the electron collisions may be to produce an excited 
molecule, which may either dissociate into atoms or emit its energy 
as light. 

Bonhoeffer^ and Taylor and Marshall^ have found that atomic 
hydrogen, produced by collisions of the second kind with excited Hg, 
does not react with nitrogen to form ammonia. Anderson^ and Storch 
and Olson^’ have found that ammonia is not produced below 17 volts 
when a mixture of hydrogem and nitrogen is bombarded with electrons. 
At 17 volts ions arc first produced. Kwei^ found that the character¬ 
istic ammonia bands do not appear below 23 volts where N+ and N first 
appear, but as these bands are now knoWn to be due to NHi this does 
not mean that NHr^ may not be produced below this potential. Lewis'^ 
has shown that ammonia is not produced in a mixture of active nitrogen 

iZ. 34, 389 (1925). 

- Proc. Nat. Acxid. Set., 14, 807 (1928). 

3 Z. Electrochemic, 31, 521 (1925). 

^J. Phys. Chem., 23, 1140 (1925). 

Z. Physik, 10, 04 (1923). 

«J. A. C. .S^, 46, 1005 (1923). 

7 Phys. Rev., 26, 537 (1925). 
** and Nahamoua, Nature, 119, 235 (1927). 

* Bernard Lewis J. A. C. S., 60, 27 (1928). 
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and molecular hydrogen, nor in a mixture of ordinary molecular nitrogen 
and atomic hydrogen made by Wood’s^ method; but it is produced 
when active nitrogen and atomic hydrogen are mixed. It appears that 
atomic hydrogen and the 17-volt molecular nitrogen ion can react to 
give ammonia as the final product, and also it reacts with the excited 
nitrogen molecule or the nitrogen atom present in active nitrogen. 

11. ELASTIC COLLISIONS AND THE RAMSAUER EFFECT 

The number of collisions which a beam of fast electrons makes with 
atoms arranged at random in its path is proportional to the number of 
electrons in the Vjeam and to a quantity which we may call the fraction 
of the beam area covered by the atoms in its path. If each collision 
removes an electron from the beam, the number lost per unit area in 
traversing a distance dx is 

dl = -INttHx] (11) 

in t];iis equation I is the number of electrons passing through unit area 
perpendicular to the beam each second, N is the number of atoms per 
cubic centimeter, and r the “effective radius, so that NttHx is the 
fraction of the cross-sectional area covered by the atoms in the range dx. 
Since all the quantities in this eciuation can be measured, with the excep¬ 
tion of r, it is possible to determine the value of r or of irr'^ by experiments 
on the scattering of electrons by atoms. By equation (11), 

I = /ooxp ( —xA^Trr^). (12) 

Lenard^ first used these equations in studies of the scattering of cathode 
rays by atoms, and showed that r steadily decreases as the velocity of 
the electrons increases. For very high speed electrons, the value of r 
was found to be much less than the value deduced from the kinetic 
theory of gases, while for slow electrons, it was of the same order of 
magnitude as the gas-kinetic value. The experimental method used by 
Lenard has been improved by Mayer. ^ His apparatus consists of a 
suitable arrangement for accelerating electrons from a hot cathode into 
a field-free space. 

In this space the electrons may make collisions with gas molecules. 
Those which do not collide pass through two gauzes, between which 
there is a retarding potential equal to the potential through which 
the electrons fell before entering the field-free space. Those electrons 
which have not been deflected by gas molecules will be able to move 
against this retarding field and register on an electrometer electrode. 
The two gauzes and the detecting electrode can be moved as a unit, 
nearer to or farther from the point at which the electrons enter the 
field-free space, and thus the variable x of equation (12) can be varied 

1 Phil Mag., 42, 729 (1921). 
2 Ann. Physik, 2, 369 (1900); 8, 149 (1902); 12, 449, 714 (1903). 
* Ann. Physik, 64, 461 (1921). 
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at will. By determining the current to the electrode for different values 
of Xy it is possible to calculate the value of r or of ttt^ for the gas. This 
method is particularly useful in studying corrosive gases. Nettleton^ 
also studied the ionization in a number of gases, using voltages between 
100 and 1,400. He concluded that in this range the effective radius for 
the ionization processes varies inversely as the velocity in accordance with 
a formula due to Rutherford. 

Ramsauer^ has introduced an especially effective method for deter¬ 
mining the decreasing intensity of a beam of electrons, and independently 
the number of electrons scattered from the beam while passing through a 

Fig. 10.- -Ramsauor’s apparatus. 

short section of its path. The essential features of his apparatus can be 
seen from Fig. 19. Photoelectrons are ejected from the plate Z and 
accelerated by an electric field to the slit B\. A magnetic field per¬ 
pendicular to the plane of the paper bends the beam of electrons into a 
circle passing through the slits to B*. Only those electrons whose 
velocities are connected with the radius of this circle and the magnetic 
field strength by the relation v = {e/m)nr will be able to pass through 
this slit system, and then only if the electrons are not deflected from their 
path by collisions; the magnetic field strength and the potential V between 
the plate Z and the slit Bi must be varied together in order to study 
electron beams of different velocities. Ai and A 2 are Faraday cages 
connected to the electrometers Ei and E^. The whole apparatus is 
filled with gas and by varying the pressure the number of molecules per 

‘ Proc, Nat. Acad. Sd., 10, 140 (1924). 
2 Ann. Physik, 64, 613 (1921); 66, 546 (1921); 72, 345 (1923); Jahrb. d. RadioaU. 

u. Ehktrmik, 19. 345 (192-.i) 
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cm.* is adjusted to any desired value. The slits Bi to serve to define 
a narrow beam of electrons. The electrons scattered in the path from 
B% to B-j are measured by the electrometer Ei and those passing beyond 
this region by E2. In this way /o of equation (12) is given by the sum 
of the currents measured by E\ and ^2, and /, the intensity after travers¬ 
ing the path B^ to ^7, by the current measured by E2. Only those 
electrons which have not been deflected and have not had their velocities 
appreciably changed by collisions with gas molecules will be able to 
reach tlie Faraday cage ^2. 

The effective cross-sectional areas of molecules secured by Ramsauer, 
using this method for electrons of high velocity, agree very well with 

Fig. 20.—Variation of effective cross-sectional area of the inert gases with electron vejlocity. 
(After Hamsauer and Brilche.) 

those secured by Lenard, but with electrons of lower velocity the effective 
area is found to pass through one or more maxima and for still lower 
velocities it approaches a very small value, even less than that of the 
gas-kinetic area; in fact, it appears to approach zero. Mayer, using the 
modified method of Lenard, has secured similar results. The exper¬ 
imental data on this subject have been very much^ extended by Brode^ 
and Bruche.2 

There is considerable variation in the shape of the curves giving 
the effective cross-sectional area as a function of velocity and an3^ general 
classification at present is impossible. The inert gases were investigated 
by Ramsauer. For electrons of very low velocity, the effective cross- 
sectional area of these atoms is small and appears to approach zero with 
the electron velocity; with electrons of higher velocity this area becomes a 
maximum which is several times the value calculated from kinetic 
theory and for still higher velocities decreases slowly without limit. 
Figure 20 shows the curves for these gases as determined by Ramsauer 

1 Phyti. Rev., 23, 664 (1924); 26, 636 (1925); Proc. Roy. Soc., 109, 397 (1925). 
^ Ann. Physik, 81* 537 (1926); 82, 912 (1927); 83, 1065 (1927); Phyaik. 29, 

U928). 
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and also that for methane, where effective cross-sectional area in cm.^ per 
cubic centimeter of the gas at 0®C. and 1 mm. of mercury pressure is plotted 
against the square root of the voltage, which is proportional to the 
electron velocity. The curve for helium is similar to that of neon but 
reaches a maximum at 20 cm.Vcm.*^ and at Vvolts == 1.6. The curves 
for other gases (COo, NoO, N2, C'O) have two maxima, one of which is 
very sharp, and those for yet other gases ((>2, NO) are quite irregular. 
Brode has shown that the effective cross-sectional areas of Zn, Cd, and 
Hg increase indefinitely as the velocity of the electrons decreases, but 
that these areas for the alkali metal vapors have one maximum in the 
neighborhood of 2 or 3 volts, and a minimum at less than 1 volt. He 

Fio. 21.—The cfFoctive cross-scctional areas of the inert and pseudo-inert gases. {After 
Bruche.) 

has further shown that the shapes of his curves agree with those expected 
for hydrogen atoms calculated by means of the new wave mechanics. ^ 
Briiche has investigated the effective cross-sectional areas of a number of 
hydrides having inert gas configurations and has found regular modifica¬ 
tions of the curves due to the presence of the hydrogen nuclei in the 
electron shells. These regularities are easily seen from the curves of Fig. 
21. It is interesting to note that the curve for methane is of the same 
general shape as those for inert gases, and that it agrees almost quanti¬ 
tatively with that of krypton. The evidence indicates that an electron 
of very low velocity in some cases may penetrate the electron shells of 
atoms and molecules and pass through without exchange of either energy 
or momentum, i.e., the electron is undeflected. Electrons of somewhat 
higher velocities find the collisional areas of these same molecules to be 
higher than those expected from gas kinetic considerations; they are 
deflected even if they pass within a distance from the atom or molecule 
equal to several times its gas-kinetic radius. For electrons of still higher 

^Washington Meeting of the American Physical Society (1929). 
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velocity the effective collLsional area decreases without limit as the 
electronic velocity increases. 

Dempster^ has investigated the free paths of protons, hydrogen 
molecule ions, and helium ions in helium gas by means of his apparatus 
for separating isotopes, which is described in Chap. II, Sec. 10 and is 
somewhat similar to the Rarnsauer apparatus. He has found that 
protons which have fallen through a field of 14 to 900 volts have a mean 
free path seventeen times as great as may be expected from the gas- 
kinetic free path. The 900-volt hydrogen molecule ion has a mean free 
path in helium about nine times the gas-kinetic value, but the mean free 
path of the helium ion is very nearly the same as that calculated from 
kinetic theory. This is equivalent to saying that the effective radius of 
the helium atom is about equal to the kinetic theory value multiplied 
by the factors 3, 3, and 1, for collisions of protons, hydrogen molecule 
ions, and helium ions, respectively. The velocities of the protons used 
in these experiments vary from 5.3 • 10® to 44 • 10® cm. per second and are 
of the same order of magnitude as those acquired by electrons which 
have fallen through 0.01 to 0.5 volts. Thus, helium atoms are easily 
penetrated by electrons, protons, and hydrogen molecule ions of low 
velocity. Aich^ has found by a different method that hydrogen molecules 
bombarded by 25-volt protons have an effective cross-section very nearly 
equal to the kinetic theory value. 

Rarnsauer and Beeck^ have investigated the effective cross-sectional 
areas of a number of gases, including He, Ne, A, H2, O2, and N2 relative 
to the alkali metal ions, as a function of the velocity of the ions. The 
ions were accelerated by fields from 1 to 30 volts. It was found that the 
effective cross-sections for all combinations of ions and gases increased 
as the potential was decreased from 30 volts, slowly at first and then Very 
rapidly between 2 and 1 volts. As yet, there is no evidence that these 
cross-sectional areas become zero at low velocities. 

At the present writing, little can be said with certainty with regard 
to the theory of the Rarnsauer effect. Classical theories were developed 
by Hund^ and Zwicky.^ The latter author lays special emphasis on the 
polarization of an atom by an electron passing near it, and draws many 
interesting results from detailed consideration of its nature. The wave 
mechanics furnishes a perfectly definite mathematical apparatus for 
solving the problem, but the computations are difficult. The methods 
used are explained by Wentzel® in a general article on aperiodic phenom¬ 
ena in the new mechanics. 

iProc. Nat Acad, Sci,, 11, 552 (1925); 12, 96 (1926) 
2 Z, Physik, 9, 372 (1922). 
« Ann. Physik, 87, 1 (1928). ' 
^ Z, Physik, 13, 241 (1923). 
^Physik, Z., 24, 171 (1923). 
^Physik. Z,, 29, 321 (1928). 



(^HAPTIOK XIV 

COLLISIONS OF THE SECOND KIND^ 

1. THE RELATION BETWEEN COLLISIONS OF THE FIRST AND SECOND 
KINDS 

The laws of mechanics show that there are certain very general 
classes of interaction processes of individual atoms and molecules, such 
that the reverse procc'sses also n^present possible motions of the system. 
What we mean by the revc'rse of a given Tiiotion may be clearly understood 
from a simple illustration. If we take a moving picture of the motion, 
and then run the film backward through the projector, we shall see 
the reverse motion on the screen. In the kinetic theory of gases and in 
statistical mechanics, it is often very useful to focus attention on a 
certain type of motion and its reverse. Thus, we may consider a type 
of collision in whicli two atoms with vector velocities Vi and Vo emerge 
from the encounter with velocities v.*? and V4, together with the type in 
which atoms with velocities and — V4 emerge with velocities —Vi 
and — V2. Similar examples can )>e giv(m for other variables, such as 
energy, and angular momentum. The principle that to every micro¬ 
scopic process there is a corresponding possibles reverse) process is known 
as the principle of microscopic reversibility.^^ Stated in this simple 
form, it cannot be correct. Bridgman- has suggeste^d an alternative 
formulation, while Tolman'^ has discussed the conditions under which the 
principle may be valid in the form given above. Exceptions arise if the 
Lagrangian function for the motion (('hap. lY, Sec. 3) or the external 
forces contain odd powers of the velocity. The case where a uniform 
magnetic field is presemt furnishes a good illustration.^ On reversing 
the velocity of a particle, the direction of the Larmor precession is not 
reversed, and the original path will not be retraced. 

In statistical problems where the principle of microscopic reversi¬ 
bility can be legitimately applied, we can use it to find the equilibrium 
state, for at equilibrium the numbers of direct processes and of reverse 
processes taking place in unit time are equal. Klein and Rosseland^ 

1 This chapter was prepared with the collaboration of Dr. Richard Vollrath, to 
whom we are much indebted for his aid. 

2 Phys, Rev., 31, 101 (1928). 
8 “Statistical Mechanics with Applications to Physics and Chemistry,’' D. Van 

Nostrand Company, Inc., New York (1927). 
^ Einstein and Ehrenfest, Z, Physik, 19, 301 (1923). 
^ Z, Physik, m (1921). 
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used this argument to show that if a collision between a fast electron 
and an atom or molecule may result in a slow electron and an excited 
atom, then we must expect that a fast electron and a normal atom may 
be produced when a slow electron collides with an excited atom or mole¬ 
cule. These two types of inelastic collisions are called ^‘collisions 
of the first and second kinds,” respectively. 

Consider a gas at some high temperature, so that not only the normal 
unexcited atoms but also ions, free electrons, and excited atoms are 
present. The numbers of atoms in two quantum states, which may 
be designated by the subscripts 1 and 2, respectively, are: 

Ui = and ^2 = (1) 

'i,iiunii^iudE'=dE" 
A A 

; e'-e-CEz-Ej) 

Fig. 1.-“Illustrating Kloin and Rosseland’s argument. 

Pi and p2 are the a priori probabilities, and Ei and E2 the energies of 
the two states, and c is a constant proportional to the total number 
of atoms present. iBy the Maxwell-Boltzmann distribution law, the 
number of electrons, dN, with energy between E and E + dE is given 

by 

where N is the total number of electrons under consideration. Writing 
2 

A in place of —{zrfnKii we define a probability, SuiE"), such that 
irHkTY'^ 

Si2(E")niA exp (-0 (2a) 

is the number of atoms going from state 1 to state 2 per second, due to 
collisons with electrons having energy between E" and JB7'' + dS”; the 
energy of each electron is reduced to a value in the range, 

E' to J?' + dJ5', 
where 

ET// jpr _ -rp rp 
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as shown in Fig. 1. Further, we define a probability SniE'), such that 

S2i{E')n2 A exp (~^'^{EyHE' (26) 

is the number of atoms going from state 2 to state 1 per second, due 
to collisions with electrons having energy between JS" and E' + dE'y 
the electrons being left with energies in the range E" to E^' + dE". 
According to the experiments on resonance potentials (Chap. XIII, 
Sec. 8), the probability, Svi{E'')^ is zero unless E" is at least equal to 
E2 — Eij but reaches fairly large values when E" is only slightly greater 
than this. In the equilibrium state, the number of collisions of the first 
kind given by equation (2a) must be equal to the number of collisions 
of the second kind given by equation (26), so that 

n^SuiE") exp = n^S.^E') exp 

or using equation (1), 

p,Su{E") • (E'T^ = P2S2,(E') • (3) 

This holds for all values of E' and J?" such that their difference is equal 
to E2 — El and such that E" is not less than E2 — Ei or, what is the 
same thing, E' is not less than zero. Since SuiE") is fairly large when E" 
is only slightly greater than E2 ~ Ei it follows from equation (3) that 
a collision of the second kind between an atom in state 2 and a slow 
electron (E' small) must be very probable, for 

SniE') = (4) 

Since E'^ >> E\ and pi ^ P2, S2\{E') >> SniE"), This is to be 
expected, for a slow electron will remain in the neighborhood of a molecule 
longer than a fast electron, and the probability of an energy exchange 
will be greater. In fact the probabilities S12 and 1S21 are inversely pro¬ 
portional to the square root of the energy, that is, to the velocity, and, 
therefore, directly proportional to the time of the collision. So far, 
there has been no experimental confirmation of this type of collision 
of the second kind. In experiments with iodine vapor Smyth^ found 
evidence which pointed to such increases of energy. However, he 
states that the experiments were not conclusive because of experimental 
difficulties. Later, he found much more definite evidence in favor of 
collisions of a somewhat different type.^ 

In a vessel containing ozone decomposing into oxygen, electrons were 
accelerated by a small potential into a space between a grid and a plate, 
where a retarding potential was applied. If electrons attain high speeds 
by collision with an ozone molecule in a condition to decompose, then 

1 Proc. Nai. Acad. Set., 11, 679 (1925). 
•P/iy«, 108 (1927), 
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some of them should reach the plate, even though the retarding potential 
is sufficient to stop them in the absence of ozone. The nature of the 
curve of plate current against retarding potential led Smyth to conclude 
that such electrons are present. 

The argument used by Klein and Rosseland can be applied to other 
types of collisions which will now be discussed, to th(i absorption and 
emission of light, and to the photoelectric effect in gases and its inverse 
(Chap. XIII, Sec. 6). 

Franck^ extended the suggestions of Klein and Rosseland to collisions 
between excited and unexcited atoms. The spt^ctra of atoms and mole¬ 
cules are excited in flames and furnaces.^ From this fact and other 
evidence of a similar kind, we know’ that collisions betw^een two atoms in 
which the relative energy is sufficicmtly great may cause the excitation 
of one of the collision partinu's. It follows that the reverse process 
is possible, in which an excited atom colliding with an unexcited one 
may lose its energy of excitation, whih; the relative kinetic energy of 
the atoms is increased. This suggests the possibility of collisions between 
an excited atom or molecule and another, in wdiich the latter is raised to a 
higher energy state and the former loses energy. Experinnmt shows that 
such collisions actually occur. All these types of collisions are called 
‘^collisions of the second kind.^^ As Franck showed, they are readily 
detected by their effect in quenching resonance^ radiation, and therefore 
many of the experiments to be described deal with this subject. 

2, THE QUENCHING OF RESONANCE RADIATION 

Wood''’ discovered that th(i resonance radiation of iodine, bromine, 
and mercury is quenched by the addition of fortugn gases. According to 
the views of Franck, the mechanism of the quenching is as follows: 
Excited atoms collide with other atoms or molecules before radiating 
their energy of excitation. A certain fraction of these collisions results 
in a conversion of the energy of excitation into relative kinetic energy of 
the atoms, whereas in the absence of a collision the energy of excitation 
would have been lost by the emission of radiation. The kinetic energy 
is distributed between the collision partners, so that momentum is 
conserved. Since the length of time the atom remains in an excited 
state has been fairly well established in a number of cases (Chap. XI, 
Secs. 4, 7, and Chap. XIII, Sec, 9), the number of collisions of the excited 
atom during its life can be determined from th(; kinetic theory of gases. 
A comparison of this with the experimentally determined number of 

1 Z, Physik, 9, 250 (1922). 
® Kino, A. S,, Astrophys. 27, 353 and 28, 300 (1908); and many more recent 

publications in this journal and elsewhere. 
» Verh, d, D. phys, Ges., 13, 72 (1911); PhU. Mag,, 21, 309 and 22, 409 (1911); 

Physik Z., 12,1204 (1911) and 18, 353 (1912), 
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collisions necessary to bring about quenching gives us quantitative 
information about the effectiveness of various atoms or molecules in 
producing quenching, and thus the probability that the collisions will be 
inelawstic. 

Aside from quenching the resonance radiation the added gas may 
have the effect of broadening the absorption line. If all of the radiating 
atoms of a gas are stationary, the spectrum of the radiation would consist 
of very narrow lines having a natural width of about 0.00012 But if 
the atoms are in motion the radiation from those atoms approaching the 
observer is of shortcir wave length, according to Doppler’s principle, 
while that of the atoms leaving the observer is of longer wave lengtii. 
The result of this is to broaden the original narrow spectrum line in both 
directions. The width of the line due to Doppler effect alone, measured 
from the points where the intensity has fallen to one-half thc‘ maximum 
intensity at the center of the line, is 

A A Av — Jn2. 
\ 7nc^ 

and thus the width increases as the square root of the bunperature. 
In addition to this, the Stark effect due to intermohunilar fields 

broadens a spectrum line and this effect incn^ases with pressure. Also 
many spectrum lines have a complicated structure ((’hap. XI, Sec. 4), c.g., 
the Hg line at 2,53().7 A., with which we shall be mainly concerned, 
consists of a group of five approximately equidistant lines separated by 
about 0.01 A.2 

The wave length absorbed by an atom also depends upon the tem¬ 
perature and pressure, so that low temperature and pressure favor the 
absorption of a narrow band of wave lengths, that is, a sharp line. In 
his study of the quenching of mercury resonance radiation, Wood used a 
hot mercury arc to excite resonance in cold mercury vapor. The arc 
emitted a very broad resonance line while the cold mercury vapor 
absorbed only the center of each of the five components composing the 
2,536.7 A. line. The broadening of the absorption line produced by 
adding more and more foreign gas enables the mercury vapor to absorb 
more and more of the outlying portions of the broad exciting line, and, 
consequently, to emit increasing amounts of resonance radiation. 
Whether quenching or enhancement is observed depends upon the 
relative magnitude of the two effects. This consideration enabled Wood^ 

^ On the classical theory the natural width was thought of as due to the emission of 
a damped wave train by an oscillating electron, due to the reaction of its own radia-| 
tion. See Planck, “ Warmestrahlung,'’ 5th ed,, or Jauncey, Phys. Rev., 19, 641* 
(1922). The harmonic analysis of such a damped train yields a spectral line having a 
half width of Aire^IZmc^ = 0.00012 A. 

* Wood, Phil. Mag.f 50, 761 (1925). 
«PhU. Mag.. 44,1107 (1922). 
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to account for a remarkable four-fold increase of resonance radiation 
resulting from the introduction of helium at a pressure of 330 mm. of 
mercury. In quantitative investigations on quenching it is therefore 
necessary to use a source of light emitting a very narrow exciting line. 
To secure this, the mercury vapor emitting the light must be maintained 
at a low temperature and pressure. This is ordinarily accomplished by 
using a vertical type of arc with its lower end immersed in a vessel of 
running water. The portion of the arc just above the water surface is a 
strong emitter of a resonance line having the desired properties. 

Cario^ excited resonance radiation in Tnercury vapor by moans of 
electron bombardment, keeping the energy of the electrons low enough 
to excite the resonance state exclusively. In this way he obtained a 
monochromatic ultra-violet lamp emitting 2,536.7 A. radiation of great 
intensity. The intensity of radiation from the lamp was measured 
first in the absence of any foreign gas and then with varying amounts 
of argon and of a helium-neon mixture add(‘d to the mercury vapor. 
The first additions of argon brought about an increase in emission of the 
2,537 A. line. This apparently was due to an increase in the number of 
collisions between mercury atoms and electrons caused by the zig-zag 
path of the electrons through the argon as they fell through the acceler¬ 
ating field. Quenching took place upon further addition of argon. 
The results of the measurements indicated that practically every collision 
between excited mercury and foreign gas atoms resulted in quenching, 
provided the gas-kinetic radius of the excited mercury atoms is assumed 
to be greater than the radius of the normal atom. 

We must assume that the radius of the excited atom is three times 
greater than the normal radius in order to explain the results for a helium- 
neon mixture, and fiv(? and one-half times gn^ater in the case of argon. 
This method does not claim great accuracy because it is difficult to main¬ 
tain a constant rate of production of excited mercury atoms as the foreign 
gas is added. 

Stuart^ employed the very elegant method of secondary resonance 
due to Wood. Light from a water-cooled mercury arc L is focused by 
quartz lenses on mercury vapor contained in a large glass bulb i?i, 
fitted with a quartz window (Fig. 2). The resonance radiation emitted 
by the Hg vapor in Ri is in turn focused on mercury vapor, contained 
in a similar vessel Rn which could be filled with the gas under investiga¬ 
tion. Since the bulb Ri contained only pure Hg vapor at a low tempera¬ 
ture and pressure, the resonance line emitted from it was extremely 
narrow owing to the absence of the broadening discussed above. The 
secondary resonance from vessel Rn was photographed on a plate P, 
together with a part of the primary radiation reflected by a quartz 

1Z. Fhynik, 10, 186 (1922). 
82,262 (1926), 



Sec. 2] TUB QUENCniNO OF RESONANCE RADIATION 495 

plate S, The purpose of the latter was to correct for considerable 
fluctuations in the intensity of the primary radiation. The measure¬ 
ments consisted in photographing the resonance radiation emitted by 
Rii in the absence of any foreign gas and in presence of various pressures 
of the added gas, each time simultaneously photographing the portion 

Fig. 2.—Stuart’s apparatus for resonance radiation. 

reflected by S. Blackening of the photographic plate, as measured hy 
a inicrophotometer was taken as a measure of the intensity of the radia* 
tion. The quenching curves in Fig. 3 sliow the intensity of the secondary 
radiation as a function of the pressure of the added gas. These curves 
enable us to calculate how many collisions the excited mercury atom 
makes before a collision of the second kind occurs. 

Fig. 3.—Quenching curves of resonance radiation. {After Stuart.) 

Stern and Volmer^ showed that the resonance radiation should 
be reduced to one-half intensity, when the time between two inelastic 
collisions is equal to the mean life of the radiating atom. When the 
steady state is reached, the number of atoms activated per second by 
the incident light is equal to the number deactivated per second by 

1 Phy^k. Z. 20, 183 (1919). 
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(Spontaneous radiation and collisions of the second kind. The number 
activated is independent of the pressure of foreign gas mixed with the 
mercury vapor, and for constant pressure of mercury vapor will be 
constant. Let the number of excited atoms be ??o, if no foreign gas is 
present, and n, if foreign gas is present, and let K be the number of 
excited atoms produced each second. Then, 

K = k^uo = (fci + k2)n, 
where fci is the probability of spontaneous emission of light and ^2 is the 
probability of an inelastic collision. Then, since the intensity of light 
emitted is proportional to the number of excited atoms present, 

= I 
n„ k, -I- k, /o’ 

where I and /o are the intensities of the resonance radiation in the 
presence and absence of a foreign gas, respectively. Now ki is equal to 
the reciprocal of the mean life r and k2 is proportional to the number 
of collisions. We have, 

k2 = P ^2Nr%2kTirY^yi-^) (6) 

in this equation k is Boltzmann\s constant and T the absolute tempera¬ 
ture; r is the distance of nearest approach of the excited atom and the 
foreign gas molecule, N the number of foreign gas molecules per cubic 
centimeter (always much larger than the number of mercury atoms); 

a is the reduced mass, , and P is the probability that a collision 

will be inelastic, which may be called the '^quenching efficiency.The 
reciprocal of k2 is the mean time t, between two inelastic collisions 
and is inversely proportional to the pressure. From equation (5) we get 

(7) 

and thus if / = /u/2, r = t. Substituting l/t — ap in equation 
(7), we get 

I = P 1 + arp "1 + hp 
p being the pressure. The pressure at which the intensity of resonance 
radiation is reduced by one-half can be determined experimentally 
and the value of N corresponding to this pressure can be substituted in 
equation (6). Also we know that for this pressure t can be set equal to 
r which is known from other measurements and thus the only unknown 
quantities in equation (6) are P and r. 

In the case of oxygen, the pressure at which the intensity is reduced 
to one-half, and which is convenientlj^ represented by is 0.35 mm. 
Assuming that P == 1, i.e,, that every collision is a collision of the second 
kind, and using the gas kinetic values for the radii, the life of the excited 
mercury atom is found to be 6.7 • seconds. But the mean life 
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of the 2®Pi state of mercury is known to be 1 • seconds.^ Since P 
cannot be greater than 1, the distance between the atoms at nearest 
approach for an excited mercury atom and the gas molecule, r, must be 
greater than the mean distance of approach of the normal mercury atom 
and the gas molecule. Stuart therefore concludes that the collision radius 
of the excited mercury is 3.4 times that of the normal mercury atom. 
If it is assumed that in oxygen each collision quenches, there can be no 
gas with higher quenching efficiency than oxygen. The quenching 
efficiencies calculated by assuming that the radius of the excited mercury 
atom is always 3.4 times the radius of the normal atom, in collisions 
with other molecules, are collected in Table 1. 

Table 1 

(xa-s py^ (inrri.) P (Stuart) 
1 k-i at 1 mill. 

X 10-^ 
r X 10-**^ cm. P ((i a viola) 

H,. 0.2 0.7 2 7 5.5 1 O' 
0.,. 0.35 1.0' 
CO. 0.4 0.8 3.0 2.91 1.0' 
COs. 2.0 0.2 
HiO. 4.2 0.1 0 64 1.80 0.4 
N,. 30.0 0.013 ‘ 0.6 1.80 0.2 
A . 240 0.002 0.5 1.80 0.05 
He. 760 0.0003 i 1 .4 1 .80 0.006 
Air. 1.2 
Hg. 120 

1 Assunied. 

Gaviola^ has recalculated these quenching efficiencies obtained 
from Stuart^s data taking secondary factors into account. Before a 
quantum of resonance light escapes from the vessel it may be reabsorbed 
and reernitted several times and this effect is quite appreciable in Stuart^s 
experiments. Moreover, in order to avoid the compficating factor that 
collisions of the first kind may raise metastable mercury atoms in the 
2^Po state to the resonance state, 2^Pi, it is necessary to extrapolate the 
quenching curves to zero pressure and calculate the quenching efficiency 
at this pressure. When the data are recalculated in this way, it is found 
that the effective radius of the excited atom, Hg', is 1.62 times larger 
than the gas kinetic radius of the normal atom, if the efficiency of quench¬ 
ing by hydrogen is taken as 1. Using this radius for Hg', the quenching 
efficiency of CO is found to be 250 per cent. This shows that the effective 
radius of Hg' cannot be taken the same for all gases. 

As Gaviola points out, the only quantity which can be determined 
from the experiments is the product of the number of collisions and the 

1 ‘'Handbuch der Experimeiitalphysik,'' 14, (1928), Akad Verlagsgesellschaft, 

Leipzig. 
2 PhuB. Rev., 83, 309 (1929). 
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quenching efficiency. His calculated values for the numbers of these 
collisions for different gases are given in the fourth column of Table 1. 
The last two columns give assumed radii for Hg' and the efficiency. 
Gaviola assumed the gas kinetic radius of the normal mercury atom for 
the Hg' atom, in cases where this did not lead to quenching efficiencies 
greater than 1; if this assumption gave a greater efficiency than 1, he 
assumed an efficiency of 1 and calculated an effective radius for the Hg' 
atom. 

The high quenching efficiency of H2 is due to the fact that its energy 
of dissociation (4.34 volts) is less than the energy of excitation of mercury 
in the 2^Pi state so that the energy is (expended in dissociating the mole¬ 
cule. The energies of dissociation of the other molecules listed in Table 1 
are greater than the excitation energy of the mercury atom and therefore 
their high quenching efficiencies must be due to other factors. MitchelT 
has shown that O2 has a vibration level 4.86 volts above its normal level 
so that almost exact resonance between the O2 molecule and the mercury 
atom exists. Under such conditions the transhn of energy from one 
to the other should be very probable (Sec. 5). Also it may be that 
chemical reaction takes place between O2 and Hg', since HgO appears 
in the resonance vessel under proper experimental conditions. The 
effect of the N2, H2O, and CO molecules is to transfer Tig' from the 
2^Pi state to the metastable 2^Po state. Cario and Franck- found that 
no quenching by N2 occurs if the temperature of the resonance vessel is 
raised to 750°C. At this temperature metastable mercury atoms 
initially produced by collisions with the N2 molecuUxs are raised again to 
the resonance state by a collision of the first kind with a high velocity 
nitrogen molecule, so that they are again in a condition to radiate. 
When argon is present instead of nitrogen, raising the temperature of the 
vessel to 750°C. does not destroy the quenching effect and therefore 
argon must transfer the excited mercury atom to the normal state. 
Gaviola and Wood have shown that water vapor greatly increases the 
concentration of mercury atoms in the 2^Po state and that it is about lO** 
times as effective as nitrogen in this respect (Sec. 6). Oldenberg 
has pointed out that the high efficiency of N2 and CO in causing this 
transfer to the 2^Po state is probably due to the fact that these molecules 
can take up 0.19 volt of energy from the mercury atom almost entirely 
by a transition in their vibrational energy states. This may also be true 
in the case of H2O. 

Mannkopf^ studied the quenching of the resonance radiation of 
sodium by nitrogen, hydrogen, and by a neon-helium mixture. Nitrogen 

1J. Frank. Inst, 206, 817 (1928). 
* Z. Physik, 17, 202 (1923). 
* Oldenberg, Z. Physik, 49, 609 (1928). 
*Z. Phyaik. 36, 316 (1926). 
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quenches this radiation most effectively. Calculation of the quenching 
efficiency again requires the use of abnormal radii and Mannkopf finds 
the radius of excited sodium to be 4.3 times the gas-kinetic value. Wood^ 
has found that iodine resonance radiation is quenched by foreign gases 
and by iodine itself. Table 2 gives the values of the half pressures for 
various gases for this case. 

Table 2 

, (las.j A 1 Ho Air O
 

c
 

Ether CU 1 h 

(mm.). 
1 
i 7 

1 

i « 
2.1 1.2 0.3 0.2 0.2 

3. SENSITIZED FLUORESCENCE 

Cario and Franck,^ developing the logical consequences of the principle 
of Klein and Rosseland, pointed out that the excitation energy of an 
atom or molecule should be available for the excitation of a quantum 
transition of lower energy in a colliding atom or molecule. This view 
could be supported by a number of experimental results. For example, 
it had been known since 1873^ that a photographic plate insensitive 
to certain wave lengths could be made sensitive to them by impregnating 
the gelatine layer with a suitable dye. According to our present views, 
this dye absorbs the energy of the inactive wave lengths and transfers it 
to the photosensitive silver in the layer by collision. Also, it had been 
observed'^ that a dye such as cosine or rhodamine adsorbed on a mass of 
siloxene® emits the fluorescent bands characteristic of the dye, while the 
siloxeiie is being oxidized. The dye itself emits no light upon oxidation. 
Apparently, the energy of oxidation of siloxene is transferred by collision 
to the dye, which is thereby excited and emits light. 

If an atom A is excit(‘.d by the absorption of light, and transfers its 
energy to an atom B during a collision, the atom B may then emit light 
which is known as sensitized fluorescence. It will be observed if the 
following conditions are fulfilled: the energy of excitation of the atoms 
absorbing the light must be equal to or greater than the energy of the 
first excited state of those atoms in the mixture which arc to exhibit the 
sensitized fluorescence; and the pressures must be such that the mean 
time between two collisions is less than or equal to the order of magnitude 
of the mean life of the excited atom. The latter condition insures that 

^Phil Mag,, 21, 392 (1911). 

2 Cario, Z. Physih, 10, 185 (1922); Cario and Franck, loc, cit, 
3 Vogel, Bcr,, 6, 1305 (1873). 

Kautoky and Zocher, Z, Physik, 9, 267 (1922); 31, 60 (1925). 

® 8iloxenc is a Ingbly reactive silicon compound of the formula Si^HfjO^. 
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most of the optically excited atoms will collide with and excite the atoms 
which emit the sensitized fluorescence. In order to secure observable 
intensities of fluorescent light it is necessary that the monochromatic 
light producing the primary excitation be intense and that it be strongly 
absorbed. All spectrum lines of the non-absorbing component of the 
gas mixture should appear, whose energy of excitation is less than the 
energy of the monochromatic exciting or primary radiation. 

Suppose we have a mixture of two gases A and B of atomic weights 
mi and m2, and let the gas A have a resonance line of frequency p, while B 

has one of frequency v'. The excitation energies of the atoms A and B 

corresponding to the frequencies v and v' are shown in the energy level 
diagram of Fig. 4. Now if we illuminate the gas A with light of frequency 
V we obtain the reemission of the same frequency or simple resonance. 
If we illuminate gas B with light of the same frequency v, no resonance 
or fluorescence will appear because this frequency is not absorbed by the 

gas B. But if we illuminate the mixture of the 
two gases with light of frequency p, we obtain 
the emission of both v and An atom A, 
excited by absorption of a quantum hu^ collides 
with an atom B and excites it to the quantum 
level with energy hv', B then radiates light of 
frequency v'. Some of the atoms A emit their 
characteristic frequency before colliding with 
and this accounts for the appearance of both 

frequencies in the fluorescence. The difference in energy between hv 

and hv' appears as relative kinetic energy of A and B. If the temperature 
is low, we can neglect the thermal kinetic energy. The atom B receives 
kinetic energy which we can calculate from the requirement that the 
conservation of energy and momentum must hold for the process. 
Assuming the initial velocities to be very small and letting the final 
velocities be Vi and v^j we have, 

and 
^'imiVi^ + 3^^1712^2^ = hv — hv'j 

from which 

and 

miVi = 7712^2, 

= {hv —,hv') ; 
2 TTli + m2 

\m2V%^ = {hv —■ hv')——• 
2 'mi + m2 

(9) 

When hv — hv' is large, the excited atom B secures a high kinetic energy 
and consequently moves with high velocity. When the rapidly moving 
excited atom emits light, the frequency observed will be different from 
v' because of the Doppler effect, except when the atom moves at right 
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angles to the line of vision, 
by the equation^ 

The frequency observed, 

= /^i + V2 
COS 

c 

is related to v' 

where ^ is the angle between the direction of motion and the line of vision. 
These predictions were brilliantly confirmed l)y Cario’s experiments.^ 

The arrangement of Fig. 5 was employed. A quartz tube containing a 

globule of thallium metal was heated in an electric oven to a temperature 
of 800°C., at which the vapor pressure of thallium is 2 mm. of Hg. The 
quartz tube was connected through a side tube to a bulb containing 
mercury, which could be heated to about 100°C. in a separate and smaller 
oven. A quartz lens focused the light of a quartz mercury arc at a point 
just inside the tube containing the mixture of thallium and mercury 
vapor. The mercury was thereby excited to the resonance state, 2®Pi. 
The pressure of the mercury vapor was high 
enough to confine the resonance to a narrow 
region near the place of entrance of the exciting 
light, the purpose being to secure a strong 
fluorescence concentrated in a small region. A 
spectrogram of the light scattered from this 
region showed the presence of a number of 
thallium lines in addition to the 2,536.7 A. line 
of mercury. When the 2,536.7 A. line was cut 
off by interposing a sheet of glass, all thallium 
lines disappeared, and when the tube was 
illuminated with the 2,536.7 A. line while the 
mercury vapor was frozen out no thallium 
lines appeared. We can see the energy rela¬ 
tions involved from Fig. 6. The 2,768 line of Tl, which differs in energy 
from the 2,537 line of Hg by only 0.4 volt, was found to be very weak, 
due to absorption in the excess thallium vapor. On the other hand, the 
3,776 line is excited by 1.6 volts less energy than 2,537, and was found 
to be emitted very strongly. In this case, the emitting thallium atoms 
have a high velocity, due to the large energy excess of 1.6 volts, hence 

1 Z. Pkytfih, 10, 186 (1922); 17, 202 (1923), 

Fig. 6.—Energy level diagrams 
of Hg and Tl. 
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the Doppler shift is large enough to prevent the relatively cold thallium 
vapor from Absorbing the broadened 8,776 line. 

4. COLLISIONS INVOLVING METASTABLE ATOMS 

Donat/ and later Loria/ studied the fluorescence of thallium sensi¬ 
tized by mercury in the presence of certain gases such as nitrogen and 
argon. Since the resonance radiation of mercury is quenched by nitro¬ 
gen, it is to be expected that the addition of this gas to the thallium- 
mercury mixture should diminish the sensitized fluorescence of thallium. 
On the contrary, it was actually found to be increased. This can be 
explained in the following way. The mercury atoms absorbing the 
wave length 2,587 are raised to the 2-’Pi state, and collide with a nitrogen 
molecule to which a part of their energy is transferred, and drop to the 

state with 0.19 volt less energy. The state has a life of about 
10“2 seconds as compared to seconds for 'Pi. Therefore, the mercury 
atom in the Po state is much more likely to collide with a thallium atom 
during its life than an atom in the Pj state. Of course, the energy of 
the excited mercury atoms can be used to excite thallium more effectively 
in the absence of any foreign gas by increasing the pressure of the thallium 
vapor and thereby increasing the number of collisions. This would 
require very high temperatures because' of the low vapor pressure of 
thallium. Addition of nitrogen has the same effect as increasing the 
vapor pressure of thallium, for, if the pressure of the nitrogen is suf¬ 
ficiently high, every excited mercury atom produced by absorption 
of the 2,537 line is brought into the long-lived metastable state which 
persists until a collision with a thallium atom occurs. 

The effect of foreign gases in bringing mercury atoms in the Pi 
state into the motastable state by collisions of the second kind was 
clearly demonstratc'd by Wood.*^ The metastable atom can absorb 
two series of lines, namely, the scries 2Po - mPh, and the series 2Po ~ 
mPi. The lines at 4,047 A, and 2,967 A, corresponding to the first mem¬ 
ber of each of these two series must be particularly strongly absorbed and 
therefore reversed by mercury vapor containing a considerable concen¬ 
tration of mercury atoms in the 2Po state. Absorption of these wave- 
lengths is therefore an indication of the presence of metastable atoms. 
Wood illuminated mercury vapor with the resonance line and studied 
the absorption in the presence of varying amounts of N2, He, and CO. 
Nitrogen was found to be particularly effective in causing the absorption 
of subordinate series lines. Absorption of the line at 4,047 A. is already 
noticeable when the partial pressure of nitrogen is 0.1 mm. and at 2 mm. 
it is extraordinarily strong, indicating that a high concentration of 

1 Z. Physik, 29, 345 (1924). 
2 Phys. Rev., 26, 576 (1925). 
8 Free. Roy. Soc.^ 106, 679 (1924); PhiX. Mag., 60, 774 (1926). 
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metastable atoms has been built up. Wood and Gaviola^ have recently 
found that water vapor is more effective than nitrogen in bringing mer¬ 
cury atoms from the resonance state into the metastablo state. Only 
0.005 mm. of water vapor is sufficient to cause reversal of the 4,047 A. 
line in excited mercury, while 0.5 mm. of nitrogen is necessary to accom¬ 
plish the same result. 

Orthmann and Pringsheim^ found that the formation of metastable 
mercury atoms was favored in the absence of foreign gases by increasing 
the vapor prcissure of mercury. Th(' sensitized fluorescence of thallium 
was studied in m(^rcury vapor at high pressure. The resonance radiation 
in pure mercury vapor at a pressure corresponding to 250®C. is practically 
completely (pienched, but the fluorescence of admixed thallium vapor is 
still very strong. Even in mercury vapor at one atmosphere (350°C.) 
the 3,770 A. line of thallium has lost none of its original intensity. Under 
the conditions of the experiment an excited mercury atom collides on the 
averages with 10'^ other mercury atoms before colliding with a thallium 
atom, indicating that the fluorescence must be due to collisions of the 
second kind ])(>tween metastable mercury atoms and thallium. 

Meyer'^ found that the yield of atomic hydrogen by photochemical 
dissociation with the aid of mercury can be increased, when the partial 
yressure of hydrogen is low, by the addition of argon. Argon also makes 
inelastic collisions with mercury in the 2^Pi state, causing a transfer 
to the 2^P() state, winch then persists long enough to collide with a 
hydrogen molecule, though there are reasons to believe that argon also 
causes a transfer of Hg' atoms to the normal state (Sec. 2). 

6. RESONANCE IN COLLISIONS OF THE SECOND KIND 

Merton and Pilley^ found that it was possible to excite the atomic 
nitrogen spectrum, wffiich is difficult to secure by other methods, by 
passing a discharge through a mixture of an inert gas and nitrogen, the 
former being present in excess. 

When a discharge is sent through this mixture there is small prob¬ 
ability that an (flectron will gain energy greatly in excess of the first 
resonance potential of the rare gas, provided the pressure is sufficiently 
high. If the concentration of the nitrogen is small, the probability of an 
electron exciting this gas is small. But since the rare gas is present 
in excess, most of the excitation will be due to collisions of the second 
kind between excited rare gas atoms and the nitrogen molecules. In 
this way the spectrum will be excited by a definitely known energy. 
Evidently, nitrogen molecules are first dissociated by collisions of the 

^ Phil Mag., 6, 271 (1928). 

2 Z. Physik, 36, 626 (1926). 

3 Z. Physik, 37, 639 (1926). 

^ Proc. Roy. Soc., 107, 411 (1925). 



504 COLLISIONS OF THE SECOND KIND [Chap. XIV 

second kind with excited rare gas atoms, and then the resulting atoms 
are excited by inelastic collisions with electrons or excited rare gas atoms. 
McLennan^ found that a characteristic green line appearing in the 
aurora is excited strongly in a discharge tube containing a mixture of 
helium and oxygen while it is very difficult to obtain in pure oxygen. 

The band spectra of Ho, N2, CO, CN, and other molecules are much 
simplified when excited in presence of an excess of the rare gases. The 
best known example of this is the excitation of the Lyman bands (a 
progression of the Dieke-Hopfield bands) which appear in great intensity 
when a discharge is passed through argon at 2 or 3 mm. pressure con¬ 
taining a trace of hydrogen. The bands excited in this way arise from 
transitions from the Bs state of Dieke and Hopfield," which is the third 
vibrational level of the 2^2 state of the hydrogen molecule. This 
combines with the different vibration levels of the normal HS state 
to give an n" progression of bands. Since these bands are not excited 
by direct electron impact,'* the excitation probably occurs by collisions 
of the second kind between excited argon atoms and the hydrogen mole¬ 
cule in its lowest vibrational state and its lower rotational states,^ and 
after a very careful theoretical investigation Beutler^ concluded that this 
view was correct. 

That close ^^resonance^^ between two atoms or molecules is of importance 
for the transfer of energy between the two was first noticed by Beutler 
and Josephy^ in the case of the sensitized fluorescence of sodium when 
excited by mercury atoms. When a mixture of the two gases at low 
pressures was illuminated by the 2,537 A. line of mercury the 2P — IS 
line of sodium appeared with great intensity. The addition of foreign 
gas caused the appearance of the 2P — 5S line of sodium. The excitation 
energies of the 7S and bS levels of sodium are very nearly the same as 
the excitation energies of the 2^P\ and 2^P^ states, respectively. Evi¬ 
dently, the foreign gas in the second case caused a transfer of mercury 
atoms in the 2^Pi state to the 2‘'*Po state and atoms in each of these 
states transfer their energy to sodium atoms with greatest probability 

' At the high altitudes where the aurora is excited, probably by electrons from the 

sun, the concentration of helium atoms relative to oxygen molecules will be much 
higher than at the earth’s surface so that the laboratory conditions partly duplicate 

those occurring in nature. 

2 Z. Physik, 40, 299 (1926); Phys. Rev., 28^ 1223 (1927). 

3 Hori, Z. Physik, 44, 834 (1927). 

*This was first suggested by Franck and Jordan, ^'Anregung der Quanten- 

sprUngen durch Stosse,” p. 266. Worthing (Washington Meeting of the American 

Physical Society, Apr. 19, 1929) has found an altered intensity distribution of the 

active nitrogen bands when the nitrogen contains about 1 per cent of argon, and 

suggests that this is probably due to the excitation of the nitrogen molecule by colli¬ 

sions of the second kind between nitrogen molecules and excited argon atoms. 

» Z. Physik, 50, 581 (1928). 

® Naturwiss., 16, 540 (1927). 
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only if the excitation energy of the sodium atoms is very nearly equal 
to that of the excited mercury atoms. This case has been further studied 
by Webb and Wang^ who introduced sodium vapor into a stream of 
mercury vapor which had been excited by an arc. They compared 
the relative intensities of sodium lines when excited by an arc and when 
excited by the transfer of energy from the excited mercury atoms. 
Experimental conditions were arranged so that excited atoms were much 
more effective in exciting the sodium atoms than any ions present. The 
results are shown in Table 3. 

Table 3 

i 

Excitation energy of Hg 
Sodium s(5ries 

lines 

Excitation 
energy of 

Intensity of Na lines 
excited by: 

Na, cm."^ 
(a) Hg atoms (5) an arc 

1=.S' 1 16,964 0.63 2.40 

C
O

 

1 

0
5

 33,199 0.03 1.70 
2 - PD 34,547 0.05 1.38 

36,371 0.04 0.26 
-52/) 37,033 0.20 0.41 

23/>n 37,645 
38,010 0.67 0.07 
38,382 0.44 1 0.11 

-628 38,963 0.00 1 0.00 
-VD 39,200 0.15 trace 

2^Pi 39,413 
-I^S 39,572 0.15 0.00 

‘ -m) 39,725 
1 

0.07 0.00 

Decided maxima in intensity occur in both the sharp and diffuse 
series when excited by collisions with mercury atoms. The wave-number 
differences between the excitation energy of the 2-^Po state and that of 
the 5^/), and states of sodium are 612, — 3G5, and —737 cm.'”^ 
respectively, and the differences between that of 2®Pi and the 7^Z), VSy 
and 8-D are 213, —159, and —312 cm.~S respectively. Since the 
state is evidently not excited by the mercury in the 2®Pi state, the prob¬ 
ability of a transfer of energy between the two atoms in which these 
particular states are involved with an energy difference of only 450 cm.“^ 

0.05 volt) must be quite small. The same lines excited in the arc 
are less intense than when excited by collisions of the second kind though 
the reverse is true in the case of the VS — 2^P lines. This supports 
the view that collisions of the second kind are responsible for the excita¬ 
tion of the lines as given in column 4 and that in this particular case close 

^Phys. Rev,, 38, 329 (1929). 
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resonance between two atoms is necessary if there is to be a high proba¬ 
bility of energy transf(‘r.^ 

An interesting method of exciting fhe spectra of metals which promises 
to be of importance has been employed by Pascheii and Frerichs.^ If 
the vapor of a metal is present in a rare gas excited by electrical discharge, 
the spectrum of the metal is excited intensely. It is found that the 
excitation of the metal is due in the main to collisions of the second 
kind with metastable rare gas atoms. All terms whose energy is less 
than that of the metastable atom which excites them are present in the 
spectrum. Excitation of metal spectra was also found to take place 
in a side arm branching off from the discharge tube, although the dis¬ 
charge does not penetrate into the side tube. The presence of inetastable 
atoms here can be demonstrated by absorption measurements similar 
to those used by Meissiu'r in determining the life of metastable neon 
atoms. 

6. COLLISIONS BETWEEN IONS AND NEUTRAL ATOMS 

If we consider the ionized state of an atom as one of its excited states, 
the possibility immediately suggests itself that an ion can remove an 
electron from an atom of lower ionizing potential as a result of a collision 
of the second kind. Experimental evidence of this was found by Ilogness 
and Lunn’”* and by Harnwell.^ They produced ionization in a mixture 
of gases by bombarding them with electrons of energy well above their 
ionizing potentials and determined the relative numbers of ions as a 
function of the total pressure by means of th(? magnetic spectrograph 
(Chap. XIII, Sec. 4). Harnwell observed the number of ions produced 
in a pure inert gas as a function of the pressure and found that the curves 
were of exactly the same shape for all the gases investigated, so that one 
could be superimposed on the other by changing the scale on which the 
number of ions produced was plotted. This means that, in a mixture of 
these gases, the ratio of the numbers of ions produced should be inde¬ 
pendent of the pressure, if no collisions of the second kind occur. Experi¬ 
mentally, it is found that the ratios of the numbers of ions, He+/Ne+, 
Ne'+'/A+, and He‘^/A+ decreased with increasing pressure, and that this 
decrease was most rapid for the first and slowest for the last of these 
combinations. The following inelastic collisions must occur in the 

ionizing space: 

He’+' + Ne —> He + Ne+ Ne+ + A Ne + A"*", He'*' + A He + A+. 

1 The high quenching efficiency of O2 gas in the case of Hg' in the 2^Pi state is 
probably due to close resonance. However, close resonance is not necessary for 
collisions of the second kind to occur (see Bee. 2). 

^ Paschen, Sitz, her. d. Prems. Akad, TFiss., Oct. 20, 1927; Frerichs, Ann, 
Physik, 85, 257 (1928). 

^Phys. Rev,, 28, 849 (1926); 30, 26 (1927). 

*Fhys, Rev,, 29, 683, 830 (1927). 
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All these processes will result in an increased number of ions of the atom 
of lower ionizing potential at the expense of the atomic ions of higher 
ionizing potential. The rate of change of the ratios indicates that the 
first reaction occurs most readily and the last least readily. 

Experiments of this kind have bopen made using quite a number 
of pairs of gases. ^ The results show that the following generalizations 
can be made: (1) this type of collision will not occur unless the ionizing 
potential of the primary ion is greater than that of the ion to be produced, 
so that part of the energy of ionization of the first atom is converted 
into relative kiiK'tic energy of the two collision partners; (2) the nearer 
the two ionizing potentials are to e^ach other the more probable is the 
inelastic collision. An exccdlent example of this is given by the exper¬ 
iments on the inert gases described above. Table 4 gives the reactions 
in the order ()f decreasing probability and the differences in ionizing 
potentials of the atoms. 

Table 4 

Koactioii Vi — Vi ~ V 

TTo^ ^ N(' - Up -J Np^ • • • 24.5 - 21.5 - 3.0 

Np ♦ + a -> Np 4- a ‘ • • • 21.5 -15.7 = 5.8 

Hp^ f A - rip H- A' • • • 24.5 - 15 7 - 8.8 

An excellent example of this is the ionization of N2 by He+. Nitrogen 
has an ionizing potential at 23 to 25 volts, while that of He is 24.5 volts 
and the experiments show that the ionization of N2 by HeT by a collision 
of the second kind is very probable. 

7. PHOTOSENSITIZED REACTIONS 

Franck further sugg(‘sted that the energy of an excited atom could 
be utilized in producing a chemical reaction. He proposed as a v^ry 
simple case of such a reaction the photochemical dissociation of the 
hydrogtm molecule, which is particularly suitable because it can dis¬ 
sociate in only one way, while a more complicated molecule might 
dissociate in several ways. Hydrogen does not absorb light of a wave 
length corresponding to its heat of dissociation. Its heat of dissociation 
has been determined most exactly from its band spectrum^ and is 4.34 
volts. (Burrau^s^ theoretical value is 4.42 ± .03 volts.) 

The energy of a quantum of light of wave length 2,537 A. is 4.86 
volts. Consequently, excited mercury atoms produced by absorption 

1 Hogness and Lxtnnt, he. cit.; Harnwell, loc. dt.; Smyth and Stueckelberg, 

Phys. Rev., 32, 779 (1928). 
2 W1TM.ER, Proc. Nat. Acad. Sd.y 12, 238 (1926); Dieke and Hopfield, Phys. 

Rev., 30, 400 (1927). See al^o Langmuir, /. A. C. S,, 36, 1708 (1914); 37, 417 (1915); 

Herzpeld, Ann. Physik, 69, 635 (1919); Bichowsky and Copeland, J. A. C. S., 60, 

1315 (1928). 
® Naturwiss., 16, 16 (1927); Kong. Danske Vid, Selsk. Math-fys. Medd., 14, 7, 

(1927). 
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of this wave length should be capable of dissociating H2 molecules. 
The occurrence of such dissociation was established by a very simple 
experiment due to Cario and Franck.^ A small boat filled with copper 
oxide, which is reducible by atomic hydrogen, was placed in a quartz 
tube containing hydrogen and some liquid mercury. The tube was 
connected to a liquid air trap followed by a Macleod gage. When the 
radiation of a quartz mercury arc was focused on the tube, the copper oxide 
was reduced as evidenced by the appearance of the characteristic reddish 
color of metallic copper on the surface of the mass of copper oxide. At 
the same time, the Macleod gage showed a decrease of pressure owing 
to the fact that water formed in the reduction of the copper oxide con¬ 
densed in the trap. No reduction took place when mercury vapor was 
not present. Mercury vapor alone in absence of hydrogen caused no 
reduction. Furthermore, it was shown that the effect occurred only 
when the mercury arc was kept cool so that the 2,537 line was not self- 
leversed; this is due to the fact that the cold mercury vapor could absorb 
only the center of the line. The process taking place in the quartz tube is 

Hg + /i.-^Hg', 
Hg' + H2->Hg + 2H. 

It is now clear why hydrogen is so very effective in quenching the 
resonance radiation of mercury. Practically evory collision between an 
excited mercury atom and a hydrogen molecule leads to a transfer of 
energy from the excited mercury atom to the hydrogen molecule and 
causes its dissociation. 

This extremely convenient method of producing monatomic hydrogen 
has some very interesting applications. When a mixture of hydrogen, 
oxygen, and mercury vapor is illuminated with the 2,537 line, water is 
formed at a measurable rate.^ Hydrogen atoms produced by the same 
method in a mixture of ethylene, hydrogen, and mercury vapor react 
with the ethylene and form ethane. It was noted that this reaction 
occurred to a much greater extent than could be accounted for by the 
number of quanta absorbed. This is due to reaction chains initiated by 
the primary hydrogen atoms, which behave as follows: 

C2H4 +H~^C2H5, 
C2H5 + H2-^C2H« + H. 

The hydrogen atom produced by the second reaction may then react 
again in accordance with the first equation, and the chain continues until 
terminated by combination of two hydrogen atoms. A similar reaction 
chain was discovered in the photosensitized formation of hydrogen 

^Z.Phydky 11, 161 (1922). 
* Dickinson, Ptoc. Nat. Acad. Sct.^ 10, 409 (1924). 

Mitchell, Proc. Nat. Acad. Sci., 11, 458 (1925). 
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peroxide^ from hydrogen and oxygen, mercury being the sensitizer. The 
mixture passed in a rapid stream through the illuminated reaction vessel 
giving almost 100 per cent yields of hydrogen peroxide, and each quantum 
absorbed gave 4 molecules of H2O2. Taylor suggested the mechanism, 

Hg + hv-^Bg\ 

Hg' + H2~-^2H + Hg, 
H “f* O2 —> HO2, 

HO2 + H2 -> H2O2 + H etc. 

Dickinson and SherrilP illuminated a mixture of oxygen and mercury 
vapor with the 2,536.7 A. line and found that ozone was formed. Since 
the energy of dissociation of the oxygen molecule is considerably greater 
than that of the excited mercury atoms, excited oxygen molecules must 
be formed by collisions of the second kind between excited mercury atoms 
and oxygen molecules. It was also found that considerable oxidation 
of the mercury vapor took place. This partially accounts for the effective¬ 
ness of oxygen in quenching mercury resonance (Sec. 2). 

An interesting variety of photosensitized decompositions were 
discovered by Bates and Taylor.^ The vapors of H2O, NHs, and of 
organic compounds saturated with mercury vapor were passed through a 
quartz tube strongly illuminated by the radiation of a cooled mercury 
arc. In most cases decomposition into gaseous products occurred even 
in the absence of mercury vapor, but in general the products formed 
when the reaction was photosensitized were enormously greater in amount 
than those obtained from the unsensitized reaction. 

In such reactions we are by no means limited to the use of mercury 
vapor, but since a further discussion of this interesting field is beyond 
the scope of this book, the reader is referred to an excellent summary by 
Kistiakowsky.'^ 

8. CHEMILUMINESCENCE AND COLLISIONS OF THE SECOND KIND IN 
FLAMES 

It has been known for a long time that many chemical reactions 
are accompanied by the emission of light although the temperature of the 
reacting mixture is far below that necessary for the appearance of visible 
temperature radiation. For example, flames, such as those appearing 
during the combustion of sulfur vapor and carbon bisulfide, are known 
to have a temperature less than 200°C. but nevertheless emit a com¬ 
plicated spectrum in the blue. The mean translational energy of gas 
molecules at 200°C. is somewhat less than 0.06 volt while the energy 

1 Marshall, J. Phys. Chem., 30, 34 (1926); Bonhoeffer and Loeb, K. physik. 
Chem.y 119,474 (1926); Taylor, Trans. Far. Soc. 21,560 (1925). 

^Proc. Nat. Acad. Sci.y 12, 175 (1926). 

A. C. S.y 49, 2438 (1927). 
* '‘Photochemical Processes,p. 125, Chemical Catalogue C3o., New York (1928). 
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corresponding to a quantum of blue light, say of wave length 4,000 A., 
is about 3 volts. As an extreme case we might mention the luminescence 
of certain living organisms duo to reactions involving complicated organic 
molecules. Obviously, the light cannot be due to temperature radiation. 
In general, the emission of light during chemical reactions is due to quan¬ 
tum processes taking place before the reacting system has reached 
equilibrium. 

Spectral analysis of the light emitted during a reaction should enable 
us to gain insight into the details of the process. However, the spectrum 
emitted in most cases of chcmiiluminescenee is so complicated that it is 
impossible at present to determine the primary processes taking place. 
Also, the quantity of light emitted is far less than that expected from 
Einstein^s photochemical equivalence law on the assumption that each 
newly formed molecule emits a quantum. This indicates that secondary 
processes are probably responsible for the emission of light. 

A notable advance in this field was made in the study of ^^cold’^ 
flames emitting a line spectrum of known origin. Haber and Ziscli^ 
allowed sodium vapor highly diluted with nitrogen to stream into C'h, 
Br2, 1*2, or oxygen gas where reaction took place between the sodium and 
the gas. The purpose of the nitrogen is to keep the temperature of the 
reacting mixture below that at which the eye perceives the black-body 
radiation corresponding to the temperature of the gas. In spite of the 
fact that no thermal emission of light could occur, the 7J)-lines of sodium 
were emitted strongly, and it was found that the number of quanta 
emitt('-d was very much less than the number of NaC^l molecules formed. 
Consequently, the light emission is due to some secondary process, 
such as a collision of the second kind between a newly formc'd excited 
NaCl molecule and a sodium atom, resulting in an excited sodium atom 
and a normal sodium chloride molecule. This reaction and similar 
ones have been investigated by Polanyi^ and his coworkers who have 
proved that the reaction consists of the primary process, 

(a) Na + CI2 - NaCl + Cl + 35 Cal, 

and the secondary processes, 

(b) Na + Cl = NaCl + 93.4 Cal. 
(c) Nas + Cl = NaCl + Na + 75 Cal. 
(d) • Cl + Cl - CI2 + 58.5 Cal. 

The reaction (a) takes place in the gaseous phase but the energy liberated 
is insufficient to excite the sodium Z)-lines, namely 48.3 Cal. The 
reactions (h) and (d) take place on the walls and the energy is dissipated 
as heat. The reaction (e) takes place in the gas space and is responsible 
for the excitation of the sodium lines. One might expect that the sodium 

1 Z, Phyfdk, 9, 302 (1922). 
2 Zeit, hys, Chem., B. 1, 3-73 (1928). 
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atom liberated in this reaction would be excited directly^ but this is 
proved not to be the case by the quenching effect of nitrogen gas. The 
nitrogen pressure required to quench the sodium resonance to one-half its 
original intensity (the so-called half-pressure) is about 20 mm., but here at 
a pressure of a few millimet(*rs of nitrogen the 7>)-lines are reduced to a 
fraction of their ini ensity. The quenching of the excited NaCl molecules 
by nitrogen must be greater than the quenching of the sodium resonance 
radiation by this gas. Therefore, the NaCl mok^cule prodiictKi in this 
reaction (e) probably retains the energy of the reaction as (mergy of 
excitation, which it then transfers to a Na atom by a collision of the 
second kind. Experiments on the yields of these reactions showed that 
every collision between a Na atom and a CI2 molecule as well as between a 
Cl atom and a Nao molecule resulted in reaction. Only about one 
collision out of 10^ between Na and C^l atoms in the gas phase results 
in reaction according to (c) accompanied by emission of light. This 
low efficiency is to b(' (.‘xpected, for the probability of a quantum transi¬ 
tion may b(^ estimated at 10^ in accordance with the observed values 
for other atoms and molecules; but the time of a collision is about 10“*^ 
seconds, so that the probabilit}^ that the emission will occur during any 
one collision.is only 10~‘^' Heating the reaction zone decreases the 
intensity of the light emitted and assuming that this is due to dissociation 
of the Na2 molecule, the heat of dissociation is calculated to be 18 ± 2 
Cal. Under suitable conditions between 70 per c(mt and 100 per,cent 
of all reactions of the type (c) result in the excitation of a sodium atom. 
The redactions of Na vapor with the other halogens and with HgCE 
have been investigated in a similar way. From these studies and 
numerous others'^ of a similar character, it is evident that collisions of 
the second kind play an import ant part in the excitation of light in flames 
and very probably an important part in the ‘^dark’’ reactions taking 
place in flames, though of course this is not so easily investigated. 

A comparatively simple chemiluminescence accompanies the recom¬ 
bination of atomic hydrogen in the presence of metallic vapors.^ These 
spectra are probably excited by the recombination of two hydrogen atoms 
in a three-body collision, in which the third body is the metallic atom 
excited, so that the energy of recombination of the hydrogen supplies the 
energy for excitation. Moreover, Kaplan'^ showed that those atomic 
lines are most readily excited for which the energy of recombination 
of two hydrogen atoms to form a molecule in one of its vibrational steady 

^ See Uhey and Bate3, Phys, Rev.j 33, 279 (1929); Dec. (1929). 
2 For example, Franz and Kallman, Z. Physik, 34, 924 (1925); Bonhoefper and 

Haber, ibid., 137, 263 (1928). 
3 Bonhoefper, Z. phys. Chem., 113, 199 (1924); 116, 301 (1925); 119, 385 (1923); 

Mohler, Phys. Rev.^ 29, 419 (1927), 
^Phya, Rev., 31, 997 (1928). 
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states agrees closely with the energy required for excitation of the atom 
to one of its steady states. Table 5 gives a list of the atoms and of those 
spectral lines which we may expect to be excited in this way. The 
energy required for excitation and the energy which can be supplied 
when two hydrogen atoms combine to give a molecule in one of its vibra¬ 
tion states are also listed. These energies of recombination are designated 
as Rny where* n is the vibration quantum number of the molecule formed. 
The data indicate that unless the energy of excitation and energy of 
recombination agree within a few hundredths of a volt, excitation of the 
atom does not occur. The 2,537 line of Hg is excited though its exci¬ 
tation potential is greater than Rq; this is probably due to the formation 
of an excited HgH molecule, whose bands are also emitted, followed by a 
collision of this excited molecule with a hydrogen atom. If this collision 
results in the formation of a hydrogen molecule and a mercury atom, the 
energy liberated should be ample to excite the atom to the 2‘^Pi state. 

Table 5 

Element X Transition 

1 
Excita¬ 

tion 
potential 

Intensity Nearest R 
Differ¬ 
ence 

[ 5,890 - 2«P 2.09 Strong R, = 2.06 0.03 
Na. 6,183 2V - 3*D 3.6 Absent Ri = 3.83 0.23 

1 3,302 1\S( - 3>P 3.7 Absent Ri - 3.83 0.13 

K. j '' 7.6651 VS - 1.61 Weak R, = 1.68 0.07 
1 1 4,044 VS - 3^P 3.0 Absent R, = 2.87 0.13 

Cs. j 8,943 VS - 1.38 A]).sent(?) Rj =1.35 0.03 
1 

1 
VS 3.87 Absent fti = 3.83 0.04 

Mg. 4,571 VS - 2^P, 2.70 Absent P, = 2.87 0.17 
Cd. 3,261 VS - 2^Pi 3.78 Strong R, = 3.83 0.05 
Zn. 3,076 VS - 2‘^Px 4.01 Absent R, =3.83 0.18 
T1. 5,350 2^P^ - 2^S 3.26 Absent Ri = 3.34 0.08 

Active nitrogen has also been used to excite spectra by collisions 
of the second kind. This modification of nitrogen was discovered by 
E. P. Lewis^ and has been studied by a number of investigators. The 
early work of Strutt^ and of Strutt and Fowler^ was especially extensive. 
When nitrogen is passed through a discharge tube, the gas flowing out 
shows a bright yellow afterglow which may persist from a few seconds to 
several minutes, depending on conditions. The spectrum consists of a 
selection of the bands of the neutral nitrogen molecule, lying in the red, 
yellow, and .green. The initial states for the emission of these bands are 
the tenth, eleventh, and twelfth vibrational levels of the B electronic 

i A atrophys, 12, 8 (1900). 
^Proc. Roy. Soc., 85, 219 (1911) and many subsequent papers. 
^Proc. Roy. Soc., 86, 377 and 86, 105 (1911). 
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state of the molecule. If other gases or vapors are introduced into the 
stream of active nitrogen coming from the discharge tube, they are also 
caused to emit light. Saha and Sur^ suggested that these spectra were 
due to collisions with metastable nitrogen molecules. Birge^ showed 
that the eleventh state has an energy of about 11.4 volts, which is in 
agreement with the later estimate of Sponer.*^ It now appears most 
probable that active nitrogen is a mixture of atomic nitrogen, both 
unexcited and metastable, and of nitrogen molecules in metastable 
states with of course a large admixture of ordinary nitrogen. 

Some investigators are of the opinion that the excited molecules responsible for 

the emission of the yellow afterglow are produced in a three-body collision of two 
atoms with a normal molecule. On the other hand, Knauss^ has put forw'ard the view 

that the nitrogen atoms recombine to form an excited inolecmle without the aid of a 

three-body collision. It seems very likely that both processes occur and possibly others 

are involved. On the hypothesis of triple collisions, the energy of the exented mole- 

(uile would be equal to the h(^at of association of two atoms. It was formerly 

beli(‘vcd that the heat of association of two unexcited atoms is al)out 11.4 volts, in good 

agreiiine it with the energy of the molecule emitting the yellow bands. Recently, 

Gaviola** and Birge and HopfickB hav(i given good reasons for believing that the heat 

of association is 9.5 volts and this appears at first sight to render the triple-collision 

hypothesis untenable. It must be remembered, however, that the nitrogen atom has 

a imd^astable state at 2.4 volts, and it may prove to be necessary to consider triple colli¬ 

sions of an unexcited atom, a metastable atom, and an Ni molecule. In such a collision, 

the energy made available by the association of the atoms is about 11.5 volts, which 

agrees very well with that required to excite the yellow bands. 

Another possibility, suggested by Kaplan and ('ario,’' is that of a triple collision 

between a motasta))le molefuile in the A level and a nietastable atom having 3.56 

volts energy. Let us now consider the h.vpothesis tliat two unexcited atoms or one 

metastable and one unexcited atom, may combim^ without a three-body collision. In 

order for this to occur, the energy of association, plus the relative kinetic ejiergy of the 

two atoms, must be very nearly equal to the energy of the molecule in one of its excit¬ 

ed states. The recombination would be slow because these conditions will be fulfilled 

only in a small fraction of the collisions. At the time of writing it appears difficult to 

distinguish between these views on the basis of existing experiments.» Bonhoeffer 
and Kaminsky'’ performed experiments which they interpreted as being in contra¬ 

diction with the triple-collision hypothesis. Keeping the partial pressure of active 

^Phil. Mag,, 48, 421 (1924). 
2 Nature, 114, 642 (1924). 

8 Z. Physik, 34, 622 (1925). 

^Phys. Rev., 32, 417 (1928). 

6 Nature, 122, 313 (1928). 

® Astrophys. J., 68, 257 (1928). 

’ Nature, 121, 906 (1928). 
8 Angerer, Physik. Z. 22, 97 (1921), and Rudy, Phys. Rev., 27, 110 (1926), have 

measured the rate of decay of the afterglow. Both found a brightness-time curve 

which could be explained on the assumption that two activated entities are involved 

in each elementary process of light emission. Since two excited entities are involved 

in all the above processes these experiments do not bear on the question. 

* ZeiU. f. Elektrockemie, 32, 536 (1926). 
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nitrogen constant, they admitted unexcited Na to the experimental tube. The lumi¬ 

nosity decreased, instead of increasing as required by the triple-collision theory. 

However, lineser^ made similar experiments under somewhat different conditions and 

found the expected increase. 

It may be well to point out that the question as to th(^ existence of unexcited 

atoms in active nitrogen could be settled by obtaining its al)Sorption s])ectrum in the 

far ultra-violet, where the resonance lines of the atom are found. 

The final level for the emission of the afterglow bands is the A electronic level, and 

is metastable, so that molecules with energies from 9.0 to 9.5 volts will persist for a 

comparatively long time. It appears tliat these metastable molecMiles play a. 

major part in exciting the spectra of substances mixed with the nitrogen. For 

example, the far ultra-violet spectra of NO and CX) are excited,^ but the highest lying 

level is at about 9 volts. The far ultra-violet bands of hydrogen requiring 11.1 volts 

are not excited. However, Iluark, Foote, Rudnick, and C'henault,'' recorded mer¬ 

cury lines which have an excitation potential of 10.0 volts, using a very long (iX|.>osur(^ 

time. Okubo and Harnada,** using different experunental conditions, did not obtain 

any lines coming from levels higher than 47^, with an excitation potential of 9.51 

volts. This contradiction, as vrell as inanyotliers cncouiit(‘red in the papers on acti ve 

nitrogen, is not surprising, for its phenomena arc complicatcul, and s(H*ondary processes 

may play a more prominent part under some conditions tlian they do under otheis. 

Sinc.e processcis occur in which a nitrogen molecule receiv('s over 11 volts energy, we 

should anticipate that a larger amount than 9.5 volts could b(^ transfemnl to a metal 

atom, as, for example, in a triple collision of a metal atom w ith one met astahle and 

one unexcited nitrogen atom. 

Bernard Lewis'*’ has considered tlic influenf^e of surfaces on the afterglow in both 
nitrogen and oxygen, and has investigated tlie aft<Tglov\ in a mixture of these gases. 

He finds, among other very interesting results, that water vapor prev(^nts recombina¬ 

tion on the walls and, therefore, increases the intensity of the afterglow. 

We conclude this section with a brief discussion of the phenomena 
occurring in ordinary flames. In spite of the fact that chemiluminescence 
must play an important part in such flames, it appears that thermal and 
chemical equilibrium is nearly attained in many cases. It is possible 
to make measurements of flame temperatures which have a definite 
meaning, even though we are not dealing with stationary conditions. 
Many of the early measurements are faulty, since they depended on the 
introduction of a thermometric device into the flame. This is not the 
case with the measurements of Loomis and Perrott,® who employed 
the method of Kurlbaum.^ Light from a tungsten strip lamp is focused 
on a flame, colored with an alkali salt, and the light of both flame and 
lamp is then focused on the slit of a spectrometer. It has been proved 
repeatedly that the reflective power of such a flame is zero, and we have 
strong evidence that Kirchhoff^s law applies to the emission and absorp- 

^Ann. Physik, 87, 717 (1928). 

2 Knauss, loc cit, 
3 J. 0. S. A., 14, 17 (1927). 

^Phil. Mag., 6, 372 (1928). 

^ J. A. C. S., 60, 27 (1928); 61, 654 and 665 (1929). 

«J. Ind. Eng. Chem., 20, 1004 (1928). 

^ Phy$ik. Z., 8, 187. 322 (1902). 
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tion of resonance radiation of the salt carried by the flame. Under these 

circumstances, the resonance line will have the same brightness as the 

background of continuous radiation if the emissive power of the flame at 

this wave length is equal to the emissive power of the lamp multiplied by 

the absorption coefficient of the flame. In symbols, we must satisfy 

the condition 
Ep = EpAp, 

If this condition is not satisfied, the spectral line from the flame will 

either be brighter than the background, or will be r(iversed against it. 

In practice, conditions are adjusted so that the line is just reversed, 

and then tlie brightness bunperature of the tungsten lamp is read with an 

optical pyrometer. Knowing the emissive power of tungsten, the 

true temperature is them determined by calculation, and is taken as the 

flame tcunperature. This met hod may be applied to the study of the proc¬ 

esses occurring in internal combustion (mgines. Sernenoff ^ has developed 

a th(?ory of detonation in which collisions of the second kind play an 

important role. 

1 Z. Phydk, 46, 109 (1927) and 48, 571 (1928); Z. phys. Chem. B. 2, 161 and 169 

(1929). 



CHAPTER XV 

WAVE MECHANICS 

1. DE BROGLIE’S THEORY OF MATTER WAVES 

The methods of quantizing atomic systems due to Bohr and Sommer- 
feld are of great service because they yield approximate numerical 
results by the use of fairly simple models, but they seem destined to be 
superseded by other avenues of attack which are in better agreement 
with experiment. For some years, prior to 1925, evidence to this effect 
was accumulating, for example, the older theory failed .to yield correctly 
the energy levels of neutral helium. There were many attempts to 
construct a theory in better accord with experiment. This might be 
done by altering the quantum conditions, the expression for the force 
between moving charges, the equations of motion, or by many other 
devices. In the face of possibilities so numerous, little progress could 
be made until some guiding principles were obtained. , 

Two theories of quantum dynamics were initiated by de Broglie 
in 1923 and Heisenberg in 1925, respectively. The theory of de Broglie 
has been greatly improved and extended by Schrddinger. The theories 
of Heisenberg and Schrodinger won instant favor, because their funda¬ 
mental postulates are reasonable and because they are remarkably 
fruitful. They were developed independently, and seem at first sight 
to have little in common, but Schrodinger has proved them to be equiva¬ 
lent; they are different mathematical formulations of the same physical 
relations. 

Because it is easier to understand, we first describe the Schrodinger 
theory, known as ^^wave mechanics.^^ It arose from the ever-increasing 
evidence that in many cases the behavior of a light quantum can be 
predicted by treating it as a particle. The conviction grew that the 
similarity of material particles and of atomic packets of radiant energy 
was something more than a coincidence. The question is, if a particle 
moves with a velocity nearly equal to c, will it have properties such that 
it is convenient and natural to associate with it a characteristic frequency? 
Long before the spinning electron was introduced into the theory of 
spectra, there were sporadic suggestions that the electron might have an 
internal motional frequency given by the equation 

^ _ yrioC^ _ hvQ 

516 

(1) 
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where — v/c and v is the velocity of the electron. This was mere 
speculation; but L. de Broglie^ showed that great advantages are gained 
by postulating that a wave of frequency v as given by equation (1) 
accompanies the electron in its motion. We shall call such waves 
^^de Broglie waves’^ (To the term, ^^matter-wave'^ we give a different 
significance, Sec. 2). In de Broglie^s theory it is found convenient to 
make the phase velocity 

(2) 

This relation is really a dispersion equation, because can be expressed as a 
function of v. Let us study the properties of a group of superposed 
wave trains, having frequencies very close to v. Since the component 
trains have slightly different phase velocities they continually slide 
over each other, and the point of maximum disturbance will generally 
travel with a velocity different from that of any of the component waves. 
This velocity is called the group velocity,^’ and in many cases it 
is the velocity with which energy is transmitted. In Appendix III 

dp 
we prove that the group velocity is 

\u) 
Substituting from equations 

(2) and (1), we find that the velocity of the group accompanying the 
electron is jSc, which certainly should be the velocity of transmission of 
its energy. In the case of a light quantum, the phase velocity c is 
identical with the group velocity. Electromagnetic waves are considered 
in this theory as a special case of the de Broglie waves. These ideas 
opened up the possibility of a unification of quantum dynamics and of 

opticsj which gives a nataralj plausible interpretation of the existence of 

statio7iary states. 

While de Broglie’s*^ original treatment of these matters is in some ways 
superseded, his reasoning is of great interest. It is as follows: While 
the frequency of the wave accompanying an electron is given by equation 
(1), an observer will assign to the internal periodic motion a different 
frequency, 

= ^o(l ~ 

due to the relativity change of time-scale. That is, some quantity con¬ 
nected with the motion varies as sin 2Trvit, At time zero, let the electron be 
at the origin, and let the phase of its internal motion coincide with the phase 
of the wave at that point. Then we can prove the theorem, that the 
phase of the internal motion will always be in agreement with the phase 
of the wave at the position of the electron. For at time t the electron 

1 Thesis presented to the faculty of the University of Paris (1924), Ann. de 
Phys. (10) 3, 22 (1925). The whole subject is summarized in his book “Ondes et 

Mouvements,’' Gauthier-Villars, Paris (1926). 

a Phil Mag., 47, 446 (1924). 
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has moved to the point x = fid, and is characterized by sin 2Trv 
pc 

The 

wave is given by sin which agrees with 

the previous expression provided vi = p(l — P‘^). This is actually the 
uasc, by virtue of the definitions of v and vi. To apply this resonance 
relation in the interpretation of the quantum conditions, we must show 
that the posnhle paths of the eledron are raijs of the phase waves. Since 
the new theory is to contain optics as a special case, the laws governing 
l.he phase waves arc chosen as nearly as possible like those of optics. The 
a>ssumption is made that the rays are determined by Fermat's principle, 

^?'() Pc ^ __ ^ 
0 

and this is identical with the principle of least action, ds being an element 
of path. While this is proved here only for the case of a particle moving 
with uniform velocity, de Broglie ascribes general validity to the principle. 
Consider an electron on a circular orbit of the hydrogen atom; it is 
supposed to be accompanicHl by a wave system such that the amplitude 
of the wave varies sinusoidally along the electron orbit. In order that 
the wave system may be permanent, an integral number of wave lengths 
must occur in the length of the orbit. In de Broglie's words, ^^The 
motion can only be stable if the phase wave is tuned with the length of 
the path." If T be the period, and we integrate over one revolution, 
the number of wave lengths contained in the path must be 

f*= r-*. r - 
j j “ j. 

moPVdt 
n, n = 1, 2 (4) 

X' 

h{i - PT^ 

This is obtained by putting ds = Pedt in equation (3), and is identical 

with the quantum condition Xf pkdc/k = nh, since the sum of the phase 
integrals is 

muv^dt 

(1 - p9^ 
Even prior to the papers of de Broglie it was realized that the quantum 

conditions probably have their origin in some resonance property of 
the atomic motions, but the difficulty was to find a suitable formulation 
of the facts. An example will show that in ordinary physical problems 
dealing with stationary waves, we are often confronted with a series of 
integers which play a r6Ie similar to that of quantum numbers. If we 
write the differential equation for the transverse vibrations of a string, 

dx^ di'^ 

there is a general solution^ 

y-ii-t) 
•See Webster’s “Dynamics,” p. 170. 

+ F 

(5) 

(6) 
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Nothing rnOre can be said until boundary conditions and initial conditions 
have been imposed. For example, let u»s fix the string at the points x ^ 0 

and X ^ d. That is, we impose the boundary conditions, ?/ = 0 at a; = 0 
and X = d, for all values of t. Then the motion must be of the form, 

S. . Tnx / Trnvt \ 
An Sin ^ -cos ( - anh (7) 

The constants An and an are determined by specifying the values of 
y and dy/dt as functions of x at a given time to. The motion of the 
string is made up of stationary sinusoidal vibrations having one, two, 
three, etc. loops in the length d^ but never a fractional number of loops, 
simply because of the boundary conditions. This point deserves 
emphasis, for it is closely analogous to the appearance of quantum 
numbers in Schrddinger^s mechanics. 

This is only a single instance of the '^explanatory^’ power of de 
Broglie’s theory. In generalizing the above interpretation of the 
quantum conditions to a system with ii degrees of freedom, Schrodinger 
is led to an equation which is most naturally visualized as an equation of 
wave propagation in 7i-dimensional space. Thus the waves which are 

used in Schrodinger's scheme of atomic dynamics are not three dimensional 

except in the case of a system having three degrees of freedom. We shall 
refer to these w-'dimensional oscillations as matter waves, or Schrodinger 

waves. 

The essence of Schrddinger’s discovery is this: He has found a 
partial differential equation t o govern the changes of a new and important 
quantity ordinarily called the amplitude of the matter waves, together 
with boundary conditions which, in the case of conservative atomic 
systems, limit the allowed solutions to a definite set, each one being 
characteristic of an energy levf^l of the atom. (When the energy levels 
are continuously distributed, so also are the wave functions.) Schro¬ 
dinger noted the important fact that the product of ^ and its complex 
conjugate {i.e., if ^ is real) obeys an equation identical with the 
equation of continuity. Accordingly, he interpreted as proportional 
to electric charge density. On the other hand, Born^ advanced cogent 
reasons for believing that the function ^ is not a definite property of the 
individual atom, but that ft determines the average behavior of the 
atom. The prevailing view is that 

• * • qMv 
measures the probability that the coordinates describing the structure of 
the atom shall lie between qi and qi + dqi, q2 and q^ + dq2f etc. In this 
expression, dv is a differential volume element and may be written in the 
form p{q\ . . . qn)dqx . . . dqn. For example, in the case of plane 
polar coordinates, dv = rdrdB and p is simply r. This interpretation 

1 Z. Physik, 38, 803 (1926) and 40, 167 (1927). 
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has led to a generalization of the Schrodinger theory, commonly referred 
to as the operator theory or transformation theory of quantum dynamics* 
Discussion of this theory is postponed to Chap. XVIIL 

2. THE ANALOGY BETWEEN DYNAMICS AND OPTICS 

We shall now amplify the suggestion made in Sec. 1, that Fermat’s 
principle and the principle of least action have a common basis. About a 
century ago Hamilton showed that there is a close similarity between the 
laws of geometrical optics and those governing a particle in a conservative 
field of force. Let 7", F, and E be the kinetic, potential, and total 
energies of the particle. Then, if we agree to consider only those motions, 
actual or imaginary, for which E is the same, the actual motion will be 
that for which 

i{E - VyHs (8) 

is a maximum or minimum. (More accurately, the integral is station¬ 
ary.) This form of the general principle governing the motion of a 
particle is exactly similar to Fermat’s principle of least time in geo¬ 
metrical optics, namely, the actual ray between two fixed points is such 
that the time of passage of the light is an extreme. If ds is an element 
of the path of a light ray and 2/, z) is the refractive index of the medium, 
the velocity at :r, z is c/)u and an element ds is traversed in the time 
ds 

The total time is obtained by integration and Fermat’s principle 
ctii 

is stated by the equation 

(9) 

From equation (9) we can easily arrive at differential equations in the 
Hamiltonian form, to determine the path of a ray, just as Hamilton’s 
equations in dynamics determine the path of a particle. In Hamilton’s 
day it was customary to consider Fermat’s principle as an expression 
for the equations of motion of light corpuscles and to think of this prin¬ 
ciple as a mechanical explanation of geometrical optics. 

The ray method of geometrical optics breaks down when we deal with 
distances comparable with the wave length. Schrodinger introduced 
the idea that the failure of ordinary mech^ics when applied to atomic 
systems is due to a similar cause; namely, our habit of thinking about the 
paths of electrons and nuclei, when perhaps we should focus our attention 
on wave fronts associated with those paths. As long as the path pre¬ 
dicted by mechanics has a radius of curvature large in comparison with 
the size of an atom we can rely on the results, but when this is not the case 
a new law must govern the phenomena. Such deviations from mechanics 
are analogous to diffraction in optics. 

Now the Hamiltonian equations for a system having n degrees of 
freedom differ from those for a single particle only through the fact 
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that there are more equations, two for each coordinate, and the optical 
analogue would be the propagation of a wave in space of n dimensions. 
Suppose we are dealing with a system of particles, n/3 in number, 
having masses mi, m2 . . . and Cartesian coordinates Xi^ x^ for the 
first particle; Xa, Xr,^ xq for the second; and so on. It is convenient to 
adopt new coordinates >Yj, X2, . . . , such that 

mj^i = Xiy • • • (10) 

We shall refer to the space in which the X^s are Cartesian coordinates 
as the coordinate i^pace or the Schrodinger space. The square of the 
element of length in this space is 

ds^ = SdX/ = + . . . = 2Tdt\ (11) 

The dynamical analogue of a light ray in this space is the path of a 
fictitious point having coordinates Xj, . . . Xn, the so-called '^repre¬ 
sentative point of a given dynamical system. The n-dimensional 
velocity vector of this point has the components 

A't • •• A^, (12) 
and its equations of motion are 

dXi ^ dH dPi ^ _ dll 
dt dPi dt dXi 

where Pi - Xi. As we showed in Chap. IV, Sec. 10, 

Pi - (13) 

where W is Hamilton’s principal function, defined by the equation 

W = -Et + S(X,a), (14) 

S being the action function. By equations (12) and (14), we see that 
the velocity is parallel to the normal to the surface, W == constant, for 
the direction cosines of the normal to this surface are proportional to 
dW/dXi, dW/dX2y etc. It is natural, therefore, to suppose that surfaces 
over which W is constant can be utilized as wave surfaces for the matter 
waves. Since W depends on t, these surfaces are in motion, and their 
velocity in the coordinate space is taken as the phase velocity of the 
matter waves. We prove in Sec. 3 that this velocity is 

u = 

The proof is rather complicated 
to pass at once to Sec. 4. 

E 

i2{E - F)]^^' 

and at this stage the reader will do well 

3. DETERMINATION OF THE PHASE VELOCITY 

It is necessary to consider in more detail the nature of the action function S in 
equation (14). It depends on the coordinates and on n constants of integration, 

. . . a„; for brevity, we indicate this by writing S{Xy a), where X stands for the 
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whole group of variables and a represents all the constants of integration. When we 

choose a set of a’s, we restrict ourselves to the consideration of a certain set of related 

paths in the X space, and of the surfaces normal to them. To make the situation 

clear, we consider the free motion of a single particle in ordinary space. The matter 

waves belonging to the particle are assumed to extend through the whole of a three- 

dimensional coordinate-space, in which each state of the particle corresponds to a 

certain position of the representative point. In this illustration, the position of the 

representative' jK)int is the same as that of the actual particle, so we may as well talk 

of the representative point as a fi(;titious particle of unit mass. We take as rays the 

paths of a number of such particles, all moving ])arallel to each other with the same 

velocity. The wave-front surfaces for these paths are planers perpendicular to them. 

The energy” of one of the fictitious parthdes is 

H = ^ Py^ + p^“), 

for there is no potential energy. The action is obtained b}^ solving the Hamilton- 
Jacobi equation 

/ nu\2 / ntT\2 / 'ia\2 

(16) 

Writing 

we find, 

2E = + a/-, 

S = cc^X -f- oiyY -f- const., 
W = -Et + S{X, r, Z, a). (17) 

For a fictitious particle which has coordinates Xo, To, at time /n, the W value will be 

W(A’'(), Fo, Xo, ot^j oiyy ^o) = TFo. (18) 

We now agree to consider a class of fictitious particles whi(;h have identical values 

of the a’s, for example, those for which = a, ay = h, ay^ — c; and further, wo 

restrict ourselves to those particles which have a common vahu^ of W, say Wo. The 

locus of all such particles at time /o is 

W(X, F, Z, a, 6, c, U) = Wo. (19) 

Varying Wo, we obtain a family of planes, over each of Avhich W is constant, and all 

of them are perpendicular to a bundle of paths characterized by common values of the 

as. As time goes on, these surfaces of constant W move; at any time t the surface 

for which W == Wo is given by 

W(X, F, Z, a, 6, c, t) - Wo, (20) 

and it is still normal to all the paths considered, for the relations of equation (13) 

are always true. The surfaces thus selected are entirely satisfactory to serve as 

wave fronts of the matter waves. 

The argument given above applies almost verbatim to the general case. Given 

the function W(X, a, wo assign particular values to the a’s, say aio, a^o, . . . etc. 

Then the equation, 

W(X, ao, t) = Wo, 

where Wo is a constant, represents a moving locus of n — 1 dimensions. At any 

instant it is “perpendicular” to the paths of all representative points whose momenta 

are given by the relations, 

“ ~dXi " 

The generalization to non-Cartesian coordinates is easily made by writing qi in place 

of Xi In this case, however, it is important to note that the p's may not denote 
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velo(uty components, but may represent,angular momenta, for example. Wliile the 

surfaces of constant W remain always perpendicular to the trajectories of the repre¬ 

sentative points, they do not always contain the same fictitious particles; for the 

particles themselves are moving at velocities different from those of the surfaces. 

The velocity of movement of the surfaces W{Xj ao, 0 in obtained as follows. The 

equation, 

may b(‘. written 

Igrad TF|== \2{E - V)]'\ (21) 

Consider the statti of affairs when t — to, fixing attention on tlie surface W = Ifo- 

Starting from a givciii point of this surface, and ])assing a distance dn along the normal 

in the direction of increasing W we arrive at; a point characterized by the value 

W - Wo + dWo 
where 

rflKo = IkhkI Hi • dn -=[2(E - V)Y‘‘dti, (22) 

and the locus of sm^h points is the surface IFo -f- dWo ~ W, But from equation (17), 

after a time dtoy given by 

Edi 0 — d Wo 

the value of W at every point of tln^ surface will have dc'creased to Wo. In other 

words, the surface W — ITo has moved perpendicular to itself with a velocity at any 

point given by 
_ dn _ E . . 

It is imj)ortant to remember that the potential energy of the system is supposed to 

be a function only of the coordinates. When we pass to the consideration of the 

coordinate space, V may be (considered as the “potential energy” of a “representa¬ 

tive ?i-dimensional particle.” Now this is the same for all representative particles 

of a given total eniirgy E, regardless of the direction from which they come. There¬ 

fore, u is tne same for all wave fronts as.sociatcd with systems of given energy Ey 
at a given point, regardless of their orientation. 

4. THE EQUATION OF PROPAGATION OF MATTER WAVES 

In setting up the equation to determine the amplitude of the matter 
waves, we naturally utilize the familiar propagation equations of classical 
physics. For electromagnetic waves in free space, for sound wavt^s 
when energy losses are neglected, or in a host of other cases, we meet with 
an equation of the type 

dV , dV , dV_1 ^ Q 
dx^ dy^ W 

(24) 

u being the constant phase velocity of the waves. Equation (24) has 
broad possibilities. It may happen that (p bears little resemblance to the 
usual idea of a ^^wave^^; for example, it may be zero at a given point 
until time t, and unity thereafter. But in general, equation (24) describes 
& propagation of the quantity <p. Thus it has the solutions. 

^ — /(ax + yz ± ut) 
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where ^ 1 and the function f may be chosen ad libitum. 

This represents a disturbance moving along the line whose direction 
cosines are a, 0j y. Still more important, the equation has solutions 
which may be described as standing waveSy formed by superposing two or 
more solutions which represent propagation in opposite directions. (Exam¬ 
ple, (p = sin (a: — ut) + sin (.r -f ut) = 2 sin a: cos ut.) 

Suppose that w is a function of the coordinates and possibly of time. 
If u does not change too rapidly when the coordinates or the time vary, 
it will be appropriate to speak of the state of affairs described by equation 
(24) as a propagation in an isotropic but inhomogeneous medium, that is, 
one in which the wave velocity varies from point to point but is the same 
for all directions at a given point. Generalizing to represent matter 
waves in the n-dimcnsional space of X^s, we shall assume the following 
wave equation:^ 

Assumption I: 
dH' 1 _ 

+ * * * + u^ * dt^ 

Substituting the value of u into equation (25) we have 

^ dX^ W ” 

(25) 

(25') 

6. ELEMENTARY SOLUTIONS OF THE WAVE EQUATION 

The question is, what is the relation between the amplitude ^ and 
the phase There are solutions of equation (25') of the form 

W W 
^ = cos 2T~r or ^ = sin 27r, , 

n h 

and more complicated solutions may be constructed by forming a 
trigonometric series composed of such tenns. Then W/h is analogous to 
the phase of monochromatic light and 4" resembles an amplitude. (Here h 

is simply a constant having the same dimensions as W, namely those of 
action, introduced to make the argument of the cosine a pure number.) 
However, it is usually more convenient to use the solution, 

Assumption II: 

^ - exp ^27rz^^ = ^(x) exp ^ (26) 

In this equation we may write 

n 

so that W —-^Et + Sj but it must be understood that S is determined by 
solving the differential equation, and is not usually Identical with the 

^ More general wave equations will be introduced in Secs. 12, 19, and 20. 

^ = exp 
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action function of classical mechanics. Many authors use instead the 
relations 

3- 

The real part of both solutions is the same, but we shall consistently 
use the former. 

^ = exp ^ —= exp ■27rf 

6. schrOdinger’s amplitude equation 

Substituting equation (26) in equation (25') and removing the factor 

exp we obtain 

4- F)^ = 0. (27) 

This is often referred to as the Schrodinger wave equation. It is funda¬ 
mental for all that follows. In the coordinates Xj, . . . , equation (27) 
becomes 

4. 4. ^ 4. . . . 
7n\\dxr dyi^ m2\dx2^ 

+ - F)^ = 0 . (28) 

In problems dealing with only one electron, we write this in the form 

Af + ~~ {E - F)^ = 0, (29) 

S^\I/ d'^ip 
where Aip means , and is read ‘T^aplacian \p. 

Assumption III,—Since yp is supposed to represent a physical 

qiuintity whichy in principle at least, can he measured, it must he finite, 

continuous, and single valued for all values of its variable which can actually 

occur in nature.^ 

It seems very reasonable, and indeed almost naive, to say a physical 
quantity cannot become infinite and must not experience discontinuous 
jumps in value. The recjuirement of single valuedness or uniformity 

means that p cannot be a function like x'A, with two values for each value 
of X, or sin”^ x, with an infinite number of values. Of course, the positive 
value of x^^^ is single valued and could be used as a possible form for p. 

This requirement seems obvious too. However, Assumption III is of 
the utmost importance, for we shall find that p can be finite, continuous, 

and single valued when, and only when, the energy E has the quantized values 

actually occurring in nature. When these conditions are satisfied we shall 
speak of p as an acceptable function. 

1 Strictly speaking, it is \p*yp which can be measured. See Sec. 16. 



626 WAVE MECHANICS [Chap. XV 

Assumption III replaces the Wilson-Sornmerfeld quantum conditions. 
While these older quantum conditions were arbitrary, assumption III 
appears in a natural way, we might even say a necessary way, being 
analogous to the boundary conditions in the problem of the vibrating 
string. It is surprising but true that the mere requirements of finiteness, 
continuity, and uniformity for ip determine uniquely the distribution of 
corresponding to each allowed value of E. The actual numerical values 
of \p are not specified, for if S is an acceptable solution of the wave equa¬ 
tion, cS is also solution, c being a constant. The size of yp will be 
determined by an arbitrary convention in Sec. 13. In the problem of 
hydrogen we shall find that \p will be acceptable if E takers the negative 
values —Rhc/n^f or any positive value whatsoever. The negative 
values of E correspond to the elliptic orbits of tlu^ older theory; positive 
values, to the hyperbolic orbits. This illustration shows that thci values 
of E which give rise to acceptable functions may be distributed either 
discretely or continuously. Such an aggregtite of E values is often 
referred to as a ‘^spectrum of characteristic values,^’ or ‘^proper values, 
its parts being called the discrete” (or ‘^discontinuous”) and the 
“continuous spectrum.” Either part may be missing, depending on 
the nature of the problem.^ 

We must note an important special case of assumption III. If 
the system is periodic, the requirement of uniformity means thsiC when it 

returns to its original configuration, \p must return to its original value. 

This suggests a way of avoiding a certain inconsistency. It may be 
objected against assumption III that an angular coordinate can assume 
infinite values, although the corresponding configuration remains finite 
and therefore measurable. In such a cavse, we simply require that \p is 
repeated w’'hen the configuration is repeated. Again, the (Jartesian 
coordinate x may have infinite values; why should \p be restricted to 
finite size? The reason is that \\p^\ represents a measurable physical 
property; while x does not when values approaching infinity are 
considered.^ 

7. THE RIGID ROTATOR WITH ONE DEGREE OF FREEDOM 

If ip is the azimuthal angle of a body rotating about a fixed axis, the 
moment of inertia being /, then 

T = V2lip^ 
1 The German word for characteristic; value is Eigenwert; the characteristic 

mnetion yf'n belonging to the Eigen we rt Eu is called an “Eigenfunktion.” We shall 

often use these words in English sentences without apologetic quotation marks. 

2 It is interesting to note that Kohn (Resume and bibliography in Z. Physik,^^ 
745 (1927)) was led to consider equations of the same general type as those used by 

Schrddinger, in connection with his hydrodynamical theories of gravitation and elec¬ 

tromagnetic phenomena, many years before the application of such equations to 
atomic structure was undertaken. 
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and the element of length in the q space is 

= 27V<'* - ld^\ (30) 

Let JJ-'v be a new variable of dimensions with respect to which 
the differentiations are carried out in forming A^. Since there is no 
potential energy, the wave equation is 

The solution is 

where 

_SttW _ 1 d^ 
d(V‘>py'^ /f' ■ “ 

\p = cie'"*’ + 

Sr-^ET 

(31) 

(32)' 

If E were negative, the solution would become Cier^'^ + where h is 
real. If this is to be finite when ip — ± oo^ we must have Ci = 0 and C2 

= 0. Therefore E must not be negative if we are to avoid a trivial solu¬ 

tion, and equation (32) can be recast in the form \l/ ~ A sin 

or better, 

\p = A exp (33) 

The requirement of single valuedne^ss for \p means that when the system 
passes through a cycle and regains its original configuration, \p must 
return to its original value. The rotator repeats its configuration whem 
iP increases by 27r; if is to repeat its value the coefficient of (p must be 
an integer m; so 

Er,, = with m = 1, 2, • • • . (34) 
o7r“i 

In the singular case E = 0, the solution of equation (31) is Civ? + C2. 
Since ^ must be finite, even when <p is infinite, we must have Cj = 0, 
\p = C2. Therefore, the value m = 0 should be added. 

In discussing band spectra we have sc^en that formula (34) for the 
quantized energy levels of a rotating diatomic molecule is not applicable 
when m takes integral values; but half-integral (quantum numbers arc in 
good agreement with the empirical results. The difficulty arises from 
treating the problem in only one dimension. It is as though we were to 
study a problem in the three-dimensional motion of a fluid, on the false 
assumption that conditions do not vary in a direction parallel to one of 
the coordinate axes. 

8. THE RIGID ROTATOR WITH TWO DEGREES OF FREEDOM 

Supposing the rotator to be a ‘dumbbell” molecule, let 6, (p be polar 
coordinates of the line joining the two nuclei. If the molecule were not 
rigid, we should have a problem involving six coordinates fi, fla <pi^ 
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^2; ^2, <p2y belonging, respectively, to the nuclei of masses mi, mg. But 

02 = T — 01, ^2 = “TT + <Ply ri = rg = 0, 

and from the definition of the center of mass, miri = mgrg, it is easy to 
bring the kinetic energy to the form 

^ _ 7(sin2 + 0i2) 
2 

where T is the moment of inertia, mirr + m^rg^. The coordinates used 
in calculating the Laplacian are /^^v?i, and /^0i. Dropping subscripts, 
the wave equation is 

sin 0 00' 
1 0V I 

sin 0 00y dOj sin-8 d(p^ 

We try the solution ^ = 0<h, where 0 is a function of 0 alone, 
and <i>, of <p alone, and introduce a quantity j, such that j(j + 1) = 

Substituting this in equation (35), and dividing by 04>/sin2 0, 

sin 0 0 
'~W ■ dd^ 

jij + 1) sin* 6 
1 ^ 

<!> 0v?2 

The first two terms are a function of 0 and the last term depends upon tp 

alone. The only non-trivial way in which a function of one independent 
variable can always be equal to a function of another is that each shall 
be a constant. Suppose that we set the last term equal to Then, 

02cl) 
= 0, ^ == 

dif- 

The amplitude constant is omitted, being unimportant for the present, 
<l> is finite and continuous as it stands. To make it a single-valued 
function of position we must make m an integer, or zero. Further, the 
first two terms of equation (35) must be equal to m-*, and the equation 
for 0 reduces to 

_ 1_ 0 
sin 0 00* '>[■ 

jU + 1) 

Solutions which are single-valued as a function of the position of the molec^ 

ular axis are denoted by 
Pj.nM 

where p = cos 0. Solutions having this property are obtained if we place 
y = 0, 1, 2 • • • , and if m is less than or equal to j. 

The functions, 

cos ruip and sin m<p 

are called “ tesseral harmonics. The functions, Pj ,«(/it) are of the form 

(37) 

1 The method used here is explained in Jbanb' Electricity and Magnetism,” 4th 
ed., p. 237, Cambridge Univ. Press, Cambridge (1920). 
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where Py(M) is the jt]\ polynomial of Legendre (see Appendix IV). is a poly¬ 
nomial in cos 9, namely 

{2j) I sin”* 6 
2l(j — mj\ 

+ 

f (? — m)(/ — w — 1) 
I ^ " 
O' - m){j - m -JKi - m - 2)0 - rn - Z) 

2.-1) - - (2y _ 3) ■ COS^~ (38) 

It terminates when the exponent of cos 6 in the last term becomes one or zero. 

The solution of equation (35) is, therefore, 

yp 0^ (39) 

and is acceptable if j and m are integral numbers arid m ^ j. In this 

solution, m plays a role similar to that of the equatorial quantum number 

in the space quantization of the H atom. The purely mathematical 

requirement that it shall be less than or equal to j is analogous to the 

concept of the older theory that mh/2Tr is a component of the total angular 

momentum jh./2Tr. Further, from the definition of j, 

Pi = (39a) 

a formula in good agniemcmt with experiment; for we have 

ia + 1) - ii + HY-yv 
This shows that the energy levels obtained in the analysis of a rotational 
band spectrum are all shifted by a small constant amount from the 
positions predicted by the older theory on the basis of half-quantum 
numbers. The constant shift docs not affect the frequencies of the 
lines emitted (see however, Chap. XII, Sec. 4). 

This example illustrates a behavior frequently encountered in prob¬ 
lems of wave mechanics. It often happens that when we neglect to 
use the full number of degrees of freedom appropriate to a problem, the 
quantum numbers change from integral to apparently half-integral 
values, or vice versa. It further illustrates a feature common to systems 
of rotating particles. If we were to take for ^ the values Pj,m{p) 

cos or Pj,m{p) sin (m<^) which also satisfy equation (36), 
the change of ^ as times goes on would be a vibration rather than a 
rotation. Physical intuition leads us to use the solution of equation (39), 
for its real part, 

PCOS {m(p — 2Tvt), 

represents a rotating distribution of the ^ function, except when m = 0. 
In many other problems the wave equation is such that ^ depends on the 
angular coordinates through the factor We wish to study 
the values which yp assumes on the surface of a sphere of arbitrary radius 
as a function of the polar coordinates d and (p. In the first place, we note 
that it will be zero at certain points or along certain curves, known as 
''nodal points’^ or 'Tines.’’ This will occur whenever either ^ 

cos m<p is aero, Now cos is aero when nup «ir/2, 3ir/2, • ' • 
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these nodes will lie on great circles of the sphere. There will be 0, 1, 
2 • • • such circles for m = 0, 1, 2 • • • , respectively. will De 

J-3 m^O J~3 m^t! J--3 m-i-3 J~3 m~±3 

Fig. 1.—Traces of nodal cones of the functions Py.m (cos 0). 

zero when sin 0 = 0, t.e., for 0 = 0 and tt and this will occur at the 
poles of the sphere. It will also be zero at intermediate values of 0 

N 

m^±4 

Fig. 2.—Polar graphs of Icos mtp\. 

dependent on both j and m, as determined by setting the expression 
in equation (38) equal to zero. We show these nodes for all possible 
steady states up to j « 3 in Fig, 1. The nodal lines are located similarly 
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on the surface of any sphere with center at the origin so that ^ actually 
vanishes on the nodal planes^ m<p = 7r/2, etc., and on the nodal cones 

occurring at values of $ which make = 0. To see how the 
function xp varies between the nodes we show polar graphs of jcos m<p\ for 
different values of m. at an arbitrary value of 6 (Fig. 2) and polar graphs 
of |Py,,n(/i)| for different values of j and m, for an arbitrary value of ip 

(Fig. 3). These represent the variation of the absolute value of xj/ along 
a circle of longitude and a meridian, respectively. In Fig. 2, the radius 
vector making angle ip with the horizontal intersects the curve at a 
distance from the origin proportional to cos nup. Similarly, in Fig. 3, 
the radius vector making an angk^ 0 with the vertical axis is proportional 
to P;.m(COS 0), 

Fto. 3.—Polar graphs of the absolute value of Py.m («o8 B), 

9. THE LINEAR HARMONIC OSCILLATOR 

Let the oscillator have mass m and let the restoring force be pro- 
portional to its distance from the origin, so that its mo'tion is simple 
harmonic. If the frequency is v^, the potential energy is 

V = 2TrWnxK 

The wave equation is 

4. - 2TrWnx'^)'P = 0. (40) 
dx^ 

It is convenient to use a new variable 

The equation (40) becomes 

V = 2nr{^ h) 

^411 
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The characteristic values of E are obtained by writing 

^ (42) 
and assuming the solution 

H = (43) 
0 

Negative powers of v are not included because we desire ^ to be 
finite, continuous, and single valued when = 0. Substituting this 
series in the differential equation, we ob'tain the recurrence formula, 

(44) 
^n-f2 _ “hi s 

An (jl + 1)(^^ + 2) hv() 

to determine the coefficients. We can show that the series begins with 
either Aq or Aii;. Suppose that the solution does contain a finite number 
of negative powers of v. The recurrence formula is not changed but the 
solution is no longer finite at v = 0. Let us seek for a particular value j 
of the running subscript 7i such that ^1/4.2 is not zero, but all the preceding 
coeflficients, Aj^ij Ajj ^/-i, . . . are zero. The recurrence formula 
shows that 

(j + l)(i + 2) = 0. 

Thus the subscript 7 must be either —1 or —2, and the first non-vanishing 
coefficient Aj+2 is either Ao or Au When it is A], then from ecjuation 
(44), ^2 = 0, 2I4 = 0, • • • • When it is Ao, then since A_i is zero by 
supposition, equation (44) shows that Ai = 0, A3 = 0, • • •». That is, 
the series for H is either even or odd. 

Now the relation, equation (44), is such that will not converge 
when r —> 00, if 7/ contains an infinite number of terms. In order to keep 
^ finite, we must choose s in such a way that the series for H comes to an 
end. This can be done by choosing 

s 

Thus, if s = 1, we have 

2E 

hvo 
1, 3, 5, 

A2 

A~o 
= 0, 

and the even solution terminates and leads to a finite value of Quite 
generally, if 8 is one of the integers 1, 5, 9, ... we get an even solution 
which satisfies all the requirements, and if s is 3, 7, 11, . . . we get an 
odd solution. Thus the energy levels of the oscillator are 

En = (n + }/'2)hvQ. (45) 

This formula deviates from that obtained by the old quantum mechanics, 
and shows that the oscillator possesses energy when in its lowest quantized 
state. Corresponding to each value J?n, there is an appropriate ^ 
function, If we think of \pn as a wave amplitude, an oscillator in the 
nth quantum state is represented by a stationary wave extending along 
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the v-axis from — oo to + ^. The graph of its amplitude at any time is 
obtained by multiplying every ordinate of the curve ^n(y) by cos 2Trvt, 
where v = {n + yQvu. The formula for the characteristic functions is, 

Mv) = • Hn{v) = . //„(27r\/M~^o7^ * x), (46) 

The polynomial //„(v) is called the ‘‘nth Hermitian polynomial/’ after 
its inventor, Ch. Hermite. The values of the first few polynomials are 

Ho = 1, //, = 2v, H2 == 4rv^ - 2, 77, = Sv^ - 12t;, 
H, = - 482;^ + 12, = 32v^ - lG0t»« + 120^;. 

In general, 

H„{v) = (2i>)" - + 

n{n - l)(n - 2_)(n - . 

The graphs of the functions i/^o, . . . , ^4 arc shown in Fig. 4, after 
Schrodinger.^ Beyond the range shown, they approach the t>-axis. 

As plotted, they have been multiplied by the normalizing factor, 
(See however, Chap. XVII, Sec. 21.) 

The result can be extended to two or more coordinates, if the classical 
frequencies of the separate coordinates are not the same. In place of 
equation (40) we have 

dV , dV , SttV 

Letting 

we get 

4- 4. 
dx^ ^ dy^ ^ 

(E — 2T^Pm^fiX^ — 2Tr^ Vy^tJiy^)\l/ = 0. 

V'(x, y) = X(x)Y{y) and E = Ex + Ey 

X" + {E, - 2TrWtJiX^)X = 0, 

and a similar equation for F, containing Ey, y, in place of E^, v*, x. 
Then the allowed values of E are 

Enp = {n + }^)hvx + (p + (47) 

where n and p equal 0, 1, 2, ... If 

V = 27r^^™~y a: and w = 2^^—^ y, (48) 

^ Naturmss., 14, 664 (1926). 
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then corresponding to each pair of values of the integers n, p we have 
a possible state of oscillation with the amplitude, 

y) = n„(v)n„iw) exp j, (49) 

and 
/ — 2TtiEnpt\ 

'K.,, = ^ j- 

As we should expect, there is a double infinity of allowed states, corre¬ 
sponding to the presence of two adjustable parameters and Ey in the 
equations for X and F. Difficulties arise if = Vy. In this degenerate 
case we can obtain a set of values of ^ which differ from equation (49), 
for the wave equation can be separated in polar coordinates. It is, 

i *-(’■ *)+«(‘ t)+‘ <’■ 
Letting ^ = R(r)(:){d), it is found that 

0 ~ exp ikSy A: = 0, 1, • * 
The equation for R is 

+ y + • (.E - 2irWixr^) (51) 

Without solving this we can see that the functions derived from it 
are not identical with equation (49). The loci on which \l/np{j('y) is zero 
are the lines parallel to the ?/-axis on which //,i(?0 vanishes, and those 
parallel to the .r-axis on which Hp{iv) vanishes. On the other hand, the 
real part of 0 vanishes where cos kS = 0, i.e., on certain radii through 
the origin, and 72 = 0 on circles having their centers at the origin. It is 
interesting to note that each function, y}/npixy)y can be constructed 
from an infinite number of the solutions R0, and vice versa. 

10. AN EASY RULE FOR OBTAINING THE WAVE EQUATION 

In curvilinear coordinates, the expression for may become quite* 
complicated (Appendix VII), so it is very convenient to have a rule by 
which the wave equation can be written down at once when we have the 
Hamilton-Jacobi equation. An examination of this equation (Chap. IV, 
Sec. 10) and of shows that the following rule holds true: 

hi the Hamilton-Jacobi equation, expressed in rectangular coordinates, 
Xi, X2, etc., transpose all terms to the left and remove parentheses or irra¬ 
tionalities by performing all indicated operations, so that each term stands 
by itself. Replace 

aw ^ h^ a ^ 
bxk ^ 2x7 dXk 

(52) 

The resulting expression is a differential operator. Apply this operator 
to^yf and set the result equal to zero. This is the wave equation. 

The restriction to rectangular coordinates is essential. There has 
been some confusion in regard to this matter in the literature. Podolsky 
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(Appendix VII) has discussed and clarified the points at issue and has 
stated the appropriate procedures for writing out the wave equation in 
coordinates of any kind whatever. 

To ilhistrat-o equation (52) we shall apply it to the linear oscillator, for whicrh 

/OWV- 
(t.) +‘W-®)=o. 

We remove parentheses, writing 

dW dW 

dx dx 
+ 2m(F - E) = 0. 

We replace OW/Ox by (h/27ri){d/dx). Of (!oiirs<? timy are not equal. Tire replace¬ 

ment is simply an arbitrary tnethod for getting a desired result. Then, applying the 
operator thus formed to yp, w(‘ get 

This means, 

2m{E - V)p - 0. 

h‘^ d'^\p 

Att- dx'^ 
4- 2m{E - V)p = 0, 

which is the wave equation. 

11. ENERGY LEVELS OF HYDROGEN 

Ruark/ and Vrkljan,“ independently, have given an easy method 
for finding the (uiergy hovels of hydrogen and the former author has 
also obtained its Zeeman and Stark effect- levels.'^ The virial theorem 
tells us that in a hydrogenic atom, 

f = ” ' = (53) 

where bars denote time averages. Now for the circular orbits of the 
atom, the actual kinetic and potential energies are the same as their 
average values, so 

(54) 

a being the radius of the orbit, 
from the equation 

2rna^ 

We use equation (54) to eliminate a 

= -E, (55) 

obtaining 

p/ + 2E 
- 0. (56) 

1 J. O. S. A., 16, 40 (1928),• Phyn. Rev., 31, 533 (1928). 

2 Z. Phyxik, 62, 735 (1928). 
^ The method used can be applied only when wx know from other considerations 

that p contains a factor of the type exp in<p, where ip is an angle varial)le, and 

when the problem can be reduced to a single degree of freedom, so that the equation 

for the part of P, depending on v?, has the same form as the wave equation of the one¬ 

dimensional rotator. For this reason, the procedure does not give the complete 

expression for but only the factor which depends on the single independent variable 

appearing in the wave equation. 
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This is an equation of Hamilton-Jacobi type, and the wave equation is 

dip^ 
+ A;V = 0, 

-Eh^ * 

(57) 

Wc exclude the value A; = 0, for if A: = 0, the enerj^y becomes infinite. 
The number k is to be regarded as the total quantum number, which 
happens to be identical with the azimuthal number k of Chap. V when we 
consider circular orbits. The use of only one degree of freedom leads to the 
right energy values, but the wave functions are not quite correct. When 
k is real, but not zero, the solution is F exp ikip, F being the part of ^ which 
does not depend on ip. In order that ^ may return to its original value 
when (p increases by 27r, k must be a positive or negative integer. If 
positive values of the azimuthal number correspond to an atom rotat¬ 
ing clockwise about the Z-axis, negative values correspond to counter¬ 
clockwise rotation, so we see intuitively that a negative /c-value must 
give the same E as the corresponding positive /c-value. Therefore, we 
consider only the positive values of k. These give the Balmer formula, 
when we solve equation (54) for E. The correction due to motion of 
the nucleus is easily obtained; equation (56) is replaced by 

where = pa^ipj n is the reduced mass, and a the distance between 
electron and nucleus. The proof is the same as above, and we obtain the 
Balmer formula with g in place of m, in agreement with the results of 
Chap. 5. Similarly, the energy levels corresponding to elliptic orbits 
can be obtained by starting with E = in place of equation 
(56), where / is a momentum variable conjugate to an angle variable w. 
Then J ^ dS/dw^ and the wave equation is gotten by replacing J with 
h d 

9~ M .energy levels corresponding to the circular orbits of an 

electron with variable mass can be obtained by similar methods, 
can show that 

2 _ _^ Q 

- A) ^ 
where 

We 

(59) 

(60) 

Proceeding as before, the wave equation takes the form of equation 
(57), where 

72^ 
(61) 
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k must be an integer, and on solving for A we find an energy formula 
which agrees with equation (34) of Chap. V. 

To obtain the energy levels in a magnetic field we consider the equation 

= 

^E 
2irL' 

(62) 

which is derived in Chap. V, Sec. 11. AJSJ is the alteration of energy due 
to the field and L the frequency of the Larmor precession, while is the 
component of angular momentum parallel to the lines of force, as seen 
from a system of axes rotating with the angular velocity 27rL. In the old 
quantum theory we would quantize p^ at this point to obtain the allowed 

values of Ai/. 

wave equation 

In the new theory, we replace p^ by 
h d 

2Tri 
and form the 

h _ AE^ 
27^^ d(p 27rL 

(63) 

The solutiou is F exp im<p, where mh = AE/L. To make this solution 
have the same period as the corresponding classical motion of the electron, 
m must be an integer. If m = 0, 4^ does not depend on <py and AE = 0. 
Thus we arrive at energy values identical with those of the classical 
th(^ory. 

12. A GENERALIZATION OF THE WAVE EQUATION 

In our illustrations of quantization by wave mechanics, we have used 
equation (28) which is derived from the more general equation (25') by 
assuming that its solution is of the form of equation (26). With this 
restriction, we can obtain an acceptable solution of equation (25'), 
if we make E = Ei] hn acceptable solution *4^2 when E — E^] and so on. 
But of course will not be an acceptable solution if E takes any value 
except Ely ^2 is not an acceptable solution if E is not E2, and so on. 
We now attempt to find a linear equation which will be satisfied by all 
the functions regardless of the value of E, An equation of this kind 
can be constructed in a variety of ways but we shall discuss only one of 
these, devised by Schrodinger. His procedure consists in eliminating E 
from his wave equation (28), by the use of the equation, 

_ , /-2wiEt\ 
^ exp I-j; (64) 

which holds when we deal with solutions of the type of equation (26). 
From equation (64), 

_ ^2TriE'^ 

“ - Y ' 

Substituting E from this relation into equation (28), we have 
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Similarly, the complex conjugate of ^ obeys the equation. 

j -0. (66) 

where the independent variables of are those used in equation (27). 
Since equation (65) is independent of E, it holds true whenever (iquation 
(28) is satisfied. Of course, if is any acceptable solution of equation 
(28), it retains this characteristic when considered as a solution of 
equation (65). Further, since equation (65) is linear, a sum of 
eigenfunktions such as 

^ :r) exp (07) 
n n 

will also satisfy it, where may be a constant or a function of any par¬ 
ameters, but not a function of the g’s, or of t. Because of these broader 
possibilities, loe take eqvation (65) as fmidanmiial, replacing equations 
(25') and (28), and shall consider all of its acceptable solutions as possible 
value of "F. The physical significance of equation (67) is discussed in 
Secs. 14 and 16. 

13. THE NORMALIZATION OF ^ 

Before proceeding further, we find it convenient to adopt a definite 
convention in regard to the magnitude of A'; for if we multiply any 
solution of Schrodinger\s equation by a constant, the result is also a 
solution. First we take the case of a single characteristic function, 
The convention used is a familiar one in the study of differential equations, 
namely, 

= / \\k,n['dv = 1, (68) 

the integral being extended over the whole of the coordinate space speci¬ 
fied by equation (11); dv is the element of volume in this space. When 
this condition is satisfied we say that ij/rn is normalized. It will do just as 
well to write 

= 1, (68') 

for ATmATm* = \km exp 

is, when xpm is normalized, enjoys the same property, for the absolute 
value of the time factor is unity. A simple illustration is the normaliza¬ 
tion of exp im<pj the wave function of the one-dimensional rotator. Let 

= Cm exp im>ip (69) 

where the constant Cm is to be so chosen that equation (68) is true. Then, 
remembering from equation (30) that 

dv = P^d<pf 
we have 

exp im<p exp (—im(p)d<p ~ 27rCmCmf"P^ == 1, 

2TriEmP 

'll > 
exp 

/ 2TriEmt \ _ 
That 
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so we must have == l/27r/^'^ Any value of Cm satisfying this will be 
satisfactory so we take 

c„, = (47r2/)“J'% exp im<p. (70) 

The function (46) must be multiplied by 2""^/^(n!)”*^ in order that 
it be normalized with respect to v as an independent variable. (However, 
see Chap. XVII, Sec. 21.) Thus the functions plotted in Fig. 4 are 

= 

We now prove that in non-degenerate systems, the ^t'-functions 
belonging to the discrete energy values are orthogonal to each other; 
that is, whenever m is not equal to /q 

= 0. (71) 
Thus, in the (example above. 

X27r 

exp [i{m — n)ip\d(p = 0, 

if m 5^ n. Multiplying the wave equation for by we have 
0 2 

- V)4'n,>Pn* = 0 

and multiplying the equation for by 
0 2 

(En - = 0. 

Subtracting, and integrating over the whole coordinate space, 

“ E= 0. (72) 

We now transform the first two terms into a surface integral by the 
aid of Green’s theorem.^ This surface integral vanishes, as we can see 
from the wave equation. For example, consider a case in which the 
coordinate space extends to infinity, and in which F = 0 at infinity. 
The nature of the wave function at infinity is ascertained by leaving V 

out of the wave equation. It behaves like exp ( —ar), where a: is real and 
positive because we have restricted the discussion to the discrete energy 
spectrum. On carrying out the integration, we find that the surface 
integral vanishes. In all cases in which this occurs, we have 

j(Em - En)K^n*dv = 0, 

and since we are dealing with a non-degenerate system Em ^ so that 
equation (71) must be true. The same proof will apply to a degenerate 
system as long as we deal with energy levels which do not coincide; but 
when Em = En, we proceed as follows: Suppose there are r distinct 
functions . • • ^mr which are acceptable solutions of equation (28) 

1 Jeans, ^^Electricity and Magnetism/* 4th ed., p. 156, Cambridge Univ. Press, 
Cambridge (1920), 
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when E = Em- We introduce r new functions Fmj defined by the 
relations 

Fml = kn^rnl + + * * ’ + k\r^rnr 

^ mj “ kj\\pfn} "4" kji\pin2, "4“ * * * 4“ 

and seek to determine the in such a way that 

!FmpF„.,*dv - 0 (73) 

wherever p is not q. The equations (73) are fewer in number than the 
fc^s, so they can be satisfied in an infinite number of ways. We shall always 
suppose this has been done, so that in all problems the f’s are normal 
and orthogonal.^ Sets of normal orthogonal functions which are impor¬ 
tant in atomic physics are described in Appendix IV. 

It is also convenient to normalize the sum of characteristic functions 
occurring in equation (67). That is, having arranged that equations (68), 
and (71) hold true for the individual functions we require that 

1 = 

p*dv. (74) 
n p 

Since the last integral is zero unles.s n = p, in which case it is 1, we get 

= 1. (75) 
n 

We can easily show that if equation (74) is satisfied at a given instant, 
it is true at all other times. Multiplying equation (65) by and 
equation (66) by 'k, and subtracting, we have (h\ d^* 

Integrating, 

(77) 

Transforming the first integral into an integral over the boundaries of the 
space by Greenes theorem, we find it is zero, for the reasons mentioned in 
connection with equation (72). Now/4^4'*d2; is a function of t alone, 
for the coordinates disappear in the integration; so its partial time deriv¬ 
ative is identical with its total time derivative, and it is constant with 
respect to time. 

In writing down the solution, equation (67), of the wave equation 
(65), we have not included characteristic functions corresponding to 
energy values which are distributed continuously, for reasons of con¬ 
venience. We shall say that such characteristic functions lie in the 
continuous spectrum, meaning by this the ^'spectrumof energy values. 

^ A method of finding the functions F»,- is given in Courant-Hilbert’b “ Methoden 
der mathem&tkchen Physik/* Vol 1, p, 35, Springer, Berlin (1924), 
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If we write \p(Ef x) for such a function, then \p(Ej is a solution of the 
wave equation, where dE is infinitesimal, and the sum of any number of 
such solutions, each multiplied by an arbitrary function of the energy, 
C(E)j let us say, will also be a solution. Therefore, we must add 

iC(E)rp(E, x)dE (67a) 

to the right side of equation (67) in order to get a more general wave 
function. Ordinarily, we shall use only the solution of equation (67) 
in the remainder of this chapter, to shorten our equations. In Chap. 
XVIII, on the other hand, where we are concerned mostly with problems 
of aperiodic motion, such as that of a free electron, nearly all the formulas 
will be written without including discrete wave functions. 

We must now set up a more comprehensive normalization and 
orthogonality equation. If xj/n is a wave function of the discrete spectrum 
and \l/B is one belonging to the continuous spectrum, then we can prove 
that 

// /*E+AE \ 
fs*dE)dv = 0, (71a) 

and that 

lim j j = 1 or 0, (68a) 

according as AE and A£" do or do not overlap. This rule may be replaced 
by the equation 

i”/ = 6iE', AE), m) 

where 5(£J', AE) equals one if E' lies in AE, and equals zero otherwise. 

The? application of equation (68a) often leads to rather complicated calculations 

and we shall confine ourselves to one simple example. The wave function for a light 

/ 27nEx\ 

\ he )'' 

element of volume in tlio ^-spac'e reduces to dx, as we can show by considering the 

definition of ds implied by equation (25), We have, 

quantum moving parallel to the a>axis may be taken as \pE = C exp j ); the 

PE-^AE ^ he r (2TnAEx\ 
ypsdE - 

(-x -) - ‘j 

^ 4/E*dE is the conjugate of this expression, and their product is 

(- " hef 
We now integrate this with respect to x, from 

CC*h^c\ 

2ir^x^ 

minus infinity to plus infinity. The result is CC*hcAE, Dividing this by AE, we 
must set the result equal to unity, by equation (68a), so that we have 

• M’-t 
The phase of C is unknown, and may be set equal to zero. Finally, 

exp 
/2iriBx\ 
{-he)' 

‘ Wbtp, Math. Ann., 68, 220 (1910); rxnss, Ann. Phy»ik, 81, 281 (1926). 
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14. SCHRODINGER»S INTERPRETATION OF CHARGE AND CURRENT 
DENSITY IN TERMS OF ^ 

In Sec. 1 we mentioned the theories of Schrodinge# and of Born 
as to the physical interpretation of 4^. For reasons soon to be explained, 
we shall refer to these two theories as the hydrodynamical and the sta¬ 

tistical interpretations of quantum dynamics. Schrbdinger^s idea that 
represents charge density, leads easily and directly to methods for 

computing the polarization and relative intensity of spectral lines, and 
for this reason we shall use it in some of the illustrations which follow. 
To avoid complexity, we begin with the problem of one electron, and shall 
use Cartesian coordinates. Schrodinger’s first attempt at a physical inter¬ 
pretation of was to the effect that ^d^*/dt is proportional to the 
electric charge density, and was soon rejected by him. He then found^ 
four functions of 4^ and 4^* which possess a property characteristic 
of charge density and the three components of current density. If we 
call these four functions p, St.^ s^j and s^j then 

dp dsjc dsy ds, 

at dx dy dz 
(78) 

which is the familiar ecpiation of continuity, expn^ssing the fact that 
electric charge is neither created nor destroyed but simply flows from 
place to place like a perfect fluid. It is for this reason that Schrodinger's 
theory is referred to as the hydrodynamical interpretation of wave 
mechanics. The four functions occurring in equation (78) are 

(79) 

(80) 

with similar equations for Sy and 8^; e is the total charge of the particle. 
To prove that p, s^, etc. can have the forms of equations (79) and (80), 
we note that equation (76) can be written 

/*) = —- r ^ 
dxy 

which is identical in form with equation (78). The introduction of c 
can be justified as follows: because the attracting center (the nucleus, 
for example) is assumed to be at rest, its contribution to the ^ function 
is suppressed, and fpdv must be equal to the charge of the particle; 

that is, 
€ == 

which is verified because ^ is normalized. It is easily seen that 
1 Ann. Physik, 79, 734 (1926). 

Mnn. Physih, 81, 109 (1926). 
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^ ^ dt ^ imaginary, for, if we write the first term 

in the form a + tb, the si^cond is a — ib. Thus, the components of 
current density are real, and p is also real. 

16. SCHRODINGER^S THEORY OF RADIATION FROM AN ATOM 

Schrodinger assumed that the radiation from a system with three 

degrees of freedom is to be obtained by computing the classical field which 

would be emitted by the charge arid currefit distribution specified in equations 

(79) and (80), in accordance with Chap. VI, Bee. 1. If ^ is of the form of 
equation (07), the expression for the electric moment will contain sine or 
cosine terms which give rise to the emission of frequencies corresponding 
to (luantum jumps between all the states whose eigenfunktions occur in 
equation (07). Thus, if 

then 

+ exp ~2TTi{Ei — E^) 

+ C2Cl’^^^/2^Pl* exp y-2wi{E2 - 

Now the coordinates of the (dectrical center of gravity of the p distribution 
are 

By equation (74), the d(mominator is unity, and so we shall write 

X ~ etc. (83) 

Substituting the above expression for in equation (83), we see that 
the electric moment will contain constant terras, which contribute 
nothing to the radiation, and periodic terms with the frequency v{12). 

More generally we have 

= %% exp -27ri{Ej - Ek)^^ j (84) 
3 k r ^ 

where j and k both vary from 1 to oo. The frequencies occurring in the 
electric moment are therefore given by Ej — Ek = hv{jk) so that the 

emission frequencies are differences of the motional frequencies of the matter 

loaves^ analogous to beat notes in the case of sound. If Ar reduces to a 
single term, let us say 

Cn^n, 

which means that only one ^^overtone” of the matter waves is excited, 

then we have 
P - (85.^ 
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In equation (84), cyCjt* determines the amplitude of the emission 
frequency v{jk)^ and Cj and Ck may be thought of as measuring the strength 
of excitation of components in the yp waves having frequencies Ej/h 

and Ek/hy respectively. On this interpretation, however, each atom may 
radiate several frequencies simultaneously, and the relative intensities 
of its spectral lines would depend on the values of the c’s. Further, 
the relative intensities of the spectral lines emitted by an aggregate of 
atoms will depend on averages of the r^s, and of products and powers 
of the c’s, for all the atoms, as well as on the phases of the contributions 
from the individual atoms. If the consequences of this view are con¬ 
sistently followed out, one arrives at results which do not agree with 
experiment (Chap. XX, Sec. 1), so that we have good reasons for inter¬ 
preting the c^s in another manner introduced by Born. This interpreta¬ 
tion forms the basis for the statistical theory of quantum mechanics, 
and will now be explained. 

16. BORN’S INTERPRETATION OF 

In Chap. Ill, Sec. 13, we explained that the theory of light quanta 
and Maxweirs theory of light can be synthesized into a consistent body of 
truth if we assume that the electromagnetic field serves as a “ghost field “ 
or “guiding field,which determines the probability that a quantum 
shall take a certain path. In fact, at any point Xy ?/, Zy E-{Xy py z)dxdydz 

is a measure of the number of quanta which are located in the volume 
element dxdydz. The idea suggests itself that when we are dealing 
with an assembly of electrons far enough apart so that the inter¬ 
action is negligible, the function '4'4^*(a:, ?/, z)dv is equal to the fraction 
of the electrons which have coordinates lying in the volume element, 
dvy of the Schrddinger space. As in Sec. 2, dv equals m^^^dxdydz. More 
generally, if we are dealing with an aggregate of independent systems 
described by coordinates gr, it is assumed that . . . gjpdgi . . . 
dqn is the fraction of the systems having their coordinates in the ranges qi 

to q\ + dqiy • • • q-n to qn + dqn, where pdqi • • • dqn is the volume 
element of the Schrodinger space. This expression is said to be the 
probability that a given system shall have its coordinates in the range 
specified. For brevity, we shall often denote it by P(q)dv where q stands 
for the group of coordinates gi . . . qn, and shall also use the notation, 

P.m - (86) 

If ^ is of the form of equation (67), then in accordance with equation (74) 
it is so normalized that fPdv is unity, as it should be. Further, if N 

is the number of atoms in the aggregate, 

N^Pdv * i\rSCnCn*/^n^n*dv == NXCnCn*, 

^ Z. Fhysik, 87, 863; 88, 803; and 40, 167 (1926). 
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by equation (75), which we interpret as meaning that the number of 
atoms in the nth quantum state is 

NcnCn^; (87) 

and further the number in the quantum state having coordinates 
in the element dqi . , , dqn will be 

NCnCn'*'^n%*dv. (88) 

This interpretation of the c^s and of ^ leads easily to a host of interesting 
results. The function \{/ is no longer characteristic of a single atom, but 
describes the statistical behavior of an assemblage. For example, the 
electron of the H atom can be anywhere with respect to the nucleus, 
and from equation (88) the probability that it be in a given element 
dx, d?/, dz when the atom is in the nth quantum state is 

^n'^n^dv = Pnndv, (89) 

It is satisfactory to find that is very small outside the region which 
we should expect the atom to occupy on Bohr’s theory, when it is in 
the nth state. 

17. SELECTION PRINCIPLES, POLARIZATION RULES, AND SPECTRAL 
INTENSITIES 

Whether we speak in the language of Schrodinger or of Born, the 
analytical apparatus for computing the intensity of a spectral line is 
assumed to be as follows in the one-electron problem: 

We calculate a quantity which is analogous to the a;-component of 
the electric moment of an oscillator on the classical theory, namel}^, 

Mx{nm) = exp 2iriv{nm)t 

+ ^jxypn^vi^dv exp( —27r?V(nm)0, (90) 

and similar expressions for My{nm) and M^(nm). Mx{nm) is real 
because the second term is the conjugate of the first. If it happens that 

Ja^^nVmdy = 0, ' (91) 

then there is no term in the a:-component of the electric moment with 
frequency v(nm), and we should expect no radiation of that frequency 
polarized parallel to the a:-axis; thus we can arrive at a selection principle 

by determining under what conditions equation (91) will vanish. Also 
the polarization of the line v{nm) is determined from the values and 
relative phases of My{nm), and M;.{nm), According to Schrod- 
inger^ and Eckart,^ the intensity of the line v{nm) is determined as 
follows in close analogy to the corresponding computation in classical 
theory (Chap. VI, Sec. 1). The instantaneous rate of emission of energy 
with the electric vector parallel to the r-axis is proportional to 

‘ Ann. Phyaik, TO, 734 (1926). 
as, 7U (1926). 

(92) 
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Similar equations hold for the energy radiated with electric vector 
parallel to the y- and z-axes. We are now prepared to illustrate these 
equations by applying them to the one-dimensional rotator, which is 
chosen because it is the simplest example available, although it is not 
strictly correct to use it in computing radiation intensities in three- 
dimensional space. 

18. SELECTION PRINCIPLE, POLARIZATION RULE, AND INTENSITY 

COMPUTATIONS FOR THE ROTATOR 

For the one-dirnensional rotator, by equation (70), 

exp irrup, 

I being the moment of inertia. We assume that (p is measured positively 
in the xy plane, so that the 2-component of electric moment is mro. 

Neglecting time factors, the a;-component of the center of gravity of the 
charge consists of terms of the type 

x(mn) j x\p,*\pmclv = X exp i(n n)pdp, 

since dv = Now hit the rotator consist of a charge e moving on a 
circle of radius r. We have 

V 
X = r cos <P == 2 

r 
y = r sin <p ^ 2^.fexp?V - exp (-zV)], 

so 

x{nm) = 4^1^ ^^^P + 'i)'i'<pd(p + j exp(m - - n — i)t^pdip , 

y(nm) = “j" C exp (m — n + i)i<pdip — j exp (m - - n — 1 yiipdif . 

The integrals extend from 0 to 27r. In equation (93), the first ii 
vanishes unless 

m — n -\- 1 — 0, 

(93) 

(94) 

when it equals 2t; and the second vanishes unless 

m — n ~ 1 = 0, 

when it equals 27r; so we find that 

Similarly, 

and 

x{nm) = 2 when n = m ± 1. 

y(nni) == when n = m + 1 

(95) 

= — ^r-when n 
2i 

m — 1. (96) 

Further, letting ximn) = fx\l/m*i^ndvj we see that x(nm) and y(nm) are, 
respectively, the complex conjugates of x{nin) and yirnn). Thus we see 
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that M^(rhm) and My{nm) are zero except when Am = ±1, the selection 
principle for the rotator. 

Let us now study the polarization of its radiation. To do this, 
wc need the values of Mj,{rim) and My{nm). Referring to equation (90), 
and using the values given in equation (95), we have 

M^{m— l,m.) = ^ ('Qy) 

cr cos 2Tvv{m — 1, m)t, 

M+ 1, ni) — er cos 27rv (m + 1, m)t. 

Also remenibering that i = ^ the aid of equation (90) that 

My(7n ~ 1, m) — —er sin 27rv(m — 1, m)t, 

Myiiii + 1, ?n) = er sin 2Tp(m + 1, m)t. (98) 

These ec|uatioiis show that the light emitted and absorbed is circularly 
polarized, for the x- and //-components of the electric moment are equal 
for each transition. Tlu^ (‘lectric moment components for the transition 
from 7)1 + 1 to 7)1 show that the light emitted has its electric vector 
r(‘volving in the same sense as the rotator itself, while the first equations of 
(97) and (98) r(q)resent the absorption of circularly polarized light 
rotating in the same sense. As to intensities, putting e equal to the 
electronic charge we }iave‘, from equation (92), 

Ixi'ffi' 1 ± 1, m)V'^cos“27rr(m ± l,m)^, (99) 

and there is a similar expression for /y(m. ± 1, in). The subject of 
spectral intensities is developed in detail in Chap. XX. We now turn 
our attention to generalizations of the wave equation and to perturbation 
methods. 

19. THE RELATIVISTIC WAVE EQUATION 

The wave equation is easily modified to take account of the variation 
of mass with velocity. Just as in Sec. 2, the principle of least action 
for the dynamical system is interpreted as a principle of least time, 
like that of Fermat, to determine the rays of the matter waves. We 
proceed to study the motion of the W surfaces, the wave fronts, using the 
Hamilton-Jacobi eciuation in the form appropriate to relativity mechan¬ 
ics. Confining our remarks to the case where no magnetic forces act 
on the particle, this is (Appendix VIII, Sec. 2), 

< dx. ) 
+ (f)’ + it)' 

+ mV == 0. (101) 

where 8 = mc^ + E — mc^ + T + F, T and V being the kinetic and 
potential energies, respectively. Now the velocity of the W surfaces 
is obtained exactly as it was in Sec. 3, the result being 

Energy _ _ 
Momentum [(8 — V)'^ — 

(102) 
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and the wave equation is 

A* _ (s - = n 

Writing 

we get 

^ = ^exp 

47r^ 
+ ^2^2[(S “ ^0" - = 0. 

(103) 

(104) 

This reduces to the non-relativistic wave equation (28), as it should, 
when Elmc'^ is small, for we have 

(8 Vy — = (me/ + E — Vy — m‘^c/ ~ 2mc‘^(E — F). 

Substituting this in equation (104), we get the old form of the wave 
equation. 

If we take the energy of the nucleus Mc^ into account, the total 
energy of the atom is E' + (m + M)c'^y and the frequency of the waves 
is seen to be equal to this energy divided by h. Except in the case of the 
free electron, the frequency of the waves lies beyond the gamma-ray 
region. For the hydrogen atom, the frequency Mc^^/h corresponds to a 
wave length of 1.3 10“® A. This must not be confused with the wave 
length h/Mv of the matter waves associated with an atom having velocity 
V. 

20. THE GENERAL WAVE EQUATION FOR A SINGLE PARTICLE 

In obtaining this equation we introduce a method which makes 
use of a variational principle. The result is very convenient in practice 
for it enables us to establish the following generalization of the rule 
given in Sec. 10. 

In the Hamilton-Jacobi equation^ written out in fully using Cartesian 

coordinateSy replace 

dx ^ 2'iri dx 
etc., and —Ey or 

dW 

dt by 
2Tri dt 

(105) 

Apply the operator thus formed to and the result is the wave equation. 

"We use a method, due to Fock,^ starting with a simple example. 
In the Hamilton-Jacobi equation for a single particle in a conservative 
force field, 

we introduce a new dependent variable, such that 

W = /w. 

Then if denotes any one of the variables, and/' = dj/d^, 

dW ^ dW ^ .>8-^ 
dqi ^ dqi dt ^ dt 

i-Z. Phydk, 88, 242 (1926), and 89, 226 (1926). 

(107) 
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We use the last of these relations to eliminate /' from the others, and then 

After multiplication by , equation (10(5) becomes 

2m(V - E)/d^^ 

Let us call the left side of this relation The equation = 0 is 
practically^ equivalent to equation (106). 

Now, instead of requiring that = 0, which leads to the results 
of the old me^jhanics, we introduce a new assumption as a basis for wave 

mechanics^ namelyy 
hfFdxdydzdt = 0. (110) 

The integral is to be taken over the whole range of the space and time 
variables. The method for determining F by the calculus of variations 
is given in Appendix VI. It is assumed in solving the problem that for 
infinite values of the variables, and its derivatives behave in such 
a way that the ^^surface'^ integral arising in the variation problem is 
zero. The differential equation which F must obey in order to satisfy 
equation (110) is, 

d / dF \ , , d/ dF \ dF ^ 
' ' dt\d{d^/df)J diA 

Writing this out in full, we obtain equation (25'). 
The generalization for a particle with charge t moving in any type 

of electromagnetic field, using relativity mechanics, is evident. From 
Appendix VIII Sec. 2, the Hamilton-Jacobi equation takes the form 

+ mV 

Using equation (108) and multiplying by ^ correspond- 
o 

ing to equation (109) in the problem just solved is 

\dXi c £ Jt) \c dt c 8 dt j ) ■ 
The variation problem for this form is solved in detail in Appendix VI, 

and yields the wave equation, 

e ‘i> d'^ 
c 8 a7 

1 2« 
„ r» 3Xidt c dt^ j dt^ ce\^ ^dXjdt c dt^/ 

1 Wo use this expression because it may occur that/('I',) is a many-valued function; 

,] = o. 

or, it may be indeterminate when takes certain forms. 
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Assuming that 
^ =: (n3) 

we eliminate £ from equation (112) to get an equation valid for all 
values of £, possessing all the advantages of equation (65). It is, 

1 
“2 ^2 

Arie/ ^ ^ 
hc\^^^dx]^ c 

47r2vl/r ^2 
- 0. (114) 

This is the general wave equation proposed independently by a number of 
physicists. ‘ 

The complex conjugate of 4^ will satisfy an equation which is identical 
with equation (114) except that i is changed to —i in the coefficient 
Airulhc, The simple rule for passing from the Hamilton-Jacobi equation 
to the wave equation, given at the beginning of this section, is verified 
directly by applying it to equation (111). 

21. EXPANSION OF A FUNCTION IN A SERIES OE ^ FUNCTIONS 

When it is difficult to obtain an exact solution of the wave etpiation, 
we are forced to treat it by perturbation methods. As we shall see 
in the following sections, the solution is usually obtained as a series of 
acceptable functions. Thus, in a problem involving a single coordinate 
the series representing a function f{x) will be 

J{x) = (115) 
n 

The o'Jnstants are called ^^development coefficients.” This is to be 
considered as a simple generalization of a Fourier scries, for the set of 
functions 

sin 2Trvt, sin 47rr^, • * • cos 2Trvtf cos Awvtj • • • 

form a normal orthogonal system, just as the \j/ functions do. This 
property of the functions ypn makes it possible to determine the coeflScients 
fn by the method used for Fourier series. To obtain /^, for example, 
we multiply equation (115) by and integrate over the complete range 
of X] or, if x is a cyclic variable, over a complete cycle of its values. 
Thus, 

n 

Because the ^^s are orthogonal, all integrals on the right will vanish 
except the one for which n = m, which equals unity, by equation (68): so 

U = ifK^dx. (116) 

(oazi aS Afi wiO ca-e -f Fourier series, the properties of the function/and 
of the must be restricted somrvvhiv, in order that equations (115) and 
(116) may be correct. Suppose the function / and its first derivative have 

^ For detailed references see Pan»i-0UIN, de Phys. et he Radium, 8, 74 (1927). 
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only a finite number of discontinuitieKS, and do not become infinite. Then 
we may be sure that equations (115) and (lib) are valid if the series 
converges for all values of x in the interval of integration and if it repre¬ 
sents a function having the properties we have just attributed to 
When the energy spectrum has both discrete and continuous ranges, th(^ 
characteristic functions \pn and \1/e taken together form a complete 
orthogonal system, in terms of which an arbitrary function can be 
expanded. That is, we have 

/ = + fE^PEdE. (115a) 

We find that fn — jf^'n^dx, just as in the case where all the characteristic 
functions are discrete. To get /b, we multiply equation (115o) by 

(^J^^^^ipE'^dE^dx and integrate, with the result that 

A ^ if4^E*dx, (116a) 

22. SCHR6DINGER»S PERTURBATION THEORY FOR THE WAVE EQUATION 

Especially useful pc^rturbation tlu'ories have be(m devised by Schrod- 
inger, Born, and Brillouin. We begin with Schrodiriger^s method,^ and 
shall deal first with a non-degenerate system of one degree of freedom 
which has potential energy F(.r) when unperturbed. I/d it be perturbed 
by forces which add a term \F(x) to F, X being a small constant, so that 
the wave equation is 

AxP + C(E - V - \F)^p = 0. (117) 

C is an abbreviation for Sr-Z/r, and x a coordinate in the Schrodingcr 
space. Suppose the unperturlx^l probkun is solved, and that Eok, and 
ypQk are a typical energy value and its corresponding eigenfunktion, respec¬ 
tively, satisfying the (equation 

A^o/c + C(£W - F)^o;c = 0. (118) 

We seek for the energ}^ constant and acceptable solution of equation 
(117) which reduce to E^kj and when X is placcnl equal to zero. Let 
them be 

Ek = E(^k + Xefc + ' * * , + • • * . (119) 

Neglecting powers of X higher than the first in equation (119), and sub¬ 
stituting in equation (117), we have 

A^ua; XAz^yfc + C{EQk + Xe^. — F — XF)(t/'oa; + X^A:) = 0. 

Taking account of equation (118), dropping terms in X^ and dividing 

by X, we get 
Ai;, + C(Eok - V)vk = C{F - (120) 

From this inhomogeneous linear equation containing the energy constant 
Eok belonging to the equation (118), we wish to determine an acceptable 

1 For a detailed discussion see Courant-Hilbert'h “Methoden der Mathemar- 

tischen Physik," Vol. 1, Chap. 2. 
»Ann. Physikf 80, 437 (1927), and “ Abhaiidlongen,” p. 88. 
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value for Vk in order that \l/k may also be acceptable. 
value of Vk can be found only if the condition 

f{F — €k)\l/ok\l^(ik*dx = 0, 
is satisfied. 

[Chap. XV 

An acceptable 

(121) 

Proof.—Multiply both sides of equation (120) by multiply the conjugate of 

equation (118) by Vk^ and subtract one equation from the other. We obtain 

— VkAylok* = C(F — ek)yf'{)k\l'ok*. 

Integrating both sides over the entire range of the coordinate a;, we have on the left 

the integral 

f(\p(^k*AVk — VkA4'ok*)dx. (122) 

On integrating by parts, we obtain two terms which vanish at the boundaries, pro¬ 

vided Vk is ac^ceptable, so that if these conditions are met, equation (121) is tme. 

Usually, if equation (121) is true, must be acceptable in order that equation 

(122) may vanish. (Trivial special cases can be constructed in which this is not 

true.) For a proof based on the theory of linear integral equations, see Courant- 

Hilbert, ‘‘Methoden der Mathcmatischen Physik, I,” p. 277. Springer, Berlin 
(1924). 

From equation (121), we can immediately obtain the value of ek. 
Since 

€ki4'0k^0k*dx = tky 

\l/Qk being normalized, we have 

X€^ = f\F\l/Qk\f'ok*dx. (122) 

Referring to the consideration in Sec 16, we see the meaning of equation 
(122). The change of the energy is equal to the average of the perturbing 

term in the potential energy^ taken over the undisturbed motion, just as in 
classical theory. To determine Vkj we assume that it is expressible as 
a series of the unperturbed eigenfunktions: 

Vk = ^Vki^kQiy (123) 
i 

where the Vki are constants to be determined from equation (120). We 
also expand the known function {F — ek)\l/ok by the method of Sec. 21, 
obtaining 

{F — €k)\p0k = (124) 

where 

By equation (121), 

and 

Cki = f(F - ek)4'ok4'oi*dx, 

Chi = 0 when i = k, 

Cki = fFyl/ok^'oi^dx when i tA k. 

(125) 

since the are orthogonal functions. Putting these expressions into 
equation (120), we obtain 

ZvkiM^oi + XvkiCiEok ~ V)\koi = CXcki4^Qi> (126) 
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Now for every value of 

+ CiEoi — F)^oi = 0 
and so 

Sy,,:[A^oi + C{Eoi - V)yPoi] = 0. 

The result of subtracting this from equation (126) is 

Xv,iC{Eok - Eoi)yPoi = C:^CH^Poi. (127) 

The coefficients of i/^ni must be the same on both sides, so the equations 
to determine the coefficients in the expansion of Vk are 

F V (128) 

The right side becomes indeterminate when k = f, so Vkk must be found 
in another way. This is done by so choosing Vkk that the perturbed 
eigenfunktion xkk is normalized. This process leads to the result 

Vkk = 0. (128a) 
Finally, we have, 

= ^{)k 4" X 
fE\pok\koi*d^x 

E[)k Eoi 
(129) 

where the prime denotes the omission of the term ^ = k from the 
summation. 

For the extension of this method to systems with several degrees of 
freedom we refer the reader to Schrodinger’s original paper or to his 

Abhandlungen.” The method is nearly the same as above for non- 
degenerate systems, except that multiple summations replace the single¬ 
fold summations. When degenerate systems are studied, however, new 
phenomena are encountered. If the r distinct \l/ functions 

♦ • • i/'yr 

belong to the energy value Ejy then in the perturbed system we encounter 
r new energy values and r new i// functions corresponding to them. In 
Chap. XIX this perturbation method is applied to the problem of finding 
the energy levels of the diatomic molecule. The reader desirous of other 
illustrations may examine Schrodinger’s treatment of the Stark effect of 
hydrogen, and of dispersion,^ 

23. BORN’S PERTURBATION METHOD 

The procedure discussed above is not suitable for the study of per¬ 
turbations which depend on the time. We shall describe a method 
devised by Born^ which avoids this difficulty. The wave equation for 
the perturbed system is taken in the form of equation (65): 

I Ann. Physik, 80, 437 (1926) and 81, 109 (1926). 

*Z.^hysik 40. 167 (1926). 

(130) 
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Suppose the solution is 

0 = 0, (131) 
where 

^()A:Cr, 0 = ^o;fc(*r) exp ^ 

when the perturbing force is absent. To obtain the solution for the 
perturbed system, we need only consider the change in one of the accept¬ 
able functions, let us say 4^nA(-r, /); for, if this function is altered to 

t), then the solution of equation (131), as a whole, takes the form 

4'(.r, /) = Xc,>k,(.r, /), (133) 

because the wave equation is linear. Accordingly, we take up this 
simplified problem, and begin by expanding the perturbed acceptable 
function 4'A(a:, t) in a series proceeding by ascending powers of X: 

'kA- = A'ok + X'T'ia + X^'1'2a + • • * (134) 

Now the expression obtained by substituting this in the wave equation 
must be zero for all values of X, so the coefficient of each power of X 
must vanish. Setting these coefficients equal to zero gives us the follow¬ 
ing approximation equations: 

+(T)- 
- CV'i'u + = CF'i'.k, (135) 

A'l',., - 

The solution of the first equation is equation (132). To obtain we 
4 expand it in the form 

exp ^ (13G) 

and also expand the function F(x, O^oi/tCr), by a slightly different method, 
as follows: 

Fix, t)\Pokix) = '^Fkiii)\poiix). 

Then we have 

F'i'ok = |X^,«(0lAo/(a:)| oxp^-(137) 

Substituting equations (136) and (137) in the differential equation for 
4^1 A, we have 

Xf iki (0 exp ^ . {A^o/ CF^oj + CE.j\l/oj} 

~ = C^XFkiit)rPoi^ exp ^ 
2TiEk t\ 
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Each term in the first line of this equation vanishes, because each function 
yf/Qj is a solution of the wave equation (28), so that the term in curved 
brackets is zero for each value of j; and in the second line, the coefficient 
of i/'n; on the left side must be the same as its coefficient on the right side. 
Therefore, >ve can write an equation of the following type for each value 
of j: 

(2«ydf + = 0. (138) 

Lot us now assume that the system is initially unperturbed, and let us 
choose the time origin at the instant when the disturbance begins. This 
means that we should seek the solution of equation (138) which vanishes 
when t == 0, so that 'J'lt will be zero when t — 0. This solution is 

/4y(a) exp [-27r?V(A;;>]ria = 0, (139) 

a being simply a variable of integration introduced to avoid confusion 
with t. This gives us all the material needed to find ^ja: from equation 
(136). The procedure for getting higher approximations is similar. 
We expand ^^/c, obtaining 

'i'vic = exp (140) 

and also expand according to the plan used above for FA'ok- 

The result, analogous to equation (139), is 

“h [ 2i7rtv{sj)(i]d(l = 0, (141) 

from which we can construct ^pk. 

24. THE RELATION OF WAVE MECHANICS AND ORDINARY MECHANICS 

By a change of the dependent variable, the wave equation can be 
brought to a form which we recognize as a generalization of the Hamilton- 
Jacobi equation. To show this, let us consider the Hamilton-Jacobi 
equation in the form of equation (109). The wave equation corre¬ 
sponding to it is (25'), and assuming that we are dealing with solutions 
of the form (26), we may replace equation (25') by equation (28). 

It must be understood that the value of found from the wave 
equation (28) is not the same as that which would be found by solving the 
transformed Hamilton-Jacobi equation (109). To avoid confusion, 
it will be convenient to call the classical Hamiltonian function Wo- 

Then the variable 'I'o which occurs in equation (109) is defined by lTo = 
/(^o); on the other hand, T' is determined from the wave equation, and a 
generalized Hamiltonian function W can then be defined by the relation 

W = fW- (142) 



656 WAVE MECHANICS [Chap. XV 

We must now demonstrate that ^ reduces to '^o, and TF to Wo, when 
we deal with systems so large or quantum numbers so great that terms 
containing h can be neglected. This means that the results of wave 
mechanics approach those of ordinary mechanics if we allow h to approach 
zero. This proof can be carried out by changing the dependent variable 
in the wave equation (28) from ^ to W, by the aid of equation (142). 
For simplicity, we shall take the wave equation in Cartesian coordinates 
and shall deal with only a special case of e(iuation (142), namely 

W = A log M', 

which is by far the most usual transformation considered.^ The result is. 

043, 
Obviously, when h approaclies zero, this reduces to the ordinary 

Hamilton-Jacobi equation, and the solution W must reduce to Wo. 
This brings out clearly the fact that wave mechanics is a ratimal gener¬ 

alization of ordinary mechanics^ 

Considerable light can be thrown on the nature of the wave equation, 
by using a series solution for W. Let us assume that 

V-W.+ + (/-.)V. + . . . (144) 

The result of substituting this into equation (143) is 

+ 

+ 

+ 

(-)i( 

+ 

dWo aW'', ^ dW„ dW^ , dW. 

dz dx dy dy dz dz ' 

dW2 I dW] dWI . 

dx dx dx dx 

+ 2m(V - E) 

) 

■■■) 
+ AlTi 4- etc. 

/ A yFvY-^^ 
\2in/ 9x 

+ 
dWi dW„. ,• , dWi dw„-,- 
dy dy dz dz ') 

+ 

AW„-, + etc. = 0. (145) 

This equation holds true for all values of A, so that the coefficient 
of every power of h must vanish. Setting the coefficient of the zero 

1 This treatment is modelled on that of Brilloxtin, C. R., 183, 24 (1926), and 

Debye, Phystk. Z.y 28, 170 (1927). 
* Bramley (J, Franklin Institute, 206, 605 (1928)) has obtained the exact solution 

of the wave equation (143) in several problems involving a single electron. He has 
pointed out in some detail the properties of the function, p « dW/dx, which reduces 
to the jc-oomponent of momentum, when h approaches zero. 
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power of h equal to zero gives the Hamilton-Jacobi equation for the 
corresponding classical system. Having solved it for Wo, we get Wi 
from 

Wo is real; imaginaries do not enter in the perturbation equations, 
so all the other W„^s may be taken as real. To a first approximation, the 
wave function takes the form 

< Wo w, dw, dWx Wo aTf 
dx dx dy dy dz dz 

+ AW„ = 0. (146) 

= f>27ri Wo/h^ W j (147) 

SO that Wo determines the phase of the waves and Wi their amplitude. 
As an illustration, let us construct the function ^ for a particle having one 
degree of freedom. By equation (146), 

- d Wo 
dW, dx^ 
dx JWo ' 

^ dx 
and 

but 
dWo 
dx 

and therefore. 

Wx = Const, log 

l2m(E — V)\^\ from equation (145), 

^ const. 
^ [2m{E - F)l'i- 

(148) 

This tells us, in an approximate way, how the amplitude of the 
waves changes from point to point in space. Now [2rrv{E — V)]^ is 
equal to where p is the momentum which the particle would have 
in the corresponding classical motion, and so 

_ ^2Wi const. 

V 
(149) 

The probability Pdx that the particle is in the range a: to x + dx is 
proportional to ^^*dx, so we have 

Pdx dt. 
(150) 

This relation states that in an assembly of particles the number which are 
found in the range dx is proportional to the time which one of the particles 
would spend in that element according to the classical theory. This 
result is modified, of course, when we use higher approximations in 
determining 'i'. It is worth noting that the next two approximations 
to 'if introduce the factors and on the right of equation 
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(147). The first of these docs not alter the validity of equation (150). 
The importance of the second is determined by the magnitude of 
W/^cir^Wi. This term is often so small that equation (150) is an 
excellent approximation. 
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CHAPTER XVI 

HYDROGENIC ATOMS IN WAVE MECHANICS 

The study of the hydrogenic atom in wave mechanics is important 
because it furnishes us with a scries of exact solutions of the wave equation 
which are suitable as starting points for inv('st[gating otluT atoms by 
perturbation methods, and because it enables us to test accurately the 
agreement of wave mechanics and the results of experiment. In this 
chapter we shall be concerned solely with the energy values and accept¬ 
able functions, except that selection principles are discussed. Intensity 
questions are postponed to Chap. XX. 

1. ENERGY VALUES, NEGLECTING RELATIVITY 

The solution of the problem of the hydrogenic atom in wave mechanics 
is as follows: The wave equation is separable in polar coordinates, 
and also in parabolic coordinates. In polar coordinates, it is 

1 
r- 

1 d 
sin 0 do 

The solution will be of the form 

+ 
1 

sin'^ (p cV“ 

+ /? “ I 
E + = 0. (1) 

4^ = R{r)S(9, ^). 

Substituting in equation (1) and dividing by RS^ the equation falls into 
two parts, one of which contains only r while the other contains only 
6 and ip. These two parts are set equal to + 1) and —/(Z + 1), 
respectively. Then, 

1 
sin 0 

dm 

d 
' dO^ 

2dR 
r dr 

+ 1_ d\S 
sin" <p dip'^ 

+ 
\ 

+ 
hh 

+ l{l + 1)S = 0; (2) 

(3) 

The reason for using the constant l{l + 1) is that it must ])c of this form 
with 

Z = 0, 1, 2, 3, . . . 

if S is to be an acceptable function. Equation (2) was solved in Chap. 
X V, Sec. 8 with the result that 

S = e‘'"<^Pi,,»(cos 0), 
559 
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where I m. The instantaneous distribution of the \p function over the 
surface of any sphere r = constant, is illustrated by Figs. 1 to 3 in the 
preceding chapter. The numbers, i + 1 and m + 1, correspond to 
the azimuthal and equatorial quantum numbers k and kx of the treatment 
in terms of the old mechanics. To obtain finite, single-valued con¬ 
tinuous solutions of equation (3), we transform to new variables x and 
L(x), such that 

R z=z exp (4) 

(The variable x is dimensionless and is introduced to simplify the coeffi¬ 
cients of the equation for L; when E assumes the values given by the 
Balrner formula, we get x = 2Zr/na, n being the total quantum number 
and a the radius of the first orbit in hydrogen.) The transformed 
equation is 

xL" + [2{l + I) - x]IJ + ( 
2irhnr^Z“\ 

~h^E ) 
~ I = 0 

or 
xL" + (A - x)I/ + BL = 0. (5) 

where A — x and B are abbreviations for the coefficients of TA and L, 
respectively. The advantage of using equation (5) instead of equation 
(3) is that when equation (5) is solv(ul l)y using a power series the recur¬ 
rence formula for the coefficients is extremely simple. If we let 

equation (5) becomes 
00 00 00 

^dppip — + (A ~ z)‘^appx”~^ + B'^UpX^ = 0. (6) 
— eo — 00 — 00 

To satisfy this equation for all values of x, the coefficient of each power 
of x must vanish. Applying this requirement to the coefficient of 

where p is any integer or zero, we obtain 

a;,+i(p + l)(p + A) - a,,(p - B) = 0. (7) 

Now we can find the properties which the coefficients must possess 
if R is to be finite for all positive values of r from zero to infinity. Two 
cases are considered, corresponding, respectively, to elliptic and hyper¬ 
bolic orbits of the older theory: 

(1) E negative, i.e.y x real; (2) E positive, f.e., x pure imaginary. 
(1) E Negative, x Real and Positive.—Consider the behavior of the 

series for L when x equals zero. It will not converge if negative powers 
of X are present, and R will take an infinite value. For this reason we 
wish to avoid a solution in which negative powers appear. The question 
is, can the equation for L be satisfied if this is done? Let us assume that 
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the series docs not extend to p = — oo, so that there is a first term, say 
Then, by equation (7), 

+ IKi + 2Z + 2) — Gjij — B) = 0. (8) 

But by hypothesis a, == 0, and to keep aj+i finite, j must be either 
— 1, or — 2Z ~ 2. By taking j == — 1, then, it is possible to obtain a value 
of L beginning with the coefficient ao, so that 

L = ^UpX^. 

0 

In equation (9), the absolute ratio of two neighboring terms is 

ap^]X ^ (p — B)x 

(p + 1)(7^ + 2Z + 2) 

(9) 

(10) 

So long as x remains finite, then no matter what finite values A and 21 + 2 
may take, we can make this ratio less than 1 (or indeed as small as we 
please) by choosing p sufficiently large. Therefore, the series for L 
converges for any finite value of x; indeed, the series formed of the 
absolute values of its terms converges. However, if R is to be finite 
when r = 00, the series for L must contain only a finite number of terms. 
Let Un' be the last non-zero coefficient. Then an'+i must be zero and 
equation (7) tells us that 

n' - B = 0, 
or, by equation (5), 

n' + I + \ — 
27r^me'^Z‘^yA 

-¥E ) 
= 0. (11) 

Putting n' + Z + 1 = ?i, we get the Balmer formula, 

En 
— 27r^me^Z^ 

(12), 

It is easily seen that ^ is continuous and single valued, so it will be an 
acceptable function if E takes the values specified by equation (12); n' 
is analogous to the radial quantum number of the earlier theory. It 
takes the values 

n' = 0, 1, 2, • • • . 

(2) E Positive, x Pure Imaginary,—As long as x is finite, the remarks 
made in (1) for the case of finite x hold true for case (2) without alteration, 
but when x approaches infinity, we must study the behavior of L(x) 
in more detail. To do this, we note that in equation (3), the last two 
terms of the coefficient of R can be neglected, when r is very large. The 
equation obtained by dropping them is a Bessel equation and has the 
solutions R = sin (ar)/r and R = cos (ar)/r, where = 8ir^mEI¥ 
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These, and linear combinations of them, are obviously finite for all 
positive valves of J?, a fact which corresponds to the existence of a con¬ 
tinuous set of hyperbolic orbits in the older theory. 

2. ACCEPTABLE FUNCTIONS FOR THE HYDROGEN ATOM 

Corresponding to each value of n, there are n characteristic functions 
72(n, Z) corresponding to the values Z = 0, * • • (n — 1). To calculate 
these functions we put B = n'and^ = 2(Z + 1) inequation (7). Giving 
an arbitrary value to Un, we compute th(' coefficients and find, aside 
from an arbitrary constant factor, ihe formula 

p^n~l-1 

R{n,l) = + ^ 
7>=°() 

i-iy ptt i-l 

p \ Pi 
(13) 

where x = 2r{~S7r^mE/h^y''^ and n, Z, n' are, respectively, the total 
quantum number, the azimuthal number minus one, and the radial 

number. The symbol Cb"' stands for 

coefficient in the expansion of a binomial raised to the ath power; 
therefore, 

pn-\-l _ __ 

^n~l~l~p fZ 1 ^~p)\(2l + { + p)l 

The series in equation (13) is related to a set of functions known as 
^^Laguerre polynomials/^ The more important properties of these 
polynomials are collected in Appendix IV. Here we need only the 
definition 

L.(x) ^ = X {-lyCMs - 1) • • • (p + Dx’’. (15) 
/> = 0 

Thus, 
Lo{x) - 1, Li(x) = —X + 1, etc. 

Now, aside from a constant factor, c, the summation in equation (13) 
is identical with 

_1 
[-(n +7)!] ~ " dx^^+^ 

Denoting this derivative by Lf^/(x), we rewrite equation (13) in the 

form 

R{n,l) = x‘e-^'^L%\x). (16) 

To obtain an idea of the ^ functions and the charge distribution for^this 
simplest of all atoms, we begin by writing out in Table 1 the values of 

Lnti small values of Z and n, remembering that Z is less than n. 
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Table 1 

563 

n 1 

1 0 W = -1 
2 0 W ^2 x -4: 

1 /V = -3! 

3 0 Lt' = -31= + 18x - 18 

1 L,^ = 24x - 96 

2 = -5! 
4 0 W = 4.r“ - 48x* + 144x - 96 

1 As’ = -60x« + 600x - 1,200 

2 Ac’ = 720x - 5,760 

3 A,’ = -7! 

Attention must be paid to the fact that x has a different significance 
in each row of the table, for x = 2Zr/nay as mentioned in connection 
with equation (4). It can be shown that the normalized functions 
\p(nj I, m)j are as follows: 

Hn, I, m) 
^ i nt(p 

(27r)‘- 
~{2l + l)(i — m)l 

2(1 4“ 97ljl 
P/,^(cos e). 

(!L’ 
(n + 1) ya J 

31 H a+i 
n -j-l 

where n = 1, 2, 3 • • • , Z = 0, • • • (ri — 1), and mtakes all values 
between —I and +Z, including zero. The \l/ functions belonging to a 
given value of 7i are in number. That is, the statistical weight of the 
/ith quantum state is just as in the older theory. 

3. THE DISTRIBUTION OF THE FUNCTIONS ^ AND W'* 

It is useful to study the way in which ^ depends on r in a few simple 

cases. Whenever n == I + 1 (circular orbits), the function becomes 

and is a constant. For all such orbits, the part of ^ depending on 

x is essentially 
X = (18) 

It is interesting to note that the maximum of X occurs at a: = 2n, so that 
the corresponding value of r is 

n^a 
rmax ^ ^ 

which is the radius of an n-quantum circle on Bohr^s theory; but this 
is a chance agreement, for there seems to be no simple relation between 
orbital shape and the properties of the ^ function for elliptic orbits. 
The rapid decrease of equation (18) for values of x greater than that * 
corresponding to the maximum shows that the region, in which ^ (or 4^*) 
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has an appreciable value, has a radius comparable with that of the 

corresponding circular orbit. Since Lnti^ is a polynomial, the value 
of i?(n, /) for an elliptic orbit is a superposition of the /?\s for several 
circular orbits, with relative weights determined by the coefiScients of 

Lnti^. Writing C for the nomalization factor immediately preceding 
R(n, 1), in equation (17), let us examine a few of the curves i?(n, 1) 
for the case Z — 1. If we write p = r/a, or a: == 2Zp/nj which amounts 
to choosing the radius of the first Bohr orbit as the unit of length, we 
have the following table: 

n 1 iR(n, 1) R{n, 1) 

1 0 
-exp (-^2-) 

- exp (-p) 
1 

2H 

2 0 - 4) ‘ exp ^ (2p - 4) - exp ( 2^) 
1 

16 

2 1 -6xexp("*) (-6p) exp ^ 
1 

24.12^^ 

3 0 3(—+ 6a; — 6) exp ^ 3(-9P^ + 4p -6) -oxp(-/) 
1 

9 • 0^’ 

3 1 24x(* - 4) (^xp ^ 2*) 
2^30(3'’ 4)‘‘"K3“) 

1 

9 -2^» -21^^ 

3 2 -120*= exp ( “2”) -12()(Jp=)exp(7) 
1 

•120^> 

/>.r/a p=r/a, 

Fig. 1.—Radial wave functions of the hydrogen atom. 

If Z is not unity, the values of i2(n, 1) in terms of x are not altered, 
but we must put Zp in place of p throughout the table. A few of the 
curves B(n, 2) are shown in Fig. 1. 
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Hydrogen l^S Helium PS 

Hydrogen 2^8 

Hydrogen 3*S Hydrogen 3*S 
Flo. 2.—Distribution of the function for certain states of hydrogen and helium* 

(After hanger and Walker,) 
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The spatial distribution of the normalized functions is beautifully 
shown in Figs. 2, which were kindly supplied by Dr. R. M. Langer and 
Miss Geraldine Walker. All of them are for energy levels in which 
the quantum numbers I and m are zero so that the distribution of 
is spherically symmetrical. At any point in the diagram, the brightness 
is proportional to the value of In the original photograph for 
the state IS, that is, the normal state, for which n = 1, Z = m = 0, 
distances are proportional to r/ao, the radius of the first hydrogen orbit 
being represented as 3 cm. The scales for the states 200 and 300 are 
five times and ten times smaller, respectively. The intensity in the 
photograph of 2S is multiplied by 50 in comparison with 1/S; the intensity 
scale in the brighter diagram for SS is 500 times that of while the 
other diagram for is a much lighter print which gives a better idea 
of the smallness of in comparison with the values for LS. The 2S 
distribution serves also as an approximate representation of for the 
lowest term of lithium, taking only the valence electron into account. 
Similarly, the SS distribution is similar to the normal state of sodium. 
The diagram for the normal state of neutral helium, which also possesses 
spherical symmetry, is included for the sake of comparison with LS of 
hydrogen. The length scale is about the same in these two diagrams, but 
the intensity at the center of the helium distribution should be nearly 100 
times as great as in the diagram for LS. At r = 1.5rto, the two are about 
equal, which shows that the radial rate of decrease of is very rapid for 
helium, corresponding to its small external field and inert chemical nature. 

4. THE RELATIVISTIC HYDROGEN ATOM 

The energy levels of the relativistic H atom have been found by 
Schrodinger,^ Fock,^ and ICpstein.^ The formula obtained is similar 
to that of Sommerfeld except that the azimuthal quantum number takes 
half-integer values, due to the neglect of electron spin. We shall give a 
treatment similar to the derivation given by Epstein. From Chap. 
XV, equation (104), the amplitude equation is 

(19) 

with 6 — rnc^ + E. The solution is exactly like that for the non- 
relativistic case, except that the cocifficients are altered in the equation 
for the factor in xj/ which depends on r, namely. 

fR ,2dR 
dr^ r dr 

4^2 

¥c^ 
(g2 _ ^2^4) 

hVr 
+ 

(20) 
' “Abhandlungen,” 13 and 87. 

Physik, 38, 411 (1926). 
*Proc. Nat. A cod. Set., 13, 94 (1927). 
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is Sommerfeld’s fine-structure constant (Chap. V, equation (30)). 

We treat equation (20) in the same way as equation (3), using the 

substitutions 

and 

X — 2r 
47r2 

(21) 

R = 

where the exponent X is —J2 + [(^ + 32)“ “ The equation to 

determine F is of the same form as equation (5) if we write A == 2(X + 1)> 

and 
4^2 
hV 

(t;2 — ?7^2e^) 

As before, 71' must be an integer or zero, and, finally, the energy values 

are given by 

1 + 
E 

nic"^ 
1 + a‘^zn n' + (22) 

This agrees in form with Sornmerfeld’s empirically verified equation, but 

the combinations // 4- 32 ^ + 32 appear in place of his n'and k. 
The denominator of the first term in E corresponding to the Balmer 

formula, is n' + ^ + 1 = ai which takes the values 1, 2, ■ • • , just as it 

should, but the first-order relativity correction of a spectral term is 

RZ^a’^/ 17 _ 3\ 
n‘ V + H i) 

(23) 

The correction for the effect of electron spin was carried out by Heisenberg 

and Jordan and also by Richter. Their result for the first-order correc¬ 

tion was given in Chap. V, S^^c. 17. 
Richter solved the problem by perturbation methods, using wave 

mechanics. The unperturbed motion corresponds to a spherical electron 

moving aljout the nucleus and simultaneously rotating, the two motions 

not affecting each other. Thus, an acceptable function can be obtained 

for this unpertur])ed problem by taking the product of a \k function for 

the simple H atom (Sec. 2) and a yp function for a rotating rigid body. 

The first-order perturbation of the energy can be obtained by the method 

of Chap. XV, Sec. 22. 
Darwin and Gordon^ have obtained the general formula for the 

hydrogen energy levels on the basis of Dirac’s theory of the electron. 2 

The result is identical with Sommerfeld’s formula, given in equation (34) 

of Chap. V. The radial number can assume the values 0, 1, 2, . . . 

The azimuthal number k of Sommerfeld’s theory is replaced by J + 1, 

where Z = 0, 1, 2, • • • n — 1, n being the total quantum number. 

^Proc. Roy. Soc., 118, 654 (1928); Z. Physiky 48, 11 (1928). 
2 Free. Roy. Soc.y 113, 621 (1927). 
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A quantum number corresponding to the electron spin does not appear 
explicitly in this formula, so that it does not predict the complete scheme 
of X-ray energy levels. 

6. THE ZEEMAN EFFECT OF HYDROGEN 

We have already found the energy levels of the normal Zeeman 
effect in Chap. XV, by a very simple method. 1'’hat method is unsuited 
for the study of the acceptable functions and for obtaining higher approxi¬ 
mations, so we shall attack the problem here ah initio. Tt is one which 
has received much attention. Heisenberg and Jordan^ obtained the (j 
formula by means of matrices. Epstein- treated the problem of the 
normal effect by obtaining the energy of a syst(mi composi^d of the atom 
and the apparatus which produces the field. This procedure is advanta¬ 
geous, for it is capable of showing tin? natures of the interaction between 
the atom and the magncdic field. Tor (^xampki, it is w(dl known that 
when a quantum jump occurs there may be an exchange of angular 
momentum between the atom and the fk'ld producing im^chanism, 
as well as a contribution of angular momentum to the radiation field. 
This indicates that we might expect a difference between the en('rgy of a 
quantum and the decrease of energy of the (uuitting atom, b(^cause of a 
possible interchange of energy betwenm the atom and tJie magnet. The 
calculation of Epstein shows that the correct result- is the same as that 
obtained by neglecting t he reaction of the atom on the fit^ld—that is, by 
treating the field strength H as quite independent of the behavior of the 
emitting atom. Brillouin*'’ has also treated the probkun in wave nu^chan- 
ics, and we shall give a derivation not very different from his. Although 
we speak of the hydrogen atom, the method can be applied to any atom 
if we neglect electron spin. In the wave equation (114) of Ohap. XV, we 
substitute the values of the vector potential components for the case of a 
uniform magnetic field parallel to the ;^*axis, as derived in Appendix 
VIII, Sec. 1. They arc 

and we easily find that equation (114) reduces to 

- 
1 , ATte/H , <!> 

dt^ 
+ /ic y 2 dip - + c dt )-A’ ^2 

|T = 0. (24) 

(We have neglected in the last term because wc only wish a result 
correct to the first power of H. This corresponds to the assumption 
used in the classical theory of the Zeeman effect, that the force due to the 

^Z.Phydk, 37, 263 (1926). ^ 
^Proc. Nat. Acad. Set., 12, 634 (1926). 
^ Brillouin, j. de Physique, 8, 74 (1927). 
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magnetic field is small compared with the Coulomb attraction between 
electron and nucleus.) We now assume that 

and use these relations to remove the time from equation (24). Further, 
we drop all terms which arise from the variable mass of the electron, 
arriving at the equation 

This can be satisfied by a wave function which depends on (p through a 
factor exp im<pj just as in the absence of the field, so d\p/d<p = 
Also, by Larrnor’s theorem the only change in the "F distribution when 
the field is applied consists in a uniform precession L which makes it go 
faster or slower, according to its sense of rotation. Only the time factor 
in 4^ is altered, so \p must remain unaltered. Let Eq be the energy in the 
absence of the field, and let E ~ Eq + AE. Then equation (25) reduces 
to 

- F)^ - = 0. (25o,) 

The first two terms vanish because \l/ is the wave function for the unper¬ 
turbed atom, so the remaining two terms must also vanish, which will 
occur if 

AE = me . - = mLh (26) 
47rm()C 

in exact agreement with t he result of the older theory. Finally, we have 
for the wave function in the presence of the field 

2irimL<^ 

If relativity modifications are taken into account,^ 
replaced by 

(27) 

equation (27) is 

(26a) 

which agrees with a result of Pauli^ obtained by the use of ordinary 
mechanics. Terms in have been calculated by Hill and Van Vleck.^ 

6. SELECTION PRINCIPLES 

Consider two states of the hydrogen atom, having the quantum 
numbers n2, hy W2, and ni, Zi, mi, respectively. Let the frequency which 
is emitted in a transition between these terms be 1^21. In order that 
the intensity of the line V2i shall vanish, the terms in the components of 
the electric moment having this frequency must be zero. We neglect the 
motion of the nucleus and treat the problem by equation (90) of Chap. 

' Ruark, Phys. Rev.y 31, 633 (1928). 
2 Z. Physik, 31, 373 (1925). 
»Phrjs. Rev., 31, 715 (1928). 
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XV, together with two similar equations for the and 2:-components 
of the electric moment. Writing Myy and for the terms which 
concern us, and neglecting the exponential time factors, we have 

Mx = -- ejx\p(n2l2m2)^'^(nilimi)dv — ejx\p{n\limi)\p'^{n2l2ni<^dv. (28) 

Remembering that a: = r sin ^ cos we find that Mx is proportional 
to the real part of 

JJJ^2(r)Pz^,^^(cos ^)e"”*2^Pj(r)P/^„„^(cos sin B cos ip) 

sin ddrdOdiPj (28a) 

where the limits are such that the integral extends over the whole g space. 
We write down similar expressions for My and iP, and proceed to consider 
the integration with respect to p. The three integrals for the x^yj and z 
coordinates are, respectively, 

X 
2ir 

exp [i(m2 — m\)ip] • 
I cos 
j sin <p 

1 
dip. (29) 

The first two were treated in Chap. XV, Sec. 18, and give rise to a finite 
result only if Am = ±1. The third vanishes except when Am = 0. 
Now if Am == ±1, on carrying out the integrations over B and r in 
equation (28a) we arrive at values similar to those of (!)hap. XV except 
that er is replaced by another expression dependent on the quantum 
numbers, and Ms = 0. Therefore, the radiation emitted will be circu¬ 
larly polarized with the axis of polarization along OZ. On the other 
hand, when Am = 0, only Ms has a finite value and the radiation is 
linearly polarized with electric vector parallel to OZ, Thus, we have 
derived the selection rule for m and the polarization rule, in agreement 
with the results of Chap. V. 

Now we consider the integration with respect to Bj restricting our¬ 
selves to the cases in which Am = ±1 or 0. There are two integrals 
to be considered, corresponding to the x- or y- and to the 2;-component 
of the electric moment, respectively. They are. 

JF,,„,(cos 0)P,...(cos e) {^ } de. (30) 

Eckart^ has shown that these integrals lead to the selection principle 
AZ = ±1. 

7. THE FIRST-ORDER STARK EFFECT 

The problem of the first-order Stark effect, neglecting relativity, 
has been solved independently by several physicists.^ Schrodinger 

has given two proofs, one by a separation-of-variables method, and the 

^Phys. Rev,, 28, 927 (1926). 
2 Epstein, Phys, Rev,, 28, 695 (1926); Fock, Z, Physik, 38, 242 (1926); Schrod¬ 

inger, Ann. Physik, 80, 437 (1926); Wentzel, Z. Physik, 38, 618 (1926); Epstein and 

Wentzel obtain also the second order terms. 
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other by a method similar to that of Bohr. We shall follow the former 
procedure. The wave equation is 

+ -y - eFzJip = 0, (31) 

if the field is directed along the positive 2:-axis. We transform to para¬ 
bolic coordinate's^ X], X2, such that 

X = cos (Pj y = \/XiX2 sin (p, z - (32) 

After multiplication by (Xi + X2)/4, equation (31) takes the form 

d 
d\ ^ ax.('''aki) + Xx. s)y 

/ 2w^mo 
¥ r--)[j^(x. 

1 
+ X2) + 2Ze^- - - W) = 0. 

Assuming the solution, 

^ = X(X,)F(X2)<f-(^), 
we find that 

<1> = exp m = 0, 1, 2, 

and that the equations for X and Y are 

(33) 

(34) 

(35) 

d\2\ dX^/ \ / \ 

cFxr- 
2 

*4“ l!j\i -j~ ^6^ — /3 — 
mW 

STT^moXi 

\ 

ST^mo\2/ 

)x = 0, (36) 

F = 0. (37) 

jd is a constant introduced by the process of separating variables, and our 
problem is to determine pairs of values of E and /3 which will make X 
and Y acceptable functions. The last two equations both have the 

form 

1(4) + ipy' + ^» + + f)/ - 0. (38) 
where 

^ ^TT^mocF . 2Tr^moE „ T^m{Ze^ =f /3) ^ 
D = + A = - B = ^ .. (7 = 

The upper signs refer to the equation for X, and the lower to the equation 
for F. We commence our study of equation (38) by solving the wave 
equation for the unperturbed atom, obtained by letting Z) = 0. We 
transform to new variables L, such that 

x = 2y(^-(39) 

^ These definitions are adopted in agreement with Schrodinger, instead of those 

used in Chap. V, Sec. 12, because the computation of the energy perturbation is 

simpler in terms of \i and X2; Xi = X2 = 
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and find that L obeys the equation 

xL" + [(m + 1) - x]L' + L = 0, (40) 

which is identical in form with the equation (5) for the unperturbed 
H atom, although the meaning of the variables and the coefficients is 
quite different. Just as before, we seek for the values of the coefficient 
of L which make / an acceptable function. If we write 

B __ ^ I (41) 

then we must make = 0, 1, 2, • • • in order that/ may be an acceptable 
function. When k takes one of these values, then L is the mth derivative 
of the (m + Aj)th Laguerre polynomial (Appendix IV, Sec. 7), which is 
represented by the symbol ly^m+k(x). To see the significance of Jc 
we give B the value appropriate to equation (36), and put k — k]^ 
obtaining, 

~ 1^) _ , , (m + 1) 
^ - 2 

(42) 

Again, we give B the value which it has in equation (37), and put k 
with the result 

+ 1^) _ I , (^^ + 1) 

== k2y 

(43) 

Adding, and solving for the energy constant which appears in A, we have 

E = 
_me_ 

(A^l + ^2 + ^ + 1)^ 
(44) 

It is found that ki and k2 take the same range of values as the parabolic 
quantum numbers introduced in equation (65), Chap. V, while the m + 1 
of this computation plays a r61e similar to that of the equatorial quantum 
number of equation (65). According to equation (35), the zero value 
of m + 1, which is analogous to the equatorial number in the older 
quantum theory, is automatically excluded in wave mechanics, although 
a special consideration was required in order to obtain this result by the 
old mechanics. 

We now determine the change of E when the field F is applied, which 
results in changing equation (40) to the form. 

xU' + [(m + 1) ~ x]L^ + 
(m + 1) , Dx^ 1^ 

2 ^ 8(-~A)’^^J^ 
- 0. (45) 

The first step is to determine the change in the value ol B/(—Ay^ which 
results from the addition of the term containing F. Since we know 
experimentally that the contribution of this term to E will be small 
compared with E itself, we use the approximate value of —A obtained 



THE FIRST-ORDER STARK EFFECT 8eo. 7] 573 

(46) 

from equations (42) and (43) in cvahiating the perturbation term, with 
the result, 

Dx'^ _ _ n%* \ ^ 
8( -A)^ \QAir*m,,‘^Zh’-) 

n is the total quantum number and c is an abbreviation for the quantity 
in parentheses. The ambiguity of vsign arises from equation (38). The 
addition of this term changes the allowed values of B/{—Ay^, and the 
magnitude of the change may be determined by applying the perturba¬ 
tion theory of Chap. XV, Sec. 22 to equation (45). Before doing so, it is 
convenient to multiply equation (45) by er^x^\ B/( —A)^- then corre¬ 
sponds to the energy E of ('hap. XV, Sec. 22, while the term, ^cFx^, 
replaces the pc^rturbation of the potential energy, which was denoted by 
\F in equation (117) of that section. If Sk is the perturbation of 

— corresponding to Xca in (4iap. XV, then in place of equation 
(41) we have 

(-d)'v= 2 + ' 

Then by equation (122) of Chap. XV, we have 

(41a) 

e-^r’'‘+2[7^»‘„.+j,(x)]yx 

= +C/'’ ,c 

I*"""' 
(47) 

\L’’'n^k{x)Ydx 

Schrodinger shows that the result of integration is 

S, = +cF(m= + Om/c + + Ofc + 3m + 2). (48) 
Just as before, we write down equation (41o) two times, putting k = ki 
and ki, and B = Tr'^m(,(Zc'^ + 0). Solving these two equations for E, 
the result is 

® - „>*•-“ - (g.w)"'*- - <«> 

in exact agreement with the Epstein-Schwarzschild formula. 
The above calculations give us a second form for the acceptable 

functions of the unperturbed hydrogen atom, which is not identical with 
equation (17). This ambiguity arises from our neglect of the relativity 
correction, which makes the unperturbed atom degenerate. Using the 
Balrner formula for E in equation (39) we have 

Xi X2 
X = or 

na na 

as the case may be, where a is the radius of the first Bohr orbit. With 
this notation, we find from equation (34) that the acceptable functions 
(not normalized) are, 

HKKm) = (XiXa)’"/^ exp [—^ 

exp (mv?). (50) 



CHAPTER XVII 

MATRIX MECHANICS 

1. THE VIEWPOINT OF MATRIX MECHANICS 

In the search for the true laws of atomic dynamics, Heisenberg’ 
introduced a n(^w method of attack. Instead of attempting to find 
models operating in accord with Newtonian dynamics which would 
yield the correct energy levels, he abandoned all idea of atomic models, 
and sought to obtain general postulat(^s which would lead to known 
relationships between quantities which can be observed. It seems 
useless to speak of the amplitude or the phase of the motion of an 
electron within the atom. Essentially, the amplitude, phase, state 
of polarization, and frecpienc}^ of the emitted light are representative 
of the type of quantities which should be the subject matter of a reasoned 
atomic theory, for predictions about them can be tested directly. The 
reader will understand that the adoption of such a viewpoint does not 
deny the usefulness of models as an aid in research. In the last analysis, 
the atom must be described in terms of space and lime, if it is described 
at all. The new theory indicates that we need not trouble to describe 
it, and furnishes rules for calculating the ob^^ervablc (luantities character¬ 
istic of the atom without bothering about the coordinates and velocities 
of its particles as functions of the time. In principle, such a program 
can be carried through. In practice, the mathematical difficulties are 
often great, for the calculations are not carried out with ordinary algebra. 
The equations of the theory consist of relations between sets of numbers 
called ^^matrices’’ instead of single numbers. We have said that the 
results of Schrbdinger’s theory are identical with those of Heisenberg\s—a 
fortunate circumstance, because it means that the numbers forming 

the matrices for an atomic system can be obtained by simple integration, 
if we have quantized the atom by means of wave mechanics. 

2. TWO-DIMENSIONAL MATRICES 

In beginning our study of Heisenberg^s theory, we shall consider 
systems with one degree of freedom. We saw in Chap. VI, using the 
old dynamics, that the intensities of spectral lines yield us relative 

values of the amplitudes of the various harmonics in the electric moment 
of the atom. Often it is convenient to deal with these amplitudes gi, 

1 Z. Physik, 33, 879 (1925). 
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q2, . , . as though they were the amplitudes of ideal virtual oscillators 
associated with the atom. Now, consider the classical problem of the 
radiation from an oscillator having one frequency and a single coordinate 
g expressed by a Fourier series, 

q = (1) 

where the ^^s are supposed to be complex quantities of such a character 
that the whole series is a real quantity. Such will be the case if 

= A,*, - - a,, (2) 

for then the sum of the two tc^rms, 

and (3) 
is real. 

Similarly, if we study the radiation from an aggregate of quantized 
systems, we may consider each monochromatic spectrum line as coming 
from oscillators each of which is characterized by an amplitude, a phase, 
and a factor containing the frequency. Let the energies of the stationary 
states, as yet unknown, b(i Eiy Eo, etc., and let v(nm) denote the fre¬ 
quency emitted in the transition from the 7?-th to the /nth state, calculat(*d 
from the relation En — E,^ = hv{nm). Let Ainm) be the corresponding 
amplitude, which is assumed to be constant, and b{nm) the phase. 
Then, wherever we would deal with the (luantities of equation (2) in 
the corresponding classical problem, we shall need the quantities 

in Heisenberg^s theory. We leave the question open whether the simi 
of these quantities is useful in studying the atom, for the theory deals 
only with the set of quantities (4), and not with th&r sum. It will be 
convenient to write 

q{nrn) ^ 
whence, 

q(mn) = A (5) 

In analogy to equation (2) w(* assume that 

A{mn) — A*(nm), 
b{mn) = — o(nm). (6) 

Then, 
q(mn) = q'^'i^rmi). (7) 

Further, 
hv{nm) — En — E,n, (8) 

so that 

1 11 1 (9) 

The absolute value of q{nm) is equal to the absolute value of q{mn)j 

and therefore, 
\q{nm)\^ == q{mn)q'^{mn) = q{nm)q*{nm). 

Now, it is convenient to order the quantities 
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in a square array, having an infinite number of rows and columns, which 
is called the matrix q. This is expressed by writing 

^(ll)g2xi.(ll)e^(12)^2Ti.(12)« . . . 

^(2l)e2^i*'(21)«^(22)e2iri.(22)< . . . 
(10) 

A matrix is not a single quantity, like a determinant, but simply a set 
of quantities. The array is often referred to as the coordinate g, because 
it may be considered as a generalization of the set listed in (3), which 
gives us the means of calculating the classical coordinate q. As we 
have said, however, matrix theory does not deal with the sum of the 
matrix elements of equation (5), so the application of the name coordi¬ 
nate^^ to the matrix must be regarded as a convention. Corresponding 
to any other variable encountered in classical theory, such as a momentum 
j we shall need to introduce a matrix Pj which is an array of the type 

^p. (11) 

For brevity, it is customary to omit the exponential factors in these 
xnatrices, and to refer to the quantities q(nm) or p{nm) as the elements 
of the matrices. The matrix q is usually written as the square array 
of the quantities q(nm), and it must be understood that this is always an 
abbreviation. The same is true for other matrices. 

A matrix is called “Hermitian,after the French mathematician, 
Hermite, if the elenfent in the nth row and mth column is the complex 
conjugate of the element in the mth row and nth column. The matrices 
considered in atomic theory have this property, by virtue of equations 
(5) to (9). The requirement that a matrix shall be Hermitian is some¬ 
what analogous to the requirement that a physical quantity shall be 
real in ordinary mechanics. 

3. MATRIX EQUATIONS 

Heisenberg^s guiding thought was that the separate elements of these 

matrices are to play a role in atomic dynamics analogous to that played by 

the separate terms of the corresponding Fkturier series in ordinary mechanics. 

The question is, what are the dynamical laws by which these elements 
can be calculated? Before answering this, we must examine the nature 
of the equations occurring in ordinary physical theory. These equations 
consist of relations between numbers expressing the magnitudes of 
physical quantities. When we write q ~ /(O, we mean that on putting 
a particular value of t in f{t) we obtain a number which is the value 
of the coordinate q at that time. We are just as well off if we proceed 
in a more general way, as follows: To every physical quantity we 
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assign an auxiliary quantity, or parameter, or, more generally, a group 
of parameters. The parameters belonging to t will be Ti, T2, etc., and 
those belonging to q will be Qi, Q2, etc. These parameters need not have 
the slightest resemblance to the values of t or but there is to be a 
set of equations 

/i(Qi, • • • r,, . . . ) = 0,MQu • - , Ti, • • • ) = 0, etc. 

sufficient in number to give us the values of all th(' Q's when all the 
are specified, and such that on using the appropriate to a given 

value of ty the Q's we calculate will be those we have correlated with 
the value of q at that time. The equations of atomic dynamics are 
of this kind. The concept of an electronic coordinate is replaced by 
the set of elementary oscillations of equation (10), but we do not write 
down equations which contain explicitly the elements of the coordinate 
matrix of equation (10) and of other matrices. The equations are connec¬ 
tions between matrices, betwe^en sets of numbers considered as entities. 
Of course, they imply relations between the individual elements, but the 
passage to these relations is analogous to the arbitrary way in which 
we pass from the Q'b to the value of q in the illustration above. Often 
it is said that a matrix is a generalized coordinate; that somehow we 
have been wrong in our microscopic theories when we suppose that the 
state of a physical variable can be specified by assigning a single number 
to it. It is more general to consider a matrix simply as a symbol belong¬ 
ing to a physical variable. Then it is not surprising when we find that 
the discussion of relations between matrices requires the use of a gener¬ 
alized algebra. The reason for this will become fully comprehensible 
to the reader only after he has had a little practice in dealing with this 
algebra, and has studied the connection between wave mechanics and 
the mechanics of matrices. Then it will be st^en that every matrix 
equation—at first sight so artificial—is really an expression of a definite, 
easily understandable physical law. 

4. THE LAWS OF MATRIX ALGEBRA^ 

1. Equality of Matrices.—By equality of two matrices we mean 
that each element of one is equal to the corresponding element of the 

other. 
a = b implies that o(ll) == &(11), a(nm) == 5(nm), etc. (12) 

2. Addition.—The sum of two matrices a and 6 is a matrix whose 
elements are the sum of the corresponding elements of a and b. 

<1 + 5 = c implies that a(ll) + 6(11) = c(ll), a{nm) + b(nm) = 
. c{nm), (13) 

1 The word matrix” is used by mathematicians in a broader sense than that in 
which it is used here. The elements do not necessarily contain an exponential factor, 
and the arrays considered are generally taken to be rectangular instead of square. 
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The reason for this convention is plain. Given two Fourier series, 

a = h = 

the typical term in their sum has the co('fficient + bky so the same rule 
is assumed for matrices. The law of subtraction is similar. 

3. Multiplication.—In setting up the law^ of multiplication we are 
guided by the fact that the product of two Fourier series having the 
same fundamental frequency is also a Fourier series. 

For example, the product of the series a and h above is 

where we easily viTify that 

Cr = ^kaiJ)r~k, A: = - 00, . . . + 00 , 

for each product term such as reduces to 
It is essential in atomic theory to retain this property for the products 
of matrices. We can arrange to do so by making the rule for multiplying 
two matrices the same as that for multiplying two determinants, rows by 
columns. The symbol for the product of a and h is ab and the typical 
element of such a matrix is ab{nni). The equation, 

k— 00 

ab = c, implies that ah{7im) = ^ a(‘nk)h(km) = 
k^i 

a(n\)h(ln) + a{n2)h{2m) + • * • (14) 

The time factor multiplying c(nm) is c>27r/Vfum)/. right side of 

equation (14) were written out with time factors included, the typical 
term would be 

This reduces to 
a (y iX’) /> (A- m) c - ^^ ^ 

by virtue of the combination principle, which is assumed in this theory 

For the sake of thorough understanding let us illustrate further. The matrix a is: 

a(ll) a(12) • • • a{lk) • • • 
a(21) a(22) • - • a{2k) • • • 

a{7il) a(n2) • • • a(nk) • • • 

The matrix b is 
6(11) 6(12) • • • 6(lm) • • • 
6(21) 6(22) • • • 6(2m) • • • 

6(/cl) b{k2) • • • h(kin) • • • 

The element of c standing in the nth row and the mth column is obtained by pick¬ 

ing out the nth row of a and the mth column of b. Write their elements in two lines 

as follows: 
a(nl) a(n2) . , . a{uk) . . . 

6(lm) 6(2m) . . . b(km) 
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Then the nth, mth element of c is obtained by multiplying each pair in these lines, 

and forming the sum of the products as shown in equation (14). In summations of 

the type indicated in e{|uation (14) we shall not indicate the range of values assumed 
by /c, whenever it extends from 1 to qo. 

By equation (14), the typical element of the matrix ba is 

X,h(nk)a(km) 

and this is 7iot identical with the typical clement of ab, so that in general 
ab 9^ ba. This is expresscnl by saying that the commidative law of 

multiplication does 7iot hold for matrices. If it happens that ab = ba, 
than a and b are said to be int(u*changeable or commuta})le (German, 
veriauschhar). 

4. Associative Law of Multiplication.—In forming the product 
abc it makes no differtuice whether we first obtain be and then abc, 
or ab and then abc. Expressiul in symbols, 

[ab]c — a[bc]. (15) 

The truth of this is seciii at oiic.e if wo write out the produ(;t abc. Its typical element is 

k j 

which can be written in (‘ither one of two ways: 

or 

'^^a(nk)hc(kni), w1hm'(' hr(kni) 
k 

'^,ab(ni)c(mi) when^ ah(nj) = 

^b(kj)cijm) 
j 

k 

The reader should practice wTiting out such products until he can recognize at a 

glance the type of sum mat ion involved in any j)roduct. The i)rin(;iple used in the 

proof of the associat ive hw is (piite geiKnally useful. It is simply tlui apidication of 

the fact that when we carry out a multiple summation, the final result is inde¬ 

pendent of the order of summation. 

6. Distributive Law of Multiplication.—Obviously, 

a{b + c) = aft + cc. (16) 

6. The Reciprocal of a Matrix; Matrix Division.—Division by a 
matrix is defined as multiplication by its reciprocal. To define the 
reciprocal we shall need a very important matrix called the “unit matrix," 
and denoted by the syrnbol, 1. It is composed entirely of zeros, except 
for the elements of the principal diagonal, which are all unity. It is 
convenient to call the typical element where 5nm is Kronecker’s 
symbol, which has the value zero if n ^ m, and the value 1 if «. = m. 

The unit matrix is such that 

a 1= a, and la = a; (17) 
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for, al(nm) — 2a(nk)l(km) = Za(nk)5km^ The only term which survives 
in this sum is that for which k = m, namely The proof of the 
second equation is similar. The reciprocal of the matrix cr is a matrix 

such that 
a~^a = i. (18) 

If this equation is fulfilled then also 

aa-^ = 1. (19) 

In other words, the matrices a and a~^ can be commuted. This follows 
if we multiply both sides of equation (18) by obtaining 

a''^aa~^ = la~^. 

By equation (17) the right member is so that the product of the last 
two factors on the left must be the unit matrix. 

7. The Time Derivative of a Matrix.—q is the matrix whose elements 
are the time derivatives of the elements of q, A similar statement 
holds for differentiation with respect to any parameter. By definition, 
the matrix q has the typical element 

= 27ri p (nm) </(/mi) e 

In accord with our usual convention we leave out the time factor. The 
remainder of the expression is denoted by (/(nm) which is purely con¬ 
ventional and does not imply that the constant q{nm) has a tim(^ deriva¬ 
tive. We have then 

q{nm) = 2Triv{nm)q{nm). (20) 

It must be noted that this is a property only of the type of matrices 
specified in equation (10), which contain the time only through the 
factor Further, 

^(^0 = ab + ah. (21) 

Integration with respect to a parameter is the operation inverse to 
differentiation. Since the matrices discussed in quantum theory contain 
the time in an exponential factor, it is not possible to frame a definition 
for a definite integral with respect to time without destroying this charac¬ 
teristic of the matrix elements. There is no reason, however, why we 
should not consider arrays of indefinite integrals such as 

if it serves a useful purpose. 
8. Derivative of a Matrix with Respect to a Matrix.—The derivative 

of a matrix p—where j/ is a function of an independent variable which 
is also a matrix, x—is defined in exact analogy to the derivative of an 
ordinary function: 

dx o_0 
(22) 
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where a is the matrix obtained by multiplying each element of the unit 
matrix by a constant a. That is, a(nm) = adnm- In forming the quotient 
in equation (22), it is immaterial whether the factor stands before 
or after the numerator in multiplication; for the typical element of this 
matrix is 

a-Hnm) = (23) 
a 

and this can be commuted with any matrix. To illustrate equation 
(22), let y ~ X, Then the typical element of dxjdx is 

lirn ^[x{nin) + ab^m “ x{nm)] = (24) 
a 

that is, all the elements of this matrix are zero except those on the 
principal diagonal. Likewise, 

dx\ . ,. 1 
. him) — lim - 

ax a 
'^{xink) + abnk][x(km) + a6jk J — ^x{nk)x(km) | 

k k J 

bkm I (^ktll) (X bfik ^ = lim 

In the first summation, each term is zero except the one in which k — m, 
namely, x{nm)bmmi or x{nm)] and in the second summation each term 
is zero except that in which k — Uy namely, x{nm)bnn- Therefore, the 
result is 2x(nm), and the corresponding matrix equation is 

The rule for the differentiation of a product is identical with that 
of ordinary calculus. To prove this we take y — fg m equation (22) 
and note that the numerator 

fix + a)gix + a) - Six)gix) 

can be rewritten in the form 

fix + a)gix + a) - fix + «)gix) + fix + a)g(x) - fix)gix). 

In passing to the limit the first two terras give rise to and the last 

two to so that 

d(/£) 
lix ~ ^ dx^ dx^ 

(25) 

Since any power of x can be considered as a continued product, we can 

use this relation to prove the formula 

(26) 
dx 

Applying this rule to the matrix power series representing any function, 
we see that all the usual derivative formulas hold true for functions 
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which can be represented by such series. The idea of partial differenti¬ 
ation is also formally identical with that of ordinary calculus. 

9. Diagonal matrices are those in which all the elements are zero 
except those along the principal diagonal, such as, 

Aft 0 0 . . . 
0 Ms 0 . . . 
0 0 A/a . . . 
: : : (27) 

The general element may be written Mn^nm- A matrix of this kind is 
analogous to a constant in ordinary dynamics, for it has the property 

dM/dt = 0. 

If a matrix q is such that dq/dt = 0, this implies that 

2iriv{;nm)(]{nm) = 0 

for every pair of values of n and m. If all the energy values Ek are 
distinct then v^nm) cannot be zero unless n = m. In this case, 

q{nm) = 0, n 9^ rriy 

so that the matrix q is diagonal. If the energy values arc not distinct 
this may be true, but is not necessarily so. We have proved, there¬ 
fore, that if the time derivative of a matrix q is zero in a non-degenerate 
problem^ q is a diagonal 7natrix. 

Diagonal matrices enjoy many remarkable properties not possessed 
by matrices in general. The product of two diagonal matrices is also 
diagonal and the order of multiplication is immaterial, that is, ah — ha = 
0 if both a and h are diagonal. Further, if ah — ha = 0, and a is diagonal 
and is not degenerate^ then h is also diagonal^ for we have 

a(nn)h(nm) — h{nm)a(mm) = 0. 

Since a is not degenerate, a(nn) is not equal to a(mm) when n is not 
equal to m; and so h{nrn) must be zero, which proves that h is diagonal. 

10. An Alternative Expression of the Time Derivative.—Consider 
the diagonal matrix formed of the energy values and let q be any other 
matrix. Then, forming the function 

Eq - qE, 

we have for its nth, mth element, the sum of terms, 

^^E n 5nkQ (hnx) E kSkm- 
k k 

In the first sum, the only surviving term is that for which k = n and, in 
the second, the only survivor occurs when k = m, bo we obtain 

(En - Em)q{nm) = (Eq — qE){nm), 

or, by Ritz’s principle, 

hv(nm)q{nm) = {Eq — qE){nm) 
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so that by equation (20), 

- 9E)- (28) 

Obviously, q can be any matrix whatever, for the proof does not require 
it to be a coordinate. 

11, Alternative Form for Matrix Derivatives.—We now prove that 
if / is a matrix function of two other matrices p and then, 

sp- 
and 

provided that p and q satisfy the relation 

First, we note that equations (29) and (30) are satisfied when /is set equal 
to either p or q. Now we show that if they are true for any two functions 
F and G they are true for F + G and FG, The first statement is obvious. 
As to the second, we write 

FGq - qFG = F{Gq - qG) + {Fq - qF)G. (32) 

But by hypothesis 

Gq - qG- etc. 

so that the right side of equation (32) niduces to 

( -I- ( \ 
\2Tri Jy ^p j \2tiJ dp 

The extension to a product containing any number of factors is accom¬ 
plished in the same way. Now the only type of matrix functions with 
which we shall deal is that which can be expanded in series containing 
terms of the type . . • »and since we have shown that equation 
(29) is true when / is a product of this kind, it also holds for a series 
composed of such products. This completes the proof of equation (29), 
and that of equation (30) is similar. 

12, Some Convenient Rules of Computation.—Assuming equation 
(31), we obtain by induction the following results: 

P^q = qP" + (2^ 

=i>r-(2^-)nr-’. (33) 

13, The Permutation Theorem.—A matrix is said to be permuted 
when its rows are interchanged according to any plan we care to specify, 
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and when the columns are also interchanged in the same way. The 
permutation theorem is as follows: 

Every matrix equation F{xi^ • • • ) = 0 remains true if all the 

matrices X/, . . . are subjected to the same permutation. 

To prove this, we need only show that if a and b go into a' and 6' 
as a result of this permutation, then the results of applying it to a + b 
and ab will be a' + b' and a'b', respectively. The proof depends on 
the fact that a permutation can be replaced by a suitable matrix multi¬ 
plication. Let us agree to replace 

1, 2, 3, . . . n, . . . 
by the numbers 

kly lc2j ksf ... kny . • • 

and let us form a permutation matrix, such that 

p{nm) = 1 if m = kny and 0 otherwise. 

The matrix p obtained by interchanging rows and columns is such that 

p{7im) = 1 if n = krny and 0 otherwise, 

and so the typical element of pp is 

J 
This will be zero unless j = kn = k^y that is, unless n == m, in which 
case it is unity, and therefore pp = 1, so that p = p~^. 

Illustration.—ConHidcr the pcirmiitation of the numbers 1. 2, 3, defined by 

k\ = 3, A:2 ~ 1> k'A = 2. 
Then 

0 0 1 0 1 0 
p- 1 0 0 p = 0 0 1 

0 1 0 1 0 0 

Returning to our theorem, we have 

pa{nm) = Xp{7ij)a(jm) 

which reduces to the single term 

p{nkn)€i{knm) = a{knm). 

That is, the element of pa standing in the nth row and mth column 
is the same as the element of a standing in the /c„th row and mth column, 
so the multiplication has simply carried the fcnth row into the nth row. 
Similarly, 

ap~^(nm) = a{nkm) 

which means that this multiplication results in carrying the kmth column 
into the position of the wth column. Appl3nng both multiplications in 
succession, 

a' = papri, 

a' + b' = p(a + b)p-^. 
80 that 
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Further, 
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= pap-^pbp-K 
In the center p^^p = 1^ so the right side is pabp^^. This completes the 
proof of our theorem. 

5. THE QUANTUM CONDITION FOR SYSTEMS OF ONE DEGREE OF 
FREEDOM 

We must now study the laws of atomic mechanics discovered by 
Heisenberg’ and extended by Born' Heisenberg, and Jordan,^ which 
enable us to calculate the values of the quantities qinm)^ and 
v{nm). 

These amplitudes and frequencies are not variables; they are constant 
quantities, depending only on pure numbers and universal physical 
constants. They are infinite in number and we may expect that the true 
laws of atomic mechanics will yield an infinite number of equations for 
determining them. We may also expect that these laws will reduce to 
the ordinary dynamical laws in the region of high quantum numbers and 
small changes of the quantum numbers. 

In the old mechanics the amplitudes and phases of an atom are not 
completely determined by the equations of motion. They appear as 
constants of integration, and are assigned definite values by applying 
the quantum conditions. Similarly, in matrix mechanics, we have a 
set of equations involving the p’s, g’s, and v’s, together with hy which 
form a natural generalization of the (luantum conditions. Heisenberg’s 
assumption as to the matrix quantum conditions was based on a form 
of the ordinary quantum conditions used by Thomas*’ and W. Kuhn.^ 
If we write 

p = q = 

with the summations running from — oo to + oo, the integral I = j>pdq 
takes the form 

The only terms different from zero arc those in which j = —so that 

I = 2Tri^lpiqi. (34) 
i 

Differentiating, 

= (35) 

1 Z, Physiky 33, 879 (1925). 
* Born and Jordan, Z. Physihj 34, 858 (1925); Born, Heisenberg, and Jordan, 

Z. Phynky 35, 557 (1925). 

^ Naturwis., 13, 627 (1925). 

^ Z, Physiky 33, 408 (1925), 
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For the case where p = mg, Thomas and Kuhn succeeded in generalizing 
equation (35) so that it held for all values of the quantum numbers. 
Their procedure was based on the correspondence principle and consisted 
in replacing each derivative by a suitable finite difference. Further, 
Heisenberg was able to construct a matrix function which may be con¬ 
sidered as a generalization of the result obtained by Thomas and Kuhn, 
without any restriction on the form of p. It must be understood that 
this procedure is purely an assumption, justified by the striking character 
of its results. The equation adopted by Heisenberg was 

2^^ = + I, n)pin, n + 1) - q(n, n - “ h n)], (36) 

n being a quantum number. Terms which contain a negative index are 
to be set equal to zero, for they correspond to transitions involving non¬ 
existent terms. Writing n + I = k \n the first product and 7i — I = h 
in the second, equation (3()) becomes 

%[vink)q(kn) - q{nk)p{kn)] = (37) 

There is an equation of this form for each value of 7i, and the left members 
are evidently the diagonal elements of the matrix pq — qp. This sug¬ 
gests that we write 

{Ly- 
as the quantum condition of matrix mechanics. This is the cormnutatimi 
relatio7i which tells us how much the product pq exceeds qp. It serves 
as an additional law of computation in matrix algebra, which enables us 
to obtain definite numerical results. 

6. THE ENERGY MATRIX 

In Sec. 4 we assumed that the frequencies occurring in the elements 
of all the matrices of atomic physics obey the Ritz combination law, from 
which it follows that each frequency can be exprcvssed as the difference of 
two numbers, 

En — Em = hviymil). 

We wish to know how these numbers are related to the elements of 
the matrix representing the energy. In ordinary mechanics the energy 
is invariable, so that the Fourier series representing it reduces to a 
constant term. This constancy is expressed by the vanishing of the 
time derivative, so by analogy we require in matrix mechanics that 
dE/dt == 0. This means that .E is a diagonal matrix, if the energy 
levels are all distinct, which we shall assume to be the case until further 
notice. With this clue, we form a diagonal matrix E with the constants 
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En for its non-vanishing elements, and ask, how can we justify our 
action if we call this the energy matrix? This identification will be 
satisfactory if we succeed in finding analogues of the canonical equations 
of motion, involving a matrix function H(p^q) called the ^^Hamiltonian 
function,’^ such that when the coordinates are suitably chosen the 

relations 
dH 

dt 
= 0, (40) 

and 
(41) 

are satisfied. The first of these will be referred to as the law of con¬ 
servation of (m(irgy. The second, when proved, yields the Bohr fre¬ 
quency condition, 

Hn - lU - }iv{nm). (42) 

7. THE MATRIX LAWS OF MOTION; THE THEOREM OF ENERGY 
CONSERVATION 

We are now in a position to discuss the laws of motion. As we 
shall see, there is a close relation among (1) the quantum conditions; 
(2) the law dHjdt — 0; (3) equation (42); and (4) the laws of motion. 
Assuming (1) and (3) we can prove (2) and (4); assuming (1) and (4) 
we can prove (2) and (3), and other combinations are probably possible. 
Here we shall proceed according to the second plan, and shall begin 
by stating the equations of motion proposed by Born and Jordan. 
They arc 

dH 

dq' 
(43) 

These equations are not differential equations; on the contrary, they 
stand for an infinite number of algebraic equations, each one of which 
has an infinite number of terms. is a function of p and g, constructed 
by matrix multiplication and addition, and is taken as nearly similar 
to the energy function of classical theory as possible. For example. 

if the classical energy function is + pg, we take H + 

The last term is split into two terms symmetrical in p and g, 
Jd 

because in classical mechanics the product qp stands on an equal footing 
with pq. This is not true in matrix mechanics and in a certain sense 
the syrnmetrization of the term pq serves to restore p and g to an equal 
footing. General rules for writing the matrix energy function from a 
knowledge of the classical energy function are given by Born and Jordan. 
They are rather complicated and since they are often equivalent to the 
requirement that H be symmetrical in p and g, we shall not pursue 
the subject further. 
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We shall now prove equations (40) and (42). By equations (28), 
(43), and (29), we have 

Hq - qH, (44) 

Ep - pE = Hp - pH, 
and similarly, 

whence, 
(E-H)q = q{E -H),(,E- H)p = p{E - H). 

That is, the matrix E — H commutes with q and p, and therefore with 
any function of q and p, so that 

{E - H)H = H{E - H) 
and 

EH - HE ^ 0, 

but by equation (28), this means that 

dH 

dt 
= 0, 

and H is diagonal. A typical element of equation (44) may be written 

q(nm)(Er, - Em) = q(nm){Hn — //m). 

From this equation (42) follows at once, unless q(nm) = 0. 

When this exceptional case occurs, we proceed as in the following example; Let 

g(34) be the vanishing element. If ^(35) and ^(45) are not zero, wo get 

H, - K35), H,- H, ^ K45), 

and by subtraction, 

//., - H, K34). 

A device of this kind will always work if we can find a set of transitions having finite 

g's which leads us from level 3 to level 4. If such a set cannot bo found, the term 

system obviously splits into two (or more) parts which do not combine. 

8. THE HARMONIC OSCILLATOR 

The Hamiltonian for the oscillator is 

== ^~ + 2Tr^vQ^iJiq'K (45) 

It is assumed that we are dealing with a non-degenerate system—that 
is, En is not equal to Em unless n == m. We have 

q =x p =: — 47r^Po^A^, (46) 

just as in classical mechanics, although the meaning of the equations is 
profoundly different. Let us differentiate the first of equations (46), 

obtaining q = p/iJ., and eliminate pj obtaining, 

q + (2vPo)^q = 0. 
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This represents a double infinity of equations in square array. The 
equation in the nth row and mth column involves only the element 
q{nm) of the coordinate-matrix q. It is 

or, 

or, 

q{nm) + {2TrvQYq{nin) = 0, 

--Aw^v'^{nm)q{nm) + (27rPo)^q(nm) = 0, 

{p^(nm) — vo^]q(nm) = 0. (47) 

From this we conclude that v(nm) = ± vo^ provided that q{nm) is not 
zero. In other words, the frequency in the time factor of all non¬ 
vanishing elements of q is ± vo- (This information is available only 
because of the simple character of the problem. At the corresponding 
stage in the solution of almost all dynamical problems we shall study, 
no similar conclusions can be drawn.) This is all that can be said about 
v(nm) and q(nm) by use of the equations of motion. The problem comes 
to a halt in similar fashion if we eliminate q from equation (40) and solve 
for p. This brings out clearly the role of the commutation equation 
(38) which plays the same r6Ie as the quantum condition in Wentzel’s 

treatment of SchrodingeFs theory (App. V, Sec. 3). It enables 
us to determine the size of the and ^^s, the result being in exact 
agreement with the amplitudes obtained by the methods of wave mechan¬ 
ics, introduced in Chap. XV, Sec. 17. The use of the matrix 1 on the 
right side of the commutation equation, rather than any other value, 
is responsible for results equivalent to those which arise from the nor¬ 
malization of 

In order to utilize equation (38), we substitute the value qix for 
py obtaining 

I’h qq - qq 
2Tin 

The typical element of this relation is 

'^[2Trip{nk)q{nk)q{km) — q{7ik) * 2Trip{km)q{kni)] = 
k 

That is, 

b{nm) 
27rfjLt 

'^[pink) — p{km)]q{nk)q{km) = — 2-orO, (48) 
k ^ ^ 

according as n is or is not equal to m. The diagonal elements of equatioI^ 

(48) may be rewritten 

'^p(nk)\q{nky\ 
k 

h 

SttV' 
(49) 

for —p{kn) = p{nk). This can be simplified at once. By equation 
(47), all elements in the nth row of the q matrix vanish except two 9t 

most, having the frequencies 

v(nn') = POf y(nn") = — j/q = -p(nn'). (50> 
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The level n' is below n and n" above n, because pq is positive. Now 
equation (49) reduces to the form 

v{nn!)\q{nn')\^ + v{nri!')\q{nn^')Y‘ — v{nn'^){\q{nn!')\’^ — 

\q{nn')Y\ = (51) 

We are now in possession of all the material needed for determining 
the elements of H. Remembering that p = fxq, H may be written 

^1' + 2-nWiiq‘ 

and by the use of equation (20), we obtain 

H{nm) ~ 2Tr'^ii^q{nk)q{km)[v()^ — v(;nk)v{krn)]. (52) 
k 

The bracket in equation (52) reduces to 2v^^- so that 

//(nn) = Wn = 47rV»^(/1k/('/in')l“ + \qi:nn'Tl (53) 

In the nth row of one of the two non-vanishing elements lies to the 
left, and the other to the right of the principal diagonal (if both exist), 
the first corresponding to emission and the second to absorption. Like¬ 
wise, each column contains at most two non-zero elements, one above and 
one below the diagonal. Our knowledge of tlie Planck oscillator makes us 
suspect that the non-vanishing elements correspond to transitions in which 
the quantum number changes by unity, so that for any n, these elements 
are ^(n, n + 1) and (/(n, n — 1). If this is so, the matrix q has the 
appearance 

0 5(01) 0 0 
g(10) 0 9(12) 0 

0 5(21) 0 9(23) 
0 ■ 0 5(32) 0 

Let us assume for the moment that such is the case, and that the 
energy level numbered zero is the lowest level. Then from equation (51) 

.(01){|2(01)|^ - k/(0, -1)1^1 = - 

Now, ^(0, —1) must be put equal to zero, because there is no level 
numbered minus 1, and p(01) = —Po so this equation becomes 

^o|g(01)|2 
h 

SttV 

Substituting this value of lg(01)p in equation (53), we see that 
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Now it is eas^ to obtain the other levels. Remembering that |g(01)i2 r= 
(g'(lO)l^ it follows from equation (51) that 

|»(12)1. - 1,(01)|= + 
2h 

Similarly, 

\qin, n + ])|2 = \q{n + 1, n)|= = (n + 1) - 

By using these values in equation (53) we find that 

E. = {n + }4) hv,, 

(54) 

(55) 

in exact agreement with the result obtained by wave mechanics. 
To complete our study of the harmonic oscillator, we discuss the 

values of the amplitudes. From equation (54), we may write 

g(n, n + 1) (n + 1) 
Sir^fJLVo 

hz 
(56) 

hut nothing can be said as to the values of the phase constants. This 
is not to be considered a defect of the theory, for just as in the classical 
theory, the unobservable phase of the oscillator has no influence on its 
energy or the intensity of its radiation, both of which are to be considered 
as observable. The energy depends on the square of the absolute value 
of g, which does not involve the phase. 

It is interesting to compare the elements of the ^-matrix with the 
classical p^s. By equation (46), 

|p(nm)p = 47rV‘^r(/m)“|g(nm)|^ (57) 

This is zero except when m = n ± 1, when we have 

|p(n, n + 1)1^ + \p{n, n - 1)12 = 

This may be compared with the classical relation 2p- == while after 
multiplication by the implied factor exp 2Trivotf equation (56) is similar 
to the classical equation 

Q == 

J being equal to nh. 

J 

St ^ IX Vo 
exp (2Tivot + id). 

In our treatment of the oscillator, we assumed that the num})ers n\ w, and n" 

have consecutive values, that is, transitions occur only between adjoining levels. 

How can we prove that such is the case? First of all, each energy level can be entered 

in at least one direction, that is, for every level En there is at least one level Em such 

that q(nm) is not zero; there is at least one non-vanishing element in every column 

and every row of the q matrix. For if this were not true in the case of the nth row 

or column, the (nn) element of— gj), namely, X[p(nk)q{kn) — g(nA;)p(A;n)], would 

vanish, contradicting the equation (38). 

Suppose the situation portrayed in the diagram of the matrix, g, is not correct, so 
that 1^0 may correspond to a change of the quantum number greater than h 
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ning with the lowest level, for there must be a lowest level, we coustruSt a sequence of 

levels at intervals vo- The numbers belonging to the higher levels in this sequence 

are unknown for the moment, but we suppose at least one pair of them has numbers 

which are not consecutive. Similarly, there may be anoth(5r level, {Ei for example), 

which is not entered from below, on which w(i build up another sequence of levels, 

at intervals vo^ and so on. Now consider the lowest term in one of these sequences. 

The proof given above shows that its energy is hvo/2. But this reasoning applies to 

the lowest level of any of these se(iuences, so all of them must lie in tlui same position 

on the energy diagram. However, this violates the assumption that no two levels 

have the same energv, and so only one sequence of levtds exists after all. Therefore, 

Vo is the spacing between adjacent levels, which is what we s(5t out to i)rove. 

Portlier, we assumed that the levels are numbered in the order of incr(‘asiug energy. 

If this were not true-, we could make it so by permuting rows and columns of all 

matrices in tlie same way, until the lowest (mergy value occurs in the leading position 

in the E matrix, and so on. By Sec, 4, P^irt (13), this does not destroy the meaning 

of any matrix equations. In the remaimhir of our work with matrices, we shall 

suppose this detail attended to. 

9. QUANTIZATION OF THE ROTATOR 

There is no place in Heisenberg's matrix scheme for the treatment 
of problems in which the independent variables continually increase; 
each element of a matrix must be considered as a generalization of a 
term in a Fourier series, and such a s(*ries is naturally fitted to represent 
an oscillation. Halpern^ quantized the rotator in matrix theory by 
the use of a transformation which changes the energy function of the 
rotator into that of the oscillator. He recognized that the success of this 
expedient was a lucky chance, and it cannot be employed to reduce 
the general conditionally periodic system to a system of independent 
oscillators. In spite of the drawbacks of Halpern's method, it will 
be of interest to outlines his treatment of the rotator. 

The Poincard transformation, 

q = (2p^)'^ cos ip^p = - sin ip, 

will carry the function p^^l2J over into 

Ti _ n - 

In classical theory this represents the product of the energy function 
for an oscillator with energy (2Hiy~ and for a system which might be 
referred to as an ‘^imaginary oscillator," with energy For 
use in matrix theory, we symmetrize this function, writing it as 

+ q^) 
-87- 

The solution of this matrix problem is very simple, and yields the energy 
values 0* + 

Physik, 38» 8 (X923), Sea also Tamm, ibid. 87, 686 (1926). 



Sec. 11] SEVERAL DEGREES OF FREEDOM 593 

10. SPECTRAL INTENSITIES IN THE MATRIX THEORY 

The calculation of the relative intensities of spectral lines in the 
matrix theory is very similar to the corresponding process of classical 
theory. The matrix component q(nm) may be considered as the ampli¬ 
tude of a virtual harmonic oscillator of frequency v{nm). Multiplying 
by the electronic charge, we obtain the electric moment, and substitute 
it into the classical formula for the average rate of radiation by such an 
oscillator. (Chap. VI, Sec. 1.) The Einstein probability coefficient for 
the transition n to m is defined by the relation 

Anmhv(nm) — /, (58) 

where / is the average rate of emission. This relation gives us a means 
of comparing the results of the matrix theory directly with experiment. 

11. MATRIX MECHANICS FOR SEVERAL DEGREES OF FREEDOM 

The extension of matrix mechanics to conservative systems having 
/ degrees of freedom is easily understood, for the underlying physical 
ideas are nearly identical with those outlined for the case of one degree. 
Dirac^ and Born, Heisenberg, and Jordan,^ independently, discovered 
the appropriate generalization. A coordinate is expressed in classical 
mechanics by an /-fold Fourier series, having a typical term 

• V [27rz‘(A:iaJi + - . - /c/o;/)/]. 

There is an/-fold infinity of such terms. On the other hand, the emission 
frequencies of a system with / degrees depend on the values of 2/ quanti¬ 
ties, namely, the quantum numbers of the initial state and those of the 
final state, and therefore may be written 

. . . n/; mi, . . . m/). 

Instead of the /-fold Fourier series, in matrix theory we consider an 
aggregate of terms, 

Qrinij . . . rif] mi, . . . m/) exp 27riV(/ii, . . . n/; mi, . . . m/)/, 

which form altogether a matrix of 2/ dimensions. All the laws of Sec. 4 
hold without change if we replace the multiplication rule by the following 
rule involving/-fold summations: 

(a6)(ni, • — n/; mi, • • • m/)== 

X • • * %a{niy • • • n/'ykiy • • • kf)b{ki, • • • fc/; mi, • • • m/). (59) 
kf , 

The multiplicity of summations makes the attainment of numerical 
results more complicated, but general theorems are usually no more 
complicated than before. This is partly due to the fact that a 

>fVoc. Roy. Soe., 109, 642 (1926). 
*Z.P%*<fc,88,657 (1926). 
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dimensional matrix can be rewritten as a two-dimensional one. For 
example, the terms of a four-dimensional matrix are drawn up as follows: 

a(ll; 11) a(ll; 12) • • • o(Il; 21) o(ll; 22) • • . 
a(12; 11) 0(12; 12) • • • o(12; 21) o(12; 22) • . . 

a(21; 11) 0(21; 12) • • • o(21; 21) o(21; 22) • • • 
o(22; 11) 0(22; 12) • • • 0(22; 21) 0(22; 22) • • . 

We are dealing with an infinite checkerboard, each square being also an 
infinite checkerboard. If we have another such board, b, and apply the 
multiplication rule of equation (14) we see that the single summation 
involved takes in all the terms of the/-fold summation of equation (59). 

The Hamilton equations are identical in form with the classical 
ones, and the commutation rules are as folllows: 

prPs Pspr — 0, (60) o
' 

II 1 (61) 
pT^ls — psQr = 0, r not equal to s, (62) 

. j. Ih 
Prqr - qrPr = 2„- (63) 

The reader is strongly advised to write out a few terms of the products 
involved in these quantum conditions, to aid in understanding what 
they imply. 

It is worth noting that the equations of motion and the commutation 
relations do not suffice to prove the Bohr frequency condition when 
the system is degenerate. As Born, Heisenberg, and Jordan have proved, 
the law of energy conservation dHjdt = 0 can still be obtained from 
these equations, but this does not show that .S’ is a diagonal matrix 
because the system may be degenerate. For example, if we are dealing 
with a system of two degrees of freedom it may occur that 

ff(3, 10; 3, 10) = 12; 3, 12), say. Then p(3, 10; 3, 12) = 0, 
and there may be a term JEf(3, 10; 3, 12), for which the exponential time 
factor reduces to a constant. The time derivative of this term is zero, 
as it should be, but it does not lie on the principal diagonal of the matrix. 
This prevents us from proving the frequency condition as we did for 
systems having one degree of freedom. For this reason, we take as our 
fundamental equations the quantum conditions (equations (60) to (63)), 
and the relation 

H ^ E — diagonal matrix. 

This assures the validity of the frequency condition in all cases. 

12. THE MATRIX ANALOGUE OF THE HAMILTON-JACOBI EQUATION 

Our matrix calculation of the energy and the coordinates of the 
bamonic oscillator was made as simple as possible, but it will convince 
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the reader that the study of more complex systems would be very difficult, 
if attacked by direct methods. In general, we are confronted with an 
infinite number of algebraic equations having an infinite number of 
unknowns. It is very important therefore, to introduce methods for 
simplifying matrix problems by transformation of coordinates. This 
term must be carefully explained, for the matrices q and p are not really 
variables, but simply aggregates of algebraic quantities. A transforma¬ 
tion is simply a set of matrix equations expressing the ^'s and ^^s in terms 
of an equal number of new coordinates and momenta Qi , , . Pf. 

For the present we restrict our study to problems of one degree of 
freedom.. We saw in ('hap. TV how the action function S serves to define 
a canonical transformation to new variables P, Q, such that the energy 
is a function only of the F’s, which are constant, while the Q^b are angle 
variables. We now introduce a matrix transformation which enjoys 
analogous properties, namely, 

P = Q = SgS-\ (64) 

where S is any 
that 

where/(P^) is 
without altering 

then 

matrix whatever. This transformation has the property 

f{PQ) = Sf{pq)S-^ (65) 

obtained homf{pq) by replacing p and q with P and Q 

the form of the function. Thus, if 

H{PQ) = 
p2 

2m’ 

To prove equation (65) we simply note that if it is true for two 
functions / and g it is true for / + ^ and fg. Thus, 

f{PQ)g{PQ) = Sf{pq)S-^ ■ Sg{pq)S-' = Sf(pq)g{pq)S-‘, 

since S~\S in the middle is equal to 1. The relation is true for p and 
qj by hypothesis and so it holds for any function. In particular, it shows 

that 

PQ-QP- ^ (66) 

by virtue of equation (38). Any transformation in which equation (38) 
holds true for both the old and the new variables is called a canonical 
transformation.'' Similarly, in the case of problems of several degrees 
of freedom, a transformation is said to be canonical if both the old and the 
new variables obey the commutation rules of equations (60) to (63). 
Jordan^ has proved that the most general canonical transformation can 

be expressed in the form 

Pk = SpkS-^ ,Qk = Sg*S-^. 

’ Z, Physifc, 37, 383 (1926), 
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We use equation (64) to solve mechanical problems by a perturbation 
method. Suppose we have an “unperturbed’^ problem for which the 
energy function is Hoipoqo), a diagonal matrix, and that we have found 
the elements of the matrices po and <70 which satisfy equation (38). 
Let the energy function for the perturbed problem be 

^(Po9o) == Hoipo^o) + qo) + ^^H2{p0f + • • * > (67) 

where H{poqo) is not a diagonal matrix. We seek for a transformation 

p = SpoS-^, q = SqoS-^ (68) 

such that the new Hamilton function H{pq) will be a diagonal matrix E. 

It will be understood that although H{pq) is the same function of p^ q 

that Hipoqo) is of po, qo, the values of the elements of p, q are different 
from those inpo^ qoy and so H(pq) can be diagonal although H{poqo) is not. 
Our problem is to find S. We begin by assuming that 

S = i + XSi + \^S2 + • • • , 

E = Eo + + \^E2 + * • • , (69) 

where all the £’s are diagonal. Multiplying the equation 

by S, we have 
SH{po, qo)S-^ = E 

SH{Po, qo) = ES, (70) 
or, 

(i + \Si + ‘ • * ) {Ho + Xfli +•*•) — {^0 + X^i + • • • ) 
(1 + XSi + •••)• 

Multiplying out, and equating the coefficients of the various powers of 
X on both sides, we have 

Ho = Eo (71) 

SiHo - HoSi + ft = El, (72) 

S2H0-H0S2 + HoSi^ - SiHoSi + Sift - ft Si + ft = Ez, (73) 

and, in general, 

SrHo - HoSr + FriHo • • • ft, Se>, • • • Sr-/) = ft. (74) 

The equations for several degrees of freedom are similar, except that 
multiple summations replace the simple summations implied in the 
relations given. 

13. PERTURBATION THEORY FOR A NON-DEGENERATE SYSTEM* 

ft of equation (71) is a known diagonal matrix. Nominally, it is a 
function of the old coordinates, while we should like to express the final 
solution of our problem in terms of the new ones. Actually, however, 
its elements depend only on pure numbers and on universal constants, 
and ft is not changed by a transformation. Thus, the elements of 
Eo are not only equal to those of ft, but are identical with them. We now 

* We discuss non-degenerate and degenerate systems separately because certain 
equations are altered when several energy levels coincide. 
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proceed to equation (72). Although Ei is unknown, we have made the 
hypothesis that it is diagonal, and so the left member of equation (72) 
is also diagonal. This means that the diagonal elements of the left 
member are equal to the quantities Ei{nn)y whatever they may be, 
while the non-diagonal elements vanish. To find the first-order per¬ 
turbation terms in the energy we simply write down the equations, 

2}ASi(n/{:)//(](te) — l,lh{nk)Si{kn) + H\{nn) = Eiirin). (75) 

H[){nk) is zero except when h — n, since Ho is diagonal, and the only 
terms which survive in the summations arc^ 

Sv{n7i)Ho{yin) - 7/o(mA).^,(7m), 

which cancel, leaving us with the relation, 

//i(rm) = EM’u)^ (76) 

The matrix Hi is known from the statement of the problem, and so we 
have complete knowledge of the elements of Ei. The first-order per¬ 
turbations of the energy are the diagonal elements of \Hi. This is 
strikingly similar to the classical theorem that the first-order perturbation 
is equal to the average value of the perturbing potential taken over the 
undisturbed orbit (('hap. VI, Sec. 10). 

We qow obtain Si, in order to use it in equation (73) for determining 
Ez^ To do this, we write down the general element of equation (72): 

XSi(nk)Ho(km) — '^Ho{nk)Si(km) + Hi(nm) = Ei(nm), (77) 

Because Ho is diagonal, all terms in the summations vanish except those 
containing Si{9ini), Thus, we have one linear equation to determine 
each element of Sj. Now our previous treatment of the diagonal terms 
of equation (72) shows that the equation containing an element S]{nn) 

fails to determine it, so w(', may take the elements >Si(nn) equal to zero. 
When n is not m, equation (77) reduces to 

Si{7m)[H{){7n}n) — Ho{n/n)] + Hi(nm) — 0, 
whence, 

= £(n5’ ” ^ 
The method of deriving higher approximations is similar. We write 
the diagonal terms of equation (74), namely, 

XSr{nk)Ih{kn) ~ ZHo{nk)Sr{kn) + Fr{'rin) = Er(nn), 

and note that the two summations vanish for the same reasons as in the 
analogous case above; and so 

Fr(nn) = Er(7in). (79) 

But the matrix Fr is completely known, from the calculations by which 
preceding approximations were obtained, and so Er is known, since it is 
assumed to be diagonal. This result may be expressed in the form 

Fr = Er, (80) 
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where Fr is formed from Fr by setting all its non-diagonal elements 
equal to zero. Fr is called the time mean of Fr for it is analogous to 

the constant term of a Fourier series, which is the time mean of the 
series. The equation for Srinm) is obtained in the same manner as that 
for Si{nm), and leads to the result 

&(„») - (81) 
where bnm is one if n = m and zero if n is not m. 

Now we are able to find p and q by using the values of S and S~^ 

in equation (68). We easily find that 

= 7 - XS/ + \\Si^ ~ • • • , ^(82) 

and so, writing ^ as a series in ascending powers of X, we get 

q ^ qo ^ \qi + • • • = (i + XS/ + • • • )qo 
[1 - \Si + X2(S/ ~ s^) + . . . ]. 

Then q2y etc., are equal to the coefficients of X, X^, etc. on the right. 
We get 

qj — Sjqo — qoSi, 
q2 == S2qo qoS2 + qoSj^ — SiqoSj. (83) 

The formulas for j&, and for any function of p and q, are similar, ))y virtue 
of equation (68). 

14. SUMMARY OF PERTURBATION FORMULAS 

It will be useful to assemble the explicit formulas for the first- and 
second-order perturbation terms in £, q, and p. By equation (76), 

Ej = Hu E\{nn) = Hi{nn). (84) 
By equation (78), 

Q / \ H\{7l7tl){\ 5nm) 
*■("”) -hMnm)- 

(85) 

By equation (83), 

qi(nm) = 
Hx{nk)qa{km) _ s^'qn{nk)Hi{km) 

hva(nk) hvo(km) ’ 
(86) 

pi(nm) = 
•\^'Hi(nk)pfi{km) •s;^'po(nk)Hi(kin) 

hvoink) ,2j hvo(kmj 
(87) 

The prime indicates the omission of the term fc = n in the first summa¬ 
tion, and k = m in the second, arising from the fact that Si(nn) = 0. 
By equation (80), 

E2 = ~ SiH^i + - 'HiSi 

Eiinn) = X'lEo(nn)Siink)Si(kn) - -S,(nfc)£o(fcfc)-S,(fcn) 

+ Si(nk)Hi(kn) - Hi{nk)Siikn)\ + Hi(,nn). 
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The first, second, and fourth terms cancel, and, therefore, 

^.(nn) = 

By equation (81), after reductions practically identical with those used 
in finding 

“ hv(){nm) k hvo(nm)hvQ{km) hvo{nm) ^ ^ 

By methods which will be understood after reading the next section, 
J. L. Dunham found that 

82 inn) = 2 ? 

These equations permit the evaluation of q2 from (83), and formulas 
for p2, etc. are obtained on replacing Qq by po, etc. 

16. A CONDITION WHICH S MUST FULFILL; SS* = 1 

Wq saw in Sec. 2 that it is important for all the matrices of atomic 
physics to be Herrnitian, a condition which corresponds to the classical 
requ>ement that any physical quantity must be real. Therefore, we 
must ask whether the transformation of coordinates determined by 
equation (08) is such that the new coordinates will enjoy this property. 
We have the following theorem: 

If a Herrnitian matrix x is subjected to the transformation 

X = SxS-^, (91) 

then in order that X shall also be Hermitiany S must obey the relation 

SS* = 1, (92) 

where S is called the transposed matrix of S and is the matrix obtained 
by interchanging the rows and columns of S, so that 

S{7im) = S(mn). 

Proof.—In proving this theorem, wc need the fact that if x = yz, then Sc — zy, 
which may be shown as follows: 

x(nrn) ~ x(inn) = 2:y(mk)z(kn} — ^z(nk)y(km) — zy{nm), (93) 

Now, since x is supposed Herrnitian, 

X = X*; 

that is, if transposition is followed by change of sign of i wherever it occurs, the matrix 

is restored to its original form. Similarly, if X is Herrnitian, we must have X = X*, 
By transposition of equation (91) with due respect to equation (93), we see that 

X - S-^xS, 

and taking the complex conjugate of this we have 

X* * S-^*x*^* ^ §-^*xS\ 
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means the transposed of 5"'^, not the reciprocal of •§.) If this is to be identical 

with AT, as we wish it to he, so that X will be ITerinitian, we must have 

S-l*xS* = SxS-^, 

by equation (91). This will bo the case if 

S* = 

as the reader will verify; but SS~^ — i, and so we must have 

ss* = i, 
which agrees with equation (92). 

As to our perturbation problem of Sec. 13, the proof that equation 
(92) is satisfied \uhen 5 = 1+ \Si is given by Born.' It shows that we 
must make S\{7m) ecpial to zero in order to fulfill this condition. 

16. ANHARMONIC OSCILLATOR 

The oscillator furnishes an excellent illustration of matrix perturbation 
methods. The theory of the oscillator with a small term \q^ added to its 
energy function was considered in detail in Heisenberg^s original paper on 
the new mechanics, and also by Born and Jordan. We write in equation 
(67) 

^{PoQo) === HoiPoQo) + (67 a) 

and recollect from equation (56) that 

\q{ny 71 — 1)1^ = Cn (94) 
where 

c = ^4 ~ 

Then, dropping the subscript zeroes, 
H\{nm) — q^{nm) — X^'^q{nj)q{jk)q{km), (95) 

Following Birtwistle,we use the diagram below to show the only com¬ 
binations of values of k^ rn which contribute finite terms to equation 
(95): 

n: n 
/ \ 

j- n — 1 n + 1 
/ / \ 

k: n ~ 2 n 
i/ \ / \ 

m: n — 3 71 — 1 n + 1 

71 + 2 
\ 

71 + 3 

Since the diagonal terms of Hi vanish, Ei = 0, and we proceed to compute 
the second-order perturbation of E from equation (88). By way of 
illustration, the only non-zero term in ^i(n, + 3) is the one for which 
j — n+\yk — n + 2y namely, 

g(n, n + 1) q{n + 1, n + 2)q{n + 2, n + 3). 

' ‘^Problems of Atomic Dynamics,” p. 87, 

* “The New Quantum Mechanics,” p. 97. 
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The term, n + d)Hi{n + 3, n) in equation (88) is equal to 

\q(n, n + l)|®l(j'(n + 1, n + 2)l%(n + 2, n + 3)p, 
or 

C\n + l)(n + 2)(n + 3). 

Similarly, we obtain Hi(n, n + 1), comprising the terms of equation 
(95) in which 

j = n — Ij k = rif 
or 

j = n + 1, fc = n, 
or 

j n + Ij k = n + 2. 

Continuing in this way and substituting in equation (88), we get 

C3(30n2 + 30n + 11) 
E^inn) ~ - 

and the energy perturbation is 

X^E2(nn) = — 

hpo 

X2A2(30n2 + SOn + ll) 

64j^o(2V^mj'o)^ 
(96) 

The result obtained by Bohr’s theory does not contain the terms SOn + 
11. The divergence between equation (96) and results of Chap. XIX, 
Sec. 4, is due to the use of different potential energy functions in these 
two cases. Experiment agrees with a formula in which the additional 
energy is proportional to (n + 

17. CONSERVATION OF ANGULAR MOMENTUM 

Consider a single electron with coordinates and momenta x, y, z, 
Px, Py> Pz- The matrices representing its components of angular momen¬ 
tum are 

= 9.vPx PvQxf ®tc. (97) 

while the total angular momentum M is a matrix such that 

M2 = + My^ + (98) 

Under what conditions will Mx say, obey the condition Mx — 0, 

so we can state that the x-component of angular momentum is conserved? 

Suppose H is of the form, 
H = T{p) + V{q). ■ (99) 

Then by the Hamilton equations dqk/dt is a function of the ^’s alone, 
and dpk/dt is a function of the g’s alone. But 

^x = qypz + QvPz *“■ PvQi PvQ^ (IQO) 

and each term in this reduces to a function of the alone, or of the 
y’s alone. By equations (60) to (63), all ^’s commute among themselves 
and all y’s commute among themselves. Now, whenever the torque 
around the x-axis is such a function of the y’s and j>’s that the right side 

1 Mulliken, Phys. Rev,, 25, 259 (1925). 
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of equation (100) vanivshes when considered as a classical equation, it 
will also vanish, considered as a matrix quantity, for its algebraic behavior 
is the same as in our ordinary calculations. What we have proved is 
this: If H is of the form (99), the conservation of angular momentum holds 

true under exactly the same conditions as in ordinary mechanics. The 
extension of this theorem to a system containing several particles is 
immediate if we simply write 

^ "^{QhyPkz "^phy (101) 

k 

where the summation runs over all the electrons. 

18. SELECTION PRINCIPLE FOR THE AXIAL QUANTUM NUMBER 

Consider a non-degenerate system for which one of the components 
of angular momentum is constant, say dMz/dt = 0. Then Mz is diago¬ 
nal, and we can prove that for each electron, say the fcth, the following 
relations hold true: 

h 
QkxMz MzQkx ~ 

<IhyMz MzQky ~ ^^^2Trl 

QkzMz MzQkz ~ 0. (102) 

Example.—To prove the first of these equations write out the left side in full: 

^kx^lxPly ^kx^2xP2y ’ * “ ^kx^lx^ly ~ ^kxP2x^2y - * * * 

~^lxPly^hx ~ ^2xP2y^kx + ’ * ’ Pix^ly^kx p2x^2y^kx + * ’ * 

Any Py commutes with any and the comimite among themselves. Thus, the 

first term in the second line can just as well be written ^^kx^jxPjy* ^hich cancels the 

first term in the first line, and so on, until we reach the pair of terms, 

~~^kxPkx^ky Pkx^kx^ky* 
which reduces to 

^kx^kx ^kxPkx^^ky* 
or, by equation (63), 

Ji ^ 
^^y2Td 

Tlie proof of the other equations is similar. 

Let US examine the meaning of typical elements of the relations of 
equations (102). We may single out for attention the particle for which 
A ~ 1, and shall denote its coordinates by xiy 2/1, and Zi. Then, since 
Mz is diagonal we have, 

Xi{nm)[Mz{mm) — M,(nn)] = yi(nm) • 
Zirt 

h 
yi(nm)[Mz(mm) -- M,{nn)] = —xi{nm) • fr-. 

lirl 

3i(nm)[Af,(wm) — Mg{rm)] = 0. (103) 
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It will be understood that is an abbreviation, for the matrix 
Mz has 6/ indices, ni, . . . n^/; mi, . . . ma/, if the system has / 
particles. The general element is 

M^{nu n2, . . . ; mi, m2, . . . ), 

and by Mz(mm) we mean Mz{m\, m2, . • . ; mi, mo, . . . ). Just as 
we assume that the elements of the diagonal energy matrix represent the 
possible energy values of the system, so we assume that m2, 

. . . ; mi, m2, . . . ) is equal to the ^-component of angular momentum 
of the atom when the quantum numbers take the values mi, m2, . . . 

The third equation tells us that in any quantum jump in which the 
angular momentum component Mz changes, Zi(nm) = 0. This means 
that the 2-component of electric force in the emitted radiation is zero. 
Further, multiplying the first two equations, we obtain 

[Mzimm) — Mz(nn)Y = 

so that in every allowed (|uantum jump of the kind under consideration 
Mz changes by A/27r. Interchanging the members of the second equation 
and multiplying it by the first, we find that X\ — ±iy\. This means that 
the radiation is circularly polarized in transitions in which Mz changes 
its value. Now consider transitions in which Mz is unaltered. The first 
and second equations show immediately that X\{nm) = 2/1 (nm) = 0 in 
these transitions. However, z^{nm) may be finite, and if so, the radiation 
is linearly polarized with electric vector parallel to the Zi axis. The 
conclusion is that the possible values of the z-component of angular 
momentum are of the form 

M.(rm) = (iV + (104) 

where C is a constant and N is an integer. 
It can be shown that 

XM.inn) = + C) = 0 (105) 

and that the number of values of N is finite when the values of all 
quantum numbers (except the axial quantum number) are specified. 
Now equation (105) means that the possible values of iV' + C form a 
series symmetrical with respect to zero. This can be the case only if 

N + C takes the values 
... --2, ~1,0, 1,2, .. . 

or 
• • • Mj • 

so that iV' + C is identical with the axial quantum number. The proof 
is complicated and we shall omit it. This investigation is due to Heisen¬ 
berg, Born, and Jordan^ who also derived the selection principle for the 

1 ci<. 
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inner quantum number and showed that it is either an integer or a half¬ 
integer. 

Heisenberg and Jordan* investigated the anomalous Zeeman effect 
by matrix methods, with the result that the Land6 g formula and the 
usual sum rules are obtained. 

19. THE HYDROGEN ATOM IN MATRIX MECHANICS 

The theory of the hydrogen atom was worked out independently by 
Pauli^ and by Dirac/"* In both investigations the energy levels were 
found to follow the Balmer formula, furnishing strong support to the 
underlying theory. The computation of Dirac was based on an extension 
of matrix mechanics known as the ^Hheory of q numbers.'^ (Secs. 25 
and 26.) The treatment by Pauli, even when simplified by restricting 
the problem to two dimensions, is too lengthy for inclusion here, but we 
shall give an outline of his reasoning, which illustrates an important 
general method of attack on matrix problems. 

First, it is assumed that in Cartesian coordinates the energy function 
is 

+ (106) 

The equations of motion are 

(xr+w*"' * 
and the variables x, y, pxy and py must satisfy the quantum conditions. 
It is convenient to introduce the matrix r defined by 

(108) 

and to prove that r and mor satisfy the relation 

PrT -TPr = l A- (109) 

Further, we define the angular momentum by the equation 

M xpy - pxy. (110) 

It is apparent that matrix computations will be relatively simple 
as long as the matrices are diagonal, but when this is not the case, we 
become involved in a maze of infinite sums. We seek, therefore, to find 
as many diagonal matrices as possible. In this search we are guided 
by the fact that such matrices are analogous to constants in ordinary 
algebra. Therefore, we may expect that any dynamical quantity 
which is conserved, such as momentum or energy, will be represented 

iZ.P^aifc, 87,263 (1926). 
*Z.Phydk,Z%,m(im). 
«Froc. Boy. Sw,, 110» 661 (1926). 
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by a diagonal matrix. Now in the case of the hydrogen atom as treated 
by ordinary mechanics we know that the angular momentum is constant, 
and that its components parallel to the three axes are constant, so that 
we expect the matrix of equation (110) to be diagonal. Further, Lenz^ 
discovered a second vector which is constant in magnitude and direction 
in this problem. This is called the axial vector, 

A-Q„)Mvi+r. 

That is, the components of A are 

- M,y) + ^etc. (Ill) 

By direct computation wc can verify the fact that the major axis, a, 

of 1,he Keplerian orbit and the energy can be; expressed in the form 

a 
AP 1 

ZcV T - 
E 

'2M- (1 - A^). (112) 

and denote the squares of the magnitudes of tlie vectors M and A. 
Now, we attempt to carry over this computation into matrix mechanics, 
remembering that z = 0, pz = 0, and that Mz = M, since the motion is 
restricted to the xy plane. By straightforward processes of non- 
commutative algebra, we obtain the following relations; 

A,M - MA, = (^2r^Ay, 

AyM -MAy = (113) 

Axini, n] rn ± 1, n) ± i Ayiiu^ n; m ± 1, n) = 0, 

and 

+iiii4 
In these relations, the elements of M are known from the conclusions 
of Sec. 18; the elements of Ax and Ay can be eliminated, and thus we 
determine the elements of the energy matrix. There is little point in 
going through the calculations, for the elements of any matrix can be 
computed by integration when the corresponding problem in wave 
mechanics has been solved, as explained in Secs. 20 to 24. 

In his paper on the H atom, Pauli also determined the effect of 
magnetic and electric fields, applied both singly and in combination. It 
is noteworthy that the selection principles are furnished automatically 

1Z, Physik, 24, 197 (1924). 
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by the theory through the vanishing of all component^ of the q matrix 
except those corresponding to transitions allowed by the classical selection 
rules. 

WeiitzeP has used an alternative method to obtain the energy levels of hydrogenic 

atoms. It consists in searching for matrix variables which are analogous to the 

angle variabh's of classical theory. The angle variables and their conjugate 

momenta 7^ must obey tlie commutation relations and in addition they must be such 

that the eciuations of motion take tlie form 

Further, the matrices jc, i/, z corresjKmding to Cartesian coordinate's must be repre¬ 

sentable as multiple Fourier series in the Avith all ihe periods equal to unity, just 

as in equation (63) of Chap. IV. A typical term, exp ‘27rf in such a matrix 

series is defined by using the series expansion of the exj)onential function. The 

method outliTU'd for finding tlie angle variable's is analogous to the solution of the 

Hamilton-Jac.obi equation (Chap. IV). If the matrix action function is S, it can 

be shown that when passes around a cycle, the other coordinates being unaltered, 

the change in S is 7^. Now the change in S can also be expressed in terms of the 

energy and other constants of integration, just as in ordinary mechanics. Following 

this plan, Wentzel ol)taii\s ecpiations conm'cting these dynamical quantities with the 

matrici^s Thus, when the are determined by straightforward methods the 

values of the energy, angular momentum, etc. can be determined at once. 

20. THE CONNECTION BETWEEN WAVE AND MATRIX MECHANICS 

The discovery that wave mechanics is mathematically equivalent 
to the dynamics of Heisenberg, Born, and Jordan must be considered 
a great advance in the development of quantum dynamics. We owe 
this advance to Schrodinger^ and to Eckart/ working independently. 
It clarified the situation by showing that the two rival theories were 
only different mathematical formulations of the same physical facts; 
but still more important, it furnished a method of calculating the elements 
of matrices by simple integration. The complete statement of the 
connection between the two theories will be much more intelligible if we 
approach the matter by studying a few simple illustrations. We shall 
suppose that a system of one degree of freedom—its constitution does 
not matter—has been quantized by the aid of wave mechanics, and that 
we know the eigenfunctions of the problem, which are properly normalized 
in accordance with equation (68) of Chap. XV. 

Suppose we wish to construct the elements of the matrix corresponding 
to any classical function u, which depends only on the coordinate g. 
We shall find that the elements of the rrvth column in the matrix corresponding 
to u are the coefficients u{nm) which appear in the expansion of u^n: 

1Z. Physik, 37, 80 (1926). 

8 Ann. Physik, 79, 734 (1926). 

^Phya, Rev,, 28, 711 (1926). 
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in terniH of the normal orthogonal functions In Chap. XV, Sec. 21 
we gave a method for expanding any function in a series of this kind. 
Briefly, the result was that if we write 

(115). 
k 

the coefficients u{kn) can be found by a process like that used to evaluate 
the coefficients of a Fourier series; that is, for any values of n and m 
we have^ 

u{nm) = (116) 

If a: is a Cartesian coordinate, then for the case of a particle of mass 

mo, q = in agreement with the convention of Chap. XV, Sec. 2. 
In this integration, and in all others in this chapter for which limits 
are not given, the summation extends over all physically possible values 
of q. We see that n(mn) = u'^{nm) provided u is real, so that the array 
of these elements is Hermitian. 

To show that the quantities n{nm) are the elements of the Heisenberg 
matrix belonging to the function we proceed in the following way: 
For any other function we have 

= ^v{kn)^Vk) n = 1, 2, • . • , (117) 

which implies that 
v{nm) = (118) 

If it is true that u(nm) and v(nm) are matrix elements, then the laws 
of matrix addition and multiplication must be verified. That is, the 
7imth element of the matrix u + v must be ti{'nni) + v(n7n)y and also 

nv{7m) must be equal to ^u{nk)v{km). It is obvious that the first 
k 

condition is satisfied. As to the second, we may obtain uv{nm) from 
the equation which defines it, namely, 

xiv{nm) = (119) 

In order to evaluate this integral we use the value of obtained from 
equation (117). As to we see from equation (115) that 

- ^n{nk)'Vk'^. 

Substituting in equation (119), we get 

^ ^u{7ik)v{jm)(119a) 
k j 

But the last integral is equal to one when k = j, and is zero otherwise; 
therefore, the double summation reduces to a summation over a single 

^ This definition of u(nm) agrees with that used by Dirac and is dictated by our 
convention that ~ exp (--2TnEnt/h), If we had adopted the positive sign for 
the exponent in the time factor, equation (116) would have taken the form u(nm) » 
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running index, let us say A;, and we have uv{nm) = ^u{7ik)v{km)^ which 
k 

shows that the elements under consideration obey the law of matrix 
multiplication. 

If we can discover a similar method of constructing the matrix corre¬ 
sponding to the classical function p, we shall then be able to find the 
matrix for any function of q and p, by straightforward addition and 
multiplication. To do this, we specify that the characteristic functions 

used will be those obtained by solving Schrodmgey s equation for the dynarnical 

system under consideration. This restriction is essential to our purpose. 
For simplicity, we limit the discussion to the problem of a single electron 
in Cartesian coordinates. It will be proved that the matrix 

p.(nw) = €Jdq (120) 

satisfies all the conditions of the problem. 

Proof.—It is known that 

because this integral is the difference of the values of at the upi)er and low(‘r 

limits of integration. Each of these is zero by hypothesis, for no part of the syslein is 

located at infinity. Therefore, we may write ecjuation (120) in the form 

p(nm) = ~ 'J'.. (122) 

This may be simplified by using the wave equations 

A^n*-hO(E„ - = 0; 

-i-C(E„, ~ = 0. 

Multiply the first by and the second by x^n*, subtract, and integrate, obtaining 

= -'GiEn — Eni)ix'i'n*^mdq. (123) 

By partial integration it is found that the difference between the; integrands in equa¬ 

tions (122) and (123) consists of terms which yield a vanishing (contribution on 

integration. Thenifore, 

^ p{nm) — mo€'^^{En — Em)fx'^n*'^mdq ~ 2Trii>{nm)7na-{nm), (124) 

in complete agreement with Heisenberg's theory. 

The usefulness of Schrodinger^s matrices q and p depends on the 
fact that they obey Heisenberg^s quantum condition and satisfy the 
matrix law of motion (Sec. 23), so that they are actually identical with 
the Heisenberg matrices. 

21. CALCULATION OF THE MATRICES p AND q FOR THE OSCILLATOR 

To obtain the components of the matrix x for the oscillator, we apply 
equation (116) in the form 

x(nm) (126) 
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The characteristic functions of the oscillator are derived in Chap. XV, 
Sec. 9, and when normalized may be written^ 

The calculation of equation (125) can be attacked directly with the aid 
of the expressions for the Hermitian polynomials given in Appendix 
IV, but it is much easier to use a short cut due to Eckart. As we have 
seen, aside from the exponential time factor, x(mn) is the coefficient of 

in the expansion of Fortunately, the recursion formula for the 
functions ^ is 

+ (n + (126) 

which gives us the expansion we desire. Only the coefficients \x(n, n — 1)| 
and |:r(n, n + 1)| are different from zero, and neglecting the time factor 
they take the forms 

|:r(n, n - 1)| ,|a:(n, n + 1) 
/(n + 

y SttVoJ'o ) ^ 

(127) 

in precise agreement with the results obtained by the calculus of matrices. 
Since the energy levels of the oscillator are also given by the wave theory, 
we have all the material needed for computing p(nm) from equation 
(124). The result agrees with equation (57). 

22. schr6dinger»s method for constructing matrices 

We must now formulate rules for obtaining the matrix of any function 
First, we rearrange the function, replacing it by what Schro- 

dinger aptly calls a ‘^well-ordered function.^^ Usually, the rearrangement 
merely consists in making the function symmetric, just as in our treat¬ 
ment of the proper form for the energy in matrix mechanics.^ For 
example, the product pq^ is rewritten in the form 

'+ 9^)* 

From now on, we assume that the function has been so ordered. We 
expand the well-ordered function F as a series, according to powers 
of the We need consider only a single term of such a series, for 

example 
F = fPrPsgptK (128) 

^This differs from the normalized function given in Courant-Hilbert, “Me- 
thoden der mathematischen Physik,^' p. 77, and in Chap. XV, Secs. 9 and 13| because 

1 / 

our variable of integration is m^x, instead of v, 
• More general rules for symmetrisation have been given by Heisenberg, Born and 

Jordan, Z. Phyiik, 85, 667 (1926); and by Hiinkrt, von Nbotiann, and Nordheim, 
Math. Annakn, 88,1 (1927). 
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where /, g and h are functions only of the g’s. It will be remembered 
(Sec. 20) that in forming the matrix component px(nm) we take the 

S 
integral of This form for the integrand of equation 

(124) was suggested by the fact that we replace px by e in the energy 

function in order to obtain the wave equation. Similarly, in securing 
the matrix F, it is natural to construct the well-ordered operator 

F ^ h 
dgrdqfdqt 

Just as in equation (120), we form the integral 

F(nm) = j^n*F^rndv, 

(129) 

(130) 

where F^m means the result of applying the operator F to The 

Heisenberg matrix correspondrng to the function F has the typical element 

F(nm)y given by equation (130). The proof is given in the following 
section. 

In practice, little difficulty arises from using the symbol F to indicate both the 

function F an<l the operator formed from it; but the reader is advised to bt^ on Ids 

guard. In forming the functtioii each difiej'entiation is applied to all terms lying 

to its right, so that we first take 
dqt 

and so on. 

It must be understood that in any problem of several degrees of freedom, the 

integral in equation (130) is multiple and that the real meaning of the equation is 

F{ni • * • nr, rni • • * m,.) = / * • • . . . nrF^m\ . . . mrdv. (130a) 

The differential dv is the element of volume in the q space used by Schrodinger and 

may be written in the form • 

dv ~ pdqidg^, ' • • . 

Thus, in Cartesian coordinates, for the 1-electron problem, 

dv = in: dxdydz, 
az 

SO that p = m \ 
As an illustration of equation (130), we may calculate the elements of the energy 

matrix for a problem of one degree of freedom. In such a problem, the energy func¬ 

tion can always be brought to the form 

V2V^ + y(g) H, (131) 

by suitable choice of coordinates. This function is already well ordered and the 

corresponding operator H formed according to equation (120) is 

^2 
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Then by equation (130), the elements of the energy matrix are 

H{nm) = ;«<„* ( - + V^SrSjdq. (132) 

Now 'I'm is a function of Em and while ^n* is a function of En and q. Substituting 
their values from the wave equation, and integrating, we obtain H(nm) expressed as 

a function of En and Em‘ Fortunately, in this case we can avoid such labor, for by the 

wave equation, the quantity in parentheses is simply Em^m^ and we have 

i7(nm) = jEm^'n*'^mdq. (133) 

The 'I'’s are normal and orthogonal, so on the right side w(‘ have En if w — m, and 

zero, if n is not ecpial to w. Tliat is, H(nm) is a diagonal matrix with the energy values 

for its non-vanishing (dements. A similar proof can be carried out for any conserva¬ 
tive system. 

23. THE IDENTITY OF SCHRODINGER AND HEISENBERG MATRICES 

We wish to show that the expressions defined by equation (130) 
obey the matrix multiplication law. That is, if the matrices of F and G 

are constructed with the aid of equation (130) and if we also write out the 
matrix of FG by using equation (130), we wish to verify the equation 

FGinm) = '^F(nk)G(km). (134) 
k 

Written out in terms of integrals, this relation becomes 

f'i',*FGA'„dp = • i'irk*G^mdv, (135) 
k 

where it is understood that in the first integral FG'^m is the function 
which results from applying the operator G to and then operating on 
the result with F. To prove equation (135) we write 

GA>„. = '^G{km)-^k, (136) 
k 

where G stands for the operator, not the function, on the left side. We 
novv apply the operator F to both sides, obtaining 

= '^FG{km)^k. 
k 

But since the operator F does not affect the constant quantities G{km) 

this is the same as '^G{km)F'i'k. Now we expand F'i'k, arriving at 
k 

FG<1’^ = %G{km)^F(Jk)%, 
k 3 

and finally, 

= '^G{km)F{nk), 

t, k i k 

for all terms of the second sum on the right are zero, except the one for 
which 3 - n, because the 4'’s are orthogonal. This result is identical 

with equations (134) and (135). 
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It remains to be shown that Schrodinger’s matrices obey the matrix 
quantum conditions and the laws of motion (Secs. 5 and 7) before we can 
assert their identity with the Heisenberg matrices. Let us consider 
the quantum condition for a system with a single variable, gp = e. 

The operator corresponding to pq But 

^ (a'i' ) — (7^- = 'I' 
dq ^ dq 

SO equation (130) reduces to 

(pq- qp)(nm) = 

which equals h/2wt if n = m, and 0 if n is not m. The proof of the 
quantum conditions for a system having several degrees of freedom is 
similar. 

As to the matrix equations of motion, they can be written in the 
form 

eq = Hq - qH, ep ^ Hp - pH. (137) 

It will suflSce if we prove that Schrodinger's matrices satisfy the first 
of these relations, for the proof of the second is similar. Remembering 
that 

eqinm) = {En — En,)q(nm)y 

we see that a typical element of the first equation in equations (137) is 

{En ~ E„^)q(nm) = (Hq — qH){nm). (138) 

From the standpoint of Heisenberg^s theory this is obvious, but we 
wish to prove the corresponding equation for Schrodinger^s matrices 
that is, 

(En - Em)q(nm) = JS['n*(Hg — qH)^rndv. (139) 
We have, 

Hq^rrk = H'Lq(km)^k — ^q(km)H'^k- (140) 

The operator H may be placed after the quantities q{km) because they 
are constant and the operator does not affect them. Now the wave 
equation states that 

H^k = Ek:^k^ 

In other words, the expansion of the function H'Hfk in terms of the wave 
functions reduces to a single term. Substituting this in equation (140), 
we have 

Similarly, 
Hq^m = i:q(km)Ek^k- 

qH^ m ^ qEiti^m ** Emq^ftij 

so that the integral in equation (139) takes the form 

J^n'^^q(km)Ek^kdv - Efnf^n*q^mdv. 
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In the first integral, the only surviving term is that for which k — n. 
It yields a contribution Enq(nm) to the result, and the second integral 
is Efnqinm), so the result is {En — Em)q{nm). 

24. THE WAVE MECHANICAL ANALOGUES OF CLASSICAL QUANTITIES 

In conclusion, we may note a few applications of equation (130). 
It furnishes the connecting link between the matrix and wave methods 
of calculating spectral intensities (C^.hap. XV, Sec. 17, and Sec. 10 of this 
chapter). We see now that in terms of Schrodinger^s charge-density 
interpretation, eq{mn) is the electric moment of a part of the charge- 
density which oscillates with frequency v{nm). Much of Chap. XX will 
deal with laws governing intensities, obtained with the aid of equation 
(130). Further, equation (130) enables us to set up expressions which 
take the place of quantities occurring in classical mechanics. For 
example, we may write down at once the components of the kinetic 
energy matrix T. Taking the case of a single particle in rectangular 
coordinates, the classical value of T is 

+ p/ + p.O 
and the operator T is 

F d2 \ 

87rWVdx2 dy^ ^ dzy' 
so that 

T{nm) = (140) 

By the wave equation, may be replaced by — — F)^,„, 

whence 
T{nm) = 

or 
T{nm) + V{nm) - Em n ~ 

= 0 if n m. (141) 

This is the analogue of the law of conservation of energy. 
More generally, if ^ is of the form we define the kinetic 

energy in wave mechanics by the relation 

n = (142) 

and the potential energy by 
(143) 

The subscript q serves to remind us that we are dealing with a quantity 
calculated by means of quantum dynamics. It is interesting to consider 
the value of f, + F,. Using the wave equation (65) of Chap. XV, 

we find that 

n + 
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and substituting the values of the quantities under the integral, 

The only non-zero terms in this integral are those for which j = k, 

and so 

T + r = X<^kCk*E,. 
k 

On the charge-density interpretation CkCh"^ is a measure of the strength 
of excitation of in a single atom, and the right side would be the 
total energy associated with the system of waves. However, on the 
statistical interpretation, CkCk* is the fraction of the atoms which reside 
in the A:th quantum state, so that either side of equation (32) represents 
the average energy of an atom.^ 

26. DIRAC»S FORMULATION OF QUANTUM DYNAMICS 

Dirac^ has shown that the quantum mechanics of Heisenberg can 
be thrown into an especially convenient notation by using generalizations 
of certain quantities called ‘^Poisson brackets.^^^ These brackets make 
their appearance when we consider a transformation from the variables 
Qj p to the variables Q, P. To simplify the notation, let us consider a 
single particle with Cartesian coordinates x, 2/, z. These coordinates 
are taken as the Q^s. Then the Poisson bracket of x and y is defined as 

More generally, 

^ dx dy dx dy\ 

h-1 ^dqk dpk dpk dqk) 

i = n 

v( 
'dFr dF. _ dF, dFr 

^ ^Qk dpk dqk dpk 

(144) 

(145) 

is the Poisson bracket of Fr, Fa and is written [FrFa]. This notation is 
incomplete, since it does not indicate the variables with respect to which 
Fr and Fg are differentiated, and so we shall speak of the Poisson bracket 
of Fr and with respect to p and or with respect to other variables. 
Now the Poisson brackets of any set of p^s and ^’s with respect to them¬ 
selves have the following simple properties; 

[prP,] = 0, [qrq,] = 0, (146) 
[?i-Pa] = 1, when r — s, but 0 when r ^ s. (147) 

These relations are easily verified by the use of equation (145), using 
the variables p and g in the numerator. They are strikingly similar 

^ For other illustrations of the calculation of physical quantities as averages 

over the * distribution, the reader should refer to Sommerfeld’s “Ergaiizungsband'' 

pages 283-*299. 

*Proc. Ttoy, Soc., 109, 642 (1925). 

® See Whittaker, Dynamw/^ Of Van Vleck, ^'Quantum Principles 

and Line Spectra/’ 
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to the matrix quantum conditions and lead to the suspicion that the 
quantum conditions must reduce to them in the region of large quantum 
numbers. Dirac showed that this is actually the case.^ We shall 
content ourselves with indicating the method. Consider the n, rn element 
of the matrix qrpr — namely, 

^[Vr{nk)qr{km) - qr{7ikypr{km)]. 
k 

q(km) is a measure of the amplitude of the radiation emitted in jumps 
from the /cth state to the mth state. By thc‘ correspondence principle 
it must reduce to the amplitude of the harmonic of order k — m in the 
classical Fourier series for 7, when we pass to the region of high quantum 
numbers. Similarly, a classical equivakmt for pink) may be found. 
The P"ourier series referr(‘d to are taken in the form 

. . . Tn exp 27ri (tiIV] + * * • )> 

where the w^& are angle variables, and the C’.v arc functions of the con¬ 
jugate momenta Ji, . . . Jn. hmally, the sum of all the matrix elements 
is found to reduce to the form 

h dqr dpr _ dqr dpr\ 
27rf k \^iOk dJk dJk dWkJ 

Now it is a fact that a Poisson bracket taken with respect to any set of 
variables is equal to the Poisson bracket of the same quantities taken 
with respect to any other set of variables, so if we like we may write 
this bracket as 

k \d<lk dpk dpic dqtt.) 

and by equation (147), this is equal to h/2Tri, as we should expect from 
inspection of the matrix (juantum conditions. Accordingly, Dirac 

writes 
pq- qp = t\qp] (148) ' 

and assumes that in the quantum theory pq — qp must be calculated by 
using this equation. Further, it is assumed that for any two quantum 

magnitudes A and 
BA - AB = €[Afi]. (149) 

The Poisson bracket is supposed to be a function of the quantum p’s. 
and q’s which is formally identical with the corresponding Poisson 
bracket in the classical theory. Accordingly, in order to find the quan¬ 
tum analogue of any classical equation, we try to get it into a form which 
contains Poisson brackets, and then use equation (149). 

»His proof is reproduced in Birtwistle’s “New Quantum Mechanics,” p. 70. 
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For example, if F is any function of the p’b and q’s, 

i equations, thi 

F = S'f f^\dq,dp, 

dF. , dF .\ 

si* 

and by Hamilton’s equations, this is the same as 

dFdH _ dF m 

dqk dpk dpk dqk 
= [FHi 

This is in a form such that it can be taken over directly into the new 
mechanics, with the understanding that [FII] will then have the meaning 

explained in equation (148). For example, 

ep = e[pH] ^ HP ^ pH, 

in agreement with equation (28). We therefore write 

eF HF - FK (151) 

This important relation is often called the ‘Taw of motion of F” 

26. DIRAC»S THEORY OF q NUMBERS 

In Dirac’s theory of q numbers, it is assumed that we must work 

with quantities called q numbers, instead of our usual numbers, which are 

called c numbers. The essential distinction is that the variables Uvsed for 
the study of a dynamical system do not satisfy the commutative law of 
multiplication, but obey the matrix quantum conditions. Dirac^ 

states that at present no one can form a picture of what a q number is 

like. We operate with them until we arrive at the value of any dynamical 
quantity which is desired. A special assumption is then introduced, 

by which results in terms of c numbers can be derived from results 

involving both q and c numbers. Only in the case of oscillating systems 

do the q numbers take the form of matrices. The importance of Dirac’s 

viewpoint is due to the fact that the matrix quantum conditions and laws 

of motion can be satisfied by entities of a much more general type than 
matrices. In fact, the equations themselves define the properties of the q 

numbers, and if we were confronted with them we should have no idea 

that matrices enjoy the properties* which they express. In the case 

of non-periodic motions, the use of q numbers may enable us to solve our 

problem while the attempt to use calculations in which matrix elements 

appear would end in failure. We shall not give illustrations at this 
point, for much of the following chapter is devoted to development 

of the method of q numbers. 

^Prac. Uoy. Soc., IlOf 561 (1926). 



CHAPTER XVIII 

GENERAL THEORY OF QUANTUM DYNAMICS 

1. HEISENBERG’S PRINCIPLE OF INDETERMINATION 

In this chapter we shall be concerned with the so-called transformation 
theory of quantum dynamics, which was developed independently by 
Dirac^ and by Jordan.^ It represents the most general formulation 
of the problem which we possess, and includes the previous forms of 
quantum mechanics as special cases. In order to appreciate the trans¬ 
formation theory and the statistical interpretation (Chap. XV, Sec. 16) 
which completes it and gives it power to deal with physical problems, 
we must consider the nature of the questions which we try to answer 
in a dynamical problem. In classical mechanics, the problem is very 
definite: given the initial positions and velocities, what will be the state 
of the system at any later time? Quantum mechanics, on the other 
hand, proceeds by setting up an eciuation for a quantity called which 
governs the distribution of ^ over all space and at all times. The 
very fact that this equation is usually differential shows that causal 
law is involved in the determination of That is, the conditions 
at a given instant completely determine the conditions at the next 
instant. There are no extraneous factors, and there appears to be 
no room for probabilities or uncertainties. It seems strange, when 
the work is done, to say that ^ is not a quantity characteristic of an 
individual system; that on the contrary serves to describe the 
average behavior of a great number of systems. This situation applies 
to electrodynamics as well as to mechanical problems, for we customarily 
apply Schrodinger\s equation to systems which contain light quanta. 

Much light is thrown on this situation by a discussion of the nature 
of physical measurements which we owe to Heisenberg® and Bohr.'* 
They consider the question of what meaning can be attached to the 
position or the velocity of an atom, or of an elementary charged particle; 
let us say an electron. Now, the x-coordinate of an electron is really 
defined by describing an experiment which we may perform in order to 

1 Proc, Boy. Soc.j 113, 621 (1927), and later papers mentioned in the bibliography 

at the end of this chapter. 
2 Z. Physikf 40, 809 and 44, 1 (1927). 

»Z. Physifc, 43, 172 (1927). 
^Nature, 121, 680 (1928); Naiururissemckafteny 16, 245 (1928). 

617 



618 GENERAL THEORY OF QUANTUM DYNAMICS [Chap. XVITI 

measure it.^ For example, we may allow light to fall on the electron, 
and observe the scattered light with a suitable optical apparatus (Fig. 
1). The smallest length interval which can be distinguished is of the 
order of the wave length of the scattered light. If we wish to make 
our measurement of x highly precise, we must use light of very small 
wave length; in fact, to illustrate his point, Heisenberg speaks of using a 
^‘gamma-ray microscope'^ for detecting the scattered quanta. The use 
of short wave lengths brings with it a limitation of the accuracy with 
which we can know the r-cornponent of the momentum at the instant 
when X is measured. This is due to the recoil of the electron, which 
becomes greater as the wave length of the light becomes shorter. Simple 
y formulas derived by considering the 

Compton effect (Chap. Ill, Sec. 16), 
show that the change in momentum of 
the electron is of the order /?/ Xo, aside 
from a factor which is of the order of 
unity, and which depends on the angle of 
scattering; Xo is the wave length of the 
incident quantum. This statement must 
be modified when hvo/rnrr becomes com¬ 
parable wifh unity. If we write C(/>x) 
for the change of caused by the meas¬ 
urement of x, we have. 

C(pJ , h 
Xo 

(1) 

This quantity is also a measure of the uncertainty Apx in our knowledge 
of the momentum at an instant so that 

Apx 
h 

Xo’ 
(2) 

Therefore the product of the uncertainty in our measurement of position, 
namely X, and this uncertainty in the momentum is h. 

It may be worth noting that in this example we have neglected 
the uncertainty of our knowledge of thd'direction from which the scattered 
quantum came to the microscope. If a is the angle subtended at the 
electron by the diameter of the microscope objective, then the smallest 
resolvable object is of the order X/sin a, rather than X. The momentum 
of the scattered quantum is h/\ and its direction is uncertain by the 
amount a, so that the possible error of its momentum is of the order h 

sin o'/X. The product of the two uncertainties is ft, as before. 

^ This operational point of view has been emphasized by J. S. Ames for many years 

in his lectures on dynamics, and has been charmingly presented by Bridgman in his 
book, “The Tx)gic of Modern Physic« 
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Perhaps the reader will feel that if the dynamics of the collision 
were investigated in more detail we should be able to follow the value 
of px as a function of the time. The point is that the consequences 
of such a calculation cannot be checked by any experiment which has V)een 
devised up to the present time. We can study the final state of the 
system, but not the course of the scattering process. Assuming that the 
collisSion process occurs over a finite range of the coordinate x and over a 
finite time, ti to I2, we do not know what point of the range is obtained 
by our calculation for th(^ value of x, nor do we know at what instant 
in the interval — U the electron will be at a given point. ^ Further, 
in connection with equation (2), there is an error involved in speaking 
of ^px as the uncertainty of the momentum at a dcTmitc instant, because 
of the errors inherent in our time measurements. 

To sum up, when we measure the :r-coordinate of the electron with 
an error of the order of A.r, the value of px i 
C(px)f such that 

s changed by a quantity 

Ax • C{px) ^ h, (3) 

and further, 

Ax • Apx ^ h. (4) 

It was recognized by Heisenberg that relations similar to equations (3) 
and (4) must hold true for every measurement which we make, a truth 
which is referred to as the ‘‘uncertainty or indeteriniiiation principle,^’ 
and which may be stated as follows: 

If a coordinate q /,s* nieasnred ivith an error of the order Ar/, the uncertainty^ 

Ap, of the conjugate momentum introduced by our measurement is such that 

A7 • Ap ^ h; (5) 

and conversely, if p is measured with an error of the order Ap, as a con¬ 

sequence q is altered by an amount Aq, such that equation (5) is satisfied. 

To illustrate the latter statement, h^t us consider how to measure the momentum 

?nv of an electron moving paj’allel to the x>axis. Thi.s may be doin' by allowing a light 

quantum to fall on the electron from the direction of the positive a:-axis. Let the 

quantum be scattered through 180° so that it returns along the positive .r-axis. If it is 

received in a spectrograph, the momentum may be determined by measuring the 

change in wave len^h due to the Doppler shift. From the usual equation for the 

Doppler sliift. 

d\_2v 
\ ” c * (6) 

i Indeed, many physicists will go so far as to say that we cannot attach any phys¬ 

ical meaning to the instantaneous value of b o** during the scattering process. 

This is justifiable, providing we say that a quantity must be measured in order to 

have physical significance. The point is, we have no physical method for checking up 
on our ideas about the details of the collision. 
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On the theory of light quanta, we may think of the Doppler shift as caused by a 

change in the energy and momentum of the quantum, due to the recoil of the scatter¬ 

ing electron. ^ In the present case, let the electron be at the origin when it encounters 

the quantum, say at the tinie t — 0, and let their interaction persist for a time t. If 

the electron had not suffered collision, it would have b(;en at the position vr when i ~ 

Tf but due to its recoil it moves with a smaller average velocity, say v — Av, where 

wAc is of the order of 2hv/c, the vectorial change of momentum of the quantum. 

Therefore, the change of .r, or uncertainty of :r, due to the collision is 

A.r ^ (7) 

We now consider the error Av involved in measuring the velocity, which depends on 
the excellence of our wave-length measurements with the spectrograph. In equation 
(6), the percentage error of will he large compared with that of X, so that Av/c ^ 
A(6X)/X. Assuming that the spectrograph has extremely great resolving power, the 
value of A(6X) will be determined l)y the natural width of the spectrum line. Return¬ 
ing for a moment to the terminology of classical theory, A(6X)/X will bo equal to the 
wave length divided by the length of the wave train, that is, to X/cr. Therefore, 

c ct 

and 

A(mv) ^ (8) 
r 

Combining equations (7) and (8), wo have A.r • A(ttw) ^ h, in agreement with the 

uncertainty principle. 

Other illustrations of the uncertainty principle have been given by Darwin,^ 

Ruark,^ and Kennard.'^ Further, Ruark^ proved that in (pertain types of measure¬ 

ment, at least, there is an Tipper limit to the accuracy with which an individual 

coordinate or momentum can be inc'asured. Independently, Flint and Richardson® 

assumed that su(;h an upper limit exists on the basis of certain relativistic considera¬ 

tions. They consider scworal appli(;ations connected with Heisenberg’s uncertainty 

principle, and further, they arrive at the value 98 as an upper limit to the number 

of the chemical elements. 

Ruark’s argument depends on the fact that the measuring device is affected by its 

encounter with the measured object, as BoliH has emphasized, and can be understood 

from a simple illustration. Let us measure the :r-coordinate of an electron by allowing 

it to scatter a light quantum, at about 90°, th(‘ quantum passing to a suitable rec.eiving 

device. If we wish to have high precision, the wave length of the scattered quantum 

must be small. To make it small, we decrease the wave length of the incident quan¬ 

tum, but beyond a certain point this procedure will not be effective, for the scattered 

wave length cannot he made smaller than the increase in wave length due to the Compton 

effectf which is h/rnc for the scattering angle 90°. Similarly, if the detecting device 

is a particle which is allowed to collide with the electron, its de Broglie wave length, 

h/mVj cannot be made as small as we like after the collision. A detailed examination 

1 ScheOdinger, Physik, Z., 23, 301 (1922); Dirac, Proc. Camb. Phil Soc., 22, 
432 (1924); Ruark, Phil Mag., 3, 1051 (1927). 

^Proc. Roy. Soc., 117, 258 (1927). 
^Phys. Rev., 81, 311, 709 (1928); Proc. Nat Acad. Sci., 14, 322 (1928). 
*Phys. Rev., 81, 344 (1928). 
*Loc. cil, Proc. Nat. Acad. Sci. 

•Proc. Boy. Soc., 117, 637 (1928). 
^ 2Van9. YoUa Centenary Congress ai Como (1927); Nedwre^ 121, 680, (1928)* 
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of the problem, using relativistic dynamics, shows that the momentum of the scattered 

particle cannot be made as large as we please, for reasons similar to those encountered 

in the case of the light quantum. Electron diffraction effects (Chap. XXI) limit the 

accuracy of measurement to a quantity of the order h/mv. 

On the basis of Newtonian mechanics these effects are not encountered. Doubling 

the velocity of the incident particle will always double that of the scattered particle, 

and the wave length of the de Broglie waves can be decreased without limit. Thus, the 

existence of a limit of accuracy in length measurements is connected with the physical 

impossibility of velocities greater than that of light, and, therefore*, is a consequence 

of relativistic dynamics, together with the fact that tin? de Broglie wave length is 

h/mv. 

The smallest interval of time which can be distinguished in experiments on an 

electron is found to be h/Tnc'^. The smallest possible uncertainty of a derived 

quantity such as energy or angular momenum is easily found by using the relations 

^Xtnin 
A 
me* 

^tniin 

Jl_ 
rnc^ 

Heisenberg has pointed out the connection of the indetermination 
principle with the matrix quantum condition. He states that the 
inexactness of our measurements expressed by equation (5) makes it 
possible that pq should be different from qp^ so that the quantum con¬ 
ditions may be valid; further, that if it were possible in any way to carry 
out more accurate simultaneous determinations of p and q than those 
allowed by equation (5), quantum mechanics would become impossible. 
His trend of thought is that p and q are to be considered as rational 
generalizations of the coordinates and momenta, used in classical mechan¬ 
ics, so that we must modify our ideas of the significance of a coordinate, 
even in the case of large-scale dynamics. According to his view, a 
coordinate is always a matrix. In large-scale experiments, this fact is 
concealed from us by the imperfections of our instruments and by the 
overlapping of energy levels in large systems, due to their natural width. 
For these reasons we are contented with expressing a coordinate by a 
Fourier series, rather than a matrix, and the matrix quantum condition 

goes unnoticed. 
These views of the physical meaning of matrices are quite different 

from those developed in Chap. XVII, Sec. 3. To many investigators, 
a matrix is merely a mathematical auxiliary, useful in helping us to get 
the possible values of a physical quantity, but itself devoid of physical 
meaning and incapable of appealing directly to our senses. This view 
has been discussed by Hilbert, von Neumann, and Nordheim. ^ However, 
the matter need not detain us here. The important point for our 
present purpose is the aid which Heisenberg^s principle gives us in 
understanding the statistical interpretation of quantum mechanics, 
already outlined in Chap. XV, Sec. 16. His treatment of this matter is 
so helpful that we shall give a rough translation of his remarks. He 

says, 
»Mali. 4nnalen, 98, 1 (1927). Especially pp. 1-3. 
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We do not assume that the <|uantuni theory is an essentially statistical theory, 
as opposed to the classical, in the sense that only statistical conclusions can be 
drawn from data which are given exactly. The well-known experiments of 
Geiger and Bothe speak against such an assumption (Chap. Ill, Sec. 17). On 
the contrary, in all cases in wliich relations exist in the classical theory between 

quantities which are exactly measurable, we have correspondingly exact relations 
in the quantum theory (for example, the laws of conservation of energy and 
momentum). But in the formulation of the causal law, namely, “If we know 
the present exactly, we can predict the future,^' not the conclusion, but the 
premise, is false. We cannot determine present conditions with the completeness 

postulated by the classic;al theory. Therefore, all our observations represent 
only a selection out of a much broader range of possible observations, which 

cannot all be carried out simultaneously, and with any desirable accuracy, 
because of the limitations imposed by the princij^le of uncertainty. 

2. THE FUNDAMENTAL PROBLEMS OF QUANTUM MECHANICS 

Consider the motion of a free electron along the a:-axis. If we 
determine its position at time t = 0, its velocity is altered by the inter¬ 
action with the device for measuring position. Since the velocity is 
indeterminate, the position after the passage of a certain time interval r 
is also indeterminate. Let us suppose now that the experiment is 
repeated with a number of electrons. Due to the uncertainty of our 
measurements of position, we cannot specify the original position of 
each electron. However, we can draw a distribution curve, D^{x) 

such that Di){x)dx is the fraction of the electrons for which the measured 
x-coordinate lies between x and x + dx. At time r, we have another 
distribution curve Z)(a:). The width of the peak of this curve is due to 
two causes: (1) the dispersion of the original positions, and (2) the 
dispersion of velocities. The problem confronting us is this: Given 
the initial distribution of positions, what will be the final distribution? 
More generally, we may ask the following question in the case of a 
system with several degrees of freedom: 

When the distribution curve for each of the coordinates is specified 
at time what is the probability that the coordinates will lie in the 
ranges qi to q\ + dr/i, q^ to q2 + dq^, etc., at a later time tl 

The reader who feels disappointed that the information sought 
in solving a dynamical problem on the quantum theory is statistical, 
and that the course of the individual system is not followed by our 
equations, should console himself with the thought that we seldom 
need any information other than that which is given by the quantum 
theory. It will not do, however, to close our eyes to the fact that this 
situation may be altered by the advance of our experimental knowledge. 

By comparison with Chap. XV, Sec. 16, we see that if Born^s statistical 
interpretation is to be upheld, the function D must be identical with 
The problem outlined above reduces to the question of solving the wave 
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equation (65) of Ghap. XV, and choosing the constants Cn and ce in the 
general solution, 

^ = ^Cn^n + jcE^EdS, (9) 

in such a way that at time /o solution reduces to the prescribed 
initial distribution curve Do{xo). However, this does not give all the 
information which we may desire. Often, we wish to know the distribu¬ 
tion curves for quantities other than the coordinates—the momenta, for 
example—and it may happen that we wish to compare these curves, 
not at different times, but for different values of some other variable or 
parameter. This leads us to generalizations of the function ^ and of 
Schrodinger’s equation, which enable us to solve all these problems. 

3. PROBABILITY AMPLITUDE FUNCTIONS 

Before introducing these more general probability functions it will 
be well to make a systematic statement as to the statistical interpretation 
of the function, equation (9). In Chap. XV, Sec. 16, we spoke of 
this function as belonging to an aggregate of independent atoms, or 
electrons, as the case may be. For example, it was stated that for 
electrons moving along the .r-axis, is a measure of the fraction 
which lies between x and x + dx, Howc^ver, it is better to think of 
performing the same experiment a number of times on individual electrons 
or atoms, just as in the illustration of Sec. 2. Strictly^ is the 

fracMon of such a group of experiments in which the coordinate lies between 

X and X + dx. The use of the ^ function to describe the properties of an 

aggregate of atoms or electrons is justified only when they do not interact. 

In the case of quantized atoms, having the wave function 
we may classify the individual systems not according to position but 
according to energy, if we like. Following Born, the fraction of the 
atoms in an aggregate which are in the nth quantum state is proportional 
to CnCn^. As Darwin' says, the distinction between the two types of 
classification is best appreciated by considering the analogy to light. 
The intensity of light can be regarded in two different ways, either by 
measuring the density of electromagnetic energy at a point and so giving 
the intensity at that point, or else by making a spectral analysis, not 
now at a point but in a region of space, ana determining the distribution 
of energy in the spectrum. 

After Pauli, q) is called a '^probability amplitude,^’ partly 
because it may be thought of as analogous to the amplitude of the 
electric vector in an optical problem. Now suppose that any dynamical 
variable F2(p, q) is given a fixed value y] what is the probability P{xy^ 
F1F2) that another variable Fi(p, q) shall lie between Xo and xo + dxo? 

In giving the answer to this question, Jordan'* assumed that there is 

^Proc. Roy. Soc., 117, 258 (1927). 
*Z. PhvHk. 40. 809, and 44, 1 (1927). 
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always a function (pixy^ F1F2), called the probability amplitude,^ such 

that 
<p{xy, Fi F2)(p'^{xy, Fi F2) = P{xy, Ft F2). (10) 

Preparatory to finding the function <p, we shall write down some very 
reasonable conditions which it is assumed to obey: 

I. The first assumption is expressed by equation (10). 
II. The probability that for a given value of Fi—let us say x—the 

function F2 shall have a value between y and y + dy^ is given by the 
same expression, P{xyy Fi F2); which was used in equation (10). That is 

P(xy,F,F2) =P{yx,F2F,), (11) 

III. If Fi is identical with F2, and F^ is given the specified value y^ 
the probability that x shall equal y must reduce to certainty. That is, 

P{xy, Fi Fi) = 1 if a: = 
= 0\i X 9^ y. (12) 

IV. We now consider the rule for the composition of probabilities, 
which is essential to all that follows: Suppose Fi is given the value x. 

In addition to the above definitions let us agree that (p{yz, Fz F3) is the 
probability amplitude for a value of Fz between z and z + dz, when 
Fz — y-^ At first sight we should expect that 

P{xz, FiFz)dz = [^P{xy, F, F2)dyP{yz, F2Fz)dz. (13) 

The basis for such an equation would be as follows: When Fi = x, then 
the probability for Fz to lie in the range y to y + dy is the first factor in 
the integrand multiplied by dy; but when y has a value in this infinitesi¬ 
mal range, the probability for Fz to lie in the range between z and z + dz 
is the second factor times dz. The probability for both of these condi¬ 
tions to be satisfied should be the product of the two factors if the separate 
probabilities are independent; and integrating over all possible values of 
y we should obtain equation (13). However, the assumption is made in 
quantum mechanics that the probabilities considered above are not visually 
independent. {They may be independent in special cases.) Just 08 we 
have interference phenomena in optics which make it proper to add the 
amplitudes rather than the intensities of the individual wave trains making 
up a natural beam of light, so in quantum theory we must compound the 
probability amplitudes. Therefore, we replace equation (13) by the relation 

Fi Fs) = j<p(.xy, Fi Fi)<p{yz, F^ Ft)dy. (14) 

V. It is assumed that the probabilities depend only on the functional 
natiu-e of the quantities Fi{p q) and F^ip q), that is, on their kinematic 

' The notation used here is that of HmBBBT, von Neumann and Nobdheim» 

Math. Annalen, 1 (1927). 

* It must be understood that <(> does not denote the same function which it did in 
equation (10). A change of the mechanical variables F inside the parentheses means 
that we are dealing with a new function. 
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connection, and not on special properties of the mechanical system 
under investigation, such as its charge or the form of its energy function. 

At this point it is advantageous to simplify the notation somewhat. 
We write 

S(Fi, F2) 

in place of (p(xy, F1F2), leaving out the particular values of Fi and F2 

which are considered. Thus the Schrodinger function ^n{En, q) gives the 
probability distribution of q when E has the valine Enj and is written 

q)] if we wish to indicate the value of 4^^ at we write 

E{Er., ryo). 

4. THE PROBABILITY AMPLITUDE S(/>, q) 

We shall illustrate these remarks by considering the probability 
amplitude ^), where q is a coordinate and p is the conjugate momen¬ 
tum, Let us suppose that p is given a definite value. It was assumed 
by Jordan that all values of q are equalJy probable. That is, for any 
value of p, 

(i)S*{'p,q)dq = CHq, (15) 

where C is a constant. This equation is to hold for each and every value 
of q. The value of C is determined by writing an ecjuation which states 
that some value of q is certainly occupied, that is, 

/-S(/7, q)S*{p, q)dq = C^^dq == 1. (1C) 

This shows that C^^is the reciprocal of the range of values of q. If 
the range is infinite, (7 = 0, which means that the probability for q 
to lie in any finite range is zero. In such a case, this method of nor¬ 
malization must be abandoned.^ We now write in the form A exp 
iBj where A and B arc real. We can determine the form of B by con¬ 
sidering the special case of a particle moving freely along the (r-axis. 
If the momentum is held constant, the energy is also constant, and 
S{py q) must be the same as aS(£', q).^ But S{Ey q) is simply the appropriate 
solution of Schrodinger's equation, exp 2Tipxx/h. Now, by Assumption 
V in Sec. 3, the functional form of S{px, x) will be the same in any problem, 

^ The difficulty is one of our own making. Strictly speaking, quantities which can 

take infinite values should not be used in physics. See Ruark, BidL Amcr. Phys. 

Soc., 4, 1, 15 (1929). 

* This is physically obvious, but can be proved mathematically by considering a 

special case of equation (14), namely, 

S(,p\ q) = /*S(p2, p')dp^S{p% q). 

Sip^y p') is zero except when the variable of integration p' is equal to p because when p 
is sharply determined so also is p®. Thus the quantity on the right is simply S(p, g), 

multiplied by some constant. 
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as long as we do not alter the geometrical significance of p* or x. 
fore, we write 

S{Vzy x) = exp 
2iripj:X 

There- 

(17) 

without any restrictions. More generally, it follows from the develop¬ 
ments in Sec. 16, that for any conjugate pair of variables, 

S(p,q) = exp 
2Tripq 

(18) 

In accord with Assumption II, Sec. 3, S(p, q) can be interpreted in an 
alternative way, namely, *S(po, q)dpQ is the probability that p shall 
lie between po and po + dpo, when q is sharply determined. 

6. THE UNCERTAINTY THEOREM 

We are now in a position to prove a remarkable theorem due to 
Heisenberg,^ which expresses a portion of the content of his principle 
of indetermination. This theorem is not as broad as the principle. 

for the former deals only with a special type of distribution curve. 
Suppose we have measured a coordinate q a number of times, and 
have obtained the value q by taking the mean of the observed values. 
Let us assume that the probability of the coordinate l3nng between q 

and q dq is 

Pdq = exp {q (19) 

The error curve P is shown in Fig. 2. If qi is the value of ^ ^ kt 
which the curve has fallen to 1/e times its maximum height, and m is the 
mean error then 2m^ = qi^. Following a widespread custom, we shall 
speak of qi as the precision of a measurement, although is really a 
measure of the lack of precision. 

Now, it is convenient to consider a probability amplitude 5(77, g), 
such that SS* = P, 77 being some parameter which is held constant. 
It will not be necessary to specify the nature of 77. 8 can take the form 

' Z. Physik, 48, 172 (1928), 
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where i? is a real function, and guided by our study of matter 
waves, we choose a value of It which depends on q through a sine (or 
cosine) factor: 

S(n, g) = c exp 
(g - gy _ 2np(q - g) 

2qi^ h 
(20) 

where c is a constant and p is a value of p measured with the precision 
Pi at the same time as g. Then the general assumption (14) shows that 

^(.V, v) = 9)'S(?, p)dq. (21) 
The uncertainty theorem now to be proved states that 

Pigi = 27r 
(22) 

By equations (18) and (20), 

, p) = c I* exp • 
{g - gY 2wip{q - g) 2Tipq 

2qi h 
+ 

The factor, exp (2xzpg//i); is constant and can be included in c. This 
leaves us with 

S{n, p) = cj exp 
2Tt(p - p)q _ 9)n . 

h 2qi^ 

To bring this to an easily integrable form we multiply by a suitable 
factor in front of the integral sign, and divide by it inside, obtaining 

"27r/(p - ~p)q _ 2qiV(p - py^~ 
~ h .. '* 

dq 

P) == c exp 

f pvn r /\/2gi7r(p - p)i (g ~ ~g)Y], 
V h \/2gi / . 

The limits of the integral are — qo and + oo, so its value does not depend 
on p, g, or g. Introducing the quantity pi, defined by equation (22), 

p) = const, exp 

Therefore, 

(p - p)^ 2Ti(p - p)q 

2p r- + 

S(v, p)S*{v, p) = const, cxp^- 

(23) 

(24) 

This shows the significance of pi; it is the precision of p, which proves 
our theorem. 

6. INTRODUCTION TO THE TRANSFORMATION THEORY 

As an approach to the transformation theory of Jordan and Dirac, 
we take up afresh the problem outlined at the beginning of Sec. 2. At 
any time let the coordinate g and the momentum p of a number of 
typical systems be measured. We shall write go and po for typical values 
of q and p measured at this time. As a result of the uncertainty involved 
in determining go, ^(>7, go) will be appreciable over a certain range of 
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values of and, similarly, pu) will be appreciable over a certain 
range of p values. Of course, these systems are spoiled for further 
study by the process of measurement, but we are at liberty to suppose that 
we have a similar aggregate of systems which are not subjected to 
measurement, but which would give the same values of >8(77, q^) and 
8(7}y po) if they were measured. At a later time /, systems in this group 
which may be supposed to have had their representative points in a 
range q^ to qo + dq^ will have moved to another range, q to q + dq> 
In general, the latter range will be larger than the former, for the uncer¬ 
tainties of the momenta will cause the representative points of the various 
systems to scatter. 

Assuming that >8(77, qo) is given, our problem is to calculate the value 
of S(rjy q) at time t. In the casci of systems with several degrees of 
freedom, we begin with the values of a distribution function >8(771, 

‘ ; Qi, Q'2, . . . ) at time Uy and desire to find >8 at a later time t. 

In general, the region over which the values of >8 are appreciable will 
spread out, just as in the one-dimensional problem.^ 

In the following discussion, our equations and terminology will 
refer to the one-dimensional case, for the extension to a number of 
degrees of freedom is obvious. We have the equation, 

S(n, q) = fS{rt, qn)dqoS{qo, q), (25) 

and everything hinges on our ability to obtain >8(r/o, q)y which is often 
called a transformation function for reasons now to be explained. It 
is often convenient to speak of the relation between the initial and final 
values of a variable or a group of variables as a transformation equation. 
Thus, if we are dealing with a particle in uniform motion, the relation 

X == Xo + v{t — to) 

sets up a correspondence between the initial and final positions. Again, 
we may transform n variables xi, . . . Xnj to new values Xi, , . . Xn\ 
by the equations 

Xi = aijXi + ai2X2 + • • • ainXn, i == 1 ••• n. (20) 
The aggregate of the quantities aijy drawn up in square array, is called 
a ‘transformation matrix.’^ It is a simple and natural step to introduce 
the idea of transforming a continuous range or field of values, instead 
of a finite number of variables. The equation (25) is an illustration. 
If we write it in the form, 

^ ~ (?oi)>Si(77, ^oi)d^ox + 8{q, qo2)S{riy qo2)dqo2 + • • • , 

its similarity with equation (26) is quite evident. One such equation 
can be written for each value of g, so that the scale of values of q replaces 
the discontinuous scale of values of the subscript i. We may imagine 
a square field with a vertical scale of q values, and a horizontal scale 

1 However, Flamm, Physik, Z.y 29, 927 (1928), has considered solutions of the wave 
equation which are propagated without change of form. 
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of go values. There is a value of S(g, go) for each point of the field. 
The aggregate of these values is quite analogous to that of Uij, and is 
also called a “transformation matrix.^^ The function iS(g, go) is a 
transformation function, for it furnishes the connection between the old 
and new values of aS(7;, g). There are two essentially di^erent ways to 
obtain this function. One depends on a generalization of the theory 
of matrices invented by Dirac/ and the other, due to Jordan, ^ is based 
on the theory of operators. 

On both theories, the derivation of the equations for determining 
transformation functions is rather complex, though not inherently 
difficult, (considerations of space prevent a detailed treatment by both 
methods. We shall follow the method of Dirac. The subject matter 
of the next few sections has many interrelated aspects, and the reader 
must not be disappointed if he finds that he does not fully appreciate 
it at a single reading. 

7. DEFINITION OF CONTINUOUS MATRICES^ 

Dirac’s theory is based on the extension of the idea of a matrix 
explained in Sec. 6, which makes it possible to write down a matrix 
corresponding to a non-periodic coordinate or any other dynamical 
variable. In general, only periodic (or conditionally periodic) systems 
have discrete quantized energy values, while non-periodic systems, such 
as the hydrogen atom with its electron on a hyperbolic orbit, have 
continuous ranges of energy values. In Chap. XVII matrices were 
defined only for systems with discrete states, for each row or column of a 
matrix is associated with a particular value of the quantum integral 
J, or of the energy, if the system is not degenerate. We may say that 
the rows and columns are numbered according to the values of J, The 
rows or columns of such matrices may be said to form a denumerable 
infinity, for they can be brought into one-to-one correspondence with the 
integers. It is a natural and easy extension to think of matrices which 
have a non-denumerable infinity of rows and columns. We suppose 
there is a row or colunm for every number in the real continuum or in a 
portion of that continuum; that is, the rows or columns can be put 
into one-to-one correspondence with the points of a straight line, or 
a segment thereof. As before, we may number the rows according to 
the values of J, which is now a continuous variable. It is also convenient 

iProc. Roy, Soc,, 113, 621 (1926). 
* Following earlier work of Born and Wiener, Z, Physik, 36, 174 (1926), of 

Eckart, Phys, Rev.^ 28, 711 (1926), and of Schr5dinger, Ann, Physik^ 79, 734 (1926), 
the operator theory was developed in full generality by Jordan, Z, Physik, 40, 809 
(1927) and 44, 1 (1927). 

* In addition to Dirac’s papers, the reader should consult an excellent r^um6 by 
Kennard, Z. Physik^ 44, 326 (1927). 
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to consider matrices, in which a portion of the rows and columns are 
discrete and the remainder continuous, for, in general, we are confronted 
with a spectrum of energy values which has both discrete and continuous 
parts. For example, the q matrix for the hydrogen atom is divided into 
the domains. indicated in Fig. 3. We number the rows and columns 
according to energy values, rather than values of J, simply for con¬ 
venience. In Ay both rows and columns are discrete. The first row 
and column belong to the lowest quantum state, the second to the 
two-quantum state, and so on. The typical element q{nm) exp 2Triv{nm)t 

represents the radiation amplitude due to transitions between the nth and 
mth orbits. In region By the initial state lies in the region of hyperbolic 

orbits, the final, in the quantized 
orbits; in C, the reverse is the 
case. In both these regions an 
element is related to the inten¬ 
sity of the continuous spectrum 
at the corresponding wave 
length. Region D belongs to 
transitions between hyperbolic 
orbits. ^ 

^Rhc 
E^\_ 

-RhC‘ 

0^ 

i 
8 

Fig. 3.- 

Hyperbola Hyperbola 
8. GENERALIZED MATRIX 

ALGEBRA 

-CoiitinuGus and discrete matrices of the 
hydrogen atom. 

We must now study the alge¬ 
braic laws to which generalized 
matrices are subject, restricting 
the discussion to one degree of 
freedom. The definition of the 

sum of two matrices requires no change. The typical element oi A + B 

is the sum of the typical elements of A and B. As to multiplication, in 
place of the law 

AB{nm) ~ ^A(nk)B(km) 

we may write 
(27) 

Here Jn stands for the quantum integral having the value nhy and it is 
assumed that the quantities Jn are the diagofial elements of a diagonal 
matrix 7. This notation makes it clear that each row or column is 
associated with a particular value of J. In close analogy with equation 

^ The reader may be disturbed by the impracticability of writing down all the 
elements in the continuous or sernicontinuous regions of such a matrix, due to the 
fact that they are infinite in number. We must content ourselves with being able to 
write a typical element. In some cases even this is impossible, except by the use of 
special symbols, as we shall see in Secs. 9 and 10, 
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(27), the typical element of the product of two continuous matrices is 
defined as * 

AB{rj") = fA{J'J)dJB{JJ"). (28) 

In the more general case whore there is both a discrete and a continuous spectrum, 

equation (28) must be replaced by such expressions as 

ABiJ'J") = + SA(J'J)dJB(JJ'’). (29) 

k 

Jk assumes all values in the discrete range and J all values in the continuous range* 

Ordinarily, we shall write only the integral, with the understanding that every formula 

can be generalized to include the discrete range as well. Strictly, equation (29) is 

not dinicnsionally correct, because of the additional factor dj in the integral, having 

the dimensions of action. We get around this by assuming that the integral is 

always divided by a number having the value unity and possessing the dimensions of 

action. 

9. DIRAC’S h FUNCTION 

In the Heisenberg matrix theory, we often have use for the Kronecker 
symbol 5(nm), which is equal to 1 when n = m, and otherwise is equal to 
zero. For example, a typical element of the energy matrix is 

E(nm) = 

The advantage of such a notation 
is that it combines in a single 
equation information which 
otherwise would have to be writ¬ 
ten out in two separate equa¬ 
tions, as follows: 

E(nm) = En^ n = nij and 0 
if n is not m. 

Dirac^s d function is a gen¬ 
eralization of the Kronecker 
symbol. It has the properties 

B(x) = 0 if a: is not 0, (31) 

and 
+ 00 

d(x)dx = 1. (32) 

En^{nm). (30) 

Fig. 4.—Illustiating Dirac’s B function. 

For many purposes it is better to consider 5(x) as the limit of a sequence 
of even functions ^(x), like those shown in Fig. 4, as we allow the symmet¬ 
rical peak to approach infinite height and narrowness, and all ordinates 
outside the peak to approach zero, while f^(x)dx is always equal to 1. 
Further, we suppose that S(x) obeys all relations with other symbols 
which hold true for ^(x) in the limit. The advantage of considering 
the sequence of functions 4>(x), is that by their aid we can set up defini¬ 
tions of various functions of 5(2;), and can deduce the properties of these 
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functions. • For example, 5'(x) is defined as the limit of the first derivative 
of ^ix)j lind so we have the properties 

5( —a;) = 5(^) (33) 

(34) 

If f{x) is any regular function of x, we have /•+*«» 

f(x)8{a — x)dx = f(a); (35) 

for the only finite contribution to the integral comes from the terms 
in the neighborhood of x = a, the integrand being zero elsewhere. 
Therefore, the integral may be replaced by 

/(a)/5(a - x)dx = f(a)j8(x — a)d(x — a) = /(a), 

as we see from equations (32) and (33). Using integration by parts 
it is also easy to show that 

jf(x)8^(a — x)dx = (36) 

Further, putting/(a:) = 8(x — h) in equation (35), we have 

J5(a — x)8(x — h)dx = 8{a — b). (37) 

10. THE UNIT MATRIX 

Dirac’s 8 function is indispensable in discussing the properties of 
continuous matrices. We require it, for example, in setting up the unit 
matrix. By definition, this matrix must be such that its product (either 
before or behind) with any matrix A is equal to A, Writing out a 
typical element of the relation lA = Aj we require that 

(JV") = Jl(/'J)dJ4(JJ") = 4(J'J'0. (38) 
If we put 

1(JV) - 8{rj) (39) 
this integral becomes 

f8(J'J)dJA{JJ") 

and by equation (35), this is simply 4(t/V")j so that equation (38) is 
satisfied. If we are dealing with a problem of several dimensions, the 
argument is similar and we define the unit matrix by the equation 

J2', • • • Jn'; Jl, • • • Jn) = 5(/i' - J^) 
KJ2 - J2) • • • 5(/„' - Jn). (39a) 

11. INTERPRETATION OF THE ENERGY MATRIX 

Let us recall the way in which the quantized energy values were 
obtained in Heisenberg’s matrix theory. The details of the mathematical 
method are sufficiently explained in Secs. 6 to 7 of Chap. XVIL Briefly, 
the problem consists in finding Hermitian matrices which satisfy the 
following conditions: 

1. The quantum conditions (Chap. XVII, Sec. 11). 
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2. The matrix equations of motion.^ 
3. The Hamiltonian function must be represented by a diagonal 

fuatrix. 
When such matrices arc found, an assumption must be made in 

order to interpret th(i results. It is natural to consider a matrix element 
standing in the nth row and 7ith column as belonging to the nth quantum 
state. Accordingly, it is assumed that the diagonal elemerds of the energy 

matrix represent the possible values of the energy. 

This idea is carried over almost without change into the theory 
of continuous matrices. We seek to find a transformation to new vari¬ 
ables, such that the conditions above will be satisfied. When such a 
transformation has been found, the possible energy values are assumed 
to be the non-vanishing elements of the diagonal energy matrix, which 
now may be either discrete, or continuous, or a combination of the two. 
A word of explanation as to condition (3) is necessary. When we say 
the energy matrix is diagonal we mean that 

AX/V") = (40) 

where = E{J'), A similar equation is used in defining any diagonal 
matrix. This is all very satisfactory, but we wish also to obtain the 
possible values of other physical quantities, and this requires us to 
consider transformations which are more general than those used in 
Chap. XVII. 

12. TRANSFORMATIONS OF CONTINUOUS MATRICES 

It will be recalled (Chap. XVII, Sec. 12) that when a set of discrete 
matrices p, q, obey all the conditions mentioned in the preceding section, 
we may apply the transformation 

P = SpS-^, Q = SgS-^ 

where S is an arbitrary matrix not containing the time, and then the 
matrices P, Q, will also obey these conditions. Further, if / is any 
function of p and we have from equation (65), Chap. XVII, 

F = S/S-^ (41) 

where F is obtained from f{pq) by replacing p and q with P and 
leaving the form of the function unaltered. All these theorems hold 
true for continuous matrices, and we wish to exarn^e the form assumed 
by a typical element of equation (41), Let us agree that matrices 
expressed in the old system of variables will be numbered according to 
the values of an index j. Then we have 

F(ff) = (42) 

^ In Chap. XVII, the equation of motion for a typical variable x was taken to be 

ci *= Hx — xHt but if x involves the time, this must be replaced by 

Hx - xH. 
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The integration variables j\ and run over all possible values of j. It 
would be more elegant to number the matrix F according to the values 
of the quantity J, defined by the relatio n 

J = 

Now j is a diagonal matrix, by hypothesis, and on working out a typical 
element of this relation, we find that J = j. This means that J' = /, 
J" = and so on. Therefore equation (42) may be rewritten in the 
more satisfactory form 

F{rr) - (43) 

Now as Dirac remarks, this transformation does not go far enough. 
We can make any permutation of the rows of the new matrices and 

the same permutation of their 
columns, without violating 
any of the conditions in the 

Q preceding section. This the- 
I orem was proved in Chap, 
i XVII, Sec. 4, Part (13). As 

7 a consequence, there is no 
one-to-one correspondence 
between the rows or columns 
of the old and new matrices. 
It is essential to grasp the 
broad possibilities of such 
permutations in the case of 
continuous matrices—possi¬ 
bilities which are not encoun¬ 
tered with discrete matrices. 

To make this clear, let us consider any discrete matrix, A. If we 
carry out one and the same permutation on the rows and columns 
of A, the number of elements in a given area of the matrix is 
unchanged. The situation is not so restricted when we come to con¬ 
tinuous matrices. Let one of these be represented by the scheme in 
Fig. 5, with all positive energy values, as shown by the continuous 
scales of J values. So long as we avoid duplication, we can shift or 
distort the system of rows according to any prearranged plan, the 
columns being treated in exactly the same way, of course. Or, if we 
prefer, we may shift or distort the scheme of numbering, and arrive 
at the same result. For example, suppose that we write J = 
We can write opposite each value of J the corresponding value of 
and then the matrix is said to be numbered aceprding to the variable x. 
In general, the connection between the two systems of numbering will 
be much more complicated, for we usually wish ibo number the matrices 
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according to the values of some quantity X, which is represented by a 
diagonal matrix when expressed in terms of the new variables P, Q. 

Because of this situation, Dirac rewrites the equation (43), so as 
to make it apparent that the quantity on the left simply denotes the 
matrix F, numbered in terms of such a variable X. Further, since 
F is the same function of the new variables which / was of />, g, there 
is no reason why we should not denote it by /. The result of these 
changes is that equation (43) takes the form 

/(X'X") = j;.S(XX0d/,/(iii2)dj2.S-^(i,Z'0^ (44) 
= JJ>S(X'J0d/i/(JjJ2)dJ2.S“K‘/2X"). (45) 

This brings out the fact that the functions S(J, J) and S~^(/, X) are 
numbered partly according to the values of X and partly according to the 
values of 7. The rows of S{Xy J) are numbered on the X scheme, and 
the columns on the J scheme, for example. We shall speak of such 
matrices as mixed matrices. 

In discussing such transformations, there is no reason why we should 
restrict ourselves to consideration of the functions S{Xy J). When we 
have passed to the X scheme of numbering, we can repeat the process, 
obtaining matrices which are numbered according to the variable F, 
and so on. The general problem is to pass from a scheme where the 
variable ^4 is a diagonal matrix, whose values are used in numbering both 
the rows and columns, to another scheme where the matrix X is diagonal, 
and serves the same purpose. Therefore, we consider equation (45) 
in the still more general form 

/(X'X") = //.S(X'a0dai/(aia2)da2.S-^(a2X"). (46) 

From this point onward, a variable of integration running over all values 
of A will be denoted by a, and one which covers all values of X by J. 
The principle is that we indicate a variable of integration by a Greek 
letter analogous to the English letter under consideration. 

If we are dealing with a problem having n degrees of freedom, instead 
of X we have a set of functions Xi, X2, . . . Xn, all of which are diagonal. 
The very fact that they are diagonal tells us that they do not involve 
and that they commute with one another. These are the only conditions 
which need be fulfilled in order that we may consider the Z’s as canonical 
coordinates. The momenta belonging to them will be called F/ 

13. MATRIX METHOD FOR OBTAINING THE POSSIBLE VALUES OF ANY 
PHYSICAL QUANTITY 

We now have most of the mathematical apparatus necessary for 
finding the possible values of any dynamical quantity, F(X, F). We seek 
a transformation which will make F(X, Y) a diagonal matrix, and assume^ 
just as in the case of the energy, that the diagonal elements are the 
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possible values of F{Xj F). At the start, this matrix is numbered in the 
X scheme and it will be supposed diagonal in the A scheme of labeling. 
The variables X, Y are supposed to be known, and we seek a trans¬ 
formation function >S(X, A) which will carry all our matrices into the A, 

scheme, by the use of equation (41) and the equations (42) to (46) 
which it implies. The next few pages are devoted to finding a differential 
equation for the transformation function S{X^ A). We shall state the 
result at once. If the reader desires he may omit the complicated proof 
in Secs. 14 and 15, and pass at once to the discussion in succeeding 
sections. 

It ifi found that the funciimis S(X^ A) arc identical with the probability 

amplitudiw used in the statistical mterpretation of wave niechanics. The 

equation which they obey is a generalization of the warn eqnation, and 

may be stated in the form 

F(Xr, 6 A r) = F(Ar)F(Xr, Ar). (47) 

F(Ar) is a brief way of writing F(Xr, Fr)(A], A2, . • . An; Ai, A2, . . . 
An), which is allowable because F is diagonal in the A scheme, by 
hypothesis. Schrbdiriger’s equation is a special case of equation (47), 

obtained as follows: Let F ^ II; Xr = qr/ Yr ” Pn Ar = Urh = h times 
the quantum number belonging to the rth degree of freedom; nr is 
supposed continuous in the region of continuous energy values. Further, 

F{Ar) = E{nr). Thus we obtain, 

ni^r, 2^ «r) = E{nr)S{qr, Ur). (47a) 

When there is only one degree of freedom and therefore only one quantum 
number /i, this becomes 

2«- 

These equations are identical with that of Schrodinger. Of course, 8 

depends on E, and so we may write Sn{q) = F>{q, En), but this is not 
desirable because the variables of S are supposed to be those which are 
used in labeling the matrix F in the old and new schemes. Strictly 
speaking, the quantities rirh are the labels to be used in the A scheme, 
in which H Ls diagonal. This discussion makes it clear that Schrodinger^s 
\p functions are the elements of the transformation matrix which enables 
one to transform any matrix from the scheme in which rows and columns 
are labeled according to values of g, to a scheme in which H is diagonal 
and the quantum numbers (continuously variable) are the labels 

of the rows and columns. 
In conclusion, it must be noted that equation (47) may not be valid 

when F is not expressible as a sum of powers of Xr and Fy. Other 



Skc. 14] PROOF OF THE GENERAL WAVE EQUATION 637 

equations of a still more general character must be used when we are 
dealing with mixed matrices, or when F is not algebraic.^ 

14. AUXILIARY RELATIONS FOR THE PROOF OF THE GENERAL 
WAMIE EQUATION 

We now consider the proof of equation (47). We shall require several 
transformation equations corresponding to the relations 

S-^f{X)S = f{A)J(X)S = Sf(A) and S-^fiX) = f(A)S-^, 

where/(X) and/(i4) indicate a matrix function/(ATr, Yr) expressed in the 
X and A schemes, respectively. They are as follows: 

= KA'A"), (48) 

= jSiX'a)daf(aA'') ^ f(X'A"), (49) 

- ff(A^a)daS’KaX") ^ /(^'Z"). (50) 

We shall also need explicit formulas for the quantities Yr, which 
are the momenta corresponding to the Xr. These variables must satisfy 
the relations 

YrXr - XrYr = el, 

YrXs - XsYr = 0, 
XrXs - XsXr = 0, 
YrYs - YsYr = 0. (51) 

The third of these is true because it was assumed (Sec. 12) that the Zs 
commute among themselves. It is easily verified that the other three 
equations can be satisfied by writing 

YriX'X") = 65(Z/ - xn . . . d(X'r-l - X"r-l)d'{Xr' ~ Z/') 

5(ZVi - Z'Vl) • • • 5(Zn' - Zn"). (52) 

For a problem of one degree of freedom, equation (52) reduces to 

F(Z'Z") = e5'(X' - Z"). (52a) 

We shall confine our attention to proving that this value of Y satisfies 
the first equation of (51). Dirac's paper^ may be consulted for the 
verification of the remaining relations. Remembering that Z(Z'Z") == 
Z'6(Z' — Z"); and using equation (52a), we have 

(YX ~ ZF)(Z'Z") = eJ\5\X' - - Z") - 

Z'6(Z'- ?)d^5'(^ ~ Z")}. (53) 

We integrate the first term by parts so that it becomes 

€/S(X' - 

1 Dirac, Proc. Roy, Soc., 114, 243 (1927). 
s Lac. cii. 
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On performing the differentiation indicated, and combining terms, 
equation (53) takes the form 

eji&{X' - - X") - ix' - mx' - - x")}di 
The first term yields the contribution 

€5(X' - X'*) 

to the integral, in accordance with equation (37), and since this is the 
result we want, it only remains to prove that the second term contributes 
nothing to the integral. This is actually the case, because {X' — {) 
h{X' — f) is zero. The first factor vanishes if { = X', and the second 
if { is not equal to X'. To sum up, the typical element of YX — XY 
is €5(X' — X'')y which is to say, the matrix is equal to e times the unit 
matrix. 

16. PROOF OF THE GENERALIZED WAVE EQUATION 

In order to obtain a proof of the generalized wave equation (47), 
we shall require some alternative expressions for the matrices X, Y, 
and f(X, Y) when they are expressed in the mixed form, with X as the 
horizontal and A as the vertical label. These expressions will be obtained 
by using equation (52a). We begin by finding explicit formulas for 
F(Z'.4") and X(X'A"). By equations (49) and (52a) we have 

Y(X'A") = JF(X'f)d^S(M") 
= ej5'(X' - ^)dmA'r 

By equation (36), therefore, 

Y(X'A ") = € - YX^--- (54) 

In n dimensions the proof is quite similar and yields the formula 

Remembering that X(X'X”) is diagonal, we also find from equation 
(49) that 

XiX'A") = fX'SiX' - = X'S(X'A"), (55) 

the generalization to n dimensions being 

XriX'A") = Xr'SiX'A"). (55a) 

In similar fashion we can show that 

FiXrXX'A") = JFiXrWr' - |)d|5(f4") = F(Xr')S(X'A''). (56) 

Strictly speaking we should write /S(X/4,") in this relation, but this 
more cumbrous notation scarcely seems necessary. 

However, when we have a function of both the Xs and T's the mixed 
representation of this function is of a different character. We suppose 
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that this function F{X„ Yt), is rational and integral in the quantities Yr, 

a very necessary restriction. We shall show that 

F{Xr, 

SO that the elements of the matrix F in the (XA) scheme of labeling 
are given by the result of applying an operator to the function S(X'A"), 
To prove this theorem we only need to show that if the theorem is true 
for any two functions/i and f2, it is true for their sum and their product. 
(We know it is true for any X and F, by equations (54a) and (55a), 
so we can show it is true for XrYg, Xr^, etc., and can then pass to other 
functions step by step.) The case of the sum is obvious. As to the 
product, we have, 

f,(Xr, Yr)f2(Xr, Yr)(X'A") 
= /J/,(X„ Yr)(X'a)da S-Ko^mMXr, Yr)(^A") 

= e ^^^^S(X'a)daS-Kamf2(^ 

and by the definition of a matrix product, this is the same as 

This is the result desired. In similar fashion we may show that 

.",€^^^„y~'(A'X"). (59) 

Let us now examine equation (57). By equation (49), the left 
member is equal to 

fS(X'a)daF(aA"). 

If we now require that F shall be diagonal in the A — A scheme, we can 
show that equation (57) reduces to the generalized Schrodinger equation ; 
for, when F is diagonal, the above integral takes the form 

fS(X'a)daf(a)S(a - A"). 

The integrand vanishes except when a = A", and the integral is equal to 

JS(X'A")F(A")5(a - A'Oda = S(X'A")F(A'^). (60) 

Further, equation (57) holds true for every value of the Xr and the Ar. 
Therefore, we may omit the primes and double primes, which, up to 
the present, have emphasized the fact that we were attending to a 
particular matrix element, standing in the place for which each Xr 

takes the numerical value Xr', and Ar takes the value A/. This means 
we are at liberty to deal with the function S(Xr, Ar) instead of a special 

F(Xr, Yr)S-KA'X") = F^x 

SiX'A"), (57) 
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value of that function, S(X/A/). Therefore, taking account of equation 
(60), equation (57) may be rewritten in the form 

Ar) = Ar) 

and this agrees with the generalized Schrodinger equation (47). 
We have hot yet proved that the transformation function >S(Xr, Ar) 

has the same meaning as the probability amplitude of Sec. 3. It seems 
best to postpone this proof until we have studied special cases of equation 
(47). 

16. THE FREE MOTION OF A PARTICLE 

We now proceed to illustrate the use of the generalized wave equation. 
First, we take up the train of thought begun in Sec. 6, and find the 
transformation function Siqo, q) which applies to the motion of a free 
particle, following a treatment by Heisenberg.^ The solution of the 
problem is begun by writing down the energy function in terms of q 

numbers, which are nothing more than continuous matrices. We 
have H = 12mj and the equations of motion are 

m4 = p,p = 0. (61) 
The solution is 

9 = Qoyp = pot (62) 

where po and go denote the momentum and the position at time t = 0. 

The time is treated as an ordinary number. On forming the value of 
pq — qp, it is found to be identical with poqo — qopo, so that the problem 
will be solved if we can find continuous matrices, qo and po, which obey 
the quantum condition. But in order to write down the possible values 
for qo, we must arrange the system of labeling so that qo is a diagonal 
matrix, and then apply the interpretative procedure outlined in Sec. 13. 
Now, po cannot be diagonal in this scheme of labeling, for if it were it 
would commute with qo, and the quantum condition would not be obeyed. 
We see from equation (62) that q is not diagonal since it is equal to a 
matrix which does not enjoy this property. Therefore, if we wish to 
obtain the possible values of q at the time t, we must transform all our 
matrices into a scheme of labeling in which q is diagonal, so that the 
interpretation process can be applied to it. However, our line of advance 
will be somewhat different. We know from experience that q can take 
all possible positive and negative values and shall not trouble ourselves 
to rediscover this fact by carrying through the process indicated. Our 
real interest lies in the probability function q) of Sec. 6, which gives 
the distribution of an aggregate of particles in the one-dimensional 
q space, corresponding to an arbitrary distribution S()?, qo), tj being any 

\Z. PhyHk, AB, m (1927). 
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parameter which is held constant during the motion. As in Sec. 6, 
we take the original distribution to be a Gaussian error curve, that is, 

^{’ny qid^*(Vy Qo) = c exp (63) 

and find the distribution curve at time t by equation (25), namely, 

‘ S{ny q) = qo)dgoS(qo q). 

The problem is to find S(qo, q), and this is identical with the typical 
element of the transformation matrix which carries us from the scheme 
in which qo is diagonal to the scheme in which q is diagonal. To get 
this function we apply equation (47), with the following values for the 
general symbols appearing therein: 

X is simply and F is g itself, while A is also q. 

This shows that Y is /^o, and when F is expressed in terms of go and po 

it takes the form F(X, Y) ~ ^^pot + go. Therefore, the operator 

* (jx) * 
is - + go, and equation (47) takes the form 

in ogo 

ei dS(go, g) 
+ <7u>S(go, g) = q^iqoy q)> 

m 6go 

In this (equation t is treated as a constant. It has the solution 

Siqoy q) = C exp - qa)dq^> 

(04) 

(65) 

Where c is a constant of integration. Substituting this in equation (25), 

and using equation (20), we have 

To evaluate this integral we write 

= 
ht 

(66) 
2Trniqi^ 

and then the exponent takes the form, 

j”’(‘ K"" “")] 

The term in can be absorbed into the constant factor, and then the 
integration shows that 

S{r], q) ^ c exp 
29i»(1+>”) 

(67) 
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From this we calculate the probability distribution, 

S(rj,q)S*(ri,g) = cexp (08) 

This formula shows that we are dealing with a Gaussian distribution 
of the representative points of the particles, symmetrical around the 

position — + 'qoj which would be the position actually occupied by each 
7Yt 

point if the motion were treated by classical methods. The spread of 
the distribution is greater than that of the original one in the ratio 
1 + These features are quite generally encountc^red in the problems 
of quantum mechanics. The center of gravity of the distribution obeys 
Newton^s equation for the corresponding classical motion, and there is a 
progressive spread of the * Vpacket” as time goes on. 

Several other simple problems have been treated by Heisenberg^ in 
quite similar fashion, and Kennard- has so1v(h1 the problem of a particle 
in a homogeneous electric or magnetic field, as well as that of the harmonic 
oscillator. Darwin^ has also studied a number of problems by this 
method. He treats the motion of a free electron in two and three 
dimensions, the motion of an electron in an atom, the Stern-Gerlach 
effect, and the motion of a spinning electron. Interesting mathematical 
methods for the solution of such problems are also developed in his 
paper. There are two later papers by Darwin"^ which deal with such 
problems from the standpoint of an improved system of wave equations 
introduced by Dirac. ^ Unfortunately, we cannot consider Dirac’s 
equations here for reasons of space, although they open the way to the 
solution of many important problems. The exact form of the equations 
is still under discussion.® 

17. THE MEANING OF THE TRANSFORMATION FUNCTION 

In Sec. 13 we stated without proof that the transformation function 
5(Z, A) is identical with the probability amplitude for X when A is held 
constant. We now demonstrate the identity of these functions, using a 
method due to Dirac. Consider a system having an energy function 
which does not involve the time, and let a perturbation depending on 
the time be applied, so that the new characteristic functions will involve 

^ Loc. ciL 
* Z. Fhynk, 44, 326 (1927). 
^Proc, Roy. Soc., 117, 258 (1927). 
*Proc. Roy, Soc., 118, 654 and 120, 621 (1928). 
^Proc. Roy. Soc., 117, 610 and 118, 351 (1928). 
«Eddinoton, Proc., Roy. Soc., 122, 358 (1929); Templej, ibid. 122, 352 (1025)). 
’Proc. Roy. Soc., 118, 621 (1927). 
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the time. To find the transition probabilities induced by the perturba¬ 
tion, we may follow Born's method (Chap. XV, Sec. 23). We first 
obtain the unperturbed ^ functions, let us say \l/iEoj q) and the perturbed 
functions q). 

If we expand the new wave functions in terms of the old ones we 
have 

g) = ^c{E, q), „ (69) 

where the coefficients c(Ef Eo) are also functions of the time. It is 
then assumed that \c(Ef E^)]^ is a measure of the probability that an 
atom in the state Eq will pass to a state with energy lying between E and 
E + dE, due to the perturbation. More generally, it is not necessary 
that the energy should appear in the wave functions. They could 
contain any other convenient parameter for distinguishing the various 
functions. Now, the transformation functions obey the relation 

S(q, E) = ^S{q E,)dE,S{E, E), (70) 

The formal similarity of this equation with the preceding one, and 
the fact that similar equations hold for all dynamical variables, suggests 
that we can identify ^S(X, A) of the matrix theory with the probability 
amplitude >S(X, A). Now the only conditions which must be satisfied 
by the probability amplitudes are those outlined in Sec. 3, and we can 
verify that all of these are obeyed by the transformation functions, 
which completes the proof. 

18. CONNECTION OF THE CHARGE-DENSITY AND STATISTICAL 
INTERPRETATIONS OF THE WAVE FUNCTION 

and 

We see from Chap. XV, Sec. 16, that if we write 
p = 

= (- \ 4:Ttni imjy dx dx J 

(71) 

(72) 

with similar equations for Sy and 5^, then these four quantities obey the 
equation of continuity. 

dp dsx , dSy d.% ^ 
dt dx dy dz 

(73) 

We understand now that this equation expresses the conservation 
of probability, rather than the conservation of charge. In Chap. XV, 
Sec. 16, we introduced a factor e, the charge of the particle under con¬ 
sideration, so that jpdv was equal to c. This factor is not included above, 
for pdv represents the probability that the particle shall lie in the element 
dv; the integral of this quantity over all space must be equal to 1, which 
represents certainty, unless we wish to violate established custom. 
We may call p the density of prohobility. Ordinarily, its value at any 
point will alter in the course of time, and the vector s represents the flow 
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of probability density through unit are^a perpendicular to its direction, 
in unit time. Equation (73) tells us that the probability in a closed 
region can increase only if there is a flow of probability s through the 
boundary of the region. 

Now, instead of considering a single particle, let us deal with an 
aggregate of particles which do not influence each other appreciably, 
e.g,j a beam of atprns rather than one atom. Then p is a measure of 
the average number of particles in rir, provided that dv can contain a 
number of particles large enough for statistical treatment without 
violating any of the conditions of the physical problem. In such a 
problem the direction of « must be that of the mass motion of the particles, 
and the magnitude of .s‘ must be proportional to the number of particles 
crovssing unit area normal to s in unit time. Therefore, if the particles 
are charged, we see that Schrodinger^s s is a measure of the current 
density, and p is a measure of the charge density. The normalization 
of these quantities in Chap. XV, Sec. 15, was carried out in such a way 
that s represents the average current due to the motion of a single particle. 
This convention is useful, and we shall use the quantities 

p = — , (74) 

rather than those in equation (72). ' The minus sign is introduced because 
the charge of the electron is negative. 

The above treatment refers to the one-electron problem, i.e., a 
problem with three degrees of freedom, and the flow of probability 
is a flow in ordinary space. In the general case, the flow takes place 
in the space of Schrbdinger^ showed, however, that we can obtain 
a sort of projection of this flow on the three-dimensional space in which 
the coordinates are those of the pth electron, as follows: If we form the 
integral, 

Pp ^ • • • dzp^xdxj^i • • • dZn, (75) 

in which only the coordinates of the pth electron are present, the others 
having disappeared in the process of integration, then pp is the probability 

that the coordinates of the pth electron shall lie in the element dxpdypdzpy 

while the coordinates of the others take any values whatsoever. Similarly, 

dZp^idXp^i • • • dxn (76) 

is a measure of the flux of probability in the Xp direction. We should 
expect that the charge density and current density for the pth particle 
would obey an equation of continuity, and such is the case. We can 
easily verify that 

I I I ^ Q 

di dXp dpp dZp 
1 Ann, Pkysikf 81, 109 (1926). 

(77) 
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The statistical velocity of a stream of electrons in the three-dimensional 
space, Xp, ypj Zp^ is defined by the equation 

or 

in the one-electron problem. 

““ Pp^pf 

s = py, 

(76a) 

(766) 

19. THE UNIDIRECTIONAL BEAM OF ELECTRONS; RADIAL CURRENT OF 
ELECTRONS^ 

We now apply these ideas to a beam of electrons moving in the 
direction of the positive x-axis. If T is the kinetic energy, and p the 
momentum, the wave equation is 

with the solution 
dx^ 

4" GT\f/ = 0, 

yP = (78) 

where a is a constant. The time factor is exp { — ^wiFA) where E — T + 

and need not be considered further. 
By equation (74), we expect the charge density and the current 

density in the beam to be 

P = 

Sx — 

dx ^ dx j 

Sy = = 0. (79) 

As we should expect, the current is parallel to the negative a:-axis, since 
the charge of the electron is negative. From equation (76a) we obtain 
the statistical velocity of the charges, namely, 

It follows that 
rn ^ 

2 • 

These results predict every feature of the statistical behavior of a uni¬ 
directional electron beam, provided' we can overlook effects due to 
mutual repulsion. To consider these effects, we should have to write 
a wave equation containing the coordinates of all the electrons in the 
beam. We could no longer write F = 0, but should use the potential 
energy of the entire system. 

‘ In connection with Secs. 18 to 21, the reader should consult a general resume on 
the subject of aperiodic motions in wave mechanics, by Wentzel, Phynk, Z,, 29, 321 
(1928). • 

(80) 

(81) 
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The case of charges emitted from a spherical electrode with uniform 
velocity is similar. If we seek for a solution of the wave equation in 
polar coordinates which possesses spherical symmetry, then we may 
neglect all terms in which contain partial derivatives of with 
respect to the angular coordinates. The result is 

which has the solution 
/ 

We have 

i 
dry dr j 

+ on = 0, 

a exp {2Tiprlh) 

r 

(82) 

(83) 

(84) 

The radial current density is calculated from the formula 

4Tmy dr dr J 
(85) 

and is found to be -2. By equation (7Ga), the velocity is Vr - 

V/rrij and T = mVr'^f2 Of course, the d- and (^-components of current 
density are zero. 

20. BORN»S THEORY OF COLLISIONS 

The interaction of material particles can be treated by the methods 
of wave mechanics. The development of this subject began with a 
paper by Born^ on the interaction of an electron with an atom. This 
dealt with the problem in general terms and showed that the main 
features of critical potential experiments are reproduced qualitatively 
by the theory. The existence of critical potentials is predicted, and 
it is shown that one can obtain the space distribution of electrons which 
have suffered collision. The probability of each type of collision as a 
function of the voltage, and the effective cross-section of the atom for 
electrons of any velocity can also be obtained. In practice, the com¬ 
putations are involved and we must usually content ourselves with a 
first approximation to the solution. However, this is not necessarily 
a disadvantage, for it often happens that the first approximation is good 
enough for all practical purposes. Born^ has carried through the cal¬ 
culations for the hydrogen atom. No data on the angular distribution 
of electrons which have collided with hydrogen atoms are available 
for comparison, for obvious experimental reasons. Possibly Born^s 
computations yield a first approximation to the behavior of simple atoms 
like those of the alkalies, but this is by no means certain. The best 

^ Z, Physik, 88, 803 (1926); preliminary note, ibid, 87, 863 (1926). 
* ‘‘Nachrichten Ges. der Wissenschaften m Gottingen,” p. 147 (1926)i 
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proofs of the validity of the theory come from its application by Wentzel* 
to the spatial distribution of photoelectrons and the scattering of alpha 
particles. In the case of alpha particles, he showed that the first approxi¬ 
mation to the solution of the problem leads to precisely the classical 
distribution formula (Chap, 'll, Sec. 16) which has been so well verified 
by the experiments of Rutherford and his colleagues. 

Several approximation methods are now available for the solution 
of collision problems. For a discussion of these and detailed references 
to the literature the reader may consult WentzeFs^ r^sum^. Here we 
shall describe a procedure which is essentially that of Born. Matters 
are simplified if we consider atoms, all of which are in a single quantum 
state. The generalization necessary when this is not true will be easily 
carried through by the reader. The argument is unchanged except that 
we must replace the wave function appropriate to a single state by one 
which includes a term for every state which is present. Let the undis¬ 
turbed atom be in a state of energy Eny the wave function being Un, 

and let its potential energy be Vo(xiy yiy . . . Zn). Further, let the 
bombarding electron have the wave function exp 2TripxoXo/h ^ 
when it is far removed from the atom. When the bombarding electron is 
closely coupled with the atom let the additional potential energy due 
to their interaction be Fi. The function Vi depends on the coordinates 
of both the bombarding electron and the atom. The total potential 
energy is F = Fq + F], and the total energy of the system is E = T + 

Eny where T = and is the initial kinetic energy of the bombarding 
electron. If Fi were zero (no interaction), the wave function for the 
whole system would be 

^0 = (86) 

a being the normalization factor for We suppose that Un is already 
normalized. The wave equation to be satisfied when there is interaction 
is 

Ally + G(E - V)ily = 0. (87) 

The boundary conditions are these: at infinity the wave function shall 
behave like a plane de Broglie wave, in so far as its dependence on 
xoy yoj and Zq is concerned, while it shall obey Schrodinger^s boundary 
conditions for an isolated atom (Chap. XV, Sec. 6) when considered as a 
function of Xij . , . Zn, 

We solve the problem by successive approximations, writing 

^ ^ = ^0 + + • • • • (88) 

may be supposed to contain the first power of some small parameter; 
^2, the second power; and so on. The method of attack is exactly like 
that in Chap. XV,'Sec. 23. We substitute equation (88) in the wave 

1 Z, Physik, 40, 574 and 590 (1926), 
^PhyBik, Z., 29, 321 (1928). 
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equation and equate all the terms which contain the same power of the 
parameter to zero. In this way we arrive at the following equations: 

A^o "I" G{E — T^o)^o ” 0 

+ G{E — Fo)^i = GV 

ArP, = G(E - = GV,^l^u-v (89) 

In solving these equations it is assumed that \p2 etc., all vanish for 
infinite values of all the coordinates, including Xoy t/o, and Zq. If these 
conditions are satisfied, then the boundary conditions for itself will 
also be obeyed. Born pointed out that the convergence of this process 
is assured only when Vi vanishes more rapidly than 1/ro^ at infinity, Vo 

being the distance from the origin to the point Xoy ^/o, Zq, Therefore, 
the method is not suitable for the problem of scattering by an inverse 
square center of force or by an ionized atom. (See the next section, 
however, for a description of the way in which Wentzel overcame this 
difficulty, when applying the method to the scattering of alpha particles.) 
Assuming that Vi does vanish more rapidly than 1/ro^, the equations 
(89) are solved by developing each function \pr in a series of wave functions 
of the undisturbed atom. The development coefficients will depend 
only on Xq^ 2/0, and z^. We have 

= ^/nnUm + ifrEilEdE. (90) 

We find that the development coefficients/rm and/r^’ obey the differential 
equations 

A{sfrm ~l~ nmfrm GjV—l^^mdX\ • • * dZj^ — ^rmj 

Ai)frE' + kKs'frE' = Gf Vllpr-lUs'dXi • • • ^ 

The coefficients knm and knE have the significance, 

= G(T En Em),] 
k\E' = G(T + En- E')y 

E' being a particular value of E in the continuous spectrum of energy 
values. In equation (91), we must note carefully the meaning of the 

. (92 

(91) 

(92) 

symbol Ao; it indicates + On the right side of equation 
'dxo^ dy^ ' dZi? 

(91), the <l>'s are functions only of a:o, y^, for the coordinates of particles 
in the atom disappear on integration. The solution of equation (91) 
can be written down by standard methods of potential theory. Putting 

y\ z* for the coordinates of a point of integration,” it is 

- 
(±a„™|r'- ro|) 

y, z) dx'dy'dz', (93) 

with a similar expression for r' and ro denote the vectors from the 
origin to the points x', y', z' and xo, j/o, *o, respectively, so that 

|r' - ro|“ (x' - Xo)® + iy' - yo)® + (2' - 20)*. (94) 
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When we have substituted tlic values of frm and frE into equation 
(90), and in turn into eciuation (88), the solution is complete, and we 
may proceed to interpret the results. We shall confine our attention 
to the first approximation function ^i, although the reader must be warned 
that this is not justifiable in some cases. Ordinarily, we are interested 
only in the value which yp assumes when ro is large, that is, when the 
bombarding electron has moved away to a considerable distance. Con¬ 
sidering only large values of r^, then, we can neglect r' in comparison 
with ro in the denominator when carrying out the integration of equation 
(93) to obtain the development coefficients, for all the important con¬ 
tributions to the integral arise from volume elements in the immediate 
neighborhood of the atom. Also, we can simplify |r' — ro| in the 

exponent. Figure 6 shows that for large values of ro this is approxi¬ 
mately equal to ro — r' cos a, a being the angle between r' and ro. 
But r' cos a is ecjual to (nr'), the scalar product of r' and a unit vector 
n in the direction of ro, so that 

\r' ~ ro] ^ ro — (nr'), (95) 

Taking the factor outside of the integral, writing out the 
value of as given by equations (91) and (86), and remembering that 
G = Sr^mo/h^, we have 

27rmoa 
exp [ikx' — tknm(nr')]unUn,dv, 

(96) 

where dv = dx'd;y'dz'dx\ • • ♦ Finally, substituting equation 
(96) and the analogous formula for J\e into equation (90), we get the 
value of ypi: 

2-. n2?»'0 

nm j^nE ~ UEdE, 
To To 

(97) 

Let us consider the meaning of a typical term in the summation 
of equation (97). Such a term is the wave function for the system 
composed of an undisturbed atom in the wth quantum state and an 
electron passing away from it radially with an energy which can be read 
out of the definition of knm- As we see from equation (92), this kinetic 
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energy is ST — {E^ — Er). This makes it possible to explain the prin¬ 
cipal qualitative facts in regard to collisions of electrons with atoms. 
If n = m, we have an elastic collision. The atom remains in the state 
n. If n is not m, we must distinguish two cases. In the first, T is less 
than Em — Enj and is negative. This means that knm is imaginary 
and the exponent in equation (96) is negative, so that drops off 
very rapidly as ro increases. Such exponentially decreasing contributions 
to the stream of deflected electrons will not be observed. The positive 
exponent is ruled out, since it would require very large charge density 
at large values of ro. In the second case, T is greater than Em Eny 

knm is real, and we have a stream of particles which have lost the energy 
Em — En» This makes it clear that excitation must set in rather sharply 
when T = Em — En^ 

The reader can carry through a similar argument for a typical term 
under the integral sign in equation (97). Such a term corresponds to an 
atom in one of the states for which E is greater than zero, the bombarding 
electron having the energy T — {E — En)> 

The fraction of the electrons which undergo a certain type of inelastic 
collision and are deflected so as to pass through the arbitrary point 
Xot yo, Zo is obtained very simply by using equation (85) to calculate 
the radial current density associated with each term of equation (85). 
It is apparent that we may use instead of xf/o + \ki in equation (85). 
The term xpu corresponds to the unidirectional stream of undeflected 
electrons. The result is found to be 

ir = + IknElansl^dE), (98) 

where it is to be understood that the sum includes only terms for which 
Em — En is less than T, and the integral, only terms for which E -- En 

is less than T, All terms which do not satisfy these conditions will 
be rapidly decreasing exponential functions of ro. The conclusion is 
that fcnmlUnwP is a measure of the number of electrons which have lost 
energy Em ^ En and have been deflected in a direction specified by our 
choice of the point Xq, t/o, Zq, The dependence of anm and ans on the 
direction of the radius vector ro gives us the angular distribution of the 
scattered particles. To get the total number of electrons which have 
suffered a loss of energy Em — En and have been deflected in any direction 
whatsoever, we must evaluate fcnm|Unml^, and then integrate over the entire 
sphere. 

21. WENTZEL’S TREATMENT OF THE SCATTERING OF ALPHA PARTICLES 

Because of its simplicity, the scattering of charged particles is chosen 
as an example of the above method.^ If we think of the scattering center 

‘ WenTzkl, Z. Physikj 40, 690 (1927). 
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as a bare nucleus, then Fo of the preceding section is equal to zero, and 
all the potential energy of the system is represented by Fi, which is 
equal to Z'Z"e-/r, if Z'e and Z"e are the charges on the two particles. 
However, we meet with divergent integrals if we attempt to use this form 
for Fi. Therefore, Wentzel replaced it by the assumption 

where 2^ is a distance of the order of magnitude of the atomic radius. 
In our final result it will appear only in a term which may be neglected, 
and, therefore, its value is of no importance. This assumption may be 
considered as an approximate way of taking account of the screening effect 
of the outer shells of electrons. It provides us with one of the simplest 

y' 

t 

possible models of a neutral atom. We now proceed to evaluate equation 
(96). The wave function for a fixed scattering center is simply a constant 

multiplied by a time factor, and is equal to where == GT, T 

being the kinetic energy of the bombarding particle. The expansion 
of \l/i reduces to a single term, namely, i^'i = fis- This state of affairs 
is due to the assumed immobility of the scattering center, which has only 
a single energy state for the purposes of our problem. We have, therefore, 

, 2Tm„a\rZ'Z'V \ r’ 
^ J-o \-W)j ~r'~ 

To carry out the integration we transform to polar coordinates p, B, 

with the axis ^ = 0 lying parallel to the bombarding stream, as shown 
in Fig. 7. Further, for the sake of easy comparison with WentzeFs 
results, we write (nor') for x'j no being a unit vector in the direction 
of the incident beam. Then x' ~ (nr') becomes the scalar product of 
n — no and r', which is equal to |n — no\ p cos B, The angle between 
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the unit vectors n and wo is the angle of scattering, 0, so \n — wo] is 
simply 2 sin 0/2. Thus equation (100) reduces to 

— f. + 2ik sin cos 6 
K Z 

pdp sin Bdddip =- 
1 

T . ■ 2® L 1 4 wn 2 + ^.2^2 
(101) 

Now k is 2t/X, where X is the wave length of the incident de Broglie 
waves, so kR is of the order of magnitude R/\. For swift alpha particles, 
X is small compared with R, and so the term containing R may be omitted 
from equation (101), except wh(m very small scattering angles are under 
consideration. The ratio of the charge density in the scattered beam 
to that in the primary beam is proportional to 

1 (Z'Z"e‘Y 
r2 10T2 

sm^ 
e 

(102) 

This is the distribution derived by classical methods, which agrees with 
the results of Rutherford’s experiments on the scattering of alpha 
particles by light atoms. 

22. NEWTON’S EQUATIONS IN WAVE MECHANICS 

Ehrenfest^ has obtained a remarkable set of equations similar to 
Newton^s law of motion, which governs the motion of the center of 
gravity of the wave group representing a particle. Since he stated 
these equations only for a single degree of freedom and did not give the 
derivation, Ruark^ has written out the proof for any system which 
obeys the wave equation. For simplicity we consider a system with a 
single variable, such as a particle moving along the x-axis. The center 
of gravity of the probability distribution has the coordinate, 

^ (103) 

because the denominator is normalized and is equal to one. We define 
the momentum of the wave group as 

(104) 

for when P is thus defined, we find by using the wave equation and 
carr3dng out a simple integration by parts that 

mX = P. 
1 Z, Physik, 46, 455 (1927). 

Rev., 81, 533 (1928^ 
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Now, we can show that the law of motion of the center of gravity is 

(105) m.S' = P = J* 

Differentiatin^j; equation (104) with respect to t, we have 

at dx ^ dxdt 
^dx. 

We replace d^*/dt and d'^^/dxdtf by their values obtained from the wave 

equation (65), Chap. XV, and P reduces to 

J«.(- 
On integrating the last term by parts, the second integral becomes 

/( a‘^^d^* a^a^^* 
dx^ ax ax dx^ 

f*\ 
Tfjdx. 

The indefinite integral is ~ -—; this vanishes at infinity by hypothesis, 
0JC 0J/ 

so the integral is zero, and equation (105) is verified. If we ar(i dealing 
with a large-scale problem, in which the distances involved are very large 
compared with the effective width of the wave group, we can replace the 
right side of equation (105) by the value of — dV/dx at the center of grav¬ 
ity, multiplied by This integral is unity, and so we obtain 
the Newtonian equation of motion. 

mX - ~ 
dF 

dx 

If we deal with a system of particles instead of only one, we have for the 
pth particle 

there being similar equations for Yp and Zp. The extension to still 
more general systems offers no difficulty. This makes the connection 
of wave and Newtonian mechanics very clear. ^ 

^ Schr5dingeb {Naturwissenschaften, 14, 664 (1926)), suggested another type of 
connection between wave and ordinary mechanics. Using the linear oscillator as an 
example, he showed that we can obtain a solution of the wave equation for the oscillator 
which corresponds to a high and narrow peak, moving to and fio over a limited portion 
of the x-axis with simple harmonic motion. This solution is formed by taking an appro¬ 
priate sum, of a vast number of wave functions corresponding to high quantum 
numbers. Schrodinger found that the desired result is attained if we put Cn = A^I2^!, 
A being any large positive number. Heisenberg (Z. Physik, 43, 172 (1927)) has 
pointed out that this method is not suited to furnish a connection between atomic and 
large-scale phenomena except in the case of the oscillator. 
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23. THE HYDRODYNAMIC INTERPRETATION 

Since the probability density and the probability flux obey the 
hydrodynamical equation of continuity, it is natural to expect that 
changes in the distribution of will be similar to the motion of a 

perfect liquid. Madelung’ developed a hydrodynamical interpretation 
of wave mechanics on this basis. The situation has been treated as 
follows by Kennard.® If we write 

^ = Re}^io/h^ (106) 

the components of the probability flow, equation (72), can be rewritten 
in the form, 

s. = etc. (107) 
mdx 

The analogous expression in the case of a perfect incompressible fluid 
flowing with velocity u would be Hx = pUx, so that the velocity of an 
element of the field of probability may be taken as 

which shows that — 0/w is analogous to a velocity potential in hydro¬ 
dynamics. The law of motion of an element of probability is shown by 
Kennard to be 

I ^ ^ _/'inQl 

^ dt dx, Stt* dx, WirR dXx'^' ^ 

where now we are dealing with a system having n degrees of freedom. 
This shows that each element of the probability moves in the Cartesian 
space of each particle as that particle would move according to Newton’s 
laws under the classical force plus a “quantum force” given by the term 
containing h in equation (109). This point of view is often useful. 

‘ Z. Phyaik, 40, 322 (1927). 
»Phys. Rev., 31, 876 (1928). 



CHAPTER XIX 

NON-HYDROGENIC ATOMS AND MOLECULES IN THE 
NEW MECHANICS 

1. HEISENBERG’S THEORY OF THE TERM SYSTEMS OF HELIUM 

There are two strikjpg facts about the spectral terms of helium, 
which must be explained by any successful theory of this atom. The 
orthohelium and parheliurn terms do not combine, and the interaction 
energy of two magnetic electrons is much too small to explain the difference 
between corresponding terms in these two systems. It was recognized by 
Heisenberg^ that the cause of both these phenomena is a sort of resonance 
action between the two electrons, which would be described on an orbital 
theory by the statement that the two electrons interchange places, so that 
we can no longer speak of one electron as being more tightly bound than 
the other. In terms of the wave theory, this may be expressed by saying 
that the wave equation is symmetrical in the coordinates of the two elec¬ 
trons. Before entering on a study of the energy levels and spectral 
intensities of helium, we shall examine a much simpler problem of the 
same general type, considered by Heisenberg, namely, that of two coupled 
harmonic oscillators. We shall designate the coordinates of the oscil¬ 
lators by Xi and X2. If the coupling forces were absent, the energy of 
the system would be the sum of the energies of the two oscillators, 
separately. Such a system is degenerate, for if the quantum numbers 
of the oscillators take the values Ui and ao, respectively, we have the 
same total energy as though the quantum numbers were interchanged. 
This may be referred to as exchange degeneracy/^ If the coupling 
forces give rise to a term XxiXo in the energy, the Hamiltonian becomes 

IT Pi^ , 

H = 2” + - 2“ 4- 
2/ii 

+ + \X1X2, (1) 

H being the mass and w/2ir the frequency which either oscillator would 
possess in the absence of the other. The usual method of solving vibra¬ 
tion problems of this type is to seek for normal coordinates xi and Xt', in 
which the energy is a sum of squares, namely, 

H = 
Pl'* . Ps'* 

2p 2 2m 2 ‘ 

Phytik, 38,411 (1926). 

(2) 

m 
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In the present problem, the transformation which accomplishes this is, 

and 

xi = + 3:2), Xi' = — Xi), 
2 2 

0)1 2 = r.,2 co^ + X, — X. 

(3) 

(4) 

H is obviously the sum of the energies of two fictitious oscillators of 
mass /i, with coordinates Xi' and X2. If only the first of these is excited, 
both of the actual oscillators move in the same phase, while if only the 
second is excited, they move in opposite phases. ♦ The quantized energy 
values may be represented in Fig. 1, which is an ordinary energy diagram. 
The quantum numbers of each term are written beneath the dot or cross 
which represents it. Now it is easy to show that the terms indicated 
by dots do not combine with those indicated by crosses. The electric 
dipole moment is proportional to Xi + X2f and so only the first fictitious 

, oscillator possesses a moment. In transitions which give rise 
^ I to radiation the quantum number of this oscillator must 

• jy j I change by 1. Further, we would expect the quantum number 
^ second oscillator to remain unaltered, for it possesses no 

+ a dipole moment. However, th(^re are higher terms in the 
classical expression for the rate of radiation, proportional to 
homogeneous functions of Xi and X2 of the second and higher 
degrees. These functions must be symmetric in X] and X2f 

since the two oscillators play similar parts in the radiation 
process. On transforming such a function to the new variables, it 
will contain only even powers of X2, To illustrate this, suppose one 
of these symmetric functions were to contain the first power of X2- 

By equation (3), it would contain Xi — X2, and this is not symmetric, 
but antisymmetric in Xi and X2f changing sign when these two 
quantities are interchanged. In accordance with the correspondence 
principle, the absence of odd powers of 0:2' in the expressions determining 
the radiation means that the quantum number 712 can change only 
by zero or by an even integer in a transition. Therefore, we must 
expect weak lines corresponding to transitions from the first column to 
the third, from the second to the fourth, etc., in Fig. 1, but a change from 
one column to the adjoining one will not occur. Thus the term scheme 
is divided into two non-combining parts. As Heisenberg remarks, this 
rule is valid even in collision processes, since the probability of a transition 
due to collision is dependent on the perturbation due to the bombarding 
particle, and any such perturbation can be considered as producing a 
combination of dipole, quadrupole, and higher moments in the system. 

So far our remarks about the decomposition of the terms into two 
non-combining systems have been based on the older quantum theory, but 
they ma.y be rigorously derived by means of the new mechanics, without 

/o 

00 

Fig. 

+ 02 
Oi 
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detailed knowledge of the wave functions. Indeed, the results obtained 
hold true for any two systems of precisely similar constitution which 
are brought together, if the perturbation terms are symmetric in the 
coordinates of the two systems. Heisenberg’ outlined a proof which 
depends on the matrix perturbation theory of Chap. XVII, Sec. 13. 
However, we shall present the corresponding proof in wave mechanics; 
and shall begin by outlining perturbation theory. 

2. SCHRODINGER’S PERTURBATION THEORY FOR DEGENERATE 
SYSTEMS^ 

A problem in wave mechanics is said to be degenerated’ when there 
are several wave functions which Indong to a single value of the energy. 
Let there be a wave functions, 

VkV n-l ■ ■ ■ ‘f’ka’ (•'’) 

belonging to the energy E^kj and let us suppose they are normal and 
orthogonal, not only among themselves, but with n^spect to all the other 
wave functions. When a suitable perturbation is applied to the system 
we have a distinct wave functions, each one belonging to a distinct 
value of the energy. It is essential to know whether each one of these 
functions can be considered as arising continuously out of one of the 
functions of eciuation (5). In general this will not be the case, and tlie 
reason may be seen by looking at the question from the standpoint of 
Bohr’s theory. Consider a hydrogen atom with inner number three, 
for example, in the absence of an external field. We may arbitrarily 
choose a set of seven standard configurations of the atom, let us say the 
seven positions which it could take up if a magnetic field were applied 
along the X axis. Each one corresponds to a wave function of the unper¬ 
turbed system. If a magnetic field directed along the F-axis is applied 
to the atom, it can take up any one of seven quantized positions in which 
the component of angular momentum along the F-axis is a multiple of 
h/27r. If the field is removed, the atom will be left in one of these posi¬ 
tions, which will not agree with the standard configurations first con¬ 
sidered. However, each of the standard configurations can be made 
to agree with one of the actual configurations, in which the atom is left 
on removing the field, by a simple rotation. In order to pass to a descrip¬ 
tion in terms of wave mechanics, almost no change is necessary other 
than to replace the words ^^configuration of the atom’' by *^wave func¬ 
tion." In view of what has been said, it is not very surprising to find 
that when we are given any set of perturbed wave functions, 

. ^ka) (6) 
^Loc, dt The proof is given in detail by Birtwistle, ‘^The New Quantum 

Mechanics,” p, 220. 
* Ann. Pkyaik, 80, 437 (1926); also, ‘‘Abhandlungen," p. 86. 
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we can always find linear combinations of the v?^s, namely, 

+ <Pk2^\2 + * • • + <pkafi]ay 

^i)k2 ~ <Pklfi21 + <Pk2^22 + * ‘ * “1“ <Pka^2aj etc. (7) 

such that ^*1 will pass continuously into ^o/ri, ^*2 into ^ofc2, and so on, 
when the field is removed. 

In equation (7), there is a restriction on the transformation coeffi¬ 
cients The original wave functions (pkh were normalized and orthogo¬ 
nal, and the functions used in their stead should also ’ have these 
properties. From equation (7), 

dy = '^^fihafihh^^ka^'^kbdv. (8) 
a h 

On the right, each integral is either one or zero, according as a = 5, 

or a 5. Accordingly, the sum reduces to ^QhiAia and this must obey 
a 

the relations 
o ' f 1 if /i = A' 1 

^lih.A “ - 0 if A 5^ A' r 
a ' > 

in order that the unperturbed functions \pukh may be normal and orthogo¬ 
nal. These relations are simply the condition that the transformation 
of equation (7) shall be orthogonal. The only way in which the per¬ 
turbation theory for degenerate systems differs from that of Chap. XV, 
Sec. 22, is that the appropriate set of unperturbed characteristic functions 
must be found in the process of solving the perturbed wave equation. 
We take this equation in the form 

+ CiE - V - \F)p = 0, C = (10) 

just as in Chap. XV, Sec, 22. \F is the perturbation of the potential 
energy, X being essentially proportional to the strength of the perturbing 
field. We proceed to solve this equation by assuming that the perturbed 
energy and the wave functions are given by 

Ekh = Eok + XejtA, 
^kh == ^Okh + ^Vkh + • • • , (11) 

formulas which are analogous to equation (119) of Chap. XV. We 
neglect powers of X higher than the first, and obtain the equation for 
Vkh\ 

^Vkh + C{E{ik ~ V)vkh ^ C(F €kh)'Pokh* (12) 

In Chap. XV we proved that the right member of the perturbed wave 
equation must be orthogonal to the corresponding solution of the unper¬ 
turbed wave equation. In the present instance, the correct form of this 
theorem is that the right member mud he orthogonal to each of the a wave 
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functions belonging to the original energy value Eok» This is expressed 
by the equations, 

f(F — ekh)^*()kh<pkidv = 0, z = 1, 2, • • • a. (13) 

If we substitute the value given in equation (7) for \l/okh the result is 

— ekh)<Pka*<Pkidv = 0, z = 1, 2, • * • a. (14) 
a 

Now tkh is a constant, and the integrals multiplying it are either zero or 
one, since the <p^s were so chosen as to be normal and orthogonal. Now, 
let us write 

iFipka*ipkidv = Fat, (15) 

and let us put e in place of and 13a in place of fihu, since no misunder¬ 
standing will arise from so doing. Then the equations (14), written out 
in full, will take the form 

/3l(Fn - €) + 02^,2 + • • • + = 0,1 
^1^21 + /32(F22 ■— e) + • * * + fiaF2a = 0, I 

^iFal + p2Fa2 -!-•••+ fia{Faa c) =0.) 

Considering these relations as equations for the jS’s, they are homogeneous 
and of the first degree. In order that the d’s may have values other than 
zero, the determinant of the coefficients must vanish, that is, 

Fii - e F,2 . . . . 
F22 € . . . . F,. - 0. (17) 

Fal Fa2 . . . . . . Faa- i 

This is an algebraic equation of degree a, which serves to determine the 
a possible values, Ekh, arising from the characteristic value E^k when it is 
split by applying the field, in accordance with equation (11). Having 
determined one of the roots of equation (17), we substitute it in equation 
(16), obtaining a system of consistent equations from which a set of 
ratios of the /?’s can be determined. The actual values of the constants 

are then assigned with the aid of equation (9), giving us complete 
knowledge of the unperturbed wave function to which \pkh will 
approximate when the field is removed and Ekh approaches Eok. To find 
the perturbed wave function yf/kh^ we proceed just as we did in Chap. 
XV, Sec. 22, with a few minor changes. In place of equation (123) of 
Chap. XV, we have 

~ ^ (18) 
J i 

The summation index j runs over all energy values of the unperturbed 
system; when k is given a definite value, i runs from 1 to a, so that we 
include all wave functions belonging to the energy value Fo*. Similarly, 



660 NON-UYDROGENIC ATOMH AND MOLECULES [Chap. XIX 

we expand the known function (F — €kh)^Qkh appearing in equation (12) 
in the form 

where 

(F — ekh)4^okh - X 2^’ 
khi^kii (19) 

Ckhi — ^{F — €kh)^{)kh^hxdv. (20) 

On using equations (18), (19), and (20) in the wave equation, the result 
is 

i i Fjc E} 
(21) 

The value j = k is omitted in the first summation. Taking A == 1, 
2, . . . a in succession, we obtain from equation (21) a set of a per¬ 
turbed wave functions. This completes the solution of the problem. 

3. THE ENERGY LEVELS OF HELIUM 

The determination of the energy levels of helium is now only a matter 
of applying the theory of Sec. 2. The wave equation is 

ArP + ofs + V = 0, (22) 
\ ri n rnj 

where G = mC = Sirhn/hrj xi, ?yi, and 2i are the coordinates of the first 
electron and .^2, y2y and those of the second, referred to the nucleus; 
Ti and r2 are the radii vectores of the two electrons and ri2 the distance 
between them. Further, A has the significance 

Ai + A2 == 
^2 ^2 

+ dy? + • • • + 

^2 1 

bz^ 

Approximate solutions of equation (22) can be obtained in several 
different ways, depending on the type of unperturbed’^ motion which 
is chosen as a starting point. In making a qualitative study of the 
term system, it is convenient to follow a treatment given by Somrnerfeld.^ 
The unperturbed system is obtained by neglecting the term 
in the potential energy, and thus it consists of a helium atom in which 
there is no interaction between the two electrons. The wave equation 
for the unperturbed system is 

+ G(i?i + ^2 + ^ + —V = 0, (23) 
\ Tx r% ) 

where Ex and E^ are the energies associated with the first and second 
electrons, respectively. Since the two electrons are independent, the wave 

1 Since the differentiations in are taken with respect to the actual coordinates 
instead of the quantities etc., we must use G in our computations wherever 
C app<3arcd in Sec. 2. 

2 ‘^Supplement to Atombau,'^ p. 267, 
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function for the atom is the product of two hydrogen wave functions. 
Let us suppose that these two functions are the ones appropriate to the 
nth and mth quantum states, respectively. Then their product may be 

written 
V?(nm) = ^1, Zi)\pm{X2j 2/2, Zo), 

or 
(p'nm) = lAn(l)lAm(2). (24) 

We can readily verify this by substituting equation (24) in equation (23); 
for the resulting equation is found to be separable, and the equations 

for \f'n(l) and \l/m(2) are 

Ai^n(l) + — A + 

^2'pm (2) + g(e, + A + 

= 0, (25) 

= 0, (26) 

where A is a constant introduced in the process of separating the varia¬ 
bles. In accordance with Chap. XVI, Sec. 1, we write 

El- A = E2 + A = (27) 

Wherever the energy —Rhc/n'^ appears in the nth wave function of 
hydrogen, we must write Ei — A in \i'n(l), and E2 + A must replace 
— Bkclvfi^ in \^m(2). However, the wave function 

^{mn) ” ^ni(^l, 2/l> ^l)\^«(*^2, 2/2, ^2), 

or 
^(.n) = (24') 

is also a solution of equation (23), corresponding to the same total energy 
as equation (24). When using equation (24') we replace equation 
(27) by 

Ei-A = E2 + A = 
nr 

Rhc 
(27') 

with the understanding that A does not necessarily have the same value 
which it had in equation (27). Here we have a typical case of exchange 
degeneracy, except when both electrons are on equivalent orbits. When 
this occurs, is the same as ^(m.n), so there is only one wave function 
instead of two. 

We are interested chiefly in states for which one of the quantum 
numbers is unity, and shall now restrict the discussion to such states. 
The energy levels may be numbered by giving the quantum number 
k of the second electron. In order to be in agreement with the notation 
of Sec. 2 we might write 

(pk\ = ^l(l)^ifc(2), ipk2 = \^A:(1)^i(2), 

but even this notation is unnecessarily complicated. Since we shall 
speak only of the wave functions belonging to a given, although arbitrary. 
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value of k we may leave the subscript k out of all the formulas of Sec. 
2. Accordingly, we put 

^1 = (28) 

and proceed to study the effect of the perturbing term e^/vn. In accord 
with equation (7), any linear combination of the wave functions (pi 
and (p2 is also an acceptable wave function. We write a typical linear 
combination in the form 

^0 = ^\<Pl + ^2V^2, (29) 

and for a typical perturbed wave function, we write 

^ V, 30) 

If we put X = 1 in (10), we have 

F = 
ri2 

We calculate the quantities of equation (15), which are as follows: 

(31) 

In equation (31), dv means mHxidyidzidx2dy2dz2i and the integrations 
extend over all real values of the six coordinates. Further, the integrand 
of Fn is obtained from that of F22 by simply interchanging the coordinates 
of the two electrons. This shows that Fi 1 is equal to F22. It is convenient 
to arrange matters so that Fu is equal to F21. If it turns out on inte¬ 
grating equation (31) that Fu is equal to 126'^, where R and (p are real, 
then we go back to equation (28) and redefine (P2 as times its original 
value. We shall assume that this has been done, so that F12 and F21 

are real, and therefore equal. To find the perturbation of the energy, 
we need only form the equation (17), 

Fii = ^^^^p>i*(p\dv^ Fi2 = ^^^(Pi'^if^dv 

—<P2^<Pidv, F22 ~ I —<p2*p2dv 
ri2 J ri2 

FII — € Fi2 
F2I F22 € 

(32) 

and in accordance with what we have just said this reduces to 

(Fu - = Pn, 
so that 

€ = FII i F12. (33) 

Let us choose the upper sign in this equation. Substituting the value 
of € in the first equation of (16), we have, 

^i( 12) 4" ftF 12 = 0, 

or 
= ft. 

Similarly, if we take the lower sign in equation (33) we get 

ft = —ft. 
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Therefore, the two unperturbed wave functions which are approached 
by the perturbed functions when e^/ri2 tends to zero are 

and 
= ^i(^l + ^2), 

^Oa == 01 (^1 ^^2). 

The subscripts s and a indicate that one of these functions is symmetric 
and the other antisymmetric, in the coordinates of the two electrons. Since 

both functions must be normalized, we find that 0i = and, therefore, 

^2), 

^Oa. = - <^2). 

(34) 

(35) 

p 0 
1 

P 
< 

0 

• 1 » 
• 1 

■f 

16 
1 
1 

1 
1 

• 
Si iS 

• 
• 

4Z 
■f 
u 

• + 0 
4i /4 3Z 23 

31 

2! 
;S 
n 

0 

22 

The term system is now seen to be of the kind depicted in Fig. 2. 
The normal state (/? = 1) is single, but for any other value of k there 
are two states with energies differing by 2Fu- The 
states which are symmetric in the positional coordinates are 
the parheliurn terms, and the antisymmetric ones are the 
orthohelium terms. To show this, we need only note that 
for the normal state <p\ = (p2 and \koa ~ 0. The absence of 
an antisymmetric function for the normal state explains 
the fact that there is no IS state in the orthohelium sys¬ 
tem. The reason why each orthohelium term appears as a 
singlet rather than a triplet is that we have neglected the 
electron spin. 

We can show, following Heisenberg,^ that the parheliurn and ortho¬ 
helium terms do not combine. Consider a transition from a symmetric 

state (parheliurn) with the wave function 

symmetric state (orthohelium) with the wave function 

The intensity of the radiation is determined by the element M(l, n; 1, m) 
in the matrix for the electric moment. Considering the x-component 
of the moment, we require the value of the integral. 

// 

Fig. 2. 

+ <^2)n(v’l — (36) 

Obviously, the value of J is not altered if we interchange Xi and X2, Vi 
and j/2i etc., leaving the functional form of the integrand unaltered. 
However, letting x% stand for X2, Z2 and Xi for xi, ^1, we have 

^91(^2, Xi) - <P2{X2f Xi) - X2) - X2)] 

^ Loc, cU, 
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and so the value of J obtained by the interchange may be rewritten as 

J = x^i) - <pi{xiy X2)]dv, (37) 

On adding equations (36) and (37) we have 2J = 0, which proves our 
assertion. This result is not altered when we use instead of 
and when higher approximations are taken into account. 

We now consider the effect of electron spin on the term system, a 
problem which was also solved by Heisenberg.^ First, let there bo no 
interaction of the two electrons, and let them be placed in an external 
magnetic field. If mi and m2 are the magnetic quantum numbers and 
m = mi + m2, we have the following four cases; 

Case 1 m2 m 
i 

Wave function 

I. H 1 

; 
« 

II. K -y2 0 Hi = 
Ill. 0 Hu - —k2)i/'( H) 
IV. — H -1 lAiv = v^'( ——kji) 

Each electron may take up one of two possible orientations and its wave 
function will be designated by ^(mO or \^(m.2), as the case may be. In 
the fifth column of the table we have the wave functions for the pair of 
electrons. The first and fourth states are not degenerate but the second 
and third have the same energy and may be derived, one from the other^ 
by interchanging the two electrons. When we consider the interaction 
of the spins as a perturbation, two perturbed states of different energies 
and having different wave functions arise from cases II and III. The 
calculation of the energies is quite similar to that carried out above. 
The quantities Fn, etc., are evaluated, using the wave functions of the 
rotator in equation (15), and we have € = Fu ± Fn, just as before. 
When the interaction term vanishes, the perturbed wave functions reduce 
to two functions, one of which is symmetric and the other antisymmetric 
in the quantum numbers mi and m2, namely, + \[/m and i/^u — \l/in. 

Thus we have three symmetric functions, i/'i, + ^m, and ^iv and 
one antisymmetric function, xf/n — ^tii. The symmetric functions 
correspond to triplet states, while the antisymmetric function represents 
a singlet state. The reader will readily verify the fact that the magnetic 
quantum numbers corresponding to these four wave functions are the 
correct ones for singlet and triplet terms. 

We now obtain the wave functions for the entire system, neglecting 
the interaction between the spins and the translational motion. There 
are eight possibilities, as follows: 

1 Z. Physik, 89, 499 (1926). 
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Symmetric Group 

{(fX -f 

{<p\ + v’2)(>/'n 4* ^iTi) 

{<pi — ^2)(\^n — v^iii) 

Antisymm(?tric Group 

(<P\ — 

{<p\ — *p2)hPn -f ^iii) 
{ipx — <p2)4'i\ 

{<pi 4- fp2)(4'n — ^iii) 

All of the states of the first ^roup are said to be symmetric in the sense 
that an interchange of the two electrons leaves the magnitude and sign 
of the wave function unaltered. Similarly, all the states of the second 
group are antisymmetric. If the first group were realized in nature, 
all the parhelium terms, which have wave functions of the type <p\ 4* 
would be triplets, and the orthoheliura terms would be singlets. In 
actuality, the reverse is true, and we must conclude that only the anti¬ 

symmetric terms occur. 

It is very interesting to see how the term system of helium can be 
predicted by considering the symmetry and other simple characteristics 
of the wave functions, without detailed knowledge of their form. Similar 
considerations were applied by Heisenberg^ to the terms of other atoms 
and of molecules. 

We shall not describe the detailed calculations which are necessary 
in order to determine the helium energy levels, but shall confine our 
attention to the methods of various investigators and the results which 
have been secured. Heisenberg^ used a method, which is essentially 
that of Sec. 2, to calculate the energy-differences of the orthohelium and 
parhelium terms 2P, 3D, and 4P. The order of magnitude of the cal¬ 
culated differences is in agreement with the data. In view of the diffi¬ 
culty mentioned at the beginning of this section, such agreement must be 
considered encouraging. For the sake of a better approximation Heisen¬ 
berg uses a model which differs somewhat from that considered above. 
It consists of a nucleus surrounded by a spherical shell of radius ro, 
carrying a charge — e, so that an electron inside the shell will move under 
the force while outside it will experience the force {Z — l)c^/r^. 
The divergence of this model from reality is removed by including terms 
in the perturbation energy to make the total potential energy the same 
as that given in equation (22). The function of the shell model is simply 
to enable us to make a start with wave functions which approximate 
to the truth more closely than the ones considered at the beginning of 
this section. Heisenberg’s model is not suited for the calculation of the 
normal state. Likewise, Unsold^ showed that the use of equations 
(23), (24), etc., does not give a good approximation. Slater^ attacked 

1 Z. Phyaik, 41, 238 (1927). 
*Z. Physik, 39, 499 (1926). 
’ Ann. Phyaik, 82, 355 (1927). 
*Ptoc. Nat. Acad. Sci., 13, 423 (1927). 
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the problem in a somewhat different way. In his method, one of the 
electrons is held fast, while the other moves in the field of two fixed 
centers of force. The energy values depend on the distance between 
the two centers. The next step is to determine the motion of the second 
electron in a central field which is chosen on the basis of the results 
obtained in the problem of two centers. Finally, the Schrodinger 
perturbation method is applied to determine the interaction of both 
motions. Kellner^ has used the approximation method of Ritz^ in 
order to calculate the lowest term of helium and the lowest terms of the 
helium-like ions of lithium, beryllium, boron, and carbon. In the case 
of helium he was able to push the calculations to the fourth approximation 
before encountering serious difficulties. His value of 77.840 volts 
corresponds to a first ionization potential of 23.75 volts, which may be 
compared with the experimental value of 24.46 volts. The Ritz method 
has also been used by Finkelstein and Horowitz.^ 

Hylleraas^ has greatly advanced the solution of this problem by 
adopting new variables, namely, the distances ri and from the nucleus 
to the two electrons, and the distance ri2 between the electrons. When 
this is done, the successive approximations converge rapidly. Hylleraas^ 
value of the ionization is less than 0.002 volts higher than the spectro¬ 
scopic value, a result which shows beyond question that the wave- 
mechanical method of attack on this problem is essentially correct. 

4. THE DIATOMIC MOLECULE 

We shall now use the methods of wave mechanics to study the energy 
levels of a molecule consisting of two massive particles, mi and m2, 
with coordinates Xi, yi, 21, and 1/2, ^^2, respectively. The potential 
energy is assumed to be a function only of their distance apart. 

A beginning in the solution of this problem was made by Schrodinger^ 
and it was solved in detail by E. Fues.® In accord with Chap. XV, Sec. 
6 the wave equation is assumed to be 

where 

M 
mi m2 

= 0, (36) 

dV 1 dV 
dyi^ 

+ dzi 
and A2^ 

dV , dV 
dx^^ ^ dyz^ 

+ dV. 
dZ2^ 

Let rjf f be coordinates of the center of mass, defined by the relations 
(mi + m2)$ = niiXi + m^x^, etc. and let x, y, z, be the coordinates of 

iZ. Physik, 44, 91 and 110 (1927). 
* Detailfl of the Ritz method are given in Courant-Hilbert. 
«Z. Physik, 48, 118 (1928). 
* Z. Physikj 64, 347 (1929) and earlier papers mentioned therein. 
5 Abhandlungen/* p. 61. 
® Ann, Pkysik, 80, 367 (1926). 
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m2 referred to mi, so that x = X2 — Xi, etc. By transformation, or by a 
direct application of the fundamental principles on which equation (36) 
is based, we find in these new coordinates that it becomes 

1 / dV I dV I 
mj 4- dry- dfV 12 

(E - V)^|^ = 0. (37) 

Here /x is the reduccnl mass, 
mim2 

mi + m2 
» and A\l/ dV 

d.r2 dy2 

This equation splits into two parts when we assume 

and write 
4' = fix, y, z)gi^, V, f), 

E = Et 4“ Ei. 

Et represents the translational energy of the molecule and Et its internal 
energy. 

The equation for g is 

L_.y4. 4. 4. == 0 
nil 4- m2\df2 

(38) 

We obtain exactly this equation if we consider free motion of a particle 
of mass mi + m2. The condition that g shall be finite through the whole 
of space, without being identically zero, can be satisfied whenever Et 
is either positive or zero, but carmot be satisfied if Et is negati* e. This 
means that the molecule can move with any velocity. Further, the 
energy E which enters into the formula En — E^ = is seen to include 
the energy of translation of the whole molecule. 

Let us now study the function / which describes the behavior of the 
molecule as seen by an observer moving with the molecule. / obeys the 
equation 

A/ + G(Ei - V)f = 0. (39) 

Since V depends only on r, the distance between the two masses, the 
equation is separable in polar coordinates r, d, <^, exactly as in the case 
of the hydrogen atom or the two-dimensional rotator. If we put 

/ = /e(r)F(M, (40) 
then 

Y = Pjmicos (41) 

where = 0 or a positive integer and m is always g j,‘ so that / depends 
on B and <p as described in Chap. XV, Sec. 8. The only change arises 
from the different form of the potential energy, occurring in the equa¬ 
tion for R. Before writing this equation we shall use another inde¬ 
pendent variable, related to r by the equation, p = r/ro, in which ro is 
the equilibrium distance of the nuclei in the classical analogue of this 
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problem, when the molecule is not rotating. Then, writing I = /xro^ 

we have 

l- Xl"’jp)+[>'* - - ’-H- “ ] “ - pi* dpy dp J ' L h‘^ 

We introduce a now dependent variable, 

F = pR, 

and then equation (42) becomes, 

+ I - h') - ^ = 0. 
0" L p 

Now a choice of the law of force must be made. P\i(\s carries through 
the solution for two different laws: 

(1) The potential energy function is supposed to be of the form 
used by Kratzer (('hap. XII, Sec. 4), namely, 

F = C - + '•3(p - 1)'‘ + cu(p - J)^ + • • ■ )- (44) 

where Po is the frequency of vibration of tlu^ nuclei for zero amplitude. 
Kratzer constructed this function assuming that the molecule has a 
polar binding but since it is applicable only in the region where p differs 
only slightly from 1, it may be taken as an arbitrary potential energy^, 
function. We let the value of V for p = 1 be D, so that, 

D = C - }i(27rPuyi. (45) 

(2) expanding equation (44) in terms of (p — 1), we secure 

F = C - H(27rPo)^/ + y2{27rp,yi{{p -- \y + e3'(p - 1)'^ + 

r4'(p ~ 1)^ + • • • ), (46) 
where 

c/ = 2c3 + 2 and C4 = 2^4 — 3. 

This is the most general form of the potential energy function for an 
anharmonic oscillator. In using this form for the potential energy, it is 
convenient to use f == p — 1 as the variable instead of p. 

We proceed to solve equation (42) using the value of equation (44) 
for the potential energy. First, we must determine the meaning of the 
constant C. When the distance between the nuclei is very great, the 
force must approach zero. This means that at great distances the for¬ 
mula (44) is not valid. C3 and C4 are no longer constant, but must 
approach'zero, and then F« = C. Since we choose arbitrarily to make 

F 00 == 0, C - 0, and from the value of C given by equation (45) we get 

D « -(2irPo)^- (47) 
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Now we introduce the abbreviations 

SrUiEi + D) 
) u 

h P" = d}F 
dp^’ 

and equation (42) becomes 

(48) 

2p 
, + C3(p - 1)^ + C4(p - 1)^ + 

Kj + 1) 
n2 F - 0. (49) 

The problem is now to determine the values of A for which R (that 
is, F/p), remains finite, single-valued, and continuous throughout space. 
The problem must be solved by perturbation methods, and Fues adopted 
the procedure of Schrr)dinger (Chap. XV, See. 22). The terms con¬ 
taining C3 and C4 are considered as perturbation terms and are omitted 
in obtaining an approximate solution. The characteristic functions 
thus obtained are of the form, 

F ='p'‘c-^»Llni2hp). (50) 

In this equation n is a positive integer or zero, 

a ~ 

b = 

k = (51) 

and Ljfcfn denotes the polynomial given in Chap. XVI, Sec. 2, in connection 
with the theory of the hydrogen atom. In the present problem k is 
not an integer, as the corresponding parameter 2Z + 1 was for hydrogen. 

The discrete energy levels are given by 

E = E,-D + hvln + J) + + 2)'- (52) 

This is the ordinary band spectrum formula, with half-quantum numbers 
for both rotation and oscillation, in agreement with experiment. 

This spectrum corresponds to certain negative values of A — i.e,, 

positive values of h. In addition, there is a continuous spectrum of 

characteristic values, which occurs when A — ~ > 0, so that the expo¬ 

nent in becomes imaginary. By equations (47) and (48) this reduces 
to Ei > Oi ox E — Ei > 0. This result shows the existence of unquan¬ 
tized states in which the molecule must be considered as dissociated. 
For example, if two swiftly moving atoms pass by each other without 
uniting, we are dealing with states of the kind considered here. Since 
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Ei may change in such an encounter, this means that a continuous 
spectrum is emitted in such processes. 

The computation of higher approximations is lengthy, and we shall 
simply give the result obtained by Fues. It is, 

E^Et-D- ^ 

vo(n + 0[l - ^2 + 2) ] 4* hvQ^ 

A=(n + 2) 
Sw^l 

3 + 15^3 + 2 ^3^ + <5^4 (53) 

This is essentially the formula of Kratzer, Chap. XII, except that 
half-quantum numbers occur instead of integers. The assumptions 
made in Fues^ calculations are such that the result is valid only for 
quantum numbers which are not too great, just as was the case in deriving 
Kratzer^s formula.^ 

As mentioned above, Fues^ result obtained by using the value of 
equation (46) for the .potential energy gives energy levels identical with 
the above (except for slight differences in the small correction terms 
containing u^). But this identity holds true only for the discrete spec¬ 
trum. When equation (46) is used‘^nd terms in C3 and C4 are taken into 
account, there is no continuous spectrum of characteristic values, in 
disagreement with fact. This point is important, for it indicates that the 
wave functions appropriate to the first form for V (generalized Laguerre 
polynomials) should be used in preference to those of the second form of V 
(Hermite polynomials) in calculating band spectrum intensities. 

The selection rules for m and j are the same as those for m and I 
of the hydrogen atom, respectively, since the functions Pjmicos d) and 

are the same for both. In Chap. XVI, Sec. 6, it was shown that 
these selection rules are: Aj— ±1 and Am = +1. Fues showed that 
the vibrational quantum number may change by ±1, ±2, • • • , and 
that the values of the Einstein probabilities are 

hv{n', f; n", 3")gf, A (n', f; n", j") = PoV ^ ) -rr,J'- 

where An — n' — n”, j is the larger of j’ and j", and Po is the permanent 
electric moment. Since w is a small number of the order of the 

1 As stated in Chap. XII, Sec. 9, the formula (53) holds very well even for values of 
the vibrational quantum number only slightly less than that for which the molecule 
dissociates. Morse (Washington Meeting of the Am. Phys. Soc., 1929) derived an 
empirical law which gives this formula -exactly with no higher terms, (See footnote 
Chap. XIII, Sec. 7 and Condon and Morse, “Quantum Mechanics,*' McGraw-Hill 
Book Company, Inc., New York (1929). 
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intensity factor is greatest for the rotational bands and decreases rapidly 
as An takes the values 0, 1, 2, . . . However, since we must multiply 
this factor by to secure relative energies emitted and since v for the 
first vibration band of HCl, for example, is ten to one hundred times the 
frequencies of the rotation band, we see that the fundamental rotation 
vibration band will be more intense than the rotation band; it will also 
be more intense than any higher harmonic rotation vibration band in 
agreement with experiment. 

6. ROTATION SPECTRUM OF A MOLECULE HAVING AN AXIS OF 
SYMMETRY 

In this section, our problem is to calculate the rotational energy 
levels of a molecule having a single axis of symmetry, neglecting the 
effects due to internal vibration.^ We write down the kinetic energy, 
and form the wave equation from it by the procedure of Chap. XV, 
Sec. 20. Just as in the classical band spectrum theory of Chap. XII, 
Sec. 24, the molecule is represented by a top with two principal moments 
of inertia equal to A and the third equal to C, and the problem is treated 
in terms of the Eulerian angles 0, x- The result is 

1 (9 
sin 6 dd^ 

+ 
sin^ 6 dx^ 

+ c 
2 cos 6 d^ip 
sin^ 0 d<pdx 

+ 

f3V 

h^~ 
(E - = 0. (54) 

The undisturbed top has no potential energy, so we set F = 0. This 
equation will be separated by the substitution, 

^ = 0(0) exp {i\<p + imx), 

where X and m must be integers in order that tp be an acceptable function. 
Substituting in equation (54) gives the differential equation for 0, 

d“0 cosj9 d0 
dd^ sin 0 dd 

(m — X cos 0) * 

sin^ 0 
e + (jU + 1) - X*)0 = 0 (55) 

where 

j{j + 1) - X* = - ^X^ (56) 

For convenience we introduce a new independent variable, 

t = M(1 “■ cos 6) 

and a new dependent variable, 

X == (67) 
where 

5 = |X + m] and d == |X — m|. (58) 

1 Dennison, Phys. Rev.^ 28, 318 (1926); Reiche, Z, Physik^ 89, 444 (1926); 
Reiche and Radbmacher, Z. Phyaik, 41, 453 (1927); Kronig and Rabi, Phya. Rev., 
29, 262 (1927); Mannbback, Phya. Zeit.f 28, 72 (1927). We follow the treatment of 
Reiche. 
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This change of variables brings the equation (55) to the form of the 
hyplergeometric equation, 

t(l - + [^ _ (« + ^ + - afiX = 0, (59) 

where 

y = I + d, a = —y-- + i + 1, and /3 = * — j. (GO) 

It follows from the definition of d and s that y — I = d ^ 0, and that 
+ — 7 = 6‘>0, and that these (luantities take only integral values. 

The only solution of the hypergeometric equation which makes B an 
acceptable function in the region 0 ^ t ^ 1, that is, in the region 0 ^ 
^ ^ TT, is the hypergeometric series, 

X = F{c i). 1+“?,++>»+i),. + 
7 2!7(7 + 1) 

(01) 

and then only if either a or is equal to a negative integer or zero; in 
this case the series will terminate and be finite for all values of t in the 
required interval. 

Since a and enter symmetrically into both the differential ecpiation 
and its solution, it makes no difference which one is submitted to the 
restriction that it shall be negative or zero; so we take 

a = -p, p = 0, 1, 2, • • • . 

Then from equation (60), 
j3 = p + d + .s + l. 

OU + 1) = J + p + 1^ 

d + s , 
J = ~o-1“ Vy (02) 

d s , 
and thus j is a positive integral number or zero. — is equal to the 

greater of the two numbers |X| and \m\ and thus j is equal to the larger of 
these plus p. Solving equation (56) for the energy we have, 

+ (c - a}'} 

This energy formula differs from that of classical theory (Chap. XII, 
Sec. 24) only through the occurrence of j{j + 1) in place of The 
magnetic quantum number does not appear in the energy formula, since 
the system is degenerate in the absence of an external field. 

The wave function is, therefore, 

^ = e($) exp ({K(p + imx) 
- - ty^^F{-p, l+d + 8 + p,l + d,t) 

exp {iKip + mxJi (64) 
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where iV is a normalization factor. The element of volume in the 

coordinate space in which = 2Tdt'^ is, 

sin ddddtpdx or AC'^-2dtd(pdx, 

and we choose N in such a way that J^2x r*27r /•! 

4^^^ACmtd<pdx - 1. 
0 Jo Jo 

Integrating over <p and x gives, 

= 1, 

where 0 as a function of i can be secunnl from equation (64). 
out this integration and solving for 7V-, we have, 

A72 ^ ^ + s A p) !(d + p) \ 
H7r‘^AC^'-pl(d!y(s + p)l 

The particular hypergeornetrie series which we use in 
is known as the ^Macobian polynomiar' which is, 

F( — py 1 + c? + s + p, 1 A d, l) ~ F(ay /3, 7, /) 

Carrying 

(65) 

this case 

2 (-iHv 

where 
r - 0 

(rf ± .s + p + r)W! 
(d + s + p)lld + ?•)! 

T, (61^) 

r p _ v(.v - 0(/^ - 2) •••(/) - (r 
^ r I 

D) and Co^ 1. 

By comparing this with eejuation (61), it will be seen that the two are 
identical for the particular values of a, t^y and 7 appropriate to our problem 
and this shows that the series terminates at r - p. The preceding equa¬ 
tions give us all the material needed for writing out the value of xj/ for 
any combination of (luantum numbers. 

Example: Ij(»t j = 4, X = 2, m = 1. Wo liave tlion d ~ \ — ni == ly s ~ X + 

d 4~ s 
m - 3, p = j-- 2~ = 2. Then, 

F = 1 - 71 + 

e = («(1 - ^'^'‘F, 

AT 

^i-Km = <('421 = ~ ~ + ix). 

Changing the sign of X docs not change the energy, but changes the wave function to 

= ,^4.21 = J + y(*) exp (-2-2^ + ix). 

The probabilities of transition can be calculated in the usual way 
by forming the matrix elements for the electric moment. If the molecule 
has a permanent electric moment with components P«', P,' or, 
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if the transition includes an electronic-vibrational transition with these 
components of electric moment relative to the moving system of coordi¬ 
nates, the matrix elements of the components of electric moment parallel 
to the fixed Z, F, Z axes are proportional to 

and two similar equations for Py and Pz, Px(Px', Py, P/j Oj <Py x) is 
given by equation (95) in Sec. 9 by substituting electric moments for 
coordinates in that equation, and dv equals the generalized element 
of volume, AC- sin Bdddipdx- This has been done hy Reichc and 
Rademacher^’and Kronig and Rabi,i nicrely give the results 
as calculated by Dennison^ using matrix mechanics. These amplitudes 
are especially important for they give the relative intensity of the 
rotational lines not only of the symmetric top molecule, but also of the 
diatomic molecule, since the latter differs from the former only in having 
a small moment of inertia about the figure axis. The permitted tran¬ 
sitions are those for the following possible chang(is in the cjuanturn 
numbers: 

Aj = ±1, 0; AX = ±1, 0; Am - ±1, 0; 

there are thus twenty-seven possible types of transitions with X and m 
taking the values, 

- j < X < j and -j < m < j. 

Since the energy does not depend on m nor on the sign of X, many of 
these transitions will give identical frequencies in the absence of an 
external field and thus the intensities will be proportional to the sum 
of the squares of the amplitudes over all possible values of m and ±X. 

The results of the calculation for the field-free lines are as follows: 

c2{2j + 1)X^ 

Rf + 1) 
c2(f - X^) 

' j 
^(2j+l)(i + X)(i-X + l) 

Rj + 1) 
c(j + x)(j -f X - 1) 

j 
c(i - x)(i - X + 1) 

J 

f - j" X' - X" 

0 0 

±1 0 

0 + 1 

±1 ±1 

±1 hFI. (66) 

j and X in these formulas refer always to the larger of f and /' or X' 
and X" and in the last two formulas the two upper or two lower signs 
of Aj and AX are to be taken together, gy is the quantum weight 
of the initial state and c is a constant multiplied by 

^ Loc, dt 

Fav., 28, 318 (1926), 
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The relative intensities of the lines of case a diatomic molecules 
are also given by these formulas by replacing X by i. They do not 
include the further restrictions required by the symmetry properties 
of the complete wave functions which will be discussed in Sec. 9. The 
amplitudes are not changed appreciably by the X-type doubling so that 
these formulas apply without change to the singlet system of levels 
and it will be found that they agree exactly with the formulas derived 
from the sum rules of Chap. XX, Sec. 8. 

6. STARK EFFECT AND ZEEMAN EFFECT OF THE ROTATIONAL SPECTRUM 

The heavy symmetric top considered in Sec. 6 is doubly degenerate- 
Since rn may take all the values —• 0, • • • y, there are 2j + 1 
wave functions which have the same energy for any particular values 
of j and X. It is also possible to change the sign of X without changing 
the energy of the molecule, so that altogether there are 2(2j + 1) wave 
functions for each energy state. These will give different values for 
the energy, only if the proper perturbing fields are present. The degener¬ 
acy in m is removed by an electric or magnetic field. An illustration 
of the removal of the degeneracy in X will not be given, but a very similar 
case in the theory of diatomic molecules having X > 0 will be discussed 
in Sec. 9. 

Reiche^ has investigatc'd the first-order Stark effect, while Manneback^ 
has calculated both the first- and second-order terms. The model 
used by Reiche consists of an electric (or magnetic) dipole attached 
to the symmetrical molecule discussed above, with its moment /u directed 
along the axis of figure. This introduces a potential energy term, 

V = —jLtF cos By 

in equation (54) if the field is applied along the axis ^ = 0. The per¬ 
turbation of the energy is calculated by Schrodinger^s perturbation 
method for degenerate systems (see Sec. 2). The term in F, giving 
the first-order Stark effect, is found to be 

AiE = — 
ixF\in 

Jij + 1) 
(67) 

by the aid of formulas developed by Radernacher. In the special case 
y == 0, there is no change of energy proportional to F, Reiche® had 
previously solved this problem in terms of the Bohr theory. The present 
result differs from the older one only through the presence of j(j + 1) 
in place of p. It is worth noting that the shifts predicted by equation 
(67) could easily be observed in the visible spectrum provided that 

1 Z. Physiky 39, 444 (1926). 
^Phyaiky Z., 28, 72 (1927). 
8 Ann, Physiky 68, 668 (1919). 
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rotational and electronic energies are additive and that the model used 
is adequate. If /a ^ 10“^*, then at 5,000 A., the splitting in a field of 
5,000 volts per centimeter would be of the order of 0.1 A. for the transition 
from the state j = m = X = 1 to the state j == m = X == 0. This 
splitting is independent of the moments of inertia of the molecule, and 
serves as a direct measure of its electric moment. 

The term in was obtained by Manneback both in wave and in 
ordinary dynamics. If j 7^ 0, the result of the calculation by wave 
mechanics is 

where 
hyswU ■ 4[$0’. - ^0' + 1) X)], 

If j == 0, then, 

^(J, m, X) = O'* 
(2i- 

— — X^) 
n)(2i)H2i + iy 

A^E = — 
1 nW‘ 
dhyswU' 

(68) 

The result by ordinary mechanics when j 9^ 0 is, 

AzE — 1 
' Sf 

m^ + \^ ./m\y 1 - 3 __ + j (69) 

Equation (68) merges into this when j is large compared with one, as it 
should. A knowledge of both AiE and A^E is necessary in order to 
calculate the dielectric constant of a dipole gas. 

The theory of the Zeeman effect of diatomic molecules is similar 
to that of the Stark effect and has been given by Kemble,^ Kemble, 
Mulliken, and Crawford^ and by Kronig^- it is necessary to include a 
potential energy term in the wave equation for the symmetric top, 

ph 
F == (X + 2(F)iiH cos M 

where (X + 2a)ii represents the magnetic moment assumed to be in the 
direction of the line of nuclei and B is taken as the angle between the 
direction of the external field and the line of nuclei. These assumptions 
apply to the case a molecule only. The additional term in the energy is 

AE = -j^m^ j. (67A) 

This formula predicts 2j + 1 levels for a given value of j and that these 
levels become closer together as we go to higher values of j. It is difficult 
to test this theory because of the many closely spaced lines of band spectra 

^ ^‘Molecular Spectra,Chap. VH, Sec. 6. Old theory. 
2 Fhys. Rev., 30, 438 (1927). 
2 Phys. Rev., 31, 195 (1928); Z. Fhysik. 46, 657 (1926). 
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and because the closely spaced levels at large j values are difficult to 
separate. It is therefore necessary to calculate the intensities as well 
and thus predict the centers of gravity for the Zeeman patterns for large 
values of j. 

The most detailed experimental study of the effect is that on the 
Angstrom CO bands » ill) by Kemble, Mulliken, and Crawford.i 
This work includes the Zeeman effect of a number of P-, Q-, and P-linei5 of 
these bands. The experiments confirmed the theory on three points: 
the separation of the outside components is proportional to the field 
strength and agrees quantitatively with the predicted values; the fine 
structure observed was that predicted by theory; and in low fields the 
intensities agreed with the values calculated by Kronig.^ In higher 
fields the intensities of components displaced symmetrically on each 
side of the original line are not equal. In the Q-branch lines the lower 
frequency parallel components are more intense than the higher frequency 
components and this asymmetry decreases with increasing running 
number of the line. Kronig showed that this was to be expected duq 
to a change in intensity with increasing field strength. The data on 
this point for lines of other branches is not conclusive. 

7. THE HYDROGEN MOLECULE ION 

The hydrogen molecule ion presents a three-body problem which 
can be solved by the separation of variables providing we assume that 
the protons are stationary. This problem was solved by Pauli^ and 
Niessen"* using the old quantum mechanics, but no agreement with the 
experimental values was secured. The problem has been attacked, 
using wave mechanics, by a number of authors;® Burrau used the sepa¬ 
ration of variables method, while the others used different perturbation 
methods. 

The hydrogen molecule ion has nine degrees of freedom, and it is 
therefore necessary to specify nine coordinates. Three of these will 
fix the position of the center of mass of the system, three the motion 
of the protons relative to the center of mass, and three the position 
of the electron relative to the protons. The first three coordinates 

^ Loc. cit. and Crawfouo, Phys. Rev.j 33, 339 (1929). See also the work of Htjl- 

TH^iN (“Dissertation,” Lund (1923)) on the ZnH, CdH, and HgH bands and of 
Watson and Perkins {Phys. Rev.., 30, 592 (1927)) on AgH, AIH, ZnH, and MgH 
bands. 

^ Loc. cit. 
3 Arm. Pkysik, 68, 177 (1922). 
* Diss. Utrecht (1922); Ann. Physik, 70, 129 (1923). 
®BbRRAtJ, KgL Danake Videnskabernes Selskab. Medd, VII, 14 (1927); Wang, 

Phys. Rev., 31, 579 (1928); Finkelstein and Horowitz, Z. Physik, 48, 118 (1928); 
Condon, Proc. NaL Acad. Set., 13, 466 (1927); Pauling, Chem. Rev., 6, 190 (1928); 
GuitLEMiN and Zener, proc. NcU. Acad. Sci.^ 16, 314 (1929); Wilson, Proc. Roy. 
Soc., 118, 617 (1928). 
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may be neglected immediately because the wave equation including all 
these coordinates will split into two parts, one of which will describe 
the motion of the center of mass and will be of exactly the same form as 
that of a free massive point moving with uniform velocity (Sec. 4), 
while the other will describe the internal wave function and fix the 
internal energy. The second set of three coordinates, which fix the 
distance between the protons and the direction of the line joining them, 
in space may be neglected for the moment because we do not intend 
to consider the rotation of the nuclei. We shall fix the distance between 
the protons later by applying the condition that the energy of the mole¬ 
cule must be a minimum. This last is approximately equivalent to 
quantizing the vibration of the nuclei in a zero vibrational state. This 
method is permissible for Born and Oppenheirner^ have shown that 
the first approximation to the solution of the structure of molecules is 
secured by solving the problem of the electron motion relative to the 
nuclei considered as stationary. 

The Schrodinger equation for the electron relative to two nuclei 
each of charge +e, fixed an arbitrary distance apart is, 

dV 1 dV I dV 
dx^ dif dz^ 

+ g(^e + + 
^2 

(70) 

where Xj y, and z are the coordinates of the electron relative to axes fixed 
to the line of nuclei, r\ and are the distances of the electron from the 
first and second nuclei, respectively, R is the distance between the 
nuclei and G = We introduce the elliptic coordinates 

r\ + r2 
R “ ^ (71) 

and take as the third coordinate the azimuth <p about the line of nuclei. 
The potential energy of the electron is then 

y — —^ 
Ti r2 i2(f^ ~ 77*) 

and the transformation equations for x, and z are, 

(72) 

X = lie - 1)(1 e) cos <p,y = lie 1)(1 — rj^) sin ip. 

In the new variables the wave equation becomes, 

d ifn + A 
I ^ dv (1 4. I—-1-1— 

^ 'e -1 I - e 

+ (? £? 
[0 

R^ie 
r) ~ a 

e) + e^Ri U = 0. (73) 

* Ann. Phyiik, 84, 467 (1927); See Condon and Mobse, “Quantum Mechanics,” 
McGraw-Hill Book Company, Inc, (1929), for a presentation of this work. 
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^ is to be an acceptable function throughout space, that is, for all values 
of the variables satisfying the relations, 

1 ^ J ^ CO, >-1 ^ ,7 ^ 1, 0 ^ < 2t. (74) 

This equation is separated if we set, 

= X(^)Yiv) exp X = 0, 1, • • • 

and the equations of X and Y are then, 

d 

and 

(e- D^fl + + (?i - ft) 4' ^ 1 
X* 

+ A X 

= 0, (75) 

ll*”’ - ”f} + K® " s)?’’ + (w 
A is the constant introduced in separating the variables. It is convenient 
to introduce the constants, 

y and Gem = 
2R —, 
do 

(77) 

where ao is the radius of the first Bohr orbit of hydrogen. 
In solving equations (75) and (76) for the case of the normal state, 

Burrau adopted the following method: There will be no nodes in the 
wave function of the normal state of the ion and, therefore, X may be set 
equal to zero and further we know the wave function will be positive 

1 dX 
at all points. New dependent variables — ~~ 

are first introduced, which reduce the equations to the form. 

IdY 

Ydv 

dcr^ _ 2 _ - 2(6 — (Tf)^ - A 
d? 1“ - 1 

2 1 yv^ + 2(r,ij — A 
^ = .r, + - — 

(78) 

(79) 

There are three arbitrary constants in these equations, y, €, and A. 
Equation (79) is used to secure the relation between y and A, and then 
equation (78) to secure the relation between y and e. In addition, we 
use the condition that the energy 845 a function of R must be a minimum 

to fix the values of y, e, and A. 
When 77 = ±1, the denominator of equation (79) becomes zero 

and thus if daifldri is to remain finite, the numerator must also become 
zero. This fixes the values of o*, at these two limits as, 

cr.d) = K(A - y) and <r,( -~1) - ~K(A - y). (80) 

Moreover equation (79) requires that (r„( +77) = •~cr„( —77) since it is 
invariant to a change of sign of both cr, and 77, that is, cr, has opposite 
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signs on the two sides of the plane 77 = 0 and it must therefore be zero 
at this plane, cr, is therefore expanded as an odd power series near 9; = 0 
and in another power series near 77 = 1. Both series converge fairly 
rapidly at 17 == 3^^ and the values of A and 7 which make the two series 
converge to the same value at this value of 77 are determined by trial. 
In this way, pairs of values of A and 7 are secured which give A as a 
function of 7. 

Similarly is expanded in an ascending power series in (f — 1) 
and in an inverse power series in Knowing A as a function of 7 

from the previous calculations, these series permit a calculation of 
7 as a function of €, that is, the distance between the nuclei, and for each 
value of 7 it is possible to calculate the energy from equation (77). 
In this way a plot of energy against internuclear distance can be 
made and the energy and internuclear distance for the minimum of this 
curve are the values of these quantities for the normal vibrationless 
state of The minimum value of E was found to be 16.29 ± 0.03 
volts. From the shape of the curve of E plotted against R in the region 
of the minimum, Burrau found that the vibration frequency of the 
nuclei was about 2,250 cm.”h which gives for the nuclear vibration 
energy in the lowest state, l^hv = 0.14 volts and thus the observable 
ionization energy of H2^ is calculated to be 16.15 ± 0.03 volts. ^ 

The energy of dissociation of the hydrogen molecule is approximately 
4.38 volts, 2 and this, together with the calculated value for the energy 
of the hydrogen molecule ion gives 15.31 for the ionizing potential of 
the hydrogen molecule. The observed values for this ionizing potential 
lie at about 16 volts. The discrepancy is probably due to the fact that 
the experimentally determined ionizing potential of the molecule is not 
that for the removal of an electron from the hydrogen molecule in its 
lowest state to form the hydrogen molecule ion in its lowest state. Some 
vibrational energy is probably given to the nuclei of the hydrogen mole¬ 
cule ion at the same time that the electron is removed (see Chap. XIII, 
Sec. 7). Birge (Zoc. cit.) secures 2,247 cm.”^ for the value of vo from band 
spectra, which corresponds to 0.277 volts. The agreement between the 
calculated and observed values is as good as can be expected. 

Figure 3 shows a plot of the energy of the normal hydrogen molecule 
ion as a function of the distance between the nuclei as given by Burrau, 
and Fig. 4 shows the plot of the value of in an arbitrary median plane. 

Unsold, Pauling, Finkelstein and Horowitz, and Guillemin and Zener 
have applied perturbation methods to solve the problem of the hydrogen 

-molecule ion, and have secured values which are in approximate agree- 

^ Burrau gave 16.22 volts due to an error in calculation; see Birge, Proc, Nat, 
Acad,, 14, 12 (1928). 

2 Wither, Proc. Nat. Acad. Set., 12, 238 (1926); Dieke and Hoppield, Z. Physik, 
40, 299 (1926). 
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rnent with those of Burrau. The method of Guillemin and Zener is 
especially interesting, since it gives the wave function as well as the 
characteristic energy values. ^ 

Though the wave functions for the hydrogen molecule ion in all 
its states have not been calculated, it is possible to see where the nodes 

Fig. 3.—Thn enerpjy of Hu"'’ as a funo Fig. 4.—The charge density for H2'^. (After 
tion of H. (After Burrau.) Burrau.) 

of these functions will appear, and to see how they will change as the 
two nuclei are brought infinitely close together to form a united He*^ 
ion. The quantum number X gives the number of nodal planes passing 
through the line of nuclei corresponding to constant <p, and as the two 
nuclei are brought close together these nodal planes become the meridian 

3P(n-3>lH) 3P(n-3d-!) 

Fig. 5.—The nodes of He"^, and H. 

nodal planes of the united atom, and X becomes equal to the atomic 
quantum number m. There can be no change in the number of these 
nodes in this process. The nodes corresponding to constant f are 
ellipsoids of revolution and become the radial nodes of the united atom, 

» See Condon and Morse, Quantum Mechanics,” McGraw-Hill Book Company, 
Inc. (1929) for a review of these perturbation methods. 
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while the nodes for constant 17, which are hyperboloids of revolu¬ 
tion, become the latitudinal nodes. Thus the ellipsoids become spheres, 
the hyperboloids cones and the planes remain planes. The numbers of 
ellipsoidal and hyperbolic nodes may be designated by and n,,, respec¬ 
tively. The left side of Fig. 5 illustrates this change for the cases 
n{ == 1, n, = 1, X = 0, and = 1, n,, = 2, X = 0. 

These diagrams represent only the nodes in an arbitrary plane through 
the line bf nuclei and if rotated about this line the lines will generate 
the nodal surfaces. The I quantum number of the united atom is equal 
to m + Urji — X + Tirf) and the total quantum number is n = + n, + 
X + 1. 

It is also of interest to consider the changes in the nodal planes 
and thus the quantum numbers as the nuclei are separated to a great 
distance. This separation results in two identical wave functions, 
one about each nucleus, characteristic of the hydrogen atom in one of 
its steady states if the problem is solved using parabolic coordinates, 
say f', 77', and <p. Since the wave function of the hydrogen molecule 
ion is normalized so that the total negative charge is that of one electron, 
each of these separated wave functions will be normalized so that the 
total charge is only one-half the electronic charge. This means that 
the electron remains near one nucleus for a time, then passes to the other 
for a time and then back again, etc., so that on the average it spends 
one-half the time on each. When separated a short distance the prob¬ 
ability of such a ^^jump’^ is very small. Thus the hydrogen molecule 
ion separates into one atom and a proton, but the probability of the electron 
going with one nucleus is equal to its probability of going with the other. 
The nodes of constant (p and of constant i.e.y X and will not change in 
this process of separation; X becomes the m quantum number and 
becomes n^', a quantum number conjugate to a parabolic coordinate of 
the hydrogen atom. On the other hand, there is a reduction of the 
number of nodes of constant 77 except in the case that this number is 
zero. If n, is odd, one of the nodes is the median plane perpendicular 
to the line of nuclei and as the nuclei are separated, this node disappears; 
the nodes on one side of this plane become nodes in a parabolic coordinate 
of the one atomic wave function and those on the other side, nodes of 
the second atomic wave function. If n, is even, no node is lost, but half 
of the nodes go to each atomic wave function. Thus the number of 
parabolic nodes, in each atomic wave function is •— 1), if n, 
is odd, or if is even. This decrease in the quantum number 
when a molecule separates into atoms is called demotion of the quan¬ 
tum number and the increase in the number of nodes in the reverse 
process, that is, the formation of a molecule from atoms or ions, is called 

promotion^' of the quantum number. These changes fot are 
illustrated at the right in Fig. 5 and a little study of these diagrams 
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and the possible nodes will convince the reader that the changes must 
occur in this way. Following the rules of this and the preceding para¬ 
graph, it is possible to correlate the energy levels of with the levels 
of the hydrogen atom in an electric field and these in turn with the field- 
free levels,^ and also with the terms of He*^. This is given in Fig. 6. 
This correlation between the 112'^ and the H + levels was given by 
Hund.2 

Two levels of H2^ approach each Stark effect level of the hydrogen 
atom: one of these has even 7^ and the other odd n,. If the coordinate 

of the electron is changed from 77 to — r/, 7(77) changes sign if Uy, is odd, 
but does not change sign if n, is even. Thus 

F(77) = /3F(-77), (81) 

where equals 1 if Ur, is even, and —1, if n, is odd. Considering the 
reverse process, the two atomic wave functions can interact in two ways 
in one of which a node is formed between them (antisymmetric) and 
in the other of which no such node is formed (symmetric). This will be 
illustrated further by the hydrogen molecule in the following section. 
All the levels of H2"’' given in the figure may not be stable; in particular 
the antisymmetric states will probably be unstable, since promotion 
always occurs with a consequent increase in energy when these are formed 

1 See Kramers, Z. Pkysik^ 3, 199 (1920). 
•Z.P/iV«^,40,742 (1927), 
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from H and In more complicated molecules these relations are 
not so simple due to the interaction of the electrons in such molecules. 
If this interaction could be neglected, the wave equation could be sepa¬ 
rated in elliptical coordinates and all the arguments in this section in 
regard to demotion and promotion of quantum numbers could be used. 
To a first approximation this is true for many molecules, and the for¬ 
mation of more complex molecules from atoms has been discussed in 
this way (Sec. 8). 

8. THE STRUCTURE OF THE HYDROGEN MOLECULE 

Heitler and London^ solved the problem of the hydrogen molecule 
by applying the perturbation theory of wave mechanics. The wave 
equation is 

“b A2V^ “f" \ E 

Ai = 
<92 

i 
32 

-C 
dx{^ dy 

+ 

, > + — 
r,2 r„i r„2 Th\ rb2 

= 0, 

dZi 

(92 

dx2^ ' dyr dz2^ 
(82) 

where Xi, 2/1, 2Ji, ^2,7/2,2:2, are the coordinates of electrons 1 and 2, li is the 
distance between the nuclei, T\2 that Ixitween the electrons and rai, 
Ta2, Th], and r/,2 the distances between electrons, 1 and 2, and nuclei, 
a and 6, as indicated by the subscripts. The zero order approximate 
solution is secured by suitable combinations betwt>en the wave functions 
of the separate unperturbed hydrogen atoms in the lowest energy states. 
Two arrangements of electrons and nuclei are possible: (1) electron 1 
may be on nucleus a and electron 2, on nucleus h; this gives 

(■ - v/i)” 
for the unperturbed atomic wave functions; (2) electron 1 may be on 
nucleus b and electron 2 on nucleus a and thus the unperturbed function 
may be as readily, 

^2^ 
\/7r\^oy 

¥2 

exp (-S) *'* - ;i(a.)“ 
When the atoms are a great distance apart and the arrangement of 

electrons and nuclei is that given in (1), 

^2 

R tm r„2 ni 

becomes negligible and the product is a solution of equation (82); 
but when the arrangement is that given in (2), 

R ri2 Toi fia 

iZ. PAvnfc,44,455 (1927). 
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becomes negligible and is a solution of equation (82). The 
energy in both these cases is 2Eo where Eq is the energy of one hydrogen 
atom in its normal state. This is a case of double exchange degeneracy, 
for either the nuclei or electrons can be interchanged. The most general 
solutions of equation (82) when the nuclei are widely separated are 
therefore linear combinations of the two wave functions and 

namely, 

^10 = ^110 — + /322^2“^1^ (85) 

We require that i^io and \pm shall be normal and orthogonal, namely, 
that fiyio\piQ*dVy and f\pui\^lynQ*dv shall equal 1 and that 
shall be zero. These give three relations between the coefficients, 

+ ^^^2 + 20ufiuS = 1, + 202iSi2S = 1, (86) 
and 

+ (^11022 ~f" ^12(^21)^ ~ 0, 
where 

The subsequent application of the perturbation theory of Sec. 2 shows 
that /3ii = (i\2 and ^2\ = ““022 and therefore the two unperturbed normal 
and orthogonal wave functions are 

u = (2 + 2S)~yixl.cH^ + ,^2^1*'), 
and 

^110 - (2 ~ 2syyi^|yc^P‘^ ~ (87) 

The first is symmetric in both the nuclei and electrons for an interchange 
of either does not change its sign, while the second is antisymmetric 
in both the nuclei and electrons since an interchange of either would 
change its sign. These symmetric and antisymmetric wave functions 
are similar to those of H2'^ except that only single exchange degeneracy 
is present in the latter case, that is, only the nuclei can be exchanged. 

We next assume two solutions of the perturbed wave equation (82), 

— ^10 Vly \pil — \l/n0 + VUy (88) 

and assume that the corresponding characteristic energy values are, 

El = 2Eq + €i. Ell = 2J^o + €ii, (89) 

respectively. Substituting these in equation (82) and remembering 

that 

A^i® + 

and that there are three similar relations for ^2^, and ^2®, equations 

for vi and vn are secured. These are 

(2±2 S) + G{2E^ - a - B - C)}vi(or t;ii) = G{(i - €i,(or en)) 
± ± + Cyl^\^4/^\y (90) 
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where the positive sign gives the equation for vi and ci and the negative 
for vii and en, respectively, and 

^2 p2 
A = ~ - + %,B 

ri2 R ^ ol 
— ^ , and C = 

rb2 

e\ 

ra2 

The quantities on the right of equations (90) are called their 'Hnhomo- 
geneities’^ and each must be orthogonal to both i/^io and ^no. The 
inhomogeneity of the equation for is orthogonal to ^uo and that for 
Vii to ^10, if /?ii = /3i2 and P21 = ^^22 and so we derive these relations 
previously used in securing the normal and orthogonal forms of ^10 

and ^iio. The conditions that the inhomogeneity of the equation for 
Vi shall also be orthogonal to ^ro and that for vn shall also be orthogonal 
to ^Tio give two equations for €i and en. These are, 

where 

E. + E. . 
^ , and eir 

El — E2 
(91) 

El = + C(h^4'2^y]dv, (92a) 
E2 = HH^A + B + C)i/'iV2V2Vi"dv. (926) 

These integrals have been evaluated as 
functions of R by Heitler and London^ 
and by Sugiura.^ Ei is the mean value 
of the potential energy of the system and 
is similar to such a mean energy taken in 
the classical way; as a function of R it 
has a slight minimum and would lead to 
a slight attraction of the two atoms. E2 

has no classical analogue, and is due to 
the resonance phenomenon, that is, to 
the two electrons exchanging places; it 
decreases rapidly with decreasing R and 
causes strong attraction in the symmetric 
case and strong repulsion in the anti¬ 
symmetric case. €i and €11 have been 
plotted in Fig. 15 of Chap. XIII; they are 
the l^X and lower 2®2 states, respectively. 

The values of €1 and en can now be substituted in equation (90) 
and the wave equations solved by the method described in Sec. 2. The 
electron charge densities are then equal to and ^n^n*. These 
have been calculated by London^ and are illustrated in Fig. 7 for an 
arbitrary plane through the line of nuclei. In the antisymmetric case, 

(b) 
Fia. 7.—The charge density for 

H2. {After London.) a. Elastic re¬ 
flection. b. Stable molecule. 

^ Loc. dt. 
^Z,Phydk, 45,484 (1927*. 

Fhydk, 46, 476 (1928)* 
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a node forms at the median plane and following the reasoning of the 
preceding section would give a 2P state of the united helium atom. 

Kemble and Zener^ have applied the method used by Heitler and 
London to the interaction of a normal hydrogen atom and a hydrogen 
atom in its 2, 0 and 2, 1 states. They find sixteen possible wave func¬ 
tions. Though the computations are too involved to report here, one 
important point in regard to attraction and repulsion between atoms 
must be mentioned. In the case of the excited states of H2, the unper¬ 
turbed wave functions may have two types of symmetry: th(^y may be 
symmetric or antisymmetric in the electrons, just as in the case of the 
neutral helium atom (Sec. 3); or they may be symmetric or antisymmetric 
in the nuclei. The solutions symmetric in the electron coordinates 
exclusive of the spin give the singlet levels, while the antisymmetric 
solutions give the triplet levels just as in the case of helium and for the 
same reasons. This antisymmetry does not lead to the formation of a node 

at the median plane perpendicular to the Ime of nuclei and thus no promotion 

of the electron quantum numbers occurs. Both antisymmetric (triplet) 
and symmetric (singlet) states of H2 for wliich the energy decreases as 
R decreases can occur and the triplet states are the more stabler Anti¬ 

symmetry in the nuclei^ i.e.y a change in sign of the wave function when 
the nuclei are interchanged, leads to the formation of a node at the median 

plane and thus to the promotion of the electron quantum numbers and 

strong repulsion. Symmetry in the nuclen is thus more important than 
symmetry or antisymmetry in the electrons in determining whether two 
hydrogen atoms will attract or repel each other. These symmetric 
properties will be further discussed in Sec. 9, where the rotation and 
vibration of nuclei and their spins will be included. 

The second-order approximation in the solution of the wave equation 
will take account of the polarization forces between atoms and probably 
will lead to a slight attraction at large distances, that is, to the Van 
der Waals attraction between atoms and molecules, even in the case of 
the antisymmetric solution. This will be of importance in the case of 
readily deformable atoms. 

9. THE SYMMETRY PROPERTIES OF DIATOMIC MOLECULES 

In the preceding sections we have considered the symmetry properties 
of the wave functions of H2 and 11%^ assuming that the nuclei are station¬ 
ary. In this section we shall discuss the problem for molecules containing 
many electrons and having like or unlike nuclei which are assumed to be 
rotating in three dimensions, and vibrating relative to each other. The 
facts presented are due principally to Hund,^ Kronig,^ and Wigner and 

^Phyn. Rev,, 33, 512 (1929). 
* Z. Phyaik, 42, 93 (1927). 
3 Z. Physik, 40, 814; BO, 347 (1928). 
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Witmer;^ we shall follow the general mathematical method of 
Kronig. 

The Cartesian coordinates of the electrons of the molecule with 
reference to fixed axes will be taken as Xu 2/1, . . . Xnj Vm Zn • • . 

and those of the nuclei as Xi, Ti, Zi, X2, Y^y and Z2. The potential 
energy obviously does not depend on the position or orientation of the 

molecule in space. By introducing the reduced mass, tx = 

and fixing the position of one nucleus relative to the other by the 
coordinates X, Y, Z, where X = Xi — X2, F = Fi — F2, Z = Zi — Z2, 
the translation of the center of mass is eliminated from the problem in 
the usual way. The coordinates of the nuclei are given by the equations, 

M2 V _ V 

The wave equation 

^1 = ^1 Ml + M2' 
similar relations hold for the F- and Z-coordinates. 
for the internal degrees of freedom is then 

1 Va I ^ a I - 2jA„ + - An + 
h} 

{E 0, (93) 

where An is the Laplacian operator for the 7^th electron and equals 

3% + m ^ 
wert. Three other coordinates can be eliminated from the potential 
energy by referring the electrons to a frame of coordinates X', F' 
Z', described relative to the fixed axes by the Eulerian angles B, ip, 

and X- Without loss of generality we take the Z'-axis as the fine of nuclei 
so that X' = 0, F' = 0, and Z' = R, the distance between the nuclei, 
and the X'-axis so that the first electron lies in the Z'X' plane and has 
its Xi coordinate greater than zero; the coordinates of the first electron 
in the X', F', Z' system are therefore Xi, 0, Zi, The Eulerian angles 
are then defined as in Chap. XII, Fig. 30. (x is used instead of to 
avoid confusion with the symbol for the wave function.) To secure the 
wave equation in the new coordinates it is only necessary to transform 
equation (93) from the coordinates, Xi, yi, Xny yn, Zny • • . X, 
F, and Z to the coordinates xi, Zi, . • . Xn^ yn^ »n', . . . i2, 0, <p 

and X- 

The potential energy may be regarded as consisting of three terms, 
the potential energy of electrons and nuclei, the mutual potential energy 
of the electrons and the mutual potential energy of the nuclei; these 
may be designated Ven, Vee and Vnn respectively. The first of these 
is, 

rn2 n V 
IZ. Physik, 51, 859 (1928). 

-s{w + 
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where Vni and rn2 are the distances of the nth electron from the first and 
second nuclei, respectively, and are given by the relations, 

r„l - R _ ’ 

and 

rn2 = + j/.'2 + (^Zn' + R 

This potential energy function has the important property to be used 
in the following discussion that it is unchanged by a change of signs of 

all the z'^Sj ify and only ify both the charges and masses of the nuclei are the 

same: it does not change in any case if the signs of all the x"s or y'^s are 
changed. The second term is 

V EE 

] 
2 r nm 

where rnm is the distance between the nth and mth electrons and is 

Tnm = [(.x,/ - xjy + (?/„' - y„/y + (z,/ - zjyf''^. 

This term does not change if the signs of all the a:'’s or t/'^s or are 
changed. Finally, 

Thus 
V = Vixi'y Zi'y • • • xjy JJnj '• /?), (94) 

and is unchanged by a change of sign of any of these variables except 
the and it is unchanged by a change of sign of all the z'^s, if, and only 
if, the charges and masses of the nuclei are the same. 

The Laplacian operator for the electrons and nuclei can be calculated 
in the new coordinates by means of the transformation equations, 
X = x'(cos ip cos X “ cos 6 sin sin x) 

— 2/'(sin (p cos X + cos 0 cos ip sin x) + z' sin 6 sin Xf 

y = a:'(cos </? sin x + cos 6 sin ip cos x) 

— 2/'(sin ip sin X cos 0 cos ip cos x) z' sin $ cos x, 

z = sin 0 sin (^ + y' sin 6 cos ip + z' cos 6. (95) 

In these equations Xy ?/, Zy and x', y\ z^ may represent the coordinates 

of the electrons in the fixed and moving coordinates respectively or x, 2/, 
and z' may represent X, F, Z and Z' of the nuclei; X', F', and yf 

equal zero and do not appear in these equations, so that there are as many 
equations as either new or old coordinates. This is an involved cal¬ 
culation which will not be given here. The resulting equation may be 

written, 
(Ho + Hi + H2 - H)^ = 0, (96) 
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where 

Ho = g~ I ^A(x', y\ z>, MR) 1 + V(x\ y', z', R), (96a) 

/»2 1 

Hi = x), (966) 

1 
Ha = g-2 ^2 Aiz', %/, z', e, V. x). (96c) 

is the Hamiltonian operator for the case of non-rotating nuclei 
in the coordinates x\ y\ z\ (py and /i, Th is the operator for the rotation 
of the nuclei, Ho is the cross product^’ operator which includes the 
Coriolis and centrifugal forces, and E is the Kigenwert. A(;r', y\ z'y p, R) 

is an operator, which contains the ;r'’s, //'^s, ^'’s and first and second 
partial derivatives with respect to them, the first and second partial 
derivatives with respect to <p but not p itself, and R but no partial deriva¬ 
tives with respect to it; it is invariant to a simultaneous change in sign 
of (p and all the with the other variables unchanged, and also to a 
change in sign of all the 0'^s with the other variables unclianged. The 
change in sign of <p and the ?/'^s is equivalent to reversing the sign of 
rotationof the electrons, the change in sign of the ?y'V being necessary 

in order that the electrons rotate^’ in the same order so that there is no 
change except in the sign of ‘^rotation.” A(R) is the differential operator 

^2 2d 
for the vibration of the nuclei and equals A(0, py x) 

is the differential operator of equation (54) with the term containing A/C 

omitted. 
If we neglect H2, we can assume two solutions of equation (96), i.e.y 

R)^jxm exp ?(x^ + mx), (97a) 
V^2 = y'y z'y R)9j„x.„, exp i( -\p + rnx), (975) 

where f\ and /_x are functions of the coordinates indicated and the 
electronic, vibrational and rotational quantum numbers; 0Arrt(^) 
exp i(\p + mx) is the function of d, py \ and m given in equation (64); 
and (0) exp i( — \p + is the same function with the sign of X 
changed. Substituting equations (97a) and (975) in equation (96) and 
neglecting H2, we find that /x and /_x satisfy the equations, 

I A(,', ± X, K) + ImR) + + 1) - X-) - 

V(z’, y', z’, R) j •/±x(x', y’, z', R) = 0, (98) 

and that Qj\m{d) and satisfy the equations, 

{A(tf, +X, m) jij + 1) — X^} • 9j±\m(^) = 0. (99) 

In these equations, (98) and (99), A(z', y\ z', X, R) and A{9, X, m) are 
respectively the operators A{x', y', z', ip, R) and A(9, ip, x) with d/dip, 
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b/dx^ and b^/bx^ replaced by i\, — m, and — respectively, 
and A(a;', y', —X, R) and A(^, —X, m) are these operators with the 
sign of X changed. j(i + 1) X^ is a separation constant and is the 
Eigenwert of equation (99). We take as the unperturbed wave functions 
two linear orthogonal combinations of the solutions, ipi and ^2, namely, 

4'1 = 2:', R)OjXm(O) exp i{\p + mx) +f-x(x', y\ It) 

Oj^xrniO) exp i( —\<p + mx)]f (100a) 
and 

V^ii == fiulMx', y\ z\ i?)Byx„,(0) exp /(X</5 + mx) - /~x(^', y\ z\ R) 

Oj^xnX^) exp i( -X<p + mx)]; (100&) 

the /?! and Pu are normalizing constants. The (uiergy values for \l/i 

and \pn ar(i equal, if the Coriolis and centrifugal forces are neglected, 
but this degeneracy is r<'moved when these are included. The inclusion 
of H2 in th(j wave (equation is now taken care ot by the usual perturbation 
methods (Sec. 2); the characteristic energies of rpi and i/'u are no longer 
the same, if X 5*^ 0, and this causes the appearance of the X-type doubling. ^ 
Each of these functions still has the (2j + l)-fold space degeneracy 
which can be removed by a perturbing external electric or magnetic 
field. 

There are two transformations of coordinates for which the wave 
equation (90) is invariant and therefore for which the functions ypi and 
either remain unchanged or change only their signs. The first applies 
only to molecules with like nuclei and the transformation consists onl5^ 
in interchanging the nuclei. This transformation can be defined by the 
equations, 

X =:r', y = z = -z', R = R, 

0=:7r — 0, ^ = 7r — X=7r + x* (101) 

By following the transformation by means of Fig. 30, Chap. XII, or 
by substituting in equation (95) the reader can easily verify for himself 
that the effect is only to interchange the nuclei and leave every electron 
at its original position. A wave function is said to he antisymmetric or 

symmetric in the nuclei, if it, respectively, does or does not change its sign 

in this transformation. The differential operator of equation (98) is 
invariant to this transformation and the potential energy is also invariant, 
if the nuclei have equal charges and masses and, therefore, in this case, 

Mx', y', z', R) - ^x', y', -a;', R), /? = ±1. (102) 

If /? = +!, the median plane, zx — z^ = • • • sin == 0, is not a node, 
while if jS = — 1, this plane is a node. 

In addition we have the relation, 

fMx\ y\ R) = /x(x', ~2/', R). (103a) 

1 Bee Kkonig, loc. cii.; Van Vleck, Phyn, Rev., 33, 4f>7 (1929); Muluken, Phys. 

Rev., 33, 507 (1929). 
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which can be proven as follows. Substituting —2/' for y' in equation (98), 
using the positive sign for X throughout and remembering that 

A(:r', -i/, -\K) = A(x', xj\ z\ X, /?), 
or 

A(x', 2/', 2', -X, /e) = A(a;', -y\ X, E), 

and also that 
V(x\ z\ R) = F(a;', y\ z\ R), 

we obtain the equation, 

-X, fi) + hm + *'■[£ - 3>;„.0X;+ 1) - X>) - 

Vix',y', 0',/e)lj -UW, -y’, z', R) = 0. 
- ) 

The operator of this equation is that of equation (98) using —X and thus 
f\{x'i ~2/', z'j R) can differ from/_x(a:', y'y z'y R) only by an arbitrary 
constant factor which can be chosen as i so that equation (103a) follows. 
In the special case that X = 0, this arbitrary constant must be either 
+ 1, or —1, so that 

Mx', y', z', R) = ±Mx', -y', z’, R), (103b) 

for otherwise there would be two functions and \l/n for only one 
characteristic energy value. Either xf/i or is zero, if the negative or 
positive sign, respectively, of equation (1036) applies. Further 

exp i\(7r ~ <^) = ( —1)^ exp iX(^, (104a) 

exp miiw + x) = ( ““I)""' €5xp wiXj (1046) 

which can readily be seen and 

0,x,.(7r - 6) = { -l)^'~^--0y.-Xm(^), (104c) 

which is easily proven to be true by direct substitution of tt — 0 for 0 
and —X for X in the expression for 0 from Sec. 6. It is now evident 
that is symmetric or antisymmetric in the nuclei, if 

^ ( —l)j = 1 or —1, respectively, (105) 

and is symmetric or antisymmetric in the nuclei, if 

^ (_l)y+i = 1 or — 1, respectively. (106) 

Thus, j increases, the levels are alternately symmetric and anti¬ 
symmetric in the case of either or and for a X-type doublet 
(X 9^ 0) with a given value of j, one of the levels is symmetric and the 
other antisymmetric. These results were first derived by Hund.^ 

In addition to being invariant to the transformation equations (101) 
the wave equation (96) is invariant to another transformation of coordi¬ 
nates regardless of whether the nuclei are like or unlike. This trans¬ 
formation is defined by the equations, 

X x'jy ^ —y'j z ^ R ^ R, 
"B ^ rr - e, ^ ^ 2t — iff X - + Xf (107) 

1 hoc. dU 
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and the reader can readily verify, as before, that this transformation 
amounts to a reflection of all electrons and nuclei in the origin of coordi¬ 
nates, i.e,y the center of mass. Wigner and Witmer^ have designated 
the wave functions which do or do not change sign in this transformation 
as negative or positive respectively. Using the same methods as before, 
we find that is negative or positive, if 

( —l);~x or +1, respectively, (108) 

and ^11 is negative or positive, if 

= — 1 or +1, respectively. (109) 

To secure the possible types of energy levels it is only necessary 
to give ^ and the quantum numbers their possible values and substitute 
these in equations (105), (106), (108), and (109). In particular, if 

Unlike Nucleic Like Nuclei 

Fig. 8.—The terms antisymmetric in the nuclei are underlined, while symmetric 
terms are not. Positive and ncf^ative terms are indicated by X and |, respectively. The 
subscripts + and — at the right refer to the sign of /d. 

X == 0, either ypi or is zero, depending on whether the + or — sign 
of equation (1036), respectively, is to be used and either equations (106) 
and (109), or equations (105) and (108) give the possible types of levels. 
If is not zero, the rotational levels with even j are the positive levels 
and if is not zero, the rotational levels with even j are negative 
levels. These two types of states have been called the 0 and 0' states 
or the S and S' states, respectively, by Wigner and Witmer. The 
possible types of levels are shown in Fig. 8. 

In the case of molecules with like nuclei, the interchange of the 
nuclei does not change the positions of the electrons, so that x, y, and z 
and thus the components of the electric moment, P* = 'lex, Py = 
and Pz == Sez do not change sign in the transformation of equation (101) 
and therefore, taking P« as an example, 

!P^n*^mdv, 

^Z.Phymk, 61,859 (1928). 

(110) 
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is zero unless xj/n and ipm are either both symmetric or both antisymmetric 
in the nuclei. Otherwise, if the product of and is positive in one 
element of volume, there is another element of volume in which the 
product is equal in magnitude, but opposite in sign to the product in 
the first element of volume and when the integration is extended over all 
space the result will be zero. Thus only symmetric states combine 
with symmetric states and antisymmetric states with antisymmetric 
states with the emission of light. Further this rule should hold in col¬ 
lision processes. Any perturbing potential due for example to collisions 
with other molecukis or the walls of the vessels must be symmetric with 
respect to ari interchange of the nuclei. Letting P be this perturbing 
potential, the integral will be zero unless \l/n and xt/m are either 
both symmetric or both antisymmetric in the nuclei. This conclusion is 
also in agreement with the experimental fq^cts (Chap. XII, Sec. 22). 

The integral of equation (110) is zero, if the two wave functions are 
either both positive or both negative, .r, y, and z and therefore Px, 
Pyy and Pz change sign in the transformation of equation (107). It is 
necessary, therefore, that either xj/^ or xj/m of equation (110), but not both, 
shall change sign in this transformation, if the integral over all space 
is to be greater than zero. Thus negative terms combine with positive 
terms or vice versa. This rule is obeyed very well by known band 
systems. The Qum and Q2.422? branches of OH described in Chap. XII, 
Sec. 21 are exceptions to this rule perhaps due to its breakdown by the 
electric fields present in a discharge tube. 

So far, we have considered the case of singlet systems only, that is, 
the resultant spin of the electrons is assumed to be zero. If the electron 
spin is not zero, it is necessary to differentiate between Hund’s cases 
a and h (Chap. XII, Sec. 16). (We shall not discuss Hund's other 
cases, since these occur rather seldom.) In case b the electron spin is 
oriented relative to the /c, which replaces the j' of the preceding para¬ 
graphs. The spin does not change the symmetry properties of the mole¬ 
cule nor the rules governing the intercombinations of symmetric and 
antisymmetric, or positive and negative states. The effect is to split 
each of the levels shown in Fig. 8 into a multiplet; if s = Li> each level 
splits into two of like symmetrical properties which have the same k, 

but fs differing by one, and if s = 1, into three of like symmetry prop¬ 
erties with the same k value, etc. This splitting is due to the small 
coupling energy between the magnetic moment of the electron and that 
due to the rotation of the molecule. 

S states belong to case 6, but, if X 0, the states may belong to 
either case b already discussed or to case a. The correlation of case a 

and case b states, when s = 3^^, has been given in Chap. XII, Sec. 16 
and Fig. 20. Hund^ and Van Vleck^ have carried through this correlation 

• hoc. cit. 
^Phys. Rev., 88. 467 (1929^. 
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of the case a doublets for both normal and inverted doublet levels. If we 
imagine a coupling force between s and X which decreases to zero and 
then changes sign, it is possible to carry the normal doublets over into the 
inverted doublets adiabatically. Throughout this change, the symmetry 
properties relative to both the transformations of equations (101) and 
(107) do not change; the terms remain symmetric or antisymmetric, 
positive or negative, and the selection rules applying to combinations 
between these types of terms are exactly as stated above. 

10. THE ROTATIONAL STATES OF AND He^ 

The electrons of H2 in its normal state are symmetric in tlie electron 
coordinates and antisymmetric in the electron spins so that the electron 
wave function is antisymmetric in the electrons including the spin 
just as in the case of the normal helium atom. The normal non-rotating 
hydrogen molecule is symmetric in the nuclei since there is no “hyperbolic"' 
node and thus of equation (102) is equal to 1; also X is zero and the 
character of the rotational states shows that the positive sign of equation 
(1035) must be used, t.c., the state is a S state and not a X' state. There¬ 
fore according to equation (105) the rotational states are symmetric, 
if j = 0,2,4, • • • and antisymmetric, if J = 1, 3, 5, • • • . In addition, 
it is necessary to consider the proton spins, whose wave functions are 
entirely similar to those for the electron spins considered in Sec. 3; 
there are three symmetric and one antisymmetric nuclear spin functions 
with energies which are very nearly equal. We have the rule that only 
the wave fundions completely antisymmetric in the protons including 
the spins occur in nature. The \/''s for j = 0, 2, 4, • • • must be multiplied 
by the antisymmetric spin function and the i/^'s for 1, 3, 5, • • • by 
the three symmetric spin functions to secure wave functions which are 
completely antisymmetric in the nuclei. Thus the levels with odd j 
will have three times the probability of those with even j so that the a priori 
probabilities of the states are 2j + 1, if j = 0, 2, 4, • • • and 3(2j + 1), 
if j = 1, 3, 5, • • • . These a priori probabilities of the steady states 
are in agreement with the heat capacity of hydrogen (Chap. XII, Sec. 22). 

A similar application of the rules for symmetric and antisymmetric 
levels and for positive and negative levels to the higher states of the H2 

molecule gives exactly the arrangement of levels illustrated, for example, 
in Chap. XII, Fig. 28. Since the symmetric levels have only one-third 
the probability of the antisymmetric levels both in the initial and final 
electronic states, the intensities of the lines emitted in transitions between 
them are less than those of lines due to combinations between the anti¬ 
symmetric states. This accounts for the alternating intensities of these 
bands. Similar alternating intensities observed in other molecules 
with like nuclei are due to the presence of nuclear spins. Kronig^ 

^ Naturwis. 16, 335 (1928), 
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concludes that the nitrogen nucleus has 1 unit of spin from the fact 

that the relative a priori probabilities of the two sets of states are in the 

ratio of 1 to 2. The intensity data on chlorine (CP^-Cl®^) show 
that the relative a pnon . probabilities are approximately 1.4:1, while 

the bands do not show alternating intensities.^ Fluorine^ 

probably has alternate levels with a priori probabilities of (2j + 1) and 
3(2j + 1). If so, the F nucleus has a spin of J 2 

That the helium nucleus has no spin, is proved by the entire absence 

of one set of rotational levels of He2. Without knowing more about 

the nuclear wave function, we cannot say whether it is the states with 

wave functions symmetric in the nuclei or antisymmetric in the nuclei 

which are present. Alternate lines of the bands of the O2 molecule 

consisting of two atoms of mass 16 are also entirely absent, but all the lines 

are present in the bands of the O2 molecule consisting of one atom of mass 

16 and another of mass 17.^ In this case the nuclei have the same charges, 

and different masses, and thus the potential energy of equation (94) 

changes with the change in sign of the and the wave function changes 

in other ways than sign in the transformation of equation (101). For this 

reason all states of the OirOi? molecule exist in nature. 

1 Elliott, Proc. Roy. Soc. 123, 629 (1929). 

2 Gale and Monk, Phys. Rev., 33,114 (1929). 

^ Giauque and Johnston, J, A. C. S.y 61, 1436 (1929). 



CHAPTP]ll XX 

SPECTRAL INTENSITIES 

Part I. Intensities in Line Spectra 

1. INTRODUCTORY 

The study of the relative intensities of spectral lines entered on a 
new stage of development in 1924, and interest in the subject has grown 
very rapidly since that time. It had been known for many years that 
the ratio of intensities of the D-lines of sodium is 2:1 under conditions 
where they are not self-reversed. In 1923 and 1924, Dorgelo^ measured 
the intensities of a number of lines, mostly in the spectra of metals 
of the first and second groups, using the methods of photographic photom¬ 
etry, and showed conclusively that the intensities of lines belonging 
to the same multiplet often stand in the ratio of simple integers. Since 
that time the subject has been actively investigated by Ornstein and 
Burger and their colleagues at the University of Utrecht, and by a number 
of other investigators as well. Formulas have been obtained which 
give the relative intensities of the lines in a normal multiplet as a function 
of the initial and final quantum numbers of the emitting atom. Further 
it has been shown that integral intensity ratios are encountered in Zeeman 
patterns, and formulas which accurately represent these intensities are 
known. Duane and Siegbahn and others have studied intensity laws in 
X-ray line spectra, with the result that in a general way the intensities 
follow the theoretical formulas developed for optical line spectra. 

Before describing experimental results, it will be well to study the 
factors on which the intensity of a spectral line depends. Consider 
an assembly of N atoms of which A^i are in the lowest quantum state, 
N2 in the second, etc., and let Anm and Bnm be the probabilities of spon¬ 
taneous and forced transitions, respectively, from the nth to the mth 
state, p being the density of radiation per unit interval of frequency 
at the frequency v. The increase of the energy of the radiation field in 
time Atj due to transitions from n to m, is assumed to be 

AEnm = [Anwi + BnmP]NnhvAt. (1) 

Similarly, the loss of energy due to absorption processes in which an atom 

passes from m to n is assumed to bo 

— AEmn == BfnnpNmhvAt.^ (2) 

i Z. Phynk, 13, 206 (1923); 22, 170 (1924). 
* These assumptions were recently called in question by Schrodinger on the basis 

of the expression for the average :c-coordinate of an electron given in equation (82) of 
697 
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In the infra-red region the second term in equation (1) may be com¬ 
parable with the first, but in the visible and ultra-violet regions, the 
second term is negligible, under the conditions usually encountered in 
terrestrial sources. However, this term cannot be neglected when we 
deal with sources at the high temperatures encountered in astrophysics. 
In the remainder of this chapter we shall suppose that the Bp term can be 
neglected. The quantities (1) and (2) are proportional to the measured 
intensities of emission and absorption lines, provided that self-reversal 
does not occur, and so we arc chiefly interested in the relative values 
of AnmNnhVf OY of B„,npN„,hv. Now tlic valuc of p depends on the 
conditions of the experiment, and as we showed in Chap. Ill, Sec. 4, 

Anm HttHp' ^ Qti Binn 
B ~ r 3 ’ a ~ B ’ ^ 

where gn and Qm are tlie statistical weights of the levels n and respec¬ 
tively. By using these relations, absorption measurements can be 
connected with measurements of intensities in emission. Only a small 
fraction of the lines in any spectrum can be studied in absorption, and 
we shall be mainly occupied with the relative values of AnmNnhv for 
various spectral lines. Now, in accordance with equation (30) of Chap. 
VI and Chap. XVII, Sec. 10, we have 

AnnJiv = -^^3^ P\nm), (4) 

where P^(nm) is the nm element of the matrix representing the square ot 
the electric moment. In order to arrive at relative experimental values 
of P^{nm) for comparison with the results of theory, the factor must 
be taken into account. In the case of narrow multiplets this correction 
may be omitted. It is quite customarily used in discussing results for 

Chap. XVI, Sec. 15. On multiplying this expression by the electronic charge we 
have a quantity which Schrodinger interpreted as the electric moment corresponding 
to the ^ distribution there considered. If this interpretation were correct then the 
intensity of the radiation omitted in transitions from the nth to the mth state would 
be proportional to CnCn*CjnCm*. On the statistical interpretation CnCn* is proportional 
to the population of the nth statc^ and CmCm* to that of the mth state, so the inten¬ 
sity should be proportional to the product of these populations. When this hypothe¬ 
sis was put forth there was no clear cut experiment which could decide the question. 
Ordinarily, the number of atoms removed from the lowest state by excitation processes 
is only a small fraction of the total number and so the population of the lower state 
may be treated as constant. 

If this interpretation were correct, the relative intensity of two lines arising from 
the same higher level should change if we alter the^ relative populations of the lower 
lev€?ifi,’ furthermore, the change in the relative intensities should be the same as that 
of the relative populations. This has been subjected to experimental test by Gaviola, 

{Naiwey 122, 772 (1928)), using a fluorescence method. His work shows conclusively 
that the population of the final state has no influence on the intensity of a spectral line. 
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lines which are widely separated, although it is known that this correction 
is not always valid (Sec. 3). In what follows, we shall ordinarily assume 
that the correction has been made. It remains to consider the relative 
populations of the initial levels. There are two 3specially simple cases in 
which the populations are definitely known. First, if the atoms are in 
thermal equilibrium, we have 

Nn ^ On eW (-En/kT) ^ 
N,n gm exp [—EJkT) 

This case is realized when we are dealing with furnace spectra of atoms 
and with the rotational states of molecules. Second, if the excitation is 
sufficiently chaotic, as in the case of certain arcs and sparks where atoms 
in all states and electrons having a wide range of velocities are present, 
we have. 

Efn   Qn 

m Qm 
(0) 

Ordinarily, an attempt is made to arrange the experimental conditions so 
that equation (6) is satisfied, and, if this is the case, the intensity is 
determined by the product 

that is, 
^ nm g nrnk V, 

Inm^ gn^ ^ 

(7) 

(7a) 

2, THE SUM RULE QF H. C. BURGER AND DORGELO 

The following rule was proposed by H. C. Burger and Dorgelo’ 
for the case of narrow multiplets: 

The sum of the inteusities of all lines of a multiplet xckich come from a 
given initial level is proportional to the quantum \veight of that level; and 
the sum of the intensities of all lines of a multiplet which end on a given 
final level is proportional to the weight of that level. 

Let us apply the second part of this rule to the sodium Z>-lines. Here 
there is only one line arising from each of the initial levels and 

and the rule states that the ratio of their intensities must be the 
ratio of the weights of these states. The weight of a state of quantum 
number j is + 1, and so the intensity ratio should be 2:4, which 
agrees with experiment. Similarly, the first part of the sum rule applies 
to the sharp series doublets of the alkalies, and predicts that their 
intensities will also be in the ratio 2:4. Measurements by Dorgelo on the 
carbon arc spectra of these metals show that the predictions of the sum 
rule are well verified for certain sharp series doublets. Some typical 
data are given below. Where several values of the intensity ratios 
are given, they correspond to different sets of experiments. 

23, 26S(1924). ‘ . 
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Element Liiie.s Classification 
Observed intensity 

ratio 

Na. 
6,160-6,154 22P-3V8 100:40 
6,160-6,154 22P-3*aS 100:50 
5,802-5,782 22P-5\8 100:49-54 

K. 5,802-5,782 2H^-5^S 100:48-52 
[ 5,802-5,782 100:52-55 

K. 5,339-5,323 22/"-02.S 100:47 

It would appear from these data that the intensity ratio of a subordinate 
serit3s doublet or triplet is indepcmdent of the initial level. Further, 
it is well recojijnized that the intensity ratio is 2: 1 for the first principal 
series doublets of the alkalis. However, several investigators have 
found deviations from the predicted ratio for the higher members of these 
principal series. Recently, the whole subject has been reinvestigated by 
Sambursky.^ His results refer to the four elements Na, K, Rb, and Cs. 
The data for Rb and Cs cover a larger number of lines than those for 
Na and K. They show that the ratio has the value two for the first 
series member, in agreement with previous work, rises to a maximum of 
25 at the doublet P>S-6^P in the case of cesium and to the value 
5 for in the case of rubidium. After this it falls again. It 
appears, then, that the sum rule must be considered as an approximation 
even in the simple cases considered here. In the sections which follow, 
we shall encounter othc^r instances in which it is not valid, but on the 
whole it is a useful guide. Its range of validity is somewhat similar 
to that of Landers g formula, that is, it applies chiefly to normal multiplet 
spectra. 

Dorgelo has found that the sum rule is approximately obeyed by the 
sharp series triplets of Mg, Ca, Zn, and Cd. For these triplets the 
intensities should be in the ratios 5:3:1. Further, the theoretical ratios 
8:6:4 and 10: 8: 6 are verified for certain triplets in the sextet and octet 
systems of manganese. 

Taylor'-* has examined the potassium doublet RS-3D, which contains 
the forbidden line using several different sources. In a 
carbon arc which was packed with a mixture of carbon and potassium 
carbonate, the ratio of intensities at low carbonate concentrations 
approximated to in good agreement with the sum rule. He made 
further experiments on the way in which the intensity of the forbidden 
lines increases with rising current and vapor density. He states that the 
results are in accord with the hypothesis that the forbidden lines are 
brought out by the action of ionic electric fields. However, the evidence 
for this is purely qualitative. 

1 Z, Fhyaik, 43, 731 (1928). 

6, 166 (1928). 



Sec. 2] THE SUM RULE OF H. C. BURGER AND DORGELO 701 

The real usefulness of the rule is better shown when we consider the 
composite doublets of the diffuse series. Table 1 refers to these doublets. 
The final levels are marked at the left and the initial levels at the top, 
while a letter to represent the intensity of each line is inserted at the 
appropriate place in the body of the table. 

Table 1 

22D.1/, 

2*P%. a h 4 
. 0 c 2 

1 6 
4 

1 

Since the transition 2’^Pyr2'^Dy, is forbidden, we write zero for the 
intensity of this line. To find the intensities of the other three lines 
we have the following conditions: The sum of the lines coming from 

is to the sum of the lines coming from 2^^D'.y^ as 6 is to 4, or 

a _ 0 
6 + c ~ 4' 

and likewise, 
a + ^ _ 4 
“ c “ 2 

so that a/c = 9/5, h/c = 1/5. Since the scale on which our results are 
expressed is immaterial, we take a = 9, == 1, and c == 5. This result 
was subjected to experimental test by Dorgelo. ^ The means of his values 
for the cesium lines 6,212, 6,217, and 6,010 are in the ratios 9: 1.17:5.05. 

In cases where the sum rule is obeyed, we can draw certain conclusions 
as to the transition probabilities. Considering an emission process, let 
j and f be the inner numbers of the initial and final states, respectively. 
The sum of the intensities of the three lines emitted in transitions from j 
to j + 1, and j — 1 is proportional to gy, according to the sum rule. 
If A is the factor of proportionality, we have 

or 

^ ~ ^ i (S) 

and similarly, the second part of the rule leads to the relation, 

X gi'Ajj' = gi,A', (9) 
j =/ 1 

A' being independent of j'. This equation may be rewritten in the form, 

X = B, 
J-y'+i,/,/-1 

where B is independent of j', by making use of the relation, 

Sirhv^jj 

(10) 

(11) 

^Phyaik. Z., 26, 756 (1926). 
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3. INTENSITY RATIOS IN NORMAL MULTIPLETS 

In general, the sum rule does not suffice to give us the intensity 
ratios of the lines in a normal multiplet. Before the discovery of the 
now mechanics, the correct formulas for multiplet intensities were found 
with the aid of the correspondence principle, by Kronig,^ Russell,^ 
and Sommerfcld and The model used by these investigators was 
the simple vector model considered in Chap. VI, Sec. 6 and in Chap. X. 
A charge characterized by the quantum numbers I and s moves in a plane 
orbit with frequency co,, and the normal to the orbital plane processes 
around the resultant j of I and .s, with frequency coy. The direction of j 

may be taken as the z-axis, and for our present purpose the orbit may be 
supposed circular, as seen by an observer rotating with the orbital plane. 
We resolve the circular motion into a linear oscillation parallel to the 
2:-axis and two circular oscillations in opposite senses in the xy plane. 
The amplitudes of these oscillations are obtained by calculations of 
the kind employed in our study of the Zeeman effect on the basis of the 
classical theory (Chap. V, Sec. 10). We shall briefly recapitulate the 
results, adapting the notation to the present problem. First, consider 
the motion paralkd to the ;^-axis. If C is tht^ amplitude of the circular 
motion in the orbital plane, and 0 is the angle between I tndj, the ampli¬ 
tude of the oscillation parallel to the ^axis is C sin 6 and its freciuency 
is 0)1. Since coy does not occur in the frequency of this oscillation, the 
corresponding transitions should obey the rules Al = ±1, Aj =^- 0. In 
similar fashion wo find that the frequencies wi ± coy and — co/ ± coy are 
present in the motion in the xy plane. The corresponding transitions 
obey the selection rules = ±1, Aj —±]. The intensities /+i, 
I Of and /-.i of the harmonics corresponding to the various transitions 
are proportional to the entries in the following table: 

Al = I 

A^ = +1 }'2(1 + cos 6)^ 
Aj = 0 /(,oc sin'-^ S 

Aj — —1 /_ioc i'^(i — cos ey 

Al - -1 
7-^1 oc 1^2(1 - cos ey 

7,j oc sin^ B 
7_jcx 1/2(1 + cos ey (12) 

A simple sum rule is obeyed by these amplitudes. For given values 
of AZ, and of I and .s, the sum of the intensities belonging to the three 
possible values of Aj is independent of 6. Now, 

72 /i2 — o2 

Cdse =-2jf ^ 

and so this sum is independent of j, and the above mentioned sum rule 
is simply the sum rule of Burger and Dorgelo. Consider now a spectral 
line emitted in a transition from Z to Z + Al, j to j + Aj. By virtue 

’ Z. Physik, 31, 885 (1925); 33, 261 (1925). 
2 Proc. Nat. Acad. Set., 11, 314 and 322 (1926). 
^ Siizber. der Preusz. Akad. der WissenschaftcUf p. 141 (1925); see also HOnl, Ann. 

Phynik, 79, 273 (1926). 
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of the correspondence principle for intensities (Chap. VI, Sec. 4), we 
expect the intensity of this line to be roughly proportional to the corre¬ 
sponding entry in the above tabulation, using the value of cos 6 given in 
equation (13). Of course, there is no justification for using the value 
of cos 8 for the initial state rather than that for the final state, and the 
efforts of investigators in this field were devoted to discovering the 
appropriate modification of this procedure. Several guiding principles 
were available, such as the sum rule and the requirement that the true 
laws mugt yield zero intensity for certain lines, e.g., for transitions 
l)etween states for both of which j = 0. The formulas thus found 
have now been confirmed by the methods of matrix and wave mechanics. 
These formulas are rather involved, and can best be expressed, following 
Sommerfeld and Honl, by adopting the abbreviations 

p(j) - U + 00’ + ^ + 1) - s(-s' + 1) 
Q(j) ^ +1) - u - DU -l+l) 

R(j) = JU + l)+l(f+l) — s(s + 1). (14) 

Then the products of the weight factor g for the initial state and the 
transition probability for a transition to the final state, are propor¬ 
tional to the quantities in the body of the following table: 

I - I - I I 

P(j)P(j - 1) (21 + l)P{j)Qij - 1) Q(j}Q(j - 1) 
'4ji 

j - 1-^j 

3-^3 

3- ' 

mi +1) ui 
(2j + l)P(j)QU) (21 + l)(2j + l)Rr{j) (2j -b l)P(j)Qij) 

m+~i)i mi +1)0 +1) 4/(7+1)1 ■ 
Q(3)Q(3 - 1) (21 + l)P(j)Q(j - 1) P(j)P(j - 1) X 

ijl 

+1. I+l 

= ' 0. lo 

-1- I-l 

mi +1) 

g,-tA(j - 1, l;j, I ± 1) 

gjAU, l;3,l±i) 

g,Aij, 1; j - 1,1 ± 1) = 

Al = 0: 

Aj = 

4/f 

<'Q(j)Q(3_— 1) 
47- ’ 

c(2j + ^)P(j)Q(j) 

"‘~4/(7+1)i ’ 
cP(3)P(j - 1) 

47 

(15) 

+ 1. I^., = gi-iAU - 1, l;j, 1) 

0. lo = g,+ (/, 1;/, 1) 

-1. I_i = giAU, 1] 3 - 1, 0 

c{2l + UPU)Q(3 - 1) 
(Z+1)-47 

c{2l + 1)(2/ + 1)«2(j) 
4/(1 + !)/(/ + 1) 

c(2l + \)PU)Q(3 zJ) 
(/ + 1) • ijl 

A considerable amount of material is now available for testing these 
formulas. Frarichs^ has made measurements on multiplets of Ca, Cr, 
and Fe; van Milaan^ has studied a number of multiplets of elements 
in the transition region of the first long period, and G. R. Harrison® 

» Fhystk, 31, 305 (1925); Ann. Physitc, 81, 807 (1926). 
^ Z. Physiky 34, 921 Q925); and 38, 427 (1926); dissertation, Otreeht, 192<1 
»J.O. k A. and /?. S, /., 17. 389 (1928). 



704 SPECTRAL INTENSITIES [Chap. XX 

has measured more than thirty multiplets of Til and Till. All these 
authors demonstrated that the theoretical intensity ratios cannot usually 
be obtained unless precautions are taken to subordinate the effects of 
self-reversal. Harrison applied corrections to his data to eliminate 
intensity reductions due to this cause. His correction is based on the 
assumption that the amount of self-reversal in a line belonging to a narrow 
multiplet is proportional to its intensity. To give a better idea of the 
type of data obtained we reproduce the measurements of Frerichs for a 
quintet DD' multiplet of chromium, in Table 2. The wave length of 
each line is given in the body of the table with the calculat'd intensity 
below, as well as the average measured intensity, in parentheses. The 
intensity of the strongest line is arbitrarily set equal to 100. 

Table 2 

^D' 

I 
4 3 2 1 

! 

4 ‘ 3,919.3 
100(100) 

3,941.6 
20.0(24,5) 

3 1 3,886.9 
20.0(23) 

3,908 9 
46.0(46) 

3,928.8 
26.7(32) 

2 3,883.4 
26.7(36.5) 

3,903.1 
16 7 (about 19 5) 

3,921.2 
23.3(21) 

1 
I 

3"^.4~”'" 
23.3(<27) 

3'903.3 
3.3 (about 3) 

"~3,9r(r.4'” 
13.3(13.7) 

37894.2 
13.3(13.7) 

1 

The line 3,885.4 is assigned the value <27, because a faint line is 
superposed on it; in the case of 3,903.1 and 3,903.3, only the sum of their 
intensities was measured. As far as agreement with the formulas is 
concerned, this multiplet is neither very bad nor very good. Much 
closer agreements are encountered in the data of Harrison. The extent 
to which the intensity formulas are verified may be judged from the 
following summary given by Harrison: 

Of all the multiplets measured in Til, 58 per cent were found to obey the 
intensity formulas to well within 5 per cent, and evidence was obtained in favor¬ 
able cases which indicated that e.xact agreement could be expected when line 
separations were small. In Till, 62 per cent of the multiplets measured were 
normal. In Til, of the 42 per cent abnormal multiplets, 71 per cent of the lines 
were nonnal, while 16 per cent were abnormally weak and 13 per cent abnormally 
strong. For the ionized atom, of the 38 per cent abnormal multiplets, 61 percent 
of the lines were normal, while 21 per cent were abnormally weak, and 18 per cent 
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abnormally strong. Of all the lines measured, 86 per cent appeared to obey the 

intensity formulas, while 7.6 per cent were too weak and 6.4 per cent were too 
strong. 

Harrison further states that in agreement with the results of Frerichs 
for selected multiplets of elements in the iron group, no certain correlation 
was found in titanium between departure from the intensity formulas and 
from Land^^s interval rule. When intercombination lines occur, the 
intensity rules considered in this section niust be modified, and some 
departures from the intensity formulas can be explained on this basis. 
Another cause of departure, encounten'd in the case of wide multiplets, 
is the insufficiency of the correction. While Ornstein, Eyrners, and 
Coelingld found that this corrc'ction brings the sharp and subordinate 
series lines of the barium spark spectrum into exact agreemtmt with the 
intensity formulas, it is far from valid for the sharp series resonance 
lines of thallium, at 5,350 and 3,770 A., according to measurements of 
Ornstein and H. C. Burger.- In still other cases, neither of these causes 
can be invoked, and it must be concluded that the intensity formulas 
are not suitable to describe th(^ facts. 

4. INTENSITY RATIOS OF RELATED MULTIPLETS; INTERCOMBINATION 
LINES 

Consider all the lines which are emitted in a transition from ??/, 
r to n", These lines belong to systems of different multiplicities. 
They form several ordinary multiplets, and include a number of inter- 
combinations as w(dl. We shall refer to such an aggregate of lines as a 
group of related multiplets. An extension of the sum rule which enables 
us to obtain a certain amount of information about the relative intensities 
of lines in related multiplets was proposed by Ornstein and H. C. Burger.^ 
By way of example, we consider a group of multiplets of ionized oxygen 
studied by van AVijk.^ The initial states are -P and and the final 
states are of the same character. In Table 3, we give the wave lengths 
of all the lines which arise from the combinations of these levels, and 
which do not violate the selection principles. The wave lengths are 
accompanied by arbitrary symbols, used by van Wijk to identify the 
lines. In such an array, according to Ornstein and Burger, after applying 

the correction the sum of the intensities of all lines arising from a given 

initial level is proportional to its weight, and the sum of the intensities 

of all lines involving a given final level is proportional to its weight. In 
the example under consideration, there are no intercombination lineS; 

1 Z. Physik, 40, 403 (1927). 
* Reported by Ornstein, Physik, Z., 28, 688 (1927). 
3 Z. Physik, 40, 403 (1926). 
< Z. Physik, 47, 622 (1928). 
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Table 3 

Final Levels 

^Pw ^Pn 'Ph *Pn *Pn 

iS 
3,954, rf, 

3,945, d. 
3,983, di 
3,973, di 

'S 
*Ph 

•Pk 

1 
4,326, (7i 

4,317, q. 

1 
4,346,(72 

4,337, Qi 
4,320, q. 

4,367, ^6 

4,349, g? 

and this rule reduces to a statement of the sum rules for the doublet 
multiplet and the quartet multiplet, separately, together with additional 
relations which predict the relative intensities of the two multiplets. 
That is, the sum of the intensities in the first two columns, forming 
the doublet multiplet, should be proportional to the sum of the weights 
of and ^Py^^ while the sum of the intensities of lines in the quartet 
multiplet should be proportional to the sum of the weights of ^Py^y 

^Piu,y and ^Py,. As a matter of fact, the intensity rules of Sec. 3 are 
fairly well obeyed within each multiplet, and the ratio of the total 
intensities of the multiplets, after applying the correction, was found 
to be 1.9 when the source was at 50 cm. pressure, and 2.1 when it was 
at 18 cm. The situation is more complicated when the intensity of the 
intercombination lines is appreciable, for in this case the intensity rules 
of Sec. 3 cannot be expected to hold within the individual multiplets. 
Ornstein and Burger have studied the diffuse series of mercury, where 
the intercombination lines occur with considerable intensity. Appli¬ 
cation of the extended sum rule to the group of four lines near 3,650 
(2^P-3^D and 2^P-3^Z>) gave a result in excellent agreement with experi¬ 
ment. However, in the case of certain helium lines, definite failure of 
the rule was observed. Pauli ^ suggested on theoretical grounds that 
for triplet and singlet terms the ratio of intercombination lines to ordinary 
lines should be proportional to (dv/Avy, where dv is the total separation 
of the outside terms of the triplet, and Av is the distance of the singlet 
term from the center of gravity’' of the triplet. This rule was tested by 
Ornstein and Burger for the first four diffuse series groups of mercury, 
with excellent results. However, the rule was not verified in another 
case which they studied. 

We now consider another type of generalization of the intensity 
rules. Kronig® has given formulas for the relative intensities of the 
three multiplets emitted in the transitions {to J + 1, Z to Z, and Z to Z — 1, 

^ Geiger-Scheel Handbuch der Physik, Vol. 23, p. 255. 
2 Z. Physiky 83, 261 (1926). 
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when the azimuthal number of only one electron undergoes a change, the 
quantum numbers of the others being unaltered. The formulas are 
complicated and we shall not reproduce them here. In general, they 
predict that the intensities of multiplets belonging to a triad should 
be in the ratios of small integers. Harrison^ has tested these formulas 
by measuring the relative intensities of titanium multiplets. By way 
of example, we consider a triad of multiplets arising in transitions from 
the configuration ddHp to the configuration SdHsy and designated 
by Harrison as Nos. 128, 172, and 209. ♦They are of the types 

and ^F-^D, The wave-number separations are so large that 
we must consider not only the correction but also the Boltzmann 
factor, of equation (5), in order to arrive at the squared amplitudes 
which occur in the intensity formulas. The effcictive temperature of the 
source must be known in order to obtain the Boltzmann factor. Harrison 
found that a temperature of about 10,000®K. gave the best agreement 
between theory and experiment for a number of multiplets. Assuming 
this value of the temperature, the relative squared amplitudes for the 
three multiph^ts under consideration were found to be 

89, 70, and 48 

while the values required by Kronig's formulas are, 

90, 70, and 50. 

Indeed, these formulas are confirmed, at least qualitatively, in six of 
the eight cases studied in which they apply, regardless of the assumed 
temperature of the source. 

6. INTENSITIES OF ZEEMAN-EFFECT COMPONENTS 

The classical theory of intensities in the Zeeman effect, based on the 
correspondence principle, is very similar to that in Sec. 3. We consider 
an orbit which processes around the lines of force with the velocity of the 
Larmor precession, and find the amplitudes of the various harmonics 
in the motion. The intensities of the transitions corresponding to these 
harmonics are indicated in the table, in which 0 is the angle between 
the lines of force and the normal to the orbit. 

Aj = + 1 0 -1 

Am « +1 + cos e)^ H sin* 6 *“ cos 0p 
0 sin* $ cos* 0 yi sin® 0 

-1 y.i(l — cos 0)* H sin® $ K(1 +COS (9)® (16) 

1 J. 0, S, A, and R. S, 18, 287 (1929), 
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If we write cos B = m/jy where m is the magnetic quantum number 
for the initial state, these formulas give us intensity values which should 
be a rough measure of the actual intensities. Ornstein and Burger^ 
proposed the following sum rule for the transition probabilities in the 
Zeeman effect. Fixing our attention on a smgle multiplet line for which 

the initial inner quantum number is jy we consider all the transitions 

from a magnetic energy level with quantum number m. The sum of the 

probabilities for all these transitions is the same for all choices of m; and, 

similarlyj the sum of the probalnlities of all transitions ending on a magnetic 

level niy j, is the same for all choices of m. That is, 

A{my j] m + 1, f) + A{my j; m, f) + A(m, j; m - 1, f) = 

C(jJ'), (17) 
A{m + 1, i; ?n, f) + A(m, j; m, f) + A(m - I, j; m, j') = 

(18) 

In these equations C(j, j')> ^(i> iO independent of m, and j' 
can take any one of the values i + 1, jy or j — 1. We can show by 
summing over all values of in that 

(2j + 1)C(/, j) = (2/ + l)D(jy /). (19) 

Honl,^ and Kronig and Goudsinit^ solved the problem of obtaining 
exact expressions for the Zeeman-effect intensiti(^s by utilizing the 
following considerations. The expressions (10) sugge^st that the correct 
expressions should be quadratic functions of m. If this is assumed and if 
it is also required that the sum rule shall be valid and the Zeeman pattern 
as a whole shall be unpolarized, we have just enough equations to deter¬ 
mine the intensity formulas. The results are as follows: 

Aj - +1: 
(j( j I ^ 

A{m, j; ?« + 1, i + 1) = 2q- \y(2f+S)^ +m + 2){j + m + 1), 

Aini,j-m,j + 1) = + 1)-= - m^), 

Aim,j; m - l,j + 1) = -m + 2){j - w + 1). 

Aj = 0: . 

A(m, j; m+ 1, j) = _ m)(j + m + 1), 

Aim, i; m, j) = 

A(m, i; m - 1, j) = + m)(j - m + 1). 

1Z. Physik, 29, 241 (1924). 
2 Z, Physik, 31, 340 (1925). 
^ Naturwis., 13, 90 (1925); also Kronio, Z. Physik, 31, 885 (1925). 
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Aj = -1: • 

A{m, j; m + 1, i - 1) = - m)(j - m + 1) 

A(m, j] m,j - 1) = 

A{m, j; m - l,j - 1) = + m)(j + m - 1). (22) 

The dependence of these formulas on m has been verified by Heisen¬ 
berg and Jordan^ using matrix methods. The details of the computation 
will not be given here, since they have been conveniently summarized 
by Birtwistle.^ The formulas have now been well confirmed for a 
number of lines in low fields. Ornstein, Burger, and van GeeP studied 
the first sharp triplet of zinc, and van GeeP extended the observations 
to systems of other multiplicities. His results for the triplet — 2%^ 
of magnesium are typical of the type of agreement which is obtained. 
The theoretical and measured intensities for the components of these 
three lines are given in the following list. Parallel components are 
enclosed in parentheses; the calculated intensity is written abovcj the 
experimental value in each case. The results for the three lines are 
expressed on th(^ same scale and the total intensities of the lines are in the 
ratios required by the sum rule. 

5,167 A.: 2 (4) 2 
23 (46) 23 

5,172 A.: 3 3 (6) (6) 3 3 
38 34 (75) (71) 38 33 

5,183 A.; 1 3 6 (6) (8) (6) 6 3 1 
? 37 76 (75) (100) (72) 76 37 ? 

Van GeeP has found that the intensity formulas hold true for the Zeeman 
effect of the intercombination line 2^P2 — 3^/)2 of mercury, at 3,663.28 A. 
Further he has studied the intensities in the partial Paschen-Back effect 
of the first diffuse triplet of magnesium,® comparing the results with a 
theory worked out by Kramers, and independently by Miss Mensing.^ 

6. INTENSITIES IN THE SPECTRUM OF HYDROGEN 

The data presented up to this point are not suited for a test of the 
new mechanics, for deviations from the formulas might be blamed 
on the insufficiency of the model. A definite test can be made by 
studying intensity relations in the spectra of hydrogenic atoms. 

1Z. Physik, 37, 263 (1926). 
The New Quantum Mechanics,” Chap. XV, 

8Z. Physik, 32, 681 (1925). 
* Z. Physik, 33, 836 (1925). 

Z. Physik, 47, 615 (1928). 
6 Z. Physik, 39, 877 (1926). 
7 Z. Physik, 39, 24 (1926), 
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Numerous investigations of the Zeeman effect of hydrogen have 
shown that under suitable conditions of excitation the normal triplet 
is unpolarized and the two perpendicular components are of approxi¬ 
mately equal intensities. Since this result is predicted by the classical 
theory, the correspondence principle, and the new mechanics as well, 
it is not adapted for distinguishing between these theories. However, 
the Stark-effect intensities are well suited for this purpose. The first 
estimates of intensities in the hydrogen Stark-effect patterns were made 
by Stark himself.^ Kramers^ compared these estimates with values 
calculated by the correspondence principle, obtaining a fair agreement, 
in general, although there were some striking discrepancies. The 
Stark-effect intensities of the first four Balmer lines have been computed 
on the new mechanics by Schrodinger^ and by Epstein,with results 
which are not in agreement. The method used by both these authors 
is to calculate the components of the polarization matrix in the way 
explained in Chap. XV, Sec. 17. The mathematical details of the two 
treatments are quite different. Schrodinger uses the wave functions 
given in equation (50) of Chap. XVI, while Epstein uses expressions 
involving hypergeometric functions. In both cases, the unperturbed 
wave functions are employed. It is stated by Sornmerfeld'* that W. 
Zimmermann^ has reconsidered the problem, using wave functions which 
contain the first power of the field strength. His computations indicate 
a slight asymmetry of the intensity pattern, but this is too small to be 
observed at the field strengths used in the laboratory; aside from this, 
Zimmermann’s results agree with those of Schrodinger. Tests of the 
theoretical intensities have been made by Foster and Chalk^ and by 
Mark and Wierl.” Foster and Chalk used the Lo Surdo method while 
Mark and Wierl employed the light from a beam of canal rays, subjected 
to strong fields in the space behind the cathode of a discharge tube. 
The auxiliary field could be applied either parallel or perpendicular 
to the direction of the beam. By filling the space behind the cathode 
with nitrogen at low pressure, Mark and Wierl obtained patterns due 
only to the atoms in the canal-ray beam, while light coming from atoms 
at rest was obtained by filling this space with hydrogen and using nitrogen 
canal rays. Most of Foster^s results are in strikingly good agreement 
with those of Schrodinger. With a few exceptions the same is true of the 
results obtained by Mark and Wierl when studying the parallel com- 

1 Ann. Physik, 48, 193 (1915). 
* Det Kgl. Danske Vidensk. Selsk. Skr.j 3, 287 (1919). 
3 Ann. Physik, 80, 437 (1926). 
4 Phys. Rev., 28, 695 (1926). 
® “ Wellenmechanische Ergjlnzungsband,’^ p. 193. 
® Unpublished. 
'^Proc. Roy. Soc.y 123, 108 (1929). 
^ Naturwissenschaften 10, 725 (1928); Z. Physik., 63, 526 (1929). 
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ponents of Ha, 11/3, and H7 from moving atoms, with the field 
perpendicular to the direction of motion. However, they showed 
conclusively that in the type of tube which they employed, the theory 
does not apply to the perpendicular components, as obtained from moving 
atoms which are excited by collisions, from resting atoms, or from moving 
atoms which arc emitting spontaneously in a high vacuum (Abkling- 
leuchten). This is well shown by the parallel components of H/3, which 
lie at eight and ten times the quantum unit of frequency difference 
(C'hap. V, Sec. 13). Schr()dinger^s value for the ratio^of their intensities 
is 1.06, while Foster and Chalk obtain 1.04. Mark and Wierl get 1.10 
for the light emitted ])y rpoving atoms due to collisions, with the field 
perpendicular to the beam, and 0.85 for the light from atoms at rest. 
They suggest that some of tliese discrepancies may be due to the Stark- 
Lunelund effect, that is, the polarization of the light emitted by a beam 
of moving atoms in the abs(mce of a field. It is pc'rhaps natural to expect 
that the theoretical ratios will be more closely approximated under 
the conditions encountered in the discharge itself than in a beam of 
canal rays. As emphasized earlier in this chapter, the populations 
of the upper states will be in th(‘ ratios of their statistical weights only 
if the excitation is sufficiently chaotic. Further experiments will be 
required to elucidate the matt(T. 

It is of interest to consider the theoretical decrease of intensity 
along the spectral s(‘ri(‘s of hydrogen. The relative intemsities of the first 
four Rainier lines were obtained by Schrodinger, by summing the intensi¬ 
ties of the Stark-effect components. He also gives explicit formulas 
for the intensities of the Lyman and the Rainier series, communicated 
to him by Pauli. They are as follows, n being the total (luantum number 
for the initial orbit: 

Lyman series: !(??,, 1) 

Balmer series: I(n, 2) 

2^(n - 

«(« ++ 10). 

(23) 

(24) 

We shall not give the derivation, as it is carried through by Sornmerfeld.^ 
The results have been extended to the Paschen scries by Sugiura.^ 
It is well known that the relative intensities of the Balmer lines are very 
sensitive to changes in th(; source, and data obtained in the laboratory 
are not likely to check the computed intensities, except by accident. 
It would seem that measurements on stellar spectra would afford the 
best opportunity for a decisive test. Bongers*'^ has measured the Balmer 
series and found that his results are represented by 

I _ r(n — no)’ 

1 Wellenmechanische Erganzungsband, p. 94. 
2 de Phys. (6), 8, 113 (1927); Z. Physik, 44, 190 (1927). 
3 Dissertation, Utrecht, (1927). 
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where n and no are the quantum numbers of the initial and final 
states, respectively. This is in striking contradiction to the 1/n® relation 
required by equation (24) for large values of n. 

In order to obtain approximate expressions for the intensity dis¬ 
tribution in the series of the alkali atoms, one may evaluate the intensities 
for the various fine structure components of hydrogen. These partial 
series have been calculated by Kupper,^ the results being in good agree¬ 
ment with data of Trumpy.^ However, Miss Bleeker^ has measured 
the subordinate j^eries of K, Rb, and Cs, and has found it possible to 
represent her results by the formula 

c(n — noY 
(26) 

Her formula is also well obeyed by several subordinate series of mercury. 
There are two factors, the temperature and density, which may 

ordinarily be neglected in considering the intensities of the higher series 
members, but which are of imnortance in considering the conditions 
in the stars. Under equilibrium conditions the number of hydrogen 
atoms in the states of total quantum number n is 

(27) 

where 2n^ is the a priori probability of these states and the exponential 
is the Boltzmann factor. Since 2n‘^ approaches co as n becomes large 
and the exponential factor remains finite, the number of atoms in the 
higher quantum states becomes very large and in fact all the atoms should 
be in the infinite quantum state. Urey^ and Ferrni^ suggested that a 
certain amount of vspace is excluded due to the “volume occupied by the 
atoms and that this volume increases with the quantum number in such 
a way that the number of atoms in the nth state approaches zero as n 

becomes infinitely large. The volume of an atom is not easily defined or 
approximated, but this effect is certainly present. Density of the gas 
does not explain the deviation of Bonger^s formula from the theoretical 
formula and it appears that this effect can only be of importance in stellar 
spectra.^ 

7. INTENSITIES OF X-RAY EMISSION LINES 

The intensities of X-ray lines emitted by a solid target bombarded 
by electrons of a given energy depend on many factors beside the proba- 

^ Ann. Physik^ 86, 511 (1928). 
2 Z. Phyaik, 42, 327 and 44, 575 (1927). 
3 Z, Phys. Chem., 120, 63 (1926). 
^ Astrophys. J., 49, 1 (1924). 
^Z. Physik, 26, 54 (1924). 
®For an elegant treatment of this subject see Fowler, ^^Statistical Mechanics,” 

Chap. 14. Cambridge Press (1929). " 
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bilities of transition and it is often very difficult to correct for these 
extraneous factors in order to estimate the probabilities as calculated 
from theory. Both the absolute and relative intensities change with 
the voltage on the X-ray tube; absorption in the target is especially 
important for the longer wave lengths; and in many cases it is difficult 
to separate all the lines of a multiplet so that the intensities can be 
estimatc^d separately. Considering the many difficulti(‘s in interpreting 
the experimental n'sults, the agrc(unent with the theory for the intensity 
of multi plots presented in the preceding sections is as close as could be 
expected in some cases, but in others there appears to be definite dis¬ 
agreement between th(^ory and experiment. We shall discuss the relative 
intensities of lines of the same multiplet for the most part. 

Somrnerhdd^ pointed out the essential similarity of the X-ray doublets 
and the optical doublets and showed that the experimental facts then 
available were in approximate agreement with the rules of Dorgelo 
and Burger and in particular that the intensities of the Ka\ and Ka2 

lines were approximately in the ratio of 2:1 and that the Lax and La2 

lines had approximately the relative intensities 9:1 as required by these 
rules. J^uaiK^ and Siegbahn- and their coworkers early investigated 
relative intensities in the /v-series lines. The Kax and Ka2 and the 
Kfix and Kflu lines are two doublets of the — ‘-^aS type and in accordance 
with the theory of Secs. 2 and 3 should have relative intensities of 2:1 
in both cases. .Duan(‘ and Stenstrom found a ratio of 2:1 for the Kai 

and Ka2 lin(‘S of tungsten and Duane and Patterson a ratio of 1.93:1 
for these lines of molybdenum, while Allison and Armstrong secured a 
ratio of 2.1:1 in the fourth order and 2: 1 in the fifth order for the K^x 

and KI32 lines of molybdenum. Siegbahn and Za'^ek secured for the 
intensity ratios of the Kax and Ka2 lines of Cu, Zn, and Fe, 100:51.2, 
1.00:50, and 100:49.9, respectively. These doublets are emitted in 
transitions from the same excited level, narnel}^ the K level, to the Ln 

and Lih, or the Mn and Afm, so that the relative intensities should 
measure the relative values of the Anm coefficients for these transitions. 
Moreover, the coefficient of absorption of the target for these wave 
lengths will be small, since they lie on the long wave-length side of the 
X-absorption limit and far to the short wave-length side of the L-absorp- 
tion limits. This makes the agreement with theory especially satisfactory. 

The most complete investigations of intensities of the L-series lines 
are those of Allison and Armstrong,^ Allison^ and Jonsson,^ who have 

1 Arm. Physik, 76, 284 (1925). 
2 See Lindh, Phys. Zcit.y 28, 95 (1927) for detailed references to the earlier 

literature. 
8 Phys, Rev,, 26, 714 (1925). 
^Phys, Rev,, 30, 245 (1927); 32, 1 (1928). 
'Z. Physik, 46, 383 (1927). 
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investigated lines of tungsten, thorium, uranium, silver, palladium, 
rhodium, molybdenum, and a few other elements. The results of these 
measurements for a number of X-ray multiplets are given in the follow¬ 
ing table: 

Lines. y3'y2 yi-^G 

Transitions. Li —> Nn,m Li Mji,ni Ln.m Vi Ln,iir Ml f'lJflU-"* Miy,y 

Relative intensity, theory: . . 100:50 100:50 50:100 50:100 50:100:11 
Relative intensity, observed: 

Ak ‘ . 100:01 55:100 50:100:12 
Pd' . 100:04 00;100 50:100:12 
Rh'.■. 100:05 (»1:100:13 
Xlo' . 100:70' 02:100;13 
W' . 100:74 100:00 30): 100 40:100 48:100:11 
Th2. (0:1 4) 50:100 (>2:100:12 
U2. 100:107 100:08 (0:1 0) 40:100 

i 
40:100:11 

I 

1 JoNBrtON, lof. cit.; Ai.lisoxN and Ahmhtuono’s data on tiuiKHten arts in iipproxijnate agreement with 
those of JonsRon. 

2 Allibon, lOi\ cd. 

These examples show the character of the agreement between theory 
and experiment; in the case of the P\y and «2 lines which form a 

> H.) triplet, the agreement is very satisfactory; dh the other hand, 
the experimental and theoretical intensity ratios of the yn and and 
of the /33 and ^4 lines do not agree nearly so well; there is a consistent 
trend toward greater intensity of the weaker component until in U the 
theoretically weaker line has actually become the stronger of th(‘ two. 

WentzeT has calculated the relative intensities of the different 
X-ray lines with different values of and I for the initial and final states 
using quantum mechanics. Allison and Jonsson have found only 
approximate agreement between their data and the theoretical 
predictions. 

Part II. Intensities in Band Spectra 

8. THE SUM RULE APPLIED TO BAND SPECTRA 

In the case of atomic spectra it was possible to neglect the exponential 
Boltzmann factor in considering intensities of lines, because under the 
usual conditions of excitation the populations of atoms in different 
states are proportional to the quantum weight. In the case of band 
spectra this is not true and the exponential factor of equation (5) must 
be retained. For this reason the sum rule of Burger and Dorgelo as 
stated in Sec, 2 does not apply to the relative intensities of band-spectrum 
lines. The intensity of a band line is proportional to the Einstein proba¬ 
bility constant and the number of molecules in the initial state 

“ df hv{nm)A„„,gn exp (28) 

1 Naturums.y 14, 621 (1926). 
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It is usual to call AnmOn the intensity factor, and using the customary 
symbols we shall write it A(j'yj")(2f + 1) for the transition from the 
j' to the j" state, since 2/ + 1 is the weight of the j' rotational state. 
The question arises as to whether an effective temperature” can be 
assigned to a discharge which is not in equilibrium and whose temperature 
is therefore not d(‘fined. This will be discuss(ul in Sec. 11, when^ it is 
shown that experimental data are consistent with the inclusion of the 
exponential factor in equation (28). 

The sum rul(i as applied to band spectra is: 
The sum of the iutensity factors, A(f, /')(2/ + 1), over all values 

of permitted Inj the selection rules with f constant, is proportional to the 

quantum weight of the j' state and the sum of these factors over all penyiitted 

values of j' holding j" constant is propor¬ 

tional to the weight of the j" state. This 
statement is evidently eciuivalent to that 
of Sec 2 

Fowlerand Dieke- first applied Jo / 2 3 % 

these rules to mok^cular spectra. Their ^ 
application can be illustrated by the 
intensities of a band. We represent A(j', j")(2j' + 1) for the 
lines of tlie P branch by n\, </•>, and for those of the R 

branch by 7^2 . . • v'j . . . The transitions are shown in the diagram, 
Fig. 1. Then the sum rule requires that 

Vl = goC, W] + U2 = giC, W2 + Uz = g2C, * • ' , 
UU = (Ji)C, III + <^2 = g\C, U2 + = f/2C, • • • , 

or 
= iri = goC, Ho = W2 = {gi - gu)c, • • • . 

Since g^ = 2j + 1, we have 

111 = Wi — c, ii2 == Wo = 2c, • • • ; 
then 

(2j + i - 1) = cj and {2j - l)A{j - 1, j) = cj, (29) 

where j is the larger of j' and j" in all cases. 
This makes the lines symmetrically placed relative to the missing line 
equal in intensity except for the exponential factor of equation (28). 
This factor gives an 7^-branch line a slightly greater intensity in absorp¬ 
tion and less intensity in emission than the P-branch line of the same 
running number; this can be easily seen by considering the diagram and 
the relative values of the energies of the initial states for the two lines 
in the cases of absorption and emission, respectively. The constant 
c is PQ^(2Trv)^/3c^hv, where Po is the electric moment due to the changes 
in electronic or vibrational quantum numbers in the case of electronic 

^ Pha. Mag., 49, 1272 (1925). 
2 Z. Physik, 33, 161 (1925). 
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or vibration rotation bands or to a permanent electric moment of the 
molecule in the case of pure rotation bands. 

9. THE INTENSITY FACTORS FOR CASE a MOLECULES’ 

Just as in the case of complex atomic multiplets the sum rule does 
not suffice to fix the relative intensities, it also cannot fix the relative 
intensitie^s in more complex bands than those of the ^2—^2 type. 
It is necessary to derives these relative intensities from a more extensive 
theory of the emitting molecule. The model which we use is th(' cus¬ 
tomary gyroscopic model having, in general, a resultant angular momen¬ 
tum about the line of nuclei equal to t( = X + o') in quantum units. 
The relative intensities for case a were derived by London and HbnP 
using a modification of the method of Somiiuu’feld and Hbnl described 
in Sec. 3. Since theses relative intensities have been derived by applying 
matrix and wave mechanics to the heavy s^anmetric top as described 
in Chap. XIX, Sec. 6, we shall not give the older calculations. To write 
down the relative intensities for the molecules of the case a type, it is 
only necessary to note that a diatomic molecule is a symmetric top with 
a small moment of inertia about the figure axis. The dependence 
of the wave function on 0, <p, and x will be the same whether they fix 
the position of the rotating nuclei in the first case or the rotating electrons 
in the second, though the dependence of the energy on X in the one 
case and t in th(? oth(*r is quite different. The l is ecjual to the sum of 
X and a; it appears from experimental data that At = AX, that is, a 

does not reverse its direction nJative to X in a perrnitt(‘d transition, 
and that it is t rather than X which must be used in equation (tUi) of 
Chap. XIX to secure the propiT 

The intensity factors in the syrn}>ols appropriates to this proWeun 
are: 

gi'Aii', /; i", j") f ~ j" t' - 

c2{2j+iy 

i(i + 1) 
0 0 

C2{p - ^) 
±1 0 

j 
c{2j + ])(i + 0(i - t + 1) 

iU + 1) 
0 + 1 

c{j + t)(i + 1-1) 
±1 ±1 

j 
c(j - 0(i " ^ + 1) 

j 
=F1 + 1 

where the j and t occurring in these formulas are the larger of the initial 
and final values of these quantum numbers. The reader can easily verify 

' See Chap. XII, Sec. 15 and Fig. 19 for the model interpretation of this case. 
* Z. Physik, 33, 803 (1925). 
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the fact that these intensity factors are in agreement with the sum rule 
of Sec. 8; this is also evident in the case of the special examples given 
below. 

To illustrate the theoretical intensities expected for this type of 
molecule, we shall use transitions of the and TT —> types; 
the intensity factors are given in the following tables for these two cases: 

r 1 2 4 UI 

% 

my, 

f 3^ ■ ^ 

\ o' 
g"\ 

4 8 12 

4 
' 

. 

8 ?i'r, .«{ 

12 

F'IH'IA ( Q2A2A 

P2A2B \Q2B2B 

AX = 1 

% 

At = AX = 0 

\ o' 
g'’\ 

8 12 16 

8 16< / 5 

12 *9^ 

16 "in^ 

R\a\b 

R\b\a 

fPlBlA !QiA\A 

\P]A\b \Qibib 

At = AX = 0 

The weights are doubled {Qj — 2{2j + 1)) in this table and the intensity 
factors, equations (30), are so normalized that the sum rule gives the 
doubled quantum weight. We do this because corresponding to each 
value of j there are two states, if X 7*^ 0, one positive and one negative, 
in the sense of Chap. XIX, Sec. 9, z.c., A and B states each of which has a 
weight of 2jf + 1. The branches, in the symbols used in Chap. XII, are 
given at the ends of the diagonals. In the case of the ^11 ^2 transition, 
the Q branch gains in intensity relative to the P and R branches as j 

increases, while the reverse is true in the case of the transitions. 
This decrease in intensity of the Q branches in the latter case is very 
rapid. These Q branches are observed in the NO bands of Fig. 1, 
Chap. XII which are of this type, but decrease rapidly in intensity as j 

increases, in agreement with theory. 
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10. THE INTENSITY FACTORS FOR CASE b MOLECULES 

The arguments used in deriving the intensity factors for these mole¬ 
cules can best be understood by considering the models of Chap. XII, 
Sec. 16, and Fig. 19. Disregarding the s of case b for the moment, 
it is seen that the precession of l about j in case a is eiitin'ly similar 
to the precession of X about k in case h. Thus the amplitudes of the 
electric moment in case 6, if k did not process about.;, should be the same 
as those of case a and are given by equation (30) with k and X replacing 
j and t, respectively. Since k pr(^cess(\s only very slowly about j, these 
amplitudes will not be appreciably changed b}^ this precession. 

On the other hand, the precession of k and .s* about.; is entirely similar 
to the precession of I and .y about j in atoms; k is the resultant of all 
‘^orbitalangular momenta of eh^ctrons and nuclei just as I is a similar 
resultant in the atomic case and .y has the same significance in both. 
Thus, the relative intensities of all lin(\s emitt(‘(i for a certain value of AA^ 
and different values of Aj are given i)y equations (15) for the atomic 
case, if we replace I by k in those formulas. Therefore, in order to secure 
the relative intensities for a given value of A/r, it is only necessary to 
multiply the appropriate factor of equations (30), with k and X replacing 
j and L in these formulas, by the appropriate factor of equations (15), 
with k replacing I of those formulas. Th(^ formulas so secured must be 
further multiplied by a normalizing factor. "I'lie loosely coupled s 

vector cannot change the total intensities for a given Ak appreciably. 
Therefore, the normalizing factor is secured by making the sum of all the 
intensities for a given Ak over all permitted values of Aj equal to the 
intensity required by the formulas for case a with k and X replacing j 

and l; or, what is the same thing, wc r(‘quire that the sum of the factors 
of equation (15) for a given Ak over all possible values of Aj multiplied 
by the normalizing factor shall equal 1. These normalizing factors 
have been secured by Mulliken^ for doublet systems, t.e.j s = Hi 

are: 

and 

(31) 

To secure the correct intensity factor for any transition we have only to 
multiply the three appropriate factors from equations (15), (30), and 

(31). 

Example.—We ask for the intensity factor for a branch of a ^II —> band for 
which Aj — 0, Ak = — 1, and A\ = 1. For this branch j' = A' -f j" ^ k" — 
and, since j' = j", k" = A' -f 1, and the k appearing in the formulas is equal to k"; 

therefore, we must substitute j = k — ^2 the formulas. We multiply the first 

ip/iys. Rev,, 30, 138 and 785 (1927). 
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factor of equation (31) by (/c — X)(fc — X + 1)/A:, secured from equation (30) by 

substituting k and X for j and t, and by {2j secured from 

ecjuation (15) by substituting k for 1. Then substituting j = k — and simplifying 

we get, 

gjA{j, X, /c ~ l;y, X - 1, /fc) 
q(^ 4" x)(/"'. “f- X ~ 1) 

j(4k - 1) ■ ■ ’ 

The results of tlu'se c.ahailations are given in Ta])Ic 4. 

Table 4 

Branch Intensity factor 
ffj'-'i ij', >■', J", /■:") / - j" 

! 
i ,\' - X" k' - k" 

Pi . (■■\(k + l)(/c= - X2) 4- 1 0 + 1 

k{2k + 1) 

R2 P2 

1 1 

-f 1 0 ±1 
k(2k - 1) 

r1(/v^ - X2) 0 0 + 1 . 
k{4k'^ - 1) 

Q, . cA\H2k 4- 3) 0 0 0 
(k + l){2k + 1) 

(^2. c4\H2k - 1) 0 0 0 
lcC2k + 1) 

^Ri2 ^I\i.1 
c4X2 + 1 0 0 

k(k 4- l)(2/c 4- 1) 

Ri Pi. c2(k - \){k - X 4- l)(k 4 1) -t-1 -f 1 ±1 
k(2k + 1) 

R^ P2. c2(k - X){k - X + \)(k - 1) 1 T 1 ±1 1 

c2(k - \)(k - X 4 1) 0 •f 1 ± 1 . • A•(4^'2 - 1) 

Pi Ri. c2ik + X)(k + \ - Dili + 1) ±1 Zf 1 ±1 
k{2k 4 1) 

P2 R2. c2(k + X){k + X - l)(k - 1) 4 1 41 ±1 
k(2k - 1) 

«Qi2 . c2(k + X)(k + \ - 1) 0 4 1 ±1 
k{4k^ ~ 1) 

Qi. c2{k 4X)(/c - X 4 1)(2A: 4 3) 0 41 0 
{k 4 l)(2/b 4 1) 

02. c2(k 4 N){k - X 4 l)(2/c - 1) 0 
1 

4 1 0 
k{2k 4 1) 

^R\2. c2(k 4 X)(At — X 4 1) / -1 4 1 1 ! 0 
k{k + l){2k + 1) (+1 41} 

In these formulas k and X refer to the larger of the initial and final 
values of these quantum numbers, and the upper and lower signs to the 
branches given in the first and second columns, respectively. Each of 
the symbols of the first and second columns represent in general two 
branches; each P or R branch may be either an AB or a BA branch 

and each Q branch either an AA or a BJ3 branch. All these branches will 
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not be classified as one band for the change of \ is accompanied in general 
by a large change in the frequency emitted. For any given value of X', 
the intensity factors given would be for three separate emission bands 
for which AX = 0, +1, and ~1, respectively. There will be twenty 
possible branches in each of these bands, if X 7^ 0 for both electronic 
states. If X = 0, for one state, this number is reduced to ten, since we 
assign the letter A to 2 states, and thus all branches designated by a 
symbol with a subscript B for this state do not appear. If X = 0 in 
both states, there are only six branches with intensities given by the 
first three formulas. In this case, A states combine with A staters in the 
P, R, and Q branches due to the fact that according to the theory of Chap. 
XIX, Sec. 9 the states are alternately symmetric and antisymmetric, 
positive and negative, and thus these transitions are possible. 

We have now considered the intensities for case a and case h bands 
in which both stakes are either case a or case 6. There is also the inter¬ 
mediate case in which one state belongs to case a and the other to case 
b or in which one state or the other is case a for small j and case h for large 

In such bands the intensities will not follow the formulas of this 
section and the preceding one exactly. Weak branches may appear 
repres(mting the permitted transitions of both types. The Cali bands 
described in ( hap. XII, Sec. 20 belong to the case h type, whiles the water 
bands of Chap. XII, Sec. 21 belong to the intermediate type. The 
intense ])ranches of the water bands arc those for Aj = Afc = 0, ±1, 
which are permitted by the selection rules of case h and are equivalent 
to Aj = 0, ±1 and At = AX = — 1 when j is small so that th(ise strong 
branches also obey the selection rules for case a, 

11. TEMPERATURE AND THE INTENSITIES OF BAND SPECTRUM LINES 

The selection rules and relative intensities discussed in Secs. 8, 
9, and 10 are known to be qualitatively correct, but exact comparison 
between experiment and theory is not easily made because of the impor¬ 
tance of the exponential factor in equations (5) and (28) and the diffi¬ 
culties of measuring precisely the intensities of lines so close together as 
are those of band spectra. Recently, Ornstein and van Wijk^ and 
Kapuscinski and Eymers^ have measured the intensities of the negative 
nitrogen bands (N2'^) and of the mercury hydride bands, respectively, 
and find that it is possible to assign an “effective temperature^' to 
the emitting gas and that the intensity factors derived above are in 
agreement with their data. 

The N2'^ bands studied are due to a ^2 transition and, accord¬ 
ingly, the intensities are given by the first three factors of Table 4 with \ 
equal to zero. The band consists of six branches which group themselves 

1 P/i2/st/c, 49, 315 (1928). 
54, 246 (1929), 
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howover into an R and a P branch each consisting of close triplets. The 
intensities of these close triplets added together is equal to 4ck, where 

k is the larger of k' and k", i.e., k = k' for the R branch and k - k" 

for the P branch, 
triplets will be 

Iti{k) a: AAck' exp 

and 

Ipik)cc A4c(k' 4-1) exp 

Then, according to Table 1, the intensities of these 

k'{k' + -i)y 
(- SwH' k„T 

(- 
¥ k ik' + 1) 

'8¥P kj,T O' 
where ^ is a constant which is different for different values of k due 

to the alternation of inUnisities in the band. If then (lop; /«)//{: and 

(log Ip)/{k + 1) are plottcnl against k{k + 1), straight lines should 
result. Two such lines an^ secun'd on one of which lie the points for 

even k and on the other the points for odd k. The two lines are parallel 

and their slope gives a value for the (effective teinperatur(\ The separa¬ 
tion of the lines along the a.Kis of (log lH)/k must be equal to log .4(even)/ 

A (odd) and this difference gives A(e,ven)/A(()dd) = 2. Thus the 
quantum wc'ights of the even lev(ds are 2(2j + 1) while those of the 

odd levels are 2j + 1. 

The similar experiments on the HgH bands (-11—>"^) do not give 

such an exact straight-line relation betw(H*n the energy and log I divided 
by the intensity factor. In this case, the exponcmtial factor of equation 

(28) is only approxirnat('ly corrc'ct. The intensity factors agree with 

the pr('dictions of th(' theory for the intermediate type between case 

a and case 6.^ 

1 See Chap. Xll, Sec. 20 and Figs. 22 and 25 for a detailed description of this typo 

of hand. 

2 St'c Hjll and van Vleck, Phf/s. Rev.^ 32, 250 (1928), for these intensity fornmlas. 



CHAPTER XXI 

DIFFRACTION OF ELECTRONS AND ATOMS BY CRYSTALS 

1. INTRODUCTION 

Davisson and Kimsman made the discovery that when electrons 

impinge on polycrystalline metal surfaces the fraction scatt(Ted at an 
angle 8 with the normal to the surface does not decrease uniformly as 
0 increases. On the contrary, if the fractioTi scatterc^d at the angle 6 

is plotted as a polar graph, the curve usually has several lobes or pro¬ 
jections. A classical theory of th(» (Tf(‘ct, outlined by Davisson and 
Kunsman, was based on the idea that a given electron might pass through 
the force-fields of the atoms in the crystal in a variety of w^ays. Its 
deflection would depend on the distance of clos(‘st approach to a nucleus 
and on many other factors, so that a definite t(‘st of the theory would lie 
beyond our present resources. The results seemed likely to remain 

unexplained, until EinsteirP discussed de Broglic^’s matter waves, in 
1924 and 1925. He emphasized the idea that if particles possess a 
wave-like character, diffraction plumomena should be associated with 
their motion, and the ordinary laws of motion will not be obeyed. Now 
we have seen (Chap. XV, Sec. 20) that the velocity of the waves associ¬ 
ated with a free particle is E/mv, where E is the energy and rnv the 
momentum. The frequency is E/h^ and therefore, the wave length is 

Diffraction phenomena may be expected when one particle passes another 
within a distance of the order \, or when it falls on a lattice structure 
with spacings somewhat greater than X. In equation (1), the wave 

length is in centimeters, but if we agree to measure it in Angstrom units, 
then for the electron we obtain 

X = Angstroms, (2) 

where V is the potential difference through which the electron must fall 

in order to attain the velocity v. This shows that moderate voltages 

correspond to wave lengths of the proper size for appreciable diffraction 

at a crystal grating. Elsasser^ suggested that the results of Davisson 

^ Bitz, Ber. d. Berliner Akademie (1924) and (1925). 
^ Natuirvmmi,8chafteny 13, 711, 1925; 16, 720 (1928). 
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and Kunsman’ might be explained as due to electron-diffraction. Today, 
we know this intc^rpretation of the original experiments of Davisson and 
Kunsman is incorrect, but it furnishes a satisfactory explanation of a 
considerable body of data accumulated since April, 1925, when Davisson 
and Gerrner made a very significant discovery.- At that time they were 
investigating the distribution-in-angle of electrons scattered by a target 
of poly crystalline nick(‘l, which has a face-centered cubic lattice. Due 
to an accident it ])ecam(‘ iK^cessary to heat/ the target to high temperatures 
in vacuo. Distribution curve's obtained after heating were radically 
different from earlier ones in that the lobes liad increased in number and 
in prominence, d'his alteration proved to be due to a recrystallization 
of the target during the prolonged heating, such that/ its face was altered 
into a mosaic compost'd of about ten large single crystals. Systematic 
experiments were th('n und('rtak(m, in which the area of the target 
bombarded was known to belong to a single crystal. 

It will l)e useful to state the main results of this investigation, so 
that the reader may better understand the trend of the expc'rirnental 
work. In the words of Davisson and Gerrner, when the direction of 
bombardment is normal to the crystal fac(i 

. , . strong In'ains are fouiKl issuing from the crystal, hut only when the 

speed of l)oml)ardnient lies near one or another of a series of critical values, and 

then in dir(‘ctions (]uite unn'lated to crystal transparency. The most striking 

characteristic of tliesc* beams is a one to one corres})ondonee which the strongest 

of tlunn bear to the Lane beams that would be found issuing from the same 

crystal if the incid(?nt Ix^ain were a ])eam of A-rays. Certain others appear to be 

analogues,not of Lane lieams, ])ut of optical diffractionbeams from planereflection 

gratings—tlie lines of these; gratings being rows of atoms in the surface of the 

crystal. Because of these similarities between the scattering of electrons by the 

crystal and the scattering (jf waves l>y three- and two-dimensional gratings, a des¬ 

cription of the occurrence and Ix'havior of the electron diffraction beams in terms 

of the scattering of an e(iuivalcnt wave radiation by the atoms of the crystal, 

and its subsequent interference, is not only possible, but most simple and natural. 

This involves the association of a wave length with the incident electron beam, 

and this wave length turns out to be in acceptal)le agreement with the value 

h/mv of the undulatory mechanics, Planck’s action constant divided by the 

momentum of the electron. 

Davisson and Gerrner have steadily continued their work, with results 
which confirm and extend this statement. 

Further, G. P. Thomson has studied the diffraction of electrons by a 
large number of substances, using methods which are similar to the 
powder method and the Laue method of obtaining X-ray patterns. 
Electrons are accelerated by a voltage of the order of 15,000 to 60,000, 
and are caused to pass through a thin foil. Rings are obtained on a 

1 Phys, Rev,, 22, 242 (1923). 
2 Nature, 119, 658 (1927). 



724 DIFFRACTION OF ELECTRONS AND ATOMS IChap. XXI 

photographic plate placed some distance behind the foil, the radii being 
in striking agreement with those calculated on the hypothesis that th(i 
electrons behave like X-rays having the wave length h/mv. Similar 
expi^rirnents have been made by Rupp, using electrons of much low(^r 
voltages, and he has also found it possible to obtain electron spectra 
by allowing a homogeneous, well-defined beam of electrons to fall on a 
ruk^d grating. Further, Davisson and Germer, and also Rose, hav('. 
detected beams which are analogous to the reflected X-ray bekms 
obtained with a Bragg spectrometer. The reflection of atoms from 
crystals has been studi('d by Ellett and Olson and by T. H. .Johnson, 
who obtain specularly reflected b(5ams. We now describe these investi¬ 
gations in more detail. 

2. DAVISSON AND GERMER»S APPARATUS 

Figure 1 shows the metal parts of the electron-diffraction tube used 
by Davisson and Germer,^ while Fig. 2 is a cross-sectional view. In 

Fig. 1.—Electron diffraction apparatus of Davisson and Gormer. The Scales TS and 
CS show respectively the azimuth of the target and the angular position of the collector. 
CL is the collector lead wire. 

Fig. 2, F is the filament and (? is a series of diaphragms, for producing 
a narrow beam of electrons. This beam falls normally on the target T, 

which can be rotated about an axis parallel to the beam. On the right, a 
weight hangs down from the axle carrying the target, so that it may be 

^Phys. Rev., 30, 705 (1927); Gbhmeh, J. Chem. Ed., 5, 1041 (1928). 
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rotated by changing the orientation of the whole evacuated tube. C is a 
double walled collector which receives diffracted electrons. It is enclosed 
in a metal cylinder for protection from electrostatic effects, and is mounted 
on an arm which passes through a narrow slit in the wall of the cylinder. 
The arm may be rotated on an axis perpendicular to the plane of the 
diagram. The angle between the incident beam and the scattered beam 
is called the ^^colatitudc/’ and is denoted by 0, while the position of the 
axle carrying the target is specified by an azimuth (p. Provisions are 
made for placing the collector at any desired potential. Usually, the 
potentials are so chosen that only electrons which have suffered a small 
loss of velocity are recorded by the galvanometer. The ratio of collector 
to bombarding current is of the order 10“^ under these conditions, so 

that by using bombarding currents of the order of 1 microampere, 
collector currents are obtained which are easily measurable with a 
sensitive galvanometer. 

3. LAUE BEAMS OF ELECTRONS FROM A NICKEL CRYSTAL 

We now describe the diffracted electron beams which are obtained 
when a beam impinges on the (111) face of a nickel crystal. The geome¬ 
try of the beams and the crystal will be easily understood from Fig. 3 
where the cube is supposed to represent a crystal with its face cut parallel 
to the crystallographic axes. One corner is then cut away, exposing 
a (111) face. In Fig. 4, we are looking down on this face. The atoms in 
the surface layer are indicated by the circles marked 1 and those in the 
second and third layers by the circles 2 and 3. The fourth layer is 
identical with the first and so on. The receiver is often set in one of 
the azimuths marked A, B, and C. This being done, the collector is 
moved through the whole range of colatitudes permitted by the appara¬ 
tus. Let us suppose that the receiver is in the A azimuth and that the 
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/oltage of the bombarding electrons is chosen to be 36. If we plot the 
currents to the receiver in a polar graph, as a function of 0, we obtain 

CACBCACBCACBC 
Azimuth Curve for (d-S0°V~54 Volh) 

Fi(i. 8“' Above, curves showing development of diffnietion beam in the A-azirnuth. 
Below, variation of intensity with aziniiith at colatitude 50°. 

the curve shown at the left in Fig. 3.^ On repeating the process with 
increasing voltages, a peak is developed on this curve at the position 

A 

Fig. 4.—Arrangement of atoms in a (111) plane of nickel. 

B = 50°. It reaches maximum development at 54 volts, and dies away 
again if we pass to higher voltages, as indicated in Fig. 3. By setting 

1 Pavibson, Bell System Tech, Jour.,, 7, 90 (1928), 
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the receiver at 0 = 50°, and moving it in azimuth, a curve like that 
at the bottom of Fig. 3 is obtained. The peak thus outlined would be 
represented as a spur in a three-dimensional polar graph. The spur is 
repeated in each azimuth of the type as we should expect from the 
threefold symmetry of the crystal about the normal to the (111) face. 
The smaller maxima in the azimuth curve are due to another set of three 
spurs which reach their strongest development in colatitude 44° at 
65 volts. The sharpness of some of these spurs and the precision with 
which they may be located will be appreciated from Fig. 5, which shows 
the variation with voltage of a set of beams occurring at 0 = 55° in the 
A azimuths. Tlu^se data are fairly typical; thorough exploration has 
resulted in the discovery of many such sets of spurs. When the first 
extended account of this work was published/ thirty such sets of beams 
had been found at bombarding potentials less than 370 volts. Six 

FiCi. 5.- Viiriiilion with of tJio socond ordor spiirw at 0= of)® in tlio ^4-azimuths. 

of these were due to adsorbed gas and w^ere not found when the crystal 
was thoroughly baked out. Concerning the others, Davisson and 
Germer say, 

Of th<' twenty-four sets due to scattering by the gas-free crystal, twenty are 

associated with twenty sets of Lane beams that would issue from the crystal 

within the range of observation if the incident beam were a beam of heterogeneous 

X-rays, three that occur near grazing are accounted for as diffrac.tion beams due 

to scattering from a single (111) layer of nickel atoms, and one set of low intensity 

has not been ac(H)unted for. 

Eight sets which might be expected to occur were missing, but the 
intensities of all of these should b(i small, by analogy with X-ray diffrac¬ 
tion patterns. A partial list of space-lattice beams is presented in 
Table 1. 

We now consider the interpretation of a typical spur, for example the 
one discussed above. The voltage at which it is most pronounced corre¬ 
sponds to an electron wave length of 1.67 A. If white X-rays were to fall 
on the crystal in the same direction as the incident electrons, a series of 
wave lengths would be selected for diffraction by the most heavily popu¬ 
lated planes. In the azimuth A the wave length 2.87 A. would be dif¬ 

fracted by (100) planes and would appear at colatitude 70°. Similarly there 

1 Fhys, Rev., 30, 705 (1927). 
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Table 1 

Azimuth Voltage V 

Wave 

l(‘ngth in 

vacuo, X 

Colati- 

tilde in 
degriH's, 

0 

Order 
Miller 

indices 
Refractive 

index jx 

Grating 

poten¬ 

tial, E 

35 volts (2 05) A (72) 220 

54 J . 670 50 1 331 1.118 + 13 

lOG 1.190 28 1 442 1.128 11.5 

174 0.928 22 1 553 1.038 + 13 

111 181 0 910 55 2 551 1.036 + 13 

248 0.778 44 2 662 1.036 + 19 

258 0.763 <20 i 1 664 1 .032 + 15 

343 0.662 34 2 773 1.022 + 15 

347 0. (>5<8 62 3 771 1.068 +48 

37 2 02 71 311 

1(K) G5 1.520 44 1 422 1.123 + 16.5 

1 . ]2G 1 093 28 1 1 533 1.047 + 11 

I ̂ 143 1 024 56 1 531 0.979 - 7 

110 
1 

170 0 940 46 1 642 1.075 +26 

i 18S 0 8i)4 43 1 642 1.024 + 8 

would be beams of wave' length 1.49 A. at 44® and 1.13 A. at 33®. These 
X-ray beams would be exp(^cted to .be (juite prominent. Now, a set 
of electron beams having an equivalent wave length of 2.87 A. would 
have a velocity below the limit which can ])e conveniently observed with 
the apparatus, but a set of beams with equivalent wave length 1.49 
A. arising from the (331) planes should be easily detected. No beams 
are found at the positions predicted by Bragg^s law, and it is con¬ 
cluded that the beam having wave length 1.07 A. is the one in question. 
Similar discrepancies between the position of X-ray beams and corre¬ 
sponding electron beams ar(^ found in practically all cases, and it is now 
understood that this is due to the fact that the equivalent wave length 
of an electron inside the crystal is not the same as its wave length in 
vacuo. It may be said that the crystal has a refractive index for electron 
waves, since the electron is accelerated as it approaches the crystal, 
due to the fact that the space inside is at a different average potential 
from the space outside. Leaving this for later consideration, we shall 
discuss the results in Table 1. It is important to realize that all these 
beams could be obtained from a surface grating having the same spacing 
(2.15 1.) as the atoms in the (lllX surface of the nickel crystal. The 
effect of the underlying layers of the crystal grating is to change the 
intensities of some of the beams which would be obtained from the first 
layer or to extinguish them due to interference between the contributions 
of the different layers. The presence of several layers also has the effect 
of limiting the wave lengths which can be diffracted to any one of a 
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discrete set of wave lengths, just as in the case of X-rays. All these 
facts are clearly brought out by the following demonstration given by 
Davisson, which shows that the wave length of each electron beam can 
be calculated from the plane grating formula, using the diffraction 
angle which is actually observed outside the crystal. This is true regard¬ 
less of the fact that the crystal possesses a refractive index greater than 
unity. In Fig. 0, let us suppose that radiation of wave length \ falls 
on a crystal, at normal incidence. If the wave length inside the crystal 
is then the index of ‘refraction g is equal to X/X'. Consider that 
portion of the beam which is diffracted by the planes shown in the 

().— r)ifTr;i(‘ti<)ii by a crystal with refractive index difT(‘riii;j: from unity. 

figure, the angl(‘ of incidemee on these planes being 0. By Sncdl s law, 

X ^ sin d\ (3) 
X' sin 20 

If d is the interplanar spacing, and D the spacing of the surface rows then 

d ~ D sin 0, 
and by Bragg’s law 

n.y — 2d cos 9 — D sin 20. 

Multiplying equation (3) by this equation w(i have 

niK = D sin 0' (I) 

which is th(i equation appropriate to a plane line grating of spacing D. 

Although the diffraction beams do not obey the simple Bragg condition 
nX == 2d cos 0, they satisfy equation (4) very well. It should be remem¬ 
bered, however, that this formula cannot be applied indiscriminately. 
The only wave lengths which may occur in it are those allowed by the 
Bragg reflection condition. For example, beams occur at different 
voltages in the A and B azimuths because the plane gratings that make up 
the crystal are not piled exactly above one another. The lateral shifts 
of the gratings in these two azimuths are different. This means that the 
phase relations between the elementary beams emerging in the A azimuth 
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are not identical with those in the B azimuth, so that the conditions 
for the production of a strong beam are satisfied at different voltages 
in these two cases. 

The accuracy of measurement attained by Davisson and Germer in 
their first papers was such that calculated and observed values of the 
wave length might differ 15 per cent. Later, ^ the apparatus was so 
improved that wave-length measurements basi'd on diffraction beams 
and computed by equation (4) should not be in error by more than 1 
per cent. This encouraging advance indicates that the method might 
be made sufficiently precise to be us(fful in the measurement of h. 

4. G. P. THOMSON’S EXPERIMENTS 

G. P. Thomson- has made extensive studies of the diffraction of 
electrons shot through foils of celluloid, gold, aluminum, and platinum. 
From de Broglie^s law and the simple geometry of Thomson's apparatus 
one can see that the diameter D of anj^ ring in the diffraction pattern 
obtained should vary inversely as the sc|uare root of the voltage applied 
to the tube. If the voltage V is high, it is necc^ssary to take the 
relativity correction into account, and wo then expect that the quantity 
D F’Kl + yc/i,200 will be constant. Thomson has improved the 
technique of this method so that the mean error of a set of observations 
is little more than 1 p(T cent. It can be shown that corr(‘ctioiis due 
to the refractive index of the metal foil are m^gligible for voltages of 
the magnitude used in these expc'riments. A typical set of data referring 
to celluloid is given below: 

V (volts) j D ((^entiiiieierB) + rc'/l,200 mc^) 

50,000 0.85 195 

42,500 0 90 189 

36,000 1.00 193 

30,500 1.05 186 

23,200 1.25 193 

21,000 1.30 190 

16,800 1.47 191 

16,100 1.48 189 

11,500 1 62 175 

9,800 1.86 185 

Mean 189 

The value of the spacing of the reflecting planes deduced from 
experiments of this kind is in good agreement with X-ray measurements, 
as the following tabulation (in Angstrom units) will show: 

iProc. Nat. Acad. Set., 14, 317 (1928). 

^Nature, 122, 279 (1928); Free. Roy, Soc., 117, 600 (1928) and 119, 651 (1928); 

Hil Mag., 6, 939 (1928). 



Sec. 5] RUPP\^ DIFFRACTION EXPERIMENTS 731 

Al Au n 

Cathode rays. 4.035 4.20 3.89 

X-rays. 4.043 4.0G4 3.913 

In a rough way, the intensities of the rings parallel those to be 
expected in the case of the corresponding X-ray exjxuiment. In some of 
Thomson's experiments the pattern resembles a Laue picture instead of a 
system of rings. As might be (^xpect(‘d, such patterns are produced by 
the presence of large single crystals in the film. 

Thomson has obtained the important result that the velocity of the 
diffracted electrons differs by less than 1 p(‘r cent from that of the 
incident beam. This indicates that the (dectron is to be considered as 
colliding with the crystal as a whole, and not with individual free eh^ctrons 
in the crystal. This is analogous to the well-known fact that diffracted 
X-ray beams do not show the Compton shift. 

Thomson’s experinumts have been continued by Reid,^ who worked 
with celluloid. While Thomson used a spark gap to measure the voltage 
of his electrons. Read used the method of electrostatic deflection, obtaining 
results which agree within 1 per cent with those of Thomson. In 
exp(triments of this kind it is essential that the films should be thin enough 
to prevent blurring of the pattern by multiple scattering. The celluloid 
films are made by dissolving C(dluloid in amyl acetabi and are of the order 

of 5 X 10"^^ cm. thick. 

6. RUPP»S DIFFRACTION EXPERIMENTS 

Rupp^ has extended the range of the foil method of studying electron 
diffraction to lower velocities, using voltages in the range from 120 to 
320. He has obtained patterns from foils of the following metals, the 
most complete set of data being those for silver: Al, Pb, Ni, Cu, Ag, 
Au, Cr, Sn, and Zn. Of these, the first six are face-centered cubic, 
while Cr is body-centered cubic, Sn is tetragonal, and Zn hexagonal. 
The foils were about 10~^ cm. in thickness, and were prepared by the 
method of Muller in which the metal to be studied is evaporated on to the 
surface of a rock salt plate, which is then dissolved away. The apparatus 
is essentially a beta-ray spec|rograph, which is placed in a magnetic 
field so that the paths of the electrons are circles. This has the advantage 
that electrons which lose any considerable portion of their velocity in 
passing through the film are deflected to one side and do not reach the 
central portion of the photographic plate. 

In general agreement with Thomson, Rupp has demonstrated a 
general parallelism between the intensities of the various diffraction 

' Pfoc. Roy, Soc., 119, 663 (1928), 
86,981 (1928). 
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rinj^s and the intensities of the corresponding rings in X-ray powder 
photographs for the same metals. More recently, he^ has found it 
possible to obtain electron spectra by letting a homogeneous, well-defined 
beam of electrons fall on an optical grating having a constant of 8 X 
10"“^ cm; loO-volt and 70-volt electrons were used. The accuracy 
obtained in wave-length determinations was of the order of 2-3 per cent. 
In these experiments it was found to be essential to use a grating ruled 
on metal, perhaps because ek^ctrostatic charges would introduce diffi¬ 
culties if the grating material were an insulator. 

6. KIKUCHI^S EXPERIMENTS ON DIFFRACTION PATTERNS OF SINGLE 
CRYSTALS 

Kikuchi^ has studicnl the diffraction patterns produced by a beam 
of electrons, homogeneous in velocity, which has passed through thin 

Fio. 7.—Diffraction pattern of a very thin mica sheet, {After KlkucM.) 

sheets of mica at nearly normal incidence. He has traced the interesting 
changes which occur as the thickness of the sheet increases. The 
thinnest sheets he used were not thick enough to produce interference 
colors. The pattern of such a sheet is. shown in Fig. 7. According 
to Kikuchi, it is well explained by the assumption that the crystal 
behaves like a two-dimensional grating with a spacing of 5.17 A. Ho 
states that his thinnest crystals contain |Only about 50 layers of unit 
cells (the grating space perpendicular to tlie cleavage plane being 20.4 A.J 
and that the selective effect of the grating structure perpendicular to 
the plane of the sheet does not come into full play when the number of 
layers is so small. This seems surprising, but it must be remembered 
that the thickness of the sheets was estimated, not measured; Kikuchi 
states that it was probably of the order of lO"^ cm. or less. 

^ Naturwiss. 33, 656 (1928); Z. Physiky 52, 8 (1928). 
* Nature^ and Proc. Imp. Acad. Japan^ 4, 271, 276, 364 (1928). 
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When progressively thicker sheets are used, the pattern gradually 
alters, until it shows well-defined Laue spots produced by three-dimen¬ 
sional interference, as in Fig. 8. Straight dark lin(‘S accompanied by 
lighter lines on the side toward th(^ center of the pattern can also be 
observed. Kikuchi states that these are the analogues of the lines 
employed by Rutherford and Andrade in their study of gamma-ray 
spectra.^ The (dectron beam beconn^s divergcmt (though still homo¬ 
geneous in velocity) in passing through the first portion of the she(‘t 
encountered, and then the electrons are in a condition to undergo Bragg 
reflc^ction at planes of atoms nearly parallel to the din^ction of th(i original 
beam. The light lines arc' due to a local deficiency of electrons which 
have been diverted to the neighboring dark lines. 

Fig. S.—Diffraction pattern of a thick mica sheet. (After Kikuchi.) 

7. THE REFLECTION OF ELECTRONS AT CRYSTAL SURFACES 

Davisson and Germer^ have studied the reflection of electrons from 
nickel with an arrangement essentially similar to a Bragg spectrometer. 
Setting the collector at the correct position for receiving a regularly 
reflected beam, they vary the voltage, and find that the intensity of 
reflection varies periodically. The maximum intensity is not obtained 
at voltages corresponding to the wave lengths which would be selectively 
reflected in the corresponding X-ray experiment, because the crystal 
behaves toward electrons as though it had a refractive index greater 
than unity. The following table gives a set of data for an experiment 
in which the angle of incidence was 10°: 

1 Phil Mag., 28, 263 (1914). 
* Proc. Nat. Acad. Sci., U, 317 (1928); 14, 619 (1928), 
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yW n I M 

(5.3) 2 (1.15) 
8.0 3 1.14 

11.4 4 1.07 

14.7 5 1.04 
18.1 6 1 02 
21.2 7 1 01 
24.2 

i 
8 l.Ol 

The first coluirm gives the values of - at which the intensity of reflection 
passes through a maximum. The observations could not be extended 
much below F'-^ = 8 because the current of the incident beam becomes 
too small at low voltagx's. The first maximum at F^-’ = 5.3 was obtained 
by a modification of the usual procedure. The order of reflection n is 
given in the second column, while the third contains the index of refrac¬ 
tion.^ The formula used for determining the refractive index is a simple 
generalization of Bragg’s law, and is as follows: 

tiX = 2d(/x“ — 8in’<9)’-\ (5) 

Putting in the value of X and solving, wo have 

+ 
which enables one to obtain the refractive index as soon as the voltage 
of the incident electrons and the incidence-angle are given. The utility 
of interpreting electron diffraction experiments with the aid of a nffractive 
index was pointed out by Eckart''^ and Bethe,*^ and the idea is now widely" 
used. Let us examine the way in which the refractive index arises. 
It is due to the acceleration of the electron by forces of the crystal. 
If the potential drop through the crystal surface (the so-called grating 
potential”) is E volts, the wave length inside the crystal is smaller 
than that outside, in the ratio F‘'‘7(F + Ey-'^ and we have 

-*-(> + yT' 
E being chosen positive. For each velocity, we can compute a value of E. 
Values for nickel are listed in the last column of Table 1. Those for 
several other metals have been determined by Rupp,'* but Thomson® 

^ At first, Davisson and Gcrmer favored another assignment of the beams, but 
now lend their support to the one given here. See also a note by Patterson, {NaturCy 
120, 46 (1927)). 

Proc, Nat Acad. Sci.y 12, 460 (1927). 
^ Naturwissenschafteriy 16, 787 (1927); 16, 333 (1928); Ann. Physiky 87, 55 (1928). 
* Ann. Physiky 86, 981 (1928). 
^PhU. Mag.y 6, 939 (1928). 
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has pointed out an error in calculation which invalidates them. This 
does not affect the value of Rupp's interesting experimental results. 

At first it seems puzzling that E is not identical with the photoelectric 
threshold voltage of the crystal. This may be explained by stating 
that the work required to remove a photoelectron is less than tlu^ potential 
drop across the surface, because conduction electrons are nioving with 
a very considerable kinetic energy which aids them in escaping under 
the influence of light. It must be remembered that the conduction 
electrons have an average kinetic energy much greater than 
for they obey the Fermi-Dirac statistics.’ The classical value 
does not account for the difference under consideration. Since the 
refractive index is greab^r than unity, total reflection may occur for 
some electron beams, as suggested by Bethe.^ In Table 2, we give data 
pertaining to several beams which would strike the inner surface of the 
crystal at angles 6^ so large fliat total reflection would occur. If we call 
0 the angle of rc'draction, total reflection occurs when sin 9 as calculated 
by Snell's law is greater than unity. 

Tahlio 2 

Aziiniilli Order Indices I Sin 0' , e, (>i)served 
calcuUit(‘d 

111 

100 

110 

331 
210 

While this idea is not a cure-all for explaining missing beams, it has 
proved its utility in a number of instances. Three beams in the table 
should be emitted nearly parallel to the crystal surface. We should 
anticipate that such grazing beams will be both weak and broad, because 
fewer layers of the crystal are penetrated by the electron, and the resolv¬ 
ing power of the crystal is, therefore, smaller. As mentioned before, 
Davisson and Gerrner have listed several beams which they attribute to 
diffraction at the first layer of atoms. Further, they have shown that 
if a small amount of gas is admitted to the apparatus it is possible to 
detect additional diffraction beams, due to the arrangement of these 
atoms in a space lattice, either on the surface or underneath the first 

1 Fermi, Z. Physikj 86, 902 (1920); Dirac, Proc, Roy. Soc.^ 112, 661 (1926). 
* Loc, dt 

1 220 0 945 I 24 
2 440 0.95 1.00 app. 90° 
3 551 1.00 1.025 
1 311 0.86 1.04 app. 90 
2 511 0.986 1.05 
3 711 1.00 1.025 
1 420 0.986 1.06 
1 620 0.996 1.03 
1 640 0.96 0.99 app, 80 
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layer of nickel atoms. On heating the crystal, the so-called gas beams 
may be eliminated, which is excellent proof of this interpretation. 

Rose^ has studied the reflection of electrons by a single crystal of 
aluminium and comes to the conclusion that the results are consistent 
with the value unity for the refractive index. 

Klemperer^ has made the interesting suggestion that insulators 
may have a refractive index less than unity. In support of this view, he 
discusses experiments made by Schmidt^ and by others following him. 
In these experiments a b(^am of cathode rays was din^cted on the surface 
of a crystal and the dependence of the intensity of the reflected beam 
on the angle of incidence was studied. When this angle is greater than a 
certain limiting value characteristic of the substance, and of the velocity 
of the incident electrons, the secondary beam is much diminished in 
intensity. Klemperer considered this as evidence of a refractive index 
smaller than unity, due to the slowing up of electrons in th(^ insulating 
material. Rupp^ suggested an alternative explanation, namely, that the 
piling up of electrostatic charge on the surface is responsibk' for the 
effect. As the angle of incidence increases, the velocity being held 
constant, the component of velocity normal to the surfact^ decreases, 
and eventually becomes so small that the bombarding electrons cannot 
penetrate to the surface. 

8. REFLECTION OF ATOMS FROM CRYSTALS 

T. H. Johnson^ has found it possible to study the reflection of atomic 
hydrogen produced in a long discharge tube, at cle^avage surfaces of 
calcite, sylvite, and rock salt, as well as natural faces of cpiartz. The 
apparatus is complicated, and many experimental prc'cautions must 
be taken in order to secure reproducible results. The detector for the 
beam of reflected atoms is a glass plate smoked with white molybdenum 
trioxide, the surface of which is darkened wherever atomic hydrogen strikes 
it. Arrangements were provided for heating the crystals, since, other¬ 
wise, a layer of adsorbed gas would interfere with crystal reflection; further, 
in the case of rock salt the surface is attacked by the atomic hydrogen. 

Some of the hydrogen atoms are diffusely reflected, a phenomenon 
which Johnson interprets as due to adsorption followed by reevaporation. 
With the detecting plate at a distance of 1 cm. from the crystal, a specular 
beam superposed on the diffuse reflection can be recorded in 30 minutes. 
The intensity of this beam depends on the angle of incidence and on the 
temperature of the crystal. In the case of rock salt at 400°C., the 

1 Phil Mag,, 6, 712 (1928). 
2 Z. Physik, 47, 417 (1928). 
3 Dissertation, Berlin (1924). 
4 Ann. Physik, 85, 981 (1928). 
^Jour. Franklin Inst., 206, 301 (1928); Abstract, New York Meeting, Amer, 

Phye. Soc.» Dec. 29. 1928. 
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intensity near grazing incidence is perhaps twice that at 30® and twenty 
times that GO® from grazing. At lower temperatures the diffuse back¬ 
ground becomes less prominent, and it has been found possible to obtain 
a very large percentage of the reflected atoms in the specular beam, even 
at angles far from grazing. Johnson remarks that there should be 
interference maxima in directions other than that of the regularly reflected 
beam. II(^ shows, however, that due to the Maxwell distribution of 
velocities, the wav(^ lengths of the impinging atoms are distributed over a 
broad range', and the first order diffraction beam would be expected 
to extend over about GO®. 

Ellett and Olsoid have made similar experiments with unidirectional 
beams of cadmium and mercury atoms, striking a clean rock-salt surface. 
The reflected atoms produce a single spot about 0.8 mm. in diameter, 
while tlH‘ glass receiving surfac(‘, cooled with litjuid air, remains perfectly 
ch^ar for several times tb(‘ inte^rval requirial to make the spot pc'rfectly 
opaques These' spots were obtained with angles of incidence varying 
from 20 to 80®. 

More r('C('ntly,- thf'y have shown that the atoms in the reflected 
l.)eam all have the same velocity regardle'ss of the temperature of the 
refl(K;ting crystal. This de'monstrates that we are defiling with a reflec¬ 
tion which is analogous to tl)(* Bragg reflection of X-rays from a crystal. 
The data on specularly reflected cadmium atoms are as follows: 

01)serv(^d Velocity 
Ar»g](' of (Meteors per 
Incidences Second) 

22. r/’ 500 

4.5 ^ 530 

07.5 600 

In a later paper Ellett, Olson, and Zahl'^ have given an equation which 
represents their data for cadmium. It is. 

2.26 <P 

<p is the average potential energy of an electron when inside the crystal 
and m is the mass of a cadmium atom. 

Ellett and Olson stated in their first paper that sodium is not reflected 
from a rock-salt surface. In view of the discovery that the reflected 
beam is analogous to a spectrum line obtained with the Bragg spectrom- 
meter, this observation can now be understood. It appears^ that less 
than 1 per cent of the sodium atoms in the beam used by Ellett and 
Olson had a velocity such that they could satisfy the Bragg condition. 

Rev., 31, 643 (1928). 
2 Science, 68, 89 (1928). 
^Phye. Rev., 84, 493 (1929). 
* Private Gomraunication from Dr, Ellett. 





APPENDIX I 

RELATIONS BETWEEN AVERAGE KINETIC AND POTENTIAL 
ENERGIES 

The virial theorem of Clausius’ states that for a system which is periodic or is 

in a steady state, the average kinetic energy over a long period of time is equal to 

the average value of the function — 2(A> + Yy + Zz), which is called the “virial.’’ 

We shall prov(‘ an extension of t his theorem which holds true in relativity mechanics. 

Let the equations of motion of a particle in the system be 

d(rn.Jc) 

di 
Then 

A', etc. 

XW •rl'f 
xA = - 

xd{mx) d(mxx) 

dt dt 

We write down two similar equations for the t/-and ^-coordinates of each particle, 

and sum ovcu' all particles, obtaining 

2:(jA' + yY + yy + zz)] - ^mv^. (1) 

Dividing by two,.iind averaging over a long time, the first term on the right disappears; 

for its average is simply the difference of its values at the end and at the beginning 

of th(‘ interval, divided by the interval. This different is finite because we assume 

that the motion is periodica or that a state of kinetic ecjuilibrium has been reached, 

so that neither the coordinate's nor the v('locities increase indefinitely w'ith the time. 

Finally, 
X(xX -f -f- zZy 

]■ (2) 

Note that gn the left side m is the actual mass of a moving particle, so the left member 

is not the average kin(^tic. energy. However, it reduces to the average kinetic energy 

when relativity is neglected. 
Interesting fipplications occur in the case of conservative systems, when^ X = 

— OV/dx, etc. If the potential V is a homogeneous function of the coordinates of 

degree ri, then by Eider’s theonun for such functions the virial equals nV. In 

classical mechanics, tajuation (2) becomes 

2f = nF. • (3) 

Consider a system in whic.h tlui force t)etween two particles is along the line joining 

them and is proportional to the (a — l)th powder of their distance apart. For the 

inverse square law, n = ~1, and ^ 
2f - - F ' (4) 

so that the total energy is . ^ 

JS? = -f = Y (5) 

A more general theorem is this: If the potential energy V is the sum of several 

functions, Fi -f F2 -f • • • , which are homogeneous in the coordinates and of 

degrees ni, 712, etc., then the virial is 

riiFi + W2F2 “b • • • . 

^See any edition of Jeans’ “Kinetic The^'ry of Gases’ for 9|)iplications in statis* 
tical mechanics. 

739 



740 KINETIC AND POTENTIAL ENERGIES [App. I 

There are important cases in which <,ho external forces depend on the velocities 

as well as the coordinat(vs. Consider an atom exposed to a uniform magnetic field. 

In order to make the illustration more widely appli(tal)le we suppose that a uniform 

electric field is also present. Then, assuming the nuck'us immovable, we have for 

each charge c, 

Here X refers to all for(‘,os acting on the elecdron apart from those due to the electric 

and magnetic fu'Ids. If tliese forces are due only to inverses square attractions and 

repulsions and have a pot(mtial V, then we show in tlu^ same manner as above that 

(For the electron e - —4.77 not 4-4.77 M is the electric moment of the 

atom, and pH the compommt of angular momentum in the direction of II wliih^ EM is 

the scalar product of the vector E and the electric moment. If E is not present, the 

angle between H and pn is constant. 

Miliud has extended th(i theorem of the virial to systems subje(!t to frictional 

forces proportional to velociti(;s. In many cases the ('xistimce of such fontes pr(‘V(‘nts 

the oxistenc(i of a steady state, but in (\ases where it does not, or in whicli the motion 

is periodic, such frictional forces contribute nothing to the virial and can he left out 

of a,c.c()unt in computing tin' mean kinetic energy. 

^Phil. Mag. 60, 409 (1925). 



APPENDIX II 

QUANTUM INTEGRALS 

1. Many integrals which arise in applying the (luaiitum conditions can be (walu- 

ated by a “perturbation” method, starting from the value of 

J. = +^ + (1) 

This integral nrose in equation (18), Chap. V, and was evaluated there by direct 

methods with tin', result 

Jo = -2wi(C (2) 

We now obtain this result by the use of complex integration (s('e Appendix VI, 4th 

<‘dition of Sommerfeld^ Considering r as a complex variable, we mark the branch 

Fi(i. 1. 

points ri and rz in the r plane (Fig, 1), representing the lower and upper limits of 

integration, respectively. The path of integration extends from ri to 7*2, using the 

positive sign of the square root, and then from r2 to ri using the negative sign of the 

square root. The path of integration may be deformed into a pair of infinitesimal 

circles passing around the poles of the integrand, at r == 0 and r — oo. To st^^ this 

it is convenient to reprcLsent the r plane on the surface of a sphere as in Fig. 1 and to 

stretch the path of integration like a rubber band until it assumes the position A-H. 
Bringing the portions BCD and EOH infinitesimally close to each other their con¬ 

tributions cancel and we are left with the circles HAB and DEF around the poles, 

At r — 0, J(i caji be expanded in the form 

+«'+ ■) 
741 
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and the only term giving a finite contribution is the first one. The residue obtained 

from this term is 

where the minus sign appears because the direction of integration is clockwise. 

Using the transformation s ~ 1/r, Jo takes th(^ form 

/o = -!(A + 2Bs + Cs^)''^-ds, (3) 

and expanding in exactly similar fashion around s — 0, the contribution of the polo 

at r = 00 is 

2inRA~^, 

which completes the proof of equation (2). 

2. We now evaluate 

^[A + - + -, +Dr) dr, (4) 

which occurs in tlie theory of the Stark effect (Chap. V, Sec. 12). D is proportional 

to the electric ficdd strength and is small compared to the other coefficients. We 

expand the integrand in powers of Z>r, retaining only the first power, the result being 

which shows that 

, (5) 

(6) 

Since 1) is small, the positions of the branch points which persist when D = 0 are 

not much altered. (In othcT words, the aphelion and perihelion distances of the 

electron are not much changed by the electric field.) In evaluating each of the 

integrals in equation (6) we deform the path of int(^gration as liefore until it consists 

of infinitesimal circles around the poles. (In doing this, we ar(‘ careful not to cross 

any of the branch points of Ji or of the integral being evaluated.) As to the second 

integral in equation (6), its only pole is at r = and the residue at infinity is such 

that we obtain 
_ C \ 

\2A2 2A/ 
JI == Jo 4" DwiA" (7) 



APPENDIX III 

PHASE VELOCITY AND GROUP VELOCITYi 

ConsicUu’ H wavp which is coinposiHl of a sup(*rposition of sinusoidal waves of 

various frequencies, a typical one lieing represented by cos — i^. If ic 

is the same for all frequencies, any modulalion (/.c., any rise or fall in tlie ‘^envelope” 

of the curve repn^senting the disturhanei' at, a given instant) is transmitted with 

velocity u. The form of the wavi^ group is not altered as it progresses, and if the 

energy of the wav{‘s depends (\ssentially on their amplitude's the rate at which their 

energy is carried forward is the same as tin* velocity of a givcai pliase of one of the 

component wav(is. But if the phase vc'locity u is a function of the, frequency, the 

form of the group continually allvrs as it advances; the velocity of propagation of a 

signal, that is, a modidation, is not ecpial to u, and is called the “group velocity/^ 

Take th(' (aise of two cosini' wavi'S of equal amplitude with frequencies and velocities 

which differ by the small amounts dp and dii. Th(‘ resultant is very like a cosine 

wave train witli slowly varying amplitude, familiar from discussions of beats in 
books on sound. Its expression is 

cos 27rc 

~ 2 cos 2;rr 

Whim ^ = 0 thenn is an amplitude 2 at .r = 0. At a later time ti, this peak will be 

at a point' ;ri such that the argunu'nt of th(‘ last cosiiu' term is zero, so the velocity g 

with which the peak or an>' other modulation of the train advances is given by 

1 _ b _ 1 p dn d{p/ii) 

g xi u U' dp dp 

Other useful formulations are 
dp d(u/\) dll 

(1) 

(2) 

These formulas hold apijroximati'ly for wavi^s of the more general type 

y ~ ^ C^ cos 2TrPi^ '^ — i — (3) 

where p and ii vary only dightly for the constituent wave trains. For the sake of a 

delinite (example suppose there is a maximum at the origin when t — 0. Let us refer 

to the argument of any c^osine ti'rm in equation (3) as its phase. After a time 

large compared to l/p, the phase at a position Ax differs from its value at the origin 

when t = 0 by an amount — At^. The phase change will be nearly the same 

for all the terms if A.r is so chosen that 

d{p/n) 'Ax = dp ' At. (4) 

1 See Havelock, ^‘The Propagation of Disturbances in Dispersive Media/^ 

Cambridge University Press (1914). 
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The relative change of phase of the terms in equation (3) is very small during a single 

period Xjv because of the above restriction on the variation of v and u. Hence the 

combination of phases which gave rise to a maximum at the origin at time zero will be 

reproduced at a point within one wave length from the position Aa*, at a time differing 

from A/ by less than one period. Thus Ar/A< is nearly the group velocity and equation 

(4) yields etjuation (2). Of course, it is possible so to choose the C’s that our approxi¬ 

mations do not hold. Wave groups of other types must be treated by special methods. 

It is often loosely stated that the velocity of transmission of energy is the group 

velocity, but since the latter is usually defined by kincunatic ndationships alone, this 

is not necessarily true. Frequently there is little sense in speaking of a group velocity. 

However, if we know the energy density p as a function of a:, ?/, 2, and it is easy to 

obtain an energy V(4ocity g whi(di may be destined as the group velocity. Its com¬ 

ponents satisfy a relation analogous to the ecpiation of continuity in hydrodynamics: 

dp _L 1 d(pgv) . d(pgA 
at + 0x~ ^ ~ay^ ^ az ^ 

This does not determine g completely, and in general g will bo a function of t 

as well as of the space coordinates, since it is not characteristic of the medium alone 

but depends also on the type of disturbance. The conventional character of the term 

‘^energy velocity” must be clearly appreciated. It is impossible to identify a given 

portion of (uiergy at a later time, so g appears to be simply a convenient analogue 

of the velocity vector so useful in hydrodynamics. 



APPENDIX IV 

NORMAL ORTHOGONAL FUNCTIONS USED IN WAVE 
MECHANICS 

1. THE SERIES EXPANSION OF AN ARBITRARY FUNCTION 

To avoid rojiolil ion, vv<! reefer tlu: roador to Cliap. XV, S(^c. 13 for the definition 

of nonnal ortlioj^oiuil fuiietioDS, and for a x>roof that the discrete solutions of »Schr6~ 

diiig(‘r’s wave ('(juation an* orthoj»;onaI'; providi'd wv are dealinji; witli a non- 

deg(ai(^rat{‘. syst('in. Similar proofs eould be carried through for tiamnore general 

wave ecpiations introdiua'd thenaiftiT. Piero we netal tnon^ geiarral definitions. 

A set of functions of a singh* variable x is said to be normal and orthogonal in 
tlui interval A to B if 

\pn4'm*dx ™ 1 when n — m 
A 

= 0 wdaui yi 9^ m. (1) 

In the discussion we sluill omit the limits of iiiK'gration wlu'rever possible. The 

extension to fund ions of sevi'ral variables is obvious. Nothing is said as to the 

Ix'.havior of lh(‘ funclions oubside the rang<‘ of int(‘gration. It is shown in Chap. 

XV, Sec. 21 that any function fix) which obeys c(‘rtain restrictions can be expanded 
in a series of normal orthogonal functions 

The ordinary Fouihu- series is a simph^ illustration of su(‘h an expansion. The whole 

subject b(M*,onu^s very cU‘a,r if we approach it by setting ourselves the following 

problem d 

Suppose we are givim a finite number of normal orthogonal functions xpi, \p2y etc. 

Let us try to apiiroximale the fum^tion /by a liiu'ar combination of these functions, 

wuth constant coefheiemts 0*, in such a way that the mean square deviation 

is made as small as possible. That is. we sei'k the best fit by the method of least 

squares, arranging that 

shall be as small as possible. 

M ^ Jif ~ 2::o-\^/L.)2d.r (3) 

The conditions for this integral to be a minimum are 

dAf „ ilAf „ , 
== 0, ^ =0, etc. (4) 

By way of examph^, tlu^ first condition yields the equation 

/(/ ~ ':^Cki’k)ypidx = 0 

and since the i/^’s obey the conditions of equation (1), the result of the integration is 

Cl =• Jl4'idx. 
In general, 

Ck = ff4'i4x, . (5) 

If any of the functions f or were complex it would be in order to replace equation 

(3) by 
M ^ fif - XCkyf'k)(f* - ^Ck^k*)dx, 

and to g(meralize equation (4) correspondingly. 

^The treatment of this problem follows that of Coxtrant-Hilrert, Vol. I, p. 35. 
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Since M is greater than or equal to zero, on expanding the expression for A/ and 

integrating term by term we have 

0 ^ !Pdx ~ 2XckJf4'kdx + = !pdx - 7:cP. 

The integral of p is called the norm of /, and is writt(;n N(f), we havci 

2^2 ^ N(f), (6) 

which is Bessel's inequality. It holds whatever be the number of functions used 

in the series for f. 

Now let the number of functions in (he s(‘t approach inhiiity. If it is possible 

with their aid to approximate tlie function / as closc'ly as we please then the set 

is said to be complete. The formula (5) for the development coefheients is unaltered 

and Bessebs inequality becomes the equation 

- Nif) (7) 

which is referred to as the “condition for completeness.’' 

By similar methods it is easy to prov(‘ tliat for any two functions/and g, we hav'^ 

the relation 

f/gdx = 

k 

where the c’s and d’s are the dev(^lopmont coefficiemts of / and g, n'spoclively. 

2. HOW TO CONSTRUCT A SYSTEM OF NORMAL ORTHOGONAL 

FUNCTIONS 

If we are given a set of independent functions Fo, Fj, . . . , we can construct 

a set of normal orthogonal functions from tlnun by straightforward applicatio7\ 

of the conditions of e(iuation (1). The procedure is the following: We agree to write 

(ab) for fabdx. L d us pick out one of the functiorus F, say Fo, and form the function 

Then the norm of i/'o will be one, so that it is normalized correctly. If wc define 

another function \pi' by the relation 

\pl' ~ + ^iF 1, 

we may so choose the constants a© and ai that this function will be orthogonal to 

That is, wc require that 

f}f/i'\f/Qdx — j(i()\f'(}^dx -f- fa\F]\l/[)dx = do ai(Fii^o) = 0. 

This being done, we have in function which is properly normalized 

and which is orthogonal to i/'o- We continue this process, ded-ermining a function 

\l/2' = bo\l/o ~b ^^1^1 + b2F2, 

in such a way that it is orthogonal to both and i/'i, after which we normalize it, 

and so on. The formula for V'n+i is 

(8) 

An interesting example is afforded by the Legendre polynomials. It is well 

known that a^y continuous function may be approximated throughout its course 

by a power series, as closely as we please. However, the functions in the sequence, 

1, X, . 
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are not orthogonal, whatever he the range of integration. If we construct from them 

a set of polynomials which ar(‘ normal and orthogonal in the interval —1 to +1, by 

the above process, we arrives at the func.tioris * 

^n{x) r„(i) (0) 

where P»(.r) is a Legendn* polynomial, useful in the quantization of the rotator 

and of the hydrogcai atom. Other systems of polynomials oftem used in wave mechan¬ 

ics are obtained by orthogonalizing the system 

p's xp''^, xV’"", • . . 
where p{x) is a so-called “w(Mght function.”^ 

W(^ now summ.'irize the mon^ imf)oriant properti(‘S of several systems of poly¬ 

nomials which are extensively recpiinid in problems of wave mechanics. 

3. LEGENDRE POLYNOMIALS 

by 

These polynomials which are often called cylindrical harmonics, may be defined 

the relation 

Pnix) 
1 (Hx‘^ ~ j. 

2" a! c/r'* 
(10) 

In physical probUmis x usually is the cosine of the angle 0 between the 2-axis and the 

radius vector, and we oftem find the Leg^dre functions writtem with cos d as the 

arguiiient. This explains why we normalize these functions over the interval — 1 

to +1. Th(iS(5 limits correvspond Xo 0 — ir and == 0, so that the integration covers 

all possible valm^s of 0. 

We have; 

Po - 1, 
Pi - X, 
P2 = ^2^^ - >2, 
Pi = 

The recursion formula is 

P4 = 3 5^x4 _ 15^^2 +3^. 

P5 = - 33.1V -b 1 
I\, = 4. 

P7 = - ^niisx^ + 3154^:^3 ^ (11) 

(n + l)P„+i - (2ri + 1)j:P„ -f nPn-^ = 0. (12) 

The normalization factor for the 7^’s may be obtained from equation (16), in the next 

section. 
4. ASSOCIATED LEGENDRE POLYNOMIALS 

These functions depend on two indices, n and m, and may be written either as 

Pn,m(x) or as Pn”‘(^). They may be defined by the relation 

p„.»(x) = (1 - -c^)" ^ s (13) 

from which formula (38) in Chap. XV is derived. If 9 and ^ are the polar angles, and 

if we write x — cos 0, the functions Pn,m{x) cos m,<p and Pn.m(x) sin 7n<p are known as 

^‘tesseral harmonics.’^ Because of their utility in electrical problems, these harmonics 

are discussc'd in Jeans’ “Electricaty and Magnetism,” Chap. VIII. The following 

tabulation gives the values of the first few associated polynomials: 

Po,o = 1, Pi,o = cos Sj Pi,i —.sin 9. 

p2,o = H(3 cos^ (9 — 1), P2,i = 3 sin 9 cos 9, P2,2 = 3 sin^ 9, 

Ps,o = K(5 cos^ ^ — 3 cos 9)j P3.1 = H sin ^(5 cos^ 9 — 1). 

p3,2 — 15 sin2 9 cos 9, Ps.a — 15 sin^ 9, 

p4,o,~ H(S5 COS'* — 30 cos- 9 -f 3), P\,i = ^4 sin 9{7 cos^ ^ — 3 cos 9)^ 

Pi,2 == sin^ 9(7 cos'* 9 — 1), P4.a = 105 sin® 9 cos 9y 

p4,4 = 105 sin^ 9. (14) 

1 For further information on this point the reader is referred to Courant-Hilbert, 
Voh 1, p, 72. 
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We have 

NORMAL ORTHOGONAL FUNCTIONS 

(\'Pn.n,Kx)dx 
J - 1 

_ 2 (n + m) I 

2n -f 1 {'ft' — w)I 

so the corresponding nornnilizc'd polynomials arc 

Further, 
r+1 
I ^ P7i,mPg,7ndx = 0 whcn q 9^ n. 

[App. IV 

(15) 

(16) 

(17) 

6. JACOBIAN OR HYPERGEOMETRIC POLYNOMIALS 

These i)olynomials occurrc'd in the quantization of llu^ po]yatf)mic molecule. 

They are d('fined by 
//n . ;r('-«)(! 

(q + n ~ 1) 

6. HERMITIAN POLYNOMIALS 

In quantizing tlie oscillator we arrive<l a< wave functions which are expressible 

in the form when^ //n(?0 is the rdh Hermitian f)olynomial. It may be 
defined by the equation, 

//n(r)- (-l)-C^ 
f/.r'* 

(IS) 

From equation (IS), we obtain the explicit formula 

Hn(x) = (2x)- - - 
n(n — 1) 

1! 
(2a;)~-2 + n(n -l)(n - 2)(?i - S) 

2! 
(19) 

The values of the polynomials //o to !/(, are given in Chap. XV, Sec. 9. The recurrence 

formula of th(;se polynomials is 

- 2xH„ + 2n/7„_i - 0, (20) 

which proved very useful in obtaining the selection principle for the oscillator. 

The Hermitian polynomials arise; from the prolxan of finding functions to satisfy 

the normality condition 

f- 
€~^^Hn(x)Hm(x)dx = O’, m 9^ fi; in and n =0, 1,2, 

The corresponding set of normalized functions is 

wV>(2"n\)yC ^ U, 1, • • • . 

(21) 

(22) 

7. THE FUNCTIONS L,‘ OF THE HYDROGEN ATOM (GENERALIZED 
LAGUERRE POLYNOMIALS) 

In Chap. XVI we saw that the function of the hydrogen atom depends on the 

radius vector r through a factor, 

R{n, 1) = x'c-V2L='y(x). 

Here x is equal to 2r^ — the function is a polynomial which can be 

proved to be the (2i + 1) th derivative of the Laguerre polynomial Ln+i(x), multiplied 

byZ!/(n + 01. 
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The Laguerre polynomials L„ are defined either by the conditions 

,23) 

or, more simply, by the relation 

8 

U ^ - 1) • • • (P + Dx” (24) 

7> = 0 

From this we find the first few polynomials to be 

Lo = 1, />i = 1 “ J, L2 = 2 — 4x + La - 6 — 18j + — x^. (25) 

The recursion formula of theses polynomials is 

L,1.4.1 4“ (2n 4“ 1 — x)ljn 4" ?/^L„_i = 0. (26) 

The corresponding normalized functions are 

• (27) 

To obtain the derival ives of the Laguern‘ polynomials, which occur in the theory 

of hydrog('ii, we use the second expression for L^ in e4:|uation (24). Differentiating 

i times, and writing LJ for d^LJdx\ we hav(‘ 

M — t 

L,‘ = (28) 

7) = 0 ^ 

Some of these functions are listed in Chap. XVI. 

onal, but th(‘ related set 

xkr^/'^L U + l 

n-pl 

They are not themselves orthog- 

which occur in the theory of hydrogen are found to enjoy this property over the 

range 0 to «. 

Integrals of the type 

X x^e~^Ls^ (.r)L„® (x) dx (29) 

have been treated by Schrodiiigcr.^ The more general integral 

xPer(<^'^0^x/2lj/(ax)Lu‘*’(^x)dx 

can be evaluated in terms of the integrals of equation (29). The results are too 

lengthy to be quoted in detail. We encounter integrals of this kind in evaluating 

the intensities of the spectral lines of hydrogen. 

' Ann. Physik, 80, 437 (1926). 



APPENDIX V 

METHODS FOR DETERMINING CHARACTERISTIC ENERGY 
VALUES 

The problem of finding the quantized energy valiu'.s, for whicli \p is finite, con¬ 

tinuous, and single-valued, in other words, acceptable, is a broad one. 

We must not expect that any single method w ill work in all cascLs. The method 

originally used by Schrodinger for tlie hydrogen atom was to obtain a very general 

expression for the part of 4^ depending on r, in the form (vf a complex integral con¬ 

taining the constant E. A study of the properties of tins integral then show^ed that 

it w'ill not be an acceptable function except when E assunnjs the luigative values 

given by the Balmer formula, or any positive value whatsoever. We now’ describe 

other methods which have much w’ider application. For simplicity W’c assume 

that the coordinates can be separated in the w'ave ('quation, so that w^e are confrontixl 

w’ith an ordinary differential equation to d(‘terinine a function F, of a single variable 

X, and that F must be finite., continuous, and singhvvalued over the range from minus 

infinity to plus infinity. 

1. THE METHOD OF TERMINATING SERIES 

A much used method, illustrated by our treatment of hydrogen, is to make a 

substitution of the type F — IX, w here 1 vanish(\s at infinity, and is finite when x 

is finite, while X can be represented by a power series containing only positive 

integral powers. (Thus, in the H atom and in many other cases, F contains a factor 

/ = where f(x) is positive for all physically allow^abh^ vahnxs of :r, and &• is a 

positive integer.) This solution wdll satisfy all re(]uirements when x is finite, if the 

series terminates afti'r a finite number of terms. Each coefficient ap depends on the 

value of E, and of any other constants present- in the original differential equation, 

Op -= f(E, //, c • • • ). (1) 

To find the eigenwerte we must choose JB^-values whicli w ill make all the a’s after a 

certain one vanish. Often it happens that the recursion formula for calculating 

later a’s from earlier ones takes the simple form 

~ CpOp, (2) 

where the coefficient Cp is a function of p, E, and universal constants. If E is so 

chosen that one of the c’s vanishes, the series for A" will terminate, e.g., if wo choose E 

to make Cs vanish, then == 0; therefore, ar = 0, and so on. Proceeding similarly 

with values of E which make other coefficients vanish, we obtain the complete set 

of eigenwerte. If the value of F remains finite or vanishes when x-~* oo (due to the 

vanishing factor I), all requirements of the problem are met. 

2. BECHERT’S METHOD 

Bechert^ has given a method which has the great advantage that the eigenwerte 

are usually obtained without solving the wave equation,. It depends on a study of the 
way in which the solution behaves near singular points of the differential equation, 

i4nn. Phyaik, 88, 905 (1927). 
750 
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t'.e., points whore its coefficients become either zero or infinite. Two illustrations 

will show the essential featrire.s of the method. 

Harmonic Oscillator.—From Chap. XV, Sec. 9, the equation for the oscillator is 

-ff + {A - = 0 (3) 

where A = 2Elhvi). This equation predicts a perfectly reg;ular behavior for ^ 

as long as the independent variable v is finite, but if v approaches ± the behavior 
of ^ must be examined in detail, b(;(^ause the coefIi(;i(‘rit of \p IxH^omes oo. Now when 

V is very larger, A can be m'glec^ted in comparison with v~, and fiquation (3) reduces 

to ~ rV = 0. Trying the solution ^ ~ we got 

= (± 1 T t'") 

which is equal to vV? within a sufficient approximation for our purpose. That is, 

behaves very nearly like when is large. This is expressed by saying that 

g±DV2 -g asymptotic form for \p when v—^oc. This gives us the liint that if we 

make the substitution, 
-vV2 . 

then y will behave like a polynomial in the neighborhood of oo. The accurate 

(Hjnation for y is 
?/" - 2c//' -h (d - 1)?/ = 0. 

Let us use a new variable, z = 1/r, so that w(‘ can study the (u|uatiori when z is very 

small. It becomes 

+ (22’ + 2c)J - l)i/ = 0. 

S(^v(^ral terms may lx* m'glcctt^d when z approaches zero, so that w(^ have 

2z 
dy 

dz V = 0, 

in this n^gion. The integral of this is 

To make this single-valued and to keep y finite when v — 0, we must have 

that is, 

A - I 

2 

E 

hvii 
2 == a po.sitive integer, or zero; 

En = 

the energy values for the oscillator. 

Briefly, the gen(;ral procedure is this. Near singular points of the equation, certain 

terms in the coefficients may be neglected. The resulting equation is usually of simple 

form and can be integrated immediately. To make the solution singhyvalued, finite, and 

continuous, E must be given definite values, the eigenwerte. The value of the method 

arises from studying the solution only in a region where its behavior is especially 

simple. 

Another Illustration.—The differential equation of Legendre's polynomials is 

(x^ - l)y" + 2xy' 4- X?/ = 0. (4) 

It is known^ that solutions of this equation must be polynomials if they are to be finite 

continuous, and single-valued in the interval — 1 to -f-l. We can determine X so 

^ Ooitrant-Hilbert, p. 268, or the older editions of Riemann-Weber's ^Tartielle 
Differentialgeichungeii.'' 
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that the solution will be a polynomial, by considering the state of affairs when x = «. 
We use the transformation 0 = and study the behavior of tiie equation in the 
neighborhood of « » 0. It becomes 

0. 

When z approaches zero this approximates the form, 

+ = 0. 

Further in the region of large x (small z) the most important term in tlie polynomial 
solution of equation (4) is the highest power of x which it contains, say x'\ Substi¬ 
tuting this in the last equation it takes the form 

X = -n(n + 1), (5) 

which gives the characteristic values of X. 

3. OTHER METHODS 

Wentzel^ has given a method which may be considered as a generalization of 
Sommerfeld’s quantum conditions. It is both sirnphi and eonvenicmt., but since* its 
use involves the theory of functions wo shall not disemss it Ih'H'. 

JZ. Physik, 38, 515 (1926). 



APPENDIX VI 

APPLICATIONS OF THE CALCULUS OF VARIATIONS TO 
WAVE MECHANICS 

in Cliai3. XV, Se(3. 20, wc met with the problem of making an integral of the form, 

JFdxdydzdt, (1) 

assume an extreme value, where F is a function of the independent variables x, y 

2, of the dependent variai)le u, and the first derivatives of u. We are given the 

form of the function F and the problem is to determine u in such a way as to make 

the int.egral a maximum or a minimum. (In what follows, we shall speak only of 

making it a minimum.) A problem of this kind generally has no meaning unless 

we agree to sptjcify the values which u must take on the boundary of the region of 

iutc^gration, for otluu wisc w(i can choose values of u such that F will become infinite, 

thereby robbing the problem of its physical value and interest. It will suffice if we 

consider luire the case wlu’re F depends on two independent variables x and y. The 

integral is taken over a two-dimensional region G in the xy plane, and values of u 

on the ])Oundary an' giv(in. Our treatment is ))ased on the very clear discussion given 

in Cliap. JV of Courant and Ilillx^rt’s “Methoden der Mathematischen Physik.” 

We write the integral in the form 

where 
I = JSF(x, y, a, War, Uy)dxdy, 

d il , dtl 
Ux - V , and Uy = 

dx^ ^ dy 

(2) 

Suppose now that U is the function which makes I assume its minimum value, 

and let U + cv be another function which might be proposed as a possible form 

for t/; c is a numerical parameter and v an arbitrary function of x and y. We may 

write 
1(c) = fF(Xy ?/, U + cvy Ux 4- cvxy Uy -h cvy)dxdy. (3) 

Because of the assumption that U is the function which makes I a minimum, we must 

have dl/dc. — 0, when c = 0. Now by Taylor’s theorem, since x and y are not 

changed (dl/dc)c „ o is equal to 

(4) 

and since differentiation with respect to c can be carried out under the integral sign 

this takes the form. 

This is an equatiop which U must satisfy in order that I may be a minimum. For 

the validity of what follows, we must now assume that the boundary curve B has only 

a finite number of corners and that a line drawn parallel to either of the two coordinate 

axes will cut the curve in only a limited number of points. We consider the integra¬ 

tion of the term -fr with respect to x. Integrating by parts, we have 
dUx dx 

- XvW) dFW) 
dU, 

763 
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may be seen from the figure. Now integrating where the significance of xP and x' 

with respect to y the final result is 

dF dy, 
V . J- ds 

B dUx ds 

whore the boundary integral on the right is taken counterclockwise. The values 

of u are specified on the boundary and therefore v must vanish there, so that this 

integral is zero. We treat tlu' third term of equation (5) similarly, and the condition 

for I to be a minimum reduces to 

S S^\_dU dx\dlJx) dy\HU 

Since v is arbitrary, the factor in brackets must cipial zero at every point of the region 

G. This gives us the Euler differential equation, 

dF 

df OF \ _0 ( OF'^Yxdy=^Q. 

dU dx \dUx/ dy\ d I Jy ) 
(0*i 

This requires careful interpretation. In taking the partial derivative of dFjdUx 
with respect to x we must rememlier that this expression is a fumttion of x in several 

distinct ways. First, it may contain 

known functions of x; differentiation 

of these known functions will give rise 

to a term Avhich we may write Fu^j’} 

second, it contains x implicitly through 

the prosciu'e of U, Ux, and f/y, all of 

whicli are themselves functions of x. 

Differentiation as to these interme¬ 

diate variables will be indicated by the 

symbols Fv^pi Ft/xf/x, and FuxUyy re¬ 
spectively. We have, therefore, 

dUx 
+ Fi 

dy ■ - dx 

The expression for the third term of equation (6) is similar. The problem is now 

redu(;ed to finding a solution of equation (6) which will satisfy the boundary 

conditions. The extension to a larger number of variables is obvious. 
By way of illustration, let us derive the relativistic wave equation by applying 

the variation principle proposed in Chap. XV, Sec. 20. It is assumed that the 

integral of equation (1) is to be made a minimum, where 

+ 2 similar terms in which y and z replace x, 
\dx eg oi / 

dUy 

V\^e write 
c dt ““eg” ~dt) “g2 V oi) ' 

dx 

d^ 

, d/aF\ aF - 

'*■ at\a^,) aif “ *'* 

The Euler equation for is 

dF \ 

0x\0'^x) 
Now 

d'ifx 

Other terms are easily written by symmetry, and dF/d'^if = 0. 

(112) of Chan. XV 

/d^ Hi d^\ 
=5 _! 

\ dx " C g ■ dt) ’ axv 'Vai* c g atat) 

The result is equation 
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THE WAVE EQUATION IN CURVILINEAR COORDINATES 

Some confusion may arise as to the proper form for Schrodinger’s equation in 

curvilinear coordinati^s unless we pay careful attention to tln^ definition of yp in these 

coordinates. The whol(‘ suliject has iieen clearly summarized by Podolsky^ and parts 

of this section will follow his tniatment. Since has th(' significance of a prob¬ 

ability, the value of \p must be independent of the coordinate s>stem used. In 

discussing the one-ek'ctron problem, we have used tlie relation = 1, where dv is 

an element of volume in a space wluire the coordinate's .r, //, z ani equal to tlie actual 

Cartesian coordinates X, Y, Z of the eleeUron multiplied by the square root of its 

mass. In these coordinates the wave equation is 

+ 1^., (E — V) yp — 0. (1) 

Then, on passing to polar (mirdinates which are relal(*d to ;r, ij, and z by the usual 

transformation formulas, the normalization condition take's the form 

sin Odrdipdd — 1. (2) 

The possibility of confusion arisc^s from the fact that some authors use instead the 

function rpp which satistie^s the redatiem 

J\pp\pP*drd(pdO — 1. 

By comparison with expiation (2), we se'e that 

ypp ~ 

Sometimes it is desirable to use \p) at other tirne^jS’, our equations are simpler if written 

in terms of functions similar to \pp. 

Another difficulty ariseis from the promulgation of false rules for obtaining the 

wave equations from the energy //, We shall have no trouble if we adhere to the 

variation p.inciple in Chap. VX, 8ec. 20 and to the wave (jquation derived from it. 

Now we have stated (Chap. XV, Sec. 10) that in Cartesian coordinates the wave equa¬ 

tion can be derived from H by substituting 

h d 

2Tri dx 
for px, 

h 0 

'Zivi dy 
for p,„ etc 

If we express II in terms of other canonical variables pr, qry write —- for pr, 
/tTTV 

and apply the resulting operator to a function h\ we have a differential equation for F 

which is useful in Dirac’s generalized wave theory (Chap. XVIII); but F is not ordinarily 

equal to ypy for if we transform equation (1) into tlie coordinates qr, we do not usually 

obtain the equation which defines F. The conclusion is, we must not use the above 

process of substituting operators for momenta if we urish to obtain the equation for \p in 

(urvilmear coordinates. The correct process is to transform equation (1). 

To make our considerations quite general, .we consider any system of coordinates 

gi . . . qn in which the square of the element of arc is 

ds^ ’^'^Bikdgidqk. 
j k 

(3) 

75R 
•P%«. Rev., 32, 812 (1928). 
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We suppose, following Schrodinger, that each term contains a factor m, as mentioned 

above in the case of Cartesian coordinates, so that 

ds^ = 2Tdt\ (4) 

T being the kinetic energy. We define g to be the determinant formed from the 

elements gjk drawn up in square array. Let equal 1 /g multiplied by the cofactor of 

gjk in this determinant. Then the appropriate generalization of equation (2) is 

S^I'*\^gdqi • • • dqn === 1 (5) 

for the element of volume is . . . dqn.^ The general form for the wave equation 

(1) is 

j k 

If we wish to use the variable W ( = A log in place of as we did in Chap. XV, 

Sec. 24, then equation (6) takes the form 

2S' 
j k 

Oqj dqic 
j k 

The double sum on the left is simply the general form of grad- IT, wdiilo that on the 

right is AW; the whole equation reduces to the classical Hamilton-Jacobi equation 

if h approaches zero. 

In spite of tlnur complicated appearam^e the student will find that these equations 

usually lead to the wave equation with mutdi less labor than that involved in direct 

transformation. 
It is interesting to determine the form of //(/>, q) which will give equation (6) if 

we replace each p by the corresponding operator. Obviously, it is 

(7) 

Podolsky2 has also considered the differential equation for i/'g, where 

jMq*dqi dqn - 1. 

Cemparison with equation (5) shows that 

\Ig = gV^xp, 

Using this relation in equation (6) we have 

iXX‘-"si if-"*') + - "■ 
J k 

(8) 

(9) 

(10) 

By the method of substituting operators for momenta this can be derived from the 

function 

H, = + V. (H) 

J k 

The order of factors is important, of course, if we consider equations (7) and (11) as 
matrix equations. 

iSee Murnaghan's “Vector Analysis and the Theory of Relativity,'' The John 
Hopkins Press, Baltimore, for this and other geometrical formulas. 

2 Loc, dt, 



APPENDIX VIII 
USEFUL THEOREMS OF ELECTRODYNAMICS 

1. MAXWELL’S EQUATIONS FOR FREE SPACE 

We denote the components of the electric vector by Es, Ey^ and E^, and those 
of the magnetic vector by //x, Ey, and //^. At any point the charge density is p 
and the velocity of the charge is v. For a space which is free of gross matter Maxwell’s 
equations take the following form: 

c Si dy dz ’ 

(and two similar ecpiations, obtained by cyclic permutation of x, y, and 2); 

(1) 

mix , dll z _ 
Ox ~0y '^ Oz " ' 

0H_, 
dy 

(and two similar (‘(jiiations); 

dx dy dz 

The magnetics vector ])ot(m1 ial obeys tlie relation 

4:Trp, 

H = curl A, that is, Hx ~ etc. 
dy dz 

(2) 

(3) 

(4) 

(5) 

{Example,—It can bc^ shown by integrating equation (5) that one form for the vector 
potimtial of a uniform magnetic field directed along the s-axis is 

Hx •A „ A Ax — 2'y Ajf 2 
A. = 0.) 

When equation (5) holds true, we can show b,y using (xjuation (1) that 

„ , IdAx d^ ^ 
+ - “ == , etc. 

C dt dx 

(6) 

(7) 

The function ^ introduced in this manner is called the ‘^dectric potential,” or the 
‘‘scalar potential.” 

According to Lorentz, the force acting on a charge e when it is exposed to an 
electric intensity E and a magnetic intensity H is cF, where 

that is, 

F = E + J[vH], 

Fa, = jE7* 4“ -(yHg — zHy)^ etc. 

(8) 

(8a) 

2. EQUATIONS OF MOTION OF A PARTICLE IN AN 
ELECTROMAGNETIC FIELD 

The equations of motion »f a particle of charge € exposed to both electric and 
magnetic forces are 

where m'is the rest mass of the particle, and jSc its velocity. 
757 
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In (‘asc the term — ^ — in the electric vector E is equal to zero, the com- 
c at 

ponents of electric force are of the form ~d^/dx. The magncitic force ^[vH] 

causes no change in the kinetic ene gy of the particle, because by definition, the 

vector [vH] is perpendicular to v. Therefore, the energy equation takes the form 

T + €4> = constant, (10) 

where T is the kinetic energy. The Lagrangian function, so useful in transforming 

the dynamical equations to other systems of (coordinates is simply T — e1>; but in the 

general case where dk/M is not zero, this expression is not correct. To doterraine 
the proper Lagrangian function, we try to throw eipiation (9) into the form 

d ()Ij dh _ ^ 
dt dx Sx * 

and thus to determine the form of L by inspection. To do this, we replace E and H 

by their values in terms of the potentials. Then, 

/ rni. '' 
- - ‘ 4- -fi 

/dA„ _ dAx> ,3/1A-] 

:V(r-W-^> 1 dx c dl \ dx dy > 1 ‘V dz dx )\ 

dl ^ dx ' + 

We use the value of dAx/dt from tliis equation to eliminate it from equation (11), 

with the result 

/ mx I ^ ^ 
V(r-/t2)t2’+-'c) + €- 

e/dAx . . dA C\ dx"^ d x 

^Ay. .dAx.\ _ 

This suggcists that w^e assume the relations 

and 

dL mx 
- . sr p, = -- 
dX (1 

+ 
€ A 

dl 

dx 
c, 
dx 

(12; 

(13) 
'dA,. , dAy. , <3/1,.\ 

V + ■ 1 .'/ + )’ dx dx dx / 

with similar equations for the other coordinates and momenta. By actual integra¬ 
tion we find that these ecpiations are consistent and that 

L = mc2(l - (1 - ^2)1/.) _ -f^Av, (14) 

where Av denotes the scalar product of A and v, that is, 

AxX A- A yij A- A^k. 
If other conservative forces not of electric origin are also acting, we must replace 

by the potential V'', due to all the forces. The Hamiltonian function // is thtm 

obtained from the usual definition // = ^pq — 7>, where the //s arc as defined in 
equation (12). We get 

II = - l) + F, (15) 

for the terms containing the A’s conveniently disappear. However, tliis does not 

contain the p’s, so we introduce them by eliminating Squaring and summing 
the three equations, 

mx 

we have 
(1 - 

px - —, etc., 
1 
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Calling this quantity w‘‘ wo find tliat 

(1 - 0‘) " ^ 
Therefore, II may be written 

H ~ mc2((l 4" — 1) V. 

This is more conveniently expressed in the form 

(17) 

(18) 

that is 

IT - V 
1 + = 1 + 2'-- 4- 

inc^ 
(II - TV 
V rnc^ ) ' 

+ (- - ^ + (- -^ 
A more symmetrical form is ofitained by using the total energy g, which is the sum 

of II and the self-energy of the charge, inc-. VV"e have 

whence 

8 = 4- F, 
(1 - ^ ’ 

i^y - m-c- 4- 
1 

and using the value of ^ from equation (1G)» we have 

V(p,.-^yl.)^-(S-/)>».V=0, (19) 

vdiere p, stands for Py, or pz. Th(‘ (H)rr(‘spon(ling Hamilton-Jacobi equation is 

cri 4- -_j_ 0, (20) 

which is useful in deriving S(4ir6dinger’s w'ave equation. 

3. LARMOR»S THEOREM^ 

This theorem di\scribes tlu' b(‘havior of a system of particles, all liaving the same 

ratio of charge to mass (in sign as well as magnitude), in the prcsem^e of a constant 

uniform magnetic field H. It is supposed that in the absence of the held the particles 

move under tlic action of forces liaving a potential function which depends only 

on the coordinates. Then the thc^orem is, the motion of the system in the same as it 

would he in the absence of the field, except that a uniform rotation around an axis parallel 

to the field is superposed, provided that effects proportional to the square and higher 

powers of H are neglected, 

A simple artihee enables us to apply the theorem to an atom even though the 

nucleus and the electrons have widely different e/m ratios; we assume the nucleus 

to be al, Hist and then to all intents and purposes it is excluded from the system. 

If we take the h(4d H in the direction of the ^-axis, the equations of motion of an 

electron of charge — c will be 

(wj) = 

fmy) = 

-7 - dx ’ 

dF , 

Oy c 

dV 
dz (21) 

^Larmor’s ‘^iEther and Matter," p. 341; See Born's “Atommechanik," pp. 240 
and 270, and Van Vleck’s “Bulletin," p. 300. 
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We shall use the subsciript i to distinguish the coordinates ot the ith eleetron, and 

shall neglect the variation of mass with velocity. Introducing polar coordinates, 

the 2-component of angular momentum of each electron is rn f^ sin''^ The angular 

momentum of the system is not constant, and in particular p«( s; is variable. 
From equation (21), 

where 

Since 

sin^ Oiipi = 2TmLj^'^{xi^ -h yiO = sin* 

0 = +1^ = 2tL 2mc 

sin- QiC<Pi — o) = 0, 

(22) 

it is natural to use polar coordinates r, x> prccc^ssing a])out the 2-axis with angular 

speed 0. Then, 
Xt = vPt — e, xi == <fi — (23) 

and 
'Ulrnri^ sin* OiXi — Px ~ constant. 

If x', y\ 2' are Cartesian coordinates in the moving franu^ of reference, 

X ~ x' cos nt — ?/' sin ot, 

y — x' sin ot -f y' cos oi. (24) 

To transform the (‘qiiations of motion we note that 

d ^ , dV d f. . dV 
= - a7* ^ - o, ” 

From equation (24) we obtain 

~-{y — 2oa*) = (x' + o*x') sin oi -f (;)/' -f O'-y') cos ol. 

Hy easy elimination of tlie terms containing otj we find fi)r each ele(;tron, 

mx' — 

my' = 

m'z' — 

OV 

dx' 

dV 
dy' 

— 7no“x/j 

— mohj'f 

dV 

dz' ’ 

(25) 

The motion of each electron may be accurately described as due to forces which have 

the potential 
V -f >2mo*(a;'* + y'^). 

Now V depends only on the relative positions of the particles and on their distances 

from the origin. None of these quantities arc altered on passing to the moving system. 

In fact, V(x\ y', etc.) involves the moving coordinates in precisely the same way 

as V{Xf y, etc.) involves the resting coordinates. For a field of 10^ gauss, and for 
dV 

the nth orbits, of the hydrogen atom, exceeds mo^x' by a factor of roughly 

2.10iV^®- Therefore, if we neglect the relatively insignificant terms in 0* which are 

proportional to H*, equations (25) predict that in the moving system the motions 

will be identical with those which would be performed in the absence of the field, 

which proves Larmor’s th(K)rem. For diatomic molecules the theorem holds true 
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only in the very special case in which the nuclei remain permanently in a line parallel 

to the field. 

It is worth noting that the Larmor precession of a negative charge, is clockwise for 

an observer looking along the direction of tlie lines of force. 

4. ENERGY, MOMENTUM, AND ENERGY FLOW IN THE 
ELECTROMAGNETIC FIELD 

We are familiar with tlie idea that tlie energy of a syslem of cliargf's, magnets, 

and currents may 1)0 considered as residing in the whole of space, the energy density 

at any point being 
(KE“ 4 f^II'O 

K being the di(dectric constant and g the magnetic permeability. It is custoniary 

to think of the term containing E"^ as potential emn'gy, and of the term in IT- as 

kinetic energy, Tlie time rate of chaiigci of the integral representing the total eiu^rgy 

localized inside an arbitrary closed suiface is comjiosed of two terms. Oiie of these 

represents the ral(‘ at which work is performed by the curnmts which flow inside the 

surface; Ike othcT can be written as a surface integral, and may be) interpreted as 

the rate at whicli energy enters the volume under consideration. Suppose we write 

Nx = - EJI„), etc. (27) 

or 

S = f [EHl. 

Then the quantities >S4, *S4, and Ss are the compommts of Poynting’s vector, which 
represents the flow of en('rg\' across unit surface jier unit of time, both in magnitude 

and in direction. The magnitude of the Hoav is 

cEII sin 0 

Itt 
(28) 

where S is the angle between t he electric and the magnetic vectors. 

The pressure due to radiation, and oth(*r elTects which depend on the transfer 

of energy, are explained with perfect success if we assume that the momentum asso¬ 

ciated with an element of volume dt) is 

Sdv 
(.2 

• (29) 

6. RADIATION FROM A MOVING CHARGE 

To obtain the rate of radiation of energy by a moving charge, wm first determine the 

Poynting vector at every point of a surface surrounding it and then integrate the 

flow of energy over tliis surface. 
To begin with, there will be no radiation from a charge moving with uniforn 

velocity, for if we take our stand on a system of reference moving with the charge 

it wdll be at rest, and will possess zero magnetic field at every point in space. There¬ 

fore, the Poynting vector will everywhere be zero and the energy of the charge wdll be 

constant. Retransforming to the original S3^stein of coordinates, the intrinsic energy 

of the charge will still appear to be constant. Therefore, we pass at once to a study 

of an accelerated charge. For simplicity, we take the surface surrounding the charge 

to be a sphere with center at the origin and radius large compared with the wave 

length of the radiation. Let the charge be at the origin at time t « —r/c, where r 

is the radius of the sphere, and let its acceleration a be parallel to the Z-axis. The 
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radiation which it emits while at the origin will reach any point P on the surface 

of the sphere when t ^ 0. IjCt the coordinates of P be r, 0, (p. The expressions 

for the field at P are given in Abraham s “Theorie der Elektrizitat,” volume I, 

page 329, If r is so great that terms in higher powers of 1/r may be neglected in 

comparison with the term containing 1/r itself, then the electric and magnetic fields 

at P will have the magnitude 

E ^ H 
€ sin^ a 

c^r 
(30) 

Further, H is tangent to the small circle, 6 = constant, in Fig. 2, Chap. T, and E 

is tangent to the great cinde <p = constant, so that they arc at right angles. The 
Poynting vector is, therefore, 

= A (EH) = 
‘iir 

^^sin^ 0 a- 
4^^3y.2 

The instantaneous rate of flow of energy through the zone between 0 and 0 dd is. 

S • 2Trr- sin OdO 

and the rate at which the charge is losing energy is the integral of this expression; 

a-V- 
~2c^ 

jshCf? do 
0 

2(‘~(P 

3c3 ■ (31) 

We are now in a position to determine the radiation from a harmonic oscillator 

which obeys the equation of motion z — A cos 27rr/. To be sure, the oscillator is at 

the origin only an infinitesimal fraction of the time, but if the amplitude A is very 

small compared with r and the velocity is small compared with c, then we can cahmlate 

the rate of radiation by the formulas above which apply to a charge at the origin, 

without introducing appreciable error. With this understanding, we write = 

(2Trt')‘^A^ oos'^ (27rc/). Substituting in equation (31) and averaging with respect to 

time we find that the mean rate of radiation is 

dE _ (2,r^)V2A2 __ (27r)‘c2AV 

dt ■ ' 3X'‘ ■ ’ 

a formula which is the basis of all calculations of spectral intensities. If z is given 

by a sum of terms of the type Ai cos 2Trp(t — 6i) where the c’s are quite arbitrary, 

so ftiat the series is not in general a Pourier series, then the total radiation is simply 

a sum of terms of the type in equation (32); for in taking the time average of the 

integrals of cross-product terircs such as cos 2irvi{t — cos 27rr, (/, — 6,-) will be zero. 

Physically, this means that on the average the emission of light of one frequency is 

not influenced by the simultaneous emission of other frequencies. 

6. THE RELATIVITY TRANSFORMATION 

Let an observer move parallel to the j-axis with velocity* v = (ic, and let his 

.r-axis be parallel to our owm. If we distinguish quantities measured in his frame 

of reference by providing them with primes then the relation between his geometrj" 

and our own is found to be 

x' = h(x - vt), y' ^ y, z' ~ Zy F ^ k^t - (33) 

where 

(1 - 

This is the liOrentz transformation, and the Maxv/ellian equations (1) to (4) are said 

to be invariant under this transformation. The type of invariance referred to will 

be made clear bv the following considerations: 
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If / is any function of x, y, z, and I, we have 

dx dx' dx dt' dx \3x* dt')’ 

and similarly, we find 

dy dy'^ dz dz'^ dt \di' dx'/ 

We use these relations to transform Maxwell’s equation into the primed coordinates. 
It is then found that the transformed equations will take the mmeform as the original 
ones provided we write 

H/ = //., E.' = E,, 

H„' = k(^IIy + [E^j, Ey' = k[Ey - '^H,y 

//.' = k(^H, - Eyy E/ = k(^E. + I //„) • (34) 

The vectors E' and H' possess all the physical characteristics they should have in 
order that the moving observer may he justified in calhng them the electric and 
magnetic intensities. This is insured by the fact that they are determined by 
Maxwell’s equations in the primed coordinates. The formulas for E and H in terms 

of E' and H' are obtained if we change the sign of v and interchange the primed 
and unprimed coordinates in equation (34). A similar remark holds tnie for obtaining 
the unprimed coordinates in terms of the primed ones. From equation (33) we have 

r = kix’ + vt'), y = y', z = z',i = k(^t' + (33a) 



APPENDIX IX 

PHYSICAL CONSTANTS AND CONVERSION TABLE 

The following values of physical constants have hoiiii adopted in this book:^ 

c (velocity of light). (2.99796 ± 0.00004) 10^^' cm. seo.~i 

h (Planck’s constant). (6.547 ± 0.008) 10~“^ erg. seconds 

Mi{ (mass of H atom). (1.6618 ± 0.0017) lO"^^ grams 

M = Mo/16 (mass of atom of unit 

atomic weight). (1.6490 ± 0.0016) \0~-^ grams 

mo (mass of electron, sp(‘.ctroscopio). . (0.035 + 0.010) 10“-^ grams 
mo (mass of electron, deflection). (8.994 ± 0.014) lO'^s grams 

e/Mn. (9,574.5 ± 0.7) absolute cm. units 

Mh/tho. 1,839 ± 1 (spectroscopic) or 1,848 ± 2 

(deflection) 

a„ (radius of first Bohr orbit of IT)... (0.52845 ± 0.0004) 10"^ cm. 

F (Faraday). 96,494 ± 5 int(nTiatioiial coulomb per gram 

equivalent 

9,648.9 ± 0.7 absolute cm. units per gram 

equivalent 

e (electronic charge). (4.770+ 0.005) lO'^*^ absolute r.s- units 

(1.5911 + 0.0016) 10“'-^^ absolute cm units 

efm (spectroscopic). (1.761 + 0.001) 10^ absolute cm units 

e/m (deflciction). 

Tin (Rydberg constant of hydrogen).. 

Tine (Rydberg constant of ionized 

helium). 

R (Rydberg constant for infinite mass) 

Gram molecular volume, S.T.P. 

AT (Avogadro’s number). 

n (Loschmidt’s number). 

Ro (gas constant per mole). 

k (Boltzmann constant).. 

C2^ (second radiation constant). 

<r^ (radiation constant). 

per gram 

(5.279 + 0.003) 10^'absolute C8 units per gram 

(1.769 4 0.002) 10^ absolute cm units per gram 

(5.303 + 0.006) 10‘^ abs. cs units per gram 

109,677.759 + 0.05 cm.“i 

109,722.403 ± 0.05 cm.-i 

109,737.42 4 0.06 cm.-i 

(22.4141 ± 0.0008) lO'’ cm.^ molo-i 

F/c = (6,064 ± 0.006) lO^^ mole-i 

(2.7056 4 0.003) 10i« cm,-3 (at O^C. atm) 

(8,3136 ± 0.0010) 10^ erg-deg.-i mole-i 

(1.3709 4 0.0014) 10'erg-deg.~i 

1.4317 ± 0.0006 ern.-deg. 
9-rr’^k^ 

lUi? "" ^ 10“5ergcm~2deg.-4 

sec.“^ 

a*. = (7.624 ± 0.007) 10“i5 erg cm "3. deg.*“^ 

d' (true grating constant of calcite at 
20®C.). (3.0283 ± 0.0010) lO-s cm. 

1 These are the values given by Bibge as the best values at present (Phys, 

Rev, Supplement. 1, 1 (1929).) 

See Chap. Ill, Sec. 2. 
764 
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a (fine structure constant)...= (7.284 ± 0.006) lO"-^ 

1/a. 137.29 ±0.11 

. (5.305 ± 0.008) 10-5 

k/e. (1.3725 ± 0.0005) lO"'^ erg • sec • es“i 

^ = h/h. (4.7757 ± 0.0019) 10-^' sec deg. 

Band spectrum constant = h/Hir'^c (27.66 ± 0.04) lO"'**^ gram cm. 

Energy in calories per mole equiva¬ 

lent to one absolute volt- eU^ctron per 

molecule. 23,055 ± 4 cal. mobr'^ 

^2kT at 0°C. (5.6176 ± 0.006) 10“^" erg 

Wave l(mgtb of the red Cd line in air 

at 15°C. 1 atm. 6,438.4696 LA. (defines LA. unit) 

Tin; following convi^rsion factors are frcHpientlj^ used in considering atomic and 

molecular probhuns. 

E — energy per molecule in ergs. 

E' — energy per mole in 15^" small caloric's. 

V ~ wave number = v/c, 

V “ el(5ctron-volts. 

In order to change from an (mergy expressed in one of these units to its equivalent 

expr(!ssed in any other unit, multiply the number expressed in the units as given 

at the top of the table' by tlie numlx'r beneat h it and opposite the symbol for the 

units desired. Thc're is an uncc'rtainty of at least one in the first inferior figure. The 

logarithms are given uniformly to five* places though in most cases the use of these 

filjices is not justific'd by the pn^cision with which the constant is known. 

E E' 
! ^ 

I V V 

E 
1 6.90,X10"ii 6.547X10-27 1.962hX10-i« 1.59uX10 12 

(0.83893-17) (0.81604-27) (0.29288-16) (0.20170-12) 

E' 
1.44«Xl0i8 1 9.48(1X10-11 2.844 2.3055X10‘ 

(16.16107) (0.97709-11) (0.45393) (4.36277) 
1.527X1025 1.054X10i« 1 2.99796X1011 2.4303X101^ 

V 
'26.18396) 1 (10.02291) (10.47683) (14.38566) 

5.096X1015 3.5lnX10-i 3.33560X10-11 1 8.106X103 
V 

(15.70712) (0.54607-1) (0.52317-11) (3.90883) 

V 
6.285X1011 4.3376X10-5 4.1147X10-15 1.2336X10-^ 1 

V 
(11.79830) (0.63723-5) (0.61434-15) (0.09117-4) 
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inverted, 326 /, 332 ff. 

laws of, 186, 189 

lithium, 205 

normal, 326/, 332/ 

origin of, 191, 203 

relativity, 204, 251 / 

screening, 204 

spin, 204, 251 ff. 

in X-ray spectra, 248 ff. 

relativity, 251 ff. 

screening, 251/, 257 

spin, 251 / 

theory of relativity, 261 / 

Doubling, lambda-type, 412, 419, 426 

E 

c/w, 764 

dependence on velocity, 25 / 

method of measurement, 22/ 

Effective nuclear charge, 201 

Effective quantum number, 194, 198 
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Eigev^unktion, definition, 526 

Eigenwerie, 526, 750 (see also Energy 

leveh), 

Einstein’s A's and B's, 61, 697 

Elastic collisions, 75, 484 ff. 

Electricity, atomic nature of, 18 

Electric moment, in wave mechanics, 

543, 545 

of methane, 444 

of molecules, 288 

oscillating, 169 

and Stark effect of molecules, 675 

Electrodynamics, limitations of classical, 

7 

useful theorems of, 757 

Elect romagiu; tic held, energy and 

momentum, 761 

Electron, angular momentum, 96 

charge, 30 

determination of, 27 jf, 

configurations of atoms, 280 jj*. 

X-ray evidence for, 283 

diffraction, 722 ff. 

Isolation, 19 

magnetic moment, 95, 157 jf., 162 

mass, 30, 764 

pair of electrons, 290 

precession, 162 

promotion, 682 

radial current of, 645 

recoil eh'.ctrons, 88 

shells, 4, 272 

sources, 448 

specific charge, 22 ff., 764 

spin, 95, 96, 157jf., 162 

energy changes due to 157 ff., 162 

suhshells, 270 

unidirectional beam of, 645 

Elements, isotopes, 39 

maximum number of, 293 

periodic table, 3, 271 

Elliptic number, 682 

Energy of dissociation from band 

spectra, 392 

Energy diagram, 186 

AlH molecule, 420 

CaH molecule, 424 

cesium, 187 

hydrogen atom, 70 

lici, 381 

hydrogen molecule ion, 683 

iodine, 396 

Energy diagram, OH molecule, 427 

oxygen molecule, 397 

sodium, 80 

Stark effect of helium, 345 

Energy levels (characteristic values), 

diatomic gyroscopic molecule, 416 

diatomic molecule, 373, 529, 592, 

669, 752 

field free, eorrelation with magnetic 

levels, 325 340 

helium, 660 

ionized (see Hydrogenic atom). 

hydrog(Mi molecule, 686 

ion, 680 

hydrogenic atom, 130, 135, 160, 529, 

535, 559 ff., 566 ff., 573 

oscillator, anharmonic, 600 

harmonic, 71, 532, 591, 751 

rotator, 373, 529, 592, 669, 752 

spin relativity doublets, 160 

Stark effect, of hydrogen, 151, 572 

of rotator, 675 

symmetries top molecule, 439, 672 

Zeeman effect of II atom, 146, 537, 569 

of normal multiplets, 318 

of rotator, 675 

Energy levels (empirical) (see also Energy 

diagrams and Moseley diagrams). 

chromium, 306, 308 

diatomic molecules, rotation, 372, 373, 

418, 424, 427 

vibration, 380, 391, 396, 436 

helium, ionized, 123 

neutral, 660 

Stark efff'f.t of, 345 

hydrogen atom, 70, 122 ff., 138, 164 

molecule, 473 

magmatic, correlation with field free, 

325/. 

X-ray, 245/., 248 

Energy matrix, 586, 632 

Equations of motion, canonical, 109 /., 

587 

Hamilton’s 109/ 

Lagrange’s, 102 /. 

matrix, 587 

Newton’s, wave derivation of, 652 

relativistic, of particle in field, 757 

Equatorial number, 141 

Equipartition law, 9 

Equivalence principle of Pauli, 214, 

272, 322 
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Equivalent electrons, 214, 322 

terms arising from, 325 

Kulerian angles, 438, 671 

Even molecules, 290 

Even terms of atoms, 301 

Exc.hange degeneracy, 655^., 660, 6S4ff.^ 

687 

Excited atoms, mean lives of, 480, 496, 

502 

Expansion of arbitrary function, 745 

F 

Faraday’s law, 18 

Fermat ’s principle, and wave mecthanics, 

518, 520 

Fine quantum number, 350 

Fine structure, constant, a, 134, 765 

of H and He'' lines, 135 ff.y 164^. 

of isotopes, 353 

of uon-hydrogeni(; atoms, 350 ff. 

origin, 352 

separation of Balrner lines, 166 

X-ray limits, 267 

X-ray lines, 251 • 

Fhimes, collisions of second kind in, 509 

spectra, 183 

temperatures of, 514 

Fluorescence, sensitized, 499 jf. 

of thallium, 501 

Fret', motion of particle, quantum theory 

of, 640 ff. 

Free paths, electrons, 484 ff. 

ions, 488 

protons, 488 

Frequency condition, 66, 575, 586, 587 

rMndamental series, 184, 211 

Furnace spectra, 182, 303, 699 

' ^ ’ 

g (Lande’s splitting factor), 192, 315 

jf., 319, 330 

Oamma rays, 19 

Ghost field, 82, 544 

Grating constant, of calcite, 764 

of NaCl, 235 

Grotrian diagram, 207 

Gyroscopic diatomic molecule, 406, 409, 

413 

rotational energy, 416 

H 

h (Planck*8 constant), constancy of, 

74, 764 

Halogen hydrides, 371 ff. 

molecular constants, 383 

Hamilton-Jacobi equation, 114^., 117 

matrix analogue, 594 

in wave mechanics, 555 

Hamilton’s equations, 109 ff. 

in matrix mechanics, 587 

Hamilton’s principal function, 114 

Hamilton’s principle, 111 

Harmonic oscillator (see Oscillator). 

Heat of dissociation, 392 

hydrogen, 473, 680 

Heat capacity, 9, 13 

of hydrogen, 432 

Heisenberg, indetermination principle, 

617/. 

mecJiaiiics, 574 ff. 

Helium energy IcvcJs, 660 

ionized, Rydberg constant, 123 

spectmm, 122/. 

orbital model, 194 

probability distribution for, 565 

probability of inelastic collisions, 476 

Stark effect, 345 

wave theory, 655 ff. 

Helium molecmle, rotational states, 696 

Helium nucleus, absence of spin, 696 

Hermitian matrices, 576 

Hermitian polynomials, 533, 748 

Hund’s cases a and b, 411 /., 425 

Hydrogen atom, continuous spectrum, 70 

mass, 30 

orbits, radius, 69 

probability distribution, 565 

Rydberg constant, 122 

Hydrogen molecule, chemical activation, 

482 

continuous spectmm, 483 

critical potentials, 472 ff. 

dissociation by electrons, 482 

by excited mercury, 507 

energy levels, 472 ff. 

para- and ortho-forms, 432, 434, 687, 

695 

probability distribution, 686 

recombination energy, 512 

resonance in second-kind collisions, 512 
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Hydrogen molecule, symmetric and 

antisymmetric, 432, 434, 687, 696 

valence, 286 

wave theory, 684 

Hydrogen molecule ion, critical poten¬ 

tials, 473 

dissociation energy, 680 

nodes, 681 

probability distribution, 681 

wave theory, 677 ff. 

Hydrogen particles, 50 

Hydrogen spectrum, 122 ff. 

intensities, 709 ff, 

Hydrogenic atom, 122 ff. 559 ff. 

energy levels, empirical data, 70, 

122 ff., 138, 164 

new mechanics, 100 ff., 529, 535 ff., 

559#., 566#., 573 

old mechanics, 70, 122, 166 

matrix theory, 604 

probability distribution, 563 ff. 

radius of orbits, 69 

relativity correction, 132 

Stark effect in wave mechanics, 670 ff. 

Zeeman effect in wave mechanics, 568 

Hypergeometric polynomials, 671, 748 

Hyperbolic number, 682 

I 

Impact polarization, 477 ff. 

depolarization in magnetic field, 479 

mercury, 480 

rotation of plane, 479 

theory, 481 

Indetermination principle, Heisenberg, 

617#. 

Indices, Miller, 227 

Inelastic collisions, 489 ff. 

polarization of light in, 477 #, 

probability, 466 #., 474 ff. 

Infra-red spectra, 368 ff. 

intensities, 670 

polyatomic molecules, 435#. 

Inner number, 187, 190, 297 

for normal multiplets, 299 

selection principle, 174 

exceptions to, 348 

Intensity, spectral, 697 ff. 

alternating, 696, 721 

in band systems, 399 

case a molecules, 716 ff. 

Intensity, case h molecules, 718#. 

correspondence principle, 171, 173 

dependence on total quantum number, 

711#. 

diatomic molecules, 670, 674 

hydrogen, 709#. 

intercombination lines, 705 

matrix theory, 593 

multiplet lines, 699, 703 

ratios in related multiplets, 705 

rotator, 546 

sum rules, 699, 708, 714 

symmetric top molecules, 674 

temperature, effect of, 699, 720 

titanium lines, 704 

wave mechanics, 545 ff. 

X-rays, 712 #. 

Zeeman components, 707 

Intercombination lines, 184, 211 

of helium, 475, 055 ff. 

intensities of, 705 

probability of transition, 475 

Interference of weak light, 82 

X-rays, 222 

Interval rule, 314, 332#. 

Invariance, adiabatic, 178#. 

Inverse photoel(H;tric effect, 63 #., 467 ff. 

in gases, 467 ff. 

Inverse square law, 107 

Iodine molecule, critical potentials, 474 

dissociation by light, 396 

energy diagram, 396 

symmetric and antisymmetric terms, 

433 

Ionic potential, 292 

Ionizing potential, 77, 448 ff. 

of the elements, 275 

of hydrogen, 127 

magnetic spectrograph, 461 ff. 

probability of ionization, 477 

table of, 280 ff. 

Isotope effect, atomic spectra, 353 

molecules of methane type, 445 

rotation and vibration spectra, 383 ff. 

Isotopes, atomic weights, 31 #., 42 

boron, 385 

chlorine, 385 

Dempster’s method, 36 

detection by parabola method, 34 

differences in spectra, 353 

distribution and abundance, 40 #. 

early researches, 31 
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Isotopes, identity of chemical properties, 

31 

list of, 39, 40 

mass spectrograph, 37 

oxygen, 39, 696 

packing fraction, 43 

parabolas of neon, 35 

regularities, 39, 40 

separation, 32 

stability, 43 

J 

Jacobian polynomials, 671, 748 

K 

Kepler ellipse, 108 

Ktipler’s laws, 109 

Kernel, 195 

effect of size on chemical properties, 

291# 

Kinetic energy, average, relation to 

average' i)otential Cinergy, 739 

wave-mechanical analogue, 613 

Kirchhoff’s law, 53 

Kossel, explanation of X-ray spectra, 244 

Kratzer’s theory, rotation-vibration 

spectra, 376 666 #. 

Kronecker symbol, 631 

K-series, 236, 238 

Iv-shell, 246 

L 

Lagrange’s equations, 102 #. 

relativistic form, 105 

Lagrangian function, 104 

Laguerre polynomials, 669, 748 

Lambda-type doubling, 412, 419, 426 

Larmor precession, 143, 316, 537 

theorem, 759 

Lattices, body-centered cubic, 233 

crystal, 226 
face-centered cubic, 233 

nickel, 726 

simple cubic, 233 

sodium chloride, 235 

Laue beams of electrons, 725 

Laue diagram, 222 

Legendre polynomials, 529, 747 

LeuchteUktiront 186* 214 

Light, classical theory of emission, 168 

electromagnetic theory, 5#. 

interference of weak light, 82 

Maxwell’s theory, 6 

Light electron, 186, 214 

Light quantum, 14, 57, 63, 66, 81, 83 Jf. 

angular momentum, 482 

wave functions, 541 

lane spectra (see Spectra), 

Lithium doublet, 205 

Lives of excited atoms, 350, 480, 496, 502 

Ix>rentz transformation, 762 

Loschmidt number (sec Avogadro). 

Ix) Surdo tube, 148 

L-series, 236, 239 

excitation potentials of, 240 

Lunelund (see Stark-Lunelund effect). 

Lyman series, 70, 123 

intensities, 711 

M 

Magnesium spectrum, 213, 215 

controlled excitation, 459 

Magncitic azimuthal number, 297 

Magnetic moment, electron, 96, 157 ff. 

nuclei, 96, 352, 435, 695 #., 752 

Magnetic number, 146, 192, 208 ff., 297 

Magnetic spectrograph, for determining 

ionizing potentials, 461 ff. 

Magnetic spin number, 297 

Magneton, Bohr, 90 

Weiss, 91 

Mass, reduced, 124 

Mass spectrograph, 37 

Matrix, 574#., 629#. 

algebra, 577 ff., 630 

analogy with Fourier series, 575 

calculation by wave mechanics, 606 

#., 611 

continuous, 629#. 

derivatives, 580 #., 582 

diagonal, 582, 586, 601, 632#. 

energy, 586 

hydrogenic atom, 604 

mechanics, 574#. 

mixed, 635 

oscillator, 608 

rotator, 592 

several degrees of freedom, 693 
transformations, 594#,, 633 
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Matter waves, 516 ff., 722 ;ff. 

velocity, 517, 521 ff,, 547, 743 

wave Iciigtli, 722 

Maxwell’s equations, 757 

Maxwell’s theory of light, 6 

Mean energy theorem, 739 

Mechanical transformability, principle 

of, 176/. 
Mercury, (critical potentials, 453, 455 

impact polarization, 480 

quenching of resonaTnui, 492 

resonance i)(>t(mtia]s, 79 

resonance radiation, 353 ff. 

spectrum, 210/ 

Metastable atoms, 502/ 

lives, in nebulae, 350 

Methane, spectnnn, 436 

vibrational states, 440 ff. 

Mi(‘roscopic reversibility, 489 

Miller indices, 227 

Minus terms of molecules, 429 

Mix(Hl matrices, 635 

Molecular quantum numbers, table of, 

416 

Molecular radii, 484 ff. 

Molecailes, diatomic, alternating intensi¬ 

ties, 429 

electronic bfinds, 380 ff. 

rotational stnuiture, 403 

electronic lev(4s of, 408 ff. 

gyroscopic, 406, 409, 413 

rotational erK^rgy, 416 

minus tc'rrns, 429 

plus terms, 429 

potential energy of, 393 

symnuitric and antisymmetric 

hydrogen, 434 

symmetric and antisymmetric terms, 

429 

symmetry properties of, 687 / 

theory of rotation spectra, 371, 671 

• vector model, 409 

wave theory, 666 /, 689 

polyatomic, 435 ff. 

predissociation, 446 

spectrum of methane, 436 

Momenta, generalized, 101 

Momentoids, 101 

Momentum, of electromagnetic field, 761 
conservation, 86 

Moseley diagrams, 240 
lC*8eneSi 238 

Moseley diagrams, optical terms of 19th 

electron, 277 

X-ray ter/ns, 252, 253 

Motion, laws of (see Equatiom of mx)tion). 

M-series, 240 

Multiplet, 298 / 

calcium triplet system, 217 

chromium, 307 

enumeration of terms, 322 / 

intensity, related, ratios of, 705 

sum rule, 699 

inverted, magnetic levtds, 325 ff. 

mercury triplet system, 212 

regular, magnetic, levels, 325 / 

Multiplication, matrix, 578 

Multiplicity in atomic spectra, 297 

N 

N, Avogadro number, 18, 764 

Nebular lines, 350 

Negative Eina^rahlung, 61 

Negative terms of molecules, 692 

Neon, controlled excitation, 461 

critical pobaitials, 456 

Newton’s equations in wave mechanics, 

652 

Nickel crystal, electron dilTractiou, 723/ 

Nitrogen, active, 512/ 

Nitrogen moUnmlo, alternating inten¬ 

sities, 721 

activation, 483 

Nitrogen nucleus, spin, 696 

Nodes, hydrogem atom, 530, 5()4 

hydrogen molecule ion, 681 

Legendre polynomials, 530 

rotator, 530 

Non-combining terms, 660 ff. 

Non-c,ommutative multiplication, 578 

Non-hydrogenic atoms, wave nuichanics, 

655/ 

Non-penetrating orbit, 196, 197 / 

Normal functions, 538, 745 

Normal multiplets, intensities, 702 

Normal terms, optical spectra, 280 ff. 

Notation, atomic spectra, 295 /, 297 

molecular spectra, 416 

N-series, 240 

Nuclear atom, 8 

Nuclear charge, 48 
effective, 201 

Nuclear spin, 96, 352, 435, 695 /, 753 
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Nucleus, disruption, 49 ff. 
energy, 52 

radius, 48 

synthesis, 52 

0 

Odd molecules, 290 

Odd terms of atoms, 301 

Orbits, hydrogen, 128, 131 

non-penetrating, 196, 197,^7. 

penetrating, 196, 2CX) ff. 

Orthogonal functions, wave mechanics, 

745 

Ortliohelium, 475, 663 

Ortliohydrogeri, 434, 695 

Oscillator, em^rgy levels, 71, 532, 591, 

600, 751 

matrices, 591, 608 

matrix pertur})Mtion theory, 600 

quantization, 71 

Bechert’s method, 751 

spectrum, 71 

vil)ration of molecules, 380, 391, 396, 

436 

wave meclianics, 531 ff. 

O-series, 240 

Oxygen atom, isotopes, 39, 69(5 

Oxygen molecule, dissociation energy, 

398 

(mergy diagram, 397 

rotational states, 696 

P 

Packing fraction, 43 

Parabolic quantum number, 150, 572 

Parahydrogen, 434, 695 

Parhelium, 475, 663 

Particle, free motion, 640 ff. 

Paschen series, 70, 123 

Paschen-Back eff^x'it, 191, 321 

Pauli’s equivalence principle, 214, 272, 

322 
Penetrating orbit, 196, 200 

Periodic system, 1 ff., 270 ff, 

Bohr’s theory, 274 ff, 

irregularities, 2 

rare earths, 279 
structure of long periods, 278 

of short periods, 276 

table, 3, 271 

Periodic system, Thomsen’s, 271 

transition elements, 278 

upper limit of, 293 

valence as related to, 286 

Permanence rule, for g sums, 329 ff. 

for y sums, 329 ff. 

Permutation theorem for matrices,, 583 

Perturbation formulas, matrix, 598 

wave mechanics, 552, 553, 555, 659, 

660 

Perturbation theory, Born’s, 553 

classical, 179 

of collisions, 648 

for Hamilton-Jacobi equation in wave 

rnecluinics, 555 

matrix, non-degenerate, 596 ff. 

for os(nllator, (500 

Hchrodingc^r’s, deg(merat(% 657 ff. 

non-dcg(inerate, 551 

Pfund series, 123 

Photoelectric effect, 63 ff. 

efficiency, 64 

Einstein's equation, 13 

in gases, 467 ff. 

inverses, (53 ff., 467 ff. 

lag, (54 

Photomagnetic effect, 482 

Photosensitized rea(dious, 507 

Photon, 14, 57, (53, (5(5, 81, 83/. 

angular momentum, 482 

wave functions, 541 

Physical constants, talkie, 764 

Planck’s constant h, constancy, 74 

determination, (54 

value, 764 

Planck’s radiation law, 57 ff. 

Einstein’s derivation, 60 ff. 

Plus terms of molecules, 429 

Poisson brackets in quantum dynamics, 

614 

Polarizability, 199 

Polarization, 680 

correspondence principle, 174 

of light emitted after impact, 477 ff. 

resonance radiation, 353 ff. 

rotation of plane, in resonance radia¬ 

tion, 358 

rules, 141, 545 

in Stark effect, 152, 343 ff., 710 
X-rays, 221 
in Zeeman effect, 146 ff. 



776 ATOMS, MOLECULES AND QUANTA 

Polynomials, Hennitian, 748 

hypergeometric, 748 

Jacobian, 748 

Lagiierre, 748 

Legendre, 747 

Positive Einstrahlung, 61 

Positive terms of molecules, 692 

Potassium, radioactivity of, 42 

Potential energy, average, relation to 

average kinetic energy, 739 

curves of diatomic molecules, 393 

Potentials (s(Ui Critical Potentials, Ioniz¬ 

ing Potentials and Resonance Poten¬ 
tials). 

Precision of measurements, limits of, 

618 if., 620 

Predassociation, 446 

Primed terms, 216, 300 

Principal number (See Total number). 

Principal series, 184, 211 

Probability, of collisions of the second 

kind, 490^. 

of inelastic collisions, 466if., 474^., 490 

of transitions, band systems, 397 

Kinstein’s A’s and B’s, 61, 697 

in ionization, 474 ff. 

and mean lives, 350, 480, 496, 502 

in resonance, 466 ff., 474 ff. 

in wave mechanics, 519, 544 

Probability amplitude, 623 ff. 

differential equations for, 636 if. 

for p and q, 625 

relation to Schrodinger equation, 625 

Probability density, 643 ff. 

helium atom, 565 

hydrogen atom, 563 ff. 

Probability distribution, 622 

Progressions, 387 

Promotion of electron, 682 

Proper value, 526 

Proper function, 526 

Proton, collisions with atoms, 488 

in nuclei, 39, 49 ff. 

spin of, 435, 695 

P-series, 240 

Q 

q numbers, 616 

Quadratic Stark effect, alkalis, 346 
hydrogen, 167 

Quantum conditions, 72 ff., 128 

azimuthal, 201 

for hydrogen, 518 

justification of, 179 

in matrix ineclianics, 585, 594 

physical significance of, 621 

radial, 201 

Quantum defect, 194, 202 

Quantum dynamics, Dirac’s formulation, 

614, 617/. 

Quantum integrals, 72, 129, 134, 741 

Quantum, light, in Compton effect, 84 

cross-section, 83 

length, 83 

scattering, 84, 88 

unidirectionality, 81, 83 

Quantum mecdianics, 516 ff., 574/. 

introduction of, 15 

Quantum number, axial, 602 

azimuthal, 129, 190, 208, 297 

effective, 194 

alkaliiui earths, 198 

alkalis, 198 

elliptic, 682 

equatorial, 141 

fine, 350 

half-integral, 187 

hyperbobic, 682 

inner, 187, 190, 209, 299 

selet^tion i)rinciple, 174 

exceptions to, 348 

magnetic, 146, 192, 208/. 

azimuthal, 297 

many-electron system, 208 

of molecules, 409, t, A:, X, cr, 410 

and nodes in wave mechanics, 530, 

564, 681 

one-electron system, 190 

parabolic, 150, 572 

radial, 130 

reduced azimuthal, 297 

rotational, 372 

spin, 190, 208, 297 

table, atomic, 297 

table, molecular, 416 

total, 130, 190 

vector addition, 299 

vibrational, 378, 399, 527, 589, 600 

X-ray levels, 254, 262, 297 

Quantum theory, Bohr’s postulates, 14. 

65/. 

experimental foundationsj 53 / 
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Quantum theory, history, 1 

Planck’s assumptions, 12 

Quenching of resonance radiation, 492 

offici(mcy, 497 

R 

Radial number, 130 

Radiation, black-body, 11, 53 jf. 

characteristic X-ray, 221 

classical theory of, 168 

in matrix tiioory, 593 

from moving charge, 761 

rate of, 169 

Schrodinger’s theory, 543 

in wave mechanics, 545 

Radii, atoms and molecules, 484 ff. 

Radioactive disintegration, mechanism, 

465 

Radioactivity, 19 jff. 

lives of elements, 20 

of potassium, 42 

Radium D, corpuscular spectnun, 465 

Raman effe(!t, 360 ff. 

coherence of radiiition, 364 

permitted transitions, 363 

possible time lag, 365 

Rarnsauer effect, 484 ff. 

Range of alpha partiedes, 20 

Rayleigh-Jeans radiation law, 57 

Reactions photosensitized, 507 

Reciprocity theorems for spectral terms, 

341 

Recoil electrons, 88 

Recombination, of atoms, 403 

of atomic hydrogen, 511 

probability of, 403 

Recombination spectrum, 468 

of cesium, 468 

intensity of, 470 

Reduced azimuthal number, 297 

Reflection, atoms from crystals, 736 

dependence on velocity, 736 

electrons from crystals, 733 ff\ 

X-rays, from crystals, 228 

total, 224 

Refractive index, of crystals for elec¬ 

trons, 728, 733 

and polarizability, 200 

for X-rays, 224 

Relativistic energy levels of hydrogen, ^ 

132, 567 

Relativistic wave equation, 547 ff. 

Relativity doublets, 204, 251 ff. 

theory of, 261 ff. 

Relativity transformation, 762 

liesonance phenomena, in collisions of the 

second kind, 503 ff. 

hydrogen and argon, 504 

ions and neutral atoms, 506 

metallic atoms and atomic hyrlrogen, 

512 

sodium and mercury, 504 

in wave mechanics, 655 ff. 

diatomic molecules, 687 

heliimi, 660 

hydrogen molecule, 684 ff. 

Resonance potentials, 76 

hydrogen, 127 

mercury, 79 

sodium, 498 

Resonance radiation, 353 ff., 492 ff. 

magnetic field, effect of, 353 ff. 

polarization, 353 ff. 

theory of, 355 

quenching, 492 

rotation of polarization plane, 358 

Reversibility, microscopic, 489 

Ritz combination principle, 8, 74 

Ritz formula, 203 

Roentgen rays, 2\9 ff (see X-rays). 

Rotation of polarization plane, impact 

radiation, 479 

resonaiK^e radiation, 358 

Rotation spectra, 370 ff. 

halogen hydrides, 370 

NHa, 370‘ 

theory, 371, 671 

Rotation-vibration spectra, 374. ff., 435 ff. 

Rotational number, 372 

Rotator, energy, 373, 529, 592, 669, 752 

matrix theory, 592 

quantization by Bechert’s method, 751 

wave mechanics, 526-527 

Rumpf, 195 

Rungo denominator, 320 

Rydberg constant, 70, 122 ff. 

helium, 123 

h.ydrogen, 122 

infinite mavss, 126 

Rydberg formula, 181, 193 

S 

Satellites, in fine structures, 351 

in optical spectra, 184, 188 
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Satellites, X-rays, 265 

Scandium, spectral terms of, 277 

Scattering, of alpha rays, 650 

Raman effect, 360 ff. 

X-rays, 84, 88, 220 #. 

Schrodinger mechanics, 516^, 

Schrodinger space, 520 

Schrodinger’s perturbation theory, 

degenerate systems, 657 

non-degenerate systems, 551 

Screening constants, effective atomic 

numl)er, 

inside, 201 

outside, 20] 

optical terms, 206 

X-ray terms, 259 

Screening douldet, 204, 251 ff., 257 ff. 

Second-group spectra, 210 

Selection principle, axial numb(ir, 602 

azimuthal nund^er, 138 174, 189, 

218, 300 

and magnetic numljer in wave 

mechanics, 569 

exceptions, 348^. 

hydrogen atom, 163 

inner number, 138/., 174,189,218,318 

magnetic number, 147, 318 

rotational quantum number, 373, 379 

for symmetric top molecules, 440 

theory, wave mechanics, 545 

vibrational quantum number, 380 

X-rays, 249 

Sensitized fluorescence, 499 /. 

of thallium, 501, 

Separation of variables, 119 

Sequence, atomic spectra, 187 

displaced, 216 

molecular spectra, 389 

Series, Bergmann, 184, 211 

chromium, 309 

diffuse, 184, 211 

fundamental, 184, 211 

intercombination, 211 

limits for multiplet terms, 338 /. 

principal, 184, 211 

sharp, 184, 211 

Series formulas, Hicks, Ritz, Rydberg, 

193 

Rydberg, 181 

Shells, electrons, 272 

Sigma-type doubling, 11? (see hawkior 
type io^hling)^ 

Singlet system, 211 

Smekal transitions, 360, 362 

Sodium, controlled excitation, 80 

energy diagram, 80 

resonance radiation, 353 498 

Sodium chloride crystal lattice, 235 

Somrnerfeld’s formula, X-ray doublets, 

255 

Space charge, 449, 453, 455 

Space (|uantization, 91, 141 192 

Spark spe(d.ra, optical, 183 

X-rays, 265 

Specific charge, 22, 25, 764 

Spectra (see also X-rays, and X-ray 

spectra). 

atomic, alkaline earths, 210/.. 

alkalis, 181 /. 

arc, 183 

cesium, 184/. 

chromium, 302 /. 

controlled excitation, 457 /. 

flame, 183 

birnace, 182, 303, 699 

magnesium, 213, 215 

mercury, 210 /. 

sodium, 80 

spark, 183 

thallium, 501 

beta ray, 465 

continuous spectrum, absorption of 

molecules, 395, 402 

of characteristic values, 526 

hydrogen atom, 70 

of oscillator, 669 

predissociation, 446 

recombination spectra, of atoms, 468 

of molecules, 403 

X-ray, 64, 241 

molecular, 368 /., 386 /. 

AlH, 419 

Call, 421 

CuH, 417 

OH, 425 

419 

417 

421 

425 

Spectral intensities, 697 ff. 

Spectral notation, 295 ff, 

table, atomic, 297 

table, moleqular, 416 

Spectrograph, mass, 37 
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Spectrometer, Bra^g, 231 

de Broglie, 232 

Sphectroscopic stability, 356 
Spectroscopic term, 126 

Spherical harmonics (See Legendre poly¬ 

nomials and Tesseral harmonics). 

Spin, electron, 96, 157^,, 162 

nuclei, 96, 535, 696 

proton, 695 

Spin doublet, 204, 251 ff., 261 ff. 

Spin functions, 664 ff. 

Spin number, 190, 208, 297 

Splitting factor, 192, 315 319, 330 

Stark effect, 147 f. 

Bohr’s treatment, 156 

of helium, 343 jj. 

of hydrogen, 347 

energy levels, 152 ff. 

wave mec,hanics, 570 ff. 

intensities, 710 

of molecules, 675 

motion of electron, 155 ff. 

of non-hydrogenic atoms, 343 ff. 

polarization rules, 152 ff. 

quadratic, of alkalis, 346 

selection rules, 153 ff. 

theory of, 148 570 ff. 

in weak fields, 157 

Stark-Lunelund effect, 711 

Static models, 4 

Steady states, 66 

Stefan-Boltzmann law, 11, 13, 54, 59 

Stern-Gerlach experiment, 89 ff. 

hydrogen atoms, 143 

silver, 94 

Stokes lines of Raman effect, 361 

Subordinate series (see Series^ sharp, 

diffxise). 

Subshells of electrons, 270 ff. 

Sum nile, 699 ff. 

band 8pe>ctra, 714 

multiplets, 699 

Symbols, for atomic terms, 187 

for molecular terms, 417 

Symmetric diatomic molecules, 687 ff. 

Symmetric hydrogen molecule, 434, 695 

ion, 683, 695 
Symmetric iodine molecule, 433 

Symmetric terms, 429 

Symmetric top molecule theory, 437 ff.., 

671#. 
Symmetry of crystals, 227 

T 

Terms, Balmer, 70, 122 

even, of atoms, 301 

hydrogenic, 194 

in multiplet spectra, 322 ff. 

odd, of atoms, 301 

primed, 216, 300 

spectral, definition, 126, 186 

unprimed, 300 

Tesseral harmonics, 528 

Thallium, sensitized fluorescence, 501 

Thermionic emission, 449#. 

Thomson’s atomic model, 6 

Titanium intensities, 704 

Total number, 130, 151, 190, 572 

Transforfnation function and probability 

amplitude, 642 

Transformation theory, quantum dy¬ 

namics, 627 ff. 

Transformations, canonical, 112 

in matrix mechani(!s, 595 

Transition elements, 278 

normal states of, 341 

Transition probabilities (see Probability). 

Triplet system, 211, 212 

U 

ITncertainty principle, 617 ff. 

Uncertainty theorem, 626 

Unit cell, 226 ff. 

Unit matrix, 579, 632 

Unprimed terms, 300 

V 

Valence, atomic type, 286 

chart showing observed valences, 289 

ionic type, 286 

non-polar, 288 

and periodic system, 286 

polar, 288 

and static models, 4 

Value, characteristic, 526 

Variables, angle, 118 

Vector addition of quantum numbers, 299 

Velocity of matter waves, group, 517, 

743 

phase, 517, 521 #., 547, 743 

Vibration spectra, 374 #., 436 
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Vibrational number, 378, 399, 527, 587, 

600 
Virial theorem, 739 

W 

Wave equation, 523 ff., 559 f., 635 
655#. 

amplitude equation, 525 

boundary conditions, 525 

in curvilinear coordinates, 755 

derived by variation principle, 549 

elementary solutions of, 524 

generalized, non-relativisti(j, 537 

relativistic, 548 

non-relativistic, 523 

for probability amplitude, 636 

proof of general, 637 #. 

relativistic, 547 

rule for obtaining, 534, 755 

Wave functions, 525 f. 

continuous, distribution of, 526 

degenerate systems, 539 

discrete, distribution of, 526 

hydrogen atom, 562 #. 

normalization, of continuous, 540 

of discrete, 538 

for light quantum, 541 

orthogonal, 538 

Wave mechanics, 516 ff. 

calculus of variations in, 753 

connection with matrix mechanics, 606 

611 
hydrodynamic interpretation, 542, 654 

statistical interpretation, 643 

Wave number, definition, 70 

Wave packet, 516 #., 626 

Waves, matter, (see Matter waves). 

Weiss, magnetism, 91 

WentzeFs formula. X-ray doublets, 258#. 

Wien’s displacement law, 54, 59 

X 

X-ray doublets, 251 #. 

Somrnerfeld’s formula, 255 

Wentzel’s, formula, 258 

X-ray energy levels, 245 #. 

quantum numbers of, 254, 262 

relation to optical levels, 264 #. 

terms, uranium, thorium, tungsten, 249 

X-ray quantum numbers, 254, 262, 297 

X-rays, 219 #. 

absorption, 236 

coefficients, 236, 242 

dependence on atomic number and 

wave length, 242 

limits, 241 

spectra, 241 

anomalous dispersion, 223, 225 

charactciristic, 221 

continuous spectrum, 64 

diffraction, by crystals, 222 

in liquids, 236 

by ruled gratings, 224 

by slits, 222 

displaced wave lengths, 366 

excitation potentials, 244, 247 

fine structure, absorption limits, 267 

lines, 251 

fiuores(;ent, 220 

intensities, 712# 

K-series, 236, 239 

Ij-series, 236, 239 

M-, N-, 0-, and P-series, 240 

polarization, 221 

Raman effect, 366 

reflection, from crystals, 228 

from gratings, 224 

refraction, 223 

selection principles, 249 

soft X-ray potentials, 457 

X-ray spectra, chemical combination, 

effects of, 267 

continuous spoctnim, 64, 241 

Kossel s explanation, 244 

Moseley, 2 

of higher order, 265 

X-ray spectroscopy, 

Bragg method, 230 

de Broglie method, 232 

rotating crystal method, 232 

X-ray tubes, 219 

X-unit, 236 

Z 

Zeeman effect, alkalis, 191 

chromium, 315 . 

classical theory, 143 #. 

correlation with field free levels, 

325#, 340 

energy levels in weak field, 191, 320 
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Zeeman effect, hydrogen, classical theory, 

uaif. 
wave mechanics, 508 

intensities, 321, 357, 707 
intermediate field, 329 ff. 

molecules, 675 

Zeeman effect, Paschen-Back effect, 

191, 321 
polarization, 147 

of resonance radiation 353 

strong field, 321 

vanadium, 315 
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