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EXTRACT FROM THE PREFACE TO THE 
FIRST GERMAN EDITION 

AFTER the discovery of spectral analysis no one trained in 

physics could doubt that the problem of the atom would 

be solved when physicists had learned to understand the 

language of spectra. So manifold was the enormous amount of 

material that had been accumulated in sixty years of spectroscopic 

research that it seemed at first beyond the possibility of disen¬ 

tanglement. An almost greater enlightenment lias resulted from 

the seven years of Rontgen spectroscopy, inasmuch as it has 

attacked the problem of the atom at its very root, and illuminates 

the interior. What we are nowadays hearing of the language of 

spectra is a true “ music of the spheres ” within the atom, chords 

of integral relationships, an order and harmony that become ever 

more perfect in spite of the manifold variety. The theory of 

spectral lines will bear the name of Bohr for all time. But yet 

another name will be permanently associated with it, that of 

Planck. All integral laws of spectral lines and of atomic theory 

spring originally from the quantum theory. It is the mysterious 

organon on which Nature plays her music, of the spectra, and 

according to the rhythm of which she regulates the structure of 

the atoms and nuclei. 

September, 1919 
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AUTHOR’S PREFACE TO THE FI F IT! 
GERMAN EDITION 

IN tills new edition the subject-matter will be subdivided, and will 

appear in two volumes. The present volume, which constitutes 

the first portion, contains the older quantum theory, and is in part 

an abbreviation and in part an extension of the fourth German edition 

of the original work. The second volume will be an elaboration and 

completion of the supplementary volume, which originally appeared 

under the title Wave Mechanics.” 

It has become clear that it is possible to understand the new theory 

only by building it up from the old theory. For this purpose the 

present volume necessarily treats not only of the basic experimental 

facts, but also of the orbital ideas so far as they are required for intro¬ 

ducing the quantum numbers, and for serving as models for the wave- 

mechanical calculations. The final results are always given in the 

form in which they are presented by the new theory. Consequently, it 

has been necessary to refer frequently to the supplementary volume, 

and to leave occasional gaps in the proofs. 

The first seven chapters have in the main been abbreviated. The 

methods involved in Hamiltonian mechanics, which 1 ventured to 

place only in the Appendix previously, have here been taken up in tile 

text, as their technique has now become generally familiar. Conversely, 

I have transferred the instructive method of Rubinowicz for deriving 

the selection rules, which were previously given in the text, to the 

Appendix. Chapter VIII, which treats of multiple!, structures, has 

been extended by the inclusion of the model of the spinning electron 

and of Pauli’s Principle. Chapter IX., on Band Spectra, has been kept 

short, and does not claim to be in any way complete ; it contains only 

what is essential for wave-mechanics. 

Special thanks are due to my colleague. Hr. K. Bechert. He has 

not only sacrificed much time in checking the formulae and in correcting 

the proofs, but also in making several independent contributions, for 

example, to Chapters VIT., VTIT., and IX. Mr. H. Raether kindly 

prepared the index. 

A. SOMMERFELD 

Munich, 
November, 1931 



TRANSLATOR’S PREFACE 

THE English rendering of tin* latest edition of Professor 

Sommerfeld’s classic work will, it is hoped, be no less welcome 

than the previous English edition. It conies at a time when 

a certain definite stage has been arrived at in our knowledge of the 

structure of the atom. Much that was speculative only a few years 

ago has now become confirmed by subsequent experimental re¬ 

searches, whereas in some cases our views have had to be modified. 

As a useful model for interpreting the main features of spectroscopic 

phenomena the Rutherford-Bohr atom must still be regarded as indis¬ 

pensable. No harm can come from its provisional or conditional 

acceptance, so long as it is not treated too literally or too respectfully. 

Although wave-mechanics and quantum mechanics are available 

whenever difficulties arise in the last details of refinement of spectro¬ 

scopic evidence, the less-mathematically minded physicist will probably 

prefer to deal with a concrete model to the deficiencies of which ho is 

not blind. 

It was the expressed wish of the author that the translation should 

not be too literal and that slight modifications should be left to the 

discretion of the translator. It is hoped that the exercise of this 

privilege has caused no change in sense while conferring freedom of 

idiom. 1 wish to take this opportunity of again thanking Professor 

►Sommerfeld for his repeated assistance and courtesy. He has earned 

the gratitude of physicists throughout the world for carrying out so 

successfully the monumental task of giving a comprehensive and lucid 

exposition of modem atomic physics. He, hiinself, and his collabor¬ 

ators have contributed no mean share to the ’-e results, indeed, a great 

deal more than may be gathered from the author’s own modest state¬ 

ments and references. 

Acknowledgment must be made to Dr. E. G Wynne Jones (Beit 

Research Fellow of the Imperial College of Science and formerly 

Research Scholar of University College, Nottingham) for writing 

the section on hyper-fine structure, which has received the approval 

of the author. The addendum at the end of the text has been added 

by the translator. 

vii 
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The thanks of the translator are due to Mr. R. Ct. Horner, B.A., 

for kindly checking and correcting the proofs, a task to which he has 

devoted much time and care. The index was prepared with the help 

of Miss Barbara Hitchcock, B.Sc. 

HENRY L. BROSE 

University College, 
Nottingham 
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CHAPTER I 

INTRODUCTORY FACTS 

§1. Retrospect of the Development of Electrodynamics IN the first half of the nineteenth century Electrodynamics consisted 

of a series of disconnected elementary laws. Formed analogously 
to Newton’s Laws of Gravitation, they asserted the existence of 

direct action at a distance, which, starting from the seat of an electric 

charge or of magnetism and leaping over the intervening space was 

supposed to act at the seat of a second electric or magnetic charge. 

Opposed to this there arose in the second half of the nineteenth 

century a view which followed the course of the continuously extended 

electromagnetic field from point to point and moment to moment ; it 

was called the ” Field Theory ” in contradistinction to the “ Theory of 

Action at a Distance.” it was propounded by Faraday, worked out by 

Maxwell, and completed by Heinrich Hertz. According to this view 
the electromagnetic field is represented by the course, in space and time, 
of the electric and magnetic lines of force. Maxwell’s equations teach 

us how electric and magnetic lines of force are linked with one another, 

how magnetic changes at any point of the field call up electrical forces, 

and how electric currents are surrounded by magnetic forces. The 
intervening medium, even if non-conducting, is supposed to have a 

certain transparency (permeability) and receptivity (dielectric capacity) 
towards magnetic and electric lines of force ; hence at every point of 

space it influences the distribution of the electromagnetic field according 

to its constitution at that point. 
The greatest triumph of this view occurred when Hertz succeeded in 

connecting light, the phenomenon of physical nature with which we are 

most familiar, with electromagnetismy which was at that time the most 

perplexing phenomenon. After Maxwell had already surmised that 

light was an alternating electromagnetic field (he succeeded in calculat¬ 

ing the velocity of light from purely electrical measurements made by 

Kohlrausch), Hertz produced his “ rays of electric force,” which, just 

like light, are reflected, refracted, and brought to a focus by appropriate 
mirrors, and which are propagated in space with the velocity of light. 

The electric waves produced by Hertz had a wave-length of several 

metres. From them an almost unbroken chain of phenomena leads 

by way of heat rays and infra-red rays to the true light rays, whose 

VOL. i.—1 



2 Chapter I. Introductory Facts 

wave-lengths amount to only fractions of /x. The greatest link in this 

chain came later as a, direct result of Hertz’s experiments, namely, the 

waves of wireless telegraphy, whose wave-lengths have to he reckoned 

in kilometres. (Nauen sends out waves having a wave-length of 12 

kilometres, or 7 J miles); the smallest and most delicate Jink is added at 

the other end of the chain, as we shall see, in the form of Rontgen rays, 

and the still shorter y-rays which are of a similar nature ; likewise 

the ultra-y- or cosmic radiation (hut see the closing paragraph of §5). 
Hertz died on 1st Jail., 1894, at the age of thirty-seven years. It 

would be natural to conclude that the later years of his short life and 

the work of his followers were occupied with the development of his 

wave experiments and of his theory of electromagnetic fields. But the 

last experimental paper by Hertz, “ Concerning the Passage of Cathode 

Rays through Thin Metallic Layers ” (1891), already pointed in a new 

direction. 

The field theory had diverted attention from the origin of lines 

of force, and had chiefly served to illuminate their general course in 
a regular distribution of the field. The next question was to study the 

singularities of the field, the charges. The best conditions for doing so 

are offered by cathode ray tubes, which have a very high vacuum ex¬ 

ceeding that of the so called Geissler tubes (which were investigated by 

Pliicker and Hittorf). Here we have electricity in a pure form, un¬ 

adulterated by ordinary matter, and, in addition, moving in a straight 

line at an extremely high speed ; cathode rays are corpuscular rays of 

negative electricity. It is true that Hertz as well as his eminent pupil 

Lenard first clung to the opposite view, namely, that the rays were 

undulatory in character; but Hertz had recognised the important 

value of the investigation of cathode rays for the future. Thus he had 

in this way helped personally in attracting workers from the field of 

physical knowledge just opened up by him towards pioneer work in 

a new field. In the sequel, the greatest interest became centred not in 

the propagation of the lines of force but in the charges, as the origin of 

these lines of force. The original theory of Maxwell which had been 

perfected by Hertz retained its significance for phenomena on a large 

scale, such as those of electrotechnics and wireless telegraphy, and gave 

an easy means of determining the mean values of the electrical phase 
quantities (i.e. quantities that define the state of the field). But to 

render possible deeper research leading to a knowledge of elementary 

phenomena a deepened view became necessary. Maxwell’s Electro¬ 

dynamics had to give way to Lorentz’s Dynamics of the Electron ; the 

theory of the continuous field became replaced by the discontinuous 

theory, that of the atomicity of electricity. So the theory of action at 

a distance and the theory of action through fields was succeeded by 

the atomistic view of electromagnetism, the theory of electrons. 
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§ 2. The Atomicity of Electricity. Ions and Electrons 

The theory of the atomicity of matter has existed ever since there was 
a science of chemistry ; it is indispensable if the fundamental chemical 
law, that of multiple proportions, is to be intelligible. Nevertheless 
there has been no lack of opponents to atomicity. Goethe was one of 
them. It was repugnant to him to destroy the beautiful appearance of 
phenomena by dismembering matter and adding human elements. The 
eminent scientist and philosopher Ernst Mach regarded the “ Atomic 
Hypothesis ” as merely transitory. He favoured the description of 
events in terms of continuously distributed matter and continuously 
acting laws. The last opponent of atomic theory was the keen-witted 
author of works on Energetics, Wilhelm Ostwald (who has now been 
converted to a belief in atoms). Objections to the theory have died 
into silence in the face of its sweeping successes in all branches of 
physical knowledge. The perfect explanation of the Brownian molec¬ 
ular movements which confirms by ocular demonstration in the case 
of fluids the branch of atomic hypothesis concerned with the theory of 
heat has contributed much to this acceptance. No less impressive is 
the confirmation of the atomic structure of solid bodies which was given 
by Laue’s discovery and which will be discussed in Chapter IV. 

A necessary consequence of the atomicity of matter is the atomicity 
of electricity. This was stated simultaneously by Helmholtz and 
Stoney. Helmholtz remarked in his Faraday Lecture * of 1881, as a 
result of the laws of electrolysis which Faraday discovered and expressed 
numerically : “If we assume atoms of chemical elements, we cannot 
escape from drawing the further inference that electricity, too, positive 
as well as negative, is divided into definite elementary quanta that 
behave like atoms of electricity. Each ion,j* as long as it is moving in 
the liquid, must remain associated with an electrical equivalent for 
each of its valency units.” 

Faraday’s Law of Electrolysis actually states: One and the same 
quantity of electricity, in discharging through var ious electrolytes, always 
sets free chemically equivalent quantities of the dissociated 'products. In 
the case of univalent elements quantities are (‘ailed chemically equiva¬ 
lent when they are in the ratio of their corresponding atomic weights, 
thus 

1 grm. of H. 35*5 grms. of Cl. 107*9 grms. of Ag. 

* Helmholtz, Vortraye und tteden, Vol. 2, p. 272. The parallel work of Stoney 
bears the title : “ Physical Units of Nature,” and appeared m February, 1881, in 
the Proceedings of the Dublin Phil. Soe., and m Vol. 11 of Phil. Mag. 

| As is well known, ions are the “ wandering ” constituents of electrolytes 
during electrolysis, the cation being the positively charged constituent which 
moves in the direction of the positive current, “ downwards,” so to speak, the 
anion being the negatively charged constituent which moves “ upwards.” 
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To liberate these quantities, we always require, according to 
Faraday’s Law, to make the same quantity of electricity pass through 
the electrolytes, namely, Faraday’s constant : 

F —- 96,494 coulombs * — 9649-4 cig.s. units. 

The constant ratios of weight (1 grm. H, 35-5 grais. LI, and 107-9 
grms. Ag) l)ecome intelligible to ns on the supposition of the atomicity 
of matter : 1 grin, of L is composed of just as many atoms of H as 
35-5 grms. of Cl contains Cl atoms, or 107*9 grins, of Ag contains Ag 

atoms. The equivalent charge F which is the same for each then 
becomes clear to us in the same way if we accept the atomicity of 
electricity : the equivalent charge F consists of just as many atoms of 
electricity or “ elementary charges e,” as l grm. of H contains H atoms, 
or 35*5 grms. of Cl contains Cl atoms, and so forth. There is associated 
with every univalent atom (or more generally with every univalent ion) 
an elementary charge e, whilst there are associated with every divalent 
atom or ion two elementary charges, and so forth for atoms of higher 
valency. Just as the atomicity of matter is a direct outcome of 
fundamental chemical facts, so the atomicity of electricity is a direct 
outcome of fundamental electrochemical facts. 

For the sake of brevity of expression we shall define two further 
terms. Following Ostwald we shall take a mol to be that number of 
grammes which is given by tin* number expressing the molecular weight 
of the substance in question. Thus 1 mol of H20 — 18 grms., and 1 mol 
of L2 —- 2 grms. (In the ease of monatomic elements we use the term 
grammatom instead of mol, e.g. I grammatom ofH — J grm.) Further¬ 
more, Loschmidt’s number L denotes the number of molecules [or 
atoms, respectively) contained in one mol (or grammatom) of the sub¬ 
stance in question. For example, in the case of water, or dissociated 
hydrogen, this number will be defined by the equations 

18 grms. LmiijO and 1 grm. — Lwh respectively, 

whereby mu. denotes the mass, measured in grammes, of a hydrogen 
atom, and rnu2o denotes the mass, similarly measured, of a molecule of 
water. With regard to this term it must be mentioned that recently, 
in German physical literature, the expression “ Avogadro’s number ” is 
often used in place of “ Loschmidt’s number,” for the reason that it also 

plays a part in Avogadro’s law of gases. But as Loschmidt was the 
first to determine this number successfully (by means of the kinetic 
theory of gases), it seems more in keeping with the facts to associate his 
name with it. The fact that he made his calculations for the cubic 
centimetre, and not for the mol, is a mere matter of form. If necessary 
the number L as defined above could be called “ Loschmidt’s number 
per mol.” 

* A coulomb — A,- of the so-called absolute unit of charge, that is the unit of 
charge defined in the e.g.s. system and measured electromagnetically. 
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The equivalent charge F contains, as we saw, just as many elemen¬ 
tary charges e as l grm. of hydrogen contains atoms of mass or, 
as we may now say, the electrochemical equivalent contains L ele¬ 
mentary charges e. We therefore write 

9649-4 c.g.s. units — he 

whence 
a 

mi 1 
9649-4 

e.g.s. units 

grm. 

grm. 
grm. 

W\\ 

hnin 

- L (1) 

The ratio of the charge to the mass is called the* specific charge of the 
ion in question. In the case of the positive hydrogen ion, this specific 
charge is thus 9649-4, whereas for the divalent positive copper ion it is 

2e ___ 2.9649-4 

wcu 63-6 

and for the univalent negative chlorine ion, it is 

— - v 

me 1 

9649-4 f .. 
Qr:-r- and so forth. 
ill)*) 

Electrolysis shows, as Helmholtz pointed out, that positive as well 
as negative4 electricity is composed of elementary quanta f e. But 
then', is a great difference between positive and negative electricity in a 
certain respect. We know positive electricity only as an ion, that is, 
associated indissolubly with ordinary matter : as we saw above, nega¬ 
tive electricity also presents itself in electrolysis in the form of ions. 
But we also know the latter in its free state, dissociated from all ordinary 
matter, as detached electricity, so to speak. This is an all-important 
result of the researches on cathode rays, to which we have already 
referred in the preceding paragraph, and to which we shall again refer 
in the next. 

The special position occupied bv negative electricity, its occurrence 
as pure atoms of electricity, calls for a special name. Following the 
example of Ktoney,* we shall call the negative atom of electricity 
the electron. On the other hand, we shall follow Rutherford in calling 
the smallest positive ion, namely the hydrogen ion, the proton; in spite 
of its being burdened with the mass of the hydrogen atom it plays 

the part of the atom of positive electricity. 
In saying that the electron is not encumbered by ordinary matter, 

we do not imply that it is devoid of inertia. On the contrary, the mere 
presence of electric charges, or, generally, of energy of every kind, entails 
a certain mass effect. The mass which is associated with the electron 
in this way used to be called “ electromagnetic ” mass. This term is, 
however, as the newer developments of fundamental physical concep¬ 
tions in the theory of relativity compel us to recognise, too narrow : not 

* Cf. Trans. Dublin Phil. Soe., Vol. 4. 1891. In the mathematical development 
of the theory of electrons by >1. A. Lorentz (da Attempt at a Theory of Electrical 
and Optical Phenomena in Moving Bodies, Leiden, 1895), the word electron does 
not occur : Lorentz retains the word ion in this essay. 
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only do electric charges produce a mass effect, but so does the cohesive 
energy that keeps the charge together and prevents it, in a way as yet 
unknown to us, from exploding. Therefore we nowadays prefer to 
speak outright of the electronic mass m, and to regard it as a fact pre¬ 
sented by our experiments with cathode rays. 

A great gap divides the electronic mass, as regards its magnitude, 
from the ordinary masses of atoms and ions. The electronic mass m is 
about 1800 times as small as the mass ms of the lightest atom. Accord¬ 
ingly, the specific charge of the electron, the ratio of the elementary charge 

e to the electronic mass m, is in the same proportion greater than 
the specific charge of the hydrogen atom. From optical observations— 
measurements of spectral lines, to which we shall refer in Chapter II, 
and measurements of resolved spectral lines, to which we shall refer 
in Chapter VI—we have as the best value of this ratio according to our 
knowledge of the present time : 

— ^ J 761 . 107 . . . . (2) 
m 

Direct measurements, however, carried out with cathode rays, which 
are deflected by magnetic and electric fields (cf. § 3), give a somewhat 
greater value,* namely, 

C' ■- 1-769 . JO7 .... (2a) 
m ' 

There are good reasons for assuming that (2) represents the correct 

value.! 
The general course of the refraction of light in passing through 

transparent bodies (solids and gases), as calculated on Drudes Theory 
e 

of Dispersion, gives us values of ~ of the same order of magnitude. Now, 

we see electrons at work in the conduction of currents through metals, as 

also in radioactive processes, in the production of Rontgen rays (X-rays), 
in the photo-electric effect, and so forth. From this we conclude : the 
electron is a universal element of structure of all matter. Whether it is 
flowing along slowly in an electric current, or hastening through space 
at an extremely high rate as a cathode ray ; whether it is emitted in 
radioactive disruption or in a photo-electric process ; whether it is 
vibrating in our lamps (or, as we should nowadays prefer to express it, 
“jumping 99 in our lamps) : or whether it effects the course of light in 

* Cf. for this and the subsequent numerical data the meticulous discussion of 
all fundamental physical constants by R. T. Birge, Phvs. Rev. Supplement, 1, 1, 
1929. 

f Evidence in support of this view is given by the results of experiments 
which have been very carefully carried out by F. Kirchnor in the physics depart¬ 
ment of Munich University. They are based on the direct measurement of the 
velocity of the cathode rays along the, lines of a somewhat old method duo to 
E. Wieehert; these results have not yet been published, but they are known to 

give precisely the spectroscopic value of —. 



§ 2. The Atomicity of Electricity. Ions and Electrons 7 

telescopes, it is always the same physical unit, proving its identity by 
exhibiting the same charge and the same mass,* in particular by keeping 
the ratio of charge to mass constant. 

If we now wish to form a picture of the electron in accordance with 
the foregoing statements, only scant material offers itself. An electron 
is, like every negative charge, essentially nothing more than a place at 
which the electric lines of force from all directions end. In the case of 
an electron at rest, these lines of forces are straight lines that come in 
uniformly from all directions. But the same picture holds, according 

to the ideas of the theory of relativity, for an electron moving in any 
way whatsoever, so long as the picture of the lines of force is regarded 
as being conceived by an observer moving with the electron, that is if 
the lines of force are drawn in a space that participates in the motion 
of the electron. In other cases, when the electron moves with regard 

Fig. 1a. 

Electron. 

Fig. 1b. 

Proton. 

-- - 1-761 . 1«7 
m 

c - 1-591 . 10 20 
m = 0-903 . 10 27 

-- 9649 
mn 

c - 1 -591 . 10-20 
mu 1-649 . 10-24 

L -= -- - 0-606.1024.f 
W'H 

to the observer who is mapping out its field, the electric lines of foree 
would still, indeed, he straight lines, but would become compressed 
towards the central plane which is perpendicular to the direction of 
motion, and, moreover, would he accompanied by magnetic lines of 

force. 
From the point of view of our present ideas, it is better to refrain 

from endeavouring to give the electron a definite volume, or size. This 
could be calculated only on the assumption that the whole mass effect 
is electro-magnetic in origin, and this assumption is, on account of the 

* The “ same mass ” is more correctly expressed by the “ same rost mass, i.e. 
mass which is not moving with respect to the system of reference, cf. § 4, equation 

(2) of this chapter. . , 
f Loschmidt’s number often given in foreign books as number of mol. per c.c. 

at N.T.P. - 2-7 . 101*. 
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necessity for a cohesive energy {vide above), not justified. Moreover, 
we should be compelled in this case to make the arbitrary assumption 
that the electronic charge e occupies uniformly either the volume or the 
surface of a sphere, for which there is no support in our experience. 
Nevertheless it is worthy of remark that in whatever way the detailed 
calculation is carried out we arrive at a sub-atomic value for the extent 
of the electron ; its diameter comes out to about 105 times smaller 
than that of an ordinary atom. 

The picture of the proton shows itself to be quite similar to that of 

the electron. As the lines of force start out from positive charges, 
they are to be furnished with arrows in the reverse direction to that for 
electrons ; they are likewise rectilinear and uniformly distributed, if 
we here also suppose the observer to be at rest relatively to the proton. 

The extent of the proton is also of sub-atomic dimensions (of the 
size of the nucleus). It is often stated that the proton is considerably 
smaller than the electron ; but this assertion rests on the purely electro¬ 

magnetic interpretation of mass, which we are disinclined to adopt here. 
We have attached to our figures the characteristic values of the 

specific charge and also the values of the absolute charge and mass, and 
so have epitomised in them the properties of the electron and the 
proton. We shall report on the origin of these numerical values partly 
in the next chapter. Concerning the values of ni\\ and L the reader is 

referred to Note 1 on page !)3 ; the value given above for ran corre¬ 
sponds to a hydrogen atom whose atomic weight is imagined to be 1. 

§ 3. Cathode Rays and Canal Rays 

The cathode of a vacuum tube is, according to the terminology that 
we explained in connexion with the word cation (cf. note on p. 3), 
the electrode to which the positive current flows, that is from which the 
negative current emerges. The fact that the cathode rays start from 
the cathode is already an indication that we are dealing with a fiowT of 
negative electricity. In the case of a high vacuum and a sufficiently 

high potential difference, this flow does not follow the form of the tube 
as in the case of the ordinary Geissler tubes, blit propagates itself recti - 
linearly from the cathode along the normals of the latter. Assuming 
the results of the decades of research on cathode rays ranging from 
Hittorf to J. J. Thomson and Lenard, we shall speak of cathode ray 
particles, or rather, of cathode ray electrons. These electrons owe their 
velocity to the potential gradient at the cathode, so that the kinetic 
energy of the electron is equal to the work that the drop in potential 
does on the electron. Inasmuch as the kinetic energy is proportional 
to the electronic mass ra, and the amount of work is proportional to the 
electronic charge e, we see that the velocity v of the electron is deter- 

e 
mined by its specific charge — and by the voltage drop of the vacuum 
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tube * V (volts multiplied by 108). The formula (which is nothing 
more than the law of the conservation of energy) is 

mir 
~ cV, v = 

j2e 

V m (1) 

A good apparatus for studying cathode rays is a Wehnelt tube 
(potential difference 130 volts, pressure about 0T mm. of mercury, 
cathode carrying a spot of CaO, which, at a red beat, assists the emission 

of electrons) The phenomena of illumination in the tube, which are 
very striking, arc due only indirectly, as we must mention at the outset 
to the cathode ray electrons, and arise from the impact of the latter wrth 
the remains of the gaseous content whose atoms are thus excited, tty 
means of our tube we now confirm the following mechanical laws 

1 jn fa absence of external forces a body describes a straight line, with 

* The potential difference expressed in volts in converted into absolute electro 

magnetic e.g.s. units by multiplying by 10H. 
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constant velocity. Corresponding to this law we see in Fig. 2a how the 
beam of cathode rays are emitted perpendicularly to the cathode K, 

and disappear into the anti-cathode AK. (Above the beam of cathode 

rays we see in this and in the following picture a bright image that is 
formed by reflection from the glass sides.) The anti-cathode is not in 
general connected with the source of voltage, and is to be distinguished 
from the anode A. The fact that the beam of cathode rays diverges 
(becomes “ scattered ”) as its distance from its source increases, is due 

Fig. 2b.—Circular or spiral motion (as the case may be) of elections in the 
magnetic field of a bar magnet MM. 

to the influence of the remaining gas molecules on the paths of the 
electrons. The high value of the velocities of the electrons compared 
with the relatively small voltage of 110 volts is worthy of notice. From 
(l) it follows, that, in round figures, 

v ~~ 0.108 oms. per sec. ~~ n\y r, 

where c ---■■■ 3.1010 cans, per sec. ~ velocity of light. 

2. Under the influence- of a centripetal force, that is, one which is every- 
where, perpendicular to the orbit, a body describes a circle at a constant 
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rate. The centripetal force is equal to the inertial resistance which is 
directed perpendicularly to the orbit and is called the “ centrifugal 
force.” We shall produce the centripetal force that is necessary for the 
experiment by a magnetic field, which arises from an ordinary bar- 
magnet MM. A magnetic field acts on moving charges (“ current- 
elements ”) with a force that is perpendicular to the magnetic lines of 
force and to the direction of motion. In Fig. 2b the magnetic lines of 
force run from the back to the front, so that the centripetal force in 
question lies in the plane of the page. We see the beam of cathode rays 
become curved under its influence into a circle (or into a spiral, if the 
initial direction of the cathode rays and the direction of the magnetic 
field are not exactly perpendicular to one another : in our case we 
should then get a curve of variable curvature because the magnetic 
field is not homogeneous). It is pretty to see how the circle increases 
or decreases as the magnet moves away or approaches. Expressing 
this in a formula we find that if H denotes the intensity of the magnetic 
field, p the radius of the circle (more generally the radius of curvature 
of the curve), then 

evH = m . . . . (2) 
P 

On the left is the centripetal force due to the magnetic field, on the right 
is the inertial resistance of the electron, or, expressed shortly, the 

f 

centrifugal force. In this case, too, as we see, the ratio — occurs as 
m 

a determining factor. From (2) we get 

v = ~/>H ..... {2a) 

2. In a homogeneous and parallel field of force. as, for example, is 
represented, by gravity on the earth's surface, a body describes a parabola, 
the form, of which depends on the value g of the acceleration in falling, or, 
more generally, on the acceleration in the field of force in question. In 
our tube we generate the necessary field of force as an electric field by 
charging the anti-cathode negatively, as by connecting it with the 
cathode by hand. The field that results in this way is confined to the 
neighbourhood of the anti-cathode, and is tolerably homogeneous there. 
The cathode rays that previously disappeared at the anti-cathode are 
now bent backwards into a parabolic shape (cf. Fig. 2o, p. 12). (Above 
the anti-cathode there is a kind of dark space that somewhat disturbs 
the regularity of the parabola.) If F is the field intensity, then we get 
for the accelerative force that acts in this case, 

<7 -F 
m (3) 

m 

These and similar experiments clearly lead to determinations of 

by various methods. We may, for example, combine (1) and (2a), 
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g 
eliminate v, and determinate — from the three measurable quantities 

m 
p, H, V. This value, when it was first discovered, led to the discovery of 
the electron. For as it was almost 2000 times greater than the value of 

— that was derived from experiments in electrolvsis, it pointed to the 

existence of a micro-mass which is almost 2000 times smaller than the 
mass of the hydrogen atom. 

Fig. 2c.—Parabolic* motion of electrons in a homogeneous electric, field. 

Certain results connected with the absorption of cathode rays are of 
particular interest for questions of atomic structure. Lcnard was the 
first to lead the cathode rays out of their captivity in the tube by allow¬ 
ing them to enter into the air through extremely thin metal folia (so- 
called Lenard windows). Although they here also soon came to a dead 
stop owing to repeated obstruction by air molecules, they nevertheless 
clearly exhibited their corpuscular existence independently of the pro¬ 
ducing tube. Systematic experiments on absorption now' showed that 



§ 3* Cathode Rays and Canal Rays 13 

the absorption, i.e. Min stopping of an electron, depends solely on the 

muss of the atoms of the absorbing substance, not on its physical state 
or its chemical composition. On the other hand, according to the 
kinetic theory the mean sum (average) of the cross-sections of the atoms 
would be the decisive factor in the collisions and hence in the stoppage 
of a cathode ray. The comparison of the actual circumstances with 
those of the kinetic theory led Lenard to form the following picture of 
the structure of matter : Only a vanishingly small fraction of the space 
apparently occupied by matter is really impenetrable (at least for rapid 
cathode rays) ; the electrons can fly without obstruction through 
the whole intervening space. The impenetrable centres are called 
dynamids by Lenard.* They are regarded as electric fields of force, 
and exercise an attraction on the electrons, which are, however, no 
longer effective for great velocities at a moderate distance from the 
centres of force. In the ease of small velocities the range of action of 
the attraction increases up to the extent of the range of action given by 
the kinetic theory of gases. Lenard lias to set the number of dynamids 
per atom proportional to the mass of the atom, that is to the atomic 
weight, to get the law of absorption for rapid cathode rays. 

The whole method of representation developed by Lenard as early 
as 190,3 coincides strikingly with the nuclear theory that Rutherford 
built up in 1913 from a totally different set of facts (vide Chap. II, § 1). 
We need only replace dynamid by nucleus, and number of dynamids 
per atom by nuclear charge, to translate Lemini's results into the 
language now in use. In addition, the sub-atomic size of the dynamids, 
as calculated by Lenard, is in approximate agreement with the order of 
magnitude of the nuclei, as deduced by Rutherford. Proportionality 
of the number of dynamids with the mass of the atom then denotes 
proportionality of the nuclear charge with the atomic weight (cf. 
Chap. II, § 1). A difference which, however, is essential for the fruit¬ 
fulness of the picture consists in the circumstance that, in the ease of 
an element whose atomic number is Z (and which, in some eases, then 
has the atomic weight 2Z), Lenard assumes Z individual dynamids, 
generally separated in space, whereas Rutherford assumes a single 

nucleus carrying a charge Z. 
The antithesis electron and positive ion is analogous to that of 

cathode rays and canal rays. The canal rays a’so obtain their velocity 
as a result of the potential drop at the cathode, but they run backwards, 
in the direction opposite to that of the cathode rays (Goldstein, 1886). 
They are thus oppositely charged to the particles of the cathode rays ; 

they are accordingly positive rays. To enable them to pursue their 
paths backwards from the cathode, the latter has to be pierced with 
holes (“ canals ”). The canal rays, like the cathode rays, follow recti¬ 
linear paths. They are likewise deflected by magnetic or electric 
fields, but in a direction opposite to that of cathode rays, corresponding 

♦ Ann. d. Physik, 12, 714 (1903). 
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to their reversed charge. Besides this, the deflection is considerably 
less than in the. ease*, of cathode rays. For if those deflection experi¬ 
ments are used to determine the specific charge of the particles in the 
canal rays, we find a value having the order of magnitude of the 

pJ 

electrochemical equivalent, and indeed we get the exact value —, as 
m h 

given in § 2, Fig. 1b, in the case of canal rays of hydrogen, that is when 
the tube is filled with hydrogen ; we get a value 200 times as small in 
the case of canal rays of mercury (atomic weight of mercury -- 200), 

that is when the tube contains mercury, and so forth. It may ho men¬ 
tioned that in the latter case, we also get multiples of this value, a fact 
that points to a multiple charge of the mercury atom (to the number 
of eight elementary quanta, according to J. J. Thomson). In the 
former ease we observe in addition to the full equivalent charge, also 
half of this quantity, and this points to the formation of positively 
charged hydrogen molecules (mol-ions as contrasted with atom-ions). 

Altogether, the conditions in the ease of canal rays are not so 
typically simple and easy to grasp as in the case of cathode rays. This 
is due to the frequent transference of charges among the ions of the 
canal rays (W. Wien). They become neutralised after a short distance 
by taking up electrons, and become positively charged again through 
the loss of one or more electrons in subsequent collisions (some¬ 
times they become negatively charged owing to the absorption of elec¬ 

trons). On the other hand, for this very reason the phenomena in the 
ease of canal rays are much more manifold and instructive, inasmuch 
as the canal rays, as ions, possess the power of emitting light of their 
own (J. Stark). The luminescent phenomena of canal rays (cf. Chap. 
VI, the Stark effect) have furnished modern physics with invaluable 
material in just the province that concerns us here. 

The contrary character possessed by ions and electrons manifests 
itself, too, in the velocities of canal rays and cathode rays. The rela¬ 
tively large mass of the ions of canal rays, for a constant voltage of the 
tube, assumes a much smaller velocity than the small mass of the 
electrons of cathode rays. The corresponding velocities are theoretic¬ 
ally in the ratio of the square roots of the masses of the electrons and 
the ions, since equation (1) remains valid for velocities that are imparted 
to the ions of canal rays. In the case of cathode rays we get for a 

c 
tension of 30,000 volts, for example, a velocity of 1010 eras, per see. = ™ ; 

u 

in the case of canal rays wc scarcely get beyond 2.108 eras, per sec. 
c 

~ 150’ 
So far, in the case of both the ion and the electron, we have been 

concerned only with the measurement of the specific charge. On the 
other hand, we also mentioned the absolute value of the elementary 
charge e at the end of the preceding section as being an equal, invariable, 
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and universal quantity for ions and electrons. We must therefore 
complete our account by stating how the elementary charge itself may 
be determined. It is obvious that if we know the absolute charge then 
(by comparing it witli the specific charge) we can also find the electronic 
mass m and the absolute mass of the hydrogen atom mu, as well as the 

Loschmidt number — and the mass of all other atoms. The values of 
mn 

m, mh, and L found in this way are also noted at the end of the pre¬ 
ceding section. 

There are many ways of deriving the elementary charge e. The 
pioneer work in this question, as in others connected with electron 
theory, was done by Sir J. J. Thomson.* From our discussions about 
the theory of spectral lines we shall get a spectroscopic determination 
of e which promises to give us the most accurate value (cf. the final 
paragraph of Chap. VITT). At present, however, the surest road seems 
to be that which has been followed with particular success by Millikan.f 

A macro-ion, that is a charged particle of matter composed of many 
atoms, preferably a drop of oil on account of its shape, is kept suspended 
by balancing an electric field against its weight, or it is allowed to drop 
slowly by altering the field or its own charge. By means of radiation 
from radioactive bodies or Rontgen rays (X-rays) the charge may be 
varied to the extent of one or several units of charge e. By noting the 
times taken to fall in the ease of one and the same particle, we get the 
data necessary for calculating both the size of the particle and also its 
charge. The result of measurements repeated by Millikan over a span 
of several years is J 

^ - (4-774 ;i 004)10 10 . . . (4) 

In contrast with this the spectroscopic determinations, which arc, 
however, not yet complete (reflection of X-rays by an artificial grating), 
give a higher value, namely, 

e — 4-80 . 10-10 .... (4a) 

In (4) and (4a) the elementary charge is given in so-called electrostatic 
units (E.S.U.). We may express its value in electromagnetic units 
(E.M.U.), which are usual in the ease of the specific charge, by dividing 

the above value by c = 3.1010 : § 

e - (1-591 ± -001)10-20 E.M.U. . . (5) 

This was the value noted at the end of the preceding section. 

* It must be mentioned, however, that the first value for e was obtained by 
J. S. Townsend in the Cavendish Laboratory. See in this connexion A. A. 
Millikan’s account in his book, The Electron.—Transl. 

t Phil. Mag. (6), 34, 1 (1917). 
j Birge (loc. cit.) obtains from Millikan’s observations the value 

e - (4*768 ± 0*005)10~10. 

§ The exact value of c is 2-99796 ± 0-00004. 
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§ 4. a- and /5-rays 

Not only are canal rays and cathode rays produced artificially, but 
they also occur naturally, being emitted during the disintegration of 

radio-active elements. The positively charged a-rays correspond to the 
canal rays, and the negatively charged /5-rays correspond to the cathode 
rays. These natural corpuscular rays are much more violent and tem¬ 
pestuous than those produced artificially. In this way they testify 
directly to the immense stores of energy available in the interior of the 
atom, which cannot even be a])proached by the energy of the particles 
produced in the best modern X-ray tubes. 

The velocity of the a-rays of radium C amounts to 2 . 109 cms. per 
sec. It is about ten times as great as the velocity attained by canal rays. 
It follows from equation (1) of the preceding section that the energy that 
is necessary to produce this ten times greater velocity is 100 times 
greater than, or, if we take into account the carriers of the a-rays (vide 

below), even 400 times greater than the canal rays of hydrogen. Hence, 
whereas we work a canal ray tube by means of a potential difference of 
30,000 volts, i.e. 30 kilo-volts (KV), we should require a voltage of about 
12,000 KV to produce the energy of a-rays. A comparison of cathode 
rays with /5-rays gives similar results. We may produce artificial 

c c 
cathode rays having a velocity ranging from - to 

O mJ 

whereas natural 

/5-rays are known whose velocities differ by only 1 per cent, and less 
from c. Since, as we shall see later, the velocity of light, c, represents 
an unsurpassable limit of velocity for all material particles, a limit 
which may be approximated to only when the energy applied is in¬ 
creased without limits, we see that to a velocity which approaches to 
within 1 per cent, of c, there corresponds a voltage of the same order of 
magnitude as was just given for a-rays. 

For cases in which the velocities of the /5-rays approximate so closely 
to the velocity of light, it is clearly convenient to express these velocities 
by giving their ratio to c instead of giving their absolute values v in cms. 
per second. This ratio, which is always a proper fraction, is usually 

denoted by the letter fi, thus : 

0</5<l . . . . (1) 

From experiments on the deflection of a- and /5-rays the specific 

charge has been found to be half the value of the equivalent charge ~ 

in the case of a-rays, and considerably greater in the case of /5-rays, 

namely, of the order of magnitude of the specific charge of the electron, 

The latter discovery confirms our above statement that /5-rays are par¬ 
ticularly rapid cathode rays. But the former discovery confronted 
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physicists with a difficult choice from which experiments on deflection 
offered an escape only after the effect of each single a-particle could be 
successfully demonstrated, that is, after a means of counting a-particles 
had been discovered. A decision had to be pronounced in favour of 
one of the three following possibilities, all of which were compatible 
with the value of the specific charge of the a-ray particle — 

e 
1. -i.e. the a-particles, are singly charged hydrogen molecules 

mu2 
(that is molecules, each of which carry a unit charge). 

c 
2. —, i.e. the a-partieles are singly charged atoms of an element x, 

j; 
hitherto unknown, and having the atomic weight 2. 

2e 
3. -, i.e. the a-partieles are doubly charged helium atoms (atomic 

weight of He is 4*00). 

Fra. 3a.---Wilson-photograph of a-particles starting out from the end of a wire 
coated with radioactive material. 

The experimental researches mentioned have demonstrated the truth 
of the third suggestion. This means that the radioactive elements are able 
to produce from within themselves doubly charged positive helium atoms. 
By proving the presence of lines of the He spectrum physicists succeeded 
in confirming this conclusion by direct observation. 

In consequence of this we now understand the difference between the 
general properties of a- and /?-rays. On account of tlieir great mass 
(4ran), the a-rays pursue their paths with great persistency. They 
shatter the obstacles which they encounter in the form of air molecules. 
The latter in this way become ionised, that is, they become split up into 
positively and negatively charged ions. And, indeed, the a-rays in 
their passage through atmospheric air form several thousand ions in 
every millimeter of their paths. The /2-rays, on the other hand, being 
of extremely small mass, are much more easily deflected from their 

von. i.—2 
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paths. They exert a comparatively small influence on the air molecules 
with which they come into contact and form ions only now and then 

(5 or 10 per mm. according to their velocities). 
These properties of a- and /S-rays were exhibited in a striking way by 

some beautiful photographs of C. T. R. Wilson,* which have often been 
reproduced and which we must consider here also. His method con¬ 
sisted in bringing a radio-active substance into the vicinity of a sealed 
vessel which contained super-saturated water vapour ; by this means, 
a- and /3-rays were introduced into the closed chamber. The gaseous 
ions which are formed by these rays serve, just as in the case of the 
gaseous ions or particles of dust that are instrumental in the produc¬ 

tion of rain in the atmosphere, as 
nuclei about which the super¬ 
saturated water vapour may con¬ 
dense when the moist air is 
suddenly allowed to expand. The 
drops of water which thus form 
and collect rapidly are what we 
see on the photographs. 

The path of an a-partiele is 

characterised on the plates as a 
dense, apparently continuous, mark 
(indicative of strong ionisation), 

but, in reality, it consists of in¬ 
dividual drops of condensed vapour. 
In general, its course is a straight 
line (due to its great mass). Fig. 
3a shows a sheaf of a-rays which 
start out from the end of a wire 
which has been made radioactive. 
Fig. 3b was produced by /3-rays 
that originate at a point of 
convergence outside the picture. 
Several of them show, towards the 
speeds have already been much 

reduced, pronounced hooks (sudden bends). We here call particular 
attention to this apparently subsidiary phenomenon for the reason 
that, as we shall see later (Chap. II, § 2), far-reaching consequences 
arise through it. 

On the other hand, the path of a /3-particle is deflected much more 
often and much more easily (on account of its small mass), and is punc¬ 
tuated only rarely with drops of water vapour, as is manifest on the 
photographic negative (this indicates feeble ionisation). In Fig. 4 we 
see in particular, besides diffusely scattered drops of water, the paths of 

* The most recent and most complete pictures are given in Proc. Roy. Soc. 

104, 1 and 192 (1923). 

3^ia. 3b.—Wilson-photograph of a- 
partieles : largo mass, small devia¬ 
tion, strong ionisation. At the 
ends of several tiacks hooks are 
clearly visible. 

ends of their paths, where their 
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two such /3-rays, of which one is strongly curved several times. In 
Fig. 5, we see, in addition to the thick (highly magniliod) path of an 
a-particle (with a pronounced hook towards the end), several traces of 
the paths of /3-rays. 

To shed further light on the nature of /3-rays we shall enlist the aid 
of another scientific document, one of the deflection-pictures obtained in 
the famous experiments on /3-rays by Kaufmann : * it is here reproduced 
about six times magnified. The sheaf of /3-rays emitted by a radium 
salt and singled out by means of a series of fine apertures is exposed to 
the simultaneous action of a magnetic and an electric field. The lines 
of force of both fields are 
parallel to one another 
and to the photographic 
plate. The electric lines 
of force divert the /3-ray 
electrons from their 
ordinary paths, to the 
right in our figure, to 
the left when the field 
is reversed by a commu¬ 
tator. The magnetic 
lines of force cause a 
deflection at right 
angles to themselves ; in 
Fig. (> this is upwards. 
Both deflections depend 
on the velocity. The 
greater the velocity, the 
smaller the deflection. 
For each velocity of 

the /8-electron, therefore, 
a different “ deflected 
point ” or, if we also re¬ 
verse the field each time, 
a different deflected point-pair will be recorded on the plate to the right 
and left. Now since this beam of /3-rays may contain all possible 
velocities reaching almost to the velocity of light, a continuous section 
of line marked by the points of deflection will be produced, or, rather, 
two branches of a curve are produced that converge towards the point 
of departure of the undeflected beam. The latter path is also recorded 
on the plate, thanks to the photographic action of the y-rays which 
cannot be deflected (cf. § 5). From formulae (2) and (3) of the preceding 
section we can easily verify that the branches of the curve would have 
to be two parabolas that touch, having a common vertical tangent at 

* W. Kaufmann performed these experiments in the period 1901-1906 : a 
resume of them is given in Ann. d. Phys., 19, 487 (1906). 
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the undeflected point if the electronic- mass m were constant, that is, the 
same for all velocities. As an experimental fact the two branches do 
not touch (cf. the tangents 1 and t' which have been sketched into 
Fig. 6), but run into one another at a certain angle. From this it is to 

Fig. f).--- Wilson-photograph of an a-particle and a /2-particle taken together. 
At the end of the track of the a-partiele is a distinct hook. 

be inferred that the electronic mass depends on the velocity and that it 
increases beyond all limits as it (the velocity of the electron) approaches 

that of light. 
This result exc ited great astonishment, as is easy to understand, for 

it shattered the time-honoured dogma that mass 

Fig. 6.—Kaufmann- 
photograph of de¬ 
flected j8-rays. The 
electric and mag¬ 
netic fields are 
parallel to one 
another and to 
the ph o t ograph i e 
plate. 

is constant. But Kaufmann wished to read still 
more from his negatives. He wished to learn 
from them according to what law the mass of 
the electron alters with the velocity. In this 
connexion there were two opposing theories which 
led to different forms for this law, namely, the 
older theory of the absolute ether (the original 
theory of Lorentz, elaborated in particular by 
Abraham for the questions here under considera¬ 
tion), and its younger rival, the theory of the 
relativity of motions (founded by Einstein). The 
latter theory gives rise to a particularly simple 
form of the law governing the change of mass 
with motion, namely to the formula : 

Vi 
m ~- • (2) 
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In it /? is the velocity, as explained in equation (1), expressed in terms 
of the velocity of light c ; ra0 is the “ rest ” mass corresponding to the 
velocity p — 0 ; m is the mass of the moving electron. The theory of 
relativity asserts that this formula is true not only for the electronic 
mass m, but also for any arbitrary mass of matter. This means that 
every arbitrary mass must increase as ft increases and must become 
infinitely great when ft ™ 1. From this the thesis, stated right at the 
beginning of this section, that the velocity of light represents for all 
velocities of material bodies a limit that cannot be exceeded, i.c. that 
the velocity of light can only be approached asymptotically but never 
exceeded, would already follow as a natural consequence. 

It can easily be grasped from this that the deflection experiments of 
/3-rays were regarded for a long time as the experimentum, crucis which 
was to decide for or against the doctrine of the relativity of motions, and 
that they were thus to determine our fundamental views of space, time, 
motion, and the ether. So far as Kaufmann's experiments are con¬ 
cerned, it has been proved that they were not sufficiently accurate to 
give a decisive' answer. Later experiments have established more and 
more definitely the correctness of the relativistic formula for mass (2). 
In our spectroscopic discussions later we shall likewise arrive at a con¬ 
firmation of this formula by a method that far exceeds all others in 

.accuracy (see the final section of Ohap. Vlll). 
We might- well close our brief survey of corpuscular rays here, were 

it not that we have still to discuss several general questions dealing with 
the nature of electricity. Are we to regard electricity as unitary or 
dnalistic '{ Is it made of matter or of energy, of substance or of force ? 

The question as to whether it is of one kind or of two kinds was 
proposed long ago particularly with reference to Voltaic currents. Does 
only one type of electricity or do two contrary types, move (in opposite 
directions) along a conducting wire '( The controversy remained 
unfruitful for a long time. It was only when It. 0. Tolman * used the 
most highly refined methods of modern experimental technique that 
the question was settled. We may now assert that what flows in a 
conducting wire is negative electricity ; every conduction current in 
metals is a current of electrons. In this domain our view is unitary. 

In the realm of atomic physics, however, we are inclined to take the 
dualistic view. A positive charge signifies more than the absence of a 
negative charge. Positive electricity is always associated,l with atomic 
masses. We have thus to deal with two types of electricity that differ 
not only in sign but also in nature. They are represented by the 

electron and the proton. 
There is no reason why we should not claim these two representatives 

as negative and positive electrons, respectively. Just as all negative 
electricity consists of the ordinary negative electrons, so all matter, 
according to the old hypothesis of Front and the newest results of 

* Cf., for example, Phys. Kev., 21, 525 (1923), . 
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Aston (cf. Chap. Ill, § 2) resolves into an aggregate of protons and 
electrons. Hence, as the fundamental elementary constituent of 
matter and of positive electricity, the positive hydrogen ion deserves the 
name of positive electron. In using the term “ positive and negative 
electron,” we have already adopted the dualistic view, even if not the 
dualism of two elements of a like type, but of two that differ radically in 
respect of mass. 

In the following respect, too, there is a difference of type between 
negative and positive electricity. We can picture an atom (or a body) 
as highly charged negatively as we like, that is, we can add to it any 
number of negative electrons. But we can increase the positive charge 
only to a certain maximum amount so long as we do not considerably 
alter the mass. For we can abstract from the atom only just as many 
electrons as it possesses from the outset. In the case of the He-atom, 
as we shall see, this maximum limit is already reached when it has two 
positive charges, in the case of the H-ion when it has only one. A 
further increase in the positive charge could be effected only by simul¬ 
taneously increasing the mass, that is, by adding positively charged 
matter. 

This really furnishes us at the same time with the answer to the 
second question, as to whether we are to imagine electricity as a sub¬ 
stance. To us nowadays negative electricity certainly denotes a 
substance. It is one of two universal and fundamental substances of 
which positively charged matter is the other ; both are equally entitled 
to being called such. If we regard an unalterable constitution as the 
characteristic of substance, then the charge (positive as wrell as negative) 
is more truly a substance than matter (electronic mass or ordinary mess). 
As a matter of fact we saw, as an inference from Kaufmann’s experi¬ 
ments, that every mass varies according to its state of motion at the 
time under consideration (more correctly, according to the state of 
motion relative to the observer in question). In the case of the theory 
of relativity, too, no change in the electric charge enters into question. 
In consequence of its absolute immutability the charge, in contradistinction 
to the mass, proves itself to be true substance. The charge and the mass 
are hereby indissolubly associated with one another, the negative charge 
with the electronic mass, the positive charge with the hydrogen mass. 

§ 5. Rontgen Rays and y-rays 

Rontgen’s discovery was made in the year 1895. He was working 
with a highly evacuated cathode ray tube and observed the presence of 
penetrating rays that started out from the part of the tube at which the 
cathode rays struck the glass wall. These rays propagate themselves in 
all directions in straight lines from their source and are not deflected by 
a magnet.* For this reason Rontgen himself had looked on his “X-rays” 

* The older developments of the work with which we are concerned in this 
section have been collected together by R. Pohl, Die Physik der Eontgenstrahlen, 
Braunschweig, 1912 (Sammlung Wissenschaft), 
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as wave-radiation. At first it remained undetermined whether they 
were longitudinal or transverse in character. As we know, improve¬ 
ments in the construction of X-ray tubes have brought it about that the 
X-rays are no longer produced at the glass wall but at an anti-cathode 
placed in the path of the beam of cathode rays : it is found preferable 
to make the anti-cathode of a metal with a high melting-point (e.g. 
platinum, tungsten, molybdenum, etc.). The cathode rays that strike 
it are thus brought to rest. By giving the cathode the shape of a soup- 
plate the focal point of the beam of cathode rays is made as small as 
possible. 

The question whether the rays were longitudinal or transverse was 
decided by Barkla ten years after Rontgen's discovery. Even in the 
original researches of Rontgen it had been ascertained that all bodies, 
especially metals on which X-rays impinge, serve as sources of new 
(“ secondary ”) X-rays. In the same way secondary X-rays generate 
tertiary X-rays. Now, Barkla discovered that prim,ary X-rays arc 
partially polarised, secondary X-rays are wholly polarised in certain 
directions. He succeeded in proving this with the help of tertiary 
X-rays, that is with the help of the secondary rays produced by 
secondary rays. For reasons to be given later, Barkla used as the 
generator of secondary rays not metals, but substances that are com¬ 
posed only of light atoms (charcoal, paraffin, paper). We must paren¬ 
thetically mention another product of the action of impinging X-rays, 
namely, secondary cathode rays, which were discovered in 1900 by Dorn. 
They occur simultaneously with secondary X-rays, and are similar in 
velocity to the primary cathode rays that produced these X-rays. 

Polarisation signifies that a ray favours a certain plane passing 
through it more than the one perpendicular to this plane. In the case 
of longitudinal vibrations, that is, vibrations that occur in the direction 
of the ray, there is symmetry about the ray and no such preference can 
be imagined. Longitudinal radiation must therefore be unpolarised. 
In the case of transversal vibrations, however, a favoured plane is 
determined by the direction of vibration and the direction of the ray. 
It is only when no direction of vibration is favoured that a ray composed 
of transverse vibrations can be unpolarised. We here interpret the 
direction of vibration not as being the direction of a motion of matter, 
but only of the electric force which participates in the wave-radiation. 
With this electric force is associated a perpendicular magnetic force. 

Let us first discuss in a general sense the production of electro¬ 
magnetic waves. In doing so, we shall adopt the standpoint of classical 

electrodynamics and of the theory of electrons. The fact that the 
newest developments have led to the partial rejection of this view is 

not to disturb us for the present. 
A charge e which moves non-uniformly radiates (mergy, for it 

generates an electromagnetic field which propagates itself with the 
velocity of light. (A charge moving with uniform motion, such as a 
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cathode ray particle, carries its electromagnetic field along with it, and 
hence does not radiate.) Consequently the intensity of the radiated 
field is in general proportional to the acceleration * v of the charge ; in 
particular, in the direction r — OP (cf. Fig. 7, in which O is the position 
of the charge, P that of the observer, briefly called the reference point 
(.Aufpunkt), it is proportional to the component of acceleration Vn, 

which lies in the plane through v and r, and which is perpendicular to r. 
We describe a sphere through P, about 
O as centre, with the radius r, and 
mark as its north and south poles N and 
N, the two points at which the accelera¬ 
tion vector, when produced, meets the 
sphere. Let us fix the position of P on 
the sphere by means of the angle 0 
(complement of the geographical lati¬ 
tude). Then 

vn — v sin 0. 

The electric force lies in the meridian 
plane ONP, the magnetic force is the 
tangent to the small circle PP\ Those 
forces are of equal magnitude if, as is 
natural, we measure E in the electric 
(“ electrostatic ”) system and H in the 

magnetic (“ electromagnetic ’*) system, namely, 

Fig. 7.—Tho field, according to 
classical electrodynamics, of 
a charge situated at O mov¬ 
ing non-uniforinly with ac¬ 
celeration v. 

E LVn 
c2r (1) 

(the charge t is measured in electrostatic units, just like E). The de¬ 
pendence of these quantities on r, as expressed in the equation, may 
easily be seen a jmori. During the process of emission of radiation, the 
same flux of energy passes through each spherical shell. Since the 
surface of each increases proportionately to r2, the specific flux of energy 
S, the so-called Poynting vector, must decrease as r2 increases. But, if 

c 
we disregard the factor — which depends on the system of measure¬ 

ment, S is equal to the product of E and H (at least, when E aod H are 
perpendicular to one another) ; thus in our case : 

S = 
e2y2 e2y2 t 
-;==_-flin‘ H 

Inch2 inch-2 (2) 

* Following Newton, wo indicate tho increase with respect to time by a dot 
thus : 

v — fly 
(.it9 

in the case here considered in which the velocity is supposed to have a constant 
direction, v denotes the value of v when the direction is disregarded. 
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Irom this (by integrating over the surface of the sphere) we get for the 
total flux of energy : 

2 e2 
(3) 

Our representation (J) of the field is a necessary consequence of 
the established principles of electrodynamics. It shows the transversal 
character of the field (E and H are perpendicular to r, that is, to the 
direction of the ray S). Tn addition, it show’s that in the longitudinal 
direction, that is, in the direction of the acceleration v, the emission of 
radiation becomets zero (sin 9 — 0). This fact is used practically in 
wireless telegraphy : in the direction of the antenna (that is, of the 
alternating current, corresponding 
to our v) the emission is zero : it 
is a maximum in the direction at 
right angles to the antenna. The 

position of H, too, corresponds to 
the well-known circumstances that 
attend the passage of alternating 
currents through a wire : the lines 
of magnetic force are circles around 
the wire (corresponding to our 
small circle PP' in Fig. 7). 

After these preliminary re¬ 
marks, we have now to imagine 
secondary X-rays to be produced 
in the following circumstances : 
Every body, whether solid, liquid, 
or gaseous, is built up of electrons 
and positively charged matter. In 
Fig. 8, let 1 be the direction of 
the primary beam from R (Ront¬ 
gen, or X-ray, bulb), to K (the 
scattering body). We assume that 
at the outset the primary ray is unpolarised. Let us then resolve 
the electric force, as shown at the bottom of the figure on the left, 
along the two perpendicular directions 2 and 3, which are perpen¬ 
dicular to 1 ; we get two equally intense component forces along 2 and 
3. When the component 3 has arrived at the surface of K, it sets the 
electrons in motion along the direction 3. These electrons thus become 
the source of a new radiation. This radiation gives us, as we saw, no 
intensity along 3, but maximum radiation in the direction 2. In the 
same way the component force 2 sets the electrons of K into motion. 
The radiation thus produced gives no intensity in the direction (2), but 
maximum radiation in the direction 3. From this it follows that the 
secondary radiations s, which are propagated in the direction 2, are 

Kkj. 8.-—Transversal nature of Rorit- 
gon rays. Unpolarised rays vi¬ 
brating in the directions 2 and 3 
arc emitted by the tube at R. 
The secondary rays from K in 
the direction 2, vibrate in the 
direction 3 only. The tertiary 
rays from K' in the direction 1, 
also vibrate in the direction 3 
oidy, while the intensity in the 
direction 3 from K' vanishes 
altogether. 
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derived from electronic vibrations in the direction 3 and likewise 
vibrate in this direction. They are thus completely polarised. (The 
same is true of the secondary rays that are propagated in the direction 
of 3 and which vibrate in the direction 2 ; and it is true of all secondary 
rays that are propagated at right angles to the primary direction 1. 
The secondary rays that are obliquely inclined to 1 are partially 

polarised.) 
But how can we recognise the complete polarisation of the secondary 

ray s, seeing that we have no Nicol at our disposal for X-rays ? By 
repeating the process, we place a second scattering body K' in the path 
of the secondary ray s and measure the tertiary X-rays. These are 
produced by electronic vibrations that* take place exclusively in the 
direction 3. They emit maximum radiation in the direction K'l, and 
none at all in the direction K'3. The perpendicular set of lines pst in 
the directions 1, 2, 3 proves by the vanishing of the intensity of the tertiary 
rays K'3 both the complete polarisation of the secondary rays and the 
transversal nature of the primary rays. 

In Barkla’s experiments the scattering bodies K and K' consisted 
of charcoal. The intensity of the tertiary rays was measured electro- 
scopieally by their ionising action on the air space of a condenser 
(ionisation chamber), which is very sensitive towards X-rays and which 
had already been perfected in the original experiments of Rdntgen. 
Provided that the primary radiation was fully unpolarised, K2 and 
K3 would have to show the same degree of intensity under similar 
conditions of measurement. In reality, as Barkla, and later Bassler, 
foiind, the secondary rays already show differences of intensity with 
direction. They thus indicate a partial polarisation of the primary 
radiation. 

The latter circumstance leads us still more deeply into tin? process of 
production of the primary X-rays. In Fig. 9 let K be the plate-shaped 
cathode and A A the anti-cathode. When the cathode rays strike the 
anti-cathode, they are arrested ; their average direction of retardation 
is represented in the figure by the arrow v. This change of velocity 
causes radiation to be produced, which is the shorter in wave-length 
and the more intense, the greater the change of velocity. This radia¬ 
tion is to be regarded as the reason (or better, a reason) for the occurrence 
of X-rays. The resultant field is described by the earlier Fig. 7. In it 
the direction SN is now represented by the direction KA of the cathode 
rays. The electric force lies in the meridian planes, that is, now, in the 
plane KAR through the cathode ray and the X-ray. The process of 
formation of X-rays thus points directly at a favoured plane for the 
electric force. The observations (of Barkla and others) have confirmed 
this position of the plane of polarisation. 

According to our argument we should actually expect a complete 
polarisation of the primary X-rays if the retardation were to occur in 
one definite direction, namely, in that of the arrow v in Fig. 9. But this 
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is certainly not the case. Rather there are changes in the direction of 
the impinging cathode rays while they are being brought to rest by 
the material of the anti-cathode. Through them the direction of the 
arrow V and hence also of the direction of polarisation becomes blurred. 
But there is a still deeper reason for the incompleteness of the polarisa¬ 
tion. 

Bark!a has discovered that every material substance when bom¬ 
barded with cathode rays emirs a radiation characteristic of the sub¬ 
stance (called “characteristic radiation” Eigenstrahlung). Whereas 
we may compare the radiation considered just above (“impulse radia¬ 
tion ” Bremsstrahlung) with the forced vibrations that occur in 
mechanics—as a necessary consequence of the sudden stoppage—this 
characteristic vibration corresponds to the free or natural vibrations of 
mechanics. Through the agency of the cathode rays the electrons of 
the material of the anti-cathode are thrown out of their positions of 
rest (or out of their stable orbits) and tend to return to these. In doing 
so they emit the frequencies 
natural to, or characteristic of, the 
material of which the anti-cathode 
is composed. This circumstance 
gives the process a resemblance to 
optical fluorescence, in which, like¬ 
wise, a frequency of vibration 
occurs, which is characteristic of 
the fluorescent material but differs 
from the frequency of the incident 
radiation. The phenomenon occurs 
freely, being excited by the 
cathode ray but, especially in re¬ 
gard to direction, is not subject to conditions. Thus the characteristic 
radiation is unpolarised, and the total radiation (impulse radiation + 
characteristic radiation) is only partially polarised. 

As a result of the polarisation experiments above discussed, there is 
no doubt that the radiation of X-rays is of the transverse wave type. 

Nowadays we speak of Rontgen light or X-ray light and distinguish 
it from visible light only by its greater hardness (penetrative power). 
This general character of Rontgen light is shown very strikingly in a 
photograph, here reproduced in Fig. 10, by C. T. R. Wilson. In con¬ 
trast with the former photographs (Figs. 3, 4, 5), we see here no recti¬ 
linear or curved corpuscular paths, but a thick beam of rays that 
traverse the space of the condensation chamber in a horizontal 
direction. This beam of rays is made visible to us photographically 
not directly but indirectly by the secondary cathode rays (see p. 23), 
that is, by the electrons that have been set free from air molecules and 
molecules of water vapour by the X-rays, and which fly out laterally 

and irregularly, and cause the water vapour to condense. 

Fie. 9. - Diagrammatic representa¬ 
tion of tho retardation • experi¬ 
enced in the anti-cathode A by 
the cathode rays coming from 
the cathode K. The Rontgen 
rays are emitted in all directions. 
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The hardness of Rontgen light represents what we usually call colour 
in the case of ordinary light. Great hardness denotes great frequency 
of vibration or small wave-length. Moderate hardness or greater 
“ softness ” denotes smaller frequency and greater wave-length. This 
terminology introduces no difficulty in the case of characteristic radia¬ 
tion. We called this free vibration and are tempted to ascribe to it 
a period (or a series of periods) of vibration characteristic of the material 
of the anti-cathode. This we may actually do, for experimental 
researches have fully confirmed this conclusion. The characteristic 
radiation is not only k< characteristic " but also “ homogeneous." Jt 
consists of a few sharply defined kinds of vibration, each of which 
corresponds to a homogeneous monochromatic; type of light. When we 
have become acquainted with the spectral resolution of X-rays (Chap. 
IV), we shall see that the characteristic radiation assumes the form of 
a line-spectrum. 

Fig. 10.—Wilson-photograph of secondary cathode rays produced in water 
vapour by a primary beam of Rontgen light passing from right to left. 

To supplement our earlier statements we must add the following : 
As the atomic weight of the body emitting the characteristic radiation 
increases, so does the hardness and the intensity of the characteristic 
radiation. Anti-cathodes of heavy metals produce copious and hard 
characteristic radiation, whereas charcoal, paraffin, etc., produce only 
scant characteristic radiation, which is soft, being absorbed after tra¬ 

versing only a few centimetres of ordinary atmospheric air, and which, 
therefore, hardly deserves the name of Rontgen radiation. Hence we 
understand why Barkla, to prevent being disturbed by the character¬ 
istic radiation of the scattering body, had to use bodies of small atom it; 

weight for his experiments on polarisation. On the other hand, makers 
of X-ray appliances had to resort to heavy metals for their anti- 
cathodes so as to make use of characteristic vibration as well as the 
impulse radiation. 

Our explanation of hardness does not seem to be so readily applicable 
to the case of impulse radiation. The process of impulse radiation is 
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a single event; that is to sav, it is jion-periodic. Consequently the con¬ 
ceptions of period of oscillation and wave-length here seem out of place. 
Now, it is a simple mathematical truth that a single unperiodic occur¬ 
rence may be represented as composed of a number of purely periodic 
occurrences superposed 011 each other. For example, the crack of a gun 
may be represented by a continuous series of musical tones, if these are 
chosen of the proper intensity and phase (Fourier’s integral representa¬ 
tion of an arbitrary function). The physical realisation of this mathe¬ 
matical mode of representation is called the spectrum of the occurrence 
in question. From the moment that the spectrum of such an event can 
be specified, the spectral picture will be preferred on account of its 
fixed quantitative character. This moment had arrived, in the case 
of X-rays, when Laue made his discovery. Since then, we speak of 
the spectrum, wave-length, and frequency of vibration in the case of 
impulse radiation too. Accordingly the spectrum is not, as in the case 
of the characteristic radiation, a line-spectrum but a continuous 
spectrum. It resembles the spectrum of white light, and is therefore 
occasionally called the white, Rontgen spectrum. The difference between 
the white Rontgen spectrum and that of the white light of the sun, for 
example, lies only in the order of magnitude of the dominant region 
of wave-lengths, of the region of maximum intensity. The mean 
wave-length of this region is in the case of X-ray spectra 10,000 times 
smaller than in that of the solar spectrum. 

As we see, the hardness of the characteristic radiation depends on 
the atomic weight of the emissive material of the anti-cathode. On the 
other hand, the hardness of impulse radiation depends essentially on the 
voltage of the X-ray bulb, or on what is the same, according to equation 
(1) of § 3, the velocity of the impinging cathode rays ; as is well known, 
the hardness increases with the voltage of the hull). In the language of 
spectra this means that the region of wave-lengths of greatest intensity 
in the continuous spectrum shifts towards the smaller wave-lengths as the 
voltage increases. We shall pursue this fundamental lavr further in the 
next paragraph. To do so, we must discard the view-point of classical 
electrodynamics here adopted, and must build up on the basis of the 

modern quantum theory. 
For our special purpose—atomic structure and spectral lines—the 

characteristic radiation with its line-spectrum, which is characteristic 
of the emitting atom, will of course be more important than the impulse 
radiation with its continuous spectrum essentially conditioned by the 
voltage of the tube. But first we have yet to call attention to various 
observations about the latter that are intelligible on the basis of classical 

electrodynamics and mechanics. 
We inquire into the total scattered secondary radiation that is emitted 

per unit of time by a body (radiator) struck by primary X-rays. The 
scattered secondary radiation, in contrast with the simultaneous secon¬ 
dary characteristic radiation of the radiator, has the same hardness, or 
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in mom precise terms, the same continuous spectrum as the primary 
radiation. Compare, however, § 7 of the present chapter. Its inten¬ 
sity, calculated for a single emitting electron, is given by equation (3). 
We shall write it down here for unit volume of the radiator and take 
n as the number of atoms per unit volume, Z the number of electrons 
per atom. (The radiator is assumed to be a chemical element; in the 
case of a compound the various atoms would have to be differentiated.) 
We then obtain from (3) 

8 = 
2eH2 

3 c8 
nZ W 

This implies the assumption that the quantities of energy emitted by the 
individual electrons of the atom become simply superposed, an assump¬ 
tion which no longer holds for white light (cf. Note 1) and which even 
in the ease of excitation by X-rays is not true for all directions of the 
scattered radiation (cf. again Note 1). 

The acceleration v of the individual electron is closely connected 
with the electric intensity of field E* of the primary X-rav which im¬ 
pinges on it by the equation 

mv — — eEP .... (5) 

In (5) we have assumed the electron to be free. If it is bound to a 
position of rest, the restoring force has to be added. In the case of 
sufficiently hard X-rays, we may discard this force ; in the ease of 
optical frequencies it must be taken into account (cf. Note 1). By 
inserting (5) into (4) we get 

•s - («> 

On the other band, we determine the energy P of the primary 
radiation that falls per unit time on unit area of the radiator and 
excites secondary radiations in it. We get (cf. eqn. (2), m which 
H -• E = Ep), 

P- 

From (6) and (7) we get 

S_8tt 
P “ 3 ' rn2c* 

. nZ 

(7) 

(8) 

The energy 8 is produced at the expense of the energy P and hence 
causes a decrease in the latter, an “absorption through scattering.” 

The ratio ^ is called the “ absorption coefficient due to scattering ” and 

is designated by s. From it we pass on to the absorption coefficient of 

mass ~ by dividing by the density p. Whereas s is a measure of the 
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scattering per unit of volume, is a measure of the scattering per unit 

of mass. Now 

M p :t: : ~ . . . (9) 

in which M is the atomic weight if hydrogen — l ; and thus mHM is the 
mass of a single atom, and is the mass of the atoms contained 

in unit volume, i.e. it denotes the density p ; L =. is (see p 4) 
raH 

“ Loschmidt's number per mol." 
From (8) and (9) we get 

6* __ 877 e*L Z Z 

P 3 w2c4M ‘ iVl 
(10) 

which is J. J. Thomson's formula. 

The factor K is a universal quantity independent of the nature of 
the radiator. Its value may be calculated according to the data at the 
end of § 2 in Figs. 1a and 1b. In doing this, it must be observed that 
we have here reckoned e in electrostatic units, and hence according to 
the remark at the end of § 3 we must divide it by c to reduce it to 
electromagnetic units. We then obtain 

e 

me 
1-77 . 107, < L - . 9-65 . 103, - 

c c 
1*59 . 10-20 

and lienee 

K ==. 0 40 (11) 

Z 
From this we can determine the ratio ^ from (10) if the absorption 

coefficient of mass is found by observation. Such observations have 
been made by Bark la (for air) and by Barkla and Sadler (for (J, AJ, Cu, 
Ag). In the ease of air, (■ and Al, the value obtained (in cms. and 

grins.) is 

- = 0-2.(12) 
P 

For Cu and Ag, greater values * (0 4 and 0-5) were found, but in their 
cases we are no longer dealing with pure scattering, for secondary 
characteristic radiations occur, as well as scattered secondary rays, and 
these increase the demand for primary radiation and hence increase the 
absorption coefficient of mass. Taking this into consideration we may 
say : for small atomic weights measurements lead to the uniform value 0*2 

for -, whereas for greater atomic weights the values obtained do not con- 
p 

tradict the assumption that the same value holds generally to a certain 

* Appreciably smaller values than 0-2 aro obtained if vory hard rays are used 
for the incident light. We revert to this question in Noto J. 
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degree of approximation so long as tee are concerned only with the absorp¬ 
tion due to scattering. Now, from (10), (11), and (12) the remarkable 
result follows : 

Z 0-2__ 1 

JV1 ~ 0-40 “ 2 * 
(13) 

The number of electrons per atom is half as great as the atomic weight 
(proved for atomic weights smaller than 27). 

From the secondary rays we return once more to the primary rays 
and inquire whether their mode of generation (sudden stoppage of 
cathode rays at the anti-cathode) can be proved in greater detail by 
observations. To answer this we must first generalise formulas (1) 
a little. These formula; related to the radiation emitted by a single 
electron that was subjected to an acceleration v, but that possessed 
no velocity comparable with c. They cannot, therefore, be applied to 

rather rapid cathode rays (^ft - - ^ (say)^ without some modifica¬ 

tion. They must be replaced, if ft is not very small, by * 

E H 
cvw ev sin 0 

c*r{ 1 - ft cos 0)3 c2r (1 —ft cos 0)3 
(14) 

in which 0 denotes, as in Fig. 7, the angle between the direction of the 
X-ray under consideration and the direction of v (being the same as the 

direction of the* generating cathode ray). As regards the system of 
units the remarks on page 24 again apply hen;. In place of (2) we 
then get for the energy radiation S at the angle 0 and measured per 
unit of time and surface : 

e2V2 sin2# 

47reV2 (1 — ft cos 0y> (15) 

This is the radiation emitted during any arbitrary moment of the 
process of stopping according to classical electrodynamics : ft denotes 
the velocity still left at this moment, divided by c. It caii be shown 
that essentially the same formula represents the elementary process of 
emission according to the most recent wave-mechanical view of the 
quantum theory. We take the term “ elementary process ” to stand 
for the retardation caused by an individual atom of the anti-cathode, 
assuming that the velocity decreases down to a definite final value v2. 
The quantity ft that occurs in (15) then denotes the ratio of the arith¬ 
metic mean (vx + v2)/2 to c. 

Whereas formerly it was possible to use only massive anti-cathodes, 
physicists have recently succeeded in approximating to the ideal case 
of the elementary process by using very thin metal foil (only a few 
/Ts thick). The dotted curves a and b in Fig. 11 represent some of the 

* These formulae are obtained from the equations (1) by means of a relativity 
transformation. Cf., for example, Kiernann-Weber, 7th edn., 1929, Vol. II, 
p. 421, eqn. (20). 
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results obtained by H. Kulenkampff,* in particular those for which 
v2 0 (short wave-limit of the continuous spectrum ; ef. j). 41). 
Besides these, Fig. 11 shows the theoretical curves given by formula 
(15), namely, for the values fi = £ and J. The experimental curves 
a and b correspond to the values -- 0124 and — 0-182. 

The figure must, of course, he extended to three dimensions, by 
rotating it about the direction of the cathode ray. For ft ~ 1 we 
should obtain a pear-shaped curve for the emission with a maximum 
near 9 = 0. For 9 = 0 itself, and also for 9 = 180° the emission would, 
by (15), on account of the factor sin2 9, be equal to zero in all circum¬ 
stances, as has already 
been discussed above in 
the case of secondary 
radiation. Consequently, 
this inference is not in 
general confirmed, either 
by the more accurate 
wave-mechanical calcu¬ 
lations or by observation. 
With regard to the di¬ 
mensional relationships 
in the figure, we must 
remark that all the 
theoretical curves are 

drawn for the same v, 
whereas in the experi¬ 
mental curves the scale 
chosen, which is in itself 
arbitrary, is such that 
they approximate to the 
scale of the theoretical 
curves. The maxima of 
the theoretical and ex¬ 
perimental curves have 
been designated by small 
circles. We see that the experimental maxima fit in well with the 

sequence of theoretical maxima. 
This progressive advance of the maximum was derived by the author 

theoretically as long ago as 1909.f Besides the differences of intensity 
primary X-ray radiation exhibits differences in hardness. 

The radioactive y-rays bear the same relation to X-rays as a- and 
/8-rays bear to the canal and cathode rays ; likewise they cannot be 
deflected by electric or magnetic fields. We have already encountered 
them in Kaufmann’s photograph (Fig. 6 of the previous paragraph) at 

* Ann. d. Phys., 87, 632 (1926). 

VOL. I.—3 

Fig. 11.—Polar diagram (radius-vector inten¬ 
sity) of tho intensity distribution of the con¬ 
tinuous Rontgen rays. Compare the curves 
representing equation (15) (unbroken lines • 
/3-values shown against the curves) with the 
experimental results of H. Kulenkampff 
(broken lines—a corresponds to /? = 0-124; 
b to /S - 0-182). For the sake of clearness 
the curves for b and p f are not shown 
between 90" and 180 . 

f Phyaik. Zeitsehr., 10, 969 (1909). 
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the point of non-deflection on these. The y-rays, too, may in principle 
he resolved spectrally. The result has been a line-spectrum of y-radiation 
which links up continuously with the hardest characteristic X-rays and 
extends towards the region of decreasing wave-lengths to waves about 
twenty times smaller. In any case the difference in hardness between 
X-rays and y-rays is far from being as great as that between visible 
light and X-rays (the ratio of the wave-lengths is in the latter case 
given by a factor of about 10~4). Whether, in addition to the line- 
spectrum, there is also a continuous background in the y-spectrum has 
not yet been proved. Experiments carried out by Edgar Meyer * and 
Kovarik f seem to favour a one-sidedness in the emission of y-rays, 
similar to that which occurs in the case of Rontgen rays, but, in con¬ 
formity with the greater hardness, this characteristic; is correspondingly 
more strongly pronounced. The y-rays, too, produce scattered secondary 
radiation and secondary /3-radiation. In radium-therapy, y-radiation 
alone is effective : it is surmised that its effectiveness is due solely to the 
secondary /1-radiation generated in the diseased tissues, which thereby 
causes their disintegration (cf. Fig. 10, in which the corresponding 
process is exhibited for the case of air that is traversed by X-rays). 
In particular, it is the* y-rays of HaO and MsTh2 (cf. Table 1 of § 7 in 
this chapter) that are applied in medical practice. 

All things considered, there is no doubt about the similarity in 
nature between y-rays and X-rays. 

A type of radiation which exceeds y-radiation in hardness is cosmic 
or ultra-y-radiation (also called Hesssche jStrahlung in Germany, after its 
discoverer Hess). Its hardness exceeds that of y-radiation by a factor 
of about 20. The origin and nature of this radiation is a subject of 
lively discussion at the present time. It is probable that it will give 
us information on extraordinary atomic processes which cannot be 
observed on the earth (building up or dismembering of atomic nuclei, 
transformation of atoms or protons into radiation, Zerstrahlung). The 
cosmic origin of this radiation would be established with certainty if 
the observation becomes confirmed that the radiation varies periodically 
with sidereal time. On account of its similarity to y-radiation, it has 
hitherto been regarded as obvious that cosmic radiation is undulatory 
in character. This assumption has recently been called into doubt J in 
favour of a corpuscular interpretation, in which cosmic radiation is 
regarded as consisting of extremely rapid corpuscles. Actually the 
properties of /3-rays of a velocity very nearly equal to that of light 
approximate in every respect to the properties of wave-radiation ; they 
acquire an increasingly greater power of penetration and become more 
and more difficult to deflect. On account of the uncertainty of the 
subject, we are compelled to close the discussion with these brief 

* Ann. d. Phys., 37, 700 (1912) ; cf. also E. Buchwald, idem, 39, 41 (1912). 
f Phys. Kev., 14, 179 (1919). 
J W. Both© and W. Kolhorster, Zeits. f. Physik, 56, 751 (1929). 
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remarks, although cosrnie radiation promises to reveal important 
information on the problem of the origin and destruction of matter.* 

§ 6. The Photo-electric Effect and its Converse. Glimpses of the 
Quantum Hypothesis 

Like the modern development of the doctrine of cathode rays 
(cf. § 2), so the knowledge of the photo-electric effect is to be traced 

back to a paper by H. Hertz (Concerning an Effect of Ultra-violet Light 
on Electric Discharge, 1887). Following in Hertz’s footsteps, Hallwachs 
showed that when a metal plate is exposed to short wave radiation, it 
becomes positively charged , and it was Lenard f who recognised that 
the true cause of this whole category of phenomena was to be sought 
in the corpuscular negative rays, the photo-electric cathode rays. Their 

0 

specific charge was found to be equal to that of ordinary cathode rays, 

but their velocity was found to be many times smaller than the latter. 
Whereas in the Wellnelt tube we met with particularly slow cathode 
rays excited by a voltage of 110 volts, the photo-electric cathode rays, 
when reduced in the same way to an imagined excitation voltage, 
correspond to only one or two volts (according to equation (J), p. 9). 
They thus have a velocity that is ten times smaller than the velocity 
in the Welmelt tube (ef. p. 8). 

The following discoveries of Lenard are of very great importance. J 
The intensity of the exciting light has no influence on the velocity of the 
excited photo-electric cathode rays ; the intensity determines only the 
number of electrons emitted, which is exactly proportional to the in¬ 
tensity. But the velocity of the escaping electrons depends primarily 
on the colour of the exciting light. Ultra-violet light produces the 
quickest photo-electrons, and that is why its photo-electric activity 
was discovered first (by Hertz). Red light endows the photo-electrons 
with so small a velocity that in the case of most metals (it is difficult to 
demonstrate the photo-electric effect in the case of non-conductors) 
they remain embedded in the surface. The alkali metals alone form 
an exception in this respect for reasons that are connected with 
their chemical behaviour in other directions (with their electropositive 

character). 
A far higher degree of photo-electric activity than that of ultra¬ 

violet light is possessed by X-rays. 
To bring into prominence the essential peculiarity of these dis¬ 

coveries we shall refer to the well-known conceptions of thermo- 

* See Translator’s Note, p. 596. 
t P. Lenard, Erzeugung von Kathodenstrahlen dutch ultraviolettes Licht, Wiener 

Akademio, 108, 1649 (1899). 
J P. Lenard, Ober die lichtelektrwche Wirkung, Ann. d. Phys., 8, 149 (1902). 
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dynamics in this connexion. Thermodynamics investigates the condi¬ 
tions that govern the transformation of heat into work and, in particular, 
then, the production of kinetic; energy. It teaches us to recognise 
temperature as the measure of the work-value of heat. Heat of higher 
temperature is richer, is more readily able to be transformed into work 
than heat of lower temperature. Work may be regarded as heat of an 
infinitely high temperature, as unconditionally available heat. 

In the ease of the photo-electric effect, too, we are dealing with the 
production of kinetic energy, which is drawn from the energy supply of 
the incident radiation (the fraction that is absorbed). We should 
expect more intense light to product; a greater photo-electric effect, 
than less intense light. But this, as we saw, is not true. The work- 
value (WertigJeeit) of the light is not determined by its intensity but by 
its frequency. Blue light has great efficiency, red light but little. The 
intensity determines only the quantity, but not the quality of the 
photo-electric action. These facts are very strange, and depart greatly 
from the usual theoretical conceptions : they could not be explained 
on the basis of classical mechanics and optics. The key to them was 
furnished by the modern theory of quanta. 

The quantum theory is a child of the twentieth century. It came 
to life on 14th December, 1900, when Max Planck gave the Deutsche 
Physikalische Gesellschaft a method of deriving the law of black body 
radiation, discovered by him shortly before, on the basis of a novel 
physical idea. As is well known, we apply the term black body radiation 
to that condition of equilibrium of heat radiation which comes about 
in a space enclosed by bodies of any kind, but at the same steady 
temperature. The terra itself is due to the fact that radiation of 
precisely this intensity and spectral composition is also emitted by a 
black body, that is, a non-reflecting body at the same temperature. 

The problem of radiation is rooted, on the one hand, then, in thermo¬ 
dynamics, in the laws of the equilibrium of heat and, on the other hand, 
in electrodynamics, in the laws according to which light- and heat- 
vibrations are excited, propagated, and absorbed. Planck spent years 
of consistently planned work in seeking to penetrate into the realm 
of electrodynamics with thermodynamic principles. To retain agree¬ 
ment with observation and experiment he finally saw himself compelled 
to take a bold step leading away from the high road of our usual wave 
theory and to propound his hypothesis of energy-quanta. He postulated 
that energy of radiation of any frequency v whatsoever can be emitted and 
absorbed only in whole multiples of an elementary quantum of energy, 

€^hv.(1) 

h is Planck’s quantum of action. From measurements of radiation 
Planck soon succeeded in determining the value of his constant: 

h *= 6-55.10~27 erg sec. (2) 
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(Its dimensions are : energy x time, the same as those of the mechan¬ 
ical “ action ” that occurs in the Principle of Least Action.)* 

This postulate does indeed upset our usual ideas of the wave theory# 
If wave energy is propagated continuously in space and becomes dis¬ 
persed, how can it then condense at individual places so as to be 
absorbed in quanta of finite size ? Moreover, how can it be emitted in 
finite quanta if, according to the laws of classical electrodynamics (cf., 
for example, equation (2) of p. 24), every change of motion of the centre 
of vibration, which emits radiation, is accompanied by an instantaneous 
emission of radiation ? 

The hypothesis of energy-quanta, however, also affects classical 
statistics, that is, the method by which, for example, in the kinetic 
theory of gases we calculate the average result of many individual 
events which are rot known to us separately. Like every problem of 
heat, so the problem of the equilibrium of radiation is ultimately a 
statistical question. The radiation that we observe is composed of an 
immense number of separate rays and separate events that occur in 
the emitting body. Now, Planck’s investigations showed that classical 
mechanics could newer lead to Planck's law of radiation, which has been 
verified by observation so brilliantly, and that, on the contrary, it 
would lead to a spectrum of heat radiation that would be in flagrant 
contradiction to the facts of experience. 

It was precisely this statistical aspect of radiation that engaged the 
special attention of the discoverer of the quantum theory. He pur¬ 
posely brought the elementary atomic phenomena which lie at the basis 
of radiation under one scheme, by operating with a “ harmonic 
oscillator,” a configuration that emits and absorbs radiation in a 
manner different from that of the real atoms. Einstein (and also 
Stark) maintained the opinion that the quantum conception must be 
valid not only in the statistical equilibrium of radiation, but also in the 
elementary atomic phenomena. Einstein f called his extension of the 
principles of the quantum idea “ a heuristic view-point concerning the 
production and transformation of light.”- 

Disregarding for the present all obstacles we shall follow Einstein 
and describe the photo-electric effect thus. The radiation that is active 
photo-electrically is absorbed in energy-quanta hv according to equation 
(1), and, in a manner depending on its vibration number v, it may 
generate an amount of kinetic energy hv in the electrons dislodged 
from the metal. In this process the kinetic energy that we measure in 
our observations is less than that originally absorbed since the electron, 
in passing through the stmface of the metal, has to perform work to get 
away. This work of escape P keeps the free electrons back in the metal 

* The value which is regarded as most correct at the present time is 

h - (6-547 ;L 0-008) . 10 27 erg sec. 

t Ann. d. Phys., 17, 132 (1905); cf. idem, 20, 199 (1906), Znr Thcorie de,r 
Lichterzeugung und Absorption. 
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if there is no photo-electric excitation, and it is different for different 
conductors. The difference in the values of P for two different metals 
finds expression in Volta’s series of contact potentials, and is equal to 
the difference between the two contact potentials. Accordingly, we 
get for the velocity of escape v of the electrons, if m denotes the elec¬ 
tronic mass : 

~ — hv — V . . . . (3) 

If we are dealing, not with the ordinary photo-electric effect at 
a metallic surface, but with the corresponding effect at the individual 
atom (in a non-conducior or a gas), then P does not denote the work of 
escape from the surface of the metal but the work of escape4 from the 

atom (the so-called work of ionisation). 
At the time that Einstein set up the relation (3), only qualitative 

evidence was available on which it could be based : the velocity of 
electrons emitted photo-electrically increased with increasing frequency 
of the exciting light (greater hv) and with the increasing electropositive 
character of the metals (smaller P) : ultra-violet light had been found 
to be more effective than red light ; potassium, which is situated 
at the extreme end of the electropositive metals, was more sensitive 
than copper and silver. Quantitatively, Einstein could confirm the4 

law only so far as order of magnitude was concerned. The wave¬ 
length of blue light is 

A — 0-4ji — 4.10 5 ems. 

The vibration number (frequency, or number of vibrations per second) 
corresponding to it is 

v — ~ . ]015 sec-1 
A 4 

and the corresponding energy-quantum according to equation (1) is 

hv = 6-55.10 27 . £ . 1015 = 5.10 12 ergs. 

According to (3) the kinetic energy of the escaping electrons is just 
as great, provided that we disregard the work of escape P for the 
present. Now, if we calculate the potential V which a cathode ray 
tube would have to possess to produce the same kinetic energy \rnv2 in 
a cathode ray tube, we also get 

eV - 5.10 ~12. 

If we take for e its value in the electromagnetic system, that is, 

e — 1*6.10“20 (see p. 15) 
we get 

V 3.108 electromagnetic C.G.S. units — 3 volts. 

The same order of magnitude, namely, 1 to 2 volts, characterises the 
contact difference of potential between two somewhat distant metals of 
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the Voltaic series, and hence also our work of escape P (which is, so to 
speak, the difference of contact potential of the metal relative to a 
vacuum). For the kinetic energy of the escaping electrons there then 
remains, according to (3), if we take P into account in our calculation, 
likewise an amount of 1 or 2 volts, corresponding to the above-mentioned 
order of magnitude of the results of observation. 

The order of magnitude changes if we pass from visible light to 
Rontgen light (X-rays). The wave-length of the latter is, as we 
mentioned in the preceding paragraph, about JO4 times smaller, and 
hence their vibration frequencies about 104 times greater than the 
corresponding quantities in the visible region. If w^e carry out the 
same calculations for X-rays as made just above for blue light, we get 
for the kinetic energy of X-ray photo-electric cathode rays, or for the 
potential corresponding to this energy, in place of 3 volts, 30 kilovolts, 
that is, a voltage such as is usual for working a moderately hard X-ray 
tube. Clearly, the work of escape P, being only of a few volts, is to be 
neglected in comparison with a voltage of this magnitude. We thus 
arrive at an amount of energy that corresponds to that of the secondary 
cathode rays mentioned on page 23, of which wo said that it is equal 
to that of the corresponding primary rays. This shows that the 
secondary cathode rays are to be regarded as a photo-electric effect of 
the primary X-rays and that their energy, too, is expressed by Einstein's 
formula so far as the order of magnitude is concerned. 

Ten years after Einstein had proposed his law, it became clear that 
it was not only true in order of magnitude but that it also ga ve the exact, 
quantitative expression for the photo-electric effect. This was shown 
in particular by Millikan * for the case of the sharply defined greatest 
energy which monochromatic light (light corresponding to a definite 
spectral line) is capable of generating. For if we plot the greatest 
energies that are obtained by using various spectral lines in a diagram 
(the energies as ordinates and the vibration frequencies of the spectral 
lines used to produce them as abscissae), the line connecting the points 
plotted exhibits a linear increase, the magnitude of which is given by 

the constant h. 
That there is a maximum value of the energy generated and that just 

this and not some mean value of the energy follows Einstein's law is, 
in fact, to be expected according to quantum ideas. For the energy- 
quantum hv denotes the energy which the incident radiation initially 
puts as a maximum at the disposal of the electron for the purpose of 
photo-electric emission. This energy can, indeed, he reduced through 
secondary losses of energy in the metal, hut it can never he exceeded. 
We have, therefore, to regard the photo-electric maximum of energy 
as being primarily given and determined by the theory of quanta. It 
appears that this maximum of energy obeys Einstein’s lav' very ac¬ 

curately. 

* R. A. Millikan, A Direct Photo-electric Determination of Planck's “ h," Rhys. 

Rev., 7, 356 (1916). 
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We demonstrate this in the following diagram (Fig. 12) by Millikan, 
which has been obtained for the case of lithium ; the result for sodium 
looks quite similar. Millikan used as a source of light five mercury lines 
in succession. The corresponding five points of observation are in¬ 
dicated in the figure by small circles. The frequency number of the line 
corresponding to the shortest wave-length, the so-called resonance-line 
of mercury A = 2536A (A — Angstrom unit = 10~8 eras. — r]0 m/x) is 
v = 118 . I013 ; this number and the frequencies of the other lines can 
be read off from the figure along the .r-axis at the top. Opposite the 
Li-plate is a so-called Faraday cage (carefully sheltered from electro¬ 
static influences) which is connected with the electrometer: the plate 
gives up the photo-electric cathode rays, released by incident radiation, 
to this Faraday cage. The plate and the cage arc kept in a vacuum. 

1 1 1*0 0 9 oi o-7 oa 
--Velfcj 

Fig. 12.—Proof of the Einstein photoelectric equation. The small auxiliary 
diagram shows how Millikan determined the reversing potential for which 
the photoelectric current produced by the incident light (Hg, A - 2536) 
just equals zero. In the main figure the frequency number of the light 
necessary for the liberation of photo-electrons is plotted against the 
corresponding reversing potential. 

If the plafce is now charged positively, the ejected electrons experience 
a restoring force. A certain intensity of charge just suffices to turn 
back all electrons, including those that are emitted perpendicularly to 
the plate with the maximum velocity. The reversing potential, in 
volts, corresponding to this charge is at the same time, according to the 
law of energy, a measure of the maximum kinetic energy of the escaping 
electrons. Corresponding to every vibration frequency of the incident 
light there is a different photo-electric maximum of energy, that is, 
a different voltage of the reversing potential. Millikan next proceeds, 
by means of an auxiliary figure (see Fig. 12, the right-hand bottom 
corner), to determine graphically the voltage of the reversing potential 
for which the photo-electric current becomes just equal to zero.* 

* Cf. also the criticism of this mode of procedure by O. Klemperer, Zeits. f. 
Physik, 16, 280 (1923). 
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In the main part of Fig. 12 this voltage number is plotted as the 
ordinate, and the same is done in the case of the other four frequencies. 

The points obtained lie beautifully on a straight line (departing from it 
by less than 0*5 per cent.). The inclination of the line, expressed in 
C.G.8. units, is 

h — 6*58 . 10 27 erg sec. in the case of Li 
and h ----- 6*57.10 27 erg sec. in the case of Na. 

These values agree sufficiently well with Planck's value of h in equa¬ 
tion (2). 

In the realm of X-rays, too, we may regard Einstein's law as an 
exact expression of the facts and not only as being correct in order of 
magnitude : here we may state it in the simplified form in which the 
work of escape V is omitted (cf. p. 30). Thus we write 

Jf we read this equation from right to left, it represents the process of 
generating secondary cathode rays by primary X-rays : it determines 
from the frequency v of a monochromatic Ttdntgen radiation the 

maximum velocity v of the cathode rays which this radiation is able 
to release when it impinges on any arbitrary substance, and it like¬ 
wise determines the corresponding voltage that is equivalent to the 
maximum velocity generated in the cathode rays. We here have, as 
in the photo-electric effect, the transformation of wave-radiation into 
corpuscular radiation. The same equation, however, represents the 
transformation of corpuscular radiation into wave radiation. For if we 
read it from left to right, V denotes the voltage of the X-ray tube. This 
produces the primary cathode rays of velocity v : when the latter strike 
the anti-cathode, they produce X-rays, namely, characteristic radiation, 
and impact radiation. The spectrum of the impulse radiation is, as 
we saw in the previous paragraph, continuous. This spectrum stretches 
from a small v (soft X-rays) up to a sharply defined limit in the region of 
short frequencies, which corresponds with the hardest X-rays that can 
be produced by the voltage V ; the frequency corresponding to this 
limit is given by equation (4). So, here too, the relation between the 
voltage V of the tube and the lim iting frequency v is expressed by Einstein's 
linear law. As V increases, the short wave limit of the continuous 
spectrum moves to higher frequencies. The frequency of the greatest 
intensity, as also the average hardness of the radiation, becomes dis¬ 
placed in the same sense. The well-known law (cf. p. 29), that the 
hardness increases with the voltage of the tube, is thus likewise a con¬ 
sequence of Einstein's law ; it is, in a sense, a more sketchy form of it. 

In particular, we get as a direct result of the double reading of 
Einstein's law the equality, emphasised above (p. 23), between the 
velocity of primary and secondary cathode rays. The production of 
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secondary cathode rays from primary X-rays appears as the converse 
of the phenomenon of the production of primary X-rays from primary 
cathode rays. 

The existence of the short wave limit of the continuous spectrum is 
a leading feature in the complete picture of X-ray phenomena. There 
seems no possibility of success in attempting to explain it from the 
point of view of the classical theory of radiation. However we may 
care to picture the details of the phenomenon of impulse radiation, the 
resolution of the radiation emitted into Fourier terms would, according 
to classical electrodynamics, lead to a spectrum that would stretch to 
infinity on the side of higher frequencies. Thus the existence of the 
short wave limit is an unmistakable hint that we must go further than 
the classical theory of radiation and work out a quantum theory. 
Einstein’s law formulates this fact as compactly and precisely as can 
be desired. As in the case of the photo-electric effect, the measurement 
of the short wave limit of the continuous X-ray spectrum may be 
elaborated so as to lead to a precise determination of the constant of 
radiation h. 

We have now to take only one step further to arrive from Einstein’s 
law at one of the main pillars of Bohr's theory of spectral lines. 

We have seen how energy of monochromatic frequency hv is taken 
up by a metal atom and how it reappears as kinetic energy of a photo- 
electron. If we now suppose that the absorbed energy of vibration 
does not suffice to release the electron from the atom, then it will only 
effect a re-adjustment in the atom, in which the atom passes from a 
lower to a higher step of energy. We can imagine this transition to be 
similar to that of a weight which is lifted from a lower initial position 
to a higher final position. If wx and w2 (> wx) are the initial and final 
energies of the atom, respectively, then we get. as a counterpart to 
Einstein's photo-electric equation, Bohr's fundamental equation for a 
phenomenon of optical absorption : 

hv -- w2 — u\ . . . (5) 

Here the primary energy originates in the incident radiation ; the 
consequence is a change of configuration of the atom. If, however, we 
suppose that the primary energy originates in the change of configura¬ 
tion of the atom, of which the initial energy is u\ and the filial energy 
w2 < wv then we may here, too, expect a radiation to appear thus : 

hv — wx — w2 . . . . (6) 

This radiation is now strictly monochromatic, if we assume that in this 
case w2 as well as w± is fixed as a discontinuous quantity by the con¬ 
figuration of the atom. In equation (6) we have Bohr's fundamental 
equation for the phenomenon of optical emission. 

Like Einstein's law% this extension of it by Bohr claims to be valid 
with absolute accuracy in the entire spectral region from the slowest 
heat rays to the most rapid X-rays and y-rays. Thus this quantum 
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law regulates in the same way as Einstein’s law the transition of wave 
radiation into corpuscular radiation as well as the reverse process ; it 
governs the phenomena of absorption as well as those of emission, in 
optical regions as well as in the region of high frequencies. There is 
no doubt that we are here dealing with one of the most mysterious of 
physical laws. 

§ 7. Wave Theory and Quantum Theory. Compton Effect 

Heinrich Hertz,* in his discourse at the Heidelberg Session of the 
Science "Research Society (Naturforschergesellschaft) in 1889, drew certain 
general conclusions from his experiments on electrical waves and made 
the following remarks about the nature of light : 

“ What is light ? Since the time of Young and Fresnel we know 
that it is a wave-motion. We know the* velocity of the waves, we know 
their lengths, and we know that they are transverse. In short, our 
knowledge of the geometrical conditions of the motion is complete. 
Any doubt about these things is no longer possible ; a refutation of 
these views is unthinkable by the physicist. The wave-theory of light 
is, from the point of view of human beings, a certainty.” 

Has this certainty meanwhile been shattered ? Yes and no ! In 
all questions of interference and diffraction the wave-theory has not only 
maintained its position, but has actually gained new ground. It has 
extended its range of validity towards the side of small wave-lengths 
as far up as Rontgcn and y-rays, and towards the side of great wave¬ 
lengths as far down as the waves of wireless telegraphy, whose length 
is measured in kilometres. In all questions, however, which, in 
Einstein’s language (of. p. 37), concern the production and transforma¬ 
tion of light we must operate with ” light quanta ” (photons), that is, 
with centres of energy which move away from the source with the 

velocity of light. 
It does not appear that the dualism, light-wave and light-quantum, 

is capable of being overcome. This conviction is strengthened by the 
circumstance that in the case of corpuscular radiation and of matter 
generally a similar dualism has manifested itself. The new wave- 
mechanics, which will be discussed in the second volume of the present 
work, signifies that matter must be treated partly as wave and partly 
as corpuscle, as the former in problems involving deflection and diffrac¬ 
tion, as the latter in questions involving transference of energy, as also 
even in the formulation of the fundamental wave-equation. A more 
penetrating critical analysis of physical experience (given by Heisenberg's 
Uncertainty Relation) makes it possible for the two methods of de¬ 
scription, the wave and the corpuscular view, to avoid coming into 
conflict with one another. But this aspect, too, we shall reserve for 

the second volume. 

* (Hesarnmelte Werke, 1, 340. 
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We shall now deal with the corpuscular view of light, which has 
enjoyed its greatest triumph in the Compton effect. We shall initiate 
our discussion by first fixing our attention on the J)op])ler effect. 

It is well known from astro-physics that the spectrum of a star is 
slightly displaced to the violet or the red end of the spectrum according 
as the star moves towards or away from the observer. The relative 
displacement is equal to the ratio of its velocity in the line of vision to 
the velocity of light, that is 

Ae 

v 

AA 

A 
v a 

— - cos 6 
c (1) 

where 6 denotes the angle between the line connecting the star with 

the observer, and the direction of the velocity v. What holds for stars 
and their spectra also holds for every radiating atom. Equation (1) 
therefore gives us the change in the wave-length of any spectral line 
(for example, the D-line of the sodium atom), which the atom moving 

relatively to the observer emits 
as compared with that emitted 
by an atom at rest. 

It seems almost impossible to 

understand the Doppler effect 
except from the point of view 
of the classical wave-theory : if 
the emitting source is approach¬ 
ing us the wave-surfaces become 
compressed together, and we 
have a shortening of the wave¬ 
length (AA < 0) ; if the source 
is moving away from us the 
wave-surfaces become drawn 
apart, and we have an increase 

of wave-length (AA > 0), and we arrive directly at formula (1). In the 
face of these remarks it is extremely instructive to see how we can 
understand the same formula equally well from the point of view of 
light-quanta.* 

We assume that the radiating atom does not emit a spherical wave, 
but that it emits a quantum in one direction, for example, in the direc¬ 
tion OP towards the observer (Fig. 13). This quantum has the energy 
hv. It imparts to the emitting atom a recoil in the reverse direction. 

The magnitude of this recoil is ™ . If we do not wish to proceed on 

primitive corpuscular lines we can base this assumption on a very 
general consequence of the theory of relativity, namely, ihe Law Of 
Inertia of Energy. 

* Cf. E. Schrodinger, Physikal. ZeitB., 23, 301 (1922). Our treatment differs 
in form from that of Schrodinger. 

Fig. 13.—Momentum exchange in tho 
Doppler effect. Tho particle lias 
initial momentum the emitted 
light quantum in omen turn Av/e, and 
the particle after omission momen¬ 
tum Mr2. 
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Einstein regards this law as the most important result of the special 
theory of relativity. Tt states : ever// amount of energy represents a 
mass. Every amount of energy in motion represents a momentum. The 
magnitude of the mass is equal to the magnitude of the energy divided by c2. 
According to this law the mass which moves with our light-quantmu is * 

Since, like its equivalent energy, it moves with the velocity of light e, 
it has the momentum (impulse) : 

pc — 
hv 

c 

h 

A' 

Thus, the law of conservation of momentum, which is the foundation 
pillar of mechanics, and of which the law of conservation of energy is 
only a consequence, demands that the atom should experience a recoil 

-, as was asserted above. 
c 
Using these two laws of conservation, we now construct the change 

of direction and the change of velocity of the atom due to the recoil. 
Let v1 be the original velocity, JVhq the original momentum, v2 and 
Mv2 the velocity and momentum after the emission. Let the emission 
occur at an angle 0 with respect to the original direction of the velocity. 
Let the angle with respect to the changed direction of the velocity be 
0 |- A0. We construct the latter by drawing the recoil OB at the 
continuation OA of the original momentum. We mark off Mt2 : OB 
and Mtq ~= OA, and so obtain in the line OA the change in the value 
of the momentum. We calculate it from the triangle ABO, which we 
may assume as approximately rectilinear and right-angled. We get 

MA-y = M(v, - vt) = 7 cos d . (3) 

We have thus applied the law of conservation of momentum. We 
still have to make use of the law of conservation of energy. Let n\ 
and w2 be the energy of the atomic configuration before and after the 
emission. According to the preceding section, equation (6), the 
following frequency is emitted by the atom at rest in the change of 

configuration wx -> w2 : 
hv = u\ — wz . . . • W 

The frequency emitted by the moving atom differs from this : let it be 

v + Ar. It follows from the energy-equation thus : + u\ is the 

total energy of the atom before emission, + w2 + h(v + Ar) is 

• It is obvious that the rest-mass of the light-quantum is equal to zero. 
Otherwise the mass moving with the velocity c would have to be infinitely great. 
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the energy of the atom after emission + energy of the emitted light- 
quantum. Hence 

M 2 . 
2 vi 4- wi 

M 
w2 (- h(v A^) 

Substituting from (4), we obtain 

hAv = j(Vl* 
... A„A V|-f 

?V) — 

(5) 

(6) 

If we write v for the arithmetic mean of the velocities and vand 
substitute for the change of momentum MA«’, its values from (3), then, 
dividing by hv, we have 

Ar v a /rrv 
— - - - cos 6 . . . . (7) 

which is precisely equation (1), with the difference that v now takes the 
place of v, which is of no consequence. It is a characteristic feature 
that h cancels out in passing from (6) to (7). This circumstance, which 
is in a certain sense accidental, helps us to understand why we can 
explain the Doppler effect just as well from the point of view of the 
classical wave-theory as from that of the quantum-theory, which we 
have here adopted. 

In the above discussion we have apparently been inconsistent in 

setting the recoil equal to — instead of to If we use the 

latter value instead, our result becomes changed only in terms of the 
second order, that is, in terms involving (vjc)2. But if we wished to 
take into account such terms, we should have to calculate relativistically 
from the outset and should, in particular, have to write down a different 
expression for the kinetic energy of the atom. In this case, as has been 
emphasised by Schrodinger, we should obtain the rigorous Doppler 
formula in the sense of the theory of relativity. 

We now come to the effect which was discovered by Arthur Compton * 
and explained by him on the quantum theory. This effect occurs when 
X-rays are scattered ; it is demonstrated by an apparatus similar to 
that on page 25. Hard X-rays (for example, from a molybdenum 
anti-cathode) fall on a radiator of low atomic weight (carbon, paraffin). 
The incident and also the scattered radiation is resolved spectrally 
(cf. Chap. IV, § 2). It is then found that a part of the secondary 
spectrum is displaced with respect to the primary spectrum towards 
the side of the long waves by an amount AA which depends only on the 

* The earliest communications by Compton are: Phys. Rev., 21, 483 (1923) ; 
Phil. Mag., 48, 897 (1923). Cf. in particular Fig. 1 of the last-mentioned reference 
which clearly shows the way in which the change of wave-length depends on the 
angle of scattering 0. The theory given by Debye in Physikal. Zeits., 24, 161 
(1923), corresponds almost exactly with Compton’s own theory. 



§ 7* Wave Theory and Quantum Theory. Compton Effect 47 

scattering angle 6. The results of experiment agree perfectly with the 
theoretical formula : 

AA — 2A sin2 ^ where A — ----- . . . (8) 
2 w0c 

A is a universal length having the numerical value 

A 0-024.10 8 cm. - 0-024 A. 

Its physical meaning may be characterised as follows by equation (2) : 
it is the wave-length of the light-quantum whose 'mass p, is equal to the 

rest mass m0 of the electron. 
To bring out clearly the fundamental significance of Compton’s 

result, we must hear in mind that the scattering of X-rays is similar 
in nature to the reflection of ordinary light. Both phenomena are 
explained according to the classical theory (of. Note 1 of the Appendix) 
by the sympathetic vibration of the electrons on which the light or the 

X-rays impinge. This sym¬ 
pathetic vibration occurs, from 
the classical point of view, ex¬ 
actly in rhythm with the incident 
wave-radiation. It observation 
shows that in a part of the 
scattered X-ray beam there is 
in fact a change of wave-length, 
this signifies that the classical 
wave-theory can account for 
only a part of the phenomena 
(the unchanged radiation). 

Equation (8) is derived by 
Compton and Debye, exactly as 
above in the Doppler effect, by 
simply applying the laws of con- 

B 

F10. 14.—Momentum exchange in the 
Compton (-fleet. The incident light - 
quantum has momentum hvjc, the 
emitted light-quantum momentum 
h{v - Av)/r, and the recoil electron 

momentum mv. 

servation of momentum and energy. The earlier figure applies to our 
present case if we suppose the corpuscular momenta Mv,, M»2, formerly 
used, to be now replaced by the momenta of the incident and scattered 
wave-radiation, respectively, and the earlier ray hv by a corpuscular 
stream of electrons. Instead of the closed momentum triangle OAB of 
Fig. 13, whose sides are Mvv Mi>2, hvjc, we then get tie closed momentum 

triangle of Fig. 14, whose sides are h(v - \v)jc, mv. Here d is the 

angle of scattering, namely, the angle between the deflected ray OA and 
the continuation of the primary ray OB. The fundamentai physic 

assumption of Compton’s theory is : if an X-ray quantum 18 de^ted 
by an atom, then some electron of the atom takes up energy and momen¬ 
tum differences that become liberated in the process The electron 

that is alone effective in this act is treated as a free electron ™ 
of its belonging originally to the atomic configuration ; this is justified 
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iti view of the great energy of the X-ray quantum, at leant for the 
more loosely attached electrons of the atom. The deflection of the 
X-ray quantum by the amount 6 of the angle of scattering hence 
becomes possible only because an electron experiences a reaction of 
such a direction and magnitude as satisfies the laws of conservation. 
This postulate fixes uniquely not only the change of frequency and 
wave-length of the X-ray quantum, but also the magnitude and direc¬ 
tion of the motion of the ejected electron. 

In the triangle OAB of Fig. 14 we have by the cosine law, 

Neglecting the term we write for this : 

m 2 1 
- XT " - — 

hv\2 

C ) 

Av 
(1 — cos 6) . (10) 

The energy law gives 

hv = h{y- Av) + ~v\ . . . (11) 

that is, 
m 

vA - hAv. 

From (10) and (11) it follows that 

Ar- 
hv2 

(1 — cos 6) 

for which we may now write 

= 2 A sin2 A — ~ — 0-024A . (12) 
v(v — Av) 2 me ' 7 

We now show that the left-hand side denotes just the change of wave¬ 
length AA observed by Compton. Actually we have 

AA - (A + AA) — A = 
c c __ cAv 

v — Av v v{v - Av) 
(12a) 

Thus equation (12) is identical with our assertion (8), except that in the 
definition of A we have instead of the rest mass m0 the mass m of the 
motion, which may be set equal to m0 in the non-relativistic treatment. 

If we wish to take into account the refinements of relativity, we 

must set m = r»0/ V1 — )S2 in (9), so that (9) now becomes 

• 28 i 
sin8 2 + • (13) 



§ 7. Wave Theory and Quantum Theory. Compton Effect 49 

Here the term which was previously neglected is taken account of in 
the last term on the right-hand side. Correspondingly, we must write 
for (11), 

w,,c2(vrr:|- " 0 ^hAv ■ • • (14> 

According to the theorem of the inertia of energy, the energy of the 
moving electron is equal to me2 and the energy of the stationary electron 
is m0c2, so that the excess of energy of the moving electron is given by 
the difference of these expressions, that is, the kinetic energy of the 
moving electron : 

1 

V1 /3* 

which we shall use in equation (14). From (14) 

_1 (i + hAY 
Vl—S2 \ m0C2J ’ 

. (15) 

or, if we take the 1 across from the right to the left-hand side, arid 
multiply throughout by m0c2, 

It is very striking that when we equate the right-hand sides of equations 
(13) and (16) the quadratic term in Ay cancels out. In this way 
Compton’s result (12) comes out, even when no terms are neglected, with 
the definition given for A in (8). 

Besides the wave-length of the scattered radiation the magnitude 
and the direction of the velocity of the expelled electron are given 
uniquely by the preceding formulae. The ratio of the kinetic energy 
of the electron to the energy hv of the incident light-quantum is, for 
example, by (15), (14), (12) and (12a) : 

jj' kin 

hv 
= 2A sin2 

2A sin2 0/2 

A -f 2A sin2 6j2 
(17) 

In the last step of the transformation we must replace v — Av by 
A + A A and A A in accordance with equation (8). The ratio (17) thus 
always comes out as a rather small value, even for very hard X-rays ; 
for example, when A = 10, A = 024 A and 6 = 7r/2, it becomes equal 
to only 1/11, and amounts to 1/2 only when A — A and 6 = 7r/2. In 
comparison with the photo-electrons, whose energy is of the order of 
magnitude of the incident hv, the “ Compton electrons ” have a con¬ 
siderably smaller value. The direction of their momentum depends of 
course on the direction 0 of the scattered ray, but always has a positive 
and, in general, predominant component in the prolongation of the 
incident ray, part of whose momentum it is, of course, that is trans¬ 
ferred to the Compton electron, 

vor. t.—4 
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The fact that in addition to the displaced scattered radiation an 
undisplaced radiation, which is coherent with the primary radiation, 

also presents itself can be reconciled with the above theory. We need 
only suppose that in this process the momentum of the primary radiation 
is taken up by the whole atom ; the change in the frequency of the 
light-quantum then becomes inappreciable, cf. (8) where the electronic 
mass ?nQ would in this case have to be replaced by the atomic 
mass M. 

We must call special attention to a characteristic feature of formula 
(8), as contrasted with formula (1) for the Doppler effect, that AA is 
independent of the absolute value of the wave-length. From this it 
follows that the relative change of wave-length becomes the more 
marked the smaller the wave-length itself is. In the case of hard 
y-rays, where A is of the order of magnitude of our A, the change 
AA becomes comparable with the primary wave-length A of the y-radia- 
tion. According to Compton there is evidence of this in experimental 
results. 

This is not the place to enter into the question of the experimental 
confirmation of the preceding theory, for example, in photographs 
obtained with Wilson’s cloud chamber (cf. Fig. 10, § 5, of the present 
chapter). This confirmation leaves practically nothing to be desired 
at the present time, which is seven years after Compton’s discovery. 
But there are other questions, such as the intensity of the displaced 
Compton line as compared with the undisplaced line and its depend¬ 
ence on the nature of the scattering atom which cannot be answered 
at all on the above simple corpuscular theory ; rather, they require 
the methods of wave-mechanics and hence can be treated only in the 
second volume. 

It suggests itself to us to inquire whether a similar effect to that 

obtained with X-rays is to be expected in the visible region. It is 
clear that compared with the weaker energy-quanta of the visible 
region even the most loosely bound valency electrons cannot be regarded 
as free. The energy of the incident light-quantum does not, therefore, 
suffice to produce a recoil electron ; the momentum of the scattered 
light-quantum becomes transferred, as in the case of the undisplaced 
Compton line, to the atom as a whole. Moreover, it is not long since 
we have become acquainted with an optical effect which in many 
respects forms a counterpart to the Compton effect, namely, the 
Raman * effect. Raman has shown that the energy of the light- 
quantum can be modified by the scattering molecule, in the scattering 
process, in that either a part of its energy is retained as internal 
energy of the molecule or internal energy of the molecule becomes 
added to that of the light-quantum. This brief outline of the Raman 

* The first communications on the effect were : C. V. Raman and K. S. 
Krishnan, Indian Journal of Physics, 2, March, 1928 ; cf. also Nature, 121, 501, 
and 122, 12 (1928). 
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effect contains in it the corpuscular theory which was given by Sinekal * 
Jong before Raman made his discovery. 

Recapitulating, we may say that the Compton effect demonstrates 
very impressively the dual nature of radiation : the main features of 
the phenomenon, the transference of energy and momentum, are 
represented most naturally by the light-quantum theory of radiation 
and the corpuscular theory of the electrons, whereas the finer features, 
the questions of intensity and distribution, are represented by the 
wave-theory of light and the wave-mechanics of electrons, which has 
been modelled on it. 

? 8. Radioactivity 

Hitherto we have considered only the physical manifestations of 
radioactive processes. A few remarks about the chemical carriers 
involved must now be added. 

A characteristic feature of radioactivity is that it occurs essentially 
only in the ease of the elements of greatest atomic weight. Uranium 
(IJr-ahn original ancestor of the radium family) is the heaviest 
element, having an atomic weight 238*14. Thorium, the parent sub¬ 
stance of the thorium family, is the second heaviest of the elements 
that were known before radioactivity (as its atomic, weight — 232*12). 
It is therefore allowable to regard atoms that are too heavily loaded 
with matter as hypertrophic configurations that are unstable and 
disintegrate into simpler forms. 

We shall take for granted the sum-total of radio-chemical research 
in the form of the genealogical tree given in Table 1. How it became 
possible to set up these lines of descent will be made clear below (in the 
theory of disintegration), and also partly in the next chapter (§ 5, “ Laws 
of Displacement ”). It need only be remarked here that without this 
theory as a kind of Ariadne’s thread it would have been impossible to 
find a means of locating the members of this manifold series of new 
elements. On the other hand, we must mention that it is only the 
extraordinary sensitiveness of electroscopie observations of radio¬ 
activity, a sensitiveness which far exceeds that of the balance, that has 
enabled us to prove the existence of the products of disintegration, for 

these are often present in only very minute quantities. 
We distinguish three radioactive families, the uranium-radium, the 

thorium, and the actinium families. It is very probable that the 
actinium series branches off from the uranium series, on account of 
the circumstance that uranium and actinium minerals occur together. 
But it is not yet known how this branching occurs in detail. Accord¬ 
ingly, we trace the actinium descent only as far back as proto- 

actinium, which was discovered by Hahn and Meitner. 

* A. Stnekal, Naturwissenschaften, 11, 873 (1923). 
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Our lines of descent exhibit in the upper row the development from 
the parent substance to the three emanations (inert gases) ; in the 
lower row the development is shown from the emanation to a final 
product, having the character of lead. In the actinium series it is 
AcD (actinium lead) ; in the thorium series it is Till) (thorium lead). 
In the radium series the analogous product RaD is not the final product, 
since the members RaE, RaF (~ polonium), and RaG (~ radium lead) 
are linked with it as later products. The similarity of the three lines 
of descent between the emanations and the D-products is shown not 
only in the number of products of disintegration and their position in 
the natural series of elements (cf. the table of isotopes in § 2 of Chap. Ill) 
but also in their mode of disintegration (denoted in our table by the 
letters a and ft printed above the arrow used to signify transformation ; 
y denotes that y-rays are present). At corresponding positions in the 
genealogical trees the disintegration is effected either by an oc-trails - 
formation (emission of helium) or a ft-transformation (electron emission). 
The notation here adopted takes due account of this parallelism in the 
disintegration. It has been suggested by Stefan Meyer and Schweidler, 
and differs from that formerly in use (which arose historically and which 
is thus less systematic) in the names given to the C- and D-products. 

Below the symbol of each element we have recorded the “ half-value 
time ” ; this is the time which has elapsed when half the body is dis¬ 
integrated. It is proportional to the “ mean duration of life ” of the 
element. We shall explain later how it is determined. The abbrevia¬ 
tions a, d, li, in, s, denote : year {annus), day, hour, minute, second. 
We thus have long-lived elements with spans of life stretching over 
millions of years (UI has a half-value time of 4*5 . iO9 years, and Th 
has one twice as long) and short-lived elements which live only for 
seconds or fractions of a second. The elements whose lives are shortest 
are to be found among those designated by 0' : 

RaC' has 10 "« seconds, AeC' 5.10“3, ThCT 10~n. 

These numbers, like all the bracketed half-value times, have been found, 
not by observation, but by calculation. There is also a certain 
parallelism between the half-value times of the three families, in par¬ 
ticular in the above-mentioned region between the emanation and the 
lead group. 

The branching between RaC and RaD over RaC' and RaC", and the 
exactly corresponding branching of the Th- and Ac-trees is of special 
interest. The fact that RaC is transformed into different products 
(RaC' and RaC") according as it disintegrates by a ft- or an a-trans- 
formation, is intelligible. But the fact that these products, when 
subjected to the same transformations but interchanged (i.e. by an 
a- and a ^-transformation respectively), resolve into the same element 
RaD will be made plausible by the displacement laws of Chap. Ill, § 2, 
but it is not empirically certain. (The transitions which are uncertain 
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in this sense are indicated by dotted lines in the table.) Another 
branch leads to UZ, which was discovered by Hahn ; * its further 
evolution is not yet known. 

We thus see that in virtue of these ramifications there are repre¬ 
sented in our genealogical tree not only children and grand-children but 
also brothers. 

Our next step is to give a short account of the laws of radioactive 
disintegration. These laws arise directly and are of an extraordinarily 
simple type. Being fully independent of temperature and pressure, 
they thus differ fundamentally from the laws that govern ordinary 
chemical transformations. Nor are they dependent on whether the 
active substance is present as an element or a salt, whether it is pure 
or mixed with other substances. Everything seems to support the 
view that we are not dealing with an action of one atom on another but 
rather with some inner atomic process. 

20 40 60 80 100 120 140 160 180 

Fig. 15. - Rise and fall of the )3-ray omission for U and UX. The UX (contained 
in a IJ-preparation is separated out chemically at time t 0. The 
(diminishing) (3-rny omission of this UX and the (increasing) emission of 
the U, always add up to the same initial value of unity. 

In Fig. 15 we consider a particularly simple case, namely, that of 
the decay of XJI to UX! and UX2 with the further branch leading to 
UZ, or, as we shall find it simpler and briefer to express it in the sequel, 
from U to UX ; this is the process which stands at the beginning of 
our genealogical tree. 

Let us take the /?-ray activity as an indicator. That is we shall 
suppose the a-rays to be eliminated by absorption for the sake of our 
present argument.f Only the ft- and y-rays penetrate into the electro¬ 
scope, ionise the air, and produce a charge which flows into the leaves 
of the electroscope, and which serves as a measure of the number of 
ions formed. But since y-rays are ineffective in forming ions as com* 

* Ber. d. D. Chem. Gesells., 64, 1131 (1921); Xaturwiss., 1921, p. 84 ; Zeits. 
f. physikal. Chem., 103, 461 (1923). 

f i-fo mm. of A1 are sufficient to absorb the most rapid a*rays almost entirely. 
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pared with /3-rays, we need here regard the activity as referring solely 
to /3-ray activity ; “ inactive ” means “ producing ” no /9-rays. 

The preparation with which we start is not pure uranium but already 
contains a certain very small percentage of UX. It is possible to 
precipitate the latter from the uranium by repeated application of 

barium sulphate. The UX thus isolated carries away the whole activity 
of the preparation with it, and the U itself is left behind entirely inactive 
at first. In the figure we have thus set the initial activity of U equal to 
zero, and that of UX equal to 1. From these initial states onwards the 
activity of the UX diminishes regularly to zero, whereas that of U 
simultaneously recovers and increases from 0 to 1. By comparing the 
two curves we see that their ordinates at each corn's ponding point add 
up to 1. If J,(f) is the acti\ ity of UX at the time, t, and J2(f) that of U 
at the same moment, then we have 

J«W = 1- • • • . (J) 

Hence although these products are distinct from one another 
(chemically, and, for example, separated by a considerable distance in 
space) they yet continue to act in full accord with one another : the 
activity lost by the one is gained by the other ; the sum of their 
activities is constant just as would have been the case if we had 
not separated them chemically. 

According to the disintegration theory of Rutherford and Soddy, the 
explanation is as follows. The constitution of the atom, and this alone, 
invests any arbitrarily chosen atom with a certain probability that it will 
disintegrate in an arbitrarily chosen unit of time. This probability is 

called the radioactive constant (or decay constant) of the atom. From 
this there follows the essential principle of the theory of disintegration : 

The number of atoms that decay per unit of time is equal to the radio¬ 
active constant multiplied by the number of atoms still present (namely, 
equal to the probability of decay of an atom multiplied by the number of 
atoms). On the other hand, the activity of the prepared substance is, 
except for a constant depending on the apparatus, equal to the number 
of atoms that decay per unit of time (in our case the atoms disintegrated 
by the transformation). In conjunction with the above principle, 

this leads to 

J (t) = CA n.(2) 

where J activity at the time t, 0 ~ the apparatus constant, A the 
radioactive constant, and n =r the number of radioactive atoms at the 

time t. 
We next apply this principle to the two curves of Fig. 15. 
1. In the case of UX isolated from its parent substance, the number 

of atoms n is changed only through the decay of the atoms present. 
Therefore the number of atoms that decay in time dt is — dn. From 
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this, and from the principle of the disintegration theory we get the 
following differential equation for the disintegration of UX : 

— dn Andt . . . (3) 

Thence it follows that if n0 denotes the initial number of atoms of UX, 

and if e is the base of natural logarithms, 

n =l_- n{)e~Xt . . . . (4) 
and, by (2), 

J(0 - CXntf-u .... (5) 

In our figure we chose our unit so that J(0) 1- Hence we must set 

CA»0 - 1.(6) 
and thus get 

Ji(0 = ... . . . (?) 

The curve in Fig. 15, which was obtained from direct observation, agrees 
exactly with this exponential law. Its rate of decline allows us to 
determine the decay or radioactive constant A. 

II. In the case of the U that has been purified of UX, let N be the 
number of uranium atoms at the time t, N0 the initial number, A the 
radioactive constant of uranium. The decay again takes place according 
to the law (3), which now assumes the form 

- tfN AN*, N - N0c . (8) 

Now, the radioactive constant A of the uranium is extremely small com¬ 
pared with the radioactive constant A of the UX, i.e. 

A << A . . . . (9) 

Hence, within a period of observation that is not reckoned in millions of 
years, we may reasonably set 

At — 0, e-A<ml . . . . (10) 

and hence, by (8), 

N - N,„ - ^ - AN„ . . . (11) 

Measurement of the activity in this case discloses nothing of this change, 
since it is an a-transformation. For this measurement depends only 
on the ^-transformation of the UX. Now a UX-atom arises from 
each U- atom. If the latter were not to decay, we should have simply 
dn = — dN and, by (11), 

J = AN0, V. = ANV • • • (12) 

The number n of UX-atoms and therefore also the activity J(t) of UX 
would thus increase uniformly with the time, and would thus be repre¬ 
sented by a straight line in Fig. 15, namely, the initial tangent of the 
curve there shewn as J$(£). But the increase does not continue indefi- 
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nitely, for the UX-atoms decay in their turn : a state of equilibrium is 
gradually reached, in which just as many UX-atoms decay as are 
formed. If ti0 is the number when equilibrium is reached, then the 
number of UX-atoms which decay per unit of time is, according to (3), 
Aw0, the number of those being formed is equal to the U-atoms that are 
decaying, and equals AN0, by (11). Hence, in radioactive equilibrium, 

An0 = AN0 . . . . (13) 

In the state of radioactive equilibrium, the number of atoms of parent 
substance and product are in the inverse ratio of the corresponding 
radioactive constants. 

This state of equilibrium existed during the initial separation of the 
U and the TJX. The equilibrium number w0 just calculated is thus 
identical with the initial number of atoms t?0 of UX in equation (4). In 
the state of equilibrium the activity of UX will be, according to (2) 
and (6), 

J2 - OAn0 - 1. 

Our curve J2(/) which was originally an oblique straight line' thus gradu¬ 
ally curves round into a horizontal straight line, which is at unit distance 
from the time axis. 

If, further, we wish to find the law of curvature, wo must complete 
(12) thus : 

w--^n.-a. 

by taking account not only of the production of the UX-atoms but also 
of their decay. As a result of (13) this equation may be written 

ft +-= Aw« 

and may be integrated by simple mathematical rules, if we take into 
consideration the initial conditions n — 0, t — 0, thus : 

n — w0(l — c~xt). 

By multiplying this by CA we get the activity J2(/) — CXn. From (b) 

we get for the latter, 
J2(t) = 1 - e'Ai . . . . (14) 

Thus J2(t) increases according to the same exponential law as that by 

which Jx(t) decreases. J2(t) and Jx(0 sum up to unity. 
This is the full explanation of Fig. 15. The same diagram gives us 

the semi-decay time of UX. For this, the relation holds, 

e~xt — 1 — e~xt or e~u = J . . (15) 

The abscissa of the point of intersection is thus the time which has 
elapsed when the exponential function has diminished to a half of its 
initial value, i.e. since the time t — 0. In our case the curve tells us 
that the half-value (or semi-decay) time tH is equal to 23-8 days. 
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In addition to the half-value time wo also arrive at the radioactive 

constant. For from (15) it follows that 

A/* - log, 2 = -693 .... (16) 

The radioactive constants are in the inverse ratio of their half-value 
times. The values of these times are given in Table 1. 

Closely related to the conception of half-value time we have the 
conception of mean length of life or average, life. If we denote the latter 
by tjjj we get in place of (16), 

Ml 1.(17) 

For, as in social statistics, we define the mean length of lift' by first 
multiplying each age by the relative number of the individuals that just 
attain this age but do not exceed it and then summing all these products 
of age and relative number. In our case, as we sec from (3) and (4), 
— dn is the number of atoms which at the time t decay within the time- 
interval dt, and n0 the total number of atoms initially present, thus 

—— v- X(', *'df 
W-fl 

signifies the*, relative number with which we are here concerned. By 
multiplying it with the corresponding f and summing for all / s, we 
get the required average length of life : 

00 00 

■" Rm 
0 0 

Equation (17) follows simply from this definition if we multiply both 
sides of (18) by A and introduce x At as a new variable of integration : 

GO 

M\t — J*a:e“xchr — 1. 

o 

By comparing (16) with (17) we see that we get the average lengths 
of life of the radioactive elements by dividing the numbers of Table 1 

by *693. 
In general, conditions are not so simple as in the example we have 

so far discussed. This simplicity was due in the first place to the fact 
that the life of U is very long compared with that of UXr We made 
use of the resultant simplification (A A) in passing from equation (8) 
to equation (11). The fact that UX was to comprise both the products 
UXx and UX2 has already been mentioned above. But then the further 
fact comes into consideration that the life of UX2 (tn “ 1*17 minutes) 
is very short compared with the life of UXx (cf. Table 1), and that the 
life of Ul t is relatively again extraordinarily long (t\\ ~ 3103 years). 
The result is that immediately following on the disintegration of each 
UXratom, i.e. at intervals of probably about a minute, the decay of 
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the new-born UX2-atom and the transition to the Ull-atom takes 
place. The decay is accompanied by p- and y-radiation, and therefore 
increases the ionisation produced by the decay of UX^ The addition of 
the decay of UX2 does not, however, bring about to any appreciable 
extent a delay in the rate at which the activity dies down, or a change 
in the exponential law given by the curve. This allowed us to use the 
short term “ UX,” as referring to a uniform product, in our explanation 
of Fig. 15, thus treating the two elements UXj and IJX2 conjointly as 
was the practice formerly before these two elements had been separated. 
Nor does the activity of UII, which remains after the decay of UXj and 
UX2, cause a change in the course of the activity curve, since, being an 
a-activity, it evades measurement. 

We get a complete picture of the great possibilities of the theory of 
decay only when we consider the course of the activity in a case in 
which several products of approximately the same length of life par¬ 
ticipate. The classical example is given by the precipitate which is 
produced by radium emanation. This precipitate consists of a mixture 
of RaA, IiaB, RaO, which becomes transformed into the long-lived 
RaD. The theory of decay enables us to separate the contributions 
of these different components to the total activity and to determine the 
half-value period for each of them. We cannot, however, go into 
further details here, and shall therefore merely touch on several points 
of general significance. 

The Geiger-Nuttall rule establishes a relationship between the life- 
period of the a-particles and their velocity : the shorter the life-period 
the greater the velocity. In other words, the more unstable an element 
is, the more vigorous the explosion. If we plot the life-period as 
the logarithm of the half-value period against the velocity as the 
logarithm of the range,* the Geiger-Nuttall relation is represented by 
a straight line in the case of every family, and these straight lines are 
approximately parallel for the different families. Deviations from 
straightness occur only at the ends of these lines, that is, only in the 
case of elements of very short or very long life-periods. 

We next inquire : is radioactivity a peculiarity of the heavy metals 
uranium and thorium, or is it a general property of matter ? The only 
certain result that can be adduced as evidence is that potassium, and 
rubidium exhibit a weak /^-activity. Hence, although the high atomic 
weight undoubtedly favours radioactive disintegration, it is not the 
only decisive factor. The conditions for potassium are fairly accurately 
known. There are two kinds of potassium (isotopes, cf. Chap. Ill, 
§ 2), one of atomic weight 89 and another, which occurs less often, of 
atomic weight 41. According to Hevesy it is only the latter that is 

radioactive. 
Then there is the second question : Whence does the energy of 

* For example, the range as measured in air is proportional to the cube of the 

velocity. 
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radioactive actions come ? At the beginning of § 4 we saw that the 

energy of the oc- and /?-rays is many times more than that which any of 

our present technical means will allowr us to produce in the case of canal 

and cathode rays. When the rays are kept back in the prepared sub¬ 

stance, they produce and maintain an increase in the temperature of the 

substance, which is several degrees higher than that of the surrounding 

air. The heat energy generated by 1 grrn. of radium amounts to about 

100 calories per hour. A familiar problem of long standing asks how 

the energy which the sun loses by radiation is continually replaced. In 

this case, too, reference has been made to the apparently inexhaustible 

supplies of energy derived from radioactive processes. Whence does 

all this energy come ? The answer is : from the interior of the atom, 

or, more precisely, from the innermost part of the atom, from the 

“ nucleus ” of the atom. We thus indicate the role which has to be 

assigned to radioactivity in our theory of the atom. The sources of 

energy which thus manifest themselves to the outer world are of an 

order of magnitude quite different from the energies of other physical or 

chemical processes. They bear witness to the powerful forces that are 

active in the interior of the atoms (in the nuclei). This inner world of 

the atom is generally quite shut off from the outer world. It is not 

influenced by the temperature or pressure conditions that exist outside. 

It is governed by the law of probability, the law of spontaneous decay 

that can in no wise be influenced. Only as an exception is a door left 

open which leads from the inner world of the atom into the outer world. 

The a- and /8-rays that are hereby emitted are emissaries from a world 

otherwise closed. 



CHAPTER II 

THE HYDROGEN SPECTRUM 

§ 1. Nuclear Charge and Atomic Number. The Atom as a Planetary 
System 

THE absorption of cathode rays and the dependence of the 
absorption on the velocity led to the view (cf. Chap. I, § 3) that 
matter has a perforated structure. 

Rutherford came to the same conclusion, expressed in a quantitative 
form, by experiments on the scattering of a-rays. In passing through 
thin metal leaves a beam of a-rays at first undergoes a general scattering. 
Just as the shots from a gun at a target, so the points of impact of 
a-particles cluster about a mean position of greatest probability, the 
prolongation of the incident beam of a-particles, and occur less and less 
frequently in all other directions as we move outwards from this mean 
position. A fluorescent screen, such as is used in spinthariscopes, 
allows us to observe and count the impacts of individual particles 
owing to the scintillation produced. But there are occasional depart¬ 
ures from the incident direction, which amount to as much as 150°. 
They are few in number (e.g. in the case where platinum is the scattering 
leaf and a-rays from radium C are used for the scattered radiation, only 
1 in 8000 of the incident particles are deflected through angles > 90°) : 
but this number is much greater than is to be expected according to the 
law of scattering for small angles. Rutherford * and his collaborators, 
Geiger and Marsderqf made an accurate investigation of the distribu¬ 
tion of these abnormal deflections among the various angular segments 
for a series of metal lamina^, using a-rays of various velocities. We 
have already met with corresponding abnormal delections in Wilson's 
photographs, in the form of hooks at the end of the a-ray tracks 
produced, not by atoms of metal, but by air molecules. We reproduce 
in Fig. 16 the picture of a particularly striking case (this is an enlarge¬ 
ment of a portion of our former picture, Fig. 36). 

What has happened to the a-particle at this bend ? Rutherford 
traces the effect back to very intense electric fields that start out from 
a very small element of space, the “ nucleus.” Since the magnitude of 

•Phil. Mag., 21, 069 (H)]!). 
01 

t IkifL, 26, 004 (1913). 
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the abnormal deflections increases with the atomic weight of the deflect¬ 
ing element, the intensity of the deflecting field must also increase with 
the atomic weight. If we consider the field produced by a point-charge 
concentrated in the nucleus, and if we suppose this charge to act accord¬ 
ing to Coulomb’s law, we can calculate the magnitude of the charge that 
is necessary to account for the observed deflections. At the suggestion 
of Rutherford, Chad wick * made very careful measurements of the 

deflections caused by thin laminae of Ft, Ag, 
and Cu, and succeeded in determining with 
an accuracy of about l per cent, the charges 
that must be assumed in the corresponding 
nuclei. He obtained the numbers 77-4, 46*3, 
and 29*3 for Ft, Ag, and Cu respectively, ex¬ 
pressed as multiples of the elementary charge e. 
These numbers agree, within the limits of error, 
with the position of the corresponding element 
in the periodic system, namely, with the atomic 
numbers 78 47, and 29. Thus, following 
Rutherford, we enunciate the fundamental 
thesis : The nuclear charge is equal to the 

atomic number numerically. If in the general 
case we designate the atomic number by Z, 
then the nuclear charge of each element is Ze. 

The nuclear charge, in itself, might just 
as well be negative as positive, that is, the 

deflections might be regarded just as well as 
due to attractions instead of to repulsions. 
But our general observations about ions and 
electrons lead us to decide in favour of the 
positive sign for the nuclear charges. For 
the nucleus must possess not only a con¬ 
siderable charge but also a high resistive 
power, that is, must have a great mass, in 
order to bring about the great deflections of 
the a-particles. Now it was the positive 

charge (cf. p. 21) that was, by nature, associated with gravitational 
matter, whereas the negative charge was a property of the light and 
mobile electron. Electrons, as centres of negative charges, may be 
adduced to explain the small deflection in the regular scattering, 
whereas we must fall back on the heavy positive nucleus to explain 
the abnormal deflections. 

We thus arrive at the following summarised statement. The posi¬ 
tively charged a-particle is repelled by the positively charged nucleus, if it 

passes exceptionally close to the latter. In the neighbourhood of the 

Fig. 16.—Wilson-photo- 
grapli of a-particles 
in water vapour. 
The distinct hook on 
the left shows where 
scattering by a posi¬ 
tive nucleus has 
taken place. 

* Phil. Mag., 40, 734 (1920). 
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nucleus there is an atmosphere of negative charges, electrons, by which the 
a-particle is attracted. These attractions, which are superposed accor¬ 
ding to the Jaws of chance, explain tlie regular scattering of slight angular 
deflection, whilst repulsions explain the comparatively rare bends of great 
angle. 

Observations of a-rays also allow us to make deductions about the 
size of the nuclei. The distribution of the deflections among various 
angles was calculated by Rutherford and Chadwick on the assumption 
that the nuclear charge is concentrated at a point. 80 far as the ob¬ 
served deflections agree with those calculated, they thus show that the 
size of the nucleus did not interfere with the paths of the particles. 
In the case of gold, Darwin * has obtained a value 3 . 30 12 cms. as the 
possible upper limit for the “ size ” of the nucleus ; in that of water 
he obtained 2 . 10 13 cms. This estimate by no means precludes the 
nucleus from being actually smaller, but it cannot be larger if a dis¬ 
agreement with the observations of oc-rays is to be avoided. We may 
thus at least affirm with certainty that the nucleus (as also the electron, 
see p. 8) can be at most of sub-atomic size. 

On the whole, atoms must be electrically neutral. Consequently 
the number of electrons f per atom must equal the number of elemen¬ 
tary positive charges concentrated in the nucleus. Hence we get our 
second thesis. The atomic number is equal to the nuclear charge (numeric¬ 
ally), and both are equal to the number of electrons around the nucleus. 

This thesis is supported by a result arising from the theory as well 
as from the measurement of Rontgen radiation the value found 
ior the amount of scattered radiation per atom. As we saw earlier 
(Chap. I, § 5, eqn. (13)), this amount led us to conclude that the 
number of excited electrons per atom that emit scattered radiation is 
equal to half the atomic weight. Whereas in the case of optical waves 
only the outside or loosely bound electrons (so called dispersion 
or valency electrons) perceptibly vibrate in sympathy—the inner 
electrons are too rigidly fixed to be affected by the optical excitation 
to which they are exposed—the X-rays, which are of high frequency, 
affect the inner electrons (those nearer the nucleus). The above result 
about the scattered radiation was interpreted by us earlier as follows. 
The total number of electrons in the atom is approximately equal to half 
the atomic weight and is exactly equal to the atomic number of the element, 
which, for its part, is approximately equal to half the atomic weight. 

So far our theses are supported by a comparatively meagre number 

* C. G. Darwin, Phil. Mag., 27, 506 (1914) ; cf. Rutherford, ibid., 494 (1914). 
f In more accurate language, we mean the number of electrons present in the 

atom outside the nucleus. For, later, the facts of radioactivity will compel us to 
assume that there are also electrons in the interior of the nucleus. In determining 
the nuclear charge those are subtracted from the positive charge present. Hence 
“ nuclear charge ” denotes, not. the positive charge of the nucleus, but the algebraic 
sum of the positive charge of the nuclear matter and the negative charge of the electrons 
contained in the nucleus. For further remarks see § 6 of Chapter JIT. 
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of observations. Tn the next two chapters we shall use the facts of 
the periodic system and of X-ray spectra to establish the above state¬ 

ments on a firmer basis. Assuming these results for the moment, we 
affirm : for each step forward in the periodic system of the elements the 
nuclear charge grows exactly by one unit and the nuclear mass becomes 
increased by approximately two units. For since the electrons contri¬ 

bute only a vanishingly small amount to the atomic weight, the latter 
must be represented essentially by the mass of the nucleus. And 
further : each element in the periodic system contains one electron more 
than the preceding element (we do not here take into consideration the 

nuclear electrons mentioned in the last footnote). 
'Historically it was van den Broek * who first formulated the idea of 

an order number (atomic number) which increases with the nuclear 
charge and number of electrons ; he adduced chemical facts to sup¬ 
port it. 

The question arises : How can the electrons of the atom maintain 
themselves in opposition to the attractive action of the nuclear charge '( 
Will this action not cause them to fall into the nucleus ? The answer— 

a possible one, which is particu¬ 
larly simple and satisfactory— is 

furnished by the conditions of the 
solar system. The earth fails to 
fall into the sun for the reason 
that it develops centrifugal forces 
owing to its motion in its own 
orbit, and these forces are in 
equilibrium with the sun’s attrac¬ 
tion. If w^e transfer these ideas 
to our atomic model we arrive 

at the following view. The atom is a planetary system in which the 
planets are electrons. They move in orbits about the central body, the 
nucleus. The atom of which the atomic number is Z is composed 
of Z planets each charged with a single negative charge, and of a sun 
charged with Z positive units. The gravitational attraction, as expressed 
in Newton’s law% is represented by the electrical attraction as given by 
Coulomb’s law ; these laws are alike in form. There is a difference in 
that the planets repel one another in our atomic microcosm—likewise 

according to Coulomb’s law—whereas, in the case of the solar macrocosm 
they undergo attraction not only from the sun but also from themselves. 

Bearing in mind the picture of the planetary system, let us once 
again consider the phenomenon of a-ray deflection. We shoot an 
a-particle, a comet, through our planetary system. In general it pur¬ 
sues a rectilinear path (as is shown in the top and bottom paths of 
Fig. 17) and is attracted (scattered) only slightly by the nearest small 
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F10. 17.—Scattering of a beam of 
a-rays by the nucleus and elec¬ 
trons of an atom of atomic 
number Z. 

Physikal. Zeits., 14, 32 (1913). 
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planets. But if it strikes the sun directly or passes near by (central 
path of Fig. 17), it undergoes a comparatively great and immediate 
repulsion. It then describes a hyperbolic orbit, in the focus of which 
is the nucleus ; the angle of deflection is equal to the angle between 
the two asymptotes of the hyperbola. 

This astronomical description of the phenomenon hints, too, at the 
method of calculation, and Rutherford was the first to apply it in the 
discussion of the measurements of a-ray deflections and on it he founded 
his nuclear theory. 

But we must emphasise even at this early stage that the vivid and 
picturesque planetary model has had to be given up as a result of the 
developments of the last decade, and has had to give way to a less 
concrete and more diffuse idea. Wave mechanics forces us to ascribe4 
to the revolving electrons definite places at definite times, and we must 
be satisfied with calculating the statistical mean of such places. Never¬ 
theless, essential features of these orbital types (both of elliptic and 
hyperbolic orbits), namely, their quantum numbers, and energies are 
also taken up in wave-mechanics. It is therefore indispensable to 
elaborate this picture of the planetary system in the present first 
volume in order that we may refine it still further by wave-mechanics 
in the second volume. 

In the next chapter we shall describe the atomic models to which 
we shall be led by adopting the idea of the planetary system. In this 
chapter we restrict our remarks essentially to the model for hydrogen. 

The reason for this is easy to understand : it is only in the case of 
the hydrogen atom that we are dealing with the simplest problem, that 
of two bodies ; all the other atoms bring us face to face with the 
notorious difficulties of the problem of three and more bodies. 

1. The hydrogen atom (Niels Bohr,* 1913). The simplest atom is the 
hydrogen atom ; for this, Z = 1. It consists of a nucleus with one 
positive charge, and of an electron that revolves about this nucleus. The 
orbit of the electron is, as in Kepler’s planetary problem, an ellipse at 
which the nucleus is situated. We have as a particular ease a circular 
orbit, where the nucleus is situated at the centre. 

2. The hydrogen ion or proton. After it has lost its only electron 
the hydrogen atom consists solely of a solitary nucleus of vanishingly 
small spatial dimensions as compared with atomic dimensions. 

From this model we may immediately infer that it is impossible to 
picture as a physical reality a hydrogen ion carrying two positive charges. 
If a chemist should ever succeed in producing such a one, we should 
be compelled to declare all that follows in this book to be false. 
W. Hammer j* proved its non-existence and corrected an older and 

* The writings of Bohr that laid the foundation to this theory appeared under 
the title : “ On the Constitution of Atoms and Molecules,” 1913, in Phil. Mag., 26, 
1, 476, 857. See also “ Three Lectures on Atomic Physics,” N. Bohr ; of. also the 
reference to § 7, page 118. t Ann. d. Phys., 43, 686 (1914). 

VOL. I.—5 



66 Chapter II. The Hydrogen Spectrum 

contrary result of J. J. Thomson.* The ini possibility of having a 
hydrogen atom with a double positive charge is connected with the 
general difference between positive and negative charges, which was 
emphasised at the end of Chapter I, § 4 : a negative charge may be 
increased to any extent, a positive charge only to a certain limit, 
namely, to that at which all electrons have been removed from the 

atom. 
3. The ionised helium atom. Whereas the neutral helium atom 

(one nucleus and two electrons) represents a problem of three bodies 
and so does not come up for discussion here, the positively charged 
helium atom, the He-ion, that is, a helium atom from which one 
electron has been removed by electrical or thermal means, is again very 
simple. Consisting of a doubly charged nucleus and, one electron, it is 
represented by the same picture as the hydrogen atom. It is hydrogen¬ 
like {wasserstoffdhnlich), and so also comes under the simple mathe¬ 
matical scheme of the two-body problem. 

It differs from the H-atorn only in size. It is easy to understand 
that the two-fold attraction of the He-nueleus on the electron diminishes 
the orbit of the rotating electron as compared with that of the electron 
that rotates around the singly charged H-nucleus, and, indeed, it is 
reduced to one-half ihe size. 

4. The a-ray particle. The next picture, that of doubly ionised 
helium, the helium atom with two positive elementary charges, is very 
characteristic and satisfactory. It is, like the simply positive hydrogen 
ion, a mere nucleus without real extension. The unique part played by 
this system as an a-particle in radioactive phenomena now becomes 
clear. The enormous penetrative power of a-particlcs, their comet-like 
intrusion into the planetary systems of foreign atoms, their double 
positive charge, which corresponds to the loss of all electrons in the 
helium, the non-existence of three-fold positively charged helium, give 
it a special role. In addition, the circumstance that, hitherto, a char¬ 
acteristic light emission of a-rays has never been observed, speaks in 
favour of our model. In the first chapter we spoke of the luminescence 
of canal rays and of the similarity of nature between canal rays and 
a-rays. This similarity, as we now see, cannot extend to the lumin¬ 
escence. We are acquainted with helium canal rays that consist of 
neutral and also of simply ionised helium atoms. These are recognised, 
among other methods, by the characteristic lines that they radiate out. 
To render this emission of spectral lines possible, there must be present 
at least one electron, which alters its position during the process of 

* Sir J. J. Thomson, Rays of Positive Electricity, 1913. Thomson emphasises 
the certainty of this statement by the following words on p. 53 of this book : 
“No hydrogen atom with more than one charge has ever been observed, though 
as the hydrogen lines occur practically on every plate more observations have 
been made on the hydrogen lines than on those of any other element.” But 
Thomson established positive charges to the number of 8 units in the case of mer¬ 
cury ; cf. Chapter I, § 3. 
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emission. But the doubly ionised helium atom is devoid of electrons, 
and hence of the means of radiating. It becomes immediately obvious 
that the helium nucleus, in travelling as an a-ray through the atmo¬ 
sphere or other matter with its enormous velocity (almost ^ . velocity 
of light), cannot carry an electron with it on the way or draw one to 
itself.* 

It must also be mentioned that already in Fig. 17 we have made use 
of the exceedingly minute size of the a-particle. When, arguing from 
this figure, we derived an upper limit for the nuclear size of an atom, 
deducing it from the deflection of a-ray comets, we assumed tacitly 
that the a-particles could be justifiably treated as points. In more 
correct language, this determination of size gave us the sum of the 

nuclear radii of the atom in question and of the helium atom. Inasmuch 
as the sum was found to be sub-atomic, it was clear that, besides the 
atomic nucleus under consideration, the a-particle itself can have no 
appreciable size. 

Whereas objections may be raised against the later spectral evidence 
of our atomic theory, on the ground that it requires diverse theoretical 
intermediate steps, the observable properties of the a-particle follow 
directly from our fundamental views of nuclear charge and nuclear size, 
of atomic number, and the number of associated electrons in the atom. 

Our picture of the a-particle is so convincing that it seems justifiable 
to infer from it that there is no gap between hydrogen and helium in 
the periodic system. Rydberg imagined that there were grounds in 
the chemical system of arrangement of the elements which led him to 
conclude that two elements existed between hydrogen and helium. In 
that case, however, He would not have the nuclear charge 2 but 4. 
The a-particle would not be a pure He-nucleus, but an He-nueleus 
with 2 external electrons. But this would be incompatible with the 
general results obtained experimentally with a-particles. Moreover, 
the exact calculation of X-ray spectra furnishes evidence against a 
general increase of the atomic-number Z which would become neces¬ 
sary for the remaining elements if two unknown elements had to be 
interposed at the beginning of the periodic table. We shall therefore 
regard the atomic number Z = 2 to have been proved to be correct 
for helium. 

5. Doubly ionised lithium (Li++) and trebly ionised beryllium 
(Bef M). It has recently been found possible to follow the analogy of 
the singly charged helium atom by producing the next successive two- 
body systems, namely, the doubly charged lithium atom (Li+4), with its 
three positive nuclear units of charge and one electron, and the trebly 

♦Experiments by Henderson (Troe. Hoy. Soc., 102, 496 (1923)) and Lord 
Rutherford (Nature, 112, 305 (1923)) have shown that even a fast a-particle very 
often attaches an electron to itself in its flight, but that the distances over which 
it exists as Hef are extremely small compared with the distances over which 
it is a pure He-nucleus. With decreasing velocity (at the end of its range) the 
probability increases for tho He1 -ions and neutral He-atoms also occur. 
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charged beryllium atom (BcM •■), with its four units of positive charge 
in tlie nucleus and its one electron. Like He1 they come into the 
simple scheme of the hydrogen problem. We shall discuss this question 

more fully in § f>. 

§ 2. Empirical Data about the Spectra of Hydrogen. The 
Principle of Combination 

Before we deal with the spectra of the simplest element H, for which 
Z = 1, it may be convenient to make some preliminary remarks about 

spectra in general. 
Whereas solid bodies emit a continuous spectrum when they glow, 

we observe in the case of gases and vapours (in addition to continuous 
regions) line-spectra and band-spectra. The former belong to the atom, 
the latter to the molecule, whereas continuous emission spectra can 
occur in the ease of atoms as well as of molecules. Hence in a Geissler 
tube the hydrogen must first dissociate into atoms before its line- 
spectrum can appear. In the case of iodine vapour, on the other hand, 
the band-spectra disappear in proportion as the dissociation of 12 into I 
progresses. The line-spectra consist of individual well-defined lines 
or complexes of lines ; the band-spectra appear, if the dispersion is 
small, as shaded bands (often accompanied by “ fiutings ” (kk Kanndia- 
rungen ”))> but they resolve under higher dispersion into a great 
number of neighbouring lines. 

Within the line-spectra regular sequences of lines may he grouped 
together into series. The distances between successive lines decrease 
according to definite laws in each series as we proceed towards the 
violet end, and the lines accumulate at a series limit which is usually 
accessible only by extrapolation. At the same time the intensity of 
the lines decreases regularly towards this limit of the series, either, as 
is the rule, from the beginning of the series, or from a definite point 
later. The series character is particularly marked in the first three 
columns of the periodic system (alkali metals, alkaline earths, and 

earths). The lines of a band-spectrum accumulate at the heads of 
the bands, but do not become infinitely dense there as in the case of 
the series lines at the series limit; the heads of the bands lie partly 
towards the violet and partly towards the red. 

Line-spectra and band-spectra occur during absorption as well as 
during emission. Indeed, the absorption spectra, in the form of Fraun¬ 
hofer lines, primarily played the determining part in the historical 
development of the measurement of wave-lengths. Absorption spectra 
have a characteristic advantage over emission spectra in that, in gen¬ 
eral, they have a more complete set of lines. Whereas, under ordinary 
conditions, only few lines of the emission series are sufficiently intense 
to be observed (for example, those of the hydrogen series are known 
from photographs of nebular clusters as far as the 33rd member of the 
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series, and in vacuum-tubes, at the most as far as the 20th member), 
the absorption series, also under laboratory conditions, may be counted 

almost up to the series limit, and they number as many as 00 lines.* 
In Fig. 18 we show the absorption spectrum of the so-called principal 

series of lithium in the reproduction of a photograph taken by B. 
Trumpy. The wonderful regularity of the series law is brought out 
strikingly in this picture. On the right-hand side near the series limit 
the individual lines no longer appear separated. The photograph 
begins on the left with the third member of the series as the apparatus 
had been designed to reproduce the ultra-violet lines. The source of 
light used was a magnesium arc ; for this reason the emission lines of 
magnesium (the white lines) also appear on the plate. 

The approximate distribution of the seven colours of the rainbow 
in the spectrum is as follows (A given in Angstrom units) : 

A - 8000 0450 5750 5500 4950 4550 4250 3500 
red orange yellow green blue indigo violet 

Fro. 18. Absorption spectrum of Li (principal series) according to Trumpy. 
The dark absorption lines crowd together towards the series limit on the 
right. The bright lines are emission linos of Mg. 

The first lines of the visible hydrogen spectrum were measured by 
Fraunhofer as absorption lines of the solar spectrum, and were called the 
C, F, /, h lines, respectively. Nowadays we call them H*, H^, Hy, H*, 
Their distances apart are shown by wave-numbers (reciprocal wave¬ 
lengths) schematically in Fig. 19. In this ease, too, we have the 
same regularity as in that of the Li-spectrum, indeed in a still 
purer form, since the law of the hydrogen series is essentially an 
integral law. 

It was J. J. Balm or, a teacher at a secondary school in Basel (Bale), 
who, at the instigation of Hagenbach, sought out this law and exposed 
its ideal form so clearly that we have nowadays to make only non- 
essential improvements on it (of. the relativity correction in Chap. 
V). Balmer’s formula became the model of all later rational spectral 
formula? and constitutes the firm foundation of the theory of spectral 
lines. 

* Wood and Fort,rat (Astropliys. Joum., 43, 73 (1910)) give measurements 
which extend as far as the 58th line of the absorption series of sodium. 
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Balmer wrote his formula * thus : 

(1) 

The integral numbers m and n have the values n — 2, m ----- 3, 4, 5, 6, for 
H*, H^, Hy, H$ respectively. The factor h (which must not, of course, 
he confused with Planck’s constant h) is, according to Balmer, if A is 
measured in Angstrom units (lA — 1()"8 cms., cf. p. 40), equal to 
3645*6. 

Nowadays we write Balmer's formula thus (A in cms., v in cm. x): 

1 „ t>/J __ J_\ R - 109677*8 ) 

A "" v V2- k*J k = 3, 4, 5 (2) 

Formula (2) arises from (1) (if we disregard the choice of units and the 
recent more exact determination of the numerical factor R) by setting 
in (1), n = 2, and 

h ■- 
n2 4 

r " ii * (3) 

rf- b)u« violet ultraviolet 
6000 '>000 4000 V- \ in A 

H„ H* H, H, 

15000 20000 25000 —* * >o cm 

Fig. 19.—Balmer series of hydrogen. 

R is the so-called Rydberg constant (Rydberg-Ritz wave-number) : 
v denotes the wave-number (number of wave-lengths per cm.). 

We must here add the following remarks. Following spectro¬ 
scopic usage (with its possible disadvantages) we use the same letter v 
for the wave-length as for the frequency (or vibration number, that is, 
the number of complete vibrations per second). So we have the 
following two meanings for v, which differ in their dimensions : 

v = - = wave-number (cm.-1) . . (4) 

v — “ — frequency (sec."1) . . . . (5) 

* Ann. d. Pbys., 25, HO (1885). Balm^^fna^ed simply that the wave-lengths 
H*, Hp, By, H<5, may be represented in^errns of the “ basic number ” h, quoted in 
the text, thus: 

9 16 h 

12 * 
h. 

9. 36, 

8* " iit’ 

Enlarging the .fractions $ and £ for Hp and Ha in the manner shown, he recognised 
the successive numerators as the squares, 32, 4Z, 52, 63, and the denominators as 
the differences of squares, 32 — 22, 42 — 22, 52 — 22, 62 — 2a. With the discovery 
of the basic number h Balmer’s formula so to speak blossomed into existence. 
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Hence it follows that 

frequency v ----- wave-number v x velocity of light c . (0) 

We always imply the meaning (5) for v, when, as in Chapter 1, §§ 6 
and 7, we speak of the energy-quantum hv : we imply the meaning (4) 
when, as in the present section, we are writing spectral formula. The 
Rydberg constant introduced in (2) also has the dimensions (4) of a 
wave-number. 

The expression “ Rydberg frequency ” is therefore inappropriate as 
it suggests the dimensions sec."1. This term, in its true sense, should 
be applied to the quantity : 

cR = (2*99796 ± 0*00004) . 101() . (109677*759 | 0*008) 
- (3*28809 :i- 0*00004) . 1015 sec"1 . . . . (7) 

(concerning the numerical values see p. 15, footnote, and p. 95). 
But on account of the uncertainty of the value of c, this true Rydberg 
frequency is not sufficiently exact for spectroscopic purposes. 

We may form an idea of the great accuracy implied in writing down 
a number with seven figures (cf. R in (2)) if we recollect that the 
standard metre measure itself is defined only to within several p\s, 
that is at most to the millionth part of its length. 

The fact that the accuracy of Balmer’s formula is not overstrained 
may be recognised from the following table * which compares the 
observed and calculated values of the wave-lengths in international 
Angstrom units (in air) for the first seven lines of the Balmer series : 

Tabi/b 2 

m -- 3 m - 4 7)1 — 5 7)1 — 6 7n — 7 m - 8 m — 9 

A observed 
A calculated 

6562*80 
6562*80 

4861*33 
4861*38 

4340*47 
4340*51 

4101*74 
4101*78 

i 

3970*06 
3970*11 

3889*00 
3889 09 

3835*38 
3835*43 

This first example also serves to give the reader an idea of the extra¬ 
ordinary accuracy of spectroscopic measurement—accuracy of calcu¬ 
lation and of measurement—which overshadows even the famous 

“ astronomic accuracy.’’ 
Balmer concluded his short account in 3885 with the remark that 

the discovery of a corresponding “ base number ” h for elements other 

* F. Paschen and R. Gotze, Seriengesetzejder Linienspektreri, p. 24, Berlin, 1922. 
Compare A. Fowler, Report on Series in Line Spectra, London, 1922 ; this book 
appeared almost simultaneously with the preceding book. See also W. Grotrian, 
Graphische Darstellnng der Spektren von Atomen und 1 onen mit eAn, zwei und 
drei Valenz-Elektronen, 2 vols., Springer, Berlin, 1928. The most comprehensive 
account of spectroscopy is, of course, given in the fundamental work by H. Kayser, 
Handbnch der Spektroskopie, Leipsic, 6 vols. ; a seventh volume was written in 
conjunction with H. Konen. 
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than hydrogen would be very difficult, and would be possible only in the 
case of the most accurate measurement of wave-lengths. How astonished 
lie would have been to learn that the same base number A, or rather 

4 

(ef. 3) R = y occurs in the spectra of all other elements. To have 

recognised this is, above all, the achievement of Rydberg, and to 
a lesser degree, of W. Ritz, who gave a more accurate expression. 

The essential feature of Balmers discovery is the denominator of the 
formula (1), in that he recognised it as the difference between two in¬ 
tegers. From this we get formula (2) giving the difference of two 
“ terms,” the first being the constant term, which, at the saint' time, 
gives the series limit (m ~ oo), the second being a variable term. This 
representation as the difference of two terms corresponds to the view 
of the wave-number as the difference of level between two energy-steps, 
which wro treated in the preceding chapter (§ 6, eqn. (6)). Thus the 
terms inform us about the energy of the atom in its initial and its final 
state. The object of spectroscopy is to find the series terms, namely, the 
atomic states and their energy-values. The observing of spectral lines is 
only a means to enable us to arrive at the terms. It is only when the 
spectral lines have been expanded, into series and, have been resolved into 
terms that the object of spectroscopy has been attained. 

Through his simple formula Balmer showed the way to the most 
general and most fruitful principle of spectroscopy, which was intro¬ 
duced in 1908 by W. Ritz, who recognised its fundamental importance, 
under the name, “ Principle of Combination.” Ritz formulated the 
principle in his original paper* thus: “ By additive or subti active 
combination, whether ef the series formula; themselves, or of the 
constants that occur in them, formula; are formed that allow us to 
calculate certain newly discovered lines from those known earlier.” 
But the fundamental importance of the principle of combination 
consists of the following : by expressing the wave-number of p spectral 
line as the difference of two terms, we define two different states or 
energy-levels of the atom in question. In this way several lines or 
series of lines determine several atomic states or energy-levels for the 
same element. The principle of combination now asserts-' that it is 
admissible to pass from any one of these levels to any lower level, and 
to derive from the difference of the two corresponding terms a new 
wave-number of the element. That this new wave-number happens 
to be obtained by additive or subtractive combination, as is stated in 
Ritz’s original rule, is unessential. For example, if we represent two 
lines by means of the term-differences A —- B and 0 — I), then we get 
new lines by combining the terms (B, D) and (A, 0) with the wave- 
numbers I) — B and C — A, which cannot thus be derived individually 
from A — B and V 1) by the simple process of addition or sub- 

* W. Ritz, Gesammelte Werke, published by the Schweizer Physikal. Gesell- 
sehaft, p. 162. Paris, Gauthiers Villars, 1911. 
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traction. In particular, when two terms of the original lines are equal 
to each other, we arrive at the new lines, as the special formulation 
of Rit-zs law given above states, by addition or subtraction. 

The principle of combination has maintained itself in the whole 
region of spectroscopy from infra-red to X-ray spectra as an exact 
'physical law with the degree of accuracy that characterises spectro¬ 
scopic measurement. It forms the foundation not only of the old 
theory of Bohr but also of the present wave-mechanical theory of spectra, 
and is, in essence, identical with Bohr's law in Chapter I, § (>, equation 
(6). But not all combinations that may be formed from the terms or 
energy-levels are equally probable. Rather, there are certain limi¬ 
tations (“rules of selection,” cf. Chap. VII), that, in certain circum¬ 
stances, reject certain combinations. 

A first and particularly brilliant test of the principle of combination 
was offered by the hydrogen spectrum. Even Balmer himself raised 

the question whether the number n in his formula might not also take 
the value 3, but the state of spectroscopy at that time did not admit an 
answer. That is, he suspected lines with the wave-numbers 

Bit', demanded the existence of these lines on the ground of his principle 
of combination, since the first line of (4) may be obtained by forming the 
difference of the wa ve-numbers of H x and H^, while the second line may 
be obtained by forming the difference of Hyand H* and so forth. There¬ 
upon Paschen succeeded in finding in the infra-red region of the hydro¬ 
gen spectrum intense lines of wave-lengths A — 18751-3 and 12817-5 A, 
respectively, corresponding exactly to the previously calculated values. 

Since that time there is no doubt that Balmer’s formula must be 
written, in conformity with the conjecture of its discoverer, with two 

integers, thus : 

»- k( Y - Y) .... (») 
\n2 mV 

Paschen \s lines form the first two members of the infra-red series of 
hydrogen, which are obtained by setting n = 3? m = 4, 5, 0, . . . Other 
terms of this “ Paschen series “ have been measured by F. S. Brackett,* 
who is also the first to have determined the first terms of the next- 
successive series of wave-lengths A — 4-05g, which is given by n 4, 
m = 5, and A = 2-63y, given by n — 4, m=6 (lg = 10 4 cms. = 104 A). 
This Brackett series was completed by A. H. Poetker.j Lastly, A. H. 
Pfund J found an infra-red line belonging to hydrogen at A = 7-40g, 
which is the first member of a “ Pfund series ” and corresponds to 

n = 5, m = 6. 

* Astrophys. Journ.. 56, 154 (1922). f Phys. Rov., 30, 418 (1927). 
J Journ. Opt. Soc. Arner., 9, 193 (1924). 
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What is the position with regard to the series that corresponds to 
the choice n = 1, m ~ 2, 3, 4, . . . ? It lies in the ultra-violet; its 
series limit v == R is four octaves higher than the series limit of the 
ordinary Balmer series v = R/4, which also lies in the ultra-violet. 
The existence of this ultra-violet series of hydrogen was proved by 
Th. Lyman,* and is the final confirmation of Balmer’s formula. The 
ground line of this “ Lyman series ” (which we might call the K-series 
of hydrogen, if we wished to follow the nomenclature of the X-ray 
spectra) is 

V = R(p - ^), A - 1215'7 A . . (10) 

Balmer’s formula (9) maintained itself in the sequel not only as a 
sufficient, but also as a necessary condition of the hydrogen lines. That 
is to say, not only are all the series of lines indicated by (9) actually 
observed in the case of hydrogen, but also no other lines belong to the 
hydrogen atom but those contained in (9). Up to the time (1913) 
when Bohr's theory was proposed, two further series were actually 
ascribed to hydrogen ; they were given by the formulae : f 

™ = 2> 3>4>.<1]> 

and ™ = 2’3’4.<12> 

They were called the “ Principal Series and the “ Second Subordinate 
Series of Hydrogen,while Balmei’s series itself was (tailed the “ First 
Subordinate Series,*’ in accordance with a terminology that will be de¬ 

veloped in Chapter VII, § 1. 
The series (11) was originally measured by A. Fowler { in the spec¬ 

trum of a mixture of H and He ; series (12) was discovered by Pickering 
in the spectra of nebular clusters (£-Puppis). According to Bohr’s 
theory, however, both series are to be ascribed not to H but to Hef, 
that is, to ionised helium ; at the same time formulae (11) and (12) are 
to be remodelled and supplemented as follows (by multiplying numerator 
and denominator by 4) : 

* = *r(1 - T.) m — 4, 5, 6,.(11a) 

v = 4r(1 - to — 5, 6, 7,.(12a) 

Written in this way, they come under Balmer’s form (9), with the differ¬ 
ence that R is replaced by 4R, a fact that points to the double nuclear 

* Astrophys. Journ., 23, 181 (1906) ; 43, 89 (1916). 
t The current number has been called m hero to distinguish it from the current 

number m of equations (11a) and (12a). 
t Monthly Notices, 73 (1912). 
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charge of He (cf. eqn. (5) of § 4 of the present chapter), and with the 
further difference that the value of R in (11a) and (12a) does not agree 
exactly with the value of R in (9) ; this is explained by Bohr’s theory 
of motion of the nucleus (cf. § 5 of the present chapter). The series (1 la) 
and (12a) are the simplest examples of “ spark lines,” that is, of radia¬ 
tions which are emitted, not by the neutral, but by the ionised atom. 
The general theory of spark lines which we shall give in Chapters VII 
and YTII has been developed directly from the study of the spark lines 
of helium. 

But our reasons for denying hydrogen the series (11) and (12) and 
ascribing them to helium are not only of a theoretical nature, but rest 
on experimental evidence given by precision measurements by A. 
Fowler * and F. Paschen,f to which we shall often have occasion to 
refer. 

For the present we assert that the series (11) and (12) occur not only 
in mixtures of hydrogen and helium, but also in very pure helium. 

We next remark that Pickering's series (12) includes only one-half 
of the lines represented by (12a), namely, those for which m is odd ; the 
other half coincides nearly, but not quite (011 account of the. above- 
mentioned small difference in the value of R), with the ordinary Balmer 
series. In reality both together form a uniform series in that the lines 
of the one type arrange themselves according to intensity continuously 
with the lines of the other type.J It is therefore unjustifiable and 
arbitrary to detach one-half as the Pickering series and to ascribe it 
to hydrogen. The other half was overlooked earlier only because it 
could not be separated from the neighbouring true hydrogen lines. 
Further details on this point are given in § 5, Fig. 24. 

The same is true of the relation between the series (II) and (11a). 
Of the lines represented by (11a), and actually observed, the series 
formula (11) represents only the members for which m is even. Hence, 
if we regard the series (11a), in the sense of (11), as the principal series 
of hydrogen, it becomes arbitrarily subdivided into two parts, of which 
only the one fits into the terminology of the hydrogen members. 
Actually, as Paschen shows, both parts as regards the intensity of their 
lines as well as the nature of their origin belong together, and form a 

uniform series. 
We thus finally find our above assertion confirmed that the simple 

and integral character of spectral laws expressed in Balmer’s formula 
represents a necessary criterion for emission by hydrogen. The spectral 
laws (11) and (12) that depart from the integral type, and thus do not 
come under Balmer’s formula, do not belong to hydrogen but to ionised 

helium. 

* “ Series Lines in Spark Spectra," Proc. Boy. Soc., 90, 426 (1914), and Phil. 

Trans., 1914. 
t “ Bohr’s Heliumlinien,” Ann. d. Pliys., 50, 901 (1916). 
t This has been confirmed as trophy sic ally in photographs of the O-stars taken 

bv H. H. Plaskett, Publications of the Astrophys. Observ., Victoria (Canada), 1922. 
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Besides the Balmer spectrum, which, on account of its having four 
lines (H*, H/j, Hy, H5) in the visible region, is also called the four-line 
spectrum, hydrogen has a totally different kind of spectrum, the 
“ many-lines spectrum” (V ieUinien - spektrum) or “secondary spec¬ 
trum.” But this belongs to the molecule and not to the atom, and is 

to be regarded as a band-spectrum, although it does not exhibit the 
external characteristics of a band-spectrum. We shall revert, to this 
question in Chapter IX. 

Continuous spectra occur in the case of the hydrogen atom as well 
as in the case of the hydrogen molecule (cf. the beginning of the present 
section). It will not be possible to treat the continuous spectra com¬ 
pletely, and to link it up appropriately with line- and band-spectra 
until we arrive at the second volume dealing with wave-mechanics. 

§ 3. Introduction to the Theory of Quanta. Oscillators and Rotators 

If we wish to penetrate further into the nature of the theory of 
quanta, we must not restrict ourselves to the special case of vibra¬ 

tional energy, which wc treated alone in Chapter I, § 0. This case 
takes precedence historically ; it led Planck to formulate from heat 
radiation a definition of his quantum of action h. The simple oscillator 
was used by Planck in a certain sense as a theoretical agent reacting to 
heat radiation ; by means of it he developed his hypothesis of energy- 
quanta (see p. 36). This hypothesis is the foundation of the; photo¬ 
electric lawr of Einstein, and also of its extension as Bohr’s hypothesis 

concerning emitted and absorbed energy in atomic processes. 
Adopting a more general standpoint, we shall consider instead of a 

special Planck oscillator any arbitrary mechanical system, whatsoever, or, 

for the present, a little more specially, any arbitrary moving point-mass, 
whereby it matters little whether we assume it to be charged (an electron) 
or not. 

We find it expedient to begin by enunciating the form that Newton 
gave the mechanical laws in his Principia, in particular his Definitio 11 
and Lex II (Definitio 1 defines the conception of mass ; Lex I is the 
law of inertia). 

Definitio n : Quantitas mot us est mensura ejusdem, orta ex velo- 
citate et quantitate materiae conjunctim. 

“ The momentum (amount of motion) is the product of the mass and 

the velocity.” 
Lex II: Mutationem motus proportionalem esse vi motrici impressae 

et fieri secundum lineam rectam, qua vis ilia imprimitur. 
“ The change in the momentum (amount of motion) is proportional 

to the impressed force and takes place in the direction in which that 

force acts.” 
In place of amount of motion we say impulse in order to emphasise 
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its directed character ; we denote the impulse by p, and lienee by 
Dejinitio II we have 

p - mv . . . . . (1) 

As usual, we designate the position of the point by rectilinear co¬ 
ordinates x, y, z. For the sake of generalisation later, we shall, how¬ 
ever, use, instead of different letters, different suffixes attached to the 
same letter thus : qx - = x, q2 -- y, q{i z. The velocity is then given 
in magnitude and direction by 

qk(^where qx =-- x — ~~ q2 ------ y, etc.V 

and if px, ])2, pH are the (corresponding components of the momentum or 
impulse then, by (1), 

Pl ~ wth.(2) 

The fact that the dynamical triplet of impulse co-ordinates occurs 
conjointly with the geometrical triplet of the co-ordinates of position is 
of great importance to us. Furthermore, the above formulation of the 
law of motion, Newtons Lex II, is of particular importance to us. It 
is wrong to speak of Newtons “Law of Acceleration.” It is riot the 

kinematic quantity acceleration * but the dynamical quantity change of 
momentum that is regulated by this laic. In this sense we write down 
Lex II for each co-ordinate direction (k 1,2, 3) separately : 

Vk K , 
hk 

(3) 

In (3) we assume that the force K is derivable from a potential energy 

E IIUt (function of the qks). The kinetic energy is 

+ 9i + <ti) 
Pi ~f- pz + pi 

by (2). We (‘all the total energy, considered as a function of qk and pk, 

Hamilton’s function H. We have 

H(g, p) ~ E/;i„ -{- E yo 
SH 

Mk 

SE yot 

Mu *Vk *Pk 

Vk 
m * 

Consequently we may write the fundamental equations (2) and (3) in the 

form 
dqk c)H dpk t)H 

dt dt ~dqk 
w 

* Of course, when the mans is constant p — mq -- mass X acceleration. But 
in general the mass is not constant; in the theory of relativity it is not even con¬ 
stant for a single particle of mass ; arid in ordinary mechanics it is not constant 
for a rigid body, for then the role played by mass is taken over by the moment of 
inertia, and this varies during motion. In these cases Newton’s assertion about/ 
change of momentum remains valid, but not the statement about mass x ac¬ 

celeration which has wrongly become prevalent. 
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This Hamiltonian or canonical form of the equations of motion is 
remarkable not only on account of its symmetry but also because it 
remains preserved if any arbitrary new co-ordinates are introduced (cf. 
Note 2) and because it holds not only for an individual point-mass but 
also for any arbitrary mechanical system. For arbitrary co-ordinates 
and systems * the impulse p is defined by 

Vk '• 
Mi- 

(5) 

in which the kinetic energy is to be regarded as expressed as a function of 

the qks and the qk s. For the individual mass-point, (5) (dearly becomes 
identical with (2) if rectangular co-ordinates are used. 

The values of the co-ordinates q and p determine the corresponding 
state or phase (in Gibbs’s terminology) of the system. To get a vivid 
picture of the state of motion in terms of the position (q) and the velocity 
or impulse (p), respectively, we imagine, in the case of an individual 
point-mass (which has three degrees of freedom), its three position co¬ 
ordinates q and its three impulse co-ordinates p drawn as perpendicular 
co-ordinate axes in a space of six dimensions, so that each point of this 
space represents a phase of our point-mass. In a system having/degrees 
of freedom this phase-space is of 2/dimensions. 

Let us first restrict ourselves to systems of one degree of freedom, 
for which the general phase-space resolves into a single phase-plane. 

We draw q and p as rectangular co-ordinates in the phase-plane of 
our system. In this plane we construct the phase-paths or orbits, that 

is, the sequence of those graph jx)ints 
that correspond to the successive 
states of motion of the system. 
Choosing any point as an initial state 
we may plot the phase-paths and 
with them densely cover the whole of 
the phase-plane. The characteristic 
feature of the quantum theory, how¬ 
ever, is that it selects a discrete 
family of phase-orbits from the infinite 
manifold of phase-orbits. To define 

these selected orbits, we shall first consider the area of the phase-plane 
included between two arbitrary phase-orbits : we shall call such an 
area a phase-area. We then draw our family of orbits so that the 
phase-area between two neighbouring orbits is always equal to the 
quantum of action h. In this way h acquires the significance of the 
elementary region (or element) of the phase-area. We shall regard this 
significance as constituting the true definition of Planck’s quantum 
of action h. We shall next illustrate these rather abstract ideas by 

* We shall discuss how the definition is to be generalised for the case where 
the acting forces have no potential in Note 5 by a special example. 

Fig. 20.- -Phaso orbits of a linear 
oscillator. 
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means of two very important special cases, that of the oscillator and 
that of the rotator. 

We give the name linear oscillator to a point-mass m that is bound 
elastically to its position of rest, and that can be moved to either side of 
this central position only in a direction x = q or its reverse, whereby it 
experiences a restoring force but no damping resistance. The oscillator 
is the simplest instance of a centre of vibration such as is assumed in 
optics in the form of a “ quasi-elastically bound electron.’’ We use the 
more accurate term “ harmonic oscillator ” if we wish to emphasise that 
the latter has a definite characteristic vibration independent of the 
amplitude. Let the vibration number or frequency of the oscillator 
(number of its free vibrations per unit of time) be v. The vibration 
phenomenon is then expressed by 

x q — a sin 2nvt . . . -(b) 

Tn this case the impulse p simply becomes equal to mq (according to 
(2), and in agreement with (5)). Hence 

p — 'lirvma cos 2rrvt . . . (7 

By eliminating t from (6) and (7) we get as our phase-orbit an ellipse in 
the p-(/-plane having the equation 

q2 

a2 
-1 («) 

in which the minor axis b is defined by 

b — 2irvma . . . . . (9) 

The area of the ellipse is then 

aim = 2tt2 vma 2. 

W 
We next assert that this same quantity is also equal to *—, where W 

denotes the energy, which remains constant during the vibration. K, 
for example, we calculate W at the time t = 0, the potential energy is 

zero, and the kinetic energy is 

|«2( 2w)*-W .... (10) 

and hence, actually, 
W 

abn=.(11) 
v 

By altering W we get in the phase-plane the phase-orbits as a 

family of similar ellipses since, by (9), the ratio - has the constant value 

2nvm. We have now to make the selected ellipses of this family succeed 
one another in such a way that the elliptic zones have each the same 
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area h. H enee, if we denote t he difference between the energy-constants 
for two successive ellipses of the family by AW, we obtain from (11) : 

AW h —: =-11 AW - hv . . . (12) 
V 

If we number the ellipses thus : 0, 1, ... n, and call the corresponding 
energies W0, Wl? . . . Ww, it follows from (12) that 

Wrt W0 + hvn .... (13) 

Whereas in the classical theory all points of the phase-plane are of 
equal value and represent possible states of the oscillator, the states for 
which the graph points lie on one of the ellipses of our family are dis¬ 
tinguished. They represent the stationary states of the oscillator, that 
is, such states as the oscillator may pass through without cessation and 
without loss of energy, in other words, in the ease of a charged point- 
mass, without radiating energy. But from time to time the oscillator 
changes its energy ; it emits energy when its graph point jumps over 
to a smaller ellipse : it absorbs energy when its graph point is trans¬ 
ferred to a larger ellipse. Emission and absorption occur in multiples of 
the energy quantum hv. 

If we set W0 0 in (13), we arrive at the first form of Planck's 
theory : 

Ww —- tie, € — hv . . . . (!3«) 

But if we assume that corresponding to the quantum state zero 
hv 

there is a certain “ zero-point energy/’ and if we set this equal to 

an assumption which is confirmed by wave-mechanics, we arrive at a 
second form of the theory which Planck proposed in 1911. The energy 
of the 7ith quantum state then becomes 

Wn - (n + i)€ - (n |- i)hv . . (13b) 

We generalise this for any arbitrary mechanical system of one 
degree of freedom and assert that : the graph-point of the system in the 
phase-plane is restricted, according to the quantum theory, to certain 
favoured “ quantised ” orbits. Each of these orbits encloses with its 
neighbouring orbit an elementary region of area h. Let the nlh of these 
orbits (if closed) have the area 

J = jj dpdq .... (14) 

wherein the integral is to be taken over the interior of the n,h orbit. If 
we perform the integration with respect to p (corresponding to the 

elementary formula j'ydx for the area of a curve y — /(#)), we get 
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Thin integral is to be taken along the n1h orbit itself. We shall call 
(14a) the phase-integral. 

We consider the precise formulation of the quantum hypothesis 
to consist in the postulate that the difference between the phase- 
integrals for two successive orbits must be equal to h : 

AJ h, J == J0 + nh . . . (15) 

This postulate singles out of the continuous manifold of all mechanically 
possible, motions a discrete and infinite number of real motions, such 
as are possible according to the theory of quanta. In contradistinction 
to this general form of the quantum hypothesis, the original hypothesis 
of energy-quanta that was formulated by Planck for the phenomena of 
heat radiation is only a special result of the general quantum postulate 
adapted to the oscillator. In the preceding, we were relieved from the 
task of evaluating the phase-integral (14) only because we were able to 
calculate the area of the ellipses directly from the formula abn. In 
particular, if we assume J0 = 0, we obtain from (15) the following 
formulation analogous to (13a) : 

which formed the foundation of the older quantum theory, but which 
is not confirmed throughout by wave-mechanics. 

From the oscillator we pass on to the rotator. This term is to 
denote a point-mass m, which rotates about a fixed centre uniformly 
in a circle of radius a. The natural co-ordinate of position is here the 
angle (f> which the radius to the point-mass makes with an arbitrary 
initial radius </> 0. We thus set q <f). The kinetic energy is 

E .... (16) 

In the case of uniform rotation the potential energy will certainly be 
independent of $ ; it is indifferent to us whether this energy depends on 
a since a is constant during the motion. Hence we may write 

J&pnt ~ const. 

The impulse co-ordinate in this case corresponding to the co-ordinate 

q is by (5) and (lt>) : 

p — ma2q ..... (17) 

It signifies the moment of momentum with respect to the centre of the 
circular orbit. Since q -- const., this moment of momentum (Imjmls- 
moment) p is constant during the motion ; this, in fact, follows immedi¬ 
ately from the equations of motion (4). Therefore the phase-orbit of 
the rotation (the orbit in the phase-plane q-p) is a straight line parallel 
to the q-axis (Fig. 21). Hence the phase-orbit is not a closed curve in 

VOL. i.—6 
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his ease. Hence we have here first to define what is to he regarded as 
the area of the phase-orbit. 

This is done as follows : the phase of the rotator (its position in the 
orbit and the direction of its momentum or impulse) becomes repeated 
after every complete rotation. Thus, the true phase-orbit is not an 
infinitely long straight line* but a finite one that repeats itself. Jn the 

^-direction the phase-plane of the rota¬ 
tion has only the length 2tt ; we may, 
for example, cut it along the lines 
q — | 77 and join the edges so as to 
form a cylinder. The surface area of 
tlie cylinder between the nth and the 
(n — 1 )th phase-orbit, being a rectangle 
on the base 27r, is equal to 27r{pn — pn_x). 
We have to set this surface equal to h. 
We then get for the surface between the 
nth and the zero phase-orbit, which is 

represented by the (/-axis, the expression 

27Tj)n --- nh . . . . (18) 

Fig. 21. Phase orbits of a 
rotator. 

This is the surface that takes the place of the area of the closed curves in 
the case of the oscillator. 

From this we see that the rotator is to be quantised not in energy 
quanta but in quanta of moment of momentum. In the case of the 

rotator the moment of momentum must be a whole multiple of . If, 
2 77 

on the other hand, we calculate the energy (kinetic energy) of the rotator, 
then it follows from (10) and (17) that 

and from (18), when v 

M 

nh q 

: 2 2t7 : 

nhv 

~~2~ 
(19) 

Here v denotes the rotation frequency of the rotator (number of full 
revolutions per unit of time), which appropriately takes the place of 
the vibration number of the oscillator. Hence if we wish to speak of 
energy-quanta h v in the case of the rotator, too (which is better avoided 
altogether), we should find its energy to be not a whole multiple, but a half- 
•m ultiple of the energy-element h v. 

We pass on from the case of the oscillator and the rotator to the 
case of any number of degrees of freedom. In this ease we must 
demand not one quantum condition of the form (15) but / different 
quantum conditions, by which each of the / degrees of freedom in a 
certain sense becomes fixed. We infer this, as a general result, from 
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the perfect, sharpness of the spectral lines, which allows us to conclude 
that the atomic phenomena underlying their origin are fully discrete. 
For this purpose tiie author has adopted a direct “ heuristic ” method,* 
which leads to the same results as those simultaneously obtained by 
Planck f as a consequence of a more systematic investigation into the 
treatment, along quantum lines, of systems of several degrees of free¬ 
dom. The postulate of the author is : we must impose the condition 
(15a) on each individual degree of freedom of the system, that is, we must 
postulate the value of the phase,-integral for the kth degree of f reedom to be 
a whole multiple of h : 

•k — j'ViA<h- ---- n,h.(20) 

A little earlier than the author, W. Wilson f developed the same 
postulate from the law of heat radiation. 

By setting nk -—1,2 . . .in turn in (20) we fix the first, second . . . 
(piantised phase-orbit of the kth degree of freedom. Since the system 
is hound by each of its degrees of freedom to one of these orbits, the 
required definiteness of its motions is attained. ” Degenerate systems," 
namely, systems for which the number of necessary conditions may be 
reduced, will he discussed in § 7. 

We might generalise equation (20) in the sense of equation (15). 
In that ease we should have to fix a value for AJ7., and not for Ak itself, 
that is, we should have to leave the quantity J0 that occurs in (15) 
undetermined for every co-ordinate. We shall, however, keep essen¬ 
tially to the original formulation (20) of the quantum rules " in this 
volume, and shall make them more rigorous later in the second volume. 

If it is to he possible for integrals of the form (20) to be integrated 
for every co-ordinate separately, that is, without a knowledge of the 
simultaneous behaviour of the remaining co-ordinates, then it must be 
possible to represent every pk as a pure function of the corresponding 
qk. In this ease the mechanical system is called separable. This 
property is discussed in detail in § (i. The condition for it was first 
given in important papers by Schwarzschild ]| and Epstein,If which 
linked up with papers published by the present author in 1915 and 
1916. The quantum rule (20) lias an exact meaning only when we 
restrict its application to separable systems, for it is only then that 
we can answer the question : what co-ordinates and what limits of 

integration are to be used in performing (20) ? 

* “ Zur Theorie dor Baimerschen Serie,” Sitzungsberichto dor M iiriehonor 
Akadeinie, Dec., 1915, and Jan., 1916, as also Ann. d. Phys., 51, 1 (1916). 

f M, Planck, “ Dio Struktur dos Phasenraumos,” Ann. cJ. Phys., 50, 385 (1916). 
J W. Wilson, “ Tho Quantum Theory of Radiation and Line-spectra,” Phil. 

Mag., 20, 795, Juno, 1915. A historical account has boon given by N. Bohr, of. 
lac. eit.y p. 118, footnote J, in which a work by Bn. Isliiwara, simultaneous with 
that of W. Wilson, is referred to. 

|| K. Schwarzschild, Zur Quantentheoriv, Berlin, Sitzungsber., April, 1916, 
which appeared on lltli May, the date of Schwarzschild's death. 

Tl P. S. Epstein, Ann. d. Phys., 50, 489 (1916) ; and 51, 168 (1916). 
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The co-ordinates qk meant in (20) are precisely those into which the 
system can be separated. If there are several possible ways of effecting 
separation the types of orbit determined by the phase-integrals 
become different, but the energies in the orbits, which are the essential 
factors, agree. 

The limits of integration must be fixed as follows : the separation- 
co-ordinate qk is to traverse in the, course of integration the whole region 
that is necessary to characterise the phases of the system uniquely. In 
the case of a cyclic co-ordinate (q ----- </>, rotation) this region stretches 
from — 7t to - | 77 (cf. Fig. 21, in which the plane is to be bent into a 
cylinder), the radius vector r extending from the region rmin to rm(tT 
and back again to r7nin. Further examples will be given in this and 
in the next chapter. 

Finally, it is to be noted that the phase-integral, in virtue of its 
geometrical significance as a surface in the (q, £»)-plane, is necessarily 
a positive magnitude ; hence it follows that the ‘‘ quantum-numbers ” 
nk are also necessarily positive numbers. 

If we survey what wo have learned from the quantum treatment of 
the oscillator and rotator and from the extension to general systems 
—all of which is based on the fact that spectral lines are sharply defined 
—we arrive at a totally new view of natural phenomena. The quan¬ 
tised states, those defined by integers, are favoured above all other 
possibilities in being stationary states of the system ; they do not 
link up continuously with each other but form a net-work. Phase-space, 
regarded as the manifold of all conceivable states, including those which 
are not stationary, is traversed by the graph curves of the stationary orbits 
so as to form a network. The size of the meshes is determined, by Planck's 
constant h. 

§ 4. Bohr’s Theory of Balmer’s Series 

We here make the simplest assumptions possible : a nucleus of 
negligible size carrying a charge + Ze, and an electron of charge —- e 
likewise concentrated at a point; the mass of the nucleus is considered 
infinitely great compared with the mass m of the electron (that is, 
we are confronted with a “ one body problem ” instead of the actual 

“ two body problem ”) ; Coulomb’s law is valid and likewise ordin¬ 
ary (pre-relativistic) mechanics ; the electron moves in a circle * about 
the nucleus and is a simple “ rotator.” Concerning these assump¬ 
tions we remark that for hydrogen, in particular, Z — 1 ; the calcula¬ 
tion with Z is worth doing because it also includes the case of He* and 

Li++ (cf. Chap. II, § 3, Nos. 4 and 6). The assumption that the 
nuclear mass is infinitely great is a good approximation even for 
hydrogen (according to earlier remarks, cf. equation (16) of the pre- 

* We must remark that Bohr speaks more generally of elliptic orbits, even in 
his first paper, Phil. Mag., 26 (1913). 
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ceding section, m : Mu — 1 : 1847) ; hut. in the next section we shall 
let this assumption drop. 

The orbit of the electron is fixed by two conditions, one prescribed 
by the classical theory, the other by the quantum theory. The classical 
theory requires that the external forces be in equilibrium with the 
inertial forces. The inertial force of circular motion is the centrifugal 
force : 

mv2 
— - mvw — maw* 
a 

(r ao) is the linear velocity, oj the angular velocity of the rotating 
electron, a the radius of the orbit). The only external force is the 

Coulomb force of electric attraction 
7/* 

a2 
Hence the condition of the 

classical theory is 

mato2 
Ze2 

a2 

or 
ma*oj2 — Z c2 , . . (1) 

The quantum condition is given by the equation for the moment of 
momentum of the rotator,* namely, 2irp nh (ef. eqn. (18), § 3, of this 

chapter). 
With our present symbols the moment of momentum takes the 

form 
p — mva - ma2a>. 

Hence we get the quantum condition as 

.. nh 
ma*w — . 

Dividing (1) by (2), we get 

2ttZc2 
v — aw ~ — 

nh 

Inserting this value in (2), 

n2h2 __ 87T3mZ2e4 

° - 4ir2mZe2 m ~ n3k3 

(2) 

(3) 

(4) 

We also write down the value of the period of revolution t, 

27r __ nsh3 

T ~ w 47t2wZ2c4 
(4a) 

* It is worthy of remark that, before Bohr, J. W. Nicholson (Monthly Notices, 
72 (1912), of. in particular p. 679) sot up the quantum condition for the rotator, 
and used it to interpret certain lines of the sun, as well as of nebuhe. Since, how¬ 
ever, Nicholson did not determine the emitted radiation in terms of quanta, like 
Bohr, but only set it equal to the mechanical froquoncy, his theory is very dif¬ 
ferent from that of Bohr. 



86 Chapter II. The Hydrogen Spectrum 

Thanks to our two conditions, then, the two unknowns a and oj or r 
are determined. Both together demand that the electron move only in 
certain “ quantised ’’ circles on the 2n'1, . . . nth “ Bohr circle ” ; n is 
the “ quantum nund)er ” of the orbit. The radii of the circles are pro¬ 
portional to the squares of the quantum numbers : 

ax : a2 : a3 : . . . a„ = l2 : 22 : 32 : . . . n2 . . (5) 

The times of revolution in the Bohr circles arc proportional to the 
cubes of the quantum numbers : 

Tj : r2 : . . . rn — l3 : 23 : . . . w3 . . . (b) 

To bring out the analogy with the planetary system still more and 
to prepare for later generalisations leading to elliptic orbits, we re¬ 
capitulate our results so far obtained in the form of Kepler's laws : 

Kepler’s First Law : The planet moves in a circle at the centre of which 
the sun is situated. There is a discrete infinite number of orbits ; the 
radius of the nih orbit is given by the quantum number n. 

Kepler’S Second Law : The radius vector from the sun to the planet de¬ 
scribes equal areas in equal times. The surface-constant of the n,h orbit 
(which is proportional to our moment of momentum p) is equal to 
n times Planck’s quantum of action. 

Kepler’s Third Law : The squares of the periodic times (of revolution) 
are proportional to the cubes of the radii of the orbits. For, by (b) and (5), 
the time of revolution is proportional to n3, and the orbital radius is 
proportional to n2. 

As above remarked, for hydrogen Z 1. The radius of the first 
Bohr circle is therefore by (4), in the case of hydrogen, 

h2 
.... (7) 

We next determine the velocity in the first Bohr circle and divide it 
v 

by the velocity of light r. We call the ratio -1 simply a. By (3), wc 

get 
VJ __ 2ttc2 

c ch (8) 

Using the. values * : c = 4-77 . 10 lu, E.S.U. - 1-77 . 107 . c 
m 

E.S.\J.,h — 6*55 . 10 27 (ef. p. 3b), we get by calculation 

at 0-528.10~8 cm. a — 7*28.10“3 a2 — 5-31 . 10~5 (9) 

♦Hero and in the aequo] c is to be taken as measured in (“electrostatic”) 
units, as is evident from the above statement for Coulomb’s law. According to 
the concluding remark of Chapter X, § 2, wo should therefore multiply the given 

values of e and — by c = 3-00 . 1010. 
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The value of a will be the determining factor in Chapter V—as the 
constant of the fine, structure of spectral lines. From the value of a1 we 
get for the diameter 2ax of the hydrogen atom in its “ normal state ” 
the order of magnitude 10 8 01 ns., corresponding to the ideas that were 
gained about atomic size in other ways (kinetic theory of gases, etc.). 

We next calculate the energy of the electron in its various orbits and 
take this opportunity to explain why we just now called the first orbit 
the normal state of the atom. We again designate the nuclear charge 
by Ze. The energy is composed of potential and kinetic energy. The 
potential (Coulomb) energy is, in view of (4), 

E pot 

— Ze2 47r2n/Z2e4 

a n2h2 
(10) 

The negative sign indicates attraction. In the case of repulsion we 
should have to exert work in bringing the electron from infinity up to 
the nucleus, as in the case of a spring that we set ; this w ould correspond 
to the positive sign. When the force is attractive, we correspondingly 
gain energy, and have thus to exert negative work. 

In general we have the rule in a Coulomb field (sec Note 3) that 

EUn--lE„0, . . . . (11) 

We can immediately confirm this rule here. For, by (3), 

E A 7 H 

m 2 27r2mZ2r4 

2 n2h2 
(12) 

and this is, by (10). actually identical with half of the negative potential 
energy with the sign reversed. If W denotes the constant value of the 
total energy then by (10) and (12) 

W — E,,/w + Epol ~ 
- - 2ir2me2K2 1 

k2 • (13) 

Thus wre may supplement our third Kepler law by stating that the energy 
constants of the various orbits are inversely proportional to the squares of 

the corresponding quantum numbers. 
Our way of counting the energy entails that we give to an infinitely 

great orbit the energy zero. As a result of this the energy constant for 
all Unite paths comes out negative. As we are concerned later only with 
differences of energy the negative sign causes no difficulty whatsoever, 
although it appears to contradict the nature of energy. But we should 
immediately arrive at a positive value for the energy if we were really 
to calculate the total energy of the moving electron, and thus count 
besides the kinetic and potential energies also, for example, the 
“ proper ” energy contained in the field of the electron. According to 
the view of the theory of relativity, the latter energy is simply equal to 
me2, that is, equal to an amount of energy, which is many times greater 
than the other parts of the energy and which wrould therefore make the 
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sign of the total amount positive. In the same way, we could include 
the still considerably greater positive proper energy of the nucleus. 
But since these proper energies are constant, they naturally cancel 
when we form energy-differences and they are, therefore, more con¬ 
veniently left out of account from the very outset. 

Our energy-constant W has the algebraically smallest value in the 
first (innermost) orbit. If we call it W1? then in the 2nd and 3rd orbits, 
respectively, we have W2 ” JWl5 W3 ’ Wr These amounts are > Wlt 
since W1 < 0. Hence the electron can be lifted from an inner to an 
outer orbit only by an addition of energy. It can fall from an outer to 
an inner orbit when it loses energy. The innermost orbit is therefore 
most stable and represents, as we said earlier, the normal state of the 
revolving electron. As a rule the hydrogen atom is in this unexcited 
state. All the other states, in which the electron describes a more 
external orbit, are called “ excited ” states. The additional energy 
required to bring about this change of state may be transmitted to the 
atom electrically or thermally, by collisions with electrons or with 
other atoms. 

According to the principles of the quantum theory the totality of 
excited and unexcited states represents a discrete series of possibilities. 
In this respect our atomic planetary system differs from the solar plane¬ 
tary system.* But our system also deviates definitely from classical 
electrodynamics. According to the latter theory, as we saw in Chapter 1, 
§ 5, an electron radiates energy when it is accelerated. Uniform rota¬ 
tion is an accelerated motion (on account of change of direction of 
velocity, although the magnitude of the velocity remains constants 
But the quantum theory must postulate that its stationary orbits are 
radiationless (occur without the emission of radiation). This is immedi¬ 
ately clear in the case of the ground orbit, in particular ; otherwise the 
atom would lose its energy in a very short time and we should have no 
permanent, invariable, atom at all. 

The process of emission, like the other processes in the atom, is, 
according to the quantum theory, discontinuous. The continuous 
decrease of energy assumed in classical theory becomes replaced in the 
quantum theory by a broken line. This line is horizontal in parts, 
namely, when it represents the atom as being in a stationary quantised 
state ; it sinks by a finite amount when the atom passes from an excited 
to a quantised state of less energy, in particular, in passing to the ground 
state. According to what law does this discontinuous decrease of 
energy occur ? 

These were brought together under Einstein’s law (cf. Chap. I, 

* We find it incumbent on us to mention the Titius-Bode rule, which states a 
simple arithmetical relationship holds approximately between the orbital radii of 
the planets. We cannot, however, persuade ourselves that this is also an ex¬ 
pression of a quantum theory, and do not therefore find it possible to compare 
this rule with our laws for discrete atomic orbits, 
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§6), and were extended as far as Bohr’s frequency condition for spectral 
emission (loc. cit. eqn. (0)) : 

hv = Wn-Ww . . . . (14) 

This equation states that if the atom passes over from an initial state of 
energy Wn to a final state of lesser energy W7n, then the excess of energy 
is radiated out in the form of a monochromatic wave of light, the fre¬ 
quency v of which is determined by just this equation (14). Each such 
transition thus causes an emission of well-defined light and is observed 
as a sharp spectral line. How the change of the liberated atomic 
energy into light-energy is effected is still a matter of mystery. Earlier, 
when dealing with Einstein s law, we emphasised that equation (14) 
does not rest on the ideas of the continuous electromagnetic field, but 
on the idea of light quanta (photons). 

We now substitute the energy-value (13) in equation (14). Passing 
immediately from the frequency v (sec-1) to wave-number v (cm.”1), 
we divide the right-hand side of equation (14) by c (cf. p. 71, eqn. (6)). 
Let the quantum number for the final orbit be n, and for the initial 
orbit m > n. We get 

v (15) 

when we have used the abbreviation 

R 
2772me4 

"cf* 
(10) 

Since Z — 1 for the hydrogen atom we get from (15) precisely the 
Balmer series in its general form (9) on page 73, and for R we have the 
significance of the Rydberg constant. For other hydrogen-like atoms, 
He+, Lif+, and so forth (15) holds if we write Z = 2, 3, etc. 

But the sweeping success of Bohr’s theory is not founded only on the 
derivation of Balmer’s formula, but especially on the numerical calcula¬ 
tion of the Rydberg-Ritz constant R that occurs in it. Before Bohr, 
A. E. Haas,41 in particular, had already proved the universal nature of 
this constant, and had shown how it was very probable that it could be 
expressed in terms of h and electronic data. But Bohr’s theory first 
brought complete clearness by giving the relation (10). If we use the 

values given on page 80 : 

e. = 4*77 . 10"10 elm -- 1-77 . 107 . c h — 0-55.10“27 

then it follows that 
R = l*()9 , 1()5 cm."1 .... (17) 

This value of R agrees, except for the last, not quite certain, figure with 
the observed value in equation (2) of page 70, in which R = 1*09078. 

Bohr’s theory is thus confirmed very strikingly. 

* Sitzungsber. Wiener Akad., March, 1900. 
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We shall now continue to reverse the sequence of results and use the 
theoretical formula for Rydberg's constant to correct one of the data 
occurring in it, namely, e, m or h. WTe actually know Rydberg’s number 
to a degree of accuracy that we can never hope to attain in measurements 

of e, — or h. This leads us to the problem of spectroscopic units, which 

we shall, however, be able to solve only in the next section when we 
have deepened the theory of Rydberg’s constant. The problem is to 

calculate the universal constants e, h from purely spectroscopic data 
m 

with ** spectroscopic accuracy.” 
In Fig. 22 we once more summarise Bohr's theory graphically. The 

ultra-violet (Lyman) series (n 1), the visible Balmer series (n ~~ 2), 
and the infra-red Pasehon series (n 3), and the Brackett series, which 

is still more red, are 
indicated by the arrows 

denoting the correspond¬ 
ing electronic transi¬ 
tions. 

In Fig. 22 the differ¬ 
ent circular orbits have 
been drawn in one plane. 
This is, of course, arbi¬ 
trary. The position of 
the orbit remains un¬ 
defined in space and is. 
moreover, of no account 
for the problem of 
spectral lines, since this 
is concerned only with 

the energy-differences of 
the orbits. In the last section of the present chapter we shall discuss 
the question of orientating the hydrogen orbits in space, that is, of 
performing “ spatial quantising.” Further, we shall see in the next 
volume that the elementary ideas of orbits are banished by wave- 
mechanics and are replaced by statistical mean values. 

§ 5. Relative Motion of the Nucleus 

In the preceding section the nuclear mass was assumed to be infinite 
and the nucleus itself was assumed to be at rest. We now take into 
account the fact that the mass of the nucleus is finite and then see 
that it, too, will move. Our first Kepler Law on page 8b will now 
accordingly be enunciated thus : 

The planet and the sun each move in a circle about their common 
centre of gravity. 

ultra-violet 
Berios (Lyman) 

Fig. 22.— Diagrammatic representation of the 
origin of the hydrogen series from the electron 
transitions between the discrete circular orbits 
of the Bohr theory. 
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In Fig. 23 let m be the mass of the planet, M that of the sun. Accord¬ 
ing to the law of conservation of the centre of gravity, the centre of 
gravity S of m and M remains at rest, m and M move on their circles 
at the ends of a common diameter with the common angular velocity to. 
Let a be the distance Sm, A the distance >SM. Then 

am AM 

from which it follows 

(" 1- A). A - (a 

The classical condition (p. So) now requires that the Coulomb attrac¬ 
tion is equal not only to the centrifugal 
force of the planet, but also to that of the 
sun. Thus / 

Zc2 / \ 
maor - MAor / \ 

(« rA)- I .U 

This double equation reduces, on account \ J~e 
of (1), to a sini]>le equation. By substitut- \ i j f \ 
ing a from (2) and by using p as the “ re- \ j ; / \ 
sultant ” mass of m and M, namely, j 

Mm 

M + m9 
Fie. 23.— Motion of tJio 

we get, ii(a 4- A) Vs ---• Ze2 . . (4) nuelcus in hydrogen. 
.Both the nucleus and 

The quantum condition next becomes tho electron move in 

added to the classical condition. This deals circular orbits round 
tho conn non centre ot 

with the moment of momentum p of the gravity, 

rotator. The latter quantity is composed 
of the moment of momentum of the planet ma2to and that of the sun 

MA2a>, thus : 

p “ ma2o) -) MA2o>, 

by equations (1), (2), and (3) we write for p successively, 

if) IVT 
p ■— ma(a + A)a> = + A)2n> — p(a -T A)2a> . (5) 

The quantum condition requires that 2irp = nh3 thus we get 

p(a + A)2 to = ^ .... (6) 

Equations (4) and (h) agree with equations (1) and (2) of the pre¬ 
ceding section, with the exception that p and a A takes the place of 
m and a. Consequently we may use the solutions for these equations 

obtained from (4) of the previous section. The result is 

n2hr __ 87T3yLtZ2e4 /7, 
a + A 47ryZe2’ 
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The potential energy between the sun and the planet is now (cf. (10) 
of the preceding section) 

Ze* 47tVZ2c4 

+ A“ nW * 

The kinetic energy is again equal to half the potential energy with 
reversed sign (this theorem is proved in Note 3 at the end of the hook 
for moving nuclei, too), hence the total energy is 

W - F iy- (o\ W — -V-Jkin + h.pof ---7?2p~ * * • W 

The circumstance that /x, the “ resultant ” mass of the sun and 
planet enters into this equation, points to the fact that we are now 
concerned with the energy-constant of the common motion of both 
masses (their relative motion). For this common motion there is a 
discrete series of quantised states of motion that are singled out of the 
manifold of all states of motion by the quantum number n, in exactly 
the same way as previously for the cast's in which the planetary orbits 
were alone considered. 

Wo now consider a transition from an initial state of motion (with 
the energy-constant W7n, quantum number m) to a final state of motion 
(with the energy-constant W7}, quantum number n < w), and assume 
that the energy set free again becomes transformed into monochromatic 
radiation, according to equation (14) of the previous section. The 
energy set free is derived now, not only from the planet but also from 
the sun during the transition ; the sun’s orbit alters simultaneously 

with that of the planet in a ratio definitely fixed by the change in the 
quantum numbers. The spectral formula obtained in this way is 
clearly again equation (15) of the previous section, but with ft in place 
of m. Consequently we get for Rydberg s constant 

27r2/xe4 2 77 2 we4 Ra 

1 + 
m 

M 

(9) 

Here we have inserted the value of ft out of equation (3), and have 
divided the denominator by M. The symbol R^ recalls the earlier 
value of R in equation (16) of the previous paragraph, which was 
actually obtained under the assumption that M = co. Equation (9) 
contains the following remarkable result: 

Owing to the relative motion of the nucleus Rydberg’s constant 

becomes reduced in the ratio (l + : 1. Rydberg’s constant is least 

for hydrogen, for which its value is 

Rh 
R 

1 + 

00_ 
rn 

Wh 

• (10) 
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Its value for the hydrogen-like He1 -ion being 

Roc Rcr 
R« 

1 + 
m 

w He 
1 + l 

m 

mn 

(11) 

and, for increasing atomic weight, approaches the universal limit Rx, 
which was designated as Rydberg’s constant simply by R in the previous 
section. 

This result, too, we owe to Bohr. He remarked at once that from 
the spectroscopic determination of Rfl and RX), or, what is easier to 
carry out in practice, from the determination of RH and RHe, the 
quantity could be obtained. For it follows from (10) and (11) 
that 

w Rhq Rh 
W“Rh- iRne ’ • * ' { ] 

The determination of mjmn in equation (12) is equivalent to the 
determination of the specific electronic charge ejm. We actually have 

.... (13) 
mu e!m 

Now, ejmji is the specific ionic charge, the electrochemical equivalent * 
of § 2, Chapter J. that is, a quantity that is very accurately known (its 
value is 96,494 Coulombs). An exact spectroscopic determination of 
m W}{ denotes at the same time an exact knowledge of ejm, one that is 
presumably more accurate than can ever be obtained from experiments 
on the deflection of cathode rays. We have thereby come a step nearer 
to the goal that we set up as the problem of spectroscopic units in the 
preceding section : Instead of using the one value of R —• in equa¬ 
tion (16) of the previous section, we use the two values Rh and Rue out 
of the above equations (10) and (11), and we get, instead of one, two 

* We must call attention to the following circumstance. The atomic weights 
are referred to oxygen — 16; the atomic weight of hydrogen does not then come 
out as 1 but as 1 0078. When we sot the electrochemical equivalent 9649 of the 

mol. in Chapter I, § 2, equal —, we did not then imply that mH was to stand for 

the mass of the true hydrogen atom, but for the mass of an imaginary atom which 
signifies the unit for the table of atomic weights. We shall distinguish the true 
hydrogen atom from this imaginary hydrogen atom mH by using for the former 
the symbol mfp They are t-hen related by mr — 1*0078 m\\, Loschmidt’s 
number L, which refers accurately to the mol. of amount 1 grm., is not equal to 
1/mfi, but to l/wH. When the relative motion of the nucleus, however, is taken 
into account we deal with the true mass Wr of the hydrogen atom, not with 
mH. Consequently, to be exact, we should replace wH in equation (13) by wr 
and we should take ~ 9649-4/1*0078. In the same way, we should write 
my for Wg in equation (10), but not in equation (11), because the true atomic 
weight of He is equal to four times the ideal, and not the real atomic weight of H. 
A correction should then also have to be applied to equation (12), when exact 
numerical calculations are desired, but wo htive left these out of account in the 
text. 
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equations for determining the three universal units r, vim, and //. The 
necessary third such relation we shall get to know in (Tiapter V. 

We must next broach the question as to how the difference between 
R*i and It ye may be made evident in practice. This is made possible 
by the series of ionised He, of which we spoke in § 2. 

Ionised helium is of the type of hydrogen (wasse.ratoff'ahnllch - 
hydrogen-like). Accordingly its spectral lines are contained in the 
general formula (15) of Balmer’s type, mentioned in the previous 
section, if we set Z --- 2 in it. But the earlier R ----- Ru is now to be 
replaced by R|jc. From equation (15) of the previous j)aragraj>h, there 
thus arises in this way, if we set n 4 : 

Flu. 24.—Diagram made representation of the spectrum of a mixture of ionised 
helium and hydrogen. The lines of the Pickering series (P) show their 
correspondence with the linos adjacent to the Buhner linos by the regular 
diminution of intensity in the series. 

The subdivision into two parts (which is not really contained in the 
nature of the matter in question) brings into evidence the circumstance 
that the component for which m ls even (m --- 2m) coincides very nearly 
with Balrners series, whereas the other part (m ~ 2m -f 1) bas the 
form of Pickering's series that was given earlier in equation (12) of 
page 74. The combination of the two partial series (which conforms 
with the nature of the matter in hand) into one uniform series corre¬ 
sponds to the earlier formula (12a) on page 74. 

In Fig. 24 we exhibit the positions of the He "Mines relatively to the 
Balmer lines. The lengths of the lines denote diagrammatieally their 
intensity, on the assumption that we are dealing with a mixture of 
HeH and of H. For this reason the Balmer lines are drawn shorter 
than the neighbouring He^-lines. The difference in the position of the 
two series corresponds to the difference between Rjje and Rh* Since 

Rue > Rh, the helium lines, as compared with the Balmer lines, are 
displaced a little towards the violet end. The lines P of Pickering s 
series, that is, the helium lines m -= 2tn -f- 1, arrange themselves 
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between the helium lines m 2m, as emphasised on page 75, in order 
of steadily increasing intensity. 

The researches of Pasehen mentioned on page 75 give for the wave¬ 
lengths of the helium lines and the neighbouring Balmer lines the 
following values (here cut short at the first decimal place) in Angstrom 
units, which confirm the displacement towards the violet, as predicted 

by theory. 

Table 3 

He* 11 

lit 6 . 6560* 1 6562*8 (H O 
m - 7 . 5411*0 .— 
m - 8 . 4859*3 4861*3 (H/d 
in — 9 . 4561*0 — 

m 10 . 4338*7 4340*5 (Hy) 
m 11 . 4199*9 — 
m ----- 12 . 4100*0 4101*7 (HO 

According to our whole development of the question, this violet shift 
of the helium lines with respect to the Balmer lines may be regarded as 
a certain indication of the relative motion of the nuclei during the 
stationary forms of motion of the atom, or, more accurately, of the 

slightly different relative motion of the heavier helium nucleus com¬ 
pared with that of the lighter hydrogen nucleus. From the difference 
in the. wave-lengths of the He4 -lines as compared with the H-lines, 
Pasehen determined the value of Rne^rid Rh (for the lines of He+ actu¬ 
ally measured by him). More recent precision measurements by 
W. V’. Houston * give the values 

R„e - 109,722*403 L 0-004 \ 
Rh — 109,(577*759 ± 0 008 f * ’ K ' } 

By equation (12) we obtain from Houston’s values (cf. also the correc¬ 

tion referred to in the footnote to p. 93) 

—5 = 1839, -= 1-701.107.c . . . (1«) 
m til 

By equations (10) or (11) we get from Rh or Rue that 

R : Hrj - ]()!*,737-42 { 006 . . . (17) 

Houston’s value for - in (16) is given on page 6, equation (2), as the 
m 

spectroscopic value. 
Of the series of ionised helium, we have here considered particu¬ 

larly that whose final quantum number is 4 (Pickering), and in § 2 we 

* Phys. Rev., 30, 608 (1927). For the calculation see also Birgo, loc. tit., 

£>. 6, of Chap. I. 
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have briefly mentioned that whose final number is 3 (Fowler). Some 
representatives of the series whose final quantum numbers are 1 and 2 
have also been measured. Their succession of lines is identical with 
that of the ordinary Lyman series and Balmer series except for the 
factor Z2 — 4. Hence the corresponding lines lie in the extreme 
ultra-violet; their wave-lengths result from those of the corresponding 
hydrogen lines by dividing by 4 (if we disregard the small difference in 
the constant R) : 

* "= 4R (p - - A =■-- ' V « ~ 304,; 

V — 4R( ~ — *A A ---- '> V“! ---= 1040 ; 

The first measurements of the wave-lengths of the lines of these series 
were made by Lyman.* Further lines were then discovered by 
Compton and Boyce,* so that now three lines of the series whose final 
quantum is 2 (as far as A — 1085 A) are known, and five lines of the 
series whose final quantum number is l (as far as A — 234 A). 

In the succession of hydrogen-like spectra the H- and the He+- 
spectrum would now be followed by the spectrum of Lif \ that is, of 
doubly ionised lithium. This ionised atom again consists of a nucleus 
and an electron ; its spectrum, hence, is of the general form of equation 
(15) of the preceding section with Z now equal to 3. On account of the 
relative motion of the nucleus we now write this equation as 

- 9RLi( \ - C), Rjj - — . . (18) 
\nd mrj ^ m v< ' 

mlA 

Edlen and Ericson f have measured the first two lines of the 
Lyman series, n 1, m - 2, 3 in the spectrum of LiM. They lie in 
the extreme ultra-violet at 135*0 and 113*9 A, exactly at the place 
given by calculation from formula (18). Ru has the value 109728 G. 
The “ground line ” n — 1, m = 2, A — 75*94 A of trebly ionised 
beryllium (Be+++) has also been measured by the same investigators. 
Hence, we may close our discussion of the hydrogen-like spectra for 
the present with the statement : the frequency-equation (15), page 89, 
as well as its more rigorous form (9), page 92, which is obtained by taking 
into account the relative motion of the nucleus, are brilliantly con¬ 
firmed by experiment. 

§ 6. Introduction to Hamiltonian Mechanics 

In § 3 we found it convenient to introduce the concepts of Hamil¬ 
tonian mechanics. We shall now proceed to describe this theory 

* Th. Lyman, Astrophys. Journ., 60, 1 (1924); K. T. Compton and J. C. 
Boyce, Journ. of the Franklin Institute, 205, 497 (1928). 

t B. Edlen and A. Ericson, Nature, 125, 233 (1930). 
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systematically, since it in so extraordinarily convenient for dealing 
with the most important problems of the quantum theory. This will 
at the same time prepare us for the foundations of wave-mechanics 
which links up closely with the formalism of Hamiltonian mechanics. 

Our first objective is the derivation of the 'partial differential equation 
of Hamilton and Jacobi. We start out from d’Alembert’s principle of 
mechanics (non-rclativistic). This has the advantage that we need 
not restrict ourselves to considering mechanical systems of isolated 
point-masses, but may pass straight on to a mechanical system with 
any arbitrary internal relationships. 

D’Alembert’s principle states that the external forces are in equili¬ 
brium with the*: inertial resistances by virtue of the relationships between 
the parts of the system. In testing whether this equilibrium exists with 
respect to infinitesimal virtual displacements, namely, such as are com¬ 
patible with the internal relationships of the system, we postulate that 
the work performed by the external forties and the inertial resistances 
(“ virtual work ’’) must vanish. 

Let the rectilinear components of the external forties be denoted 
in turn by K/(. ; the inertial resistances, also resolved into rectangular 
components, are then given by — 74 — — niqk(cf. p. 77, eqn. (2)). 
For a system of point-masses which are described by n co-ordinates qk, 
taken all in all, the principle then asserts that 

n 

2 0 • • • • (!) 

k I 

Any connexions that may exist between the point-masses need not 
be taken into account, since they do no work in the virtual displace¬ 

ment Sqk. 
We assume that the external forces have a potential. We then 

have 
H 

• ■ ■ • (“) 
/■ 1 

Further, 
11 n n 

eWb-y8E,-"‘^2-T 
^ k 1 fc 1 

The sum on the right-hand side may easily be transformed. We 

have 

yp,Mk =- jt - yjhMk ^ ]►> a* - • <3) 

in which we have used the last equation of those two lines above. 

From (1), (2), (3) it therefore follows that : 

jt ^Pk^9k = ” Kpot) = SL. 

VOL. 1.—7 
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L ~ EAfM — EJ;0, is called the “ Lagrange function " ; from its de¬ 
finition we see that it is quite independent of the* choice of co-ordinates. 
By integrating from 0 to t (the variable under the integral is called r to 

distinguish it from t), we get 

From (4), as is well known, we immediately get Hamilton's principle 

of mechanics : 
t 

sJ'Lt/t -- 0 .... (4a) 

0 

if we decide that Sqk is to vanish at the limits r --- 0 and r /, and 
that St is to he zero along the path. 

We next show that equation (4) holds not only for rectangular 
Cartesian co-ordinates, as we assumed earlier, but quite generally for 
arbitrary co-ordinates Q*. and momenta PA>. It is immediately clear 
from the meaning of L ( ee above) that the right-hand side of the 
equation is independent of the choice of co-ordinates. The same holds 
of the left-hand side, since it signifies the work of the impulses pk 
during the virtual displacement of Sqk. Hence we must have 

- 2>,SQ„ k ~ 1, 2, ... n : l — 1,'2, ... f 
k l 

where / < n denotes the number of degrees of freedom of the mechanical 
system and n / the number of equations of condition between the 
points of the system, which we imagine to be already fulfilled in intro¬ 
ducing the new co-ordinates Q, P. The invariance of Epkhqk may be 
worked out analytically as follows. We suppose the new co-ordinates 
Qk to be given as functions of the rectangular co-ordinates qk : 

= A(Qi. • • • Qf) and Qi - *,(?„ • • • z 5; \; 
. . n 

• •/ • 
(5) 

Then 
■ ■ m — 1 

(6) 

We now calculate 

^Eww 

-4c* 

ii £
 

and imagine E*.^ to be expressed in terms of the new co-ordinates and 
velocities ; we then have 

dEkin _ y tT/n'r? ^Q? y ^$1 

*4* 3Qi 7>qk ~~ “ i>Qi iqk’ 
Vk = • (7) 
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the last step being on account of (<>). On the other hand, we get 
for 8(ff. 

% ■ ■ • • (8) 
m I 

so that we obtain from (7) and (S) 

r, 

>4 I'M-"'*1 k 

The last summation over £ gives 0 when l 4= w, and 1 when l — m. 
Hence 

A- 1 /I 

If we now take over the general definition for the impulse or momentum 
from (5), page 7S, 

l\ -.(9) 

we obtain the recjuired result: 
* / / 

2 P&t 2 Wi ** 2• • • I JO) 
A- 1 / 1 A- I 

The variations arc at present still quite arbitrary. If we also 
imagine the moment / of the end of the orbit to be varied by St, we 
have 

t t 

JsLrfr - sj Ut hSl, 

0 0 
and we then obtain (4) if instead of the capitals Qfr, P, we now again use 
the small letters qk, pk, for the generalised co-ordinates : 

/ _ 1 

y vMk I — sfldr-LS* . . • (11) 
k-l Ji> ,f 

If. as we have hitherto assumed (cf. equation (2)) the potential 
energy does not contain the time, the energy lawr holds in the form 

H -T EWn -|- Epot = const. = W . . (12) 

Here (as on p. 77) H denotes the total energy of the system. From 
(12) it follows that 

E„ E^-W, L = 2Ew»-W 
i i 

|l(/t = 2jEjt.inrfr - W< = S W t • (13) 
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The quantity 
t 

N.--2JkWi//t . . • • (14) 

0 

here introduced has the dimensions of an action (erg sec), and is called 
the action function (1V irkungsfunHion). 

If we substitute (13) in (11) avc obtain 

Ypk*qk 1 - 88 - /8W ~ (W -| L)U -- 8S - /8W - 2EkinSt. (15) 
0 

As in the case of rectangular co-ordinates, E*#n is again a homogeneous 

quadratic function of the generalised velocities, so that we may use 
Euler’s theorem and write 

2. 'Z.PiS* 
From (15) we obtain 

ypkSqk !‘ 8S - - <SW - Ypkq,M • • (15a) 
. 10 

The integral (14) is to be taken over any mechanically possible path, 
as is shown by its derivation from d’Alembert's principle. Through 

fixing such a path by means of its initial conditions (initial position and 
initial momentum) S becomes a definite function of the time. By 
making the initial conditions variable, 8 appears as a function of 2/ -j 1 

variables (of the time, of f co-ordinates qk of the initial position and of 

/co-ordinates jpj of the initial momentum). But instead of these 2/ -) 1 

variables we shall introduce other variables, namely (proceeding as for 
a ballistic problem), besides the co-ordinates q\1 of the initial point, the 

co-ordinates qk of the end-point (“ target point ” ; “ Treffpunkt ") and, 

simultaneously, instead of the time t between the initial point and 
the target point, the energy W (in ballistic terms, the charge ”). As 
a matter of fact, starting from a given initial point, we can reach a 
given target point by different paths and in various orbital times, 
according to the amount of energy available. The equation that 

accordingly exists between t, W, qk and q°k allows us to calculate t as 

a function of W, qk and q{)k and to eliminate it by inserting this value in 

the upper limit of S. In the sequel we accordingly regard, 8, the f unction 
of action, as a function of the co-ordinates qk of the final position and of the 
co-ordinates cfj. of the initial position, and as a function of the energy W. 

We take 88 as standing for the expression 

+ • • (W) 

We suppose this value of 88 inserted in the right-hand side of equation 
(15a). Designating the displacements §qk for t = 0 and t — t on the left- 
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hand side of (15a) by Sq°k and Sq[, we write, in place of (15a), 

*-/ k f 

2 VAK I - 2 KK -) <8W - 88 . . (156) 
1 k 1 

Let the quantity S(fk be called the “ variation at the end-point of 

the orbit.” It signifies the virtual displacement to which we have 
subjected the orbital element at the time t ~ t. We must distinguish 
between this «and the “ variation of the endpoint of the orbit,” which, 
as in equation (10), will be called Sqk. The latter is now composed of 
two parts ; (1) of the virtual displacement Sqfk that we have effected 

at the end of the orbit, and (2) of the lengthening of the orbit which 
corresponds to the alteration of the orbital time by the amount St. We 
have to imagine the co-ordinate qk to continue its course during the 
time St with the velocity qk. The second part therefore- becomes qkSt 
and we have 

-= M + <j,M. 

If we insert this in the left-hand side of (155) the following relation 
results, on which all that follows is founded : 

k f k f 

2ViMk 2« I <8W 88 . . (17) 
k 1 k t 

(where- Sqk is the variation of the end-point of the orbit). 
By comparing (16) and (17) and assuming Sqk< Sq{f 8W as all in¬ 

dependent of each other (no equations of condition), we obtain 

(i«) p'i ~ - § m) ^ H ■ (m 

If, now , S were known in any way as a function of the qk s, then by (18) 
we should be able to derive the pk s from S. But this does not really 
help us on. For, to determine S as a function of the qf s, wre should 
require previously to have integrated the equations of motion. Then, 
besides the successive positions of the system, also the corresponding 
momentum co-ordinates would be known and equation (18) would 

become superfluous. 
We can, however, use equation (18) indirectly to find S. For if wo 

insert (18) in the energy law (12) 

K«« + Kot “ H(p, ; qk) - w . . . (19) 
where H denotes Hamilton's function, that is, the total energy, expressed 
as a function of the pk s and q,fs, then we get Hamilton'a partial differ¬ 

ential equation 

(20) 
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It is of the first order and of the second degree (at least in the case of 
classical mechanics, since here EA.fW is a quadratic; function of the y>,(.'s). 

We shall assume that we can integrate equation (20), that is, that we 
can specify a solution 

8 - K{ql . • • qf ; . • • ar) 

containing/arbitrary constants of integration. One of these constants, 
say a1? is merely added to S and is therefore of no account ; it does not 
enter into the expressions for the pk's. But S also contains W as an 

essential constant arising from the differential equation. We shall call 
special attention to this by writing 

8 = S(ft . . . qf ; Wa2a3 . . . a,) ■{- ax . . (21) 

We shall see presently how, under certain circumstances (by separa¬ 
tion of the variables), we can actually arrive at a solution of the differ¬ 
ential equation (20) of the form (21). We first exhibit the inner rela¬ 
tionship between the quantum theory and Hamilton's method involving 
the function of action, of which we spoke at the beginning of this note. 
It rests on the fact that our phase-integrals 

allow themselves to be expressed directly bv the function of action S. 
On account of (18) we have 

• • • (-2) 

By the rule on page 84, about the integration limits of the phase- 
integral, JA. denotes the increase that 8 undergoes when the variable qk 
traverses the region that comprises the complete description of all the 
phases of motion of the system. Fixing our attention on periodic 
motions (or “ conditionally periodic ” motions, see below), we suppose 
that in the integration qk returns to its value at the outset, and we call 
3k the klh modulus of periodicity of the function of action. Our quantum 
conditions 

7<kh 

then require that the moduli of periodic iiy of the action function he whole 
multiples of Planck's quantum of action. 

To see how the moduli of periodicity of 8 are determined we must 
consider a little more closely the integration of the differential equation 
(20). The only method that is successful is that of the separation of 
the variables. We shall illustrate it by a simple example. 

Suppose we are dealing with an oscillator bound anisotropieally in 
space. The restoring forces — kxx^ — k2x2, — k3x3 act on the point- 
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mass m in the directions of three mutually perpendicular axes xpx^. 
If , p2, pz, are the components of momentum (pk =■= mxk), then 

E, = ...Jr.?7.?2 e — x 2 I p r 2 i ^2\ 
XJlin ~ 2l 1 1 ' 7 2**‘2 t h'3r^ ) 

and the partial differential equation (20) then becomes 

(dSY i / *S \ * 

W f \ix2J ■* 
:J + m(kxx^ f k2x22 + k^x2) 

This equation allows itself to be “ separated ” with respect to the 
variables xv x2, sr:t, that is, it allows itself to be resolved into the following 
three equations, that each depend on only one of the three variables : 

/SS\2 /DSV 

W,/ 
-i nikpxf2, = a2, 

\ix*J 
+ mk2x22 =-- a2, 

mkyXr2 

where av a2, a;J are integration constants between which the following 
relation holds : 

I a2 -f- -- 2mW .... (25) 

We thus have only two arbitrary constants ; the third constant is 
determined by these two and W. 

Equations (24) give us 

= V&i - mkrr2 -= \/wAq Va42 — .r,2 . . (26) 

Here we have set 
oq - mkja -2, . . . . (27) 

Equation (26) shows in conjunction with the mechanical meaning of 

II =■- l'i = mi.(28) 

that the variable xi is limited to the region between -) and that it een 
reverse its sense of motion only at the end-points ~| cq of this region. 
For if x^ were to overstep the region ) ah then p( would become 
imaginary, which is impossible. If xf were to stoj) before getting to the 
boundaries of the region and reverse its direction at a point inside, 
then x{ would — 0 here ; but by (28) this would entail the vanishing of 
dSI'dXi, which is excluded by (26), since dS/fcr* can vanish only at the 
limiting points ± »,• Thus the variable x, traverses the entire region d; 
alternately in the increasing and the decreasing sense, reversing its sense of 
motion and the sign of at the end-points of the region. That is, the full 
region of variability of stretches from — af to f a, and back again to 
— a*. We indicate this integration by adding a circle Q to the integral 
sign. Our quantum conditions are then to be written in the form 

(20) 
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Here the integral obviously denotes the circular surface whose radius is 
at. Thus we conclude from (29) that 

n th 

7T V W k; 
(30) 

From (27) and (25) it then follows that 

r-1 ,^—Tlh 
/ A mk\— 2 m W 

' IT 
(31) 

We finally introduce the vibration numbers v(, which correspond to 
the free oscillations of our point-mass in the three co-ordinate directions. 
These are given by 

jict 
V m’ 

Vrn/y 2 7TWV.. 

If we insert' this in tin* second equation (31), we get 

2mW = Y2mv‘nih’ W “ • ’ (32) 

The energy of our oscillator thus appears, as was to be foreseen, as 
an integral sum of energy-quanta hvi that correspond to the three 
partial vibrations ; our spatial oscillator, just like the linear oscillator 
in § 3, conation (13a), is quantised according to energy-elements. 

A series of general remarks follow from this simple example. 
(a) If Hamilton's differential equation of a system of / degrees of 

freedom allows itself to be fully separated as regards the co-ordinates 
qx . . . qf, that is, divided info parts that depend in turn on only one of 
the co-ordinates qf, then, as in (24), / constants at appear, of which, 
however, only / — l are arbitrary. In this way we obtain by the 
method of separation of variables the complete solution of Hamilton's 
differential equation with the number of integration constants required 

in our former remarks. Together with the energy-constant W we have 
/ parameters (we shall call them briefly the “ constants a ”), which, 
according to classical mechanics, may be chosen freely within a continuous 
manifold.I, but, according to the quantum, theory, are capable only of discrete 
values. 

(b) Just like the Hamiltonian equations so the partial equations 
derived from them by the process of separation in the co-ordinates q 
are of the first order and of the second degree. We shall assume that in 

Hamilton’s equation only the squares (and not the products) of the — ’s 
^i 

occur ; this is equivalent to the kinetic energy being composed linearly 
of the squares of the p/s. In this case we speak of the orthogonal 
co-ordinates q. If we calculate dS/c)qiy then, as in (26), we obtain a 
pure square root of a function of qi alone : 
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Let at and be two consecutive simple real roots of the function /,■ 
in a region of values which is accessible to the co-ordinate qr according 
to its mechanical significance ; we then sec from the same considera¬ 
tions as those applied in our special example, that if once qi lies between 
the values at and bh then it swings permanently between these limits 
(“ libration limits ”). For each libration and for each co-ordinate qh 8 
increases by a fixed modulus of periodicity. Just as in our example the 
periods corresponding to the various co-ordinates do not in general 
superpose exactly, and hence the orbit will not return into itself. We 
call this behaviour corulitioruilhj periodic* For further details, in par¬ 
ticular concerning the conditions under which an asymptotic “ limita¬ 
tion motion ’ occurs, in place of the “ libration motion we refer the 
reader to OharJier.f Celestial Mechanics (" Mechanik des Himmels ”). 

(c) In all (conditionally periodic systems the form of the orbital 
curve has the character of Lissajous figures. 
two-dimensional Lissajous curve 

which is described by the co¬ 
ordinates .rrr2 of our example. 
The curve touches its envelopes 
,rt | ax and x2 | a2 alter¬ 
nately. Exactly the same occurs 
in the general ease, for which we 
denoted the corresponding limits 

for the co-ordinates r/? bv at, bf. 
The somewhat different appearance 
of, for example, figures which will 
be shown in Chapter VI to illustrate 
the Stark effect, is merely due to 
the fact that the co-ordinates q, 

In Fig. 25 we draw the 

Fio. 25. Form of the orbital curve 
of a condit ionally periodic system 
having two degrees of freedom 
.r,, :i\. 

are not Cartesian but have been drawn 
agreement with their physical 

as curvilinear co-ordinates in 
significance. The Lissajous curve in 

this ease does not nestle in a rectangle but in a curvilinear quadrangle. 
(d) An essential difference, however, manifests itself if there happens 

to be a cyclic azimuth among the co-ordinates qt of the system, that is an 
angular co-ordinate </>, which does not occur in the expression for the 
energy. In this case in place of equation (33), the following holds : 

dS 
i<f> 

const. — p ■ (34) 

* Non-soparable problems can also have a conditionally periodic form for the 
orbits as K. Fues has shown (Zeits. f. Physik, 34, 788 (1925), following the ideas 
contained in a paper by Kneser, Math. Ann., 84, 277 (1921). 

f Leipzig, 1902, Vol. I, pp. 85 et seq. The name “conditionally periodic” 
arose from the circumstance that when one or more conditions of commensur- 
ability (Note 5) became added to the motion, it “ degenerated ” into a truly 
periodic motion. The more appropriate term “ multiply periodic ” has been 
suggested by Bohr. 
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In (f> we have no libration limits but the mass-point continually tra¬ 
verses the orbit around the origin of the co-ordinate system, according 
to the law of areas. The representation of the relativistic Kepler ellipse 
in Chapter V, § 1, gives us a picture of this behaviour. It is included 
between two enveloping circles instead of being hedged in by a curved 
quadrangle. The full region of variability for a cyclic co-ordinate 
stretches from </>—() to $ ~ 2tt. Consequently the corresponding 
modulus of periodicity of S is 

2 IT 

and the quantum condition becomes, as in the case of the simple 
rotator 

27rp vh . . . . . (35) 

It is not necessary for the sequel to emphasise this frequently 
occurring exceptional case. Rather, use is to be made of it in defining 
the conditions of the conditionally periodic system. 

(e) The general quantum conditions for a conditionally periodic 

system are, following on (33), for orthogonal co-ordinates qt : 

•h =• §VfA<l,. W, a2 . . . y.f)(lq, =-■ n,h . . (3<i) 

They furnish us with / equations for determining the / constants W, 
a2 . . - 0Lf. These constants, in p irticular also the energy W, are thus 
fixed by the quantum numbers rq. A discrete main'fold is separated out 
from the continuous manifold of their values. In particular, the quantising 
of the energy pays due regard to the sharpness of spectral lines. 

(/) Complex integration offers the natural method appropriate for 
evaluating the integrals of the form (3b). As we have already indicated 
by the sign Q, the path of integration is a closed one. It runs round 
the two branch points ah bL of the square root, which we suppose con¬ 
nected by a branch incision ; and, moreover, since the square root 
changes its sign in passing around the one or the other branch-point, 
and since the integrand of the phase-integral is necessarily positive 
(cf. p. 84) the path forwards must be traced on the positive, that back¬ 
wards on the negative, edge of the incision. We re-model it (cf. 
Note 4) into any arbitrary course about the incision and may, in given 

cases, simplify it further by contraction into the singular points of the 
integrand. Thus the most powerful instrument of the theory of functions, 
the method of complex integration, places itself beside the methods of higher 
mechanics in the service of the quant urn theory. 

(g) Hitherto we have disregarded the real problem of integration of 

the differential equations of mechanics, that is, the representation of 
the motion in its dependence on time. We must now supplement our 
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remarks by a few statements about the method of calculating the 
orbits that constitutes the true achievement of Jacobi in this field. 
Tins is done most briefly by means of the theory of canonical transforma¬ 
tions (see Note 2). We start out from the integral (21) of the Hamilton- 
Jacobi equation with the integration constants W, a2, a;{ . . . ar (we shall 
in future continue to omit the unessential constant aL) and perform the 
process of variation on it, obtaining 

' iw8W ' IS8-- 
as ■ as, 

Using equation (18), we write this 

/ / 

SK £>,>/,. -i /j,8W 4- £>8a,. • (37) 

The quantities ft here introduced arc* to be defined thus, as a comparison 
with the preceding equation shows : 

Pi 
NS 

MV’ A 
ns 

t>a,/ 
h-2 . . . / 

m 

Equation (37) state's that between the* qk, pk as original variables, and 
the/?A., aA. (with ap - W) as k‘ new variables/’ the characteristic relation of 

the contact transformation, equation (196) of Note 2, again holds. The 
function F* that occurred then' is here' again represented by S. As it 
does not contain t explicitly, equation (19a) of Note 2 assumes the form 

H(p, q) H(P, Q) ; that is, in our case 

H(p, q) =. H(W, aa . . . a,, ft . . . ft) H W . (39) 

From this it follows that 

iVH 

i)W ' ’ *OLk 
0, k =• 2 •/. 

*Pk 
k - 1. (40) 

Now the Hamiltonian equations hold in the new co-ordinates W, 
a, ft just as much as in the old co-ordinates p, q. Thus, in view of 

(40), we have 

dW <TH 0 dft 

* ^ “ dft " ’ di 5W 
(4la) 

*H dft _ 
fyft ’ dt 

k — 2 ... f . (416) 

These equations assert nothing new so far as W and a,, are concerned. 
They only conlirm their constancy during the course* of the motion. 

But concerning fik they state that the quantities ft2 . . . ft are also 
constant during the motion, and that ft becomes equal to t (except for 
an additive constant, which we can include in the reckoning of the 



Equations (43) give / — 1 relations between the co-ordinates 
qY . . . qf of the orbit, which do not contain the time. They suffice 
to describe the form of the orbit. We call them the orbital equations. 
The constants /?2 . . . 8f, together with the a;,'s and W, give the 
still wanting constants of integration of the problem. The course of 
the motion in time is represented by equation (42). 

We have thus deduced-—by the shortest way- the remarkable 
theorem of Jacobi: the integrals of the equations of motion may, if a, 
complete solution S of the partial differential equations is known, be 
obtained by mere differentiation. 

(h) We shall conclude this section with a few remarks on the origin 
of Hamilton's theory. Our account is based on two notes by F. Klein.* 
Hamilton was an astronomer who studied the course of rays of light 
in optical instruments. He found ray optics prevalent (Newton's 
emissive (corpuscular) theory of optics), in which the path of corpuscles 
of light in a medium which is homogeneous in sections or, more generally, 

in a non-horaogeneous medium, is described by total differential equa¬ 
tion,#. Hamilton endeavoured to link up this theory with that of wave- 
optics, which had just begun to come into being at that time,f by means 
of partial differential equations. 

He recognised as the connecting link the concept of the trace-surface. 
In wave-optics this is defined as the surface for which the vibrations of 
light are in the same phase ; in ray optics it may be defined as the 
orthogonal surface to the orbits of the light corpuscles. In every 
optical problem there is a family of wave-surfaces. Let this family bo 
represented analytically by S ----- const., where the constant is the para¬ 
meter of the family and S is a function of the co-ordinates qx. ... qf. 
For the mechanics of light-corpuscles f 3 and space is Euclidean ; 
for the problems of general mechanics we must pass over into an 

/-dimensional space which, moreover, is in general non-Euclidean. 
As we know from the theory of surfaces, the direction-cosines of the 

normal to the surface S — const, is determined by the ratios of the 

derivatives NS/'bq/c. The momentum of the light corpuscles is in the 
direction of this normal, so that pk is proportional to i)S/'dqk. This at 

* Oosammelte Abhandl., 2, 001 and 003 : they appeared originally in .Tuhros- 
berichte d. Doutseh. Math. Ver., 1, 1891, and Zeits. f. Math. u. J’hvsik., 46, 1901. 

t Hamilton’s papers on ray optics date from 1828 to 1837 ('Frans. Lrish 
Academy) ; his papers on dynamics date from 1834 to 1835 (Trans. Roy. Hoc., 
London). 
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once tells us the geometrical meaning of our e(|nation (18) and at the 
name time convinces us that the equation S const, of the wave- 
surface is analogous to the postulate that Hamilton’s function of action 
must be constant. The circumstance that the wave-surfaces are to he 
described by a partial differential equation is plausible geometrically, 
just as is the fact that its orthogonal trajectories may be derived by 
simple differentiation (see above, under (g)). 

Jacobi took up and extended only that aspect of Hamilton's theory 
which could be dealt with by analytical mechanics. The optical aspect 
became lost to view, and was newly discovered by Bruns * in his theory 
of the eikonal. The eikonal is essentially the time taken by a ray of 
light to pass in an optical system from a given initial point to a variable 
final point. Hence the eikonal becomes identical with tin1 phase in the 
undulatory theory, that is with the action function 8. At the same 
time, Hamilton’s principle, equation (4a), which we may also write in 
the form 88 ----- 0, becomes merged into Fermat’s principle of least time. 

The relationship between ray optics and ordinary mechanics, which 
has here been sketched, was all-important for the discovery of w^ave- 
meehanics : just as ray optics is only a limiting case (wave-length 

small compared with the diffracting objects) and is in general to be 
replaced by wave-optics, so, according to Schrbdinger, ordinary 
mechanics must be replaced, when we deal with atomic dimensions, 

by wave-mechanics. 

§ 7. Elliptic Orbits in the Case of Hydrogen 

In §§ 4 and f> we have spoken only of the circular orbits of the 
electron of the hydrogen atom. This is obviously an unnecessary 
limitation. As in planetary systems so here wc must fix our atten¬ 
tion on the ellipse as the general form. In this sense we express 

Kepler’s law' in the form : 
The electron moves in an ellipse, in one focus of which the nucleus is 

situated. 
In the formulation of Kepler’s lawr the relative motion of the nucleus 

is left out of account for the present : this defeet can he remedied 

subsequently. 
The motion in the ellipse represents a problem in two degrees of 

freedom, in that the position of the electron is determined by two 
co-ordinates, here by the polar co-ordinates measured from the focus, 
namely, the azimuth <f> and the radius vector r. We treat the problem 
most simply f by the methods of the preceding section ; that is, we 
start out from the Hamilton-Jacobi differential equation in the 

* Abhandl. d. Leipziger Akad., 21, 1895. 
f In the previous English edition of this book (p. 234) the elliptic motion was 

treated in as elementary a manner as possible. It seems appropriate nowadays 
to follow the direct if somewhat thorny path of Hamilton’s method, particularly 
in view of tho trend towards wavo-mechanics. 
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co-ordinates qk r. <f>. To be able to set up this differential equation we 
must first write down the total energy H as a function of the impulses 
or momenta p and the co-ordinates q. 

We form the orbital element ds of the electron in polar co-ordinates : 

(Is2 - dr2 -1 r2dcf>2. 

From this we obtain the kinetic energy 

The potential energy is 

'(»y - +>v*) • • (1) 

Ze2 
^vot ~ * • (2) 

where we again first denote the nuclear charge generally by /e. 
Corresponding to the position co-ordinates 

q ----- (j> and q ----- r, respectively, 

we have, by equation 9 of § (> of the present chapter, the impulse or 
mo me ntum co - ord in a tes 

V 
in 

Zq 

We call them p^ arid pn and on account of (1) and (3), 

p<f) mr2<f>, pr - mr 

By (1), (2) and (4) the energy law now runs : 

W - E,,.„ |- K,., - ™(r + r^) 
Ze* 

r 

: i,Xp;l + ?p*) ~ = Ii(p’q)- 

(3) 

(4) 

By the general rule on page 101, equation (20), we get from this the 
Hamilton-Jacobi equation if‘we replace pr by DS j^r and p<t) by /^. 
Hence 

+ I 
r2\^J 2mW 

2mZe2 

r (S) 

Since <£ does not occur explicitly (cyclic co-ordinate, see p. 105), we may 
next set 

as 

d</> 
" const. — p (6) 

This integral of the differential equation is equivalent to the law of 
areas. For p$ is by equation (4) the moment of the momentum 
mvy that is, the product of the arm r and the azimuthal component of 
the momentum By the law of areas (“ the radius vector sweeps 
out equal areas in equal times ” ; Kepler’s second law) p^ is, however, 
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constant during the motion, and this is also asserted by equation (6). 
The quantum postulate 

lienee gives ns as the value of p : 

2ttp — n^Ji, 
*8 
7)<f> (8) 

The equation (7) is called the azimuthal quantum condition; it 
agrees with the earlier quantum condition of the rotator (see eqn. (18), 
p. 82) ; nit) is the azimuthal quantum number. The limits of the integral 
in (7) correspond to the1 rule on page 84. They comprise the whole 
domain of values of the position co-ordinate (f>. By substituting 
equation (8) in equation (5) we obtain 

or 

( )2 - 2///W 
\ir/ 

2mZe2 

r 

n'ih'1 9 __ 
4tt2/2 

as 
J A 

(9) 

(10) 

with the abbreviations 

A 2m. W, B- mZe2, C 
ri~h2 

47T2 ' 

We need not concern ourselves witli the general integration of (5), 
but may immediately * form 

,Tr = <J>~rfr •= nrh . . . . (11) 

(1.1) is the radial quantum condition. and nr is correspondingly the 
radial quantum number. The limits of the integral must comprise the 
full range of values of r ; that is, r runs from rmtn to rmax, and back to 
rmin again ; we denote this by attaching a circle to the middle of the 
integral sign. We may evaluate the integral by the method of complex 
integration and then obtain, as is shown in Note 4, 

Jr- f IA 4- 
2B 

r 
C 

;; d r - 2tn(VC 
_B 

VA (12) 

If we substitute this in (11) we get, in view of the meanings of A, B 

and C, 
.n<t>h niLer \ 

VlmW/ 
— nrh (13) 

* W. Wilson deduced the above equations (11) and (7) from his general 
formulation of the quantum conditions, quoted on p. 83, slightly earlier than the 
author (Wilson’s paper, Phil. Mag., 31 (161), 1916, was concluded in November, 
1915, the author’s in December, 1915). But Wilson made no application of 
these equations to Balmer’s series. 
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(in determining the sign of Y (■ we must hear in mind the limit remark 
in Note 4.) Equation (13) now reduces to 

or W - 

27r£mZe2 

vlmW 
(>4 f nr)h. 

2ir2mZ2e* 1 

h2 ' (n<t> + n,)2 

HhcZ2 

n2 
(14) 

where we have taken the value of R from equation (16), page 89, and 
have set 

n,,} -I- nr~n . . . . (15) 

We call n the quantum sum or. according to Bohr, the principal 
quantum number. Like and nr, it is a positive integer. Bohr 
suggested using k for Instead of this we shall later introduce the 
quantity (/), which is given to us by wave-mechanics. 

The result (14) is of very great importance, and of impressive 
simplicity : we have found for the energy of the elliptic orbits the same 
value as we found in equation (13) on page 87 for circular orbits ; the 
quantum number n that occurred before is now replaced by the principal 
quantum number n# -| nr. We shall presently show that the quantum 
conditions (7) and (11) select from the inherently continuous manifold of 
all possible ellipses a family of quantised ellipses which are given by the 
two positive whole numbers and nr, or, as we may say in view of (15) 
whose size and form is determined by and nr. Equation (14) then 
states that each of the quantised ellipses of our family is equivab'it in 
energy to a definite Bohr circle. 

We realise the form of the ellipses best by determining their semi¬ 
major and semi-minor axes. For this purpose we require the aphelion 
and the perihelion distances, that is, rmax and rmin. We obtain these 
quantities by forming pr - mr = NSj'dr = 0. By equation (9) this 
gives 

2/n.Wr* + 2/wZ«V -- 

But for the major axis we clearly have 

that is, 

2a 

- 2mZe2 __ h2n2 

2.2mW iuhri/wr 
(16a) 

the last step following from (14). For the semi-minor axis h we have 
the familiar relationship b2 — a2 — c2, where c denotes the distance 
of the focus from the centre of the ellipse. Hence it follows, as is 
immediately obvious geometrically, 

b2 — (a — c)(a + c) = rmin . rmax. 
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Hence 

b2 ^ - 
n^hr 

47r2.2mW 

hr Tint 
47T~mr/(;1 

hhm^ \a 

47r2mZe2/ 

(106) 

If, as in equation (7) on page 80, we write —0 a ~ radius of the 
4irimeu 1 

first Bohr circle as an abbreviation in equations (16a) and (166), we 
get 

a 
7l~ 

l'Z' 
a 

nn$ 
1 Z 

(16c) 

The equations (16a, 6, c) show that the size and form of the ellipses is, 
in fact, fully determined by and nr. We also observe that our value 
for a coincides with the radius of the circular orbit, having the same 
n (ef. eqn. (4), p. 85). 

We may now also calculate the period of revolution r from the law of 
sectorial areas. We know that 

n __ r21 ^ 1 rHh 
in ™ m 2n 

denotes double the surface swept out by the radius vector in unit time, 
2F 

and hence is also equal to “ , where F aim is the total surface of the 
r 

ellipse. Hence it follows that 

2/wF 

P 

4irhn . n*h? 

nji 47ramZV * 

(17) 

that is, exactly the same value as for the circular orbit having the same 

n (eqn. (4a), p. 85). 
Finally, we may conclude from (16a) and (17), as on page 86, that 

Kepler's third law also holds for our elliptic motion : 

T 

a 

2 

3 
const. 

47r2m 
(18) 

(In the astronomical case, we must replace Ze2 by mM, in agreement 

with Newton’s law ; here M = sun’s mass.) 
If we had also taken into account the motion of the nucleus (ef. the 

beginning of this section), we should have had to replace the electronic 
mass m in all our formula? by the “ resultant ” mass /x (cf. § 5). In 
place of R,* we should then have to substitute the general value R of 

equation (9), page 92. 
We next take one ellipse of the family as the initial orbit of the 

electron (let the principal quantum number of the ellipse be m), another 
ellipse as the final orbit (its principal quantum number being w). In 

von. i.—8 
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order that the transition may be spontaneous and accompanied by the 
emission of energy we must have m > n. We calculate the emission of 
energy by the h y-law. Wc obtain, analogous to equation (15), page 89, 

v (J») 

and in particular for hydrogen (for which Z 1), 

From the point of view of practical results, this spectral formula 
again gives only Balmer's series, but it has a deepened theoretical signifi¬ 
cance and its origin has noiv multiple roots. By the admission of our 
elliptic orbits the series has gained no extra lines ami has lost none of its 
sharpness. 

When the author, early in 1916, developed the above theory, he 
referred at the outset to a series of ways * by which the various possi¬ 
bilities of generation contained in a Balmer line may be made manifest. 

1. In the natural state of the H-atom without a super-imposed field 

the various possibilities of generation coincide only accidentally, as it 
were, in one line. But if we allow an electric field to act on the lumin¬ 
escent atom, in the manner practised by Stark, the original quantum 
orbits will be disturbed. It is evident that the disturbance will affect 
the various ellipses differently ; it will therefore alter the energy of the 
various orbits differently in each case. The result is the so-called 
Stark effect, to which we shall return in Chapter VI. 2. Similar 
consequences follow from the application of a magnetic field and the 
result is the Zeeman effect. Here, too—both in our theory and in the 
older view based on the classical theory—the resolution of the lines is 
not due to new possibilities of vibration being generated but to the cir¬ 
cumstance that lines which were originally coincident are differently 
displaced and hence separated by the magnetic field. We shall also 
study the Zeeman effect in Chapter VI.f 3. The most beautiful and 
most instructive manifestation of the quantum states that belong to 
the same Balmer line is, however, given by Nature herself without our 
agency in the fine structure of space-time conditions as reflected in the 
fine structure of spectral lines. This will be dealt with in Chapter V, 
to which we refer the reader. 4. The (in hydrogen) coincident lines 
may be separated by an inner atomic field in place of an external 
electric or magnetic field. Such an inner atomic field does not, indeed, 
occur in the case of hydrogen itself or atoms of the hydrogen type, but 

does in the case of all other atoms (neutral He, Li, etc.). In Chapter 

* Sitzungsberichte der Munchener Akadeinie, 1915, p. 425, cf., in particular, § 6. 
f It is more accurate to say that we shall first deal with the Zeeman effect for 

fields that are not too weak. The complications that occur in the Zeeman effect 
and also in the Stark effect when the fields are extremely weak are discussed in 
Chapter VIII. 
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VII wo .shall nee that such atomic fields are the cause of the single 
Buhner series of hydrogen splitting up in the, elements not of the hydro¬ 
gen type into the series systems : Principal Series, First and Second 
Subsidiary Series, etc. 

All these things are connected with a conception which was intro¬ 
duced into the quantum theory by Schwarzschild (ef. the quotation on 
p. 83). It is a question of the difference between degenerate and non - 
degenerate systems. A system of f degrees of freedom is degenerate if 
less than / quantum numbers are sufficient to fix its energy according 
to the quantum theory. The classical Kepler motion and, indeed, 
every purely periodic motion is fully degenerate, since the one principal 
quantum number n suffices alone. The relativistic Kepler motion is 
non-degenerate ; on account of the smallness of the relativity correction 
it may, however, be called approximately degenerate. In the same way 
the degeneracy is partially counteracted by the electric field of the 
Stark effect, the magnetic field of the Zeeman effect, the inner atomic 
field and so forth. It is only in the case of non-degenerate systems that 
all the / phase-integrals come into action, as we mentioned earlier in 
introducing them (p. 82). The analytical criterion of degeneracy set 
up by Schwarzschild or taken over from celestial mechanics is developed 
later in Note 5 of the Appendix. 

We next enumerate the various possible circular and elliptic orbits, 
which belong to a given value of n — % | nr. We begin by remarking 
that : 

(a) nr ~ 0 denotes a circular orbit. This follows from the radial 
quantum condition (11), which shows that when nr vanishes, so also 

does pr, that is, r, and so r must be constant. 
(b) n<t> ~ 0 denotes a degenerate ellipse, namely, the focal distance 

taken twice (to and fro). For when ~ 0 we also have by (1 tib) that 

b 0. 
But this degenerate ellipse must be excluded. From the point of 

view of orbits the reason given was that if the electron were to traverse 
the focal distance it would necessarily collide with the nucleus. The 
view of wave-mechanics is much more satisfactory. In wave-mechanics 
the azimuthal quantum number, our % or Bohr’s k (see above), becomes 

replaced by the quantity : 

Z = w*-1, Z-0,1,2.(21) 

From this it follows immediately that 1 is the smallest value of our 
quantum number that can occur according to wave-ryechanics, or, 

in other words, that n$ ~ 0 is forbidden. 
At the same time it follows from n = nr + n$ that the upper limit 

of n^ is the value n, and hence that the upper limit of the wave-mechani¬ 
cal quantity l is n — 1. Accordingly for a given n we have precisely 
n possibilities of resolution into radial and azimuthal quantum numbers, 
corresponding to the n permissible values of Z, namely, Z=0,1,2... n— 1. 
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This is illustrated in the following tabulation, where we enumerate the 
various types of orbit aeeording to the quantum numbers n and l (the 

significance of the expressions K L - , M N ----- shell will be made 
clear in the next chapter) : 

n -- 1, one possibility, K-shell 

l — 0 nr — 0 a — at — b 
a circle 

/ 1 
/ - 0 

n 2, two possibilities, L-shell 

nr 0 a 22</1 
nr - 1 a 22</1 

circle or ellipse of eccentricity e — 

b a 
b kjt 

n ~ 3. three possibilities, 7V1 -shell 

l 2 nr 0 a b — a 
1 --= 1 •«, ■ i a 3 2al i, - 

/ - 0 nr 2 a «- 32«, b \a 

circle 
V5 

or ellipses of eccentricities € — or € 
V* 

n ----- 4, four possibilities, N-shell 

/ - 3 nr — 0 a — 4‘2a1 b a 

/ - 2 nr -- 1 a 4 2aL b | a 
l = 1 nr - 2 a — 42a1 b — j a 
/ - o nr 3 a - 4^ b ],( 

Fig. 26.—"Shape of the orbit of the hydrogen electron for n - 1,2, 3, 4 (from 
left to right). The orbits are drawn concentrically in order to -how the 
relative sizes of the orbits which have the same value of n. 

The diagrams drawn in Fig. 26 have not been drawn to the same 
scale (in order to save space) ; cf. the arrows av 4av . . . drawn at the 
bottom. Moreover, for the sake of clearness the curves have been 
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depicted concentrically instead of confocally. If we draw them con- 
focally we obtain the following picture instead : 

K. L. M. N. 

Kkj. 27. Orbits of the hydrogon olortron for n 1,2, 3, 4 drawn confocally. 

We introduce an abbreviated name for these different types of 
orbits ; we call them generally 

nt orbits, 

a modification of Bohr's nomenclature nk — orbits, which we find it 
necessary to supersede in conformity with our present-day knowledge ; 
hence we must associate with the letters K, L, M, N the following 
symbols : 

K L M N 

lo -1 '*2 4a 

^0 3i 4a 

40 

The orbits represented by the1 symbols in the top row are circles, and 
those below them are ellipses of increasingly great eccentricity. 

Among all the electronic orbits that will engage our attention in 
the sequel the Kepler ellipse will occupy a special position : it is purely 
periodic. We know that in the two-body problem for any arbitrary 
law of attraction f{r) purely periodic orbits occur in only two cases, 
namely, when f(r) is proportional to r~2 (Kepler ellipse) or proportional 
to r{ 1 (two-dimensional harmonic oscillator). We shall see that the 
chief result of this section is intimately connected with this kinematic 
character of motion in Kepler orbits, this result being the fact that the 
energy depends only on the sum of the azimuthal and the radial 
quantum number. 

For if we integrate the third equation on page MX), namely, the rela¬ 

tionship, 

.... (22) 

with respect to l over the period t of the motion, we obtain 
T 

s|e ««* = • • • (23) 

0 

The right-hand side is the sum of our phase-integrals for the different 
co-ordinates of the system. In a purely periodic motion (and only in 
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such) every co-ordinate qk actually traverses its full range of variability 
(cf. p. 103), while the time t varies from 0 to r. Thus in the notation 
of page 83 the right-hand side is 

]EJ* = 5S*- 
We denote the left-hand side of equation (23) by J ; in virtue of its 
definition from the kinetic energy it is independent of the choice of 
co-ordinates and, by equations (14) and (22) of § b, is equal to the 
increase of the function of action after each complete revolution. If 
we follow Bohr * by demanding that 

r 

J = 2jE kindt — nh . . . (24) 

0 

we are clearly in agreement with our rule for the phase-integrals, and 

we get simply that n - (principal quantum number, sum of 

quanta). 
The individual quantum number nk refers to the co-ordinate* qk, and 

so has no physical meaning unless this co-ordinate is distinguished by 
the nature of the problem ; but the principal quantum number n is 
independent of the choice of co-ordinates;f In the case of the Kepler 
problem the ambiguity in the choice of co-ordinates may be easily 
followed. In the present section we have used polar co-ordinates. 
When we discuss the hydrogen atom in the electric field (Stark effect) 
in Chapter VI we shall use parabolic co-ordinates. In particular, we 
may apply parabolic co-ordinates to the case of a vanishingly small 
electric field, that is, to a pure Kepler motion. Lastly, we may use 
elliptic J co-ordinates, namely, such that the Kepler orbit forms an 
ellipse of the co-ordinate system. In all these three co-ordinate 
systems the phase-integrals may be formed independently of one 
another, that is, the problem may be separated. We find that we 
obtain, according to the co-ordinate system used, various quantum 
conditions Jk — nkh, that is, different shapes (eccentricities) for the 
quantised ellipse. But we always have the same value for the energy 
(because the value of W is determined simultaneously with the time- 
mean of the kinetic energy, see Note 3), and, as we may add, the same 
value for the major axis a and the period r. 

* N. Bohr, On the Quantum Theory of Line Spectra, Kopenhagon Academy, 
Vol. IV, 1918. 

f The property of the quantum sum was first emphasised by the author in 
his first paper on Balmer’s series (Miinchener Akad., 1915, § 7), whore ti <‘ equation 
(23) of the text appears for the first time. The correct choice of co-ordinates 
presented particular difficulties at that time, which were shortly afterwards 
removed, however, by Schwarzschild and ttpstein’s rule of the separation of 
variables (cf. the references on p. 83). 

t As always in the “ problem of two fixed centres ” ; the first centre is the 
nucleus, the second lies in the other focus and has the mass (charge) zero. 
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Hence we see equation (24) leads directly and without calculation 
to the essential elements that define the orbit; those elements which it 
does not yield, for example, the minor axis b, are dependent on the 
co-ordinate system and must therefore be of no importance physically. 
If, in spite of this, we did not give up using the special co-ordinates r, <^, 
the reasons are as follows : 

(1) Our point of view is that the results of classical mechanics are 
limiting cases of relativistic mechanics. But in the relativistic treat¬ 
ment the quantising of the Kepler ellipses is fully determined, and it is 
not sufficient to introduce only the one quantum number n. At tfie 
same time, the use of polar co-ordinates is prescribed by the nature 
of the problem. This also justifies the wr orbits designated above, 
namely, as limiting cases of the corresponding relativistic orbital curves, 
which arise when the relativity correction is neglected. 

(2) When we develop the theory of the periodic system in the next 
chapter we require, besides the major, also the minor axis and the 
form of the wrorbits, exactly as given above. Their use for this 
purpose may likewise be justified as a limiting process. If we are not 
dealing with hydrogen, but with more general atomic models, there 
must be added to the Coulomb field of force an additional field which 
arises from the electronic envelope around the nucleus, and which may 
be described to a first degree of approximation as a central field. The 
treatment of this case according to the quantum theory is similar to 
that of the relativistic case. The polar co-ordinates are also pre¬ 
scribed here as separation variables and give rise to two quantum 
conditions which fix the minor axis as well as the major axis and the 
energy. Our wrorbitx, which we have so far developed for hydrogen, 
then result as limiting cases of the corresponding orbits in a central 

field of vanishingly small intensity. 
(3) The process favoured by Bohr cannot be generalised by wave- 

mechanics, whereas this is possible with our process of quantising in 
polar (or parabolic) co-ordinates. For in the wave-mechanical treat¬ 
ment we must take into account all the degrees of freedom of the system; 
in the Kepler problem not even the plane polar co-ordinates are suffi¬ 
cient ; rather we must treat the problem as spatial, as will be shown in 

the next section. 

§ 8. Quantising of the Spatial Position of Kepler Orbits. Theory of 
the Magneton 

(in the preceding section we quantised the Kepler orbits with respect 
to size and form, by means of the azimuthal quantum number n+ and 
the radial quantum number nr. We wish to show that the quanta can ^ 
perform still more ! they also determine the position of the orbits in j 
space, that is, they select from the continuous manifold of all possible f 
positions of the orbits in .space a discrete number of orbits that conform f 

to certain quantum conditions\ 
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(it. is possible to quantise spatially only, of course, when a certain 
favoured direction is given with respect to which we may measure the 
orientation of the orbits. Such a favoured direction may be given by 
an external field of force. But in this case we have no longer, even for 
the hydrogen atom, pure Kepler orbits. Rather, these are deformed 
by the external field of force. If we wisli to manage with the 
Kepler orbits, notwithstanding this, we must pass on to the “ limit 
when the force tends to zero.*’ In this passage to the limit the dis¬ 
turbance of the orbits by the field of force vanishes, but on the other 
hand the possibility of them orientating with respect to the field of 
force remains. The reason for this is that, whereas the disturbance of 
the orbits is a phenomenon which varies continuously with the field of 

force, the orientation of the orbits 
is restricted to certain discrete 
possibilities.^ 

We take the direction of the 
lines of force as the axis of a 
spatial polar co-ordinate system 
r(hfj ; in Fig. 28 this is the axis 
SN. We assume the nucleus to 
be at rest at () ; wo draw the unit 
sphere (i.e. one of unit radius) 
about 0 as centre. Let the* vari¬ 
able radius OP point to the present 
position of the electron. Let OK 
be called the iine of nodes 
(“ Knotenlinie ”) ; it is the line 
of intersection of the equatorial 
plane OKQ and the orbital plane 
OKP. The great circle KPAB is 
the trace of the orbital plane on the 
unit sphere. The “latitude ” 0 is 
represented in the figure by PN, 

the longitude if/. reckoned from the line of nodes, is represented by 
KQ ; in addition, we consider the “ orbital azimuth ” <£, which is given 
by KP. Let a, be the angle between the direction ON of the lines of 
force and the normal OM to the orbital plane ; a appears in the figure 
as the arc MN, and at the same time as the angle at K in the spherical 
triangle KQP* which is shaded in the figure. 

Corresponding to our three degrees of freedom rOif/, we have now 
three quantum conditions : 

Fig. 28.—Position of the orbital plane 
BPA of tho hydrogen electron 
relative to ft magnetic field whose 
lines of force proceed from top 
to bottom of the diagram (parallel 
to NS). 
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The integration with respect to ifj is from 0 to 2n. The integration 
with respect to 0 stretches from 0min ~ NA to 0max = NB and back again 
to 0min (cf. p. 84) ; the integration with respect to r is, as before (cf. 
p. Ill), from rmhl to rmnx and back again to rmin. Hence the radial 
quantum integral is not different from that obtained from the two- 
dimensional point of view, and determines the shape of the orbit in the 
same way. Similarly, we may take over from the case of the plane 
the azimuthal quantum number ntf> and the areal constant -- moment 
of momentum about the normal to the orbit, for which we have, by our 
above remarks, 

We assert that the azimuthal quantum number n^ i.s equal to the sum of 
the “equatorial " or 44 magneticquantum number and the “ latitud¬ 
inal ” quantum number n0 : 

?',/> .... (3) 

The proof is contained in equation (23) of the preceding section. 
By using first plane polar co-ordinates rfi, and then space polar 

co-ordinates r0i/j, we obtain 

Jj'/fr 4 -^pd<f> fpr'ir I -f • • (4) 

If we cancel the radial phase'-integral on both sides find substitute for 
the values of the others from (1) and (2), wo obtain directly equation (3). 

But we have the additional relationship 

cos a . . . . . (5) 

between the quantum numbers n$ and . For p is the total moment 
of momentum of the revolving electron ; is its component in the 
equatorial plane. The former is drawn in Fig. 28 as a vector in the 
direction of the normal OM to the orbital plane, the latter as a vector 
in the direction of the normal ON to the equatorial plane. As Fig. 

28 shows, 

V* ~ V cos a. .... (6) 

According to this just like p, is constant * during the motion. The 
equatorial quantum condition (1) comes out, if calculated, as 

2np^ - n^h . . . . . (7) 

♦If we had used Hamilton's method here, that is, if we had set up the partial 
differential equation in the space co-ordinates r, 0, tp we should have seen from the 
analysis immediately that 

08 
n - 5i - pon8t- 

because tp is a cyclic co-ordinate. 
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In virtue of this equation and equation (2) we see that (6) is identical 
with (5). 

We may formulate the equations (2) and (7) as follows : not only the 
total moment of momentum, p, but also its component p^ in the direction of 
the lines of force is an integral multiple of 6/277. The cosine of the angle 
of inclination of the moment of momentum to the direction of the lines of 
force, is thus rational. 

For we immediately have, from (6), (7), (2), and (3), 

cos a P± 
V nt + n0 («) 

(Spatial quantising has no influence on the calculation of the energy 
of the orbits) and of the consequent spectral inferences, (so long as we 
restrict ourselves to the limiting case, “ external force tends to zero.'l 
The two quantum numbers n^ and n6 occur in the energy expression 
only as the sum - n# -f n0. Thus the energy expression and 
the spectral vibrations to be derived from it remain the same as for 
simple quantising in a plane. 

It is on this account that the spatial Kepler problem is one degree 
more “ degenerate ” than the plane problem. Whereas we express it 
mechanically as a problem in three degrees of freedom by means of 
three co-ordinates, the energy expression involves only the quantum 

sum n — n^ + % + %r. It is this particular circumstance of greatest 
degeneracy which makes our present treatment valuable as a prelim¬ 
inary step to the later wave-mechanical solution of the Kepler problem. 

We consider successively the cases n^ =■ 1, 2, 3, . . . , where, for 
reasons presently to be explained, we shall use for n^ the abbreviation j 
(and not, as in the preceding section, l -)- 1). We wish to^express by 
this changed notation that in every atom there is a quantity j {“ inner 
quantum number ”) which is a measure of the total moment of momen¬ 
tum, and which orientates itself in the magnetic field in the way in 
which, according to the above remarks, the moment of momentum p 
or its associated quantum number n^ must orientate themselves. 

In Figs. 29, a, 6, c the direction of the lines of force is to be 
regarded as proceeding from above downwards, as in the preceding 
Figure.* The arrows represent the moment of momentum correspond¬ 

ing to our j. They are to be inclined to the direction of the lines of 
force in such a way that their projection on this direction in the unit 
scale of the Figure is integral. In Fig. 29a the unit scale is the radius 

itself, on account of j = 1 ; in Fig. 296 it is half the radius, since j = 2, 
and in Fig. 29c it is one-third of the radius, since j = 3. Hence, in 
Fig. 296 we divide the vertical radius into two, and in Fig. 29c into 
three, equal parts and then draw horizontal lines through the* points of 

* Figs. 29, a, b9 c are taken from a paper by the author on the Zeeman 
effect of hydrogen, Physik. Zeits., 17, 491 (1916) ; cf. also the paper by Debye, 
ibid,, p. 507, or Gottinger Nachr., June, 1916. 
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intersection as far as the circumference of the circle. The straight 
lines connecting these points of intersection with the centre give the 
theoretically possible orientations of the moment of momentum j. 
In view of the axial character of j we draw arrows in opposite directions. 

Fig. 29a, j ----- 1. The moment of momentum sets itself either 
parallel or anti-parallel or perpendicular to the lines of force. 

Fig. 29b, j =- 2. Besides the parallel, anti-parallel, and perpendicular 
positions the position making an angle of 60° with the lines of force is 
also possible. The Figure shows this position to the right and to the 
left of the vertical. In space we may imagine these two positions to be 
connected by means of a circular cone described about the vertical. 

Fig. 29c, j -- 3. Besides the parallel, anti-parallel, and perpendicular 
positions, cos a — J 1,0, we now also have the inclinations 

cos a ~~ J: § and : | l. 

Fm. 29a. Fig. 29b. Fig. 29c. 

Directional quantising in a magnetic field (regarded as proceeding from top 
to bottom). Possible positions of the total moment of momentum j for 

j - K 2, 3. 

It would be logical to place at the beginning of these Figures the 
case j —■ 0. But in this ease there is no position, since there is no 
moment of momentum to be placed in position. 

On the other hand, it is illogical and yet, as we shall learn, necessary, 
to supplement our series of Figs. 29 by a second series of Figures in 
which j has half-integral values. If, from the preceding discussion, we 
retain the rule that the difference of the moments of momentum pro¬ 
jected on the direction of the lines of force is to be integral, then we 
obtain the following Figures analogous to those which have just 

preceded : 
Fig. 30a, j = h Only the parallel and anti-parallel positions per¬ 

missible. 
Fig. 306, j = In addition to the parallel and anti-parallel posi¬ 

tion, we also have those given by cos a = ± }■ 
Fig. 30c, j = Besides the parallel and anti-parallel positions, the 

orientations cos a -- -J J, L are possible. 
What is the position as regards the empirical proof of spatial quan¬ 

tising / We must state immediately that an fond every Zeeman 

photograph contains a proof of this kind, as we shall see in Chapter VI. 
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Without entering into details here, we may assert that the different 
components of a Zeeman pattern correspond to different positions of a 
magnetic moment in space, which results from the magnetic actions 
of the electrons in the atom. Since these components are discrete 

Fits. 30<7. Fio. 30//. Fm. 30c. 

Directional quantising ‘iU H matfm'tic field (regarded as proceeding from top to 
bottom). Possible positions of the total moment of momentum j for 

.1 - * i 1 ?» 

and sharp, so also the positions of the magnetic moment and the 
corresponding orientations of the atom are sharply defined, that is, 

spatially quantised. 
It is true that this proof is indirect. There is, however, a direct 

experimental proof, which has rigidly caused a 
great stir, namely, the experiment of Stern 
and (rerlach.* The experimental arrangement 
is as follows (cf. the diagram of Fig. ,‘il) : an 
evacuated tube contains a sample K of the 
substance to l>e examined (this was silver in 
the first experiments), which is then heated. 
It sends out “ atomic rays ” in all directions, 
that is, in this case atoms of silver, which have 
assumed a thermal velocity (several hundred 
metres per see.) corresponding to the tempera* 

Fjg. 31. - Experimental 
arrangement of the 
Stern - Gorlac h e x - 
poriment. A beam 
of atomic rays from 
the oven K, formed 
by the diaphragms 
B, passes through 
a non-homogeneous 
magnetic field NS, 
and strikes the plate 

P. 

tore of vaporisation. By the use of appropri¬ 
ate diaphragms B a sharp linear beam of atomic 
rays is cut out of the divergent beam. This 
linear beam passes through a magnetic field 
which is made as intense and non-homogene¬ 
ous as possible, its lines of force, which rim 
in the direction SN in the figure, being per¬ 
pendicular to the direction of the atomic beam. 
The magnetic field deflects the atoms according 

* We quote here only the most fundamental papers : O. Stern, Zeits. f. Phys., 
7, 249 (1921) ; W. Gerlaeh and O. Stern, ibid8, 110 (1921) ; 9, 349 and 352 (1922). 
Since then the method has been elaborated in all directions in the “ Untersuchungen 
zur Molekularstrahl-mothodo aus dem Institut fur pliysikalische Chorine dor 
Hamburgischen Ihiiversitat ” (Zeits. f. Phys., from 1922 up to the present time), 
and the number of experimental results obtained has been greatly increased. 
For the quantitative evaluation of the results see in particular No. 5 of these 
researches : O. Stem, Zeits. f. Phys., 41, 563 (1927). 
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to the inclination of their magnetic moment /x with respect to the 
magnetic held M w ith the force 

cos .(9) 

Hero i- gives a measure of the lion-homogeneity of the field, that is, 

of the difference between the magnetic action on the positive and 
negative pole of the atomic magnet, and is equal to the increase of H 
in the direction of H. On a plate PP, which is placed in the path of the 
rays and is afterwards developed in some appropriate way, we therefore 
expect bullet marks to be made by the atoms as on a target : namely, 

a maximum density of distribution in the centre becoming continuously 
less as we proceed to the sides. But the true result of the experi- 

Frc;. *V2b. 

Stern-Oorlacli experiments with silver. Traec* of the atomie rays on the sensitive 
plate- on the loft, without a magnetic field ; on the right, with a magnetic 

field. 

ment with Ag-rays is shown in Fig. 32, magnified twenty times. On 
the left-hand side is the result without a magnetic field ; on the right- 
hand side the field is on. The left-hand picture is the image of the 
diaphragm* as marked out on the receiving plate PP by the atomic rays ; 
we see a sharp image of the slit. The right-hand picture shows the 
deflection in the magnetic field ; there is a band on each side, but the 
middle is completely free of “ bullets." (The irregularity in the middle 
of the band on the right is due to the irregularity of the magnetic field 
at the right-hand pole of the magnet, which ends in an edge in order 
to produce a non-homogeneous field. The convergence of the band at 
the top and at the bottom signifies that the magnetic field decreases 
transversally, that is, perpendicularly to the plane of the diagram of 
Fig. 31.) How are we to interpret these two bands of the deflection 
picture ? Clearly they are due to the directional quantising of the silver 
atoms. So soon as the atoms enter into the magnetic field the axes of 
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their magnetic moments orientate themselves either parallel or per¬ 
pendicular to the lines of force. In the expression (9) cos (p, H) is 
either | 1 or 1. There are no intermediate positions, and in par¬ 
ticular no possibility of cos (p, H) ~ 0. In Fig. 31 we have indicated 
the two positions of the silver atom and of its moment p that are 
possible according to the quantum theory by arrows. The one arrow 
points precisely in the direction of the field SN, the other in precisely 
the opposite direction. In Fig. 33 we show the result of a new experi¬ 
ment with atomic rays of hydrogen.* The two parallel lines show 
the deflection in the magnetic field. The check photograph without a 
magnetic field was taken on the same plate which was simply rotated 
and displaced ; this gives the sharp oblique line on the right-hand side 
of the figure. A comparison of the picture with the preceding picture 
shows the advance in experimental technique that has been achieved 

in the meantime ; this is the more remark¬ 
able since the present subject of research, 
the hydrogen atoms, were more difficult 
to control and to be made to register a 
mark on the plate than the silver atoms. 
With regard to the theory the picture 
shows that the hydrogen atom—like the 
silver atom—sets itself either parallel or 
anti-parallel to the field, that is, in the 
sense of our Fig. 30a. 

From the point of view of the theory 
hitherto put forward, this result is sur¬ 
prising. For we should expect rather a 
deflection picture of the character of Fig. 
29a, that is, besides the two lateral hands 
a central band which is not deflected and 
which would correspond to the position 

perpendicular to the magnetic field. For by the theory so far 
developed the hydrogen atom should, in the ground state, have a 
moment of momentum ™ 1, and it suggests itself at first sight to 
identify the moment of momentum j (which is the decisive factor for 
the position taken up) with n^. We noted on page 115, however, that 
according to wave-mechanics n^ should be replaced by the number 
l = — 1. But its value in the ground state would be l = 0, and 
this would lead to no definite position in the field at all if we identify 
j with l, and so have j = 0. The result of the experiment with the 
atomic rays, therefore, leads us to infer that there is a new sort of 
cause for the positions taken up, and that this cause leads to our scheme 
with j = J. This cause is, as we now know, the spin of the electrons 
(Elektronen-Droll, Goudsmit and Uhlenbeck), which has its roots ulti¬ 
mately in the relativistic scheme of physical events. We shall require 

Fig. 33.*— Stern-GJerlach ex¬ 
periment with hydrogen 
(according to VVrede). 
The two sloping parallel 
lines are obtained with a 
magnetic field ; the single 
oblique line without a 
magnetic field, the slit- 
being rotated. 

* E. Wrede, Zeits. f. Phys., 41, 569 (1927). 



§ 8. Quantising of the Spatial Position of Kepler Orbits 127 

the whole system of spectra to explain this most peculiar consequence 
of modern physics, and wave-mechanics to establish it logically. Here 
we must remain satislled for the present with having found a first 
ihdication of electron-spin in the deflection picture, Fig. 33. At the 
same time we must note that the hydrogen atom—in its ground state 
and, as we may add, in its excited states—has not the singly structure 
which we have hitherto assumed. Rather, it resembles the silver 
atom and is, like it, alkaline in its spectral character. Wc shall revert 
to this point frequently later. 

We shall discuss a further consequence which Stern has deduced 
from these experiments. It concerns the magnitude of the ‘magnetic 
moment p which by (9) determines the amount of the deflection. To 
understand the significance of this inference we must make some 
remarks about some older work. 

The view that every paramagnetic substance (i.e. susceptibility > 0) 
has a definite magnetic molecular moment is old established among 
physicists. It was developed in particular by Wilhelm Weber, and 
was rendered certain by Langevin’s theory of the dependence of para¬ 
magnetism on temperature. During the last few decades P. Weiss * has 
been engaged in establishing, by means of a great number of detailed 
measurements, that this moment occurs not as an arbitrary quantity, 
but as a whole multiple of a certain elementary moment, “ the magneton." 

The assumption suggested itself to physicists that this elementary 
magnetic quantum was no new constant, but was probably connected 
with the elementary electric quantum of charge e and the quantum of 
action h. Let us endeavour to establish this connexion as simply as 
possible. 

As we know, a magnetic moment is equivalent to an electric current; 
Weber's electromagnetic measure of current in C.G.S. units depends 
precisely on the fact that the current strength J multiplied by the 
area F of the enclosed surface around which the current flows is equal 
to the moment p of the elementary magnet, which, placed at right 
angles to the plane of the current, produces the same magnetic field as 

the current 
JF = p.(10) 

If the current J is an £k Ampere molecular current,” produced by an 
electron revolving in an atom, then 

T 

where e is the electronic charge in electromagnetic units, t = time ot 

revolution of the electron, so that - — number of times per second that 
T 

the charge e traverses the “ cross-section of the current.” 

* Summaries are given by P. Weiss, Phys. Zeits., 12, 935 (1911), or Verb. d. D. 
Phys. 0©sells., 13, 718 (1911); R. H. Weber, Jahrb. f. Rad. v. Elektr., 12, 74 
(1915) ; B. Cabrera, *T. de Cbiraie Physique (Guyo), 10, 442 (1918). 
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From (10) it follows that 

(11) 

Now the moment of momentum p of the revolving electron (cf. 

eqn. (17) on p. 11*1) is, generally. 

v -= 

So we obtain 

p — (12) 

But the moment of momentum is quantised so that we have here again 
to substitute instead of the moment of momentum quantum number 

of our elementary theory the number j* : 

,h 

Hence, by (12) the magnetic moment also becomes a quantised quantity 
which is expressed as a y-fold multiple f of an elementary quantum : 

e h 
(13) 

Here p{ is the fundamental unit of magnetic moment of the quantum 
theory ; it is the theoretical magneton. Instead of referring the funda¬ 
mental unit of the magneton to the individual atom we prefer to refer 
it to the mol, that is, to L atoms (when L ----- Loschmidt's number per 
mol, or Avogadro’s number ; see p. 4), and we obtain as the macro¬ 
unit of magnetic moment the so-called Bohr magneton : 

,, . e h f 
M ft Ijfit r —' r 1. 

r m An 

Inserting the known values of ejm, h and L, we obtain 

Mb ----- 5564 gauss cm. per mol . . . (14) 

It is very remarkable that Weiss obtained from his measurements, 
particularly from those of the ferro-magnetic metals at the lowest 
temperatures, a smaller unit,—one nearly five times as small, namely, 

Mw — 1123-5 gauss cm. per mol . . (15) 

* Even the form which thus results for p is not rigorously correct. For wave- 
mechanics shows that our j is, indeed, the quantum number to be ascribed to 
the total moment of momentum, but that for the absolute value of this total 

moment of momentum we must have p — Vj(j -j- 1) hj^rr. Equation (13) is 

to be changed analogously to p = Vj(j + 1) gpv Concerning the factor g, cf. 
the following footnote. 

f In Chapter VIII we shall see from the theory of the multiplet terms that a 
rational factor g has yet to be added on the right-hand side of (13). The above 
equation hence really holds only when g — 1 (singlet terms). Cf. also the re¬ 
marks in Chapter VI, § 5, when the factor g is deduced for one-electron systems. 
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We shall endeavour to reconcile these apparently contradictory 
statements by using the idea of spatial quantising. At present wc are 
interested in the Bohr magneton and not in the Weiss magneton. 

Stern and Gerlach have shown by carefully measuring the magnetic 
field, its departure from homogeneity, and the deflection obtained on 
the photographic plate, Fig. Wlb, that the magnetic moment of the 
silver atom is of the order of magnitude of our quantity gj ; they 
estimate their experimental error to be only 10 per cent. Hence the 
silver atom has in its ground state a magnetic moment of the magnitude of 
a Bohr magneton. The same value for p follows from Fig. 38 for the 
hydrogen atom in the ground state. 

By means of their bold experimental arrangement, Stern and Gerlach 
have therefore not only demonstrated ad oculos the spatial quantising of 
the atom in the magnetic field, but they have also proved the atomic 
nature of the magnetic moment, its quantum origin, and its relationship to 
the atomic structure of electricity. 



CHAPTER JIT 

THE NATURAL SYSTEM OK ELEMENTS 

§ 1. Small and Great Periods. Atomic Weights and Atomic Numbers 

IN the face of the manifold of elements which were brought to light by 
the alchemists of the Middle Ages and by the research chemists of the 

eighteenth and nineteenth centuries, the human intellect has never 
quite lost the view that unity and order exist among them. The old 

postulate of natural philosophy that there must be a common basic 
substance in all matter recurred again and again, particularly in the 

form of Front's hypothesis (1815), because only the fulfilment of this 

condition could givo us hope that we should succeed in understanding 
fully chemical action. 

This goal lias assumed a more definite shape since ihe discovery of 

the natural or periodic system of the elements by Lot bar Meyer and 
Mendeleeff about 1870. In this system, as is well known, the elements 
are written down in the order of increasing atomic weights, the series 

being broken off at appropriate points. Chemically related elements 
are written in the same vertical column, e.g. the alkalies, Li, Na, K, Kb. 

Cs, in the first column ; the halogens, F, Cl, Br, I, in Column YT1 ; since 
1895 (Rayleigh and Ramsay) the inert gases He. Ne, A, Kr, X, Em, 

have become added as Column V.I11 (cf. Table 2). 
In general, the number of the column is the same as the oxygen- 

valency of the elements contained in it. The valency increases by one 
for every step from left to right in the periodic system. On the other 

hand, a different kind of valency, the hydrogen-valency, increases in the 
periodic system from right to left; this is particularly pronounced in 

the columns from VII to IV. As the oxygen-valency increases the 

electropositive character (basic nature) diminishes and passes over 
into the electronegative character (acidic nature). 

In this mode of tabulation the system of elements seems, externally 

at least, to be built up of periods of eight. Before the discovery of the 

inert gases they were true 44 octaves ” in the musical sense, i.e. periods of 

seven (Newlands, 1864). The structure in periods of eight is, however, 

only apparent, for the periodic system has not so simple a periodicity. 

At the beginning, for example, there is a period of only two elements (H 

and He). Then there follow two periods of eight, the two “ small ” 
periods of eight exactly corresponding elements. They are succeeded by 
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two “ great ” periods of eighteen elements, wliieh can be forced into the 
scheme of series of eight only by somewhat artificial reasoning. As a 
matter of fact the alkalies, halogens, inert gases, and altogether the 
elements which exhibit exactly corresponding chemical behaviour, 
follow one another after a further eighteen steps, and are thus separated 
in our scheme by an intermediate series. By writing the terms on the 

right or left side of the individual spaces we succeed in making only 
those elements that correspond exactly lie in a vertical line. The 
correspondence here implied is that which is connected with atomic 
structure, and which expresses itself particularly in the structure of 

spectral lines. From the chemical point of view, in which we are con¬ 
cerned with the behaviour of ions in compounds, we find it convenient 
to alter the distribution of elements among the sub-groups at some 
points, for example, in the third and fourth columns in the ease of the 
lightest elements. It is to be noted, however, that the elements that 
lie consecutively in the same vertical column but are not written in an 
exact vertical line, are related in certain ways. For example, Cu and 
Ag are univalent just like the alkalies in the same column ; Zn and Od 
are divalent like the alkaline earths, and so forth. This “ secondary ” 
relationship becomes weaker at the end of the horizontal series, par¬ 
ticularly in Column VIII, in which we group with the inert gases the 
triads, Fe, Co, Ni, and Ru, Rh, Pd, constellations of elements that are 
interrelated among themselves, but are absolutely dissimilar from the 
inert gases. It is only by uniting these triads in one column that the 
number 18 of the great periods can be adapted to fit the double number 
2.8 of the small periods. 

The great periods are then followed by a very great period of thirty- 
two elements, which begins in the regular fashion with an alkali (Cs) and 
ends with an inert gas (Em). It, too, has its representative in Column 
VIII, a triad Os, lr, Pt. But the whole series of rare earths (stretching 
from Ce to Lu), sixteen in number, will admit of no periodicity and can 
in no way be inserted in the Columns I to VIII ; they have had to be 
printed separately below. Written in this way, the period of thirty- 
two elements also appears distributed among the spaces of two hori¬ 
zontal series, whereby exactly corresponding elements, separated by a 
horizontal row, lie below the corresponding elements of the period of 
18 ; thus W lies under Cr and Mo, Au under Ag, and so forth. 

This greatest period is followed by a series of only six elements, which 
ends with the heaviest element, uranium. But it is quite admissible to 
imagine this series continued, say, to the number of thirty-two terms, 
and to assume that it is only due to reasons of radioactive decay that 
the later elements no ldnger exist. 

The periodic numbers 2, 8, 18, 32, with which we are thus left, may 
finally be written in the following somewhat cabalistic form suggested 
by Rydberg : 

2 = 2 . I2, 8 = 2.22, 18 ~ 2.32, 32 = 2.42. 
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Various other suggestions have been put forward about the physical 
meaning of these numbers. For example, Bohr (Nature, 24th March, 
1921) proposed the factors : 

2=1.2, 8 = 2.4, 18 = 3.6, 32-4.8. 

We shall see later (pp. 154, 155) how Pauli’s Principle confirms with 
the Rydberg scheme. 

If we write down the natural system of the elements in the order of 
increasing atomic weights we find that at four points the natural order 
is transgressed. There is no doubt that we must write the inert gas Ar 
before the alkali K, although the atomic weight of the former is greater 
than that of the latter. Furthermore, Co must come before Ni and To 
before I, in spite of the order of atomic weights. After the recent 
discovery of protoactinium we have the fourth exception, for we must 
set Th and Pa in the reverse order of their atomic weights. These 
necessary reversals of order have been indicated in the table by a double 
arrow. The method of X-ray analysis will remove these blemishes in 
the system and will restore the natural order of the elements. This 
method will show that the atomic weight is not the true regulative 
principle in the natural system, but that it is only a complicated function 
of the true “ atomic number ” (Ordmingszahl). 

The true atomic number is, as we know (Chap. 11, § 1), the number of 
net positive units of charge in the nucleus, or, what amounts to the same 
thing, the. number of electrons in the atom. It is equal to the atomic 
number, that is, to the number giving the position of the element in the 
natural system when the elements are arranged in the order appropriate 
to their chemical properties. In our table we have inserted this number 
just before the symbol of each element. 

On the basis of the periodic table physicists had been able, even 
earlier, to predict the existence of unknown elements, which were 
subsequently discovered. These were given the nationalistic names : 
Gallium (1875, Lecoq de Boisbaudran), Scandium (1879, Nilson), 
Germanium (1886, Winkler), Polonium (1898, Madame Curie), to 
which there have been added lately : Hafnium (Bohr, Coster, and 
Hevesy), Rhenium, Masurium (Noddack, Berg, and Tacke), and lastly 
Illinium (Hopkins, Harris, and Yntema). The first three had been 
predicted by Mendelejeff as eka-boron, eka-alumi lium and eka-silicon, 
and their properties were accurately described. Nowadays—also by 
the method of X-rays—the number of gaps still present in the system 
has been found to be two only. These two have been marked by an 
asterisk in the table. According to their position in the table they are 

designated as eka-iodine and eka-caesium. 
The atomic weights, with a regularity far exceeding the bounds set 

by the laws of probability, are integral numbers or very nearly so when 
referred to oxygen = 16. This integral property agrees with Prout’s 
hypothesis (that elements are composed of hydrogen atoms). There 
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are certain exceptions (e.g. 

0—35*46, and Cu=63-57), 
but they are rare. We 
shall revert to these excep- 
tions and to their elimina¬ 
tion by F. W. Aston in the 
next section of this chapter. 
Whole numbers of the form, 
4n and 4n + 3, are particu¬ 
larly frequent, the former 
generally in even spaces, 
the latter in places where 
the atomic number is odd. 

Thus, if we compare an 
element with the next but 
one element, we get for the 
difference of their atomic- 
weights, as a rule, approxi¬ 
mately four. Hence the 
average increase in the 
atomic weight as we pass 
from element to element is 
not one but two. The 
atomic number of the. dement 
does not on the average 
coincide, with the atomic 
weight, but with the half of 
the atomic weight. This rule 
certainly holds only at the 
beginning of the system (as 
far as Ca) ; thence onwards 
systematic deviations occur 
in the sense that the semi- 
atomie weight increases 
more rapidly than the 
atomic number and ex¬ 
hibits a greater and greater 
difference (cf. Fig. 34). 

For the sake of econo¬ 
mising space wo have 
marked off the atomic 
numbers (the abscissae) 
alternately to the right 
and to the left after every 
twenty steps, so that the 
first branch of the line 
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corresponds to the elements from H to Ca, the second to those from 
Oa to Zr, and so forth. The ordinates represent for the one part the 
atomic numbers themselves (continuous line), for the other part half 
the atomic weights (crosses). We see that the latter, in the mean, 
increase to the same extent as the atomic numbers, but that with 
the exception of the lowest branch they lie above the corresponding 
points of the atomic numbers, the difference increasing as the atomic 
number increases. Thus our diagram gives us a picture of the above- 
mentioned complicated relationship between atomic weight and atomic 
number. 

Concerning the arrangement of the periodic system in our table, it 
cannot fail to be recognised that it is in many ways arbitrary. We have 
already pointed out the arbitrary nature of the eight columns into which 
we could insert the great periods only by force, as it were. A further 
arbitrary adjustment consists in having placed the eighth column on the* 
right, next to the seventh column. As is often done, we may place it as 
the Oth column in front of the first on the left. The 0th column would 
then contain the elements of “ valency zero,*’ that is the chemically 
inert gases. The whole theory of atomic structure, as we shall show in 
§ 3 of the present chapter, points to the inert gases marking the end 
and the completion of a period, and not the beginning of a new period. 

§ 2. The Laws of Radioactive Displacement and the Theory of Isotopes 

The characteristic properties of the a-particle (its double charge, its 
great penetrative power, and so forth, cf. p. 17) have already served us 
as a direct and obvious confirmation of our fundamental views, namely, 
those on nuclei, nuclear charge, and atomic number (cf. §§ 3, 5). Radio¬ 
activity, however, can furnish us with still more information on this 

question. 
Let us consider the genealogical tree of the radium family in Table 1 

of page 53, and discuss the position of Ra itself. Since it was first 
isolated there has been no doubt that it belonged to the group of 
alkaline earths Ca, Sr, Ba. In particular, Ra is so closely related to Ba 
chemically, that, originally, it was difficult to separate them from one 
another ; the similarity in the spectra of the two is also perfect. On 
the other hand, radium emanation, in virtue of its chemically inert 
behaviour, beyond doubt belongs to the group of inert gases. 

Now, this mutual position of Ra and, RaEm in the periodic system is 
just such as is demanded by our nuclear theory. Ra disintegrates, pro¬ 
ducing RaEm and emitting a-radiation. The doubly charged positive 
a-particles comes out of the nucleus of the Ra-atom and thus diminishes 
its positive charge by two units, 2e. Hence the atomic number of the 
resulting element must also be reduced by two, that is, the newly pro¬ 
duced element must precede the Ra in the system of elements by two 
places. The nuclear mass becomes reduced simultaneously with the 



136 Chapter III. The Natural System of Elements 

nuclear charge', namely, by four units corresponding to the atomic 
weight of He. The atomic weight of Ra is 226-0. Radium emanation 
(also called radon and niton) must therefore have the atomic number 
220 — 4 — 222—which agrees with the results of experiment. 

We generalise the remark just made about Ra and RaEm and 
enunciate the first law o! radioactive displacement thus. In every process 
of radioactive disintegration which is accompanied by the emission of 
on-rays (a-transformation) a product results, the atomic number of which 
in the periodic system is reduced by two units ; the element moves two 
places to the left in the table. At the same, time its atomic weight decreases 
by four units. 

Now what happens in the case of /9-transformations, that is, of those 
radioactive processes during which /3-rays are emitted 1 Does the 
/9-ray electron in this case come out of the electronic shell of the element 
or out of its nucleus ? In the former case the character of the element 
and its position in the periodic system would remain unaltered. We 
should have before us a process to which the term ionisation would have 
to be applied. Blit we know that ^-transformations also cause new 
elements to be formed. Hence the /3-emission, like the a-emission, must 
come out of the nucleus. 

We must assume (this will be discussed in detail in § 0) that in a 
nucleus of atomic number Z there must be, in addition to the Z positive' 
unit charges that determine this atomic number, other positive and 
negative charges which are mutually bound and which neutralise one 
another (ef. also the note on p. 63). Now if a negative unit charge (an 
electron) is thrown out of this neutral stock of charges, a positive unit 
of charge is free, that is, unbalanced by a negative charge. But then 
the nuclear charge must increase by one unit. Hence we get the 
second law of radioactive displacement. In the case of ft-transforma¬ 
tions. the atomic number of the element undergoing change increases by one 
unit, and moves to the next position on the right in the periodic table. 
The diminution in the atomic weight in this process, however, is inappreci¬ 
able on account of the small mass of the electron. 

In fact, the atomic weight does not become reduced at all if we take 
into account the fact that the atom which, owing to the ^-transforma¬ 
tion, has become positive, will soon neutralise itself by drawing to itself 
a free electron from without. Such free electrons, so we may assume, 
are always available in the interior of a metal, and in an atmosphere con¬ 
tinually subject to radioactive radiations and hence ionised. Of course, 
the external electron just mentioned does not enter into the nucleus but 
into the electronic shell. In this way it completes the number of 
electrons that is properly due to the new element derived by the 
^-transformation. Hence the charging process of the /9-transformation 
is followed by a process of neutralisation. The small diminution of atomic 
weight that is initially caused by the loss of the fi-electron is thus rectified 
again. 
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After the a-transformation, too, a process of neutralisation will also 
take place. For the atom which has arisen through the a-emission will 
at first have two electrons more than the number corresponding to its 
nuclear charge. It will therefore give up two of its electrons to its 
surroundings, not, of course, in the form of ^-radiation, but by way of 
balancing its charge without the generation of considerable kinetic, 
energy. The decrease of atomic weight to the extent of four units, 
which corresponds to the a-cmission, thus becomes slightly more marked 
owing to this additional loss. 

It is of historical interest to note that Fajans * and Soddy f share 
equally the honour of having discovered these laws of displacement.{ 
Soddy first enunciated the law of displacement for a-transformations. 
Fajans tested it on further material and added the law of displace¬ 
ment for ^-transformations. He and, a little later, Soddy formulated 
both laws of displacement in the form which is now generally accepted 
as valid. A. S. Russell endeavoured to express the general law almost 
at the same time, but his formulation was not quite correct. 

In our account we have read the laws of displacement directly out 
of the theory of nuclear structure. Historically, the state of affairs was 
of course different. When those laws were first enunciated this nuclear 
theory did not exist, nor was it possible at that time to arrange the radio¬ 
active products into the groups of the periodic system in all cases. It 
was rather the laws of displacement that have led to the present arrange¬ 
ment of the radioactive elements into the scheme, and at the same time 
they have given the theory of nuclear charges a sound foundation. 

Table 5 shows on the one hand the distribution of the radio-elements 
in the periodic system, on the other, in the vertical columns, their dis¬ 
tribution in the scale of atomic weights. The character of the radiation 
emitted is, as in the former table on p. 53, indicated by the letters, 

a, ft prefixed to the symbol of the element under consideration. 
Let us, for example, follow out the radium family, beginning with 

Ra and proceeding with the zig-zag step prescribed by the laws of dis¬ 
placement. We get from Ra (Column 11, At. Wgt. 226) to RaEm 
(Column VIII, At. Wgt. 222) to RaA (Column VI, At. Wgt. 218), to 
RaB (Column IV, At. Wgt. 214) by successive a-transformations. Next, 
from RaB we get by a ^-transformation to RaC (Column V, At. Wgt. 
214). At RaC the interesting branching that was discussed earlier (on 
p. 53) takes place : by an a-transformation we get to RaC" (Column 111, 
At. Wgt. 210) and then by /?-transformation to the long-lived RaJ) 
(Column IV, At. Wgt. 210) ; on the other hand, from RaC by a ^-trans¬ 
formation to RaC' (Column VI, At. Wgt. 214)—to this transformation 

* Habilitationsschrift. Karlsruhe, 1912 ; Physik. Zeitsehr., 14, 131 and 136 
(1913). 

t The Chemistry of the Radium Elements, 1911 ; Oheui. Nows, Vol. 107, p. 97 
(1913). 

J The general law was being sought almost simultaneously by A. S. Russell (of. 
Chem. News, Vol. 107, p. 52), but his formulation was not quite correct. 
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we owe the emission of intense y-rays by RaC—then by an a-trans- 
formation we likewise get to RaD. From RaD a two-fold ^-transfor¬ 
mation leads to RaE (Column V) and RaF ( — Polonium, Column VI) 
in which the atomic weight 210 is retained. The position of polonium 
in the periodic system may, according to Marckwald, be verified by 
chemical methods. It is somewhat more electronegative than Bi 
(in the sense elucidated in § 1, p. 130) and this conforms with the 
position which has been assigned to it, namely, that immediately suc¬ 
ceeding Bi. A final a-transformation changes polonium into RaG, 
also called radium lead (Column IV, At. Wgt. 206, which is less than 
the atomic; weight of ordinary lead, 207-2). Radium lead is the final 
product of the radium series. The thorium and the actinium series 
also end at the same; point of the periodic system, at thorium lead 
(ThD) and actinium lead (AcD). 

We must next refer to the interesting complex of facts, to which the 
name isotopes is applied collectively. Isotope signifies “ occupying the 
same position ” ; isotopes are elements that occupy the same position 
in the periodic system. The totality of isotope elements in one com¬ 
partment of the system is called a plemd. In Table 5 every group com¬ 
posed of elements whose symbols lie vertically below one another form 
a pleiad of this kind. The pleiads of load and polonium include no less 
than eight and seven members respectively. The individual members 
differ among themselves in atomic weight up to as many as eight units, 
but are yet so similar that they are usually considered, not as different 
elements, but as different species of the same element. For isotopic 
dements cannot be separated from one another by chemical means at all 
and exhibit identical physical properties throughout. The only means of 
separating them chemically or physically is that offered by the differ¬ 
ence in the atomic weights which may manifest itself in a difference 

in their gravitational and inertial action. 
The most convincing confirmation has been found for the theory of 

isotopes in the case of load. When the atomic weights of lead isotopes 
of varying origin were compared with one another, it was shown that 
lead from radium minerals (RaG) has the atomic weight 206-0 and lead 
from thorium minerals has the atomic weight 207-9, whereas ordinary 

lead has an atomic weight 207-2. 
On account of the interposition of isotopes the traditional frame¬ 

work of the periodic system must be extended. Since there are now 
several claimants to one space of the system, the scheme on one plane 
no longer gives a non-ambiguous allocation of the elements. It would 
be best to extend the scheme spatially. We imagine the isotopes to 
be placed behind one another in order of their longevity, say. The 
longest-lived element forms the chief representative of the pleiad in 
question, and would stand furthest back in our spatial scheme, in the 
same vertical plane as the permanent elements which arc not suspected 
of being radioactive. From this longest-lived element the series of 
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isotopes of decreasing longevity would then he successively arrayed 
outwards and upwards perpendicular to the plane scheme. Thus, in 
the two-dimensional table of elements, we should, to be more accurate, 
have to place Ui in the lowest space below uranium, whereas the isotope 
Ujj would have to be placed in front of it (out in space). In the last 
place but one, protoactinium stands as the longest-lived element of its 

type (its stretch of life is about 32,000 years), whereas the element UX2 
(also called brevium) that has hitherto been installed there has a life 
of only 1*17 minutes and would thus have to be brought forward out 
of the table. Of the three emanations Ra-Em is the longest lived 
(3*825 days), and must therefore stand as the representative of the inert- 
gases in the sixth period. In the former table the chief representatives 

of the types of corresponding elements were emphasised by being printed 
in dark type. 

Through the discovery of isotopes atomic weight has been displaced 
from its position of sovereignty by the n uclear charge. We are acquainted 
with elements, for example, RaG and RaB, or Po and RaA, which differ 
in atomic weight by eight units and yet- (as isotopes) they behave 
identically alike in chemical reactions. On the other hand, we know 

elements, for example. Ral) and Po that behave chemically as differ¬ 
ently as 0 and O, which belong, namely, to the fourth and sixth column 
of the periodic system, and yet they have the same atomic weight. 
Pairs of elements of the latter type are to be found in Table 5 in 
a horizontal line ; pairs of elements of the former type occur vertically. 

Not only among decaying elements but also among permanent de¬ 
ments there are isotopes. Nor do they occur as exceptions ; indeed, 
they are the rule. Of the elements that- have hitherto been investigated 
for signs of isotopy most have shown themselves to be multiform. 
Those4 that have been proved to be of one type * only are 

H He Be O N O F 
1-0078 4-002 9-02 12*000 14*008 16*0000 19*00 

Na A1 r As I Cs Bi 
22-997 26-97 31*02 74-96 126*93 132*81 209*00 

> following elements have been found t-o be m ultiple : 

Li B No Mg Si S PI 
6-940 10-82 20-18 24*32 28*06 32*06 35-457 

Ar K Or Fo Ni Cu Zn 
39-94 39-104 40-07 65*84 58*69 63*57 65-38 

Se Br Kr Rb Sr Zr Ag 
79-2 79*916 82-9 85*45 87-63 91*22 107*880 

Cd Sn Sb To No Hg Pb 
112-41 118*70 121-76 127*5 130*2 200*61 207-21 

* There are, however, extremely rare isotopes of O, C, and N. 
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Wo see that the atomic* weights that have born printed below the 
symbols for the elements are in the ease4 of the simple elements—in 
particular, of the lighter ones almost exactly whole numbers ; on the 
other hand, they diverge considerably from integers in the ease of ele¬ 
ments that have been recognised as multiform. Further, the elementary 
constituents into which the latter may be resolved are here, as we shall 
see, exactly whole numbers, within the limits of error (except for the 
packing effect ; cf. § 6 of the present chapter). 

We are indebted for this important knowledge to the work * of 

F. W. Aston, who, for his part, added a new link to the analysis of canal 
rays (“ positive rays ”) carried out by J. J. Thomson (cf. p. 66). In the 
canal-ray tube there? are manifold fragments of matter, simply and 
multiply charged, atom-ions and molecule-ions. In an electrical Geld 
they are deflected by an amount proportional to their charge and in¬ 
versely proportional to their mass. Hence in the case of two isotopes 
of the same charge and different mass the heavier constituent will be less 
deflected than the lighter. Furthermore, the amount of the deflection 
depends on the velocity that has been acquired by the particle in 
question. The advantage of Aston’s method over Thomson's was gained 
by arranging behind the electrical iield a magnetic field, the intensity 
and range of which was so chosen that all particles of the same mass 
were concentrated at one and the same spot : the photographs so ob¬ 

tained are called u mass-spectrograms.” 
The Grst result of Aston states : Neon consists of two isotopes of 

atomic weight 20*00 and 22*00, “ neon ” and “ meta-neon. The 
atomic weight obtained by chemical means, 20*2, results from a mixture 

of both in a constant proportion. 
The resolution of chlorine into two isotopes of atomic weight 35*0 and 

3*70 is particularly impressive. The chemical atomic weight of chlorine, 
35*46, which among the lighter elements is the Grst serious contradiction 
to the integral (whole number) character of the atomic weight, comes 
about owing to the fact that, as is shown from the photographic plate, 
the Cl35 is present in greater quantity than the Cl37 ; the proportion is 
3:1. In addition to the spots of 35 and 37 we see in the mass spectro¬ 
gram of the Cl-photographs also the spots 3G and 38 present in about 
equal proportions : these are to be interpreted as HC135 and HC137. 
Then, again, there are spots 17*5 and 18*5 that represent doubly charged 
Cl35 and Cl37. (In a spectrogram double the charge acts like half the 

mass.) 
In the case of the inert gases krypton and xenon, not less than six 

and nine isotopes, respectively, have been disclosed, of which the atomic 
weights differ up to 8 units in the case of Kr, and 12 in that of Xe. In 
the case of Sn eleven isotopes were observed, in that of Zn and Hg there 
were seven for each. Hence we have pleiads here of the same number 

* Phil. Mag., 39, 449 and 611 (1920). See also Isotopes, F. W. Aston, 1922, 

Edward Arnold & Co., London. 



142 Chapter III. The Natural System of Elements 

as in the ease of the radium elements (of. Table f>). All elements of 
odd atomic number appear to have only 2 * isotopes, if they have any 

at it 11. 
In the following 'Fable (i we follow Aston in attaching the letters 

a, b, c, . . . to the relative amount in which the corresponding species 
of element is represented in the “ mixed element ” (a denotes the 
strongest component, b the next strongest, and so forth). 

Only atoms in the gaseous state can be examined by Aston's 
method. A series of non-volatile elements, for example, Mg, Z11, Ca, 
have been investigated by A. J. Dempster f by a canal ray method 
which differs from that used by Aston. 

A more sensitive method than either of those and one which may 
also be used for very small quantities of isotopic admixtures is the 
method which uses spectral bands. In Chapter IX, § 2, we shall 
discuss the infra-red absorption spectrum of HCl, which brings out 
clearly the two isotopes Cl36 and Cl37. But whereas in this case a known 
result is confirmed optically research on bands has disclosed new and 
entirely unexpected results in the ease of oxygen, carbon, and nitrogen. 
Giaque and Johnston J interpret certain weak lines in the atmospheric 
absorption bands of oxygen as a combination of 016 and 01H, and still 
weaker lines of the same spectrum have been ascribed by Babcock || 
and Birge 1] to a molecule which is formed from 016 and ()17. The 
rareness of the atomic species 017 and ()18 is indicated in the weak 
intensity of the corresponding bands, the ratio of their frequency of 
occurrence (Hdufigkeit ftverhdltnis) as compared with ordinary oxygen 
amounting to 1 : 1250 and 1 : 10,000 respectively. 1 u the ease of carbon 
an isotope of atomic weight 13 has been shown by Birge ** to be present 
in the 0 — C-bands (Swan spectrum)—as well as in the CO- and CN- 
bands (cyanogen hands)—and in this ease, too, to so small an extent 
that it could not manifest itself directly in the mass spectrograph. 
According to researches by Naude ft the N-isotope N15 is apparently 
indicated in the bands of NO. 

In view7 of all these discoveries the traditional term “ atomic weight " 
as used for the quantity which is familiar to the chemist is really no 
longer appropriate. The constant values of the latter must be inter¬ 
preted as showing that the isotopes of the mixture came into existence 
before the earth’s crust had solidified, in epochs in which their uniform 
commingling was possible and inevitable. This alone would explain 
why the chemist everywhere and at all times finds them occurring in 
the same proportions. 

The striking characteristic of elementary atomic weights, that of 

* F. W. Aston, Proo. Roy. Soc., 126, 511 (1930). 
f Phys. Rev., 11, 31G (1918), and 17, 427 (1921). 
t Nature, 123, 318 (1929). |j Ibid., 123, 813 (1929). 
If Ibid., 124, 13 (1929). ** Ibid., 124, 182 (1929). 
ft Phys. Rev., 34, 1498 (1929). Besides the lines of N1501(t Naude also finds 

those of the combinations with the rarer oxygen isotopes N14G17, N,4018. 
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Table 6 

hi n No Mg Si S Cl Ar K (!a Ko Ni <4 It 

6b JOb 20a 24a 28a 32a 35a 36b 39a 4 0a t>4ii 58a 63 a 
7a 1 la 21 c 25b 29b 33c 37b 40a 41b 44b 56b 60b 65 b 

22b 26c 30c, 34b 

Zn So Hr Kr Kb Sr Zr Ag 
04a 74f 79a 7Kf 85a 80b 90a 107a 
05o 70c 811) 80o 87 b 88a, 02c 109 b 
00b 77e 82c 94d 
07(1 78b 83d 
68c 80a 84a 
69g 82d 8fib 
7 Of 

<\\ Sn Kb To Xo Hg Pb 
110c 112i 12 I H. 126b 124i 196g 206b 
11 Jo 114k 1231) 1 28a 126b 198d 207c 
112b 1 151 1 30a 128g J 99c 208a 
U3d MOc 129a 200b 
J 14a 1171 130f 20 lo 
nor J 18b 131c 202a 

1 I 9e 132b 204 f 
120a 134d 
12Jh 136o 
122g 
124d 

being integral, restores Front's hypothesis to its position of honour : 
according to this hypothesis, all atoms are supposed to be built up of 
hydrogen. The fact that hydrogen itself is simple has been proved 
not only by Aston but also by Stern and Volmcr * by another method 
(fractionated diffusion of hydrogen and oxygen). 

If, in accordance with the sense of Prout's hypothesis, H-nuclei are 
the real elementary “ bricks '' of which all gravitational matter is 
built up, it must cause surprise that in the radioactive transformations 
“ H-rays " liave never been observed. Why does not the hydrogen 
nucleus occur as a decay product of the higher elements just as well 
as the less simple He-nucleus ? In the last section of this chapter we 
shall give reasons why spontaneous emission of protons does not occur. 
We shall here only remark, however, that in artificially stimulated 
disintegration, as first used successfully by Rutherford in the case of 
nitrogen, proton rays are4 actually produced. We shall also discuss 

the latter phenomenon in the last section. 

§ 3. Peripheral and Central Properties of the Atom. Visible and 
X-ray Spectra. Configurations of the Inert Gases 

In the representation of the periodic system given in the first para¬ 
graph we followed the example of Mendeleeff essentially, both in the 
setting out of the table and in giving valency the predominant position 

Arm. d. Phys., 59, 225 (1919). 
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as 1 ha regulative principle for the various groups of elements. It 
remains now to develop the representation that Lothar Meyer gave the 
periodic system at the same time as Mendeleeff. Its crowning feat is 
the classical curve of atomic volumes, Fig. 35. As we know, atomic 

volume denotes the ratio 

atomic weight 

density 

This ratio has the dimensions of a volume (cm.3) ; it denotes, how¬ 

ever, not the volume of one atom, but of so many atoms as are con¬ 
tained in the number of grammes given by the atomic weight. Instead 

Fig. 35. Curve of atomic- volumes taken from one of the tables compiled by 
Stefan Meyer.* A distinct periodicity is exhibited. 

of atomic volume we might say more correctly gramme-atom volume. 
We shall, however, retain the term that has been sanctioned by usage. 

The atomic volume is, of course, defined only for the solid and liquid 
state. The gaseous state admits of no proper volume that is char¬ 
acteristic of a substance (unless we calculate such a volume from van der 
Waal’s gas equation). In the case of the so-called permanent gases we 
must, therefore, in defining the atomic volume, derive the density from 
the liquid state. In the case of solids that occur in various allotropic 
modifications (diamond, graphite), we get several values. 

We call attention to the following prominent features of the curve ; 

Elstcr and Oeitel Festschrift (Braunschweig* 1015), p. 152. 
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the steep maxima at the points occupied by the alkalies, the immediately 
folio wing descending branches of the curve, the flat minimum in the 
middle of the period, the ascending branches before the next successive 
alkali, the likewise high ordinates of the points occupied by the inert- 
gases, and particularly the similarity of appearance between the great 
periods of IS, IS, and 32 elements with the small periods of S and again 
S members ; this similarity is such that in this representation of the 
periodic system there is no sign of a subdivision of the great periods 
into two small periods. 

Later, a series of other properties were discovered which exhibited 
an analogous behaviour in their mode of dependence on the atomic 

weight (or atomic number, respectively). In Fig. 36 we exhibit as 
examples of such properties : the compressibility k, the coefficient of 

expansion a, the reciprocal of the melting-point ^ (as an inverse measure 

of the tendency of the element in question to be a solid) ; these are 
properties that concern not the filling of space itself as in the case of 
the atomic volume, but the alteration of the volume occupied owing to 
pressure and temperature changes. I11 a broad sense, these curves run 
parallel to those of the atomic volumes, but they seem a little less 
regular. In the curve of the reciprocal melting-points, the maxima are 
not at the alkalies but, as is easy to understand, at the inert gases, 
which show the least inclination towards becoming solids. 

vol. 1—10 
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All theso things concern a pronounced external property of the atom, 
namely, its claim oil space. Its connexion with valency conditions and 
the structure of the periodic system in Lot bar Meyer's curve shows that 
chemical actions, too, depend on external properties of the atom. In actual 
fact, they regulate the external relations of atoms to one another and 
themselves depend on the number and arrangement of the external 
electrons that determine the valency. Also the elastic properties of 
atoms, their thermal behaviour as shown by Dulong and Petit’s law 
of specific heats and the electrical conductivity each give a curve 
analogous to that given by atomic volumes, and thereby prove that 
they too are external properties of the atom. 

But also the phenomena that give rise to the emission of visible spectra 
occur at the periphery of the atom. The spectra of the alkalies exhibit 
an essentially similar structure in spite of their greatly different atomic 
numbers, Z ™ 3, 11, 19, 37, 55, and the consequent increase in com¬ 
plexity of the internal atomic structure. Only the peripheral arrange¬ 
ment of electrons in the series of alkalies is similar ; but this suffices to 
bring about an essential similarity in their visible spectra. The same 
correspondence exists between the spectra of the alkaline earths Mg, 
Oa, Sr, Ba, as well as between Zn, Od, Hg. Almost in every case the 
position of the element in its period and not its position in the system as 
a whole (its atomic number) is the decisive factor. The latter (atomic 
number) gives only a slight sign of itself, in that the spectral lines are 
in general not simple lines but consist of two or three lines that belong 
together and are more or less close together in the spectrum. The 
differences between the frequencies of this “ doublet and triplet ” 
increase regularly with the atomic weight, as used to be stated, or, as 
we now say, with the atomic number or nuclear charge. But the part 
played by the nuclear charge in the optical spectra is but a minor one. 

The position is different in the case of X-ray spectra. For them, 
the atomic number is the chief factor, in that from the atomic number 
of the element the corresponding X-ray line, and, conversely, from the 
X-ray spectrum the atomic number, can be determined uniquely. The 
frequency of a definite X-ray line, for example, the principal line of the 
K-series (of. the next chapter), increases uniformly and continuously 
with the atomic number throughout the whole system of elements 
almost without showing a trace of periodicity. In this case it is not the 
position of the element within the period of the system but its position 
in the system as a whole that is the all-important factor. 

Now, what does it signify that in X-ray spectra the atomic number 
of the element, its nuclear charge, exhibits itself so strikingly, whereas 
in the spectra of the visible region it hides itself ? This signifies that 
the region in which the X-ray spectrum takes its origin is the innermost 
part of the atom, the immediate vicinity of the nucleus, and that, on the 
other hand, at the periphery of the atom, where the optical spectra are 
produced, the nuclear charge is screened off by the cloud of inner electrons 



§ 3* Peripheral and Central Properties of the Atom 147 

or just shines faintly through them. It is owing to the fact that the 
X-ray spectra take their origin from the central region near the nucleus, 
where the forces are strongest and least modified, that their penetrative 
power and hardness is so great. In contrast with this, the visible 
spectra require for their excitation only small amounts of energy. At 
the surface of the atom the events occur on a moderate scale, but in 
the interior of the atom they become intensified to an extreme 
degree. 

The nucleus and the innermost regions of the atom around it are not 
built up periodically but, in view of the intensity of the fields of force, 
their structure is a continuous growth in conformity with the contin¬ 
uous increase of the atomic number. The X-ray spectra reflect this 
systematic increase of growth and thereby lose all connexion with the 
periodic structure of the natural system. Periodicity is an external, and 
not an internal, property of atomic structure. 

A general inference about the arrangement of the electrons about 
the nucleus may be drawn from observations concerning isotopes. Two 
isotopes of an element cannot be separated by chemical means (e.g. radium 
and mesothorium, thorium and radiothorium, or Cl35 and Ol37) ; that is, 
the peripheral parts of their atoms are built up similarly, since it is 
these parts that are alone of account in chemical reactions. Moreover, 
two isotopic elements have similar spectra * in the visible and the ultra¬ 

violet regions (for example, thorium and ionium or mixtures of the 
two) : this similarity also leads us to conclude that the arrangement 
of the external elements is very approximately the same. But two 
isotopic elements have also the same X-ray spectra, (e.g. in the case of lead 
and 11 aG, according to Siegbahn and Stenstrom) ; hence they are also 
alike in the arrangement of the internal electrons. Hence the whole 
atomic structure is determined uniquely by the nuclear charge ; given 
the same nuclear charge we get the same atomic structure, in spite of 
varying atomic weights ; this applies, in particular, to the radioactive 
elements. As the decay continues and the nuclear charge alters, the 
new arrangement of the electrons that corresponds to the new nuclear 
charge is effected automatically. The atomic structure is uniformly 
regulated, by electrical agency from within outwards as far as the peri¬ 
phery of the atom, by the magnitude of the nuclear charge. 

To describe the peripheral structure provisionally for the present, we 
picture to ourselves the progressive synthesis of the atoms in the order 
of the periodic system. At each step a new electron is added. In 
general the new electron attaches itself to the outside, as we may assume 
that in the interior of the atom there is no room for the immigration of 
additional electrons. As the number of external electrons increases, 
step by step, a limit is reached which, for reasons of stability, cannot be 

* The similarity does not refer to the number and position of possible 
“ satellites,” cf. Chap. VIII, The latter are connected with the fine details of 
nuclear structure and may differ from one another in the case of isotopic atoms. 
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exceeded ; ef. § 4 of the present chapter. From that point onwards a 
new outer shell begins to form, the previous outermost shell contracting 
inwards. To picture this, we need only remember the rings of a tree 
in its yearly growth. 

The alkalies arc decidedly univalent and electropositive. There can 
be no doubt that we must assign to them in each period one outer electron 
in the outermost shell. The alkaline earths are divalent, the earths are 
trivalent ; to these must be ascribed, respectively, one, two, and three 
outer electrons (valency-electrons). In general we ascribe to the electro¬ 
positive atoms at the beginning of each period just as many outer elec¬ 
trons as is expressed by their valency with respect to oxygen (cf. p. 130). 
Electropositive character denotes readiness to part with electrons. Now 
the electronegative elements are at the end of each period. Electro¬ 
negative character denotes readiness to take up electrons. The electro¬ 
negative atoms lack just as many electrons as they have hydrogen- 
valency ; fluorine wants one, oxygen two, nitrogen three. These 
electrons are not wanting in them for electrical neutralisation but for 
electromechanical stabilisation. 

Between the electropositive elements following the end of a period 
and the electronegative elements preceding it then*, is situated in each 
case an inert gas. When the electropositive elements give up their 
valency-electrons, they reduce their configuration to that of inert gases ; 

whereas when the electronegative elements satisfy their valencies by 
taking up electrons, they complete themselves as configurations of the inert 
gases. Thus both parties strive towards this goal. Hence we must 
assume that the configuration of inert gases possesses a special degree of 
stability, and we see why in the progressive synthesis of the atoms in the 
natural system each period ends with an inert gas and that then a new 
shell begins. 

The two small periods each contain eight elements. The inert gases 
neon and argon that stand at the end of these periods are thus entitled' 
to eight electrons in the outer shell. We shall see that the other inert 
gases, also, as far as radium emanation are to be credited with eight 
outer electrons. Instead of “ configuration of inert, gases ” we might 
just as well say “ 8-shell.” Helium with its two outer electrons is, of 
course, an exception. 

The union of electropositive and electronegative elements denotes in 
the simplest cases the creation of one or more 8-shells. We call to mind 
HF, H20, NH3. Fluorine, by taking from H the electron that it lacks, 
completes itself as an 8-shell; in the same way, oxygen and nitrogen do 
likewise by depriving two or three hydrogen atoms of their electrons. 
In all cases the result is the neon configuration with attached hydrogen 
nuclei. Further, in the formation of NaCl two full 8-shells come 
about : the outer electron of Na emigrates to Cl; Cl becomes raised 
to the argon type, and Na becomes lowered to the neon type. 
A corresponding argument holds for all the alkali halides. We may 
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represent this process by the somewhat unusual chemical formula 

NafCl- = NcuAi7 

which expresses that the positive Na-ion resembles a neon shell and 
that the negative Cl-ion resembles an argon shell, with the difference 
that the nuclear charge of the former is not 10 but 11, and that of the 
latter is not 18 but 17. In the case of divalent polar compounds two 
electrons pass from the electropositive to the electronegative component. 
For example, we find that with CaO two 8-shells form, the one, CaM 
being of the argon type, the other O ~ being of tin's neon type ; this 
may be expressed thus : 

IV >- O ~ - A20Ne8. 

Besides the tendency to the 8-configurations of the inert gases, we also 
find a tendency to the “ 18-configurations ” of the ions Cu^, Ag*, Au+ 
in the compounds of the neighbouring atoms. 

W. Kossel,* who revived Berzelius' theory, worked out fully this 
view of chemical action and tested it not only on the typically simple 
polar compounds, but also on Werner's complex compounds, lie 
arrived at the result that in the case of all such compounds the directed 
single forces denoted by bonds in the old chemical schemes may be 
replaced by the electric forces of the ions, which are more intelligible 
physically. This view, of course, does not embrace non-polar bonds,f 
that is, those bonds for which no ions can be assumed, as in the case of, 
say, H2, 1ST2, 02 ; and, naturally, there are connecting transitions between 
ihc limiting conceptions polar and noil-polar. 

It has been held up as an objection to KosscTs line of reasoning, that, 
in the effort to trace chemical actions back to electrostatic forces alone, 
it has neglected the quintessence of the modern physics of tin* atom, 
namely, the quantum theory. The author is of the opinion that in 
Kossel’s theory the quantum ingredient is represented by the fact that, 
going beyond Berzelius, Kossel takes the atomic volumes (better, the 
ionic volumes) into account whereby, for example, the decrease in the 
intensity of the polar union wTith increase of atomic size is explained 
according to Coulomb’s law. In fact, the size of atoms is given, accord¬ 
ing to our modern view, merely by the extent of their peripheral elec¬ 
tronic orbits, and these, in turn, are determined essentially by their 

quantum numbers. 
This brings us for a moment back once again to the curve of atomic 

volumes, with which w^e started this section. The downward course of 
the curve at the beginning of each period may be made clear quite 

* In his long paper, “ Uber Molekulbildung als Frage des Atombaues,” 
Ann. cl. Phys., 49, 229 (1916). Of. also “ fiber die physikalische Nalur tier Valenz- 
krafte,” Naturwiss., 7, 339 and 360 (1919), or t-lie monograph, Vidnnzkrdftv und 
JRonfgempekttrn (2nd ed., Springer, 1924). 

f “ Homeopolar ” according to the nomenclature of K. Abegg, w ho prepared 
the way for Kossel’s electrical theory. Instead of polar Abegg and Kossel use 
the term “ heteropolar,” 
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simply, if superficially, by the following consideration. In the case of 
a neutral atom of an alkali metal, an external electron is situated in the 
field of an atomic residue carrying a single positive charge. In the case 
of an atom of the alkaline earths, or of the earths, if they are electrically 
neutral, we have two or three outer electrons in the field of a doubly 
or trebly charged positive atomic residue. The increased attraction 
arising from this more highly charged atomic residue, which always 
outweighs the repulsion on the part of the other valency electrons, 
clearly effects a contraction of the dimensions of the orbit, as compared 
with the alkali atom, and so explains the decrease of the atomic volumes 
at the beginning of the periods. The ascending branches at the end of 
each period cannot be interpreted so readily. 

§ 4. Introduction to the Theory of the Periodic System. Pauli’s Principle 

(The theory of the periodic system is founded partly on the chemical 
system of arrangement and partly on spectroscopic facts) We touched 
on the former in the preceding section : we shall develop the latter in 
the following chapters. Hence in our present account of the theory of 
the periodic system we are forced to proceed somewhat dogmatically, 
and shall have to leave many empirical confirmations of spectroscopic 
origin till later. We commence by stating some general points of view 
which will be used as a basis for considerations given in the next 
section, which are more detailed. 

1. Comparison with the States of the Hydrogen Atom 

In the ease of any arbitrary atom of atomic number Z we have Z 
electrons. We shall, as a first approximation, treat each of them as 
independent of the remainder. We may then compare it with the 
electron of the hydrogen atom,—in which case the nuclear charge 

of this hydrogen atom is to be set, not equal to 1, but to Z. Exactly 
as in the hydrogen atom we denote the state of the electron in question 
by means of certain quantum numbers. In describing the hydrogen- 
states in space we used the quantum numbers 

71r, Tty, 71^ 

(cf. p. 120), and called 

n = nr + n9 + n^ 

the principal quantum number, 

l = n0 + n+ — 1 

the azimuthal quantum number. The latter takes the place of the 
quantum number 

w* =" Wq + w* 

of the older theory (p. 115). Precisely as was to signify the projec¬ 
tion of n^ on a favoured direction (magnetic axis), cf. page 121, so 
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in the sequel we shall use the projection of l on such a favoured direction 
and shall use ml to signify the magnetic quantum number. The index l 
is to distinguish this number from an analogous quantity which will be 
introduced later and will be called ms; mx is a whole number, like 
n and l. From definition we then have, as in Fig. 29 of page 123, 

— I < mx g + l, 

so that there are altogether 2/ -| J different values of m, for a given l. 
The introduction of the three quantum numbers 

n, Z, mL 

in the case of the hydrogen electron or any selected electron of a com¬ 
plicated atom corresponds to the three degrees of freedom of the point- 
mass in particle mechanics. By adding to the three data n, l, mt the 
above quantity ms, we pass beyond the mechanics of the single point- 
mass and endow the electron with an axis (<k spinning electron ”). 

2. Principal Quantum Number and Shell Structure 

(\Vc know that as we pass from one element in the periodic table up 
(in atomic number value) to the next, we find a new electron at each 
step) (We also know that the electrons of an element distribute them¬ 
selves over different shells.) 

As already hinted on page lib, we assign the values of the principal 
quantum number n to the individual shells of the atom. We speak of 
an innermost or K-shell ; it consists of the electrons which have 
the value 1 for the principal quantum number. We call the next 
shell outwards the L-shell; it comprises the electrons for which n 2. 
The complete scheme, so far as it is actually required in building up 
the elements, runs : 

n.1 2 3 4 5 fi 7 
Shell . K L M N O P Q 

(The conception and also the nomenclature of the successive atomic 
shells originate in the researches on X-ray spectra^ The fact that 
steadily increasing values of the principal quantum number belong to 
the successive shells was suggested from the very beginning in the study 
of X-ray spectra and was confirmed by the discovery of L-doublets 
(cf. the next chapter, § 5). ( The beginning of a new shell in the periodic 
system at the same time denotes the beginning of a new period,. But 
the allocation of the shells to the periods is not unique, as we shall see, 

and is complicated by various adjustments) 
Our reason for giving the principal quantum number n the dominant 

position in distributing the electrons is that, as we know, the successive 
energy levels of hydrogen are distinguished by successive values of n. 
n 1 denotes the ground state of hydrogen, the state of lowest energy. 
n = 2 is the next lowest energy state. Corresponding to this we have 



152 Chapter III. The Natural System of Elements 

that in any arbitrary atom the K-shell is the lowest in energy, the 
most stable, and the L-shell the next most stable, and so forth. 

3. Azimuthal Quantum Number and Sub-Groups of the Shells 

For a given principal quantum number n there are in general, in 
the case of the hydrogen atom, different types of orbits, according to 
the value of the azimuthal quantum number Z, as illustrated in Figs. 
2b and 27. We now assign to these different types of orbits different 
sub-groups of the shells in question ; that is, we define subsidiary 
shells. Only the ground orbit, for which n ~ 1, is single. Accordingly, 
the K-shell is also single. Here l necessarily has the value zero. For 
n = 2 we had two types of orbits, which correspond to 1^0 and l ----- 1. 
Accordingly, the L-shell divides into two sub-groups, which we denote by 

Li and Ln 4~ Lni. 

The reason for again dividing the second sub-group into Ln and Lm 
can be given only later when we deal with X-ray spectra. For the 
present we remark only that this distinction is connected with the spin 
of the electrons. The same applies to the sub-divisions in the succes¬ 
sive later shells. For n = 3 we have drawn three types of orbits, 
which belonged to the values Z — 0, 1, 2. Hence the M-shell resolves 
into three sub-groups, which we shall call 

Mi, Mu T Mm, M1V + My. 

And so for the other shells. In the case of the N-shell we have four 
sub-groups, which we represent by the seven symbols, 

Nj, Nit + Nni, Niv + Ny, Nvi 4- Nvn. 

They correspond, in order, to the values 

Z - 0,1, 2, 3 

of the azimuthal quantum number. Summarising, we may say that 
there are n sub-groups in the nlh shell, and that they are designated by 
2n — 1 symbols. In the case of hydrogen the different types of orbits 
do not differ at all as regards energy if n remains the same (degeneracy). 
This is not strictly true for a more complicated atom, but it is still 
correct to say that the energy-differences between the sub-groups, for 
example of the L-shell, are much smaller than the energy-difference 
between the K- and the L-shell, and so forth. 

4. Magnetic Quantum Number and Multiplicity of the Sub-Groups. 
Introduction of the Spin Quantum Number 

For a given Z there are, as stated above, 2Z + 1 different possible 
values of the magnetic quantum number mv The states corresponding 
to the different values of mx have, it is true, the same orbital type, and 
differ only in the different position of the orbit with respect to the axis 
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of reference chosen. But by characterising the states by means of 
their quantum numbers we treat such states of the same orbital type 
but differently orientated as being different. This will be so much 
more the case, since the wave-mechanical refinement of the orbital 
conception actually does lead here to different descriptions of the 
states (different proper functions). Every sub-group of the azimuthal 
quantum number l accordingly comprises 21 ~f 1 states. Only the 
sub-groups belonging to l — 0, namely 

K, Lv Mj, N1? . . . , 

are simple ; for from l — 0 it necessarily follows that m} ----- (). On the 
other hand, the sub-groups that belong to l — J, namely 

l-ii + ljiiTi Mn + Mm, N11 + Njtt , . . . 

are three-fold, for here mt can assume the values |- 1, 0. — 1. In the 
same way the sub-groups for which l — 2, namely 

Miv My, Niv -f Nv, . • . 

are five-fold, corresponding to the possible values :| 2, | 1,0 for m,. 
But the multiplicity which has been found in this way is not yet 

sufficient either for spectroscopic or for chemical purposes. Each sub¬ 
group l comprises not 21 + 1 but 2(2/ -f 1) states. We express this in 
the language of quantum numbers by saying that the individual state 
of the electron is defined not by three, but by four quantum numbers. 
To the numbers n, l, mt that have hitherto been used, we must add a 
quantum number ms which is capable of having either of the values 

ms ----- -b l. 

This causes every state that has hitherto been simple to sub-divide 
into two different states, namely, those distinguished by the two values 
of ms. Tn a certain graphical way the meaning of m,s is analogous to that 
of mt. Whereas mx defines the orientation of the revolving motion in 
the orbit with respect to a favoured axis, ms denotes the orientation of 
the sense of rotation of the electron itself, namely, its “ spin,” which 
can set itself either parallel (ms — -(- £) or anti-parallel (ms — — i) to 
the favoured axis. For an empirical foundation of this interpretation 
we refer to the classical pictures of the Stern-Oerla 'h effect (see Figs. 
32 and 33). The two deflections in the ground state of Ag and H, both 
of which signify a state with l = 0 (and hence also mx = 0) are to be 
regarded as parallel and anti-parallel adjustments of the electron to 

the magnetic lines of force * and correspond to the two values i i of 
the spin quantum number. 

* The rigorous Dirac theory of the tc rotating ” electron formulates this some¬ 
what differently ; for our above “ half-classical ” model of the electron (no 
wav©-mechanics being used) the description given in the text is logical and 

sufficient. 
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5. Pauli’s Principle 

We may now formulate rigorously and simply the fundamental 
principle of Pauli (Pauli’s Exclusion Principle, the Pauli Verbal) * thus : 

Inside an atom, one and, the same quantum state can be occupied only 
by one electron. The quantum state must be well defined, that is, it 

must be specified by its four quantum numbers n, l, ms. In other 
words, it is forbidden for any two electrons in the atom to have the same 
values for all the quantum numbers n, /, m}, m8. The existence of one 
electron having certain definite values for these numbers excludes 
the existence of another electron having the same values for all four of 
these numbers. 

The empirical confirmation of Pauli’s principle is contained in the 
sum total of spectroscopic observation (occurrence or non-occurrence 
of quantum states in the visible and in the Rontgen region). A 
theoretical proof can be deduced neither from the older quantum theory 
nor from wave-mechanics. The principle must for the present be 
regarded as a point of view which becomes added to and regulates the 
quantum theory. But Pauli’s principle may be expressed in a par¬ 
ticularly simple and fundamental form by wave-mechanics (by the 
postulate of change of sign of the proper functions when any two elec¬ 
trons are exchanged). This will be demonstrated in Vol. II of the 
present work. For the present we must restrict ourselves to drawing 
the consequences of the principle for the periodic system, in particular 
for the completion of the shells and sub-groups. This is effected accord¬ 
ing to the following scheme : 

Oh on Number of Electrons 

nsl nij, /, n 1 
mx, Z, n 2 

l, n 2(21 + 1) 
n-1 

n 2 2 (21 -f- 1) = 2ft1 
\ 0 

The first line of this table is identical with the statement of Pauli’s 
principle. The second uses the fact that ms can have only the two 
values ± i (parallel or anti-parallel position). The third line adds the 
fact that mx can assume the values 0, ± 1, . . . ± l (21 + 1 different 
positions). In this way we have found the maximum number of elec¬ 
trons that is possible, according to Pauli's principle, for the different 
sub-groups. We tabulate them as follows : 

* W. Pauli, junr., “ f iber den Zusammonhang des Abschlusses der Elektroneu,” 
etc., Zeits. f. Phys., 31, 765 (1925). 
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l ■= 0 K, Li, Mi, Ni, ... 2 . I = 2 
1 L11 4~ Lin, Mu -I Mm, N11 f Nm, ... 2.3=6 
2 Miv 4~ Mv, Niv f- Ny, , . . 2.5 = 10 
3 Nvi 4~ Nvn 2.7 -- 14 

The fourth row of the previous scheme is obtained by summing up 
the occupation numbers in the last scheme and gives us for the occupa¬ 
tion numbers for the full shells 

K-shell 2 2 . I2 

L- ,, 2 + 6 = 8=2.2a 
M- „ 2 + 6 4- 10 = 18 = 2.32 

N- „ 2 4-6 j 10 -f 14 = 32 = 2.42 

These are, however, Rydberg s numbers for the lengths of the periods, 
which we called “ cabalistic ” in § 1 of this chapter. They are, as we 
see, a direct consequence of Pauli's principle (which is no less cabalistic). 

It is to be remarked that historically E. C. Stoner * read off the 
numbers in the last table but one from regularities in the X-ray spectra 
a short time before Pauli. In contrast with Bohr, who sub-divided 
the Rydberg numbers provisionally into equal sub-groups, 

8 = 44-4, 18 = 6 + 6 -I- 6, 32 = 8 4- 8 4- 8 |- 8, 

Stoner recognised the subdivision given in our last tabulation, 

8 = 2 + 6, 18 = 2 + 6 4- 10, 32 = 2 4 6 + 10 + 14. 

We have here applied Pauli's principle only to the conditions in the 
individual atom. Its general character is, however, signalised by the 
fact that it holds for the totality of electrons that are united in 
an arbitrary molecule,, indeed, even for the far more comprehensive 
system of conduction electrons that belong to a metal of arbitrary extent. 
This raises in a more acute form the question which occurred in the 
ease of the atom : How is it possible for the electrons to be aware of the 
quantum positions that are to be occupied so that they avoid trans¬ 
gressing the Pauli exclusion decree ? This question is certainly not 
capable of being answered from the corpuscular point of view. The 
wave-mechanical view tones down the paradoxical nature of the 
question, but by no means answers it completely 

§ 5. The Structure of the Elements in the Periodic System 

We shall now describe Iioav the elements are built up genetically, 
starting from hydrogen and ending at uranium. Alongside the real 
periodic system of the chemist we build up an ideal system such as is 
formed in the ease of a highly charged nucleus (for* example, Z - 100) 
by capturing 1, 2, 3 . . . electrons successively. Whereas in the ease of 

Phil, Mag., 48, 719 (1924), 
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the real system of neutral atoms the nuclear charge grows concurrently 
with the successive number of electrons, in our ideal system we keep 
the nuclear charge fixed and allow only the number of electrons to 
grow larger. The real system gives us the peripheral properties of the 
atoms, which are of interest to the chemist and the sx)ectroscopist in 
the visible region. The ideal system describes the interior of the atoms, 
and is of interest to the X-ray spectroscopist. The ideal system is 
simpler than the real system. By assuming a high nuclear charge we 
eliminate all questions involving stability, which play a part in the 
real system. In the ideal system, the electrons are bound in the order 
of shells and sub-shells ; the binding energy can be read off directly 
from the X-ray spectra (cf the section on absorption limits in Chap. IV). 
These spectra, therefore, also prove empirically that the regular succes¬ 
sion of shells and sub-groups that we set up above, 

K, Li, Ln f Lm, Mi, Mu f Mm, Miv \- My, Ni, Nn f Nm , . . . 

is correct. 
Before we describe the deviations from this ideal sequence that occur 

in the real system we shall interpose some historical remarks. In the 
front rank we find the name of Rydberg, who with visionary penetra¬ 
tion had calculated out beforehand from very insufficient data the 
arithmetic relationships of the system and had obtained essentially 
correct results. The beginnings of the genetic view go back to works of 
Kossel (cf. the quotation on p. 149). In particular the position of the 
inert gases as mile-stones in the periodic system is emphasised. At the 
same time, and independently of Kossel, (f. N. Lewis developed the 
idea of 8-shells, namely, in the geometrical form of cubes. The incom¬ 
plete (nicht-abgeschlossenen) shells were first characterised by E. Laden- 
burg * as intermediate shells, and were brought into relationship with 
the paramagnetism of the associated ions. All these assumptions were 

systematically applied and elaborated in Bohr's theory of the periodic 
system f of 1921. In particular Bohr worked out the idea of the 
successive capture of the electrons, their binding energy, and the 

altered positions in the real and the ideal systems. Bohr's system was 
subjected to correction by Stoner (see quotation on p. 155). The 
final phase of the theory was achieved by Pauli's principle which fixed 
the completion of the shells by quantum numbers, in contradistinction 
to Bohr, who had hoped to be able to solve this problem by applying 
classical theory and the correspondence principle. 

The attractive pictures with which Bohr had illustrated the theory 
of the periodic system are suppressed in the present edition of this 
book. Nevertheless, the orbital view still has a certain importance 

* Naturwiss., 1920, Heft 1. 
t Put forward in provisional form in a Copenhagen report of October, 1921. 

published as the third essay in “Orel Aufsatze fiber Spektren und Atombau," 
Sammlung Vieweg, Braunschweig 1922; further elaborated in the Ann. d, Phys., 
71, 228 (1923). 
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even for the present-day view of wave-mechanics in so far as it is the 
carrier of the quantum numbers, as in the previous section. But it 
cannot be maintained beyond that point, as, for example, in postulating 
the symmetrical arrangement of orbits into stars or tetrahedra. 

The hydrogen atom has been fully described in the preceding chapter. 
In the ground state the electron describes a one-quantum orbit about 
the nucleus ; this is shown in the first diagram of the Figs. 26 and 27. 
In the ground state of the helium atom both electrons taken alone 
describe a one-quantum orbit. All experimental results, particularly 
those involving the diamagnetism of the helium atom, agree in de¬ 
manding that these orbits must form a symmetrical and stable con¬ 
figuration which must be closed in itself, and which endows helium 
with its character as an inert gas. 

With helium the K-shell is completed. This shell retains 2 as the 
number of its electrons and also its closed character in all the subsequent 
elements. Pauli’s principle, which demands the maximum number 2 
for the K-shell, simultaneously guarantees that the shell will be closed, 
that is, completed. The spin moments of momentum of the two 
electrons compensate one another, since one ms — + J, and the other 
ms -- — i. The spectroscopic character of the ground state of helium 
(parhelium-S-term, cf. Chap. VII, § J) confirms this. 

The L-shell begins with the third element Li, for which Z = .‘1, 
since Pauli’s principle forbids the newly added electron to occupy a 
one-quantum orbit. The transition from a one-quantum orbit to two- 
quantum orbits is accompanied by a great increase in the orbital dimen¬ 
sions, namely, an increase in the ratio 1 : 4 if we calculate according 

to the simple model of the hydrogen atom. This explains the extremely 
great difference in the chemical behaviour of He and Li. Helium holds 
its electrons particularly tightly in paths which closely envelop the 
nucleus. Li readily parts with its external valency electron which can 
move out relatively far from the centre of the atom. Helium lias the 
greatest ionisation potential (that is, the work necessary to detach an 
electron) of all elements for which this factor has been determined, 
whereas lithium, in agreement with its electropositive character, has a 

low value for this factor. 
The same remark applies to all the alkalies. Since each stands at 

the beginning of a period, where the quantum number n increases by 1, 
their valency electron describes an orbit of relatively great dimensions, 

and may be removed with ease. 
There are two kinds of 2-quantum states, corresponding to the sub¬ 

groups Lt, and Ln + Lm. The sub-group Lj presents itself first in 
the ideal system. There is spectroscopic confirmation that this actu¬ 
ally occurs in the case of the Li atom. The so-called “ principal series ” 
in the lithium spectrum appears as absorption lines in unexcited lithium 
vapour. Thus the initial state of the lithium atom in this absorption 
process is the natural ground state of the lithium atom. We shall 
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characterise this initial state spectroscopically in Chapter VII, § 1, as 
an S-term. This implies, according to the general system of series, 
that we must ascribe to it the azimuthal quantum number / 0. It 
may be proved rigorously by spectroscopic means that the valency 
electron of the lithium atom belongs to the sub-group Lj characterised 
by l = 0. 

We arrive at the second element of the second period, beryllium, 
for which Z ~~ 4. Be is divalent, like Mg, Oa, . . . ; so we also allocate 
the newly added electron to the Li-shell. Pauli's principle ensures 
that this sub-shell becomes completed in the cases of Be and that it has 
no spin moment of momentum. 

The third element, Boron, for which Z — 5, marks the beginning of 

the second sub-shell Lji [- Lm. The three outer electrons (valency - 
electrons) of boron are thus dissimilar in kind : two belong to l 0 
(the Li-shell), and one to l - - 1. It is singular that also in the case of 
carbon (Z -■= (>) wc must regard the four valencies as consisting of dis¬ 
similar pairs, which is contrary to the chemical fact of the carbon- 
tetrahedron ; two electrons belong to the Li-shell, and are more tightly 
bound, the other two being more loosely bound and belonging to the 

(L11 + Lm)-shell. 
Proceeding to the end of the period, we arrive at the elements of 

more and more electronegative character. The significance of electro¬ 
negative valency becomes clear when we advance to the inert gas type, 
neon, for which Z — 10. Here we have besides the two electrons of 
the K-shcll, the (2 + 6) electrons of the completed L-shell. We must 
picture to ourselves that the preceding elements, F, O, N strive to 
attain the completeness of the neon-shell, F by taking up one electron, 
O and N by drawing to themselves two and three electrons respectively. 

We come to the third period of the system of elements and begin 
with Na for which Z = 11. A 3-quantum orbit now presents itself, 
which marks the beginning of the M-shell. The fact that the valency 
electron of Na describes an orbit of the type l = 0 is inferred from 
spectroscopic data (from the S-term ” of the Na-spectrum) just as in 
the case of Li. In the case of sodium it is, in particular, the well-known 
D-line, the first term of the principal series which makes this conclusion 
incontrovertible. Hence the M-shell begins, as we must expect from 
the regular nature of the ideal system, with the sub-group Mi. This 
sub-group becomes completed in the next element Mg, for which Z — 12. 
As in the case of Be, we here have two valency electrons, whose spin 
moments of momentum compensate each other. 

In the ease of Al, for which Z = 13, the conditions are as for B. 
The last electron, the thirteenth, finds no room in the Mi-sheli and 

enters the group of the (Mn + Mm)-electrons. For Si, Z = 14, we 
have, as in the case of C (in spite of the chemical similarity of its val¬ 
encies) two electrons in the group (Mu + Mm), and two others, more 
tightly bound, in the Mi-group. The third period closes with Ar, for 
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which Z . IK. The 8-shell, formed of 2 f fi electrons having the 
principal quantum number n 2, is completed in such a way that the 
preceding electronegative', elements balance their energies when they 
succeed, through capturing electrons, in completing themselves so as 
to achieve the symmetry of the argon atom. 

The configuration of 2 4 fi electronic orbits in the argon atom 
represents the “provisional” but not the "final" completion of the 
M-shell. 

The qualitative similarity of the peripheral configuration of No 
and Ar will recur when we come to the higher inert gases Kr, 
Xe, Em. 

We summarise all the above remarks in the following Table 7 ; it 
gives in a simple scheme the distribution of electrons in the shells in the 
ground states for all the elements from, H to Ar. 

From considerations of the ideal system, we should expect the next 
electron to become added to the M-shell, that is, to begin the (M'rv + My) 
group. But this is certainly not the ease. Potassium, Z :== 19, is 
univalent, with a pronounced tendency to part with its outer electron. 
Its configuration must resemble that of Li and Na. We must there¬ 

fore begin a new shell, the N-shell, w ith K by putting its valency electron 
into a 4-quantum orbit. It can be proved spectroscopically that we 
arc here dealing with an orbital type for which l ---• 0, that is, with the 
Ni-group. 

X is followed by 0a, for which Z — 20. We here have two valency- 
electrons of equal value' and of the same orbital type. The Nj-shell is 
completed when wo arrive at Ca. Its premature appearance signifies 
the first departure of the real from the ideal system. To account for this 
deviation we can only followr Bohr and say that the capture of Ni-elec- 
trons (of orbital type 40) leads to a more stable configuration than the 
capture of (Miv + My)-electrons (of orbital type 32). This is not, of 
course, a proper theoretical reason, but only a repetition of the state of 
affairs in another form. That this contrast of the ideal and the real 
system has a physical meaning may be shown very strikingly at just 

this point of the periodic table. 
Let us consider the electronic configuration which consists of 19 

electrons. An example of this is given by the neutral K-atom, Z -- 19. 
Another example is given by the ionised Ca+-atom, wuich has lost one 
of the 20 electrons which normally belong to it. We obtain spectro¬ 
scopic information about the neutral K-atom from the arc spectrum of 
K, and about the ionised Caf -atom from the spark spectrum of Ca 
(the “ first spark spectrum ”). In both cases wTe find that the ground 
state is an “ 13-term ” ; that is, it is characterised by l = 0. From 
this we conclude that the electron in question (the valency-electron in 
the ease of K and the remaining one of the two valency electrons of Ca) 
belongs to the Ni-shell. As a third example of an electron configuration 
of 19 members we may take Sc+ f, as a fourth TiM + (that is, doubly 
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Table 7 

Shell symbol K Lj Lri + Lm Mi Mjj -f- Mjji 

Orbital type 1o 2„ i 

1 hL. 1 
2 Re. 2 

3 Li. 2 1 
4 Bo. 2 2 

5 B. 2 2 l 
0 0. 2 2 2 
7 N. 2 2 3 
8 0. 2 2 4 
9 E. 2 2 5 

10 Ne. 2 2 6 

11 Na. 2 ! 2 0 1 
12 Mg. 2 2 6 2 
13 A1. 2 2 6 2 1 
14 Si. 2 2 6 2 2 
15 P. 2 2 6 2 3 
16 S. 2 2 6 2 4 
17 Cl. 2 2 6 2 5 
18 Ar. 2 2 6 2 0 

ionised scandium and trebly ionised titanium. Here * the l* second 
arid “ third ” spark spectra, respectively inform us that the ground 
state belongs to l -= 2 (“ D-term ” and not an “ S-term ” ). But the 
shell Miv + My is characterised precisely by l = 2. We must therefore 
infer that the 19th electron enters in the case of Sc1*, Ti‘M + , . . . into 
the still unoccupied (Miv + My)-sholl, whereas it prefers the Ni-shell 
in the case of K and Ca*. Thus the increase of the nuclear charge 
from 19 (K) to 21 (Sc) just suffices to restore the manner of distribution 
of the ideal system and to avoid the premature filling of the Ni-shell 
in the real system. It should be mentioned that as early as 1921 Bohr 
had drawn the same conclusion from the spectra of K and 0a+ by 
methods of extrapolation. 

Hence we see that the occurrence of the Ni-shell in the case of 
K and Ca is only a superficial anomaly. In the case of 8c the higher 
nuclear charge 21 is already able to bind an electron, the 19th, into the 
(Miv + Mv)-shell (orbital type 32). The other two electrons, namely, 
the 20th and the 21st, then attach themselves as parts of the N-shell 
to the outside of the M-shell, which is now modified and deviates from 
the argon shell. 

With Sc we enter into a group of elements which have many interest¬ 
ing features, and which end in the iron-triad (Fe, Co, Ni). The otherwise 

♦ R. C. Gibbs and H. E. White, Proc. Nat. Ae. Wash., 12, 598 (1920). 
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regular advance in the valency factors here receives a check. Moreover, 
we here encounter the important paramagnetic properties ((if. the refer¬ 
ence to Ladenburg on p. 156), not only in the case of neutral atoms but 
also in that of their ions ; in particular, we know doubly ionised atoms 
(for example, the ferro-ions, Fe+1) and triply ionised atoms (e.g. Fe M 1) ; 
the same applies to all the elements of this group. The magnetism of 
the ions means that the electron configuration is not neutralised mag¬ 
netically, but has a resultant magnetic moment. We understand this im¬ 
mediately if we bear in mind that in the case of all these ions the (Miv + 
My)-shell is incomplete, and is in process of being constructed. When 
we arrive at Ni, the end of the iron triad, we should in this way have 
8 electrons more in the M-shell than in the case of Ar, that is, if the two 
electrons that lie in the N-shell in the case of Ca and 8c remain in this 
shell. Spectroscopic information proves that this is so with Ni, but 
that it does not hold for the element Cu which follows on Ni. The 
univalent character of Cu and its partial similarity to the alkalies shows 
that it has only one electron in the N-shell, the 29th electron, the last to 
be bound. Thus the two electrons which were valency electrons in the 
case of Ca and 8c have now migrated into the M-shell. In the case of 
Cu the M-shell consists not of 16 but of 16 + 2 —18 electrons. This 
number 18 is the third in the series of periodic numbers 2, 8, 18, 32,— 
of page 155. The complete M-shell becomes a reality for the first time in 
the case of the CV -ion. 

In many respects the 18-shell of the Cu *-ion is an analogous con¬ 
figuration to the 8-shell of the inert gases ; like the latter, it is com¬ 
pleted and appears to be wonderfully stable. The elements that 
follow on Cu therefore add their superstructure to the 18-shell. But 
there is a difference in that the elements which precede Cu are not 
electronegative, namely, they do not complete themselves to an 18-shell. 
The configuration of Cu4 (and likewise of AgH, Au+) is striven after 
only one-sidedly, namely, from the side of the higher atomic numbers, 
but not from both sides, as in the ease of the inert gas configurations. 

We now come to the remaining elements of the fourth period, which 
now develop themselves on the outside of the M-shell in the normal 
manner as in the case of the small periods, and which leads to a pro¬ 
visional completion of the N-shell. Zn is the first to follow Cu ; it has 
two Ni-electrons, which finally complete the Ni-shell. With Ga we 
begin the construction of the (Nn + Nm)-shell ; here we have an 
electron of orbital type l — 1 (a 41-orbit). In the case of Ge we have 
two such electrons, and so forth. The electronegative elements As, Se, 
Br follow with 3, 4, 5 electrons, respectively, of the same type, which 
strive to complete their number to that of the Kr configuration, and 
finally Kr itself with a normal 8-shell (two 40- and six 4relectrons). 

We summarise what has been said of the fourth period in Table 8. 
In the case of Cr the number of electrons in the ground state in the 

(Miv + My)-shell jumps in an irregular manner from 3 to 5. The 

VOL. i.—11 
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Table 8 

Shell symbol K b|l ^ l^JII Mj Mn -{- M,,, MIV 1 Mv 

Orbit nl type b -1 :*« 

J 9 K 2 2 6 2 6 
20 Cu >> 2 6 6 
21 Sc 2 2 6 2 6 1 
22 Ti 2 2 6 2 6 >■> 

2:1 V 2 2 6 2 6 3 
24 Cr 2 2 6 »> 6 5 
25 Mn 2 2 6 2 6 5 
20 Vo 2 2 6 »> 6 6 
27 Co 2 2 6 2 6 7 
28 Ni 2 2 6 0 6 8 
20 Cu 2 2 6 2 6 10 
30 Zn 2 0 6 «•> 6 10 
31 Ga 2 •> 6 2 6 10 
32 Go 2 2 6 2 6 10 
33 As 2 2 6 2 6 10 
34 Sc 2 6 •> 0 10 
35 Br <■> .» 6 ! 2 0 10 
36 Kr 2 2 6 j 2 6 10 

configuration of four 32- and two 40-electrons, which we here expect, is 
slightly less stable than that of five 32-electrons and one 40-eleetron (for 

further remarks on this point see Chap. VJLLJ). 
The fifth period which runs analogously to the fourth begins with 

the alkali Rb and ends with the inert gas Xe. First we find that the 

beginnings of the 5-quantum O-shell form about the incomplete N-shell, 
in the case of Rb with one valency electron in a 50-orbit, in that of Sr 
with two valency electrons in 50-orbits. So once again we have a 
deviation from the sequence of the ideal system, which would for its 

part demand the further construction of the N-shell. But even in the 
case of Y, the analogous element to Sc, the process of completing the 
N-shell begins. It is the 37th electron, similarly to the 19th in the case 
of Sc, which finds itself to be more stable in the N-shell than in the 
O-shell. On the other hand, the 38th and 39th electron of Y find their 
places in the O-shell. In the succeeding elements, as far as the palla¬ 
dium triad, the N-shell becomes filled up gradually, but not to its final 
and complete number which would amount to 2.24 = 32, but only to 
the provisional stage of completion 2.32 = 18. This stage is reached 
in this period by Pd. The spectrum of palladium teaches us that the 

normal state of Pd corresponds to a configuration of the ten 42-electrons. 
(Cf., however, the distribution in the homologous element Ni !) We 
find the same distribution in Ag+, the analogous element to Cuf in the 

fourth period. From this point onwards all the available electrons are 
used to build up the O-shell, which becomes completed at Xe in the 
first stage as an 8-shell. It is unnecessary to add a special table for 



§ 5. The Structure of the Elements in the Periodic System 163 

these results, as it would come out, mutatis mutandis, very similarly 
to the preceding table. 

We now come to the sixth period, the great period of \Y1 elements, 
which leads to the linal completion of the N-shell and to the second 
stage of the completion of the O-shell, which at the same time, how¬ 
ever, give the beginnings of the P-shell. Let us consider Table 1). 
In the case of Cs we have a (^-electron, in that of Ba we have two 
(>0-eleetrons. We provisionally begin the Pi-shell and postpone the 
completion of the O-shell—again making a departure from the ideal 
order of sequence. In the ease of the next element La, Z ----- 57, we 
find that as in Sc and Y an electron enters into the still empty (Oxv 4- 
Ov)-shell, here as a 52-elee1ron. We might now conjecture that the 

filling up of this intermediate shell would be continued up to its next 
stage of completion. But in reality this process is once again tem¬ 
porarily suspended up to the Pt-triad, and the next element Co begins 
the final stage of completing the N-shell. Co brings us to the group of 
the rare earths, which through their stationary valency bear such striking 
testimony to the fact that the process of atomic construction does not 
now occur on the periphery of the atom, but in a layer which lies 
deeper. This deeper layer, the (Nvi I Nvn)-shell is in a transition 
state in the whole group of the rare earths, and hence is not balanced 
out magnetically,—which accounts for the strong paramagnetic 
character of this group. 

Table 9 

Shell symbol N11 1 ^ Til N,v 1 -Nv NV[ j NVl| <>i <>iiK>iii °iv ! «v °vi K>VH - *5 Pii+Piu- 

Orbital type L b 4, L •rM :>» 0, 

55 Cs 2 6 10 2 6 1 
56 Ha 2 6 10 2 6 2 
57 La 2 6 10 2 6 1 2 
58 Co o 6 10 1 o 6 1 2 
59 IT 2 6 10 o 2 6 1 2 
60 NO 2 6 10 3 2 6 1 2 

71 Lu 2 6 10 14 2 6 1 2 
72 Hf 2 6 10 14 2 6 2 o 

73 Ta 2 6 10 14 2 6 3 2 

74 W 2 0 10 14 i 2 6 4 2 

78 Pt 2 0 10 14 2 6 8 2 

The number of elements of the rare earth type may now be specified 
theoretically ; it is, according to Paulis principle, equal to 2 (21 ~f 1) 
for l = 3, that is, 14. If we count from Ge, Z = 58, as the first of these 
elements, we arrive at Lu, Z — 71, as the last element of the group. 
The element 72 is thus no longer to be expected to be a rare earth. 
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This reflection on the part of Bohr led, as we know, to the discovery * 
of the element 72 by Poster and Hevesy, who gave- it the name hafnium 
(Hf). When the N shell has been completed at Z 71 we arrive at 
Z = 72 in a manner fully analogous to that by which we arrived at Zr, 
Z 40, and Ti, Z 22. It has its place in the fourth column of the 
periodic system, where it also stands in our Table 4 of the periodic 
system ; this leads us to expect that it would occur naturally in associa¬ 
tion with Zr and possibly Ti. It was actually in zirconium minerals of 
different origin that Poster and Hevesy proved the existence of the 
new element by means of the X-ray method. 

Hafnium recommences the filling up of the O-shell. In the case of 
Au the 18 O-shell is completed and provided with an outer valency 
electron. Thus Au' now represents the complete stage of development 
of the O-shell. Further development now occurs, as after Cu f and Ag+, 
at the outside of the atom and leads to the 8 P-shell in the case of Em. 

Lastly, we have in the incomplete seventh and last period the 

beginnings of the Q-shell and the beginning of the process of filling up 
the (Piv -f- Pv)-group, but we do not even arrive at a provisional com¬ 
pletion of this shell (cf. Table 10). 

Table 10 

Shell symbol °iP °iij OjvH>v OvlfOVJ1 Ovm+Oix Pj '*11 b FIII i*iv+ lV • Qi Qji4 Oui * 

Orbital type f>0 •r»’i ihi C*;j f»., % L ‘o 

79 Au . 0 6 10 l 
80 Htf . 2 6 10 2 
81 TI . . 2 6 10 2 1 
82 Pb . 2 0 10 2 ‘> 

83 Hi. 2 6 10 2 3 

86 Km . 2 6 10 2 6 
87* . . 2 6 10 2 6 1 
88 Ha . 2 6 10 2 6 2 
89 Ac . 2 6 10 2 6 l 2 

90 Th . 2 6 10 2 6 2 2 

91 Pa . 2 6 10 2 G 3 2 
92 IJ . . 2 6 10 2 6 4 2 

On the whole, then, we are able to give a complete and unforced 

account of the facts of chemical constitution, which is brought out 
particularly well by the properties of hafnium in a very striking 
manner. Conclusive proof is, however, given by the numerous spectro¬ 
scopic facts which we shall adduce later. 

* The claims of Urbain to have discovered and named this element seem devoid 
of foundation. 
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§ 6. Some Remarks about Nuclear Physics 

There is no doubt that the radioactive nuclei contain helium nuclei 
and electrons, which they emit as a- and 0-rays. Prout’s hypothesis and 
its confirmation by Aston's researches on isotopes demand still further 
that all atomic nuclei must ultimately be built up from protons and 
electrons. In the ease of the helium nuclei themselves this necessarily 
leads to the assumption that it consists of four H-nuclei which are 
bound together by two electrons. 

In general, we may say that a nucleus of atomic weight A and atomic 
number Z must contain, in all, 

K A Z.(1) 

electrons. For A (which, following Aston, we assume to be integral) 
denotes the number of hydrogen nuclei and hence also the total number 
of positive charges ; Z is the value of the positive charge which acts 
outwards. The difference between these twro charges must be com¬ 
pensated by the nuclear electrons. 

In the case of the light elements in particular we find that atomic 
weights of the form A — 4n occur with atomic numbers Z — 2n, for 
example, in the case of C, 0, Mg, Si, S, Ca and so forth. This points 
to possible sub-nuclear units of the same composition as a-particles. 
For when A 4n and Z -- 2n wre get by (1) that K -- 2n, and hence is 
not greater than is necessary to bind together each of the n He-nuelei. 
Rut presumably wo need not imagine this union of protons and elec¬ 
trons to be so tight as regards the energy involved as is encountered 
outside the nuclei in the case of real a-particles. Otherwise no energy 

would remain for binding the a-particles themselves together. 
The excess A of half the atomic weight above the atomic number 

which we studied superficially in Fig. 34 and which is equal to zero in 
the case of the elements A = 4n, Z — 2n9 shows that there are nuclear 
electrons present in these cases, which are not built into the He-nuelei. 

We shall calculate this generally not only for atomic weights of the 
form 4n, but also for those of the form 4n | a (where a = 1, 2 or 3). 
Let x be the number of He-nuelei ; y and z the number of electrons, 
and H-nuclei, respectively, which are not combined in the form of 
He-nuclei. Then we clearly have 

A — 4x + 2 

Z — 2 ;r ■ \ • z — y. 

Thus 
= ^ — 2’ 

or y = A + | . . . • (2) 

The number y of electrons not built into the He-nuclei is thus at 
least equal to the^excess A. Hence, according to Fig. 34 the number 
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y increases systematically with the atomic number, but in such a way 
that y remains small compared with the number of a-particles contained 
in the nucleus. 

From this we may make an inference about the probability and 
number of a- and Remissions in the case of the radioactive elements. 
Let us imagine a diagram in which atomic weight A (as ordinates) is 
plotted against nuclear charge Z (as abscissae) and form a band-like 
region which characterises the stable nuclei, that is nuclei in which 
a concentration of a- and /3-particles exists which is favourable to the 
maintenance of the nuclei. The middle course of this band approxi¬ 
mately follows the straight line A — 2Z with the upward deviation 
shown in Fig. 34. Now /3-radiation displaces the nucleus parallel to 
the axis of abscissae to the right by one unit. Hence we see that after 
a small number of /3-emissions the nucleus will have travelled through 
the band of stability. On the other hand, a-emission denotes the dis¬ 
placement of the nucleus parallel to the straight line A = 2Z (diminu¬ 
tion of A by 4 units and Z by 2 units), so that with continued a-emis- 
sions the nucleus will have appreciably changed its position with regard 
to the band of stability only after several such processes. If the band 

of stability were to run exactly parallel to the straight line* A 2Z, 
the nucleus would never leave the band of stability at all through 
a-emissions. In reality a small number of ^-emissions is necessary 
to restore the stability impaired by a-emission. In this way the 
general character of the decay schemes of page 53—several a-emissions 
and only a few ^-emissions—is in agreement with our argument. The 
fact that the /8-emissions almost always occur in pairs may perhaps be 
brought into relationship with the spin of the electrons, which may 
favour the balancing of electrons in pairs in the nucleus. Experiments 
have taught us that the second /3-emission follows the first in a shorter 
time than the first follows the preceding a-emission. This may be 
interpreted by stating that the nucleus with complete pairs of electrons 
is more stable than a nucleus which has an electron which is not 
balanced. L. Meitner * has endeavoured to explain the occurrence of 
/3-emissions in pairs by means of a special hypothesis (a'-particles which 
are previously present in the nucleus and are not bound). But after 
our above remarks it seems that this argument is unnecessary. 

These speculations entered upon an entirely newr phase after 
Rutherford f had succeeded in 1919 in artificially disintegrating the 
nuclei of the lighter elements, in the first place, nitrogen. On that 
occasion, the H-nuelei were shown for the first time also to be elemen¬ 
tary constituents of the nuclear structure, and were studied quantita¬ 
tively. 

Rutherford used a-rays from RaO ; their velocity is 2 . 10s cm./see., 

* Zeits. f. Physik., 4, 146 (1921). 
t Phil. Ma*., 37, 537, 562. 571, 581 (1919) ; Rutherford and Chadwick, ibid., 

43, 89 (1921); 44, 417 (1922). # 
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their range 7 cms. ; that is, in air at atmospheric pressure they excite 
scintillations in a luminescent screen (ZnS-sereen) at distances less than 
7 cms., but not at greater distances. Such a-rays represent the most 
powerful concentration of energy available to us at the present time. 
When they encounter hydrogen molecules or bodies containing water, 
they release H-nuclei as very fast “ H-rays.” The range of these 
secondary H-rays is, corresponding to their smaller mass, greater than 
that of the primary a-rays, namely, 28 cms. in air. Hence they can 
easily be distinguished from the a-rays by means of the fluorescent 
screen. The nature of these rays was later examined very carefully 
by G. Stetter * by accurate measurements of a simultaneous magnetic 
and electric deflection (determination of e/mu with an accuracy of 
1 per cent.). 

But H-rays could be proved to exist not only in gases containing 
hydrogen but also in air free of water vapour. Considerably more 

scintillations occurred in pure nitrogen than in a mixture of nitrogen 
and oxygen. This led experimenters to conclude that the H-rays 
originate in the nitrogen nucleus. Thus for the first time an atom had 
been artificially transmuted and the dream of the alchemists had become 
a reality. 

In addition to nitrogen, Rutherford also succeeded in disintegrating 
the following atoms by means of a-rays from RaC : 

B V Na A1 P 
Z — 3 9 n 13 15 
A = 10; 11 19 23 27 31 

The scintillation method was also used in these cases. Going still further 
Kirsch and Petterson f have found that Be (Z — 4) and Mg (Z — 12) 
and Si (Z = 14) also yield H-rays. 

In the case of A1 and P scintillation observations gave surprisingly 

great ranges (for A1 the maximum range was 90 cms.), although these 
great ranges occurred only quite exceptionally. The mean range is 
much smaller. If, as we are led to assume, we are also dealing with 
H-rays in the case of these great ranges, their initial energy would be 
up to 36 per cent, greater than the energy of the exciting a-rays. (If 
the earners were of greater mass, it is clear that a still greater value 
would result for the energy.) Here we have a first indication of the 

possibility of releasing the internal energy of the nuclei and achieving 
over 100 per cent, output ; that is, if 100 calories of energy of a-radia- 
tion are expended then more than 100 calories of kinetic energy of 
H-rays are gained if we calculate the nuclear disintegration in terms 
equivalent to the energy of the a-radiation. 

By using indirect methods of observation (the fluorescent screen in 
this case not being in the prolongation of the incident rays, but later¬ 
ally situated) it was found possible to add further elements to the list 

* Zoita. f. Phyaik., 34, 158 (1925). 
t VerqffenthcJmngen des RadiuminMitutft, Wimi, 1923. 
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of atoms that could be disintegrated, in particular also atoms of 
the type A = Z — 2n, which Rutherford originally believed could 
not be disintegrated. Experiments carried out partly in Vienna and 
partly in Cambridge showed that all elements between fluorine and 
calcium'could be disintegrated by means of oc-rays from RaO. In this 
sequence of elements the range of the H-rays from elements of even 
atomic number is always less than that of H-rays from elements of odd 
atomic number. This may be regarded as an indication that the nuclei 
of even atomic number are more stable than those of odd atomic 

number. 
Originally there was some uncertainty as to what became of the 

N-atom which had been disintegrated. The readiest suggestion was to 
assume a transition to (’, two protons being emitted. We nowadays, 
know, however, from the beautiful cloud-track photographs of P. M. S. 
Blackett * that the a-particle is taken up by the nitrogen nucleus, an 
H-ray being emitted : 

Nm + oc = 017 + H. 

Hence in this case there is actually no disintegration of matter but a 
building up by the acquisition of new' matter ! This result had already 
been predicted theoretically a little earlier by Kirsch f on the basis of 
observations of the velocity of H-rays produced by a-rays of different 
ranges. The spectroscopic proof of the existence of 017 which has been 
obtained in the meantime (cf. p. 142) has given strong support to this 
view. 

We revert to the simplest problem of nuclear structure, that of 
helium (cf. the beginning of this section). The atomic weight of He 
apparently suggests that it is not built up from four H-nuclei. Accord¬ 
ing to the most exact measurements, the atomic weight of H is 1-0078 
and that of He is 4*002. In associating themselves into He the four 
H-nuclci would therefore suffer a defect in mass which, calculated for 
the gramme-atom of He, comes out as 

Am = 4.1-0078 - 4*002 = 0-029 . . . (3) 

The mass of the two electrons which become added to the four H-nuclei 
increases this number by unity in the last decimal place. 

But this defect in mass is only apparently a contradiction to the 
idea of the construction of the He-nucleus, from four H-nuclci. In 
reality it explains the great stability of the He-nucleus in a very satis¬ 
factory manner. 

As early as 1900 Lorentz deduced from the point of view of the 
electromagnetic theory that the mass of a system of positive and 
negative charges lying close together must be smaller than the sum of 
the individual masses of these charges. The theory of relativity has 
given a solid foundation to this result, and has generalised it. As we 

* Proc. Roy. Soc., 107, 349 (1925). f Phys. Zeit/8., 26, 457 (1925). 
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saw in Chapter I, § 7, mass and energy are linked together by the 
formula E —- me2. Hence, if any system loses energy (say by emis¬ 
sion) it suffers a defect in mass. Conversely, from a defect in mass 
Am we can deduce a loss of energy AE of value 

AE = c2Am . . . (4) 

Accordingly, we may assume that the four H-nudei, when they 
combine to form an He-nucleus with the agency of the two binding 
electrons, give off the energy determined by (4). Such an emission of 
energy is familiar to us from atomic chemical reactions. There we call 
it, when measured in heat units, the “ heat of combination ” or “ heat 
tone ” (Warmetonung), and call a reaction “ exothermic ” when it 

occurs with the emission of energy. We shall apply this idea and this 
terminology to our nuclear reaction. By (3) and (4) the emission of 
energy amounts to 

AE - e2Am =- 0 03c2 .... (5) 

per gramme-atom of He. 
This at the same time determines the work that must be expended 

to separate each He-nucleus of the gramme-atom into its four H-nuclei, 
and hence furnishes us with a measure for the stability of the He-nucleus. 
This amount of work is so great that we are unable to produce it by 
our physical methods. Let us compare it, for example, with the energy 
which is available in the motion of the a-particle of RaC. Since the 
velocity in this case is v = 2.30ft — this energy amounts to 

briiurf =. 2TOH(.r0)V ^ =- 0 009c2. 

It is three times smaller than the energy (5) which has been calculated 
on the same basis, that is, for the gramme atom. 

By dividing AE by the mechanical equivalent of heat in kilogramme- 
calories (r- 4*19 . 1010 ergs) we may then speak, as in chemical reactions 
between atoms, of the heat of formation Q of our nuclear reaction, 

Q = “ O'4.108 kilogramme-calories . . (6) 

This quantity of energy is enormous. As a basis of comparison we 
quote the fact that the heat of formation in ordinary chemical processes 
is of the order of 100 kilogramme-calorie. Thus our He-nuelear com¬ 
bination is more stable than ordinary chemical compounds in the ratio 
6-4.108 : 102. Hence, whereas heat motion alone is often sufficient to 
break up chemical compounds the energy of the fastest a-rays does not 
suffice to break up the nuclear “ compound.” 

We see from this remarkably general reflection, which requires no 

particular idea of nuclear constitution but only the trustworthy 
“ Principle of the Conservation of Energy,” that the stability of the 
He-nucleus is, in effect, secured, and that to destroy it by the means 
at present available appears out of the question. In conjunction with 



170 Chapter III. The Natural System of Elements 

Rutherford's experiments it therefore follows from this that not only 
are the helium elements of structure that are struck very stable, but 
also the impinging a-particles. It is true that our reflections on 
stability are bound up with the assumption that the He-nucleus would 
dissociate directly into four H-nuclei. In the event of incomplete 
disintegration, for example, if a,single H-nucleus were to be split off 
or were to be taken up in the manner of the nitrogen reaction N14 -> 017, 
no assertion can be made about the energy of the resultant product, 
and therefore we can say nothing about the stability. 

We generalise this for other nuclei and restrict ourselves, of course, 
to nuclei of atomic elements of a single kind, disregarding mixtures 
of isotopes. Whereas the atomic weights rounded off to whole number 
values give us information about the number of protons concerned 
in the construction of the nucleus in question (for example, four in 
the case of He), the deviations of the atomic weights from whole 
numbers give us information about the finer structure of the nucleus. 
We are indebted to Aston for the empirical foundation of our argument, 
namely the exact mass-spectroscopic knowledge of the atomic weights 
of the elements, and we shall in the first place follow' his account. 
Aston * refers the atomic weights as usual to 0 10*000 and divides 
the deviation from the integral values so defined by the number of pro¬ 
tons concerned in the construction of the nucleus, that is, by the atomic 

weight rounded off to a wdiole number. He calls the number obtained 
in this way the “ packing effect per proton." There is, however, 
the difficulty that in the meantime* it has been shown that oxygen 
is not a simple element but that there are also atoms of 01H and ()17. 
even if only in vanishingly small quantities, and this has somewhat 
displaced the physical foundation used for calculating the packing 
effects and, indeed, for determining atomic weights in general. 

Fig. 37 shows Aston’s packing effect, multiplied by 104, as a function 
of the number of protons. Oxygen, as it should, has the packing effect 
zero. The value of the ordinate of He is in round numbers, 

4002 
““ 4 

■ 4.1<>4 -- 5. 

Beyond oxygen the packing effect becomes negative and later 
becomes positive again only when we reach Hg and Pb. The most 
striking feature of this celebrated curve is its branching into two 
directions for small numbers of protons ; the lower branch passes 

through the atomic weights of the form 4??, the higher branch passes 
through the remaining atomic weights. Otherwise the curve runs 
smoothly and exhibits no relationship to the periodic system of the 

elements. 
Let us now inquire how we are to define the packing effect in the 

* Proc. Roy. Soe., 115, 487 (1027). 
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sense of our analysis of the He-nueleus. In this analysis we calculated 
in equation (3) that 

Am - 4 . 1-0078 - 4 002 . . . (7) 

If we divide throughout by the factor 1-<X)78, we obtain 

I) - 4 
4 002 

10078 («) 

which is the defect in mass referred to H 1 ; for the second term 
on the right-hand side of (8) is equal to the atomic weight referred 

* Fig. 7.— Packing effect- per proton, referred to 0 16 0000, according to 
J. W. Aston. 

to H - 1, and the first term is equal to the number of protons or the 
atomic weight in round numbers. 

What we have here said about the Hc-nucleus applies generally. If 
A16 is the atomic weight referred to O = 16, if 

A — ^lg 
i()078 

(9a) 

is the atomic weight referred to H ~ 1, if M is AJ6 in round numbers, 
and if 

then 
D ^ M — A4, . . . . (9b) 

Am — D . 1-0078 .... (9c) 

See note at end of chapter. 
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gives the true packing effect.* Stefan Meyer f has plotted the curve 
for D/M with M as the abscissa (see Fig. 38, where the numbers on the 
ordinate axis denote D . 108/M). Fig. 38 exhibits two essential differ¬ 
ences as compared with Astoirs curve in Fig. 37 : (1) there is no reason 
for making the curve resolve into two branches for small numbers 
of protons ; (2) the curve is not smooth, rather it shows peaks and valleys 
which are at first not well marked and then become less prominent, 
and which appear to indicate a relationship with the periodic system. 

This method of presentation seems to us to be preferable to that 
of Aston since it corresponds better with our measure of stability Am 
than the latter. We might also, as we did in the case of helium, add 
the mass of the nuclear electrons (A —- Z in number, by eqn. (1)) to 
the mass of the nuclear protons, but this would not alter the course 
of the curve appreciably. The connexion between stability of the 

0 20 W 60 80 100 120 I'/O 160 180 200 220 2W 

Fig. 38.—Packing effect per proton, referred to H 1, according to Stefan 
Meyer. The ordinate scale gives the value of D/M . X()a ; abscissae ~ M 
- number of protons. 

nucleus and periodicity of the atomic envelope which emerges from 
Fig. 38 is very surprising. 

As in all questions of stability we must be clear as to what states 
are to be compared in forming a measure of stability. In our case 

it is obviously the state in which the nucleus is considered completely 
resolved into its primary components, protons and electrons. This 
was emphasised above in the case of the helium nucleus. Just as 
there so here our D/M is proportional to the “ heat of formation ” 
generated when the nucleus is built up from its primary components. 

But if we are concerned with only a partial resolution of the nucleus, 
only individual protons or electrons being dismembered, the states to 

* The same definition is used as a basis by H. Pettorsson in his discussion of 
the stability and disintegrative tendency of nuclei; cf. Arkiv. f. Mat., Astr. ooh 
Fys., 21 A, 1 (1928). 

t Wiener Ber., 138, 431 (1929). 



§ 6. Some Remarks about Nuclear Physics 173 

be compared are now different : for we have simply to use in our cal¬ 
culations the atomic weights of the initial element and of the* disin¬ 
tegrated product, including the emitted corpuscles. We illustrate this 
by giving two examples, one being an imagined disintegration accom¬ 
panied by the emission of an H-ray, the other being an actual case of 
disintegration caused by the emission of an a-ray. 

Let us first compare Ar30 (Z 18) with 0135 (Z — 17). Ar36 con¬ 
tains in its nucleus 3(1 protons and 18 electrons ; Cl35 has 35 protons 
and likewise 18 electrons. In each case, according to measurements 
made by Aston,* the A1C is equal to 35-976 and 34-983, respectively. 
The difference between these two members, namely, 0*993, is less than 
1*0078, which is the A]6 of H. Thus the one H-nucleus is so firmly 
embedded in A36 that its release (the transition from A30 to 0135, 
with the emission of H4) required the energy (1*0078 — 0*993) c2 to be 
expended per gramme-atom. Consequently it is impossible for spon¬ 
taneous emission of H4 to occur in this case. The same may be 
proved of any two elements of the periodic system, which differ to 
the extent of only one proton (or of a proton + an electron), so long 
as their atomic weights are sufficiently well known. We thus see 
from our comparison of the atomic weights why no spontaneous 
emission of H-rays occurs when the elements decay. 

If, however, we compare two elements with each other, which 

differ by one or more in the number of helium nuclei, we can find 
examples where spontaneous decay is possible. Let us consider U23K 
(Z if 92) and uranium lead (RaG206, Z ~ 82) ; f they differ by 32 
protons and 22 electrons, or, expressed in helium nuclei, by 8 helium 
nuclei and 6 electrons (in addition to the 16 electrons contained in 
the 8 helium nuclei). The latter constitution is also to be deduced 
from the uranium line of decay on p. 53. The A16 of these 8 He- 
nuclci is 8.4*002 = 32*016 (the electrons affect only the third decimal 
place and may therefore be neglected). On the other hand the Aa6 
of U amounts to 238*14 and that of RaG to 206*0, so that the differ¬ 
ence in the atomic weights is 32*14. It is greater than the weight of 
the 8 He-nuclei. From this we may conclude that the decay is spon¬ 
taneous ; that is, it may occur without the agency of external energy. 
On the other hand we may easily convince ourselves that the transi¬ 
tion U RaG cannot occur spontaneously with the emission of separate 

protons and electrons (32 and 22, respectively). 
Recapitulating, we say : 
The ejection of helium nuclei (He1 f ) that is, the emission of a-rays 

is possible at certain places in the periodic table, but not the ejection 
of H-nuclei, that is, protons. 

* Aston, Zoc. cit. 
t We choose tlie example because, although it suffers from the defect that 

we do not know these atomic weights exactly, it illustrates a form of decay 
which actually occurs in nature. We believe that our conclusions will not be 
essentially affected by an exact knowledge of the atomic weights. 
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(’onnected with the stability of the nuclei there is the question 
of the frequency of occurrence of the elements. It is very remarkable 
that 99 per cent, of the earth’s crust (also of meteorites) is formed of 
elements of atomic numbers Sj 20 (iron). The most prevalent (dement 
is O, followed by Fe. Even C occurs in a relatively small amount. 
Moreover, it is remarkable that the frequency of occurrence decreases 
within any column of the periodic table as the atomic weight increases. 
It is also a surprising fact that all common elements have even atomic 
numbers (Fe 2b, 0 8). We must refer the reader for further details 
on this subject and on that of frequency of occurrence generally to 
the researches of Harkins.* The variation of frequency is shown 
particularly strikingly in the group of rare earths : in spite of their 
great similarity and the difficulty of separating them they are not uni¬ 
formly mixed ; rather the earths of even atomic number always occur 
a little more frequently than those of odd atomic number.f The same 
law holds generally for the elements that are represented in the solar 
spectrum by Fraunhofer lines.J There are, of course, no theoretical 
points of view available at all at present which might give an answer 
to these questions. We must also mention the following rule which 
appears to point to the construction of nuclei from already formed 
a-partieles : there are no stable nuclei of odd atomic number and of 
atomic weight 4n (Fajans). 

Certain observations of the scattering of a-particles lead us to infer 
that the structure of nuclei is not rigid but is mobile in itself. For 
in the distribution of scattered a-particles certain deviations are found 
to occur from the law of probability which is to be expected in the 
case where the nucleus is spherically symmetrical and where Coulomb’s 
law is assumed to hold without modification. Rutherford and his 
colleagues were inclined to assume that in the close vicinity of the 
nucleus the Coulomb repulsion of the a-particle becomes replaced 
by an attraction. But H. Pettersson || showed that this hypothesis 
is unnecessary, and that it can be replaced by the simpler assumption 
that the positive and negative charges are capable of being displaced 
to the periphery of the nucleus in such a wray that under the influence 
of the incident a-particle the negative charges become pushed towards 
tiie direction of the a-particle and the positive charges in the opposite 
direction. In this manner the nucleus becomes polarised and so loses 
its spherical symmetry ; the dipole induced in the nucleus exerts an 
attractive force on the approaching a-particle. The same idea has 

♦For example, “Evolution of Elements,” Amer. Chem, Soc., 39, 856 (1917). 
A graphical representation of the frequency of distribution is given in Science, 
1917. 

f V. M. Goldschmidt, “ Geo-chemical Laws of Distribution of the Elements,” 
Norske Vid. Akad. I, 1925-27, Oslo. It is based on the well-known occurrence 
of the elements in Sweden (Ytterby). 

} H. 'N. Russell, Astrophys. Joum., 70, 11 (1929). 
|J Arkiv. f. Mat., Astr. och Fys., 19 B, Nr. 2 (1925). 
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been worked out quantitatively by Debye and Hardmeier and lias 

been shown to agree with the facts in order of magnitude.* 

Just as the spectral lines in the visible and X-ray region reflect 

most perfectly the structure of the atomic envelope, so we may expect 

the most trustworthy information on the structure of nuclei to be given 

by the emitted y-rays. The y-rays are, like the X-rays that come from 

the atomic shells, essentially monochromatic. This is the general 

result at which L. Meitner has arrived after a detailed study of the 

radioactive sequences and of their y-ernissions. Moreover, it is found 

that y-radiations are emitted, not by tin* decaying, but by the already 

decayed nucleus, namely, in that the y-emission presumably originates 

in the process of rearranging the nuclear constituents, which has 

become necessary through the decay. The question suggests itself 

as to whether the rearrangement occurs in a change of position of an 

electron or of a proton or a-particle. W. Kuhn f believes that the 

latter ease is that which actually occurs, as he shows that the y-rays 

may be assigned on the classical theory to the vibrations of heavy 

masses, protons or a-partieles, but not of /3-particles. 

In general the monochromatic character of y-ravs shows that the 

energy-levels of the nucleus, whose differences are the frequencies 

of the y-rays, form a discontinuous series. We are compelled to con¬ 

jecture that these energy-levels are determined by quantum laws. 

The indications of periodicities in the curve which exhibits the packing 

effects, Fig. 38, leads to the same suggestion. Hence we infer that 

the construction of the nuclei from elementary constituents is probably 

effected according to the same laws, namely those of the quantum theory, 

as the construction of atoms from electrons and nuclei.'I 

Not?].—Lt has been pointed out to the author that the Figs. 37 and 38 
for the packing effect differ only in the manner of presentation and not in 
their content. The packing effect as given by Aston is equal to 0*0078 
minus the packing effect as given by Stefan Meyer; that is, the values are 
complementary. Meyer used later and more accurate values for the 
atomic weights, so that his curves exhibit some finer details. 

* Phys. Zoits., 27, 196 (1926) ; 28, 181 (1927) ; ef. also the wave-mechanical 
treatment by Til. Soxl, Naturwiss., 18, 247 (1930) and U. Beck, Zeils. f. Physik., 
62, 350 (1930). 

f Zeita. f. Physik., Vols. 43 and 44, 1927. 
I Sec Translator’s note, p. 596. 



CHAPTER IV 

X-RAY SPECTRA 

§ 1. Laue’s Discovery * 

IN our introductory note on Rontgen or X-rays (Chap. I, § 5) we saw 

that Rontgen radiation is a radiation of transverse waves. We 
spoke of the wave-length and of the spectrum of X-ray radiation, 

both in the case of the characteristic radiation, which is the part that is 
characteristic of the material composing the anti-cathode, correspond¬ 

ing to the free vibrations of the electrons of the anti-cathode, and in 

that of the impulse radiation, which is the part that is characteristic of 
the voltage of the X-ray tube, corresponding to forced radiation of the 

electrons of the cathode' rays. Assuming the results of experiment, 

we described the spectrum of the characteristic radiation as a line 

spectrum, that is, as a discrete sequence of individual wave-lengths, 
and the spectrum of impulse radiation as a continuous spectrum which 

stretches from long wave-lengths over a region of maximum intensity 

to a sharply defined edge of short wave-length. In both cases the 

wave-length (the dominant wave-length, the region of greatest intensity) 
is an inverse measure of the hardness, a direct measure of the softness, 

of X-rays. 

How are the wave-lengths of X-rays measured 'l. The general 

properties of X-rays, compared with those of visible light, show that 

their wave-lengths must be very much smaller than optical wave¬ 
lengths. In optics the best method of measuring wave-lengths, and 

the only method that leads to absolute determination of them, is that 

founded on diffraction. 

As early as 1895 Rontgen himself had made tentative diffraction 

experiments with his X-rays, but the result was negative. Results 

by other experimenters, which were claimed to be positive, were later 
proved to be due to optical illusions, half-shadow effects arising from 

the scattering of the secondary radiation. Accurate diffraction 
photographs were first obtained in 1900 by Haga and Wind, who used 

* Laue has given a comprehensive account of his discovery in “ Jahrbuch fur 
Radioaktivitat und Elektronik,” 11, 308 (1914). Its application to crystal analysis 
is described in the books, X-Rays and Crystal Structure, by W. H. Bragg, 
London, 1924 (Bell), and Kristalle und Rdntgenstrahlen, by P. P. Ewald Springer, 
Berlin, 1923. 
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a slit that was placed perpendicular to the course of the ray ; the 
jaws of the slit were not, as is usual, parallel to one another, but met 
at the lower end, so that its opening, which had a width of several 
/i at the upper end, became reduced to several /x/x at the lower end. 
The diffraction effect was to manifest itself in a broadening of the 
dark band of the negative at the lower end of the slit. These photo¬ 
graphs were repeated with greater refinement by Walter * and Pohl. 
The plates were worked out by the author, after P. P. Koch f (of Ham¬ 
burg) had measured them out photometrically with great care by his 
own method. From a photograph taken with hard Rontgen radiation 
the dominant wave-length (“ width of impulse,” as it was called at 
that time) was found by calculation to be A ^ 4 .109 cms. Contrast 
with this the wave-length of yellow light, which is (> . 10~5 cms. 

Only a year after these results were made known, this determina¬ 
tion of wave-lengths was to be surpassed 
in accuracy and certainty in an undreamt¬ 
of manner by Lane's discovery. 

In optics, the diffraction grating is 
more effective than the diffraction slit, 
both as regards the intensity of its light 
and its resolving power. The action of 
the diffraction grating depends on the 
regular succession of the lines of the 
grating, the distance between which we 
shall call the “ grating constant ” a. The 
width of the form of these lines have no influence on the angle of 
diffraction and are only of secondary importance even for the dis¬ 
tribution of intensity among the spectra of various orders. 

The theory of the diffraction grating is one of the most familiar 
branches of the wave-theory of optics. Nevertheless, to lay bare the 
root of Laue’s discovery, we must here set out some of its essentials. 

In Fig. 39 we exhibit a section of the grating ; 1, 2, 3, . . . are the 
traces of the lines of the grating ; the distances (1, 2) = (2, 3) = . . . 
are equal to the grating constant a. Let the incident beam of rays 
have the direction cosine a0 with the line 1, 2, 3, . . ., the direction 
cosine of the emergent beam with respect to the same line 1, 2, 3, . . . 
being a. (a0 and a are simultaneously the sines of the angles of 
incidence and emergence.) Using Huyghen's Principle, let us imagine 
rays starting out from each grating line in all directions. Thus, for 
the present, we may regard a as any arbitrary angle whatsoever. In 

♦ We anticipate later remarks by stating that in 1924 B. Walter, using mono¬ 
chromatic X-rays (CuKa-line) obtained definite diffraction fringes at a fine slit, 
and that A. Larsson in his Dissertation (Upsala, 1929) includes extraordinarily 
beautiful diffraction pictures, which, in the sharpness and number of tho maxima 
and minima are quit© as good as those obtained with ordinary light. 

t P. P. Koch, Ann. d. Phys., 38, 507 (1912). 

VOL. I.—12 

Fig. .‘19.—Diffraction at a line 
grating. 
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the figure the rase of transmitted light is pictured. By folding the 
diffracted .rays in tin4 figure about the axis 1, 2, 3, . , we get the 
case of light reflected by diffraction. 

The theory of the diffraction grating is contained in the equation 

a(a — a0) -- hX . . (1) 

In (1) the left-hand side denotes the difference in length of path 
between the ray, for example, that goes through aperture 1 and that 
which goes through aperture 2 (and, generally, the difference of path 
between any such ray and its neighbours). For ua ~~ IP is the differ¬ 
ence of path between the diffracted rays through 1 and 2, and likewise 
aa0 is the difference between the lengths of path of the incident rays 
through 2 and 1. Thus our equation demands that the path-difference 
in the whole course of the rays be equal to a wave-length, or a multiple 
of the wave-length (that is, h must be an integer). In this case we get 
an amplification of intensity through interference, that is, a diffraction 
maximum. We get diffraction minima, that is, a neutralisation of 
intensity by choosing h - -J, or h — an integer -f 

In the first place, equation (1) shows that the diffraction grating 
is a spectral apparatus, inasmuch as it gives for each wave-length A 
a definite angle of diffraction. Hence incident white light is analysed 
into its spectral components. Again, red is more strongly diffracted 
than blue. For A — 1, we get a spectrum of the first order ; for A 2, 
we get one of the second order, and so forth. Corresponding to the 
case h — 0 is direct light, which is not resolved spectrally. On the 
other side of the direct ray spectra of the first, second. . . . order also 
occur, namely, for h — — l, h ™ — 2, and so forth. The separation 
of the colours (the disj/ersion) is double as great for a spectrum of the 
second order as for one of the first order, and so forth. Further, 
equation (1) tells us that the grating constant a must be greater than A, 

but not too much greater. For if a; < A, we should have A ~ > 1, and 

hence A— could not be equal to a — a0, as is demanded by (1) (since 
a 

a — a0, being the difference between two cosines, is < 1). If, on the 
other hand, a A, then a — a0 will become very small for moderate 
values of A, and the spectra of first, second. . . . order, if caught on a 
screen, would lie very close to the direct light ; the dispersion would 
be insufficient and the grating would fail to be of use as a spectral 
apparatus. In the case of Rowland gratings, which are of perfect 

construction, r amounts to less than 10 units. 
A 

Besides the grating constant a, a decisive feature for the excellence 
of a grating is the number of lines N of the grating. It conditions not 
only the brightness of the diffraction spectra, as is immediately ap¬ 
parent, hut also the resolving power of the grating, that is, the power 
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to separate and make measurable spectral lines whose* wave-lengths 
differ only slightly from one another. The resolving power is given 
directly by the number of lines N. 

From the simple line-grating we pass on to the crossed grating, 
or lattice. Every one knows the beautiful diffraction spectra that 
are presented to the eye when we look at a distant source of light through 
finely woven gauze. We shall confine our attention in particular to a 
quadratic system of fine apertures ; that is, we suppose the threads of 
the web or network to run at right angles to one another and suppose 
them to be comparatively thick, so that the intermediate spaces that 
let through the light may be regarded as mere points. The distance 
between each two neighbouring apertures is to be called the kt lattice 
constant ” a. In Fig. 40 we take two rows of such apertures as our 
x- and y-axis ; we draw a £-axis perpendicular to both. We cannot 
picture the course of the beam for the incident and diffracted rays 
since their paths lie in space. Nevertheless we may, exactly as in 
Fig. 39, let a0, be the direction cosines of 
the incident ray with respect to the x- and 
y-axis, respectively ; let a, ft be those of the 
diffracted ray. In the diffracted ray the con¬ 
tributions of all apertures are to strengthen 
one another additively as a result of the 
interference. For example, let us consider 

the contributions of 1 and 2. If they 
strengthen one another then 

n(a -■ a„) h^X . . (2) 

where hr — an integer. In the same way 
the contributions of 1 and 2' are to act 
additively through interference. To assure this, we must have 

«(/* - ft) - M • • • . (2') 

where h2 = an integer. This equation, too, may be read off from 
Fig. 40, if we project the distance between 1 and 2' on the incident 

and the diffracted ray. But if 1 acts together with 2 and 2' to pro¬ 
duce increase of brightness as a result of the interference, then every 
opening acts in the same sense, since, then, the difference of path 
between each two openings is equal to a whole number of wave-lengths. 

Likewise the lattice (crossed grating) resolves the incident light 
into its spectral components. For, from equations (2) and (2'), if 
hl and h2 are given, there is defined for each A a different direction 
(a, ft) of the diffracted rays. We construct the path of this ray as 
follows. We describe about the #-axis of Fig. 40 a cone such that the 
cosine of its angle of aperture is equal to the direction cosine a, as 
obtained from equation (2). In the same way we describe about 
the y-axis a cone which is similarly determined by the direction cosine 

y 

a 

2 j * • * 

i---  — —>• l 

13 3 4 

Kio. 40. Crossed grating 
(plane-lattice) : regu¬ 
lar arrangement of the 
< 1 iffractii i g aj )ertu res. 
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fi given by (2'). These cones intersect in the ray whose position we 
require (as well as in the ray that is symmetrical to the latter with 
respect to the ay-plane, the lattice acting, so to speak, as a reflecting 
plane). Our construction holds for a definite wave-length A. For a 
new A the apertures of the cones must be altered to accord with (2) 
and (2'), and thus we get a new direction for the diffracted ray. 
Hence, for given values of hx and h2 we obtain a spectrum which cor¬ 
responds to the two order numbers hx, h2, and by varying hx, h2 we get 
a two-fold manifold of spectra. Each of these spectra repeats the com¬ 
plete series of spectral colours from red (on the outside) to violet (on 
the inside), with the exception of the spectrum (0, 0), the continuation 
of the incident ray, which is not analysed in this special case. The 
spectra (1, 0), (2, 0), (3, 0) . . . lie in the plane through the incident 
ray and the a-axis ; the spectra (0, 1), (0, 2), (0, 3) . . . lie in the plane 
through the incident ray and the y-axis. The spectra (1, 1), (2, 2), 
(3, 3) . . ., further, are situated in the plane through the incident 
ray and the bisectors of the angle between the a;-axis and the y-axis, 
and so forth for the other spectra. Besides the spectra (+ hXi 4~ A2), 
there are, allotted to the other quadrants of the ay-plane, spectra 

(+ Aj, — h2), (— hv -f A2), and ( — hv — h2). As in the case of the 
line-grating we must have a > A but we cannot allow a >> A. 

From the crossed grating or plane-lattice we pass on to consider 

the case of a space-lattice, for example, a cubical space-lattice. We 
may imagine that there is added to the quadratic system of openings 
of Fig. 40 a whole system of similar systems placed one behind another 
at equal distances a. For this purpose we prefer to talk, not of 
“ apertures,’’ but of “ lattice-points,” which act as “ diffraction centres ” 
or as “ scattering points.” Thus we have a cubical system of lattice- 
points, of which each two neighbours are separated by a distance 
equal to the lattice constant a along the direction of each axis, x, y, z. 
We allow light to fall into the system of lattice-points in the direction 

oco&yo (these being the direction cosines with respect to the three axes, 
respectively). At each of our lattice-points a fraction of the incident 
light will be diffracted or scattered in all directions, for example, in 
the direction afiy. At a great distance from our space-lattice the 
waves that emerge in the direction afiy from each lattice-point form 
a homogeneous ray, namely, the ray adiffracted by our space- 
lattice. (In order that this ray might form without obstruction in 
all directions, it was necessary to replace the idea of u diffraction 

apertures ” by that of “ diffraction centres,” otherwise the formation 
of the diffracted ray would be impeded by the diffracting screens that 
we should have to assume between the diffraction apertures.) 

The diffracted ray a£y, however, is appreciably bright only when 
the contributions of all the lattice-points act together in the same 
phase in producing it. For this it is necessary that the path-difference 
of the rays from neighbouring lattice-points be a whole number of 
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wave-lengths. Thus we arrive at three conditions, one for the direction 
of x (that is, for two neighbours that are at a distance a from one another 
in the direction of x), one for the ^-direction, and one for the ^-direction : 

a( a — a0) = h±X .... (3) 

a(j8 - j90) - *aA . . . • CV) 

a(y — Vo) = h2X . • • • (■*") 

When these conditions are fulfilled, the effect of interference is to 
amplify the intensity, and indeed, not only of that due to two neigh¬ 
bours but generally, to that due to any two of our lattice-points, since 
for them the path-difference is a whole multiple of the difference of 
path for two neighbours. The rays thus intensified as a result of 
interference from all the lattice-points are, furthermore, the only ones 
that are appreciably bright. For, in the case of a sufficiently great 
number of lattice-points (NT, N2, N3 in the three co-ordinate directions), 
rays that are intensified through the combined action of only a fraction 
of these lattice-points (for example, only the lattice-points, Nj and N2) 
would appear infinitely faint compared with those discussed above. 

Equations (3) comprises the essential features of the theory of the 

space-lattice. We read from them that : every interference ray is char¬ 
acterised by three whole numbers (hl, h2, h3), the order numbers of the 
interference phenomenon in question. We may not, however, as before, 
speak of a spectrum of the order (hv h2, h:i). The light that is diffracted 
by the space-lattice no longer contains all the wave-lengths in juxta¬ 
position, as happens in the case of the crossed grating or plane-lattice ; 
it is, on the contrary, monochroniatic light. 

For, from equations (3) it follows that 

* = <*o + /lA P Pa f y — y« -f 4 • (4) a li U 

Moreover, we have the relation between the direction cosines : 

a2 + ft2 y2 = 1, and likewise a02 + £02 -f y02 1. . (5) 

By squaring each member of (4) and then summing, using (5), we get 

1 = 1+ 2(Vo + Mo + h3y/- + (V + V + V)5 
It CL 

and hence, 

* _ O«(*l«0 + h2Po 4 ^3/o) ,a\ 
/\ - Z ? O i 7 0, 7 0 • • • (O) 

Thus the wrave-length that can be diffracted in the interference ray 
of order (hv h2, h3) is fully determined for a given direction of incidence. 
We illustrate this by a conical construction analogous to that which 
we have already used in the case of the plane-lattice. About the x-, y-, 

z-axis in turn we describe cones whose angular apertures have cosines 
such as are demanded by equations (4). Two of these will intersect, 
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whereas the third will not, in general, pass through a line of intersec¬ 
tion of the other two. But the latter condition is absolutely necessary 
if the amplification produced by interference is to reach full strength. 
Hence, for an arbitrarily chosen A, there will, in general, be no diffracted 
ray. By altering A we also alter, according to (4), the conical apertures 
continuously. If we proceed in this way we shall succeed, at a certain 
value of A, in making all three cones have a common line of inter¬ 

section. This is the interference ray (a£y) ; 
the corresponding wave-length is that which 
was calculated in (6). 

From equations (3) we shall straightway 
make a further deduction. For this purpose 
we introduce the following symbols (cf. Fig. 
41) : 26 is to denote the angle between the 
incident and the diffracted ray, that is, 6 is 
the angle which the incident or the diffracted 
makes with the middle plane MM between 
both. We then have 

Fig. 41. Diffraction at 
a space-lattice. 

cos 29 =■ aa0 -f /% |- yy„ . (7) 

By squaring each member of (3), then sum¬ 
ming and using (5) and (7), we get 

(a — a0)2 + (P — A,)2 f (y — yfl)2 =-^2 — 2 cos 29 -- 4 sin2 9 

= (V + V i- V)S- («) 
Cl 

Taking the square root, we get 

sin 9 - 5-vV~:f V + A,* • (9) 

We shall find that this equation will be of fundamental importance 
in § 2. 

In the region of optics our space-lattice is only a fiction, a model 
which we have conceived so as to generalise the scheme of diffraction 
as presented by ordinary diffraction gratings. The art of the mechanic 
and of the weaver are of no avail for producing such space-lattices. 

In the realm of Rontgen radiation, the position is different. It was 
Lauc’s brilliant idea to recognise that the space-structure of crystals 
is just as happily adapted to the wave-length of Rontgen radiation, 
as the structure of a Rowland grating is adapted to the wave-length of 
ordinary light, that is, that we can take directly out of the hands of 
Nature the diffraction apparatus necessary for Rontgen rays, in the 
form of one of her masterpieces, a crystal of regular growth. 

It was a favourite idea of mineralogists and mathematicians (Hauy, 
Bravais, Frankenheim, Sohnke, Fedorow, Schonflies) to account for 
the regular shape and structure of crystals by the regular arrangement 
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of their elements of structure, of their molecules or atoms. According 
to this, a lattice of the cubical type would have to be ascribed to a 
crystal of the regular or cubical system. If we determine the lattice 
constant a of such a crystal from the density of the crystal and the 
mass of the atoms composing it (as we shall do at the end of § 2 of this 
chapter for the case of rock-salt), we find that a is of the order of mag¬ 
nitude 10~8 (for example, a =■ 5*6 . 10“ 8 in the case of Nad). On 
the other hand, we saw at the beginning of this section that the wave¬ 
length of Rontgen rays is to be placed between the orders of magnitude 
10 8 and 10 9 cms. (4.10 9 for a hard tube, according to a rough 
calculation based on the diffraction). We assert then that the lattice 
constant a of the crystal is greater 
than the wave-length A of the 
Rontgen rays, hut not very great 
in comparison with them. Thus 
a and A are related to one 
another in just the way that we 
found above to be necessary if 
a diffraction apparatus is to be 
effective. We can read the 
same condition out of equation 

(9) ; if - is a proper fraction 

that is not too small, we get for 
the angle of diffraction 2d, a 

possible and not too small value. 
The atoms that compose our 
space-lattice are directly effec¬ 
tive as lattice-points. We en¬ 

countered in Chapter 1, § 5, 
their property of forming dif¬ 
fraction (or scattering) centres 
for Rontgen rays ; there we saw 
that their scattering is proportional to the number of electrons Z 
contained in them. 

Figs. 42, 49, 44 are reproductions of some of the famous photographs 

taken by Laue, Friedrich, and Knipping early in 1912. The experi¬ 
ment was arranged very simply. By means of lead guides (screens 
with holes), a fine beam was separated out of the light from an X-ray 
bulb. This beam fell on a crystal plate—in the plates reproduced 
these were of zinc blende, ZnS—about 0*5 mm. thick, 5 mm. wide and 
long,—which was mounted on a spectrometer table, and capable of 
being accurately adjusted with it. When the incident “ primary 
ray traverses the crystal plate, secondary " interference ” rays are 
deflected out of it owing to diffraction by the atomic lattices of the 
crystal. These interference rays emerge from the crystal as a widely 

Fig. 42.—Diffraction of ‘k white ” Rontgen 
light at the crystal lattice of ZnS. 
The crystal is cut- parallel to the cube 
face, and the incident light is per¬ 
pendicular to the crystal surface. 
The photographic plate is at a dis¬ 
tance of 3*5 cms. from the crystal. 
Note the four-fold symmetry of the 
diffraction pattern. 
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divergent beam of many members. Several centimetres behind the 
crystal is the photographic plate. On it there is traced, besides the 
primary ray (greatly magnified owing to irradiation), the track of the 
beam of interference rays. In the first photographs the time of ex¬ 
posure was many hours ; the tube was run with about 3 milliamps. 
and 60 kilovolts. The plate and the crystal were protected by being 

surrounded by lead. 
In Figs. 42 and 43 the crystal plate was cut parallel to the face of 

the cube and placed at right angles to the incident ray, with the 
difference that in Fig. 42 the photographic plate was 3-5 cms. from the 
crystal, whereas in Fig. 43 the distance was only 1 cm. Thus Fig. 43 
is a section through the same interference beam as Fig. 42, but greatly 

Fig. 43.—Photograph taken as 
in Fig. 42, but with the 
photographic plate only 1 
cm. away from the crystal. 

Fig. 44.—Diffraction of “ white ” Rontgen 
light at the crystal lattice of ZnS. The 
crystal is cut perpendicular to a space 
diagonal of the cubic lattice, and the 
incident light is perpendicular to the 
crystal surface. Three-fold symmetry 
of the diffraction pattern. 

compressed and reduced in size. In Fig. 42 as well as in Fig. 43 the 
primary ray travelled in the direction of the four-fold axis of symmetry 
(edge of the cube). Correspondingly, the respective diffraction pictures 
are of four-fold symmetry. They have four planes of symmetry, two 
parallel to the edges, two parallel to the diagonals of the cube face. 
Every spot that lies on one of these planes of symmetry in the picture 
occurs four times, whereas every other spot occurs eight times. Each 
such group of related spots that again arises from itself by rotation 
and reflection shows the same intensity and is marked on the plate by 
the same wave-length. If the photographic plate and our retina were 
sensitive to the imaginary colour of Rontgen rays, we should see each 
such group of points shining forth in one pure colour and each two 
different groups of points in general emitting different colours. For 
example, there belong to the two particularly strongly pronounced 
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8-groups of spots in Figs. 42 and 43, the fractional numbers 

5==^“d 5 = 3^i roaPectively- 

Since the lattice constant for zinc blende is found to be 

a —■ 5*43.10 8 cm., 

we get the corresponding wave-lengths as 

A ■— 4*02 . 10 9 cm. and A = 3-11 . 10 9 cm. 

In Fig. 44, the crystal plate was cut perpendicular to a space diagonal 
of the cube, which represents a triply symmetrical axis for the substance 
of the crystal. The primary Rontgen radiation again fell perpen¬ 
dicularly on the plate, and thus traversed the crystal in the direction 
of one of its three-fold axes. Corresponding to this, Fig. 44 is of three¬ 
fold symmetry : it possesses three planes of symmetry inclined to one 
another at an angle of 120°. In general, each spot occurs six times, 
but in a particular position on one of these planes of symmetry it occurs 
three times. Each 3- or 6-group of spots, respectively, is produced by 
the same wave-length. For example, in the case of the very prominent 
6-group of spots we have 

3*30 . 10 9 cm. 

The wave-lengths that are singled out in this way by the crystal 

structure and are diffracted to definite points of the photographic plate 
are all contained in the primary bundle of rays, just as the colours 

of the rainbow are contained in the white light of the sun. In Laue’s 
method the continuous spectrum is used to produce the interference 

picture. This continuous spectrum, however, is not, as in the case of 
the line-grating or plane lattice (crossed grating), mapped out com¬ 

pletely, but certain individual wave-lengths (more accurately, several 
narrow regions of wave-lengths) that are appropriate for the crystal 
structure are selected from the continuous manifold of the spectrum 

and made prominent. The prominence of certain wave-lengths in 
the interference picture is partly due to the fact that they are par¬ 
ticularly strongly represented in the primary spectrum (the region of 

maximum intensity of the continuous spectrum), and partly due to 
the fact that the photographic plate reacts particularly strongly to 
them (selective sensitivity of the silver bromide). Lane’s method 
tells us nothing of the line-spectrum, of which the discrete wave-lengths 
are not in general adapted to the crystal structure. Since the line- 
spectrum, as the characteristic radiation of the atoms of the anti- 
cathode, is particularly important for the study of atomic structure, 
we shall not require to draw further from Lane’s original method. 
Of course the spectrometric methods that we shall discuss in the sequel 
will differ from Laue’s method only in the mode of arrangement, not 
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in the root idea. This idea, of using the crystal as an analyser for 
Rontgen rays, is as essential to them as to the original method. 

So far we have given Lane’s theory for the case of the regular 
system with the lattice constant a. How this is to be extended to 
the other systems of crystals suggests itself to us immediately. In 
the case of the rhombic system, which is built upon three mutually 
perpendicular axes, it is only necessary to replace the quantity a in 
equation (3) by the lattice constants, cr, 6, c in the directions of the 
three axes respectively. We then get in place of equation ((>) 

A - 

V 1 ,l*R I 

. 1 r 

V 
¥ + 

V 
62 

h 2 
'o 

(10) 

In the same way, equation (9) now becomes 

sin 6 — 
A jh*~ h/ 
2\ a* r b* + V 

c1 (1J) 

The case of the tetragonal system is given by setting h a. In 
the remaining crystal systems, in which the axes of the lattice are in 
general inclined towards one another (oblique), the direction angles 
of the crystal axes appear in the corresponding formulae, besides the 
lengths of the edges. 

The roads of research opened up by Laue's discovery branch off 
in two directions. In the one case we measure out the Rbntgen spectrum 
of a given tube and of an anti-uithode of given material in terms of the 
lattice constants of a suitably chosen crystal. In the other case, we 
measure out the structure of a given crystal in terms of a suitably chosen 
wave-length of a Rontgen ray. 

The results of the first line of investigation form the content >f the 
present chapter. For the results of the second line of research consult, 
for example, the book by Ewald mentioned at the beginning of this 
chapter. 

The experimental methods of X-ray spectroscopy were first sum¬ 
marised by M. Siegbahn, “ Spectroscopy of X-rays ” (O.U.P.). More 
recent results up to the present time are contained in the account by 
A. Lindh, “ Rontgenspektroskopie,” Vol. 24, 2, of the Handbuch der 
Experimentalphysik (Wien - Harm s). 

§ 2. Methods of Measuring Wave-lengths 

Whereas in the first section we have discussed the diffraction by 
lattices exclusively from Laue’s point of view, we shall now pass on to 
that of W. H. and W. L. Bragg. For this purpose, we prove the 
following theorems :— 

1. The median plane MM between the incident ray (a0/90yQ) and tin* 
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diffracted ray (a/?y) is a net plane of the crystal, that is, a plane that 
cuts an infinite net of points out of the crystal lattice, and may there¬ 
fore be regarded as a possible crystallographic boundary surface. 

2. The diffracted rays may be regarded as being generated by a 
reflection at this net plane. 

In proving 1, we restrict ourselves, as in the first section, to the 
regular system. 

In Fig. 41, above, let the distances 

OP OQ : l. 

If we choose 0 as the origin of a rectangular system of co-ordinates, 
which coincides with the crystal axes, then the co-ordinates 

of P are a0/90y{). and of Q are afty. 

Let the co-ordinates of any point M in the median plane be x, ?/, z. 
The median plane is the geometrical locus of equal distances, PM = QM. 
Thus its equation is 

(x - a0)2 + (y - p„)2 -\ ■ (z — y,,)2 = (x - a)2 + (?/ - /3)2 -| (z — y)2 

or, after reduction, 

(a - a0).r | (£ - - ft,)// | (y -- y0)~ - 0. 

if we insert into this the interference conditions (3) of § 1, we get 

hxx | h2fj | h2z - 0 . . . . (1) 

Let n be some common divisor of the order numbers . h2, A3, that is 

hj = nh*v h2 = nhly A3 ----- nh* . . (2) 

whereby AJ, A*>, A., have no common factor. Equation (1) then states 

that a plane that is parallel to MM has intercepts on the crystallographic 
axes that are inversely proportional to the integers A*, A*, A3, which are 

prime to one another. The numbers h*v h* are called the indices 

of the surface MM. The fundamental lawr of crystallography, the 
“ law of rational indices ” states that every surface that has integral 
indices is a possible surface of a crystal. (As in the case of all physical 
laws in which rational ratios occur, rational indices denote such as are 
representable by the ratios of small integers.) From the point of view 
of the lattice idea, this law is self-evident. It states nothing else than 
that every boundary surface of a crystal is occupied by a full net of 

lattice-points. 
We have thus seen that the median plane MM between the incident 

and the diffracted ray is a net plane of the crystal : the order numbers 
A1? A2, A3 of the interference phenomenon determine simultaneously the 

indices h*v h*r A* of this net plane. 

The incident and the diffracted ray make equal angles with this 
plane, namely, the angle 6 in Fig. 41. Thus there is nothing to prevent 
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us from interpreting the phenomenon of diffraction as a reflection at 
this net plane. This is, however, not surface reflection, but space 
reflection. On the one hand, it is not necessary for the reflecting net 
plane of the crystal to be a bounding plane of it: the reflection takes 
place just as well at the inner virtual crystal planes as at the external 
real ones. On the other hand, the whole system of parallel net planes 
reflects concurrently with the individual plane MM. As we saw in 
the first section, all lattice-points on which the primary ray impinges 
contribute to the interference phenomenon. Thus the reflected in¬ 

tensity is derived from the interior of the crystal. 
But, further, we are here dealing not with a general reflection of all 

wave-lengths, but with a selective reflection of certain favoured imve- 
lengths. “ White light ” is not reflected back as white light, as occurs 
in optics, but reappears '* coloured.” Whereas all other wave-lengths 
remain appreciably united in the primary ray, and traverse the crystal 
in a straight line, certain wave-lengths, of appropriate length for the 
lattice structure, are selected by the reflection. This selective colour 
of interference rays has already been met with in the first section. 
We shall now deduce it again from the standpoint of reflection. 

Let OA, OQ, be the incident and reflected rays at the lattice-point A, 
and let PC, OR be the incident and reflected rays at the lattice-point 0, 
which is situated in the plane parallel and adjacent to MM. The 

difference between the lengths of path of both sets of rays is found by 
dropping from A the perpendiculars AB and AD on to PC'! and OR. 
The difference of path is, if d denotes the distance AO between the net 

planes, 
BC + CD - 2d sin 6. 

This must be a whole multiple of A if the two reflected rays AQ and OR 

are to be in phase and are to strengthen one another by interference. 
This gives us the fundamental relation 

2d sin 8 — n\ . . . . (3) 

* According to Darwin and Ewald, Bragg's calculation is to be 
corrected to 

2dn sin 0 = nA, dn = — 

1 " i? A* 

where k depends on the tightness with which the electrons are bound. 

Of. the summary given by Ewald in Vol. 24 of the Handhuch der 
Physik (Geiger-Scheel) ; for the experimental confirmation see A. 
Larsson, Zeits. f. Physik35, 401 (1926) ; 41, 507 (1927), and M. 
Siegbahn, Journ. de Phys., 6, 228 (1925). 

But in deriving this relation we have made an unnecessary special- 
isation. It is not necessary for the two lattice-points A and C, in Fig. 

45, which are being compared to lie directly behind one another, that 
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is, on the name normal to MM as we found it convenient to assume for 
the sake of simplicity in the figure. Rather, we may displace the 
point C arbitrarily in its net plane to C\ The path of the rays P'C'R' 
(dotted in Fig. 45) clearly has the same optical length as the path PCR, 
provided that the two points PP' and RR' are assumed, in particular, 
to lie on a wave plane through the incident and reflected ray, respec¬ 
tively. This is shown clearly in Fig. 46, in which the points RR' are 
placed still more specially, namely, symmetrically to PP7 with respect 
to the plane of symmetry Stt there drawn ; this has no effect on the 
phase-difference at R and R\ We see that the optical paths PCR 
and R'O'P' are images of one another. If the two rays incident at 
P and P* are in phase, then also the two reflected rays at R and R' 
will be in phase. But then it follows from Fig. 45 that in it, too, there 
is the same difference of path between the reflected rays O'R' and AQ 
as between CR and AQ, namely, the difference nX; the former 
strengthen one another by interference just as much as the latter. 

In fact, generally, any two lattice-points of the crystal, no matter 
whether they lie on twro neighbouring net planes or on two net planes 

Fig. 46. 

Diagrammatic illustrations of the Bragg relation 2d sin 6 nA. Reflection at the 
lattice planes of a crystal. 

that are distant from one another by various multiples of d, no matter 
whether they lie in the plane of incidence (that of the page) or not, 
will strengthen one another by interference, provided only that the 
wave-length and the angle of incidence are related to one another by 
the condition postulated in (3). It is not even necessary for the points 
OC' . . . to be arranged in lattice form, that is, equidistantly, within 
their net plane. What is important for reflection at the system of 
planes MM is merely the regular sequence of these planes, not the 
regular sequence of points within a plane of the system. The latter 
factor comes into account only when we wish to change the reflection 
plane, that is, when the crystal, besides reflecting from the system of 
planes MM, is also to reflect from other net planes running through 
the crystal. For this, that is, for the existence of further net planes 
and for their action by interference, the necessary condition is that the 
lattice-points be regularly arranged in the first system of net planes. 

In optics we are familiar with the process of O. Wiener, in which, 
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by means of stationary waves, silver particles are precipitated in par¬ 
allel equidistant planes in a layer of silver chloride. The silver particles 
succeed each other irregularly within each plane, but the planes succeed 
each other regularly at a distance equal to half that between two crests 
of the stationary light, that is, equal to half the wave-length of the 
monochromatic light used. These strata of Wiener have been used, 
as we know, in Lippmann’s process of photography in natural colours. 
Here we have the case assumed above of a regularly stratified system 
of planes, which, for their part, are irregularly occupied by silver 

granules. In interpreting such phenomena our equation (3) played a 
part,* long before its importance in the realm of Kontgen rays could 
be surmised in any way. 

Of course this equation must be identical with the formulae (9) and 
(11) found in § 1 for the wave-length. In fact, on the view' that the 
quantities h\, K, are surface indices we see by the simple geometrical 

consideration that the distance d between two successive plain's of the 
group parallel to MM is given in the cubic and the rhombic system, 
respectively, by 

I 

d + -f hZK 
1 ih^ ~ h*y 
<1 \ ~a? + iJ '^7* 

w 

If, taking account of (2), we introduce these values into (9) and (11) of 
the first section, both these equations resolve into our present equation 
(3). We see from the method by which it has now been derived, that 
it is not confined to the case of the regular system but is generally valid. 
The meaning, too, of the integral number n introduced in equation (2) 
(it is the greatest common factor of the order numbers /q, h2, h.A of the 
interference effect) is now also intelligible physically : n denotes the 

order number of the reflection phenomenon, that is, the number of 
wave-lengths by which each reflected ray differs from its neighbouring 
rays that are reflected from the next or the preceding net plane. 

For a given angle of reflection 9 and given distance d between the 

net planes, equation (3) determines one and only one quite definite 
wave-length, X1 of the first order (for n — 1) that is capable of reflec¬ 

tion, and likewise one of the second, third, . . . order, X2 — A3 — 

. . . (for 7i — 2, 3 . . .). Hence if we wrish to reflect the whole spectrum 
from one and the same crystal face, for example, in the first order, 
then 6 must be made variable. For the short-wave side of the spectrum, 
6 is to be chosen small, for the long-wrave side it must be chosen cor¬ 
respondingly great. This goal has been reached in various ways ex¬ 
perimentally. On account of its historical importance we shall discuss 
chiefly the method of the revolving crystal, with which W. H. and W. L. 

In the theory of W. Zenker. Cf. his Lehrbuch der Photochromie, Berlin, 1868. 
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Bragg * achieved such striking success, namely in the two directions 
characterised on page ISO, the analysis of X-rays by crystals and the 
analysis of crystal structure by X-rays. 

Fig. 47 gives a schematic horizontal section of the arrangement of 
apparatus for the method of revolving crystals. At the top the. 
Rontgen tube is indicated by its cathode K and its anti-cathode A. 
The slit 8, in a lead plate singles out from the rays emitted from the 
focus of the anti-cathode a narrow beam of rays. S2 i*s a second small 
slit of lead, which serves to limit the pencil of rays still further. This 
beam then falls on the crystal Kr, which is set up on a table T, carrying 
vernier divisions, in such a way that the 
front reflecting net plane of the crystal 
(for example, a cleavage plane of rock- 
salt) passes through the vertical axis of 
rotation O of the vernier table. The 
latter is slowly turned about the axis O 
within a certain range of angles. All 
wave-lengths of a certain range of wave¬ 
lengths then impinge on the table suc¬ 

cessively at the necessary angle of inci¬ 
dence 0 (or “ glancing angle ") and are 
separated spectrally by the reflection. 

They delineate themselves sharply on the 
photographic film FF, which is best fixed 
(see below) along the circle S1FP1 that 
passes through 83 ; for a small range of 
angles, it may also be replaced by the 

plane; photographic plate P'P'. Now, 
Pj is the point on the film, at which is ? 
marked the primary radiation of the 
Rontgen tube that lias traversed the 
crystal without reflection; there follow 
consecutively on the film the shortest rays, 

wave-lengths contained in the primary 
beam of X-rays, and then the longer ones. The longest wave-length 
which, according to equation (3), may be reflected by a crystal with 

a given distance d between the net planes is A = 2d ; the correspond- 
7T 

ing angle 6 ~. The trace of the wave-length on the film would 

coincide with Sr It is obvious that this maximum wave-length can 
be reflected only in the first order (n —1). 

Of course a variable angle of incidence of the rays can also be ob¬ 
tained without rotating the crystal if we use a diverging or a converging 

* They used the ionisation method (see below). Maurice De Broglie first 
used the revolving crystal method for taking photographs. 
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beam of rays, in the latter ease the slit which marks off the beam 
may be replaced by a metal edge which is brought near to the crystal 

surface (Seemann s method).* 
In the case of hard rays a difficulty arises owing to their great 

penetrating power in that the exact position of the system of reflecting 
layers is uncertain and this renders it impossible to measure accurately 
the angle of incidence. Instead of reflected light we therefore use in 
this case transmitted X-rays, which are reflected at the inner net planes 
of the crystal. The slit must then be adjusted behind the crystal plate. 
This arrangement was first used by Rutherford and Andrade j* for 
analysing y-rays. 

Another difficulty in the case* of very hard rays consists in the 
fact that for them the angle 6, by (3), becomes very small, so that the 
accuracy is reduced. In the case of very small values of Xjd we have 
almost grazing incidence with respect to the reflecting net-plane. 
We may circumvent this difficulty by observing in a higher order 
(cf. the factor n in eqn. (3)) and by using as small a distance d between 
the net-planes as possible. Changing the crystal does not, however, 
alter d by much. Whereas for rock-salt the lattice-constant is a ~ 2d = 
5-63 . 10~8, for the crystal of smallest known lattice-constant, namely, 
diamond, the value is a =- 3*55.10 8. It is more effective to pass 
from a crystal face (for example, of cube face 100) to one with higher 

indices (for example, of octahedral face 111), which, by eqn. (4) makes 

d smaller (in the ratio V.3 : 1). Both these devices (proceeding to 
higher order of reflection and faces with higher indices) lead to a 
diminution of intensity. 

If very soft rays, which are strongly absorbed in several centi¬ 
metres of air at atmospheric pressure, arc to be photographed, the 
whole course of the rays must lie in vacuo. This requirement leads to 
the construction of vacuum spectrographs, which have been developed 
by Siegbahn along the lines of Moseley. The whole apparatus (see 
Fig. 47) from the circle S1PP1 up to and including the plate P P' has 
for this reason been enclosed in a brass case connected with an air-pump. 
The X-ray tube is also to be considered in this figure as connected with 
this brass case by a tube Sx that may be evacuated. 

Further difficulties are also raised here by the lattice-constant of 
the crystal. Now the fundamental equation (3) demands for the 
case where n = 1 (observation in the first order, to which we may 
restrict ourselves if the rays are very soft), 

2d> A.(5) 

Accordingly rock-salt (2d = 5*63 . 10'8) may be used only as far as 

wave-lengths not exceeding A = 5A. Gypsum and mica, however, 

* H. Seemann, Ann. d. Fhya., 49, 470 (1910), and Phys. Zeits., 18, 242 (1917). 
See also Seemann and Friedrich, ibid., 80, 55 (1919). 

f Rutherford and Andrade, Phil. Mag., 28, 263 (1914). 
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supply us with good crystals with considerably greater values for the 
lattice constant. (This corresponds with the rule, which is self-evident, 
that very easy cleavage is usually associated with a large value of the 
lattice constant for the net planes in question.) A step towards 
crystals of still finer reticulation was first taken by Siegbahn and 
Thoraeus,* who used palmitic acid, for which 2d = 70-98 A, as the 
reflecting crystal. 

We now proceed to discuss two other methods of X-ray spectro- 
scopv, the first being the ionisation method of W. H. Bragg. In it 
the photographic plate or film is replaced by an ionisation chamber, 
that is, by a vessel that is filled with a (preferably heavy) gas, which 
receives the reflected radiation at P (Fig. 47). The gaseous content 
becomes conducting (ionised) in proportion to the radiation absorbed ; 
the conductivity is measured by electrometers. The ionisation chamber 
must be turned, step by step, along the circle PjPS of Fig. 47 to the 
same extent as the crystal is turned forward, step by step, when we 
pass from one wave-length of the spectrum to another that is neigh¬ 
bouring to it. Thus, in this case, the spectrum is represented not by 
a continuous distribution of darkened spots, but by a discontinuous 
succession of electrometer deflections. The method has its advantage 
in measuring the intensities in the X-ray spectrum as, through the use 
of electrometers, it is specially sensitive and allows quantitative com¬ 
parisons (on account of the approximate proportionality between 
X-ray intensity and ionisation;. 

Secondly, in the method of crystal powders, devised by Debye 
and Soherrcr, the various angles of incidence that are requisite for the 
various wave-lengths of the spectrum are furnished by the natural 
lack of order in the crystal powder. The same method has been de¬ 
veloped in America by A. W. Hull. It is a typical example of the 
inevitableness of scientific development that, in spite of the blockade 
due to the wrar, the same idea sprang up almost simultaneously in 
Germany and America. A narrow pencil of Rbntgen rays falls into 
a little tube which is filled with a micro-crystalline powder, and strikes 
one and the same crystal face in all possible orientations. For 
each wave-length there are crystal faces inclined at the correct 
angles, and indeed in all positions around the direction of the incident 
ray. Hence, the reflected radiation forms for each wave-length 
a cone about the incident ray. A circularly cylindrical film placed 
axially in position, will be darkened by the reflected radiation at its 
curve of intersection with this cone. If the primary ray travels along 
horizontally, the mantle (sheet) of the cylindrical film is placed verti¬ 
cally. The arrangement is particularly simple and has already been 
of great service in crystal analysis, since most minerals occur more 
often in the powder form, so-called amorphous form, than in that of 

* Cf. Journ. Opt. Soc. Amer., B, 235 (1926). 

VOL. I.—13 
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well-grown crystals ; if necessary, the fineness of the grannies may 
be increased artificially. 

We now give an indication of the power of X-ray spectroscopy by 
reproducing some photographs of historic importance. Fig. 48 repre¬ 
sents one of the first really successful X-ray photographs ; it was 
taken by E. Wagner in 1917 by means of a platinum anti-cathode 
and a rotating crystal of rock-salt.* The wave-lengths increase from 
left to right. On the less exposed right side of the figure the char¬ 
acteristic lines of platinum (so-called L-series, denoted by a/SyS) stand 
out very conspicuously as straight lines, accompanied by several 
weaker lines of iridium, which is related to platinum, and several 
mercury lines. On the left side of the figure, which was exposed to 
the reflected rays more often owing to the manner of adjustment of 
the crystal, and was therefore darkened relatively more than the 

background of the right side 
of the picture, we see the 
continuous spectrum de¬ 
picted as a fairly uniformly 
darkened field. The in¬ 

tensity of the darkness de¬ 
creases at the point marked 
d (“ bromine band,” cf. § 7 
of this chapter) in a strik¬ 
ingly sudden way towards 
the right, owing to the 

selective sensitivity of the 
photographic layer of silver 

bromide for X-rays. Hence 
we here have documentary 

evidence of the two com¬ 
ponents of X-rays, re¬ 
peatedly mentioned above, 

namely, the continuous spectrum (impulse radiation) and the line- 
spectrum . 

The next picture is one of a series of systematic photographs by 
means of which W. H. and W. L. Bragg have unravelled the structure 

of rock-salt (Fig. 49). The source of radiation was a tube with a 
rhodium anti-cathode. This gives, in addition to a weak continuous 
spectrum, two lines, in particular, one, the more intense but softer 
a-line, and the other, the weaker but harder /S-line of the so-called 
K-series. The cube face of rock-salt served as the reflecting crystal 
face. The intensity of reflection was measured by the ionisation 

method. The ordinates of the figure are thus electrometer deflections 
giving the intensity of the ionisation current; the abscissae denote 

d 
Fig. 48.—Characteristic Rontgen spectrum of 

Pi (L-series, a, y, 5) taken with a rotat¬ 
ing crystal of NaCl. The strong selective 
absorption of the bromine (K-absorption 
limit) in the light sensitive layer of the 
photographic plate begins at d. Wave¬ 
lengths increase towards the right. 

Phys. Zeits., 18, 405 (1917). 
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the angles 20 (of. Fig. 47), through which the ionisation chamber must 
be turned so as to be able to receive the reflected intensity under 
consideration in turn. The figure shows the two lines a and /3 in three 
different positions. The difference between the lines, which gives 
a measure of the spectroscopic resolution, increases with the order- 
number of the reflection ; at the same time, however, the intensity 
of the lines rapidly decreases (the amount of this decrease depends 
not only on the general conditions of the diffraction, but also on the 
particular structure of the crystal used). Both facts, increase of 
resolution and decrease of intensity, have already been emphasised 
above. The sharpness of the lines, compared with the preceding 
photograph, is by no means great in this ionisation picture. 

We give as our third picture a photograph,* taken by Debye and 
Scherror, of very finely powdered LiF. The source of radiation, a 
tube with a Cu-anti-cathode, again emits, in particular, two char¬ 
acteristic wave-lengths, the a- and the /3-lines of the K-series, the 
former being a little more intense than the latter. The dark lines of 

1 

0° 5« 10° 150 20° 250 30° 35° 40<> 

Flu. 41).— Characteristic Rontgen spectrum of till (Ka£) obtained with an 
ionisation chamber. The numbers 1, 2, 3 denote the 1st, 2nd and 3rd 
orders of reflection at the crystal face (cube face of NaCl). 

the photograph are produced by these two wave-lengths, whereas the 
continuous spectrum of the Cu tube has produced no appreciable 
darkening. These dark lines are, as we remarked above, the inter¬ 
sections of the film with the circular cones that start out from the 
crystal powder, and are described about the direction axis of the in¬ 
cident X-rajr pencil. In the middle of the picture the lines of darkness 
are straight, because the circular cone that is described about the 
primary ray becomes a plane w hen its angle of aperture is 90°, and it 
therefore intersects the film in a straight line. Towards the right and 
the left ends of the picture (emergent and incident directions of the 
primary ray) the curvature of the lines of intersection increases. The 
very dark lines correspond throughout to the a-line of Cu, likewise 
the moderately dark ones ; the weak lines correspond to the /3-line, 
in the main. The a-radiation and likewise the /3-radiation gives us 
not only one, but several dark images, because it is reflected appreci¬ 
ably at several faces of the micro-crystals (octahedral, dodecahedral, 

* Taken from the (Jbttinger Nacliriehtcn of the year 1916. 
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cubic face, ami, indeed, not only in the first order, but also in the 
second, third, and fourth orders), whereby these faces must in each 
case have the appropriate orientation towards the incident liontgen 

light. 
But we must now follow the purpose stated in the title of this 

section—the measurement of the wave-length of Rontgen rays. This 
depends, as is clear from equation (3) and from Lane’s own funda¬ 
mental idea, on a comparison of the wave-length sought with the 
dimensions of the crystal lattice, in particular, with the distance d 
between the net planes. 

Let us return to the method of the revolving crystal and assume 
that a number of lines are photographed very distinctly and sharply 
on the film FF of Fig. 47. The distance of an individual line from the 
primary rav gives us the angle 2# directly (of. Fig. 47). From this 
we calculate 0 and sin 0. Thus, so long as r/ is known, A can also be 
given directly from (3). 

Fig. 50.—Debyo-Scherrer-photograph obtained 
with powdered Li F. Characterist ic Rout gen 
spectrum of Cu (Ka/?). 

Fig. f»i.—Crystal model of 
rock salt. ‘ 'uhic lattice. 

It only remains for us to describe how d is found.* The earliest 
precise measurements were made by using a piece of rock-crystal 
cleaved along the cube faces. The structural skeleton of the NaOl 
crystal is shown in Fig. 51. We have a simple cube lattice whose points 
are occupied alternately by Na- and Cl-atoms (more correctly, Na+- 
and Cl~-ions). The distance between the net planes which comes into 
question here is d ~ a/2, that is, it is equal to half the edge of the 
cube in which the Na-ions and the 01-ions are arranged. If we imagine 
a cube d8 described about each Na- and Cl-ion as centre, then these 
cubes completely fill the crystal. Hence, in the space 2e£3 there will 
be a mass mKtt + mci. This mass amounts to 

(23*00 + 35-46)mH = 
58-46 58*46 

L 6*06 
10- 

that is, the sum of the atomic weights of Na and Cl multiplied by the 
mass ms of the hydrogen atom, or, more accurately, with the recip- 

* Of. the detailed discussion by E. Wagner, Ann. d. Phys., 49, 625 (1910). 
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rocal of L, Loschmidt’s number per mol, the value of which we get 
from Fig. 1b on page 7. 

We get in this way, for the density of mass of rock-salt, 

P 
58*46 

6 06.2d* 
10-**. 

This density of mass is, on the other hand, known from direct observa¬ 
tion, or can be determined experimentally for the crystal of rock-salt 
used in each particular case. A very exact measurement by ltontgen 
gives 

p 2164. 
By comparing the two values of p we find 

^ V272t164.64)6 ^ ^ " 2<Sl4 X-units, 

where, following Siegbahn, we have introduced the unit 

1 X-unit 10'0-(, A. 

The greatest uncertainty in the numbers used is contained in flic 
value of the Loschmidt (or Avogadro) number, and amounts to at most 
1 per cent. ; the possible error in the lattice-constant d hence becomes 
less than £ per cent. 

The value d — 2*814 A was used as the basis for the first wave¬ 
length determinations by Moseley in 1913. Scigbahn adopted the 
convention of taking 2814*00 X-units as his basis ; all measurements 
obtained in Siegbahn s laboratory are referred to this value. In 
practical respects, how ever, fluorspar is superior to rock-salt on account 
of the nature of its cleavage planes and its small coefficient of ex¬ 
pansion. Precision measurements are therefore performed wherever 
possible wdth fluorspar ; the lattice-constant of fluorspar, referred to 
the d of rock-salt, amounts at 18° C. to 3029*04 X-units. 

The methods so far discussed give a relative wave-length measure¬ 

ment, which depends on an exact knowledge of the value of d for 
a normal crystal. Since the appearance of a fundamental paper by 
Compton and Doan * in 1925 it lias become possible to make an absolute 
measurement of wave-lengths in the manner used in measuring lattices 
optically. All that is necessary is an ordinary ruled grating on 
reflecting metal or glass, which need not even have a very small lattice- 
constant (for example, 50 lines to the millimetre). 

How does this harmonise with our assertion in § 1, according 
to which the lattice-constant must not be great compared with the 

wave-length ? The explanation is that in these experiments ex¬ 
tremely small angles of incidence arc used. For the lattice equation (1) 
m § 1 shows directly that a may be increased in proportion as a -a0 is 

* A. H. Compton and K. L. Doan, Proo. Nat . Ac., 11, 598 (1925). 
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diminished. Moreover, in the new method it is not selective but 
total reflection that is used, and this implies a considerable gain in in¬ 

tensity and sharpness of the lines. The phenomenon of total reflection, 

which occurs when a ray passes from a denser to a less dense medium 
(glass into air), is, of course, well known in the optical region. In the 

X-ray region air or a vacuum is the “ denser ’’ and glass or metal 

the “ less dense 51 medium. We saw in note 1 that in scattering 
processes ordinary and X-ray light behaved in opposite respects. 

Whereas in the optical region we could neglect w in comparison with 

o)0 (the frequency of the light in comparison with the natural or 
“ proper ” frequency of the scattering atoms), in the X-ray region we 

had to neglect o>0 in comparison with o>. Hence in eqn. (2) of note 1 
the characteristic denominator reverses its sign. But the same de¬ 

nominator also occurs in the dispersion formula and here determines 
the deviation of the refractive index from 1. Whereas the refractive 

index of ordinary light is greater than unity in passing from air to glass, 

the refractive index of X-ray light becomes less than 1 although only 

by a very small amount. Hence total reflection can occur in this 

transition, but only when the angles are extremely small. 

In the meantime this method has been perfected to an extraordinary 

degree, both in Upsala by Backlin (Dissertation, 1928) and in Chicago 

by Bearden (Nat. Ac., 1929) ; it yields X-ray lines of irreproachable 

definition and resolution as far as the tenth order. From such 

photographs the wave-length A of the X-ray line in question can be 

determined absolutely by using the lattice-constant a. On the other 
hand, by comparing the A-values so obtained with Ihose obtained by 

reflections from crystals we can determine the lattice-constant d of 
the crystals. For fluorspar, for example, Backlin obtained the value 

d — 3033 X-units, 

which is not inconsiderably greater than that given above. 

But this involves a further correction in Loschmidt's number and 

consequently also in the value for the elementary charge e. According 
to Backlin or Bearden, Millikan's value e = 4*774 . 10 10 (cf. p. 15) 

would have to be increased to 

e = 4*793 . 10~10 or 4*804 . 10~10 respectively. 

Judgment about the sources of error involved in the new method must 

be suspended for the present. Hence for the present we shall retain 

the values given in Chapter I for the fundamental constants c, m, L 

and so forth. We consider it only right, however, to point out that 

possibly a more accurate determination of those constants will be 

possible as a result of absolute lattice measurements of the wave¬ 
lengths of X-rays. 
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§ 3. Survey of the K-, L-, and M-series and the Corresponding 
Limits of Excitation 

We now enter into a region of physical research which was founded 
only in 1913 and which, in spite of the unfavourable conditions of the 
intervening years, has already been developed so far that to-day its 
structure is exposed to our gaze with greater clearness of detail than 
the regions which have been explored much longer and from which the 
new researches have borrowed their aims and methods. It is in fact 
true that the spectroscopy of Rontgen rays shows in many ways simpler 
and more satisfactory results than the illimitable spectroscopy of the 
visible, region. 

The reason for this striking fact was touched on in § 3 of the pre¬ 
ceding chapter : the X-rays came from the inner part of the atom 
where the electrons, owing to the influence of the unweakened nuclear 
charge, obey simple laws : visible spectra start out from the periphery 
of the atom, where the electrons accumulate and the nuclear charge 
loses its regulative power. A further reason must be added : right 

* from the outset X-ray spectroscopy had the new atomic theory of 
Bohr (1913) to guide it and direct it, whereas optical spectroscopy 
was for decades without theoretical guidance and had first to generate 
from within, as it were, the facts on which the atomic theory could be 
founded. 

Let us first cast a glance at our knowledge of Rontgen radiation 
before Lane's discovery, that is at the characteristic radiation of the 
elements. Barkla, whose works are almost the only ones that come 

into account for this question, showed that every element, on to which 
cathode rays or X-rays are allowed to fall, emits characteristic primary 

or secondary Rontgen rays of quite definite hardness. The hardness 
was measured by noting the coefficient of absorption of the radiation 
in the case of, say, aluminium. The simplicity of the law of absorption 
led to the conclusion that characteristic X-rays must to a great extent 

be homogeneous. Moreover, it was found that there is a simple relation 
between the hardness of radiation and the atomic weight of the element 
emitting it. The hardness increases (that is, the absorption decreases) 
as the atomic weight increases. In the case of compounds, the char¬ 
acteristic radiation emitted was found to be the sum of the character¬ 
istic radiations of the elements constituting the compound. This 
proved that the characteristic part of the Rontgen radiation was a 
fundamental property of the atom and that it was conditioned by the 

atomic weight. 
Barkla succeeded in showing the existence of two series of char¬ 

acteristic radiation, which he called the K-series and the h-series. 
He observed the K-series of rays in the ease of the lighter metals (as 
far as Ag) and the L-series in that of heavy metals (e.g. Au, Pt). The 
extrapolation of the observed L-rays for the case of the light elements 
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made it evident that they would be so soft that, witli the means at 
that time available, their presence could not be detected. On the 
other hand, the extrapolation of the K-radiation in the direction of 
the heavy metals showed that in their case the K-radiation would 
have to be so hard that it could not be excited by the X-ray tubes that 
were available at that time. For it is a general law of the excitation 
of a characteristic radiation that the exciting radiation must be harder 
than that which is excited. This law of excitation pointed to an analogy 
in the realm of optics, namely to Stake's rule for light produced by 
fluorescence. If a fluorescent substance is to be made to fluoresce, the 
incident light must in general be of shorter wave-length than that of 
the light emitted by fluorescence. Iti this case, too, then, the exciting 
light must be “harder ” than that which is excited. Hence Barkla 
also called characteristic X-rays fluorescence rays, thus characterising 
their origin fittingly. Just as the fluorescence light is determined by 
the nature of the fluorescent body and is different in nature from the 
exciting light, so the fluorescence X-ray light is determined by the 
structure of the emitting atom, independently of the constitution of 
the exciting radiation, provided that the latter is sufficiently hard. 

After Laue's discovery all these relations became incomparably 
more certain and definite. The qualitative measurement of hardness 
by means of absorption was replaced by the quantitative measurement 
of wave-length, which was free from all arbitrariness. The homogeneity 

of the characteristic radiation was on the one hand sharpened and 
on the other limited. The spectroscopic resolution of the char¬ 
acteristic radiation disclosed a spectrum of sharp lines, of which each, 
taken alone, represents Rontgen light of very great homogeneity, but 
the totality of which signifies an emission of light of a certain degree 
of heterogeneity. The general dependence of the hardness on the 

atomic weight could now, after the arbitrary mode of measurement 
by absorption had been replaced by the natural method of measuring 
wave-lengths, and after, thanks to Bohr’s theory, the somewhat 
indefinite atomic weight had been replaced by the simpler quantity, 
atomic number, be expressed as a simple numerical law between wave¬ 
length and atomic number. It also became possible to express the 
condition of excitation quantitatively. When the exciting radiation 
was resolved spectroscopically, it was seen by how much its short-wave 
end had to exceed the excited radiation in hardness, in the sense of 
Stoke’s rule. Finally, it w*as found possible to add to the two char¬ 
acteristic emissions denoted K- and L-radiation by Barkla two other 
radiations, appropriately called M-, N- and O-radiation. 

We next give a general graphical survey of the wave-lengths of 
K-, L-, and M-radiation, which is derived from an account given by 
M. Siegbalin and It. Thoraeus (Fig. 52). We mark off the wave¬ 
lengths horizontally, whereas, starting from the top, we measure off 
vertically the increasing atomic numbers of the elements emitting these 
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wave-lengths. The horizontal line thus signifies in a certain sense the 
extent of the spectrum in question, and the vertical direction, in steps 
of 3 units at a time, the sequence of the natural system of the elements. 
The K-radiation is the hardest of the three types of rays ; it has been 
observed for cases ranging from the lightest elements, for which even 
the K-radiation is already extraordinarily soft, to cases for which the 
rays are extremely hard. Still softer than the L-radiation there is 
the M-radiation, which lias so far been observed only in the case of 
heavy elements, and even then special precautions (vacuum spectro¬ 
graph, of. p. 192) were rendered necessary. The K-radiation is again 
softer and has been observed only in the case of the heaviest (dements. 

Each of these kinds of rays consists, as the figure indicates, of several 
lines and each increases regularly in hardness as the atomic number 
increases. 

We follow this survey of the experimental results by the theoretical 
picture to which they have led. This picture is based entirely on the 
atomic model, consisting of the positive nucleus as the central body 
and the electron shells surrounding it, which, anticipating Barkla's 
nomenclature, we called K-, L-, and M- shell in the preceding chapter. 
For the present we shall consider these shells, as was originally done, 
as uniform so far as the energy-content of each is concerned ; that is, 
we shall disregard the sub-division of the shells into various sub-groups. 

We shall now describe (a) the phenomenon of excitation, (b) the 
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process of emission for the K-, L-, M-radiation according to the plan 
of W. Kossel,* whose views seem to be more and more confirmed by 
the facts. 

To excite K-radiation, an electron must be removed from the inner¬ 
most shell, the K-ring, and transferred to the periphery of the atom. 
If the excitation occurs through the agency of cathode rays, it is easy 
to imagine that the tearing-off of the “ K-electron ” is effected by the 
impact of a cathode-ray particle that has penetrated into the atom. 
To detach the K-electron, a certain energy, lifting power, is necessary. 
The energy of the impinging cathode ray must bo at least as great as 
this lifting energy. This sets a definite limit to the excitation neeosary 
to produce the K-radiation, that is, there is a lower limit to the 

necessary, hardness of the cathode rays. If the excitation is effected 
not by cathode rays but by primary Rontgen radiation, then we must 
demand for the corresponding minimum of its hardness that its hv value 
(of. Chap. I, § 6) is at least as great as the lifting power required to do 
the work of transference. 

IV) excite the. L-radiation, it is necessary to remove an electron from 
the L-shell to an outer position. The 

lifting work necessary is less than the 
corresponding work for the same atom 
in the ease of a K-electron. Renee, 

for the L-elcctron, the necessary 
hardness of the exciting cathode rays 
or Rontgen rays is less. In Fig. 53 
the process of excitation is repre¬ 

sented diagrammatically by the 
arrows that point from within out¬ 
wards. They bear the signs K-Gr. 

(K-Greuze, — K-limit), L-Gr. (L-limit), 
and so forth. 

Through the excitation the atom 
is prepared for the subsequent 

process of emission. When the K-electron has been torn out, the K- 
shell strives to complete itself again. The missing electron may be 
furnished by either the L-shell or the M-shell, or some other. Whereas 

the process of excitation was accompanied by a gain of energy (work 
of lifting, absorption of energy), the converse process takes place with 
the loss of energy (energy of falling, emission). We assume that this 

appears in the form of energy of radiation, and that it is emitted as 
monochromatic radiation, that is, as radiation of one wave-length, in 
each case. According as the missing electron, however, returns to 
the K-ring from the L-, M-, or N-shell, the energy set free will be 

Fig. 53.-- Diagrammatic represen¬ 
tation of the excitation and 
emission of Rontgen series (K-, 
L-, M-series). 

* W. Kossel, Verh. d. Deutsehen Thysikal. Gesellseh., 1914, pp. 899 and 953 ; 
1916, p. 339. 
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different in amount : correspondingly there will be various possible 
K-radiations, each of which is represented by a definite wave-length. 
We talk of the Ka-line (transition from the L- to the K-shell), of the 
K/l-line (transition from the M- to the K-shell), of the Ky-line (tran¬ 
sition from the N- to the K-shell). The lines Ka, K£, Ky together 
constitute the K-series. Kfi is harder than Ka, and Ky is harder than 
K/3 on account of the successive increase in the energy of falling that 
is available. On the other hand, Ka is more intense than Kj£, and 
K/3 is more intense than Ky owing to the fact that the probability 
of the occurrence of the transition becomes successively smaller. It 
seems very plausible to suppose that the replacement of the missing 
electron is effected more often by the neighbouring shell than by the 
next or some later shell. In Fig. 53 these electronic transitions are 
represented by the arrows that point inwards to the nucleus ; they 
arc distinguished, in so far as they belong to the emission of K-lines, 
by the symbols Ka, K/l, Ky. 

Whereas all electronic jumps that end in the K-shell belong to the 
K-series, all these that end in the L-shell belong to the lines of the 
L-series. If a place in the L-shell has become vacant owing to a pre¬ 
ceding excitation, the L-shell seeks to restore its full complement of 
electrons at the expense of the M- or the N-shell, and so forth. The 
energy that is hereby set free again appears as monochromatic radiation. 
We speak of the La-line (transition from the M- to the L-shell), of the 
Ly-line (jump from the N- to the L-shell), and so forth. Ly is harder 
and less intense than the La-line for reasons analogous to those given 
above. Concerning the naming of these arrows it must be remarked 
that there are also lines Lj8 and LS, which, however, like a series of 
further lines of the L-series, have not yet been successfully fitted into 
our provisional scheme. The following sections will deal further with 
this eircu m stance. 

Finally, electronic transitions that end in the M-shell, furnish 
differences of energy that correspond to emissions of lines of the M-series. 
In our figure this series is represented by only one line, Ma, corre¬ 
sponding to the transition from the N- into the M-shell. In reality, 
it, too, consists of several lines. 

In several absorption experiments with light substances (water, 
aluminium, paper) Barkla believed in 1917 that he had detected signs 
of a radiation still harder than K-radiation ; he called it “ J-radiation.” 
Repeated tests by other observers have, however, not been able to 
confirm the existence of this radiation. Nor has the theory a place 
for such radiation, so that we must regard K-radiation as the hardest 
possible radiation ; this is expressed in our figure. 

In succession to Fig. 53 we give Fig. 54 as a still more schematic 
illustration of the process of emission of Rontgen rays. This diagram 
has an advantage in that it takes more account of the quantitative 
aspect of the phenomenon. In it we visualise the various shells not 
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by their relative positions in the atom but by their relative energy- 
differences. Thus we draw a succession of energy-steps such that the 
difference of height between two steps gives the energy that is liberated 
when an electron drops from the higher to the lower step (orbit). The 
lowest step bears the sign K, the next L, and so forth. The energy- 
level of the nucleus is to be considered at — oo. The highest dotted 
limit of the steps corresponds to the periphery of the atom. If we 
consider the energy-levels of the hydrogen atom to the first degree 
of approximation, that is, disregarding the interaction between the 
atomic electrons and considering only their energy in the nuclear 
field, then we must set down the position of the n-quantum step below 

the highest level at a distancefproportional to ~ (cf. p. 87). Accord¬ 

ingly we make the height of the steps in the figure decrease, from 

Fig. 54.—Diagrammatic? representation of the energy levels of a Hontgen 
spectrum. 

the bottom upwards, in the manner indicated by the differences of 
height 1, l, . . . written at the side (on the right). Moreover, we 

again draw the arrows Ka, K/3, . . ., La . . . that correspond to the 
various possibilities of energy-emission, and the arrows K-Gr, L-Gr, 
wThich correspond to the various kinds of energy-absorption. 

This theoretical diagram enables us to understand at once the 
general laws for the hardness of Bontgen lines that came into evidence 
in Fig. 52. For according to the fundamental quantum relation 

h v = W1 — W2 the lengths of the arrows in our figure denote directly 
the frequency of the associated emission lines and absorption limits. 

Hence it follows : for one and the same atom the K-series is harder 
than the h-series which, in turn, is harder than the M-series. Within 
the K-series the hardness increases from Ka hey oral K/3 to Ky, but in 

ever-decreasing steps, and finally arrives approximately at the hardness 
of the K-limit. The same holds for the L-series, and likewise for the 
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other,s. But further, the available differences of energy depend essen¬ 

tially on the amount of the nuclear charge. The greater the nuclear 

charge (and hence the atomic number of the element), the more intense 

is the electric field around the nucleus. The energy steps become greater 
as Z increases (roughly, in proportion to Z2, as in the case of the 

hydrogen-like atom, eqn. (13), on p. 87). But this means that the 

hardness increases for every Line ivith every step forward in the natural 

system of elements. 

But Fig. 54 also enables us to recognise a further principle. If 

we use K, L, M, . . .to denote directly the works of excitation (or 

ionisation) divided by h, which are necessary to remove an electron 

from the K-, L-, M- . . . shell, we clearly have * 

Ka = K - L, Kj8 -- K - M, Ky — K — N, . . .) 

La - L — M, Ly - L - N, . . . (1) 

Ma = M - N, . . .1 

These equations denote the first step towards representing X-ray 

spectra by means of terms, which we shall give in its final form in 

§ 7 of the present chapter. At the same time they show how Bitz’s 

Combination Principle (cf. Chap. 11, § 2) is applied to X-ray spectra. 

From the equations (1) wc obtain, by eliminating the limits K-, 

L-, M-, . . ., the combination relations between the emission lines, 
which were first set up by Kossel, namely, 

KjS = Ka + La . . . from the first and second columns of eqns. (1) 

Ky = Ka \ Ly . . . ,, first and third ,, ,, 

Ly - ~ La -f Ma ... ,, second and third ,, „ 

Ky = KjS + Ma ... ,, second and third „ ,, 

The relationships may obviously also be read off the figure directly 

without the use of the equations (1). It is highly suggestive that the 

equations (2) hold only approximately and not exactly. This is not 

due to the combination principle not being accurately true but to our 

idea of the energy-levels of the different shells, as hitherto represented, 

being still too inaccurate, and that the L- and M-shells have tc be 

fiub-divided. A hint to this effect is also given by the two lines L/l 

and L8 of the L-series which were mentioned on page 203. The 
succeeding sections serve to describe the refinement of the levels- 

scheme in this sense. 

* If these equations are to hold directly in wave-numbers (cm-1) we must 
divide the works of excitation not by h but by he. Cf. p. 71. In the sequel we 
shall assume that this has been done. 
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§ 4. The K-series. Its Bearing on the Periodic System of Elements 

Following in the footsteps of Barkla, Moseley * was the first to 
bring the emission of the Rontgen lines into relationship with the 
scheme of the natural system. His first photographs (1913) dealt 
with the K-series of the elements between Oa, Z — 20, and Cu, Z ™ 29, 
inclusive. 

Let us at once look at a now famous figure in Moseley's paper. 
The photographs have here been pasted above each other successively 
so that positions vertically below one another denote equal wave¬ 

lengths. The wave¬ 
lengths increase as we 
pass from the left to the 
right. We learn from 

Fig- 55 : 
1. As the atomic 

number increases, corre¬ 
sponding lines in the 
spectra move regularly 

and successively towards 
the region of smaller 
wave-lengths. The hard¬ 
ness of the lines increases 
as Z increases. This is 
already known to ns from 
the previous section and 
holds not only for the 
K-series but also, as Fig. 
52 shows, for the L- and 

M-series. 
2. In the case of each 

element, two lines occur : 
they are the more intense 

but softer line Ka and the less intense but harder line K/3, which we 
have already met under the same names in the preceding paragraph. 
The faint line Ky that was also mentioned earlier is not distinguishable 
from the K/3, and appears only when refined sjjectroscopic methods 
are applied. 

3. The X-ray spectra are a pure property of the atom, and, indeed, 
an additive property. The last picture of the series, which represents 
brass, that is, an alloy of Ou and Zn, accordingly exhibits the same 

Fig. 55.—Moseley diagram of the K-series from 
Ca (Z - 20) to Cu (Z - 29). Wave-lengths 
increase towards the right. Equal wave¬ 
lengths are arranged under one another. 

* H. G. J. Moseley, “The High Frequency Spectra of the Elements,” Phil. 
Mag., £6, 1024 (1913) ; 27, 703 (1914). Moseley’s apparatus is still preserved in 
the Electrical Laboratory, Oxford, whore he carried out theso researches under 
the supervision of Professor J. 8. Townsend.—(Transl.) 
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linns as the preceding element Cu and the following element Zn (not 
shown in our figure). Further, wo observe in the ease of (Jo, which 
it is difficult to separate from Ni and Fc (first triad of the periodic 

system), besides the a- and /Mine of (Jo also less intense images of the 
a-lines of Fe and Ni. 

4. The order of Co and Ni in the periodic system is rectified by this 
result of X-ray analysis. Whereas, according to the values of the 
atomic weights, Ni should precede (Jo (at. wgts. being 58-68 and 58-97 
respectively), we 0 
i 5 i- 4 n YP aa had to write (Jo o V V 
before Ni in the 
chemical scheme 

of Table 4, page 

131. The X-rays 
are not deceived 
by the atomic 

weight and so 
they confirm the 

true order Co, Ni. 
Not the atomic 
weight, but the 
atomic number 

governs the Bout- 

gen spectra. 

The same is 
true of the order 
of To and 1 and 
this is likewise 
established pro¬ 
perly by Rontgen 

analysis (cf. Fig. 
57). As Ruther¬ 
ford incidentally 
remarks, the 
original problem 

that Moseley was 

trying to solve 
when he set about 
his experiment was to determine whether it was not the nuclear 
charge, instead of the atomic weight, that decided the nature and the 

hardness of the characteristic Rontgen radiation. 
5. Since the discovery of the periodic system, particular interest 

was centred on the presence of gaps and the prediction of new elements 

in the system (cf. p. 133). In Moseley's figure, the rare element scan¬ 
dium is missing between Ca and Ti. Its absence is betrayed by too 
great a leap between the elements Ca and Ti that succeed one another 
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in the figure. The regular increase (that was emphasised in 1) in the 
hard ness as Z increases reveals infallibly every gap in the system. 
Whereas we are here concerned with the well-known element Sc, 
we shall in Fig. 57 recognise a gap of this sort at Z =- 43, which points 
to the element Masurium which was only recently discovered, the 
discovery being made by means of X-rays. The previous gaps Z = 61 
and 75 have also been filled by the X-ray method, whereas the two 
places Z — 85, Z = 87 are still shown to be gaps by the same method. 

Partly to continue Moseley’s figure in the direction of increasing 
atomic numbers and partly to bring into evidence the advances that 
have been made in photographing llontgen rays, we give as our next 
illustration Fig. 56, by 8iegbahn : it represents the elements from As, 
Z = 33. to Ph, Z — 45. In this case the spectra have been taken by 
the method of the revolving crystal ; as a result, the lines are sharper 
than in Moseley’s case and more completely separated. Besides the 
second most intense line K/9, we sec here also the faint line K y (to the 
left, and hence harder than K/9), the origin of which we know from the 
preceding section. Further, we see that the most intense line Ka has 
been resolved into the doublet (a, a') (a' is to the right of a, and hence 
is softer). Besides these lines, the zero mark (on the extreme left) 
has been photographed ; it is made by the undiffracted primary 
radiation. 

The same remarks apply to this figure as to the former ; the hard¬ 
ness increases for each line as the atomic number increases : the Sr-line 
adulterates the lib-spectrum ; gaps occur in the succession of the 
elements, exhibited by irregularly great differences in the hardness, 
namely, between Br, Z = 35, and Kb, Z = 37, the inert gas Kr, Z - 36, 
is missing. 

We first give a short survey of the different nomenclatures and the 
origin and intensity of the K-lines. 

Table 1J. 

Sotmnerfolri .Hivtrbahn Origin | Intensity 

0L'\ a2 | Ln —v K f>0 
a ) ai i Lui - K loo 

P) h Mu ~> K 

P i p, Mm K rT> 

* Pm I Nni — K 15 

The lines are arranged in order of increasing hardness. In 
Siegbahn’s notation two groups of lines are distinguished, the soft 
a-lines and the harder /9-lines ; he numbers the lines in both groups 
according to their intensity. A number of fainter lines that occur 
only in the case of the lowest atomic numbers, and that are to bear 
the names oc3, 0C4, oc3, according to Siegbahn, are not included 
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in our list. We shall revert to this in § 7. The intensity data have 
been borrowed from Kiegbahn’s book (referred to on p. 18b) and denote 
ratios. 

The data about the origin of the lines correspond to the representa¬ 
tion of terms in eqn. (1) of the preceding section and supplement this 
scheme in the sense of the sub-division of the energy-stejis there set 
out. For this reason we have provided the symbols of the L-, M-, 
and N-shell with indices, whose general scheme we shall discuss in 
§ 6 of the present chapter. The lines a'ot, /?'/? have been bracketed 
together to denote that they form with each other the doublet differ¬ 
ences Lin — L11 and Mm - Mu, which we shall discuss in the next 
section. 

We now give a list of the wave-lengths of the principal lines of the 
Tv-series, using in general X-units (cf. p. 197); IX - 10~n cm.~l(H A. 
We shall keep to the measurements obtained in Seigbahn’s Institute, 
except in the case of Ma, for which we give Berg and Tacke’s measure¬ 
ments. Finally we add in the last column but one the wave-lengths 
of the absorption limits (K-limit) as given by the measurements of 
Leide (Dissertation, Lund, 1925), so that we have now collected the 
most important data relating to wave-lengths of the K-series in one 
table. We shall give a detailed discussion of the absorption limits 
in § 0. 

At the beginning of the table the lines aoc' have not yet been 
separated. While the gaps in the table are obviously accidental 
(for example, the inert gases are absent) the y-line seems to find its 
natural limit in the neighbourhood of Ti, Z = 22 ; we shall revert to 
this in § 7 in conjunction with the interesting questions of the suc¬ 
cessive building up of the shells. 

From the wave-lengths A we pass on to their reciprocal values, 
the wave-numbers v ; to arrive at un-named numbers of a convenient 
order of magnitude we divide the v’s by the Rydberg constant (eqn. 
(10) on p. 89). In this way we obtain the columns 2 to 5 in Table 13. 
We set next to them in columns 6 and 7 the differences between the 

v/R’s for the lines a and a' and the value of a/WR for the line Ka 
(at the head of the table we have denoted these columns briefly by 

a — a' and \ oc). 
The column a — a' will occupy us in the next section. We shall 

first fix our attention on the last column but one. It forms an 
arithmetic series ; that is, there is a steady increase from element to 
element. At the beginning of the table the increase is regular, later 

it increases a little. The same would hold for We also read this 

out of Fig. 57, which expresses the values of y" r/R as a function of 

the atomic number, in the manner of Siegbahn. The a-lines and the 
£-lines (the two central lines of the figure) increase regularly in a linear 
manner except for a slight curvature in the case of the greater Z’s ; 

vol. 1.—14 



Table 12 

Wave-lengths of the K-series in X-units 

z 
1_“•.__ 1... • 

£ y K-Llmit Z 

8 O 23*73 (A.-If.) 8 O 
0 F 18-30 ,, — 9 F 

11 Na 11883*6 11591 .. _ 1 1 Na 
12 Mg 9867*75 9534*5 — 12 Mg 
13 A1 8319*40 7940*5 _— _ 13 A1 
14 Si 7109*17 6739*3 — 14 Si 
1 5 P 6141*71 5789*0 15 P 
16 S 5363*75 5360-90 5021*3 — 16 S 
17 Cl 4721*36 4718*21 4394*6 — _ 17 Cl 
19 Iv 3737*06 3733*68 3446*80 _ _ 19 K 
20 Ca 3354*95 3351*69 3083*43 __ _ 20 Ca 
21 Sc 3028*40 3025*03 2773*94 _ _ 21 Sc 
22 Ti 2746*81 2743*17 2508*98 2493*7 22 Ti 
23 V 2502*13 2498*35 2279*72 2264*6 _ 23 V 
24 Cr 2288*907 2285*033 2080*586 2066*71 _ 24 Cr 
25 Mn 2101*489 2097*506 1906*195 1893-27 — 25 Mu 
26 Fc 1936*012 1932*076 1753*013 1740-80 _ 26 Fc 
27 Co 1789*187 1785*287 1617*436 1 605*62 _ 27 Co 
28 Ni 1658-353 1654*503 1497*045 1485*61 _ 28 Ni 
29 Cu 1541*16 1537*26 1389*33 1378*0 1377*65 29 Cu 
30 Zu 1435-87 1432*06 1292*60 1280*97 1280*8 30 Zu 
32 Go 1255*21 1251*30 1126*74 1114*62 — 32 Ge 
33 As 1177*40 1173*43 1055*18 1042*93 1042*63 33 As 
34 Se 1106*43 1102*42 990*25 977-90 977*73 34 Sc 
35 Hr 1041*60 1037-56 930*84 918*26 918*09 35 Hr 
37 Kb 927*72 923-60 827*03 814-84 814*10 37 Kb 
38 Sr 877*54 873*37 781*53 769*19 768*37 38 Sr 
39 Yt 831*19 827*01 739*31 726-92 39 Yt 
40 Zr 788*50 784*29 700*47 688*34 687*38 40 Zr 
41 Nb 748*82 744-57 664*49 652*55 651*58 41 Nb 
42 Mo 712-105 707*831 630-978 * 619*698 618-48 42 Mo 
43 Ma 0*675 (A) 0*672 (A) 0*601 (A) — 43 Ma 
44 Ru 646*15 641*81 571*43 560*48 _ 44 Ru 
45 Kh 616*371 612*023 544*491 * 533*957 533*03 45 Rh 
46 Pd 588-632 584-266 519*471 * 509*181 507*95 46 Pd 
47 Ag 562*669 558*277 496*009 * 486*030 484-80 47 Ag 
48 Cd 538*29 533*86 474-29 464*39 463*13 48 Cd 
49 In 515*46 511*03 453*72 444-08 442*98 49 In 
50 Si i 494*016 489*572 434*297 * 424*992 423*94 50 Sn 
51 Sb 473*87 469*31 416*23 407*10 406*09 51 Sb 
52 To 454*91 450*37 399*26 390*37 389*24 52 To 
53 I 437*03 432*49 383*29 374*71 373*44 53 1 
55 Ch 404*11 399*59 ~~ — 34407 55 Cs 
56 Ba 388-99 384*43 — — 330*70 56 Ba 
57 La 374*66 370*04 — — 318*14 57 La 
58 C© ,361*10 356*47 — — 306*26 58 Co 
60 Nd 335*95 331*25 *— — 284*58 60 Nd 
62 Sm 313*02 308*33 — — .— 62 Sm 
63 Eu 302*65 297*90 _— — — 63 Eu 
64 Gd 292*61 287*82 — — — 64 Gd 
65 Tb 282*86 278*20 — — — 65 Tb 
66 l)v 273*75 269*03 — — — 66 By 
67 Ho 264*99 260*30 — — 222*64 67 Ho 
68 Er 256*64 251*97 — — 68 Er 
70 Yb 240*98 236*28 — — — 70 Yb 
74 Wr 213*52 208*85 184*36 179*40 — 74 W 
77 Ir 195*8 — 168*4 _ .— 77 lr 
78 Pt 190-10 185*28 163*4 158*2 —_ 78 Pt 

* In the case of these elements fl' has been separated from whereas for the 
other elements our wave-length data for /? denote the unresolved complex of 
lines 0 -f- j8\ We have 

0' — f} =5 0*565 X-units for Mo, Z = 42 0' — £ == 0*638 X-units for Ag, Z = 47 
« 0*602 „ „ Rh, Z - 45 — 0*650 „ „ Sn, Z = 50 
** 0*619 „ „ Pd, Z « 46 



Table 13 

vj^R-values of the K-series 

z a' a ft Y a — a' v«* Z 

8 O 38 40 6-197 8 O 
9 F 49-80 — 7-057 9 F 

11 Na 76-68 78-62 -. — 8*757 11 Na 
12 Mg 92-34 95-57 — — 9-609 12 Mg 
13 Al 109-53 114-76 —- 10-465 13 Al 
14 Si 128-18 135-21 — — 11-321 14 Si 
15 P 148-37 157-41 — — 12-176 15 P 
16 S 169-89 169-98 181-48 — 0-09 13-037 16 S 
17 Cl 193-01 193-14 207-36 — 0-13 13-897 17 Cl 
19 K 243-84 244-07 264-38 — 0-23 15-623 19 K 
20 Ca 271-61 271-88 295-51 — 0-27 16-488 20 Ca 
21 So 300-90 301-24 328-51 0-34 17-356 21 Sc 
22 Ti 331-75 332-20 363-20 365-42 0-45 18-226 22 Ti 
23 V 364*19 364-75 399-72 402-40 0-56 19-097 23 V 
24 Or 398-124 398-799 437-987 440-93 0-675 19-9700 24 Or 
25 Mn 433-631 434-454 478-057 481-32 0-823 20-8436 25 Mn 
26 Fo 470-694 471-653 519-831 523-48 0-959 21-7176 26 Fo 
27 Co 509-321 510-433 563-404 567-55 1-112 22-5928 27 Co 
28 Ni 549-503 550-781 608-712 613-40 1-278 23-4687 28 Ni 
29 Cu 591-27 592-79 655-91 661-30 1-52 24-347 29 Cu 
30 Zn 634-65 636-34 704-99 711-39 1-69 25-226 30 Zn 
32 tie 725-99 728-26 808-56 817-56 2-27 26-986 32 Ge 
33 As 773-96 776-59 863-61 873*78 2-63 27-867 33 As 
34 So 823-62 826-61 920-24 931-86 2-99 28-751 34 Se 
35 Br 874-88 878-28 978-98 992-39 3-40 29-636 35 Br 
37 Rb 982-27 986-65 1101-9 1118-3 4-38 31-41 I 37 Rb 
38 Sr 1038-4 1043-4 1166-0 1184-7 5-0 32-302 38 Sr 
39 Vt 1096-4 1 101-9 1232-6 1253-6 5-5 33*195 39 Yt 
40 Zr 1155-7 1161-9 1300-9 1323-8 6-2 34-087 40 Zr 
41 Nb 1216-9 1223-9 1371-4 1396-5 7-0 34-948 41 Nb 
42 Mo 1279*692 1287-420 1444-227 f 1470-515 7-728 35-8807 42 Mo 
44 Ru 1410-3 1419-9 1594-7 1625-9 9-6 37-681 44 Ru 
45 Rh 1478-44 1488-95 1673-63 f 1 706-64 10-51 38-5869 45 Rh 
46 I’d 1548-12 1559-68 1754-22 | 1789-64 11-56 39-493 46 1M 
47 Ag 1619-55 1632-29 1837-20 t 1874-96 12-74 40*402 47 Ag 
48 Cd 1692-9 1707-0 1921-3 1962-2 14-1 41-315 48 Cd 
49 In 1767-9 1783-2 2008-4 2252-0 15-3 42-227 49 In 
50 Sn 1844-62 1861-36 2098-27 f 2144-21 16-74 43-144 50 Sn 
51 Sb 1923-0 1941-7 2189-3 2238*4 18-7 44*064 51 Sb 
52 To 2003-2 2023-4 2282-4 2334-4 20-2 44-982 52 To 
53 1 2085-2 2107-0 2377 5 2432-0 21-8 45-902 53 1 
55 Cs 2255-0 2280-5 — - 25*5 47-755 55 Cs 
56 Ba 2342-5 2370-4 — 27-9 48-687 56 Ba 
57 La 2432-3 2462-6 — 30-3 49-625 57 La 
58 Ce 2523-6 2556-3 — — 32-7 50*560 58 Ce 
60 Nd 2712-5 2751-0 —. — 39 5 52-450 60 Nd 
62 Sm 2911-2 2955-5 — -— 44-3 54-365 62 Sm 
63 Eu 3011-1 3059-1 — 48-0 55-309 63 Eu 
64 Gd 3114-3 3166-1 -— — 51-8 56-268 64 Gd 
65 Tb 3221-6 3275-6 — — 54-0 57-233 65 Tb 
66 Dy 3328-8 3387-2 — — 58-4 58-200 66 Dv 
67 Ho 3438-9 3500-8 — — 61-9 59-168 | 67 Ho 
68 Er 3550-8 3616-6 —- — 65-8 60-138 68 Er 
70 Yb 3781-5 3856-7 — .— 75-2 62-103 70 Yb 
74 W 4267-8 4363-3 4942-9 5079-5 95-5 65-327 74 W 
77 Ir 4654 — 5411 — — 68-21 77 Ir 
78 Pt 4793 4918 5577 5760 128 69-23 78 Pt 

* Between 8 0_and 15 P inclusive, a and oc' are not separated ; only at 16 S 

do we find our Va-values to be the Vr/R’s of the a-lines. 
f Here fl' and ($ are separated (of. Table 12, p. 210) (r/R)^' has the values: 

42 Mo 1442-935, 45 Rh 1671-77, 46 Pd 1752-13, 47 Ag 1834-84, 50 Sn 2095-13. 
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the neighbouring lines a' and y (the two outermost lines) follow them 
in their course. 

In Fig. 57 our earlier statements about the behaviour of X-ray 
spectra and their relationship to the natural system of elements are 
shown particularly clearly. We see the regular increase of hardness 
with atomic number, which is linear in our present method of repre¬ 
sentation. There is as yet no sign of the periodicity of the elements. 
We interpreted this earlier as meaning that only the peripheral parts 
of the atom are constructed in a periodic way and that the energy 

Fig. 57.— Vv/H of the K-series lines a (very nearly) linear function of the 
nuclear charge Z. 

ratios in the interior of the atom increase regularly with the nuclear 
charge. 

This method of representation gains in certainty when we draw 
inferences about the possible gaps in the system of elements. If 
the figure had been drawn without account being taken of the gap 
which was present earlier at Z =* 43 (masurium), a discontinuity 
would have manifested itself at the point in question in the course of 
the graph and this would at once have called attention to the missing 
element. Also note the sequence Te, I (Z = 52 and 53), which is 
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established beyond doubt in our diagram and which agrees with the 
requirements of the chemical scheme (I in the seventh vertical column, 

below F, Cl and Br). 
It is also interesting to note the magnitude of the increase of Vac 

in Table 13, that is, the change in V v/R in the Ka-line as we pass from 
one element to the next. It amounts to about 

0-86 - Vj. 

Consequently we may for the present express the linear gradient- in 
Fig. 57 by the following formula : 

It follows also from the graph that the constant s which has here been 
introduced and which we shall call the “ screening constant,” must be 
nearly equal to l. In this way we arrive at the following expression, 
already developed by Moseley, for the wave-number of the Ka-line : 

£ - I(Z - ])2 - (Z - 1)*(1 - I) - (Z - 1 )*(-! • J) . (2) 

This formula exhibits a far-reaching analogy with Balmer's expres- 
sion for the hydrogen series given in Chapter II ; in comparison with 

the formula (15) on page 8b we find that the only difference is that 
now the full nuclear number Z does not occur and that it is reduced 
by the amount s ~ 1. As the name “screening-constant ” signifies, 
this has to be interpreted as meaning that in the interior of atoms 
that are different from the hydrogen type—and it is with such that we 
are here concerned—the presence of negative electronic charges near 
the nucleus reduces the action of the positive nuclear charge. 

From the point of view of the theory as accepted at the present 
time we can no longer regard Moseley’s equation (2) as exact. A 
complete expression for the Ka-line for all atomic numbers Z would 

also have to explain the slight curvature of the graph in Fig. 57 on the 
basis of the “ relativity corrections ” which are to be discussed in 
Chapter V ; nor can we rest satisfied with the above approximate 
determination of the constant s. But above all the form of eqn. (2) 

has been chosen too narrow from the point of view of the Combination 
Principle. According to this principle Ka must be represented as 
the difference of two terms which in eqn. (1) of page 205 we denoted 

by K and L. There is no basis for assuming the screening constant s 

as having the same value in both terms, as is done in Moseley’s formula. 
Rather, it is plausible from the outset that the screening in the case 
of the K-term will be smaller than in the case of the L-term, because 
in the latter the two electrons of the K-shell have a screening effect 

to the full extent of their charges and the other electrons of the L-skell 
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will also contribute to the screening, whereas for the K-term essentially 
only the K-electrons come into consideration with a part of their charge. 
Hence a rational expression for the Ka-line must not start from the 
specialised Moseley formula (2) but from the Combination Principle 
and the general formula (1) on page 205. Nevertheless it will be a 
cause of wonder for all time that when Moseley first made quantitative 
measurements in the realm of X-rays he at the same time took the first 
decisive step in interpreting theoretically the high frequency spectra. 

§ 5. The L-series. Doublet Relationships 

The L-series is constructed in a more complicated way than the 

K-serics, as is shown, in the first place, by its lines being present in 
greater number. A survey of the different nomenclatures and the 
origin and approximate intensities of the principal lines is given in 
Table 14 ; besides the lines here set out there are several weaker lines 

to which we shall refer in § 7. A reproduction of the L-series of 
platinum has already been given (Fig. 48, § 2). 

Tahlk 14 

Somnn rfohl Siogbahn Origin Intensity 

/ ex' j «a Miv “V Liu 1 

l a Mv —> Liu 10 

P 1 
y | 

ft MIV Lu K 

/ 
— NIV L#m 0 

1 ft Nv -> Lin (> 

s ) Y\ NIV - Lu 4 

r V | Oiv -> Liu 

) 3 i ft Ov - v Lin 

0 ) y« Oiv -v Lu 2 

€ \ i Mr —v Liu ;* 

v J V Mi —v Lu i 

f V Pi M„ Li 2 

\ 
X 

(h MIU -> Li :* 

f Yi N„ - j- Li 1 
l \ X 73 Nnr Li 

f %' — On U 
] 1 i + Yi Om -> Li 

Our nomenclature agrees with that of Moseley, so far as his lines 

reach (he had measured and named only the lines a, /?, y, 8, ifj), and 

is intended to extend it systematically by following on with the succes¬ 
sive letters at the end and the beginning of the Greek alphabet. 
Siegbahn’s nomenclature is at present in general use and has some 

practical advantages ; it distinguishes three groups of lines which may 
be approximately separated in hardness, namely a soft a-group, a 

medium jS-group and a harder y-group, the degree of hardness and 

softness of course changing from element to element as the atomic 
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number changes. Siegbahn numbers the lines within each group 
according to their intensity. The intensities are understood in the 
relative sense and relate to the heavy elements ; they claim to give 
only average estimates. 

In contrast with the first two columns the third column gives a 
rational nomenclature to the lines. It is not much more cumbersomo 
than the two other methods and is free from arbitrariness. It there¬ 
fore seems to be destined to supersede both Siegbahn’s and the author’s 
nomenclature. The position of affairs here is similar to that in the 
spectroscopy of the visible region. The arbitrary names given to the 
absorption lines by Fraunhofer are not much used nowadays ; rather, it 
has been found necessary to characterise each line by its series relation¬ 
ships (cf. Chap. VII). Correspondingly we say in the X-ray region, 

instead of Ka, L/?, . . ., Liu —> K, Miv —> Ljj, ... or K. — Lni> 
Ln — Miv, .... It must be admitted that this nomenclature 
presupposes that we have finally succeeded in interpreting the lines. 
Until this has been achieved we shall have to make use of Siegbahn’s 
notation for experimental purposes and to our own notation of the 
Moseley type for theoretical considerations. 

The order of the lines in Table 14 does not correspond throughout 
with the order of the hardness of the lines ; a is certainly always softer 
than /? and y softer than 8, but is not softer than y in the case of 

all elements. The softest line in the case of all elements is e (dis¬ 
covered by Siegbahn and denoted by l). The lines /?, y, and ifj overlap 
in numerous places. Further peculiarities can be read off from Fig. 59. 

Concerning the origin of the lines the following details are ex¬ 
pressed in Table 14 : the line La corresponds, as already shown in 
Fig. 53 and 54 to the transition of an electron from the M- to the L- 
shell, the line Ly to the transition from the N- to the L-shell. But it 

now becomes necessary to sub-divide these shells still further. Even 
in Table 11 of the preceding section we distinguish two L-shells, Lit 

and Lju. It now becomes necessary to assume still another shell, 
the third, namely Li. In the case of the M-shell we have to distinguish 
five such steps, which we denote by Mi, Mu, . . . My. The N-shell 
is analogous and must be divided into seven steps. The experimental 
reasons for this sub-division are left over for discussion in the next 

section. 
As the brackets in the first column of Table 14 (to the right of the 

notation for the lines) indicate, the pairs of lines (a'/l), (y'S), (£'#), 

(erj) belong together and form doublets. We call them L-doublets ; 
they are denoted by successive letters of the Greek alphabet. Their 
characteristic feature is : both lines of an L-doublet have the same 
initial level ; the softer line ends in the Lm-level, the harder line* in 

the Ln-level. 
We shall call the pairs of lines (a 'a) and (<f> r<f>) M-doublets because 

the lines associated together in them have the same L-level as final 
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level but different M-levels as initial levels. For a corresponding reason 

the pairs of lines (y'y) and (y'x) are called N-doublets. We are led 
to conjecture that the lines £ and *// are, analogously, unresolved pairs 
of lines which we call O-doublets. The M-, N- and 0-doublets have 
been indicated as such by brackets on the left of the symbols in Table 
14. The symbol for the softer doublet line is distinguished from that 
for the harder line only by an accent. In contrast with the L-doublet 
we find that in the case of the M-doublet (a'a) and the N-doublet 
(y'y) the softer component is the weaker component. In the case 

of the doublets (</>'<£), (x'x) and W) which have the same final level 
Li (letters taken from the end of the Greek alphabet), the softer com¬ 
ponent of the doublet is only inappreciably if at all weaker than the 

harder component. 
In Table 15 we give the measurements of Siegbahn and Thoraeus 

for the L-lines of the lighter elements V 23 to Br 35, in terms of Angstrom 
units. That the lines aa' could not be separated is not surprising. 
It is noteworthy that the lines y and 8, which come from the N-shell 
(cf. Table 14) are not yet represented. The reason for this is clearly 
that the N-shell in the case of these elements is either incompletely 
developed or not at all. A series of weak companions, that are ob¬ 
served here, are omitted (cf. § 7). 

Tabu: 15 

Wave-lengths of the L-series of the lighter dements (in A.U.) 

z a', a 0 V Z 

23 V 24*2 _ _ .. 23 V 
24 Cr 21-53 21-19 — — — 24 Cr 
25 Mn 19-39 19-04 — — — 25 Mn 
26 Fe 17-58 i7-22 20-3 2 19-65 15-61 26 Fe 
27 Co 15-94 15-62 18-20 17-77 — 27 Co 
28 Ni 14-528 14-235 16-55 16-17 13-14 28 Ni 
29 Cu 13-308 13-029 15-19 14-83 12-10 29 Cu 
30 Zn 12-224 11-958 13-95 13*61 11-16 30 Zn 
32 Ge 10-414 10-152 11-920 11-585 — 32 Ge 
33 As 9-650 9-394 11-047 10-710 8-911 33 As 
34 Se 8-971 8-737 10-271 9-234 — 34 Se 
35 Br 8-357 8-108 9-563 9-939 — 35 Br 

Millikan and Bowen * have launched into the region of extremely 
soft X-rays ; not, however, from the direction of X-rays but from 
that of ultra-violet spectra. They did not make their observations 
with a crystal lattice but with an artificial ruled grating, the construc¬ 
tion of which had to be specially developed, and with a highly condensed 

* Astrophys. Journ., 52, 47 and 286 (1920); 53, 160 (1921); Phil. Mag., VU, 
4, 561 (1927). 



Fig. 59,—Regular course of the Vv/Ti values for the L-series. Vv/Ji is a very 
nearly linear function of Z. 
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Table 16. Wave-lengths of the 

z a' a $ 

37 Kb 7302*7 7060-4 
38 Sr 6847-8 6609-2 
39 Yt — 6434-9 6198-4 
40 Zr — 6055*9 5822-8 
41 Nb 5717 5711*3 5479-6 
42 Mo 5400 5394*3 5165-8 
44 Ku 4838-67 4835-67 4611*00 
45 Rh 4595*56 4587*78 4364*00 
46 Pd 4366*60 4358*50 4137-30 
47 Ag 4153-82 4145*64 3926-64 
48 Cd 3956-36 3947-82 3730-08 
49 In 3772-42 3763*67 3547*83 
50 Sri 3601-08 3592*18 9377-92 
51 Sb 3440-75 3431-77 3218*36 
52 Te 3291*00 3281*99 3069*97 
53 I 3150-87 3141*66 2930-93 
55 Cs 2895-60 2886-10 2677*84 
56 Ba 2779-02 2769-64 2562-24 
57 La 2668-93 2659*68 2453*30 
58 Co 2565-11 2556*00 2351*00 
59 Pr 2467-63 2457*70 ! 2253-90 
60 Nd 2375-63 2365-31 2162-21 
62 Sm 2205-68 2195*01 1993*57 
63 Eu 2127*33 2116-33 1916-31 
64 Gd 2052*62 2041*93 1842-46 
65 Tb 1982-31 1971-49 | 1772-68 
66 Dy 1915-64 ; 1904-60 1706-58 
67 Ho 1852-06 ! 1840-98 1643-52 
68 Er 1791-40 1780-40 1583-44 
69 Tu 1733-9 1722*8 1526-8 
70 Yb 1678-9 1 1667-79 1472-5 
71 Lu 1626-36 ! 1615*51 1420*7 
72 Hf 1577-04 1566-07 1371-1 
73 Ta 1529*8 1518*85 1324*23 
74 W 1484*38 1473*36 1279-17 
75 Re — 1429-88 1236*04 
76 Os 1398-2 1388-16 1194*59 
77 lr 1359-8 1348-47 1155*40 
78 Pt 1321*55 1310*33 1117*58 
79 Au 1285*02 1273*77 1081*28 
80 Hg 1249*7 1238*63 1046-52 
81 T1 1216-03 1204-93 1012-99 
82 Pb 1183*52 1172*58 980-83 
83 Bi 1153*3 1141-50 950*02 
90 Th 965-24 954-05 763*56 
92 U 920-14 908-74 718-51 

V £ 6 f 

— — — 7821 
— — .—- — 

5573*4 5373-0 — — 6898 
5225-3 5024*1 — — 6509 
4909*2 471M — -- — 

4361-9 4172-82 — —. 

4122-1 3935*7 — — 5207-0 
3900-7 3716-36 — 4939-6 
3693*83 3514-85 — — 4697-6 
3506*4 3328-00 -— 4471-3 
3331*2 3155*29 — 4259-3 
3167-9 2994-93 — 4063-3 
3016-6 2845*07 .... — 3880-3 
2876*1 2706-47 3710*1 
2746-08 2577-48 — 

2506-4 2342*52 - . , —- 

2399-3 2236*60 —- — 3128*7 
2298*0 
2204-1 

2137*20 
2044-33 

- 3000 

2114-8 1956*81 •77H-1 
2031*4 1873-83 2670-3 
1878-1 1723*09 ----- 2477-0 
1808-2 1654-3 — 2390-3 
1741*9 1558*63 — 2307*1 
1679-0 1526-6 — 2229-0 
1619-8 1469-27 — 2154-0 
1563*7 1414*2 — 2082-1 
1510-6 1362*3 -- — 2015*1 
1460-2 1312-7 — 1951*1 
1412-8 1264-8 — .— 1890-0 
1367-2 1220*3 — 1831*8 
1323*5 1176*5 — — 1777*4 
1281*90 1135*58 1250-6 1110-0 1724*2 
1242*03 1096-30 1212-5 1072-0 1675-0 
1204*1 — — — — 

1168-38 1022-47 1140 .... — 

1132-97 988-76 1103-0 963-6 
1099*74 955*99 1070-1 931*7 1497*23 
1068*01 924*61 1038-2 901-25 1456*54 
1037-70 894-6 1007*8 — 1418-3 
1008-22 865-71 978-3 841*7 — 

979-90 838-01 949-52 813-70 1346-62 
953*24 811*43 922-3 787-4 1312-95 
791*92 651-76 762*59 630-1 1112*41 
753*07 613*59 724-13 592-6 1064*77 

“ vacuum spark.55 The L-series is followed from A1 (Z =■= 13) down¬ 
wards to its entrance into the optical spectrum of Li (Z = 3). 

Table 16 contains precision measurements (given in X-units) for 
the heavy elements ; only the lines which are more important for the 
method of classification are tabulated. Here we see a first character¬ 
istic feature of our doublets. We calculate the differences AA of 
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Ju-series {in X.-units) 

») <f> r! X V h h, liii 1 z 

8029-0 6802-8 6769-9 ! 6028-2 5985-4 6841-3 37 Rb 
7505 6385-5 6349-9 5629-4 — 5571-4 6162-1 6362-0 38 Sr 

-- 6001-9 5967-9 - — — 5221-6 5737-3 5944-4 39 Yt 
6593-1 5652-7 5618-2 4941*2 4857-4 5365-9 5561-0 40 Zv 
6195 5331-4 5295-9 4639 — 4571-7 — 5212-1 41 Nb 
5835 5035-8 5000-2 4361*3 — 4289-7 4712-0 4904-2 42 Mo 

— - 4512-6 4476-4 3887-9 — — 4164-8 4357-7 44 R11 

4911-2 4277-8 4241*3 3677-0 — 3620-8 3931-5 4118-4 45 Rh 
4650-2 4062-3 4025-7 3480-9 — — — 46 Pd 
4410-1 3861-1 3824-45 3299-7 - - 3244-8 3506-2 3693-0 47 Ag 
4187-5 3674-25 3636-42 3131*6 — 3070-9 3321*8 3495-3 48 Cd 
3976-1 3499-0 3461-i) 2973-6 2919-1 2919-4 3139-5 3315-5 49 In 
3781-8 3336-3 3298-9 3827-3 2771-3 2769-6 2972-3 3149-3 50 Sn 
3599-6 3184-3 3145-14 2688-9 2633-6 2631-7 2821-9 2990-7 51 Sb 

— 3040-0 3001-3 2564-9 2505-7 2503-9 2679-3 2845-7 52 To 
— 2906 2867 — — 2383-9 2547-5 2713-9 531 

2983-3 2660-5 2622-93 2232-2 2227-0 2169-1 — 2307-5 2467-4 55 Os 
2857-1 2549-8 2511-0 2134*0 2129-5 2071-5 2062-0 2199-3 2356-8 56 Ba 
2734 2443-8 2405-3 2041-6 2036-5 1978-7 1968-9 2098-9 2253-7 57 La 
2614-7 2344-2 2305-9 1055-9 1950-9 1895-2 1885-6 2006-7 2159-7 58 Co 
2507 2250-1 2212-4 1875-0 1869-9 1815-3 1807-1 1920-1 2072-8 59 Pr 
2404-2 2162-2 2122-2 1797-4 1792-5 1740-8 1731-7 1839 1 1990*7 60 Nd 
2214 1996-4 1958-0 1655-9 1651*7 1603-3 1595*4 ' 1699-1 1840-8 62 Sm 

1922-1 1882-7 1593-9 1587-7 — 1533*3 1622-8 1771-7 63 Eu 
--- 1849-3 1810-9 1531-0 1525*9 1481-8 1474-0 1558-7 1706-2 64 Gd 
-— 1781-4 1742-5 1473-8 1468-3 1423-9 1418-1 1498-1 1645-3 65 Tb 

1892-2 1716-7 1677-7 1420-3 1413-9 1371-4 1364-8 1441-4 1587-0 66 By 
1822-0 1655-3 1616-0 1367-7 1361-3 1319-7 1314-6 1386-9 1532-2 67 Ho 
1754-8 1596-4 1557-9 1318-4 1311-8 1273-2 1266-0 1334-9 1479*6 68-Er 
1692-3 1541-2 1502-3 1271-2 J 265-3 1226-4 1219-6 1284-9 1429-9 69 Tu 
1631-0 1488-2 1449-4 1225-6 1219-8 1182-0 1176-5 1239-2 1382-4 70 Yb 
1573*8 1437-2 1398-2 1183-2 1177-5 1141*0 1136-2 1194-5 1337-7 71 Lu 
1519-7 1389-3 1349-7 1141-3 1135-6 1100-1 1095-3 1151-5 1293-0 72 Hf 
1465-5 1343-1 1304-1 1102-9 1097-1 1062-4 1057 1110-2 1251*7 73 Ta 
1418-1 1298-79 1259-92 1065-88 1059-87 1025-8 1020-5 1071-3 1211-6 74 W 

— — — — — — — — 75 Re 
1215-0 1177-2 — — —. — — 76 Os 

— 1176-4 1137-9 963-6 956-6 — — - _ — 77 Ir 
1240-1 1139-8 1099-50 931*7 925-6 895-0 — — — 78 Pi, 
1199-5 1104-4 — 901-25 895-68 866-3 — — 1 79 An 
1161-9 1068-6 1030-1 869-5 ! 834-8 — — — ! 80 Hg 
1125 1037-1 997-8 844-7 837-9 810-0 — — 81 T1 
1090-2 1004-69 966-02 818-2 813-70 783-6 — — — 82 Pb 
1057 975-4 935-7 792-9 787-4 761 — — — 83 Bi 

—. 789 752-1 — — — — — — 90 Th 
802-9 745-4 708-4 604-4 597-0 — — — 92 U 

the wave-lengths of two associated doublet lines in each case. We 
then find that for the whole series of elements associated doublet 
lines have very nearly equal wave-length differences AA. Expressed 
more accurately, we bracket together as doublets such lines and only 
such lines as have nearly equal distances between their wave-lengths. 

Let us consider Eig. 58. Here we have tabulated in the first place 
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Table 17. 

z a' a /? y 8 0 

37 Kb 124-79 129-07 __ __ __ 

38 Sr —- 133-07 137-88 -- — — — 

39 Yt — 141-61 147-02 — — — — 

40 Zr — 150-48 156-50 163-50 169-60 — — 

41 Nb 159-4 159-56 166-30 174-40 181-38 — — 

42 Mo 168-7 168-93 176-40 185*62 193-43 — — 

44 Ku 188-14 188*45 197-63 208-92 218-38 .... — 

45 Rh 198-29 198-63 208-82 221-07 231-54 — — 

46 Pd 208-69 209-08 220-26 233-62 245-20 — — 

47 Ag 219-38 219-81 232-07 246-70 259-26 - - 

48 Cd 230-33 230-83 244-30 259-89 273-82 — — 

49 Jn 241-56 242-12 256-85 273-56 288-81 — 

50 Sn 253-05 253-68 269-77 287-66 304-27 
51 Sb 264-85 265-54 283-15 302-09 320-30 — — 

52 To 276-83 277-66 296-83 316-84 336-70 — — 

53 I 289-21 290-05 310-91 331-87 353-55 ■— | 

55 Os 314-71 315-74 340-30 363-58 389-01 — — 

56 Ba 327-91 329-02 355-65 379-81 407-44 — 

57 La 341-44 342-62 371-45 396-55 426-38 — _ 

58 Ce 355-26 356-52 387-31 413-44 445-75 
59 Pr 369-29 370-78 404-31 430*90 465-69 — — 

60 Nd 383-59 385-26 421*45 448-59 486-31 — 

62 Sm 41315 415-16 457-10 485-21 528-86 i — — 

63 Eu 428-36 ! 430-59 475-53 503-97 550-85 — — 

64 Gd 443-95 446-28 494-59 523-15 573-62 
65 Tb 459-70 462-22 514-06 542-75 596-93 — — 

66 Dy 475-70 478-46 533-94 562-58 620-04 - — 

67 Ho 492-03 494-99 554-46 582-77 644-37 — - 

68 Er 508-69 1 511-83 575-50 603-25 668-92 - 

69 Tu 525-57 528-93 596-84 624-10 694-23 
70 Yb 542-78 546-39 618-86 645*01 720-49 
71 Lu 560-31 564-08 641-42 666-55 746-76 i 

- 

72 Hf 577-84 581-89 664-60 688-51 774-55 — 

73 Ta 595-69 599-97 688-15 710-88 802*47 728-65 820-98 
74 W 613-90 618-50 712-39 733-70 831-22 751-56 850-07 
75 Re — 637-305 737-249 756-81 — ... 

76 Os 651*75 656-45 762-83 780-58 891-25 799-6 — 

77 Ir 670-17 675-78 788-70 804-32 921-63 826-18 945-6 
78 Pt 689-55 695-45 815-40 828-63 953-22 851-57 978-07 
79 Au 709-15 715-41 842-77 853-24 985*57 877-70 1011-12 
80 Hg 729-19 735-71 877-76 878-16 1018-64 904-22 — 

81 T1 749-39 756-29 899-59 903-84 1052-62 931-4 1082-6 
82 Pb 769-96 777-15 929-08 929-98 1087-42 959-72 1119-97 
83 Bi 790-20 798-31 959-22 955-97 1123-04 987-98 1157-5 
90 Th 944-08 955-16 1193-45 1150-71 1398-16 1194*94 1446-2 
92 U 990-37 1002-78 1268-28 1210-07 1485-15 1258-43 1537-7 

our L-doublets (crj), (oc'/S), (y'S), £0. The curve € — rj lies highest, 
the curve a' — ft below it, and so forth in the order of sequence of the 
hardness of the pairs of lines. But within each curve the AA’s are 
nearly constant for the whole range from Z = 40 to Z =-• 92 (along the 
tf-axis), with a slight drop as we pass from lower to higher atomic 
numbers. The AA’s of our M-doublets (<x'oc) and (<£'<£) are at the lower 

end of the figure still more constant. 
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v/R-value& of the L-series 

« V ¥ x' X V Z 

113*50 133*96 134*61 151 •17 37 Rb 
116*5 121*4 142*71 143*51 161*88 — 38 Sr 

— ..... 151*83 152*70 - - 39 Yt. 
1321 138*22 161*21 162*20 184*42 — 40 Zr 
140*0 147*1 170*93 172*07 196*4 — 41 Nb 

— 156*1 180*96 182*25 208*94 — 42 Mo 
— 201*94 203*57 234*39 — 44 Ru 

175-01 185*55 213*02 214*86 247*83 — 45 Rh 
184-48 195*96 224*32 226*36 261-79 . - 46 Pd 
193*99 206*63 236*01 238*27 276*17 ..... 47 Ar 
203*80 217*62 248*02 250*59 290*99 — 48 Cd 
213-95 229*19 260*44 263*22 306*45 312*17 49 In 
224*27 240*96 273*14 276*23 322*31 328*82 50 Sn 
234*85 253 *16 286*18 289*74 338*90 346*02 51 Sb 
245*62 299*76 303*63 355 •26 363*68 52 To 

313*5 317*8 — — 53 T 
— 305*46 342-52 347*42 408*24 409*19 420-11 55 Or 

291*26 318*95 357*39 362*91 427*02 427*93 439*91 56 Ba 
303*7 333*3 372*89 378*86 446*35 447*45 460*54 57 La 

— 348*52 388*73 395*19 465*91 467*10 480*83 58 Co 
328*02 363*4 404*99 411*89 486*01 487*34 501*99 59 Pr 
341*26 379*03 421*44 429*40 506*99 508-38 523*48 60 Nd 
367*89 411*5 456*46 465 41 550*32 551*72 568*37 62 Sm 
381*24 — 474*10 484*02 571*72 573*96 — 63 Eu 
394*99 , — 492*76 503*21 595*21 597*20 614*98 64 Gd 
408*82 ! — 511*55 522*97 618*31 620*63 639*98 65 Tb 
423*06 481*59 530*83 543*17 641*60 644*51 664*48 66 Dv 
437*67 500*15 550*52 563*90 666*28 669*41 690*5 67 Ho 
452*22 519*30 570*83 | 584*93 691*19 694*67 715*73 68 Er 
467*05 538*49 591*26 606*60 716*83 720*22 743*03 69 Tu 
482*15 558*72 612*33 628*72 743*53 747*07 770*96 70 Yb 
497*47 579*01 634*06 651*75 770-17 773*90 798*59 71 Lu 
512*70 599*66 655*91 675*20 798*46 802*48 827*68 72 Hf 
528*50 621*83 678*50 698*78 826*26 830*65 857*74 73 Ta 
544*05 642*60 701*63 723*27 854*94 859*80 888*35 74 W 

— — — — — — — 75 Re 
— — 748*25 774*08 - — — 76 Or 
— __ 774*62 800*82 945*6 952*6 77 Ir 

608*64 734*82 799*52 828*80 978*07 984*52 1018*17 78 Pt 
625*63 759*97 825*15 — 1011*12 1017*41 1051*8 79 Au 
642*50 784*29 852*77 884*6 1048*0 — 1091*6 80 Hg 

— 810*3 878*64 913*2 1078*8 1087*5 1125*0 81 T1 
676*70 835*90 907*01 943*3 1113*8 1119*9 1162*8 82 Pb 
694*07 862*3 934*22 973*8 1149*2 1157*5 1196*8 83 Bi 
819*19 — 1155*0 1211*6 __ — — 90 Th 
855*84 1134*9 1222*5 1286*2 1507*8 1526*4 — 92 V 

We pass from the values of the A’s to the values of v/R and first 

exhibit a graphical representation (Fig. 59) of the values of \/v/R, 
similar to that of Fig. 57. To prevent confusion in the figure we show 
only the lines a, /?, y, S, e, r<f>. We have again plotted the atomic 
numbers along the #-axis. In this case, too, the course of the graphs 
is essentially straight, which indicates that v increases approximately 
in proportion to Z2. The deviations from linearity are, however, 
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more marked than before, particularly in the ease of the line 8 ; they 
are connected with the “ relativity correction " mentioned on page 213. 
Moreover, we see in the figure the overlapping which was referred to 
earlier and which was absent in the case of the K-series : the line /? 
cuts the line y at Pb, Z = 82 ; beyond 82 it is harder than y, below 
82 it is softer than y. Moreover <f> and y cut at Pt, Z = 78. From 
this we see that the relationships between the lines are not as simple 
and rigorous here as in the case of the lines of the K-series. 

In Table 17 we exhibit the v/R-values corresponding to the pre¬ 
cision measurements of Table 16. This brings to light a new relation¬ 
ship characteristic of doublets. Wo calculate the differences Av/R 
but not now for the same doublet of different elements but for different 
L-doublets of the same element; these L-doublets have, within the 
limit of error, the same wave-number difference Av/R : 

/3 — a' = 8 — y Q — ^ rj — €. 

These values of p — oc', 8 — y, and so forth have been inserted 
in Table 18 ; inspection will show that they agree appreciably ; it 
will also be found that the values of p — a deviate appreciably more 
from the other doublet differences than those of /? — a'. in this way 
we establish that the /Mine, the second strongest line of the L-series, 
does not form the characteristic doublet difference with a, the strongest 
line, but with its weak satellite a'. We may add that the same phenom¬ 
enon will also be found later to occur in the visible region (cf. Chap. 
VIII), where wre deal w ith the so-called u composite doublets 1?: in this 
case, too, the weak satellite of the principal line and not the principal 

line itself forms the doublet with a second line. 
The y-line also has a weak satellite, which we have denoted by 

y' in Table 14. To be accurate we must measure the doublet difference 
not between 8 and y but between 8 and y\ But since y' is separated 
from y only in the ease of a few elements * we have inserted 8 - y 
in the above equations instead of the more exact 8 — y\ The same 
holds for 6 — £, which should really be replaced by 0 — £' (cf. Table 
14). In the fourth-, third- and second-to-last column of Table 18 wre 

have noted down the M- and N-doublets a—-a', (f> — <f>\ X ~~ X • 
They are related neither among themselves nor to the L-doublet 
separation. 

In the last column of Table 18 we have given the fourth roots of 
the characteristic L-doublet difference Av/R = fi — a'. These form, 

as we easily see, an arithmetic series. As Z increases the numbers 
in this row increase by a constant amount of about 0*043. The par¬ 
ticular point of this fact which we have here established empirically 

will be dealt with at the end of the section. The fourth roots of the 
M* and N-doublet-separations also increase linearly with Z. 

The law of constant wave-number differences is now immediately 

* Allison, Phys. Kev., 34, 176 (1929). 
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Tahlk IS 

Ar /It■ values of the L-avric# 

z. P ~* «• 0-«'. 8~y. il - e. T1U a — a'. x - x'• Xjft - a\ 

37 Kb 4-28 0*65 
■V. 

38 Sr 4-81 — — - 4*9 4*04 — 0*80 — — 

39 Yt 5-41 ...... — — 5*54 — 0*87 
40 Zr 002 -- 0*10 — 0*1 5*96 0*99 — — 

41 Nb 0-74 0*90 0-98 7-1 _ 0*10 114 — 1 *622 
42 Mo 7-47 7-7 7*81 — — 7*58 0-2 1*29 — 1*600 
44 Ku 918 9*49 9*40 — — 9-58 0*31 1-63 — 1*755 
4 5 Rh 1019 10*53 10*47 — - 10*54 10*52 0*34 1*84 — 1-802 
46 l\l 1118 11*57 11-58 — 11*48 11*65 0-39 2*04 .... 1-849 
47 Ag 12-20 12*09 12*56 12*64 12*93 0*43 2*26 — 1*887 
48 (M 13-47 13*97 13*93 13*82 13*91 0*50 2*57 — 1-933 
49 Tn 14-73 15*29 15-25 — 15*24 15*41 0-50 2-78 — 1*977 
50 Sn 10-09 10*72 10-01 16*69 17*23 0 63 3-09 2*022 
51 Sb 17-01 18*30 18*21 - 18-31 18-2 0*69 3*50 — 2*008 
52 To 19-17 20*00 19*80 - - 19*9 0-83 3-87 — 2*115 
53 1 20-80 21*70 21-08 ..... 21-9 0-84 4-3 2*158 
55 Cs 24-50 25*59 25*43 — - — 20*9 1-03 4*90 0*95 2*249 
50 Ba 20-03 27-74 27*03 27-09 28*00 Ml 5*52 0*91 2*294 
57 La 28-83 30*01 29-83 29-0 29-4 118 5-97 110 2-341 
58 Co 30*79 32-05 32-31 - - 32*5 1 26 0*40 1-19 2-379 
59 Pr 33*53 35*02 34*79 — 35*4 35*24 1-49 6-90 1 -33 2*433 
00 N<1 30-19 37-80 37*72 37-77 38-04 1*67 7*96 1-39 2-481 
02 Sm 41-94 43*95 43-05 43-0 43*9 2-01 8*95 1*40 2*575 
03 Ku 44-94 47-17 40*88 — 47-1 2-23 9*92 2-24 2-621 
04 Ud 48-31 50*04 50*47 — 50*50 2-33 10*45 1*99 2-008 
05 Tb 51*84 54*30 54*18 2*52 11-42 2-32 2*715 
00 Dy 55*48 58*24 57-40 58-53 58-01 2-70 12*34 2-91 2-703 
07 Ho 59*47 02-43 01-00 02-48 2*90 13*38 3-13 2*811 
08 Kr 03-07 i 00*81 05*07 07*08 00*77 3*14 14*10 3-48 2*859 
09 Tu | 07-91 71*27 70*13 — 71 44 71*92 3*30 15*34 3*39 2*912 
70 Yb 72-47 70*08 75*48 70-57 74*50 3*01 10*39 3*54 2*953 
71 Lu 77*34 1 81-11 80*24 81-54 81*03 3*77 17*09 3*73 3-001 
72 Hf 82-71 80*70 80*04 i 80-90 80*00 4*05 19*29 4-02 3-052 
73 Ta 88-18 92*40 91-59 92*33 93-33 92-3 4-28 20-28 4-39 3-101 
74 VV 93-89 98*49 97*52 98*51 98-55 98-71 4-00 21-04 4-80 3-150 
75 Ro 99-944 104*84 103*70 105*29 104-88 3-200 
70 Os 100-38 111*08 110*07 111*9 4*70 25*83 — 3*246 
77 Ir 112*92 118*53 117*31 119*42 — 118*6 5*01 20-20 7*0 3*286 
78 Pt 119-95 125-85 124*59 126*50 120-18 126*3 5*90 29*28 6-45 3*349 
79 Au 127*30 133*02 132*33 133*42 134*34 133*0 0*26 — 6*29 3*400 
80 Hg 135*05 141*57 140-48 — 141*79 142*2 6-52 31-8 — 3-449 
81 T1 143*30 150-20 148-78 151*2 — 150*7 6*90 34*6 8-7 3*501 
82 Pb 151-93 159*12 157*44 100*25 159*20 101*0 7*19 30*3 6*1 3*552 
83 Bi 100*91 169*02 167-07 109*52 168*23 108*7 8*11 39*6 8*3 3*711 
90 rPh 238*29 249*37 247*45 251*26 250*0 11*08 56*0 — 3*974 
92 U 205*50 277*91 275*08 279*27 279*1 270*6 12-41 03*7 18*6 4-083 

clear if we call to mind the assumptions which we made in Table 14 
about the origin of the lines ; according to them two associated L- 
doublet lines should differ only in their final levels (Ln or Lm). Hence 
their wave-number differences become independent of the initial 
level of the transition in question and are represented by the fixed 
distance between the levels of the Lit and the Lm-shell. 
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But the electron cannot only pass from a higher level to the Lm-, 
Lu-shells, but it can also pass from the Lu-level to the lower K-level. 
Now in general the transition L K denoted the line Ka. Wo 
now see that this line must be a doublet and we understand the origin 
of the line Ka', which has already been hinted at in Table II on 
page 208 and which is explained in greater detail in Fig. 60. (For 
the description of the upper part of this figure see p. 226.) It is clear 
that the doublet interval (a'a) in the 1^-series must be equal to the doublet 
interval (tx'ft) in the L-series and hence also equal to the remaining 
L-doublets (y'8), (erj), (£6), all of them being measured of course as 
c’s or r/R’s. Actually, this interval is determined in all cases by the 
difference of energy between the Ln and the Lm levels of our figure. On 
the other hand, the interval between the lines La and Lft, which do not 
form a true L-doublet, is, when measured in wave-numbers, less than 

Fig. (50.—Diagrammatic re- Fru. 61.—AvK/H (Kaa', L-doublet of the 
presentation of the origin K -series) and AvjJH (L-doublet of the 
of the most important L-series) plotted between Zr (/ - 40) and 
K-, L- and M-lines. Nd (Z 00). 

(LnLm). With reference to the intensities we may note that the 
line Ka' which starts from the energy-level Ln is weaker than the line 
Ka which starts from the Lm-level, just as the line Jjft which stretches 
to the Ln-level is weaker than the line La which ends in the Lm-level. 
Hence as regards intensity Ka' corresponds to the line Lft and Ka 
to the line La. But with respect to hardness the relationship is re¬ 
versed, as a glance at Fig. 60 shows ; this is because the Ln- and Lm- 
level respectively form the initial level for the K-lines but the final 

level for the L-series. Hence there is the following characteristic 
difference between the K- and the L-series ; in the "K-series the weaker 
cc'-line is softer than the principal line a (smaller interval in the 
figure), whereas in the L-series the weaker ft-line is harder than the prin¬ 

cipal line a or <x' (longer arrow). 
This qualitative theoretical deduction agrees fully with the ob¬ 

served facts. Moreover, even the quantitative deduction of the 



§ 5- The L-series. Doublet Relationships 22^ 

equality of the doublet (a'a) in the K-series with the “ L-doublet ” 
in the L-series is completely confirmed by the measurements. 

We show this in Fig. 61. It contains all the elements (from Z — 40 
to Z — 60) for which the measurements of the K-series and those of 
the L-series overlap. The values of ArK/R, indicated by x, are formed 

in accordance with Table 13 as the difference between the r/R-values 
for Ka and Ka' ; the values of AvjJR, represented by O, are taken 

from the fifth to last column of Table 18. To prevent confusion in 
the figure we have plotted the points ArK/R, ArL/R alternately. 

For one and the same element the two points would fully coincide 
on the scale of our diagram. 

From Table 12 we see that the K-doublet, or more correctly the 
L-doublet of the K-series, also obeys the law of approximately con¬ 
stant difference in wave-lengths. Actually the wave-length difference 
of K(a'a) is uniformly equal to about 4 or 5 ;r-units throughout the 
whole series of elements. 

We shall close these general considerations with some preliminary 
remarks leading up to the quantitative theory of X-ray doublets. 

In dealing with Table 18 we remarked earlier that a/Ar/R of the 
L-series increases by 0*043 for each unit increase of the atomic number. 
Hence we have a linear equation of the form 

"* / A v 
- <>-i)t:i(z h) . . . . (i) 

and we easily see from the last column of Table 18 that .s* ^ 3-5. 
If we raise each side to the fourth power and, for convenience, 

take out the factor 24 in the denominator, we obtain 

Ar _ 5*3 . 10 5 ,r/ 

R ~ 24 “ {/ 
3*5)4 (2) 

This law leads us far into the mechanics of the interior of the atom, 
as we shall see in Chapter V. Whereon according to Moseley the wave- 
numbers advance as the square of the atomic numbers, the differences 
in the wave-numbers of the doublet components are proportional to the 
fourth power of the atomic number. This not only holds, as shown here, 
for the L-doublets, but also for all analogous doublets, for example, 
for the M-doublet (a'a) of the L-series. In the latter case we have only 
to replace the denominator 24 by 2*34 and the number 3*5 by a greater 
number which is to be empirically determined. The law that AA 
is very-nearly constant for all such doublets now follows directly from 
eqn. (1) and Moseley’s law. For we have 

\ 1 1 a \ 1 Ar A = | AA | 

VOL. I.—15 
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Since AA is here the quotient of a biquadratic and the square of a quad¬ 
ratic function of Z, it becomes appreciably independent of Z, particularly 
for greater values of Z. 

We append a few remarks about the M-series ; for the results of 
observation and the manner in which they have been sifted we refer 
the reader to the article by Lindh quoted on page 186. 

The two strongest lines of the M-series are called Ma, Mft. On 
the side of the softer rays Ma has a weak satellite Ma'. The origin 

of these lines is : Ma — Nvn -> My, Ma' - Nvi -> Mv, Mj8 — Nyj Miv. 
But, particularly in the case of the heavier elements, we know of 
another sequence of lines of the M-series, which correspond to the 
transitions N M or 0 - > M. 

To explain the mutual relationship between the L- and the Mi¬ 
series we find the following remark by R. Swinne * of particular interest : 
The difference ft — a' in the M-series is equal to the difference a — a' 
in the h-series. Hence we find the same relationship between the M- 
and the L-series as previously between the L- and the Irk-series (of. Fig. 
60). Our notation is chosen so that it also exhibits this relationship 
explicitly. For we have 

(«Wm -= 

fully analogously to 

(*Wl = (<x'«)k- 

And, as we see from Fig. 60, the same characteristic inversion of 
hardness and intensity occurs in this case as above between the corre¬ 
sponding lines in the L- and the K-series : whereas in the M-series 
the weaker line ft lies on the harder side of a, in the L-series the weaker 
line a' lies on the. softer side of the principal line a. 

Besides the “ M-doublet ” (a'j8) — (My, Mjy) there also occurs 
at various points of the M-series a second M-doublet, namely (Min, 
Mji), which discloses its character of 44 regular doublet,’* like the L- 
doublet, by having a constant value for AA in the series of elements 
and also the same value for Ac for lines of one and the same element. 

Isolated observations have also been made of the N- and the 
O-series, in particular by Hjaimar for the elements U, Th. Bi. 

§ 6. Excitation and Absorption Limits. Regularities in the 
Absorption Coefficients 

We must now deal more fully with the process of excitation of 
X-ray series which we have already described briefly in § 3. We 
there spoke of the excitation limit of the K-lines and understood this 
as standing for the minimum energy, which cathode rays must have 

* Physik. Zeit-s., 17, 485 (bottom), 1916. Swinne here comparos the doublets 
(a'ah and (a/S?)M* It was remarked by the author in Zeits. f. Phys., 1, 135 (1920), 
that it is more exact and more logical to replace (a£)m by (a'/bm 
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to remove an electron from the K-shell to the periphery of the atom. 
In Fig. 54 this excitation limit of the K-series was represented by an 
energy-level which is higher than the energy-steps for Ka or K/2 or 
even Ky. If we assign a wave-number K to it in accordance with 
the hv law,* we have in comparison with the wave-numbers of the 
emission lines : 

K > Ky > Kfi > Ka. 

Hence the excitation limit measured in this way is the series limit 
to which the K-lines tend (cf. the dotted line in Fig. 54). This observa¬ 
tion leads to several consequences. Let us make the potential V of 
a cathode ray tube increase to the value e\r= AcKa and inquire when 
the line Ka, characteristic for the anti-cathode material of the tube, 
is first emitted. It does not yet occur when the potential is V*. We 
increase the potential to ; neither Kfi nor Ka is yet emitted. Rather, 
we have to increase the potential up to the excitation limit eV = AcK 
or beyond this value, and then we find that Ka, K)3, Ky appear 
simultaneously. This was confirmed experimentally by some careful 
experiments by Webster, f We follow E. Wagner in calling the 

difference between the wave-numbers K and Ka the Stokes transition 
{Sprung) for the line Ka and so link up with Barkla's term for the 
characteristic radiation, namely “ fluorescent radiationThe Stokes 

transition for K/J is smaller than that for Ka, and for Ky it is almost 
vanishingly small. Stokes' rule for visible fluorescence is confirmed 
almost without exception in the X-ray region. In the visible region 
where the conditions are simpler than in the X-ray region, apparent 

exceptions to Stokes' rule also occur occasionally. 
The circumstances that surround the excitation of the L-series 

are still more interesting. In Fig. 54 we exhibited the excitation 

limit for the lines a, y, . . . of the L-series. We shall give it the more 
accurate name Ln[-limit. Regarded as a wave-number it gives us 
the series limit for the lines aye£, that is 

Ljit > L£ > Ly > La > Lc. 

In Fig. 60 we drew the energy-level Ln lower than the energy- 
level Lju ; the lines fi8r]6 that end in this level are harder than the 
doublet lines ayc£ assigned to them. To excite them it is necessary 
to raise an electron from the level Lji to the surface of the atom. The 
energy required for this is greater than that required for the Lm-level. 
The wave-number Ln defined by the Ay-relationship becomes the series 
limit for the second doublet lines : 

Ln > L8 > L8 > L/J >> Lrj. 

* To be calculated from the excitation energy by dividing it by he (cf. Note 1 
on p. 205). 

| Phys. Rev., 7, 599 (1916). 
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Thus wo have a doublet of excitation limit# for the 1 A-Hvric.it. The asser¬ 
tion that the interval Ln Lm between these excitation limits for 
every element is equal to the L-doublet Aiq, studied in the preceding 

section will shortly receive support from direct measurements. 
We again infer : to excite the line La it is not sufficient to apply 

the cathode ray energy equivalent to La ; rather, it is necessary to 
raise the potential to the value given by eV ~ AcAjh, and then all 
the lines a, y, €, £, . . . of the L-series appear simultaneously, but not 
the line /?, 8, 77, 0, . . . . To excite, the latter the. cathode ray energy 
must be increased to the second excitation limit. For energies between 
the first and the second excitation limit only the softer line of each 
L-doublet is produced. Precisely as in the K-series the excitation 
limit K coincides appreciably with the hardest K-line y, so in the 
L-series the limits Lm and Ln coincide appreciably with the lines 
£ and 0 of the hardest doublet. 

But there is still a third energy-level Li below Ln, in which the 

lines <fxf>', xx ■> W end. These lines do not yet occur when the second 
excitation limit has been exceeded.- The potential V has then to in¬ 
crease still further to a third excitation limit, given by the equation 
eV ~ ArLr. Only them does the L-series become fully developed. 
We then have 

Li "> Lijj > Li// Ly >■ Ly ’ > L</> > L<//. 

All these assertions have been fully confirmed by careful measure¬ 
ments performed by Webster and Clark,* and Hoyt,f for Pt and W. 
ln the case of W the three excitation limits are 

Lm-limii . . . . V — 10-2 kilo-volts. 
Ln-limit . . . . V -- 11*6 ,, 
Lj-limit . . . . V 12-0 ,, 

By adjusting the potential to values around these figures it was 
possible to observe the appearance or disappearance of these lines, 
and their changes of intensity, partly by photographic means and 
partly by the method of the ionisation chamber. Hoyt regards the 
allocation of the following lines to the three given limits as beyond 
dispute : 

Lm -limit ....... ea'ay^ 
Ln-limit ....... tj/SS 
Li-limit ....... 0 

But what happens at the excitation limits to the incident energy 
E of the cathode rays ? It is used to drive the K- or the L-electron 
to the periphery of the atom and hence becomes absorbed. On the 
other hand, what happens if we drive the electron out by means of 

* D. L. Webster and H. Clark, Froe. Nat. Acad., 3, 181 (1917) ; D. L. Webster, 
ibid., 6* 26 (1920). CL also the introductory paper by M. de Broglie, Joum. de 
Phys., 6, 161 (1916). 

t F. C. Hoyt, Proc. Nat. Acad., 6, 639 (1920). 
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primary X-rays ? Its hv becomes weakened by the same amount 
as the energy of the cathode rays. 

But this means : the excitation limits show themselves in the con¬ 
tinuous X-ray spectrum as absorption limits. 

We shall give an illustrative example. Let the primary Rontgen 
radiation be that of a tube of about 40 kilovolts tension, that is, it is 
to have a continuous spectrum which is to extend to wave-lengths of 
300 X-units (of. p. 41). Let the matter receiving the radiation be 
a silver leaf. In the case of Ag (of. Table 12, column second to end) 
the excitation voltage of the K-series is at the wave-length Ak ~ 485 
X-units. The softer portions of the incident spectrally resolved 
continuous spectrum A > Ak arc only slightly weakened as they 
undergo only a general absorption, which, moreover, decreases as 

the hardness increases. At 
A = Ar a strong selective 
absorption suddenly occurs. 
This persists also for A <; Ak 
up to the limit of the con¬ 
tinuous spectrum ; it gradu¬ 

ally becomes less, corre¬ 
sponding to the uniform 
decrease of the absorptive 

power with the increase of 
hardness. 

Fig. 02 exhibits those1 

conditions as they appear on 
a photographic plate placed 
directly behind the Ag-leaf .* 
At the left half of the upper 

band, for A > Ak, the ab¬ 
sorption is weak, that is the 
darkening of the plate is 
intense, and indeed the more 

intense the longer the wave-length, that is, it increases towards the 
left. At A — Ak the selective absorption of the silver in the leaf 
comes into action. On the right side of the band the photographic 

plate is thus strongly screened by the Ag-leaf. We have at first a 
region of little darkening and then, as the hardness of the rays in¬ 
creases, a slow increase of the darkening, corresponding to a slow in¬ 

crease in the transparency of the Ag-leaf. 
Similar results are found for the L-series. Let the matter through 

which the radiation is transmitted be, for example, a gold leaf. In 

* We here disregard altogether the specific action of silver in t he photographic 
layer, which partly reverses the action of the absorbing silver loaf. This action is 
illustrated in Fig. 63. 

Fie. 62. Absorption of continuous Rontgen 
light in a Ag-foil (below) and a Au-foil 
(below). The light which passes through 
the foil falls on a photographic plate, and 
t he upper bands in the figure ure dia¬ 
grammatic representations of the pictures 
so obtained. Relow them is shown the 
K-series of Ag and the L-series of Au. 
Strong selective absorption by the foil 
(small darkening of the plate by the light 
passing through) is exhibited at the ex¬ 
citation limits of the K- and L-series. 
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the case of An the three L-absorption or excitation limits Lx, Lu, Lm 

are at Al, = 861, ALir = 899, ALiii = 1038 X-units. 
Accordingly, a photographic plate which is placed behind the Au- 

leaf and of which the darkening is shown in Fig. 02 (lower half), exhibits 
intense darkening to the left of the first limit Lm ; immediately to the 
right of this it appears very bright, on account of the selective absorp¬ 
tion in the Au-leaf. The darkening increases slowly towards the light 
till it decreases suddenly at the second limit Lm though less suddenly 
than at the limit Lm ; at the third limit LT a third weak brightening 
follows. With increasing hardness the darkening beyond Lt increases 

continuously. 
Concerning Fig. 02, we have yet to remark that, towards the left 

in the upper part of the figure, the L-absorption limits, towards the 
right in the lower part of the figure the K-absorption limit, may be 
imagined to be added, but at a considerable distance away. 

After the schematic Fig. 02 we consider in Fig. 03 a spectrum 

Fig. 63.—'Rotating crystal photograph of tho Rdtitgon spectrum of a W anti- 
cathode (Ij-series, y, S) in which, tho continuous spectrum of the anti- 
cathode forms a background. Tho spectrum was partly screened by an 
A1 sheet 1*4 mm. thick (upper part of the figure). Tho Br-Ag layer of the 
photographic x>late shows strong selective absorption of the Rontgen light : 
the first order K-lirnit of Ag is shown on the left and the second order on tho 
right, the Br K-limit being in the middle. The Br limit is completely 
extinguished by the A1 sheet, but not so the Ag limit. 

that was photographed by K. Wagner * and J. Brentano, of a tungsten 
anticathode ; in the lower part no absorbing layer was interposed, 
whereas in the upper part the radiation had been made to pass through 
an aluminium plate 1*4 mm. thick. The big spot on the left is the 
over-exposed point of intersection of the primary radiation with the 
photographic plate. A revolving crystal has spread out the wave¬ 
lengths in increasing order towards the right, that is, in the opposite 
direction to that in the schematic Fig. 62. At the right end of the 
lower part of the figure we see the comparatively soft L-lines of the 
tungsten anticathode marked out with extraordinary clearness on the 
weakly tinted background, which represents the continuous spectrum 
of the anticathode. The lines a and a' were too distant to be taken 

on the plate. The photographed lines are successively counted from 

* Ann. d. Phys., 46, 868 (1915). Of. also tho introductory papers by M. do 
Broglie, C.R., 167(1913); 158(1914). 
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right to left, <f>', /?, <f>, y, 8, y *> the three most intense lines y, and 8 
have been made recognisable as such in the margin. In the upper 
part of the figure the softer L-lines and, for the greater part, also 
the continuous background has been extinguished by absorption in 
the aluminium sheet. If we follow the continuous spectrum towards 
the left, in the lower part of the figure, we come across several striking 
sharply defined absorption edges that here (namely, in the scale of 
wave-lengths) extend towards the left with decreasing darkening. 
What do these absorption edges in the lower part of the figure denote, 
in view of the fact that no absorbing medium intervenes ? They are 
due to the photographic silver bromide, layer. The intense band on 
the left is the K-absorption edge of Ag and it is repeated in the weak 
band furthest to the right ; the extended band between these is the 
K-absorption band of Br. Corresponding to its position in the natural 
system (Br, Z •= 35 ; Ag, Z ~ 47) the Br-band is softer than the Ag- 
band. The former is entirely extinguished by the Al-sheet, whereas 
the latter is not absorbed either in the second order or in the first. Of 
course, actually, the Ag-band reflected in the second order has the 
same wave-length as that in the first order. This explains the circum¬ 
stance, which at first sight seems paradoxical, that the Br-band is 
weakened more in its passage through tin* absorbing A1 than the Ag- 
band of the second order, which, according to its position in the figure, 
seems softer, but which is in reality much harder. To conclude the 
description of this instructive figure we have now only to mention that 
the photographic darkening is dependent on the quantity of the ab¬ 
sorbed energy. That is why the plate becomes dark, particularly 
where the wave-lengths absorbed selectively by the Ag or the Br 
strike it. The AgBr layer acts simultaneously as an absorber and as 
an indication of the absorbed energy, and its increased absorption 
is indicated by increased darkening. A bolometric or an ionisation 
measurement of the radiation transmitted by the AgBr layer would, 
on the other hand, indicate increased absorption by exhibiting a 
lessening of the energy. 

The data concerning the absorption limits has been given for the 
K-series in Table 12 and for the L-serics in Table 16. 

The representation of the absorption edges in Table 16 by Roman 
numerals (I, II, III, ... in the order of increasing wave-lengths) was 

introduced by Bohr and Foster. In contrast to this in the earlier 
editions of this book a representation by means of double suffixes was 
recommended which gave the theoretical quantum meaning of the 
energy steps concerned. The relation between the two methods of 
notation is to be seen in Table 19. We have re-introduced the earlier 
notation because of the fact that the multiplicity of the edges does 
arise from the combination of twro quantum numbers (which wo 
nowadays denote by l and j, following the terminology of optical 
spectra). Moreover, the rational definition of j (in Rontgen spectra 
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as in all doublet spectra) is not integral but half-integral; 
and the rational normalisation of l is in the case of wave 
mechanics one unit smaller than in the older theories. We 
should, therefore, have to write L0 p2, L, 1/2, Lj 3/2 instead 
of Ln, L21, L22. This would be inconvenient, especially for 
the purpose of general term notation. We have conse¬ 
quently adopted the use of the suffixes I, II, III. . . . 

From Tables 12 we see that the K-limits lie hard by 
the line Ky, and, indeed, in accordance with Stokes’ law 
they are displaced a little towards the direction of shorter 
wave-lengths, by about k per cent., as I)uane and Stenstrom 
have proved for W by means of precision measurements.* 
The same remark follows from Table 16 with regard to the 
L-edges, and the lines L£, L0, and L^r. But Table 18 also 
shows that the absorption doublets of the L-series coincide, 
within the limits of error, with the emission doublets. The 

significance of this fact in the atomic model becomes 
particularly clear in the light of Fig. 60 : the absorption 
doublet is given as the difference in the energy-levels by 
the energy-step between the Lj- and the Ln-level, in the 
same way as the emission doublet is given as the energy 
drop in passing to the new energy-level. 

It is to be regarded as an outstanding achievement of 
the spectroscopy of X-rays that also the M-absorption 
limits have been fixed completely at least in the case of the 
heaviest elements. In the cases of U and Th, Stenstrom 
found three, and Coster five different limits, that is just as 
many as wre found it necessary to assume in the scheme of 
L-lines of emission to explain their existence. There seems 
no likelihood at the present time of showing the existence 
of the seven N-limits spectroscopically.f Even in the case 
of the absorption limits of the M-series the experimental 
difficulties arc extremely great: it is necessary to use a 
vacuum spectrograph and the absorbing metallic salts have 
to be used in exceedingly minute quantities, such as are 
taken up in solution by tissue paper. 

Hitherto we have dealt only with the position of the 
absorption limits. Concerning the amount of the absorption 
we mentioned merely its general decrease as the wave¬ 
length decreased and its sudden increase in passing the 
absorption edge. The amount of the absorption is measured 
numerically by the absorption coefficient p. This is defined 
by the statement that for homogeneous radiation the rela- 

* Proe. Nat. At3ad., 6, 477 (1920). 
f They have been observed by H. Robinson, Proe. Roy. Soc., 104, 

455 (1923), who used a refinement of the magnetic method. 
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tive decrease of intensity in the passage through a layer of depth d is 
er*d. From the absorption coefficient p, we pass on to the true absorp¬ 

tion coefficient p in which the loss due to the coefficient of scattering s 
((?f. Chap. I, p. 30) has been subtracted ; and from this again, if we 
divide it by the number of atoms per cubic centimeter, to the true 
absorption coefficient per atom, which we shall call pAl. In the following 
discussion we shall give the corresponding coefficient * for the gramme- 
atom, which becomes LpAl, where L is Loschmidt’s number, as this 
gives us a more convenient order of magnitude. According to very 
accurate measurements by Richtmeyer, Allen and others, which have 
been exhaustively discussed by B. Walter,f the following relation 
holds between LpAt and the wave-length A of the absorbed radiation 
and the atomic number Z of the absorbing element for the short wave 
side of the K absorption-limit (A expressed in ems.) : 

LpAt =- 136.10”* . Z4A3 for A < AK ; . . . (1) 

on the long wave side of the absorption edge hpAt depends on A in the 
same way, namely A3, but the Z exponent becomes modified : 

LpAt =-= 5-20.10 4 . Z4'8A3 for A > AK . . (2) 

The Z4-law in eqn. (1) was discovered by Bragg and Peirce.} 
We arrive at the expressions (1) and (2) if we plot the logarithms 

of the measured values of the absorption coefficients as ordinates 
and the logarithms of the wave-lengths or the atomic numbers as 
abscissae. The points thus obtained lie in segments of straight lines, 
from the position and slope of which we may determine the factors 
and exponentials of eqns. (1) and (2). The rather unprepossessing 
fractional form of the exponent 4-3 for A > Ak shows that we are 
here dealing with a purely empirical expression. 

In this way we get for the dependence of log p on log A the character¬ 
istic picture of Fig. 64. Suppose we arc dealing, for example, with 
Ag, at first in the vicinity of the K-absorption edge. Ak -- 485 X-units. 
If we start from the less hard rays (A > Ak, at the right end of the 
continuous line in the figure), log p decreases uniformly as log A de¬ 
creases, as far as A = Ak. At the latter point, on account of the ex¬ 
citation of the characteristic radiation of Ag, inert ased absorption 
begins ; the absorption coefficient suddenly jumps up, and, indeed, 
to a value seven times as great as that before the jump ; to this there 
corresponds in the logarithmic representation a jump of the amount 
log 7 — 0-84. After the jump the uniform decrease of the absorption 
recommences as the absorbed radiation increases in hardness ; the 

* The value pjp usually given denotes t.lie absorption per unit of mass, that 
is, per gramme. Hence our L/*4t becomes equal to Ap.jp, where A is the atomic 

weight. 
f Fortschritte auf dem Gebiete der Rontgenstrahlen, 35, 927 and 1308 (1927). 
t Phil. Mag., 28, 626 (1914). 
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logarithmic value of the decrease as before the jump being again deter¬ 
mined by the exponent 3 of A in equation (1). If, on the other hand 
we go towards the right into the dotted region (which is not corrobo¬ 
rated by measurements in the case of Ag), we arrive at the L-absorption 
limits. Our figure has been drawn with dotted lines here because 
it does not correctly depict the height of the sequence of lines in 

comparison with the K- 
ilog^ 
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Fig. 64.—The logarithm of the absorption no 
efficient /* of Rontgen radiation is a dis¬ 
continuous linear function of the logarithm 
of the wave-length A. Illustrated diagram- 
matieally for Ag. 

edge ; corresponding to 
the gap in the ^r-axis the 
sequence of lines for the 
L-edge should in reality 
be raised. The course is 
here similar to that for 
the K-ahsorption limit : 
there are sudden jumps, 
the graph having a parallel 
course before and after 
the jump. In the figure 
three such jumps, of de¬ 
creasing intensity, have 
absorption limits Lj, Ln, been inserted, corresponding to the three 

Litj. 

Concerning the rise of the absorption at the limit in question, it 
is not quite sharp and sudden as was previously believed and as it 
appears in Fig. fi4. Moreover, the limit often has a certain structure. 
Stenstrom showed this for the M-limits, G. Hertz for the L-limits, 
and Fricke for the K-limits of the lightest elements. Fig. (if) shows 
the K-limit of sulphur, according to H. Fricke,* 
as a photometric record of the darkening of the 
plate. The abscissae are wave-numbers (increasing 
towards the right). Great values of the ordinates 
denote good transmission, that is, little darkening 
of the plate measured photometrically and corre¬ 
sponding strong absorption in the absorption film 
placed in front of the plate. The photograph for 
the case of sulphur shows a precipitous but never¬ 
theless steady rise of the absorption between k 
and K. The distance k~K amounts to about 5 
X-units and is a measure, so to speak, of the 
breadth of the K-edge. But the two absorption maxima behind K, 
called A and B in the figure, are still more remarkable. (The small 
zig-zags are due to the granules of the photographic plate.) 

Kossel | accounts for the successive maxima as follows : The 
principal limit K corresponds to the energy which is necessary to 

Fig. 65.—Structure 
of a Rontgen ab¬ 
sorption edge (K 
for sulphur) ac¬ 
cording to Fricke. 

Phys. Rev., 16, 202 (1920). t Zeits. f. Physik, 1, 124 (1920). 
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transfer an electron from the K-shell into the first unoccupied orbit * 
of the atom ; the following maxima A, B belong to transitions of a 
K-electron to orbits of the atom that lie still further outside. The 
amounts of energy required for this are of course greater than the 
strongest limit denoted by K ; hence the maxima A, B, . . . lie on the 
side of the greater wave-numbers. From KosseFs view it follows 
that the distance of these maxima from one another and’from K, 
when measured in wave-numbers, should be of the order of magnitude 
of the Rydberg constant R, which is confirmed by the figure. Hence 

it follows, too, that the phenomenon of a band-structure can be 
observed only in the ease of very soft bands, and hence (for K- 
absorption) only in the case of the lightest elements. The successive 
maxima at the absorption edges in the region of harder rays come 
close together, when measured in wave-numbers. 

This brings us to the fundamental question : how is it that the 
visible spectral lines may be observed in emission and absorption 
but that the A-ray lines appear only in emission ? The reason for 
this, agaiti according to Kossel, is to be found in the contrast between 
the interior and the exterior of the atom. In the interior of the 
atom the shells are occupied by electrons ; the electron which is to 
be raised from the interior finds no place free, in accordance with 
Pauli's principle, and hence must be taken as far as the periphery of 
the atom or beyond. Hence in the X-ray region absorption lines 
appear only in association with absorption edges, in transitions that 
lead the electron beyond the periphery of the atom into the exterior 
of the atom which is unoccupied by electrons. In the visible region, 
on the other hand, the transitions occur generally between 'unoccupied 
quantum states in the exterior regions of the atom. The same line 
can occur in absorption and emission, according to the direction of 
the transition. 

Since the structure of the outer atomic shells depends on the 
chemical activity of the atom (or ion), R. Swinne f and W. Kossel J 

surmised as early as lfilfi that the position of edges depended on the 
valency state of the element. This dependence has since been found in 
many cases, particularly for the K-edges of the elements between 
Si 14 and Co 27 and for the L-edges of I, S11, SI. The behaviour 
of Cl and S is especially characteristic. According to Lindh, Ktelling 
and others they exhibit three different edges according as the com¬ 
pounds contain univalent, pcntavalent or heptavalent chlorine, or 

divalent, tetravalent or hexavalent sulphur. 
Not only in the case of absorption lines but also in the case of 

emission lines it has been possible to show a slight dependence on the 

* The fact that it is really the first unoccupied orbit that corresponds to the 
most rapid increase of absorption, is proved for certain L- and M-limits of heavy 
atoms very accurately bv A. Sandstrom, Zeits. f. Physik, 66, 784 (1930). 

f Phys. Zeits., 17, 487 (1916). { Verb. d. TX Phys. Cos., 18, 339 (1916). 
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nature of the chemical bond. For example, in the lighter elements 
a fine-structure of the K/Mine occurs, which varies with the nature of 
the bond, and also a displacement of the doublet Kota'. We see, then, 
that we must modify our remark on page 206 that the emission of 
X-rays is a purely atomic property. It is true, however, that this 
is due to a fineness of detail which manifests itself only when the 
measurements are extremely precise. 

Finally, we shall make a little digression into the region of medical 
JRontgen photographs. These are, as we know, whether received on a 
fluorescent screen or on the photographic plate, shadow pictures. They 
are thus concerned only with the transmissive or the absorptive power 
of the object through which the rays pass. The human body is essenti¬ 
ally composed of the elements H, C, N, 0, P, 0a (for which Z ~ 1, 6, 
7, 8, 15, 20). Now the atomic absorption increases, as we saw, 
approximately in proportion to the fourth power of the atomic number, 
and the absorption of a compound of a mixture or of an aqueous 
solution is composed of the additive absorptions of its constituents. 
Thus to know the absorption of bone-substance Ca3(P04)2, we have 
only to superpose the absorptions of (V P, and 0, whereby each is 
to be counted the number of times it occurs in the formula (thus, 
3, 2, and 8), and to find the relative absorption of the bones with 
respect to the surrounding tissues, we have to compare them with the 
absorptions of H20, which is easily the preponderant constituent 
of the tissues. In this way we get 

3.20M- 2.15< + 8.84 /5\4 0/15x4 0 
-2+84-31 2] 2{^) l‘ 8- 

As we see from this, the amount for 0a considerably outweighs even 
that for P ; the fluorescent screen counts, so to speak, only the 0a- 
atoms. But if a lead bullet (Pb, Z — 82) is lodged in the bone, its 
absorption exceeds that of the bone to an extraordinary degree. The 
excellent contrast effect produced by a solution of bismuth that has 
been introduced into the stomach or the intestine is due to this ; for 
its atomic number is 83. The concentration of the bismuth solution 
need not even be high ; on account of the ten times higher atomic 
number of bismuth compared with oxygen, a Bi-atom acts about as 
strongly as 10,000 O-atoms and 1 grm. of Bi acts about as strongly 
as 1 kilogrm. of water. The same explanation holds for the surprisingly 
strong absorptive action of iodine preparations that are photographed, 
for example, as iodoform in the bandages ; for iodine has the atomic 
number 53. 

But the dependence of the absorption on the wave-length and its 
jump at the absorption edge also comes into account for the medical 
use of Rbntgen rays. For it is on this fact that one of the commonest 
hardness-gauges, that of Wehnelt, and the associated Wehnelt scale 
is founded (or Benoist’s hardness-gauge, which is based on the same 
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principle). Its construction is familiar : an aluminium wedge is placed 
alongside a silver plate of uniform thickness. Wo read off that position 
of the aluminium wedge at which it absorbs jlist as strongly as the 
silver plate, so that equal brightness is caused in the fluorescent screen. 
Whereas Ag absorbs the harder rays for which A < 485 X-units rela¬ 
tively more than the softer rays (cf. Fig. 02), in the case of A1 we obtain 
no discontinuity in the absorption coefficient in the spectral region 
accessible to the technical X-ray tubes because even the K-edge of 
A1 lies at such soft wave-lengths that it does not come into question 
practically. Therefore, in the transition from soft to harder rays, the 
point of equal brightness moves along the scale in the direction of the 
thicker end of the Al-wedge, as then the Ag-absorption begins for a 
greater part of the mixed rays and so the same thickness of silver 
becomes equivalent to a greater thickness of the aluminium wedge. 

This may suffice to show that in the medical application of X-rays 
the more refined results of physical research, in particular those con¬ 
cerning the absorption laws, come into account. 

§ 7. General System of X-ray Spectra, Tables of Terms. Selection 
Rules. X-ray Spark Spectra. Relationships with the Periodic 
System. 

We discussed the excitation- and absorption-limits after the emission 
lines because this conforms with the historical order of development. 
From the point of view of system we might equally wrell have reversed 
the order. The energy conditions of the atom express themselves 
most clearly in the absorption limits. They represent directly the 
amounts of energy through the manifold combination of which the 
emission lines arise. 

The relationship between absorption limits and emission lines in 
the X-ray region is the same as that between the “ terms ” and the 
wave-numbers of the lines in the visible region. We repeat what has 
already been said on page 72 : the goal of spectroscopy is the atomic 
states and their energy-values. The observation of spectral lines is 
only a means of obtaining the values of the terms. Accordingly, in 
this section we first develop as complete as possible a Table of X-ray 

terms* 
We must first make a remark of fundamental importance. Hither¬ 

to we have spoken of the energy-steps on which the individual electron 
is situated before and after the emission or before and after the 
excitation. We shall now adopt a more correct point of view. In 

* This was done for the first time in the third German edition of the present 
volume, 1922, p. 630 ; a little later the tablo of Bohr and Coster, Zeits. f. Physik, 
12, 350 (1924), appeared which had boen supplemented by new data. For the 
present we find it best to take the term tablo of Lindh, loc. cit., pp. 228-231, which 
has been further supplemented. 



Tablk 

Terms of the X-ray spectra 

z K L, 1*ii | Nil M, Mu | miti MJV j »v 

12 Mg 95-8 _ 1*5 _ 
13 A1 114*7 5-2 — 

lf> P 157-8 ..... 9-9 — 0-8 — 

16 S 181*9 — 11-8 — 0*3 — 

17 Cl 207-8 — 14*8 14*7 — 0-4 — 

19 K 265-6 21-4 21-2 — 0-9 — 

20 Ca 297*4 25*9 25-6 — 2*0 — 

21 St* 331*2 30-3 30-0 — 2*7 — 

22 Ti 365*8 32*6 32*2 2-2 — 

23 V 402-7 38-2 37*6 — 2-6 — 

24 Cr 441-2 43*1 42*4 1*6 0-1 
25 Mn 481-8 — 48*2 4 7*3 - 1*7 0*3 
26 Fe 524-0 53-4 52-4 7*1 4-2 0-6 
27 Co 568-2 59-0 57*8 7*7 4*7 0-7 
28 Ni 614-1 — 64-7 63*4 8*3 V4 0*7 
29 Cu 661-6 — 70-3 68*8 8-8 >•7 0*4 
30 Z n 711-7 — 771 75 4 10*1 6*8 0*9 
33 As 874*0 100*0 97*4 14*9 10*4 30 
34 Se 932*0 — 108-4 105*4 16*7 11-6 3*8 
35 Br 992*6 117*7 114*3 19*0 13-5 5-2 
37 Rb 1 11 9*4 152*1 137-1 132-7 23*6 18*1 17*5 * 7*9 
38 Sr 1 186*0 163-5 147-6 142*6 26*2 20*8 20*0 9-5 
40 Zr 1325*7 187-0 170-0 163-8 31*8 25*8 24*8 13-4 
41 Mb 1398-5 199*2 181*6 174*6 34 5 28 3 27 1 15*2 15 0 

42 Mo 1473 4 212*1 193*7 185*9 37*6 31-4 29*8 17*2 17*0 
45 Rb 1709*6 251*5 231*2 220*7 45*6 38-5 36*6 22*4 22*1 
46 Pd 1794*0 267-1 245 7 234 1 49*7 42*9 40*7 25*4 25-0 

47 Ag 1879*7 282*0 260*1 247*2 53-4 46*0 43-6 27*8 27*4 
48 Cti 1967*6 296-9 274*7 260*6 57*0 48*8 46 l 30*3 29-8 
49 In 2057*2 312 0 289*3 274-0 60-1 51 8 48*8 32*4 31-9 
50 Sn 329*4 306-3 289*5 65 3 56 2 53 1 36-5 35-9 
51 Sb 2241-7 346* 1 323-6 305*3 70*4 60*0 56*4 40*4 39-7 
52 Te 2345-0 364 1 340*3 320*1 74-5 64*4 60*5 43*2 42-4 
53 1 2448-3 382*6 357*6 336*0 79*2 69* 1 64*8 46-8 45-9 
55 Cs 2649-1 421-8 394*9 369*3 89*8 79*3 74*4 54-6 53-6 
56 Ba 2756-4 441-9 414*3 386*7 95 4 84*6 79*0 58*8 57*6 
57 La — 462-9 434*2 404*4 100*7 90*0 84*0 62*9 01-7 
58 Ce 2972-2 483*3 454-1 421-9 106-2 94*6 88*1 66-7 65-4 
59 Pr 3093-3 504-3 474*6 439*6 111*6 99*3 92*4 70-3 68-9 
60 Nd 3214*2 526-2 495*5 457*8 116-5 104*8 96*8 74-2 72-5 
62 Sin 3457-0 571-2 538-9 495*0 127*1 114*7 105*8 81-9 79-9 
63 Eu 3583*4 594 3 561-5 514*4 133*1 120*2 110*3 86*0 83-8 
64 (Id 3711*9 618-2 584*6 533*9 139*0 125*5 115-0 90-0 87-7 
65 Tb 642*6 608*3 553-9 145-0 131-0 119*6 94 2 91*6 
66 Dv 3972*5 667-7 632*2 574*2 151*2 136*9 124*5 98-5 95-8 
67 Ho 4115-9 693-2 657*1 594*7 157*1 142*7 129-3 102-7 99-8 
68 Er — 719*6 682*6 615-9 163*6 148*8 J 34*7 107-2 104-0 
69 Tu 746*8 708*8 637*3 170*3 155-5 140-2 111-7 108-4 
70 Yb — 774*6 735-4 659*2 177-1 162-2 145-8 116-4 112-8 
71 Lu — 802*6 762*9 681-2 183*8 168*6 150-9 120-9 117-2 
72 Hf - - 832-0 791-3 704*5 191-8 175-9 156-9 126-6 122-6 
73 Ta — 862*2 820*8 728*0 199-5 183*2 162-9 132-2 127-8 
74 W 5113-8 893-0 850*6 752-1 208*1 191*3 169-8 138-3 133-7 
78 Pt 5764-0 1026-8 978*7 852-0 243*4 227-3 198-0 162-3 156-4 
79 Au 5940-4 1060-2 1014-4 878-5 252-9 235-1 202-8 169-3 163-0 
80 Hg 6115-9 1094-6 1048-6 906-1 — — — — — 

81 T1 . 6289-0 1132-4 1084-2 933-2 273-9 253-8 219*2 184-0 176*8 
82 Pb 6463-0 1169-3 1121*9 960-5 283-8 262-3 226-0 190-5 183-0 
83 Bi 6646*7 1207-9 1159-4 990-0 295-9 273-6 234-0 199-4 191-4 
90 Th 8073*5 1509-7 1451-5 1200*6 381*6 354-4 298-0 256-6 244-9 
92 U 8477-0 1603-5 1543-1 1264*3 408-9 382-1 317*2 274-0 261*0 
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in Rydberg frequency units 

\ *Z1« Niv v 
* VI NV,I <>, °n °m °iv- <>v Z 

_ _ . _ _ ... _ .. 12 Mg 
~ _ — — — 13 A1 

— — — — — 15 V 

_ _ _ _ __ _ _ it .... _ Id r> 
17 Cl 

— — — — — — — 19 K 
— -- — —- — 20 Ca 

— — _. — 21 Sc 
-- — - — _ _ _ 22 Ti 

— 23 V 
— - — — — — 24 Cr 
— — — — - ;} — — 25 Mn 

— — .... 26 Fe 
— — - - — — 27 Co 

— — — — — — —- 28 Ni 
— — — — - — — 29 Cu 

— — - -- : ^ . 30 Zn 
- 0-2 - — — — ... 33 As 
— — 0-2 — • - -- — — -— 34 Se 

0-2 ...... — 35 Br 
1-9 0-9 1-1 — — —- — — 37 Kb 
2-5 10 13 — — — - - — 38 Sr 
3-7 2-6 1-9 0-4 0-3 — 10 Zv 
4 1 2-9 2-0 0-2 0-2 — — — 41 Nb 
4-6 3-2 2-9 0-3 0-3 - — — 42 Mo 
5- 3 3-7 3-5 — - — — 45 Rh 
0-7 5-3 5-0 0-5 0 5 — - - 46 P<1 
7-3 5-8 4-9 0-8 0-5 — — — 47 Ag 
80 5-9 5 3 0-9 0-7 — - ~ 48 CM 
8-2 r»-r> 5 2 0-5 0-4 — — — — 49 In 

10-2 7 ■1 I 2-0 19 0-2 0-6 — 50 Sri 
12*1 7' • 2 3-3 3-2 - 0-8 0-1 51 Sb 
12-7 8-9 3-6 3-2 — — 0-5 — 52 Te 
14-0 9-4 4 1 41 — 0-7 53 I 
J 7*1 J 3-6 J 2-6 5-9 5-7 1-9 1-7 55 Ca 
18-8 14-9 14-0 6-9 6-9 . 3-1 2-0 — 56 Ba 
20-5 16-5 15-4 7-8 7-8 3-0 2-3 — | 57 I-a 
21*7 1 7-4 16-2 8-4 8-5 — 3-2 2-5 58 CV 
22-7 18-3 16-9 8-9 8-7 

! 
3-1 2-3 - ! 59 Pr 

23-7 19-2 17-8 9-2 9-2 — 3-1 2-7 — 60 Nd 
25-9 20-9 19-5 10-0 9-8 — 3-1 2-8 — 62 Sm 
27-2 22-6 20-4 10-7 10-4 -- — 3-6 2-9 — 63 Ku 
28*6 23-0 21*0 11-0 10-8 — —f 4-0 3*3 — 64 Gd 
29-4 24-3 22-0 11-4 11-1 — 3-5 2-6 65 Tb 
31-0 26-1 23-2 12*2 11-6 0-8 — 3*1 3-2 — 66 Dv 
31-8 26-9 23-8 12-8 12-0 0-8 0-2 2-7 — 67 Ho 
33-1 28-4 24-9 13-7 12-6 0-9 0-3 3-9 3-9 _ . 68 Er 
34-4 30-0 26-6 14-5 13-2 0*9 0-4 3-8 — 69 Tu 
30-2 31-0 27-5 14-9 14-2 0-9 0-6 — 3-6 — 70 Yb 
36-9 32 5 28-7 16-1 14-7 1-0 0-7 4-2 4-0 — 71 Lu 
400 34-0 29-8 16-8 16-0 1-6 1-4 4-8 4-3 72 Hf 
4] *2 35-3 30-9 17-8 16-6 2-2 1-9 4-7 4-4 — 73 Ta 
44-1 38-0 33-0 18-8 18-4 2-9 2-8 5-7 5-2 — 74 W 
52-5 48-7 42-3 24-5 23-2 5- 2 7-1 8-6 0-4 78 Pt 
58*0 49-1 42-8 26-4 25-0 6-4 7-8 8-3 0-8 79 Au 
— — — — — — — — — .— 80 Hg 

63-7 53-6 44-9 30-6 29-0 10-0 9*6 10-6 7-4 17 81 Tl 

660 55-4 49-3 32-2 30-5 10-8 10-3 10-3 6-4 0-8 82 Pb 
71-0 58-7 50-3 35-7 33-7 13-6 13-0 — 11-0 2-0 83 Bi 
97-8 — — 51-2 48-7 24-8 24-1 — — 5-7 90 Th 

106-6 95-7 77-1 56-3 53-6 28-4 27-6 26-2 15*1 5-8 92 U 
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the inter-changes of energy it is not the individual electron tad the whole 

atom that is involved. Every process of excitation means an addition 
of energy to the atom owing to the work of ionisation, whole or part, 
that is done. The energy of the ionised atom is greater than that of 
the neutral atom, the more so the more tightly the ejected electron 
was bound. If we agree to set the energy of the neutral atom equal to 
zero, the energy of the ionised atom becomes equal to h times the 
vibration number of the absorption edge in question. The associated 
wave-number, that is the “ Rbntgen or X-ray term ” corresponding 
to the absorption edge, thus measures the energy-content of the atom 
in a definite state of ionisation, compared with the energy of the 
neutral atom. 

Every assertion about the origin of an emission line contains a 
perfectly definite numerical statement about a relationship between 
the wave-number of an emission line and two absorption edges. If, 
for example, we describe the origin of Ka by the symbol Lni->K, 
we imply that the following equation between the wave-number v of 
Ka and the wave-numbers of the limits K and Lm is exactly fulfilled : 

r-K-Lm . (1) 

From our present point of view this equation signifies the following 
state of affairs. First the atom is ionised in the K-shell. If the 

electron passes from the Lm-shell to the K-shell with the emission of 
Ka, an electron in the Lm-shell is wanting in the atom in its final 
state. Thus the energy-content of the atom in the final state is the 

same as if the atom had been primarily ionised in the Lm-shell. Thus 
eqn. (I) expresses an energy relationship between the wave-number 
of Ka and the energy-coiltents (terms) of two atomic states. 

We are fully convinced that all such relationships demanded by 

the theory hold absolutely rigorously. Empirical confirmation can 
of course be obtained only in those special cases where, besides the 
emission lines, also the absorption edges have been measured with 
sufficient accuracy. The precision measurement of the edges is re¬ 
stricted by their fine-structure. According to the maximum to which 
one adjusts, different values of the wave-number are obtained. An 
exact test for the L-series has been undertaken by Coster * for the 
elements Bi, Th, U, for which besides the L-edges also the M-edges 
are accessible. 

In setting up the table of terms our procedure is to postulate 
that all the relationships between lines and edges, which the theory 
(cf., for example, the column with the heading “ origin ” in our Tables 
11 and 14) demands, hold quite accurately, and that inaccurately 

measured edges are corrected in this sense and new ones become added 
if, as in the case of the N-edges, they are too soft to be measured. 

* Zeits. f. Physik, 6, 195 (1921). 
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I11 contrast with the visible spectra, for which the 1111111 her of series 
terms is immeasurably great, we have the advantage in the ease of the 
X-ray spectra that the mini her of the terms is small and the complete 
list of terms of all the elements does not occupy much more than two 
pages. For there are only 1 { 3 f 5 + 7 + 5 f 3 — 24 limits, of 
which, moreover, a fair number are wanting in the case of the lighter 
elements ; thus the number of term magnitudes for all the 92 elements 
taken together is less than 24.92. These term magnitudes arc1, fixed 
characteristics of the atom. 

To accompany the tabular survey of 'Table 20 we add the graphs 
of Fig. 66. We have drawn this figure in the same way as the earlier 
figures of this chapter, in which the K-level was placed at the bottom. 
We might also have followed Bohr and Coster in choosing the reversed 
position, since according to the beginning of this section the energy 
of the whole atom is greatest when the K-shell is ionised and since it 
decreases, for example, when during the emission of Ka the K-shell 
becomes filled and the L-shell is left ionised. In such a method of 
representation the energy-levels would represent the positive energies 
of the whole atom. In our method of representation they denote 
negative energies. The double arrows drawn in the figure are to 
indicate that, on the one hand, we may consider the energy of the 
whole atom, in which case the arrow is to be taken in the upward 
direction, or, on the other hand, we may localise the process in the chief 
carrier in the transformation of energy and from this point of view the 
arrow must be taken in the downward direction. 

The figure is to be regarded purely diagram matically. For example, 
within each shell the levels are drawn equi-distant, whereas in reality 
the level-differences are very different. Likewise the decrease due 
to transitions to the external shells is much more marked in reality 
than as shown in the figure. In cases where, such as in the M- and 
the N-shell, the arrows occur without letters, the lines in question are 
to be expected theoretically but have partly not been found and partly 
not been provided by us with special symbols. Several of the line- 
symbols added in the figure (for example, /3', y' in the K-series, ckA/x 
in the L-series) are sufficiently defined through the scheme of levels 
itself. 

This scheme is supported by a great series of combination-relations 
between the emission lines. Fig. 60, which depicts such relations is 
actually only a section of our now more comprehensive figure. Here 
we shall touch only on those combination-relations which have played 
a particular part in setting up the scheme as a whole. 

The K/S-line comes into question in the first place. According to 
the original Kossel relations the following relation should actually 
hold in wave-numbers (see eqn. (2) at the end of § 3) : 

- Ka + La 

VOL. I.—16 

. (2) 



Chapter IV. X-ray Spectra 

The author endeavoured to establish in 191b * whether the 
equation holds exactly in this form and found that it did not. 

We actually obtain from the precise explanation of the lines in 
question in Fig. 60 

P-K-Mm, Ka-K-Lm, La - Lm - Mv, 

that the correct form of the relation (2) is 

Kp =- Ka + La + (Mv - Mln) . . (3) 

Secondly, we must name two relations which led Smekal f to 
allocate the lines L</> and L(f>' correctly : 

Kp = Ka + L<j> |- (Lr — Lm) ... 
Kp - KP' - L<f> ~ 14' i ‘ * K) 

The line KP' — Mu-> K which occurs here (see our scheme of 
levels) is a weaker satellite of Kp which has, however, been found 
only in the case of a fewr elements ; in the case of Rh it was first 
observed by de Broglie .J 

By comparing the results with the measurements of the M- 
edges Coster || then established the interpretation of the L- M- 
combinations by showing that the following relations hold between 
the L-lines and the M-edges : 

L(f> — L(/>' — Mjt — Mm) 

Loc - Le M, - Mv i ' ' ' tJJ 

Almost more convincing than these numerical details the 
regular structure of the whole scheme of levels itself furnishes the 
best evidence for its logical conception. To make this clear we 
must introduce two terms, for the introduction of which we 
shall not give the reason until we arrive at Chapter V, namely : 
“ regular or relativistic doublets ” and “ irregular or screening 
doublets.” 

We have already learned at the end of § 5 the characteristic 
way in which the difference in the edges Lu —* Lm (the L-doublet 
there investigated) depends on the atomic number Z ; this 
dependence is explained by the theory of relativity and re¬ 
presents the type of the regular doublet. In addition we have 
in the L-series the edge-difference Li — Lu, which exhibits a 
different but no less characteristic dependence on Z, which has 
been elucidated by G. Hertz (cf. Chap. V, § 5). This depend- 

♦ Ann. d. Phys., 51, 12f> (1916). Remark at the end. 
f Zeits. f. Pliysik, 5, 91 (1921). This paper and the paper by Coster 

mentioned just below were of fundamental importance for setting up the 
scheme of levels. They prove that the L-shell is subdivided three times, 
and the M-shell five times. 

I Comptes Rendus, 170, 1053, 1245 (1920). 
|| Zeits. f. Physik, 5, 139 (1921). 
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ence points to a difference in the “ screening constants ” and re¬ 
presents the type of the irregular doublet. 

But these two types do not only present themselves in the L-shell 
but also in all the subsequent shells, and, in fact, in regular alternation 
as shown in the above scheme. 

The brackets over the symbols denote regular doublets, those under 
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the symbols irregular doublets ; both are characterised by a definite 
analytical law as a function of the atomic number. 

We have now to show howr the energy-levels characterised in this 
way combine with each other. To accomplish this we must assign 
“ quantum numbers ” to them. We do this in the manner found to 
be expedient when dealing with the analogously constructed doublet- 
spectra of the alkalies. For we distinguish between three quantum 

numbers : 

n, l, j. 

1. The principal quantum number n increases step by step, as we 
know from §§ 4 and 5 of the preceding chapter, in the successive shells : 
for we have 

n r~ 1 2 3 4 5 (> 

in the K- L- M- N- 0- P- shell. 

This quantum number is not restricted by a selection principle.* 
2. The azimuthal quantum number / assumes the values 

/ - 0, 1, 2, . . . // 1 . . . . (6) 

within each shell, if it is fully developed. The allocation of these 
numbers to the sub-divisions of the shells (Unterschalen) may be seen 
from the following scheme : 

1 - 0 K, Li. Mi, Ni 
l - 1 Ln + Ljn, Mn Mm, N,i + Nm 
l -- 2 Miv 4- Mv, Niv ) Nv 
l - 3 Nvi ! Nvii 

The following selection rule holds : 

AZ = - 1, or A/- + 1. . . . (7) 

3. The introduction of the inner ” quantum number j is rendered 
necessary by the electron spin (cf. p. 153). In every shell we have 
to ascribe to it the values : 

3 = l± i 
f minimum value j ~ 4 ) 
\ maximum value j = n — JJ (») 

* It has occasionally been conjectured that a special decree exists which 
forbids transitions within one and the same shell, that is, for An — 0 ; the 
ground given is as follows : Coster [Phil. Mag., 43, 1070 (1922), Part 2, § 10] has 
looked in vain for the line Lj-Lm, which would in the case of tungsten lie in 
the region of the M-series, and would not contradict the other selection principles. 
Cf. also Hjalmar, Zeits. f. Physik, 15, 65 (1923), in particular p. 89. But the 
absence of such lines can be accounted for without a special decree on the ground 
that their transition-probabilities are very small. Cf. Pauling and Goudsmit, 
“ Structure of Line Spectra,” McGraw-Hill, New York, 1930, pp. 178, 179. 
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The allocation to the sub-divisions of the sheila is seen in the following 

schemes ; 

j — I K, Li 4* Luj Mi 4 Mji, Ni 4 Xu . . . 

j i! Lni, Min 4* Mjv, Nm Niv . . . 
j — 5 My Nv 4- Nvi . . . 
j — I Nvn . . . 

The selection rule in this case is 

A j - - 1, A j 0 or Aj f 1. . . (9) 

In Fig. bb the energy-levels are shown with their corresponding 
/-arid y-values. By combining our rules (7) and (0) we obtain all lines 
drawn in Fig. bb and only these lines. This was shown simultaneously 
by Wentzel * and Coster.| 

Not only is it possible to predict the occurrence of lines but also 
their intensify generally. For this purpose we supplement our selection 
rules so as to have qualitative intensity rules. Although, like the 
former, the latter appear at present as empirical postulates, this does 
not reduce their regulative power. To give a theoretical basis for them 
would require extensive calculations of a preliminary kind and would 
lead us into Dirac’s theory of the spinning electron. 

We postulate : those transitions are strong in which 1 and j change, 
in the same sen.se ; the transitions are the weaker, the more the change 

in direction of 1 and j is different. To this we must add : a transition 
in the decreasing sense / —v l — 1 is, ceteris paribus, stronger than a 

transition in the increasing sense 7 / | 1. We shall find that the 
same rule holds in the case of multiplet spectra in the visible' region 
(Chap. VIII) as a qualitative intensity rule, and moreover in their 
case the rule will first find its full application, for in X-ray spectra 
(and doublet spectra in general) the case of oppositely directed transi¬ 

tions (wngleichsinnige Ubergange), for example, AZ =-= — 1, Aj — f' 1, 
does not occur at all, because it would lead to a final state in 
which j — l would be two units greater than in the initial state. 
But this is forbidden since the difference between j and /, by (8) must 
always amount to 4 J. Consequently, in the case of X-ray spectra 
we have in addition to the strong similarly directed transitions only 
such weak transitions as have Aj -- 0. 

The application to the K-series is very simple : here the strong 
lines, oc, y belong to the transitions Al ~ Aj = — 1, the weaker 
satellites, a\ j8', y' (which are half as strong) belong to the transitions 

Al = - 1, Aj = 0. 
The conditions become more manifold in the case of the L-series. 

* Zeits. f. Phys.. 6, 84 (1921). 
t Ibid., 6, 185 (1921). The scheme suggested by Coster deviates only in 

formal respects from that of Wentzel in that Coster originally endeavoured to do 
with only one quantum number (l or k) ; later Coster and Bohr also decided to 
introduce the second quantum number (our present j). 
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The strongest transitions M -> L, namely La and belong to Al = Aj 
~~ — 1 (cL Fig. 66) ; likewise the strongest transitions N L, namely 
Ly and LS. The weaker satellites a', yf correspond to the transition 
Al ~ — I, Aj = 0, whereas ft and S can have no such satellites, in 
accordance with the relationship just mentioned between j and l. 
Let us now consider the pair e, Mi Lm, and y, Mi Ln. In the 
case of € we have Al — + 1, Aj ~ -| 1, in the case of y we have Al = 
+ 1, Aj = 0. Hence e is stronger than (about twice as strong as) 
y. The fact that this pair, taken absolutely, is much weaker than, for 
example, the pair a, is to be explained by the circumstance that e, y 
belong to Al = + 1 (increasing sense) whereas a, /3 belong to Al ~ — 1 
(decreasing sense). The same as holds for e, y also holds for the still 
weaker pairs of lines ?*, A/a (ef. Fig. 06) ; the same as holds for a, 

also holds for xx' *tnd so forth (Al' — — I, A j — — 1 for <f>, x • • • ; 
Al = - 1, Aj 0 for <f>\ x\ . . .). The same selection and intensity 
rules hold for the M- and N-series, but we shall not enter into them 
here. 

Our selection rules are not absolutely binding ; but wherever an 
exception appears to occur, the line in question proves to be particularly 
weak, so that it can be photographed only after a very long exposure ; 
in Fig. 66 such lines were not included, nor in our Tables 12 and 16, 
pages 210 and 218, and so forth. These exceptions include the interest¬ 
ing line * Li K, which has been separated by Duane and Stenstrom 
in the third and fourth order from the closely adjacent line Ka' ----- Ln 
-> K by the ionisation method in the case of tungsten. For the transi¬ 
tion Li —> K we have Al ----- 0, which contradicts the rule of selection 
(7). Occasionally there are also transitions Al — 2, which are 
characterised by going preferably with the transition Aj — 2, than 
with Aj — 1. I he fact that the selection rules break down in strong 
external fields is analogous to what happens in the visible region 
(cf. Chap. VI). It suggests itself to us that in the case of the X-ray 
spectra, too, the occurrence of forbidden lines is to be traced back to 
the action of strong internal atomic fields. We might even be led to 
conjecture that it is possible quite generally to obtain signs of otherwise 
forbidden lines by making the exposures long enough. 

But there are also lines which refuse to be fitted into the diagram 
of levels altogether. They generally occur as satellites of strong lines, 
mostly on the hard, but sometimes also on the soft side. We quote 
as an example in the K-series of the lightest elements the line a3, a4, 
discovered by vSiegbahn and Stenstrom in 1916, which is weak com¬ 
pared with Ka but intense compared with the other satellites ; also 
the satellites a5, a(J, shown to exist by Hjalmar in 1920, for which the 
inequalities hold : 

Ka < aa < a4 < a6 < a6. 

* Contrary to this interpretation, Wentzel regards this line as a “ spark line ” 
(see below). Wentzel, Zeits. f. Physik, 31, 451 (1925). 
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The K/J-line also has short-wave satellites. In the L-series we know 
of both short- and long-wave satellites, the latter occurring in elements 
for which the initial level of the principal line is incompletely developed 
(Coster and Druyvcsteyn *). 

Weritzel j* has proposed a remarkable theory for the short-wave 
satellites, which was described in some detail in the fourth German 
edition of the present volume. This theory interpreted the satellites 
in question as “ spark spectra of the X-ray spectrum." As remarked 
in Chapter II, § 2, we take spark lines in the optical spectrum to stand 

for lines emitted by the ionised atoms. To excite ordinary X-ray 
lines single ionisation is already necessary ; to excite the “ spark 
lines ” of the X-ray spectrum Wentzel considers that double or multiple 
ionisation is necessary. 

It was possible to confirm this theory in several points in the case 
of the short-wave satellites of the K-scries.J but some objections have 
also manifested themselves. The double or multiple ionisation of an 
atom is a process which is improbable in itself. The excitation poten¬ 
tial necessary to effect it is considerably higher than that required for 
single ionisation. It has, indeed, been shown experimentally that 
the short-wave satellites actually appear at first at higher potentials 
than the principal lines, but the potentials are not in general as high 
as is to be expected from Wentzel's theory. The interpretation also 
becomes considerably more complicated for another reason which 
Wentzel || himself first recognised : whereas the ordinary X-ray 
spectra have a doublet character the X-ray spark spectra should have 
singulet or triplet structure or in the case of higher ionisation, multiple 
structure in general. The excitation limits which are then to be 
decisive for the emission of X-ray spark lines not only become different 
from the ordinary or “ arc *' lines but also far more numerous. The 
number of possible combinations increases correspondingly. Wentzel 
expects no fewer than twenty-four lines in the case of double ionisa¬ 
tion, whether of the K- or L-shell or in the case of simultaneous ionisa¬ 
tion of the K- and L-shell *[1 (K2- L2- or KL-terms : formerly only two 
such combinations were enumerated, which were allocated to the 
lines a3 and at). 

A view which differs from that of Wentzel has been proposed 
and supported by Richtmyer.** He, too, assumes as a condition for 
the appearance of satellites a double ionisation, the one occurring in 

* Zeits. f. Physik, 40, 765 (1927). 
t Ann. d. Phys., 60, 437 (1921) ; 73, 647 (1923). 
J T. Wetterblad, Zeits. f. Physik, 42, 611 (1927). The particular point in¬ 

volved is the equality of the wave-number difference afi — a„ of an element with 
the wave-number difference oc3 — a, of the next successive element. 

|| Zeits. f, Physik, 31, 445 (1925) ; 34, 730 (1925). 
M. J. Druyvesteyn, Dissertation, (Ironingen, 1928 (“ Das Hontgen-spektrum 

zwoiter Art ”) confirms Wentzel’s views in t he main. 
** K. F. Richtmyer, Phil. Mag., 6, 64 (1928) ; and Phys. Rev., 34, 574 (1929). 
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an inner shell, the other in an outer shell, the latter being produced, 
say, by an electron ejected from the inner shell with an excess of 
velocity. In the case of the K- or L-satellites the inner shell would 
be the K- or L- shell respectively, the outer the M- or N-shell respec¬ 
tively. The satellite is supposed to arise through a double transition 
(Doppelsprung) in that both gaps are filled up by an electron in each 
case from a shell lying further outside, in which process the hv s of 
these two transitions become added to the hv of the emitted satellite. 
Such double transitions are known to occur in the visible spectrum, 
in fact lead to particularly characteristic and strong groups of lines 
(for example, the pp '-lines of the doublet- and triplet-spectra, cf. 
Chap. VLI, § 7). A kind of Moseley’s law holds for the difference 
Ar between the wave-number of the satellites and that of its “ parent 
line ’’ (that is, the “ diagram line ’’ which corresponds to the filling 

of the inner shell alone) : for we have that \/A v ™ a linear function of 
the atomic number. This law has been well confirmed experimentally 
by Richtmyer for the short-wave satellites of Ka, as well as for those 
of La, L/l, Ly, in particular in the ease of those elements whose M- 
or N-shell is incomplete, that is, where the external gap above demanded 

is present of itself. The difficulty of the high excitation potential 
mentioned above as necessary for Wentzel’s explanation becomes 
superfluous in Richtmyer’s * theory : the excitation-potential need be 
but little greater than that of the parent-line (experimentally it was 
between 20 per cent, and 30 per cent.). 

We now return to the true diagram lines and consider their presence 
or absence in connection with the theory of the periodic system. 

We have pointed out repeatedly that the number of sub-divisions 
of the levels increases as far as the N-shell and then again decreases. 

If it were to increase still further, thus, if the O-shell were to be nine¬ 
fold instead of five-fold, more lines would have to occur in the M-series, 
according to the selection rules, than have actually been observed. 
This may be regarded as a first test of Bohr’s theory of the periodic 

system. 
We shall now look for further signs of this theory in the whole 

region of X-ray spectra. They will emerge, to speak quite generally, 
from the circumstance that certain lines decrease in intensity, when 
we pass from the heavier to the lighter elements, in proportion as the 
quantum state of the initial level is no longer realised by the atomic 
structure. 

Let us first consider the levels Pn and Put ; they drop out between 
U 92 and T1 81. Actually the line Pm -> Ni has been observed not 
only for U 92, Th 90, but also for Bi 83 ; the transitions Pm -> Mi, 
Pm -> My are so far known only for U 92 and Th 90. It is remark- 

*In the meantime the theory has received considerable support from the 
exact investigation of the line CuKa3, cf. J. W. M. Du Mond and A. Hoyt, Phys. 
Rev., 36, 799 (1930). 
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able that in the L-series certain lines suddenly appear between Ho 67 
and Oe 58 which must be allocated to the transitions Pm ni -> Lj. 
According to our Table 9, page 163, we have that in the case of these 
elements only the Pi-shell is occupied by two electrons (at most). 
Thus the lines just mentioned correspond to transitions to Li from 
energy-levels not yet occupied (virtual). At any rate no lines starting 
from the P-levels have been observed in the case of elements which, 
according to our view, have no electrons at all in the P-shell. We 
shall get to know two examples of combinations with unoccupied levels, 
but in each case they are levels which belong to shells in which at 
least one electron is present. 

The next energy-level that fades away in the periodic system is 
()iv or Ov. Whereas, according to Table 9, in the case of Pb 78 this 
level is occupied by eight electrons, in the case of Hf 72 it is occupied 
only by 2 and after that only by one electron. In the same region 
of the periodic system, the lines L£, Ov-> Lm and L0, Oiv -* Lji 
exhibit a marked decrease in intensity ; below Ta 73 no more lines 
have been observed, which would correspond to combinations with 
these two levels Ojv, Oy. 

The energy-levels Nvi j- Nvu cease in the region of the rare earths 
(from Hf 72 down to Oe 58) ; Oe has only one electron in this shell. 
Actually, combinations of these levels have been shown to occur only 
as far as Dy 66. 

The energy-levels that next fade out arc, in order, On + Cm, 

Njv -f Nv, Oj. It is in agreement with the fading out of On + Oni 
at In 49 that the line L«//, Out —> Pt here finally ceases. The level 
Ojl, which is represented in the observations only by the weak lines 
LA — Oj -> Lni and Lfi — Oj Lji of the L-series should cease, 
according to theory at Rb 37. LA was last observed at In 49 and Lp. 

at Ba 56. The fading out of Njv -f- Nv, which we expect at Y 39, 
may be tested by means of the strong lines Ly, Nv —> Lm and L8, 
Njv “> Lu- They have been proved to occur as far as Zr 40. 

The lines of the K-series are particularly serviceable for further 
investigation ; we shall use lines of the L-series only where, on account 
of the selection rules, lines of the K-series are no longer available. 
Let us consider Nn -f Nm, that is, the lines Ky, y' ; the stronger 
of the two Ky’s arises in the transition Nm -> K. According to theory 
the level Nm should occur for the last time at Ga 31. Hence our 
experience with the L-series would lead us to expect that Ky is strong 
as far as As 33 and cannot be followed far beyond Ga 31. Actually, 
however, the Ky-line * has been shown to exist as far as K 19, that is, 
as far as the element, in which electrons occur in the N-shell at all. 
From this we must infer that not only the energy-levels actually oc¬ 
cupied by electrons but also, as in the visible spectrum, virtual levels 

* E. Bfteklin, M. Siegbahn and R. Thoraeus, Phil. Mag., 49, 513, 1320 (1925). 
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may serve as initial states for the X-ray lines. In admitting this we 

somewhat weaken the strength of our argument. Accordingly we 

shall regard observations about the fading-out of X-ray lines as being 

instructive for a theory of the structure of the atoms in broad outline 

but not as binding in details. 

The last levels to disappear are, in order, Ni, Miv + Mv, Mu 4’ Mm, 

Mi, Lii + Lni, Li. Ni can combine only with Ln and Lm ; according 

to Fig. 66 Nj Ln = L/c, Ni-> Lm = Li. Both lines are weak 
and known only as far as Rb 37 ; theoretically they should last occur 

at K 19. The levels Mrv, Mv reach as far as Sc 21 ; but here, too, as 

in the case of Nj, combinations with K are not possible normally, but wc 

certainly have the lines Mv Lm =» La and Miv Lm — La', which 

have been measured as far as V 23, and the line* Miv > Ln L/3, which 

is known as far as Or 24. The levels Mu, Mm should cease at A1 13 ; 

in reality the line Mm -> K ~ Kfl only ends at Na 11, that is, at the 

first element which has an electron in the M-shell. K/J behaves similarly 

to Ky. It is known with certainty that K/3 does not exist below Na 11. 
We cannot say anything about the vanishing of M|, because here again 

only combinations with Ln, Lm are possible and the L-series is not 

known as far as the critical region (Na 11). Lu and Lm give with K 

the combinations Ln —> K - Ka' and Lm K ----- Ka. We should 

expect them as far as B 5, or after our experiences with K/? and Ky 

perhaps as far as Li 3, where the L-shell begins. Measurements of 

Ka * are available as far as B 5. Finally, Li gives no lines with K, 

so that we cannot follow* its disappearance with the X-rays. 

As a result of our last reflections we must once again state that 

we here have on the whole a convincing confirmation of the theory 

of the periodic system developed in the preceding chapter. Our 

ultimate result as regards the content of the present section is, how¬ 

ever, far more positive : it has been completely and finally possible 

to arrange the whole material of observation in X-ray spectroscopy 

into a term- and level-scheme. This scheme is strengthened by in¬ 

numerable combination relationships and governed by very simple 

selection rules. 

* J. Thibaud and A. Soltan, Comp tea Rendua, 185, 642 (1927) ; Jcnrn. da 
phys. et le Radium, 8, 484 (1927); A. Dauvillier, ibid,, 8, 1 (1927). 



CHAPTER V 

THEORY OF FINE STRUCTURE 

§ 1. Relativistic Kepler Motion 

WE shall refrain here from giving a special introduction * to 

the theory of relativity such as was given in the earlier editions 

of the present volume ; in the first place because the theory 

of relativity has become common property to all readers of science and, 

secondly, because the few results which we shall require—and they 

come only from the “ special ” and not from the “ general ” theory 

—have already been met with in Chapter I. These results were as 

follows : 

1. The variation of mass with velocity (cf. p. 20) : 

m -- mo 

vi - W (i) 

2. The inertia of energy (cf. p. 44). By defining the kinetic energy 

as the excess of the energy of the moving body above that of the body 

at rest and by expressing these energies by means of the corresponding 

masses m and m0f we obtain 

E*.-« --- c2(»t m0) =~ r-*w0(- ==— - 1) • • (2) 
\V'l - - p 

The expression w?0r2/2 of classical mechanics results from (2), as it 

must, by expanding in ascending powers of ft to a first approximation, 

that is, for the limit c > oo. 

We first treat the relativistic Kepler problem in an elementary 

way but then proceed as in Chapter II, § 7, to use the general 

“ Hamiltonian method," whieli is remarkably suited to the nature of 

our problem. Let the nuclear charge he Ze, and the charge on the 

electron *— e. We shall leave out of account the relative motion of 

the nucleus and shall take the nucleus as the origin of a polar co-ordinate 

system r, </>. 

* The fundamental papers have been collected in the volume The Principle 
of Relativity, by Lorantz, Einstein, Minkowski (Methuen). Easy accounts are 
given in The Theory of Relativity, Einstein (Methuen) ; Einstein's Theory of 
Relativity, Born (Methuen). See also W. Pauli, Enzykl. d. math, Wi#x> Vol. V, 
art. 19, Leipzig (Teubner); Space, Time, Matter, Weyl (Methuen). 

251 
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The differential equations of relativistic mechanics state, exactly 
like classical mechanics (cf. p. 77) : change of impulse or momentum 
is proportional to the external force. In the present case the externa] 
force is the Ooulombian attraction emanating from the nucleus. The 
impulse or momentum is mv. We resolve it with respect to the co¬ 
ordinates r and <f> into the two momentum components : * 

Pr — mr, pj, = mr2<j>.(3) 

They differ from the impulse or momentum co-ordinates obtained in 
the non-relativistio treatment (eqn. (4) on p. 110) only in now having 
the mass m variable. Instead of starting from the differential equa¬ 
tions of the problem we prefer to start from their firs! integrals, the 
law of areas and the energy lair. 

The law of areas states, as in classical mechanics, that the moment 
of the momentum about the centre of force, that is, our impulse com¬ 
ponent is constant : 

=*= V = roiiBt.(4) 

In the energy Jaw the kinetic energy is given by eqn. (2) ; the potential 
Ze2 

energy is the same as in the classical treatment, namely - 

Hence the energy equation t runs 

Eki„ + E„ol »v*(-=L= - l) - 7~ - W 
X \f 1 ™ D- / r 

or 
1 

v T - p2 
-- 1 

VI -P* 
W -|- 

mncc 

Now, in view of eqn. (3) we have 

P 5 t- r*<f>2) - ^{ I'r + r*Pl 

(•r>) 

or, on account of (1), 

P 
1 - 

} 

1 - p 

f ( ■> , 1 o \ 

rv(?' f 7>n) 

1 + r.i/pr + 7pi)- 

* The momenta canonically conjugate to the co-ordinates q are to be defined 
relativistically as derivatives with respect to the </’h, not of the kinetic* energy, 

but of a “ kinetic potential ” F — ~~ m0c2 y' 1 - /?2 -f const. 
f Here the rest-energy m0c2 has riot been included in Hence the energy 

constant W here has clearly the early significance (cf., for example. Chap. II): 
energy without rest-energy. In Note 6 we shall include the rest-energy in our 
calculations ; there the energy-constant E is related to W by the equation 

E = W + m0c2. 
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Substituted in eqn. (5) this gives 

1 4 c2w,A ,P' + r*p*)-{l+ m 'c* ~) ■ • (6) 

By eqn. (3), 
pr rnf 1 dr dx 

•p<t> mr2cf) r2 dcf> dcf> 
where we have set 

• (7) 

1 

r • (8) 

Taking p2 out of the brackets in eqn. (6) we have 

i -i A • (9) 

It is convenient to differentiate this equation with respect to cf> : 

m :/A \ + — + —■-,(W -f z*a 
| 

By cancelling dsjd(f> on botli shies and taking over the terms in s to 
the left-hand side, we obtain the following Untar differential equation 
for $ : 

d2s , 

iip ^ r{s 

Here we have used the abbreviations 

ZV 

0) -- 0 

1 
p2c2 

r - moZe2/, , _w \ 
■>V v _t 1 

• (10) 

(10a) 

(106) 

The general integral of (10) is 

s = A cos ycf) B sin y</> ~f~ 0 . (11) 

where A and B are the integration constants. We count the angle 
<j> in such a way that <f> — 0 corresponds to the perihelion of the orbit, 

that is, to the value r = rms 4ax- We then have for (f> =- 0 
//1? 
~|A ■— 0 and, by (11), B = 0. 
d<f> 

Equation (11) then becomes 

s — - — 0 + A cos ycf> ... (12) 
r 

The equation (12) differs from the non-relativistic form of the orbital 
equation only in having the factor y in the argument of the cosine. 

By (10a) this argument has the significance 

(13a) 
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where p{) denotes the abbreviation 

Po "■= 
Zc2 

c 
(186) 

and has the same dimensions as p. For c = oo we find that pQ = 0 
and y — 1, so that our eqn. (12) becomes the equation which represents 
the ordinary Kepler ellipse. In reality, on account of the high value 
of c we see that in all the eases that come into question p0 is small 

compared with p and y is very little, less than 1. 
The form of the relativistic Kepler orbit has been drawn in Fig. 67. 

Here O is the fixed focus at which the nucleus is situated, P is the 
initial position of the perihelion. Let (f> ■ 0 be the straight line OP ; 

the orbit then reaches its 

perihelion next, not when 
277% but when y<f> = 2 77% 

that is, when 

Fig. 07.—Relativistic Kepler motion. The 
perihelion and aphelion move in two con¬ 
centric circles round the nucleus at 0. 

The motion of the peri¬ 

helion occurs in the same 
sense in which the orbit is 
being described and has the 

angular value 

A<f> = - - 2n . (14) 
y 

If we refer the motion to 
a polar co-ordinate system 
which participates in the 
motion of the perihelion, 
namely to the system 

r — r,ijj - y<f> . . . . (15) 

then we again have an ordinary closed ellipse. In Fig. 67 we have 
also inserted, as dotted circles, the geometrical loci of the successive 
perihelia and aphelia, the outer and inner envelopes of the orbit. 

The motion of the perihelion of the relativistic Kepler ellipse 
invites us to make a digression into the field of astronomy. As we 
know, Mercury, in disobedience to Newton’s law, exhibits an advance 
of the perihelion which, according to Newcomb,* amounts to 43" 
per century. Can this anomaly be explained in the light of formula 
(14) above ? In the first place it is clear that our relativistic motion 

of the perihelion would manifest itself most readily in the case of 
Mercury, the planet nearest the sun. For this motion becomes more 

* A later calculation by Newcomb gave 4V. Both numbers am discussed 
critically by E. Grossmann, Zeits, f. Physik, 5, 280, (1921). 
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pronounced as y decreases, and y decreases with p. But the planet 
nearest the sun lias the smallest areal constant p of all the planets. 
Calculation shows, however, that our relativistic motion of the peri¬ 
helion is nevertheless far too small. In the ease of Mercury it would 
amount to only 7" per century. It was only when Einstein widened 
his special theory of relativity and proposed his general theory of 
relativity, which included gravitation, that he was able to give a 
theoretical explanation of the observed motion of Mercury's perihelion. 
In this way he found that for Mercury the theoretical value came out 
accurately as 43'' per century ! 

We now proceed to deal with the quantum conditions and the 
calculation of the energy. This is best done by referring to Hamilton's 
general method with which we treated the non-relativistic Kepler - 
ellipse in Chapter II, § 7. Instead of the momenta we introduce the 
action function S by means of 

Pr (10) 
ir’ n = 2^ 

Eqn. (0) then becomes the Hamilton-Jacobi differential equation of the 
relativistic Kepler problem 

*- U$)> 2”°w 

*?!&* , I/^ + ZeV 
r_y 4 c2\ r ) 

(17) 

The last term on the right-hand side is 4!he supplementary relativity 
term, which distinguishes this equation from eqn. (5) on page 110. 

Equation (17) admits separation in the co-ordinates r and (j>. Since 
(j> is cyclic the law of areas holds 

~ — const. — p . . . (18) 
0<P 

The azimuthal quantum condition demands that 

f2jt C2n 
J* - j pM - g# - n+h . . . (19) 

azimuthal quantum number. On 
J u 

where n^ is a positive integer, the 
account of (18) we have 

2np ~ n^h or ^ 

Hence eqn. (17) becomes 

38 - 

nji 
2tt 

where 
t)r 

A -<2~0w + ^)-«.w{(l + 

B = _ m,Ze’(l + W ' 

•L-Z-] 
w* J 

n _ _ ^ , Vi* 
° “ 47T2 + C*' 

m0c 

■*fri - 
n* 

(20) 

(21) 
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l'n the last expression, G, we have used the abbreviation 

2rrel 

he * 
(22) 

already introduced in eqn. (8) on page 86. a is called the fine-structure 
constant. It is a pure number which has the approximate (or exact ?) 
value t \ T. 

The radial quantum condition demands 

•'r = (j);»A - n'h- ■ • • (23) 

Here nr is a positive integer, namely the radial quantum number. On 
account of (20). (23) becomes 

(j>vA + 2^ + ^dr^n,h. 

This condition differs neither in form nor in content from that of 
Chapter II, § 7. eqns. (10) and (11), and hence gives 

-2«(VC • • • (24) 

But on account of the present meaning (21) of A, B, C we have 

_ / '^2 
- 27riVO — - V^\/1 <>^2 

(i + xyy. 
V mQ cr! f 

4 

JL _ j 
VA c t 

Hence eqn. (24) becomes 

27riZe2 f 1 

~7~iJ 
, w_y 2, 4 _ ~ 

l1 m0c2) ) nr V??2 — a2Z2 h . (25) 

Dividing by h we get wZ in front of the bracket ; squaring we obtain 

oc2Z2 , W \ 5i 

11 + ™ 
' m0c2 - 

1 f 
W 

- a2Z2 

i 
i1+ 

a2Z2 1 
’ 14 

1 
nr + vV2 - a2Z2 

1 

* (26) 

We can now write down immediately the general relativistic formula 
for all hydrogen-like series by adducing only Bohr’s fundamental 
equation 

hv=~ W, - W2 
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(where Wt = energy of the initial orbit of the hydrogen electron and 
W2 = energy of the final orbit). We then obtain 

1 

a2Z2 _rn 
[»r f -r). J (27) 

The indices 1 and 2 attached to the bottom of the brackets } signify 
that for nr and n$ we must insert the values corresponding to the initial 
and final states respectively. Z is equal to 1, 2, 3, . . . for H, He+, 
Li++, 

Since the right-hand side of (27) has zero dimensions R is expressible 
in the same form as v. Hence we may, according to requirements 
express v and R simultaneously either in wave-numbers (cf. p. 70) 
or in vibration numbers (frequencies). 

It is only necessary to add a note about the constants that multiply 
the square bracket in our way of writing eqn. (27). From eqn. (26) 
we first obtain 

V ” 
m0c2 
~7T • * • 

. (28) 

for which we wrote in eqn. (27), 

. (28a) 

We see at once from the significance of R in sec.-1 

R - Rw 
27T2m0e* __ 2rre2 

A3 ’ a “ ~hc 

that the two factors in (28) and (28a) are identical. The fact that 
we here calculate with R^ is connected with the circumstance that 
we have disregarded the relative motion of the nucleus in this section. 
To take this into account subsequently (cf. also note 2 on p. 259) we 
shall continue to take R as standing for Rh (in the case of He the 

value is Rho» cf. Chap. II, § 5). 
Our present spectral formula no longer depends only on the quantum 

sum nr -f n+ as was the case in the earlier spectral formula (14) on 
page 112. Hence it follows that the lines having the same principal 
quantum number earlier now become separated by relativity. This 
separation depends on the correction term which carries the small 
factor a2 = 5*3.10~5. For this reason the separation is only slight 
and can be shown to exist only by the most refined means of experi¬ 
mental spectroscopy. The lines that were formerly described as 
coincident now split up into a narrow complex of lines. The individual 

von. 1.—17 
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component lines of the complex determine, through their intervals 
of separation and intensities, the fine-structure of the configuration. 

The above-calculated energy-levels and the line-complexes to be 
derived from them also retain their validity in wave-mechanics. The 
way in which wave-mechanics derives them is not only far less pictur¬ 
esque (anschaulich) but also much more laborious than the way described 
above. Hence it was necessary to carry out the calculation as far as 
possible according to the method of the older quantum theory ; the 
inferences drawn can then later be taken over directly into wave- 
mechanics. 

§ 2. General Inferences. Line-separations and Relativity Corrections 

To make the final formula (27) of the preceding section more 
convenient for purposes of calculation we expand it in powers of 
the small quantity a2. If Z is not a large number (H, He1) it is suf¬ 
ficient to retain the first two powers of a2. This is so in the case of the 
visible and ultra-violet spectra. If Z is a great number the third and the 
fourth power of a2 must also be taken into consideration. This is so 
in the case of X-ray spectra. For extremely great values of Z (U, 
Th, . . .) it may even be convenient not to expand a2 at all but to use 
the complete formula (27). 

For the visible spectra the calculation therefore becomes simple. 

If we denote the denominator that occurs in eqn. (27), § 1, generally 
by 8, then 

S = nr + v'w; — (aZf -=* nT -f- w* 2~- (aZ)2 . (1) 

and we obtain 

(, , («Z)V*_ , ]_ («Z)2 ‘i (aZ)4 

\ f S2 J 1 2 S2 8 S4 (2) 

Further we obtain to a sufficient degree of approximation, with 
n = nT + n#, 

1 

S2 

1 

* ~ 2^(aZ)2 1 
r=A 

J n* _ nn$ 
(ocZ)2 + 

1 
Q4 ~ >»4 [* + •] S4 n* 

Substituted in (2) this gives 

(«z)2r* _ j \ (*z)2 ■^1 -f~ 
S2 / 

1 (aZ)4/ n __ 3^ 
2 n2 2 n4 \n$ 4/ 

(3) 

+ • (4) 

If we substitute this expansion in eqn. (27) of the preceding section 
the first term 1 of the two expansions cancels in the difference, and we 
may divide out the factor 2/a2, which stands in front of the bracket. 
The wave-number v then appears as the difference between a first 
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'positive term dependent on the quantum numbers of the final orbit and 
a *second negative term dependent on the quantum numbers of the 
initial orbit. By using the same symbol v for the terms as for the 
emitted wave-number we obtain 

The first term on the right-hand side agrees with the term repre¬ 
sentation for the hydrogen-like lines in the second chapter and depends 
only on the principal quantum number n. The second term expresses 
the influence of relativity. For the states * n — it is 

I ?!RZ4 
4 n4 

Compared with the Balmer formula it effects an increase in the value of 
the terms. We call this part the general relativity correction. In the 
case of the first term of the Balmer series (Z — 1, n ~ 2) it bears the 
following ratio to the whole term : 

~~ ~ 3 . 10 ~ 6. 
lo 

On the other hand, relativity causes a special increase in the case of 
the states n > nif}, which depends on n and 14 individually and in- 
creases with decreasing 14. Calculated relatively to the states n = n^ its 

value is 

We call this part the separation (Aufspaltung) of the term.; it is the 
foundation of the fine-structure of the lines.f For the first term of the 

Balmer series and the only state that comes into consideration here, 
n 4= % (n ~ 2, ~~ 1), this separation bears the following ratio to 

the whole term : 

~ - 1-3 . 10-5. 
4 

* The states n ~ n<f> clearly denote 41 circular orbits ” in the sense of the old 
orbital ideas (nr 0), whereas the states n > denote 44 elliptic orbits ” 
(nr > 0). Wo avoid these expressions now because these old orbital ideas can 
be allocated uniquely to the wave-mechanical states only with respect to energy, 
not with respect to quantum numbers, cf. § 4 of the present chapter, p. 280. 

t C. G. Darwin has performed the same calculation, taking into account 
rigorously the relative motion of the nucleus [Phil. Mag., 39, 537 (1920)]. He 
finds that the nuclear motion manifests itself not only in the Rydberg constant, 
but also in a small additive correction term of the order of magnitude a2m/M 
(m ~ electronic mass, M — atomic mass), which is inappreciable practically. The 
tine-structure remains quito unaffected by it. 
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For the purposes of X-ray spectroscopy we must now carry the 
accuracy of the calculation further. In place of (1), (2), and (3) we 

must then write 

/ 
l 
I + 

a , a2Z8 a4Z4 
= nr + % ' -2m- 8w3 

(«z)V»_, 1 («Z)* . 3 (aZ)4 
S2 I ~ 2 S2 ^ 8 S* 

ocgZ* 

lfinj 

5 («Z)° 

16 S« 

, 35 (aZ)» 

+ 128 S8 
+ • • • 

(la) 

(2a) 

and to a sufficient degree of approximation in each case : 

1 

S8 msL ' 

1 1 i i 1 / F7\a n h 
gi = + ^r(aZ)2 I" -7T5r-HaZ) 

S4 ~~ «4 1 [l + ~(«z>2 + 

n2 -f 3n?u + 4%2 
■+-“(*Z)* + 

n + 5?4 i 

2ti2w; 

•] 

? (aZ)4 + • 

S6 W6[ 1 ^ 7171$ 

S8 7l8L ^ 

(ocZ)2 + 

(3«) 

If we substitute (3c) in (2a) we obtain (after cancelling 1 and multi¬ 
plying by — 2R/a2) as the complete expression for the term : 

We shall use this expression in § 4 ; the expression (6) is sufficient for 
the next problems, which lie in the visible region. We are concerned 
with the separation of the different series terms. A survey of the 
types of separation is given in Fig. 68. The distance between the 
lines gives the difference in the term-values and also the difference 
in the vibration numbers of the spectral lines which are formed from 
these term-values. The numbers attached to the distances between 
the lines denote ratios and are explained by the equations (8a), (9a), 
and (10). The types which stand vertically below one another are 
not directly comparable in size, having been reduced to equal distances 
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for the extreme components, whereas in reality these distances 
decrease rapidly on account of the f 
increasing denominator, 24, 34, 44. . . . I ^ 

n = 1, n* = 1. * 

The value n+ = 0 is to be excluded 
here as in the non-relativistic case 
(cf. p. 115) ; the series term is simple. 

n == 2, n* = 2 or 1. 

The series term is double. The 
difference between the sub-levels 
(Teilniveaux) corresponds spectro¬ 
scopically, according to eqn. (6), to 
a doublet-line with the difference in 
vibration numbers : 

Av = . . (7) 

2 1 

*_J n-2 

3 2 7 

7 _3_ 

^32 1 

1 2 ^_S_^ n*4 

5432 1 5432 1 

J s 70 30 

n = 3, n* 3 or 2 or 1. 

The series term, is three-fold. The 
corresponding term-values n^ = 3, 2, 
1 increase successively. By eqn. (6) 
the successive term differences are : 

Fig. 68.—Relative separation of 
the hydrogen terms, n, n<P 
according to the relativistic 
term formulae (6). The 
numbers written against the 
individual lines denote the 
respective values of v#. 

Term-difference between n$ = 3 and n$ = 2 

Term-difference between = 2 and 74 = 1 

Ra2Z4/3 3 
34 

Ra2Z4/3 
34 

i) 
(f-i) 

(8) 

Corresponding to them we have the differences in vibration-numbers 
of a triplet with the relative distances between the lines : 

A t-j: A vj = 1 : 3 . . ) (8a) 

4, n* = 4, 3, 2,1. hV:' V V> 

The series term is four-fold. By eqn. (6) the successive term differ¬ 
ences come out as : 

Term-difference between = 4 and 74 = 3 — 
Ra2Z4/4 4\ ] 

44 \3 4) 

Term-difference between 74 = 3 and 74 = 
9 __ Ra2Z4/4 4\ 

44 \2 3/ 

Term-difference between 74 = 2 and 74 — 1 = 
Ra2Z4/4 4\ 
yJ* Vl 2) 

(9) 
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The four-fold value of the term gives rise to a quartet with the successive 
relative differences in vibration number : 

A vx: A v2 : A = 1 : 2 : 6. . . . (9a) 

n = 5. 

The successive differences in the vibration numbers in the resulting 
quintet are in the ratio 

A vx : A v2 * A : A r4 — 3 : 5 : 10 : 30 . . (10) 

and so forth. 
This separation of the terms must be distinguished from the line 

configuration which results from combinations of the terms. If 
the multiplicity lies in the first, that is, the constant and positive, 
term of a series (represented in eqn. (5) by vx) we have an analogy * 
to the doublets, triplets and so forth, which have a constant difference 
in wave-number, in the subordinate series of the alkalies, alkaline earths 
and so forth (cf. Chap. VII, § 1). If the multiplicity lies in the second, 
that is, the variable and negative term (represented in eqn. (5) by c2) 
we have an analogy to the decreasing differences in the vibration numbers, 
as have been observed in the principal series of the elements which are 
not hydrogen-like (cf. Chap. VII, § 1). On account of the negative 
sign of the variable term the components here succeed one another in 

the Inverse sense to the structures resulting from the positive first 
term. If both the constant positive term and the variable negative 
term are multiple, complicated line-configurations result through 
superposition, an impression of which is given by the figures in the 
next section. 

§ 3. Comparison with the Results of Experiment 

The constant term 1/22 of the Balmer series of hydrogen gives rise 
to a doublet of constant difference of wave-number. The value Avh 
of this difference will serve as a unit in the sequel. Thus by eqn. (7) 
of the preceding section and since Z — 1, 

R?y2 
Avh - - 0-3636 ± 0 0006 cm.-1. . . (1) 

Here we have set a2 ~ (5*305 J- 0 008) . 10~5 and R == 1*097.105. 
The calculation of a2 is based on the numbers 

e = (4-770 ± 0-005) . 10~10, h = (6-547 ± 0-008) . 10~27. 

Of the numerous experimental determinations we shall refer to 

only the oldest and the newest. The oldest wras that carried out by 

* The analogy is incomplete, because the line-structure in the case of such 
elements is not hydrogen-like. 
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Michelson * in 1887 by the interferometer method, which gave the 
values 

for H* H^ 

Ar - 0-32 0*33 cm.-1. 

The most recent determination is that of G. Hansen ,f which was 
carried out with the support of the Zeiss works, Jena ; excellently 
prepared Lummer-Gehrcke plates were used. The following un¬ 
corrected values for the doublet-separation were found among others : 

for H„ Hp Hy H* He 
Av = 0*316 0*317 0*328 0*322 0324 cm.1 

Thus A PR is appreciably constant within the series. This corresponds 
with the origin of Avh from the first constant series term, cf. the end 
of the preceding section. The difference in magnitude between the 
observed and the calculated value (1) is explained in part by the 
influence of the second variable term (see below). 

Direct observation is rendered difficult on account of the blurred 
character of the H-lines. This blurred character is due to the heat 

motion of the emitting H-atoms and their Doppler effect. The higher 
the temperature the greater the velocity due to heat-motion, the higher 
the atomic weight the smaller the velocity due to heat-motion. Hence 
in the case of the hydrogen atom the heat motion is particularly in¬ 
tensive ; in this case we must go down to the lowest temperatures 
to obtain tolerably sharp lines. A further reason for the blurring 
of the hydrogen lines is the Stark effect (Chap. VI, § 3). This effect 

produces far stronger separations in the case of hydrogen than other 
atoms. It occurs not only in artificially applied fields, but also under 
the electrical action of neighbouring atoms, which distort the electronic 

orbits of the reference - atom. 
But there is an indirect method of observation, which was used by 

Paschen (see below) and which enables the value of A vn to be deduced 
from the fine-structure of the lines of a more favourable atom (Hef). 

Paschen J finds 

__ f0*3645 + 0*0045 cm-1 (in 1916) m 
A>m - (o.358 t0 0*363 cm."1 (in 1927) * “ K ] 

This value agrees well with the theoretical value (1). This accounts 
qualitatively and quantitatively for the hydrogen doublet which was 

formerly so perplexing. 
The doublet which arises from the constant term has superposed 

on itself in the Balmer series the multiplicity of the second variable term, 

* Phil. Mag., 24, 460 (1887) : 34, 280 (1892). 
t Ann. d. Phys., 78, 558 (1925); Dissertation, Jena; of. in particular 

Table 5. 
t Aim. d. Phys., 50, 901 (1916); 82, 689 (1927). 
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according to theory (cf. the end of the preceding section). Conse¬ 
quently the two doublet-components consist for their part of a triplet 
in the case of H«, a quartet in that of H^, a quintet in that of Hy, and 
so forth. 

We illustrate the structure of H« in Fig. 69. We begin with the 
doublet lines I and II, which correspond with the first term l/2a. 
II follows on I in the sense of increasing wave-numbers. To both 
lines we add the triplet abc which arises from the second term 1/32, 

^_c b 3 c 6 s 

~TiT 

Fig. 69.—Fine-structure of Ha. The structure I, II originates in the relativistic 
subdivision of the end level n — 2, the structure abc from that of the initial 
level n — 3. The heights of the lines represent the intensities calculated 
wave-mechanically. The line II a vanishes. 

namely, in the sense of decreasing wave-numbers on account of the 
negative sign of the second term. Hence we have not two separate 
lines I, II, but two groups of lines I and II, each consisting of 3 lines 
abc, that is, of 6 lines in all, one of which is of vanishingly small 
intensity. The intensities have been represented in the figure by the 
length of the vertical lines. The lines abc bear the characteristic 
separation-ratios to each other, given by eqn. (8a) of the preceding 
section : 

A iq : A v2 = ab : be■ = 1 : 3. 

The doublet-separation I II = Av*t, eqn. (7) of the preceding section, 
occurs twice, namely between the similarly named components bb, cc. 
(The fact that it does not also occur between aa is because the short 
wave a-component has vanishingly small intensity.) The triplet 

separations A vv A v2 are expressed as follows in terms of A vn according 
to eqn. (8) of the preceding section : 

a 1 Ra2 1 2\ 8 A 
Avi 2 3* "2 3*Avh ' 81Al'H 

. 3 Ra2 3 2\ 8 . 
2 34 ~ 2 3*A^h 2lVR 
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Fig. 70 illustrates in the same way the line-structure of H^. We 
again start out from the doublet-lines I II that correspond to the first 

term 1/22 and add to it the quartet abed f 
in decreasing wave-numbers, which arises —^ jj 
from the second negative term 1/42. Of 
the 8 lines that result in this way only 
5 have non-vanishing intensity again. 
According to eqn. (9a) of the preceding 
section the lines abed bear the character¬ 
istic separation-ratios for quartets : 

A 

A v, : A Vo : A = ah : be : cd = 1 : 2 : 6. 

&vh 

cbk 

4 
d c 

/ 11 
'bat 

The doublet distance I II A^r occurs 
again twice (on account of the intensity 
of the satellite lines vanishing in part), 
namely, between ec, dd. 

The differences in the wave-numbers 
of the quartet are, by eqn. (9) of the 
preceding section, in terms of Avr : 

Fig. 70.—Fine structure of Hp. 
I, II corresponds as in Fig. 
69 to the structure of the 
end level n = 2, abed to 
that of the initial level 
n -4 4. Heights of lines 

----- wave-mechanical inten¬ 
sities. The linos la, Ila, 
116 vanish. 

. 1 Roc2 1 24 1 . 
Av, = 3 -jr = 3 f4A,H = |gAvH, 

A Co ~ 2 

44 

2Ka2 

3 44 

Ra2 

2 24. 1 
A,,2 = <5 ~ZT ~ 5 tAvH = o~AvB, 

44 

3 44 

2^Av„ 
24 

1, 
8 A1,41 

• (4) 

Thus the two groups of lines I and II have contracted at as com¬ 
pared with H<* ; the number of lines has remained the same, namely, 5. 

From Figs. 69 and 70 we read off the reason why the observed 
hydrogen doublet of the Balmer series does not quite coincide with 
the ideal hydrogen doublet. The ideal hydrogen doublet denotes the 
distance between similarly named lines aa, bb, and so forth. In actual 
measurements, however, we adjust to the intensity maxima of the 
groups of lines I and II, whose separations are less than Avr. The 
ideal hydrogen doublet would be correctly measured only when we arrive 
at the limit where the high members of Balmer'8 series occur (Ha, H«, 
. . .), for which the fine-structure arising from the second term con¬ 
tracts more and more to the pure doublet of the first term. The 
observations of Hansen communicated above correspondingly show 
an increase of A v with increasing order number in the Balmer series ; 
but this increase is less than it should be according to theory. We 
remark, however, that the Av observed by Hansen for H« nearly 
coincides with the separation that we obtain if we calculate the 
intensity-centres of gravity in the groups of lines I and II for H* 

according to wave-mechanics. 
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We now come to the true test of our theory, the spectra of ionised 
helium. They were photographed by Paschen * and were interpreted 
in close collaboration with the author whose theory of fine-structure 
was put forward at the same time and was definitely confirmed in 
Paschen’s results. 

Why are the spectra of Hoh more favourable for our purpose 
than those of H ? Both are of the same degree of simplicity and 
theoretical accessibility, both being produced by one electron and a 
nucleus. But the Ho-lines are sharper than the H-lines ; the He- 

atom is four times as heavy as the H-atorn, hence its lines are less 
widened by the Doppler effect due to heat motion ; moreover, the 
He-nucleus is twice as strongly charged as the H-nucleus, and hence 

its lines are also less influenced by the Stark effect (cf. the next chapter). 
Nevertheless the separation of the components is also not complete 
in the case of He and makes great demands on the resolving power 
of the spectroscopes used. 

We deal first with the Fowler series, which is erroneously called 
the “ principal series of hydrogen ” (cf. Chap. IT, § 2, p. 74), the formula 
for which runs, if we disregard all relativistic influences, 

V = 4R,(t — ^2). n =■= 4> 6, 6 . . . . . (">) 

The following lines (or more accurately the groups of lines) belong to it : 

4 1 5 I 6 | 7 ! 8 
4(586 ' | 3203 1 2733 2511 2385 

They form the transposition, effected by the factor 4, of the infra-red 
series of hydrogen discovered by Paschen into the violet region. 

The group of lines A — 4086 (initial term quadruple, final term triple) 
consists virtually of 4.3 — 12 components ; the latter term produces 
a triplet I, II, III with the characteristic separations A vl : A v2 -- 1 : 3, 

the former a quartet a, b, c, d with a reversed sequence of the lines with 
the separations A vx : A e2 : A v3 — 1 : 2 : 6. 

In the top line of Fig. 71 we see the relative theoretical position 
of the twelve components. The intensities here assumed (lengths of 
the vertical lines) have again been calculated by wave-mechanics for 
the case where the atoms are subjected to no disturbing influences 
of any sort (direct-current discharge); then only 8 of the 12 com¬ 

ponents are to have non-vanishing intensity, the lines I d, Ha, Ilia 
and 1116 fall out. The component lid of the quartet II overlaps with 
the quartet I. All the component separations are expressed ration¬ 
ally in terms of the fine-structure component a2 and hence are rational 

multiples of the hydrogen doublet Aim. For example, by eqn. (8) 

* Bohr’s Helium Lines, Ann. d. Phys., 50, 901 (1916). 
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on page 261 and eqn. (1) on page 262, we obtain in wave-numbers : 

(IIa - la) = (116 - 16) = . . . = 8(§)4AvH 
(Ilia - Ila) - (III6 - 116) - . . . = 24(|)4AvH 

and by eqn. (9) on page 261 and eqn. (1) on page 262 : 

(Ic - Id) = (Hr - lid) - ... - 32(J)4Avh 

and so forth. 

For comparison we have given in the second row the experimental 
picture, such as is obtained in an intense spark-discharge (great current- 
density). If we start from the right-hand side we see that in the group 

/ 

6-1 48860 59 56 57 56 55 S4 5J 

Fig. 71.—Fine-structure of A4686 (He4, n 4 -v n - 3). At the top of the 
figure is shown the theoretical resolution and wave-mechanical intensity 
distribution calculated for D.C. discharge (no disturbance due to the electric 
fields of neighbouring atoms). In the middle is an experimental picture 
for condensed spark discharge representing the visual impression recorded 
by Paschen. The same for D.C. discharge is shown at the bottom. Here 
four of the twelve components vanish theoretically, namely, Id, Ha, Ilia, 
II16. 

Ill the adjacent components ab are fused together, but the lines 
c and d are separated. The width and height of the rectangles in 
the picture exhibit the width and strength of the observed lines. The 
lines a and 6 are also fused together in the group II and 1, the line 

lab coming out more strongly than the line ITa6. The weak line lie 
appears fused in the picture with la6. The line le is not separated 
from lid. 

It was precisely this picture which, on account of its wonderful 

completeness, served Paschen for calculating the ideal hydrogen 

doublet, cf. page 263. 
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In order that the experimental difficulties of obtaining the photo¬ 
graphs may not be underestimated we call attention to the scale of 
wave-lengths attached to the figures. It shows that the distance 
between the extreme lines Ilia and Id does not even amount to 0-8A. 

The picture assumed a different aspect when, instead of the intense 

d dc bacba d c ba 

Fig. 72.—Photometer curve of the 
fine-structure of A4686 (Hef) 
according to Paschen : O with 
D.C. discharge, X with con¬ 
densed spark discharge. The 
area below the curve corre¬ 
sponding to the latter is shaded. 
The theoretical positions of the 
lines are indicated by small 
vertical dashes placed below 
the curves. 

X - 3203, v 

spark-discharge an ordinary direct 
current was used to excite the helium 
tube ; the difference lay in the in¬ 
tensities but not in the 'position of the 

lines (cf. the lower row of Fig. 71). 
Here the intensities also approach 
the theoretical values represented 
in the top row, for example, in the 
fact that the lines Illaft are absent 
in the picture given by the direct 
current. 

In Fig. 72 we are able to give 
photometric measurements kindly 
communicated by Professor Paschen. 
They are derived from two original 
photographs taken in the third 
order, which have also been taken 
into account in Fig. 71 in repre¬ 
senting the visual impression, and 
which are here represented ob¬ 
jectively by means of the galvan¬ 
ometer deflections of a thermo¬ 
electric photometer. We see instead 
of the rectangles drawn earlier con¬ 
tinuous curves of photographic 
density with well-defined maxima. 
These lie exactly over each other 
in both photographs ; the differencse 

are only differences in intensity. 
We pass over in the series (5) 

to the group of lines : 

It consists theoretically of the combination of a triplet with a quintet, 
—as a whole then, of 15 components, of which again only 8 are 
to have non-vanishing intensity. The quintet is (on account of the 
denominator 54) contracted more strongly than the preceding quartet, 
and that is why the quintets I and II hardly overlap any more here. 
In the experimental picture (direct-current photograph) lied appears 
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as the strongest, I bed and Ilr as the second strongest components, 
lllr/ is weaker, and the components 111c and le are quite weak. 

The experimental direct-current photograph of the next group 

of lines 

A — 2733, v=,.R(i --I) 

becomes particularly simple. The sextet of the second term is here 
already contracted so far that it appears unseparated everywhere in 

Fig. 73.—Fine-structure of A3203 with D.C. discharge (H+, n — 5 n — 3) 
according to the visual impression recorded by Paschen. The theoretical 
positions of the lines are shown beneath. Of the fifteen components the 
following vanish theoretically in the D.C. picture—la, Ie, I la, II.6, III6, 
IIJr. 

observation. It is in accordance with this that Fig. 74 exhibits the 
pure triplet of the first term with the characteristic separation-ratio 1 : 3. 

Fig. 74.—Fine-structure of A2733 with D.C. discharge (He +, n — 6 -> n 3) 
according to the visual impression recorded by Paschen. The theoretical 
positions of the lines are shown beneath. Of the eighteen components 
the following vanish theoretically in the D.C. picture—la, 16, I/, Ha, H6, 

Hr, Ilia, III6, IITc, Hid. 

Paschen has also investigated the second of the He+ -series men¬ 
tioned on page 75, the so-called Pickering series, formerly called 

erroneously the “ second subordinate series of hydrogen ” : 

v==4R(p”^)’ w==5>6’7 — 
It is the counterpart- to the Brackett infra-red series of hydrogen 
(cf. p. 73), but is displaced towards the violet owing to the presence 

of the factor 4. 
Owing to the first term the fine-structure is a quartet with the 

separation ratios 1:2:6; the far narrower multiplicity arising from 
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the second term could not he resolved. The three first lines of the 
quartet also overlapped to form a diffuse component; in addition to this, 
however, the fourth line of the quartet, which was further separated, 
could in most cases be measured as a weak component on the violet 
side. The wave-lengths of the principal lines of this series have 
already been given in accordance with Paschens measurements in 
Table 3 on page 95 and have been tabulated with the neighbouring 
Balmor lines. 

We have now to explain the data given above about the intensity 
distribution in the fine-structure pictures, that is, we must discuss 
the selection- and intensity-rules that hold for H and Be’. Historically 
we must remark that these rules are more complicated than was origin¬ 
ally assumed. The change in the state of affairs occurred in 1926 

Pf 
a 3 
b 2 

n=3 

c 1 

1 2 

n-2‘ 
n 1 

Fig. 75.—Old (on the left) and now (on the right) quantum notation of the hydro¬ 
gen levels. On tho extreme right is given the schematic representation of 
the corresponding Rdntgon- and alkali-terms. Tho scheme of H* levels 
is shown. Against the arrows are placed the symbols denoting the corre¬ 
sponding Kontgen lines. 

when Goudsmit and Uhlenbeck discovered the spin of the electron. 
Whereas previously we characterised the individual hydrogen-like 
energy-level by means of two quantum numbers n and we must 
now denote it by three quantum numbers : 

n, l,j, where j = l ± |. 

The introduction of j with the characteristic addition :£ | points to 
electron spin, that is, to wave-mechanics refined relativistieally. 

How the allocation of n, l, j to the earlier n, w^-levels is to be 
performed is illustrated in the case of Ha (Fig. 75). Thus we are 
concerned with the fine-structure of the terms n = 2 and 3. On the 
left-hand side of the figure we have given the earlier notation with 
n and n$ ; each pair of levels shown close together in the figure but 
coincident in reality has the same n$ ; n4 runs through the values 
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1,2,. . . n. On the right-hand side we have written down the new 
notation. / runs through the values 0, 1, . . ./<-«]. I11 each pair 

of coincident levels the l-value# differ by unity, whereas the ^'-values 
are equal. The j-values differ by unity in the case of each pair of 
neighbouring levels separated by relativity. The fact that for every 
n the uppermost level bears only one cipher is due to the circumstance 

that l may at most equal n — 1 and j at most l -)- £ = n — l. Thus 
we assign to the hydrogen levels the same quantum numbers as to the 
X-ray terms in the preceding chapter, cf. Fig. (56, page 243 ; that is, 
we interpret the H-spectrum like that of the X-ray terms as a doublet 

spectrum. But in the case of H the above-mentioned peculiarity 
occurs, that two levels having the same n, j always coincide. Besides 
the new quantum numbers we have also given on the right-hand side 

of Fig. 75 the corresponding X-ray levels in the system of notation 
of Chapter IV, and also the alkali terms, for later use, by specialising 
which we can derive our hydrogen levels. We shall not delay here 
by explaining the alkali terms. 

For the Zs and j\s selection rules hold, which we already know from 
X-ray spectra : 

AZ = ± 1, Aj - ± 1 or 0 . . . . (6) 

These rules were introduced empirically into X-ray spectra and were 

confirmed by the scheme of terms. We shall regard them here, too, 
as facts of experience ; in the succeeding chapter (cf. also note 7) we 
shall find a provisional foundation for them, and in the second volume 
(on wave-mechanics) we shall establish them on a permanent and 
definitely circumscribed basis : 

The application of our selection rules to Fig. 75 shows directly 
that on the whole we have 7 possible transitions, of which, how¬ 

ever, in the case of hydrogen 2 in two separate cases are identical : 
they have been bracketed together at the bottom of the figure. Hence 

only 5 components of the fine-structure are left. If we call those 
arrows that lead to the upper final level as group 1 and those to the 
lower as group 11 and if we number the initial levels, in so far as they 
do not coincide, from above downwards as a, b, c, then the pairs of 

transitions that are identical in themselves are called lift and lie ; 
on account of the selection rules the transition Ila (Al = 2, Aj = 2) 
is forbidden, and that is why we gave it the intensity zero in the 
earlier Fig. 69. At the middle of the arrows we have appended the 

names of the X-ray lines, for which of course no coincidence in pairs 

occurs. 
The same Fig. 75 may, however, serve to display the structure of 

the Balmer lines H^, Hy, .... In the case of the final term has 

the same multiplicity as in the case of H* ; the initial term n — 4 
differs from the initial term at H<* in that we have to draw the level 
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that was uppermost before double (we have to add l ~ 3, j = |) 
and we have also to mid a simple level (l 3, j ----- l) which now 
becomes the uppermost level. These two additional levels may not be 
combined either with I or with II (on account of AZ = 2 or 3). For 
this reason the number of components in and all the following 
Balrner lines remains the same, namely 5, and several components 
have the intensity zero (in the case of they are la, Ila and 116). 

We come next to the Hef-line A = 4686 (Fig. 76) : three-fold 
final term, four-fold initial term, or, if we also include the coincident 
levels, five-fold final term (M-levels), seven-fold initial term (N-levels). 
The number of transitions is seen from Fig. 76 to be 13, of which, 
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Fig. 76.—New quantum notation (on the right) of the scheme of levels of A4686 
(He+). Arranged as in Fig. 75. 

however, 5 pairs (those that are bracketed) become identical. Eight 
therefore remain. The old method of counting (3 quartets la . . . 
Hid) gave 12 components. Four of them, namely Id, IIa, Ilia, and 
III6, are forbidden by our selection rules, and have therefore not been 
drawn in Fig. 76. In the earlier Fig. 71 they are of zero intensity. 
The corresponding X-ray lines belong to the M-series ; their symbols 

have not been given in Fig. 66. 
The number of components 8 also remains preserved in the case 

of the higher lines of the He+-lines. 
Our selection rules are put out of action by strong electric fields, 

cf. Chapter VI, § 1, and Chapter VII, § 2. That is why in Fig. 71 
the “ spark discharge ” exhibits more components than the “ direct- 



*73 § 4- Relativistic Doublets in the X-ray Region 

current discharge ” picture ; for example, in the former the com¬ 
ponents 11 Yah are represented,* whereas they are absent in the latter. 
In other respects, too, the intensity conditions differ somewhat in the 
two pictures. 

We now arrive at the intensity rules. We adopt an essentially 
empirical standpoint, precisely as in the case of X-ray spectra, because 
a full theoretical treatment is possible only on a wave-mechanical 
basis. We therefore make the following statements : 

Those transitions are strong in which j and Z change in the same 
sense. Moreover, the transitions with increasing Z’s are weak com¬ 
pared with those of decreasing Z’s. Since the combination of AZ — ^ 1 
with A j — ± 1 does not come into qimstion here any more than in the 
case of the X-ray spectra (cf. p. 245), we must distinguish between 
four cases : 

AZ = - 1, A j — — 1 
A/ = - 1, Aj = 0 
A l = + 1, Ay — + 1 
A Z ~ -j~ 1, A j — 0 

strongest, 
less strong, 
weaker 
weakest. 

Compare with this our scheme of transitions in Fig. 76 and our data 
about intensities for Ha in Fig. 69. The strongest components are 
la and 116 (of the type A/ = — 1, A j — — 1, in the case of 116 in 
each of the two transitions here fused together). The components 
16 and lie (of the type AZ — — 1, Aj — 0) are less strong ; Ic (of the 
type AZ — + 1, A j = -|- 1) is still weaker. The type AZ = + 1, 
Aj = 0, which we must regard as the weakest, does not show itself 
separately but only fused with lie. 

In the case of A = 4686, too (we are dealing with the direct-current 
picture in Fig. 71), the strongest components are of the type Al — — 1, 
Aj = — l, namely IIlc, 116, la. The fact that 116 comes out more 
strongly than la may be related to the fact that in 116 two transitions 
of this type are fused together. The weaker components belong to 
the type AZ = — 1, Aj = 0, and so forth. The component Id should, 
theoretically, be absent in the direct-current picture. 

The quantitative values for the intensities drawn in Figs. 69, 70 
and 71 have been calculated by wave-mechanics ; they are in agree¬ 
ment with our qualitative rule of intensity but cannot be accounted 
for here. 

§ 4. Relativistic Doublets in the X-ray Region 

There is a direct road from the minute hydrogen doublet over the 
fine-structures of ionised helium to the doublets of the X-ray spectra. 

* Paschen remarks, however, loc. cit., Ann. d. Phys., 82, 689, in agreement 
with Leo, Ann. d. Phys., 81, 757, that this component is probably to be ascribed 
in a large measure to a He-band. The intensity originally estimated by Paschen 
and represented in Fig. 71 would be too great tor a line that is “ forbidden,” and 
that has only been called up by the field. 

VOL. I.—18 
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The hydrogen doublet is produced in the field of a singly charged 
nucleus, the line-structure of He+ in the vicinity of a doubly charged 
nucleus ; the X-ray spectra come from the interior of the atom and 
lienee originate in the field of a highly charged atomic nucleus. The 
magnification factor of the fine-structure as compared with the 
hydrogen doublet amounts to 24 in wave-numbers in the case of Hef ; 
but in the case of the X-ray spectra of an element of atomic number 
Z it is multiplied * by a number of the order of magnitude Z4, which 
in the case of uranium is 

924 - 7-2 . 107. 

The salient facts of experiment are known to us from Chapter IV, 
§§ 5 and fi. We shall discuss chiefly the L-series. The L-doublet ” 
arises between the lines (a'^), (yfS), (c^), (£9), .... The interpreta¬ 
tion of these constant doublet-differences was contained in Table 14, 
page 214 ; all lines of the L-series start from different initial states 
and end in the L-shell, and the difference in the levels Lm and Lu 
determines the L-doublet. 

We can now give the reason for the difference in the Lm- and 
Ln-levels. The K-shell belongs to the quantum-number 1 and is 
therefore simple. The L-shell has the quantum sum 2 and is therefore 

threefold, by the arguments of Chapter IV ; we shall, however, at 
present deal only with Luj and Lm Lm has the quantum-numbers 
/ — 1, j — •}, —- 2, n — 2 and Lu has, analogously, / 1, j = 

— 1, n = 2 (see Fig. 75). According to the term-formula (6a), 
p. 260, Lj[ therefore has the lesser energy (due regard having been paid 
to the sign), that is, lies lower than Lm. 

The L-term ” is the positive first term of the L-series. Our 
data about the constancy of the L-doublets and the intensity ratio 
of its components are therefore particular applications of the general 
assertions of §§ 2 and 3, page 262 et seq., about doublets, triplets 
of constant difference of vibration-number and about the intensity 
of such “ doublet-com bination s.” 

Eqn. (6a) on page 260 also gives a completely satisfactory quanti- 
E 

tative expression for the Lm- and the Ln-terms. With Z = — we 

* This statement refers to the difference Av in wave-number. The difference 
AA in wave-length, however, is essentially independent of Z (cf. p. 236). Since in 
the spectrometer the wave-length A is measured in relation to the crystal lattice- 
constant d [cf. eqn. (3) on p. 188] the accuracy of the fine-structure measurements 
comes out practically the same for all atomic numbers Z. The fact that the 
fine-structures in the X-ray region can be measured with so much more ease and 
accuracy than those on the visible region is not due to the greater value of Ar, 
but to the much smaller value of d, the much finer lattice, which may be used, 
thanks to the smallness of the wave-lengths. 
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The difference between the two terms gives the magnitude of the 
L-doublet in wave-numbers, namely : 

Avh ™ vn — vm R 
E\4 a2 
e) 24 

govex2 l 

' 2 22\ e / 
E\2 , 53 a4/E\4 

8 24\ e + (2) 

Our method of representing the L-doublet is expressed quite com¬ 
pletely and rationally by the fine-structure constant a2 — 5*3 . 10 5, 

E 
the Rydberg frequency R --•= R/; and the nuclear number —. We 

must first get clear about the latter number. 
We know that the K-shell is situated within the L-orbit, and that 

the electrons of the K-shell screen the nuclear charge. But the L-shell 
is also occupied by several electrons and they also exert a screening 
action on the true nuclear charge. In place of the true nuclear 
charge ” we therefore have an “ effective nuclear charge ” which is 
smaller than Z. We set 

yi-^z-s.(3) 

Since we cannot calculate the “ screening-number ” s beforehand 
by theory we derive it from observation, that is, we treat it as a dis¬ 
posable parameter. To obtain a first idea of its value we, moreover, 
discard the higher relativistic terms in (2) and write 

Avl = ^(Z - *)< .... (4) 

This is the theoretical (or perhaps, owing to the presence of the 
parameter s, the half-empirical) formula to a first approximation, which 
is transposed from hydrogen. We compare it with the empirical 
formula which we developed at the end of § 5 of Chapter IV, eqn. (2), 
page 225 : 

Ar 5-3 . 10-5/r/ 

R ¥ (Z 
- 3*5)4 (5) 

These two formulae agree not only in their general structure but also in 
their numerical value. We see here a preliminary confirmation of 
our relativistic viewr of the L-doublet by the results of observation 
and further derive as the empirical value of our screening-number 

s = 3*5. 
By introducing the value of the hydrogen doublet from eqn. (1) 

on page 262, 
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we may write eqn. (4) in the following form : 

= A vh (Z — a)4 . . . . (6) 

We illustrate this in Fig. 77. Here we have plotted Z as abscissae 
and have taken as our ordinates the values of A vh calculated according 
to eqn. (6) from the Ar's of Table 18 on page 223 and divided by 
(Z — s)4. We see how the interpolated curve drawn through these 

points approaches a constant limit for small Z’s—a limit which agrees 
excellently with our ideal hydrogen doublet. 

The fact of fine-structure may therefore be followed throughout the 
whole system of the elements, from, hydrogen to uranium. The L-doublet 

appears as a direct copy of the hydrogen doublet. 
We shall not, however, stop at the first approximation in our 

quantitative account of the L-doublet, but shall also take into account 

Fig. 77.-—The AvH values, calculated with the help of equation (6) from the 
observed values of Avl» approach with decreasing Z the constant limit of 
the hydrogen doublet AvfI ~ 0-86 cm.-1 (dotted line). 

the higher relativity corrections. This will at the same time give us 

a means of judging the accuracy of our value s — 3-5 for the screening- 
number and will convince us that the L-doublet is represented within 
the limits of experimental error accurately by our relativistic formula 
for the whole series of elements. 

We may proceed by calculating the value of E/e = Z — 8 separately 

for each element from formula (2). That is, we start from 

B=F<z-*»*(1 + I^z-'), + f + - ■ •) (’> 

and derive the square root by applying the Binomial Theorem after 

multiplying by 24/«2. In this way we obtain 

2* /Av 

aVR (Z *>•(> + } 
, 81 a4 „ 

+ 32 24 ^ 
s)4 + (8) 
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We eliminate the term in (Z — s)4 from (7) and (8) by forming 

22 /Av 
a V R ' 

5Av 
R (Z «)2(l 

19 U , 
32 24<Z ~'S) + ' • ’ (#) 

Table 21 

z Ai'/n z - « 8 z Ar/ R z - « « 

41 Nb 6*90 37-53 3-47 63 Eu 47-17 59-51 3-49 
42 Mo 7-7 38-5 3-5 64 Gd 50-64 60-50 3*50 
44 Eu 9-49 40-54 3-46 65 Tb 54-36 61-51 3-49 
45 Eh 10-48 41-53 3-47 66 Dy • 58-24 62-51 3-49 
46 Pd 11-57 42-55 3*45 67 Ho 62-43 63-52 3-48 
47 Ag 12-69 43-52 3-48 68 Er 66-81 64-52 3-48 
48 Cd 13-97 44-52 3-48 70 Yb 76-08 66-49 3-51 
49 In 15-29 45-50 3-50 71 Lu 81-11 67-47 3-53 
50 Sn 16-72 46-51 3-49 73 Ta 92-46 69-52 3-48 
51 Sb 18-30 47-53 3*47 74 W 98-49 70-52 3-48 
52 Te 20-00 48-55 3-45 76 Os 111-08 72-51 3-49 
53 I . 21-70 49-51 3-49 77 lr . 118-53 73-53 3-47 
55 Cs 25-59 51-50 3-50 78 Pt 125-85 74-52 3-48 
56 Ba 27-74 52-50 3-50 79 Au 133-62 75-52 3-48 
57 La 30-01 53-46 3-54 81 T1 150-20 77-51 3-49 
58 Ce 32-05 54-33 3-67 82 Pb 159-12 78-50 3-50 
59 Pr 35-02 55-48 3-52 83 Bi 169*02 79-55 3-45 
60 Nd 37-86 56-51 3-49 90 Th 249-37 86-51 3-49 
62 Sm 43-95 58-50 3-50 92 U . 277-91 88-51 3-49 

Moan : tt — 3-487. 

Here we may also use the first approximation from eqn. (4) in the 
correction term on the right-hand side without introducing an ap¬ 
preciable error. We then obtain 

(Z - 3)* r2i 
Va\ R 

/A* 
5f)(i+S*‘t) • • <io> 

The numerical implications of this formula are shown in Table 
21. The first column repeats the values of Ar/R = L/? — La' from 
Table 18. The second gives the values of Z — s calculated by eqn. 
(10), where we have set a2 — 5*305.10~5 (cf. § 6). In the third column 
we have the values of the screening-constant s that follow from the 

values of Z — 8, The mean of all the values of s amounts to 

^ = 3*50. 

As we see, the individual values of $ fluctuate about the mean value 
in a quite unsystematic way. 

More important than the constancy of s is the accuracy with which 

the quantum-number 2 is confirmed by our calculation and the 
relativistic law for the progressive increase in the doublet-interval 
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is confirmed. The latter also explains the increasing curvature of 

the graphs for V v/R in Figs. 57 and 59 of the K- and L-series. If 

the X-ray spectra could be represented rigorously by a formula of the 

Balmer-Moseley type, Vv/R could be represented, as a function of 
the atomic number, by means of a straight line. The effect of taking 
into account the relativity corrections of the first and higher orders 
is to give an increasing upward bend to the straight line as Z increases. 

Not only the L-doublet but also the M- and N-doublets confirm 
our relativistic fine-structure formula. 

From observations of the L-series the doublets (a'a) and (</)'</>) 
are known to us ; we called them M-doublets (cf. Table 14, p. 214) 
because their origin is due to the differences in the M-levels. (a'a) 
represents the difference (MvMiv), (</>'</>) the difference (MniMji), 
corresponding to the following scheme derived from Table 14 : 

\a' . . . Miv-> Liu \<f>' • • • Mn -> Li 

(a ... Mv -> Lm [<j> ... Mm -> Li. 

The M-shell belongs to the quantum-number n 3. From the 

general expression of the terms, (6a), on page 260, we calculate for n — 5 
the term-differences for = 2 and 3, and also for ?i(f) l and 2. 
These are the differences in the values of the levels Mjv — My and 
Mn — Mm, respectively. We denote them by Aiq and Av2 and have, 
by the equation mentioned, if we set Z = E/e, 

Aiq 

R 

Av2 

R 

/En * a2r 

u, ) 34 

/E' * a2' 

u. ) 34 

25a2/E\2 

32 32\e ) 

5® 279 

32 + 

317 a4/E 

256 34\ e 

13059 aVE 

256 34\ e 

* (H) 

: (12) 

The ratio of the two would be—if we neglect the higher powers of 
a2 and take E/e as having an equal value in both formulae—equal to 
1 : 3, in agreement with eqn. (8a) on page 261. In this case we should 
have the hydrogen triplet with which we are already so familiar. 
But the assumption that E/e is the same in each case no longer applies. 
The hydrogen triplet resolves into two hydrogen-like doublets. The 
levels which in a certain sense accidentally coincide in hydrogen 
(cf. for example, Fig. 75 for the case of H*) separate in the X-ray 
spectra and give rise, for n = 3, to the five M-levels M[ to My, of which 

the two pairs (MuMm) and (MivMv) are the relativistic or regular 
doublets in question. 

The calculation for (a'a) has been carried out by E. Hjalmar * 
on the basis of his precision methods. The object is to show that 

eqn. (11) represents the observations on (a'a) for all values of Z if 

* Zeits. f. Physik, 3, 262 (1920). 
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a new “ screening-constant ” s be suitably chosen, where, as in the case 
of the L-doublet, we set 

E/e - Z - a. 

and calculate s empirically. The calculation is carried out in the 
manner of eqns. (7) to (10) of the present section, the last of which 
here runs : 

(Z *)* 
225 Av\ / , 589 0Av\ 

16 R ) (1 4 T024a‘R> (13) 

We find that for all elements between Z 41 and Z — 74 a remark¬ 
ably constant value is obtained for s, namely, 

8 — 13*0, . . . . (14) 

the fluctuations appearing to be quite unsystematic. 
In precisely the same way eqn. (12) represents the M-doublet 

(</>'<(>) in the L-series. The fact that this doublet is considerably 
further separated than the doublet (a'a) in the L-series agrees at least 
qualitatively with the ratio 3 : 1 of the separations between the 
components in the hydrogen triplet. It is also possible to calculate 
a screening-constant -s* from the observations of (</>'</>) on the basis of 

(12). The formula analogous to (13) now runs : 

(Z-*)2 

and gives * 

(3 /6Av 279 Ar\ / 

\i\~R ~Ten){1 + 

8*5 

(15) 

(16) 

Just as the M-shell belongs to the quantum-number 3, so the 
N-shell belongs to the quantum-number 4. By setting n ■— 4, 

— 4 and 3, 3 and 2, and 2 and 1. respectively, in the general 
expression for the terms (fia) on page 260, and forming the differences, 
we obtain the three doublets : 

Ai/j ----- Nvi — Nvii, Ac2 — Nyv — Nv, Ar3 — Nji — Nm, 

which, in the case of hydrogen, owing to the coincidence of three 

pairs of levels, combine to form the quartet Ac, : Ac2 • Ac3 = 1:2:6 
(ef. eqn. (9a) on p. 262), namely, 
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(18) 

(19) 

* For the numerical data required for calculating this screening-constant and 
that of the N-doublet, see A. Soiumerfeld and G. Wentzel, Zeits. f. Physik, 7, 
86 (1921); G. Wentzel, ibid., 16, 46 (1923), and further, from a more general 
point of view, L. Pauling, Proe. Roy. Soc., A, 114, 181 (1927). 
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Of these three regular doublets only the last may be derived as 
an “ N-doublet (xx') °f the L-series ” (cf. p. 214) to a sufficient degree 
of accuracy from direct measurements of distances between lines. Here 
again the relativistic doublet fully proves its worth ; we obtain as the 
screening-number from a formula analogous to (13), (15), 

s = 17*0.(19a) 

To arrive at the other N-doublets we are compelled to derive them 
indirectly from the combination of several differences of lines. 
Corresponding to the values so obtained for the separations of the 
doublets we get, according to the formulae (17) and (18), the following 
approximate values for the screening-constants : * 

s — 34 . . . . . (17a) 
and s — 24*4 .... (18a) 

respectively. 
It is remarkable that the screening-constants s of the M- and the 

N-levels appear to be approximately integral multiples of a unit 
quantity which lies between 4*2 and 4*3 : f 

(Min Mn) 8*5 - 2.4*25 ; (My Mrv)13*0 - 3.4*3 

(Nui Nn) 17*0 = 4.4*25 ; (Ny NiV) 24 - 6.4*0 ; (NVJi Nvi) 34 8.4*25. 

The L-shell, for which s = 3*5, appears, however, to form an exception 

to the rule. 
The increase of the screening-constant s from 3*5 for the L-doublet 

to 24 and 34 for the N-doublet is quite satisfactory from the point 
of view of the model since it points to an increase in the number of 

interposed electrons, likewise the increase of s in the transition from 

A v2 and A vx in the M-series or from A v3 to A v2 and A vx in the N-series. 
For Av3 refers to elliptic orbits of great eccentricity which closely 
approach the nucleus, that is, which are only slightly screened whereas 

A v2 and A vx refer to orbits of small eccentricity for which the screening 
is naturally expected to be strong. Hence although from the point 
of view of wave-mechanics we must be cautious about taking the 
orbital ideas too literally, we nevertheless see that in a qualitative 
way there is much truth in them. 

To conclude we shall touch on a matter which was a mystery 

until Dirac’s theory of the relativistic electron appeared and which 
can therefore be fully dealt with only when we discuss this theory 
in the second volume of the present work ; namely, the allocation 
of quantum-numbers to the regular doublets on the one hand and 

to the irregular doublets on the other. On pages 244 and 270 we 
assigned quantum-numbers l, j to the levels in such a way that the 
regular doublets were given by adjacent j'n and equal Z’s, and the 

* The screening-constant of NyiNyn appears to show a systematic decrease 
below Z ~ 74. 

| A. Sommerfeld, Journ. Opt. Soe, Amer., 7, 503 (1923). 
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irregular doublets by adjacent Vs and equal j’s. In contrast with 
this we have now assigned two adjacent values of n$ to the two levels 
of a regular doublet (cf., for example, Fig. 75), whereas according 
to our earlier assertion we should have = l + 1 (p. 115), so that 
differences in the n(frvalues should cause differences in the /-values. 
The apparent contradiction is removed by .Dirac’s theory, which 
shows that the quantum-numbers /, j are actually required for dis¬ 
tinguishing between the hydrogen terms and the combinations between 
them, but that for calculating the relativistic term-differences it is 
necessary to introduce a quantum-number that corresponds to our n 
By applying Dirac’s theory for hydrogen to the X-ray spectra we can 
justify our procedure in the present and the preceding chapter although 
we cannot yet explain it satisfactorily. 

§ 5. Irregular or Screening Doublets 

The law governing irregular doublets was discovered by G. Hertz,* 
1920. We may regard as a typical doublet of this kind the difference 

Fig. 78.—Law governing the irregular doublets of the Rontgen spectra illustrated 

by the L-levels : A Vr/R for all atomic numbers Z is approximately constant 
for the irregular doublet L|Lu. The regular doublet LnLu, shows con¬ 

siderable increase of A-v/r/R. 

* Zeits. f. Physik, 3, 19 (1920). Hertz’s measurements have been replaced 
in Table 22 by the more accurate measurements of Coster and Lindsay. These 
confirm Fig. 78. 
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in the limits L]Ln, which was measured by Hertz. The measure¬ 
ments made by him refer to the elements Cs 55 to Nd 60 ; they are 
plotted in Fig. 78, which is taken from his paper and which also 
includes the differences in the limits LjLu measured by Duane and 
Patterson for the elements W 74 to U 92. This figure expresses the 

following law : if we plot V v in the mariner of Moseley the graphs for 

hi and L11 run appreciably parallel to each other, in contrast to the lines 
Lu and Lm, which move away from each other more and more as 
Z increases, in accordance with the law for regular doublets. 

Thus the law governing screening doublets states in general that 

the difference in the V y-values of the two doublet components is 
approximately constant. Table 22 illustrates this for (LiLu). Here 

Table 22 

> 

1 

Is? 
> 

1 

> 

1 
l s 

** 

1 

II 

1 

\y/^ 
> 

1 
1 Ij 

> 

lK
 

V 

k 
V 

1y. 

47 Ag . 21 9 0*66 0*53 I 33 0*29 1*32 
51 Sb . 22-5 0*62 0*64 1*15 0*80 0*87 
52 Te . 23*8 0*63 0*61 1*20 0*58 1*09 
53 I . 250 0*65 0*59 1*21 0*68 1* 04 — 

55 Cs . 26*9 0*67 0*57 1 24 0*45 M2 
56 Ha . 27-6 0*67 0*57 1 -22 0*48 112 —- 

57 La . 28-7 0*68 0*55 1*23 0*47 M3 
58 Ce . 29-2 0*67 0*58 1 22 0*49 M3 
66 Dy . 35-5 0*70 0*60 1*23 0*46 1*32 2*5 
68 Hr . 37-0 0*70 0-59 1*24 0*42 1 *29 2*6 
69 Tu . 380 0*70 0*58 I *27 0*39 1*35 2*7 
70 Yb . 39-2 0*71 0*57 1*28 0*45 1 38 2*8 
71 Lu . 39*7 0*71 0*57 1*29 0*37 1*34 2*8 
72 Hf . 40-7 0*71 0*59 1*23 0*49 1*36 2*7 
74 W . 42-4 0*72 0*59 1 27 0*48 1*41 2*6 
78 Ft . | 481 0*76 0*52 1*33 0*27 1*55 2*5 
79 Au . 45-8 0*71 0*57 1*23 0*61 1*40 2*5 
81 T1 . 48*2 0*72 0*62 1*24 0*66 1*17 2*2 
82 Fb . 47*4 0*70 0*65 1*23 0*68 1*35 2*2 
83 Hi . 48*5 0*70 0*66 1*18 0*76 J 12 2*1 
90 Th . 58*2 0*76 0*71 1*24 2*0 
92 U . 

1 

60*4 0*76 0*67 1*26 0-54 1*28 2*0 

we have copied in the first column the v/R-differences from Table 20, 
page 238 ; in the second column we have tabulated under the heading 

VLi — v Ln the differences in the V v/R-values for both levels. These 

differences are exactly constant within the region of Hertz's observa¬ 
tions, having the value 0 06 ; after that they increase slowly and 
continuously to 0*76. 
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But the same law holds, as Wentzel * has shown, for all those 
level-differences of the M- and N-shell which we have not already 
recognised as relativistic doublets. These are those doublets in the 
scheme on page 242 which are bracketed together downwards, that 
is, below the M-limits MiMjj and Mm Mrv, the N-limits NiNn, Nm Niv, 

Nv Nvi. The v/R-values used f°r them in Table 22 are likewise derived 
from the table of terms on page 238. Although only small differences 
and quantities that are indirectly derived occur in this table there is no 
doubt about the approximate constancy of the succession of numbers. 

Hertz interprets the law by expressing the wave-number v of 
each individual limit approximately as a Moseley formula, and he 
obtains 

^ I irr ^ ^ ® 

R ~ ~ ct) ’ V R “ n - • (1) 

where a denotes a new screening number. If and ct2 are the values 
of a that belong to the two levels of the irregular doublet, it follows 
from the second of eqn. (1), since these levels always belong to the same 
shell, that is, have the same n, that 

a 'A. —- ai ~~~ °~2 ___ Act 
\ R n n 

This is the law of irregular doublets established by Hertz, 
the first of eqns. (1) it simultaneously follows for Av itself that 

Av 2 Act /y crx + ct2\ 
R ” n*\/j “27’ 

. (2) 

From 

• (3) 

From eqn. (3) we can draw the following comparison between 
regular and irregular doublets : in the case of irregular doublets the 
wave-number difference Av increases essentially linearly with the atomic 
number, in the case of regular doublets it increases with the fourth power 
of the atomic number. Again, in the case of irregular doublets the 
difference AX in wave-lengths decreases as the atomic number increases; 
actually it varies as the inverse cube. In the case of the regular doublets 
it is, as we know, appreciably constant. 

But the expression (1) is still very incomplete and only arranged 
to fulfil the present purpose. We supplement it by combining it with 
the general expression (6a) on page 260. The essential feature is that 
we should choose the screening-number in the first term (principal 
term or Moseley term) different from the screening-number in the 
higher terms (relativistic correction terms of the first, second, . . . order). 
We denote the former number a, as in (1), and the latter s, as in the 

* Dissertation, Munich, 1921, (X 3eit£$T ft Physik, 84 (1921). 
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preceding section. In this way we obtain the general term-expression 
for X-rays : 

V 

R 
1 

(Z 
- *>*(£ -1) 

3<Z - *>' 

n 

l( U ^ 
_4\w*/ 

3 +8 
/ n \2 

WJ 
3 n 5 

2 8 
(4) 

From this formula we obtain our earlier formulae for the regular 
doublets, if we give the same value to the constants a and s in the 
two levels of such a doublet. The principal term then exactly cancels 
when the differences are formed. 

With the help of (4) we can also immediately formulate exactly 
the law of irregular doublets. For by (4) eqn. (2) is incomplete, 
because in forming it we left out of account the relativistic correction 

terms. It is in agreement with this that the AVv/R-values in Table 
22 are not rigorously constant ; in the case of (LiLn) and (MjMn), 
at any rate, they exhibited a small systematic variation. But on the 
basis of formula (4) Hertz's law can now be made more rigorous. 

For this purpose we start from (4) and form the expressions, 

»W _ (Z — g)2 
R ~ n2 

(Z - s)* («) 

which we call “ reduced terms.” Since we know * the screening- 
numbers s in the terms involving a2, a4 . . . from the relativistic 
doublets, we can calculate vred numerically from v. Table 23 shows 

how Table 22 changes in the case of L- and M-levels, if we insert the 

V vreJR-values in place of the V v/R-values. In the case of the 
N-levels the relativistic reduction becomes inappreciable compared 
with the mean error. Hence these levels already led to appreciably 
constant differences in Table 22 and did not require to be taken up 

in Table 23. 

The rigorous form of Hertz's law thus runs : not the values AV v/R 

but AV Vredl & are exactly constant for every irregular doublet. According 
to our definition of reduced terms in (5) this of course denotes nothing 
else than that the screening-differences A a are constant. In the last 
row of Table 23 we again encounter, as on page 280, a remarkable 

integral relationship : the means of the AVvr<sd/R-values are approxi¬ 
mately multiples of 0*57. Since by (5) these values differ from the 
values of Acr only by the integer n, the Act’s are also whole multiples of 
0*57. The same relationship holds for the Act s in the N-levels, in which, 

* This is not the ease with Lr,f M~lf N“, levels. But in their ease we can 
determine s by postulating the rule of constant Act’s as valid also for the lowest 
screening-doublets. Cf. G. Wentzel, Zeits. f. Physik, 16, 46 (1923). The corre¬ 
sponding s-valups ar$ 2*0 for Llf 6*8 for Mr and 14 for Nr 
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as has been mentioned, vrcd can be identified with v, that is, the 
Act in question can be derived directly from Table 22. 

Table 23 

Elements and their 
Reduced Values of 
_A_ 

Atomic Numbers t— 
V L, — V Lu - Vm„ VMjh — VM iv 

47 Ag 061 . 0-51 1*31 
51 Sb 0-55 0-62 M2 
52 Te 0*57 0-58 1*17 
58 1 ... 0-58 0-56 1*18 
55 Cs ... 0-59 0-54 1*21 
f>0 Ba 0-59 0*54 1-19 
57 La 0-00 0-51 1*20 
58 Ce ... UT>9 0-54 119 
59 Pr ... 0-59 0-50 1*19 
60 Nd 0*59 0-51 1*19 
02 Sm 0-59 0*51 1*20 
63 Eu 0*58 0-52 1-19 
64 Gd 0-58 0-53 1*19 
00 Dy 0-58 0*54 1*18 
08 Er 0*58 0*53 119 
09 Tu 0-58 0*51 1*22 
70 Yb 0-58 0-50 1*23 
71 Lu 0-58 0*50 1*24 
72 Hf 0-58 0-51 1-18 
74 W 0-57 0*51 1*21 
78 Ft 0-59 0*43 1*20 
79 An 0*53 0*47 1*15 
81 T1 ... 0-53 0*52 1*10 
82 Pb 0-50 0*55 1*15 

88 Bi 0-50 0*56 1*09 
90 Th 0*50 0*58 1*14 
92 U ... 0*49 0*54 1*15 

Mean value : 0*50- 0-52, M8g 

We now tabulate the Act’s so obtained for all our screening doublets : 

(LiLn) 2.0-57 
(MiMji) 3.0-57 

(MitjMiv) 2.3.0-57 
(NrNn) 4.0-56 

(NuiNrr) 2.4.0-66 
(NvNvt) 4.4.0-6 

From the Aa’s we turn to the absolute values of the o-’s, which are 

calculated by means of eqn. (5). 
Fig. 79 represents these absolute values graphically as a function 

of Z. The parallelism of the o-curves within one and the same shell 
confirms our more rigorous form of Hertz’s law. But, moreover, it 



HMS£2aUB8B5i 

286 Chapter V. Theory of Fine Structure 

shown that the <t’k are neither independent of Z nor equal to the $*s. 
Father the cr's are always greater than the »v\s and increase with Z, 
while, as we know, the .s’s arc1 exactly constant. The increase of the 
... -■■■- ct s is explained by the cir¬ 

cumstance that not only the 
inner but also the outer 
electrons, whose number in- 

r creases with Z contribute to 
the screening-numbers a, 
whereas they have no in¬ 
fluence on the 6‘’s. Bohr 

^ calls this effect external 
screening.” We shall in¬ 
vestigate it more closely in 
Chapter VII and shall there 

2s r»- 1 I I i I 1 I I 1 I also refer back to the details 
of Fig. 79. In particular 

20 ^ ~Lj we shall there discuss all 
15 - the striking irregularities in 
<to__ the course of the curves for 
______k the rare earths, since these 

irregularities are connected 
15 so ‘ ss ‘ * 60 * 6S 70 “ 75 9o with the re-arrangement of 

Fig. 79.—The screening-number a of the ir- the N-shell. 
regular doublets as a function of the TSfot only ill the case of 
atomic number. ,. „ J . 

the X-ray spectra but also in 
the case of those of the visible region our laws for the regular and 
irregular doublets as well as Moseley's law have been shown to be valid. 
We shall revert to this discussion in Chapter VII. 

§ 6. Universal Spectroscopic Units. Spectroscopic Confirmation of 
the Theory of Relativity 

Three main-streams of research in modern theoretical physics 
are confluent in our theory of fine-structure : the electron theory, 
the quantum theory, and the theory of relativity. This is shown in 
a particularly striking way in the structure of our fine-structure constant : 

2?re2 m 
oc = tt.. I) 

Here e is the representative of the electron theory, h fittingly represents 
the quantum theory, and c comes from the theory of relativity ; c may in 
fact be regarded as characterising the latter theory as compared with 
the classical theory. 

We derive the value of a spectroscopically by measuring the 
hydrogen doublet (best indirectly, by measuring the HeMines, since 
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direct, measurement is too inaccurate, cf. p. 263). The relationship 
between a and Arn is, by eqn. (1), § .‘1, 

Ach - Ra3/24 .... (2) 

which, if we use the value Aey — (0*3636 0*0006) cm/ 1—ef. eqn. (1) 
in § 3—leads to 

a2 ,= (5*305 ± 0 008) . 10“", a - (7*283 ± 0*000) . 10 3. (3) 

It must be recalled that we may also write the definition (1) for a [cf 

eqn. (136) on p. 254 for hydrogen, i.e. Z ™ 1] : 

e2 h 
Po = -Z> Pi ~ "9" * ‘ 

__ Po 

p 1 
(la) 

Here pn is an elementary moment of momentum which is intimately 
connected with the relativistic Kepler motion, in particular with 
the motion of its perihelion (cf. eqn. (13a) on p. 253), and /pl is the 
moment of momentum of the first quantum state. The factor 2n 
which is apparently arbitrary in the definition (1) for a is appropriately 
legitimised by our definition (la). 

We must also remark that Eddington * has proposed the thesis 
that 1/a is a whole number which can be obtained by counting up Dirac 
matrices, its value being 136 or (by another method of counting) 137. 
The last value gives in close agreement with (3), 

a - ,1; - 7 2993.1()~3. 

It is clear that if Eddington *s thesis can be founded on incon¬ 
trovertible grounds it will have disclosed an intimate relationship 
between the three theories which we called the main-streams of modern 
physical thought at the beginning of this section. 

We arc now in a position to bring to its conclusion the idea of 

spectroscopic units, which was taken up as early as page 90 and was 
carried a step further on page 95. The three equations 

Rh = 

Rup - 

27r2m0e4 

h3c(l + mjmu) 

27r2m0e4‘ 

h*c( 1 + mjm He) 

_27re2 

he 

w 

(5) 

(6) 

give us three equations for determining the three unknowns, e, m0 and h, 

that is, for determining the three most important universal constants 
of physical nature. We must also note that the masses mh and mae 
which also occur in these equations can be reduced to terms of the 
electronic charge by means of the very accurately known electro¬ 
chemical equivalent and the ratios of the atomic weights of He and H, 

* A. 8. Eddington, Proe. Hoy, Son., 122, 358 (1928) ; 126, 696 (1930). 
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by means of eqn. (1) on page 5 and footnote 1 on page 93. Our 
determination of the three unknowns «, m{) and h involves only spectro¬ 
scopic measurements and hence is based on the most trustworthy 
observations. On the other hand, the original determination of h 
from heat-radiation data entails the measurement of high temperatures, 
that of e/mQ from deflection experiments entails the measurement of 
high potentials, neither of which measurements are as free from error 
as the spectroscopic measurements. The determination of h from 
the short-wave limit of the X-ray spectra also requires the measure¬ 
ment of high potentials. 

The eqns. (4), (5) and (0) can be expressed in such a form that 
from (4) and (5) we can obtain ejm0 (in e.s.u.), as has already been 
done on page 95 and which led in conjunction with Houston’s values 
for Rh and Rne to 

-- (1-761 ± 0-001) . 107c 
% 

With its help we there also arrive from RH and Rae at 

Roc = 109737-42 ± 0-06 cm.-1 

The significance of R oc is 

R - 27y2moe4 2tr2(e2/fr)3 

h?c ~ e(efmQ)c 

(7) 

(8) 

(9) 

Our method of writing the last term in eqn. (9) includes the combina¬ 
tion e2jh, which also occurs in (6). We can eliminate it from (6) and 
(9) and obtain 

Roc 
ore* orc- 

4-7Te(e/nioy 47tRqd (e/m0j 
(10) 

We need now only to refer back to eqn. (6) to obtain the value of h 
as well, namely, 

2ttc2 

a c 
(11) 

To be consistent we should now calculate the value of a from the em¬ 
pirical value of Avh, in accordance with (2). But the values for e 
and h so calculated would leave too much play in the matter of accuracy. 
We have therefore already given that value of a in eqn. (3) which we 
had obtained in § 3 with the help of the theoretical formula from the 
best values of e and h obtained from observations. We write down once 
again the values for e and h used in the process, 

e = (4-770 ± 0-005) . 10-10, h = (6-547 ± 0*008) . 10~27 (12) 

Hence our programme of using only spectroscopic units cannot yet 
be carried out fully. Although we have stressed the importance of 
specifying the universal constants as accurately as possible we have 
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been compelled for the present to borrow from non-spectroscopie 
measurements. 

We have already indicated in Chapter IV, § 2, page 198, a spectro¬ 
scopic method of determining Loschmidt/s number L and hence of 
calculating the elementary charge e. This “ X-ray spectroscopic ” 
method, however, assumes that the crystal lattice is flawless and that 
we have an accurate knowledge of the density of the crystal in the 
parts of the crystal involved in the reflection. Until these points are 
fully clear, this method, too, remains an interesting but unfulfilled 
programme. 

Finally we revert once again to the beginning of this chapter, 
in particular to the part where we deal with the law according to which 
the mass of the electron (and mass generally) depends on the velocity. 
According to the theory of relativity this law' runs : 

m - *2^ - m{) (1 j \p (-...) . . (13) 
V J -- p 

The older “ absolute ” theory which assumed that there was an ab¬ 
solute space or ether and that the electron was spherical in shape, had 
as its law of the charge of mass,* 

, 1 (1 
- imop\ i P* 

W 
lot p 

~p 
'"«(! + W* 4- • • •) (13a) 

The test as to which of these two formulae is valid was regarded as the 
experirnentum cruris for or against the theory of relativity. The 
direct proof in the electrical sphere (by means of cathode rays or /3-rays) 
was attempted by Kaufmann (cf. Chap. I, § 4), but was only achieved 
many years later by his successors by more refined methods.f We 
shall endeavour to arrive at a decision here by spectroscopic means.! 

Connected with the law of variability of mass is the law according 
to which the kinetic energy depends on the velocity. We know ac¬ 
cording to the theory of relativity that 

(m m0)c2 -- m(pf 
x V' 1 

1 

VI - P 

W#2(1 + w2 

(14) 

* First derived by M. Abraham. See his Theorie der Elektrizltdt, Vol. IT, 
3rd edn., pp. 162 and 175. 

t Cl. Sehiifer and G. Neumann, Ann. d. Phys., 45, 529 (1914), in which a 
method suggested by A. Bucherer is developed ; Ch. E. Guve and Ch. Lavanehv, 
Arch, de Geneve, 4i, 286 (1916). 

J The idea of trying this test was first suggested to the author by W. Lenz. 
It was worked out by K. Glitscher in his Munich dissertation, 1917 ; cf. also Arm. 
d, Phys., 52, 608(1917). 

VOL. I.-—19 
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whereas the absolute theory asserts * that 

Ekm =~ loS } :!’ | - 2) - -|^(1 f- JjB* f . . .) (14a) 

We have now to treat the Kepler problem of elliptic motion in 
the ease of a hydrogen-like atom according to the? absolute theory 
and from it to calculate the fine-structure of the spectral lines. We 
first find that as our second Kepler law we have the law of areas, 
which is valid here, quite independently of the law of variability of 
mass ; the law of areas states that the moment of momentum 

p — P<t> ~~ mr2<f) 

is constant (r and <f> are the polar co-ordinates reckoned from the 
nucleus, which is assumed to bo immovable). The momentum in the 
^-direction (projection of the momentum on the tangent to the circle 
r — const.) is then mrfy — pjr, and the total impulse is mv = 7/1 fic. 
-hrom these two we get the momentum in the /-direction according 
to Pythagoras’s theorem as 

pr =- mi V(mv)2 — p2fr2. 

The quantum conditions are : 
for the azimuth </> : 

1 P4>d<f) —■ 27rp — n<i>h, p - n^h 
Vj ■ (IS) 

J 0 

for the radius vector r : 
LTT 

j/Vtfr ~ - — dr nth • (10) 

The integration extends over the whole range of values of /•, that is, 
from rmin to rmax and back to rmin. 

To be able to evaluate the integral (lb) we must know mv as a 
function of r. But at present we know m and hence also mv mftc 
by (13a) only as a function of /?. We may, however, use the energy- 
law and the formula (14a) for the kinetic energy to obtain j8 as a 
function of r. The energy law runs, if we set the nuclear charge 
equal to Ze and hence the potential energy equal to — Ze2/r, 

Ekin = W - E,.f = W + 

If we use eqn. (14a) here, we obtain 

m0c2ft2 (i + m - w + Zf 
r 

To determine ft and mv = mefi from this we proceed in steps by sub¬ 

stituting the first approximation in the correction term of the second 

* Cf. M. Abraham, loc. cit. 
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order. We write the result in a form which embraces the absolute 
theory and the relativity theory ; namely, in view of (13) and (13a), 

’t) +■ —t(w + —) mwcA r J 

where y has tlie significance : 

(17) 

y — -j for the absolute theory, y J for the theory of relativity. 

We now use eqn. (17) in the quantum condition (16), whose integrand 
now appears as a simple function of r. The integration may be per¬ 
formed according to the scheme given in Note 4 under (a), and gives 

finally 

1 + ^=,1" 
0 | nr + Vn* - 2y(<xZ)* j 

(18) 

Our generalised eqn. (18) is distinguished from the relativistic 
eqn. (26) on page 250 only in having 2yea2 in place of a2 on the right- 
hand side and 2yW in place of W on the left-hand side. Consequently 
the power expansion at the beginning of § 2 of this chapter may be 
applied directly in our present eqn. (18). For example, in the 
expression (6) for the term on page 259 we have only to write 2ya2 
instead of a2. From this it follows, however, that all our theorems 
about fine-structure remain intact so long as we replace a2 by 2ya2. 
Hence the relative magnitudes of the fine-structures, for example, the 
interval 1 : 3 between the components in the hydrogen-like triplet, 
and so forth, also remain preserved in the absolute theory; only 
the absolute magnitudes of the fine-structures are reduced, by the factor 

y k 

in comparison with the theory of relativity. 
This holds in particular for the hydrogen doublet, which would be, 

according to the absolute theory, 

Ai>h 
4 Rcr 
5 24 

f 0-36 =r 0-29 cm.1 
5 

. (19) 

This value for the hydrogen doublet is incompatible ivith Paschen's or 
Houston's measurements of the He'-lines. The same may be said of 
the hydrogen doublets in the X-ray region, the L-doublets, and so 
forth. Taking the. results all together we may draw the conclusion 
that the absolute theory comes to grief on the spectroscopic facts. 



CHAPTER VI 

Polarisation and intensity of spectral lines 

§ 1. Bohr’s Correspondence Principle in the Case of the Hydrogen Atom 

WHEREAS the quantum theory of light deals primarily only 

with vibration numbers, classical optics gives us a deep insight 
into the forms of the vibrations in that it distinguishes whether 

polarisation occurs or not, and, if so, whether it is linear or circular, and 

it determines the relative intensities of the vibration components from 
the type of motion of the exciting particle. How may these results 

be made use of for the quantum theory of light The decisive word 

in this connexion belongs to wave-mechanics. By describing the 
quantum states as wave states it is able to make quantitative mathe¬ 
matical statements about the intensity of the light. In contrast with 

this we must here at this stage of our account remain satisfied with 
the qualitative and approximate assertions made by the correspondence 

principle in matters relating to intensity. Nevertheless we must 

note at once that the statements about polarisation and selection rules, 
which we shall derive presently from the correspondence principle, 
also remain preserved in wave-mechanics. 

The first hint as to how to formulate the correspondence between 
classical theory and quantum theory is given by the hydrogen spectrum. 

The frequency that is emitted in the transition from the mih to the 
nlh orbit is, according to the quantum theory, 

It differs from the frequency vcl which is emitted according to the 

classical theory. In the latter theory the vibration occurs in rhythm 
with the frequency at which the orbit is traversed (identity of the 

optical and mechanical frequencies) ; the emitted fundamental vibra¬ 

tion is equal to 1/r, where r is the time of revolution. In addition, 

overtone vibrations occur, at least in the case of elliptic orbits. 

According to eqn. (4a) on page 85 or, more generally, to eqn. (17) on 

page 113, we therefore have for the fundamental vibration 

2R 

nz 

292 

or 
2R 

m3’ 
(2> 
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respectively, according as the initial orbit m or the final orbit n is 
considered. Eqn. (1) may be written 

= R 
(m — n)(rn + n) 

nhn2 (3) 

If An 
the value 

m — n — 1 and n :> 1, vQU asymptotically approaches 

V <!U 

2R 2R 

n3 m3 ?® Vcl ’ 
(3a) 

Thus the frequency given by the quantum theory for two neighbouring 
orbits of very large quantum numbers becomes identical with the classical 
f undamental frequency of the motion. 

If, on the other hand, An > 1 but n is still >> An, it follows from (.3) 
that 

- -An = —An vctAn . . . (36) 

This means that the higher quantum transitions merge into the over¬ 
tone vibrations of the classical frequency. 

We shall express this relationship in a still more striking way. 
If J = nh denotes the phase-integral for the principal quantum number 

AJ 
n it follows that h ~~ The quantum frequency-condition hv = AW 

may therefore be re-written in the form 

AW, 

Vqu m AJ . 

On the other hand, W ~ — Rhjn2. Hence by (2) the fundamental 
vibration corresponding to the orbital motions is given by 

1 dW dW 

cl ~ h dn dd ’ 

Combining with this the overtone vibrations we obtain as the spectrum 
of the revolving electron, on classical theory, 

dW 

dJ 
An (5) 

The difference between the quantum and the classical frequency 
is simply that between the quotient of the differences and the differential 
quotient. The same difference occurs quite generally when we pass 
from atomic theories to continuum theories. 

We now also understand why the classical and the quantum fre¬ 
quencies approach each other asymptotically when n has great values 
or, rather, when n >> An. For, if we consider W as represented 
graphically as a function of n we find that for great values of n the 
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chords and the tangents, and the 
quotient of the differences and the 
differential quotient become more 
and more nearly coincident. 

When n has sufficiently great 
values there is coincidence and 
when n has moderately great 
values there is a correspondence 
between the results of the classical 
and the quantum theory. Cor¬ 
responding to the fundamental 
vibration of the classical theory 
we have the quantum transition 
An -- 1, and corresponding to 
every overtone vibration we have, 

« s according to the equations (4) and 

§ £ (»>) the quantum transition whose 
Z © An is equal to the order of the 
js l. c overtone vibration, 
fg! V This is illustrated in Fig. 80. 

Between the two top lines we have 
the Balmer series in the scale of 
the j/s, exactly as in Fig. 19 on 
page 69. The frequency v 0 is 
shown as a dotted line on the left- 
hand side, and the series limit 
v = R/22 is given on the right. 
Between the two bottom lines we 
show the classical spectrum for 

g 2 & the final orbit n — 2. As a result 
§ g | of eqn. (2) its fundamental vibra- 
2 'g £ tion coincides with the series limit 
I £• S and has been denoted by a since it 
g g g corresponds to the line H*. The 

first overtone vibration which 
j§ corresponds to H^, lies at twice 

dr the distance from the zero-line, the 
a n second overtone vibration lies at 
o 

three times the distance, and so 
is4 forth. Hence in order to visualise 

I g .§ the correspondence kinematically 
| S | we must displace the classical 

o 2 I spectrum towards the left-hand 
^ ^ side so that the infinitely distant 
£ overtone vibration coincides with 
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the series limit and the fundamental vibration coincides with H*. 
The fact that there is nothing to be seen of a coincidence of the 
higher series lines is, of course, due to the fact that the condition 
n >> An is by no means fulfilled, but that rather n = 2 here and 
An 2 for the higher lines of the series. 

In spite of the formal correspondence or coincidence (in some cases) 
there is actually a considerable difference in the point of view. On 
the classical theory all the vibrations are emitted simultaneously 
while the orbit is being traversed. The whole vibration spectrum 

owes its origin to one uniform process. From the quantum point 
of view, however, every line of the spectrum corresponds to another 
individual process and another kind of quantum transition. The 
individual processes do not occur simultaneously but independently 
of one another. The experimental results obtained in the excitation 
of spectral lines (ef. in particular, the section on electron collisions 
in Chap. VII) confirm without exception the point of view of the 
quantum theory. 

The correspondence in the frequencies according to the two 
different theories is by no means accidental ; rather it has its root in 
the part played by the classical theory of radiation as an approxima¬ 
tion, obtained by using the idea of a continuum, to discontinuous 
reality. Does it apply only to frequencies and not to vibration forms 

and intensities, that is to polarisations and amplitudes ? This can 
hardly be denied for the large quantum numbers. But Bohr demands 
further that the amplitudes and so forth given by classical calculation 
shall also apply approximately in the case of moderate and small 

quantum numbers.* It is precisely this extension that renders his 
Correspondence Principle so fruitful. Following on Fig. 80 we formu¬ 
late this principle as follows : in displacing the spectrum from its classical 
into its quantum position we must leave each line the intensity and polarisa¬ 
tion (if it occurs) which it has according to the classical theory. The 
Correspondence Principle asserts that in this way we obtain the intensity 
and polarisation of the actual spectral lines perfectly correctly in the case 
of quantum numbers that are sufficiently great, and approximately cor¬ 
rectly in the case of moderately great quantum numbers. 

We must bear in mind that the question of intensity is in reality 

a statistical problem. The quantum theory considers individual 
events in the atom and offers no measure for the frequency with which 
they occur. But it is this frequency of occurrence that is involved 
in all questions of intensity. The classical theory of radiation, 
however, uses mechanics to derive from a given orbital curve the 
complex of vibrations contained in it together with their amplitudes. 
In contrast with this the Correspondence Principle asserts that: 

♦ Cf. the dissertation by H. A. Kramers, Intensities of Spectral Lines, Copen¬ 

hagen Academy, 1919. 
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the unknown statistics of individual quantum processes is actually given 
by the classical calculation ; by calculating the amplitudes of the classical 
spectrum we obtain the correct numbers for the frequency of occurrence 
of the corresponding quantum processes. 

This procedure is not, however, unique, and this in itself characterises 

it as an approximative process. In calculating the classical ampli¬ 
tudes, are we to use as our basis the initial orbit or the final orbit or 
an intermediate orbit defined by taking an average of these two ? 
The Correspondence Principle offers no answer. It is easy to see 
that with the asymptotic condition An <•< n the amplitudes that are 
obtained from the initial or the final orbit or from an intermediate 
orbit must come out appreciably the same. But when An and n 
have values that are not very different from each other a certain 
arbitrariness remains. Wave-mechanics disposes of this arbitrariness 
by taking into account both the initial and the final orbit in deter¬ 
mining the intensity ; and it uses them symmetrically. 

Another difficulty is connected with the particular circumstances 
of the hydrogen spectrum. The Kepler problem without relativity 
is a degenerate problem. It is quantised by the principal quantum 
number ny which determines the energy of the orbit (its major axis) 
but leaves the form of the orbit (eccentricity) undetermined. Let 
us consider, for example, the final orbit of the Balmer series, n -- 2. 
If we disregard the fine-structure we cannot distinguish whether 
the circular or the elliptic orbit of Fig. 27 occurs. But then the 
amplitude ratios of the emitted spectrum would remain undetermined. 

Actually, the circular orbit is given by 

x — a cos 2irpf, y —- a sin ‘IttvI . (6) 

where v -- 1/r stands for the classical frequency of revolution. The 
classical vibration here consists of only the fundamental vibration 

v ; the amplitudes of all the overtone vibrations 2vt 3vy . . . are zero. 
The polarisation is circular for an observer in the 2-direction. The 
position is different with the elliptic orbits. If we imagine its principal 
axis to be the co-ordinate axes and likewise to be functions of the 
time, then they assume the form of infinite Fourier series : 

x ~ a cos 2ttvI + a' cos 4m4 + a'' cos iS-nvt -f • • • 1 

y ~~ b sin 2ttvI + b‘ sin Anvt | b" sin tinvt * ' ' 

The particular form of this expansion * results on the one hand from 
the periodicity of the orbit and on the other from the fact that even 

* The coefficients of this expansion are Bessel functions with multiples of 
the eccentricity as argument. The absence of overtone vibrations in eqn. (6) 
is due analytically to the circumstance that Bessel functions of vanishingly small 
argument and non-vanishing index vanish. The name Bessel indicates that 
the theory of these functions was elaborated precisely in connection with the 
Kepler problem. 
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and odd numbers are involved in the dependence of the time on the 
x- and the ?/-co-ordinate respectively. That we must add the higher 
terms in both the equations (7) is seen directly from the fact that the 
motion in the ellipse is not uniform. All the overtone vibrations are 
now present. Their amplitudes relative to the fundamental vibration 
are given by 

Va*~\~T2 : : 9Va"2 + ft77* : . . . . 

The factors 4, 9, . . . associated with the overtone vibrations result 
from the fact that the emission is not given by the co-ordinates them¬ 
selves but by their second differential quotients, the accelerations. 

Hence in elliptic motion we have a different distribution of intensity 
in the spectrum, as calculated on classical theory, than in the circular 
motion. In the present case we may, however, say that the observed 
intensity which is due to the emission of radiation from very many 
atoms, arises from both kinds of transition (into a circular or an elliptic 
orbit) and is obtained by superposing the partial intensities due to 

these transitions. The statistical weights (probability factors) that 
must be associated with these transitions can be determined only 
again when we deal with wave-mechanics. 

The ambiguities in the manipulation of the Correspondence 
Principle vanish in the particular case where the Fourier coefficients 

have the value zero for the initial and the final orbit. In that case, 
we can without fear of error assign the value zero to the emission. 
The Correspondence Principle then becomes specialised into a rigorous 

Selection Principle : it forbids the occurrence of those spectral lines 
which have no corresponding partial vibrations in the Fourier series 
in question. 

A very simple illustration of this is again given by the hydrogen 
spectrum. Can a transition be effected from one circular orbit to 
another ? Ln the case of the circular orbit all the overtone vibrations 
in eqn. (6) arc absent. Since these vibrations correspond to the 
quantum transitions An > 1 we must infer that such transitions can 
never lead from one circle to another. If we assume the final orbit of 
the Balmer series to be a circle the initial orbit of H/3(4 2), of 

Hy(5—> 2), and so forth, must necessarily be elliptical ; it is only in the 
case H*(3 —> 2, An — 1) that we can pass from circle to circle. From 
this we see that the different ways of generating lines, which we 

enumerated for the Balmer series on page 114, become restricted by the 
selection principle and that Fig. 22 on page 90 which used only circles 
is too diagrammatic. 

To formulate the selection principle still more rigorously we shall 
use as our basis the non-degenerate hydrogen atoms (Chap. V) or a 
diagrammatic atom not hydrogen-like (Chap. VII). In both cases the 
azimuth <f> of the revolving electron or of the external “ series electron,” 
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plays the part of a cyclic variable, as it does not occur in the energy- 
expression and hence has a constant moment of momentum p$ = p. 
The obvious difference as compared with the degenerate Kepler ellipse 
is that tf> does not change purely periodically but exhibits a “ secular ” 
motion, rotating its perihelion. To visualise this let us fix our attention 

on the first figure of Chapter V. We write 

<f> — cut | 0(n, /) 

and take w to stand for the angular velocity of the secular motion. 
The remainder 0 which is left when cut has been deducted from <f> is 
purely periodic and depends, as in the case of the degenerate problem, 
only on the principal quantum number n. No secular term occurs in 
the case of the r-co-ordinate. Hence we write 

and form * 
r \i(n, t) 

x f- it/ re}* eiuitF(n, 1) (8) 

The function F, which is composed of R and 0, has the same pro¬ 
perties and periodicity as 0 and likewise depends only on n. F may 
be expanded in a Fourier series in multiples of 2nvl, such as we have 
already written down explicitly in eqn. (7). If we make co ---- - 2xri'0, 
so that v0 denotes the frequency of revolution of the secular motion, 
we obtain from (8) 

4- ® 

x -f iy — c2tri^ (<$) C, e2n/*rf . . . (9) 

— no 

where we have used negative values for the summation letter s for 

the sake of simplicity. A striking feature here is the difference in 
the two exponents of e : in the case of v0 the integral factor is absent, 
which is denoted by s in the case of v. That is, the integer assigned 
to c0—say s0—has the value 1, or, since we may reverse the sign of 

i in (9) the values ± L Now, * denotes the order of the overtone 
vibrations and, by the Correspondence Principle, the magnitude of 

the quantum transitions An --- s. If all the s's occur all the An’s are 
allowed by the Correspondence Principle. On the other hand, the 
azimuthal quantum number n$ belongs to the azimuth <£ and the 
integer sQ corresponds to the quantum transition An^. From $0 ----- 1 

we deduce by the Correspondence Principle that 

An*-±1 .... (10) 

In place of n$ we shall use the wave-mechanical symbol l — —• 1 

(cf. p. 115; the relativistic difference between l and or % — 1, 

Cf. Note 7, in particular (e). 
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which expressed itself in Fig. 75, p. 270, may here be left out of 
account). Instead of (10) we may also write 

Al - ± 1 . . . . (10a) 

The azimuthal quantum number l can change only by unity. Besides 

| A/ | <1 also At =■= 0 is forbidden ; the intensity of the corresponding 
quantum transitions is zero. 

Hitherto we have assumed the orbit to be plane, which is certainly 
true in the case of the Kepler ellipse and the rather simple atoms that 
are not hydrogen-like ; so long as we schematically regard the forces 
exerted by the atomic core on the series electron as central forces and 
disregard electron spin. But if the atom is situated in an external 
field of force the orbit will be spatial, so that a 2-component will have 
to be added to the x- //-motion. Let the external field be parallel to 
and symmetrical about the 2-axis. In contrast with the azimuth 

<f> measured in the orbital plane, the equatorial azimuth <// measured 
in the xy-plane (equatorial plane) has now a cyclic character. Its 
secular motion does not influence the 2-component. This may be 
put in the form 

2 == 2 (*) A eZnisvt . . . (11) 
a0 

whereas we have retained the assumption (9) for the .r- //-co-ordinates. 
(For further details see Note 7 (/)) 

The absence of the exponent in v0t in (11) may be interpreted as 

meaning that here s0 = 0. We denote the equatorial quantum number 
corresponding to the cyclic co-ordinate 1/ by m and, applying the 
Correspondence Principle, assume that the quantum transition 

Am = ().(12) 

is allowed, whereas equation (9) states that the quantum, transitions 

Am ~ ± 1 . . . . (12a) 

may also occur with finite intensity. 

The superposition of an external force thus transposes the selection 
principle from the azimuthal quantum number l in a somewhat changed 

form to the equatorial quantum number m. This renders the 
azimuthal quantum freely variable : in proportion as the plane orbit 

is deformed into a spatial (twisted) orbit by external fields the 

originally forbidden transitions for which 

Al - 0 and | Al | > 1.(13) 

occur with appreciable intensity. 
The appearance of new spectral lines in discharge tubes of high 

current density (cf. Chap. VII, § 2) bears witness to this and agrees 
entirely with the conclusions here drawn. 
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But the expressions (9) and (II) for the orbits not only contain 
statements about intensity but also about the polarisation of the 
light, which is emitted, according to the classical theory, when the 
series electron traverses the orbit in question. According to the 
Correspondence Principle the statements about polarisation also 
apply to the quantum emission. 

It is true that the polarisation has been observed only in the case 
where an external field is present. In the force-free case the orbits 
are arbitrarily distributed in space and hence the polarisations 
corresponding to them escape observation. But in the presence of 
an external field the polarisation phenomenon can be measured most 

easily. 
From eqn. (9) we read that for a field of force directed along 

the 2-axis : corresponding to the quantum, transition, Aw i 1, we, 
have circular polarisation in the plane perpendicular to the lines of 
force ; corresponding to the quantum, transition, Am = 0, we have linear 
polarisation parallel to the lines of force. 

We shall have more to say about the polarisation conditions when 
we deal with the Stark and the Zeeman effects in the present chapter. 
Compare also the ideas (hie to Rubinowiez given in Note 8, which link 
together quantum theory and electrodynamics and signify the first 
step towards quantum-electrodynamics, which is still wrapt in obscurity 
at the present time. 

§ 2. The Orbits of the Hydrogen Electron in the Stark Effect 

The influence of the electric field on the emission of the Balraer 
lines was discovered by J. Stark * in 1913, and was examined by him 
in the succeeding years experimentally in an exemplary fashion as 
far as all the details of the fine-structure f and polarisation, not only 
for hydrogen, but for a series of other elements, He, Li, etc. It was 
a happy coincidence that in the same year, 1913, Bohr’s spectral theory 
was proposed and was elaborated far enough to be able to grapple 
with the problem of the electrical resolution of hydrogen lines. The 
solution of the problem was obtained simultaneously and along 
essentially similar lines by K. Schwarzschild J and P. Epstein || in 1916. 
Whereas the classical theory failed completely, the quantum theory 
yielded all the many details of Stark’s observations of the fine-structure 
in such complete coincidence with experiment that it was no longer 
possible to doubt the correctness and unambiguity of the solution 
found. 

♦Berliner Sitzungsber., Nov., 1913 ; Ami. d. Phys., 43, 965 and 983 (1914). 
A summary has been given by J. Stark, Elektrixche Spektralanalyse. Leipzig 
(Hirzel), 1914. 

f Gottinger Nadir., Nov., 1914. 
X K. Schwarzschild, Zur Quantentheorie, Berliner Sitzungsber., April, 1916, 

published on 11th May, the day of Schwarzschild’s death. 
j] P. S. Epstein, Zur Theorie des Starkeffektes, Ann. d. Phys., 60, 498 (1916). 
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We shall just shortly remark on the experimental difficulties of 
the problem. The object was to subject hydrogen atoms during their 
emission to a powerful electric field of, say, 100,000 volts per cm. 
This was not possible with the ordinary arrangement of the Geissler 
tube, in which the hydrogen lines are usually produced. Geissler 
tubes are comparatively good conductors ; an electric field in it simply 
collapses. Stark, therefore, used in place of the Geissler tube the K 
luminescence of a canal-ray tube in a layer directly behind the per¬ 
forated cathode. By using an oppositely charged electrode placed 
parallel and close to the cathode, he was able to generate a uniform 
and measurable electric field in a space of a few millimetres. The 
shortness of the space between the electrodes of this additional field 
not only favours the production of the resulting great potential drop 
but also prevents (in accordance with the peculiar laws of the pro¬ 
duction of the dark space in discharge tubes) the occurrence of a spon¬ 
taneous discharge between the electrodes. The potential difference 

is great enough to influence effectively the canal-ray ions that fly 
through the perforated cathode in the usual way and to distort per¬ 
ceptibly the electronic orbits which are being traversed in them. 

In contradistinction to Stark, Lo Surdo * uses as a means of in¬ 
fluencing the phenomenon of luminescence no additional field but the 
field of the discharge tube itself, and, indeed, the part within the dark 
space of the cathode. Thus his method sacrifices quantitative 
definiteness and homogeneity of field but offers special advantages 
for the purpose of qualitative observations. For this reason many 
experimenters, particularly in Japan, use Lo Surdo's method. The 

successful and accurate investigations of Rausch von Trau ben berg f 
on hydrogen lines, however, were done with Stark’s original arrange¬ 
ment. 

The general experimental results of Stark and Lo Surdo, respec¬ 
tively, were : 

1. Every Balmer line becomes split up into a number of components. 

2. The number of components increases with the series number of 

the line. 
3. The components are linearly polarised when viewed transversally 

(transverse effect), being polarised partly parallel to the field (77-com¬ 

ponents) and partly perpendicularly to it (cr-components). 
We must then first define clearly what these terms usually signify. 

In the case of the 77-components the direction of the electric vibration 

in the light ray at the point of observation is parallel to the lines of force 
of the external field ; in that of the a-components, the direction of the 
electric vibration is perpendicular to these lines of force. Thus it is 
not the position of the optical plane of polarisation, as shown by a 

* Cf. his general report iri Phys. Zeits., 30, 750 (1929). For atoms other than 
hydrogen see the report bv R. Ladenburg, ibid., p. 369. 

f Accad. dei Lincei, 23, 83, 117, 143, 252, 326 (1914). 
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Nicola prism, that is to serve to distinguish “ n ” and “ <r.” Since, 
as we know, the plane of polarisation in the light ray is perpendicular 
to the direction of doctrinal vibration (or, what is the same, it passes 
through the plane of magnetic vibration), we should have to transpose 
the terms 7r and a if we judged them according to the plane of polarisa¬ 
tion. The use of the words “ parallel ’’ and “ perpendicular,” as here 
applied, arose historically out of the ideas of the classical wave-theory. 
If we imagine a vibrating electron to be added to the place at which 
the emitting atom is situated, then the wave emitted by this electron 
would have, according to the classical view, a direction of electric 
vibration that would have the same direction as the component of 
acceleration of the electron (vn in Fig. 7, p. 24) that is effective in the 
direction of emission in question. The n- and the ^-components 
thus arise, in classical language, from vibrations of an exciting electron, 
which take place parallel or perpendicularly to the lines of force of 
the external field. 

4. When viewed longitudinally (longitudinal effect) the 77-com- 

ponents are invisible and the ^-components are unpolarised. 
5. The intense 7r-components in general lie on the outside, and the 

intense (7-components on the inside. 
(). In the case of hydrogen the resolution and the polarisation are 

distributed symmetrically on both sides of the original line, but in the 
case of other atoms, the distribution is largely uasymmetrical. 

7. The distances of the components from the centre are, in the 
case of hydrogen, whole multiples of a certain smallest distance between 
the lines, and actually, measured in the scale of vibration numbers, 
there is the same line-interval for the various hydrogen lines. 

8. The resolution (in particular, this smallest line-interval) increases 
proportionally with the field. In the case of more intense fields there 
is observed in addition to the linear Stark effect one of the second 
order, and if the intensity is still further increased a Stark effect of 
the third order manifests itself. 

We have already formed in Chapter II, page 114, a general theoret¬ 
ical idea of the cause of the Stark effect. We spoke there of the various 
possible ways in which one and the same Balmer line may be produced 
by circular or elliptic orbits with the same quantum sum. These 
various modes of origin certainly coincide in one line if no external 
field of force is present (and if we leave out of consideration the relativ¬ 
istic fine-structure). But they become separated if a powerful electric 
field is imposed. 

Thus the Stark effect denotes the artificial separation of the various 
possible modes of production, which originally coincided in a Balmer 
line, of the initial and the final orbit, this separation being effected by 
the application of an external electric field. And, owing to the spatial 
position of the orbits, the composition of the same quantum sum out 
of three quantum numbers is involved. This is easily understood from 
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the fact that the effect of the electric field on the orbits of the hydrogen 
electron will be found to depend not only on the shape and size (two 
quantum numbers) but also on the spatial position of the orbit with 
respect to the electric lines of force (third quantum number). These 
orbits are in the electric field, no longer, of course, circular and elliptic 
orbits ; or, expressed more generally, the states disturbed by the 
electric field differ from the undisturbed states of the hydrogen atom. 
Our object is to select from all the mechanically possible orbits those 
that are distinguished by having quantum values ; this is accom¬ 
plished by choosing three appropriate quantum numbers and expressing 
the orbital energy as a function of them. Corresponding to each such 
quantum triplet in the initial and the final orbit we have in general 
a different component in the Stark fine-structures. This explains 
immediately the increasing number of com¬ 
ponents in the sequence of lines H*, H^, 
By . . . : as the quantum sum of the initial 
orbit gradually increases the number of 
quantum triplets into which this sum may 
be resolved also increases and with it, the 
number of components of the corresponding 
resolution due to the Stark effect, as shown 
photographically, also increases. 

Wo now consider the mechanical prob¬ 
lem : how does ail electron move when 
under the influence of a fixed nuclear 
charge Ze (in the case of the hydrogen atom 
this Z 1) and under the simultaneous 
action of an external homogeneous electric 
field of force of the intensity F ? This 
problem is contained in the more general 
one : how does a point-mass move when 
under the influence of two arbitrary and 

arbitrarily placed fixed (Newton-Coulomb) centres of attraction % 
' The appropriate co-ordinates for the treatment of this general problem 

are (according to Jacobi) the parameters of the families of confocal 
ellipses and hyperbolae that are described about the two centres as 
foci, together with the angle reckoned from the line connecting the 
centres. If one of the centres is taken off to infinity whilst its attractive 
power correspondingly increases, the general problem reduces to our 
special one ; at the same time the systems of confocal ellipses and 
hyperbolae resolve into two families of confocal parabolas of which 
the second fixed centre, the nucleus, is the focus, and the field direction 
through it'is the common axis. We call the parameters of these two 
parabolic systems f and rj. They, together with the angle $ counted 
from the direction of the axis, are the co-ordinates which we shall 
have to use in our special problem. 

Km. 81.—Replacement of 
the plane cartesian co¬ 
ordinates x, y by the 
parabolic co-ordinates 

rj. The new co-ordin¬ 
ate lines are given by 
equations (1) when £ — 
constant ami rj — con¬ 
stant. 
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T11 Fig. 8], O represents the nucleus, x the direction of the lines of 
force. The parabolas £ const., 7/ const., respectively have the 

equations 

. . . to 
f V 

For each point P (x, y) of the plane we calculate by means of these 
equations the parameters 77 of the two parabolas which intersect 
at P. These two parameters may serve in place of a\ y to define the 
point P, and hence also to determine the position of the electron within 

the plane of the diagram (“ meridian plane ') The parabolas $ ~~ 
const. have as their axis the negative direction of x, the* parabolas 

rj ~ const, the positive direction of x. 
The simplest way of introducing parabolic co-ordinates is as follows. 

In the meridian plane we define an X -j- iY related to the complex 
variable x f iy hy 

+ iy - i(X -f /Y)2 . . . ■ (~) 

Bv equating the real and the imaginary parts we get 

.r i(X2 - - Y2), y XY . . . (3) 

If we eliminate Y and X, respectively from these two equations we have 

+ 2r -= X* and ^ - ir - Y2 . . (4) 

The equations become identical with (I) if we write 

$ - X2, rj Y2 .... (C) 

From (2) we form the line-element in the plane, that is, the distance 
between two neighbouring points PP' ; this is again done most simply 

by using imaginaries. By differentiating (2) we obtain 

dx + idy =. (X + /Y)(r/X + idY) 

and by taking the absolute value 

ds2 - dx2 + dy2 ----- (X2 Y2)(dX2 4 dY2) . . (6) 

From (5), however, it follows that 

and hence 

dX2 
dj2 

4f’ 
dY2 - 

drj* 

V 

(?) 

If, however, we take the absolute value in eqn. (2) we obtain the 

distance r of any point P of the plane from the origin 0 : 

r2 = x2 + y2 - 1(X2 4- Y2)2 - }(£ + v)2 

In Fig. 81 the lengths OP = r and PP' = ds are shown. 

(8) 
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We now suppose the plane of the figure to he rotated about the 
x-axis and we call the angle of rotation 1p. The //-co-ordinate hitherto 
used then denotes the distance p from the axis of rotation. The 
rectangular space-co-ordinates, xyz, which are now to be introduced 
are expressed as follows in terms of the plane co-ordinates hitherto 
used, which we shall now call x' and //', and the angle i/j : 

x x', y — //' cos t//, z — //' sin . 

TAe line-element in space then becomes 

ds2 dx2 + dy2 + dz2 — f/x'2 + r///'2 -f y'2difj2 . (9) 

If we take the value of dx/2 + dy'2 from (7) and ex]>ress //' by (3) 
and (5), in terms of £ and 77, (9) becomes 

d** - ?(£ I- y)(df 1- df) + wr . (10) 

From (10) we obtain for the expression of the kinetic energy in para¬ 
bolic co-ordinates (p — mass of the electron) : 

Kim 

The potential energy is 

(ii) 

E pot 

Ze* 
— + eYx, 

where Ze — nuclear charge, K ----- field-strength, — eF --- force of the 
field on the electron ; r and x are given in parabolic co-ordinates by 
(8), (3) and (5). Hence 

2Ze2 e F 

E"'" ' ~ ex"v +l(~v) 
-2{f Vv){ - ^ + eV(e - ,*)} . . (12) 

Parabolic co-ordinates offer a considerable advantage over rectilinear 
co-ordinates in enabling the potential energy to be expressed in this 
manner without root signs in terms of £ and 77. 

From (11) we obtain for the momenta p^ pn, p^ by differentiating 
with respect to the parabolic velocity co-ordinates 77, </> in the manner 
of eqn. (5) on page 78 : 

Pt ~ + v)g> P’1 — + y)\ p* — ■ (13) 

Hence, expressed as a function of the momenta, (11) may be written 

as follows : 

E‘“ - ^ + (? + • <M> 
vol. 1.—20 
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The sum of (12) arid (14) is the expression for the total energy in 
parabolic position and momentum co-ordinates or, by page 101, the 
Hamiltonian function H. It is invariable during the motion and is 
equal to the energy-constant W. Hence we have 

2/*(£ + v)W - Wj + 4vp$ + Q + ~)pl - 4/xZe2 + ^Ftf*-^) (15) 

In accordance with the rule in Chapter II, page 101, we here set 

<)S as <)S 

Pt~W 

and obtain the partial differential equation for the action function S 
in the following form : 

~ 2/*(f + ??)W -| 4ju/e2 — /t^F(£2 — 7]2) (10) 

and ijj is a cyclic co-ordinate. Hence 

|| ■= pv = const.(17) 

and eqn. (16) becomes 

4f(||)2 + 4v(^y ^ 2p(t + V)W + 

-MeF (18) 

We write the terms depending on f on the left-hand side, those de¬ 
pendent on 7} on the right-hand side, and in this way we have success¬ 
fully separated the variables. The separated parts must be equal to 
the same constant, which we may conveniently denote by —- 2p/3 : ("vQ\ 2 I 

g) - - 2/xZe2 1- peF? + ^ 

= ~ 4v(~f + 2MW + 2,,Ze2 + peFr)2 2tf. 

Hence we obtain 

|| = Pt--Vufh = . . (19) 

where f1 and /2 have the following significance : , 

m = W + 2fi(Ze2 -fl)- peW ~ jJ>*} j 

M = ^{V?W + 2p(Ze2 + J8) + peFr,2 - ±p2}j 
(20) 
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From this expression we may without further calculation draw 
a general inference about the form of the orbital curves. We see 
from (19) and (20) that during the motion f remains restricted to values 
for which f1 > 0, since <)S/i>£, i.e. p^ must be real. The extreme values 
that f can assume are thus the roots of /j(£) = 0. We denote them 

by tjmin and Zmax- In the case F = 0 where fx = 0 becomes a 
quadratic equation in £ there are only two positive roots. In the case 
F 4= 0 a third root comes up from infinity but is of no interest to us. 
We take £max and £min to denote those two roots that proceed by 
continuous development from those that occur in the case F = 0. 
What holds for f holds equally well for 77. Here, too, there are two 
real positive values 7]min and rjmax between which 7/ is enclosed. 

By repeating the argument of 
page 103 we next show that in the 
course of the motion Z increases 
continuously from (min to fmo,. For 
if f were to change its direction of 
progress we should necessarily have 
£ -- 0. But by (13) we should then 
have p£ ~~ 0. Now can vanish 

only if X = 0, that is if f ~ Zmax or 

Z7ni,r Thus Z a« it COmeS from Zmirr 

reverses for the first time at the 

point Z — Zmax- Whereas p( > 0 

hitherto, the negative sign of the 
square root now applies; by (13) 
when p£ < 0, Z <9. The decrease 

of Z now continues until Z “ Zmin* 
where it reverses, its values again 
increasing gradually, and so forth. 
We see that during the motion Z re¬ 
mains restricted to the region between 

Zmin an(l Zmax aru^ runs through the 
intervening values in opposite direc¬ 
tions alternately. The same applies 
to v), in which case also the roots rjmi, 
reversing points or “ libration limits ” (see p. 105) for the successive 
values of the 77-co-ordinate. 

The main features of the form of the orbits in the 8tark effect are 
now exposed. In Fig. 82 we exhibit the curved quadrangle which is 

formed by the parabolas £ = £ = $m„x, v = Vmin, and r, = Vmax. 

The orbital curve is enclosed within these limits ; it alternately touches 
a £- and an rj-limit, and in the course of time closely covers the whole 
of the curved quadrangle. Our figure exhibits the conditions only in 
the meridian plane, that is, in a plane (ft = const. Besides the motion 
in this plane a rotation of the plane in space about the direction of the 

Fin. 82.—Orbital curve of the 
hydrogen electron in the Stark 
effect (without relativity) show¬ 
ing the librational motion inside 
the curved quadrilateral 

Imax* Zmin> frnax ©f the figure. 
The figure must be regarded 
as rotating about the o>axis 
(direction of the field). 

and i)max of = 0 form the 
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lines of force takes place in which the moment of momentum p# is 
constant. By eqn. (13) there corresponds to it a quantity, the rota¬ 
tional velocity, ip, which is variable within certain limits. The plane 
orbital curve shown in the figure becomes a spatial orbital curve, which 
continually coils round the direction of the lines of force. 

Having dealt with the mechanical aspect of the problem we turn 
to the quantum aspect. We apply the quantum conditions to our 
co-ordinates f, rj, tp, that is, we postulate 

<j) Pgdf; — ngh, (J) p1}dr) = nvh, J n^h (21) 

where n^ nv, n^ denote whole numbers. We call n^ the equatorial 
quantum number. The integration with respect to i/j stretches over all 
positions ip of the meridian plane from 0 to 2tt. Since p^ is constant 
by eqn. (17), we have 

h 
2rtp^ — n^h, p^ — n{jJl 

’2tt 
(22) 

Let us call rig and nv parabolic quantum numbers. The integration 
over £ and 77 extends over the whole range of values of these variables, 
that is from £min to £max and back again for £, and similarly for 77. 
In the first two of the equations (21) this closed path of integration is 
denoted by the sign 0- If we substitute (19) in these two equations 

we obtain 

<j) Vft(£)df = nth, <j> Vf2(ri)dv = n„h . . (23) 

By (20) both integrals have the same form. We combine them in 

• (24) f A + 2^ ( ~ 4 Ur dr — 2nh 

On the right-hand side of this equation n stands for ng in the one 
case and nn in the other. The factor 2 in front of n has been taken 
over from the left-hand side [denominator 4 in /(f)]. In the one case 
the coefficients A, B, C, U, denote 

/ 2 
A, =•= 2/xW, B1 = M(Ze2 - jS), Cx = 

\2W r»i //.eF (24a) 

in the other case they denote 

A2 — 2/u.W, B2 = M(Ze2 + p), C2 
(n*hy 

\ 2rr / ’ 
Da = + tie F (246) 

The left-hand side of (24) has been worked out in Note 4 under (6). 

By eqn. (8) it becomes to. a first approximation : 

o_,r./n B D /3B2 n\\ 
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Consequently, if we arrange (24) in terms of B, we obtain from (24) 

BWA(VC-^) + ”(c-f) . . (2 

We regard the term in D as a correction term (external field small 
compared with the nuclear field) and hence replace B2/A in it by the 
following approximation (to the first degree) derived from (26) : 

Hence we obtain from (26) 

B - VA(Vc 
nhi\ ^ 

7T ) 

D ^3n2h2 ^ ^ 

4 A V 
2C (27) 

This single equation really stands for two equations. We use it in 
the one case with 

B - Bx ■= fi(Ze* - 0), I) — Dx — — fieF, n = w* 

and in the other with 

B - Bs = /it(Ze2 + P), 1) - D2 = fieF, n ~~ nv 

whereas 

A --- 2/xW and C ~ — (n^h/2n)2 

in each case. We then form half the sum of the two equations 
which result in this way. This causes the separation constant ft to 
vanish, and we obtain 

/*&* --= Va(Vv - (-L: 

, firF/3 (n'j - n~)h~ 

4A \2 ' 7T2 

We then substitute 

Vv 

3(wf - n„)hiV('j (2S) 

(the reason for the choice of sign is given in Note 4) and calculate 

A to a first degree of approximation, that is, for F = 0, 

47rVZe2)2 _ _ 4ttVZ*8)2 

(Wf-f- nn + ?fy>)2^2 ~ n2h2 
(29) 

whore we have set n — n^ + ?ty. We substitute this value in 
the correction term of eqn. (28) which involves F and now calculate 
A to a second approximation : 

A 
4ttVZ?2)2 

*W 

3A2F , 

4ir*ZeW ^ - n() (29a) 
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Dividing by — 2fih we obtain 

W 2772/xZ2e4 

h " AV2 ~ 

3AF . 
(30) 

The first term on the right-hand side is the unperturbed Balmer term ; 
it emerges from our calculation in parabolic co-ordinates precisely, 
as it must, as in the earlier calculation with polar co-ordinates. The 
second term gives the perturbation of the first order arising from the 
electric field and contains, as we shall see in the next section, the whole 
manifold of phenomena, which Stark has observed in the case of the 
different Balmer lines. 

We have yet to make a few remarks about the character of degen¬ 
eracy of the problem and its quantum numbers. In the limit F -> O, 
for which the right-hand side of (30) reduces to its first term, the system 
is doubly degenerate. Instead of depending on the three numbers 

nv, n^ it depends only on the principal quantum number n. Here 

n is defined in parabolic co-ordinates as the quantum sum : 

n — n$ + nv 

Instead of using wc shall in future, however, use the number 

m ~~ n^ — 1, m ----- 0, 1, 2, . . . . . (31) 

as the true equatorial quantum number, in a manner analogous to 
the true azimuthal quantum number l in the Kepler problem (cf. p. 115). 
As in the case of l so here this definition is wave-mechanical in origin. 
In wave-mechanics the quantities m and l occur from the outset 

as non-negative integers. Our principal quantum number n is then, 
in the case of the Stark effect, 

n = Uf f nn -|- m + 1 . . . (32) 

which is fully analogous to the principal quantum number 

n = nr |~ l 1 . . . . (32a) 

in the case of the Kepler problem. From m 0 it follows that 

S 1 

which implies that = 0 is forbidden. This decree, forbidding n^ = 0, 
was supposed to arise on the older theory from the necessity of avoid¬ 
ing a collision of the electron with the nucleus, exactly as the decree 

n^ = 0 in the case of the Kepler problem (see p. 115). Nowadays 
we prefer the wave-mechanical explanation to this pseudo-graphical 
reason, as already mentioned on page 115. The decree n$ == 0 will 
be found to be of fundamental importance in the next section. 

Our present three parabolic quantum numbers n^ nv m have 

the common characteristic of being able to assume all non-negative 
integral values including zero. Hence it follows for the principal 
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quantum number that it can assume all positive integral values except 
zero. 

In contrast with the limiting case F-0 we find that for a non¬ 
vanishing F the problem is simply degenerate to a first approximation. 
The complete expression (30) depends on the two quantum numbers 
or combination of quantum numbers : 

n and nv — n^. 

All three Quantum numbers including m, however, present themselves 
only when we pass on to the quadratic Stark effect, that is, when 
we retain the terms involving F2 in the energy-expression (cf. Note 9), 
as it is only then that the degeneracy is completely eliminated. 

As above remarked, while the energy in passing to the limit F -> 0 
assumes the same value in calculating with parabolic and polar co¬ 
ordinates, the orbital curves in the two cases come out differently. 
They are, of course, in accordance with general mechanical laws, 
ellipsis with the nucleus as a focus also in the case of the parabolic 
co-ordinates. But they are not represented by the Fig. 27, page 117, 
which arose from quantising in polar co-ordinates. Quantising in 
parabolic co-ordinates leads to a selection from the totality of mechani¬ 
cally possible orbits which is different from that given by quantising 
in polar co-ordinates. We shall describe the difference between the 
two sets of ellipses in greater detail in the last section of this chapter. 

Even if this difference is intelligible from the point of view of 
degenerate systems it remains unsatisfactory from the physical point 
of view. It remains equally unsatisfactory from the wave-mechanical 
point of view, where we no longer speak of orbits but of states and allow 
the mechanical orbits only to be regarded as carriers of quantum 
numbers. But we may bridge over the contrast between the two 
sets of orbits or states by means of the following considerations. 

The force-free Kepler motion is a degenerate problem only if we 
treat it according to classical mechanics ; from the relativistic point 
of view the degeneracy is eliminated, at least in the problem for the 
plane. But our treatment of the Stark effect has been carried out 
here in parabolic co-ordinates on the basis of classical mechanics ; 
our quantising of the Stark effect thus holds only so long as classical 
mechanics applies. This is the case with strong * electric fields but 
not when the fields are arbitrarily weak. The simplest way of dis¬ 
tinguishing whether a field is strong or weak is as follows : Let Aff 
be the resolution produced in a Balmer line by an electric field F. 

* The external field must not of course be so strong that our perturbation 
calculation fails. This calculation assumes that the external field is very small 
compared with the attraction due to the nucleus. In the case of the higher 
quantum numbers n (great distance from the nucleus) the internal field may 
become of the order of magnitude of the nuclear field. Our perturbation method 
then becomes invalidated and the orbit may become impossible in given cases ; 
cf. Fig. 84 of the next section. 
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On the other hand, let Avh be the natural doublet interval of the 
Balmer lines which has its origin in relativistic mechanics. If 

Avp < Aen, the field is to be called weak ; if Avf >> Ach> is always 
the case in observations of the Stark effect, we call the field strong. 
In the latter case the quantising described in the present section is 

correct, in the former it fails. 
The difficult question—interesting from the point of view of method 

—as to how the quantising is to be performed in the case of very 
weak fields has been answered by H. A. Kramers.* But since, after 
what we have said, it is of no account f for interpreting the Stark 
effect in hydrogen we shall not discuss it here. But we wish to em¬ 
phasise that this form of motion investigated by Kramers interposes 
itself between the parabolic quantising for intense fields and the 
relativistic quantising for vanishingly small fields. Hence it is really 
not permissible to effect the passage to the limit F 0 from the side 
of the parabolic quantising as we did above. In forbidding this we 
at the same time dispose of the lack of continuity in the orbits and 
states in passing from parabolic to polar co-ordinates, which was a 
necessary consequence of the conditions of degeneracy. 

§ 3. The Resolution of the Balmer Lines in the Stark Effect 

If AW\ and AW2 denote the changes of energy produced by the 

electric field in the initial and the final states, the change of frequency 
or the resolution is calculated from the formula 

AW,-AW2. 

The second term on the right-hand side of eqn. (30) in the preceding 
section therefore gives 

3^F 
Av = f-. . (1) 

The indices 1 and 2 here used refer to the initial and the final states. 
For hydrogen, of course, Z — 1. Eqn. (1) must be supplemented by 
a selection principle and a polarisation rule, as developed in § 1, pages 
298 to 300. 

The selection and the polarisation rules are clearly independent 
of the absolute normalisation of the equatorial quantum number. 

It is therefore immaterial whether we express them in terms of the 
earlier n^ or in rn = — 1. We agree to prefer the latter. 

♦ Zeits. f. Phys., 3, 199 (1920). 
t But Kramers1 investigation is essential for the Stark effect of non-hydrogen 

atoms. This effect is quadratic in F, just as for hydrogen when the fields are 
very weak. The linear Stark effect which predominates in the case of strong 
fields in hydrogen, is a consequenco of the degeneracy of tho hydrogen atoms 
(cf. the end of the present section). In the case of non-hydrogen atoms the 
degeneracy is cancelled by the internal atomic field and hence no linear Stark 
effect is possible. 
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In the first place we read off from (1) the experimental results 
tabulated under 7 and 8 on page 302 : all the line-resolutions A v in 
the Balmer series are whole multiples of a minimum line-interval, 

3AF 

87T^jxe 
(2) 

As the field-strength increases so does a, and hence the whole resolution 
picture of each Balmer line increases proportionally to F. 

Equally directly we read off from (1) the empirical result fi on page 

302 : in every Balmer line the resolution is symmetrical on both sides 
of the original line. For if the transition 

(npinm)j > (n^m)2 .... (3) 

is possible according to the selection principle, so also is the transition 

(n(nnm)2 (?i(nvm)1 .... (3a) 

if the former leads to a component at the distance + Ar from the 
original line, then by (1) the latter leads to a component at a distance 
— A v. Also the polarisation is the same for both components, since 
((ff. pp. 299, 300) it depends only on m and since m is left unchanged 
in the two transitions that are being compared. The fact that also 
the intensities of the two transitions are equal cannot be proved here, 
as we have no final intensity rule available, but in view of experimental 
results and the more rigorous wave-mechanical theory we may here 
assert it. * 

Concerning the polarisation our polarisation rule states the follow- 

iiig : if 

A rn — mx — m2 = ± 1 . . . (4) 

then a wave is emitted (see p. 300) which is circularly polarised about 
the direction of the lines of force. Such a wave appears in the 
transverse effect in all circumstances as polarised perpendicularly to 
the lines of force (in the sense more closely defined on p. 301). In the 

longitudinal effect it would be observed as a circular wave if only one 
process of emission were observed. In reality, however, every ob¬ 
servation represents an average of many elementary processes. Of 

their total number the transitions Am — — 1 occur just as often as 
the transitions Am == + 1. If the former lead to right-handed circular 
polarisation, the latter lead just as often to left-handed polarisation. 

The superposition of these two therefore brings it about that no polarisa¬ 

tion is observed in the direction of the lines of forces. 

If, however. 
Am - 0.(5) 

the polarisation is linear in the direction of the lines of force (cf. p. 300) 
Consequently in the transverse effect linear polarisation parallel to 
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the Urns of force is observed. In the longitudinal effect the same com¬ 
ponents of the resolution are invisible according to the general rules 
of kinematics which do not allow emission to occur in the direction 
of the vibration. These deductions agree literally with the experi¬ 
mental results detailed under 3 and 4 on pages 301, 302. 

We next consider successively the resolutions of Ha, H^, Hy, Ha 

and introduce the abbreviation 

A = — = — n$)a — — n$) 1 . . (0) 
ci 

By (2) and (3) A denotes the displacement, measured in terms of the 
unit a, of the component in question as compared with the original 
line. We tabulate all the possible transitions and enumerate them 
according to the magnitude of the equatorial quantum number m, 
by making m pass through all its values from the maximum in each 

case to its smallest value, zero. 
In the case of H« we have nx —= 3, n2 -- 2, and lienee 

A — 2(w, - «f)2 - :$(«„ - ■Ht)1 . . . (7) 

By eqn. (32) in the preceding section we have simultaneously that 

<£ 2, m2 <: 1. 
in that the sum of the three non-negative numbers nv and m be¬ 
comes equal to 2 or 1, respectively. For the parallel components 
Am -- 0 we find that mx = 0 drops out, since m2 can at most equal 1. 
We therefore begin our enumeration with m1 ~ 1. Whereas the 

corresponding final orbit is fully determined, being (001), there are 
two initial orbits belonging to mx — 1, namely (101) and (Oil). The 
two transitions that are accordingly possible are 

101->001 and 011 ->001 

and differ only, like the transitions (3) and (3a), in having the first two 

quantum numbers interchanged ; they thus give rise to symmetrically 
placed components. In our table we record only the first of the two 
transitions, that leading to a positive A, and imagine the symmetrical 
components produced by interchanging the first two quantum numbers 
to be added. We then consider mx = 0. Here there are three transi¬ 
tions that lead to a positive A ; they are given in the first column of 
Table 24. The last column is calculated by eqn. (7) as the difference 
of the two preceding columns. As a whole the electrically resolved 
line H* consists, on both sides, of four 7r-components at intervals A 

to be taken from Table 24. 
Passing on to the perpendicular components we begin with mt ~~ 2, 

m2 = 1, corresponding to the first transition 002 -» 001 given in Table 
25. Starting from mx —1, ~ 0 there are two transitions that 
are clearly shown in the table. The component A = 0 arises in two 
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Table 24 

Ha? Tr-components, ml — raa 

(ntn m)i —> (ntn m)2 
e V ir 0 :i<\ -- nth 2 — n^)2 A 

101 -> 001 - :i 0 3 
110 -> 010 0 ■f 2 2 
200 > 100 - 6 2 4 
200 010 - 6 T 2 8 

Table 25 

Hoc, •omponents, m r - m, 4- 1 

(m*m m)i —> (ntn m).£ 
£ n c v 

M v w f.)x 
n i V* A 

002 -- 001 0 0 0 
101 - 100 - .» 1 
101 - 010 ;i 4- 2 5 
200 ^ 001 - 6 0 6 
110 >001 0 0 

1 
0 

ways ; besides it there are three transitions having a positive A and, 
of course, just as many having a negative A. 

For comparison we examine the result of observations by Stark. 
Fig. 83 is a slightly modified reproduction of Stark’s original figure 
redrawn from the scale of AA's in the scale of Ae’s. The lengths of 
the vertical strokes denote the intensities of the resolved components 
as estimated by Stark. The attached numbers represent the resolu¬ 
tion (in wave-numbers), expressed as multiples of the fundamental 

unit a, that is, our A. 
We see that as far as A = 4 the theoretical expectation agrees fully 

with the observations made for H*. For example the positions 0 and 1 
are free of 7r-components and occupied by a-components, whereas the 
reverse is the case at the positions 2, 3, 4, both according to theory and 
experiment. Theory indicates a few other components of greater 
resolution, 8 as ^-components, 5 and 6 as cr-components, which are not 
indicated by experiment. This is due to the small intensity of these 
lines. For Schrodinger * has shown by a wave-mechanical calculation 
that the it-component in question must be a thousand times weaker 

and the cr-components in question a hundred times weaker than the 
average of the observed components. Hence their absence in Stark’s 

photographs is quite in order. 

* Ann. d. Phys., 80, 4^7 (1926), gr in his Collected Papers (Blackie). 



316 Chapter VI. Polarisation and Intensity of Spectral Lines 

In the same way the resolutions of H^, Hy, Ha give a convincing 

impression of the accuracy of the theory. 
The following tables do not require much elucidation. In the 

Table 2(1. 

H/j, TT-comjHmentfi, ml m2 

4<% ”<?'■ A 

201 > 001 s 0 8 
111 > 001 0 0 0 
300 -v 010 - 12 f- 2 14 
300 -> 100 12 _ 2 10 
210 > 010 4 4- 2 0 
210 -> 100 - 4 - 2 2 

Table 27 

Hft, a-cotnponcntt*, tnt f 1 

'<% - V1 “(% V* 
. 

102 >001 4 0 
201 010 — 8 i a 
201 -v 100 -- 8 2 
111 010 0 4- 2 
210 -> 001 - 4 o 
300 001 - 12 0 

l 

case of the 7r-components of H5 we have to begin our enumeration with 
m1 = 1 again on account of mx --- m2 and m2 1. There are two transi¬ 

tions from m1 = 1 and four transitions from m1 = 0 which, according 
to the selection principle, lead to 77-components on the positive side 
(A > 0). The symmetrical components on the negative side also arise 
here by interchanging the first two quantum numbers in the transition 

scheme of the initial and the final orbits and these are to be supposed 
added. There is an exactly equal number, namely six, of transitions 
that lead to positive (or negative) <7-components. 

The agreement with the experimental picture of the resolution 
in Fig. 83 is again very striking. All the theoretical components 
have been observed. In addition there are shown in Fig. 83 a very 
weak A = 4 among the ^-components and a doubtful A = 12 ; among 
the cr-components a weak A ~ 0 and a doubtful A 8. The a-eom- 

ponent A = 4, which is strongest according to observation arises, 
according to Table 27, in two ways, which partly accounts for its 
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Fig. 83.—Resolution of the Balmer lines in an electric field according to observa¬ 
tions by J. Stark. A scale of wave numbers (cm.-1) is used, and the tt- and 
cr-components are shown separately. The length of the lines represents the 
visually estimated intensity. Doubtful components have a question mark 
placed against them. The numbers give directly the value of A (of. equa¬ 
tions (6) and (2)). 
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predominating intensity. For a more detailed discussion of the inten¬ 
sity questions we must in this case, too, refer to Nchrodinger’s paper. 

In the case of Hr there is exceptionally perfect agreement between 
theory and observation. The theoretical tabulation gives the following : 

Table 28 

Hr, ir-componenta, m, - m2 

(w 5<\ - v nt>‘ A 

301 >001 - 15 0 15 
211 -- 001 — 5 0 5 
400 - 010 - 20 4 2 22 
400 100 20 _ 2 18 
310 010 10 '4 2 12 
310 -> 100 - 10 _ 2 8 
220 > 010 0 4 2 o 

Table 29 

Hy, a-component#, — m.2 ± 1 

(ntn /tt)i ->(ntn w/)a 
s tv c,{% - V1 “(% - V2 A 

202 001 - 10 0 10 
112 -001 0 0 0 
301 -> 010 15 -1 2 17 
301 -> 100 - br> _ 2 13 
211 -> 010 - 5 4 2 

1 m 
i 

211 -> LOO - 5 - 2 3 
400 -> 001 - 20 0 20 
310 •> 001 - 10 0 10 
220 > 001 

1 
0 0 0 

The photograph of the observed results is, according to Fig. 83, com¬ 
pletely identical with these theoretical results. The same applies 

to Ha 
Table 30 

Ha, n-components, mx — m.. 

6(n - «Ji 2(«>? - rq)2 A 

401 -y 001 - 24 0 24 
311 -> 001 - 12 0 12 
221 --> 001 0 0 0 
500 > 010 - 30 4 2 32 
500 -> 100 - 30 ~ 2 28 
410 -> 010 - 18 4 2 20 
410 100 - 18 _ 2 16 
320 -> 010 - 6 4- 2 8 
320 -> 100 - 6 

; 
- 2 4 
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Tajile 31 

Hg, a-component#, ml - m2 j 1 

(iigH m)x -v jyy//)2 w^)i -<% "t>2 A 

302 v 001 - 18 0 18 
212 > 001 - 6 0 6 
401 010 - 24 + 2 26 
401 100 - 24 ~ 2 22 
311 -> 010 - 12 T 2 14 
311 -v 100 - 12 _ o 10 
221 -> 010 0 1 2 2 
500 - 001 — 30 0 30 
410 -> 001 - 18 0 18 
320 -> 001 - 6 0 6 

The inner regularity of the resolution pictures is illuminated by 
the following remarks. 

In the ease of and Ha only even multiples of the interval A occur, 
both in theory and experiment (the theoretical reason is that the 
common divisor 2 of the principal quantum number n in the first and 
second terms of the series expression for H^ and Ha also occurs as a 
factor in the quantity A). 

In the case of the components are partially polarised ; in Hy 
and Ha they are completely polarised, both in theory and in experiment 
again. This is expressed in the theory by the fact that in the scheme 
of H^ the A-values of the ir- and the cr-series partly coincide, whereas 

in Hy and Ha they do not. 
The sequence of components in the series of lines H«, H^, Hy, Ha 

become less and less dense. The interval between neighbouring com¬ 
ponents amounts to 1 for Ha, 2 for H^, alternately 3 or 4 for Hy, 
4 fundamental units without exception for Ha. 

For more exact experimental data about intensity we refer to a 
paper by Mark and Wierl * ; they have become of particular interest 
since it has become possible to compare them with the results of wave- 

mechanical calculations. 
It now appears almost self-evident that besides the interval re¬ 

lationships of the components also the absolute values of the intervals 
should be correctly given by the theory. The absolute magnitude 
of the resolution is given by the constant a in eqn. (2) and depends on 
the field F. This cannot be determined very accurately by experiment 
(hardly to within 1 per cent.). Hence we may calculate the field 
intensity as Epstein and, more recently, Rausch von Traubenberg 
have done, from a measured resolution, that is, use the resolution in 
the Stark effect as a means for accurately measuring an electric field, 

Zeits. f. Phys., 53, 526 (1928) ; 55, 156 (1929). 
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precisely as has occasionally boon done with the resolution in the 
Zeeman effect for measuring a magnetic lield. The field-strength 
measured in ihis way deviates only slightly from the experimental 

measurement. 
Whereas in Stark's ease the field-strength amounted to about 

100,000 volt/cm., Rausch von Traubenberg succeeded in producing 

fie Id-strengths of over a million volt/cm. In the latter case terms in 
F2 and F3, which we neglected in our formula (30) on page 310, become 
appreciable. The quadratic Stark effect (proportional to F2) is par¬ 
ticularly constructive because in it the wave-mechanical calculation 
gives a somewhat different result from that of the older theory (of. 
Note 9), whereas in the linear Stark effect which has alone been treated 

hitherto there is full agreement between both theories. The measure¬ 
ments made by Rausch von Traubenberg and Gebauer * completely 

tty Hy H<5 H* Ity 

Ftg. 84.f-~ Lo Surdo photograph of the Balrner linos taken by H. Rausch v. 
Traubenberg, R. Gebauer and G. Lewin. The oloetrie field increases from 
below upwards (from about 100,000 to 1*14 million volts/cm.) and at the 
very top suddenly become zero again. The lines Hy to tty cease to exist 
at certain points in the ever-diminishing field in the order Hy to tty*. The 
violet Stark components are more persistent than the red. 

confirm the wave-mechanical formula for the quadratic Stark effect 
and hence restrict the validity of the account here given to the linear 
Stark effect. The measurements just mentioned have been obtained 
essentially by the quantitative arrangement devised and used by Stark. 

In Fig. 84 we exhibit a more qualitative yihotograph obtained by 
the same author with Lo Surdo's arrangement, partly in order to give 
one illustration of results obtained by this arrangement for non- 
hydrogen atoms, for which it is particularly important and partly to 

show the various “ existence limits ” of the Stark components, which 
occur in the figure. The field increases in the figure from below up¬ 
wards and then again becomes zero at the upper edge. The horizontal 

* Zeits. f. Phys., 64, 307 (1929); 62, 289 (1930). 
f Taken from the Naturwissenschaften, 18, 329 (1930), by kind permission of 

the publisher, Julius Springer, Berlin. 
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bright lines correspond to stretched wire's that served as marks in 
measuring the field. The* increase of resolution with the field shows 
the effects of higher order together with the linear effect. The figure 
acquires a particular significance, however, in that it exhibits the 
fading out of the different lines for different field-strengths. The 
line H« ceases to exist at lower intensities of field than the line Ha. 
the latter sooner than H}„ whereas in the case of the existence limit- 
lias not been reached even at a million volt/cm. Moreover, it is shown 
throughout that the long-wave components fade out sooner than the 
short-wave components. Both these phenomena were first explained 
by wave-mechanical methods by Lanczos * but may also be understood 
directly on the basis of orbital ideas, as we shall see in the last section 
of the present chapter. 

§ 4. The Normal Zeeman Effect 

In 1896 Zeeman discovered that the lines of the series spectra may 
be influenced by magnetic, means. In the simplest case there appear 
instead of one line, when viewed 
longitudinally, that is when the ray is 
in the direction of the magnetic lines 
of force, two lines (Zeeman doublet; 
longitudinal effect), but when viewed 
transversely, that is when the ray is 
perpendicular to the magnetic lines of 
force, instead of one line, three lines are 

observed (Zeeman triplet; transverse 
effect). Of the latter three lines one 
occupies the position of the original un¬ 
resolved line, and the other two are 
displaced by equal amounts to greater 
or smaller wave-lengths, and occupy the 
same position in the spectrum as the two lines of the doublet in the 
longitudinal effect (of. Figs. 85, a and 6). The displacement amounts to 

= - -P- -* 4 07 . l<r5. H . . (1) 
/X 477T ' 

where H — the intensity of the magnetic field in absolute units (Gauss). 
If we wish to measure v in sec.~J, we have to take e on the right side 
of the equation as the electrostatic charge of the electron ; but if we 
measure v in cm."1 as a “ wave-number,” then e is the charge on the 
electron measured in electromagnetic units, and e/p = T761 . 107 is 
the specific charge on the electron measured in the same way. The 
numerical value 4*67 . 10~5 in eqn. (1) refers to the latter method of 

* Naturwiss., 18, 329 (1930) ; Zeits. f. Phys., 68, 518 (1930). 
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Fig. 85.—Normal Zeeman effect. 
a represents t he longitudinal 
effect (observation parallel 
to the lines of force), h the 
transverse effect (observa¬ 
tion at right angles to the 
lines of force). 
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measuring v, and thus gives the displacement Ar in the scale of wave¬ 
numbers. 

In the first observations of Zeeman the lines were not completely 
separated, because the resolution was too feeble and the lines were too 
wide. But he succeeded in establishing beyond doubt the presence 
of polarised light at the extreme edges of the line configuration. The 
type of the polarisation is indicated in our figure. The symbols 
7t and a (parallel and perpendicular—German senkrecht—to the lines 
of force) mean the same as on page 301. They refer not to the position 
of the optical plane of polarisation but to the direction of the electrical 
vibrations in the ray at the place of observation. In the longitudinal 
scheme the circular arrows denote that circular polarisation was ob¬ 
served, and, as is shown, the sense in the two lines of the doublet is 
opposite. In general, in the short-wave component the sense of the 
circular polarisation is the same as that of the positive current in the 
(toils of the electromagnet, which produces the magnetic field. 

We first wish to emphasise that our two figures a and b express the 
same facts under different circumstances of observation. The 77-com- 
ponent of the transverse effect must be ineffective in the longitudinal 
effect and that is why in Fig. 85a no line occurs at the position of the 
transverse 77-component. Actually, this 77-cotnponent arises from a 
vibration phenomenon for which the direction of the lines of force 
is a line of symmetry of the intensity or (expressed in the language 
of the older theory), it is due to the vibration of an electron, which 
moves in the direction of the lines of force). But such a vibration, 
as we know and have already used in the Stark effect on page 314, 
emits no light. On the other hand, the circular components that occur 
in the longitudinal effect are due to a vibration phenomenon, in which 
the plane of vibration is perpendicular to the lines of force (in words 
of the old theory), due to the vibration of an electron, which describes 
a circle in this plane. Such a vibration phenomenon, however, sends 
out in the transverse direction linearly polarised light, whose electric 
force vibrates in the plane of vibration perpendicular to the magnetic 
lines of force, likewise analogous to the circumstances in the Stark 
effect, cf. page 313. Hence the cr-components of the transversal 
scheme correspond to the circular components of the longitudinal 
scheme. Accordingly, it is sufficient to study the Zeeman effect in 
only one direction, for example, in the transverse direction which is 
more convenient for purposes of observation : transverse observation 
is also preferable because it allows all components to manifest them¬ 
selves and this may be of decisive importance for the analysis of 
a spectrum, particularly in studying the anomalous Zeeman effect 
(see below). 

The facts so far described are fully explained by Lorentz’s Theory 

of the Zeeman Effect. This is based on the assumption of quasi- 
elastically bound electrons, which excite vibrations in the ether that 
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are synchronous and in constrained connexion with the vibrations 
of the electrons. More precisely : the electron is considered hound 
to a position of rest in tin* atom in such a way that when it is displaced 
a restoring force acts on it proportional to this displacement from the 
position of rest, and, indeed, the force is the same for all directions 
of the displacement. We know nowadays that this picture is too 
simple. Nevertheless it has proved of groat service for explaining 
the typical Zeeman effect. 

For let us imagine the motion of such an electron in a magnetic 
held. Whatever it may be in itself, we may resolve it into a linear 
component which takes place in the direction of the magnetic lines of 
force and into two circular components that take place perpendicularly 
to the latter with reversed senses of revolution. The first component 
is not influenced by the magnetic field, so that its frequency of vibra¬ 
tion is the same as when the magnetic field is not present. That is 
why we get the tt-component in the position of the original line (when no 
field is present) when the observations are made transversely. The two 
circular components are for the one part accelerated and for the other 
retarded by the magnetic held, according to the Biot-Savart law. 
Hence we have the two circular components in the case of longitudinal 
observation or, respectively, the two cr-components in that of transverse 
observation. The value calculated for A v in this way will be called 
the Lorentz vibration difference and the group of lines that occur in 
the transverse effect will be called a Lorentz triplet. 

Lorentz’s theory, however, far from includes the whole complex 
of facts of magneto-optic phenomenon ; rather, it is limited to lines 
of the simplest structure, so-called singlet lines. 

I11 the case of multiple lines (doublets, triplets and so forth), 
the anomalous or complex Zeeman types occur in place of the normal 

<k Zeeman effect " of Fig. 85. The fact that the Zeeman effect is 
anomalous even in the case of hydrogen appeared incredible only a 
few years ago. The reason for its occurrence is the existence of electron 
spin. We shall discuss this in the next section. 

Here we shall deal only with the normal Zeeman effect. It can 
occur only in the case of atoms which have an even number of electrons 
and only if the electron spins mutually compensate each other. Let us 
nevertheless suppose that it is permissible to use the simple model 
of an electron revolving round the nucleus as in the case of the hydrogen 
atom. We shall imagine the other electron or electrons to be combined 
with the nucleus and to constitute with it an “ atomic core,” whose 
action on the revolving electron we treat together with the action of the 
nuclear charge as approximately that due to a central field [potential 
energy V = V(r)]. Suppose our revolving electron describes a certain 
orbit in this field ; we do not require to know the exact form of this 
orbit. Following Larmor,* we state that the superimposed field, H 

* Phil. Mag., 44, 503 (1897). 
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leaves the form of the orbits and their inclination to the magnetic lines 
of force, as also the motion in the orbit, unaltered, and merely leads to 
the addition of a uniform “ precession ” of the orbit about the direction 
of the lines of force, the precessional velocity being 

0 ~ 

1 e H 
2 p, c. (2) 

This law holds provided that the velocity imparted to the electron by 
the precessional motion alone is small compared with the velocity 
that the electron would have in its path without the precessional 
motion ; under the circumstances of our atomic model this is the case 
even for the strongest magnetic field that can he produced. The 
proof of Larmor's theorem is based on the conception of Coriolis 
forces, which is known from the mechanics of relative motions (for 
example, from the circumstances of the rotating earth). 

Generalising somewhat the special conditions of the central field, 
we consider the motion of a point-mass p under the influence of forces 
that are distributed symmetrically about a certain axis A, which, 
for example, arise from several centres of force on this axis. We call 

the co-ordinate system of reference then' used the stationary system of 
reference. We next imagine the point-mass to traverse the same 
orbit at the same rate but relatively to a system of reference which 
turns about the axis A with the uniform velocity 0 relative to the 
static system of reference. In this case the motion of the point-mass 
is no longer natural or free. Rather, to maintain this motion, forces 

in addition to those acting in the stationary system are necessary 
which just neutralise the inertial resistances of the rotation. These 
inertial resistances are, in the first place, the ordinary centrifugal 
force 

Z — po2p . . . . . (3) 

where p signifies the respective distance of the point-mass from the 
axis A; and, secondly, the composite centrifugal force or Coriolis 
force 

C = 2/x[ vo].(4) 

where v is the velocity of the point-mass in the orbit that is being turned, 
and [vo] is the vector product of v and the vector of rotation 0 drawn 
in the direction of the axis A. Eqn. (4) determines not only the mag¬ 

nitude but also the direction of C, the latter as the common normal 
to the directions of v and A. On the other hand, the force, which 
a magnetic field H exerts on the electronic charge (— e) moving * 

* This v, it is true, denotes the velocity in the stationary and not in the 
rotating system. But since the two v’s differ only by a quantity (cf. (6)) which 
is proportional to 0, this signifies neglecting a term only of order oH or, as we 
may also say, of the order oa, when we make equal the two v’s. 
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with the velocity v in, according to the lawn of electromagnetism, 

K^-JvH] .... (5) 

This force exactly neutralises the Coriolis force if the direction of the 
lines of force coincides with the direction of the axis A and if, also, the 
condition for the magnetic field holds (we equate C and — K) : 

1 e H .... 

2“° °~2jic ' ■ • 

If we disregard the centrifugal force Z for the moment, then a magnetic 
field of suitably chosen intensity is just able to bring into equilibrium 
the inertial action of the electron in its rotating orbit. Thus, in the 
magnetic field H, the rotating orbit is a natural orbit or, in other words, 
the electron describes in the magnetic field the same path as when no mag¬ 
netic field is acting but does so with respect to a system of reference which 
is rotated with the velocity 0 determined by the eqn. (2) or (6). Regarded, 
from, the standpoint of this system, of reference the orbits are traversed as 
if no field were present. Precession of the system of reference and action 
of the magnetic field are interchangeable and equivalent to one another. 

Concerning the ordinary centrifugal force Z we may easily convince 
ourselves, on the basis of the restriction made in Larmor’s theorem, 
that it may be neglected in comparison with C. This restriction is, 
in our present notation, 

p0 -- v.((5a) 

As we see from the expressions (.*5) and (4) it is identical with 

Z < C. 

We give another proof of Larmor’s theorem in which we do not refer 

directly to the Coriolis forces but use only the principles of mechanics 
and electrodynamics. The equations of motion of the electron 
referred to the stationary system runs (if we neglect relativity), 

/‘V =- - JvHl + J(r)T- . . . . (7) 

where f(r) represents the central force of the field of the nucleus or the 
atomic core. We write down this equation in (-artesian co-ordinates 
and divide by p. We take the 2-axis in the direction of the magnetic 

field (|H| = |HZ| =- H). Using the abbreviations 

«H 1 f(r) ,, . 
• (8) 

pc p r 

X — — <yy + <f>{r)x\ 
ij = cr.c -1- <f>(r)y - . . (9) 
z = <f>{r)z 

we obtain 
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The intensity of the magnetic field does not occur in the last equation ; 
the vibration parallel to H is not changed by the field. We need not 
concern ourselves about this equation for the present. We combine 
the other two equations by multiplying the second by i and forming 

complex expressions : 

(x + iy)“ — kj(x -1- iyY =- </>(r)(x -f /'//) • • (10) 

We now introduce in place of the system x, //, z a new co-ordinate 
system which rotates uniformly about the c-axis. Let the new co¬ 

ordinates be called y, £ : 

x I iy = (f + irj)eiot, z £ . . . (11) 

In accordance with (10) we must form successively 

(* f- h/Y — {(£ -l- ^)* + *0(f + /^)K0/, 
(x + iyY' =■- {(£ ■) iyY' (■ 2/o(f + t^)' - o2(£ 4- ^)V:°‘. 

For x — /// we have merely to write } / for — / in the above equations 
and in those that follow. Substituting in (10) we obtain 

(£4 ! (ff iyY(2iO-hr) w(f 1 /t;)(02 --Oct)-- - ^(r)(f-f /r/) 

If we here set 

a cH 

0 "" 2 " 2/tc ‘ 

the term with the first differential coefficient vanishes. We can readily 
convince ourselves that in general the term in f *77 on the left-hand 
side of (12) may be neglected in comparison with the first term. 
Actually, by (13) o is not greater than 0*9.1013 (sec A) even in fields 
of the order of 106 gauss (Kapitza), whereas the frequencies of revolu¬ 
tion a) = 277It of the electron, whose square appears as a factor of the 

4Z2 
first term, are, by (4), page 85, of the order of ^ . 1016 (sec”1). 

Hence in the case of quantum numbers that are not too high we may 

certainly replace (12) by 

(12) 

(13) 

(I -I- «?)'* =** <£(*■)(£ + iv) 
and hence also 

£ ~ } 
v — <i>(r)v I 

Moreover, we have by (9) and (11) 

Z - Hr)l 

(14a) 

(146) 

(14c) 

These equations, taken together, represent a system of equations of 
motion which refers to the rotating system and which is of the same 
form as the system (9), which referred to the stationary system, if we 
set the field equal to zero (a = 0) in (9). Thus the action of the 



327 § 4. The Normal Zeeman Effect 

magnetic field is equivalent to a uniform precession of the co-ordinate 
system with the angular velocity (13) about the direction of the field. 
In this way we have proved Larmor’s theorem again, from first prin¬ 
ciples. 

Hitherto we have used only the methods of classical mechanics. 
We have now to deal with the aspect of the quantum theory of the 
process. The field-free electronic orbit with which we started is 
quantised. How are we to quantise this orbit in the field ? We saw 
that this orbit, regarded from the point of view of the processing system 
of reference is a field-free orbit. If we transfer the quantising of the 
field-free orbits from the stationary system to the processing system of 
reference we obtain as the quantised orbits with the field the same orbits 
in the precessing systems of reference as in the stationary system, when no 
field is acting and in fact with the same quantum numbers. In § f> of 
the present chapter we shall trace back this process of transposition, 
which is here introduced merely as an assumption which readily 
suggests itself, to the general Adiabatic Principle. 

Of the quantum numbers of the orbit we shall require only the 
equatorial or magnetic quantum number m which is allocated to the 
geographical longitude of the electron and is measured in the plane 
perpendicular to H. We call this longitude ip in the ease of the field - 
free orbit, where it is measured in the stationary system, and likewise 
in the magnetically influenced orbit where it, however, refers to the 
processing co-ordinate system. We distinguish from it the geo¬ 
graphical longitude x which specifies the position of the electron in 
the processing orbit in the stationary system of reference. The 
relationship between these quantities is clearly 

x -- t/i i O, X ~ <!• -f- 0/ ... (15) 

We shall call the corresponding moments of momentum p^ and px. 
For p$ the following quantum condition holds (for both meanings of 
ifj, on account of the Adiabatic Principle) : 

the latter on account of the constancy of p^ which again holds for both 
meanings of The fact that the corresponding condition for px 
and x does not hold wdll be explained in the last section of this chapter. 
We have neither px constant in general, nor is px the canonically con¬ 
jugate momentum to the angle which the quantum condition would 

demand. 
We now form the expression for the kinetic energy of the electron, 

first when there is a magnetic field, EA.,-„ (H), and again when there is 
none, E/MW (0). The latter expression is 

JE*i„(0) = |(r2 + r-6'1 -f r2 sin2 0tjj2) (17) 
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At the same time this denotes the kinetic energy of the electron, when 
there is a magnetic field, related to our rotating system of reference. 
The kinetic energy, when there is a magnetic field, related to our 
stationary system of reference, is therefore (we merely interchange 

4> and x) 

E,,JH) g(r2 + rW + r2 an* 0*2) . . (18) 

By substituting from (15) we get 

Ea,„(H) =- ^(f2 ■(■■ r2$2 4 r2 sin2 0^ -f 2r2 sin2 0^0 -f . . .) (19) 

The last member (not written here) is quadratic in o and hence, owing 

to the restriction contained in Larmor s theorem, is to be neglected. 
Tf we also take into account the significance of p^, 

dEfrf-n(0) «> . o nt 
p^ — ——— “ pr2 sin2 Oi/t 

as well as the expression for Ekin(0) in eqn. (17), we may write in place 

of (19) 
Ei-,»(H) -• E*,„(0) 4- m . 0 . . . (20) 

Penally, we introduce the expression 

AE„n = Em„(H) - Ekin(0) 

as the change in kinetic energy of the electron arising through the 
magnetic field H, and express pby eqn. (16), in terms of the quantum 

number m. We thus get from (20) 

AEW„ - £oh . . . . (21) 

On the other hand, we have, as regards the potential energy, 

AE„f = 0 . . . . (21a) 

e'2 
For the potential energy of the Coulomb attraction — — undergoes 

no change through the introduction of the magnetic field, since the 
distance r in the precessional and the original orbit remains the same 
within the limits of accuracy of our calculation. 

Hence from (21) and (21a) we get for the magnetic change of the 
total energy W of the electron 

AW = £o h .... (22) 

Likewise we get for the difference of the total energy in the initial and 

final orbit of the electron 

AW, - AW2 = -1-%~oh (23) 
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Just as the frequency v of the emitted spectral line is determined 
from the Bohr condition 

so the magnetic influence Av of the line is obtained from the con¬ 
dition 

hAv - AW, - AW2. 

Hence eqn. (23) states that 

hAv --zoh — Aw,;- , 
Ztt Ztt 

or if we substitute for 0 from (6), 

Ay - Am - .... (24) 
p 4ttC 

We note that the quantum of action h has characteristically ^ 
cancelled out in passing from (23) to (24). This is the reason why 
it was possible to develop magneto-optics in Lorentz’s theory up to a 
certain point on the foundations that were available before the quantum 
theory was introduced. This was not possible in the case of electro¬ 
optics (Stark effect) nor in the general optics of spectral lines. 

Finally we must apply our selection principle. This affects only 
the equatorial quantum number m, exactly as in the electric field, and 
runs 

Am — d= 1 or d • • • (25) 

Hence from eqn. (24) we obtain 

Av — -h - -5- or Ay — 0 . . . (2H) 
- \i 4ffC 

This falls perfectly into line with Lorentz's theory, eqn. (1), and has 
been obtained by means of the quantum theory.* 

The polarisation of the Zeeman components is also given correctly 
by our theory. For as shown at the end of § 1 circular polarisation 
about the lines of forces corresponds to the quantum transition i 1, 

and linear polarisation in the direction of the lines of force corresponds 

to the quantum transition zero. 
As regards the observation of the polarisation in the longitudinal 

effect we must emphasise the following difference between the Zeeman 

effect and the (Stark effect. In the Stark effect the transitions which 
would lead on the right and the left-hand side to polarised light are 
equal in energy ; they therefore coincide in one line and give unpolarised 
light. In the Zeeman effect they are different in their energy amounts 

* Cf. the author’s paper, Phys. Zcits., 17, 491 (1916), and the somewhat earlier 
paper by Debye, ibid., p. 507, or Gottinger, Nachr., June, 1916. Since the selec¬ 
tion rule was not known at that time superfluous components occur in both papers 
containing multiples of the Lorentz Av. 
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and hence give different line-components which are circularly polarised 
in opposite directions. 

§ 5. Anomalous Zeeman Effect 

On page 323 of the preceding section we have already mentioned 
that the normal Zeeman effect occurs only in the case of a few lines 
and that it represents the exception rather than the rule in atomic 
spectra. In general it is replaced by more complicated types of re¬ 
solution ; even the hydrogen atom exhibits theoretical and experi¬ 
mental deviations from the scheme of the preceding section. 

Actually, we have hitherto neglected the “ spin " of the electron. 
The discussion in the preceding section applies only to terms and lines 
in which the influence of the electron spin becomes zero (of. p. 323). 

We shall now proceed to derive the Zeeman effect of an atom with 
only one outer electron, taking into account the electron spin. Our 
discussion thus applies to atoms of the alkali type ; we deal with the 
special case of hydrogen at the end of this section. When there is 
no electronic moment of momentum the moment of momentum due 

to the orbital motion of the electron is constant in magnitude and 
direction (cf. § 7, Chap. II, eqn. (6), p^ -- p — const.). According to 
wave-mechanics we must allocate to this orbital motion the quantum 
number l — n^ — 1 (cf. p. 115). We allocate the quantum number s 

to the moment of momentum of the spin-motion. The orbital and 
the spin moment of momentum now combine to form the resultant 
total moment of momentum. It is constant in magnitude and 
direction. Corresponding to it we have the quantum number j : 

7+^=7.(i) 
We get information about the values of s from the considerations of 
Chapter II, § 8 ; the Gerlach-Stern experiment with hydrogen suggested 
that in the ground-state we must have j -i. But since the value 

/ = n^ - I - 0 (since n(ft -- 1) corresponds to this ground-state, 
it necessarily follows from j -■ J that .s* -- J. This result, which forms 
a part of the hypothesis of Goudsmit and Uhlenbeck,* has already 
been mentioned by us earlier ; it was formulated thus : the quantum 

number s which corresponds to the moment of momentum (spin) of the 
electron with respect to its own axis (Eigendrehimpuls) always has the 

value s = h 
The values of the quantum number j of the total moment of mo¬ 

mentum which follow from the hypothesis of the spinning electron 
have already been given on page 244. They apply to all systems 

with one outer electron, for the inner closed shells, for example, of 

* S. Goudsmit and G. E. Uhlenbeck, Naturwiss., 13, 953 (1925); Nature, 
107, 264 (1926). 
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the alkalies, have no moment of momentum according to Pauli s 
Principle (cf. Chap. VIII, § 3) and cannot therefore contribute to the 
values of the quantum number j. 

Associated with the rotation having the moment of momentum 
s is a magnetic moment, just as it is associated with the orbital motion 
of the electron (cf. p. 127). We must regard the, electron ax a small 
magnet. The magnetic field produced 
by motion in the orbit and having the 
direction of l acts on this magnet and 
attempts to pull it into its own direc¬ 
tion. The result is a precessional motion 
of the magnetic axis of the electron 
about the axis of the (internal) magnetic- 
field—exactly as in the preceding section 
where we dealt with the adjustment of 
the atomic magnet into the external 
magnetic field. The relative motion of 
/ and s to each other is, however, bound 
by another condition, namely, that l and 
s together must form the resultant j, 
which is for its part fixed in space and of 
invariable value. It follows that / and .s- 
rotate together as a rigid system about / 
and therefore perform a processional 
motion of the kind depicted in Fig. 8b. 
We shall call it briefly inner precession 

(in nen -prdzession). 
Concerning the value of the magnetic 

moment of the atom we have already 
considered in Chapter II, pages 128 
and 129, the moment which corresponds 
to the orbital motion. We obtained for 
the ratio of the magnetic moment to 
the mechanical moment of momentum, 
by eqn. (12), page 128, 

Kkj. 86. The veclor frame of 
lilt's atom according to the 
hypothesis of electron spin. 
I and s combine to give j, 
and the magnetic moments 
Mz and JV1„ in like manner 
to give M. The direction 
of M is not the satne as that 
of /, in conformity with (2) 
and (3). 

M 
TVi 
±JAmeah 

- (orbital motion) (2) 

where p == electronic mass and e is measured in e.s.u. 
Wc again obtain information about the moment that corresponds 

to the spin-motion from the Gerlaoh-Stern experiment : for the ground- 
state of H, where / 0, and lienee s alone is effective, the magnetic 
moment was found experimentally to have the value of one magneton. 
The mechanical moment of momentum of the spin was equal to 
£A/2tt. If we assume that the exact value given by the Geriach-Stern 
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experiment for hydrogen is equal to 1 magneton then we obtain—and 
this is the other part of the hypothesis of Goudsmit and Uhlenbeck, 

M xlxmao 
M 
±lxmech % (spin) (3) 

that is, twice the value of the ratio (2). 
The total magnetic moment M of the atom is composed of the part 

due to the orbital motion and that due to the spin. From the inequality 
of the ratios (2) and (3) it immediately follows that the direction of M 

does not coincide with that of the mechanical moment of momentum, 
that is, with that of j (cf. Fig. 86). Moreover, we may infer from the 
precession of / and s around j that the corresponding magnetic moments 
perform a precession about j and, with them, also M. We suppose 
the vector M to be resolved into two components, one parallel to j, 
the other perpendicular to j. If the precession of M about j occurs 
sufficiently rapidly only the component of M parallel to j will become 
appreciable for observation, because the other cancels out when aver¬ 
aged over the time. We shall work out the component parallel to j. 

The mechanical moment of momentum of the orbital motion is - /. and 
h e *77 

hence the associated magnetic moment is — ; for the spin we 
h e 2n 2fxC 

have analogously : ^-s. Altogether we obtain for the required 
Zn pC 

component, which at the same time gives the total magnetic moment 
of the atom when averaged over the time, 

M 
h e 

2tt 2/jlc 
(l cos (Ij) + 2s cos (sj)) (4) 

We take the values of the direction cosines from Fig. 86 and obtain 

COS (Ij) — l2+f ** ,^ + j* - p 
-» °°*(v) =—tij—• 

Substituting in (4) and writing Mr as an abbreviation for ~ . 
2tt ZfxC 

(Mb is to stand for the Bohr magneton ; cf. p. 128 where the magneton 
referred to the mole and was measured in electromagnetic units), 

M„ 

where 

magnetic moment of the atom — 
3y2 + ~ l2 

f __ 3<j2 + , j2 + — l2 
J - -~2f2 +' 2f 

Mb .j.f (5) 

. (5a) 

If we bring the atom into an external magnetic field H, the axis 
of the magnetic moment of the atom will, according to the argument 
of the preceding section, perform a precessional motion about the 
direction of the field ; we call this the “ outer precession ” (dussere 
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Prdzession). The kinetic energy of this precession is equal to the 
work which the external field performs on the moment M while the 
Held gradually increase's in strength, namely, equal to 

AW — MH cos (MH) . . . (H) 

The vector j sets itself in accordance with directional quantising in 
such a position that its projection on the direction of the field becomes 
equal to m, where m may have the values 

m j, j - hj - 2, ... - (j - 1), ~ j . . (7) 

This result also remains generally valid according to wave-mechanics. 
In (0) M cos (MH) denotes the projection of M on the direction of the 
Held. But only the component Mp of M is effective so that we may 
write M|| cos (jH) in place of M cos (MH). By (7) cos (y'H) is equal 
to m/j. Jn view of (5) we obtain in this way 

AW - mfMuH .... (8) 

If we measure AW in terms of the unit of resolution of the normal 
Zeeman effect MnH (see eqn. (22), p. 328, and (2), p. 324), we obtain 

simply 

AW mf .... (8a) 

If we were to use this value for AW in our subsequent calculations 
we should obtain results discordant with experiment. Rather, we 
must apply a correction to our preceding remarks, which is demanded 
by wave-mechanics ; the necessity for this correction was recognised 

by Lande from the. available empirical data long before the advent of 
wave-mechanics. 

Wave-mechanics asserts that the absolute value of a moment of 

momentum vector to which the quantum number A is assigned has the 

value VA(A -f 1) — and not X~, as we might expect. 
In 'In 

Accordingly in Fig. (8(5) we must replace J2 by j( j -f- 1), Z2 by /(/ 4 1), 

and s2 by s(s 4- ]),* and so forth. The formulae (2) and (3) remain 
valid also in the new mechanics, but in place of /in (5a) we have 

r , , 3(5+ 1) I-■*(*+ 1) -V + 1) m 
9 M mri) • • (9) 

and g is called Lande’s f splitting factor. 
In this way (8a) becomes 

AW - mg.(10) 

* On the other hand, the values of the quantum-numbers l, j. # which we have 
here used remain valid. The allocation of the m-values to the quantum number 
A, namely, rn — A, A - 1, ... A, remains correct in wave-mechanics, as 
already mentioned above. In the language of the model the “ projection ” of 

the vector of the moment of momentum VA(A 4* 1 j with respect to the fixed 

axis is, in wave-mechanics, equal to m and not to Vm(m + 1). 
t A. Land6f Zeits. f. Phys., 5, 231 (1921). 
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This formula represents the energy change in the imagnetic field, 
measured in units uf MnH, on the a sawn pi ion (see above1) that the pre¬ 
cession of M about j is so rapid that only M|| is observable. We shall 
have to consider later what this restriction implies. 

We now introduce into our discussion the quantum numbers of 

the one-electron systems (doublet-systems), such as were introduced 
on page 244 from the hypothesis of the spinning electron ; and we 
first write down the values of the splitting-factor g. By eqn. (9) we 
obtain, for example, for the term / — 0, j - 1U (by )). 930 s always 
has the value J), 

(J 2, 
for the term Z ---2, j — 3/2, 

9 - 4/r» 

and so forth. 

In Table1 32 we have tabulated the <7-values for doublet-systems : 

Tablc 32 

! j-1'* */* ;,/2 ?/2 #/2 

/ r_ 0 
1 
2 
3 
4 

4/f> 

H / 10/ I y / 9 

It is to be noted that in the case of a doublet, since j l -| V2 (cf. 
p. 244) the (7-formula (9) may be brought into the following simpler 

form : 

g ^ 

g =* 

2j + 1 
2(j + 1) 

2i±J_ 
" 2j 

_21 

=i2(Z”l) 

2(1-1- 1) 

2/ + T 

forj 

fori ^ 

- / ~ 7, 

* f Vr 

This enables us to determine by means of (10) the resolution patterns 
of the individual doublet-levels. For the terms Z -- 0 we havei 3/2, 
and hence by (7) m --- + V2, — 3/2 and mg = i 1. The terms Z = 0 
resolve under the action of the magnetic field into two levels, which 
are distant from the original field-free level by an amount equal to 

the interval of the normal Zeeman resolution. In general the j-level 
resolves into just as many levels as there are m-values, namely (*2j + 1). 

Formula (10) taken in conjunction with (9), shows that AW depends 
only on j, l, s, m and is quite independent of the principal quantum,, 
number n. Consequently all the terms of a series exhibit the same resolu¬ 
tion and, hence all lines of one and the same series exhibit the same Zeeman 



§ 5- Anomalous Zeeman Effect 335 

effect* This rule was discovered experimentally by Preston long 
before there was a theory of the anomalous Zeeman effect. 

In conformity with Note 7 (/) we take' over the -selection and polarisa¬ 
tion rules, which were there obtained, for our magnetic quantum 
number m. We may have Am — 0 or I ; Aw = 0 gives 77-com¬ 

ponents, Am — | 1 gives cr-components. 
We can now easily state the Zeeman effect for any arbitrary com¬ 

bination of terms. For the initial level we have : energy Wt is equal 
to the sum of the energy Wx° when no field is present plus the additional 
magnetic energy AWr which we must obtain from eqn. (10). The same 
applies to the second term. The observed line-frequencies follow 
from these values if we form the differences : 

hv - Wx° - W2° + AWj - AW2 = hv{) | hAv 

where r0 denotes the frequency when no field is present. If we make 
our measurements from this frequency we obtain in 

AWt — AW2 - h(v — v0) -- hAv — m1r/1 - m2g2 ■ (11) 

all the frequencies of the resolution pattern. 
Let us consider, say, the combinations Z-- 0, j i —> l — 1, 

j = ij and l — 0, j — 1 -> / - 1, j J. We find it expedient to 

Table 33 

1 1 
>» i/2 1 /, 3/a 

1 ft j 
1 ! 

12 m jf 1 1 
(» «) (> 

/ 1.7 •7*2 in (t — _ 
3 ' 3 3 3 

5, - - 3, (- i), (i). 3 , r> 

“ 3 

Table 34 

m ~ V* V* 

1 - 0. j 1 /ss in g - 1 1 

1 ij - */, m (/ I I 

3 3 

- 4, (~ 2), (2), 4 

3 

* In Chapter VIII we shall make this rule more restrictive by formulating 

it more rigorously. 
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write down in tabular form first the possible ?w-values and underneath 
them the values of mg for the first- term / 0, j { and then those 
for the second term / - 1, j ~ (j or l. We put the mg-values over 
a common denominator and bracket the transitions Am —- 0 (7r-com- 
ponents) in order to distinguish them from the combinations Am — J I 
(a-components). 

In Figs. 87 and 88 the two Zeeman-types are shown as observed 
transversely. They are particularly interesting because they repre¬ 
sent resolution-patterns of the two D-lines ; Fig. 87 corresponds to 
the line D2, Fig. 88 to the line Dx. These “ D line types ” have been 
known and measured since the very beginning of the researches into 
the Zeeman effect. 

It is readily seen that the Zeeman effect in general contains the 
more components the greater the number of inner quantum numbers 

normal normal 

Flu. 87.- Anomalous Zoeman effect of Ftg. 88. -Anomalous Zeeman effect 
the combination l --- 0, j - £ W 1, of the combination l 0, j - J -> / 
j ----- l (doublet-system of the JDa-line -- ], j — J (doublet-system of the 
type). v0 - position of the line with- Drline type). Otherwise as in 
out a field, n- and cr-components are Fig. 87. 
shown separately. 

that combine, because as j increases the number of magnetic term- 
levels increases in accordance with the factor 2j + I (see above). 
The fine-structures of the hydrogen lines H«, H^, for example, should 
show a quite complicated Zeeman-type. Before discussing it we 
must limit more accurately the range of validity of eqns. (10) and (9). 
We had assumed that the precession of M about j occurs so rapidly 
that the component Mx perpendicular to j cancels out when averaged 
over the time. This signifies that the precession of M about j (or of 
l about j) must occur much more rapidly than that of j about the 
direction of the field, as otherwise Mx would not vanish when the time- 
mean is taken. 

Now it is shown in Note 7 (a) that corresponding to the classical 
frequency of precession about j we have that quantum transition of 
energy, in which j alone changes while all the other quantum numbers 
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remain unchanged, that is a change of energy of the magnitude of the 
term resolutions when no Held is acting (cf. for example, Fig. 75, p. 270). 
On the other hand, corresponding with the processional frequency 
of j about H we have the quantum transition in which only m, namely, 
the projection of j on H changes—that is, an energy-change of the 
order of magnitude of the Zeeman-resolutions. By the Correspondence 
Principle we may assume that the energy-changes are small if the 
precession is slow, and vice versa. Bence our assumption about the 
velocities of precession denotes that in the case of a term with a definite 1 
the field-free resolution which is given by j should be much greater than 
the resolution of those individual j -levels caused by the magnetic field. 

But what happens if the magnetic Held is much more intense l 
(In the ordinary investigations of the Zeeman effect it is of the order 
of 3 . 104 to 4.104 gauss.) If the magnetic Held is gradually made 
more intense the outer precession will gradually attain the order of 
magnitude of the inner precession. This denotes mechanically that 
we are no longer able to calculate as above, as if j remains Hxed for 
a first approximation and as if the (uniform) inner precession of l 
and s took place about this axis. Rather, the external field will 
appreciably disturb the internal field and will loosen the (magnetic) 
coupling between l and s, thus converting the previously uniform 
precession about j into an irregular precession. In the Fourier expres¬ 
sion for the motion the harmonics of the processional frequencies 
then present themselves ; this signifies, according to the Correspondence 
Principle, that in addition to the transitions A j 0, :±- 1, also those 
of greater amount occur, namely A j - ±2. Theoretically and 
experimentally * this transgression of the selection rule is an effect 
which occurs in passing from weak to strong fields. We can deal with 
it more fully only when we come to Chapter VIII. 

If, finally, the external field becomes so strong that it predominates con¬ 
siderably over the internal field, that is, if the term-resolutions produced 
by the external field have become much greater than the “ natural ” 
field-free resolutions, we may disregard the mutual action of the two 
magnetic moments entirely. For l and s individually we have 
directional quantising relative to the magnetic field H ; l and s perform 
their precession about the H-direction independently of each other. 
Strictly speaking, there is no sense in this case in talking of the total 
moment of momentum j of the atom, for this can be defined only so 
long as we may regard the atom as almost closed and the external field 

as only a small perturbation. 
We call the projections of l and s in the direction of H mt and ms; 

according to the rules of directional quantising (Chap. II, § 8 ; cf. also 
the note on p. 333), we obtain analogously to eqn. (7), 

mt = l, l - 1, . . . - (l - 1), - l . • (12a) 

* F. Pasehen and E. Back, Pliysica, 1, 261 (1921). 

VOL. I.—22 
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and mH = s, . . . — s. 

The last equation reduces in our case, on account of s ~~ A, to 

tns = l, — A . . . . (12 b) 

These are the only values permissible for ms. 
The additional magnetic energy AW is composed of the contribu¬ 

tions of the two magnetic moments. By eqns. (6) and (2) we obtain 
for the contribution of / 

AW, - 

and for the contribution of s, by eqns. ((>) and (3), 

AW, - 2m,MBH. 

In all we obtain 

AW = (ml + 2w,)MbH . . . (13) 

or if we use as our unit the resolution of the normal Zeeman effect 

(see eqns. (8a) and (10)), 

AW = m, 2ms .... (13a) 

The selection and polarisation rules here run somewhat differently 
from those in the case of the weak field. The magnetic moment of 
s now no longer has an appreciable effect on the orbital revolution /. 

Consequently the spin-frequencies in the Fourier expansion of the 
orbital motion now no longer occur. This signifies that the corre¬ 
sponding quantum transition in m, is zero : Aw* — 0. On the other 
hand, the precession of l about H gives us the selection principle 
Aw, = ::t; 1 and circular polarisation about H (a-components) for the 
Fourier expression of the components of the electric moment per¬ 
pendicular to B. In the same way the expression for the components 
parallel to H give the selection principle Am, — 0 and linear polarisa¬ 
tion parallel to H (7r-components). (Compare the analogous remarks 
about m and j in Note 7 and in § 1 of the present chapter.) 

According to formula (13a) a term with a given n, l resolves in 

a strong magnetic field in such a way that the level intervals become 
integral multiples of the intervals in the normal Zeeman effect. Actually 
w, and 2m, are integers (m, = A, see above). For the Zeeman 
effect of a combination of two terms (n, l) we obtain from (13a), pre¬ 
cisely as in eqn. (11), / 

AWX — AW2 = h(v — v0) = (7n j + 2m8)1 — (m, + 2m,)2. (14) 

From (14) we conclude that the selection rules that here hold for 
mx and ms are 

AWX-AW2 = /*(r-~ v0)=0, ±1 . . (15) 

This means that all combinations of terms (n, l) exhibit the normal Lorentz 
triplet in transverse observation if the field is sufficiently intense, that is, 
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a Tr-componcnt appears in the position of the field-free line and two 
<r-components at the normal ” distance on both sides. 

What does “ field-free ” line stand for here ? Clearly, our result (13a) 
was derived as if we were dealing with an atomic model in which there 
was no mutual action between l and s and on which a magnetic field 
H acts. In that ease we should need to take into consideration the 
mutual action between / and s only in a higher degree of approximation. 
The order of magnitude of the perturbations is here just the reverse of 
that in the ease of weak fields, where the inter-action (Is) had to he 

set down as the most important contribution and then the action of 
the magnetic field became added as giving a higher degree' of approxima¬ 
tion. In a corresponding manner earlier the field-free term-level was 
simply the term n, l, j without a field. But here s has no influence 
in the approximation of zero order on the orbital motion (on account 
of the absence of the interaction (Is)) ; in the approximation we have 
a model without a spin, from which we should have to calculate the 
field-free level (n, l). In Chapter VIII we shall find on the basis of 
a “ semi-classical ” formula for the Zeeman-resolutions, which is 

confirmed by wave-mechanics, that the 7r-component of our Lorentz 
triplet coincides with the “ centre of gravity ” of the field-free doublet- 
resolution. This centre of gravity divides the original doublet-resolu¬ 
tion of the term (n, l) in the ratio / : / | 1 and lies nearer to the level 
which has the greater j. 

If, as above suggested, we proceed one step further in the calcula¬ 
tion of the perturbation, we find that AW in (13a) becomes supplemented 
on account of the interaction between l and s by an amount of the 
order of magnitude of this interaction, that is, of the magnitude of 
the doublet-resolution of the (n, /)-term. The individual lines of 
our normal Zeeman effect (15) become subdivided through this into 

several components that are distant from one another by the amount 
of the doublet-intervals. According to our assumptions (doublet 
structure magnetic resolution) the latter intervals are small com¬ 
pared with the intervals between the three lines of the normal Zeeman 
effect (15). For the combination / 0 / = 1 the pattern lias the 

following appearance (see Fig. 89). 
We shall be able to give the quantitative basi * for Fig. 89 only 

when we arrive at Chapter VIII. 
It is clear then that the magnetic field produces a transformation 

of the resolution-pattern which is in general very complicated. So 
long as the doublet-resolutions are great compared with the resolutions 
due to the magnetic field we have the anomalous Zeeman effect, which 
is described by eqns. (9) and (10). The magnetic transformation 
which appears in strong fields is called the Paschen-Back Effect after 

its discoverers.* The final state, which is given by eqn. (13a), is 

♦ F. Paschen and K. Back, Ann. d. Phys., 39, 897 (J912) ; 40, 960 (1913). 
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reached when the magnetic resolutions have become great compared 
with the doublet-resolutions. There is sense in talking of weak or 
strong magnetic fields only in relation to the original term-resolutions. If 
these are themselves small, as in the case of hydrogen, the Paschen- 
Back effect appears even at comparatively low field-strengths. 

normal 

Fig. 89.-' Paschon-Back effect of the combination l 0 -> l 1. The two 
Zeeman effects of Figs. 87 and 88 are combined together in this figure. 
v8 - position of the C. of (*. of the two " field-free ” lines r0 of Figs. 87 and 
88. Fine-structure resolution of the a-components of the Lorentz triplet 
in the lines taken two at a time, whose mutual interval is equal to 2/3 of 
the original field-free ^-resolution of the P-terms (/ I) (cf. Chap. VI11). 

Let us calculate in particular the intensity of field for which in the 
case of hydrogen the magnetic resolutions are of the same order as its 
fine-structure. We obtain 

hAvhc ~ MbH. 

The factor c is necessary because we reckon Arn in cm. 1 and not in 
see.-1. Using the value (p.321) 

^’normal = ~ *fi7 • M> 5 H (<'».. ') 

and (p. 202) Avh — 0-30 (cm.”1) : 

H ™ 7700 gauss. 

In the case of hydrogen the question of the magnetic transformation 
appears to be still more complicated than in that of the model hitherto 
considered. For in the fine-structure the distances between the 
levels having a fixed n and different Z’s are of the same order of mag¬ 
nitude as those between levels having a fixed n, l and different j (cf. 
Fig. 75, p. 270). Hitherto we have spoken only of this last sub-division 
of the (n, l)-terms into j-levels as being small compared with the 
magnetic resolutions and we have tacitly assumed that the /-terms 
are still far removed from one another, as is actually so in the case of 
the alkalies. It is easy to see, however, that a strong magnetic field 
also in the case of hydrogen produces essentially the same effect theoret¬ 
ically as that described in Fig. 89, namely, a normal Zeeman triplet 
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whose components appear sub-divided into individual lines, whose 
distances from one another are again of the order of magnitude of the 
fine-structure. This is confirmed by the measurements so far as they 
can be carried out in face of the difficulties involved. 

§ 6. The Adiabatic Hypothesis 

At the lirst Solvay Congress,* in the year 1911, H. A. Lorentz 
proposed the question as to how a simple pendulum behaves when its 

length is shortened by holding the thread between two fingers and 
drawing it up between them. If it has initially exactly the correct 
energy that corresponds as an energy element to its frequency, then 
at the end of the process when the frequency has become increased 
this energy would no longer suffice to make up a full energy element. 

Einstein at once furnished the correct reply in saying that the 
suspending thread must be shortened infinitely slowly and then the 

energy would increase proportionally to the frequency and would 
continue to be equal to an energy element. 

This answer is covered by Ehrenfests Adiabatic Hypothesis.! 
We formulate it as follows : Let us consider any arbitrary mechanical 
system and an arbitrary initial state of motion which is correctly 
quantised. We now alter the state infinitely slowly by gradually 
imposing an arbitrary external field of force or by gradually altering 

the inner constitution of the system (length, mass, charge, connections). 
This causes the original stale of motion to be transformed by mechan¬ 

ical means to a new state of motion. For the new conditions of the 
system this new state of motion is a quantum-favoured state if the 
original state was so under the original conditions; it corresponds 
to the same quantum numbers n3, w2, ... as the latter. 

The expression “ Adiabatic Hypothesis " is taken from thermo¬ 
dynamics. Just as in an adiabatic change of state in thermodynamics 
the co-ordinates that determine the heat motion are not directly 
affected, but only indirectly while no heat is added from without and 
the conditions of the system are altered (for example, the volume, 
the position in the gravitational field, and so forth), so in the applica¬ 

tions of the adiabatic hypothesis to the quantum theory the motion 
of the system is not controlled directly by external agency ; for such 
agency acts, not on the co-ordinates of the motion, but on a para¬ 

meter of the system. Just as in thermodynamics an adiabatic change 
of state is to be regarded as a chain of states of thermal equilibrium, 

* Rapports du Congrfa, Paris, 1912, p. 450. 
f First set- up by P. Khrenfest in connexion with the problems of “ cavity 

radiation ” in Ann. <1. Phys., 36, 91 (191J), §§ 2 and 5, and then applied by him 
to other problems ; see Verb. d. Dent sell. Physikal. (Jos., 16, 451 (1913) ; Amstord. 
Academy, 22, 586 (1913); Phys. Zeitsohr., 15, 657 (1914). A detailed survey 
for systems of several degrees of freedom is contained in Ann. d. Phvs., 51, 327 
(1916). Cf. also J. M. Burgers, ibid., 52, 195 (1917). 
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so in the quantum theory the adiabatic transformation from the original 
to the final quantum state has to occur infinitely slowly, that is by 
passing through intermediate states of equilibrium of motion. Quan¬ 
tities that remain unaltered during this transformation are called 
adiabatic invariants. The quantum numbers that fix the original 
state are by the adiabatic hypothesis themselves such invariants. 
Ail other adiabatic invariants must be expressible in terms of these 
simplest invariants. 

There are three characteristics that are both necessary and at the 
same time sufficient for adiabatic processes. 1. The infinitely slow or 

reversible element of the process. In thermodynamics phenomena 
are also known that occur without the addition of heat but are irre¬ 
versible (for example, the diffusion of a gas when no cotton-wool 
aperture is used). Such processes are not adiabatic in the present 
sense. 2. The effect not on the co-ordinates of the motion but on one or 
more parameters of the system that remain constant in the original 
motion. 3. The unsystematic or irregular nature of the influence (effect¬ 
ing the alteration) in relation to the phases of motion. Even in the 
case of the simple pendulum we could intentionally carry out the 
shortening of the thread in such a way that the energy of motion there 
remains constant, if we draw up the thread only at the points at which 
the motion is periodically reversed. In that case, as Warburg remarked 
at this Solvay Congress, a contradiction to Einstein’s assertion and 
to the quantum theory would arise. Such intentional or methodical 
alterations are then in no case to be included in the category of 
adiabatic processes. 

We next consider the mechanical aspect of the question The fact 
that in ordinary mechanics we set aside the adiabatic processes is not 
because they are less interesting, but because they are more difficult 
in comparison with the ordinary problems of mechanics. In the ease 
of the simple pendulum, we easily attain our object by direct calcula¬ 
tion without having to seek support from the general laws of adiabatic 
invariance, which we shall develop from this example. 

Let l be the length of the pendulum, m its mass (concentrated at 
a point), <f) the angle of the instantaneous deflection, r the amplitude, 
and v the frequency, so that 

27Tv~Vgll . . . (1) 

The tension 8 acting on the thread is, as we know, 

S — mg cos + mUj>2 

in which the first part is due to gravity, the second to the centrifugal 
force. If we shorten the thread infinitely slowly by | dl |, we have to 
perform work against the tension ; its amount is 

dA = S | dl | ==; — mg cos fidl — mtyHl (2) 
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The horizontal bar denotes that the time average is to be taken and 
indicates that during the shortening by the amount dl many swings 
of the pendulum are to occur. The negative sign occurs because 
| dl | is to denote a shortening, so that dl itself is negative. From 

<f> — c sin (277 vt -|- y) 

it follows that 

W = I - U2 -= J - 4, (2w)s| =• | . (3) 

thus 

dA -- — mg(l — ~^jdl — mg—dl — — mg(] 

The one part, ■— mgdl, of this work dA is used to raise the mean 
position of the weight mg. The remainder 

dA'-~ - - mgC~dl . . . (4) 

increases the energy E of the motion of the pendulum. From (II) 
we see that the mean kinetic energy 

E,.,„ - 'pH2 - .... (5) 

J11 the case of the pendulum the total energy E is, as we know, twice 
as great, and hence its differential is 

c? 
dE — mg-dl f mglcdc . . . -(h) 

By equating (4) and (6) we obtain 

Integrating, 

— I cdl “ Idc. 

I log l — log c const. 

11 — const. (?) 

From this it follows that when the pendulum is shortened adiabatically 
the angular amplitude r increases, as may easily be seen by performing 
the experiment, whilst at the same time the linear amplitude Ic de¬ 

creases. Concerning the energy we conclude by comparing (5) and (7) 
that it increases when the pendulum is shortened adiabatically, as is 
evident from the work dA' performed ; it is inversely proportional 

to VI. 
By squaring (7), and inserting the values of Ic2 from (5) and y7 

from (1), we may write (7) in the form 

E kin ~ const. (8) 



344 Chapter VI. Polarisation and Intensity of Spectral Lines 

Eqn. (8) is an illustration of the general law : the action integral 
(cf. p. 100, eqn. (14)), 

r 

2JEkindl 2rEkm ■= • • . («) 

0 

taken over a period is an adiabatic constant. 
The adiabatic invariance of the quantity (9) already played a part 

in the general investigation made by Boltzmann to base the second 
law of thermodynamics on statistical considerations. Its relation 
to the quantum theory is clear from the eqn. (24) of Chapter II, § 7, 
where the quantum of action written down in our present eqn. (9) led 
to the introduction of the principal quantum number n in the case 
of purely periodic motions. From here we have a bridge to the more 
general class of conditionally periodic systems, in which each individual 
phase‘integral or each of the corresponding quantum numbers iij is an 
adiabatic invariant. (In adiabatic processes it is forbidden to pass 
through a degenerate system, as we shall show in Note 10.) In the parti¬ 
cular case of the harmonic oscillator, and hence also of the pendulum, 

(9) becomes identical with E/r. Hence by setting (9) equal to nh 

we get back to Planck’s quantum law : E — nh v. 
We next use the adiabatic hypothesis to fill in a gap that was left 

in § 4 in the Zeeman effect. 
To deal at the outset with the simplest case we consider a hydrogen 

atom in which the electronic orbits are circular in a plane which is 
perpendicular to the magnetic lines of force. Let a and co be the radius 
and angular velocity in the circular orbit when the field is zero, and let 
a f A a, oj + A w be the same quantities when the field H has been im¬ 
posed adiabatically. The flux of lines of force through the orbit is Htt«2. 
Since we regard it as a small quantity (of the order of the increments 
A a, Aai, whose squares and products may be neglected) it suffices 
to use in it the original a instead of a -f A a. By Faraday’s law of 
induction, the flux of the lines of force gives the whole electromotive 
force that is excited by the increasing field in the “ circular current ” 
of radius a, that is the work performed on the current element. Our 
rotating electron, the charge of which is e in E.S.U., represents a current 
which, measured in E.M.U., is of intensity evjc = eco^lnc (cf. p. 127). 
Thus, by setting the work performed equal to the change of energy 
AW of the electron, we get 

Hna2 . £ - AW or leHaho = AEkin + AE„„, . (10) 

Now 

AE kin = /z(a2o>Ao> + aw2Aa) . (11) 

e2 e2 
Epot = — -> AEpot == ~2Aa = paco2Aa . . (12) 

a a 
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where /u, = mass of the electron. In the last transformation we use 
the equation for the centrifugal force 

= % • (,3) 

By substituting (12) and (11) in (10) and dividing by pa2or, we get 

Aw £>Aa ___ e H 

w a 2fx wc 
(14) 

A second equation is obtained from the circumstance that during 
the adiabatic change of state the dynamical laws, here the equation 
of centrifugal force, are to remain valid throughout. In eqn. (13) we 
wrote down this equation only to a first approximation for the field 
zero. In general it is 

/x(ffl f- Aa)(o> 4 Aoj)2 j' A(7)2 “Haco 

or, when multiplied by (a | A a)'1, 

fi(a | Aa)3(o) -| Aw)2 — e2 | -Ha‘Aw . . (15) 

From this, by using (13) and dividing by 2wa‘sw2, we gel 

Aoj 3 Aa e H 
-f -- =- — . . . . (lb) 

w Z a Zfi wc 

By comparing (16) and (14) we see at once that 

Aa — 0, Aw — 0- — — 0 . . . (17) 
2/jl c v 7 

Hence, when the magnetic field is introduced adiabatically the radius 
a remains unchanged, the rate of rotation is changed by the amount 0 of 
the Larmor precession (cf. eqn. (2) of p. 324), being increased, or dimin¬ 
ished according to the direction of the field. 

The same calculation may be carried out for a circular or elliptic 

path inclined to the lines of force, and the result is : as the magnetic 
field increases gradually, the size and the shape of the orbit remains 
preserved (corresponding to Aa ----- 0) ; but the rate of rotation becomes 

changed in that the angular velocity 0 about the axis of the lines of 
force becomes added. But this means : the orbit as a whole performs 
a precessiorml motion. 

The limitation to a gradually, that is infinitely slowly, increasing 
field is absolutely necessary. The processional orbit arises from the 
original one with the fixed orbital plane only if we pay due attention 
to the necessary initial velocity of the electron in the direction of 
precession (perpendicular to the lines of force). If the field is intro¬ 
duced suddenly, the momentary velocity of the electron is not affected ; 
for a change of velocity to come about it is necessary that the electron 



346 Chapter VI. Polarisation and Intensity of Spectral Lines 

traverse its orbit one or more times during the time that an appreciable 
change of the magnetic intensity of field takes place. 

So far we have been dealing with adiabatic mechanics. The quantum 
aspect of the adiabatic change comes into question only if we wish to 
allocate quantum numbers to the changed motion. In the case of 
the circular orbit that is simply placed perpendicular to the lines of 
force, this has to occur, by the adiabatic hypothesis, thus : let the 
initial circular orbit (a, w) be quantised, that is, let it be such that 

pa2to w (18) 

Then the altered motion (a, w |: 0) is also quantised, and corresponds 

also to the quantum number n^. But this correspondence does not 
mean that now the formula 

nn2(io ± 0) — T^~ .... (19) 

holds, which would contradict the preceding eqn. (18) ; but rather, 
(18) still remains valid. Whereas, however, the left side of (19) denotes 
the moment of momentum in the stationary system of reference, the 
left side of (18) represents the moment of momentum in the system of 
reference of which the precession is J 0. Thus the latter, not the 
former, is quantised. This is extended still further then to the general 

case of elliptic motion. The precessional orbits in the magnetic field 
correspond to the same quantum numbers as the Kepler ellipses in the 
case when no magnetic field is present : but the phase integrals are not 
to be calculated with reference to the stationary, but with reference to the 
precessional co-ordinate system.. 

This was, as a matter of fact, the method that we followed in § 4 
(p. 327), and which is accordingly justified by the adiabatic hypothesis. 
The particular simplicity of the Zeeman effect now consists in the 
circumstance that in it the adiabatically altered orbits are identical 
in shape with the original orbits, and differ from them only in their 
precessional motion. 

The conclusions here drawn from the adiabatic hypothesis agree 
in general with the results obtained in Note 5 under (c). In eqn. 

(18) we are dealing with the canonically conjugate momentum co¬ 
ordinate denoted by p ; the left-hand side of eqn. (19) corresponds 
to the now elementary moment of momentum, denoted by p, which 
is not quantised. 

Another application of the adiabatic hypothesis concerns the 
shape and position of the orbits * in the Stark effect in the limit when 
the electric field becomes vanishingly small, Lim F > 0. We know 

(p. 311) that these orbits are Kepler ellipses, but that they differ from 

* Communicated personally by W. Pauli, in the course of a conversation 
during the preparation of an earlier edition of the present volume. 
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the Kepler ellipses in the force-free case, or, better expressed, from 
those in the magnetic field of vanishing field intensity Lira H 0. 
Our object is to prove the relationship between the two groups of 
Kepler ellipses ; we abbreviate them thus K/==0, Kh=.0. 

The field F is to be in the direction of the ;r-axis as before. The 
potential energy of the electron in the field is eF.r. The total energy 
is W, and is composed partly of kinetic energy, partly of potential 
energy in the field of the nucleus and in the external field F ; it remains 
constant during the motion so long as the external field is kept constant. 
If it is altered by an amount SF, the total energy alters by the amount 
8W — ex8F. Since the change SF of the field is to take place infinitely 
slowly, we may replace x by the time-mean Jr for one or more revolutions 
and write 

8W = e.jr.S F. 

We follow Bohr * in calling x the x-co-ordinate of the “ electric centre 
of gravity/' The idea is as follows. We replace the succession of 
positions of the motion of the electron in its orbit in time by the dis¬ 
tribution of a charge in space in such a way that for every element of 

the orbit there is a charge proportional to the time taken to traverse 
it. This method was first developed by Gauss for the perturbation 
problem of planetary orbits and signifies an fond the approximation 
of the process in time by using the first term of its Fourier expansion. 
In our ease, where the field F is homogeneous, we may, moreover, 
replace the charge distribution by its centre of gravity, and allow the 
force of the field — cF to act at this point. For reasons of symmetry 
the centre of gravity S lies on the major axis of the ellipse, namely at 
the distance 

s --- [\ea ..... (20) 

from the nucleus in the direction of the aphelion ; here € is the numerical 
eccentricity, which is equal to the distance of the focus from the 
centre of the ellipse divided by the semi-major axis. Eqn. (20) is 

easily proved as follows : 
The charge density on the elliptic arc is (— e)dt/r ; the position, 

of the centre of gravity on the major axis, along which we measure 
the co-ordinate is given by 

l=J*f.(21) 

By the law of sectional areas 

P 

where p denotes the mass of the electron. 

* In Part 11 of the paper mentioned on p. 118 Bohr linked up the treatment 
of the Stark effect with the position of this electric centre of gravity. 



This proves eqn. (20) since, except for the sign, 8 coincides with 

The negative sign of £ clearly asserts that the centre of gravity S lies 
on the negative £-axis, that is, between the nucleus and the aphelion, 
whereas the positive f-axis was directed from the nucleus to the peri¬ 
helion. Since ea denotes the distance of the nucleus from the centre 
of the ellipse, the centre of gravity S bisects the distance from the 
centre to the other focus of the ellipse. 

Hence if & denotes the angle between the #-axis, that is, the direc¬ 
tion of the field and the f-axis, namely, the major axis of the ellipse, 
we have, by (20) or (29), 

x = ;]ae cos <9 , . . (30) 
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If the Held increases from 0 to K the change in energy is 

349 

AW I8W -)' exSF =■-- exF m 

In the last term of this equation we have assumed x independent 
of F. In other words, we have neglected the change of x resulting 
from the increasing field as this involves only a term in F2 in the 
expression for AW and this is of no account. We may therefore 
use the value (30) for x. 

On the other hand, we take the value of AW from eqn. (30) of § 2. 

We then obtain, by equating the two expressions for AW, 

exF - 

3 h* 

3AaF . 

~ U()’ 

-2n(nr, — n^) =- [\a ns n v 
(32) 

87r2/xZc2 ' 1 " n 

In the last equation we have substituted the well-known value 
a — ?/2/?/2/47t2/xZc2 for the major axis of the Kepler ellipse. Comparing 

(32) with (30) we see that 

nn 
n 

€ COS W (33) 

Whereas in the case of the Kepler ellipse Kh_ 0 the semi-axis (cf. 
eqn. 10c on p. 113) and the eccentricity e were fixed by the quantum 
numbers alone (there they were n^ and n), there enters into the expression 
€ for the Kepler ellipse KF==0 the non-quantised angle 0. The limiting 
cases Kh and KF^0 thus actually differ from one another. 

Our eqn. (32), deduced from adiabatic considerations, allows us 
to draw a conclusion not only about the shape but also about the 
position of the orbits. For we read out of (32) that : if n$ > 7iv, then 
x must > 0, that is, the electron in traversing its orbit remains longer 
on the front side of the nucleus than on the renr side ; if ng < nv then 

x < 0, and the orbit conversely is longer on the rear side than on the 
front side of the nucleus. Here the front side denotes that which faces 
in the direction of the lines of force (x > 0). 

As we see from formula (1) on page 312, in the Stark effect the 

line-displacement due to the initial orbit always predominates con¬ 
siderably over that due to the final orbit. Thus if n% > nv in the 
initial orbit, A v becomes positive, that is, the corresponding component 

of the line-resolution lies on the short-wave side of the original line. 
If n$ < nn in the initial orbit, A v becomes negative and we have 
a long-wave component. Combining this with the preceding result, 
we may say : the short-wave (long-wave) components in the Stark effect 
are due to transitions in which the initial orbits lie more on the front side 
(rear side, respectively) of the nucleus. 



350 Chapter VI. Polarisation and Intensity of Spectral lines 

This remark is useful for interpreting * certain differences of in¬ 
tensity between the long- and short-wave components,! which have 
been observed in rapid canal rays of hydrogen. 

We are now also in a position to explain the fading away (Aussterben) 
of the lines qualitatively (of. Fig. 84, p. 320). We first consider the 
red components : for them we have for the initial state*, 
x < 0. The aphelion of the initial orbit lies in the negative direction 
of the field if we reckon from the nucleus, in the direction of the 
positive (positively charged) plate of the condenser by which we may 
picture the electric? field to be produced. On this side the initial 
orbit of the field is perturbed to an extraordinary degree because the 
attractive force of the field acts in opposition to the nuclear attraction. 
In this case the orbit may clearly be perturbed if the field is sufficiently 
intense. On the other side of the* nucleus the initial orbit will be 
forced back by the field against the nucleus. Now for the violet com¬ 
ponents ; here we have in the initial state n$ > nv, x > 0. The 
aphelion of the initial orbits lies towards the negative, plate and the 
orbit is forced back towards the nucleus by the field. On the peri¬ 
helion side the? orbit may again be perturbed, but only when the field- 
strengths are greater than before, because the orbit now passes by 
more closely to the nucleus than in the ease of the red components. 
Hence we see : the violet and the red components may be perturbed 
if the fields are sufficiently intense, the red being perturbed sooner 
than the violet. This agrees perfectly with the findings of Fig. 84. 
Furthermore, we sec* that the orbits with greater values for the 
principal quantum number n arc? more easily perturbed because they 
have greater orbital dimensions than those with smaller values for n. 
This is also shown in the measurements : persists longest, then, 
in turn, Hr, H,s, Ht, If we calculate quite roughly with circular 
orbits (radius a — a{) . 7t2, where a0 radius of the first hydrogen 
orbit), we obtain as the condition for the perturbation of the* orbit 

that is, a decrease of the critical field-strengths in the ratio 1/a4. If 
we set F — 1()6 volt/cm., we obtain { 

-«IIIZ' 
4 j . 10“ 
Va»“ • 300 

84, 

that is, a value which is obviously too great, as is shown by Fig. 84, 
but nevertheless it is of the correct order of magnitude. 

* Cf. N. Bohr, Phil. Mag., 30, 405 (1915) ; A. Sominerfeld, Jahrbueh f. Rad. und 
Elektr., 17* 417 (1921); A. Rubinowiez, Zeits. f. Phys., 5, 331 (1921). Translated 
into the language of wave-mechanics by Fr. Slack, Ann. d. Phys., 82, 576 (1927). 

t J* Stark, Elektr. Spektralanalyse, § 14 and § 33 ; H. Lunelund, Ann. d. Phys., 
45, 517 (1914); Wierl, Dissertation, Munich, 1927 ; Ann. d. Phys., 82, 563 (1927). 

I The factor —- is necessary in order to bring the volts to electrostatic units. 
uUU 



CHAPTER VII 

SERIES LAWS IN GENERAL 

§ 1. Experimental Results Connected with the Series Scheme 

ON the basis of extensive experimental results speetroscopists 
have developed a number of physical points of view bearing on 
the arrangement of the lines into separate series, such as the 

structure and the multiplicity of the lines, the readiness with which 

they appear, their dependence on temperature, their diffuse ness or 
sharpness, their behaviour in the Stark effect or under pressure and 
so forth. From this there emerged as the final criterion that a line 
belonged to a definite series the possibility of its fitting into a formula 
representing the regular secjuencc of lines. For the sake of brevity 
we shall begin here with the expression of the series in formulae ; the 
individual data of experiment may then be? derived conveniently in 
the reverse direction from this description. 

We must preface our remarks by stating that at present it has 
by no means been possible to prove the existence of series in the case 
of all elements. The series character dominates only the first three 

vertical columns of the periodic system. Towards the end of the 
periodic system, from the sixth to the eighth vertical column, the 
number of lines increases enormously (as in the case of the Fe-lines 
and in the triads altogether) ; here the multiplet structure (cf. (’Imp. 
VIII) comes into prominence and the series scheme recedes. Cor¬ 
responding elements, which lie in a vertical column in the periodic 
system, behave in an analogous manner as regards their spectral 
manifestations, for example, they all show a clear series character 
or all show a confused accumulation of lines that apparently belong to 
no series. This is in agreement with the view aheady expressed in 
Chapter III, § 3, that the visible spectra originate at the surface of 
the atom and hence exhibit similar behaviour if the surface structure 

is similar. 
Every series is constructed, like Balmer’s series, from the difference 

of two terms, a constant first term and a variable second term. We 
also call the latter the current term. As in the Balmer series so, gener¬ 
ally, the current term depends on a whole number n, the current 
number, and approaches the limiting value zero as n goes to infinity. 
From our earlier remarks (see p. 72) we already know that the true 

351 
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goal of spectroscopy is the terms themselves and not the linos which 
are formed by combining the terms. We shall now give the usual 
definition of the current term for the Principal Series, the J and II 
Subordinate Series and so forth. 

The Principal Series * (Haupbserie) is characterised by the letter 
P ; its current term is written thus : 

H.S.nV. 

The integer n distinguishes the successive lines or members of the 
series. The letter P serves to indicate the atomic constants that 
play the decisive part for this term. wP does not denote the product 
of the current number n with an atomic constant P but symbolises 
a certain function of n whose form we shall develop in the next section. 
The same applies to the following symbols r?D, mS, nF, .... 

The First Subordinate Series (Nebenserie), also called the Diffuse 
Subordinate Series, is characterised by the letter I). The current term 
of the I Subordinate Series is written thus : 

I. N.S.nD. 

The Second Subordinate Series is also called the Sharp Subordinate 
Series. Hence we use the letter S and denote its current term by 

II. N.S.r*S. 

When a method was found of analysing the infra-red part of the 
spectrum the so-called Bergmann Series became1* added to the three 
series types above given which had already been known longer. We 
shall denote it by the letter f F and shall write its current term thus : 

B.S.wF. 

A survey of the complete set of series terms is giv m by the scheme : 

2S :hs 4S 58 bS 
2P :ip 4P 5P t>P 

31) 41) 51) bi) 

4F 5F bF 

5G 6G 
bH 

* Formerly it was customary to use small letters instead of capitals, e.g. 
p in the case of the Principal Series. We here follow the American practice 
(Russell and Saunders, Astrophys. Journ., 61, 64 (1925)), which has become general 
and which is capable of being extended in many directions ; cf. Chap. VIII. 

t The name “ Fundamental Series ” which is often used instead of the expres¬ 
sion Bergmann Series in English and American literature where it is characterised 
by wF instead of nB, is founded on the “ hydrogen-like ” character of the Berg¬ 
mann series. But this is not a decisive characteristic of the Bergmann series since 
it occurs still more markedly in the ultra-Bergmami series (see below). If we 
wish to call a series-term “ fundamental ” it should be the S-term which, although 
it is least “ hydrogen-like ” is in many cases allocated to the “ ground-orbit ’* 
of the atom. Our excuse for using the symbol nF is that the symbols nD and nS 
also refer to characteristics, diffuseness and sharpness, which do not always 
actually occur. 
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It expresses the fact that the current-number n in the S-tor in runs 
through all initial values from 1 to oo, in the P-terin through all values 
from 2 to oo, and so forth. Moreover, its last rows indicate that the 
F-term is followed by higher terms, so-called tc ultra-Bergmann terms,” 
in which the values of n start from 5 or 0. 

Concerning the constant term of our different series wre find that 
in the Principal Series it coincides with the. term IS of the 11 Sub¬ 
ordinate Series ; the constant term in both Subordinate Scries is the 
first term 2P of the terms of the Principal Series ; that of the Bergmann 
Series is the first term of the 1 Subordinate Series, namely 3D. Hence 
the constant terms may be tabulated thus : 

H.S.IS 
I N.S.2P 

11 N.S.2P 
B.S.3D 

Hence in our four eases the ultimate expressions for the series are 

H.S.v — IS — nP.  n - 2, 3, 4, . . A 
1 N.S.v - - 2P n\).n — 3, 4, 5, . . .| 

11 N.S.v 2P - wS.n = 2, 3, 4, . . . I ( ' 
B.S.v — 31) ?^F.n ~ 4, 5, (>, . . J 

It must not be imagined that the combination of the lines into 
series and their resolution into two terms are possible without con¬ 
siderable practices and ingenuity. First of all the lines of the various 
series are all mixed together and must be sorted out according to the 
criteria mentioned at the beginning of this section. In most cases 
only a moderate number of lines of any one series is available. To 
obtain by extrapolation the series limit and hence the constant first 
term of the series we must first have found an analytical expression for 
the current-term (cf. § 2). The series limit is then obtained together 
with the undetermined parameters that occur in the series law by 
using a graphical or numerical method of approximation.* It is almost 
always found that the first terms of the series are not given sufficiently 
accurately. The task of calculating the series is considerably simplified 
if other series or series limits of the same element are already known. 
On account of the combination-relationships (see below) between the 
different series it is always necessary to adjust the results of calculating 
several series to bring them into harmony. It is obvious that the 
measured wave-lengths must be corrected for a vacuum f before the 
series can be calculated. 

*0f. the works mentioned on p. 71, Paso hen-Gotze, Third Introduction; 
Fowler, Part I, §§ IV and V. The method that has been specially developed 
by Paschen and his followers is described by E. Fues in his Munich Dissertation, 

Ann. d. Phys., 63, 1 (1920). 
t Cf. the tables of Meggers and Peters, Bureau of Standards, No. 327 (1918), 

or the table of frequencies given by H. Kayser (Hirzel, Leipzig, 1925), in which 
the wave-lengths measured in air are directly expressed with the correct values 

for a vacuum. 

vol. i.—23 
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The expressions (1) contain the following laws which preceded the 
series representation historically and Jed to their enunciation : 

1. The series limits of the I and JI Subordinate Series coincide. 
For according to (1) they both lie at the wave-number v —= 2P. The 
limit of the Bergmann series lies at the wave-length v ----- 31). These 
limits cannot be observed or observed accurately in most cases but 

must be calculated by extrapolation. 
2. The series limit of the principal series has the wave-number 

v — IS. The difference between the wave-numbers of this series limit 
and the common limit of the first and second subordinate series is equal 
to the wave-number of the first member of the principal series (Rydberg- 
Schuster rule) ; the second subordinate series, too, if we extrapolate 
its expression in series to n — 1 leads to the same wave-number with 

the sign reversed. 
So far we have tacitly spoken of series of simple lines. But fre¬ 

quently the series lines consist of several components ; they are 
doublets or triplets. The systematic analysis of this “ complex 
structure " of the terms and its wonderful regularity in the periodic 
system occupies the whole of the next chapter. The multiplicity 
that occurs in the II Subordinate Series of the line-configurations is 

always due to the constant term 2P, because the S-term is always 
simple. In the I Subordinate Series, too, the multiplicity of the 
lines is usually caused by this constant term 2P alone, because the 
multiplicity of the D-terms does not need to be taken into account. 
The multiplicity of the terms of the principal series is indicated by 
writing instead of nP in (1) : 

p fj ~~ b • • • ■ Doublet series. 
n ;Lj “ 0, i, 2 . . . Triplet series. 

Concerning the general significance of the index j and its half-integral 
values in the case of doublet series, see Chapter VIII. 

If we bracket together the lines having the same values for j we 

speak of a partial series (Teilserie). The following laws then hold for 
the partial series that occur in a doublet or a triplet series ; these 
laws have been particularly useful in finding principal and subordinate 

series. 
3. In the first and the second subordinate series the law of constant 

differences of frequency (difference of wave-number) hold. That is : the 
doublet or triplet differences in the I and II N.S. have a difference A v 
(measured in wave-numbers), which is independent of the member 
number n of the lines and is identical in the I and II Subordinate Series. 
Moreover, it coincides with the wave-number difference in the first 
member of the principal series. This follows immediately from the fact 
that the multiplicity of the subsidiary series is due to the constant term 
2P,. In Chapter VIII, § 1, we shall illustrate in the case of Li that 
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this law is, on account of the additional multiplicity of the D-term, 
only a law of approximation in the 1 N.8. 

4. The wave-number differences of the, principal series decrease to 
zero as the member number increases. The reason for this is that in 
this case the multiplicity is conditioned by the variable term, whereas 
the constant term is, strictly speaking, simple. 

From (3) and (4) it follows, in particular, for series limits that : 
5. The partial series of a. principal series approach one and the same 

series limit, as the number of the member increases. The partial series 

of one ami the same subordinate series have series limits that differ from 
each other by the. constant wave-number difference of the partial series 

in question ; but corresponding partial series of the first and second- 
subordinate series approach the same series limit as n increases. 

A further difference between principal series and subordinate 
series follows from the intensity of the lines in the doublet and the 
triplet series. 

We next consider the example of the JD-lines, the first member of 
the principal series of the Na-spectrum ; as is well known, they form 

D, D, 

H S I and II. N S 

Fig. 90. States of resolution (represented diagramniatii'ally) in the course of 
a series on the left for the* H.N., on the right for the 11 N.S. (The right- 
hand figure only represents the I N.S. when the resolutions of the current 
terms are small in comparison with that of the constant I'-terms.) 

a doublet. The wave-length difference of the lines Dx and I)2 amounts 
fairly accurately to bA. 1)2 is of shorter wave-length and more intense 
(twice as intense) as 1)1. This is to be interpreted in the sense that 
the number of Na-atoms that emit i)2 is greater than (twice as great 
as) the number of Na-atoms that emit 1)1. In Fig. 90 we show schem¬ 
atically, besides the lines DjDg, also the next member of the principal 
series, in which the doublet interval is already markedly smaller, as 
also one of the succeeding members, in which the doublet no longer 
appears resolved. On the other hand, the type of the two subordinate 
series is indicated in Fig. 90. By Law 3 their constant wave-number 
difference is equal to that in the first member of the principal series. 
The distances of the series members from one another, with which 
we are not at present concerned, have here (just as in the case of the 
principal series) been chosen arbitrarily in the scale of the y’s. What 
are of essential interest to us at present are the conditions of intensity. 
In the subordinate series the more intense component of the doublet 
is on the opposite side to that in the principal series. The reason 
for this we see without difficulty by looking at the formulae (1) is that 
nPj occurs in the expression for the principal series with the reverse 
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sign to that of 2P, in the expressions for the subordinate series. We 
generalise this for arbitrary doublet and triplet series and enunciate 

our last proposition as follows : 
(j. The order of sequence of the intensities in the doublets and triplets 

of a principal series is the reverse of that in the corresponding doublets 
and triplets of a subordinate series. 

For the rest, we have already in Chapter IV, § 5, Fig. fit), established 
the same fact with reference to the Rbntgen spectra for the intensities 
of Ka, Ka', as well as for those of La, La', Lj8 respectively. 
What was here called, in connexion with series representation, 
reversal of sign, appeared there, more vividly, as an interchange of 
initial and final path in the one or the other pair of lines. 

As a comprehensive example of the preceding theorems we shall 
compare in Fig. 91 the line-spectra of potassium with one another ; 
in the first row is the principal series, in the middle is the second 
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Fig. 91.—The series laws illustrated with potassium as an example. The sub¬ 
ordinate series have the same series limit. The difference of the series 
limits of the H.S. and the N.S. equals the wave-number of the first member 
of the principal series, and so forth. 

subordinate series, and in the bottom is the first subordinate series. 
The lines have been drawn on the correct scale of their frequencies 
quantitatively ; but we have magnified the doublet intervals ten times 
to make them perceptible ; the weaker doublet lines have throughout 
been drawn as dotted lines. 

We see from the figure that the limits of the first and second sub¬ 
ordinate series coincide (Theorem 1), both the continuous and the 
dotted limits (Theorem 5). The limit of the principal series, diminished 
by the common limit of the first and second subordinate series, gives 

the frequency of the first member of the principal series (Theorem 2, 
the Rydberg-Schuster Law ; it is indicated for the continuous and dotted 
partial series by the continuous and dotted arrow). The doublet 
intervals are equal and constant in the two subordinate series (Theorem 
3) ; in the principal series they decrease rapidly towards the violet 
(Theorem 4). That is why the limit of the principal series is simple, 
and that of the subordinate series is double (Theorem 5). The order 
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of sequence of the intensities of the doublet lines in the principal series 
is the reverse of that in the subordinate series (Theorem b). 

The spectra of the alkalies being easy to grasp first led to the 
arrangement of spectral lines into series and to the discovery of the 
relationships embodied in them. In the elements of the second and 
third column the character is much more manifold ; here there are 
series types of simple lines, series types of doublets and triplets which 
in their turn again resolve into principal series, subordinate series and 
Bergmann series. For a time it was therefore conjectured that in all 
elements the complete series scheme must consist of doublet, triplet 
and simple lines. But this conjecture only helped to obscure the true 
state of affairs. For, as we shall see in Chapter YTI1, § 2, the doublet 
series correspond to a state1 of ionisation of the atom other than that 
to which the simple series and the triplet series correspond, which belong 
together. Doublet series never occur in the same atom (in the same 
atomic state) in conjunction with triplet and simple series. In the 
last columns of the periodic system the number of lines and their 
character becomes more and more complicated, as has already been 
stated above. 

Besides the four series hitherto mentioned there are in the case 
of all elements numerous other combination lines and combination 
series. For example, we may combine the term 2S instead of 18 with 
the P-terms, or 3P instead of 2P with the P-terrns. In this way we 
arrive at a second representative of the H.S. or I N.S. type, which may 
be represented by the following formulae analogous to (1) : 

H.S.e - 28 — wP.n — 2, 3, 4. 5, ... ) k> 
I N.S.v 3P //I).7i -- 3, 4, 5, 6, ... | ‘ 

The following series are often also represented : 

v -- 3D — ?iP . . . . n — 4, 5, b . . . .) 
v = 4F — wl) .... n - 5, b, 7 .... f “ * (,3) 

Ritz's Combination Principle (p. 72) would even lead us to expect 
that wTe may combine every term ??8, t?P, w,D. . . . with every other. 
We shall see, however, in the next section that under normal con¬ 
ditions this principle is subject to certain limitations. 

Helium (neutral helium, not He4), the element which immediately 
succeeds hydrogen, already shows a very complicated series scheme 
that is in many ways very remarkable. It possesses two different 
series terms that do not combine with one another. We follow' Bohr 
in calling the one orthohelium ; to it belongs, for example, the intense 
yellow He-line, the Fraunhofer line D3 for which A m 587b, v 2p—3d* 

We call the other series system parhelium ; it was originally ascribed 
to an element believed to be different from helium. The series of 

* We use small letters here for convenience (see below, in the text). 
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orthohelium have a fine-structure (triplets), the lines of parhelium 
are strictly simple. 

We make use of the following “ scheme of levels ” (“ Niveauschema ”). 
Starting from the “ energy-level zero ” denoted by 00 (an electron 
at an infinite distance from the atom) we plot the numerical value of 
each series term downwards and draw a step that is to visualise the 
term. Since the terms are proportional to the energy of the atom 
in the corresponding states of motion, each step denotes a possible 
energy-level of the atom—quite analogously to the earlier figures 
for the Rontgen region. It is found convenient to denote only the 
levels of parhelium by capitals (S, P, D), those of orthohelium by 

Parhelium Orthohelium 

Fig. 92.- Scheme of levels of the helium arc spectrum. The characteristic 
energy differences in volts are given at the sides (transformation potential, 
etc., cf. § 3). 

small letters (.s, p, d), such as were used generally earlier. In our 
modern systematic notation we should designate them by 3S, 3P, 3I). 

Direct transitions between the ortho- and the para-levels are very 
improbable as is shown by the spectrum.* This is indicated by the 
two heavy vertical lines separating the levels in the figure. We have 
omitted the succession of F-terms and higher terms, and also the 
multiplicity of the levels of orthohelium which on account of their 
very small separation could not in any case be shown clearly in the 
figure. The S-Jevels are numbered from 1 to 00, the P-levels from 

* Th. Lyman (Astrophys. Journ., 60, 1 (1924)) found the lino A — 591*56 A. 
in the ultra-violet and interpreted it as the combination IS — 2p ; but (according 
to H. B. Dorgelo, Physioa, 6, 150 (1926)) this line belongs to the neon spectrum. 
So it appears that there are no “ inter-combinations ” between the ortho- and 
the para-system. 
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2 to 00, the D-levels from 3 to 00. On account of Pauli’s Principle 
there is no term in orthohelium analogous to the level 18 in para- 
helium (cf. Chap. VIII, § 3) ; all the other levels are represented in 
parhelium as well as in orthohelium. The level 18 in parhelium and 
2s in orthohelium have been drawn more thickly to indicate their 
stability or meta-stability, respectively (cf. § 3). The meaning of the 
upward arrows shown in the scheme of levels cannot be explained 
until we get to § 3. 

The arrows drawn downwards, being the difference of two terms, 
represent the emission lines of ortho- and parhelium. Let us con¬ 
sider first the I and II N.8. Their arrows end at the level 2p or 2P, 
respectively, and begin at the level nd, ns or ?iD, w8 respectively. 
To be able to draw these arrows, the level 2p (2P) has been extended 
by a dotted line in both directions. But the extension does not extend 
beyond the central partition lines between ortho- and parhelium, 

since, as we said, the levels of the two heliums do not combine with 
one another. The length of the arrows increases as the member 
number increases in the series and finally approaches the limit, which 
is common to the 1 and II N.8., but- different for ortho- and parhelium. 

Passing on to the H.8. (Principal 8eries) we distinguish between 
the H.8. with the symbol 18 — nP (cf. eqn. (1)) and those with the 
symbol 28 — nP and 2s — np (cf. eqn. (2)). The H.8. with the symbol 
18 - nP lies in the extreme ultra-violet and is denoted in the left 
side of the figure by dotted arrows. The lines 

A - 584-40A., r 18 - 2P 
A - 537 08A., v 18 — 3P 

correspond to these arrows. 
There is a wide chasm between the levels 28 and 18 which is 

indicated in the figure by a gap in the arrows. The distance (18, 28) 
is almost five times as great as the distance (28, 00), so that it could 
not be represented accurately to scale in the figure. 8ince the level 
is is missing in orthohelium, there is in its case no H.8. with the 
symbol Is — rip. The main series with the symbols 2.9 — np, 28 — aP 
are represented in both ortho- and parhelium. The majority of their 
lines lie in the visible region ; only the first line of both series is in the 

infra-red, as is indicated by the shortness of the corresponding arrow. 

Their wave-lengths are : 

A — 10830A. ~ 1/x, v = 2.s — 2p (orthohelium), 
A — 20582A. ~ 2/z, v = 28 — 2P (parhelium). 

The first, being the “ resonance line ” of helium (ef. § 3), is particularly 

interesting. 
The levels with the same numerical coefficients, for example 2.9, 

2p, or 3,9, 3p, 3d, have been joined together in the two halves of the 
figure to a continuous step-like line. As there is no level 2d or 21), 
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the first of these step-lines breaks off at 2p (2P), the second at 3d (3D) ; 
to the step-line 4s, 4p, 4d there would become added, if we had included 
the Bergmann series, the level 4/. The levels that have in this way 
been grouped together by means of the common current number 
n, are actually uniform and correspond to one and the same Balmer 

term Mjn2 as we shall see in the next section. 
Hitherto we have spoken only of emission lines. They result 

after previous excitation of the atom, that is, after the atom lias been 
“ raised ’’ out of its naturally most stable state or ground-state to one 
that is less stable and from which it strives to escape into a state that 
is again more stable. Accordingly, corresponding to the ground-state 
(IS in the case of helium) we have (algebraically) the smallest amount 
of energy or, what comes to the same thing, the greatest term. 

In the case of absorption lines, on the other hand, in so far as they 
arise in cold vapours, the initial level is always the ground-state of 
the atom. In our diagram the absorption lines would have to be re¬ 
presented by arrows that start out from the natural or ground level 
and are directed upwards. Hence the lines of the H.S. type IS — wP, 
dotted in the figure, if inverted, therefore represent the absorption 

lines of cold He-gas. The fact that they all lie in the extreme ultra¬ 
violet explains why He-gas is quite transparent in the visible region. 
Clearly the position of the absorption spectrum is of fundamental 
importance for the knowledge of the series scheme. It tells us, in par¬ 
ticular, that in the case of He the lowest level accessible to spectroscopy 
(here 2s) cannot be the true natural or ground orbit. 

§ 2. Expressing Series by Formulae. The Selection Principle for 
the Azimuthal Quantum 

The distinctive property of the hydrogen atom is, spectroscopically, 
that it exhibits only one series spectrum, that of Balmer. The division 
into principal and subordinate series serves no purpose here, if we 
disregard fine-structure. We saw the reason of this in Chapter II, 
§ 7 ; the individual series term depends only on the sum of the azi¬ 
muthal and the radial quantum numbers, n ( nr, and not on 
these numbers separately. The same applies to the hydrogen-like 
atoms He+ and Li +. 

The case is different for atoms that are not of the hydrogen type, 
and hence even for neutral He and Li. Here the pure Coulombian 
field with the nuclear charge Ze no longer reigns. We distinguish 
between an external “ initial electron ” (Aufelektron), which is thrown 
by some agency of thermal or electric origin out of its stable position 
into an orbit further removed from the nucleus, and the Z — 1 inner 
electrons which essentially describe their normal orbits (we restrict 
our attention for the present to the neutral atom and to the arc spectrum 
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which it emits). This external initial electron moves in the field of 
the nucleus, which is screened off by the inner electrons. This field 
is still, indeed, asymptotically a Ooulombian field : for sufficiently 
great distances the nuclear charge -f- Ze and the Z — 1 electrons near 
the nucleus act conjointly like a simple point charge ~t e ; but for 
moderate distances the individual distribution of the electrons near 
the nucleus enters as a factor. It produces a supplementary field 
that differs from the Coulombian field. The orbits of the external 
electron are therefore no longer Kepler ellipses. Nevertheless they 
are more or less related to the latter, being the more related the further 
the orbit is removed from the nucleus. 

We imagine the supplementary field idealised into a plire central 
field, that is, we write its potential energy as a pure function of the 
distance r between the nucleus and the external electron. The orbit 
of the latter then becomes plane. In the plane of this orbital curve 
we measure an azimuth <f>. We then allocate two quantum numbers 

and nn as once before, to the co-ordinates </> and r. 
The energy W of the orbit depends on n(t, and nr but no longer 

merely on their sum, -f- nn but on some more general function of 
Ufi and nr : 

/(«*’ »r).(!) 

This means that in the case1, of elements that are not hvdrogen-like 
the Balmer series resolves into a system of series. For if we form the 
difference of two expressions of the type (1) for the initial and the final 
state with the respective quantum numbers , vTi and ?^,2, nTi and 
then keep one quantum number of the initial state, namely fixed 
besides the quantum numbers n^t and nt2 of the final state, and if we 
then vary the other vri we obtain for every definite value of a 
definite series. In this way we obtain a system of series for different 

n+i*- 
An important property may be predicted from this function (1). 

For great values of n#—great values of denote great sectional 
areas and hence great average distances from the nucleus—this 
function transforms into the corresponding Balmer function. We 
can see that for a sufficiently great n^ 

Umf(n,hnr)^^J±n;fl . . . (2) 

A more detailed investigation by the author which will be described 
in § 4 has given rise to the following expressions for the function 

nr) * which represent different degrees of approximation. 

* Munch. Akad., 191(i, p. 131 : Zur Qiiantonthgorie dor Spektrallinion, 
Erganzungen untl Krweiterungeii. 
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(a) To a first approximation the atomic field is to be regarded as 
Ooulombian (see above). Its potential energy with respect to the 

external electron is 

Kot - r • 

Corresponding to it we have, as in the case of hydrogen, 

f(n,h n,.) ■=. 
R 

(«'* + »r)2 
(3a) 

(b) To a second approximation let the potential energy be repre¬ 
sented by 

E pot 

The corresponding value of / becomes 

f(H> nr) 
R 

(»* -1- nr -f q)- 
(36) 

The quantity q here introduced depends on the constant cx of the 

atomic field, and also on the azimuthal quantum number but is 
independent of the radial quantum number nr. As n$ increases 
q vanishes in accordance with eqn. (2). R has the same significance 
as in eqn. (3a). 

(c) To a third approximation the potential energy of the atomic 
field is represented by means of two constants cx and c2 by 

This leads to the same form as the expression (36) given as a second 
approximation. We immediately pass on to 

Then w^e obtain as the value of / 

f(H, nr) — | ^ + »r~+ q + K}(n^, nr)]1 ' ' ^ 

The same applies to k as was said just above of q : k, besides de¬ 
pending on the constants of the atomic field, depends only on 
and not on nr and it vanishes for 00. 

Hence we obtain as the series term, if we now denote the principal 
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quantum number + nr by n, to a first, second and third degree 
of approximation : 

(n, o) ~ . . . . Balmer. (4a) 

(w, (7) 

fa, q, k) 

R 

(H?)2 
R 

[n + q -I *(W, q, If)]2 

. Rydberg. (46) 

. Ritz.* (4c) 

These three forms of the series term are the same as those which 
the experimental investigation of series brought to light as the first, 
second and third stage of development corresponding to the increasing 
refinement of the methods used. The first form is Balmer’s. The 
second was used by Rydberg in his first attempt to unravel line spectra. 
The third form was proposed by Ritz and was tested on a whole group 
of series. The method (n, q, k) of denoting terms is also due to Ritz. 
In this last form the term is not expressed explicitly but implicitly 
since the term also occurs in the denominator of the expression, al¬ 
though only as a correction term attached to the small factor k. 

There can now be no doubt as to how we are to arrange the Principal 
Series, Subordinate Series and so forth, alongside one another in our 
general scheme. This is done in the following fundamental Table 35 : 

Table 35 

Current Term of the 
Symbol .... 

11 N.S. 
S 

H.S. 
P 

T N.S. 
1) 

B.S. 
F 

t\B.S. 
G H . 

1 2 3 4 5 6 

l . 0 1 2 3 4 5 

g . * p <1 / </ h 

K . a 7T 8 * 
.... 

Thus we ascribe successively increasing values to the azimuthal quantum 
number in the current or variable term (La ufterm,) of the II fT.S., H.S., 
I N.S., B.S. and so forth. Below the value of we have written the 
values, which are all less by 1, of the wave-mechanical azimuthal 
quantum number l (cf. p. 115). The symbols for q, namely, 

q -- s, p, d, f . . ., 

* W. M. Hicks prefers, in his extensive spectral researches, the following 
formula, which also involves two constants, in place of (4c) : 

(n, g, k) — Kjn)r 

Cf. A Treatise on the Analysis of Spectra, by W. M. Hicks, Cambridge, 1922. 
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call attention to and correspond with the symbols mS, wP, nD, nF 
... of the preceding section. In the sequel we shall agree to take 

these symbols as standing directly for the expressions (46) or—in more 
accurate calculations—(4r). The symbols 

K — O’, 7T, 8 . . . 

agree with the notation which Ttitz used in applying his formula. 
We sec a first confirmation if our allocation of to the various 

series terms in the manner in which, as we proceed from left to right, 
the resemblance to hydrogen (or hydrogen-like character) becomes more 
and more pronounced. In the term of the I N.S. the deviation from 
the hydrogen type is less than in the term of the principal series ; in 

the Bergmann term this deviation is already so small that it was possible 
originally to express this term immediately in the Balmer form. In 
the subsequent terms nG, n\i, which we allow to correspond to the 
azimuthal quantum numbers — 5, n^ 6, this still occurs nowa¬ 
days (cf. p. 3(>fi below), that is these terms are usually written as 

R/n2} n 5, 6 . . . 

Thus here the limiting case considered in eqn. (2) has already been 
reached practically. 

Particular comment is demanded by the 8-term, ----- I, in which 

the resemblance to hydrogen is least. Even in the alkalies, wdiere 
the conditions are simplest, the denominator of the term exceeds the 
integer n by about A, for example, 0*59 in Li, 0-65 in Na. It was 
therefore thought necessary formerly to combine the value l with the 

current number n and to write the 8-term in the following half-integral 
form : 

(n i, 8) = 1-58 ; 2-58 ; 3-58 

and so forth. 
Nowadays wre explain the particularly marked deviation of the 

8-term from the hydrogen type as being due to the penetration of 
the 8-orbit into the atomic core (cf. § 4). 

Whereas, according to our Table 35, the azimuthal quantum n^ 
has a definite value for each series of terms, the radial quantum1 nr 
is able to assume all values from 0 to 00. Since n — n^ -f- nr the 
minimum value of n in every term is n^, that is, equal to 1 for the 
8-term, 2 for the P-term and so forth. We have expressed precisely 
this in our scheme of series terms on page 352. Hence the triangular 
shape of this scheme signifies a second confirmation of the interpretation 
of the series terms given in Table 35. We must also note here that the 
true current number is, properly speaking, not the quantum sum 
(principal quantum number) but the radial quantum. number nr, which 
is in reality the quantum number that can vary to an unlimited extent : 
0 ^ nr 00. We add here, as wrill be shown in § 4, that the series 
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formula, whether in Rydberg’s or Ritz's form, is really nothing else 
than the radial quantum condition. 

The triangular selieme on page .‘552 suggests to us to inquire how 

the principal quantum number is to be rationally normalised, a question 
which can be solved only in relationship with the periodic system 
(cf. § (i). In § 6 we shall distinguish the rationally normalised principal 
quantum number n from the conventionally normalised, current number 
n. Whereas we make the latter begin with I in the 8-terms, 2 in the 
P-terms and so forth, the former will be*, normalised by numbers that 
are greater by some units. It may happen that of the orbital types 
formerly denoted by nt (hoc p. lib) those with smaller values for n 
will already have been built into the interior of the atom as structural 
orbits and hence are no longer available on the outside of the atom for 
virtual spectroscopic orbits. We shall meet with numerous examples 
in § b. 

Hitherto our orbits have been restricted to the neutral atom and the 
arc spectrum emitted by it. Theory indicates a unique way of general¬ 
ising the spectral formula so that it applies to the singly and multiply 
ionised atom and the spark spectra emitted by it. In place of R 

we have simply 

4R, <)lt, IbR.(5) 

in the spark spectra of the first, second, third . . . order, the values 
of the atomic constants q and k being simultaneously altered. We 
know the simplest example of a spark spectrum of the first order, 
namely lie+ (p. 95) ; the simplest example of a spark spectrum of 
the second order is given by Li4 • (p. 9b). 

In the next section we shall consider the conditions of excitation 
under which the individual series are produced. We shall there find 
further confirmatory evidence justifying our allocation of the azimuthal 

quantum number n4, to the various series terms. 
But we gain absolute certainty that this allocation is correct only 

if we adduce the selection principle (Chap. VT, § 1). According to this 

principle we must expect only those combinations of the 8-, P-, 11-, 
F-terms in which the azimuthal quantum number differs by one unit, 

A—- dr F or, what comes to the same thing, AZ -- -| 1. 
Let us write down the rows of series terms in the order of increasing 

azimuthal quantum number l : 

I1N.8.C 

§ 
1 = 0, 

1. 
•7 

1 ^ i’, 

iS’-Term D H.S. 
-_j I N.S. 

B.S. 

The arrows on the right-hand side of the terms denote those transi¬ 

tions from an initial to a final state in which the azimuthal quantum 
number decreases by 1 (A 1 — lx — 1), those on the left-hand 
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side denote transitions in which the quantum number increases by 

1 (M *=lL-l2 - - 1). 
For example, the principal series arises from the transition shown 

at the top on the right-hand side, corresponding with its symbolic 
representation : 

v --- IS — wP, n —=2, 3, 4 . . . . 

The characteristic feature is the combination of the P-term (/ — 1) 
with the S-term (/ — - 0). Our selection principle clearly allows the 

following series equally well : 

v 2S - aP, v — 3S wP . . . 

which correspond to the transition 1 -> 0 for /. Their occurrence 
wras discussed in eqn. (2) of the preceding section and again, particularly, 
in Fig. 92 in connection with helium. 

The 1 Subordinate Series is characterised by the middle transition 
on the right-hand side, corresponding with the series formula. 

v — 2P — nl), n — 3, 4, 5. . . . 

The essential feature here is the combination of the P-term with the 

13-term (Z ~~ 1 with Z — 2) ; instead of 2P wre might also have 3P, 4P, 
according to our selection principle. Such transitions have actually 
been observed, although less often than the lines of the 1 Subordinate 

Series in the narrower sense. 
The lowest arrow on the right-hand side leads to the following 

symbolic representation of the Bergmann series : 

r = 313 - nF, n = 4, 5, fi . . . 

or of the Bergmann series of higher order : 

v 4D — ?iF, n — 4, 5, 6, 7. 

The ultra-Bergmann term with their combinations 

4F - nG, 5G - nlI 

would follow below on the right-hand side of our scheme. According 
to Paschen and Gotze they occur in all alkalies, in He and so forth, 
and are written, on account of their hydrogen-like character, 

4F - R/f>2, R/52 - R/62. 

Whereas the series 4F — nG lie ordinarily in the infra-red region 
and hence mostly escape observation, they are displaced in the case 
of spark spectra, owing to the increase in the value of the Rydberg 
constant, cf. (5), into the visible region. Fowler * discovered a series, 
rich in lines, of this type in the spark spectrum of Mg but described it, 

* Phil. Trans. R. Soc., 214A, 225 (1914). On p. 121 of Fowler’s report the 
interpretation 4/ — mf is retained but is marked with a sign of interrogation. 
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contrary to the selection principle, as 4F — ?*F. This interpretation 
is possible as an approximation only because the terms nil differ only 
very slightly from nF (and both are of the Balmer type). Nevertheless 
Fowler finds himself compelled to speak of “ inaccurate combinations ” 
between rtF and 4F. The correct interpretation 4F — nG was found 
by Roschdestwensky ; * this dis]>oses of the contradiction to the selec¬ 
tion principle and the combination principle. 

Further examples of ultra-Bergmann series are given by the spark 
spectra of higher order (AV 1 , Si1 M ), which were first investigated by 
Paschen and Fowler, and later, also by other experimenters (cf. § 8). 

We next consider the left-hand side of our scheme. The upper¬ 
most arrow belongs to the 11 Subordinate Series. Its symbolic 
representation is 

r - 2P - wS, n ^ 2, 3, 4. . . . 

When n is differently normalised (cf. p. 365 and § 6) we may again write 
3P, 4P . . .in place of 2P. 

The two lower arrows on the left-hand side lead to series which have 
been observed, for example, in the calcium singlet series as particularly 
intense lines ; they are of the form of eqn. (3) in § 1. 

Summarising we may say : those combinations which the selection 

principle allows had to the commonest and strongest series (Principal 
Series, 1 and II Subordinate Series, Bergmann Series). We may regard 
this discovery as a further confirmation of the allocation of the various 
series terms to the azimuthal quantum number. 

But there are also exceptions to the selection principle, both some 
in which the azimuthal quantum number remains unchanged (Al — 0), 
and others in which it changes by more than one unit, for example, 
A/ — 2. J. Stark f and his co-workers have shown in the case of 
neutral helium that series of this kind are invisible under ordinary 
discharge conditions and are produced only by applying intense 
electric fields. 

The series in question are : 

(v -- 2P — nV . . . n — 3, 4, 5 
I „ ^ 2S - nD . . . n = 3, 4, 5 

[v = 2S - nS . . . n = 3, 4, 5. 

They have been shown to occur in parhelium and orthohelium. The 
first of these series was called the III Subordinate Series by Lenard, 

* Verhandl. des optischen Institute in Petersburg, No. 8, Berlin, 1921. 
t J. Stark, Neue im elektrisehen Felcle erscheinende Hauptserien ties Heliums. 

G. Liebert, Der Effekt des elektrisehen Feldes auf ultraviolette Linien des Heliums. 
G. Liebert, Eine neue Heliumserie unter der Wirkung des elektrisehen Feldes. 
O. Hardtke, tJber die Bedingungen fiir die Emission der Spektren des Stickstoffs, 
Aim. d. Phys., 50, 577, 589, 610, 633 (1918). Further, J. Stark, Ann. d. Phys., 
48, 210 (1915) ; J. Koch, ibid,, 48, 98 (1915). 
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who first observed them in the alkalies. The first and the third of 
the above series are examples of the transition A/ 0, the second 
of the transition Al 2. L11 our scheme on page 865 the series belong¬ 
ing to the transition D 8 has been represented by the dotted 
arrow shown above on the right. Isolated lines of this series have 
also been observed occasionally in other elements, for example, in 
all the alkalies. Foote, Meggers and Mohler * have even found 
that when the current density is very great the line IS ----- 81) 
surpasses all the other lines in intensity in the spectrum of Na and K. 

It is very remarkable that S. Datta f obtained the same line in absorp¬ 
tion in the case of K (cold vapour). These and other X experimental 
results appear to show that the combinations 18 ~ 81) and so forth 
occur in the alkalies without its being necessary to make an electrical 
perturbation caused by an external field or neighbouring atoms re¬ 
sponsible for the transgression of the selection rule. Moreover, there 
are combinations between the F- and the P-term which have been 
variously measured and which also contradict the selection rule ; 
in our scheme on page 365 they are indicated by the lower dotted 
arrow. In Os combinations between 3D and the terms nQ have 
been found,|| but they have certainly been caused only under abnormal 
conditions of emission (electric fields). Finally we must mention that 
transgressions of the selection principle (transitions with Al — 2, 3, 4, 
and so forth) occur in external electric fields at smaller field-strengths 
the greater the current number of the combinations in the series. 
This is, in fact, to be expected from the qualitative considerations 
in Chapter VI, § 1 (at the end) : the greater the current number, the 
more intense is the action of the electric field and hence the selection 
rules are transgressed at correspondingly weaker field-strengths. 

In Chapter VI, § 1, we deduced the selection principle specially 
for field-free emission, but we showed at the same time that it is put- 
out of action by strong electric fields. This case has been shown to 
occur in the experiments of Stark, Foote-Meggers-Mohler, Meissner, 

Hansen-Takamine-Werner and Schuler as well as in the researches 
on the Stark effect. In the combinations IS — 3D and so forth in 
the alkalies we are probably dealing with quadrupole radiations.** Our 
discussion of the correspondence principle in Chapter VI and Note 7 
depends on the assumption of a dipole moment for the atom ; we 

* Astrophys. Journ., 55, 145 (1922) ; of. also Foote and Mohler (reference 
on p. 129). 

t Proe. Roy. Soe., 99, 69 (1921) ; 101, 539 (1922). 
J Cf. G. M. Shrum, N. M. Carter and H. W. Fowler, Phil. Mag., 3, 27 (1927). 
|| K. W. Meissner, Ann. d. Phys., 65, 378 (1921). 
■jf H. M. Hansen, T. Takamine and S. Werner, Danske Vidensk. Selsk. V. 3, 

(Observations in Hg) ; H. Schuler, Zeits. f. Physik, 35, 336 (1925) (Observations 
in Zn). 

** This has been made very probable in the meantime by the results of in¬ 
vestigations on the transverse Zeeman effect (F. Segrb, Zeits. f. Physik, 66, 827 
(1930)). Cf. also Ittmann and Brinkman, Naturwiss., 19, 292 (1931). 
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disregarded higher moments in the charge distribution of the* atom. 
If we take them into consideration we obtain for the polarisation and 
selection rules of those lines that correspond to these* higher moments 
other results than those for dipole radiation ; in particular, we obtain 
for the first quadrupole radiation to be expected the selection rule 
Al -- 0, 1 1 , 2. The possible transition Al -- + 2 corresponds 
exactly to the case of our lines IS — 3D. These selection rules have 
been proved to hold in wave-mechanics by A. Rubinowicz.* 

The selection principle gives precision to the combination principle, 
restricting its unlimited range and increasing its practical value. 
Bitz\s formulation of the combination principle : every series term 
may be combined with every other term to form a spectral line is now 
expressed in the improved form : every series term may normally be 
combined with every other series term whose azimuthal quantum number 
differs from the first by unity ; combinations which contradict this re¬ 
striction are not excluded in principle but require special conditions of 
excitation or have the character of quadrupole radiation. 

We closed the preceding chapter writh a representation of the series 
scheme of helium ; we shall close the present section with the series 
scheme of the alkalies, which is particularly clear and typical. The' 
terms are again represented as energy-levels, corresponding to their 
proper physical definition ; the ratios of the magnitudes correspond 
to sodium. The steps on the extreme left belong to the 8-terms, 
those adjacent to them on the right belong to the P-tcrms, the next 
to the D-terms and so forth. The numbers (1, 2, 3, . . .) on the left 
attached to each succession of steps denote the current numbers ; 
for example, the sequence 3 comprises the terms 38, 31\ 31). ('This 
conventional current number is different in the 8-term and the P- 
term from the rational principal quantum number n, normalised ac¬ 
cording to the periodic system, ef. § b.) In agreement with the act ual 
behaviour of the terms the lengths of the steps (between one level 
and the next) decreases as we proceed upwards and vanishes entirely 
at 00, which corresponds to the zero level of the energy, namely, when 
the reference electron (Aufelektron) is at an infinite distance from the 
atom. The transitions from one level to a lower level are characterised 
by arrows and represent the lines of the H.S., 1 N.8., and so forth. 
We have denoted not only 18 — w.P but also 28 — nP as H.8. The 
D-line is represented by the arrow 18 — 2P on the left-hand side below. 
It was not possible to represent the double character of the P-level 
in the figure, so that the two components Dx and I)2 are shown by the 
same arrow. In contrast with Fig. 92 we find that in the alkalies 
the ground-state IS is easily accessible optically (cf. the end of the 
preceding section). The lines of the H.S., namely 18 — aP, among 
them the D-lines above all, appear in cold Na-vapour as strong 

* A. Kubinowicz, Zeits. f. Physik, 65, 662 (1930). 

vol. 1.-24 
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absorption lines ; the same applies generally to the alkalies and the 
noble metals. The selection principle manifests itself in Fig. 93 in 
that all the arrows connect only two such levels as are adjacent in the 
sequence 8, P, 1), F. 

Finally we remark that the discussion in this section is based on 
a perfectly definite model of the atom, namely, that of an atomic core 
around which an outer “ radiating electron " (Leuchtelektron) is revolv¬ 
ing. The quantum numbers n. nr, I of this electron are at the same time 
to characterise the whole atomic stab'. We make this assumption 

when we write down the series formula? on pages 3(>2 et seq. This 

H.S. 
Fig. 93.—Scheme of levels of an alkali spectrum (Na). The numbers on the 

left denote current numbers. 

signifies that the quantum numbers which must be ascribed to the 
individual electrons of the atomic core do not enter into the formula 
for the series. According to Pauli's Principle this is always the case 
when the atomic core forms a closed shell (alkalies, Cu, Ag, Au, Tl, 
and so forth) ; cf. Chapter VIII, § 3. Furthermore, we shall see in 
Chapter VIII that even when the atomic core consists of a closed 
shell and an ^-electron, the quantum numbers n, l of the radiating 
electron at the same time determine those of the whole atom. The 
alkaline earths and also Zn, Cd, Hg have an electronic configuration 
of this type. All these spectra are constructed relatively simply ; 
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they have doublet, singlet or triplet characters and exhibit well- 
developed series. But if the quantum numbers of the core also play 
a part, the more complicated types of spectra arise, which we shall 
discuss later in Chapter VI11, 

§ 3, Testing the Series Scheme by the Method of Electronic Impact 

The most direct test of Bohr’s ideas, the one that is most free of 
theoretical elements, is the method of electronic impact.* It was 
initiated by Franck and Hertz f in 1913 and has since been elaborated 
by many other investigators. 

The decisive discovery by Franck and Hertz consisted in the 
following observations. If electrons that escape from a glowing wire 
are accelerated by means of a finely regulated accelerating potential 
and are sent through mercury vapour at a low pressure, then at a 
potential difference of 4-9 volts the Hg-line A —• 2537 is found to be 
radiated. Franck and Hertz were able to show that the associated 
hv corresponds exactly to the energy of 4*9 volts, in the sense of eqn. 
(la) given below. 

Lenard % must be mentioned as the predecessor of Franck and 
Hertz in the production and measurement of slow electronic velocities. 
The rather qualitative observations of Gehrcke and Seeliger j| (altera¬ 
tion of the average colouring of the luminescence of gases as the 
velocity of the exciting cathode rays is varied) also preceded the de¬ 
cisive experiments of Franck and Hertz. 

Franck and Hertz had as their immediate successors McLennan If 
and his collaborators who used similar methods in studying the 
atoms analogous to Hg, namely, (VI, Zn, Mg, Ca, Sr, Ba, and so 
forth, and the luminescence caused in them by electronic collisions. 
In all cases one definite line first appeared, the so-called “ resonance 
line ’’ (see below), which plays a similar part to A — 2537A. in the 
case of mercury ; these resonance lines appeared at a well-defined 
voltage, the “ resonance voltage." When the accelerating voltage 
on the colliding electrons was gradually increased up to a certain 
limiting value the complete spectrum of the atom was finally observed. 
This second limit of the accelerating potential corresponds to the 
ionisation of the atom and is called the kt ionisation potential ” (see 
below). Hence the (rough) optical observation of the process of 
excitation thus distinguishes three- different stages : no emission below 

* Comprehensive reports are given in : J. Franck and P. Jordan, Anregung 
von Quantensprungen durch Stosso, Handbueh der Physik (Geiger-Scheel), Vol. 
23, 041, Springer, 1926. This report- has also been reprinted separately in Vol. 3 
of the collection “ Struktur der Materie,” Springer. There is a somewhat older 
but good account by Foote and Mohler, The Origin of Spectra, New York, 1922. 

f Verh. d. Deutsch. Physik. G esc 11s., 15, 34, 373, 613, 929 ; 10, 12, 457, 512 
(1914) ; 18, 213 (1910). 

x Heidelberger Akad. Abb., Nr. 34 (1911) ; Nr. 17 (1914). 
|| Verh. d. D. Phys. Ges., 14, 335 (1912). 
If For example, McLennan and Henderson, Proc. Roy. Soe., 91, 485 (1915). 
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the resonance potential, a 44 single-line spectrum " when the first 
stage has been passed, and a multi-line spectrum when the ionisation 
potential has been exceeded. 

This division into three stages is not essential ; between the single- 
line spectrum and the complete series of lines there are transition stages. 
It is possible to choose the conditions so that at intermediate potentials 
more than one line but not the whole series spectrum is excited. 
(Jr. Hertz * succeeded, for example, in exciting besides the resonance 
line any desired additional portion of the series spectrum ; in Hg he 
successfully excited all the lines of lower excitation voltages than 
8 volts but none of higher. 

Another direct follower in the field opened up by the original 
experiments of Franck and Hertz on mercury vapour was Rau.f 
He found, particularly in the ease of the lines of neutral He, that to 
excite successive members the excitation voltage had to be increased 
from line to line. This furnishes a quite general and decisive con¬ 
firmation of Bohr's series scheme : the higher members of a series require 
higher energy-levels, and hence, higher excitation voltages become necessary. 
At the same time, this is a general refutation of all the older theories 
of series that regarded the higher members as, in some sense, over¬ 
tones of the lower members, and that sought to find a mechanical 
connexion between their emission and that of the lower ones. While 
this fact holds within one and the same series, another circumstance 
is of no less importance for us ; it is concerned with a comparison of 
the excitation voltages of lines of different series : the requisite excita¬ 
tion voltages increase in the sequence H.S., I N.S., and, as we may with 
reason add, B.S. The H.S. appears first, that is at the smallest ex¬ 
citation ; the first subordinate series, second subordinate series, and 
so forth then follow. This agrees fully with the views put forward 
in the preceding section. Actually, the most important factor for the 
excitation of a series is the realisation of the initial orbits that 
correspond to the second series term. This is the P-term in the 
ease of principal series, the D-term in the first subordinate series, 
and the B-term in the Bergmann series. According as the realisation 
of these initial orbits require smaller or greater amounts of energy, 
the series may be excited with less or with greater ease. 

From the optical methods in which the result of the excitation is 
observed in a spectroscope or spectrograph we now come to the purely 
electrical methods in which not only the excitation hut also the ob¬ 
servation of the excitation effect is made by electrical methods. 

The first decisive researches by Franck and Hertz were concerned 
with the question of the elastic collisions between electrons on the 
one hand and gaseous atoms or molecules on the other hand. The 

electrons that escape from the hot wire are accelerated by a potential 

* Zeits. f. Physik, 22, 18 (1924). 
t Wurzburgor phys. med. Gesollschaft., 1914, p. 20, 
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and traverse the gas under examination, being finally received on an 
electrode ; the current represented by them is measured by means of 
a galvanometer or electrometer. In the case of the inert gases and the 
electro-positive metallic vapours the galvanometer at first indicates, 
when the potential is gradually raised in the gas chamber, a gradual 
increase of the current passing to earth, but then a sharp limit occurs, 
which marks the first occurrence of inelastic collisions, that is, of col¬ 
lisions that are accompanied by loss of energy and that entail a change 
of constitution in the structure of the atom or molecule struck. This 
first maximum in the potential-current curve is followed by other 
maxima or kinks, which occur at regular intervals, showing that the 
electrons, after having lost their velocities in a first inelastic encounter 
have for a second or third time, owing to their further passage through 
the potential drop, attained a velocity that once again permits them 
to lose their energy in inelastic collisions. The distance between such 
successive bends of the curve measures in volts the energy that was 
transferred to the atom during the inelastic collision, that is, deter¬ 
mines a characteristic constant of the atom struck. The efficiency of 
the collisions is very small; even in the most favourable circumstances, 
in the immediate vicinity of a maximum of the current-potential 
curve, it amounts to only 1 per cent. : that is, of all the electrons that 
collide only one in every hundred transfers its energy to the atom 
with which it collides.* 

Besides equating the energies in a collision we must also equate the 
momenta before and after. Joes and Kulenkampff j* show that the 
latter equation lowers the value of the excitation limit as compared 
with that obtained by taking the energy only into account in the 
ratio where m demotes the mass of the impinging particle and 
fi the “ resultant mass ” fcf. p. 91, eqn. (3)| of the impinging particle 
and that with which it collides. In the ease of electronic collisions for 
which jji is nearly equal to m the correction becomes inappreciable ; 
in the case of ionic collisions it leads to an increase of the excitation 
limit of the order of magnitude 2. 

The occurrence of inelastic collisions in which particular events 
occur is no more remarkable than elastic collisions in which nothing 
particular occurs. Whereas the inelastic collisions denote a discon¬ 
tinuous transition from one quantum state to another, the elastic 
collisions show that the atom persists in its quantum state and is not 
capable, as in mechanics, of a continuous change of energy J so far as 

* Herthor Sponer, Zeits. f. Physik, 7, 185 (1921). 
t Phys. Zeits., 25, 257 (1924)/ 
l Of course the atom as a whole lakes up a very small amount of translation 

energy in collisions ; the atom with its electrons hero behave like the “ elastic 
Spheres ” of the gas theory. See in this connexion J. S. Townsend, Proc. Hoy. 
Hoc., 120, 519-522, 1928, Phil. Mag., 61, 1150, 1950, and V. A. Hailey, Zeit.s/f. 
Physik, 68, 854, 1951. For other results (Ramsauer-Townsend effect) which arise 
from the study of elastic collisions of electrons with gas atoms or molecules, see 
H. L. Brose and E. H. Saayman, Ann. d, Phys., 5, pp. 797-852, 1930, where 
numerous references are given. 
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its inner configuration is concerned. Hence we have either no change 
of energy or a discontinuous change of finite amount, corresponding 
to the general character of the quantum processes. 

The original method was later elaborated in manifold ways. 
Instead of allowing the electrons to acquire their velocities whilst in¬ 

curring many elastic encounters with gas molecules, it is preferable 
for many purposes to accelerate them along a distance that is less than 
their mean free path (that is, to use a low pressure and a short distance 
between the cathode and the grid which acts as the positive potential). 
The electrons that have been endowed with the desired velocity in 
this way are then allowed to enter into the actual collision chamber, 
which is essentially free of fields, and the size of which is made large 
and offers opportunity for a sufficient number of collisions with the 
gas particles under examination. Finally, the electrons are completely 
debarred from making all further progress, owing to the agency of a 
stronger opposing field. Thus they do not reach the measuring elec¬ 
trode connected Avith the galvanometer at all. Rather, what are 
measured by the galvanometer are the positive ions that are formed, 

whether directly or indirectly, by the primary electrons during the 
inelastic collisions. Positive ions are produced directly if the velocity 
of the electrons is sufficient to ionise, the atoms struck. They are pro¬ 
duced indirectly if the transferred energy, although not able to eject 
an electron right out of the atomic configuration, yet suffices to raise 
one of the electrons belonging to the atom out of its natural orbit 
into one that is richer in energy. When the electron belonging to the 

atom returns from this new orbit to one that is poorer in energy (nearer 
the nucleus), it emits light ; in atoms that are more easily ionisable, 
which belong to the collecting electrode or which, under certain 
circumstances, are mixed as impurities with the gas under examina¬ 
tion, this light acts photo-eleetrically and thus also produces positive 
charges that make themselves observed in the current which flows 
through the galvanometer. 

To discriminate between these two effects, namely, the direct 
ionisation effect and the indirect photo-electric effect, was a matter 
of great experimental importance. Bohr * was the first to call attention 
to the possibility of this indirect effect and showed numerically that 
it probably occurred in Franck and Hertz's deduction of the values 
4*9 volts for Hg and 20*5 volts for He. Davis and Goucher f succeeded 
in carrying out experimentally the unambiguous differentiation between 
the original ionisation and the photo-electric effect by means of an 
ingenious arrangement and connexion of fields for the case of Hg, 
and fully confirmed Bohr’s point of view . We cannot here enter into 
the details of the method ami of the manifold improvements which 

* Phil. Mag., 30, 304 (10lf>)t § 3 ; Gesammolto Ablmiullungen, p. 117 (also 
in English in his collected papers). 

| Phys. Rer., 10, 101 (1917); 13, 1 (1919), 
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have been made to it in the sequel, but must refer the reader to the 
reports quoted at the beginning of the chapter. There, too, will be 
found the interesting and much-varied forms of the current-voltage 
curves and their discontinuities. 

Before passing on to the proper quantitative results of the method 
of electronic collisions, we wish to give the transformation formula 
which, by means of tin4 //^-relation, leads us from the wave-length A 
of a spectral line to the voltage necessary to excite it. It is clearly 

h . cl A : « . V. 

if we here express Yr in volts, that is, set V . 108 in place of the 
potential difference V initially considered measured in electromagnetic 
(/.Gr.S. units, and if. further, we use for e the value 1*59 .10 20 (that 
is, electromagnetic C.Ct.N. units), and measure A, instead of in cms., 
in terms of gg — 10“7 cms., we get 

V (volts) \ \(Hi) h~ . 10-1 -r 1234 . . (]) 

Ladenburg * has called attention to the particular convenience of using 
this formula. 

For example, if we calculate the excitation potential corresponding 
to the Hg-line A — 2537 A* — 253-7g/x, and to the D-line of Na, 
A 5890 A. -- 589*0/x/x, we get by (1). respectively, 

V 
1234 

253-7 
4-9 volts, and V 

1234 

589-0 
-- 2*1 volts (1«) 

We may also use in place of (1) the equivalent relation (as is often 
done in English books) 

V (volts) x A (Angstrom) — 12345 . . (16) 

Let us now calculate the excitation potentials that correspond 
to the series limits to which these two series belong. The series limits 

are given as limits of term values in cm.-1. Since 

1_ __ 107 __ 108 

v ' A(cm.) A(/xM) " A(A"j 

it follows from (1) that 

V (volts) - 12345.10 8r . . . . (2) 

From the spectroscopic tables we see that the limit of series to which 
(see below) the Hg-line 2537 A. belongs, v 84181 cm."1, and that 
of the principal series (H.S.) of sodium, v — 41449. Hence we get 

from (2) 
V - 12345.10-8.84181 - 10-39 volts) 

and V --- 12345.10-8 . 41449 = 5-1 l volts j * * 

for the mercury and the sodium line respectively. 

* Zeits. f. Electrochemie, 1920, p. 265. 
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We call the last two potentials the ionisation potentials of the 
initially neutral Hg- or Na-atom. For, just as the series limit is a 
measure of the energy that is liberated when the electron makes a 
transition from infinity, so the corresponding potential in volts is 
a measure of the energy that must be used up to remove the electron 
to infinity. We assume that the final orbit of the spectral process 
(the initial orbit of the ionisation process) is actually the ground 
orbit of the neutral atom. For example, in the case of neutral He, 
we should certainly not, from the conditions re])resented in Fig. 92, 
calculate its ionisation voltage from the limit of the visible principal 
series, as in this case the linal orbit of the principal series (called 2s 
and 2tt, respectively, by us) lies far above the ground orbit, in the 
energy scale. 

But we use for the two numbers in volts calculated in (la) the 
term resonance potential, winch we interpret as meaning the following : 
If the work done in the electronic collision does not, indeed, suffice 
to bring about ionisation, it may yet suffice to lift an electron out 
of its ground orbit into the (“ energetically ”) next highest orbit. 
Let the ground-state be IS and the next higher level be 2P, as in the 
case of the Na-atom (Fig. 93). The atom that has been excited in 
this way will, if left to itself, tend to return to the stable configuration 
of the ground orbit, thus causing the emission of monochromatic 
light. For, according to the principle of selection, the transition 
2P —> IS will be possible for it, and it is the only way in which the 
excited atom can revert to its unexcited state. In this process the 
whole energy V that is given to the atom by the colliding electron will 
be emitted as monochromatic radiation of wave-length A equivalent, 
by eqn. (1), to V. This re-emission of the whole transferred energy 
is called resonance (linking up with the old views of the theory of 
vibrations) ; hence we get the expressions resonance line and resonance 
potential. The conception of resonance line thus implies two things : 
first, that its final orbit is the ground orbit of the atom, and second, 
that its initial orbit is the (energetically) next highest orbit from which 
the return to the ground orbit, and only to this, is possible, being 
accompanied by the emission of monochromatic light. 

In the case of the hydrogen atom our theoretical knowledge of the 
ionisation potential or the resonance potential harmonises perfectly 
with the views developed in the present volume ; in this case it is pos¬ 
sible to obtain values from eqn. (2) without having recourse to experi¬ 
mental data. 

In the case of hydrogen the ionisation potential is determined 
by the limit of the Lyman series, that is, by Rydberg’s number R. 
By eqn. (2a) we therefore get in volts 

V ----- 12345.10 8 . 10908 - 13-53 volts . . (3) 

In ergs it is given by the equivalent formula : 

hcv = h,cR ~ 2*15.10”11 erg , (3a) 
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where v denotes as in (2) the wave-number and hence c v is the corre¬ 
sponding frequency. 

We pass on from (3) to the excitation potentials (A nregu rigs span - 
nungen) of the Lyman and the Balmer lines. For the first line of the 
Lyman series (of. p. 74) 

A 1215-7A. 

we got, since its wave-number amounts to | of that of the series limit, 
I of the ionisation potential, thus 

V 2 . 13*53 g# 10*15 volts . . . (3b) 

But for the first line of the Balmer series we do not get, as its r-value 
might lead us to think, 5/30 of the ionisation potential, blit rather, it 
must be noted, that when the atom is in its natural state, that is in its 
ground orbit, the electron must first be raised from its ground orbit 

into the 2-quantum orbit and then into the 3-quantum initial orbit 
of the line H<>. In this way the excitation potential for comes out 
equal to that of the second line of the Lyman series, that of equal 
to the third Lyman line, and so forth. Thus we get 

for H* . . . v * . 13*53 12*03 
for ... v ** j J . 13*53 -- 12*68, etc. 

Our calculations have so far been made with the 11 -atom. If 
we start with the H2-moleculo instead, we have first to split the molecule 
into H-atoms by supplying the energy necessary for dissociation. 
The most exact value for this quantity follows- somewhat indirectly 
from the analysis of the band-spectrum of the H2-molecule. According 
to Dieke and Hopfield * it amounts to 

D — 4*4 {- 0*1 volts . . . (4) 

This dissociation potential cannot be checked by experiments 
involving electron collisions. For no kink is observed in the current- 

potential curves for H2-gas at the point V = 4*4 volts. Rather, dis¬ 
sociation occurs in electron collisions alwrays in conjunction with the 
excitation of at least one of the two atoms released in the process of 
dissociation. We shall show in connexion with the theory of band 
spectra (Chap. IX, § 5) why no precise and unambiguous results are 
obtained in electron collision experiments with H2 and, indeed, mole¬ 
cules generally, in contrast with those performed with atoms. We 

shall add here the principal data for the H2-molecule : 

Ionisation potential H2 -> H2H + electron . . 15*34 volts. 
Excitation potential as far as the initial state of the 

emission bands (A ^ 1050A.) . . . at 11 volts. 

* Zeits. f. Pliyaik, 40, 299 (1927). Almost the same result was obtained by 
E. E. Witmer, Phys. Rev., 28, 1223 (1929), and—by thermal means - Tsnardi, 

Zeits. f. Electroehemie, 21, 405 (1915), 
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From the H-atom and H-molecule we now pass on to the hydrogen¬ 
like He+-atom. Here we must first get to know the energy of formation 
of He+ from the He-atom experimentally if we wish to draw conclusions 
based on the hydrogen-like character of Heh. This energy of formation 
(Bildungmmrme) or the ionisation potential of the neutral He-atom 
which is proportional to it will be denoted by I. As we have indicated 
in Fig. 92 (arrow furthest to the left), 1 - 24*5 volts. We may now 
write down, for example, the second order ionisation potential of He. 
It is 

I + 4 . 13-5 “ 78*5 volts . . . (5) 

Actually, to deprive the hydrogen-like atom He1 of its electron, we 
require work four times as great as in the cast' of the H-atom. As 
shown by the formula, this follows at once from the factor Z2 in the 
He-series ; in more pictorial language, we may say that one factor 2 
arises out of the doubled nuclear charge of He4 as compared with H, 
and the other factor 2 from the halved distance of the electron from 
the nucleus as compared with that in the case of H. In the curves 
given by the observations of Franck and Knipping,* as well as in those 
of F. Horton,f an ionisation step occurs of the value given above, 
which clearly corresponds to the tearing off of both electrons of the 
He-atom in one elementary act. Formula (5) gives, at the same time, 

the total energy — W of the neutral helium atom. 
We pass on to calculate the excitation potential of the lino 

, - 4r(^- - j,), A ----- 4(>86A. 

For this the electrons of the He1-ion must be removed not to infinity 
but only as far as the 4-quantum orbit, the initial orbit of 4686. The 
work necessary for this is 

4Rri.fi _ 1) ^ i|. 4.13-5 ----- 50-J volts. 

Thus if we start from the neutral state of the He-atom the excitation 
voltage of 4686 comes out as 

I + 50-1 = 74-6 volts . . . (5a) 

Actually, this line occurred in the experiments of Rau mentioned 
above at potentials lying between 75 and 80 volts, in that at 75 volts 
no trace of the line appeared but at 80 volts it was present with full 
intensity. 

We now consider neutral helium. In this case it was necessary 
first to establish the ground-level IS in Fig. 92 by the method of elec¬ 
tronic collisions. (As on p. 358 we use the capital letters in referring 

to “ parhelium ” and the small letters for ” orthohelium.”) A positive 

Phys. Zeitschr., 20, 481 (1919). t Proc. Roy. See., 95, 408 (1920). 
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result was obtained by Franck and Knipping * who detected the first 
inelastic collision at 19-75 volts. If we subtract this from I — 24-5, 
we have 4-75. If, on the other hand, we transform the limit of the 
H.S. of orthohelium, v == 38453, into volts by eqn. (2), we obtain 
4-75 volts again. Hence, using Fig. 92, we conclude that the ground, 
level IS lies 19-75 volts below the final level 2s of the H.S. of orthohelinm, 
v — 2s — np. 

The first inelastic collision at 19-75 volts is therefore to be inter¬ 
preted as 

19-75 volts — IS — 2<s\ 

Following Franck we call this the transformation potential (Umwand- 
lungsspannung). The slightly higher step which is clearly distinguish¬ 
able from 19-75 in the current-potential curves of Franck and Knipping 
is 

20-55 volts IS - 2S. 
The difference 

20-55 - 19-75 - 0-80 2s - 2S 

corresponds exactly to the difference between the limits of the optical 
H.S. of orthohelium and parhelium. 

To visualise these conditions we refer again to Fig. 92 : on the 

right-hand side of the figure we see how the ionisation potential is 

formed from the transformation potential 19-75 and the H.S. limit 
of orthohelium, whereas on the left-hand side it is formed from the 
energy-level 20-55 and the H.S. limit of parhelium. 

Table 36 

Observed 
' 

Calculated t Series Name Wave-length 

19-75 IS - 2a* 
10-55 20*55 IS - 2S 
21-2 21*12 IS - 2P 584-4 A 
22-9 22*97 IS - 3P 537*1 „ 

23-62 IS - 4P 522-2 „ 
23-92 IS - 5P 515-7 „ 

24*0 24-5 IS | (502) „ 

The next steps may be read from Table 36, and have also been 
drawn in Fig. 92 on the left as dotted arrows. They correspond to 
the ultra-violet H.S. of parhelium that must at the same time be the 

* Rhys. Zeits., 20, 481 (1919) ; Zeits. f. Physik, 1, 320 (1920). The numerical 
values given in these papers have all been reduced by 0-75 volt to bring them into 
agreement with the wave-lengths of Lyman. Cf. J. Franck, Zeits. f. Physik, 
11, 155 (1922), where the reason for this correction is shown to be due to an 
error in calibration. 

t Obtained by adding to 19*75 volts the amounts of energy that follow from 
the series scheme. 
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absorption series of unexcited He. The wave-lengths given in Table 
3(> have all been observed in a high vacuum spectrograph by Lyman,* 
except the extrapolated series-limit A — 502. 

The absence of the level la from the orthohelium levels (cf. p. 350) 
explains the distinctive position taken up in the series system of He 
by 2s (it is indicated in Fig. 92 by indicating the level 2s in heavier 
type). For, once this state has been excited, it cannot again be de¬ 
stroyed by monochromatic emission, it is therefore called the meta- 

stable state by Franck and Reiehe.t The term k‘ transformation 
potential " applied to the 19*75 volts points to the transformation 
from the stable state IS to the metastable state 2s. In this connexion 
the observation by Franck is interesting that the transformation 
IS — 28 occurs only in impure He ; in perfectly pure samples of the 
gas the transformation potential 18->2,s vanishes entirely from the 
eurrent-potential curve. 

The level 28 is also metastable inasmuch as the transition 2K —> IS 
which, from the energy view, is alone possible here is excluded by the 
principle of selection. Nevertheless the stability of 2S is much less 
than that of 2s, because in the case of 2.s* there becomes added to 
the restrictions imposed by the principle of selection the evidently 
much more effective “ partition " restriction (imposed by the fact that 
levels of ortho- and parahelium may not be combined). 

Hence we interpret the difference in the stability of the 2#- and 
the 28-levels in the following way : From the initial state 2s the elec¬ 
tron must first be raised to the limit of the orthohelium system in 
order to fall thence down the succession of steps of the parhelium 
system to the normal state IS. If, however, the electron starts from 
the initial state 28, it need only be raised to the state 2P in order to 
be able to pass spontaneously to IS with the emission of energy. 
Consequently in our Fig. 92 the level 2s but not 28 has been printed 
in darker type and so made comparable with the ground-level 18. 

At the same time the particular position of 2s explains the char¬ 
acter of the line A — 10830A. ^ 1 p as a “ resonance line.” From the 
initial state 2p the He-atom can pass over only to 2s, whilst the transi¬ 
tion to 28 or IS is excluded owing to our central partition in Fig. 92. 
In this way the line 2s —■ 2p is different from the line 28 — 2P, 
A = 20582 ™ 2p. From the initial state 2P there is possible the 
transition to 28 as well as to 18. Actually, according to an in¬ 
vestigation by Paschen,J A —- 2p exhibits incomplete resonance, but 

A — lg complete resonance. This means that if helium gas receives 
radiation A = 1/x, it remits all the absorbed light as light of the same 
wave-length, whereas, if it receives radiation A 2p, it radiates out 
only a fraction of the absorbed light as light of the same wave-length. 
The fact that in each case a certain excitation of the He-gas was 

* Astrophys, Joum., 60, 1 (1924). t Zeitwhr. f. Fhys.? 81, 035 (1920). 
+ Ann. d, Physik, 45, 625 (1914), 
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necessary to provoke absorption, is in accordance with the circ umstance 
that neither 2s nor 2S is the ground orbit of the unexcited He. 

The heavier inert gases neon and argon had already been in¬ 
vestigated in the earliest papers by Franck and Hertz. Final values 
were only obtained after G. Hertz * had refined the method. The 
excitation potentials are then manifested not as kinks in the current- 
potential curve but as sharp maxima, since by using a differential 
method only those electrons are counted that have lost their velocity 
almost entirely as a result of the inelastic collision. The results are : 

Taulk 37 

KxeitaUou Ionisation 
Potent ini Potential 

| 

1 16*6 i) 1 . r 
1 iH-r> Referred to the 

helium transforma 
1 i j f>f> tiori potential. 
1 130 

1 13*9 
15*3 19-75 volts 

We now come to the metallic vapours, firstly to the alkalies which 

are distinguished by the simplicity of the scheme giving their series. 
The final orbit of the H.S. is here at the same time the ground orbit 
(ef. § 2, p. 369) ; the principal series therefore appears as an absorption 
series in the cold vapour. The first line of the H.S. (in the ease of Na, 

this is the D-line) is at the same time a resonance line, and its excita¬ 
tion potential may straightway be calculated, by eqn. (lu), from its 
wave-length known from optical observations. The potential so 

determined leads to the first inelastic collision. In the same way the 
limit of the H.S. gives the ionisation potential by eqn. (2a). 

How perfectly observation and calculation agree even quantita¬ 
tively is shown in the following Table 38. In the column under 
“ obs.” (observed) the values of the resonance and ionisation potentials 
measured by the method of electronic collisions, and under “ calc.” 

(calculated) the values obtained for the same quantities from the op¬ 
tical data by eqns. (1) or (2), respectively, are given. The optical 
data themselves are tabulated under headings kk resonance line ” and 
“ series limit.” Whereas the limit IS of the principal series is simple, 
the resonance line IS — 2Py, j — 4, 2 (cf. p. 354), is double, hut separ¬ 
ated by so small an interval that it must appear simple in electronic 
collision. In passing we must note that the position of the series 
limit is given by numbers regularly decreasing as the atomic number 
increases. (In the resonance line that is compounded from the 

* Zeits. f. Physik, 18, 307 (1923); G. Hertz and H. K. K tappers, ibid31, 
463 (1925) ; G. Hertz, Naturwiss., 12, 1211 (1924). 
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Table 38 

Resonance Ionisation 
Potential Resonance Potential 
in Volts Line in in Volts Series Limit 

A.u. in cm. -* Observer 

US' - 21*. 

Ohs. Calc. (Mis. Calc. 

Li . 1-840 0708-2 5-308 43 484-45 
Na . 2* J 2 2-093 5895-9 5-13 5-110 41 448-59 Tate and Foote, 

2-094 5889-9 Phil. Mag., 36, 75 
i (1918) 

K . 1-55 1-003 7099-1 4-1 4-321 35 005-88 Same as for Na 
1-010 7664-9 

Kb . 1-0 1-553 7947-0 4-1 4-159 33 084-80 Foote, Rogoley 
1-582 7800*2 and Mohlor, Phvs. 

Rev., 13, 59 (1911) 
Cs 1-48 1-380 8943-6 3*9 3-877 31 400-70 Same as for Rb 

1-448 8521*2 
: 

difference of two terms this regularity (cf. Li) is a little obscured.) 
This and the correspondingly proportional decrease of the ionisation 
potential denotes at the same time a weakening of the electro-positive 
character of the alkalies as the atomic number increases. 

The conditions are much more involved in the case of divalent 
metallic vapours. Here, as already mentioned (p. .357), there occur 
a series system of triplet lines and one of lines of a simple structure, 
which combine among themselves. We shall denote the former in 
the case of He by the symbols s, dj, . . ., j ~ 0, 1, 2 and 1, 2, 3, 

respectively. (The general systematic notation is 3S, 3Py, aDj for 
the triplet levels, and hS, JP, rD for the singlet levels.) The whole 
matter of the allocation of the results obtained by optical and electrical 

observations became finally cleared up through the work of Davis 
and Goucher (cf. p. .374) on the excitation of Hg-vapour. The interest 
was here centred in the resonance line of mercury A 2537, which 
we have already mentioned several times ; the fact that it is at the 
same time the ground line of the absorption spectrum shows that 
its final orbit also represents the ground orbit in the Hg-atom. As 

Paschen has shown,* A — 2537 is a combination line of the system 
of simple and triplet lines. It has the formula 

= IS -2pi; 

both terms are defined with perfect accuracy from our knowledge of 
the triplet and the simple lines series. For we have 

IS = 84181-5, 2/jj = 44768-9 

* Ann. d. Phys., 35, 876 (1911). 
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and so we get the resolution 

v -- 39412-6 - 84181-5 - 447684). 

Since, in the process of emission, the first term (we discard the sign) 

determines the energy of the final orbit, and the second term deter¬ 
mines that of the initial orbit, wo write at the lowest energy-level 
of Fig. 94 the number 84181*5, and at the next lowest the number, 
— 44768-9. It is between these two levels that both the process of 
emission (arrow downwards) 
as well as that of absorption 
(arrow upwards) takes place. 

Tn addition, we consider 
the line A — 1849A. situated 
still further in the ultra¬ 

violet. As it likewise occurs 
not only as an emission line 
but also as an absorption 
line in cold mercury vapour, 

it must start out from or, 
respectively, tend towards 

the same ground level, the 
natural orbit of the electron 

at the periphery of the atom 

— 30112*8 

— 44768-9 0
 0

 

; 

- 84181*5 

4-9 
Volts 

X = 
2537 

6-7 
Volts 0

0
 5
- 

£
 

11 

Fie. 94. The characteristic potentials of the 
Hg art* spectrum according to the method 
of electron impact. On the left are the 
corresponding spectroscopic term values. 

This is confirmed bv its expression in 
terms. For, according to Paschen (lor. cit.), A - 1849 is the line of 
the principal series of simple lines and is therefore expressed by the 
formula 

IS - 2P 

in which 2P — *10112-8 and we have the resolution 

v - 54068*7 --= 84181-5 - ,*10112-8. 

In accordance with this we have therefore to add in Fig. 94, above 
the two energy-levels hitherto considered, one that is higher and to 
which we assign the number — 30112-8. The emission and the ab¬ 

sorption of A = 1849 then takes place between this upper level and 
the lowest level, and they are indicated by oppositely directed arrows. 
Above this upper level there has been drawn in the figure a still higher 

top level, which denotes the removal of the electron to infinity and 
represents the energy 0. According to eqn. (2) the following numbers 
of volts correspond to the above-mentioned wave-numbers : 

v - 84181-5, V = 10*39 volts. 
54068-7, V = 6*67 „ 

— 39412*6, V- 4*68 „ 



384 Chapter VII. Series Laws in General 

Actually, Davis and (Voucher have confirmed that at the value 4*9 
volts given by Franck and Hertz (cf. p. .471) the line A 2547 flashes 
forth. At the same time, however, they succeeded in proving that 
an ionisation of Hg-vapour did not yet occur at this potential. Further¬ 
more, they detected signs of the emission of the line A — 1849, likewise 
without ionisation, when the potential was 6-7 volts. Ionisation was 

shown beyond doubt to occur at a potential of 10*4 volts. 
But these circumstances are exactly repeated in the case of all 

elements of the second column of the periodic table. In all cases, 
IS — 2p is the lirst excitation limit, IS — 2P the second, and IS 
itself the ionisation potential. How completely the measurements 
obtained from electronic collisions agree with spectroscopic data is 
shown in Table 49. The values tabulated under " calc.” have here, 

too, been determined from eqns. (1) and (2). 

Table 49 

Lxcital ion Ionisation 
Potential 
in Volts IN - 2/n 

in - 'in 

Potential 
in Volts 

Series Limit 
in c*m.“1 

IN 
Observer 

Obs. Calc. Obs. Cain. 

Mg 2-65 2-70 4571*33 7*75 7*01 01 003*0 Foote and Mohler, Phil. 
4-42 4-32 2852*2 MaM.. 37, 33 (1019). 

Molt lor, Kooto anil 
Meggers, Journ. Opt. 
Sue. Amor., 4, 304 
(1920). Bur. of Stand. 
No. 403, 1920 

Cli 1-90 1-88 0572*8 0*01 0*08 49 304*8 Mohler, Foote and Slim- 
2-85 2*92 4220*7 

i 
son. Bur. of Stand. 
No. 308, 1920; Phys. 
Rev. 14, 534 (1920) 

Hr — 1-79 0892*8 — - 5*07 45 924*31 
2-08 4007*5 

Ba — | 1-50 7911 — 5*19 42 029*4 
1 2-23 5535*5 

Z11 4-18 402 3070*0 9*3 9*35 75 758*0 i Tate and Foote, Phil. 
5*05 r>-77 2139*3 Mag., 30, 04 (1918). 

Mohler, Foote and 
Meggers, foe. cit. 

Cd 3-95 3-78 3201*2 8*92 8*95 72 532*8 Same as for Zn 
5 *35 15-39 2288*8 

Hg 4*9 4-80 2530*5 10*2 10*39 84 181*5 Same as for Mg (Foote- 
0-7 0-07 1849*5 Meggers-Mohler) 

In addition to these results very detailed measurements carried 
out in the case of mercury in particular by Franck and Einsporn * 

have brought into evidence a whole series of higher energy-levels, 

♦ Zeitsehr. f. Phys., 2, 18 (1920). 
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for example, IS — 3P, IS — 4P, IS — 3p1? IS — 4pls in the current- 
potential curves. It is of particular interest that the transitions 

IS — 2 p2 and IS — 2 p0 

that are not observed optically and that arc excluded by a selective 
principle governing the inner quantum numbers (cf. Ch. VIII, § l) 
make themselves observed in the current-potential curves as bends.* 

The ionisation potential of the second order, that is the formation 
of a double positive ion, has also been determined by Foote, Meggers, 
and Mohler f for the alkaline earths, the first being Mg. This ionisa¬ 
tion potential of the second order corresponds to the H.S. limit of the 
doublet spark lines, just as the ordinary ionisation potential corre¬ 
sponds to the limit of the H.S. of simple lines. It naturally lies 
somewhat higher than the latter (15 volts instead of 7*6 volts for Mg). 

We have described here, of course, only those results of the method 
of electronic impact that are particularly instructive and immediately 
intelligible. We must emphasise, however, that even in complicated 
cases where the energy-levels have not been investigated spectro¬ 
scopically this method enables us to derive direct information, for 
example, about series limits (by means of the ionisation potential). J 

Finally we add for the sake of contrast with the excitation by means 
of electronic impact a method of purely optical excitations. It has been 
developed by Fiichtbauer |[ for Hg-vapour. 

Concerning the experimental arrangement we say only this : a 
quartz tube filled with mercury vapour was illuminated by radiation 
from a quartz mercury vapour lamp. The latter emits into the former 
tube practically only such lines of its spectrum as have wave-lengths 
greater than or equal to A — 2537 A. (as all light for which A < 2537 is 
held back by the thick quartz walls of the lamp). In the first (the 
outer) tube only A -- 2537 is absorbed initially, since the Hg-vapour is 
in the state given by the ground orbit 18 ; but, owing to the absorption, 
a fraction of its atoms pans into the state 2pv Hence this fraction 
is enabled to re-emit not only the line IS — 2p1 but also, for example, 
the blue line 

2p, - Is, A - 4358 

(as, indeed, all lines of the type 2p{ — X, for which 2p1 is the initial 
level of the absorption). In this way the new atomic state 

* They also occur as starting-points for band spectra. Cf. Lord Rayleigh, 
Proc. Hoy. Soc., 114, 620 (1927). 

t Phii. Mag., 42, 102 (1921) ; 43, 659 (1922) ; Astrophys. Journ., 55, 145 (1922). 
J A tabulation of characteristic potentials of arc and spark spectra, in which, 

however, almost only purely optical data are used, is also contained in Chemical 
Reviews, 5, 85 (1928), by A. A. Noyes and A. O. Beckmann, which is quoted in 
the book by Goudsmit and Pauling, Stricture of Line Spectra, p. 168, McGraw-Hill, 
New York (1930). 

j| Phys. Zeits., 21, 635 (1920). Our own explanation, which is a little 
simpler than that given in this paper, follows on the report by G. Joos, cf. p. 509. 

VOL. I.—25 
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2<s\ v — 21834 arises. If the energy-quantum of A 2537, 
v — 39413 >21834 is again absorbed in the latter, the series-electron 
is driven out and the atom is ionised. When the atom is again neu¬ 
tralised the whole arc spectrum of mercury results from the cascade¬ 
like transitions of the electrons into a series of individual processes. 
This spectrum was photographed in almost its complete form by 
Fuchtbauer as a second consequence of the primary irradiation with 
2537. The fact that 2537 was actually the only primary exciting 
radiation was proved by Fuchtbauer by causing the line 2537 to be 
absorbed by a thin plate of glass ; the radiation of long-wave light 
was then found to cease at once. 

Fuchtbauer\s experiments are also instructive in that they bring 
into evidence the finite ‘‘time of relaxation” (Verweilzeit) of atoms 
in their excited states. Actually there is, for example in the state 
2pv a finite probability that a further energy-quantum will link up 
with 2pl only if the atom persists in the state 2p{ for a finite time. 

In the general questions concerning the statistical equilibrium of 
excited atoms and molecules an important part is played by a process 
involving a certain reversal of the phenomenon that occurs in electronic 
collisions with atoms ; it was introduced by Klein and Rosseland.* 
We represent the process of electron collision by the following scheme 
(upper arrow) : 

greater amount of electron it? | energy of excitation + smaller 
energy ( amount of electronic energy. 

On the left-hand side we have the energy of the colliding electron ; 
it is partly converted in exciting the atom and the remainder is taken 
up by the escaping electron in the form of kinetic energy. But, as 
Klein and Rosseland showed, the converse process (indicated by the 
lower atoms) is also possible to a considerable degree of probability. 
A relatively slow electron approaches an excited atom (cf. right-hand 
side of the scheme). The atom passes into a state of lower energy 
without emitting radiation. The energy that is liberated becomes 
added to the kinetic energy of the colliding electron so that it moves 
away from the atom with greater energy. Atoms may collide with 
other atoms or with molecules according to the same scheme. This 
converse process (denoted by the lower arrow) is called collision of 
the secoyul kind to distinguish it from the collision of the first kind 
which formed the subject of this paragraph. 

By means of collisions of the second kind the energy which is com¬ 
municated to one type of atom by inward radiation, that is, from out¬ 
side (Einstrahlung) is transferred to another kind of atom which is thus 
enabled to emit definite energy-steps of its spectrum. This process 
is called “ sensitised fluorescence ” by Cario and Franck, f Good 

* Zeits. f. Physik, 4, 46 (1921). 
t G. Cario and J. Franck, Zeits. f. Physik, 17, 202 (1923); H. Kopfermann, 

ibid., 21, 316 (1924). 
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examples of this are given by mixtures of Hg-vapour with vapours 
of TJ, Od, Bi arid so forth. 

§ 4. Quantum Theory of the Series Formula. 
and Non-penetrating Orbits 

Penetrating 

The simplified assumptions under which we can treat spectral 
orbits have been characterised in § 2 : the atomic field due to the 
electrons enveloping the nucleus is regarded as an invariable central 
field, that is, its potential energy V is assumed to be a pure function 
of r. This becomes added to the potential energy of the screened 

/fM 
nucleus, which we may write down in the form —. Here e denotes 

the charge of the “ reference electron ” or “ series electron,” rLe the 
nuclear charge so far as it is not screened by the electronic envelope, 
Z —l corresponds to the neutral atom and gives the art1 spectrum 
Z --- 2, Z — 3 . . . correspond to the singly, doubly, . . . ionised 
atom and give the arc spectra of the first, second, . . . order. These 
assumptions do not hold actually but lead us further than we might 
ordinarily expect. 

One consequence of these assumptions is that the orbit lies in a 
plane passing through the nucleus and may be described by means 
of the polar co-ordinates r, <f>. Here the azimuth cj> is cyclic, that 
is, its moment of momentum is constant : p(/, - p. The azimuthal 
quantum condition gives 

2np - nji. 

The expression for the energy runs as for the Kepler ellipse (p. 110) 
with the addition of the potential energy V of the atomic field : 

p; 
Ze2 

r 
V W (1) 

Hence it follows that 

Pr ^ - V) - ^ . . . (la) 

Hence we have the radial quantum condition : 

The integration with respect to r is here again to be taken over the 
full range of r, from rmin to rmax and back again to rmin. We must 
regard this equation, if nr is given, as an equation for determining W. 

Below it we write the same integral, but for V — 0. This corre¬ 
sponds in a certain sense to the hydrogen case, but only in a certain 
sense ; for we do not wish to regard the W in it as the hydrogen 
energy but the same quantity as in equation (2). Accordingly 
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we have on the right-hand side of the following equation not the 
perfect integer n,, as in the ease of hydrogen, but an imperfect number 
which we shall call n \ 

$V2w(w +- V ) - Sdr - Kh • • • (3) 

This effective radial quantum number nr differs from the former integral 

number nr b}7 a certain quantum defect A. We write 

nr ----- nr — A . . . (4) 

and also introduce an effective principal quantum number, 

■rteff — ri9 4 w*. 

as a counterpart to the proper integral principal quantum number 

n — nr f n<t>- We then have also 

nejr ~ n — A . . . • (4a) 

From the equations (2) and (3) it now follows that 

M = (J)r/r{f2m( w + ^ - v) - £ - y]2«, (W + 7fJ) ~ (5) 

From equation (5) we infer generally that 

A > 0. 

This is equivalent to the statement that V is always < 0, that is, 
that in (5) the first positive roots predominate over the second. To 
see this, let us imagine the electronic envelope to be replaced by a 
single rigid negatively charged spherical surface. Under the influence 
of the reference (outer) electron this sphere is repelled but the nucleus 
is attracted by the electron. Towards the outside the sphere acts as 
if its charge were concentrated at its centre. This centre lies beyond 
the nucleus on the line connecting the reference-electron with the 
nucleus. Hence on this connecting line we have a dipole whose 
positive pole the nucleus tends towards the reference-electron. Such 
a dipole exerts ail attraction on the reference-electron. Its potential 
is negative. Hence we have 

V < 0, A > 0 . . . . (6) 

as was asserted. Thus the influence of the inner atomic field always 
tends to magnify the term, as compared with that of the corresponding 
hydrogen term or, as we may also say, tends to strengthen the binding 
on the series-electron. 

We revert to equation (3). This has the same form as the radial 
quantum condition in the case of hydrogen, equation (II) on page III 
(with the value for dSj'br given in (10) on p. 111). For this reason 
the result with respect to the calculation of W is the same as for 
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hydrogen, equation (14) on page 112, with the one difference that now nr 
is to be replaced by nr and hence n by n — A or neff. Hence the term 

value to be taken from (3) is 

_ W ^ JR£2 __ RZ2 RZ2 

h ~ \n+ + rir)2 "" (n - A)2 ~~ n;ff 

The expression 14 quantum defect ” for A is obviously justified by this 
notation ; it means the defect as compared with the hydrogen term 
of the same principal quantum number n. 

So much for the general aspect. We must now consider in detail 
the distinction : non-penetrating and penetrating orbits. 

(a) Non-penetrating Orbits.—If the orbit has its course permanently 
in the outside of the atomic core, we may expand V over its whole 
range in a uniform series with increasing negative powers of r, such 
as we represented in § 2, to different degrees of approximation by 
means of the terms — eV^/r2, — cV2/>3, . . . The integrals (5) are 
calculated in this ease according to notes (4) and (11) and give us to 

a second or third degree of approximation Rydberg's or Ritz’s form 
for the term (p. 3(33), and hence for A we have the values 

— A -- q and — A =- q | k(h, q, k) . . (8) 

To determine A we shall proceed graphically. For this purpose 
we rewrite equation (la) in the following form, for V — 0 in the first- 
place : 

Actually this equation expresses the 

real character of pr for rmiv < r < rmnx 

and also gives correctly the term — p2/r2 
in (la). Moreover, it has the correct 
zeros ; for pr — 0 for r -- rmin and 
r — Tmax. Fig. 95 depicts equation (9) 
graphically ; r is drawn as the abscissa, 
pr as the ordinate. The curve for pr is 

closed, the upper half (pr > 0) corre¬ 

sponds to the forward motion from rmin 
to rmax, the lower half to the backward 

motion from rmax to rmin. The axis of 
X is intersected perpendicularly at rmnl 
and rmax. The steepness of the curve at 
rmin and the small slope at rwar arise 
from the numerator 1/r in (9). 

The figure exhibits a group of curves 
pr, which are denoted by p0, pv p2 . . . 

Fig. 95.—Dependence of the 
function pr (radial momen¬ 
tum) of equation (9) on r 
(distance from the nucleus) 
for different values of the 
radial quantum number, p0, 
yj,, p,z . . , correspond to 
nr 0, 1, 2 . . . for hy¬ 
drogen. For non-hydrogen 
like terms of equal energy 

is modified to the dotted 
curve (diagrammatic). 

and which we shall suppose correspond to the quantum numbers 
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= 0, 1,2. . . . The radial quantum condition demands that the 
surface between each two successive curves of the group must equal h. 

To pass from hydrogen (V — 0) to a term (V < 0) unlike that of 
the hydrogen type, we have only to increase the term under the 
radical in (9), corresponding to the addition of — V in (la). The 
character of the curves remains preserved in this process. The dotted 
line shows the change in the most extreme curve of the group. We 
must emphasise again that the two curves have the same W but 
not the same nr. Hence if one curve was quantised (nr an integer) 
the other curve cannot be. The small shaded region between the dotted 
and the continuous curve represents in accordance with eqn. (5) the 
quantum defect A. 

The course of the orbital curve in the (r, </>)-plane will be similar 
to that in the case of hydrogen. The chief difference as compared with 
the Kepler ellipse consists in a rotation of the perihelion similar to 
that which we encountered in the relativistic Kepler ellipse (cf. Fig. 67, 
p. 254). The magnitude of the perihelion motion is obtained as on 
pages 252 et ,veq. from the energy equation. We take p2 outside the 
bracket in (1) and set 

1 1 dr d,s 

r ’ p r2 dxf) d(f> 

and break off V as on page 362 (under (h)) after the first term ; that is, 
we set 

- Ze2cvs2. 

Here we have added the factor Z in order to include spark spectra. 
In this way we obtain from (1) 

2m(W -f Ze2s + Ze2crs2). 

By differentiating with respect to (f> we obtain a linear differential 
equation of the second order which we may at once write in the form 

of eqn. (10) on page 253 : 

d2s 

d<j>2 
+ y2(s - 0) - 0, 

2mZe2c, mZe2 
-   yzC  o ~ • 

p2 r p2 

The integration of this differential equation was performed on page 
253 and led to the perihelion rotation of eqn. (14) there : 
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Inserting the given value of y we obtain (treating Cj as a small per¬ 
turbation) : 

A 4, 
2irmZ«a (2n)smV,ci c, 

V- Cl " P W2 

Thus the perihelion rotation increases, as should he, when Cj increases 
(growing intensity of the supplementary atomic held) and decreases 
as ??(f) increases (in the order of sequence of the terms 8, P, D . . .). 
In general it is much more marked than in the relativistic case of 
hydrogen (ef. the factor c2 in the denominator of eqn. (10a), p. 25! 1) 
but still represents only a slow perturbation in comparison with the 
motion in the orbit. 

(b) Penetrating Orbits (Tauchbahnen).—Schrodinger * was the first 
to show by using Na as an example that the ^-orbits penetrate into 
the atomic core (into the L-shell in Na). To prove this he assumes 

Fto. 96.—~pr (radial momentum) as a function of r for penetrating orbits. On 
the left of r — p lies the region of the interior of the atom. 

for simplicity that the K-shell is contracted on to the nucleus and the 
L-shell may be replaced by a spherical shell having a uniformly dis¬ 
tributed total charge — 8c and an appropriately chosen radius p. The 
result of the orbital calculation is a quantum defect A — 0*74, which 
is nearly constant for all s-terms. 

In the sequel we shall follow a method given by Wentzel.f In Fig. 
96 we draw the two extreme curves similarly to those in Fig. 95 and cut 
off by means of a parallel to the axis of ordinates at the distance r == p 
(p is an approximate measure of the radius of the atomic core) those 
parts of the curves that would lie in the interior of the atomic core. 
For these parts the effective charge Z in eqn. (la) is to be assumed 

appreciably greater than for the external parts of the curves, to the 
right of r — p. If Z was equal to 1 in the region outside the atomic 

* Zcits. f. Physik, 4, 347 (J921). t Ibid., 19, 53 (1923). 
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core, and if we are dealing with the penetration into the L-shell, then 
Z = 9 in the interior, because the nuclear charge is now screened off 
by 8 units less. We treat this change by 8 units in Z as occurring 
suddenly although in reality it will be balanced out more uniformly 
(construction of the L-shell from the sub-groups Li, Ln, Lm), particu¬ 
larly in view of the wave-mechanical relationships. Thus in our 
figure we draw the p^-curve at the point r = p with the same con¬ 
stant co-ordinate but with a tangent which is directed upwards but 
is not constant. The slope increases as r decreases ; finally there is 
a rapid decrease to the value r rrnht. The latter is of course 
appreciably smaller than in the case of the non-penetrating orbits, 
other conditions being equal. 

Let us investigate the external pr-curve of the figure a little more 
closely. The double area between the axis of abscissae and the train 
of curves ABCD is our radial phase-integral in eqn. (2) and is hence 
equal to nrh. On the other hand, the double area ABEF represents 
the phase-integral for the corresponding non-penetrating orbit and 
differs only slightly from the phase-integral for the ease of hydrogen 
calculated with the same W, since the quantum defect A of the 
non-penetrating orbits is always small, according to (a). Hence the 
double area ABEF is appreciably equal to nil by (3) and the double 

excess area BODREB represents, sufficiently accurately, by (5), the 
quantity AA. 

We compare this surface with the corresponding surface 
B'O'D'F'E'B' for our internal train of curves. The two surfaces are 
almost equal since the two strips BCDD'O'B and BEFF'B' shaded in 
the diagram nearly coincide.* Hence it follows that the quantum 
defect A is independent of nr not only in non-penetrating but also in 
penetrating orbits. Thus A besides depending on the atomic field 
depends appreciably only on the azimuthal quantum number and 
is a characteristic constant of the series. We may now also set — A ----- g, 
say, and may therefore also apply the series formula (7) in Rydberg's 
form to the penetrating terms. 

If we compare our present Fig. 96 with the preceding Fig. 95 we 
see immediately that the quantum defect A is now much greater than 
before. Whereas in the case of the shaded area in Fig. 95 we were deal¬ 
ing with a relatively small correction, the present area BCDFEB which 
represents the quantum defect is comparable with the total surface 
A BCD which represents the quantum number nr and may amount to 
several units. 

This gives rise to an uncertainty in the definition of the quantum 
numbers. From spectroscopic experiments only the term denoniinator 
neff is known, and hence by (4a) only the difference between n and A. 
If it should happen that A > 1 we cannot immediately decide how great 

* For further details see Van Urk, Zeits. f. Physik, 13, 208 (1923). 
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n is to be chosen. This uncertainty cannot be overcome in the in¬ 
dividual case but only in relationship to the periodic system, cf. § 6. 

In Fig. 97 we depict a penetrating orbital curve diagrammatically. 
Both the external and the internal parts of the orbit run essentially in 
Kepler ellipses, but the loop inside is much more strongly curved, 
on account of the higher effective nuclear charge, and hence is attracted 
much nearer to the nucleus than the outer loop. This corresponds to 
the greatly raised position of the pr-curve for r < p and the diminished 
value for rmiv in Fig. 90. 

If the orbital curve, after traversing the inner loop, again leaves 
the atomic core, it is turned through a finite angle, as shown in Fig. 97. 
Hence we now have a rotation of the perihelion but many times greater 
than in (a), being magnified to the same extent 

as the quantum defect A is magnified. 
The magnitude of A in the penetrating 

orbits causes a considerable increase of the 
term, compared with the hydrogen term having 
the same n, and hence also strengthens the 
binding of the series electron. A glance at 
Fig. 97 explains this : the penetrating electron 
approaches nearer to the nucleus and is more 
closely related to the atomic configuration 
than the non-penetrating electron. 

(c) Partially Penetrating Orbits. There is 
an intermediate case between penetrating and 
non-penetrating orbits, to which E. Fues * 
first called attention. 

If we make a very rough calculation for 
the hydrogen model we see from the formula' 

(16c) for the semi-axes of the orbital ellipses that for a fixed that 
is, in the ease of the orbits of a term-series the perihelion approaches 
the nearer to the nucleus the greater n becomes. It may therefore 
happen that the first orbits of a series do not penetrate into the 
atomic core but that a critical value of n, that is, of nr, is attained 
after which penetration does occur. 

Then the quantum defect A suddenly becomes larger and in this way 
we obtain a series whose constant q = — A has a discontinuity between 
two series terms. The first (non-penetrating) orbits of the series have 

a small A, the higher (penetrating) orbits have a large A. It is 
evident that such anomalies are to be expected only in the ease of 
special dimensions for the orbits and the shells. 

In Fig. 98 we depict the course of the quantum defect A for each of 
the cases (a), (h), (c) for a typical case. A is plotted as the ordinate 

Fiu. 97. —Diagrammatic 
representation of a 
penetrating orbit. 
Dotation of the peri¬ 
helion on account of 
t he stronger attrac¬ 
tion in the neigh¬ 
bourhood of the 
nucleus. 

Zeits. f. Physik, 11, 370 (1922). 
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and the value of the term as the abscissa. Since we have by definition 

, R 
term — 7-t-tt,, 

(n — A)2 

the curves n ~~~ const, (which are shown as dotted lines in the figure) are 
known a priori. 

(a) We have chosen for the non-penetrating orbit the D-term of 
caesium. The fact that the graph is perfectly rectilinear denotes 
that Ritzs formula, eqn. (4c) on page is exactly valid, namely that 
the quantum defect depends accurately in a linear fashion on the term- 
value in accordance with the formula 

- A — q + k (n, q, .r). 

(b) For our penetrating term we have selected the* S-term of sodium. 

1 2 3 4 io4 om -J 

Fig. 98.— The quantum defect A as a function of the term-values. The linear 
dependence denotes validity of the Ritz formula. The *P term of Hg 
becomes penetrating below n — 4. 

Observe the increase of A (here A --- 1*4) which is characteristic for 
the penetration, and also note the linearity which manifests itself here. 

(c) As our example of a partially penetrating orbit we have taken 
the peculiarly anomalous singlet-P-term of mercury. Here we see 
that the first two or three terms (on the right-hand side of the figure) 
have about the same A, and hence correspond to a Rydberg formula of 
their own. The same holds of the higher terms n > 7 (on the left-hand 
side of the figure). Between them is a disturbed region which runs 
in the manner to be expected for a penetrating orbit from the preceding 
remarks, say for n — 5. In our * diagram A increases almost by one 

* The term n — 4 has boon supplemented by YVentzol {/or. cit. Zeits. f. 
Physik, 19) in accordance with observations by (_». Wiodmann, Ann. d. Phys., 
38, 1046 (1912). It is possible that the left upper limit of the branch may have to 
be raised by several units, in which case the numbering of this branch W'ould have 
to begin not with n —- 6, but with a correspondingly greater value of w. 
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unit between n — 4 and n =-= 7. Wentzel discusses in the same 
paper other examples of such anomalies but at the same time em¬ 
phasises a certain ambiguity in the interpretation for the following 
reason. The idea of the penetration first presumes one outer series 
electron and a closed atomic shell, which is essentially the case of the 
alkalies. But in our example of Hg we have two valency electrons. 
It is possible that the anomaly in question may not be due to the pene¬ 
tration of the series electron into the shell of the atomic core but to an 
inter-action (Wechselwirhung) with the other valency electron. 

In this section we have taken the orbital idea more literally than 
appears justified from the wave-mechanical standpoint. Our reason 
may be stated as follows : the wave-mechanical treatment of compli¬ 
cated atoms is rather laborious and can be carried out only approxi¬ 
mative^. But the difference between penetrating orbits and outer, 
non-penetrating orbits occurs in wave-mechanics too although in a 
different mode of expression.* The results obtained above remain 
valid at least qualitatively in the new theory. 

§ 5. Application to the Representation of Rontgen Spectra in Terms 

We shall now apply the considerations of the preceding section to 
inner electronic orbits and add a few remarks to the theory of X-ray 
terms. In the term formula for X-ray spectra, Chapter V, § 5, eqn. (4), 
we empirically introduce two different effective nuclear charge num¬ 
bers (Z — s) and (Z -—a). The screening number s that enters into 
the relativistic terms (with a2, ah . . .) was independent of Z, whereas 
the screening number a that occurs in the main terms increased with 
Z and was always greater than s. We assert that the difference <7 — s 
arises from the influence of the outer shells, within which the motion 
of the K-, L-, M-shell under consideration occurs. Bohr actually calls 
a — s the external screening number. The fact that a ---- 8 increases 
with Z is simply explained by the increasing number of the shells added 
on the outside. 

The assumptions of the preceding section may be extended so that 
we may account roughly for this external screening. For this purpose 
we must set the potential V in the energy-equation (1), page 387, equal 
to the action of the external shells (the screening action of the inner 
shells is taken into account in the value of Z). Let us first restrict 
ourselves to a single shell which we shall suppose to contain z electrons. 
Its field may be approximated to by the field of a spherical surface 
on which the charge — z . e is homogeneously distributed. The poten¬ 
tial of this surface charge on an electron (-- e) is constant in the interior 
of the shell, in which the orbit lies, and is equal to ze*/p} where p is 

* Cf. for example, A. Unsold, Ann. d. Pliys., 82, 3f>f> (1927). 
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the radius of the shell. Hence instead of eqn. (1), page 387, we must now 

write 

1 

2 m Vi 4 
1>‘ Ze2 

r 
W - W'. 

The only difference as compared with the preceding section is that 
the energy constant W appears replaced by a reduced constant : 

w' w - —.(1) 

Hence quantising must give the same result for W' as for W in the 

preceding section, namely. 

W' 

h 
Vw-^l - -R^-r *)2 
h\ p ) "“ n1 

(2) 

Here Z has already been reduced by the amount of the “ inner 
screening " and we have disregarded the difference between n and 
(hydrogen-like character of X-ray spectra). If we also use the expres¬ 
sion for the semi-major axis a, eqn. (1 Her) on page 112, with Z — s instead 

of Z, 

h2 n2 r2 H2 

we obtain from (1 

a 

W 

h 

irr2mc2 ' Z 21 Ih * Z 

2(Z - s)z- 

If Z > z we may write as a sufficient approximation 

W 

h 
R (*—# 

(3) 

(4) 

Thus the inner screening s is augmented by the “ outer screening ” 
z . a/p, which is always smaller than the number of electrons 2, since 
a < p. 

If several outer shells are present the outer screening consists of 
the sum of the contributions of the individual shells. In place of (4) 
we obtain 

h = ^ ri? ’ °-s\-a-2rp • • (5) 

Hitherto we have made our calculations without taking into account 
relativity. But even in the relativistic term formula (eqn. (6a) on 
p. 260, in which, on account of internal screening, we must replace Z 
by Z — A*), if one or more outer shells become added we have merely 
to constitute the term — W')h from (1) for — Wjh, so that we get 

W 

J R 
sh 

' H- 
• • ■) 

1^*2 

hZ* h (6) 
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As above in (3) and (4) we may now take the shell-potential ze2/p over 

into the principal term of the expansion, so that the screening number 
in the principal term becomes increased to the value 

a - * + ayz.(7) 

whereas in the higher terms the screening number ,<?, which is 
independent of Z, remains. 

If we pass from one element to the next highest a becomes increased 
by the amount ajp owing to the addition of an electron. The increase 
is the greater, the less the radius p of the added electronic orbit. Hence 

if the electron is added not at the surface of the atom but, exceptionally, 
in an inner shell, as in the case of the triads and the rare earths wre expect 
a more marked increase in the screening number a with Z. This ex¬ 
plains the anomalies in the course of the curves in Fig. 79, page 286, 
to which we have already referred there. 

We have thus explained in their essential features the screening 
laws derived empirically in Chapter V. In particular our discussion 
led us to correct only the screening number of the principal member 
l:y the amount of the external screening but to leave those of the re¬ 
lativity terms uncorrected and equal among themselves,—which seemed 

arbitrary when we originally wrote down the term formula on page 284. 
The screening numbers were the only empirical factors that occurred 

in the term formula of the X-rays given on page 284. It is remarkable 
that they may be approximately * analysed theoretically. 

§ 6. Magnitudes of the Terms. Relationship with the Periodic 
System 

We first enumerate some theorems on which the following dis¬ 

cussion will be based. 
1. The term-value measures the tightness (B induing sfeMigkeit) with 

which the electron is kept in the orbit in question ; multiplied by 
h, it is equal to the corresponding work necessary to detach the 

electron (^4 btrennungsarbeit). 
2. The inner atomic field increases the tightness of the binding ; 

every term of an element which is not hydrogen-like is greater than the 
hydrogen term corresponding to the same principal quantum number. 

3. The increase in the tightness of the binding is always small in 
the case of the non-penetrating orbits as compared with the case of 
penetrating orbits (see § 4b of the present chapter). 

4. In the case of similar atoms, namely such as stand in the same 
vertical column of the periodic system, the increase in the corresponding 

* A more exact numerical discussion of the outer screening numbers is given 
by Bohr and Coster, Zeits. f, Phys., 12, 342 (1923), in particular p. 358. 
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terms increases with the magnitude of the inner atomic field, that is, 

with tlu' atomic weight. 
5. The series of penetrating orbits is continued in the direction of 

decreasing principal quantum numbers in the existence of regular 
electronic orbits that lie entirely inside the atom ; their energy corre¬ 

sponds to certain X-ray terms. 
We shall begin our discussion with typical alkali terms. Following 

Bohr’s example, we shall plot the term-values horizontally from the 

Fig. 99.—Agreement with each other of the corresponding serins terms of the 
alkalies with the hydrogen terms. The symbols IS, etc., refer to the conven¬ 
tional notation introduced on p. 365, and the symbols 2„, etc., to the re¬ 
classification. 

boundary on the right-hand side of Fig. 99, and we shall plot the 
terms S, P, 1), F each on a separate horizontal line. The points 
farthest to the left on these lines represent the first terms of these 
term-series and are hence (normalised conventionally) successively : 

IS, 2P, 3D, 4F. Further to the right we have 2S, 3S, . . . 3P . . . 
Our figure brings out the binding of the separate term, as represented 
by the distance of the point in question from the right-hand boundary 
of the figure (cf. Theorem 1). For the sake of comparison we have 
drawn the hydrogen terms above those of the alkalies and have 
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extended them by dotted vertical lines that run the length of the 
diagram. 

In the ease of the F-terms we observe the. behaviour that is to be 
expected from Theorems 2 and 4. The connecting line, drawn con¬ 
tinuously in the figure, lies throughout a little to the left of the corre¬ 
sponding dotted hydrogen line and deviates increasingly from it as the 
atomic weight increases. 

This does not apply, however, to the P-terms, starting from Na nor 
to the S-terms, starting from Li. The magnitude of these terms de- 
ereases as the atomic weight increases ; here* the atomic weight appears 
to weaken the tightness of the bond, in contradiction to Theorem 4. 
This contradiction is disposed if we call to mind the Tables 7, 8, 9 of 
Chapter 111 on pages lf>9 et seq. The ground-state of the alkali- 
atoms which coincide, as is shown by absorption phenomena (cf. p. 270) 
with the first, 8-term, is of the type 20, 3W, 40, 50, 60 in the ease of Li, Na, 
K, Rb, Cs. Hence the reason for the decrease of the 8-series terms is 
due to the fact that the principal quantum number n and hence also 
the denominator of the term increases by steps in this sequence. All 
the orbital types w0 with a smaller n have already been used up as 
inner X-ray orbits in building up the atom, for example, in the case of 
caesium the orbital types 10. 20, 30, 40, 50 have been used up in forming 
the K-, L-, M-, N-, ()-sholl. Corresponding results hold for the P-terms. 
According to the Tables 7, 8. 9 we find that none of the nl orbits are 
used up in the Li-atom, the orbit 2^ of this type is used up in the 
Na-orbit, all the /q orbits, up to and including 3A, 41? 51 are used up 

in the ease of the K-, R6-, Ctf-utoms, respectively. Hence we obtain 
for the excited P-orbit of the valency electron the orbits 2V 3P . . . 0t 
for Li, Na . . . Cs, respectively, as shown in our figure. 

All those 18-orbits and all 2P-orbits from Na onwards are pene¬ 
trating orbits. This manifests itself clearly in the magnitude of the 
terms : if they were not penetrating orbits the terms 30 and 32 of Na, 
for example, would have to be very nearly equal to the hydrogen term 
R/32 ; it is only in the case of penetrating orbits where the quantum 
defect A may amount to as much as several units (cf. p. 392) are we 
able to understand, by Theorem 3, the great deviation from the corre¬ 

sponding Balmer term R/32. On the other hand, the 2P-term of Li, 
being a non-penetrating orbit, is nearly equal to the Balmer term R/22, 
and is in fact a little greater than we should expect from Theorem 2. 
In the same way we infer from the value of the term that F-terms do 
not penetrate into the atomic core. 

The term 3D is of the type 32 in the case of Li, Na, K. In Rb, 
however, the 32-shell is already fully occupied and lies in the interior 
of the atom (cf. the discussion in Chapter 1JI, § 5). Hence we must 
ascribe the (rational) orbital type 42 to the (conventional) term 3D of 
Rb. Similarly, for Cs we deduce the type 52 for 3D from Table 9 on 

page 163. 
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We have yet to add a remark about the oblique dotted lines in the 

figure. They combine the S-terms of the same orbital type a/0. For 
example, the dotted line belonging to the type 50 connects the term 
IS of Rb with the terms 2S of K, 3S of Na, 4S of Li and runs upwards 

towards the hydrogen term R/52 ; in the downward direction it points 

towards the Os-term 50, which is an X-ray 0-term. In contrast with 
the continuous line connecting the lS-terms we are here dealing with 

a line which connects really corresponding S-terms, that is, those 

belonging to the same orbital type. Consequently this line- again 
in contradistinction to the line connecting the lN-terms- confirms our 
Theorem 4 : the value of the term increases regularly as the atomic 

weight increases and is always greater than the corresponding hydrogen 

term,—which is here R/52. The line just mentioned exhibits the same 
behaviour in this respect as the connecting lines of the 4F-terms, that 

actually, of course, belong to really corresponding terms of the same 

orbital type. The deviation towards the left which is relatively much 
greater than the former deviation is clearly in agreement with the pene¬ 

tration of the S-orbits, as a consequence of which the atomic, field 

exerts a much stronger effect than in the case of the non-penetrating 
F-orbits. 

The contrary behaviour of the continuous and the dotted connecting 

lines of the S-terms exhibits in a striking manner the antithesis between 

the conventional and the rational method of denoting terms. The 
continuous line belongs to the same conventional current number, the 

dotted line to the same rational quantum number. In the sequel we 
shall find it convenient to use both notations. 

We now consider atoms with two outer electrons. These include 

besides He the elements of the second column of the periodic system. 

They all have two kinds of terms, singlet and triplet in their arc 

spectrum. As in the case of He (p. 358) they may be briefly dis¬ 

tinguished as S, P . . . and s, p, . . . terms. The connecting lines of 
the singlet terms are drawn continuously in Fig. 100, those of the triplet 

terms as broken lines, and it is just as impossible to indicate the three¬ 
fold character of the latter in the scale of the figure as the two-fold 
character of the alkali-terms in Fig. 99. The terms IS, 2P and 2p 

(conventionally normalized) of Be, Mg, Ca, Sr, Ba exhibit the same trend 

as the S- and P-terms of the preceding elements Li, Na, K, Rb, Os. 
They are penetrating terms, as is the 5-term, which is, however, far 

smaller than the term IS and is therefore denoted conventionally by 25. 

On account of Pauli’s Principle (cf. Chapter VIII, § 3) there is no 
term 15 which would be comparable in value with IS ; we already 

know this to be so for the helium spectrum from our discussion on 

page 359. 
A new phenomenon presents itself, however, in the terms 3D and 

3d, as well as in 4F. The former are non-penetrating in the case of 



§ 6. Magnitudes of the Terms 401 

Mg and are little greater than the hydrogen term R/32. But in the ease 
of (-a they increase strikingly. We must interpret this as meaning that 
they come within critical reach of the atomic core and run the risk of 
being bent round into the latter. We shall actually see in § 8 that even 
in the case of the next heaviest element Sc the 32-orbit belongs to the 
orbital system of the inner part of the atom. At present we infer from 
this that the corresponding orbits of the following alkaline earths Sr 

Fig. 100.—-The corresponding terms of the arc spectra ol the alkaline earth 
type. Triplet terms corresponding to one another are connected by chain 
linos, and singlet terms by continuous lines. Small letters denote triplet 
terms, capitals singlet terms. Notation as in Fig. 90. 

and Ba are penetrating orbits of the type 42 and 52 and that here 
the orbits 32, and in the case of Ba also 42, already belong to the interior 
of the atom (cf. Theorem 5 and Table 9, p. 163). 

The behaviour of the term 4F in Fig. 100 is still more interesting. 
Whereas as in Mg, Ca and Sr it points to a non-penetrating hydrogen-like 
orbit, it exhibits a critical increase in Ba. It proclaims that the orbital 
type 43 is also about to penetrate and to be drawn into the interior of 

vol. i.—26 
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the atom.* According to Table 9 this actually occurs at the rare 

earths, a few steps later than Ba. 
. So in this case, too, we find excellent accord between the term- 

values and the periodic system. 
Concerning the other sub-group of the second column, the elements 

Zn, Cd, Hg, we need say only a few words. The terms IS, 2s and 2P, 
2p are penetrating terms numbered in the same way as the neighbouring 
elements Ca, Sr, Ba. For the terms 3D, M, Pauli’s Principle leads 
to the designations 42, 52, 62 for Zn, Cd, Hg, but 43, 53 for the 4F- 
and 4/-terms. 

Fig. 101.—The corresponding terms of Zn, Cd, Hg. Notation as in Fig. 99. 

In the third column of the periodic system, that is, B, Al, Ga, In, 
Tl, we have the interesting state of affairs that the greatest term is not 
an S-term hut a doublet P-term. This has led us, in Tables 7, 8 and 10, 
to place the last bound valency electron not like its two predecessors 
in an w0-orbit but in an wrorbit, namely in a 2rorbit in the case of 
B, and in a 3r, 4r, 5r, 61-orbit, respectively, in the case of Al, Ga, 
In, Tl ; hence the designations for the 2P-terms of these elements 
given in Fig. 102. 

The S-terms are much smaller and are therefore denoted by 2S. 
The fact that the ground-term of these elements is a P-term is 

proved beyond doubt by absorption phenomena. All absorption lines 

* This does not, however, agree with the behaviour of the 4/-term which we 
have also included in the figure. Perhaps the first term of the triplet /-term 
series in Ba, such as it is given in the literature of the subject and as it is shown 
here, does not represent the first term of this series. 
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begin, without exception, from the P-level, namely from the deeper * 
level P$ of the two doublet levels. 

We shall discuss further points concerning the structure of the 
periodic system, such as may be deduced from spectra, in § 8 of the 
present chapter and in §§ 3, 4, 5 of the next chapter. 

§ 7. Series Types with Different Limits. Varying Constitution of the 
Atomic Core 

We have become acquainted with two series systems in the case of 
helium, the orthohelium terms and the parhelium terms (cf. p. 358). 

Fig. 102.—The corresponding terms of the spectra of the “ earth ” type. 
Notation as in Fig. 99. 

In the arc spectra of the second vertical column of the periodic system 
we encountered two series systems, the singlet and the triplet 
terms (cf. p. 400). In the next chapter we shall find an increasing 
number of examples of different series systems that occur simul¬ 
taneously. 

The fitting together of such series terms was comparatively easy 
for the spectroscopist who worked empirically, because the two types 
of series in these cases have the same limit. This signifies : the atomic 
core which remains after the radiating electron (Leuchtelektron) has 

* W. Grotrian, Zeits. f. Physik, 12, 218 (1922). 
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been removed, has the same energy for the singlet and the triplet 
terms ; this may be made the common zero-level from which we may 
reckon. We may say with certainty : the atomic core is similarly 
constituted in both cases; for example, the atomic core of helium is 
always the hydrogen-like He+-ion, no matter whether we start out 
from para- or ortho-states. 

The contrary behaviour first manifested itself in the neon spectrum. 
Paschen * was the first to succeed, in 1919, in separating out the whole 
of the neon lines into series. But the series terms resolved into two 
different groups : the one could be represented without difficulty by 
formulae of the Ritz type, the other appeared to require a new kind 
of series formula. Paschen soon f recognised that this second group 
could be represented satisfactorily by formula? of the following type : 

R 

(n -j q 4- . 
- A, A — 782 cm. b 

that is, by superposing on a Ritz expression a wave-number A which 
has appreciably the same value for the different terms of this group. 
This result must be interpreted as meaning that the series limit of the 
second group differs by the amount A from the series limit of the 
first group which had been chosen as the conventional zero-level for 
calculating the terms. (The arbitrariness in the choice of the zero- 
level is a necessary consequence of the fact that the observations always 
give only term-differences.) 

The explanation of the two series limits in terms of models was given 

by W. Grotrian.J He allocated them to the two L-limits, Lm and Ln. 
L11 corresponds to the limit “ zero ” for the one-term series, Lm the 
series limit, which is less by the amount A, for the other term sequence. 
In both cases the closed neon-shell (the “ Ln f Lm-shell ” as we ex¬ 
pressed it in Chapter III, p. 159) is broken up in such a way that it con¬ 
tains instead of its full number of 6 electrons only 5. A breaking-up of 
the Li-shell (2 electrons) signifies a more considerable change in the 
atomic configuration and does not come into question for the spectro¬ 
scopy of the visible region. 

That this interpretation is correct is proved by the agreement of 
Paschen ?s value A with the difference of the terms Ln and Lm, that 
is, with the relativistic L-doublet. This has not, of course, been measured 
in the case of neon, but may be deduced by extrapolation, which gives 
a value of the same order of magnitude as A. Eqn. (5) on page 275gives, 
for example, Av — 647 cm.”1, which agrees sufficiently well with 
Paschen’s A = 782 if we take into consideration the uncertainty in 
the extrapolation towards such low atomic weights. 

* Arm. d. Phymk, 60, 405 (1919). f Ibid., 63, 201 (1920). 
t Zeits. f. Physik, 8, 116 (1921). 
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Grotrian * shows how certain details in the neon spectrum, dis¬ 
covered by Paschen, may be explained from the mutual position of 
the term limits or, respectively, of the L-levels that correspond to them. 
(These details are, for example, the frequent occurrence of a closely 
adjacent pair of lines, accompanied by a line each at the distance A, 

the first corresponding to the combination of two 44 Ritz ” terms or 
two analogous 44 non-Ritz terms, the second corresponding to the 
combination, in each case, of one 44 Ritz ” term with the analogous 
4 4 non-Ritz ” term.) 

With regard to nomenclature it must, of course, be emphasized that 
the distinction between Ritz and non-Ritz terms is arbitrary, since this 
nomenclature would become reversed if the zero-level were differently 
chosen, f 

This is all that we shall say about the last vertical column of the 
periodic system. In the first vertical column, that containing the 
alkalies, there is no multiplicity of the series limits because here the 
atomic core (inert gas shell) is uniquely defined and the excitation affects 
only the valency electron. The noble metals (hi, Ag, Au, that are in 
the same vertical column, will be discussed in Chapter VI11. § 4. 

We now come to the second vertical column of the periodic system, 
in particular, the elements Be, Mg, Ca, Sr, Ba. We here have in the 
arc-spectrum besides the ordinary triplet terms p, d (which are to be 
written as 3P, 3L) if greater detail is desired) also so-called displaced 
terms, which we shall demote by />', d' in the sequel, which corresponds 
with the older notation. How they should be denoted according to 
the modern method of classification will not be discussed till § 3 of the 
next chapter. Besides the combinations [pd) of the 1 N.S. we also 
find (pp’) and (dd/) occurring, but never {pd’) or (dp’). 

The 44 dimorphism ” {p’ in addition to p, d’ in addition to d) of 
the p-term and the rf-term, for example in the case of Ca, again denotes 
the possibility of a double constitution of the atomic core with an energy- 
difference that corresponds to the difference of the series limits 
00 p — 00 p . What is the nature of the possible re-arrangement in 
the atomic core of Ca, that is, in the Oa1 -ion ? According to Table 8, 
page 162, the Ca1 -ion consists normally of the complete K- and L-shell, 
of the incomplete M-shell of 2 -f- fi electrons (30- -j 3rorbits) and of 
the beginning of the N-shell with a valency electron of the type 40. 
But according to the same table the completion of the M-shell occurs 
immediately after Ca by the addition of a 32-electron (n ~ 3, l — 2). 
Hence we can understand that besides the normal Ca+-ion also a 

* Log. cit. Of. also G. Wontzel, Phys. Zoits., 24, 104 (1923), where those 
relationships are illustrated graphically by means of a levels-sehome. 

| According to K. W. Meissner, Zoits. f. Physik, 37, 238 ; 39, 172 (1926), 
the red argon spectrum has the same structure as the neon-spectrum. In argon 
the interval between the limits is : Av 1423*2 em.“l and has been brought 
into relationship with the interval between the limits Mj*, Mm by Grotrian 
[Zeits. f. Phys., 40, 10 (1926)]. 
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“ heteromorphic ” ion can occur which is constituted according to the 
following scheme : 

Table 40 

Orbital Type 

Normal Caf 
Heteromorphic* Oa* . 
Normal terms p, d . 
Heteromorphic terms p\ d' 
Normal term 3d 

Jo -0 ~1 3„ 3! 32 ^0 n 4 

2 2 (> I 2 6 1 
2 2 6 2 6 1 | 
2 2 6 2 6 l 1 
2 2 6 2 6 1 1 
2 2 6 

1 
2 6 l 1 

The table indicates that the occurrence of heteromorphic terms 
may be accounted for quantitatively as follows.* The IS term of 
the spark spectrum corresponds to the normal state of the Oaf-ion, 

the 3D term to the heteromorphic state. Both terms are well known 
spectroscopically : 

IS 9*57 . 104, 3D 8-20.104. 

Hence we obtain for the energy-difference in question 

18 - 31) - 1*37 . 104. 

Now four groups (pp) are known. The strongest lies at A ~ 4300 A. 
and forms (together with the lines of other elements) the Fraunhofer 
Line G of the solar spectrum ; the second group lies at A ~ 3000 A. 
The third group has been analysed by A. del Campo,f and lies at 
A = 2560 A. A fourth % has been found at 2360 A. In all four cases 
a //-triplet occurs in combination with the same 2p-triplet. We 
denote the four p'-triplets by 2p', 3p\ 4//, 5// ; they form the successive 
terms of a series. We have || 

2pf = 10800, 3p’ - 750, 4p' = - 4990, 5// = - 8330 

The negative sign that occurs at 4// and op' is exactly what we must 
expect if the limit oo p' lies higher than the zero point from which we 
count and which coincides writh the limit oo p. Cf. the scheme of levels 
in Fig. 103, where we have included besides the series mp the terms 
2p\ 3p\ 4p', 5// and their extrapolated series limit oo p\ as well as the 

* G. Wentzel, Phys. Zeits., 24, 104 (1923); Appendix, ibid., 25, 182 (1924). 
f Trabajos del Laborat-orio Fisico, No. 68, Madrid, 1923. 
{ Cf. the beautiful paper by H. N. Russell and F. A. Saunders on the Structure 

of the Spectra of the Alkaline Earths, Astrophys. Journ., 61t 38 (1926), which 
has become so extraordinarily important for the theory of the complicated, spectra 
as expressed in terms of models. The fifth (pp')~group there given for Ca is 
uncertain. 

|| Cf. the tables of Russell and Saunders. Instead of the individual values of 
the triplet-levels we have formed a sort of position of the centre of gravity for 
each triplet. 



§ 8. Spark Spectra of Different Orders 407 

energy-levels of the spark spectrum which have come into question. 
Whereas the terms 4p\ calculated relatively to their own series 
limit naturally have a positive value, they must come out negative 
relatively to the series limit 00 p ; as is made clear in the scale attached 
to our Fig. 103. This scale gives the term values for the arc spectrum, 
whereas for the spark spectrum it denotes the energies reckoned from 
the ground level 1S (the sign having 
been changed and the value having 
been multiplied by he). 

In the figure we have made the 
extrapolated limit 00 // coincide 
directly with the 3I)-term of the 
spark spectrum of Ca, as is de¬ 
manded by the above explanation 
of the accented terms. Calculation 
shows that this is justified (cf. 
Wentzel, and Russell and Saunders. 
lor. cit.) if we express the “ accented 
terms ’’by means of a Ritz formula. 

Our “ accented ’’ Ca-terms an* 
only one example of many. They 
occur not only in the analogous 
elements Be, Mg, . . . but in all 
complicated atoms in which the 
respective ions are not so uniquely 
defined as in the alkalies. We shall 

Kits. 103.- The serios limits of the 
Ca spectrum. The “ ordinary ’* 

-terms converge on to the JS- 
t orm of the Ca spark spectrum: 
the displaced or “ accented ” 
p-terms on to the 3D-term of 
the Ca spark spectrum. 

have to deal exhaustively with this 
question in the next chapter ; there we shall also discuss the selection 
rules according to which they combine with each other and with 
“ unaccented terms. 

§ 8. Spark Spectra of Different Orders. " Stripped Atoms ” and the 
Laws Underlying their Structure 

We proceed to take up the thread of § 6 and consider the terms of the 
spark spectra, that is, of the ionised atoms, starting with those of the 
alkaline earths. 

The ionised atoms Be*, Mg1, (V*. Sr1, Ba+ are analogous chemically 
to the preceding alkalies Li, Na, K, Rb, Os, since they have a valency 
electron outside a closed inert gas shell, and they are also related to 
them spectroscopically, since they likewise have a doublet spectrum (cf. 
Chapter VIII, § 2). A comparison of Figs. 99 and 104 then also shows 
that the 8- and the P-terins in both spectra run quite analogously and 
are therefore to be numbered in the same way. Concerning the values 
of the terms we have only to remark that, in general, the spark spectra 
have terms which are four times as great as those of the related arc 
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spectra of the preceding elements, corresponding to the four times 
greater value of the Rydberg number (of. p. 365) ; for our comparison 
we have therefore given here not the Balmer terms but the four times 
greater terms of He+ (cf. the dotted straight lines). 

Let us next consider the D-term. In Be1 and Mg ' it is normal and 
hydrogen-like, but in Caf it becomes abnormally great, and even greater 
than the first term of the P-series. We infer, exactly as in the 3d-term 
of 0a (Fig. 100), that it is in danger of being drawn into the atomic 
core. This actually occurs in the homologous elements Sr' and Ba1. 

The 32-orbit here runs, 
according to the tables 
of atomic structure, in 
the interior of the atom ; 
the term 31) is to be 
mini bered rationally as 

42 and 52, respectively, 
and penetrates into the 
atomic core. 

We further compare 
the 3I)-term of Ca' with 
those of elements that 
are in the same horizontal 
row instead of, as here¬ 
tofore, with those of 
elements in the same 
vertical column. At the 

same time we introduce 
a new notation for the 
spectra of the ionised 
atoms ; this notation is 
more convenient, partic¬ 
ularly for highly ionised 
atoms, than that which 
we have hitherto used 
(for example, for Ca4*). 
W e denote the different 

stages of ionisation with 
indicated by i, the ionised 

Kig. 104.—Corresponding terms of the alkaline 
earth spark spectra, compared with the terms 
of the He * spectrum. The symbols IS, etc.., 
refer to the conventional notation introduced 
on p. 365, the symbols 20, etc., to the re¬ 
classification. 

Roman figures, so that the neutral atom is 
atoms are denoted in succession by II, III and, so forth. 

Instead of K we therefore now write K I; Ca4 is now called Ca 11, the 
quadruply ionised vanadium atom, which we shall presently discuss, 
is denoted by V V. We consider the analogously constructed atoms 
K I, Ca II, 8c III, Ti IV, V V, ail of which consist of an argon shell and 
one outer electron. This is the nineteenth electron in the genesis of 
the atoms. The accompanying figure 105 will give us an idea of how it 
is bound. 
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A little lower we shall discuss how the terms of such highly ionised 
spectra can he established with certainty. 

The terms of Oa II have again been divided by 4 in Fig. 105 ; in 
a corresponding manner the terms of Sc III, which may be read off 
from the figure, represent only J of the true term-value, those of V V only 
._,L of the true value. In K1 we have the following order for the terms, 

IS —- 40 > 2P — 4j > 31) — 32, which is already known to us. In 
Call 3D has already become > 2P, in Sc III the term 31) has also 
passed below IS and thence onwards remains below' IS. That is, 
the 32-orbit becomes the most stable orbit in the case of Sc HI and the 
following spark spectra. In the progressive synthesis of the Sc-atom 
the nineteenth electron thus attaches itself as a 32-orbit. According 
to our figure the same applies to Ti 
and V, and certainly also to all the 
succeeding elements of the iron 

series. This presages the subsequent 
filling up of the M-shell and the 
beginning of the first long period, in 

agreement writh Table 8 on page 1(12. 
Whereas the nineteenth electron is 
bound in a 40-orbit in the ease of 19 
K and 20 Ca, that is, it is bound in 
the N-shell, we find that in progres¬ 
sively building up 21 Sc it first occurs 
in the M-shell. It is only when this 
gap in the M-shell has been filled 
that the twentieth and the twenty- 
first electron of Sc again find their 
stable positions in the N-shell as 
40-eleetrons (cf. Table 8). We hen' 
have a clear example of the fact 
that the stability of an electron (here 
the nineteenth) must be judged 
differently according to the varying value of the nuclear charge (here 
for 19 K I ; 20 Ca II, 21 Sc III* and so forth).* 

In Fig. 100 we now contrast the atoms that succeed each other 
horizontally, Na 1, Mg II, A1 III, Si IV, P V, S VI, and compare the 
values of their terms (divided by 4 for Mg IT, 9 for A1 III, etc., and by 

* The same argument and the same figuro, qualitatively, as that used for the 
above series of spark spectra, hold for the series of elements : 

Rb I, Sr II, Yt III. Zr IV, and Cs 1, Ba II, La IIL 

The thirty-seventh electron, which is bound in a 50-orbit in Rb and Sr, occurs 
as a 4^-orbit in 39 Yt; the fifty-fifth election, which describes a 60-orbit in the 
case of Cs and Ba, is more stable in 57 La as a 52-orbit. Hence the filling up of 
the N-shell starts at Yt; that of the O-shell at La, but the process is interrupted 

at the rare earths in favour of the final filling up of the N-shell. 

Flu. 105. — The binding of the 19th 
electron. The term 31) (orbital 
type 32) below Sc III lies lower 
than IS and 2T (orbital types 

40, 40- 
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36 for S VI). All six atoms are similar either chemically or spectro¬ 
scopically ; chemically they are of the alkaline type, spectroscopically 
they are of the simple type of the doublet-systems, consisting of an H.S., 
a I N.S., II N.S., B.S. and so forth. Their terms IS, 2P, 3D follow 
each other in beautiful regularity and become more and more hydrogen¬ 
like as the charge on the atomic core increases ; IS and 2P asymptoti¬ 

cally approach the common value R/32 (represented in Fig. 106 by a 
dotted horizontal line), from which 3D never deviates by much. This 
limiting value bears witness to the fact that Bohr’s interpretation of the 
terms IS and 2P as 30- and 3j-orbits in the case of Na 1 and Mg 11 in Figs. 
99 and 104 was correct. Finally, the terms 4F (43-orbits) always lie 

on the straight line R/42 of hy¬ 
drogen. The above-mentioned 
asymptotic approach to the 
limiting value clearly denotes 
that at the higher ionisation 
stage the peculiarities of the 
atomic field play a less and less 
important part compared with 
the increased charge on the 
atomic core, so that the field 
becomes more and more 
(/oulombian, that is, the term 
becomes more and more hydro¬ 
gen-like. There is no question 
here of a crossing over of the 
graph lines as in Fig. 105 : we 
are here dealing with the second 
small period, in which all the 
electrons are attached on the 
outside, whereas the peculiar 
features of Fig. 105 indicated a 
long period and the filling of an 
inner shell. 

Figures similar to 105 and 

106 can be drawn nowadays for a great number of analogous arc and 
spark spectra. It will suffice if we here also discuss a figure which is 
of importance for us, namely that of the spectra from Mg 1 to S V, 
but we refer the reader who is interested in further details to the 
special literature on the subject.* We are again dealing with atoms 
having a closed argon shell, but this time with two outer electrons 
attached. Accordingly we have singlet and triplet terms. The 
singlets IS, 2P, 3D have the orbital types 30, 3,, 32 and must con- 

* W. Grotrian, Graphisohe Oarstellung der Spektren von At omen und Ionen 
rriit 1, 2, 3 Valenzeloktronen, Volw. I and 11, Springer, 1928. See also Handbuch 
der Astrophysik, Chap. VI, Springer, 1930. 

Fig. 106.-—The binding of the 11th 
electron. The symbols 30, etc., de¬ 
note the orbital types nt of the 
outer (eleven) electrons. 
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verge towards R/32 as the nuclear charge increases. Actually the 
line connecting the IS points passes beyond R/22 although it lies far 
below it in the case of Mg I. The triplets 2^, 3d also converge towards 
R/32 ; their orbital type is 3j, 32. On the other hand, there is no term Is 
of the triplet system ; rather, the triplet S-terms begin with 2s, to which 
we had already assigned the type 4() 
in Fig. 100. We here see that this 
allocation is also confirmed by the 
spark spectra : the term curve 2# 
crosses the hydrogen straight line 
R/32 between Si 111 and P IV and 
evidently converges to R/42 ; it 
behaves quite differently from the 
curve 3d which belongs to R/32. 
We shall presently meet with a 
further proof of this fundamental 
fact. The terms 4f (type 43) again 
lie nearly on the straight line R/42. 

In this way the correctness of 
the allocation of the principal quan¬ 
tum numbers may be proved from 
the spark spectra for most of the 
cases discussed in § {>. 

Our Figs. 105 to 107 afford an 
excellent illustration of the way in 
which the unravelling of the spark 
spectra has developed. Originally 
our idea of the spark spectrum was 
but little clear and was purely 
empirical. Under the influence of 
Bohr's theory Fowler, in 1915, re¬ 
presented his photographs of the 
Mg spark spectrum by series formulae 
involving R multiplied by a factor 
of 4, and immediately afterwards 
Bohr pointed out the possibility 
that there might be spark spectra 
of a higher order, in which 4R 
would be replaced by 9R, 16R and 
so forth. Important papers then 
followed by Paschen on the spark spectra of A1 and by Fowler on 
those of Si. Since the pioneer investigations of Bowen and Millikan, 
which we shall discuss fully later, many associated sequences of spark 
spectra have been investigated. 

It is easy to understand from the point of view of atomic structure 
why we arrive at the second spark spectrum of A1 and the third 

Fig. 107.---The binding of the 12th 
electron. With the increasing 
effective nuclear charge the 

terms continuously approach 
the straight hydrogen lines 
(R/32, etc.) belonging to the 
same principal quantum number 
as the terms themselves. Triplet 
terms (small letters) are con¬ 
nected by chain lines, singlet 
terms (capitals) by continuous 
lines. 
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spark spectrum of Si, and so forth, and only obtain the corresponding 
higher spark spectra with considerable difficulty. The next step would 
render it necessary to attack the closed L-shell and to deprive it of 
an electron. But this would require far higher excitation potentials 
than those necessary for detaching one of the valency electrons which 
are much more loosely bound. Nevertheless modern spectroscopists 
have succeeded in many cases in breaking up the inert gas shells. We 
gave an example of this in Chapter II, § 1, where we spoke of the 
hydrogen-like spectra Li III and Be IV. There it was a question of 
destroying the helium configuration, the K-shell, which is actually con¬ 
siderably more difficult to break into than the inert gas shells of Ne, 
Ar and so forth. 

We follow Millikan and Bowen in calling such highly ionised atoms 
which result from successive removal of the outer electrons, stripped 
atoms. 

In comparing the arc and spark spectra we investigated (for example, 
in Fig. 107) how the terms divided by the square of the nuclear charge 
converge to the hydrogen term R/w2 as the nuclear charge increases. 
Wo imagine the terms to be represented by a formula RZ2/?r^ (cf. 

(7), p. 389, z — 1 for arc spectra : z ~~ 2, 3, . . . for spark spectra of 
the type II, III, . . .) ; the points in our figure then give Rju~ff. 

Here we thus transfer the deviation from the hydrogen term to the effec¬ 
tive principal quantum number n€ff. We may instead, of course, 
transfer the deviation to the nuclear charge and introduce an Z^ in 
place of Z, so that the term would assume the form RZj^/n2. Then 

we should share Moseley’s form for the X-ray terms, namely eqn. (4) 
on page 284, if we neglect the relativity correction there as a rough 
approximation. 

We set 7jejj ™ Z — a, where a stands for the screening action of 
the atomic core and any outer electrons that may be present on the 
radiating electron (Leuchtelektron). If we now concentrato our atten¬ 
tion on a definite term in one of the preceding sequences of the spark 
spectra, then the screening effect just mentioned certainly remains ap¬ 
proximately the same, because the atomic core and the outer electrons 
retain the same configuration ; cr remains constant and Z increases 
by one as we pass successively in our sequence from one spectrum to 
the next highest. From the term formula 

R(Z -jr)2 

V ril 

it thus follows that 

vV/R is a linear function of the nuclear charge ; the angle of inclination 
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a of this “ Moseley straight line " to the Z-axis is given by the (true) 
principal quantum number : 

tan a — \jn. . . . . (2) 

From (1) it further follows that : series of terms with different ex's, 
which belong to the same true principal quantum number, are parallel in 
the Moseley diagram, all having the direction tan a \jn. In the case 
of terms that are perfectly hydrogen-like Zeff is of course an integer 

. for spark 
equal to the 

(being equal to 1 for arc spectra, and equal to 2, 3, 
spectra of the type II, Ill, 
total number of electrons 
which are present in addi¬ 
tion to the radiating elec¬ 
tron. In the case of terms 
unlike those of hydrogen a 
is. as a rule, smaller. This 
is immediately evident in 
the (rase of penetrating 
orbits, because there the 
valency electron comes 
into internal regions of the 
atom where the effective 
nuclear charge is consider¬ 
ably higher than outside. 

Abundant examples are 
given by spark spectra. 
We shall take as our first 
the group B I, C H, N Ill. 
O IV. In Fig. 108 we 
have plotted as our ordin¬ 

ates * the VV/R-values of 

Then <7 — Z Z, 

Via 

Bl CU Nil/ Ohf 
108. The Moseley law in optical spectra. 

V term value/R is a linear function of the 
nuclear charge Z. The term linos run 
parallel to the corresponding straight lines 
of hydrogen (tt — 2, 3). The numbers in 
brackets are the nL orbital types. The 
figure represents the binding of 5th elec¬ 
tron. Here the stable terms lie highest in 
the figure, in contrast to Figs. 105-107. the terms and as our 

abscissae the true nuclear charges. For the sake of clearness the scale 
of the ordinates lias been taken twice as large as the scale of the ab¬ 
sciss® ; thus in the figure tan a — 2jn. The hydrogen lines n ----- 2 
and 3 have been drawn in as dotted lines. We see that the terms 
actually lie rather accurately in straight lines and that further the 
terhis 2P (here the ground terms of the spectra, three outer elec¬ 
trons ! cf. p. 403, Fig. 102, B J) run parallel in our diagram to the straight 
line tan a = 2/2 — 1, as should be, for they belong to the true quantum 
number n -• 2 (ef. Table 7, p. 160). On the other hand, the terms 
28, 3P, 31) run parallel to the straight line tan a — 2/3 ; its true quantum 
number is n = 3. In the figure the term straight line for 2P is drawn 

* The following figures have been taken from the figures given in Grotrian’s 
book, quoted on p. 410. 
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as far as its intersection with the axis of abscissae. According to eqn. 
(1) this point of intersection occurs at the point Z ~ a. The figure gives 
or ~~ 3*5, that is, a non-integral value smaller than the value a 4 
of the parallel hydrogen straight line n — 2. This corresponds to 
the general assertions made in the preceding section. The hydrogen 
straight line n - 3 also has the same integral value a — 4. The term 
3D which is almost hydrogen-like arrives at almost the same point of 
intersection whereas the more penetrating terms 3P and 28 run to the 

left of it. 
As a second example we choose the group Mg I, A1 II, Si III, P IV, 

8 Yr, which we have already considered on page 411 in another con- 

Fro. 109.—The Moseley law in optieal spectra. Binding of the 12th electron. 
Small letters denote triplet terms, capitals singlet terms. Nomenclature as in 
Fig. 108. 

nexion. We there saw that the terms shown in Fig. 107 are almost 
ail unlike those of hydrogen ; in our present Fig. 109 this shows itself 
in that the Moseley straight lines of these terms lie far away from the 
hydrogen straight lines. Nevertheless all terms with the principal 

quantum number 3 run appreciably parallel to the straight line n ~~ 3, 
and all terms with the principal quantum number 4 run appreciably 
parallel to the straight line n = 4. 

As a last example we shall consider the group K I, Oa II, Sc III, 
Ti IV, V V, which we have also discussed earlier. Here we see that 
the term 3D (of type 32), which runs parallel to the straight line n — 2 
and lies between Ca II and Sc III, gradually curves away from this 
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direction at the higher nuclear charges and approaches the direction 
n — 3, to which it belongs according to atomic theory. IS, 2P and 4D 
(orbital types, 40, 4V 42) behave similarly : they first run parallel to 
n -- - 3 and betray that they belong to the quantum number n 4 
only if the degree of ionisation is appropriate. 4F (of orbital type 4;1) 
remains true to its direction n — 4 right from the beginning. 

In Fig. 110 (as well as in Fig. 109) the term curves intersect ; 3D 
passes beyond 2P and J S. This, of course, denotes no more than what is 
stated in Fig. 105 on page 4(,9. 3D is more stable than 2P and IS in the 
case of higher nuclear charge ; the nineteenth electron, with which 

we are concerned in our present group, is bound in a 32-orbit from Sc III 

n-2 

>3D(3Z) 

> lS(40) 

f)-3 

n=4 

18 19 20 21 22 23 

Kl Cal ScM TiN VV 
Fig. 110.—The Moseley law in optical spectra. Binding of the 19th electron. 

.Nomenclature as in Fig. 108. 

onwards, not in a 40-orbit, as in K I and Ca II. Such intersections 
of the term-curves are possible only when the ionisation has not too 

high a value, because the straight lines tan a =- \jn move further and 
further apart, and so the term-curves also move further and further 
apart. In the case of large nuclear charges the terms whose principal 

quantum number is small are always more stable than those which have 
a large principal number ; in the case of large nuclear charges, then, we 
have the “ ideal ” periodic system (of. p. 156), in which the electrons are 

built in systematically in the order of the principal quantum numbers. 
For an intersection it is also necessary that the intersecting term, which 
has been built in too early as compared with the ideal system, should 
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not be of the hydrogen type ; for the hydrogen straight lines do not 

intersect in our diagram. 
The validity of Moseley's law having been continued so strikingly 

in this way for optical spectra, we may conjecture that the other 
laws of X-ray spectra will also hold here. The law of irregular doublets 
is actually already contained in our Figs. 108 to 110. The parallelism 
of the Moseley straight lines states no more than that such terms form 
irregular doublets. It also follows from the term formula (1) on page 
412 that for two terms having the same principal quantum number 

Af ^ g2 — CT1 

V R n 
(3) 

must be constant, that is, must be independent of Z. In X-ray spectra 
we found that the law of irregular doublets was valid for terms that 
belong to the same n and j but have /'s differing by 1 (cf. pp. 271 and 

281). In a corresponding manner any two-term straight lines which 
have been coupled into an irregular doublet in our present figures 
also have the same n and different Z’s. We have been unable to make 
distinctions hitherto with respect to j simply because the ?-tine structure 
of the terms (multiple structure) would not be appreciable in the 
small scale of our Figs. 108 to 110. 

From the term formula (1) we may now draw a further important 
inference. We consider the spectral line that results from the combina¬ 
tion of two terms of an irregular doublet. In Fig. 110 an example of 
such a line is given by the combination IS* — 21V which is the weaker 

line of the strongest doublet of lines in the K 1-speetrum. The fre¬ 
quency of this line comes out as 

VZ - v\ ^ - <*2) -I- "2 — ff12) • • W 

where crx, <x2 are the screening constants of the two terms v2 ; n has 
the same value in both terms because they are to form an irregular 

doublet. Thus eqn. (4) states : the frequency resulting from the com¬ 
bination of two terms of an irregular doublet is a, linear function of the 
(true) nuclear charge Z. This law, which was first discovered by Millikan 
and Bowen * enables us to calculate beforehand the frequencies and 

hence the wave-lengths of these lines for the higher spark spectra if 
we know them, for example, for the arc spectrum and the first spark 
spectrum. For then we know two points on the straight line which 
represents the frequency as a function of Z. An important feature is 
that it is not necessary for this purpose to know precisely the exact values 
of the combining terms. It would also be possible to determine them 
approximately from Moseley’s term law. Bowen and Millikan and 
their successors were in this way able to identify with certainty a great 

* J. 8. Bowen and K. A. Millikan, Phys. Kev., 84, 209 (1924). 
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number of lines of highly ionised atoms from the material presented 
by ultra-violet spectra. 

Let us take as an illustration the sequence Na 1 to CIVIL In 
Fig. Ill the frequency of the line IS4 — 2Pj is plotted as a function of 
Z ; IS4 here is of the orbital type 30, 2P$ is of the type 3X (of. also 
Fig. 106 on p. 410). Thus the two terms belong to the same principal 
quantum number 3 and form an irregular doublet, because they also 
have the same j and Z\s that differ by unity. We see that the linear 
law is very well obeyed. In the 01 VII spectrum exact absolute 
values of the terms are not yet known, but it would be possible to 
determine the vibration fre¬ 
quency in question with cer¬ 
tainty by means of the linear 
law and confirm it by ob¬ 
servation. 

This identification be¬ 
comes still more certain in 
view of the following circum¬ 
stance : the combination of 
the lS-term with the 2P-term 
gives besides the line 
lSj/2 - 2Pj/2 just mentioned 
also the line LS1/2 —- 2P3/2. 
These two lines together 
form a pair whose frequency 
difference is 2P1/2 — 2P3/2. 
Moreover these two terms 
2Pj/2 and 2P3/2 represent a 
relativistic or a regular doublet 
if we apply the conception 

Fig. 111.—A result of the law of irregular 
doublets. The line frequency v of the 
combination of two terms forming an 
irregular doublet (same n, j different /) 
is an approximately linear function of 
the nuclear (‘barge Z. 

of X-ray spectra to optical spectra (cf. p. 270, Fig. 75) ; for in our 
example of the Na I to the Cl VI1 sequence they have the same 
principal quantum number (n — 3, see above), besides having the 
same l and different jf s. It is seen now that the law of regular 
doublets also holds quite well for optical spectra. Thus in our case we 
know the amount of the difference — 2P3/2 and h» nee can specify 
where the line lSa/2 — 2P3;2 must lie if the line LS1/2 — 2P1/2 is known. 

To recognise that this law of the regular doublets is valid we must 
write down the term formula, including the relativity corrections of 
the first order. From (4) on page 284 we then obtain as our term 
formula in place of (1) 

R(Z )2 , Ra2(Z s)4/ n 

n^ ?)• 

and for the relativistic doublet difference of two terms vv v2 with a 

vol. 1.—27 
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constant n {a and s are the same in both terms, see p. 284), 

Ac ----- r1 
K a2(Z f)4( l 

\u(f, (•r>) 

Concerning the allocation of the values to our /-values, see also 
the discussion on p. 270 and in particular Fig. 75. We see that for 
a relativistic doublet the two n(f s that belong to the same value of l are 
equal to / I 1 and /, respectively. So the bracketed expression in (5) 
becomes 

J 1 1_„i 1 
/ / + 1 ~ /(/ { 1)’ 

and we finally obtain as our regular doublet formula, 

Kxa(Z ts) 

w®/(7 4- 1) 

This law has been well confirmed in optical s])ectra. The only 
empirical quantity is the screening number <s-, which, moreover, is 
quite different from a in the case of X-ray spectra. Formula (6) is of 
use not only for calculating the doublet resolutions but, surprisingly 
enough, also for the tripled- resolutions (ef. Note 12). 

As an example we choose from the sequence Na I to Cl VII the 
doublet resolution 2Pj — 2P” (orbital type 31? see Table 41). 

The screening numbers s arc not constant but exhibit a systematic 
variation ; but from the values of & for Na I to S VI it would naturally 
be possible to extrapolate with great certainty the ft-value for 01 VTI 
and so determine exactly the above combination 1S 2P. 

Table 41 

Spectrum Na T. Mk II. A1 III. Si IV. 1* V. S VI. Cl VII. 

Avin cm.""1 1718 91-55 j 254*00 461-84 794-82 1267-10 1889-5 
ft 7’450 5-605 6-180 5-916 5-741 5-596 5-504 

Finally we must mention that all these regularities hold equally 
well for “ heteromorphic ” terms (of. § 7) as for the “ unaccented ” 
terms which we have here above considered. For details see the 
monographs quoted on p. 410. 



CHAPTER VIIT 

THE COMPLEX STRUCTURE OF THE SERIES TERMS 

§ 1. Inner Quantum Numbers. Theory of Multiplets 

THE regularities in the complex structure of series terms are 
arithmetically simple and very beautiful. Their power was 

manifested in unravelling complicated spectra. Their physical 

foundation is the fact of electron spin and its compounding with the 
orbital moment of momentum. We shall deal with this in the next 
section. First we shall develop the empirical data. 

We shall proceed inductively by following on the relationships 
that occur in doublet and tripled systems, which have long been known 

and have already been touched on in the preceding chapter (for 
example, on p. .*154). The range of these relationships then becomes 

extended readily into the general scheme of the complex structure 
of even and odd term-systems. 

We begin with the triplet system as the prototype of odd term 

system*. As we know, triplet lines occur in the second column of 
the periodic system. The P-term is three-fold, the S-term is, as every¬ 

where, simple. Besides the P-term, the D-term, F-term, . . . are 
also three-fold. The combinations (SP) or (PS) in the principal 

series or the second subordinate series consist of 1 . 5 5 components, 
that is, have an ordinary triplet structure. 

A new kind of line-configuration with a highly significant structure 
occurs in the first subordinate series (II N.S.). Here the three-fold 
P-term combines with the three-fold P-term. We should therefore 

expect 3.3 = 9 components. But in reality only 6 components occur, 
the three other possible components being forbidden by selection 

rules. Adopting a name suggested by Rydberg * we call the whole 
line-configuration a composite triplet (Zusammengesetztes Triplett). 

We prefer to avoid the usual German term Vollstdmliges Triplett 
(complete triplet) because the characteristic feature of the line-con¬ 
figuration is just its incompleteness, that is, the actual absence of three 

components. The first unveiling of this structure was one of the 

* Ann. d. Physik, 50, 625 (1893); cf. in particular the section under JTI. 
See also the long paper : “ Recherches sur la constitution des spectres d’6mission 
des elements chimiquos,” Swedish Academy, Vol. XXXII. (A Herman transla¬ 
tion appears in Ostwald’s Klassikern, No. 196.) 

419 
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finest achievements of Rydberg, who accomplished it at a time when 
the systematic structure of series terms and their multiplicities were 

still wrapped in deep obscurity. 
First we must make a convention about the allocation of indices 

to the multiple terms. The only rational way of doing this is to attach * 
to every term an inner quantum number, which we shall denote by 
J and which will presently he defined. In this way the index, which 
was formerly only a means of distinguishing terms, acquires a physical 
meaning. It now distinguishes between the? combination possibilities 
of two terms and enables us to see at once the interval and intensity 
relationships that are to be expected. 

We shall now illustrate the structure of the composite triplet by 
taking calcium as an example, choosing the 1 N.S. As in the pre¬ 
ceding chapter we shall denote the triplet terms by ft, p, ri, instead of 
the more complete 3>S\ 3J). . . . In the ease of Oa the wave-number 

Ca: 2 p—3 d 

Fin. 112.—The complex triplet 2p lid of Ca. The dotted lines are missing. 

differences arising from the three-fold nature of the P-term and known 
to us from the H.S. and the II N.S. are 

A Pis = - *lh ~ - 105!* cm. - * 

APoi = -Pu - $Pi r 52-:i cm. - 

On the other hand, we obtain from the three-fold nature of the 
1)-terms the wave number differences 

Ad2% — M2 — ™ 21*6 cm. “ 1 
&dl2 = ;k/1 - \\d2 ^ 13*7 cm. - P 

The whole line-configuration from left to right, that is, in the sense 
of increasing wave-numbers, consists of 3 -f- 2 -f J components ; the 
lines shown dotted in the figure are not real. The origin of the real 
components can be read off from the symbols given below the figure ; 
the dotted lines, from left to right, denote 

(pd3) (p0<4) (pA)- 

By varying the thickness of the lines in the figure we have indicated 

* This was first done in the preceding (German) edition of the present book 
and has become generally established, at the suggestion of Russell and Saunders. 
The earlier conventional allocation of indices followed the order of sequence of 
the term magnitudes, for example, pl% p2, p3 in the case of the triplet P-term, 
instead of our notation p2, plt p0 or the more complete SP2, 8P1, 8P0 (see below). t 
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that our line-configuration consists of principal lines and so-called 
satellites. The principal lines are 

(p2^3) (Pi^b) (Vdh)- 

Of the satellites the one of longest wave-length, namely (p2dfp 
is the weakest : it might well be called a satellite of the second order, 
the others, namely {p»d2) and (/q<7,), satellites of the first order. 

Formerly it was regarded as strange that the A;>-differences did 
not occur between the principal lines themselves but between a prin¬ 

cipal line and a satellite in each case. In our configuration one of 
the A p’s and one of the A<7's occur twice in their respective cases. 

It often happens that the ^-difference can hardly be separated 
at all. The line-configuration described then passes over into an 
ordinary triplet. Its complex structure manifests itself, however, 
in that the distances between the three lines, as measured from the 
centre of gravity of one line to that of the other, are not exactly equal 
to the A/Vs of the II N.S. and that between the successive terms of the 
I N.S. they are not exactly constant. Hence whereas in the 11 N.S. 
the law of constant wave-nihnber differences holds exactly (p. 354), 

it only holds asymptotically for high current numbers (Laufzahlen) in 
the 1 N.S. 

The structure of the composite triplet occurs not only in all com¬ 
binations np— md, independently of the numbers n and m, but also in 
principle in all combinations of two triplet terms, for example, also 
in the Bergman n series 3<7 mf. 

The suppression of the forbidden components indicates that the 
term levels differ from one another in a quantum number and that 
a selection rule holds for this quantum number. Since the azimuthal 
quantum, which we shall from now onwards denote by L mislead of l 
(of. § 3), is the same, for example, for all three p-levels (L — 1), it is 
unable to effect a distinction between these levels. Wc are com polled 

to introduce^ a new quantum number, which we shall call the inner 
quantum number and denote it by J ; earlier (Ch. II, § 8, Oh. VI, § 5, 
Oh. VII, § 1) we denoted it by j. The structure of the composite 

triplet is accounted for if we fix the following selection rule for J : 

| AJ | $ 1.(I) 

so that only the following transitions are allowed : 

s* - t 
•J -J.(2) 

XJ + 1 

This selection rule has already been derived in Note 8, equation 

(11), for the quantum number of the moment of momentum. We see 
that the actual physical meaning of 5 (of. the analogous discussion in 
Chapter VI, § 5, equation (1)) is that it defines the quantum number 
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of the total moment of momentum of the atom, that is, it denotes the 
resultant of the moments of momentum of all the electron orbits 
with respect to the nucleus and their spin moments of momentum. 
In Note 7, under (e), we have based the selection rule on the correspon¬ 
dence principle. 

Whereas the presence or absence of lines fixes only the relative. 
values of the J\s for the combining term levels it must be regarded 
as a fortunate accident that when the J\s were first introduced,* 
at least in the case of the triplet system, the correct absolute values were 
given to the J's, as was confirmed by numerous criteria later ; namely, 

the values J = 1 for the 
S-term. J — 2, 1, 0 for the 
three p-ternis, J --- II, 2, 1 for 
the d-terms, and so forth (cf. 
Fig. 113). 

In virtue of the selection 
rule (2) we now read off from 
the figure that in the combin¬ 
ations (ps) all three com¬ 
ponents are possible, but that 
in the combinations (pd) and 
(df) only the six components 
of the composite triplet are 
allowed ; in the other three J 
would have to change by 2 or 
.‘1 units. 

At the same time the vary¬ 
ing thickness of the vertical 
lines in our figure gives ex¬ 
pression to an intensity rule 
which we have already en¬ 

countered in a somewhat specialised form in X-ray spectra (p. 245) 
and in the fine-structures of hydrogen (p. 273), namely : of the three 
transitions (2) that which moves in the same sense as the transition 
of the azimuthal quantum number L must occur with greatest intensity 
and the intensity is to decrease the more the more the type of the transi¬ 
tion in J deviates fromi that of L. Accordingly we shall speak of a 
“ strong/’ or “ less strong ” and a “ weak transition.” This “ qualita¬ 
tive intensity rule ” will be refined in § 9 by means of a quantitative 
condition. We may now convince ourselves that our earlier remarks 
about Fig. 112 in referring to principal lines and satellites are sum¬ 
marised in our present qualitative intensity rule. Principal lines 
arise from the strong " transitions, in which J decreases by 1, that 
is, moves in the same sense as the azimuthal quantum number L, 

Fie. 113. - Combinations between the trip¬ 
let terms />, d% f (diagrammatic). 
The dotted transitions are forbidden 
by the J -selection rule. 

* Ann. d. Pliys., 03, 221 (1920). 
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which simultaneously decreases from 2 to 1. Satellites of the first 
order result from the “ less strong ” transitions AJ = 0, the satellite 
of the second order (p^df) results from the “ weak ” transition 1 -> 2 
of the inner quantum number, which moves in the sense opposite 
to that of the transition 2 ~> 1 of the azimuthal quantum number. 
Our intensity rule is also verified in the combinations (ps). As 
Pig. 113 indicates the strongest component is (p2s), in which J, like 
L, increases by 1. (prs) is weaker, corresponding to AJ ~ 0. The 
weakest is (p0-s), because here J decreases by 1, that is, it moves in 
the contrary sense to L. In § 9 we shall see that the quantitative 
ratio of those three components is 5:3: 1. 

We must consider the combinations (ddr) and (pp) between the 
“ hetoromorphic 15 triplet terms of the alkaline earths (c;f. Oh. VII, 
§ 7). They do not consist, like the composite triplets, of 3 ( 2 ~f- 1 
components but of 2: {- 3 + '2 components 
in the ease of (ddr) and of 2 f- 3 + 1 
components in the case of (pp'). Their 
structure may be understood, according 
to It. Gbtze,* from the scheme of inner 

quantum numbers in the following 
manner. 

In Fig. 114 we depict the group (ddr). 
The levels d/3, d'2, d'v being initial levels, 
lie above and the levels d3, r/2, d}, being 
final levels, lie below. The azimuthal 
and the inner quantum numbers have 
been written alongside the levels as earlier. 
Leading to d3, J —3, there are two transi¬ 
tions, namely from d'3, J — 3. and from 
d'2, J = 2. The transition d\ d3 

Fjg. 114. Combination (dd') 
in the triplet system. 
The lines with AJ - 0 
are the strongest. 

forbidden because it would denote a change 
of the inner quantum number by two units. Leading to d2 there are 
three allowable transitions, but to r/1 there are again only two, since 
the transition d'3 > dx is forbidden, because this would make the 
inner quantum number change by two units ; all this agrees with 
the experimental results. As we see, the structure of this line-con¬ 

figuration distinguishes itself in a characteristic way from the com¬ 
posite triplet of the I N.S., but is described by the same selection rule 
for inner quantum numbers as the latter. 

But our intensity rule is also shown to be valid here. Since the 
azimuthal quantum number L is the same in the initial and the 
final state those transitions of the inner quantum number J for which 
AJ — 0 are to be regarded as moving in the same .sense as L. Actually 
here, as indicated in Fig. i 14, the combinations d3d'3, d2d'2, dp/', are 

* Ann. d. Phys., 66, 285 (l»2t). 
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the strongest. The weaker components lie in the centre group on 
either side of the “ principal line ” d2d'2 ; in the two outer groups 
we have a satellite either on the short-wave side or on the long-wave 
side, that is fundamentally different from the type of the composite 
triplet in the I N.S. but in complete accord with our intensity rule 

for the inner quantum numbers. 
The same type occurs in the combination (pp') but with the fol¬ 

lowing characteristic difference : whereas in {dd') the line belonged 
to the three principal lines the corresponding line p0p'0 is absent in 
(pp'). 

We take account of this if we supplement the selection rule (2) 
by the following negative rule (Verbot), which was first enunciated 

by Land6 in another connexion (see below) : the transition 

0 -* 0.(3) 

is forbidden in th: case of the inner quantum number. This additional 
rule, as stated above, makes the group (pp') consist of 2 -f 3 -f 1 
components, and not, like the group (dd/), of 2 f 3 + 2 components. 
There is an apparent exception in the case of Mg which exhibits a 

group of only five lines, symmetrically disposed with respect to the 
central line, which is likewise interpreted by Pasehen, on account of 
its Zeeman effect, as a combination (pp'). Here we encounter the 
peculiarity that the Ap'n coincide almost exactly with the A//s, with 
the result that two components coincide and hence the number of lines 
is reduced from six to five. We shall show in § 10 that this equality 
in the resolutions is not fortuitous but can rather be founded quite 
satisfactorily on the ideas of the model. 

The groups (pp') and (dd') are characteristic for all triplet systems 
and hence also occur in the spectra of ionised atoms such as B II, 
0 III, N IV, A1 II, Si Ill, P IV (cf. the preceding section). Bowen 
and Millikan call them the “ flag ” of the corresponding state of 
ionisation. 

Instead of using the Figures 113 and 114 we may also depict the 
structure of the groups (dd/) and (pp') and their relationship with 
the group (pd) by means of the above number schemes. The upper¬ 
most bracketed number denotes in each case the intensity * of the 
component in question ; below it is the wave-length in international 
Angstroms and below that the wave-number v. The differences Av 

between the wave-numbers in the horizontal and in the * vertical 
direction have been printed in italics alongside and below the r’s. 
The first group (which coincides with Fraunhofer’s G) may be de¬ 
scribed, according to Chapter VII, § 7, as 2p —- 2p', the central group as 
3d — 3d\ and the last group as 2p — 3d. 

* The intensities in the case of (dd/) and (pd) have been taken from the quan¬ 
titative measurements of the Utrecht Institute (cf. § 9). 
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p' 
A /- 

J 2 1 0 

(100) (75) 
2 4 302-53 4 318*65 

23 235*66 23 148-91 

103 87 103 73 

(7 5) (75) (75) 
1 4 28301 4 298-99 4 307-74 

23 341-53 86’87 23 254-66 47-13 23 207*53 

7)2 30 

(75) 
0 4 289*38 

23 306*96 

(r 

^- 
J 3 •> 1 

(100) (130) 
3 5 588-74 5 601-28 

17 888-15 40-04 17 848*11 

21-70 21-76 

(15) (56) (13) 
2 5 581-07 5 594-46 5 602-83 

17 909-85 so-VS 17 869-87 26-60 17 843 18 

13U2 13-83 

(13) (37) 
1 5 590* 11 5 598-48 

17 883-79 26-70 17 857 03 

i d 
A 

J 3 2 1 

(100) (20) (1) 
2 19 771 1 19 864*3 19 917-2 

5 055-1 22-2 5 032*9 13% 3 5 019*6 

106-6 103-6 

(56) (20) 
1 19 452-6 19 506-8 

5 139-5 14-3 5 125*2 

32-1 

(26) 
0 19 310-3 

5 177-3 
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The triangular form of the last as compared with the diagonal 
form of the two preceding schemes is characteristic of the possibilities 

of combination given by the inner quantum numbers, just as is the 
gap in the space 0 0 in the first scheme. The fact that we have 
here chosen as an example of the -group a line-configuration which 
lies far in the infra-red is because it shows up the equality of the Ap- 
and the Ad-differences within all three schemes. (Owing to the 
difficulty involved in making infra-red measurements this equality 
is, however, rather unsatisfactory.) As regards the intensity the dia¬ 
gonal is emphasised in all three schemes, as is demanded by our in¬ 
tensity rule. The intensities of the (pd)-configuration have not, of 
course, been measured in the infra-red combination 2p — 3d, but in 
the visible combination 2p — 4d. We shall show in § 9 that it is 
permissible to transfer our measurements in this way. 

We summarise our conclusions about the triplet system in an 
arithmetical scheme which can be generalised very widely : 

L=o s 

1 p 

2 d 

3 f 

Scheme A 

L = l 
J = t 

A\ 
0 1 Z 

MXN 
/ Z 3 
\JXN 2 3 4 

p‘ J -0 1 2 

P 0 12 

fd' J*i 2 3 
!XM 

.d 12 3 

The connecting lines denote possible combinations ; the uncon¬ 
nected J-values do not admit of combination, in particular, not the 

values 00 in the scheme for (pp'). 
Very interesting new material concerning the selection questions 

are further given by the “ inter-combinations ” of triplet and singlet 

terms, such as occur in the whole group of divalent elements, the 
alkaline earths and related elements. We need refer only to the re¬ 
sonance line of Hg, A =- 2537, v — IS — 2/q, and the analogous lines 
for Zn, Od, Mg . . . Ba, given in Table 39. As in that table we here 
denote the singlet terms by S, P, 1) and the triplet terms by s, pj, dj. 
The following scheme gives a survey of the combinations possible 
between these two sets of terms : 

Permissible types : 8/q, Pd2, Pdp p21), px 1). 
Forbidden types : >Sp2, Sp0, Pd3, p0D. 

All that we now have to do is to attach to the singlet terms those 
quantum numbers that enable us to understand from the selection 
rules why the types specified in the lower line are forbidden. There 

can be no doubt about the azimuthal quantum numbers : we must 
set L 0, 1, 2 for S, P, 1). The fact that inner quantum numbers 
are also active in the singlets is shown directly by the decrees 
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forbidding certain combinations. We set J — 0, 1, 2 for S, P, D. 
We then obtain immediately the exclusion (Verbot) of Sp2 from the 
genera] selection rule (2) and the exclusion of S;>0 from the supple¬ 
mentary rule (3). It was the absence of the line Sp0 that first Jed 
to the enunciation of this supplementary rule.* 

An arithmetical scheme again shows most simply that by assigning 
the above values to J we have also correctly given the inter-combina¬ 
tions between the P- and the D-terms : 

L 0 8 

1 p 

2 D 

Scheme B 

,1 ----- 0 

\ 
0 1 2 

\l 

5 J 1 

P 

d 

1 

l\ 
1 2 3 

We are now sufficiently prepared to fix the complex structure 
of the odd terms generally ; we leave the even terras (doublet, quartet, 

octet- systems) to be dealt with a little biter. To denote the terms 
generally we now use capital letters and add the multiplicity as an index 
above and. in front of the capital, for example, in, the quintet system 
6S, 5P, 5D. The following sections will show that we can now give 
examples for all the structures that are now to be enumerated : 

Scheme C 

L -0 J~o 

\ 
\ 
\ 

J* t 

/K 
0 1 2 

MXK 1 Z J 

MXK 
2 j 4 

'A 
t 2 3 

MXExK 
0 113 4 

MMXIXK 
1 2 3 4 5 

/k 

/M\s 
/M>4xixk 

0 1 2 3 4 5 6 

MXK MXKXK MxIxMxKK 
3 4 5 2 3 4 5 6 1 2 3 4 5 6 7 

The above scheme states that the 8-term, L — 0, is always simple. 
The P-term is three-fold (except in the singlet system), the D-term 
five-fold (except in the singlet and the triplet system). The, number 
of levels increases in odd steps until J assumes the value 0 for the first 
time• After that the number of levels is permanent. Hence the sing¬ 

let system consists of simple terms, because here the quantum 
number J = 0 already belongs to the 8-term. In the triplet system 
the permanence of the multiplicities is attained in the P-term, in 
the quintet system it is attained in the D-term, and so forth. If wre 
denote the J-value of the S-term by S and the permanent number 

* A. Lande, Thys. Zeits., 22, 417 (1921). 
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of levels, that is, the multiplicity of the term-system in question by 
r, then we have generally 

r - 2S + 1.(4) 

The notation S for the J-value of the S-term at the same time in¬ 
dicates the “spin moment of momentum." We also call S the spin 
quantum number. The maximum value of »J increases steadily with 
L in each row ; the minimum value of J first decreases to zero and 

then likewise increases. 
In general we have 

That is, 

S -I L 

| *1 m i n I ^ 1J 

fS -- L for S + L 
I L - S for S L 

S + L ^ J ' I S — L 

(•r>) 

(«) 

In particular we have from (5) for the S-term (L — 0) for any 
degree of multiplicity 

4 max 

corresponding to the above remark that the J-value of the S-term 
is caused by the electron spin alone. 

The connecting lines in our scheme tells us what term-levels com¬ 
bine with one another according to the generally valid selection rule 
j A J J 5* 1. We follow Catalan * in calling the configurations which 
then result and which are rich in lines multiplets. Every wave- 
number difference Ar in general occurs twice in a multiplet, but at 
the beginning and at the end of the term sequence only once in given 
cases, namely, when in our scheme only one connecting line runs to¬ 
wards one of the two term-levels whose energy difference is given 
by the Ar in question. For example, let us compare the combinations 
(PD) in the quintet or the septet system with that in the triplet system ; 
they do not consist, like the latter, of .‘1 + 2 -j- 1 components but 
rather, as we read off from our scheme, of ,‘1 + 3 + 3 or 1+2 (-3 + 2+1 
components according as we group with respect to the P- or the 
D-term. The combination (DF) in the quintet system consists of 
3 + 3 + 3 + 2 + 1 = 12 components, in the septet system it consists 

of 3 + 3 + 3 + 3 + 3 — 15 components, and so forth. 
Besides the combinations between terms of the same system inter¬ 

combinations also occur. These give rise to line-configurations of 
special structure, the detailed description of which would lead too 
far here, which may, however, be easily obtained by analogy from the 
Scheme B. To fix the inner quantum numbers and to recognise the 

* His earliest papers: Trans. Hoy. Soc., 223, 127 (1922); Anal. Sop. Esp. 
Fis. y Quiin., 21, 321 (1923). 
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term-systems such inter-combinations are of particular significance 
because we can learn from them the relationship between the inner 
quanta of the one system to those of the other. 

In complex spectra the combinations of the type AL — 0 (cf. 
§§ 3 and 4) become of increasing importance. We give as examples 
only the groups (i)D') and (FK#) in the quintet system, which are dis¬ 
tinguished from one another in a characteristic way in accordance 
with the supplementary decree which forbids ()-->() : 

Scheme D. Quintet 
ay 0 1 2 3 4 X' J 2 3 4 
I 1"; /] Vi I L > 1 P- + ,' ; 

Id 0 1 2 3 4 b 1 2 3 4 

They consist of 2 + 3 + 3 | 3 + 1 12 and 2 f-3 + 3 f 3+2 13 
com ponents respecti ve 1 y. 

Hitherto we have restricted ourselves to the odd multiplicities. 
Of the even multiplicities we already know the doublet system, r — 2. 
Here the 8-term is simple, the P-terrn and all subsequent terms double. 
The same holds for the quartet system : the permanent number of 
levels is r — 4 ; it is attained at the D-term. Before this, however, 
the number of levels increases in odd numbers, thus it is 1 for the 
S-term, 3 for the P-term, and so forth, in general we have for an even 
value of r the number of levels 1, 3, 5, ... in the S, P, I),-term and then 
this number assumes the final permanent value r at the next term. We 
must emphasise that this fundamental character of the even term- 
systems was first deduced from the experimental and theoretical in¬ 
vestigation * of the anomalous Zeeman effect of Mn. 

If we retain the formula (4) we see immediately that the spin 
quantum number S is necessarily a half-integer when r lias an even 
multiplicity : S £ for a doublet system, S ----- i\ for a quartet system, 
and so forth. S —- 4 evidently corresponds to the occurrence of doublets 
when there us one valency electron (alkalies, hydrogen), since we 
should have to assign the spin quantum number 

S ** | 

to the individual electron.f In the same way 8 — :l corresponds to 
the addition of three spin moments, and so forth. The quantum 
number L of the revolving motion, however, always retains its 
integral character in the ease of the even term-systems : L — 0 for 
the 8-term, L = 1 for the P-term, and so forth. When L and 8 are 
compounded we then get the half-integral character of and Jw/r) 

* E. Back, Zeits. f. Phys., 15, 206 (1923) ; A. Lande, ibid., p. 189. 
| Earlier we denoted the spin quantum number of the individual electron by s 

(cf. p. 330). We shall retain this notation in the sequel for the individual electron, 
so that we might have written above S ~ * = }. I11 general we take S to stand 
for the quantum number of several electrons. Cf. § 3 on this point. 
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and all the intermediate values of »J, in accordance with the equations 
(5) and (b). In this way we arrive at the following scheme for the 

even term-systems: 

Scheme E 

The connecting lines in Scheme E again indicate the combinations 
which are possible according to the selection rule (2). The selection 
rule (3) obviously does not apply here. The intensity rule holds in 
the same form as in the case of odd terms. In the higher terms 
and term-systems multiplets of increasing complexity also occur here. 
Every Ac in general occurs twice in them, but in certain circumstances 
only once. If we consider in particular those multiplets that arise from 
the combination of the permanent sequences of terms, we see that 
the ‘‘composite doublet,'1 for example (PD), consists of 2 -f 1 3 
components, the “ composite quartet,'1 for example (I)F), consists of 
3 -f 3 + 2 + 1 — 9 components, the £‘ composite sextet,1’ for example 
(FG), consists of 3 + 3 + *3 -|- 3 4-2 |- I ~ 15 components.* The 
combination (SP) is an ordinary triplet except in the doublet system ; 
the combination (PD) has the same structure in the sextet and the 
octet system as, for example, in the quintet system, and only ex¬ 
hibits in the quartet system the peculiar structure that results from 
the existence of only four D-levels. Two line-configurations which 
are of similar structure in this way and which belong to different 
term-systems are distinguishable only by means of the interval rule 
or the quantitative intensity rule, but most certainly by their Zeeman 
effects. 

The terms of even multiplicity arc also distinguished among them¬ 
selves by having their J-values attached as suffixes to the symbols 
>S, P, . . . and their multiplicity indicated by an index in front of these 
symbols. Thus the term-expression for the two D-lines is as follows 
(we use the conventional numbering of the principal quantum numbers 
IS, 2P, ... in the second column and the rational numbering 3S, 
3P, which is adapted to the periodic system in the third column) : 

Conventional notation Rational notation 

D2, A = 5890 v = PS* - 22P» v = 32Sj - 32P.; 
D„ A = 5896 ^ = l2Sj - 22Pj p = 3\S4 - 32P4 

* In general 6S, also in the case of permanent odd terms. 
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§ 2. Alternation of Even and Odd Terms in the Periodic System 

The alkalies in the first vertical column of the periodic system exhibit 
the well-known doublets, which have contributed in a very particular 
way to finding order in spectra and which led us to recognise principal 
series, subsidiary series and so forth. The precious metals Cu, Ag, 
Au exhibit doublet relationships (as well as quartets). The alkali 
earths in the second vertical column have singlet and triplet terms, 
and so have the elements Zn, Gl, Hg, so long as we restrict ourselves 
to their arc spectra. In the third vertical column the widely separated 
doublets of Tellurium have long been known ; the spectra of B, Al, 
Ga, In have the same character. 

These facts led Rydberg * to suspect a regular alternation of doublet 
ancTtriplet structure in the; periodic system, sued) that the elements 

*ot odd valency should exhibit doublets, these of even valency should 

exhibit triplets. Of tTie~"individual series that wereTZhown outside 
the first three vertical columns the triplet series of 0, S, Sc (Runge 
and Pasohen) confirmed this rule*, whereas the so-called triplet series 
of M11 (Kayser and Runge) appeared to contradict it. 

We know nowadays that Rydberg's Lam of Alternation must be 
formulated as follows : not the alternation of doublets and triplets 
but the alternation of odd and even terms governs the periodic system. 

As we saw in the preceding section triplets in the combination (PS) 
occur not only in the case of odd systems but also in even systems 
so long as the P-term has not yet become a permanent term in them. 
This clears up the apparently exceptional position of the Mn-triplet : 
in spite of its triplet (PS) the Mil-spectrum presents an excellent 
example of even term structure ; it was precisely this example that- 
led Back and Lande (ef. p. 429) to recognise the general scheme of 
the structure of even terms. 

According to our scheme of classification the alternation of even 
and odd terms simultaneously entails an alternation between the half- 
integral and integral nature, of the J-values. In particular it denotes 
for the spin quantum number S a change by i 1 when passing from 
one element to the next. The indefinite ness of the sign is significant 
here. When we advance from S — h (doublet system) in the first 
vertical column of the periodic system to S — 1 (triplet system) and 

at the same time to 8 — 0 (singlet system) in the second vertical 
column, we assert that in general these two transitions AS -- :J-1 are 
possible in principle. Thence it follows, however, that, on the one 
hand, the maximum multiplicity r — 28 + 1 (Equation (4) on p. 428) 

of the possible term-systems increases by 1 for each step from left 
to right in the periodic system, and that, on the other hand, the number 
of possible term-systems increases by 1 when we pass from an element 

* Of. Kayser, Handb. der Spektr., 2, 590, No. 464. 
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of even valency to the next element of 
odd valency. This step-by-step increase 
of the maximum and actual number of 
multiplicities is one of the reasons for 
the increasing complexity of the spectra 
as we proceed towards the right-hand 
(‘nd of the periodic system and for the 
simplicity in understanding the spectra 
of the first vertical columns. We illus¬ 
trate this by means of the elements 
from K to Zn in passing along the first 
great period. Table 42 exhibits the 
term-systems so far analysed ; those 
that are yet to be expected are denoted 
by horizontal strokes. 

Among the various term-systems 
that one is distinguished to which the 
ground-term, the most stable unexcited 
state of the atom, belongs. Not only 
this ground-term but also the excited 
terms of the same system will in general 
be represented by having a specially 
pronounced intensity in the spectrum. 
This favoured term-system has been 
shown in italics in our table. In 
the case of iron, for example, the 
quintet system is the favoured one. 
The lines of the septet system are 
already considerably weaker. The ex¬ 
citation of the nonet system, although 
possible in principle, would signify an 
intrusion far into the inner electronic 
structure of iron ; in ordinary excita¬ 
tion this term-system therefore does 
not occur. 

The regular advance of the ground- 
term which our Table 42 brings into 
evidence and which is interrupted only 
at Cr (septet instead of quintet system) 
may be understood from Pauli s Principle 
and from the scheme of the periodic 
system. We shall deal with this in the 
next section. 

Of the two small periods that pre¬ 
cede the iron group we shall consider 
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for the present only the sixth column, that is, the spectra of O and 8. 
There have long been known of them : A, a series system of triplet 
lines, measured by Paschen and Runge, and B, a system which was 
described as a doublet system by Paschen and Runge in the case 
of 0. 

To determine the structure of these series we have the following 
data : Paschen and Land£ * recognised the oxygen triplet of the system 
A at A ■= 7772 and A ~ 3947 by their Zeeman effect as members of a 
quintet system. Hopfield f then found series of triplets in the extreme 
ultra-violet series, which were shown to be combinations of a three¬ 
fold P-term of low level with the terms S and 1) of the so-called 
doublet system ; the D-term does not appear resolved in them. Finally 
Hopfield and Birge J ascertained that the same P-term inter-combines 
with the 8-term of the quintet system. From the fact that in this 
inter-combination one of the three components (PjK) drops out, the 
J-values of the P-term may be specified from the selection rules for the 
inner quanta. This is shown in the following scheme B\ which is ana¬ 
logous to the scheme B of the preceding section : 

Scheme B' 

5S J — 2 

/I 
H> 0 1 2 

\l/ 
3S 1 

The first-mentioned 8-term has as its quintet term J = 8 --- 2. The 
P-term must have J ~ 2, 1,0, the combination 2 0 being forbidden. 
The 8-term, which combines completely with P, then has 8 — I. 
Hence r ~ 28 | 1 here becomes equal to 3. The terms SPD of the 
so-called doublet system thus in reality form a triplet system. The 
complex structure of O, quintet and triplet system, thus accords 
perfectly with the alternation law. The low-lying P-term is at the 
same time the ground-term of the oxygen spectrum. The wave¬ 
lengths of the ground-triplet PS are A = 1302, 1305, 1300 A. 

In sulphur only the so-called triplet (in reality quintet) system 
was known, according to Paschen and Runge. In addition Hopfield 
has found lines of the triplet system in the ultra-violet. The ground- 
term of 8 belongs to the latter system and is again a P-term. 

The alternation law holds without exception right down to the be¬ 
ginning of the periodic system, as far as He and H. As we knowr, 
hydrogen has a doublet spectrum as a one-electron system, helium 

* Zeits. f. Phys., 15, 189 (1923). 
fJ. J. Hopfield, Phys. Rev., 21, 710 (1923); Nature, 112, 437 (1923); 

Astrophys. Journ., 59, 114 (1924). 
t J. J. Hopfield and R. T. Birge, Nature, 112, 790 (1923). Cf. O. Laporte, 

Naturwiss., 12, 29 (1924). 

vol. i.—28 
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has a singulct spectrum (parhelium) and a triplet spectrum (ortho- 
helium) as a two electron system. The spin action of the two electrons 
can annul or reinforce each other. A doublet system then again follows 
in the case of univalent lithium. In fact, the assertion of the al¬ 
ternation law is just as general as the first law of atomic structure, 
according to which the number of extra-nuclear electrons increases 
by one from element to element, that is, alternates between odd and 
even. 

Our information for judging questions of term structure becomes 
much richer if we use spark spectra as well as arc spectra. 

The limit between these two series types is usually not drawn 
sharply in experimental work. The spark spectra often occur in 
certain parts of the arc, but are then strengthened in the spark 
(enhanced lines). Many arc lines are vice versa also present as a rule 
in the emission spectra of sparks. 

An unobjectionable experimental means of distinguishing between 
spark and arc lines is given by a canal ray method devised by 0. Wien.* 
According as the canal ray which emits the line is deflected or not in 
passing through an electric condenser the line belongs to the spark 
or the arc spectrum respectively. This method confirms the spectro¬ 
scopic classification in the case of Id and Hg (all the Balmer lines 
and the well-known mercury series lines cannot be deflected) ; it 
also shows that certain oxygen lines previously called spark lines 
are actually ()+-lines, whereas the lines of the Paschen-Runge series, 
being true arc lines, are not deflected. In a method described by 
R. Seeliger j* spark lines are represented, owing to the potential fall 
which starts from the cathode in the Geissler tube, as arc lines, in 
agreement with the distinction between “ long " and “ short lines ” 
already introduced by Lockyer. 

The*, definition of the spark spectrum of the first and higher order 
leads directly to the following “displacement law” : J the first spark 
spectrum of every element %s similar in structure to the arc spectrum 
of the element which precedes it in the periodic system ; it consists of 
doublets, triplets, or multiplets of precisely the same character as 
the arc spectrum of the preceding element. In the same way the 
spark spectrum of the second, third, . . . order is similar in structure 
to the arc spectrum of the element which lies two, three . . . steps behind 
m the periodic system. We have often used this law previously, par¬ 
ticularly in § 8 of the preceding chapter, where we compared “ corre¬ 
sponding series of spark lines with one another. In general, spectra 
and terms belonging to the same electronic arrangement must have a 
similar structure. We shall illustrate this law by two particularly 
characteristic and historically interesting examples. 

* Aim. d. Physik, 69, 325 (1922). 

f ?la (1919)’ and in particular (with D. Thaer), ibid., 66, 423 (1921). 
k w‘ K.OS8el A Sommerfeld, Auswahlprinzip und Verschiebungssatz 
bei den benenspektren. Verhand. d. I). Phys. Gesellschaft, Jahrg. 21, 1919, 
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1. Alkalies and Inert Gases.—The doublet system of the alkalies 
is a typical flame spectrum (sodium “ bead ') or arc spectrum and 
so, of course, arises from the neutral and not the ionised atom. Through 
the removal of an electron the alkali atom is subjected to the greatest 
conceivable change. It joins the rank of the inert gases, that is, 
it moves from the beginning of one period to the end of the preceding 
period. For the spectrum this denotes the transition from the simple 
conditions which rule at the beginning of the period to the complicated 
conditions which prevail at the end of a period and which involve 
an abundance of lines. 

In accordance with their chemical inertness the outer electrons of 
inert gases are many times more tightly bound than the chemically 
particularly active outer electron of the alkalies. The same holds 
for the alkali ions which are like the inert gases in character. In 
contrast with the are spectra the spark spectra of the alkalies should 
therefore be relatively difficult to excite : and actually, the difference 
between the energy necessary to excite the arc and the spark spectrum 
is not as great for any element as for the alkalies. 

In 1894 Eder and Valenta * found that Na and, in particular, 
K if subjected to an intense spark discharge* emit besides the series 
spectrum a new spectrum, very rich in lines, which lies mainly in the 
ultra-violet. Afterwards Goldstein f succeeded in 1907 in choosing 
the conditions (matter as finely distributed as possible and current 
density as high as possible) so that this spectrum, which he called 
“ ground spectrum ” (Grundspektruin) appeared pure and without 
the admixture of are lines. 

Goldstein’s observations were restricted to the visible region. 
The abundance of lines, however, which is characteristic of ground 
spectra, comes into full expression only in the ultra-violet and has 
since then been noted by many observers. 

2. Alkaline Earths and Alkalies.—Lorenser,J a pupil of Pasehen’s, 
had occupied himself even before the Bohr theory had been introduced 
with the doublet spectra that occur in the alkaline earths. Following 
on Saunders || he established that Ritz’s formula is unsuited to rep¬ 
resenting these series and he therefore calculated them according 
to the formula 

(»> ?) 
A 

{n + q)2’ (1) 

which was empirical in the first place ; here not only q but also A, 
which takes the place of R, can be disposed of, that is, given a suitable 
value. Lorenser found a satisfactory expression, in particular for the 

* Denkschr. Wien. Akad., 61, 347 (1894) ; of. also the Beitrago zur Photo- 
cheraie, etc ., p. 109, Vienna, 1904. 

f Verhandl. d. D. Phys. (1 esell.seh., 9, 321 (1907). 
{ Diss. Tubingen, 1913. || Astrophys. Journ., 35, 352 (1912). 
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higher series lines, by assuming values for A which lay more or less 
near that of 4R — 438048. 

The question was again taken up by Fowler * in 1915 for the ease 
of Mg, this time under the diretit influence of Bohr’s theory. Fowler 
gave an exhaustive description of the Mg spark spectrum which had 
been newly measured by him, and he ordered it into series with the 
term denominator 4R. 

In general this denominator causes the spark terms to be displaced 
towards the ultra-violet as compared with the corresponding arc 
terms. In the higher spark spectra we have, of course, instead of 
4R, the factors OR, 10R, and so forth. Examples for the consequent 
displacements of the spectra into the ultra-violet are given in profusion 
by Millikan and Bowen's researches on stripped atoms. 

We add here a digression on the spectroscopy of the solar and 
star spectra. 

3. Astrophysical Applications.—M. N. Nahaf has drawn extra¬ 
ordinarily convincing consequences from the differences between the 
spark and the arc; spectra in the case of solar physics. In the sun’s 
spectrum (Fraunhofer spectrum of the photosphere, ef. below) only 
36 of the 02 elements found on the earth are represented. For example, 
Rb and Os are absent, K is weakly represented and Na very strongly. 
Are Rb and Us really not present in the sun ? Saha's answer runs : 

they are present but in the ionised state. Consequently not the char¬ 
acteristic arc lines appear, which we would ordinarily expect, but the 
spark spectra which, since they lie mainly in the ultra-violet, escape 
detection by the ordinary methods. 

What circumstances favour the appearance of spark lines and 
increase their intensity relative to that of the arc lines ? We adduce 
three causes : (1) high temperature, (2) low' pressure, (3) lowr ionisation 
potential. The first two factors relate to the special circumstances 
of the sun, the last to the nature of the atom under consideration. 
A low pressure favours the ionised atomic state as compared with 
the neutral state in that it renders more difficult the recombination 
of the ions with free electrons. 

In the sun we distinguished three regions of different temperature 
and pressure conditions : (a) the true boundary of the luminous 
sun’s disc, the photosphere, whose “ effective temperature ” is taken 
as 6000° 0. and whose pressure is probably about 10' 3 atmospheres ; 
(b) the sun’s atmosphere, the so-called chromosphere, in which the 
temperature decreases with height to 5000° 0. and the pressure di¬ 
minishes to zero ; and (c) the sun-spots, whose temperature is taken 
as 1000° to 2000° lower than that of the photosphere. Whereas 

♦Phil. Trans. (A), 214 (1914); ef. also Proc*. Hoy. Soc., 1915; Bakerian 
Lecture and Nature, 1915. 

f Zeits. f. Physik, 8, 40 (1921) ; in greater detail, Phil. Mag., 40, 472 (1920) ; 
41, 809 (1921) ; Proc. Hoy. Soc., 99, 135 (1921); cf. also H. N. Bussell, Astrophys. 
Journ., 55, 129 (1922). 
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the spectra of the photosphere and the sun-spots are absorption spectra 
the spectrum of the chromosphere is observed as an emission spectrum 
during solar eclipses. 

We shall first discuss the behaviour of the alkalies : the D-lines 
are more intense in the sun-spots than in the photosphere ; in the 
chromosphere they vanish entirely above a certain height. The arc 
lines of Rb occur feebly in sun-spots : they are absent, as already 
mentioned, in the photosphere and hence, of course, also in the chromo¬ 
sphere. Nor has Os hitherto been proved to be present in sun-spots. 
This grading from Na over Rb to Os corresponds throughout with 
the grading of their ionisation potentials, of. Table 38 on p. 382. 

A further characteristic is the prominence of the doublet spark 
spectra of Oa, Sr, Ba in the Fraunhofer spectra of the photosphere, 
for example, of the two Fraunhofer lines H and K (H.S.-doublet IS —2P 
of 0af) and the fact that they stretch up into the greatest heights 
of the chromosphere (14,000 km.). The ground-line of the arc spectrum 
of 0a, A - 4220*73, Fraunhofer's f/-line (combination of the singlet 
S with the singlet P-term), reaches only a short way into the chromo¬ 
sphere and distinguishes itself there characteristically from H and K. 

Hydrogen, with its relatively high ionisation potential of 13*5 volts 
is observed not only in the photosphere but also in the uppermost 
layers of the chromosphere and in the solar protuberances. 

Like Saha's theory,* of which we have here sketched only a very 
small part, also the so-called spectroscopic determination of the paral¬ 
lax according to K oh Inch fitter and Adams is also based on the intensity 
ratio of arc and spark lines in the case of stars in which varying 
conditions of temperature and pressure obtain (of various magnitudes). 

4. Spectroscopic Peculiarities in Astrophysics. - A particularly beau¬ 
tiful application of atomic theory to the spectra of celestial bodies 
occurs in the problem of the lines in nebula:. In the spectra of gaseous 
nebula? there are, in addition to lines of known elements, a large 
number of lines, some very bright, which could not be identified 
till quite recently. They were therefore attributed to an unknown 
element, “ nebulium.'’ This assumption had little to support it, for 
the element would have to be of small atomic weight, since the other 
lines in gaseous nebulae arise from elements of atomic number less 
than 20 ; there is, however, no place in the periodic system for such 

an element. 
The only escape from this assumption was to regard these lines as 

belonging to known elements but emitted under conditions that could 

either not be realised in the laboratory or had not yet been success¬ 
fully produced. The latter was found to be the ease by Bowen f 

* Further details may be found in Vol. II of Astronomy, Russell, Dugan and 
Stewart (Ginn & Co.). 

t J. S. Bowen, Astrophys. Soc. Pacific, 39, 205 (1927); Astrophys. Journ., 

07, 1 (1928). 
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who discovered that the wave-lengths of certain unrecognised lines 
of the nebulae coincided with those of lines which had become known 
through the analysis of the spectra of “ stripped atoms,” in particular, 
of the spectra of 6 11, 0 III, 0 IV, N III, N IV, CII, Cl II. Moreover, 
the lines identified in this way were always found to be the most 
intense lines of the spectra in question that were to be expected in 
the visible region according to the well-known scheme of levels. The 
fact that the lines of the nebulae are predominantly spark lines is to 
be understood as follows, according to Zanstra * and Bowen, from 
the structure of gaseous nebulae. 

The majority of gaseous nebulae exhibit in their centre or near 
it a bright star, the so-called central star. Such nebulae are called 
“ planetary nebulae.” f It may be shown that the central star has 
a close relationship with the nebula. In virtue of its high temper¬ 
ature (which averages 40,000° 0. according to Zanstra) it emits chiefly 
ultra-violet light of very short wave-length, which is taken up by 
the atoms of the surrounding nebula. The layers nearest the central 
star therefore contain almost only highly ionised atoms. Let us 
suppose the star to be surrounded, say, by only an oxygen atmosphere 
and the O-atoms in its vicinity to be so highly ionised that they 
contain only two outer electrons (O4i -ions, that is, O-atoms that have 
been ionised four-fold). These ions may then occasionally capture 
one of the free electrons in the atmosphere of the nebula and so emit 

the lines of the 0 IV spectrum. Through the light from the central 
star, namely that from the part which lies in the extreme ultra-violet, 
the 08+-atoms again become ionised to O41-atoms, and so forth. In 
this way the shortest wave-length part of the light emitted by the 
star will be used up to a certain extent in emitting the 0 IV spectrum 
in the layer nearest the star. The part of longer wave-length will 
pass through this layer and will lead, further outside, to the ionisa¬ 
tion of 02i -atoms and hence (owing to the capture of an electron) to 
the emission of the 0 III spectrum. Still further out the 0 II and 
lastly the 0 I spectrum are to be expected. An analogous argument 
applies, of course, to other atoms present in the gaseous nebula. 

In this manner a number of lines of the nebulae could be identified 
wTith spark lines. But the most intense lines, among them the famous 

green nebulium lines NJ? A — 5006*84 A. and N2. A — 4958*91 A., 
could not be found among the known spark lines. According to 
Bowen all these uninterpreted lines represented transitions of a par¬ 
ticular kind between the lowest terms in the spectra of O II, 0 III, 
N II or S II. 

We shall take the lines N,, N2 as examples. Bowen attributes 

* H. Zanstra, Astrophys. Journ., 85, -r>0 (1927). 
t The following argument applies equally well t o nebula; without a recognisable 

central star (so-called diffuse nebulas), if only the temperature is sufficiently high, 
as appears to be the case with galactic diffuse nebulae. 
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them to 0 III ; according to the laboratory measurements of “ stripped 
atoms 55 the lowest terms of 0 III are * : a singlet S-term JS, a singlet 
l)-term and a triplet P-term 3P, the latter 
having the term-differences 193 and 116 
cm.' 1 They are shown in Fig. 115 in their 
correct positions qualitatively. Nt, N2 
are supposed 
transitions : 

Nx = *P2 

and hence 

N2 • N, 

to represent the following 
! 

li>2. n2 - n\ 

*Pj - aP2 193 cm.- 

(2) 

(») 

-% 

1 
Zt 

Fie. 115.—The lowest terms 
of the O 111 speetrum 
with the empirically 
found quadra polo lines, 
among thorn the “ no- 
buliuni ” lines Nx, Na. 

Actually Nj, N2 form a doubled of pre¬ 
cisely the given frequency difference, and 
the wave-number of Nx, N2 calculated from 
equation (2) also agrees well with the ob¬ 
served values. In the same way the com¬ 
bination hS1!) gives a line, which occurs in 
the nebula*; its wave-length has been drawn in the figure. We hero 
have a transition J — 0 -> J — 2, L ; 0 —> L - 2, that is, a doubly 
forbidden process, according to our discussion in § 1 of the present 
chapter and § 2 of the preceding chapter. We must remark, however, 
that the formulation on p. 365 is not final but that a more complete 
formulation, with which we shall become acquainted in the next 
section, will also contain the assertion that for our ease the transitions 
here under consideration arc likewise forbidden, not only the transition 
hS1!) but also the combinations (2), because all three terms 1S1D3P 
belong to the same configuration of electrons. 

The explanation of this contradiction lies in the fact that we are 
not dealing with dipole radiation here—to which the selection rules 
mentioned refer—but to the quadrupole radiation, which is usually 
much weaker. Rubinowicz f has actually shown that for the quadru¬ 
pole radiation precisely those transitions in L are allowed for which 
the dipole radiation is absent, and that in these transitions the quantum 
number of the total moment of momentum of the electrons changes 
by 0, di 1, d: 2 (ef. also p. 369). For J we obtain at the same time 

AJ — 0, i l ± 2. 
It only remains to explain why the quadrupole lines, that must he 

very weak under earth conditions—it has been possible to produce it 
in the laboratory in only very few cases—should come out so strongly 

* In § 3 we show that these terms are to be expected. 
■)• A. Rubinowicz, Zeits. f. Phys., 85, 882 (1930). This also contains the in¬ 

tensity formula* and summation rules for the quadrupole radiation, which corre¬ 
spond to our dipole formula* in § 9. It is shown that the intensities of the lines 
in the nebulae agree well with this theory. 
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in the case of gaseous nebulae. The reason is clearly to be sought 
in the particular physical constitution of these nebulae. Actually 
the density of the nebulae, both of the planetary nebulae (with their 
central stars) and of the diffuse nebulae (without a central star), is 
extraordinarily small, being of the order of 10~17 grin./cm.8 or less,* 
densities such as cannot be realised in the laboratory. This means 
that the atoms and ions of the nebulae rarely collide ; the time between 
two collisions comes out as of the order of many seconds, according 
to some estimates, of the order of several hours ! We follow Bowen 
in drawing the following conclusions : the terms that lie closest to 
the ground-state of the ions are all metastable because they all arise 
from the same electronic configuration as the ground-term itself and 
because no dipole combinations are allowed between such terms (cf. 
again § 9). Now, quadrupole combinations occur much more rarely 
than dipole combinations, that is the “ time of relaxation " (Venveilzait) 
of the ions in such metastable states is much greater (of the order of 
10 “ 2 to 1 second) than in states from which dipole emission is possible. 
From the above data about the times between collisions we sec that 
the ions can certainly not be disturbed during their time of relaxa¬ 
tion in the metastable sta tes, rather they can fall down to the ground- 
term at the end of the time of relaxation and so (unit the “ forbidden " 
quadrupole radiation. Eddington f has also shown that the radiation 
that comes from the central star does not disturb the emission of the 
forbidden lines if it is sufficiently weak,—which is certainly true, on 
account of the immense extent of the nebulae. Further, if we take 
into account that most of the higher terms can combine to give dipole 
radiation with all the deep terms that come into question, that is. 
that the metastable states can be much “ enriched by transitions 
from the higher terms, we sec immediately that these “ forbidden ” 
lines must appear particularly strongly in the nebula?. 

We have yet to mention that certain “ forbidden '* iron lines, 
which have been interpreted by Merrill,]; occurring in many star spectra, 
are also to be regarded as quadrupole radiation, as has been shown 

from their intensities by Rubinowicz.|| 
The mystery of the green line of the Northern Lights (Aurora 

borealis) was also successfully solved by similar considerations.^ It, 
too, is a quadrupole line, namely the combination 1D2 — 1S0 in the 
oxygen arc spectrum. MacLennan and Ireton ** were the first to 
succeed in producing the line in the laboratory in a mixture of argon 

* Cf., for example, tho Report by F. Becker and W. Grotrian in the Ergebninse 
der cxakten Naturwissenschaften, Vol. VII. Springer, Berlin. 

t A. S. Eddington, Monthly Notices R.A.S., 88, 134 (1927). 
I P. W. Merrill, Astrophys. Journ., 07, 391, 405 (1928). 
|| A. Rubinowiez, loc. cit. 
II J. C. MacLennan, Proe. Roy. Soc., 120, 327 (1928); R. Frerichs, Phys. 

Rev., 34, 1239 (1929) ; 36, 398 (1930) ; F. Paschen, Naturwiss., 18, 752 (1930), 
** J, C. MacLennan and H, J, G, Ireton, Proc. Roy. Soc., 120, 31 (1930), 



§ 3- Russell-Saunders Coupling 441 

and traces of oxygen. The identification was 
by observing the Zeeman * effect of the 
line, after Rubinowicz f had predicted the 
Zeeman effect of quadrupole lines wave- 
mechanically. In the 0 I spectrum (cf. 
Fig. 116), besides HPN another ground- 
term combination that is possible is 1D3P. 
The corresponding three lines (1D2 3P0 is 
also allowed here) were found by Paschcn J 
on some old plates taken by Hopfield. 
All four quadrupole lines are thus ob¬ 
tainable also under earth conditions. Be¬ 
sides being known in the aurora spectrum 
they are also known in the spectrum of 
the night sky and the spectra of novae as 
well as of certain nebular stars. 

rendered perfect recently 

Fiu. 116. The lowest terms 
of the O I spectrum. 
The P-torm is inverted. 
The wave-lengths shown 
are quadrupole lines, 
among them the green 
auroral line A 5577-3 A. 

§ 3. Russell-Saunders Coupling. Term-Systems of Given Configuration 
cuntainin^^Two Outer Electrons^ 

The first step towards understanding the rules that underlie 
multiplets was taken by H. N. Russell and F. A. Saunders |j when 
they subjected alkaline earth terms to a detailed investigation. 

The alkaline earths have two outer electrons, while their other 
electrons are bound in closed shells and may hence he left out of 
consideration as far as the scheme of terms is concerned. (The proof 
of this, based on Pauli’s Principle, will be given on p. 450.) In the 
ground-state these outer electrons are in a-states (35 in Mg, 4* in (la, 
and so forth, see Tables 7 and 8 on pp. 160 and 162) ; the corre¬ 
sponding excited terms arise when one of the outer electrons persists 
in the 5-state and the other is transferred to a higher 5-, />- or rt-state. 
But there is another electronic configuration which is not much less 
probable than the above. Our attention is directed particularly at 
Ca. Immediately after Ca the 3jj-qrbits begin_to be added, that is, 
the M-shell begins to be filled up (cf. Table 8). Thence we conclude 
that in Ca the 3^-orbit is approximately as strongly bound as the 
45-orbit ; cf. also Chapter VII, pp. 401, 406, 409. Hence we expect 
a second term-system in which one electron is in a 3d-orbit and the other 
in any arbitrary higher state. The two term-systems may he repre¬ 
sented diagrammatically as follows : 

Ordinary terms Displaced terms 
(4.?, nx) (3d, nx) 

Limit: Ca+ 4*. Limit: Oa+ 3d. 

* R. Frerichs and J. S. Campbell, Phys. Rev., 36, 1460 (1930). 
f A. Rubinowicz, Zeits. f. Physik, 61, 338 (1930). 
j F. Paschen, ibid., 65, 1 (1930), |j Astrophys. Journ., 61, 38 (1925). 
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Thus the two-term limits behave exactly as was assumed in Fig. 103, 
p. 407, to explain the “ accented terms ” ; the term-values of the 
second system, referred to the limit of the first system, become in 
part negative, and so forth. 

What holds for Ca also holds for Sr, Ba . . . , except that now 
we must replace 4s, ... by 5s, 4d< . . . But in Mg the corre¬ 
sponding states are 3s and 3Ip, since after Mg (cf. Table 7) the M-shell 
becomes completed by the addition of 3p-orbits. The two types of 
Mg-terms are therefore diagrammatically : 

Ordinary terms Displaced forms 
(3*, nr) (3d, nr) 

Limit: Mg' 3.v. Limit: Mg+ 3p. 

Summarising all this, we consider two electrons, whose orbital 
character we shall characterise in general by the quantum numbers 
lY and Z2 (for example, lx ~~ 0 for an s-orbit, lY — l for a p-orbit, and 
so forth), and we inquire into the character of the term that results 
from these two, which we shall denote by a resultant quantum number 
L. How is L compounded from lY and /2 ? The answer given by 
Russell and Saunders is : L is compounded vectorially and in integral 

numbers from lx and /„ according to the scheme 

—^ ^ 
L — lY -f- l2 in such a way that l} j /2 L ■> | lY — l2 I . (1) 

At the same time we proceed beyond Russell and Saunders by 
considering the compounding of the spin-vectors sY and s2, which 
are of course equal to \ for each individual electron. The spin-vectors 

are compounded algebraically thus ; 

S = Sj ± S2 
| 1 triplet 
(0 singlet 

(2) 

The “ Russell-Saunders coupling" defined by (1) and (2) is not 
the only possible coupling but by far the most important coupling of 
the individual orbital-vectors which leads to resultant term-vectors. 
We shall deal with other possibilities (for example, a ^‘-coupling) in 
§ 5. We must first illustrate the Russell-Saunders coupling by examples. 

To indicate that the character of the resultant term is given by 
L we assign the usual symbols 8, P, D ... to the values L — 0, 1, 

2 . . . (cf. p. 421). By compounding lY and l2 in accordance with 
(1) we obtain the following schemes : 

A. lx = 0 

L — 0 1 2 3 4 

I) 
F 
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B. Zj = l 

L =--- 0 12 3 4 

2 
3 
4 

L 0 l 

P 
P D 
P J) F 

1) F G 
F G H 

0. Zj 2 

2 3 4 5 fi 

h 

3 
4 

S 

D 
P D F 
P 1) F Cr 
P I) F G H 

D F G H J 

In Scheme A we have, on account of lx 0 (for example, 4-s* in 
the case of Pa), that L Z2. Hence the diagonal form of the Scheme 
A, which corresponds to the ordinary terms (for example, 4-s, nx in 
(-a). On account of — 1 in the first row (Z2 — 0) the Scheme B 
begins with L — Zt = 1, that is, with a P-term. In the second row 

(Z2 •- 1) we have, by equation (1), that L — 1 -f 1 = 0, 1 or 2, that 
—> —^ 

is, an S-, P- or D-terni ; in the third row (Z2 -- 2) we have L 1 f- 2 -- 1, 

2 or 3, corresponding to a P-, D- or F-term, and so forth. The Scheme 
(J begins, since Zx — 2, with a D-term. L Zj ^ 2, and exhibits three 
terms in the second row (Zx - 2, Z2 = 1), in the third and subsequent 
rows it exhibits five terms,* and so forth. 

In the present two-electron case all these terms may, by equation 
(2), be triplet as well as singlet terms. For the indexing of these 
terms, that is, for the quantum number J, we now also have 

8 + L ^ J ^ | S - L j . . . . (3) 

Here the selection rule for the J\s in general retains its earlier form : 

AJ - f i 1 
l <> 

(4) 

Actually we applied this rule in the case of the (ppr)- and the (dd')~ 
combinations in § 1, to the displaced terms, p', d'y equally well as to 
the ordinary terms p, d. The same does not, however, apply to the 

* In passing wo must call attention to t-ho analogy between our Schemes 
A, B, C . . . and the Scheme O on ]>. 427 for the singlet, triplet, quintet . . . 
systems. The L-values of our present schemes are identical with the J-values of 
the earlier schemes. There is a formal reason for this : precisely as the L's are 
compounded from Z2 and l2 according to eqn. (1), so the J’s are compounded, 
according to the earlier eqn. (6) on p. 428, from th© b’s and the S’s. 
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selection rule of the L's. Whereas A/ — 0 was forbidden earlier, AL 0 
is by no means forbidden now, as the just-mentioned combinations 

show directly. 
To arrive at the selection rules we must first revert to the in¬ 

dividual AZ/s. The experimental results so far obtained have obeyed 
perfectly a rule given by Heisenberg (we enunciate it more generally 
for any arbitrary number of electrons ? 2) : in an allowable transi¬ 

tion (dipole-radiation) one electron must change its J-value by dz 1 * a 

second electron must change its /, if at all, by T: 2, the remaining electrons 

must retain their l-values unaltered. In symbols : 

A/2 : i T A/t — 
[±2- 

Al o. *> 

We summarise the two possibilities as follows 
(Einfach-Spriingc) A0, 

Kies. 117.—Geometrical repre¬ 
sentation of the selection 
rule (5), in which and 
lt are considered as of 
equal importance. 4 4 8 
transitions arise from each 
term. The number is re¬ 
duced if transitions occur 
among them which would 
lead to negative values 

of L 

“ single transitions ” 
in which case (5) reduces to the well- 
known selection rule Al ----- ± 1, and 
44 double transitions “ (Doppel-spriinge), 
to which the displaced terms discussed 
above (see pp. 405 el seq.) belong. 

According to (). Laporte,* whose 
researches on the iron spectrum have 
formed the foundation for the general 
form of the selection rules of hetero- 
morphic terms, (5) may be illustrated 
geometrically by the “ star " diagram of 
Fig. 117. 

It had been conjectured earlier f that 
the rule (5) could be generalised as 

follows : 

odd number 2A/; — odd number . (5a) 

Wave-mechanics confirms X this general¬ 
isation. Of course the transitions (5) are 
distinguished among the more general 
transitions contained in (5a) by occur¬ 
ring more often. |j 

Supplementary to this selection rule for the Z’s there is an ad¬ 

ditional condition for L, namely : 

AL - 0, ± l . . . . (6) 

♦ Handb. der Astrophys., Springer, 1 930, Ch. VI, p. 684. 
f A. Sommerfeld, Three Lectures on Atomic Physics, p. 43 (Messrs. Methuen 

& Co. Ltd., 1926). 
I H. Weyl, Gruppenthoorie und Qunntenmeehanik, Hirzel, Leipzig, 2nd odn., 

1931, pp. 180, 181. 
|| We can bring the selection rule (5a) into a form, which has played a certain 

part in the older researches on multiplots, if we divide the terms into two classes, 
“ even ” and “ odd terms,’4 according as Eli is even or odd. Then only even 

terms can combine with odd and vice-versa (Laporte’e rule). 
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which we shall prove in Note 7 (e). Exceptions to this last rule occur 
only if the intervals within a multiple! term become comparable with 
the intervals made with neighbouring multipiet terms of the same 
electronic configuration. 

We apply this to the 0a terms. Schemes A and 0. Within the 
scope of A every term may combine with its two neighbours, and in the 
same way with 0 every term of a row may combine with the neigh¬ 
bouring terms, defined by (b), of the neighbouring rows. All these 
combinations are single transitions. We obtain admissible double 

transitions if we combine, for example, the term P from A with the 
terms allowed by (6) of the first or the third row of 0. Among these 
combinations there is only one * of the character (ppr), since no P- 
term occurs in the first row. We next inquire into the origin of the 

(dcT)-combinations. They arise when we combine the l)-term of the 
third row of A with the D of the second or of the fourth row of 0, 
whereas the combination with the first, third or fifth row is forbidden. 
We write down the possible modes of origin, showing at the same time 
the detailed term notation which has become the practice when we wish, 
to express clearly not only the structure but also the origin of the terms 
according to atomic the or?/ : 

(Pp') 

(ddf) 

(4-snp) 3P012 

(4rsnd) 3I)l2n —^ 

(Sdn'd) 3P012 
({Mn'p) 3J)12;i 

Here the structure is denoted by the symbol SP012 and 3T)123 (we restrict 
ourselves to triplet structure, as indicated by the upper prefix 3, as we 
are interested in the line-configuration, ef. pp. 424 and 42b ; actually, 
we should also take into account the singlet terms ]Pt and U)2). The 
origin of the terms is specified by the preceding symbols (4snp), (Mn'd), 
and so forth, for which we shall use the abbreviation s/>, dd or d2, 
the latter symbol when both d"s belong to the same principal quantum 
number. Thus in future we shall use the small letters, <s\ p, d . . . 

only for the state of the individual electron, and the capital letters, 
S, P, I), . . . , with upper and lower indices, for the state of the whole 
atom (ef. p. 427). Moreover, the indefinite principal quantum numbers 

n, n in the above symbols indicate that there is not one but a series 

of terms of the class (sp), (dd) .... 
But our diagrammatic schemes require to be supplemented in the 

ease of equivalent orbits, that is, when our two electrons (generally 
several electrons) belong to the same orbital type nh that is when they 

agree not only in their 7-values blit also in their w-values. Here we 
receive decisive help from PauiiTs Principle (p. 154), which states that : 

every completely HefinedT moccupied, bii only one 

* Besides this, however, pp' may also result as a single transition by a combina¬ 
tion of A with B (second row of A with the second row of B). 
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electron. To define such a state completely wo require not only the 
orbital type (n, /) hut also the position of the orbit, which is 
given by the magnetic quantum numbers mx and (p. 152). 
Electrons of the same orbital type are called equivalent electrons 
by Pauli. Pauli’s Principle further asserts that : electrons in the 
same quantum-state cannot in principle be distinguished from one 
another ; atomic configurations which become transformed into one 
another by simply interchanging electrons are fully identical with 
one another and therefore represent one configuration. It is the 
combination of the Russell-Saunders ideas with Pauli’s Principle by 
F. Hund * that first led to a complete systematic classification of 
raultiplet spectra. 

We already know the possible values of the magnetic quantum 
numbers mx and ms for the individual electron from pp. 150 et seq. 
They are determined from 

l ^ mt > — /, s mH > — s . . . (7) 

The values of ml are integral, like those of /, and those of ms are half¬ 
integral. There are 21 -f 1 values of mx for a given /. On the other 
hand, there are only two values of m9 for the individual electron, since 

- L; these values are ms — h We may represent these values 
graphically by the separate orientation of the orbital-vector l and the 
spin-vector s in space in a (strong) magnetic field imagined to be present 
(of. the analogous Figs. 29 and 30 on pp. 123 and 124 ; which 
represented the vector j compounded from l and s). 

In the same way we must define the magnetic quantum numbers 
Ml and Ms for the resultant atomic state (L, S). Their possible values 
are determined from the conditions analogous to (7) : 

L ^ Ml ^ ~ L. S ^ Ms ^ S . . (la) 

The L-vector therefore has belonging to it 2L -( 1 different quantum 
numbers Ml, which correspond to just aiT many different positions 
of the L-vector with respect to the axis of the magnetic field and 
which may be regarded as projections of L on this axis. In the same 
manner 28 --f J, quantum numbers Ms belong to the S-vector, namely, 
in the cases that come into question here : 

Singlet system, 8 = 0, Ms — T „ 
Triplet system, J? — 1, Mg_— + 1, 0 or — 1 

And we have for every electronic configuration 

Ml = ZMs = Zma> • • • ,(8) 

where in our case of only two outer electrons the sums are two-fold 
and extend over any two of the values of mt and m8 allowed by (7). 

* For the interpretation of complicated spectra, in particular of the elements 
from Sc to Ni, see Zeits. f. Physik, 33, 345 (1925) ; also the important text-book : 
Linienspektren und periodisches System, Springer, 1927. 
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The following remarks may serve to make clear the relationships 
(8) : we start from the imagined limiting ease, where the coupling 
of the electrons and their l, s vectors among themselves is infinitely 
weak. Then all the vectors will orientate themselves independently 
of one another in an added imaginary magnetic field, that is, all the 
mf s and ms'tt will be integral or half-integral. We now allow the 
coupling its increase in strength but shall at first allow only the /\s 
to combine among themselves and likewise the s's. Interacting 
moments of momentum then present themselves which alter the 
individual moments of momentum l and s in time and destroy the 
quantum-like behaviour of their projections ml and ms. The law 
of sectorial areas then no longer holds for the individual motion of 
the electrons, but only in the sum for the whole system (here our 
two electrons, and, by our assumption, separately for the Vs and 
the s’s), since the moments of momentum due to the coupling com¬ 
pensate. Hence what previously held for the individual vectors 
now holds for the sum : the L’s and the S‘s are constant and are 
quantum numbers of the system ; their components Ml and M» 
along the magnetic axis are likewise quantum numbers and retain 
the values they had in the coupling, that is, they may be calculated 
in the sense of the equations (8) from m ?, ms. By carrying this line of 
argument a step further we are able to speak in the next approximation 

of the coupling of the moments of momentum L and S with the total 
moments of momentum J ; cf. also the remarks at the beginning 
of §5. 

We pass on to the different cases of “ equivalent ” states, which 

present themselves in the ease of two electrons according to our 
Schemes A, B, C on p. 442. We are dealing with the first row of A, 
the second of B and the third of 0 and we assume, of course, in each 

case that the principal quantum numbers are the same (?ix - n2). 
leetrons in the e state. Then the eorre- 
zero, i.e. m, — 0, Thus the first three of 

n, l, ml9 ms . . . . (9) 

are the same for both electrons. Hence, by Pauli’s Principle the fourth 
must be different for each. Thus 

= + b " b 
or vice versa. The converse state (also by Pauli’s Principle) does not, 
however, denote a new state. Hence the only possibility is 

Ml = Ms = 0, L = S = 0. 

We have a hS-term ; the z 8-term is forbidden. This explains the non¬ 
existence of the ortho-helium ground-term, cf. Fig, 92, p. 358, and 
oFall analogous triplet terms in the spectra of Be, Mg, Oa . . . Hg. 

A. lx — l2 0, both e 
sponding m/s areequal to 

TFie quadruple of numbers 
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Conversely T thef mm.pyj.^pnpp of these terms was the t\r*+ ftmt that 
caused Pauli tp formulate his principle. 
1J! = Z2 = I, type of carbon and its homologues. We affirm 

that the more exact expression for the three terms given in the second 
row of Scheme B should be 

^ hS, »P, *D, . . . (10) 

that is, that the terms 

»S, »P, 3D .... (10a) 

are forbidden. 
To prove this wt* begin with the D-term, namely with its highest- 

magnetic level, Mj, — 2. Since m\x and wq., cannot be greater than 1 
we must write in equation (8) that 

mh = mh = 1. 

The first three figures in (9) are again the same in each ease, that is, 

rnH =-* — ra*s, Ms = 5>.s --- 0. 

Hence S ==■ 0. Our D-term is a singlet-term. 
We pass on to Ml = 1. This magnetic level arises from 

mh -= 1, mh =? 0 | m„t =■ ± mH = ±. i 

The converse — 0, - 1 does not, again by Pauli’s Principle, 
denote a new term. There are thus four possibilities, distinguished by 
the values of 

(+ ^ 
M« -• — | (4, 0 

I - 1 

One of the two zero values is used up for a lD-term, which has a mag¬ 
netic level Ml -- 1 as well as Ml — 2. Hence three values 1, 0, — 1 
are left over, which belong to the magnetic orientation of a spin-vector 
8 = 1, that is, to a triplet-term. Our P-terrn in the row (10) is there¬ 
fore in actual fact a triplet-term. 

We now come to Ml = 0. Here we must have either 

m1i — mlz — 0 | Ms — 0, 

or mh — — 1, mk = + L | Ms = -|- 1, 0, 0, — 1. 

The values of Ms on the right-hand side state that : if the two s are 
equal (first row) the ma’s must be opposite and equal ; if the two s 
are. different (second row), the m,s may be either + J or — One 
of the five Ms-values that arise in this way is a zero, and is used for the 
rD-term. If we strike out the values Mg = + 1, 0, — 1 required for 
the magnetic level Ml — 0 of the 3P-term, we are left with only Ms = 0. 
The 8-term still remaining in (10) is thus a singlet-term. 
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We recognise that our enumeration is complete by noting that it 
might have been carried out equally well for the negative Mi/s. 

This rnay.be tested by counting up all the magnetic levels that 
belong to (10), and also those that belong to (10a) In general, we 
obtain 

2(2L f 1)(2S \ 1), 

since 2L -f 1 and 2S + 1 denote, respectively, the number of Ml's and 
Ms’s for each term Hence, in the case (10) we obtain 

1 4 3.3 4-5.1=- 15, 
and in the case (10a) 

3 4 3+ 15 - 24. 

If, on the other hand, we count up the magnetic levels, starting from 
the Mi s and mH's, we obtain from mt - f 1,0, — 1, mH — { h ~~ 2 

3 . 1 + ~ . 4 = 15. 

The first product on the left-hand side denotes the combination of two 
equal terms ml with opposite values of ms. The second product corre¬ 
sponds to the combination of two different m{s, of which 3.2 are 
present, only half of which count, however, as the electrons cannot 
be distinguished from each other ; the full number 4 of the w^-pairs 
are to be combined with them. The sum 15 agrees with our enum¬ 
eration of (10), and hence excludes (10a). 

Before we apply our scheme (10) to the interesting examples of 
O III and O I, we must develop the rule of term positions enunciated by 
Hund (of. the reference on p. 446). This rule is an essential constituent 
of Hund’s theory of the classification of terms. We give it here as an 
experimental result Hund, and in still greater detail Slater,* bases it 
on general considerations about the strength of the coupling between 
the different vectors Z, s, similar to those indicated on p. 447. A more 

Rigorous basis, which also allows us to expect possible exceptions to 
Hvnd's rule, must be left to the next volume (on wave-mechanics). 

Among the terms belonging to a definite electron configuration that one 
1 is lowest which (a) has the greatest 8 and (b) has the greatest 1{ qjjumg. thz 
. terms having thfTsam& 'S. InT'general the positions of the lower terms 
Jarrange themselves (a) according to the magnitude of 8 and (b) accord - 
ing to the magnitude of L. The higher terms often exhibit exceptions to 

this rule. 
In our case (electron configuration, p2) only one term S = 1 occurs, 

namely the 8P-term. It is the lowest. Of the two terms with S «= 0 
the xD-term is the deeper because it has a greater L. 

We apply this to the spectra of 0 III and 0 I. Oxygen has, accord - 

* Phys. Rev., 28, 291 (1926). 

VOL. I.—29 
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ing to its position in the periodic system, four 2p-electrons. Hence 
04~+ with its two 2p-electrons falls directly within our scheme. This 
explains the position of the terms in our Fig. 115 on p. 439. It also 
makes clear simultaneously why all the nebular lines there shown are 
forbidden lines. For our selection rule (5) demanded that one of the 
numbers lv l2 should change by ± 1, whereas in combinations within 
the same electron-configuration A=-- 0 for all /’s. This decree, how¬ 
ever, applies only to dipole radiation, and not to quadrupole radiation. 
In the sense of dipole* radiation rD and *8 are metastable levels. As 

already mentioned on p. 439, the transitions drawn in Fig. 115 are 
precisely those that are possible for quadrupole radiation. 

But the O 1-spectrum also falls within the same term-scheme. To 
see this, we need Pauli’s “ Gap Law ” (Liickensatz). 

A direct consequence of Pauli’s Exclusion Principle is this : every 
closed shell is balanced with respect to moment of momentum, both as 
regards orbital resolutions and spin moments of momentum ; we have 

L — 0 and 8 -- 0. Thus the term-state is a ^-term. On account of 
the connexion between moment of momentum and paramagnetism we 
may also express this as follows : every closed shell behaves diamagneii- 

cully in its ground-state. 
The proof of this law is essentially contained in the enumerations 

on p. 154. As already emphasised, the closed shell of quantum number 
/ is built up of 2(2/ -f 1 )-electron ; for example, the Lji -f Lm-shell, 
/ -- 1, consists of 2.3 6 electrons. In this way the 2/ -f- 1 different 
values of mh namely /,/—], . . . — /, and the two different values of 

namely ^ i, are just used up. Hence we obtain for the sums (8) : 

Ml - 0, Ms - 0. 

This is the only term that is possible. It characterises a 1S0-term. 
The singlet S-term is familiar to us as the helium ground-term in 

the completion of the K-shell, as the ground-term of Be, Mg, Ca in the 
completion of the Lr, Mr, N2-shell. In the same way, 1S0-terms 
must occur as ground-terms in completing the 8-shells ; that is, in the 
inert gases Ne, Ar, Kr. . . . (We must note, however, that in these 
spectra the Russell-Saunders coupling no longer holds, so that, strictly 
speaking, there is no sense in speaking of L- and 8-values. But the 
characteristic of a closed shell : J — 0, remains valid in any sort of 
coupling) ; the same applies to the completion of the 18-shells (as ex¬ 
amples we may give instead of the neutral atoms the corresponding ions 
Cuf , Ag+, Au+). The same holds for Lu4++ as the last stage in the 
completion of the N-shell. 

Pauli’s Gap Law is very closely related to Hund’s Rule. It 
states that in a configuration of equivalent orbits the number and 
character of the possible terms may be counted up just as well on the 
basis of the electrons that are missing, that is, that are required to 
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complete the shell, as on the basis of the electrons present in the con¬ 
figuration. 

Let us take as an example () in its neutral state with the configura¬ 
tion (2jp)4. To complete the shell we require two 2p-electrons. The 
limitations of Pauli’s Exclusion Rule apply in choosing these two 
missing electrons, that is, as regards their quantum numbers mt and 
mH. These restrictions are the same as for two of the existing electrons. 
Hence the term-number and term-character becomes the same in both 
cases. 

We now understand why Fig. 110 for 0 I is almost identical with 
Eig. 115 for O HI. “ Almost ” is to signify : except for the structure 
of the sP-term, that is, the sequence of its levels in their dependence on 

J. We call the structure in Fig. 115 regular, that in Fig. 110 inverted.* 
A structure is regular if it corresponds to that of the alkalies or alkaline 
earths as regards the J-values : the lowest level has the smallest J, that is, 
the term-value decreases as J increases. In the inverted structures the 
lowest level conversely has the greatest value for J, that is, the term- 
value increases as J increases. We shall see in § 10 that the interval- 
ratios arc related to J-values (at least in the case of the Russell-Saunders 

coupling), namely, in regular structures the intervals decrease, in inverted 
structures they increase, as the term-value increases. 

In § 10 we shall be able to make more accurate statements about 
the occurrence of regular or inverted terms. For the present we 
formulate the empirical results briefly as follows : in the first half of 
each group of equivalent electrons the structures are regular, in the second 
half they are inverted. For example, in the iron spectrum all the 
multiplet structures are inverted, in those of the alkalies and alkaline 
earths they are regular (with the exception f of certain highly excited 
terms). 

The 0 1-spectrum (2p)1 takes us into the second half of the group 
of equivalent 2p-or bits, the () Ill-spectrum (2 p)2 into the first half. 
This explains the relative structures of the 3P-term in Figs. 115 and 
116 (in Fig. 115 J 0 is the lowest level, in Fig. 116 J 2). Other¬ 
wise the same applies to Fig. 116 as to Fig. 115. Their lines are for¬ 
bidden in the sense of dipole-radiation, that is, the S- and the 11-terms 
are metastable. The lines drawn in Fig. 116, the polar line (SD) and 
the Paschen Combinations (DP) are quadrupole radiations. 

From here we return once again to the data on p. 433 concerning 
the O I-spectrum. The 3P-term discovered by Hopfield is identical 

* This distinction was first introduced in tho preceding German edition of 
this book and was illustrated by the spectra of Mn, Fe and so forth. 

f According to K. W. Meissner (Ann. d. Phys., 65, 378 (1920)), the F-terms 
of caesium are inverted ; the D-terms of potassium also appear to be inverted, 
according to F. Paschen (Naturwiss., 2, 434 (1923)). The analogous terms of 
Ba+ and Ca* are, however, regular. Tn the case of Mg* and Al + + there are in¬ 
verted D-terms. In the complicated spectra partially inverted terms also occur, 
in which the term-value increases with J, and then again decreases, or vice versa. 
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with the ground-term of our Fig. lift. The combination PS with 
A -- 11102, 1305, 130ft A. (cf. p. 433) is the combination of this ground- 
term with an excited 3K-term, which is to be imagined in Fig. lift as 
situated high above the lS-term. Of the three arrows that pass 
from this high 3N-term to the three 3P-levels, the two shorter ones 
are less different between themselves than the two longer ones, on 
account of the interval ratios in the inverted triplet 

(P0P1 : PjPa =1:2, ef. Fig. lift). 

The wave-lengths measured by Hopfield correspond with this : the 
smaller wave-length difference ~ 1 A. occurs between the two compon¬ 
ents of longer wave-length, the greater wave-length difference ^ 3 A. 
occurs between the two components of shorter wave-length. Hence 
we can verify the inverted nature of the ground triplet from these 
measurements. 

C. Lastly we consider the equivalent orbits in our scheme C on 
p. 443, Ix — l2 2 ; we are here dealing with d-orbits. We call them, 
in particular, 3d-orbits, in view of the iron group, for which system 
we wish to prepare the ground here. We assert that the terms that 
result from two 3d-orbits, which are represented according to their 
L-eharacter by the third row of the scheme 0, are to be specified as 
regards their S-character by 

*P'D*F*G . . . . (11) 

The proof runs as for the analogous term-sequence (10). 
We begin with the G-term, L — 4, namely with its highest mag¬ 

netic level Ml = 4. Since in the ease of our 3d-electrons | mt | <£ 2, 
Ml — 4 arises uniquely from 

mh m rnh = 2. 

According to Pauli’s Exclusion Principle, we must- necessarily have 
ms = — Wjh, Ms — 0 ; we have one 1G-term. 

The magnetic levels Ml ~ 3 arise from 

mh = 1, m,t --= ± l, mH = ± 

Of the four possibilities one, Ms — 0, goes to the lG-term, the other 
three characterise a 3F-term. 

For Ml — 2 there are three modes of origin : 

= 1 
mh == 0, mh ~ 2 m9l = ± m*2 -= ± \ 

We need four of these for XG and 3F. One remains for the D-term 
and characterises this, on account of Ms = 0, as a hD-term. 

In the next step Ml = 1, we have eight possibilities : 

= °> mit = 1 mh = ± h = ± i 
mlx 1, mt — 2 m8i ^ ± A, mH =- ± \ 
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After striking out the five Mg-values which are required for ]G, 3F and 
1D, we are left with the three values Mg = + 1, 0, — 1, which belong 

to the 3P-terra. 
The last step Ml — 0 yields nine possibilities. After striking out 

the eight Ms-values, which are required for the preceding terms, wc 

are left with an Mg =*= 0, that is, a hS-term. The fact that the enumera¬ 
tion is complete may be checked as above in (10). 

We may conclude by considering an interesting application of the 

concept of inverted terms to X-ray spectra. The X-ray spectra are 

typical gap spectra (Luckenspektra). For example, the Ka-line can be 
emitted only if a gap has been made in the K-shell which is filled by 

an electron from the Lm-sheil. We therefore expect inverted multi- 
plets in the case of X-ray spectra, or, more accurately, inverted doublets. 

This is actually found to be the case if we 

start from the view of X-ray spectra 
already indicated on p. 240. 

We may then describe the emission of 

Ka as follows : “ the gap which originally 

occurred in the K-shell is transferred to 
the LuT-shell.” Since the energy of the 
atom is greatest in the case of K-ionisation 

(cf. p. 241), in particular greater than if 

the atom had primarily been ionised in the 
Lin-shell, the gap moves in a Ka-emission 

in the sense of decreasing atomic energy, 
similarly to the manner in which, in our 
original mode of expression, the electron 

moves in the transition Lm-^K in the 

sense of decreasing potential energy (Fallenergie). From the point of 
view of the total energy of the electron it would be logical to invert the 

earlier figures (this possibility was hinted at in using the double 

arrows in Fig. (>6, p. 243). If we do this the inverted nature of the 

(Ln Liu)-doublet (L — 1, S — 1, J — i! and J ~ |, respectively) 
becomes directly evident, and likewise that of all the other relativistic 

doublets in the X-ray spectrum. But we shall see in § 5 that in view 

of the coupling conditions that obtain in the X-ray region the con¬ 
verse view is also logical ; in this view we fix our attention on the 
energy of the individual atomic electron. According to Stoner and 

Main-Smith it even gives a deeper insight into the method of arrange¬ 

ment of the electrons. From this point of view, it was natural to 
draw the scheme of X-ray levels as we did earlier, that is, with the 
K-level lowest. 

L*o 

kn 
h 
h 
% 

Fig. 118. —Inverted structure 
of the Rontgen doublets. 
The Lju level with J = $ 
lies lower than the Ln 
level with J = 4, because 
it corresponds to a smaller 
energy of the whole atom. 
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§ 4. Configurations of Several Electrons. The Iron Group and the 
Group of Rare Earths. The Spectra of the Noble Metals compared 
with the Alkali Spectra. The Iron Spectrum 

We proceed to deal in greater detail with the group of equivalent 
(/-electrons and take as an example the 3r/-electrons of the iron group. 
Our results will, of course, apply with very slight changes equally well 
to the palladium and the platinum group (4(/- and l^/-electrons, respec¬ 
tively). But we shall first consider, not the neutral element, but, 
what is simpler, its doubly positive ionin which the two outer S-elec¬ 
trons, which occur as early as in Ca, are removed. By p. 154 the 
number of these ions is, since / 2, 

2(2/ -f 1) 10. 

0a"t+ is the zero element of the group, and has the configuration of the 
inert gases (closed Mu- and Mnj-shell). Zn*'*' is the tenth element 
(closed Miv- and Mv-shell). The middle of the group is representd by 
Mn with d5. We emphasise this middle position by placing strokes 
on both sides of Mn in the following scheme : 

Tabuk 4.‘{ 

Cji S v TJ V <’r Mn J‘V (Jo m Cu Zn 1 ' 

d" dl (P d3 fP fp (P (P d* d10 

2J ->3/2 sf2 4F,/t 6I>o „ . . j 6I)4 4Ku 3F4 hS0 

3P 4P 4P 3p 

The lower row gives the ground-terms that are to be expected 
(we shall deal later with the significance of the lowest row). In Ca' ' 
and Zn+H" we have, by the rule on p. 450, singlet S-terrns. In ScM 
we have an electron outside the closed shell, that is, alkali-character ; 
the term in this case is a 2D-term, and likewise in 0u++ by the Gap 
Law (p. 450). The only difference between these two is in the J-value 
of the ground-level : J — If in Sc'1' and J =- f; in 0u+4~ because the 
Cu' f -structure is inverted here. The case of two (/-electrons that occurs 
in Tiand NiM was treated in detail in the preceding section. Among 
the terms (11) on p. 452 the term 8F is the ground-term, by Hund’s 
rule on p. 449 (greatest 8 and greatest L) ; the ground-level is 3F2 
in TiM (Jmin = 2) and 3F4 in Ni++ (Jmax = 4). 

To treat the remaining elements, which have three and four 
electrons present or missing, we adopt the following argument which 
applies for any /. Suppose we are dealing with an element having 
z equivalent /-electrons. The maximum value of 8 is zj2. Hence 
Mg in the highest magnetic level is also equal to zj2 and all the ms’is 
are equal to l. The s must then all be different. We then obtain 
the greatest value that is possible according to this by forming 

^Fmi == l + ,(l — 1) + • • • (Z — 2 -f- 1) — ^(2/ — z + 1). (1) 
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By equation (8) of the preceding section this is at the same time the 
maximum value of Ml and hence also of L. Thus we find for the ground- 
term in the case of z (present or missing) electrons : 

S -- zj2, L = z/2 (21 ~ z f 1) \ 

Jmf* - I L - S | - z I l - z/2 |, JmM = L f s - z(l - z/2 + 1)J W 

Equation (2) for L denotes an arithmetic series of the second order 
if we regard L as a function of the successive s’s ; hence 

AL — ^Jz~i 

becomes an arithmetic series of the first order. We obtain 

AL r=- l + 1 — S . . . ; (3) 

and hence for l - 2 and 2-1,2, 3, 4, 5 
we have AL — 2, 1, 0, — 1, — 2 

Starting from S (z = 0) we thus get in turn for z — 1, 2 . . .5 the 
term - character 

I), E, F, I), S. 

This confirms all the ground-terms given in Table 43. 
We apply the same equations (2) and (3) to the case / — 3. Here 

we deal with equivalent 4/-eleetrons, which complete the N-shell in 
the grouj) of rare earth#. We again suppose the outer electrons, three 
in number, cf. Table 9 of p. 103, to be ionised away. As we know 
the group of rare earths contains 

2(21 f 1) - 14 

elements. The middle position is held by gadolinium (Z — 04, z — 7)* 
We obtain the following Table 44, which is of fundamental importance 
for the study of paramagnetism : 

Table 44 

La Ce l’r Nd II Sin Eu Gd Tb Dv Ho Er T11 Yb Lu' ^ 

p p P P P p p r P p flO 
/” p2 p* p* 

% **’s /. »h4 4J&/2 6j4 8S7/2 7F„ “H „„ 6J« 4T15 / 2 8H, “■^7/2 
lgo 

By (3) the arithmetic series for AL now becomes for z = J, 2 . . . : 

AL - 3, 2, 1, 0, - 1, - 2, — 3. 

As in Table 43, so at the beginning, middle and end of Table 44 

we have an S-term. This follows directly from the equations (2) for 
z = 21 -1 1. In both tables we have just before the middle a term- 
level whose inner quantum number is zero, which indicates in a certain 
sense the completion of the shell and diamagnetism. Actually one 
of the Stoner sub-groups ends at these points, cf. the following section. 

We return to the iron group and now consider their neutral atoms. 
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For their lowest terms (that is, in the lowest position) we expect, if 
we start out from the two-fold ion dz, the configurations 

(a) d*s\ (b) dz^s 

where d stands for 3d and $ for 4s. The two sets of 4s-electrons already 
occur actually in Ca and hence are also to be anticipated in the fol¬ 
lowing elements as outer-electrons. Whether the 4s-electron or the 
3e?-electron is more tightly bound, that is, whether the absolutely 
lowest term appears under the form (a) or (6), will not be discussed 
here. It is just the rivalry of the 3d-states with the 4s-states that 
favours the elements K. and Ca in the periodic system as compared 
with the iron group. Accordingly we might also consider a third 
possibility, (e) d*+2, but this is less probable and will be passed over 
here. 

To characterise the resulting terms more clearly we remark that 
in (a) s2 forms a closed shell in itself, since two equivalent ^-electrons 
can compound themselves only if their electron-spins are compensated. 
Hence (a) gives the same ground-term as the ion dz. Also, (b) is built 
up on the ground-term of the next ion d2+1 and has the same L as 
the latter (because .•? belongs to / — 0), but an S that differs by i J. 
Hence when an outer electron 4# becomes attached a branching 
(Verzweigung) occurs which expresses itself in the increase or decrease 
of the term-multiplicity. 

We consider the examples 

Fe z — 6 and Or 2 — 4. 

From Table 43 we read off that the ground-term of the divalent 
iron ion is the term 6D. Corresponding to it we have the lower term 
5D of neutral Fe, which is of the type (a). From the next successive 
ion we obtain by branching in the manner just described, 

In this way we have found the three multiplet terms of the iron 
spectrum that lie lowest empirically. Their term-position is also 
in accordance with expectation ; they follow one another, from below 
upwards, in the order 

5D, 5F, 3K. 

This was obtained from the analysis of the multiplets in the Fe- 
spectrum and its Zeeman effects before the arguments here put forward 
could be applied. 

In Cr we have as a ground-term of type (a), from Table 43, also 

a 6D-term. The type (6) is built up, on the 6S-term, according to 
the same table, and gives the branching 

eg^S 
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But experiment shows that the order of sequence of these three 
terms is 

7S, 5S, 6D. 

With this in mind we again consider Table 42 on p. 432. We 
now understand the reason for the branching with respect to the 
term-multiplicities, which increases up to the middle of the group, 
Mn, and then decreases again. But we also understand a certain 
irregularity which occurs with respect to the ground-term just at Cr. 
Beginning from Ca the ground-term (as wo see from the italicised 
words in Table 42) advances continuously to higher multiplicities 
until Mn is reached from which it again goes to lower multiplicities. 
This progressive behaviour would be perfectly regular if Cr had the 
ground-term 5D as we should have expected at first sight. 

In the ground-terms of the Pd-series which is homologous to 
the iron series, we find the arrangements dz ] 2, dzi b<?, dzs2, as previously 
obtained except that in the arc spectra it is dz> that is now almost 
always the configuration that yields the ground-term. In the Pt- 
series dzs2 appears to predominate, as in the Fe-series. The lowest 

terms of the arc spectra of the rare earths may easily be obtained 
from Table 44 if we add three more outer electrons to the lowest 
terms there given for the three-fold ions ; by Table 1) on p. 163 we 
must add two fia-electrons and one or?-electron or else one fis-electron 
and two 5r?-electrons. For further details ef., for example, the book 
by Hund * quoted on p. 44fi. 

Before we consider the iron group further, let us turn our attention 
for a moment to the relation of the noble metals to the alkalies which 
stand in the same vertical column of the periodic system. The noble 
metals follow on the group of ten metals that form the completion 
of the M-shell or the provisional completion of the N- or the O-shell ; 

together with the 8-shell of the preceding elements they form a so- 
called “ 18-shell ” (p. 161). But according to general chemical results 
the completion of the 18-shell is altered by a far less strong binding 
than that of the 8-shell. Whereas the configuration of the alkalies 
that follow a closed 8-shell is unique, we shall expect in the noble 
metals two configurations of the ground-term owing to the rivalry 
between the s- and the d-term, namely : (a) the attachment of the 
newly added ^-electron to the closed configuration d10, (b) the attach¬ 
ment of two ^-electrons to the configuration d9. The resulting term- 

character is 
(a) (d10s)28, (b) (d?s2)*D. 

We see that in (a) we are dealing with a 2S-term, and in (b) with a 

* We there also find the complete tables of all terms that correspond to a 
definite arrangement of equivalent p- or d- electrons. The analogous table of 
equivalent /-electrons has been worked out by R. C. Gibbs, D. T. Wilber and 
H. E. White (Phys. Rev., 09, 790 (1927).) 
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2D-term following from the fact that d10 is a completed shell, and that, 
on the other hand, dd becomes supplemented by a d-electron into a com¬ 
pleted shell, whereas s2 is complete in itself, (a) is the ground-term in 
all noble metals, but (b) does not lie much higher,—in Cu only about 
1200 cm._J. This “ low-lying D-term ” was already remarked upon 
and discussed much earlier. A doublet series of alkali-like terms is 
developed from (a) if the valency-electron is excited. Excitation gives 
rise to quite different kinds of doublet and quartet terms in the case 
of (b). We may understand their branching into doublet- and quartet- 
terms if we start out from the ion d,9s. Its term-character (combina¬ 
tion of a missing ^-electron with an ^'-electron) is 11) or 3D. If, for 
example, we add a p-electron 3D transforms, by vectorial addition of 
/ — 1 and algebraic addition of s ■= i into either 

2P2D2F, 
or 4P4D4F. 

A. C. Shenstone * was the first to disentangle these complicated 
terms in Cu. He also succeeded in explaining a structure in the C11- 
spectrum to which attention had been called long before by Rydberg.f 

Precisely as in the Cu-spectrum, so in the Au-spectrum we find, 
besides alkali-like terms, also similar complicated terms (doublet- and 
quartet-terms). Why are they so little prominent in the Ag-speetrum 
that this spectrum exhibits a much clearer and a much more alkali-like 
character than that of the other two noble metals ? 

We may adduce a spectroscopic and a chemical reason for this. 
The element Pd which precedes Ag has for its lowest level in its arc 
spectrum a hS0-term, which indicates the regular completion of the 
18-shell, the configuration d10. This configuration is remarkably stable, 
not only in the case of Agf but also of neutral Pd. The position is 
different, however, in the case of the elements Ni and Pt, which precede 
the noble metals Cu and Au. Here the completion of the shell is 
associated with a weaker binding ; the term hSo lies, in the case of Ni, 
far above the true ground-term, which in Ni and Pt is not d10 but d8«2.J 
The same result emerges chemically : Ag is typically univalent, Cu 
may be equally well divalent as univalent (cupric and cuprous salts). 
Au may be uni-, di-, or tri-valent.|| Hence in chemical respects silver 
has more similarity with the alkalies than with copper and gold. 

* Phys. Rev., 28, 449 (1926). The quartet terms were recognised simultane¬ 
ously by C. S. Beals by means of the Zeeman effect, Proc. Roy. Sot;., Ill, 168 
(1926). The Cu-spectrum has been investigated in greatest detail by L. A. 
Sommer, Zeits. f. Physik, 39, 711 (1926). 

f Astrophys. Journ., 6, 239 (1897). 
X The ground-term arrangement for Ni is given in the paper : K. Beehert, 

Ann. d. Physik, 77, 638 (1926) ; for Pd : K. Beehert and M. A. Catalan, Zeits. 
f. Physik, 35, 449 (1926) ; for Pt : J. C. McLennan and A. M. Me Lay, Trans. 
Roy. vSoc. Canada, 20, 3 (1926). 

JJ This and similar data from the border-lines of spectroscopy and chemistry 
are given in a paper by H. G. Grimm and A. Sommerfeld, Zeits. f. Physik, 36, 
36 (1926). 
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We shall now conclude our discussion of the iron group. Since in 
Table 43 we have given only the absolutely lowest term of the di¬ 
valent ions, we proceed to search for the other low terms, in doing so, 
we shall maintain for the present the condition for greatest multi¬ 
plicity, S — z/2, r — z + 1. 

We see directly that no further terms of the same multiplicity can 
be added to the terms 6S and 5D, z — 5 and 4 (or (i, respectively). 
Since such terms would necessarily belong to a smaller L, a further 
term is obviously out of the question for 6S (L — 0). But it is easy to 
prove the same for 51). Hy equation (1) the highest Mi,-level of the 
6J)-term arose from the sum 

Ml - Imx - 2+1+0 + -1—2, 

that is, we omit mx — — 2. By omitting instead of this one of the 
numbers — 1, 0, +- 1, +2, we obtain Ml — 1,0, — 1, - 2, that is, 
only those ML-values that we required for the D-torm. 

The case is different with z — 3. We arrived at the 4F-term by 
(1) from the sum 

Ml =-- 2^0 ------ 2 | 1 | 0 3. 

Instead of this, we may also form 

Ml - 2. 1, 0 
1,0, 

if we systematically omit two of the possible wrvalues (it is not neces¬ 
sary first to write down the negative values of the resulting sums). 
We require the first three ML-values for the complete magnetic scheme 
of the already known 4F-term. The last two values constitute a 
P-term, namely a 4P-term, since our argument is concerned only with 
the highest multiplicity in question. This term has been added in the 
lowest row of Table 43 at d3 and <77, as the sole additional term of highest 
multiplicity. In d2 and d6, also, there is only one such additional 
term, namely, by (11) of the preceding section, the term 3P. Thus the 
lowest row of Table 43 is verified. 

As we shall see from the example of the iron spectrum, these few 
ground-terms are in general sufficient to unravel the spectra. But to 
illustrate our method of enumeration further we shall calculate the 
terms with the greatest L and second greatest multiplicity. Following 

on equations (1) and (2) we now write 

S =+ - 1, L ~ l + V + (i - 1) 4 • • - (I - Z +• 2)}. 

For we obtain the greatest L if we use the greatest m, ™ l twice, so 
that the smallest ml becomes greater by one unit than in equation (1). 
Using ml =■= l twice is allowed by Pauli’s Principle, since now not all 
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ms’s are equal to f i but an m8 = — 4 also occurs. Working out the 
arithmetic series { }, we obtain 

L = Z + jjj— (2Z — z + 2) . . . (4) 

and hence 

AL - L, - =- / + 2 - s --- 4 - 5 for / -- 2 . (5) 

Since S becomes meaningless (negative) for z I, we begin with z -- 2 
and calculate with l = 2 from (4) that L — 4 and we obtain succes¬ 
sively from (5) for z ----- 3, 4. 5 that 

AL - 1, 0, - 1. 

Hence we obtain, as a supplement to Table 43, for the terms of second 
highest multiplicity with the greatest L (the multiplicity written 
alongside the term symbols is, of course, obtained from S — z/2 — 1, 
and comes out as r z — 1) : 

d1 d2 d3 d4 | d5 | d« d7 d8 d9 

>G~>F 3H I 4G | 3H 2H"tG * 

The complete term-scheme of the configuration dz has been calculated 
by Hund (loc. tit.). 

We concentrate our attention further on the iron spectrum as the 

most famous example of complex-structures and as the most used 
comparison spectrum. We . already know its ground-terms from 
p. 456. We repeat them here in a more complete form : 

Fe+4 3d6 

Fe4 3d64tS 

Fe 3d«4«2 

The greater completeness consists in our having taken into account in 
the configuration 3d7 of Fe+ besides the lowest term,* 4F, also the 
second lowest term 4P (cf. Table 43), from which the terms 5P and 3P 
follow by the addition of an ^-electron (unchanged L, multiplicity 

changed by ±1), as described earlier. All these ground-terms are 
“ even terms ” in the sense of footnote on p. 444. Hence they may 

* The ground-torm of Fe + is the term 6D(d6,y). In an analogous way the 
other first spark spectra of the Fe-series exhibit as ground-terms mostly dzs or 
dzfl. The arrangement dz~x82 is less stable here. The two-fold ions of the 
Fe-series all have d* as the ground-term. This means that as the nuclear charge 
increases the configurations of the “ideal system” of the elements (cf. p. 156) be¬ 
come more st able ; we obtain the natural order of sequence of the building in 
of electrons. The same conclusion was drawn on p. 415 from the “ stripped 
spectra.” In our example 3d comes first when the nuclear charge is high ; 
4«-orbits occur only when the 3d-shell is fully occupied. The same statements 
must hold qualitatively for the spark spectra of the Pd- and the Pt-series, of 
which only a part has hitherto been analysed. For further details see, for ex¬ 
ample, the report by O. Laporte quoted on p. 444. 

5I) 
,—*■— 

6D4I) 3d7 4p 4p 

77 3d74,s“ j 77 5 pap 
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combine only with “ odd ’* terms. The lowest and strongest odd 
terms will be obtained il‘ we replace an ^-electron by a p-electron in the 
ground-terms, so that becomes increased by 1 or, as we may say 
more simply, if we add a 4/>-electron to the different ground-configura¬ 
tions of Fe+. In this process L changes to L + 1, Lor L 1, and 8 to 

S ± 1 : 

From 3d84s6I) we obtain 7* 5F, 7* 5D, 
„ 3d64s4D „ 5’ 3F, 
„ 3d74F „ '*> 3G, 5>3F, 
„ 3d74P „ „ *>3D, 5,3Pj 

5’ sp]( ’onfig. &/®4*4;p. 

5’ 3g |('onfig. :UHp. 

Finally, if we add a 5s-electron to 3d64s and to 3d7 we obtain a 
third layer of terms which apparently form the second series term of 
the arrangement 3d64«v2 and 3d74.s\ respectively : 

From 3d64#*D we obtain 7> 5D | 
„ MHs*\) „ „ r^3I)| 

,, 3 d74F „ 5*3F\ 
„ 3d74P „ „ 5>3P| 

Config. 3dH*5<s\ 

Con fig. 3d75s. 

These term-groups have actually, for the most part, been shown to 
exist, as Fig. 1 19, taken from Hund, shows. The terms that belong to 

F10. 119.—Scheme of levels of the iron spectrum. The scale of term-values 
is numbered upwards from the lowest term, whose magnitude is arbitrarily 
put equal to zero. Terms of similar electronic arrangement are connected 
by dotted linos. TJio electronic arrangement is given on the right, together 
with the spark term which goes to form the arc terms lying on the respective 
vertical lines. 

the same configuration have been connected together. We see how 
the ground-terms are overlapped by a layer of higher terms, which 
arise from them by the addition of a 4p- or a 5s-electron. The terms 
of the same configuration are at approximately the same distance 
from the zero-level. This is plausible, since they do not differ in their 
structure but only in the way in which their s-, p-, d-elements are con¬ 
jointly assigned to different L- and S-values. Terms bearing the same 
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symbol, in particular r,D- and 5 F-terms, arise several times from dif¬ 
ferent origins and hence are also at somewhat different levels. All 
tliesc terms are ultimately built lip on the 6J)-state of the configuration 
d6 in Table 43. The triplet-states (cf. the table on p. 400) have not 
even been required to explain the most important lines of the iron arc. 

Our mode of derivation brings out clearly the origin of the septet- 
system, whose existence had already been noted in Table 42 on p. 432. 
The reason that it is not represented in the ground-terms is to be found 
in Pauli’s Principle. But in the higher layers Pauli’s Principle loses 
face on account of the addition of the non-equivalent 4p- or 5^-electron. 

The occurrence of the terms with a large L, for example, of F- and 
(1-terms Bergmann ” and tb ultra-Bergmann ” terms) here has quite 
a different meaning than with the alkalies. With the latter it denoted 
high excitation of the radiating electron and hence occurred relatively 
rarely. In the ease of iron, however, it signifies only the successive 
addition of several relatively small //s. The elementary states from 
which such terms result are not highly excited, but are simple p- 
and, in particular, (/-states ; the (/-states occur on account of the position 
of the iron group in the periodic system. The contrast with the alkalies 
comes out in the following point. Whereas in the atoms K and Ca, 
which stand in the same horizontal row, the normal (“ unaccented ”) 
D-terms are only very little resolved and the F-terms not at all (experi¬ 
mentally), the F- and the G-terms of iron exhibit resolutions of the 
same magnitude as the P-terms. The reason is obviously that a high 
L here no longer denotes weak coupling with the atomic core. We 
shall deal in greater detail in § 10 with the magnitude of the multiplet 
resolutions. 

The rich abundance of lines in the iron spectrum is caused not only 
by the great number of the terms, but also by the high multiplicities 
(quintet-, septet-system). By combining and inter-combining these 
multiplicities configurations with a considerable number of lines result. 
We shall illustrate this at the end by a number of examples which may 
also serve as a model for the characteristic manifested in other com¬ 
plex spectra. At the same time, those examples will prepare the ground 
qualitatively for studying the in tensity-distribution in multiplet lines, 
the quantitative aspect of which will occupy our attention in § 9. 

The most important system in the iron, spectrum is the quintet- 
system, because it contains the ground-term.* Its combinations (SP), 
(PD), (DF), (FG) . . . contain, respectively, 

3, 9, 12, 12, . . . 

* For literature dealing with the Fe-spectrum we may quote : F. M. Walters, 
Journ. Opt. Soc. Amer., 8, 245 (1924) ; M. A. Catalan, Nature, 113, 889 (1924) ; 
O. Laporto, Zeits. f. Physik, 23, 135; 26, 1 (1924); W. F. Meggers, Astrophys. 
Journ., 60, 60 (1924); O. Laporte, Proc. Wash. Nat. Ac., 12, 496 (1926); 
M. A. Catalan, An. Soc. Esp. Fis. y Quim., 22, 398 (1924) ; C. E. Moore and 
H. N. Russell, Astrophys. Journ., 68, 151 (1928) ; M. A. Catal&n, An. Soc. Esp. 
Fis. y Quim., 28, 1239 (1930). 
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components, as we see from the scheme of inner quantum numbers 
given on p. 427. 

The constancy of the number of components 12 after the combina¬ 
tion (DF) denotes that the permanent number of levels 5 has been 
reached at the D-term. We show here the 12-component multiplet 
(DF) formed from the ground-term D of the iron spectrum (electron 
arrangement 3dHs2) and the lowest F-term of the higher term-group 
(arrangement 3dHsip). The diagonal terms are the strongest, since 
they correspond to the transition J -> J — 1, which runs parallel with 
the transition L -> L — 1 (cf. our qualitative intensity rule on p. 422). 
Inside the diagonals the intensities decrease from left above to the right 
below. Cf. the numbers written in brackets above the wave-numbers 
(these numbers have been estimated by King) ; R and r denote reversal 
owing to absorption, R denoting complete and r partial self-reversion. 
Starting from the diagonal, the intensities graduate themselves to the 
right and downwards, corresponding to the transitions J J and 

6 F 

Av 292*29 227*86 164*89 106*77 

<300 R) (100 R) (20 r) 
26,874*53 27,166*82 27,394*67 

4 1 5*92 (200 it) (100 R) (20 r) 

26,750*88 26,978*76 27,143*66 
288*08 (150 R) (100 r) (20r) 

26,690*69 26,855*57 26,962*43 
184*11 (125 R) (so R) 

26,671*45 26,778*22 
89*91 (80 li) 

26,688*31 

J —> J -\- 1. We have not written down the wave-lengths in our 
scheme. They range from A 3fl49 to A —- 3748 A. The wave- 
number differences Av have been written down above and on the 
left; in general each Av occurs twice ; the agreement in the Ar's is 
excellent, as we see from the scheme ; the fluctuations do not exceed 
the errors of observation. Our scheme is, so to speak, a continuation 

to the left above of the (pd)-triplet scheme on p. 425. 
The general occurrence of self-reversed lines indicates that the 

ground-state of the iron atom participates in this multiplet. This state 
must, of course, be the final state of the emission process. If I) were 
a regular term the r’s would have to increase within a vertical of our 
scheme from above downwards. Since in reality they decrease, we 
must conclude that the D-term is inverted. The same holds of the 
F-term, since the v’s increase from left to right within the horizontal 
rows, and the same holds for all terms of the iron spectrum, as already 
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emphasised on p. 451. In particular, we remark that the absolutely 
lowest energy level of the iron spectrum is our I)4-level with J -- 4 ; 
this will be found to be important when we calculate the number of 
magnetons in the Fe-atom. 

The combination (FG), with likewise 12 components, has the same 

structure as (DF). 
The inter-combination r,D 7D has the same structure as D6F6. 

For the septet-term is not only, like the quintet F-term, a live-fold 
term but, by p. 427, it also has the same inner quanta J — 5, 4, 3, 2, 1. 
In virtue of these same J’s we therefore get the same combinations 
as in our scheme (6D 5F), but with one difference : it is not the inten¬ 
sities of the diagonal series that is emphasised but those of the parallel 
line on the right, because this belongs to the transition J -> J and 
because we are now dealing with a transition L -> L. 

We consider as the next multiplet-type the combination (5D 6D) 
between the ground-term I) of the quintet system and a quintet 
D-term of the higher term group (arrangement 3d64a4p) which we 
distinguish by drawing a bar over the ground-term. This combination 
contains one of the strongest lines of the whole iron spectrum, 

A 38(H) A. 

J 

Av 

' 4 

0 
415-96 

0 
288-10 

6D « 2 

18417 
1 

89-92 
.0 

5I> 

3 2 1 
■'i 

0 

240*20 199-53 139*73 71-12 

25,90000 

25,484 03 

26,340-19 

25,724-24 

25,436 14 

25,923*77 

25,635-67 

25,451-45 

25,775-35 

25,591-23 

25,501-31 

25,662-35 

The diagonal members of the scheme which correspond to the 
transition J -> J are the strongest ; the absolutely strongest compo¬ 
nent is the line A — 3860 A, v = 25,900, already mentioned. If 
we cover up the two upper rows and the two rows on the left, we 
get the triplet scheme of p. 425. As in that scheme so here the 
absence of the combination 0 -> 0 in the right-hand bottom corner 
is characteristic. 

(5F 5F) distinguishes itself from the combination (6D 6D) essentially 
only in not being without the transition 1 -> 1 between the smallest 
inner quantum numbers of both terms. Consequently the multiplet 
(5F 6F) consists of 13 and not, like (5D5D), of 12 components. These 
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13 components resolve into groups of 2 + 3 f 3 -f 3 -f 2 lines. But 
for the eye here as everywhere in the Fe-multiplets, no such separation 
into groups is apparent ; this, of course, renders it more difficult to 
recognise them. This is evident in the following graphical repre¬ 
sentation (Fig. 120). 

The length of the lines gives an approximate measure of their 
intensities. The arraying into the order of the Av’s of the higher 
F-term is explained at the foot of 
the diagram. The sequence of five 
lines that begins with the most in¬ 
tense line and decreases towards the 
right-hand side corresponds to the 
diagonal column of the scheme ; the 
other lines partially overlap with 
this sequence. The combination 
(7D 7D) in the septet system, 
A — 4187 to 4299 A. has the same 
structure as (5F 6F), since the (five¬ 
fold) 7D-term has the same J-values 
as the 6F-term. In spite of this 
we shall illustrate the combination 
(7D 7D) by an example, because it exhibits a striking anomaly in respect 
of intensity. For this we choose (see the following table) the combina¬ 
tion between the 7D-term of the middle term-group 3dHs4p and the 
7D-tcrm of the arrangement 3d64s5s, which represents the second 
series term to the ground-term 3d64s2(5D). 

^. 448.4 

•- -448.4«.-351.4 

b.351 — 4** • • * 257—4 
I*- - • 25V --4*- *16**4 

I*- - 158-H 

Fiu. 120. 

! 7k> 
A . 

J 
r \ 
5 4 3 2 1 

Av 347*48 271*31 198 91 130*42 

r 5 23,464*90 23,812*39 
211-58 

4 23,253*33 23,600*81 23,872*11 
194*58 

7D 3 23,406*22 23,677*54 23,876*44 
155*46 

2 23,522*07 (23,720*99) 23,851*42 

107*15 

. 1 23,613*85 23,744*26 

The line which corresponds to the combination (7D27D2), to which 
the wave-number 23,720*99 cm. "1 corresponds, has not been observed 
although it belongs to the transitions AJ = 0, which should be the 
strongest in this triplet, for which AL = 0, according to our qualita¬ 
tive intensity rule. In § 9 we shall be able to prove by means of a 

vol. 1.—30 
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more rigorous intensity rule, that the line *I)a7J)2 is forbidden theoreti¬ 
cally ; its intensity becomes exactly equal to zero. 

In the mplcl-systmis combinations (7S7P), (7P71)), (71)7F), (7F7G) . . . 
have respectively 

3, 9, 15, 18, . . . 

components, as may easily be read off from the septet scheme of the 
inner quanta on p. 427. In Fig. 121 vve show the combination (7D7F) 
which is particularly rich in lines. According as the multiplet is 
arrayed according to the term 7D or 7F it divides into groups of 

3 | 3 + 3 + 3 + 3 - 15 
or of 1 + 2 + 3 + 3 + 3 + 2 + 1 = 15 

lines. Our little scheme at the foot of the figure represents the first 
type of resolution. 

4- 3 2 1 0 

52 2b 

Fig. 121. Fig. 122. - lutercombinat-ion between quintet- 
aiul sop tot-systems (61)7F). Fu-spoctrum, 
A -- 4826 to 4490 A. 

The combination (5D 7F) between the quintet- and the septet- 
system is interesting ; we shall describe it symbolically by means 

of a point-scheme (Fig. 122). It consists of 1+2 + 3+3 +3+1 = 13 
lines ; the level J =■= 6 of the 7F-term does not combine at all and the 
combination 0 -> 0 is forbidden. 

As a last example we give, also in the form of a point-scheme, 
an inter-combination between a quintet- and a triplet-system, namely 
5F 3G, which consists of strong lines (Fig. 123). As in the above com¬ 
bination (5D 7F) one of the term-levels, namely 6FX, is not capable 
of combining at all. The group consists of 2 + 3 + 3 = 8 components. 

In Fig. 124 we show a section out of the atlas of the iron spectrum 
prepared by Fabry and Buisson ; the region is from A = 3600 to 
3900 A and the connected multiplets are written below. We observe 
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how peculiarly they overlap and how little they appear separated 
from each other at a Hrst glance. The two multiplets (&J) 5F) and 
5D M), whose number-schemes have 
heen given above, lie within the 
spectral region shown. 

Tilt*, figure shows that in this 
region all the strong iron lines have 
heen ordered into multiplets; the 
same applies to the other parts of 
the spectrum. 

It has been found possible to 
reduce to order not only the iron 
spectrum but also a large number of 
other spectra.* The results obtained 
form the sure foundation of the 
theoretical atomic model. We do not 
go too far when we assert that the 
researches on multiplets, which has 

Fig. 123.—Intercombination be¬ 
tween quintet- and triplet - 
systems (6F3(4). Fe-spee- 
trum, A 3407 to 2570 A. 

been developed to an astounding degree1 of perfection in the last decade, 
lias not only been of importance for getting an insight into atomic 
structure, but together with the study of the Zeeman effect it has 

Fig. 124.—Part of the iron spectrum taken from Fabry and Buisson’s atlas. 
The numbers denote wave-lengths in A. (37, for example, denotos 3700 A.) 
Below are somo of the Fo multiplets bracketed together. 

formed the framework for the discovery of the spinning electron and 
the subsequent structure of relativistic wave-mechanics. 

§ 5. Other Couplings 

The Russell-Saunders coupling of quantum vectors, which we have 
treated in the preceding sections, represents only one of the possible 

* References are given in the report by Laporte quoted on p. 444. 
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limiting cases of real coupling conditions. Actually we assumed that 
the //s of the individual electrons wen1 to compound into a resultant 
L, the .s/s to a resultant S. By vectorial addition of L and 8 we 
finally obtained J, the quantum number of the total moment of 
momentum. This clearly denotes that there is a strong (magnetic) 
interaction between the Z/s and likewise between the s/s among 
themselves. To a first-approximation the interaction or mutual 
action (Z^sJ does not come into consideration at all ; if we were to 
neglect it altogether the moment of momentum vectors L and S would 
be strictly constant in magnitude and direction. For a second ap¬ 
proximation we take into account the mutual action (L, 8) which we 
suppose to be compounded of the individual actions of the kind just 
mentioned, namely of the interactions (Z.^). This causes the L and 
8 to perform a precession about the fixed direction of J, whose velocity 
is, by our assumptions, small compared with the processional velocity 
of the //s about L and the s/s about 8. 

By means of the Correspondence Principle these statements may 
easily be translated into the language of term schemes (cf. the analogous 
remarks in Chap. VI (§ 5, p. 337)). We suppose a definite configuration 
of electrons to be given and the corresponding L, 8 to be written down. 
Then the rapid precession about L and 8, respectively, denotes great 
intervals between terms having different L s and S's, respectively. In 
the same way we infer from the slow motion about J that the distances 
between levels having different J’s (L and 8 being kept fixed) must be 
small compared with the L- and 8-intervals just mentioned. In other 
words, we obtain a clear separation of the terms according to L and 8 ; 
the terms (L1? S2) are separated from (L2, Sx), (L1? S2), (L2> S2), and so 
forth. Every term L, 8 is then still further sub-divided into levels 
having different J’s. 

This type of term arrangement holds, as we know from experiment, 
for the deep terms of most known spectra ; it is therefore called the 
normal term arrangement, and the coupling on which it is based is called 

the Russell-Saunders coupling and also the normal coupling. 
Departures from the normal coupling therefore certainly occur if 

the J-resolutions become comparable with the L- and S-resolutions. 

This is the case with the heavy atoms and in the last vertical columns 
of the periodic system (for example, Ni, Pd, Pt). The J-resolutions 
there increase enormously (up to several thousand cm.”1). In the 
deeper terms of the Fe-spectrum we still essentially use the Russell- 
Saunders coupling, whereas in Ni even the deeper terms overlap 
apparently quite irregularly. 

In the vector model this denotes that the mutual action (L8) 
becomes of the same order of magnitude as that between the Z/s and 
the */s respectively. The moments of momentum L, 8 may then no 
longer be regarded to a first approximation as fixed and constant; they 
lose their significance because the Z/s and */s will compound in some 
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other way. On the other hand, the total moment of momentum J of 
all the electrons remains constant now as before, since the law of 
sectorial areas is generally applicable in a closed mechanical system : 
in the case of general coupling conditions only J retains its mechanical 
significance. Actually it has always been possible, even in the case of 
the most complicated spectra, to ascribe to the term-levels J-values 
for which the selection rule AJ 0, dz 1 holds. 

Among these general coupling schemes there are limiting cases for 
which certain of the mutual actions may become small compared with 
the remaining ones. The Russell-Saunders coupling itself is one of 
these limiting cases. We may represent it by the symbol 

Wxh ■ • • )('V'2 • • • )] - [LSJ ~ J- • • (1) 

Another limiting case may be illustrated by a simple example. 
We consider the configuration [np, /v/«s], that is, lx = 1, l2 =■= 0. In the 
limiting case of normal coupling we obtain the terms 3* *P from it. If 
we now keep n fixed and allow n' to increase a series of terms results ; 
the .s’-electron becomes more and more removed from the atomic core. 
For sufficiently great values of n the two electrons will act only weakly 
on one another ; to a first approximation we may regard them as 
independent of one another so that the Ifs, sfs of each electron for 
itself will compound into a resultant jt. To a second degree of approxi¬ 
mation jx and j2 together form the resultant J. The vector j here 
clearly denotes the total moment of momentum of the individual 
electron. The symbolic appearance of this new kind * of coupling— 
the so-called (./?)-coupling, written for several electrons, is as follows : 

NWtto) • • • J * ■ ■ 1 — J. • • (2) 

It is generally characterised by having the electrons independent of 
one another to a first degree of approximation. 

In our example only the first electron remains when the second 
electron has been completely removed from the atom, that is, the term 
(lxsx) “ //\ ; this is, for lx = 1, sx ~ i, the term 2P of the spark 
spectrum. Hence it follows that in the neighbourhood of the series 
limit the arc terms divide into groups whose distance apart is given in 
order of magnitude by the resolutions of that spark-term towards which 
the series converges. In our example two groups will form whose 
distance apart is approximately equal to the resolution 2Pj — 2Pg of 
the spark-term. It is also easily possible to specify which J-levels of 
the arc terms 8> JP converge to 2P^ and which converge to 2P^. We 
have,;*! — J, i! and j2 — i (on account of l2 — 0). By adding jx and j2 
vectoriallv in accordance with (2) we obtain 

from jx jw J(2Pj) : J = l :[: A ~ P 

ji =-- |(*P|) : *T - 2 ± 4 2. 1 > ' * ' 
* There are also other conceivable limiting eases such as [{(lls1)l2)s2] --- 

l( j\h)8'i\ = Like the coupling (2) they also lead to a grouping according to 
the levels )L of the spark -term (cf. below in the text). They do not appear tq 

occur in the spectra. 



470 Chapter VIII. The Complex Structure of the Series Terms 

If we assume that the Russell-Saunders coupling holds for the first 
terms of our series fnp, ris], as is the case in most spectra, the levels 
»Pt> lf n lie close together, and 1P1 lies at a greater distance away. At 
the series limit, however, the terms become torn apart by (3), their 
J-values remaining unchanged. 3P2 moves over to a limit other than 
that to which 3P0 goes ; the former goes to 2Pj-, the latter to 2P^ (of. 
Fig. 125). We can say nothing about 3P1 from (3), because J - 1 

occurs twice and at different limits. 
We shall not enter into the question of the unique allocation of the 

L- and 8-values to the series limits, that is, into the question as to 
which series limits the Russell-Saunders terms of the beginning of the 

series converge.* 
Equation (3) is an illustration of the rule that the J-values that 

belong to a given configuration nv l, must be the same for all couplings, 
corresponding to the adiabatic 
invariance of J. For we found 
in the ease of the jiy-coupling 
that J 2, 1, 1, 0: these are 
the same values as are obtained 
according to the Russell-Saunders 
coupling. For in the latter case 

we have to compound L (in our 
example, L — 1) with S (here - 0 
and 1) and so obtain J = 2, 1,0 
for the 3P-term, and J — 1 for 
the ’P-term. 

Our example \np, ?i's] holds 
for, say, an element of the fourth 
vertical column. In the case of 
Si, for example, we have the 

ground-term arrangement 3S23p2 
(outside the neon shell). If we place one of the p-electrons in the 
4$-orbit, we obtain the first member of our series fup, ris], which 
would here be called [3p, ris]. 

As an opposite example to this we shall consider the series [?w rip], 
such as occurs in the alkaline earths, as in Ca. As in the previous 
example wo have, for the Russell-Saunders coupling (that is, for the 
first members of the series), the terms 3P, 1P. But now the ^-electron 

moves and the series converges to the state ns of the ion (4s in the case 
of Ca) ; this is the 2S-term of the spark spectrum. It is simple ; 
we obtain no grouping in various levels, all four levels of 3P JP con¬ 
verge to the same limit. It corresponds with this in the model that, 
on account of /, — 0, no mutual action (/r<q) occurs. This simple 

* It may be answered by means of wave-mechanics or by the methods de¬ 
veloped by Hund from the vector model, Zeits. f. Physik, 52, 601 (1928). 

V- 
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3Pr- 
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Fig. 125.— The terms of the electronic 
arrangement npn's (n' variable, n 
fixed) according to the Russell- 
Saunders coupling (Fig. a) and ac¬ 
cording to the (jj)-coupling (series 
limit, Fig. b) shown diagrammati¬ 
c-ally. Tn the latter case the dis¬ 
tance apart of tho two groups of 
terms is about the samo as the 
doublet separation of the arrange¬ 
ment np(2P) of the spark spectrum. 
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type of series, where all terms of a configuration move to the same limit, 
is clearly always obtained when the series limit corresponds to a 
simple term of the spark spectrum, in4 particular, to an S-term. All 
“ non-displaced ” terms of the alkaline earths and all terms of the 
alkalies belong here. For the latter converge towards the ]S0-torm * 
of the closed inert gas shell of the alkali-ion. The “ displaced terms ’’ 
of Oa, Sr, Ba (configuration [■nd, n’x] and so forth) move towards 
the double 2D-terms of the spark spectrum (cf. Ch. VII, § 7), that is, 
belong to the more general type of series terms first discussed. 

Numerous other examples of terms with multiple series limits 
may be taken from the spectra treated in previous sections. Let 
us choose, say, the series Mean's of the iron spectrum. All Fo-terms 
of this arrangement that are built up on the Fe+-term 6l)(3d64s) 
converge towards this five-fold term 6D of Fe1. The deepest term 
that belongs to these series terms is the ground-term 5D of the iron 
spectrum, and also the terms 7*5I) of the highest layer of terms in Fig. 
119. The terms of the arrangement 3dH$n']> also go to the same 
five-fold limit 6D, in so far as they are built up on 61). These are the 
terms 7’5F, 7>5I), 7»6P that lie lowest in the middle layer of terms in 

Fig. 119. 
Thus in complicated spectra we obtain theoretically a great number 

of series limits. In Chapter VIT, § 7, we have already become ac¬ 
quainted with two cases where the series may also be followed exactly 
empirically. The one case was that just mentioned of the kk dis¬ 
placed ” terms of the alkaline earths, the second that of the neon 
spectrum. On the other hand, series are only incompletely known in the 
case of spectra described as ,serienloa (devoid of series), for example, in 
the Fe-group.f They consist for the most part of two or three terms, 
so that the predictions of the theory cannot be accurately tested by 

them. 
Historically the neon-spectrum was the first in which series of 

terms with different limits were found.J The ground-term of the 
spectrum, which corresponds to the closed shell 2p6, is, on account 
of Pauli’s Principle, a (simple) term J — 0 ; if the coupling were normal 
this term would be denoted by hS0. But normal coupling does cer¬ 
tainly not occur in most terms of the Ne-spectrum. Their resolutions 
are so great that the terms with different L's and S\s overlay) very 
largely. If we take one of the ^-electrons out of the shell 2p6 and 
transport it to higher orbits, all the series that result in this way 
clearly converge to the configuration 2p5, which corresponds to a doublet 
P-term. It is double, that is, the Ne arc-terms have twro series limits, 

* Cf. the remarks 011 page 472. 
t In the iron-spectrum series were first given by H. Oieseler and W. Grotrian 

(Zeits. f. Physik, 26,165 (1924)). For other elements see H. N. Russell, Astrophys. 

Journ., 66, 233 (1927). 
{ F. Paschen, cf. the reference in Chap. VII, § 7. 
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whose interval is equal to the doublet resolution of this 2P-term of 
Ne4* or, as we showed on p. 404, equal to the difference Ln Lm of the 
X-ray spectrum of neon ; in fact, 2P$ corresponds to the level Ln 
and 2P% to the level Lin* 

We now consider the higher terms of Ne individually. The ar¬ 
rangement 2p53s gives J = 2, 1, ], 0 (cf. our first example in this 
section). In the case of normal coupling these levels would have to 
he denoted by 3P 1V. From energy considerations they are to be 
expected as the first group above the ground-level 2p6 ; the ground- 
term itself lies extraordinarily low as in the case of all inert gases, 
and this is the spectroscopic expression for the great chemical stability 
(inactivity) of the inert gases. Ground-term combinations are thus 
to be expected only in the far ultra-violet. In an investigation in 
the visible region, such as was undertaken by Paschen, one obtains 
as the apparently lowest (deepest) terms the four levels just mentioned 
of the arrangement 2/)53s. Actually, Paschen found four terms that 
were lowest, which he called s-terms (s2, s3, iV4, s5). They form the 
beginning of a series of four terms which converge to two different 
series limits, as should be, according to our argument. The combina¬ 
tions of the four “ 5-terms ” found by Paschen may be explained by 
means of the four inner quantum numbers given above. 

We expect the next highest groups of neon-terms from the ar¬ 
rangement 2p53p ; this forms the second series member of the ground- 
term arrangement 2p* and gives J = 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, that 
is, ten levels. With normal coupling they would be called 3> JD 
3, ip 3,3S. Four of them, namely J — 2, 1, 1, 0 go theoretically 
to 2P^, the other six to 2P-j. The proof is fully analogous to the dis¬ 
cussion given in connection with equation (3), p. 469. Experimentally 

Paschen discovered as the second term-group exactly ten levels (his 
^-terms, px top10), to which the same inner quanta are to be assigned 
as were just now specified and which distribute themselves in the 
manner given over the two series limits of Ne. Further terms would 
result from 2p53d, but we shall content ourselves with the indications 
so far given. 

We have still to make some remarks about the coupling conditions 
in the X-ray spectra. If the atomic number Z of the element is 
not too small the high nuclear charge certainly predominates in the 
interior of the atom over the mutual action between the electrons. 
To a first approximation we may regard the electrons as independent 
of each other, so that we have (jj)-couplings. The vectors /a, of 
each electron form a resultant j4 in each individual case. Hence 
we may order the inner electrons within a shell of given n, l ac¬ 
cording to the ;’s because j now has a real physical meaning in the 
model. In the Russell-JSaunders coupling, however, we should be 
able to order the individual electrons only according to n, l because 

the l/s and s/s do not combine into j+is in that case. 
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In the shell n, / we have j = l + | or Z — One part of the 

electrons has j = / f the other part j = Z — J. The number in 

each case is determined by Pauli’s Principle. To fix an electron 
quite definitely we require four quantum numbers ; in our case the 

numbers having a physical meaning are n, /, j. To do away with 

the direction degeneracy we imagine a magnetic field superimposed, 

which may not, however, be so great as to disturb the mutual action 

(Is) of the individual electrons, as otherwise j would lose its meaning. 

We call the projection of j on the field direction ; our four quantum 
numbers are then n, Z, j, m,}. In virtue of directional quantising there 

are (2j 1) values of the quantum number for each n l j ; that is, 

by Pauli’s Principle, there are (2j pi) electrons. Accordingly, for 
j / —- \ we have 21 electrons and for j = Z -f 1 we have 21 -f 2. 

The shell n, l may he divided into two sub-groups with the quantum 

numbers j ~ l and the occupation numbers (Besetznngszahlen) 21 -f 2 

and 21, respectively. This sub-division was first deduced from X-ray 

spectra by Stoner * and Main Smith.| 
The total occupation number of the shell n. I comes out, of 

course, as (21 -f 2) -) 21 — 41 \ 2 ~ 2(2/ 4 1)> as ^as already been 
found on p. 154 on the basis of another method of counting quantum 

states. 
The electrons with j — / — l are more tightly bound than those with 

j -- l -j- We may derive this directly from the position of the 

alkali levels, where the term with j l — A is the lower (deeper) 

one. The reason that we may here and in general take over the 

(jj)'coupling from the discussion on the alkalies is simply because on 

account of the vanishingly small mutual action each electron behaves 
like an alkali-electron. From the point of view of the individual electron 

the position of the energy-levels is regular, as in the alkalies. This 

does not contradict our statement on p. 453 that the X-ray terms, 

regarded from, the point of view of the whole atom, are inverted. Actually 
in order to produce the observed X-ray spectra it is necessary to make* 

a gap in one of Stoner’s sub-groups. For the gap in j - l -- we 

require more energy than for j ~ Z + J. The total energy of the atom 

in the first case becomes greater than in the second case and the 

position of the energy-levels for the whole atom bt comes the reverse 

of that for the individual electron. 
For lighter elements, as say, Li, and for X-ray levels, which 

arise in the outermost shells of the atom the (^-coupling may no 

longer remain valid, owing to the decreasing nuclear charge and the 

increased screening. 

* E. C. Stoner, Phil. Mag., 48, 719 (1924). 
f J. D. Main Smith, Chemistry and Atomic Structure, D. van Nontrand Co., 

New York, 1924, 
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§ 6. Anomalous Zeeman Effect of the Multiplets 

The normal Zeeman effect occurs only in the case of singlet lines 
(Oh. 6, § 4) ; in the case of multiple lines and even in those of hydrogen 
(Oh. 6, § 5) anomalous Zeeman effects occur. Anomalous resolutions 

intruded themselves even in the first discovery of the phenomenon 
(1896). What Zeeman first observed was a broadening of the image 
of the D-lines observed in the spectroscope, combined with a char¬ 
acteristic polarisation of the light at the broadened edges. As we 
saw in Figs. 87 and 88, p. 336, the Define gives a quartet, the In¬ 
line a sextet of lines polarised partly in the parallel and partly in the 
perpendicular direction. Zeeman was able to prove the polarisation 
of the outer edge of the broadening in this complicated line con¬ 
figuration only because in this case as in that of the normal triplet 
the perpendicularly polarised components arc situated more towards 
the outside, the parallel polarised components are situated more 
towards the middle of the resolved pattern. Whereas the deviations 
from the theory of the normal Zeeman effect at first appeared dis¬ 
couraging for quantitative investigation, it is now precisely these 

deviations that are of greatest interest. 
Historically there are two rules that opened up the way to the 

anomalous Zeeman effect, Preston’s rule * and Bunge’s rule.f 
Preston’s rule (cf. also p. 334) states that related lines, that is, 

lines which are composed of terms of the same kind have the same 
Zeeman effect. Terms of the same kind are those which have the 
same multiplicity and the same quantum numbers for L and J. The 

Zeeman type is, however, independent of the principal quantum 
number n and the chemical nature of the element. 

Bunge’s rule states that the line resolutions that occur in the 

anomalous Zeeman effects are, if measured in wave-numbers (not 
in wave-lengths) rational multiples of the normal Lorentz resolution, 

Jv ~Avnorm . . . . (1) 

where r is a number which we shall call the Runge denominator. 
Let us consider from the point of view of these two rules the 

resolution patterns of the type represented by the D-lines, Figs. 87 
and 88, in the way in which they were analysed almost simultaneously 
in 1898 by Zeeman and Cornu. The distances of the components 
of the resolution from the original line are all multiples of | of the 
normal Lorentz resolution (Tables 33 and 34 on p. 335). The “Runge 
denominator ” is equal to 3. The intensity, like the line-distribution, 
is, if perturbations are not acting (see § 7), symmetrical with regard 
to the middle. 

* Cf. Kayser’s Handbuch, 2, 619. 
f Phys. Zeits., 8, 232 (1907) ; enunciated on the basis of the particularly 

abundant Zeeman types of neon. 
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As is demanded by Preston’s rule this type of resolution-pattern 
occurs not only in the D-lines but also in all combinations (SP) and 
(PS) in the Principal Series and in the second Subordinate Series 
of the alkalies and the noble metals. It also characterises the doublet 
terms of similar composition in the earths, Al, Ga, In, Tl, and not these 
alone but also the spark spectra of the alkaline earths and of the 
elements Zn, Cd, Hg, and so forth. 

Fig. 12(> represents as the second most important ease the 
resolution-pattern of the II N.S. of the triplet-systems, as was 
first observed by Runge and Pasehen * in the ease of Hg. The 
wave-lengths written down on the right-hand side refer to Hg ; the 
highest is the “ green mercury line.” All the intervals between the 
components and the original lines are half-integral multiples of the 
normal resolution Ac ; the Runge denominator is equal to 2 in this 
case. 

The same resolution-pattern occurs not only in the triplet lines 
of Hg shown in the figure but also in all similarly constructed com- 

T • < J T X*5461,(JP/S7) 

X~43S8,(3P1 sS7) 
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\=4047.{%%) 

2 "d 

'norm. 

Original Line 

Pig. 126. Anomalous Zoeman affect of the combination 3P8S (Hg). 

binations of Hg, Cd, Zn, as well as in the alkaline earths, and also in 
the spark spectra of the earths and so forth. A large group of ap¬ 
parent contradictions to Preston's rule is explained by the Paschen- 

Back effect (§7). 
The most general point of view in the theory of spectra is that 

opened up by the Combination Principle. This must doubtless also 
hold for the anomalous Zeeman effects.*)* The magnetic field in¬ 
fluences the energy of the initial and the final configuration separately ; 
the Zeeman effect of the lines is therefore compounded from the Zeeman 

effect of the initial term and of the final term 

Ar ~ Avx — Av2. . . . . (2) 

* Berlin Academy, Feb., 1902. 
f T. van Lohuizen, Amsterdam Academy, May, 1919; A. Sommerfeld, Na- 

turwiss., Jan., 1920, and Ann. d. Phys., 63, 121 (1920). The “rule of mag¬ 
neto optical resolution ” discussed in the last two papers deduced from the 
combination principle the arithmetic law that the linage denominator of the 
term combination may be separated into the product of the Runge denominator 
of the two terms in question. But since this law was soon surpassed by the 
papers on the same subject by W need not here discuss it further. 
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Hence we shall he concerned in the sequel with the Zeeman effect 
of the terms which is simpler than the Zeeman effect of the lines. 

Extending the arguments and formulae given in Chapter VI, § 5, 
we start from the following points of view. The resolution of the 
individual term depends on its J-value, that is, on its total moment 

of momentum. I11 the magnetic field J arranges itself in such a 
position that its projection M in the direction of the magnetic field 
becomes integral or half-integral with J. Moreover, since the absolute 
value of M, the projection of J, can be at most equal to J, we obtain 
the following 2«T + 1 possible values for M : 

M — J, J - 1. J — 2, . . . — J + 2, - A + 1. - J. (3) 

The values M ^ J correspond to the position parallel or anti- 
parallel to the magnetic lines of force. The value M ----- 0, that can 
occur only for integral values of J, that is, in odd term-systems, denotes 
the position perpendicular to the magnetic field. Precisely as in 
Figs. 29 and 30 on pp. 123-124 we must picture to ourselves that if 
the arrow of the moment of momentum J is appropriately inclined 
to the magnetic field there will be a precession around the direction 
of the lines of force. 

Corresponding to the mechanical moment of momentum Mmn;/( de¬ 
fined by J there is a magnetic moment Mw,Jf/. In the Russell-Saunders 
coupling this magnetic moment is composed of the magnetic moment 
of the resulting orbital moment of momentum L and of the resultant 
spin moment of momentum S. Tf >S (), that is, for a singlet system, 
Mmrt!7 is given by the mathematical relationship, equation (2) on p. 331. 
The Zeeman effect is then normal. The anomalous behaviour of the 
Zeeman effect consists in the addition of the spin moment of momentum 
and its magnetic anomaly, equation (3) on p. 332. 

On account of the precession of the magnetic moment about *T 

(cf. Fig. 86, p. 331) only its component parallel to J comes into question. 
It is given by equation (4) on p. 332 (if we exchange /, <s, j for L, S, J). 
Hence we may draw the same conclusions about them as on pp. 333-334. 
They lead to Lande’s splitting factor: 

* - 1 . J(J + 1) + S(B + 1) - L(L + I) 
9 r 2J(J + 1) ' * • w 

and to the expression for the term1 resolution, calculated in terms of the 
normal Lorentz resolution : 

AW = hAv — Mg. .... (5) 

As a matter of historical interest we must observe that the bold in¬ 
ductive process which led Lande to equation (4) was based on the 
masterly Zeeman-measurements carried out by E. Back, The measure- 
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ment and the theoretical interpretation occurred in two steps, first 
for the ordinary doublet- and triplet systems * and then for that class 
of multiplets t which we nowadays call multiplets of pure Russell- 
Saunders coupling. The equations (4) and (5) determine completely 
the resolution-pattern of the terms of such multiplets : there are 
2J -| 1 equidistant magnetic term-levels at a distance g from one another, 
symmetrically placed with respect to the zero, the, zero itself representing 
a term-level in the case of odd terms hut not in the case of evert terms. 
In Table 45 we give a complete list of the g-values. Attention must 
be called to several characteristic points. 

A. g ~ 2 for the S-state of every term-system. This is obvious, 
•—>• —> 

since for every S-term L — 0, that is, J ~ 8. But then the magnetic 

moment and at the same time its component parallel to J becomes 
equal to the magnetic moment of the spin moment of momentum 8 
and this (cf. eqn. (4) on p. 522) is equal to 2S, as measured in Bohr 
magnetons. The value g — 2 denotes nothing else than the magnetic 
anomaly of the spin. 

B. For every term with J - dmax — L \- 8 (the boundary on the 
right-hand side running down obliquely in every field of our scheme) 
we have 

J9 - 2K ( L.(0) 

To prove this it is convenient to transform the expression (4) into the 
identical expression 

(S -L)(S + L+ 1) 
- + " J(.I + 1) (7) 

If we here set J — S L the factor J + 1 in the denominator cancels 
out with the factor S 1 L | i in the numerator and we obtain 

,8 - L 28 4- L 
9 ~ -8 + L " 8 4- L 

which agrees J with (6). 
0. For L >> S (lowest row, particularly in the first fields of our 

scheme) g approaches the value 1. Actually wh?n L >> 8 we also 

* E. Back, Dissertation, Tubingen, 1921 ; A. Lande, Zeits. f. Phys., 5, 231 

(1921). 
f E. Back, Zeits. f. Phys., 15, 206 (1923) ; A. Lande, ibid., p. 189. 
J We might be tempted to interpret eqn. (6) in an elementary way : if L, S 

—^ 
and J were in the “ parallel position ” with respect to H the magnetic moment 

in the direction H would on the one hand be 2S -f- L, and on the other J<7. But 
we should then be leaving out of account the wave-mechanical difference, empha¬ 
sised on p. 333, between the absolute value of a quantum vector and its quantum 
number. The incorrectness of this elementary line of argument is shown when 
we pass over to the “anti-parallel position ” J — |L — Sj for which we by no 

means have ; Jy — |2S — L|. 
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have J ~ L. (Consequently the second term in the right-hand side 
of (7) approaches the value — J. We then have an asymptotic normal 

Table 45 

.1 0 l - ;{ 4 5 H 7 1 :t 5 
2 

9 
2 

11 i;{ 15 

L -- 0 S 
0 
0 

Singlet 2 Doublet S 

1 P 1 S 0 
2 4 

P 
3 3 2 

o D 1 4 6 
D 

5 5 

3 F 1 6 
7 

8 
7 

F 

4 G 1 8 10 G 
9 9 

0 S 2 Triplet 2 Quartet S 

1 P 
0 
0 

3 

2 
3 
2 S - 1 

8 26 

3 15 

8 
5 H-J 

P 

o D 
1 7 4 

0 -- 
48 10 D 

6 3 5 35 7 

3 F 
3 
2 

13 

J 2 

r> 

4 

2 

5 

36 

35 

78 

63 

4 

3 
F 

4 G 
3 21 0 4 62 116 14 G 
4 20 5 7 63 99 11 

0 S 2 Quintet 2 Sextet S 

1 V 
r» 11 5 

S — 2 12 66 12 y «r> P *> 0 3 5 35 7 S 5 

2 I) 
0 
0 

3 
2 

3 

2 
3 
2 

3 

2 
10 28 

3 15 

58 

35 

100 
63 

14 

9 
D 

3 jF 0 1 
r> 27 7 2 16 46 88 142 16 

F 
4 20 5 3 15 35 63 99 ii 

4 G 
L 

3 

11 
12 

23 

20 
19 4 

15 3 0 
6 
7 

8 
7 

14 

11 
192 

143 

18 

13 
G 

0 s 2 Septet 2 Octet S 

1 p 
7 

3 

23 

12 
7 

4 
S #3 

16 

7 

122 
63 

16 

9 ■a 
P 

2 D 3 2 7 

4 

33 

20 
8 

5 
14 

5 

72 

35 

38 

21 
56 

33 

18 

11 D 

3 F 
0 3 

0 2 

3 

2 

3 

2 

3 

2 

3 3 

2 2 
4 2 

12 
7 

34 

21 
52 

33 

222 

143 

20 
13 

F 

4 G - 
1 
2 

5 
6 

7 

6 
13 

10 
41 59 10 

30 42 7 

4 14 44 

3 15 35 

86 

63 

140 

99 

206 

143 

284 22 

195 15 
G 

0—L 

] 

»> 

3 

4 

0 

1 

3 

4 

0 

1 

3 

4 

0 

1 

2 

3 

4 
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resolution of the terms, as is to be expected on the basis of the corre¬ 
spondence principle. 

1). Within every horizontal row of our table a remarkable summa¬ 
tion rule holds : the mean value g of <7, that is, the sum of all the g's 
divided by the number of levels, is equal to 1 or 2 according as we are 
dealing with a term sequence with the permanent number r of levels or 
with the incomplete number < r of levels. To prove this we keep L and S 
constant, as demanded by our rule and sum up over all J\s from 

Jm<« - I ‘s - L I to Jnlax =- S | J, and divide by Jmax - Jmin + 1, 
that is, by the number of terms between Jmin and Jmnx. In this way 
we obtain from (7) 

1(S-L)(S + L+ 1) 
Jmax 

Jr J f 1. I KJ (») 

This summation may be effected quite generally, 
to the integral 

1 
bdx 1 

V 

It is analogous 

where we replace the infinitely small difference by the finite differ¬ 
ence 1. For we have 

1 

-J(J + 1) 

r-i 1 1 
2lj ~ z,rfi 4- i Fi’ (») 

since in the middle term of this equation all the other members of the 
two partial sums cancel out in pairs and only the lower limit of the 
first and the upper limit of the second partial sum remain, in con¬ 
trast to this 1/J2 would be no “perfect difference ” and hence could 
not in general be “ summed up.” This shows that the replacement 
of Ja by J(J -| 1) in wave-mechanics, that is, the transition from / 
to g on p. 333, corresponds in a certain sense to the transition from 
the differential calculus to the calculus of finite differences. 

If we substitute (9) in (8) the factors in front of the summation 
sign cancel out and we are left with 

g = :i T i.(10) 

The upper sign applies here when Jmin ~ L —■ S, that is, when 
the number of levels is “ permanent ” ; the lower sign when JTOtn—S—L, 
that is, when the number of levels is incomplete. This proves our 
summation rule ; it may be confirmed by the numerical values given 

in the table. 
E. In the case of the odd terms that horizontal row of the table 

is distinguished for which L ~ S, that is, in which the permanent 
number of levels is attained for the first time. As follows directly 
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from equation 7, g ----- £ for it. 11 is only when the factor J in the 
denominator vanishes simultaneously with L — S that the fraction 
in (7) becomes indeterminate. In this case we follow Land6 in writing 
{[ for the value of g (ef. the first vertical column of the table). 

Moreover, it would be better in this case to speak, not of the 
quantity g, which arises in the course of the calculations, but of the 
moment Mg, which has an immediate physical significance. On ac¬ 
count of J M ----- 0 the latter quantity has the definite value zero. 
The corresponding term is thus unable to be resolved magnetically. 
According to our table there are also terms in the even systems that 
are unable to be resolved magnetically, for example, in the 4D-term 

for J - i 
We now pass on from the terms to the lines. First we recall the 

selection rule for the magnetic quantum number, given on p. 335. 
It simultaneously acts as a polarisation rule. For the transition 
1. 2 we now write in our present notations (M instead of m) 

M _ M f ^ 1 ' ' ' "-components \ 
1 2 [ 0 . . . 7r-components) (11) 

All transitions greater than 1 are forbidden. The polarisation data 
refer to the transverse effect ; when observed longitudinally the 

<7-components, as explained on p. 323, appear circularly polarised, 
the ^-components are absent. 

To this general selection rule we must add an additional decree 
for the case where the line arises from the transition J J, namely 

the transition 0->0 is forbidden, that is. 

Mj — M2 ” 0.(11a) 

An immediately obvious example occurs in Fig. 12b. Here the 
middle 7r-eomponent, which corresponds to the transition from ~ 0 
to M2 — 0, is present in (P2S) and (P0S), but is absent in (PtS). Actually 
this line denotes a transition J J, since both for the Pr and for the 
S-term J = 1. We shall give the basis in which this additional decree 
is founded and also the general selection rule for M in Note 7 
(under /). 

To check the resolution pattern of Fig. 126 further we shall proceed 
as on p. 336 for the D-lines. Using the triplet (/-values we write down 
the following tables from Table 45 ; they correspond successively 

to the three term-combinations 3P2 3S1, 3PX 3Sl5 3P0 3S1? in the triplet 
system. We obtain the ^-components, bracketed, as the differences 
of the numbers vertically below each other in the table, the cr-com- 
ponents, which are not bracketed, are the differences between the 

numbers diagonally neighbouring on the right or the left-hand side. 
The result is reduced to the common “ Runge denominator,” which is 
2 in the present case. 
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Table 40 (MVS,) 

M - 2 1 0 2 

L 1, J 
L - 0, J 

2 Mr/ :u 
] Mr/ 

0 
0 

4 

Table 47 (3IVS,) 

M i 1 0 1 

L 1, J - 1 
L 0, J • 1 

Mr/ 
Mr/ 

!! 0 :! 
2 0 2 

(1) 3, 4 

Table 48 (MVS,) 

M - .1 0 1 

L 1, J - 0 Mf/ 
L 0, .J l Mr, 

0 
(J 2 

, (0)_4 
± (> 

Our remark E explains the frequent occurrence of the :l of the 
normal resolutions. Let us consider, for example, the combination 
(PP') in the triplet system, which we discussed on p. 424, and let 
us choose, say, the component P2Px in it. The resolution-pattern 
for P2PX is clearly : 

Table 49 

M — 2 •— J 0 1 2 

- 3 - [| 0 * 3 
\ |\/i\/| / 

\l/" \|/ Xj/ 
3Pi “-30 ;j 

(0), 3 

All the other components of (PP') behave in the same way, and 
also the combinations (DD') in the quintet system, (FF') in the septet 
system and so forth, together with ail their components. 

We now consider Fig. 127, which represents the ground-triplet 
in the octet system of Mn. It is magnified fourteen times from the 
original photograph (in the second order) by M. Back and has kindly 

vol. 1.—31 
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been placed at the disposal of the author. The 7r-components are 
displaced downwards, owing to the optical arrangement, as compared 
with the a-eomponents, because the line in question was photographed 
once in the 7r-position of the analyser and again in the a-position 
and in each case a part of the picture was covered over. Fig. 127 a 
represents the line A = 48211 (8>S^, 8P;j). The resolution factors are 
2 and A table similar to that above gives the following scheme 

for the components : 

(1) (3) (5) (7) 9, 11, 13, 15, 17, 19, 21, 23 

^ .9 * 

The figure correspondingly shows eight ^-components and, on both 
sides, eight cr-components. At the same time it shows that the 

a b c 

Fia. 127.—Anomalous Zeeman effect. of the combination 8S8P (Mn) according 
to Back. The cr-components are given above, the ir-components below. 
On the left (a) is the line 8St8P9, in the middle (6) the line 8Sr8P^, on the 

right (c) the line 8JSr8Ps. 

intensity of the 7r- and the cr-components decreases from the centre 
outwards : the line of greatest intensity is the a-component of normal 
resolution }| ; the three outermost cr-components are hardly recog¬ 
nisable owing to their very feeble intensity. Fig. 1276, A — 4783, 
is the combination (88r 8P^). The splitting factor of the P-term is 
l(TV (cf. Table 45). Hence we obtain the theoretical resolution 
pattern 

(2) (6) (10) (14) 112, 116, 120, 124, 128, 132, 136 

± ~ 63 

In the reproduction the seven a-eomponents are not separated ; 
the 7r-components exhibit the absence of the zero (white centre of the 
picture) which is characteristic of all even terms. Fig. 127 c, A = 4754, 
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is the combination (8»S< flPg). We have g ~ V* for this P terin according 
to our table. The resolution-pattern is 

(l) (:*)Jf>) mi i;{ J5 17 Pj 
-j . - 7' ' " ' “ ’ * 

In accordance with the small Pungo denominator the separation 
of the lines is complete. The gap at the position of normal resolution, 
between the 77- and the cr-componeuts, is very striking. Of the six 
a-components which occur on both sides those on the outside are 
difficult to see on account of their feeble intensity. 

As a last example we show a resolution-pattern of particular 
beauty kindly produced by Mr. P. Zeeman for the purpose of this 

Fig. 128.—-Photometer curve of the anomalous Zeeman effect of the combina¬ 
tion 7K8»l?4 (Cr) according to Zeeman. In the absence of a field the line 
would be in the middle. The vertical lines denote the positions of normal 
separat ion reckoned from the field-free line. 

book. The line in question is the strongest line A —- 4254 of the 
ground-triplet (7S 7P) of Cr, that is, the combination (7S37P4). The 
resolution-pattern consists of the seven 77-components, 

(0, ± h ± h ±i)A*Wm 
and the seven a-components which occur on both sides, 

4- ( v » <> 7 H U 
•X 4M >4’ U P 4 )L*wnorm' 

All these components are beautifully resolved in the photometric 
curve (Fig. 128), which represents the original photographic record 
magnified thirty-six times automatically * ; only the extreme 

* For the technique of working out these photographic densities photo¬ 
metrically see a report by P. Zeeman, Amsterd. Akad., Dec., 1924. 
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cr-eomponents *4° become'lost- in tlx1 maze of the granules of the 
plate. The normal resolutions are made recognisable 011 both sides by 
vertical strokes. The 7r-components lie between them and the a-eom- 
ponents are on either side. The strongest ^-component which is in 
the middle is situated in the position of the original line. 

Hitherto we have assumed pure Russell-Saunders coupling. We 
shall now consider the extreme counterpart in the form of a pure 

(jj)-coupling (cf. p. 469). This gives us information about the 
Zeeman effect at the series limit. In general the Zeeman effect changes 
as soon as the coupling changes appreciably. 

In the case of coup ling, Fig. 86 on p. 381 holds for the in¬ 

dividual electron, but we must not replace, as was done at the be¬ 
ginning of this section, the /, ,s* of the figure simply by the resultants 
L, 8 of the electron eoniiguration. The latter (L, 8) lose their physical 

meaning altogether. Rather, we must supple¬ 

ment Fig. 86 by Fig. 129. 
Suppose we are dealing with two electrons 

having quantum numbers l1sl and /2.s2, which 
compound into j1 and j2, respectively. On 
account of the strong coupling of the //s and 
.s*/s among themselves both vector models 

(Vektorgeruste) describe a rapid precession 
about the corresponding jp so that only the 
components of the moment parallel to j are 
effective magnetically. Bv equations (4), (5) 
and (9) on pp. 332 and 333 we calculate the 
components of the magnetic moment which 
are parallel to j for the first and the second 
electron (/ ~ 1 and 2) in terms of the Bohr 

magneton : 

Mill = | li ! COS (/;. jf) + 2 I s( I cos (SiJi) = I ji I g(jt), . (12) 

where g(j{) denotes the Lande splitting factor for the one-electron 
system (doublet system, s{ ----- k) and | |. | si [, | ji | denote the wave- 
mechanical magnitudes of the vectors in question ; for example, 
by p. 333, ____ 

I ji I = Vjiij, + !)• 
But jL and j2 are also coupled with J. On account of the pre¬ 

cession of the vector model (jxj2) about J only the component parallel 
to J comes into question for the magnetic moment of the whole atom. 
This becomes 

M = IMt-n cos J) = | J | • g, . . . (13) 

where g is defined by the last term of this equation and denotes the 
splitting factor (not Landes) for the (jj)-coupling. 

Fio. 129.— Vector model 
of the anomalous 
Zeeman effect of two 
electrons with (jj)- 
coupling. 
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But we have (ef. Fig. 120) 

cos (j j) - til2cm(i ,T)_ Ml2 + b'3l2 - liil2 (14) 
Ul’ ' 2|jj||J| " 2|i,||.I| {U) 

Substituting (12) and (14) in (18) we obtain * 

M 
9 ----- ]j| = ^9Ui>hU,) 

where we have used the abbreviation 

(ir>) 

hi ] \ - I'^l2 + I ill2 “ I 3 2 12 _ 4“ 1) t 0 -Jzij'i 4- E 
Ulj '.— 2|J|a" ■“ ' 2J(J -f'T) .. 

and the corresponding expression for h(j2) 
obtained by interchanging indices. The 
following relationship, which is analogous 
to equation (3) on p. 443, holds between 
jv j2< and J : 

:ii +.h > -J s? lit - h I • (,f>) 

The extension to systems of more than 
one electron for pure (jj)-coupling will now 
be briefly sketched. Whereas the equa¬ 
tions (12) and (13) obviously remain stand¬ 
ing the definition of the cosines in equa¬ 
tion (14) must be modified. For example, 
in Fig. 130 we consider the case of three 
electrons and denote the diagonals (dotted 
in the figure), which supplement the jf'a to 

form J, by ji (where we find the supple¬ 

mentary vector j2 which belongs to j2 by 
the auxiliary figure given on the left-hand 
side of tJ). Then (14) becomes replaced by 

Frj. ].*{(). (if)-coupling of 
three electrons on the 
assumption of vanish¬ 
ingly small mutual 
action between the elec¬ 
trons. In these circum¬ 

stances the vectors jtt 
which, with the jt form 
J, remain constant to a 
first approximation, and 
the polygon of the jt 
processes as a whole 
round J. 

eos (jt, J) 
2|;,7l J I 

if we suppose the jt's to he given as well as then's. And in place of 
(15a) we have 

7 / • \ d(J + 1) +ji(ji + 1) —ji(ji + 1) 
Ui) 2J(J+i) ” ' • 

(156) 

The splitting factor g is then given accurately by equation (15) if 
the sum is taken over all values of i that come into question. 

* First derived by Ooudsmit; cf. Goudsmit and Uhlonbeck, Zeits. f. Fhysik. 
86,618 (1926). 
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The reason that, with more than two electrons, we assume the 

jfs to be given as well as the jfs and the J is that otherwise the 
polygon of the j/s and hence also the position of the energy-levels 
in question would be undetermined. Our diagonals ji stiffen the 
polygon, so to speak, so that it processes as a. rigid configuration 
about the J-axis. This corresponds to a definite kind of coupling 
between the j/s and J. With any other kind of coupling the polygon 
of the j\s would not move as a whole, so that other formulae would 
result for the splitting factor g. 

Pure ($)-coupling hardly occurs except in the X-ray spectra of 
atoms of rather high atomic number. In the neon spectrum (cf. 
p. 471) the coupling is intermediate between the Russell-Saunders and 
the (jj)-coupling, the higher series term approximating to (jj)-coupling 
and the lower terms to the normal Russell-Saunders coupling. 

What happens in the transition from one kind of coupling to 
another ? The quantum numbers L, S which distinguish the in¬ 
dividual multiplets from each other in normal couplings, lose their 
physical meaning ; the quantum numbers j acquire a physical mean¬ 
ing only in the limit when pure (j,/)-coupling is reached. The 
quantum number J alone has a physical meaning throughout as 
the total moment of momentum of the atom. Together with the 
L's and S’s so also the Land6 (/-factor loses its validity in the transition 
stage ; simultaneously with the jfs our (/-factor of equation (15) 
becomes valid only in the limit of this transition. But during the 
whole transition the sum of all the g's that belong to the same, J retain, 
together with J, their meaning, no matter whether we calculate J 
by Lande’s formula or by formula (15). This “ g-sum rule ” thus 
states that if J is kept fixed the sum of the g's is quite independent 
of the type of coupling, and for this we may take into consideration, 
instead of the limiting cases so far considered, any other arbitrary 
allocations of the individual vectors /*, sOur <7-sum is adiabatically 
invariant with respect to any changes of coupling whatsoever, exactly 
as by the law of sectorial areas in mechanics, the total moment of 
momentum J, to which the {/-sum is allocated. 

This law may be proved quite generally only by means of wave- 
mechanics. We shall do no more here than verify it in the case of 
neon by calculating the <7-sums both according to Land6 and according 
to equation (15) and then comparing the results with those of ex¬ 
periment. 

We first consider the Paschen s-terms (cf. p. 472). They correspond 
to the configuration 2p53.s (simple excitation state of the complete 
L-sholl), for which we shall write, by the Gap Law, 

2p'\s. 
Thus we calculate with 

*!= \; L-0,^2- 1. . . (17) 
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With Russell-Saunders coupling there would follow from this (cf. 
p. 472 of the previous section) a 3P- and a 1P-term with 

J'UU.(18) 

The 1 occurs twice. The corresponding //-values or (7-sums, re¬ 
spectively, are, by the, table on p. 478, 

0(2)- -i1, 20(i) -1 i- 3 - 5, 0(0) - X. . . (i9) 

On the other hand, we have, by (17), in the case of (jj)-coupling, 

j\ 1 zb 2 H = 0 -[• l “ 

and from these values, as should be, the same .J-values as in (IS). 
We next calculate for the two J - I that- occur the corresponding 
k'ls from (15a) : 

1 -11 J1 ^ b h ^ Hit) ~ b Hit) - - i 
\ ii =■= b it ^ i Hih) = i- Hit) -- 2 

and combine them with the g(ji)'s out of Table 45 [doublet system 

//(ji) t and jj, g(j2) -- 2]. By (15) there results 

Bence 

Ir/(i) ; 1- j - -s, . . . (20) 

that is, the same value as in (19). 

Tablr 50 

J Oba. ll.S.-Coupling (jj)-Conpllnn 

<> V. 
1 1 1*034 1 ,4 0 42 
1 ' 1-464 f2,498 

2 1*503 

0/ 

° 1 15/ 
3/a f /a 
3/“ 

°/o 
4/a I 5/ 

7 U 1 /a 
V* 

It is easy to see why the two individual gr-values, namely g(2) 
and gr(0), comes out in the (jj)-coupling exactly as in (19). The value 
]} for «7(0) follows directly from h(jY) —■ h(j2) = JJ ; the value :l for 
g(2) comes out from (15) and (15a) from the data that are given : 

0(2) - * ■ i + 2 • i - b 

We compare with these results the experimental results obtained 
by Back. * In the preceding table we have on the left-hand side 
the original symbols of Paschen and alongside them the observed 

Ann. d. Phys., 70, 317 (1925). 
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and the calculated values. In the case of the gr-sum the agreement 
between theory and experiment is perfect. 

We also consider the Pasehcn p-terms, ten in number, which 
correspond to the configuration 2p53p (cf. p. 472). By the Gap Law 
it is equivalent to the configuration 2p3p. Hence we have 

■— 1, ^ , ^2 — 1, #2 — ^ 

and calculate from these values for the two types of coupling : 

K.S.-CoupIlmj (iO-Coupllng 

L 2, l, 0 
s 1, 0 

J 3, 2, i, 
2, 1, 0 

1 
2, 1, 0 

Ji 

J 

S/,. 
3/2- 

Va 
l/2 

a, 2. 1. 0 
2, 1 
2, 1 

i, 0 

In the case of Russell-Saunders coupling the first three rows of 
the J-values correspond to the 3T), 3P, 3S-tcrm, the last to the 1L), 
lP, 1S-term. I11 the (i/)-coupling the four rows of the J-values arise, 
bv equation (10), from the respective combinations : 

2). (2. i). 0- :•)> (i *)- 

By Table 45 on p. 478 we obtain in the case of the Russell-Saunders 
coupling : 

I'/(2) = A + 4 1 = V, 
lg(i) = i + 3 + 2 + 1 - 5. 

On the other hand, we obtain in the case of the O’?)-coupling from 
equation (15) : 

2gf(2) J + i + ;T ~ 1;j1 , 

lg(l) - i + :! + 2 + J - S. 
The following table, which is arranged like the preceding one, 

shows how the results agree with those of observation : 

Table 51 

Pi 
V 3 
P2 

Pb 
P 7 
P10 
Pi 
Pz 
Pb 
p« 

J Obs R.S.-Coupling Op-Coupling 

0 
0 /o 0/ /» 0/ / 0 0 

/o ‘ °/o 0/ /o 

1 

1*340" 
0*999 

>-5*022 
*/,. I,1/. 3 / 3/ 4 1 2 1 

12’ 12’ iZ’ /a 

0*699 5 5 
J *984 

2 
1*301 \ 
1 *229 3*667 */*. »/.. 1, 7».7/«. 7/. 

1137 1 ”/» 
3 1*329 */» 

i 1 
4/a 
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The jy-sums are seen to be in complete agreement here, too, whereas 
the individual g's exhibit considerable departures from the values 
obtained experimentally. 

Both the original ordering of the neon series by Paschen and the 
measurement of the g-values by Back were supreme achievements 
of spectroscopic accuracy ; this receives particular emphasis in the 
p-sum law. 

§ 7. Paschen-Back Effect 

In weak fields the Zeeman type of every line of a multiplet can 
form itself undisturbed by the Zeeman type of neighbouring lines. 
In increasing fields the resolution patterns would overlap. But before 
this happens the Zeeman types begin to influence each other mutually. 
In strong fields (magnetic resolution Ar great compared with the 
original frequency differences in the multiplet) every line configura¬ 

tion finally behaves approximately as a single line and exhibits the 
normal Zeeman effect. This is what was proved by Paschen and Back 
in the case of a number of narrow doublets and triplets, for example, 
the oxygen triplet A ~ 3947, p. 433. It is already implied in our 
definition of strong fields that for a single line even the weakest magnetic 
field must be regarded as “ strong.” In the case of the D-lines of 
Na (initial separation fi A) it is only when wc have a field of 180,000 
gauss that the full Paschen-Back effect would show itself. The first 
stages of the change and the effect exerted by I)1 on J)2 and vice versa 
manifest themselves even at 30,000 gauss.* In the magneto-optical 
investigation of the corresponding lithium line A — 6708, however, 
whose components are separated only by 0*13 A., we arrive very 
quickly at the conditions for the Paschen-Back effect ; the transforma¬ 

tion may be followed right up to the final result of the normal triplet.f 
Compared with the other alkalies lithium formerly appeared to form an 
exception to Preston’s rule. The discovery of the Paschen-Back effect 
explained this exception as well as many others. 

We have already dealt with the Paschen-Back effect of hydrogen 
in Chapter VT, § 5. The most careful measurements have been carried 
out by K. Forsterling and G. Hansen J by means of a Lummer plate. 

Besides the “ total ” Paschen-Back effect we must also consider 
the “ partial ” Paschen-Back effect. By this we mean, for example, 
the case where in the combination (PI)) the magnetic field is strong 

compared with the small D-difference but weak compared with the 
larger Av of the P-difference. Further details are given at the end of 
the chapter. 

The Paschen-Back effect, of course, only couples together lines 

* Of. E. Back in his dissertation quoted on p. 477. 
f Of. Kent , Astrophys. Journ., 40, 343 (1914). 
f Zeits. f. Physik, 3.8, 26 (1923). With regard to the theoretical interpreta¬ 

tion of their results, cf. A. Hommerfeld and A. Unsold, ibid., 36, 259 (1926). 
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that belong to the same multiplet. Two lines that do not belong 
together do not disturb one another magneto-optically, no matter 
how close they are. 

We now consider an instructive photograph * of the narrow chro¬ 
mium triplet (SP), A — 5204, 5200, 5208 in the quintet system for 
fl 38,000 gauss. The w-components of A = 5208 (on the right- 
hand side below) appear undistrubod : live components are at | of 
the normal distance from each other ; of the cr-components those of 
short wave-length (which follow above on the left) are much stronger 
than those of longer wave-length. The central line A — 5206 is dis¬ 
turbed quite unsymmetrieally ; its short wave-length rr-components 

are fused with the long-wave com¬ 
ponents of A = 5204. The triplet is 
still far from having reached the final 
magnetic state. This would consist 
(except for finer details, see below) 
of one 77-component at the centre of 
gravity of the triplet lines and of 
one cr-component on each side at a 

mn 
Km. 131.—Paschen-Back effect of 

the chromium triplet 5S6I\ 
A =- 5204, 5200. 5208. The 
<7- components arc shown 
above, the Tr-coinponentH 
below. A increases from left 
to right-. H - 38,000 gauss. 

distance \vvorm. The final state is 
to he expected only in a field of 
H > 150,000 gauss. 

It is only in the case of doublet- 
lines that we are able, without the 
services of wave-mechanics, to trace 

the transition from weak to strong 
fields, that is, from the anomalous 
Zeeman effect of the D-line type to 
the normal triplet of the Paschen- 
Back effect quantitatively. We base 
our remarks on Voigt’s theory.f 

Like Lorentz in his theory of the normal Zeeman effect Voigt 
assumes quasi-elastic electrons, which are capable of vibrating, and, 
in agreement with the intensity ratio Dl : D2, he assumes one electron 
having the original frequency of I), and two electrons with that of 
I)2. The motions of all three electrons are imagined coupled together 
in some peculiar way in virtue of the magnetic field. 

Just as Lorentz’s theory in Chapter VI, § 4, was re-interpreted 
in terms of the quantum theory, so also the results of Voigt's theory 

may be translated into the language of the quantum theory.J We 
shall present it here at once in the latter form, that is, we give the 

* H. Gieselor, Zeits. f. Physik, 22, 228 (1924); the magnified copy of tho 
original here shown was kimllv presented to the author bv Mr. Back. 

f W. Voigt, Ann. d. Phys., 41, 403 (1913); 42, 210 (1913). Cf. also the author’s 
simplification of Voigt’s theory given in Gottinger Nachr., March, 1914. Voigt- 
deals with the absorption process, the author with the emission process. 

+ A. Somrnerfeld, Zeits. f. Physik, 8, 257 (1922). 
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magnetic resolutions Av not for the term-combinations but for the 
terms themselves and shall generalise then for arbitrary terms having 
the azimuthal quantum L. 

In the doublet system two terms belong to the azimuthal quantum 
L, which are distinguished by the two values J - L dr \ ; each of these 
terms splits up in the magnetic field, as we know, into 2J | 1 magnetic 
levels, which for their part are again distinguished by the magnetic 
quantum number M. We express the magnetic resolution Av of the 
individual level in fractions of the normal resolution AvV0rm and measure 
it from the middle (not from the centre of gravity) of the original 
doublet distance Ar0 which obtains when no field is acting. Ar then 
depends not only on the magnetic field H but also oji the three 
quantum numbers L, J and M. In contrast to L and M, however, 
J will not occur explicitly in our formula but will bo described by the 
occurrence of the double sign in the square root of the following 
equation (2), the upper sign corresponding to the value J — L -j- \, 
the lower to the value d - L — A. Nor will the field-strength H 
enter explicitly into our formula, but will be expressed by the ratio 

" •" ST”.<" norm 

Since Avvorm is proportional to H. v gives an inverse measure of the 
magnetic field-strength. Great values of v then denote “ weak ” 
fields, small values “ strong " fields. 

Our formula, which comprehends Voigt's theory in an extended 
form, then runs * 

M±iV1 + sf 
If we do not wish to use wave-mechanical arguments we must use 
experimental data as a basis for this formula- ; cf., for example, Kent, 
loc, cit. p. 530. We verify it here by showing that for irmk firhh 
we again arrive at the results of § 0. 

80 we assume v 1 and expand the square root in (2) : 

/ 2Mv l2 /Ml 

V1 4 lT4 + * = *V + 17+1 V + 

Instead of (2) we may write, in view of (1), 

M 

l + v 

Av :-f“ l Ae0 “ M^l 
2L -f- 1 / 

* The signs ± refer to the ease of weak fields (?> >> 1). If as the field increases 
(v decreases) the square root- passes through zero, the sign naturally reverses. 
As (/. Kungo has pointed out, this must be borne in mind in the case — M --- L -f- l 
(lowest magnetic level of the term .1 L | £ ; no sucli level (Mjc-urs in the case 
of the term .) L J). We then have 

I- V1 1 + t'a V(v --Tf V - 1, 

which is positive for v > I and negative for v < 1. 



492 Chapter VIII. The Complex Structure of the Series Terms 

M 

Vi 

Weak & strong 
Reid 

k i ' 
i 
i 

2 ! 

Vi 

1 
1 
1 

! i 

Fio. 132. Relation between the energy- 
levels of doublet terms in weak and 
strong fields. The separations are 
expressed in terms of Avnorm as unity. 

Since Av was to be counted from 
the middle of the doublet dis¬ 
tance Av0 the left-hand side 
denotes, according to its sign, 
the magnetic resolution of the 
upper or the lower doublet term 
J = L ± J. Thus the brackets 
on the right-hand side of (3) are 
to represent the splitting factor 
g for our two doublet terms. 
It agrees, in fact, with our Table 
45 on p. 478 or with our special 
calculation in the equations of 
p. 334 (small letters instead of 
capitals). 

If we now consider the con¬ 
verse case of passing to the 
limit of strong fields, v — 0, then 
equation (2) gives 

Ac ----- {M ± $Avuorm (4) 

(For a more accurate approxi¬ 
mation, cf. equation (6) below.) 

Since M is a half-integral 
number M ± J is an integer. 
Hence in the case of strong fields 
the magnetic resolution pattern 
becomes normal. The magnetic 
levels follow each other accord¬ 
ing to (4) at intervals of Avnorrn. 

Fig. 132 illustrates how the 
anomalous energy-levels of the 
weak fields are assigned to the 
normal levels of the strong 
fields. The two outer columns 
correspond to weak fields, the 
middle column to strong fields. 
It must be noted that in weak 
fields the resolutions Ac which 
are written down in the figure 
are counted in each case from 
the original position of the 
energy-levels,itKvhen no field is 
present, but in strong fields from 
the middle (see below) or from 
their centre of gravity. The 
arrows in the figure indicate in 
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wliat direction the anomalous levels must be displaced in order to be 
normal eventually. A glance at the figure shows that the Pasohen- 
Back effect is nothing else than a rearrangement, mostly very trivial, 
of the energy-levels. Those levels which were originally normal 
remain normal ; these are the two levels of the S-term and the 
outermost levels of the terms P3 and !>•. Both terms contribute to 
individual members of the normalised levels. 

Having now studied the final magnetic position of the term-levels 
we may now specify how the individual line-components of the Zeeman 
pattern becomes displaced as the field increases. We depict this 
for the combination (SP), the D-line type, in Fig. 133. The original 
doublet has been strongly marked on the upper edge of the figure. 
Below this the anomalous type of Zeeman resolutions is indicated, 
the quartet and sextet from Figs. 87 and 88 ; the type of polarisation 

Flu. 133. Zeeman effect of the combination (SP) of a doublet system (D-line 
type) in a weak field (above) and a strong field (below). The connecting 
lines between the two diagrams indicate how the components are displaced 
with increasing field. 

is also indicated by 7r and <7. In the lower edge of the figure we see 
the scheme of the normal triplet Avnorm drawn on an arbitrarily 
magnified scale. The figure shows the strange and unsymmetrieal 
way in which the original Zeeman components (ten in number in all) 
which are present in weak fields melt together into the final Paschen- 
Back components in strong fields. The figure also shows that on 
both sides one of the original components strives towards the position 
of twice the normal resolution, its intensity, however, decreasing 
asymptotically to zero. We indicate the latter result in the figure 
by writing (ct) ; in the same way (77) denotes that certain lines also 
contribute to the cr-eomponents in question, which are polarised in 
a parallel direction, hut whose intensity decreases asymptotically 
to zero in proportion as they approach their final position in the 
Paschen-Back effect. Voigt’s theory enables us to calculate here 

and in general for doublet systems the intensities of the components. 
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in complete agreement with the formula* which the wave-mechanical 

calculation gives for this ease (ef. the papers quoted on p. 499). But 
we may also find a reason for the vanishing of the bracketed components 
in the limiting case of a very strong field by using the correspondence 
argument given in Chapter VI, § 5, pp. .‘138 and 339. There we de¬ 

duced generally the resolution-pattern of the normal Loren tz triplet 
for doublet combinations in strong fields from the selection and polar¬ 
isation rules : a ^-component and two pure ex-components at the 
normal distance from it, that is, no admixture of 7r-polarisation. 

The arguments there developed may clearly be applied generally 
to arbitrary multiplicities. If we replace the / by L there and the 
s by S we may formulate the selection and polarisation rales of the 
Paschen-Back effect (ef. Note 7 (/)) as follows : only those components 

occur for which AMs -- 0 and AMl = 0, T: 1 5 AMl — 0 gives 7r-com- 
ponents, AMl = ± 1 cr-components. The resolution-pattern of any 
arbitrary combination therefore assumes as before (equation (14) and 
(15), }). 338) the form 

Arx -- Ai'o 2Msl ~~ 2Ms2 T M’lj — Ml2 — 0, rh 1 

(where the term-resolution Ac is expressed in units of Avtwrm). In 
other words : any arbitrary combination of any multiplicity whatsoever 

gives a normal Lorentz triplet in a strong field. We repeat once again 
that in general 

Ac - Ml 4- 2MS * . . . . (5) 

holds for the resolution of the terms in the strong field. 
We revert to the doublet system and to Fig. 133. We have yet 

to explain why, in Fig. 133, we have allowed the ^-component of the 
Paschen-Back effect to coincide with the centre of gravity S and not 
with the middle M of the two L-lines. The latter would be indicated 
by equation (4) since here Ar is counted from the middle. We easily 
see, however, that this equation must be replaced by 

= |M ± i(l • • (6) 

if we make the proper approximation for the square root in (2) for 
the limit v 0. From the significance of v in (1) we obtain for this 

M 
Av 'I 2J7+~1 ~ (M :1-i)A>W„r • • (?) 

We apply this formula to the D-lines, that is, to the combination 

SP. If we imagine equation (7) written down for the P-term then the 
upper sign holds for the quantum numbers M = f, — i of the 
2P^-term, according to the remarks on p. 491 and the footnote on the 
same page ; the lower sign holds for M = ■— J of 2P$ and for 
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M ~ - :i of 2P-j. In the case of the S-term Ac0 0, and the upper 
.sign in (7) applies for M =■ -J, the lower for M — — £. 

We Hindi determine the position of the middle ^-component of 
Fig. 133 (below) ; to do tliis we must form the difference of equation 
(7) for the P- and the 8-term ; M must have the same value in both 
eases and must be so chosen that the difference of the factors of Av,tlort)l 
becomes equal to zero. We then deduce from the allocation of the 
signs given above or, more simply, from Fig. 132, that then we must 
have M ~ } for the upper sign and M =- — l for the lower sign. The 
difference of the equations for the P- and the S-term then gives 

Arp — Ary = + . . . (8a) 

where Ai'0 denotes the natural interval of resolution of the P-term. 
Since we count Ar from the middle of the term the above equation 
states that the ^-component is displaced by the amount Av0/(> from the 
centre of the original doublet-line as compared with the I)2-line, that 
is, that it actually coincides with the centre of gravity 8 of the natural 
resolution, as indicated in Fig. 133. Both possible modes (namely, 
M ----- 4 I and M — |) give exactly the same line in this case. 

Equation (7) also leads to an interesting refinement in the case 

of the cr-components. We are concerned only with those cr-components 
which lie at the normal distance (as far as quantities of the order 
Ar0) from the 7r-component just considered, because the other cr-com¬ 
ponents vanish in a strong field according to the discussion on the 
preceding page. In forming the difference of two equations of the 
form (7) for a P- and an 8-term only ± 1 may therefore remain as a 
factor of Avrtorm ; here we may combine together the highest levels 
in the middle and highest drawings of Fig. 132. Hence we have 
M — i! —> M i, and the upper sign of (7) holds in both cases. This 
gives 

App - Aph — jj . gAp0 4- Ap„„,.m. . . . (86) 

Or we may combine the level 0 of the P-term with the, level — 1 of 
the 8-term ; this corresponds with the transition M — i > M -- -m 

In both these cases the lower sign of (7) then applies. In this way 
we obtain 

Avp — Ai’s — — . ^Ap0 -( Avnorm. . . (8c) 

Thus wre find not one but two rr-components, which are separated by 
a distance 

Ar0(i + i) ~ • • • • (9) 

and have at their centre the point of exact normal resolution, measured 
from the central 7r-component. These two components are close 
neighbours only in that we assumed that for strong fields Avnorm > Av0, 
so that in Fig. 133 they may be replaced by a single line. The 
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<j-component on the other side (factor of Av,tonu 1) lie symmetri¬ 
cally to the a-components just considered with respect to the central 

w-component. In this way we have completely justified Fig. 89 on 
p. 340. 

Analogous considerations also apply to other multiplicities. 
Whereas we have* hitherto described the final result for infinitely 
strong fields as a normal triplet with simple lines, we must be prepared 
to find the Paschen-Back components double or even multiple at 
distances of the same order of magnitude as the original resolutions 
when no field is present (cf. also Note 12, 2). Observations in the case 
of lithium has completely confirmed this consequence of the theory 
which seems so strange at first sight. 

We now know the resolution of the terms in a weak (§ 0) and 
in a strong field for arbitrary multiplicities. But we can make pre¬ 
dictions about the transition from weak to strong fields only in the 
case of doublet terms. Wave-mechanics also gives the solution for 
the general problem (cf. the references onp. 499) ; we restrict ourselves 
here to stating a rule which was first enunciated by W. Pauli * before 
the advent of wave-mechanics and which was confirmed by him 
(see p. 502) ; according to this rule the magnetic levels are to be al¬ 
located in the case of weak fields to the normalised levels in the case 
of strong fields.f If the former are characterised by the quantum 
numbers M and J, then according to Pauli the latter are given by 

Ar i M |-J -L . . . . M^S- L\ 

~ 12M ( J — S . . . . M^S-L.!' * ( } 

Concerning (10) we add the following remarks :— 
1. For M ~ 8 ™ L the right-hand sides of the two formulae (10) 

become identical, namely, equal to J + 8 — 2L. 
2. Both formulae give integral values, that is, normal term-resolu¬ 

tions not only for odd but also for even multiplets (M, J and 8 lialf- 
integral), as should be. 

3. For doublet systems 8 — J, J — L — dz 1 according as we are 
dealing with a greater or a smaller J. Thus the first row of (10) 
gives Ar — {M ± i} Avnorm, in agreement with (4) ; the second row 
comes into force owing to the condition M <5 S — L only for the lowest 
level M = — J of the term J — L + | and here gives Av — — (L + 1) 

AVnorm' *rl agreement with Fig. 132. We may therefore regard (10) 
as a generalisation of what we ascertained for doublet systems. 

4. For “ inverted terms ” the signs of Ar and M must be reversed 
in the equations and inequalities (10). 

We write down the content of formula (10), for example, for the 
triplet terms (S = 1) in the following scheme : 

* Zeits. f. Physik, 16, 155 (1923). 
t We shall again disregard in the sequel the fine resolution of the normalised 

levels, which we have discussed just above. 
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Tahlh 52 

The symmetry of the scheme strikes us immediately : in every 
term-grou]) (for example, DjD2D3) the individual normalised level 
occurs equally often with a positive a?id a negative sign but in general 
arises from different terms (for example, -f- 2 from D3, I)2, and — 2 
from D3, Dx). For the individual term, that is, in one and the same 
horizontal row, the numbers of the scheme first decrease by one unit 
each as we come from the right-hand side until we reach the place 
where M =■ S — L, after which they decrease by two units. Thus 
whereas the individual term resolves unsym metric ally in this way, 
the terms of a group that belong together supplement each other 
so as to form a completely symmetrical resolution-pattern. The 
schemes of the higher multiplet systems have the same character. 

A remarkable feature is that the normalised levels do not in 
general bear the magnetic quantum number that corresponds to their 
resolution. For example, the normal level -f 2 of the D-term arises 
not only from the level M 2 but also from M 1 and hence bears 
both these quantum numbers. Actually we may suppose the transition 
from weak to strong fields to be made adiabatically, so that in principle 
the quantum numbers remain conserved. The same may be read 
off from the doublet Figure 132, for example, the three middle levels 
of the resolution of the D-term. The levels of the multiple terms nor¬ 
malised by the Paschen-Back effect are thus in general multi-valued 
as regards their multiple terms and are displaced as compared with origin¬ 
ally normal levels such as would be associated with simple terms. 

Wo recognise a confirmation of this peculiar displacement in the 
“ partial Paschen-Back effect 55 (cf. p. 489), which has been observed 
by Back,* for example, in the I N.S. of Mg. The D-differenees 
are so small in the case of Mg that every appreciable magnetic field 
measured in comparison with them must be regarded as “ strong.” 
Accordingly we write the formula of the Mg-lines in question, A = 3838, 
3832, 3830, in the form v — 2Pj — 3D. In the following table we see 

* Naturwiss., 12, 200 (1921), and Zeits. f. Physik, 33, 579 (1925). 

von. i.—32 
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under the M-values of the upper row the resolutions of the terms 
Pj in a weak field, in the three following rows those of the three I)~ 
terms in strong fields, the latter being taken from the preceding scheme 
and the former from Table 45 on p. 478. The brackets over the 
table indicate that the P2-term consists of five, the P1-term of three 
levels, the term P0 of only the one zero-level. The magnetic levels 
of the D-terms are all integral (normal), but in general they are dis¬ 
placed as compared with the scale of the Ms (the levels of an original 
simple term). We exhibit the effect of this in the resolution-patterns 

of the individual combinations (PjD). 
Let us first consider (P0D). The 

7r-components : 0, 1 

arise from the zero-level of P() taken together with the D-levels, 
1, 0, - 1 which stand vertically under them. If, however, we go 
from the same zero-level to the D-level which lies to the right or to 

the left of the middle, we get the 

(7-components : 0, ^ 2, di -• 

This is precisely the resolution-pattern that was observed by Back. 

Table 53 

Accordingly in the combination (PjJ>) we obtain from the three 

middle rows of the scheme 

7r-components : (0), ± h i L (± !!), 

and by connecting together the neighbouring rows on the left and on 
the right we obtain the 

cr-components : 0, ±4, (± 1), ± b ± 2> (± !)• 

This type, too, agrees as regards the drawing closer together of the 
77- and a-components with the observations of Back ; only the 
bracketed components are absent in the observations. 
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Lastly, the combination (P2D) gives the 

Tr-eomponents : 0, :j_ ^1, (_£_ i!) 
and the 

a-oomponents : 0, :j- ± 1, ± :L 4:2, (± f:), (4: 3). 

This also agrees with observation except for the bracketed com¬ 
ponents. 

The combination (P0D) is particularly instructive. Although we 
here connect the normal zero-level of P0 with the normalised levels 

of the D-term, it is not the normal triplet 0(77), l(o-) that arises, 
but the quintet 0(tt, cr), 4: 1 (■n-, or) j 2(a). This is merely a result 
of the displacement of the normalised levels as compared with their 

natural position. Concerning the omitted components (bracketed here) 
in the combinations (Pjl)) and (P2D) Lucy Mensing * proves by 
quantum-mechanics that they should actually have zero intensity. 
This was confirmed by van Creel f by quantitative measurements of 
the intensity. 

The circumstances are quite similar in the partial Paschen-Back 
effect of doublet systems, for example.J Na : v 2Pj 41), A 5688 
and 5683. 

We may also draw another conclusion of a very general character 
from Table 52. 

We first note that in those vertical columns of the table, which 

are filled up (for example, the sequence M — 0 for the P-terms, the 
sequence M — - 1,0, 1 for the D-terms, and so forth), the sum of the 
resolutions shown in the table becomes exactly equal to AM, when* 
A (here = 3) denotes the number of levels in question. On the other 
hand, the same sum for weak fields is AM(/, where we take g, as on 
p. 470, to stand for the mean value of all (/-values for a given L and 

variable J. But we showed there that g 1 in the case of a per¬ 
manent term-number. Thus the\ two sums for strong and weak fields 
agree. We may easily convince ourselves that the same holds for not 
completely filled columns. 

This leads us to a general law which is valid not only for strong 
and weak fields but also for medium fields, not only for triplet systems 
but also for any arbitrary multiplet system ; this is the “ Permanence 

Law of gr-Sums ” formulated by Pauli (he. cit. p. 496). It states that: 
the sums of the resolutions measured in terms of &pnorm and taken oner 
all J's while M and L are kept constant, is constant, that is, independent 
of the field. 

* Zeits. f. Physik, 39, 24 (1926). Of. also the general investigation by C. G. 
Darwin, Proe. Rov. Soc., London (A) 115, 1 (1927) ; K. Darwin, ibid., 118, 204 
(1928). 

f Zeits. f. Physik, 39, 877 (1920). 
j E. Back, Ann. d. Phys., 70, 370 (1923). Cf. also S. Frisch, Journ. d. russ. 

phys. ehern. Ges., 56, 525 (1924), as well as the theoretical paper by L. Mensing, 
loc. cit. 
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To produce the proof (which is not contained in Pauli's paper) 
for the two limiting cases of weak and strong fields (the proof is only 

possible with the help of wave-mechanics in the case of medium fields) 
we form for the weak field : 

M£<7 (J) . . . summation over J 

and for the strong field : 

_ M / summation over Ml or M's while 
2.(- s f- • ■ • I M -- Ml + Ms is kept fixed. 

(11) 

(12) 

To explain this process we make the following preliminary remarks : 
in weak fields L and S are coupled to J, and M is the projection of 
the J-vector in the direction of the magnetic field. As the magnetic 
field increases J loses its physical meaning, the coupling between 
L and S becomes released, and L and 8 adjust themselves individually 
in the magnetic field, and have the projections Ml and M's in the di¬ 
rection of the field. Expressed in terms of mechanics this means : 
the law of sectorial areas on which the existence of the quantum 
number J depends when the field is vanishingly small loses its general 
validity as the field increases. It then holds only for the direction of 
the magnetic field and establishes the permanent physical meaning of 
the quantum number M, that is, of the moment of momentum in the 
direction of the field ; this is invariant if the field is imposed adia- 
batically. Hence we have 

M (weak field) — Ml + Ms (strong field) 

for the whole stage of the transition. Our present procedure therefore 
corresponds entirely with that described in the previous section on 
p. 480, where we summed over those quantities that lose their physical 
meaning in the transition, while we keep those quantities fixed which 

retain their meaning (J previously, now M). We must yet remark 
that we must not increase the field so far that L and 8 lose their 
significance, as this would correspond with a blurring of the multiplets 

among themselves ; this would, however, occur only with fields that 
are generally beyond the realm of practical realisation. 

We begin by evaluating (12), and, in agreement with the inequalities 

L ^MlS~ L, 8 3> Ms - S, 

we build up the numbers Ml and Ms in Figs. 134a and 1346 as a rec¬ 
tangular lattice. (It is immaterial whether 8 is integral or half- 
integral; in the latter case the axis Ms — 0 would not be occupied 
by lattice-points as in the figure but would run mid-way between 
two straight lines occupied by lattice-points.) The straight line 

M = Ml + Ms is inclined at an angle of 45° to the axis of the lattice. 
We distinguish two sets of three cases, corresponding to the two 
figures 134a and 1346. 
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(a) M > L - 8, M ^ 8 - L, 
(1b) L - 8 S: M 8 — L, 8 - L ^ M :> L - 8, 
(c) 8 - L 2r M, L - 8 > M. 

The region for the ease (b) is shaded in both figures. 
Instead of (12) we write, on account of M — Ms + Ml, 

MZl+XMs. . . . (13) 

21 denotes the number of lattice-points that are cut out of our rectangle 
by the straight line M. Tn our three cases it is (of. the summation- 
limits of Ms written down in Figs 134 a and b) : 

(a) 8 -f- L - M -f ], 
(b) 28 4* 1 and 2L -f l, respectively. 
(r) 8 | L | M 4 1. 

Evaluation of the Ms values which can belong to a given M - ML } Ms for 
fixed values of L and S. For each of the eases o, />, c (see text) a chain 
lino for M - constant has been drawn. The region b is shaded. 

8imilarly, we obtain by forming 2Ms by snmming up an arit hmetic 
series between the same limits as for 21 • 

(a) 

(b) 

(?) 

(8 4 L — M 4* 

0 and 0, 

S + M - L 
2 ““ ’ 

(8 I- L -( M I- 1) 
L 4 M - S 

2 

By (13) the sum of the magnetic resolutions is therefore 

(a) (S ! L M -f 1)* + **-^ 

(b) 2S | 1 and 2L | 1 

(c) (S H L + M f 1) 
L + 3M - S 

" 2 

(14) 
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We now proceed to weak fields, that is, to equation (11). Con¬ 
cerning the limits of J we now distinguish two cases : 

(a), (c) | M | *> | L — S |, Jmax — L T S, Jmin =■ I M |, 
(b) | M | g | L - 8 I, 3max ----- L + S, Jnin | L — S |. 

The values of Jwaa. and here given follow from the two in¬ 

equalities : 

| L — S | <5 J g L -j S, | M | <? J, 

and bound the J-region common to the two inequalities. Hence the 
number of J-values is 

Case (n), (c) : L | S - | M | + 1. 
„ (ft): L |S - | L -HH- 1. 

For 'SLg we use in equation (11) an expression analogous to (8) in p. 47!), 
namely : 

3,-1 S 

(a), (c) : i|(L S — | ME | I 1) f i(8 D(8 1 L I 1) 

i. -i- s 

1 

+ l)’ 

('>): :j(L-l-S L — S | -f 1) -j- A(S L)(S | L i)I, 
IL S| 

1 

10) I l) 

The summation over J is performed as in equation (9) on p. 47!), 
and, after simple reductions and the addition of the factor M from 
(11), gives 

, w , M /T , « ,-vm , 1X3|M| + S-L 
(«-). C) : ,-jyn (L r s - |M I + l)-1—- 

(b): (L-f S — | L S| (- 1) 
.*} | L - 8 | -j- S - 

2 I S . L i 

• (15) 

The first expression resolves, according as M > 0 or M < 0, into the 
two values (a) and (c) of equation (14) ; in the same way the second 
expression resolves, according as L > S or L <8, into the two values 
(b) of equation (14). This proves the permanence of the magnetic 
resolutions for weak and strong fields. 

With the help of Figs. 134 a and b the allocation of terms in strong 
and weak fields given by Pauli in p. 49(5 may be reduced to the wave- 

mechanical formulation of this allocation. Wave-mechanics asserts 
that terms which belong to the same M-value do not intersect when 
we pass from weak to strong fields. We can now show that we may 
derive Pauli’s allocation from the postulate of non-intersection. Let 
us consider the case of a regular term. In the field-free term the 
levels then lie above each other in the order of increasing J’s, so that 
the smallest J-value lies lowest. Consequently, in weak fields the levels 
having a fixed M are similarly arranged : the level that belongs to 
the smallest J-value that is possible for a given M, lies lowest. In 



§ 7- Paschen-Back Effect 503 

a strong field the resolutions are given by AvjAvnorm = 2Mg -f Ml for 
a fixed M. Now, 2Ms + Ml -= M + Ms, hence the terms here lie 
above each other in the order of increasing Ms. If no intersections 
are to occur we must assign the lowest level in the weak field to the 
lowest in the strong field and so on in the sequence of levels. We 
assume the allocation to be linear and therefore write 

M -f- Mg — ocM -f- /SL -}~ y8 ~*{~ 8J, . . (lb) 

where the resolution in the strong field stands on the left-hand side 
and all those quantum numbers are introduced on the right-hand 
side, on which the resolution in a weak field depends. We now con¬ 
sider the different cases that we already know from Figs. 134 a, b : 

1. L > S. (a) M L — 8 ; (by Fig. 134a) M -f Mg here goes from 
2M — L to JV! + S and J from M to Jwar -= L -f- 8, M 
remaining fixed. 

If we substitute these associated limiting values of Mg and J in 
(lb) wo obtain a - 8 — 1, ft — — 1, y ~ 0. Equation (lb) then runs 
like Pauli’s equation (10) : 

AvlAi>n„.rm —- M + J •• • L. 

(b) L — 8 ^ M g; 8 L ; M f- Mg goes from M --- 8 to M 4- 8, 
J from L — 8 to L + 8. The determination of a, j8, y, 8 
gives the same as under (a). 

(c) S - L ^ M ; M + Mg goes from M -- 8 to 2M -] L, J from 
| M | — - M to L + 8. The corresponding calculation of 
the factors a, /k y, 8 now gives : AvjAvnnr7n -- 2M + J — S. 

2. L < 8. (a) M ^ 8 - L gives the same as la, 
(6) 8 — L ^ M L — 8, and 
(c) L — 8 ^ M give the same as lr. 

Hence, recapitulating we have 

if M 8 — L, we obtain Av/Avnorm — M + J — L, 
and if M ^ 8 — L, we obtain AvlAv„orm = 2M f J — 8, 

that is precisely Pauli s allocation. 
We may apply an analogous argument to inverted terms and likewise 

obtain the allocation already given on p. 49b. 
We must next mention an attractive application of the Permanence 

Law made by Pauli, namely : to calculate the g-values in weak fields 
from, the resolution’Sums in strong fields. This will be illustrated for 
the case of the triplet D-terms, in which case we may derive the resolu¬ 
tion-sums directly and simply from Table 52 instead of from eqns, 

(14) and (15). 
Denoting the g's that belong to the terms Dj by gj and hence the 
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resolutions by Mgrj, we deduce successively from the vertical columns 
of the Table 52, proceeding from right to left: 

: = 31 Sg3 — 4 (13 ~ t\ 

^ 2! 2(03 + 0a) = 5 g2 ~ 
1 1(03 + 02 + 0l) “ '1 9i — i 

-- 0 0(03 + 02 -1- 0l) 0 

These are the same g,j\s as were given in Table 45 on p. 478 for the 
triplet D-terms. We may verify the other data in this table in the 

same way. 
Lastly, we must discuss the beautiful observations, already made 

use of in p. 337, which Paschen and Back made in the case of medium 
fields. They arose in the effort to discover the selection principle of 
the inner quantum numbers and its possible transgression.* 

We know that an external electric field must be acting if the selection 
principle of the azimuthal quantum number L is to be transgressed, 
namely, if the forbidden combinations f AL ~ 0 and | AL | > 1 are to 
be realised. Such a field is, however, found to be ineffective in the 
case of the selection principle of the inner quantum number. Paschen 
and Back show us that a magnetic field is able to make this transgression 
possible, but only in the course of the transformation which leads from 
the anomalous Zeeman effect in weak fields to a partial Paschen-Back 

(effect in fields which are to be regarded as strong compared with the 
less resolved term-difference. Cf. the discussion based on the Corre¬ 
spondence Principle given in Chap. VI, § 5, which may be applied to 
any arbitrary multiplicities. 

Let us consider the PD-combinations in the triplet spectrum of Ca¬ 
in addition to the principal lines (P2L3), (P^IL), (PoDj) and the satel¬ 

lites (P2L)2), (P1D]), (P2Di) of the composite triplet we have the for¬ 
bidden combinations : 

(PA)5 (IW with AJ - 2, 
(P^g) with AJ = 3. 

Taken together with the allowed combinations, they form an organic 
complex : whereas they have the intensity zero in weak fields and 
merge into the state of the partial Paschen-Back effect in strong fields, 
they have a transitory existence in medium fields. They do not, of 
course, occur in their original field-less position, but in a magnetically 
influenced position ; it is possible, however, to extrapolate the former 

* Liniengruppen magnetisch vervollstdndigt. Zeeman Jubilee Number of 
Physica, 1st series, Oct., 1921, p. 261. 

t AL — 0 is forbidden only for one-electron systems (cf. Note 7(e), because 
in this case L becomes identical with the l of the electron, for which Al = ± 1 
holds. For systems with more than one electron AL — 0 is allowed, cf. p. 444. 
But | AL | > 1 is of course also forbidden for systems with more than one electron, 
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linearly from the latter, and to identify the forbidden components as 
such. 

This phenomenon was shown to occur not only in Ca, but also in 
the case of (PD)-triplets of Zn and Cd as well as in (PD)-doublets of 
A1 and Ca+. It is very characteristic that the, so to speak, doubly 
forbidden combinations (P0D3), AJ — 3, are much harder to produce, 
that is, require stronger fields and occur only over a smaller range, 
than the simply forbidden combinations, AJ — 2. 

Accordingly, the observations of Paschen and Back in question 
provide a suitable means of shedding light on the magnetic origin of 
the complex structure and of exhibiting its relationship to electron 
spin. We quote two passages from their paper : “ Only the general 
arrangement of series is electrically sensitive in so far as combinations 
of a forbidden type may be forced to appear by means of electric fields. 
On the other hand, the term-differentiation is to be influenced by 
magnetic forces, as is proved by the anomalous Zeeman types and 
the magnetic transformation phenomenon/' “ The forbidden lines 
appear if the Dj-differences are shattered magnetically ; they become 
brighter as the magnetic perturbation increases and then disappear in 

the subsequent magnetic transformation. The effect is the swan-song 
of the configuration before its magnetic annihilation." 

§ 8. Theory of the Magneton 

Of the various routes which lead to the determination of the ele¬ 
mentary magnetic moment of an atom, we shall first discuss the funda¬ 

mental experiment of Stern and Gerlach, because this is performed 
under the conditions which are theoretically simplest and clearest ; 
secondly we discuss the magneto-chemical measurements which con¬ 
cern the number of magnetons in ions and compare them with 
the “ spectroscopic number of magnetons.” We then report on the 
magneto-mechanical experiments which are associated with the names 
Barnett, Einstein and de Haas, Sucksmith and so forth. All these 
ways are closely connected with the theory of the anomalous Zeeman 
effect. 

(a) The Stern-Gerlach Experiment 

In Fig. 31, p. 124, we have already described diagrammatically the 
arrangement, and in Figs. 32 and 33 the result of the experiment with 
the atomic rays of silver and hydrogen. The theory of the experiment 
which we sketched very incompletely before (cf. the footnote on p. 128) 
may now be given rigorously. The ground-orbit of the Ag-atom and 
of the H-atom is, as in the case of the alkali metals, an S-orbit. Its 
inner quantum number is J — |, its magnetic moment in the direction 
of the field is, by p. 476, \i — £ . 2 ~ 1, that is, equal to a Bolir mag¬ 
neton. Stern and Gerlach have confirmed this moment ft = 1 in their 
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experiment (cf. p. 129). The first Fig. 30 on p. 124 decides the spatial 
orientation in the magnetic field. The magnetic moment sets itself 
either parallel or anti-parallel to the magnetic lines of force. Hence, 
in Fig. 31 the atom will be deflected either to the right or to the left- 
hand side. The middle of the picture in Figs. 32 and 33 remains com¬ 
pletely free, because the magnetic zero-levels is missing in all even terms 
(and not only in the S-state). What has already been said is enough 
to show how such experiments are in general to be interpreted, and 

what results are to be expected from them. For every atom they give 
us the magnetic resolution of the ground-term,, and indicate what and 
how many positions the axis of the magnetic moment assumes in the 
field. For example, in Mn (ground-state sextet-K-term) we expect 
six deflection traces, the two outermost corresponding to the parallel 
and anti-parallel orientation of /z in the magnetic field, the inner ones 
corresponding to more or less oblique orientations. In Or (ground- 
state septet-S-term) we expect a deflection picture consisting of seven 
traces, the two outermost corresponding to the two parallel positions, 

the middle undeflected one corresponding to the position perpendic¬ 
ular to the magnetic field. Actually the deflection is proportional to 
/z cos (/z. H), precisely like the magnetic resolution of terms in the Zeeman 

effect. The number of traces is in general equal to 2,1 -f 1, namely, 
equal to the number of magnetic term-levels ; every trace can be char¬ 

acterised by a definite value of the magnetic* quantum number M. 
The distance between two neighbouring traces is equal to 2, if we are 
dealing with an S-state, as this corresponds to the splitting-factor 

g — 2 ; that is, the difference between the values of p cos (/z, H) which 
are effective in the deflection amounts to two magnetons in each case. 

Tellurium presents an instructive example. The ground-term is 

the Pj-doublet term. Hence, in T1 we expect two traces as in the case 
of Ag, but at a third of the former distance, because by Table 45 on 
p. 478, the g-value of the 2P$ term amounts to two-thirds, and not to 
two, as in the S-term. The results of observation * are in good agree¬ 

ment with this : the deflection-picture comes out broadened as com¬ 
pared with the trace when no field is present, but it was not possible 

to resolve it into two separate traces.f 
Stern found no signs of a deflection in Zn, Cd, Hg : the ground- 

state here is the S-term with J 0, /x — 0. The absence of the deflec¬ 
tion is not due to the perpendicular position, but to the diamagnetic 

character of the ground-state. (On the other hand, the excited states 
of these atoms would have to behave para-magnetically.) The deflec¬ 

tion zero is also exhibited by Pb, according to Gerlach. The ground- 

* W. Gerlach, Ann. d. Phys., 76, 113 (1925) ; A. Lew, Zeits. of Physik, 41, 
551 (1927). 

t We have here disregarded the nuclear moment, of. § 10. This should change 
the resolution-pattern slightly. Cf. a paper by E. Fermi which will shortly appear. 
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state of Pb was discovered by Grotrian * ; it corresponds to a term 

with J — 0. This J-value predicts diamagnetic behaviour, and the 
absence of a deflection. The same applies to Sn. 

Gerlach has found that Cu and Au behave exactly like Ag. It was 
to be expected that the alkali metals, as Stern has confirmed, would 
exhibit the same deflection pattern as Ag. The observed deflection 
pattern of Co and Ni consists of more than two traces. According to 
more recent and as yet unpublished papers, Gerlach obtained in the 
case of Fe one blurred trace which is probably composed of a fairly 
large number of individual lines which overlap owing to the non- 
homogeneity of the individual lines. For a comparison, we may take 
the theoretical deflection pattern of the Fe-atom. In the ground-state 
of Fe, inverted 6i)-term (cf. j). 463), we have J -- 4, g = [\. Here, then, 
we should have nine traces at a distance from each other corresponding 
to a difference of i! magnetons. 

Reverting to the silver atom, we are led to ask : why do the two 
traces in Fig. 326 appear equally intense, seeing that the* one trace 
corresponds to an apparently unstable position of the atom ? Whence 
does the atom, which was originally orientated arbitrarily, derive* the 
energy to enable it to adjust itself into this higher position as regards 
energy ? 

The answer to the second question is doubtless : the energy is 
derived from the external field H. Whereas the adjustment into the 
position parallel to, and in the same sense as, the field is associated 
with loss of energy to the field (possibly as radiation ultimately), the 
adjustment into the position anti-parallel to the field must occur with 
the acquisition of energy from the field. We must bear in mind that 
the passage of the atom from the field-free space into the field is very 
slow (adiabatic) in view of the relatively slow speed of the atomic ray. 

Concerning the first question, the instability of the atom, we must 
emphasize that the para-magnetic atom is to be compared not with a 
magnet needle, but rather with a top. The magnetic needle with its 
north pole directed towards the south is certainly unstable.; but the 
top with its centre of gravity in an elevated position is, as we know, 
stable if the moment of momentum is sufficient. 

It may easily be calculated from the data given on p. 513, that the 
general statistics of Boltzmann leads to the opposite orientations 
occurring with appreciably equal probabilities. 

(6) Magneto-chemical Measurements 

The interpretation of para-magnetic observations is in general 
based on Langevin’s theory, which states that the Curie constant C, 

* Zoitw. f. Pliyaik, 18, 196 (1923) ; the term was conventionally called the 
term at that time. 



508 Chapter VIII. The Complex Structure of the Series Terms 

that is, the product of the absolute temperature with the suscepti¬ 
bility calculated for a mol of the gas, is given by 

M2_ 
C .-r, XT - ~ cos2 6. (1) 

M is the magnetic moment per mol (macro-unit of the atomic or, 
respectively, the molecular moment, cf. p. 128 above) ; R is the gas 
(constant per mol, 6 the inclination of the axis of the moment to the 
direction of the magnetic field ; the horizontal bar denotes that the 
average is taken over all possible angles of inclination. Langevin’s 
theory, which preceded the quantum theory of course assumed 0 to be 
continuously variable and all positions to be equally probable (we may 
reasonabh^ discard the possibility of the direction of the magnetic 
lines of force being favoured for the adjustment, since this causes only 
a correction proportional to the field-strength). Hence Langevin set 

cos2 6 —- J, . . . . (2) 

that is, equally great for the direction of the lines of force as for two 
axes perpendicular to it. But, on account of spatial quantising, this is 
no longer admissible. 

If we substitute (2) in (1), we obtain 

M = Vmc.(2 a) 

The natural unit for M is the Bohr magneton Mu, of eqn. (14), on 
p. 128, which is given by the quantum theory. But since the measure¬ 
ments are given throughout as multiples p of the Weiss unit Mw, of 
eqn. (15) on p. 128, we must use the conversion factor 

Mb 

Mw 
= 4*97 

in the sequel and specify the number of Bohr magnetons by 

V 
4-97 

In a note dating back to 1920, W. Pauli * used that kind of spatial 
quantising which led to the normal Zeeman effect, and which was at 
that time (erroneously) applied to the hydrogen atom. Pauli chose as 
his examples the paramagnetic gases NO and 02 as he had doubts 
about extending his calculation to solutions or solid bodies. 

The latter step was taken by P. 8. Epstein f and W. Gerlach,£ 
who extended Pauli’s calculation to atomic ions, in particular, to 
those of the Fe group. 

* Fhys. Zeits., 21, 615 (1920). 
f Science, 57, 532 (1923). 

t Phys. Zeits., 24, 275 (1923), and Vol. II, of Brgebnisse der exakten Natur- 
wissenschaften.” 
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As early as Iff lf> Kossel * had recognised that in the Fe group, 
ions having the same number of electrons, for example, FeH Mn++, 

or Mn+ rand CfM', have the same number of magnetons (“ magnetic 
displacement law ”), and that in the above-mentioned examples the 
removal of an electron causes p to diminish by, say, 5 units, which 
would indicate that one Bohr magneton must be assigned to the 
individual electron in each case. 

The calculation according to the rules of the normal Zeeman 
effect is not correct for most atoms. Bather, we have in general to 
apply the rules of the anomalous Zeeman effect. According to these 
rules the moment M in the direction of the field is given by 

M — J(?Mb (g m Lande’s splitting factor). . . (3) 

In general the moment does not lie in the direction of the field, but 
inclined to it in such a way that the projection of J in the direction of 
H, which we shall call m in the sequel, becomes integral or half-integral 
simultaneously with J : 

m = J, J-l, J — 2, . . . — J + 1, J. 

Thus, corresponding to every term-level there are in general 2J -f- 1 
positions which are respectively inclined at the angle given by 
cos 6 — m/J. Every position is given the weight 1 ; the total weight 
of the term is 2J j 1. 

To calculate the susceptibility y we must form, analogously to (J), 

■1 J 

COS2 0 jo 2 
1 _ J(J j 1) 

Hence by (3) 

and by (1) 

J2“(2»I -f 1) 3J2 

cos2 0 1YT2 - - f/2M i>2 

J(J 1) 2M 2 
x “ 3 RT J M|1 

(4) 

(4a) 

(•r0 

If we assume an equal distribution over all directions in the sense of 
eqn. (2), we immediately obtain from (1) and (3) 

JV 
3RT 

,Mb2. (5a) 

It is very remarkable that (5a) changes into (5) if we merely replace 
J by J(J f 1). This lends us to conclude that this rule, well-known 
to us in wave-mechanics, is in a certain sense equivalent to our spatial 
quantising. We must remark at the same time, however, that the 

* Ann. d. Phys., 49, 229 (1916) ; cf. in particular p. 261. See also the following 
Fig. 136, where ions having the same number of electrons are represented by the 

same point on the axis of abscissae. 
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complete wave-mechanical calculation of the .susceptibility in Dirac’s 
sense (for hydrogen or more generally for doublet spectra) yields not 
only this factor J(J | 1) but also the factor gl quite spontaneously, and 
without having recourse either to experimental results or to the vector- 
spin model. 

The ideally simple example of direction quantising is given by the 

vapours of the alkali metals. The ground-term of the alkali metals 
belongs to J — J, g — 2. Here there are two possible positions of 
adjustment (as the Stern-Gerlach experiment shows directly), namely, 
that parallel and anti-parallel to the magnetic field. 

. I2 + (— 1)2 _ 

Hence cos2 6 ■=-2~~— ~ ^ cos2 0 J2 — \ 

cos2 0 J V2 ~ Mb2. 

Hence we obtain for the alkali metals simply 

Mb2 
x ~~ RT' ‘ (6) 

The same result follows naturally from the general eqn. (5) with J — J, 

9 = 2. 
On the other hand, according to Langevin, that is, if we assume 

equi-distribution over all directions, we should expect a value of y 
that is three times smaller, if we regard the magnetic moment M — Mb 
as given by the Stern-Gerlach experiment. Observations by Gerlaeh * 

for K-vapour, which confirm (0), thus exhibit directly the preferential 
adjustment of the magnetic axes. 

It is usual to calculate paramagnetic measurements according to 
Langevin\s theory, the Weiss unit Mw being taken as the basis. Thus 
in (1) we substitute M — //Mw and obtain, in view of (2), 

_^2%2 
* ~ 3RT 

A comparison with (f>) gives 

pMw =~ Vd(J f 1),?Mb 
or 

4§7 - VJ(JTT)g.(7) 

In the complete analysis of a spectroscopic term (in paramagnetic 
measurements we are of course always concerned with the ground - 
term of the atom or ion in question) we know in this formula not only 
J, but also the quantum numbers L and S, which enter into g. We 
may therefore calculate the number p of magnetons by spectroscopic 

* Como Congress, 1927. 
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means. This scheme, suggested by the author,* of “ spectroscopic 
magneton numbers," which is beset with difficulties in the Pc group, 
leads, as F. Muud '|* has shown, to complete success in the ease of the 
ions of the rare earths, which are better defined and better screened 
from the outside. In the sequel we shall go further than Hmid J by 
representing the sequences of magneton numbers by means of a formula, 
or, more accurately expressed, by means of two such formula*, one of 
which holds in the first the other in the second of the Stoner sub-groups 
(of. p. 473), into which the total group of rare earths resolve. 

As we know, in the ease of the rare earths we are concerned with 
the filling up of the .N-shell (n -- 4) by /-electrons, that is, by electrons 
of azimuthal quantum number / -- 3 (in the Fe group we should 
correspondingly be concerned with (/-electrons, / --- 2). Since we 
are interested throughout only in the triply positive ions of the rare 
earths the electrons of the O-shell that still remain after the triple 
ionisation do not come into question, because they form a closed 
8-shell (of. Table 9 on p. 163). The total number of /-electrons in 
the complete shell is, by Pauli's Principle, 2(2/ |- 1) — 14. We use 
z to denote the number of /-electrons in each ion and z' to denote the 
number of missing /-electrons required to complete the 14-group, so 

that 
z -f s' ----- 2(2/ -{- 1) 14. 

z and z’ are the independent variables, with which we shall construct 
our curve of magneton numbers. 

On p. 455 we determined tin* ground-terms of these ions and also 
their ground-levels (J — Jm/„, regular terms, in the first half of the 
group ; J — Jmax inverted terms, in the second half of the group). 
From the equations (2), p. 455, we obtain for the J which enters into 
our present equation (7) : 

* *■ 21 \ 1, J - L S - :p- z) 

z S 21 -|- 1. J = J,„„, - L S - |'(21 - z’ }■ 2) 

On the other hand, the factor g which enters into (7) (cf. (7) on 
p. 477) stands for 

,(_S.L)(Sj-_L-j-_l) 

g" * ‘ - ' 'j(j -or ■ 
By substituting from equation (2) on p. 455 we easily obtain 

z<2l+l, g(J + 1) - |(21 — 2 — 1) H 1 

2 > 21 + 1. gJ = |(21 - z' + 3) 

* Phvs. Zaits., 24, 300 (1923) ; Zeits. f. Physik, 19, 221 (1923). 
f I biff., 33, 855 (1925). 
X Of. a note by the author given in the Wiener Aka den lie, 30 Jan., J930. 
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Hoi ice oil account, of (S) and (Sa) vvc obtain from (7) 

V I.zW 
V z(2l - 

^ 21 + 1, 

- 2/T 1, 

4* 97 

P 
497 

—— * |(2/ 2 - J) 
'z(2l - 2) + 2( 2 

lzWZ*±K±2 SV>, V 
"V z'(2l-z' + 2) 2l " 

(«*) 

I :$} (Ub) 

By (9a) we have p — 0 for z — 0, La, and for z -=• 2/, Eu, and 
p attains a maximum between these elements ; for z > 21 p becomes 
imaginary. In Fig. 135 we therefore break off this branch of the curve 
at 2 = 2/. By (96) p — 0 for z' = 0, Lu ; for z' 21 f 1, Gd, the 

right-hand side of (96) becomes equal to V(21 + 1)(2/ + 3) = V63, 
after having previously attained a 
maximum between l)y and Ho. 
Beyond z' — 21 + 1 we have 
dotted the extension of the curve 
to indicate that it is no longer 
valid here. 

The agreement with the ob¬ 
servations of Stefan Meyer and 
Cabrera is satisfactory throughout, 
as Hund has pointed out, except 
in the case of Sm and Eu. A 
wave-mechanical refinement of the 
theory (by van Vleek) has also 
given approximate agreement be¬ 
tween theory and experiment in 
the case of these elements. At 
any rate the subdivision of the 
curve into two parts, which corre¬ 
sponds with Stoner’s two sub¬ 
groups, is very characteristic ; 

Fra. 130.—Tho magneton numbersi of tl,erc can be ‘ no doubt that 
the triply ionised atoms of the , . . _ 
rare earths (in Weiss units) as a spectroscopic theory explains the 
function of the atomic number. essential features in the case of 

the rare earths. 
It might be expected that the same laws (with l — 2 instead of 

3) would apply in the iron group. The reason for this not being so 
is in the first place due to the following differences : the multiplets 
of the rare earths are widely separated : 

hAv &T, 

those of the iron group are only slightly separated : 

hAv < kT or iv kT. 

P 

That is why we were justified in assuming in the case of the rare earths 
that only the lowest multiplet-level came into question in calculating 
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the susceptibility, whereas in the iron group several or all levels may 
contribute to the susceptibility. 

Clearly the distinction between widely separated and close levels 
is meant relatively to the temperature at which observations are 
made. Instead of saying a great or a small Av we may also say a 
small or a great T. 

Laporte and the author,* adopting this point of view, have en¬ 
deavoured to get an understanding of the magneton numbers of the 
iron group. The first feature that strikes us is that in the middle 
of the group z ~~ 21 + 1 = 5(Fe+++ or Mn++), where by Table 43 
on p. 454 a 6S-term occurs, the observed and the calculated value agree 
well f (cf. Fig. 136). Actually the distinction between widely sep¬ 
arated and close multiplets does not arise for S-terms since an S-term 
is always simple. Consequently we are inclined to blame deviations 
which occur at other points of the iron group on to the multiplicity 
of the terms. 

Assuming that every term-level 3 is occupied by 

hr 

N.t =--- (2J 1 )e ™ 

ions, corresponding to the Boltzmann factor (23 1 — statistical 
weight, cf. p. 509 ; v — vj as the vibration number of the J-level in 
question), we obtain instead of (5) 

T(,i )NjJ (3 + 1)<72 Mh 

X ’ 2,',.i)N.j 3HT’ 

and accordingly instead of (7), 

V_ 
4-97 4 27Nj3(3 + l)r 

‘ 27Nj 
(10) 

The summation here and in the sequel is to be performed over the 
range from 3 = | L — S | to 3 —= L | S. If we divide numerator 
and denominator by the Boltzmann factor of the ground-level and 
measure the distances Av from it, using for convenience wave-numbers 
instead of frequencies (factor c) we must now take Nj as standing 

for 
hc&v 

Nj — (2J +l)e . . . (10a) 

In the case of very widely separated multiplets (10) naturally passes 
over into (7), since all Nj’s vanish except the Nj of the ground-level, 
which cancels in the numerator and denominator. In the case of 

* Zeits. f. Physik, 40, 333 (1926). Cf. also a criticism of this view by 
O. Laporte, ibid., 47, 761 (1928). 

f We obtain by calculation [most simply from eqn. (7) with J — ij, <j 2] 

p ----- 4-97 . a/35 - 29*5. 

VOL. J.—33 
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very narrow mnUiplcls we may conversely set all exponential factors 
equal to 1 and obtain 

iL MlSIw mi 
4*97 V 1:2,7 +1 ‘ ‘ [ ) 

The two extreme eases (7) and (11) are shown in Fig. 13(> ; we shall 
presently discuss the significance of the line (13). (7) has the same 
character as in the rare earths and is unsymmetrical with respect to 
the middle ; (11) is symmetrical because the reason for the lack of 
symmetry (regular terms in the first, inverted terms in the second half) 
is disposed of by the summation over J. In consequence of this 
symmetry (11) approaches the observed values which, in the iron 
group, show no sign of the division into the two Stoner sub-groups 

Z -0 1234567 89 10 

Kio. 130.—The magneton numbers of 
the iojis of the iron group in Weiss 
units. The figures along the top 
denote the number of d electrons for 
the ions given along the bottom. 
The degree of ionisation of these is 
indicated by dots instead of, as is 
usual, by crosses. 

field. On this last assumption we 
expression 

4.97 — \/4S(S + 

and lie at least approximately 
symmetrical Avitli respect to the 
middle. According to our line 
of reasoning we should expect 
that the observed points would 
lie between the two limiting 
curves (7) and (11). This is so 
in the first half, but not in the 
second (cf. Ni++, Ou1 1). 

In deriving (11) we assumed 
that the “ normal coupling ” of 
L and S with J held and that 
J orientated itself in the mag¬ 
netic field in accordance with 
the quantum theory. In the 
case of very narrow multiplets, 
it suggests itself to assume that 
the coupling between L and 8 is 
released, and that L and 8 there¬ 
fore may orientate themselves 
individually in the magnetic 

obtain instead of (11) the simpler 

TTTl(l+1). • - (lia) 

The proof runs as follows. Corresponding to the moment of momentum 
8 and L we have, respectively, the magnetic moment 

28Mb and LMb. 

By projecting on the direction of H we obtain 

Mh — (28 cos 0s + L cos 0l)Mb. (12) 
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To calculate the susceptibility wo have to form, as in (I) and (4), 

Mh (4S2 cos2 6$ I 4S cos L cos 6[A T La cos2 fhJMh. (12a) 

But we have 

S cos 6s ~ ws, L cos = mj„ 

where the magnetic quantum numbers ms, run through all values 
between — S and ] S, and - L and | L with integral differences. 
Hence 

Mr 

-I L 

i (*%fh 1 ,)“s (126) 

-L 

We have already omitted the middle term, since both cos 6$ and cos 
vanish. But precisely as in (4) so 

+ S |-L 
S(S -f- 1) ^ 7u 

3 
Y ms 

^-28 + 1 ^2L f l) 3 

L(L + 1) 

holds. Accordingly 

Mi 
M,r 

3 + 1) I +(L + l) |--3' - 

This is equivalent to (11a), since the factor 2 cancels with the 8 in 
Langevins formula, which serves to define p. 

Van Vie ok * has shown numerically that the difference between 
(11) and (1 la) is very small. Consequently, we may use our curve (11) 
in Fig. 136 also to represent (I la), it is remarkable that in the case 
of very close multiplets wave-mechanics yields (11a) directly without 
any particular assumptions about the type of coupling being necessary. 

The application of the Ac calculated for the vapour-state to solutions 
and crystals appears precarious. Joos f emphasises that the colour of 
solutions in the iron group which were originally brought into con¬ 
nection with paramagnetic properties remains unintelligible from the 
point of view of the vapour-state of the ions. For the spark spectra 
in question contain no absorption line in the visible ; the As in question 
are all < 1700 A. Hence Joos concludes that the colour must have 
its origin in complex compounds in which loose bolide occur. 

Bethe, however, has shown by an analysis of the crystallised state 
and of its electric fields (in a paper which will shortly be published) 
that the susceptibility, averaged over all directions as is observed in the 
case of a crystalline powder, is the same as a free ion so long as the 
temperature is not extremely low. Bethe J had already shown earlier 
that through the interaction with the neighbouring atoms of the 
crystals the moments of momentum are more disturbed (fixed in the 

♦ Phys. Rev., 29, 727 (1927) ; 30, 31 (1927) ; 31, 587 (1928). 
f Ann. d. Phys., 81, 1076 (1926). + Ibid., 3, 133 (1929). 
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crystal lattice) than the spin moments of momentum, which is of 
importance for the discussion by Stoner which follows helow. This 
result is confirmed by the character of the Zeeman (‘fleet of gadolinium 
sulphate (J. Becquerel). On the other hand, Saha * points out that 
in the salts of the so-called U mordnungsgruppen (for example, the iron 
group) transitions may occur, in the crystal and in solutions under the 
influence of incident light, between the deepest levels of the ions in 
the form of quadrupole-radiation ; these transitions are forbidden in 
the case of free ions. The wave-lengths of such transitions correspond 
in order of magnitude to the colour of these salts. 

To the distinction between widely separated and narrow multiplets 

E. 8. Stoner f adds the distinction between slightly and greatly per¬ 
turbed, multiplets. The energy-levels of the rare earths are not only 
widely separated, but are also slightly perturbed, since their magnetically 
active electrons belonging to the N-shell is shielded towards the outside 
by the completely developed and magnetically inactive 8-group of the 
0-electrons, it is different with the iron group, where the M-shell is 
magnetically unsaturated and the two electrons of the N-shell, which 
become added on the outside from Ca onwards, are absent in the ions 
of the subsequent elements. Hence here the perturbation of the 
magnetically active electrons by the surroundings is marked. If we 
could observe the ions of the iron group in the vapour-state we should 
presumably find the magneton numbers determined above, that is, 

for widely separated multiplets, points of the curve (7) in Fig. 136. 
Stoner assumes that this perturbation will essentially affect the orbital 
moments of momentum /, and not the electronic moments of momentum 
s, and that they will express themselves in a diminution of the resultant 
quantum number L. Hence he makes L — 0 for extremely strong 
interaction with the neighbourhood in equation (11a) which, as re¬ 
marked, is essentially identical with (11). Hence whereas (11a) is 
retained for slightly separated and slightly perturbed multiplets the 
following is to hold instead of (11a) for slightly separated and greatly 

perturbed multiplets : 

4§7 = V4S(S -1- 1). . . . (13) 

Til the first and the second half of the period 8 — zj2 and z72, we 
may also write, respectively, 

P _ \ Vz(z + 2) 
4-97 ~ Wz'(z' + 2) 

21 4- 1. (13a) 

The new boundary curve which results in this way is like the earlier 
equation (11) symmetrical with respect to the middle. The region 

* M. N. Saha, Nature, 125, 163 (1930); cf. also D. M. Bose and P. K. Raha, 
ibid., 127, 620 (1631). 

| Phil. Mag., 8, 250 (1929). Cf. also Brunetti, Rend. Ac. Line., 8, 754 (1929). 



§ 8. Theory of the Magneton 517 

between it and the boundary curve (11) has been shaded in Fig. 136. 
The observed magneton numbers are to lie in this region, according to 
the amount of interaction, and they will lie nearer to (13) than to (11) 
because in general we expect great perturbation in the iron group. 
Fig. 136 shows that this is actually the case. Tt is clear that for the 
middle and for both ends of the group the equations (11a) and (13) 
must coincide because an S-term is always present here, so that then 
L = 0 in any case. 

The curve (13) is approximately straight because the 2 may be 
neglected in (1.3a) for the greater values of 2 and z'. This accounts for 
the integral relation, previously observed by the author, between the 
magneton numbers of the ions of different degrees.* The content of 
eqn. (13) may also be expressed thus : in the case of strong inter¬ 
action with the neighbourhood the magneton numbers behave as if 
the state were always given by an S-term. 

Papers by D. M. Bose f arrive at the same result as Stoner, and are 
made physically intelligible by Stoner's hypothesis of a strong inter¬ 
action at temperatures that are not too high. Bose succeeds in repre¬ 
senting the facts of observation tolerably well by means of the formulae 

(13), (13a). 
One might be led to expect the same conditions as in the iron group, 

also in the palladium and the platinum group. This is, however, not 
so. The magneton numbers of the latter groups are, so far as they 
are known at present, considerably smaller than in the iron group, as 
they lie between one and two Bohr magnetons. The reason is prob¬ 
ably as follows : in the vertical columns of the periodic system the 
ionic volume increases towards the bottom, and hence the ionogenic 
character decreases (cf. the last paragraph of p. 149). The electrostatic 
fields are the stronger the smaller the ionic size : the fluorine ion 
behaves more strongly negative than the chlorine ion, and so forth, 
the lithium ion more strongly positive than the sodium ion. Accord¬ 
ingly, in the solutions of salts of the Pd and Pt group we expect the 
ionic character to be less marked than in those of the Fe group. But 
then we may also not expect the paramagnetic regularities in the 
magneton numbers of the former, since our theory of magneton 
numbers rests entirely on the existence of pronounced ions. 

Hitherto we have spoken only of the paramagnetism of atoms or 
of their ions. The classical example for the theory of paramagnetism 
and for Curie's law is given by the molecular gas 02 and (as it at first 
appeared) also NO. As we shall not describe the theory of molecular 
spectra till the next chapter, and do not wish to anticipate it, we must 

* Phys. Zoits., loc. cit. ; Ann. d. Phys., 70, 32 (1923). -/£.</•» Cr1 f h lain 3, Cr4 4 
has 4, and Or 6 Bohr magnetons ; in the same way, S. Freed, Joura. Amer. Chem. 
Soe., 40, 2456 (1927), finds 1 Bohr magneton in V4+ + +, 2 in V41 *, and appro¬ 

priately 3 in V+4. 
f Zeits. f. Physik, 43, 864 (1927) ; Como Congress, 1927. 
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be satisfied here with only a few brief remarks. The ground-state of 
the 02-moleculc is a triplet S-term (called 3£). If we apply to it ecpi. 
(llu) with S — 1, L - 0, we obtain 

4§7- 2V2, p = 14'0, 

which agrees with the experimental results. We shall not explain 
here why the atomic formula (lln) may be applied to this case. Curie's 
law holds rigorously for 02 (except at extremely low temperatures) 
without the otherwise necessary corrections (see below). 

In NO the ground-state is a doublet P-term (2/7), whose two levels 
are relatively widely separated (Av —- 121 cm.”1). At very low tem¬ 
peratures, AT <€ hcAv, only the lowest doublet-level comes into 
question on account of the Boltzmann factor; at high temperatures, 
AT > hcAv, both levels according to their weights. The atomic; 
formula may not be used in this case to calculate the paramagnetism. 

According to van Vlcck, we obtain the magneton number p = 0 for 
the lower doublet-level and for the combined action of both 

JL -> 
4*97 

Thus NO does not obey Curie s law in its original form ; its magneton 
number p increases, rather, from zero at T — 0 to ^ 10 at T ==■ oo. 
In the intermediate region a transition formula applies, which was 
derived by van Vleck and which is analogous to our equation (10) ; it 
has been confirmed by measurements made by Bitter * as well as by 
Aharoni and Scherrer.f 

This is not the place to discuss the experimental data on which 
Figs. 135 and 136 are based. We remark only that they are not 
derived directly from the measurements, but are deduced indirectly 
from them after certain corrections have been applied. Such correc¬ 
tions are : “ extrapolation to the concentration zero ” in the case of 
solutions, taking into account the diamagnetism of the anion and the 
kation, and, above all, replacing Curie’s lawr yT = C by Weiss’s law 
X(T — ©) ----- C, where © denotes an empirical auxiliary quantity which 
cannot be predicted by theory. It is found in many cases graphically 

that the (1/y, T)-diagram givers a straight line which does not pass 
through the origin as in Curie’s law% but cuts the T-axis in a 
point T — ©, which may lie either on the positive side of the T-axis 
(as in the Curie point of ferro-magnetic substances) or on the negative 
side. 

Obviously, by introducing this © we take into account to a first 
approximation the influence of the neighbourhood (solvent and anions, 
or crystal structure) on the paramagnetism of the kations. It is in 

Nat. Ac. Proo., 15, 638 (1929). j Zeits. f. Physik, 58, 749 (1929). 
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agreement with this view that in paramagnetic gases where this in¬ 
fluence is absent @ also becomes equal to zero, either because as in 02 
Curie’s law holds directly or as in NO a derived form of Curie’s law, 
arising from the double character of the ground-level, holds, which 
does not, however, contain an empirical parameter ©. 

It has not yet been found possible to derive Weiss's law theoretically 
from statistical considerations. It is also necessary to build up on a 
statistical foundation the proof (not given by us) for Stoner’s assump¬ 
tion in the iron group which was to take into account the influence of 
the neighbourhood. Van Vleck has sketched how this is to be done 
on a wave-mechanical basis (cf. his book on electric and magnetic 
susceptibility which is about to appear). 

(c) The Magneto-mechanical or Gyro-magnetic Experiments 

We now deal with two mutually independent methods which may 

be briefly described as magnetisation by rotation and rotation by magnetisa¬ 
tion ; the former is associated with the name of S. *J. Barnett, the latter 
chiefly with Einstein and de Haas. Two predecessors of Barnett who 
had no success in finding the effect were Maxwell * (18fll) and Perry | 

(1890). Barnett’s J first successful experiments date from 1914. The 
experiments by Einstein and de Haas were published in 1915.|| O. W. 

Richardson looked for the effect without success in 1908. 
1. Magnetisation by Rotation.—A rod of ferro-magnetie material 

(Ee, Co, Ni or alloys), which is initially at rest, is made to rotate with 
angular velocity to. The resulting magnetisation is observed (or the 
difference in the magnetisations when the rotation is reversed). The 
same rod is then placed at rest in a magnetic field H, which leads to 
the same magnetisation as was previously produced by the rotation 
(or, if the field is reversed, the same difference of the magnetisations 
when the rotation is reversed) ; for this purpose the rod has a conducting 
wire wound round over its whole length. The magnetic field H ana 
the angular velocity to are equivalent to one another, by Larmor s 
theorem (p. 325). The atomic electrons (or the free electrons) of the 
rod cannot distinguish whether they are situated in the field H or in a 
system of reference rotating with angular velocity to. By equation (2) 
on p. 324 we expect the following relationship between H and to : 

H -- sco, s -- 2m/e, . . . . (14) 

where e/m denotes the specific electron charge in the usual electro¬ 
magnetic units (e/m — l-7fi . 107). It is this ratio s which interests us 

* Electricity and Magnetism, § f>7f>. 
| Cf. his book, Spinning Tops, p. 112. 
X Phys. Kev., 6, 239 (1915), given in a lecture in 1914. 

{( Verhandl. d. Deutsch. Phys. (res., 17, 152 (1915). 
t Phys. Rev., 26, 248 (1908). 
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here and in the sequel. According to (14) it is known when H and co 
have been measured. The magnetic properties of the material (per¬ 

meability or magnetisation) fortunately do not enter into the measure¬ 
ment. The material must be ferro-magnetic only in order that an 
appreciable magnetisation may be produced at all by rotation, and may 
be reproduced by applying the field H. The measurement of H makes 
the greatest possible demands on accuracy ; this is evident from the 
fact that a frequency of revolution of 100/sec. corresponds by (14) to 
a field H which is less than {^0 of the earth’s field. Barnett there¬ 
fore succeeded only after many years of arduous research in attaining 
a satisfactory accurary (of several per cent.). He obtained, as a result, 

in the mean 

tS* ^ TOO .mje.(15) 

without a difference in the materials used showing itself. In com¬ 
parison with equation (14) this result denotes the following : it is 
not the revolving electrons which produce the magnetisation of the rod, 
but the spin moments of moniemtum of the electrons. Actually, by 
equation (2) on p. 331, the value of s out of (14) is equal to the ratio : 
mechanical moment to magnetic moment of the revolving electron, 
whereas the value of s that occurs in equation (15) and that is 
only half as great points according to equation (3) on p. 1132 to the 
corresponding ratio for the electron spin. This state of affairs is in 
harmony with the view of ferro-magnetism which is likewise built- 
up on the spin moment of momentum of more or less free electrons. 
The deviation from the one on the right-hand side of (15), which is 
real according to Barnett, however, remains unexplained. 

A feature of particular interest in these experiments is their analogy 

with the earth's magnetism. It is difficult to avoid assuming that 
the magnetic moment of the earth and its rotation about almost the 
same axis are causally related. Barnett’s experiments show how such 
a relationship is possible, but the order of magnitude is quite different. 

According to (14) and taking a> =- 47r/day we obtain for the earth’s 
field a value that is more than 1011 times too small. 

2. Rotation by Magnetisation.—The original object of Einstein's 
arrangement was to demonstrate the mechanical moments of momen¬ 
tum of the Ampere molecular currents, that is, to demonstrate the 
revolving motions of the electrons which were supposed to occur 
without constraint in Bohr’s model of the atom. A magnetically 

saturated ferro-magnetic needle suspended by a vertical torsion thread 

is periodically demagnetised, the period is chosen so that it is in res¬ 
onance with the torsion system. The moment of momentum of the 
recoil is measured by the magnitude of the torsional vibration. The 

experiments which were carried out in collaboration with W. J. de Haas 
first appeared to confirm the classical value 2m/e for the ratio MmecfJ 
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MnMgn. A repetition of the experiments by de Haas,* 8tewart,f 
Beck,J Arvidson,|| Sucksmith and Bates led with an increasing degree 
of accuracy ** to half this value, that is, here too to the action of the 
electron-spin. 

The factor \ that occurs here is of course nothing else than the 
reciprocal of the ^-factor 2 for 8-terms (L ™ 0, the revolutions of the 
electrons do not contribute). Actually we have for the two total 
moments of the needle 

M„ = N cos 0/x . Mk, M, mrch N COS Of) . 
h 

2tt’ 
m 

where N denotes the number of atoms in the needle, 6 the angle between 
the field and the magnetic axis of the atom, /x the magnetic moment 

eh 
of the atom expressed in units of Mjj = — —- and J the mechanical 

m 4-77 
moment of momentum of the atom in. units of A/2it ; the horizontal 
bar over cos 0 denotes that the mean is to be taken over all the N 

1V1 1Yi 
atoms. But in view of the result of the observations ^ - it 

then follows from (16) that 

/t — 2.1, ^ <j 2. . . . (17) 

The fact that in the gyro-magnetic experiments we are actually 
dealing with the magnetic anomaly, that is, with the (/-value 2, is 
firmly established by the result of more recent experiments by 
Sucksmith ft on Dy203. If we wish to do without ferro-magnetic 
material and seek to perform the gyro-magnetic experiment with 
para-magnetic material, we shall in the first place have to make use 
of the extremely para-magnetic substances dysprosium or holmium, 
whose magneton numbers lie near 50 Weiss units (of. Fig. 135). We 
have for I)yH + t in the notation of equations (8) and (Ha) on p. 511, 

*'-s, j -= jm(I, - - y\ 9 — 1 ■ 

By increasing the sensitivity as far as possible Sucksmith has succeeded 
in observing the recoil effect in demagnetising a rod of l>y203. From 
this he finds the corresponding value of g to be, not 2 as in the ease 
of ferro-magnetic substances, but 1*28 ^ 0*07, which is in agreement 

* Proc. Amstord. Acad., 18, 1281 (1916). 
f J. Q. Stewart, Phys. Rev., 11, 100 (1918). 
t Ami. d. Phys., 60i 109 (1919). || Physical Zeits., 21, 88 (1920). 
u Proc. Roy. Soe., 104, 499 (1923). 
** Whereas Sucksmith and Bates give the factor 1 in m/e with 1 per cent, 

accuracy, Barnett arrives in a somewhat modified repetition of their experiments, 
exactly as in his rotation experiments, at a factor > 1, namely, according to his 
provisional communication, at 104. 

ft Proc, Roy. Soc., 128, 276 (1930); 133, 179 (1931). 
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with the theoretical value -J. This shows that in general not only 
the spin moment of momentum, but also the orbital moment of momentum 

of the electrons contributes to the gyro-magnetic effect. 

§ 9. Intensity of Spectral Lines 

Whereas the older spectroscopic data concerning the intensity of 
spectral lines had at best a qualitative significance, the workers 
in the Physical Institute of the University of Utrecht (under the di¬ 

rection of L. S. Ornstein) have worked out a method which makes it 
possible to determine the relative intensities of the line-configuration 

of a complex structure quantitatively.* 
The only trustworthy result of the older measurements of intensity 

concerns the D-lines of sodium. The ratio of the intensities of 1)2 

to Dj is equal to 2:1, as had been established by many different 
observers. This result was extended to the doublets (SP) and (PS) 
of the other alkaline metals (of. I). This in itself leads us to conclude 
that this ratio does not depend on the principal quantum number //, 
which changes step by step in the series of alkali metals. An ex¬ 

ception occurs in the case of the doublet of the blue caesium lino 
X — 4555 and 4593, second term of the principal series, namely IS — 3P 
in the conventional notation ; the intensity ratio is greater hero, namely 

3*5 : l.f The reason has been found wave-mechanically by E. Fermi ; J 
it has its origin in a perturbation due to the widely separated ground- 
doublet IS — 2P. The same holds to a lesser degree for the second 
term of the principal series of rubidium. 

The next result concerns the triplets (3P 3S) of the alkaline earths 
and the elements Zn, Cd. To about the same degree of accuracy 
the ratios 5:3: 1 were obtained for the three triplet-components 

3P23S, 3Pi3S, 3P03S. 
We may write down the results so far quoted in such a form that 

they may be generalised for the combinations (PS) or (SP) of the 

higher term systems : 

* Dorgelo, Zeits. f. Physik, 22, 276 (J924) ; Burger and Dorgelo, ibid., 23, 
258 (1924) ; which are quoted in the text below as I. and II. Cf. also the com¬ 
prehensive dissertation by Dorgelo, Utrecht, 1924, and his report in Physikal. 
Zeits., 26, 756 (1925). Directions about the experimental arrangement and the 
working out of the measurements are given in Dorgelo, Zeits. f. Physik, 13, 206 
(1923), and in the booklet by L. S. Ornstein, Photographische Photometric (Vieweg 
& Sohn, Braunschweig). 

f Fiichtbauer (“ Absorption Measurements at High Pressures,” Ann. d. 
Physik, 43, 96 (1914)), and Koschdestwensky (“ Dispersion Method,” Optical Insti¬ 
tute in Petersburg, Nr. 13, Berlin, 1921); H. Kohn and H. Jakob, Physikal. Zeits., 
27, 819 (1926); H. Jakob, Ann. d. Phys., 86, 449 (1928) (“ Emission in Flames,”); 
W. Schiitz (“ Absorption Measurements at Low Pressures and Magneto-rotation ”), 
Zeits. f. Physik, 64, 682 (1930) ; R. Minkowski and W. Miihlenbruch (“ Magneto¬ 
rotation ”), ibid., 63, 198 (1930). 

X Zeits. f. Physik, 59, 680 (1930). 
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Doublet system 
Triplet ,, 
Quartet ,, 
Quintet ,, 
Sextet ,, 
Septet ,, 
Octet ,, 

4:2:0 
5 : 3 : 1 

0 : 4 : 2 
7:5: 5 

8:6:4 

9:7:5 
10 : 8 : 6 

This generalisation was tested by Dorgelo for the Mu-triplets (SP), 
cf. 1 : 

Sextet system 1 ... A 6021, 6016, 6015 

Octet „ ... A - 4825, 4785, 4754 

We have already considered the second of these triplets in Figs. 
127 a, ft, r on p. 482 ; the first is the ground-triplet of the Mn-spectrum. 
We exhibit these results as well as those for the Or-triplet in the quintet 
system A 5208, 5206, 5204 (cf. 11) in the following table : 

Taslk f>4 

O, Quintet System 

!Vln, Sextet System 

Mil, Octet System 

Measured 

JOO:72:45 

\\ 100:77:55 
11 100:77:55 
d 100 : 81 : 61 
(| 100:70:62 

Expected 

100 : 71*4 : 42 0 

100 : 75 : 50 

100 : 80 : 60 

The confirmation is the more convincing because in the triplet 
system the corresponding ratios deviate far from these values, for 
expressed in a similar way they amount to 100 : 60 : 20. 

The theoretical basis of the arithmetic rule which has here been 
discovered empirically is as follows. We saw that the number of 
magnetic resolutions of a term is given without exception by the 
number 

2 J + 1. 

It tells us in how many ways the originally degenerate state in question 
may be resolved magnetically. By regarding each of these resolutions 
as equally probable, as has already been done on p. 509 in averaging 
over cos2 6, we call 2J + 1 the weight of the state (statistical weight, 
a priori probability). We now see that the relative intensity of the 
(SP)-combinations measures directly the statistical weight of the P-terms. 
For example, for the three triplet P-terms we have successively 

J - 2, 1, 0 ; 2J | 1 = 5, 5, 1. 

For the two doublet P-terms we had 

J - l ; 2J f 1 4, 2. 
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We consider as the next generalisation the case of (DF)-combina- 
tions, in which the F-term is no longer separated. In the triplet 
system the three I)-terms have the inner quantum numbers ,7 — 3,2, 1, 
that is, the weights 7, 5, 3. We here expect the intensity ratios that 
are given by the last three numbers. Dorgelo actually obtains the 
following values (T) for Oa and Sr : 

Table 55 

Measured Expected 

Ctt, Triplet System . 
A - 4595, 4581, 4578 
Sr, Triplet System 
A - 4892, 4869, 4855 

100 : 70 : 44*5 
100 : 74 : 44-5 
100 : 70 : 44 
100 : 71 : 44 

| 100 : 71*4 : 42*9 

| 100 : 71-4 : 42-9 

From this we conclude that our weight rulei holds for any arbitrary 
terms so long as they do not combine with a simple or appreciably simple 
term. 

But what happens when two multiple terms come into competition 
with one another, so to speak ? A compromise must then be effected 
between the weights of the one and of the other term. The simplest 
case is that of the composite doublet (PI)), two principal lines (P«D;j) 
and (PjDj{), and one satellite (P|D-t) For this there is available one 
measurement (II) in the Os group 2P—61), A - 0217, 0213, 6010 : 

Measurements Expected Values 

aJL> 2D 
,—•—, ■ — 

6 4 :j 2 

f4 100 12 112 (2 9 1 10 

al* 
1 2 60 60 ( 1 5 5 

100 72 1 9 6 

The measurements (left-hand scheme) arc in the middle ; to the left 
of and above them are the weights of the P- and the D-terms corre¬ 
sponding to the J-values J and 5, i!. The numbers to the right and 
below denote the sums of the measured intensities in the horizontal 
and in the vertical direction. They are approximately in the ratio of 
the weights of the P- and the D-terms. 

This indication combined with what we have already said about 
not separated or not appreciably separated terms leads to the following 
summation rule (11). 

In multiple terms we, suppose either the sub-divisions of the initial 
or of the final term, to draw together ; the sums of the intensities that then 
result are in the ratio of the weights of the terms that have not contracted. 
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The theoretical intensities (right-hand scheme) then come out 
according to this rule as follows : 

Cancelling the common denominator 2 out of the weights, merely 
to simplify the calculation, we write on the left-hand side of and above 
our scheme the numbers 2, .1 and 3, 2, respectively. We have then to 
distribute the total weight (2 -f 1) (3 4- 2). Of these the two vertical 
columns claim the parts 3(2 -f 1) and 2(2 + 1), respectively, and the 
two horizontal rows 2(3 -f- 2) and 1(3 4 2), respectively. We write 
down these numbers below and in the right-hand side of our scheme. 
In this way we have' already determined the two intensities 9 and 5 
of the “ principal lines/' as they occur individually in a vertical or a 
horizontal row. The “ satellite " then comes out from the prescribed 
sums in two ways as 1. The theoretical ratio 1 : 5 is in this case, for 
example, exactly equal to the measured 12 : 60. 

The calculation may then be immediately applied to the combina¬ 
tions (IIF), (FG) . . . and in general to the combinations of two doublet- 
terms having the azimuthal quantum numbers L and L f 1. The 
inner quanta of the former are, as we know, J ^ L + | and L — 
and the weights, therefore, 2L -j 2 and 2L : the ratio of the weights 
is thus L 1 1 : L. The weights of the doublet term whose azimuthal 
quanta is L + 1 correspondingly bear the ratio L -4- 2 : L + 1 to one 
another. We write down those numbers on the left-hand side of and 
above our scheme, and form from them the sums for the vertical and 
horizontal rows, below and on the right-hand side. The principal lines 

L | J 

L {- 2 L | 1 

2\J f r>L -f 2 1 

2La -f 31- 

(L f 2)(2L + 1) (L + l)(2J- + 1) 

(L H 1)(2L \ 3) 

L(2L + 3) 

are again determined directly, and again the relative intensity of the 
satellite comes out unambiguously as 1. As we see, the intensity of the 
satellite relative to that of the two principal lines becomes the smaller, 
the larger the value of L (II). 

But it is only in the case of the ordinary doublet combinations that 
the summation rules determine the intensities cornpleiely. Even in 
doublet combinations of the character (PP'), (DD') . . . one intensity 
remains undetermined, since the four summation equations which are 
available in this case are not independent of each other. We exhibit 
this in the following scheme, which is set up in the manner of the 
previous schemes and satisfies the summation rules exactly : 

V' 

2 1 

r2 6 — u u 6 

h u 3 — u 3 

6 3 
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We have denoted the intensity which remains undetermined here' by u. 
In the triplet and the multiple! systems the degree of indeliniteness 

increases at each stage. 
The ratio Ka : Ka' has been measured by Siegbahn and Zacek 

for Fe, On, Zn with great accuracy,* and has been found to be equal 
to 2 : 1. On the other hand, the ratio La : La' appears ocularly, and 
according to older measurements by Duane and Patterson, to be 
much greater, about 10 : 1. As we know, however, the lines Ka, Ka' 
correspond to the optical doublet-lines SP» and SPi. Thu,s* the ratio 
Kol to Kol' 'mirrors the ratio 2 : 1 of the ])-lines. But the lines La, 
La', Lft are analogous to the composite doublet (PD) in the optical 

region. 
According to the table on p. 524, they should show the following 

ratios : 

La : La' : \jft — 9:1: 5, 

which already explains what was found qualitatively about the 
in tensity-ratio La : La'. Quantitative experiments involving the 

Geiger-point-counter have been carried out by A. »fdnsson.+ In the 
case of both W and Pt they gave 

La : La' -- 9 : 1*0. 

The problem of X-ray intensities is, however, still in a somewhat 
controversial state, and will not be pursued further liere.J 

To complete the calculation of the intensities we must use the vector 
model and the correspondence principle as well as the summation rules. 
We base our remarks on Note 7 (r). There we find || that the intensities 
which correspond, according to the correspondence principle, to the 
three transitions 

,J + 1 Z J 
L 73 L - l J 71 J 

(J 1 2 J 

are in the following ratios : 

(cos 6 + .1 )2 : 2 sin2 8 : (cos 6 — l)2 . , (1) 

* Ann. d. Phys., 71, 187 (1923). 

t Zeits. f. Physik, 36, 426 (1926) ; 41, 221, 801 (1927) ; 46, 381 (1928). The 
numbers given in the text represent energies and not numbers of light quanta 
(photons), which latter are given by the point-counter directly; the former are 
derived from the latter by multiplication by the frequency v of the line. The 
“ correction for the same v ” given at the end of this section makes no difference in 
the case of the closely neighbouring lines La, La', and Ka, Ka'. 

t Cf. Allison and Armstrong, Phys. Rev., 26, 714 (1925) ; Allison, ibid., 30, 245 
(1927) ; 32, 1 (1928) ; V. Hicks, ibid., 36, 1273 (1930). 

j! Cf. also the original paper by Sommerfeld and Heisenberg, Zeits. f. Physik, 
11, 131 (1222). 
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Here 0 denotes, in the case of normal coupling which we assume 
throughout for the present, the angle between J and L in the triangle 
J,L, S. Thus 

cos 6 

o e 

J2 + L* - S2 

2JL 
(J + L)2 - S2 

4JL 
S2 - (J - - L)2 

4JL 

(2) 

From (1) we obtain in a somewhat more convenient method of notation ; 

I -I, : \, cos4 - : 2 sim 
e e e 

s2 0 : siu4 (3) 

Here the indices p, a and / denote “ parallel,” “ anti-parallel ” and 
“ indifferent transition ” between the two quantum numbers L and J 
relative to one another, the parallel transition being represented in the 
preceding scheme by the first row, the anti-parallel by the last, and 
the indifferent by the middle row, for both directions of the arrows in 
the scheme. If we substitute (2) in (3), we obtain 

P.P 2PQ Q.Q 

p im ft 4JL ‘ 4JL ' 4JL * 
W 

Here wo have cancelled a factor 4JL in the denominator throughout, 
which is of course allowable in a proportion, and which wall be found 
to be of importance for the sequel. In the numerator the expressions 
P and Q would denote by (2) 

P -- (J + L)2 - K2, Q2 - K2 - (J - L)2. 

But we shall immediately replace it by its analogous wave-mechanical 
expression (a(a -f 1) in place of a2) : 

P(J) - (J h L)(J +L-1-1)- S(S + ])) 
Q(J) - S(N + 1) — (J — L)(J - L + l)/ * * {,) 

We make a similar change in our proportion (4), by writing 

i.(j) P(J)P(J-1) Q(J)Q(,T-1) 

4JL ’ " 4JL ' 
1 \P(J)Q(J) f 

J + 1/ 4L ) 

(«) 

The last of these expressions results from our dividing the factor 2/J 
in the middle term of the proportion (4) into 

1 + JL_ 
j + j + 1 

which agrees with 2/J for large values of J. 
We assert that these formulae (5) and (6) satisfy the summation 

rules, when taken for the horizontal rows and equally well for the 
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vertical columns so long as we agree that »1 is each time to denote the 
greater of the two numbers, between which the transition occurs in the 
multiplet-component in question. 

Scheme 1, Multiple L > L 1 

0 

0 0 

L } S- 1 1, 1. j ! 

L + S--2 T, 

L »S - 3 I„ 
... 

| 

L-S| 1 l„ J, i„ 

L S 

___ 

I„ y, 

L - S-l K 

J L f S L } S — 1 T.-fS 2 L-S f 2 
1 
L 8 fl 

, 
L - S 

To prove this we write down the general scheme of a multiplet of 
the structural type under discussion. For example, we choose the 
transition L > L — 1 and assume L > S. In the initial state we then 
have L-f-S ^ »J ^ L—S and in the final state L — 1 -f S ]> J > L— 1 — S. 
These J-values have been written down below and on the left-hand side 
of the scheme. Within the scheme the character of every possible 
transition is indicated by the symbols J^, Iz and Ja. Every row and 
every column contains each of these symbols once except the two 
initial columns and the two final rows, where the Ts that are missing 
are replaced by zeros. The l^’s lie in the principal diagonals of the 
scheme, the I/s and Ia’s then lie successively parallel to them. 

We now form the intensity sums for any of the middle horizontal 
and vertical rows, namely 

Ip(J + 1) -\~ I*(J) + /n\ 

I,(J) + I<(J) + Ifl(J + 1)J ’ * ' [) 

For if in the first of these equations J denotes the inner quantum 
number of the horizontal row in question, the transition 1^ takes place 
between J + 1 and J. In consequence of what we agreed about equa¬ 
tions (5) and (6) we must therefore form Ip with the argument J + 1 ; 
in the same way, in the second equation (7), where J denotes the inner 
quantum number of the vertical column under consideration and where 
the transition Ia takes place between J and J + 1, we must form Ia 
with the argument J + 1, and this must be done in both the 
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numerator and the denominator of the expressions (6). Dividing up 
the middle term of this proportion appropriately we first obtain in plane 
of (7) 

P(J + 1) + Q(J) omP(J) + Q(J - lh 
' ' 4(.J I 1 )L 1 M(,,) 4,1 L " I 

vnAJ i) f Q(J) , onJ*(J) I Q(-L I ') 
(•)) 4.1 L 1 W( 1 4(.l I 1)L ] 

In these fractions the denominators J and J )■ 1 cancel out. For 
by (5), as we may easily show by calculation, 

P(J) + Q(J — 1) P(J -b 1) +• Q(J) 2L + 1 
4.1 L '■ ~ "4(.J + 1)17 * 2L ’ 

P(J _ i) +_Q(J) P(,T) +_Q(.I + 1) 2L 1 

4.1 L 4(.J f 1)L 217 ' 

Instead of (7a) we may therefore write 

2L2j7-V(J) + Q(J))| 

~2L~(P(J) + Q(J))J 
Further, by (5), 

P(J) | Q(J) - 2L(2,7 | 1). 

(76) 

C'Onsecpicmtly (76) becomes 

(2L 4- 1)(2J + 1) and (2L - 1 )(2J 4* 1) . . (7c) 

respectively. Both sums are therefore proportional to the quantum 
weight 2J | 1 °f the horizontal row and vertical column. The factors 
2L | I and 2L 1 in (76) are also in accord with the summation 
rules. For the sum of tin* quantum weights for all vertical columns 
or, respectively, that for all horizontal rows, is by our scheme of 
p. 528, 

(28 4- 1)(2L -f- 1) and (28 4- 1)(2L - 1). 

The factors 2L + 1 and 2L — 1 in (76) are thus proportional to these 
weight-sums ; this corresponds exactly with our way of handling the 
summation rules, for example, in the doublet system, p. 525. 

Our proof is, however, incomplete, inasmuch as we have not speci¬ 
ally taken into account the initial columns and the final rows. We 
easily show that this was not necessary, because the I s in question 
vanish of themselves, as indicated in our scheme. Actually, for the 

left-hand upper corner, 

J = L + S, Q(J) - 0, 
J = L + S+ I, Q(J — 1) -- 0, 

vol. I.—34 
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and hence, on account of (6), in the first ease I, -- I(l 0, and in the 
second \a - 0. A corresponding result holds for the right-hand lower 

corner. 
In the above we have assumed that L > 8. But our formula* 

also apply unchanged for L < S, in which case the full number of 

levels 2S \ 1 has not yet been attained and only a section of our 
scheme has a real significance. The reason for this is again the oc¬ 
currence of zeros in certain fields adjoining this section. 

Secondly, we consider that type of rnultiplet to which, for example, 
the PP'-combinations belong and which we characterise in general 

by 

7 f J -> J . . . 1 

l.T ~>J± 1 • • 1* 

As indicated, the symbol \v (parallel transition between J and L) 
is assigned to the transition in which J remains unaltered, whereas 

both transitions J -> J £ 1 may be called anti-parallel. An argument 
along the lines of the Correspondence Principle leads us to expect 

in place of (3) 

lv : la — 2 cos 26 : sin 2d. 

In view of (2) this denotes 

_ (J2 -( L* - S2)2 ((J + L)2 ~ N*)(H* - (J - L)2) 

" " 2J2L2 * 4J2L2 («) 

The factors in the numerator of the second term are to be replaced, 

according to wave-mechanics, by P(J) . Q(J), equation (5). For the 
numerator of the first term we substitute 

H(J) = J(J -f l) + L(L + I) - 8(8 -f 1). . (Ha) 

Instead of (S) we first writes omitting the factor 2JL in the numerator, 

R . It P . Q 

* : J" JL : 2JL ' 
(86) 

Finally we change this in a manner similar to that used in passing 
from (4) to (6) into 

T P(J)Q(J -1) ^ 

" 2JL f (9) 
R(J)R(J - 1) R(J + l)R(J) ’ ' w 

* ~ 2JL + 2(J + 1)L I 

We again assert that these expressions satisfy the summation rules 
if we take J to stand for the greater of the two numbers, between 
which the transition occurs each time. 

To prove this we consider the general scheme of a rnultiplet of this 
type, again assuming L > 8 : 
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Scheme 11, Multiple! JL * L 

L KS j. 1« 

L | S-l la 1, L 

L-f S - 2 
— 

la K 
--- - — 

L .8-1-2 L K 

L-S -f l l, K 

L S L 

J L | S L 1 8 l ,/:s 2 h-84-2 
: 

L S j- 

The J-values now run both in the horizontal rows and in the vertical 
columns from JWrtar — L + S to - L S. The I?)\s lie in 
the principal diagonal, the la\s to the right and left of it. 

The intensity sums for one of the middle horizontal rows or middle 
vertical columns of the quantum number J assume the common 

form 

i.(J f D + r„(j) f i„(J). . . . (io) 

Substituting in (9) we obtain 

P(J)Q(J - 1) H R(J)R(J - 1) . 

2JL ’ 

where the . . . denote that the same expression is to be added 

once again with J + 1 in place of J. Calculation shows that all terms 
which contain S(S T 1) destroy each other and that the denominator 

2JL cancels out. In this way we obtain for the above fraction 2( L 1 )*1 
and for the fraction denoted by • . . 2(L | 1)(J + 1), that is, all 
in all, 

2(L 4 1)(2J + 1). 

That is to say, we get proportionality with the quantum weight in every 

horizontal row and vertical column. This also remains valid for the ends 
of the scheme and for L < S, thanks to the automatic appearance 

of the zeros. 
The above treatment of the intensity problem of multiplet lines 

appeared simultaneously from three quarters.* 

* R. de L. Kronig, Zeits. f. Physik, 31, 885 (1925) ; A. Sommerfold and H. 
Honl, Sitzungsber. d. Preuss. Akad., 1925, p. 141 ; H. N. Russell, Nature, 115, 
835 (1925) ; Proc. Nat. Acad., 11, 314 (1925). Tho most important application 
of these formula) was given by Russell, who determined the percentages with 
which the elements occurred in the sun from the intensity of their inultiplets ; 
cf. Astropliys. Journ., 70, 11 (1929). 
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A first consequence of the equations (0) concerns the special ease 
L S. Then Jm#M 0 and the last Held of the diagonal in Scheme II 
corresponds to the transition J 0 > J () which, as we know 
(ef. p. 424) is forbidden. Actually, by equation (8a), R — 0 for L ~= S 
and J --- () ; consequently, by (9) we also have lp ~ 0 [we must note 
that the factor J cancels out in the denominator in this process, since 
it occurs in R(J — 1) as well as in R(J)]. 

A second consequence concerns the combination of two S-terms, 
that is, the transition L -- 0 L - 0. We shall show that this is 
also forbidden. For then Jwma. - S and the*, Scheme 11 reduces 
to a single field Ijr This 1 „ becomes 

R(S)/R(S — 1) R(S + 1)\ 

p~ 2L \ S ' ^ S + l / 

To work this out we first set J = 8, which makes the L of the de¬ 
nominator ir. the first factor cancel out, and then set L — 0, which 
makes the first factor equal to | and the second equal to 0. 

To give the simplest possible example of the formulae (9) we consider 
the combination PR in the doublet system, in which the indefiniteness 
u remained on p. 525. Here S ~ j, L — 1, J -= i! in the first and 
tJ — | in the second horizontal row (but the transition lft must also 
be calculated here with the greater .7 - = From (9) we find that 

First row : ip — 4.,°, Jrt -- Z. 

Second row : i3> -= la — *. 

Hence if we omit the common factor * the scheme runs 

5 1 
1 2 

The u that occurred earlier has thus come out with the value 1. 
In this example and in all those that follow we recognise the 

contrast between parallel and anti-parallel on the one hand and in¬ 
different transitions on the other hand. The relative weakness of the 
latter confirms quantitatively our qualitative intensity rule which has 
so often been used ; cf. for example, pp. 245 and 422. 

As a second example we consider the group I)D' in the triplet 
system, for which measurements of 0a lines have been made by Dorgelot 
The scheme in this case is as follows, expressed in per cent, of the 
strongest line : 

ur3 3*>'i 

31) „ 100 12*5 
(100) (U3-0) 

31), ] 2-5 56 120 
! (13-6) (50) (13-0) 

3D. 120 36-2 
(13-0) (37) 

(US-8) (83-2) (50*6) 
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The bracketed numbers are Dorgelos experimental values. They agree 
excellently with the theoretical values which arc written above them. 
The observed intensity-sums are given along the edges of the scheme. 

A Or-raultiplet 51) 6D' measured by Frerichs * agrees equally well 
with theory. Since Jmin --2 — 2 —- 0 here, the last field shows in 
the principal diagonal the intensity zero (which agrees writh the decree 
forbidding J ----- 0 —> J — (>) ; the field before the last then shows a 
very weak intensity, weaker than the neighbours on the right and on 
the left, which thus constitutes an exception to our qualitative in¬ 
tensity rule. 

But it may also happen that the intensity in this field becomes 

directly equal to zero. We read off the condition for this from (9) : 
]p vanishes if R(J) — 0; in the field before the last J - dmiTl 4- 1. 
We need only consider the case S > L, »Ttrt/w S — L. (We would 
find no solutions for Jmiv — L — S.) Then JWI> -j 1 -- S - L 1. 

By (8a) we therefore require that 

0 ----- (S -- L f 1)(S - \j f 2) -i L(L -| 1) - S(S | 1). 

This gives 

for L 2 . . . S - 3 
L - . . . S - •, 

i.e. 71)- and 8F-ternis. (Other values of L give no possible solutions.) 
A combination of two such terms leads to the intensity in the diagonal 
decreasing to zero but increasing again at the last point. Experiment 
confirms this ; cf. the Fe-multiplct 7J) 7J) given on p. 465. 

For multiplets of the type L ---> L — 1, equation (6), it will suffice 
if we write down the simple example PD in the triplet system. We 
see that the intensities in the diagonal (parallel transitions) decrease 

uniformly from the left above to the right below ; the intensities that 
follow' on the left (indifferent transitions) are weaker, and the weakest 
is the anti-parallel transition (satellite of the second order, on the left 

below ) : 

3r« 3Pi 3n 

3I>3 63 63 

45 135 
31>* T 4 

45 

3 45 
31>. 15 j 27 

4 4 

75 45 15 r 
; 

We next proceed to discuss the problem of the intensities of the 

Zeeman components, first in a weak field. Here all the J-levels are 
split up into (2J \ 1) individual levels. The statistical weight of 

Zeits. f. Physik, 31, 305 (1925). 
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any such level numbered by its magnetic quantum number M is to 
be set equal to one. We shall then have to formulate the summation 
rules in such a way that the sum of the intensities of the transitions 
that start out from a fixed M is proportional to one, that is, is inde¬ 
pendent of M. We must not overlook here that the word intensity 
here stands for the intensity actually emitted as contrasted with the 
intensity which is observed in a definite direction of the field (of. below). 
For observation perpendicular to the field we obtain, by refining * 
the assertions derived from the Correspondence Principles, the fol¬ 
lowing formulae which are also confirmed by wave-mechanics (A = 
observed intensity) : 

Transition J - > J, M -> M : A ^ M2 
M -> IV1 ± 1 : A ~ J (J ± M + i)(j =f M) ; 

J J + 1, M -> M : A ~ (J + M 4 1)(J — M | 1) 
M M ± 1 : A — J(J ± M + 1)(J ± M -{ 2) ; 

J > J - 1, M -> M : A — (J + M)(J - M) 
M *-> M ± J : A ~ J(J =F M - I)(J T M). 

The way in which these formulae are derived (of. Note 7 (/)) shows 
that they hold for any arbitrary coupling in a weak field. 

We shall now verify the summation rule, say, for the last case : 
J -> J — 1. In doing so we must note that M -> M gives a linear 
vibration parallel to the direction of the field, which is seen completely 
when transversely observed, but that if M —> M 4: 1 we have a left 
circularly and a right circularly polarised vibration perpendicular 
to the field. We see only a half of the intensity really emitted in the 
case of each of the latter vibrations when transversely observed ; 
for every circular vibration may be regarded as consisting of the 
superposition of two independent mutually perpendicular linear vi¬ 
brations of equal amplitude. One of these linear vibrations may be 
taken to lie in the direction of observation—so that it is not seen at 
all—whereas the other is then perpendicular to the direction of obser¬ 
vation and is seen completely. Hence in the formulae (11) which 
refer to the observed intensity A we must double the transitions 
M-*M ± 1, to obtain the intensity J that is actually emitted. 

The sum of the three possible transitions M -> M, M i 1 that start 
from a fixed M is 

21 ~ i(J - M)(J + M + J - M - 1) + J(J + M)(J - M -j- J 4- M -1) 
= J(2J - 1), 

a value which is in fact independent of M. 
To compare these results with those obtained experimentally j* 

* H. Honl, Zeits. f. Physik, 31, 340 (1925). Tho formula; obtained according 
to the Correspondence Principle are given in Note 7 (/). 

f W. C. van Ceel, Zeits. f. Physik, 33, 836 (1925), according to a photograph 
taken by Dorgelo. 
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we consider the lines SP2, x, 0 — 3S of Mg (wave-lengths 5167, 5172, 
5183 A.) as an example. In the following schemes we see the intensities 
calculated according to (11) : it must be noted that these equations 
give only the intensity ratio of the Zeeman components of any one 
J-combination among themselves. If we wish to compare Zeeman 
components of different J-combinations with each other—as is done 
in the measurements here under consideration—we must work out 
the total intensity of each J-line and bring these total intensities 
of the “ field-free lines into relationship by means of the rules de¬ 

rived for them. In our case we have 3P23S1 : 3P13vS1 : 3P03S1 — 5:3:1. 
Hence in the following schemes we have therefore immediately to 

multiply the intensity calculated from (11) by such factors that the 
ratio just mentioned comes out for the total intensity. The experi¬ 
mental intensity is given in round brackets. 

Table 56 

A 5167, A 5172, J J 
- »S, n\ - 

J 1 
M l 0 - 1 

M - ! { o —J r i 6 3 
(75; (38) 

J O, M 0 •I J, M | ° i 3 0 3 
(23) (46) (23) 

[ — 1 1 
| (38) (0) (33) 

* 3 6 
(34) (7 J) 

A 5183, j i 
•Pt “ 3Si „---> 

M 1 0 -1| 

r 2 6 
I (76) 

I l 6 3 
j (75) (37) 

1 8 1 
(?) <1W) (?) 

3 6 
(37) (72) 

6 
(76) 

The lines accompanied by a note of interrogation were not found. 
The agreement between theory and experiment is very good. In 
A 5172 there is a weak asymmetry in the experimental intensities, 
which is due to the incipient Pasehen-Baek transformation. 

The Correspondence Principle enables us to understand why the 

summation-rules are valid. If we assume pure Russell-Saunders 
coupling the spin-frequencies do not appear appreciably in the Fourier 
expression for the electric atomic-moments (for the smallness of the 
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mutual action (LS) see also Note 7 (e)), but only the frequencies corre¬ 
sponding to the L. If we consider a definite multiplet the 
quantum transition in the 1/s and L\s is the same for all lines of the 
multiplet. or, expressed in terms of the correspondence principle : 
the lines all belong to the same frequency in the Fourier expansion 
of the electronic motion, that is, to the same Fourier coefficient. 
According to the Correspondence Principle this determines the prob¬ 
ability of transition for quanta and is therefore independent of the 
level of the initial term from which we start out. Hence all that 
enters into the question of the intensity is the number of atoms “ in 
transition.” Now we may set the number of atoms that are in a 
definite state proportional to the statistical weight of the state, if 
there is thermodynamic equilibrium (cf. also what is said below about 
the Boltzmann factor). If we consider the magnetically resolved 
levels the weight of each of these levels is equal to one, but for the 
.[-levels, which are not influenced by the magnetic field, the weight 
is equal to (2.1 + 1). The number of transitions from a definite 
initial state and hence the intensity of the quantum transitions in 
question is proportional to the number of atoms that happen to be 
in the state of the initial level. Thus the intensity of all the lines 
that come from one initial level is proportional to the weight of this 
level ; but this states nothing else than what is asserted by the sum¬ 
mation rules. What holds for the initial level also holds, in the case 
of thermodynamic equilibrium, for the final level. We also see from 
this line of reasoning that, as on p. 534, it is the intensity actually 
emitted that counts in the summation rules and not the intensity 
observed in a particular direction. 

From this discussion, based on the Correspondence Principle, it 
follows that the summation rules of the “ field-free ” lines in the form 
above given is linked up with normal coupling. Inter-combination 
lines are then forbidden theoretically (cf. Note 7 (e)). If they actually 
occur with appreciable intensity in the spectrum the summation 
rules must be stated more broadly. For this purpose we imagine 
a definite electron configuration to be given and assume the mutual 
action between the quantum-vectors to be so small that all terms of 
this configuration form a group which is separated by an appreciable 
distance from other configurations. We may then, as an approxima¬ 
tion, disregard the mutual actions in the Fourier expression. If 
we now consider a combination of all levels of the first configuration n 
with a second m we again obtain as before one and the same Fourier 
coefficient for all transitions between the two configurations, but 
now we have in general several levels, say rj, with the same J-value 
in one configuration. The total number of atoms in all levels 
having a fixed J is, by an argument analogous to that used above, 
proportional to rj(2.J + 1) and the total intensity of all the lines that 
start out from a fixed J is likewise proportional to rj(2J + 1). 
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A simple example is given by the two-electron system in the 
transition (sd) -> (sp) ; with approximately normal coupling (sp) 
gives the terms 8P2, li0, 3Pi ; (sd) gives 3I)3,2>1, 3L2. Table 57 shows 
the possible lines and the intensity sums at the right-hand side 
and at the lower edge. In calculating the latter the weights of the 
middle rows had to be doubled ; the absolute value was chosen in 
such a way that the intensity of the strongest line 3P23D3 has the same 
value as in the table on p. 533. 

'Fable 57 

j i- M'l :‘Po 

3IL 3P23D3 63 
*d2 f 1T)2 1 3P23D2 

•iyix 
3iyD2 
3iyD 2, 

MYDa 
uyj>2 

| 90 

*f>l nyo; 3iyib, MVJ>, 27 

75 
V_ 

“V-' 

90 15 

Hence in general in the case of spectra of the second vertical column 
we must take into consideration not only the triplet lines but also 
the inter-combinations and the singlet lines. An interesting in¬ 
ference may be drawn from the above scheme if we allow the in¬ 
tensities of the in ter-com binations to decrease again to zero, as occurs 

approximately for the lighter elements of this vertical column. Then 
there only remains, besides the combination 3P 3D, whose intensity 
we know for this case from our earlier discussion, the singlet line 

*P 1D. Comparison with the table on p. 533 shows that for this 
line the intensity 45 results (in our arbitrary measure relatively to 
the intensities of the triplet lines). In a similar way we may also 
compare the ratio of the intensities of various multiplicities with each 
other for other configurations, if the inter-combinations are weak. 

Our extended form of the summation rules holds, as its mode of 
derivation shows, for any arbitrary coupling; only the restriction 
concerning the mutual position of the configuration must not be lost 
sight of. The latter condition is well fulfilled in the lower terms of 
the neon spectrum. For the combination 

2pb3p -> (2p53s) 

some measurements by Dorgelo * are available. We use Paschen's 
notation for the terms (cf. p. 472) and add the inner quantum 
number J in brackets. (2p53s) gives the Paschen 5-terms «s2(l), 53(0), 
54(I), 5b(2) ; (2pb3p) gives the p-terms p^O) to /?10(1), ^ following 
table. In the‘spaces of the table we have the observed intensities, 
at the lower edge and on the right we have first the observed intensity- 
sums of the vertical columns and the horizontal rows and then the sums 

H. B. Dorgelo, Physica, 5, 90 (1925). 
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calculated according to the extended summation rules, where we have 
taken as the basis for the calculation observations with the line 
p9(3) — s5(2). For this reason its intensity has been bracketed in 
the case of the calculated values. Observation and theory agree 
well in their results.* 

Tarj.io 58 

(<>) 

/M°) Pa(°) j/>2(l)/'5(J)/>7(1 )/>■«(!) 

10*5 16 15 1 

?',(2) P'l2) 2) ^ l Ot)H 

42*5 

^Kalc 

42*9 

«. ID 
(1) 

14 01 
1 15 

17 19*5 2 2 
4 0*1 32*5 20 

31-5 26 5 
20-5 10 39-5 

| 259*7 

*5 (2) 9 3 10 20 17*5 34 34 100 227*5 214*3 
~ - - — ~ _> 

obx 30*1 181*6 218*0 100 

^If ale 28*6 171-4 214*3 (100) 

Our assumptions contain the implication that the lines that are 
compared together do not lie far apart. If this is not the case the in¬ 
tensity ratios must be subjected to further corrections. In the first 
place, we may no longer set the number of the atoms in a quantum 

state proportional to the statistical weight of the state but we must 
in general, as on p. 513, take into account the difference in the Boltz¬ 
mann factors, in accordance with the equation 

N, pfi-*J** 

N ~ f’ 
i 

where N; — the number of atoms in the iih state, pi its weight, E* 
its energy, N the tota1 number of atoms. If the energies E, of the 
initial level are widely different this correction must obviously be 
considered ; but it decreases with increasing temperature. On the 
other hand, the second correction is independent of the temperature. 
To find a basis for it we must go back a little way. Fourier analysis 
resolves the electronic motion into a superposition of independent 
individual vibrations, that is, of linear oscillators, whose amplitudes 
are given by the corresponding Fourier coefficients. Tf we wish to 
determine the intensity emitted by an individual vibration of this kind 
we must form, in accordance wdth equation (3) on p. 25, 

2 e2~ 
emitted energy = - ^2 # , . (12) 

* G. R. Harrison remarks in a paper to appear in Phys. Rov. that the Dorgelo 
values have not been reduced by means of the factor v4 (cf. p. 539). The reason 
that the above table nevertheless satisfies the summation rule must be that the 
reduction factors essentially compensate each other. 



§ io. Resolution of Multiplet Terms. Hyperfine Structure 539 

where the horizontal bar denotes the time mean. In the case of the 
oscillator the displacement x from the position of rest is given by, 
say, 

x = a sin col. 

Then equation (12) becomes 

1 e? 
emitted energy -- ^ . . (13) 

In (13) we must imagine a to be replaced by the Fourier coefficients, 
and instead of the classical frequency to — 2ttv we must imagine the 
frequency 2irvquant given by the quantum transition—a step which 
is confirmed by wave-mechanics. Hence it follows that the intensity 
of a line is proportional to the fourth power of its frequency. Formerly 
we set the probability of transition and hence the intensity directly 
proportional to the square of the Fourier coefficient and inferred that 
if the coefficients were equal the probability of transition was the 
same. We now see that this is permissible only if the frequencies 
of all lines of the combination in question are in sufficiently close 
agreement. In the general case we must “ correct ” for equal fre¬ 
quency by means of the factor r4. 

We must mention that the pro idem of the intensity decrease 

of the lines within a series may be treated only by means of wave- 
mechanics, and likewise the problem of the intensity ratios of dif¬ 
ferent series. 

§ 10. Resolution of Multiplet Terms. Hyperfine Structure 

From the discussion in Chapter VI, § 5, we see that the “ natural ” 
field-free resolutions of the multiplet terms in the case of one outer 

electron arise according to the model from the magnetic interaction 
(Is), cf. pp. 331 and 337. We must now use this idea to draw quan¬ 
titative conclusions and we shall do so at once for the general case 
of any arbitrary number of outer electrons. 

Let us consider, say, the mutual action between the l,( and the 

s{ of an individual electron. 
This mutual action arises because the electron, being an electric 

charge, in its orbital motion generates a magnetic field H, which we 
may symbolise by means of the quantum number of the orbital 
motion. The field acts on the magnetic moment g, which is assigned 
to the spin moment of momentum of the electron (quantum number 
s{ — J), and causes a precession of s{ about 

By Chapter VI, § 5, /x has the value of one magneton. We ob¬ 
viously obtain as the contribution to the total energy 

W(W - (H?), ■ (i) 
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where the horizontal bar denotes that the time mean is to be taken. 
—>■ 

H is in the direction of the quantum-vector Z7 and may be set pro- 
—> --•>■ 

portionaJ to it, likewise /x to the quantum-vector ,sf, so that we may 
write (1) in the form 

W(/,S', ) — 0,(1/.^) «, I /, I I Hi | COS (/,*,). (2) 

The factor of proportionality «, is calculated in Note 12 and conics 
out- as f 

^ (3) 
Rg2AcZ^r, 

n\Uh + Uh 1- 1) ’ 

where R denotes Rydberg s number (in enr1), a the fine-structure 
constant, Z^ t- the nuclear charge that acts on the ith electron in its 
orbit, which is assumed to he hydrogen-like (for penetrating orbits 
a somewhat different- expression applies, cf. Note 12), and is the 
principal quantum number of the electron. 

Resides the mutual actions (/,, ,v,) there are clearly others between 
the /t of the ith electron and the sk of the klh electron. In Note 12 
we show that these mutual actions may in general be neglected (that 
is, if the nuclear charges are not too small). 

Hence we obtain altogether as the total energy of interaction 
(/, *) of all the outer electrons (the closed shells make no contribution), 
by summing up over terms of the form (2) : / 

w (/, s) = r --- I a{ u, II I COM (M,). (4) 

We have therefore now to calculate these time means. If we 
—i>- 

assume the coupling to be of the Russell-Saunders type the Zt’s eom- 
■—>• —v ■—v —v —> 

bine into L and the st’s to S. To calculate cos (Zts2) it is simplest to 
consider the spherical triangles that are cut out of the unit sphere 

by the quantum vectors Z,, L, S. We obtain successively : 

_>_> ->-> ->-> — >—■ > —>->■ 4/ 
cos (Z^) = cos (ZtL) cos (st-L) -\- sin (ZtL) sin (stL) cos a , / 

—>—> —> —> -V 

cos (,?fL) ~ cos (LS) cos (stS) + sin (LS) sin (st-S) cos 

where a is the angle at L in the spherical triangle Z4^L, and the angle 
at S in the triangle s,LS. 

In forming the time mean for the second equation the second 
term in the right-hand side drops out because the three factors fluctuate 

independently of one another and because cos a — 0. In the same 
way in the first term we may replace the mean value of the product 
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-> -> 

by the product of the mean values. Hence we have left : cos list -~ 
> 

cos ZtL cos ^L. 
With the help of the second equation we finally obtain 

- > -y —> 

cos (/*•«*•) -- cos (/Jj) cos (tf,S) cos (LS), . . (5) 
-—>■ — 

where we may omit the bar over cos (LS) because the vectors L 
and S perform a uniform precession about one another, in which the 

>~> 

cos (LS) is constant in time. From the vector triangle L, S, J we 
obtain, if we take into account the “ wave-mechanical correction/' 
that is, replace J2 by J (J -f- 1) and so forth ; 

00s (LS, - -_m±J>. . («) 
' ; 2 I L I I S I ' ' 

From (4), (5) and (()) it finally follows that 

J(J+ i)-L(L+ 1)_8(K+ 1) , 

where we have used the abbreviation 

cos (ltL) cos (a>S). • (8; 

According to offrview, then, the resolution of a multiplet term is 
given by (7) and (8) for normal coupling. For, by (4), P represents 
the energy of interaction (calculated from a zero-level) which would 
correspond to the total energy without taking into account the inter¬ 
action energy (4). From equation (8) we see that the resolution 
factor A does not depend on the in tut quantum number J. Further, 
it follows from (7) that the multiplet term L, S is regular, if A > 0. 
r is then positive and has its greatest value for the greatest J which 
equals L + S ; but since J1 represents an energy, the greatest value 
of r represents the greatest atomic energy, that is, the level which 
lies highest above the ground-state of the atom , thus, the term 
is regular. Conversely A < 0 results in inverse terms. 

We find the physical meaning of the “ zero-levels ” just mentioned 
as follows. We add J as a suffix to the jP and multiply each Jj by 
the quantum weight (2J + 1) of the associated J-level (cf. the previous 
§, p. 523) and sum up over all J’s of the term L, 8 : 

2 (2J + l)Tj - f{Z(2J + 1)J(J + 1) 

- (L(L + 1) + 8(8 + 1))I(2J + 1)} - 0 
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as a simpler calculation shows. The zero-level is thus the centre of 
gray if if of the term (L, S), as was only to be expected. 

We may deduce still another result from (7). Tor this purpose 

we form the difference of twoP- values that belong~to~“the quantum 
numbers J and~X — Tpbut to the same L and S : 

- = KJ(J + 1) - (J - 1)J}A --■= J . A. . (10) 

The intervals between neighbouring term-levels are, in the case of 
normal coupling, in the ratio of the greater of the two inner quantum 
numbers which belong to the corresponding levels. This is Lande s 
Interval Rule * According to our method of derivation it holds for 
regular terms equally well as for inverse terms. We shall, in fact, 
find both kinds of terms represented in the following examples. 

From the enormous material available we first give some examples 
for odd multiplicities. In the first place, we must mention the triplets 
of the alkaline earths and of the Zn-(-d-Hg-series, in which the 
Interval Rule was first observed. Let us consider the Oa-terms 
which we used on p. 425 to illustrate the structure of multiplets. 

The p-term gives 105-8 : 52*2 —- 2 : 1-02 ; by (10) we should expect 
theoretically 2:1. The p'-term gives 86-8 : 47 T -- 2 : 1*08 ; theoreti¬ 

cally it should be 2 : 1 again. 
In the D-terms d and d' we expect 3:2; empirically 

21-7 : 13*9 = 3 : 1*94 ford, 
40*0 : 26-7 = 3 : 2*00 for d\ 

As other examples we give : a 3G-term (3cP4p) of Fe, for which 

Ai'54 : Aj'43 388-4 : 311*8 — 5 : 4-01 ; theoretically 5 : 4. 

Then the term 5D(3d64*2) of Fe (ground-term of the spectrum) : 

Ar43 : Av32 : Ar21 : Avl0 - 416*0 : 288-2 : 184*2 : 90-0 
— 4 : 2*77 : 1*77 : 0-86 ; theoretically 4 : 3 : 2 : 1. 

As exemplifying the septet system we may take the 7F-term (3#4<<f4p) 
of Or : 

Ar«r>:Ae64:Ar43:Av32:Ar21 :Av10 =••= 222*9 : 189-0 : 153-6 : 116-8 : 78-5 : 39-6 
= 6 : 5-08 : 4-12 : 3-14 : 2-10 : 1*06 ; theoretically 6 : 5 : 4 : 3 : 2 : 1. 

* A. Lande, Zaits. f. Physik, 19, 112 (1923). W. Heisenberg took the first 
step towards formulating it generally. He generalised the empirical result that 
the intervals between the 3P-terms ofton bear the ratio 2 : 1 to each other, by 
extending it to the other triplet-terms in the sense of the Interval Rule. Instead 
of the above mode of formulation : “ they are in the ratio of the greater of the 
two inner quantum numbers ” . . .we may say more comprehensively : “ they 
are in the ratio of the arithmetic mean of the quantum weights that belong to the 
levels in question. 
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Of the even multiplicities we take 

of V : Am * » : • : An ;j 102 0 : 157*7 : 122*0 
= 11 : 9*00 : 0*95 ; theoretically 11:9:7. 

8P(3d54«s4p) of Mn : 5 : Av< f = 173*71 : 129*18 = 9 : 6*70 ; 
theoretically 9:7. 

We have intentionally not always chosen the most favourable 
examples in order to show that the Interval Rule often holds only 
approximately. Like our qualitative intensity rule, however, on 
p. 422 it is in many eases a valuable guide for finding and inter¬ 
preting multiplets, and, what is at least as important, it gives (in 
addition to the Zeeman effect, the intensity of the lines, and so forth, 
a criterion, particularly simple to apply, of the validity of the Russell- 
Saunders coupling. 

In terms with very wide separations the Interval Rule is obeyed 
less and less, as we may see in the spectra on the right-hand edge 
of the periodic system (inert gases, Co, Ni and homologues) and in 
the lower horizontal rows of the periodic system. For example, 

the low 3i)-term (3d94$) of the Ni-spectrum has instead of the theoretical 

ratio 3 : 2 in reality 675*00 : 833*29 = 3 : 3*70 for Ar32 : Ar21. In 
the lower horizontal rows Ba and Hg already show' in many low terms 
systematic deviations from the Interval Rule and the discrepancies 
rapidly become greater as we pass towards the right in the periodic 
system in these series. Tn these cases the scheme of the normal 
coupling clearly becomes invalidated ; strictly speaking, there is no 
longer a physical meaning in assigning S- and L-values to the terms. 
We are then dealing with transition stages between Russell-Saunders 
and (tjj)-coupling, for which it is indispensable to use wave-mechanics.* 
Furthermore, we must point out that the Interval Rule no longer holds 
for the lightest elements. The reason for this is different from before : 
on account of the small nuclear charge the interactions which we may 
symbolise by (ljSk) also become appreciable here (cf. p. 540). The 
anomalous interval ratios of the triplets of He, Li+ and perhaps also 
of Be may also be explained in this way, as Heisenberg has shown bv 
wave-mechanical calculations with the help of the vector model.*)* 
He calculates the resolutions for the term 3P(ls2p) of helium-like 
spectra and finds in He an inverse term (order of sequence from 
below upwards : aP2, 3PV 3P0) with the theoretical interval ratio : 
Ar21 : Av10 — 2:19, in Lif a partially inverted term (order of sequence 

3Plf 3P2, 3P0) with the interval ratio Av21: Ai'J0 — 2:5. Empirically 
it had been suggested for some time $ that the helium 3P-term just 

* Cf. W. V. Houston, Phys. Rev., 33, 297 (1929) ; S. Goudsmit, ibid., 35, 1325 
(1930). 

f W. Heisenberg, Zeits. f. Physik, 39, 499 (1926). 
J Cf. p. 599 of the fourth German edition of the present book, and J. C. Slater, 

Proc. Nat. Acad., 11, 732 (1925). 
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mentioned might he inverted with a far too small Ar21-resolution ; 
the exact measurement of the combination 238 - 23P by Houston,* 
which was carried out to test Heisenberg’s calculation, has shown that 
this view is correct. 

Hitherto we have used equation (7) only to obtain information 
about the ratios of the resolutions ; but it also gives the absolute 
magnitude of the resolutions, if we know the factor A. We do this 
for the case of two electrons ; j* the general case has been treated 

by Goudsmit.J We give the essential parts of his treatment a little 
later. 

We again assume normal coupling, so that equations (7) and (8) 
hold. The cosine that occurs in (8) is obtained from the triangle 

ov s2, 8, respectively : 

12 KI2 -I- I*!2 - |*,|* 

/2, L and s1 of the vectors lx 

till2 f ILI2 - 14 
cos (/jL) — 

m ili 
cos (.^8) 

2KI |H| 
(II) 

(Corresponding equations hold for cos (/2L), cos (.s28). Taken all 
together, we have || by (8) and (11) : 

A-rtj 2L(L+1) 

, 4(4+])+L(L+i)—4(4t-i) 
2L(L+1) 

*i(«i+l)+B(S+l)—«,(«,+!)) 
2S(S4-1) 

*2(^2 I)"f &(& f-1) —S^Sj + 1) 
(12) 

28(8+1) 

Since sx ---• s2 ~ l the second factors reduce in each case to More¬ 
over, we may use equation (12) in a more general sense, as Goudsmit 
and Humphreys have shown (loc. cit.). For if we may regard the atom 
schematically as composed of a “ core ” and a “ radiating electron,” 
that is, if the additional electron does not change the coupling of the 
configuration that is already present and is known from the spark 
spectra, we may substitute for + the values of the spark term on 
which the arc term with the quantum numbers L, 8 is built and for 
l2, s2 the values of the “ radiating electron.” 

We use equation (12) in order to explain the symmetrical structure 
(mentioned on p. 424) of the pp'-groups of Mg and of its analogous 
spark spectra A1 II to Cl VI. The p-term—in the systematic nota¬ 
tion (3a3p)3 P—has lx = 0. l2 = 1, sx = s2 == L — 1, S = 1 and gives 
A — av . where av denotes the a-value of the 3p-electron. For the 
p'-term, which is (3p2)3P, we have lx = l2 = 1, the other quantum 

numbers being as before ; further, we have ax = a2 = ap by (3), 
since for equivalent electrons Zeff is the same, as well as nif li. From 
(12) it again follows that A = . -J. From (7) we see directly that 
on account of the equality of the A-values the T”s become equal for 

* W. V. Houston, Phys. Rev., 29, 749 (1927). 
t Cf. S. Goudsmit and 0. J. Humphreys, ibid., 81* 960 (1928). 
t S. Goudsmit, ibid., 81, 946 (1928). 
|| Cf. S. Goudsmit and C. J. Humphreys, loc. cit. 
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both terms because in each case we are dealing with the same term- 
eharacter, that is, because J, L, S all coincide in value ; consequently 
the two 3P-terms have theoretically the same resolutions.* It has 
already been mentioned on p. 424 that this is also the case experi¬ 
mentally. 

For the T's there is a similar Permanence and Summation Law 
as for the g- values (cf. pp. 48b and 499). To arrive at the Permanence 
Law first we imagine the atom to be subjected to a weak magnetic 
field—weak in the sense that it does not appreciably disturb the coupling 
between the vectors. The interaction of the Z/s and #,/s then remains 
unperturbed, and the magnetic; field produces only a uniform preces¬ 
sion of J and hence of the whole vector-frame about the axis of 
the field. 

Thence it follows first that F retains the same value in the weak 
field as in the field-free case and hence, in particular, does not depend 
on the magnetic quantum number M, and, secondly, that the action 
of the magnetic field consists only in superposing on the unperturbed 
term resolution a small resolution which arises from the precession 
mentioned by correspondence considerations and is determined, as 
we already know, by the Landd g-formula in the case of normal 
coupling (see § 6). We have used both results implicitly in § fi. In 
the case of normal coupling r has the value (7), otherwise the 
value (4). 

Henceforth we again assume normal coupling and pass on to the 
case of the strong field. The coupling (L, S) is then disturbed and 
the vectors L, S take up their positions in the magnetic field in- 

—y *■ 

dependency of one another. The cos (LS) in (5) is, however, no longer 
constant ; rather, we obtain, from considerations similar to those 
applied above, from the spherical triangle of vectors L, S, H, 

cos (L8) = cos (LH) cos (8H) . . . (13) 

On account of cos (LH) —= ^ and cos (8H) = ^ it follows from 
|b| IM 

(4), (5) and (13) that 
Fsfrong = MlMs .A, , . . (14) 

where A is defined by (8) as before. 
The following Permanence Law f now holds for r: the sum taken 

over all r's of a term (L, 8) is independent of the field-strength for a 
fixed M. In symbols 

Irweak = Irstron„ (M fixed) . . ■ (15) 
j Ms 

* First proved by R. A. Sawyer and C. J. Humphreys, Phys. Rev., 32, 682 
(1928). Cf. also K. Bechert, Zeits. f. Physik, 09, 735 (1931). 

t A. Land6, ibid.., 19, 112 (1923). 

vol. I.—35 
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We may verify this law in a way similar to that used in dealing 
with the Permanence Law of the ^-values in § 7 of the present chapter. 
But we shall here only explain the law (15) by means of the same ex¬ 
ample as was used on p. 504,* namely the triplet I)-term. 

In Table 59 we give in the upper half for convenience the T-values 
for the weak field divided by A, according to equation (7), arranged 
in order of M-values. They are all equal for a fixed J (of. above). 

M --- | 
i 

Tablw 59. 3D, L - 2, S 

+ 3 4 2 i 1 0-1 - 2 -3 | 

1 

j - 3 
2 
I 

2 2 2 2 2 2 2 
] -1 -1-1-1 

-3 — 3 —3 

\ Weak field 
| (normal coupling) 

2T/A 2 1 -2 -2 -2 1 2 

Ms — 1 
0 1 

- ] 

2 I 0 J - 2 
0 0 0 0 0 

-2 -1 0 1 2 
1 

\ Strong field 
J (normal coupling) 

In the middle row of the table we have the sums of these FjA’s, which 
belong to the same M. In the lower half of the table we have written 

down the values of FI A for a strong field, in accordance with (14), 

arranged horizontally in order of M and vertically in order of the 
Ms-values. We see that the sum of these F/A\s taken over Ms agrees 
with the value of the middle row in the ease of each M. 

If we now apply the Permanence Law to fields of such strength 
that all couplings, even those between the l/s and s/s become dis¬ 
turbed,! then (see Note 12) by subsequently proceeding to the 
limiting case where the field is zero we may derive a summation rule 
that corresponds to the ^-summation rule on p. 486. This rule states 
that in a given electron configuration the sum over all r's that belong 
to a fixed value of J is independent of the coupling. 

As Goudsmit (loc. cit.) has shown, the Permanence Law also gives 
ns a means of determining the individual P's at least for equivalent 
electrons and pure Bussell-Saunders coupling. Here we shall give 
only his results. In the case of equivalent electrons all the a/s are 
equal (cf. p. 544) ; we may therefore in this case express all F’s by 
the a of a single electron of the shell in question. According to 
Goudsmit we obtain for the splitting-factors A and the total resolution 
of the terms for equivalent p- and ^-electrons the values given in 
Table 60. 

* The F-resolution that is now to be given for the strong field superimposes 
itself as a fine-structure in the Paschen-Back resolution there considered. 

f The sum must then be taken over all Fu that belong to a fixed M in a given 
electron configuration. 
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Tabus 60. Normal Coupling 

('onlitfuration 
Terms (without 

Singlets and 
S-Terms) 

Kesoluiiuu 
Factor A 

Total 
Resolution 

V1, 
/A 

” p* 

P* 

2P 

21>, H> 

a 
la 
0 

!; a 
II a 
0 

d\ 
<r\ a* 

<r\ - (p 

<}\ ~ rP 

<p 

2l) 
»F 
:,T 
4F 
4p 

. HI | 

H) \ H) 
*V | 
5D 
*H 

i 
;‘K } »F | 

:iI> 
aP 4- H> | 

saniilioh 

a 

W 

i« 
la 

I" 
y* 
la 

x\P 

-V* 
A" 
A" 

A a 
0 

:]a 
la 
),a 
la 
la 

1 /,« 
li,7// 
A" 

•}a 
a 

la. 

; /,« 
H 
\,a 

tV^ 
:ia 
0 

If the same term occurs several times in one configuration, such as 
the 2I)-term in the case of t/3, we can specify only the sum of the A’s 
and of the total resolutions : this is denoted by using the notation 

2D d 2D in the second column. The notation of the first column 
is intended to denote that, for example, the configuration d7 gives the 
same A-values and total resolutions as d8, but with the reverse sign. 
The table shows that in general z electrons that are present in a shell 
having a fixed l give the same terms with the same resolutions as z electrons 
that are wanting in this shell except that the terms are inverted in the 
latter case, if they were regular in the former, and vice versa. It is 
easy to see in a general way how this <k gap law ” comes about. This 
gives us a precise formulation of the rule given on p. 451, that the 
terms are regular in the, first half of a period and inverted in the 
second half. Actually most of the A’s in the first half of the periods are 
positive according to Table 60 ; but there are exceptions ; * the 
terms 2F(r/3) and 3D(d4) are, theoretically, inverted terms. This is 
confirmed experimentally by the Ti 11-spectrum in the case of 2F(d3). 

* The inverted terms of some alkali-spectra (such as Cs-F-terms, etc.), which 
were mentioned on p. 451, do not come among these exceptions. They may 
be explained, according to a communication received from E. Fermi, on wave- 
mechanical grounds. The partially inverted terms that occasionally occur in 
spectra (cf. the above-mentioned Li4 -term 3P) occur in passing from the normal 
to the (i/)-coupling and in very light elements for the reasons mentioned on 
p. 543. 
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in the middle of the periods, where there are just as many missing 
electrons as there are electrons present, the calculation gives zero 
resolutions. At anyrate we should expect theoretically unusually 
small resolutions. Examples of this are also to he found in the spectra. 

A no less surprising assertion of the table, which has also been 
confirmed experimentally in many cases, is that the resolutions of the 
various terms of one configuration bear simple ratios to each other. 
Thus the total resolutions of the terms d2 should bear the ratio 7 : 3 

to one another. 

Hyperfine Structure 

It has been experimentally established that many lines (and hence 
many terms) of a spectrum, after analysis into multiplets (i.e. the 
“ fine ” structure), still possess a narrow, and often complicated, 

hyperfine ” structure. As all three quantum numbers L, S, and J 
of the external electronic system of the atom have been used to explain 
the multiplet structure of the spectrum, it is necessary to enlist the 
aid of the nucleus to supply a new degree of freedom to account for 
this further resolution. 

From the time of Bohr's theory of the hydrogen spectrum (see 
p. 92) it has been known that the mass of the nucleus is involved 

in the expression for Rydberg’s constant, so that the isotopic con¬ 
stitution of the element was thought to be responsible for the hyperfine 
structure. Rydberg’s constant, for an atom with nuclear mass M, is 

given by 

R» = !<)(■ + £), 
where fi denotes the rest mass of the electron. Hence as RM occurs 
as a multiplier in all the series formulae (cf. p. 89) it is obvious that, 
on this simple theory, all the spectral lines of an element with n isotopes 
should possess identical w-fold structures, in which the component 
due to the heaviest isotope lies on the side of highest frequency. 
Such a theory served to explain qualitatively the doublet structures 
of certain lines in the spectrum of neon * (isotopes 20 and 22). Later 
observations on the arc spectra of H (isotopes 1 and 2), Li (6 and 7), 
Cl (35 and 37) and K (39 and 41) can he similarly explained ; the 
measured displacements, however, are usually greater than those ob¬ 

tained by calculation. It was obvious from the first that such a theory 
was totally unable to explain any of the other hyperfine structures, 
since, on the one hand, the effect should become immeasurably small 
for the heavier elements, and, on the other, the various lines of an 
element (e.g. Hg) are found to possess widely different structures, in 
regard to number, relative intensity and arrangement of components. 

* H. Hansen, Naturwiss., 16, 163 (1927). 
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Also if the different components of a line arose from different isotopes, 
the Zeeman effects of the components should he mutually independent, 
as has been found for Ne alone. 

The first step in the unravelling of the problem was made by Pauli * 

who assigned a quantised nuclear spin, 1 to the nucleus. 
JtlT 

This rota¬ 

tion, through the associated magnetic moment, lgr(I), interacts with the 
total momentum, J, of the external electronic system and produces, 
except when J — 0, a further subdivision of the individual multiplet 
terms. If the magnetic moment of the nucleus be small compared 
with that of the electron, then the new subdivision of the terms will 
be small compared with that due to electron spin—the fine ” structure. 
Actually in a given spectrum the ratio (1 : 2000) of “ hyperfine ” 
to “ fine " (i.e. multiplet) separation is of the same order as meUc: 
tvt 
iUn«r lens’ 

In consequence of the magnetic coupling between the nuclear 
spin 1 and the total momentum J of the outer electrons, they will 
both process uniformly about their resultant F, the total xJlQlMJJjJUiL 
of the whofa atom, This interaction between J, I and F is identical 
with that between L, S and J, so we may take over the results (see 
pp. o.SO ei .s’ie.q.) derived for the multiplet separations simply by replacing 
L, S and J, by J, I and F, respectively. The possible values of F are 
therefore A 

| I 4 J | > F It | I~.T | / . . (16a) 

There are therefore 

(2J -| 1) . . . when J < I] 
or (21 + 1) . . . when J > I ) 

hyperfine levels corresponding to the F-values allowed by (16ct). 
The possible transitions giving rise to hyperfine structure components 
are subject to the selection rules : 

AF 
with F = 0 - F 

1 or 0 
- 0 “ forbidden ” j 

. (17) 

By means of considerations similar to those or pp. 540, 541 it is 
possible to show from our vector model that the interaction energy, 
W(l, J), between the nucleus and the outer electrons is of the form 

W(I, J) = A(J) 
4A(J){F(F + 1) 

11.1 j 1 
la 4- a- 

cos (1 J) 

- J(.T4- 1)} 
(18) 

The problem is now to relate A(J), which governs the magnitude 
of the hyperfine separations, to the various constants characteristic 
of the particular energy-level, to atomic constants and to the nuclear 
magnetic moment. In the general case, A(J) is the resultant of the 

* W. Pauli, Naturwiss., 12, 741 (1024). 
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action of a number of valency electrons—each independently coupled 
to the nuclear spin and thus contributing, in differing amounts, to the 
total hypcrfine separation of the term—so we may write 

A(J) = Z«n Mn Smjn) • * * (]M 

where f(l, s, j) is a known * function of the various quantum numbers 
of the ?ith electron. The summation (18a) implies a knowledge* of 
the coupling involved in the multiplet structure of the spectrum. 
In the special case of two ,9-electrons, 

A(J) - la, |- \a2. 

No exact calculation of the factors an (18a) has yet been made, 
but Goudsmit f gives formula', both for ,s- and £k non ,9- ’* electrons, 
which he considers suitable to give “ fair approximations for the 
nuclear magnetic moments.” The formula*, which are too complicated 
to reproduce here, would seem to be reasonably accurate for penetrat¬ 
ing electrons, into which class the />*-electron must be placed. The 
general result is that wider structures are to be expected for penetrating 
than for non-penetrating orbits. 

The separation between two hypcrfine levels, F and (V ( 1), is 
given by the difference of two expressions (18), so 

8v = [A(J)] X L(-F + l)] • • • (l«<») 

The last equation shows that the Lande Interval Rule (p. 542) when 
expressed in terms of F instead of J, should hold for hypcrfine separa¬ 
tions. This has been very generally confirmed by experiment, and 
conversely the application of the rule in cases of unknown nuclear 
moment often leads to a trustworthy value. Similarly, if one again 
replaces L, S, and J by J, T and F respectively, the intensity formula^ of 
pp. 527 et «seq. are applicable. In all reported structures the intensities 
of the various components are in good qualitative agreement with 
theory. 

In order to show how analysis of the hyperfine structure of a 
spectrum leads to the value of the nuclear moment, we will briefly 
consider the example of the Bi-I spectrum. The term-analysis J 
shows that a number of multiplet levels (defined by L, S and J) are 
still further subdivided. By the use of (166), together with the fact 
that terms with J-values up to * have a (2J + l)-fold hyperfine 
structure, we see that I > J. The application of the interval rule (186) 

to the term system so obtained shows that I must lie between 4 and 5. 
The Bi-I hyperfine structures are particularly suitable for Zeeman 
effect measurements || which, in the light of the discussion in the 
next paragraph, point unambiguously to the value I = 

* S. Goudsmit and R. F. Barber, Phys. Rev., 34, 1499 (1929). 
t Ibid., 43, 636 (1933). 
| S. Goudsmit and F. Back, Zs. f. Phys., 43, 321 (1927). 
II E. Back and S. Goudsmit, ibid., 47, 174 (1928). 



§ io. Resolution of Multiplet Terms. Hyperfine Structure 551 

On account of the small separation of the hyperfine structure com¬ 
ponents it is possible with practical field-strengths (up to 43,000 gauss) 
to obtain a more or less complete Paschen-Back effect ; for the case of 
the complete transformation we can easily calculate the line pattern 
to be expected. The vectors I and J orient themselves, independently 
of one another, to the field H, with components M| and Mj along the 
H-dircction. (We now replace the M of the earlier discussion by 
Mj.) The total magnetic interaction, W, is then 

W — {Mi . <7(1) + Mj . g(J)}.Wm . he + A(J) . | 11 . | J | cos (I, ,1). (1!)) 

The expression in the square brackets arises from the interaction 
between the nucleus and the field., on the one hand, and between the 
outer electrons and the field, on the other. vnorm is the normal 

€yh 
Lorentz frequency —, H, where m is the electronic mass. We 

* \rrmc 

may, however, neglect the first term within the bracket compared 
with the second (as g(\) : gr(J) ^ 1 : 2000). 

The last term in (19) corresponds to the interaction (expressed 
in (18)) between the nucleus and outer electrons, and, though small 
compared with that in g(J), may not be neglected since it assumes 
different values corresponding to the various possible values of 
cos (hi). By a method similar to that on p. 545, we obtain A(J) . MjMj 

for this term, and hence (39) becomes 

W — Mj . g{J) vnorm . he -(- A(J) . MiMj . . (20) 

Mi may assume any of the (21 + 1) values from — I to + I, therefore 
each Zeeman level becomes subdivided into (21 + 1) levels. The 
selection and polarisation rules are as before, except that Ml and Ms 
are replaced by Mj and Mi respectively, and in particular Mi may not 
change in the Paschen-Back effect. In consequence of (20) each 
Zeeman line splits up into (21 + 1) components, i.e. one can deduce, 
the nuclear moment from the number of hyperfine components of the 
Zeeman lines. In this manner Back and Goudsmit found the value 
I = » for Bi, and at the same time proved definitely the existence 
of a magnetically coupled nuclear moment. Later Zeeman effect 
measurements have been made to confirm the values of the nuclear 

moments of T1 (I = |) and Re (I = !?). 
The above theory of nuclear moments explains completely the 

experimental results in the spectra of Bi, Pr, La, Mn, I, Br, Os, Na, 
Re, Ou, Ga, As, V and Ta, and it is noteworthy that the nucleii 
of all these elements have odd mass-numbers. The theory fails, 
however, when applied to elements consisting of “ odd ” and “ even ” 
isotopes. As Schuler and Briiek * first showed for Cd (isotopes : 110, 
112, 113, 114, 115, 116) the hyperfine structures in such elements can 

H. Schuler and H. Briiek, Za. f. Phys., 56, 291 (1929). 
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only be explained if the odd isotopes have nuclear moments, while 
the even isotopes have 1 = 0.* Hence the multiplet terms of the 
even isotopes are not further subdivided into hyperfine levels and so 
give rise to an intense unresolved component in the midst of the 
hyperfine pattern due to the odd isotopes. This naturally made a 
consistent analysis, along the lines developed above, impossible. 
When this “ foreign ” line, which falls in the optical “ centre of 
gravity ” of the hyperfine pattern of the odd isotopes, is neglected, 
it is found that the structure so obtained is in remarkable agreement 
with the requirements of the theory. A similar effect has been reported 
for Ba, and measurements of the Zeeman effect show that the even 
isotopes have no nuclear magnetic moments. 

When an element possesses two (or more) odd isotopes it is usually 
found that the hyperfine patterns of both are identical and, in fact, 
the analysis proceeds just as if there were only one odd isotope present 
(e.g. Br, Re, Cu, Tl, Cd, Ba and Sn). This means that, in all these 
cases, the odd isotopes have the same nuclear spins and magnetic 
moments. In the lines of Ga, Rb, Sb and Xe, however, it is found 
that two complete hyperfine patterns, of different total breadths, 
exist independently, which shows that here the nuclei of the odd 
isotopes have nuclear magnetic moments of different absolute mag¬ 
nitudes. In Ga the two patterns differ only in scale, but in the other 
elements mentioned the arrangement of the components is not the 
same in both patterns, indicating that the nuclear spins may also 
differ. In all these cases the centres of gravity of the two hyperfine 
patterns fall together and also coincide with the unresolved line due 
to the even isotopes, if such be present. 

In certain spectra (particularly those of the elements Hg, Tl and 
Pb) many of the line structures do not fit into the above scheme. 
The patterns due to the odd isotopes are still traceable to the action 
of nuclear moments, but the centres of gravity of the two patterns 
do not fall together. In addition, although due to the absence of 
nuclear moments, the lines arising from the even isotopes individually 
show no hyperfine structures, these unresolved lines no longer coincide 
as in the case of Cd, Ba, Sn, Sr, Kr and Xe, but are now recognisable 
as a number of equidistant lines in the midst of the hyperfine structure. 
The spacing of these lines is the same as the separation of the centres 
of gravity of the odd isotopes and their relative intensities are always 
in good agreement with Aston’s results. The line structures which 

do not exhibit this “ isotopic displacement effect ” (and, in Hg and 
Pb, these form the majority) are much more simple and give the key 
to the analysis.f 

* All that hyperfine structure measurements can show is that, for the even 
isotopes, the product I . gr(I) is vanishingly small compared with the value for the 
odd isotopes. It is extremely probable, however, that I — 0. 

f For a full discussion of the data see Kallmann and Schuler, “ Ergebnisse 
der exakten Naturwiss.,” II, 134-175 (1932). 
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Table 61 

Mass Numbers 
N11 clear 

Magnetic 
Moment 

48 | Cd 

59 
63 and 65 

r 66, 68, 70 

75 
79, 81 

/ 78, 80, 82, 84, 86 
\ 83 
J 85 
\ 87 586, 88 

87 
110, 112, 114, 116 
111, 113 
115 

/ 116, 118, 120, 122, 124 
1117, 119, 121 

124, 126, 128, 130, 132, 134, 136 
129 

83 I Bi 

139 
141 
181 
187, 189 
197 
198, 200, 202, 204 
199 
201 
203, 205 
204, 206, 208 
207 
209 

(B) indicates that the nuclear moment concerned has been determined solely 
from measurements in Band Spectra. The nuclear magnetic moments are given 
in terms of the “nuclear magneton,” which is 1/1838th part of the Bohr 
magneton. 
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The above conclusions regarding the occurrence of isotopic shifts 

in the heavy elements receive convincing support from observations 

made by Kopfermann,* who compared the lines emitted by uranium 

lead (Pb206) with those of ordinary lead (principally Pb206, P207 and 

Pb208). The lines of uranium lead are single and each was found to 

coincide with the component assigned to Pb20e in the hyperfine 

structure of the corresponding line emitted by ordinary lead. 

The nuclear spins and magnetic moments that have been determined 

from hyperfine structure measurements are collected in Table 61, 

which also contains data obtained from the study of alternating 

intensities in Band Spectra. In conclusion it should be noted that 

the nuclear spins deduced from hyperfine structures are supported 

by recent observations on the polarisation of resonance radiation in 

the case of Cd and Hg. 

* H. Kopfermann. Zs. f. Phys., 75, 363 (1632). 



CHAPTER TX 

HAND SPECTRA* 

§ 1. Historical Preliminaries. Uniform View of the Deslandres and 
the Balmer Term 

THE first step towards ordering band spectra and representing 
them by formulae was taken by Deslandres. The formulae 
which he obtained by considering a great mass of empirical 

data became the model of all later developments, just as Balmer’s 
formula became the archetype of all series expressions. Both 
formulae were proposed in 1885. Sohwarzschild provided the foun¬ 
dation on which the Deslandres formula could be built up from the 
quantum theory and the Bohr atom ; this foundation was contained 

in the same paper in which the Stark effect was first explained 

(ef. p. 300). Sohwarzschild started from the idea proposed by N. 
Bjerrum f to account for the infra-red absorption spectra, accord¬ 
ing to which the various lines of the bands correspond to various 
rotational states of the absorbing gas molecules. We are indebted 
to Heurlinger J for testing and elaborating Nchwarzsebild’s theory 
by considering the empirical data. But his results received general 
notice only when Lenz || came to the same conclusions, partly going 
beyond Heurlinger, by taking a more comprehensive theoretical point 
of view. Detailed papers by Kratzer closed the first phase of the 

* As in the previous edition Mr. Kratzer very kindly co-operated in the account 
here given, which is in no way intended to be exhaustive, as the material which 
has accumulated in the meantime would go far beyond the limits of this book. 
Rather, it does no more than sketch the most important features in the historical 
development of Band Theory from our present point of view. Detailed accounts 
are given in : Atoms', Molecules and Quanta, by Ruark and Urey (McGraw-Hill, 
New York, 1929), or in Vol. 21, Handbuch dvr Physik, by Mecke (Springer, 1929). 
Cf. also the Report by R. S. Mulliken in Review of Modern Physics, 2, 60, 506 
(1930) ; 3, 89 (1931) ; also Bandenspektren auf Experimenteller Grundlagc, by 
R. Ruedy (Fr. Vieweg & Son, Brunswick, 1930). 

f Nernst Festschrift (1912), p. 90. 
f T. Heurlinger, Investigations into the Structure of Band Spectra, Disserta¬ 

tion, Lund, 1918; also, Arkiv. for Matematik, Astron. oeh Fysik, 12 (1916); 
Phys. Zeits., 20, 188 (1919) ; Zeits. f. wissenscliaft. Photographic, 18, 241 
(1919). 

|| W. Lenz, Verh. d. D. Phys. ties., 21, 632 (19J9). 
1| Ann. d. Phys., 67, 127 (1922) ; 71, 72 (1923) ; Zeits. f. Phys., 3, 289 (1920) ; 

16, 353 (1923); 23, 298 (1924). Cf. also Enzykl. d. Math. Wiss., 5, Part Ill, 
822 (1925). 
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theory ; these papers dealt with the terms of diatomic molecules and 
their combination. 

In the more recent phase of development the problem of the 
dependence of band structure on the electron configuration has been 
successfully attacked. Mecke and, particularly, Mulliken, were able 
to apply the ideas of the multiplet theory of atoms to molecules. 
The electron spin of the total molecule determines the singlet-, 
doublet- . . . character of the band lines. We have an Alternation 
Law for molecules exactly as for atoms, according as the number of 
electrons in the molecule is even or odd. Besides the electron spin 
also the nuclear spin shows itself in the sequence of intensities of the 
band lines. Hund has set up general schemes for the coupling of the 
spin- and orbital moments of momentum with the line connecting 
the nuclei in the case of diatomic molecules (cf. § 7). We may associate 
ourselves with Mulliken in saying that the most important spectro¬ 
scopic problems no longer lie at the present time in the realm of atomic 
spectra but in that of molecular spectra. 

In view of the complexity of the data of observation it is not 
easy to get a provisional survey of the empirical facts. We must 
therefore restrict ourselves to a few remarks concerning the nomen¬ 
clature chiefly and we shall reserve the outstanding experimental results 
for later when we deal with their theoretical interpretation. 

Expressed generally, band spectra are characterised by the close 
sequence of their lines and by the accumulation of the latter at the 
so-called edges or heads of the bands. The name band spectra has its 
origin in the fact that when the dispersion of the resolving apparatus 
is small they give the impression of continuously tinted bands. 
Some of the bands are shaded off towards the red, some towards the 
violet end of the spectrum ; that is, some have edges on the red side 
and some on the violet side (cf. the beginning of § 2 of Chapter II). 

Band lines that seem to start out from the same edge are grouped 
together into a branch (Zweig). Dcslandres used the word “ series ” 
instead of “ branches ” for band lines. Associated branches form one 
or more partial bands (or single bands). The fact that the partial 
bands overlap increases the difficulty of ordering and interpreting the 
band spectra. The edges of the bands recur in more or less regular 
sequence. Among the band edges we may distinguish, at least in the 
clearer cases, several groups of fxinds. So each group of bands unites 
a series of heads of bands to a higher single unit. Fig. 141 on page 572 
exhibits a group of this kind consisting of five band heads and the 
partial bands that start out from them towards the violet and that 
overlap. The various groups of bands, too, follow in regular sequence 

and form a system, of bands. The complete band configuration of a 
molecule consists not of one but in general of several systems of bands. 

But the appearance of the bands, as here described, is in some 
circumstances distorted by the overlapping of the various groups ; 
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this applies particularly to the so-called many lines spectra (of. § 5). 
The bands that lie in the infra-red are distinguished by being particularly 
simple ; in their ease a single band is observed alone and the over¬ 
lapping of groups of bands does not occur. We shall therefore first 
deal with these spectra in § 2. 

Our first task is to obtain the ground factor of band emission, 
the Deslandres term, theoretically and to connect it with the ground 
factor of series emission, the Balmer term. 

We start out from Bjerrum and Schwarzschild's idea of the rotator 
and do not concentrate, as on page 81, on the single point-mass that 
revolves at a fixed distance but more generally on a rigid body which 
rotates about a principal axis, which may serve us schematically as a 
molecule. Let its moment of inertia about the principal axis be called 
J and its angular velocity oj or f As we know, the moment of 
momentum and the kinetic energy are 

E/,rrv 

I CD _ GM2 
2J 

Since the angle of rotation is a cyclic co-ordinate of the motion, the 
quantum condition for this rotator runs, analogously to equation (18) 
on page 82, 

2ttM -- mh (m integral). 

Hence it follows that 

tllO - 

h* 

8ttM* 
(1) 

We now distinguish between two cases. 
[. The moment of inertia has a principal component J0, which is 

independent of the rotation and is only inappreciably affected by the 
rotation (example : the earth and its flattening or a molecule that 

rotates about a principal axis). 
II. The moment of inertia is produced by the rotation itself and 

vanishes when the rotation vanishes (example : a centrifugal governor 

or the Bohr model of the hydrogen atom). 
in Case I we have for the mih quantum state 

J — J0 + AJW (AJ,m < J0) . . (2) 

In Case II we have in particular for the hydrogen model 

■Kn = mV ■= mV™4- ^ (3) 

where /x denotes the electronic mass, am and a1 the radius of the mlh 
or the first Bohr circle. 

If we substitute the values (2) and (3) in (1) then in Case I an 
energy-value results which is essentially proportional to m2 (that is, 

if we neglect AJ,m) : 

E»- ~ Sr2' 
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whereas in Case II the m2 of the numerator cancels out with the 
denominator and we obtain an expression which is inversely propor¬ 
tional to nr, 

kin ' Stt'Vi2 nr 

By dividing by h we pass from the energy to the “ term/’ In this 
way we obtain in Case I the Denlandres term : 

»-sb.,4» 
and in Case II the Balmer term- : 

R 
R - 

h 

87 

2iT2jie* 
(3) 

The second form of the value R follows directly from the first by 
equation (7) on page 86. 

Concerning the Balmer term we have yet to add that in the above 
calculation we have taken into account only the kinetic energy of the 
rotator ; if we now add the potential energy, only the sign of the 

term becomes changed (ef. Note 3). 
In the case of the Reslandres term, however, a wave-mechanical 

correction has yet to be applied. As already remarked on page 82 
wave-mechanics leads in the case of the rotator in space to half-integral 

and not integral quantising of the moment of momentum. Accord¬ 
ingly we set 

m = j + }, m2 j(j ■{- 1) + ], 

and write for the Deslawires term 

and 

respectively. 

B(j \ J)2 
Bj(i I 1) 

In each case we have 

B = 
8tt2J* 

(A) 
(i\a) 

In (6a) we have omitted the constant term B/4, since if we assume 
J to be fixed this term would cancel out when we form the term 
differences. We have also to remark that the expression (6a) is in fact 
the primary form, precisely as in formulating the Zeeman effect in the 
preceding chapter, in so far as we are concerned with the pure rotator. 

If oscillations are taken into account at the same time (§ 2) the expres¬ 
sion (6) is the natural one. 

Hence we may regard the Deslandres term as just as fundamental 
as the Balmer term, the first apptying to systems with an initial moment 
of inertia (molecules), the latter to systems without a moment of inertia 
originally (atoms). 
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§ 2. Infra-red Absorption Bands. Rotation and Rotation-Vibration 
Spectra 

Let the system considered in the preceding section he a diatomic 
molecule, for example, H2, HOI, N2, and so forth. Let it consist of two 
point-like nuclei surrounded by electronic systems that are negligible 
as regards distribution of mass. The line which connects the nuclei 
is a principal axis of the system (axis of the figure) and so, indeed, is 
every axis perpendicular to the latter (equatorial axis). It was an axis 
of the latter type that we meant when we spoke in the previous section 
of rotations about a principal axis of the rigid system. The moment 
of inertia J refers to it. But the axis of the figure has a moment of 
inertia that is practically zero ; rotations about this axis do not come 
into consideration for purposes of quantising (cf. Note 3). 

When we treated the system as rigid on page 557 this was only 
approximately correct. Although the nuclei have a position of 
equilibrium on the axis of the figure they may move away from it 
under the influence of their mutual repulsions and the attractions 
due to the electrons in the case of disturbances from the position of 
equilibrium, collisions, energy-absorption and so forth. They then 
execute vibrations about this position of equilibrium. We assume 
that the vibrations occur in the direction of the axis of the figure. In 
this sense every molecule represents not only a rotator but also an 
oscillator. If the vibrations are infinitely small, we have a harmonic 
oscillator ; let its frequency be i/0. If the vibrations are regarded 
as finite, that is, if the nuclei move away from the immediate vicinity 
of their position of equilibrium to neighbouring parts of the field, 
then their mutual bond varies with the value of the amplitude. The 
oscillator is then (inharmonic and, indeed, appreciably anharmonic 
because the quantised oscillation already has fairly considerable 
amplitudes. 

We know from the specific heat of gases that the rotational degrees 
of freedom (and also the translational degrees of freedom) are in full 
action at normal temperatures but that the vibrational degrees of 
freedom do not make themselves observed in the case of the simpler 
gases such as N2, 02, HC1 and so forth. From this vre conclude that 
the rotational component of the motion is always present to a con¬ 
siderable degree but that the vibration component is often not excited 
into action, and occurs only when energy is absorbed. 

For the present we assume our oscillator to be harmonic. Further, 
we make the general remark that the important feature for spectro¬ 
scopic questions is not the actual presence of a vibration but rather 

the change in the state of rotation. In the theoretical treatment 
we adopt the standpoint of the emission process. The application of 
the argument to the absorption process is then immediately given. 
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Let f be an arbitrary and j a fixed quantum number of rotation. 
Let j' characterise the initial state and j the final state of the rotation 
in the emissive process. Let us first consider exclusively the energy 
of rotation, that is, let us assume that any vibrations that happen to 
occur simultaneously do not change their state ; then we obtain from 
Bohr's hypothesis (hv ~ difference of the energies) and from the 
formula for the Deslandres term, eqn. (6) or (60) of the preceding 
section : 

V — B(/(j' + 1) —j(j + ])) . • • (1) 

We call the wave-numbers v given bv this formula the pure rotation 
spectrum. 

More generally we shall assume that the change of the rotational 
energy is associated with a change of configuration of the molecule, 
no matter whether it consists in a rearrangement of the electrons, as 
Schwarzschild had already assumed when dealing with visible spectra, 
or in a sudden change in the oscillatory state, as we must now assume 
for the infra-red spectra, or, finally, as we shall assume later, in the 
simultaneous occurrence of both processes. 

Like the rotations the oscillations are divided into quanta, 
namely, as a first approximation into energy-elements hv0 as in the 
case of the harmonic oscillator. .After what has just been said about 
the thermodynamical behaviour of gases, only the smallest values 
0 or 1 come into consideration for the oscillation quantum at normal 
temperatures, whereas any arbitrary values are available for the 
rotational quantum. Let v' be the quantum number* of the initial 

oscillation, v that of the final oscillation. The energy difference then 
amounts to 

h(v' — v) r0 

and the contribution of this transition to the wave-number is 

K “ *>)vq- 

By superposing this amount on the amount (1) of the rotation we 
obtain 

v = (v' - v)v0 + + 1) — j{j + 1)) • . (2) 

We call the possible waves given by this formula the rotation-vibration 
spectrum. 

But the transition j' j (quantum transition of several units) 
contradicts the selection principle (cf. Note 7), according to which the 
change in the rotation quantum number must equal ± 1 ; we shall 
take into account later the fact that in some circumstances the quantum 
change 0 is also permissible. For the oscillation quantum number we 

* Following Mulliken we adopt the symbol v for the “ vibration quantum. 



§ 2. Infra-red Absorption Bands 561 

shall also first consider only the quantum change j: 1, which corre¬ 
sponds to a rigorously harmonic oscillator. We therefore write 

f=j± 1 and v' -'0±1 . . . (3) 

and obtain from (1) with f j -f 1 

v 2B(ji -f- 1) .... (4) 

and from (2) with v' 

V r=r 

— v 1 and j' — j 4 1 or j' == j — 1 

f "o -h 2B(i +- 1). for f = j -f n 
( i/« — 2Bj, for j' = j — 1 j 

The following remarks must be added. In the case of the rotation 
spectrum (4) the assumption j — j — 1 would lead to negative wave- 
numbers ; such wave-numbers belong to absorption processes and 
therefore drop out here where we are taking the standpoint of emission 
alone. Consequently we had only to take into account in (4) the 
possibility j' ~~ j -|- 1 for the change in the rotation quantum number. 
In the same way in the ease of the rotation-vibration spectrum (5) 
the assumption v' — v ----- 1 would yield negative wave-numbers. For 
in general the value of v0 predominates considerably over that of B. 

The common content of equations (4) and (5) consists in the cir¬ 
cumstance that they represent equidistant sequences of lines having 
the constant wave-number difference 

|AH=2B=--zii . . . . (6) 

In the rotation spectra (4) we have one such system, in the rotation- 
vibration spectra we have two systems, one “ positive ’’ and one 
“ negative branch.” 

The first line of the positive branch corresponds to the transition 
l 0, that is, j — 0, and is therefore, on account of the first row of 
(5), given by v — r0 + 2B ; the first line of the negative branch belongs 
to the transition 0 —> 1, and thus corresponds to j — 1 and bonce, on 
account of the second row of (5), gives v — — 2B. The zero 
line ” v — v{v that is, the central line between the first line of the 
positive branch and the first line of the negative branch is not 

represented. 
We have examples of both kinds of bands in the infra-red absorption 

spectra (also observed as emission spectra by Pasehen *). Pure 
rotation spectra have been observed in water-vapour by Rubens f and 
Eva v. Bahr.J The measurement of the HOl-bands under high 
dispersion by M. Czerny || is particularly instructive . Rotation- 
vibration spectra, resolved into lines, have been investigated with 

* Ann. d. Phys., 58, 336 (1894). t Berliner Ber., 1913, p. 513. 
t Verh. d. d! Phys. Ges., 15, 731 and 1150 (1913). 
j! Zeits. f. Physik, 84, 227 (1925). 

vol. I.—36 
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great precision in the laboratory of Ann Arbor University by the 
methods devised by Randall. The first important results were 
obtained by lines * for HF, 11(1, HBr. The rotation spectra lie in the 
far infra-red at approximately 100 fi (the last measurements by Rubens 
go as far as 132 /x), the rotation-vibration spectra lie in the nearer 
infra-red (at several /x). 

Between the rotation spectra and the rotation-vibration spectra 
of the same molecule there is a relationship which was anticipated by 
Bjerrum and proved to exist by Eucken : the vibration differences 
A v of successive lines are essentially equal in the two spectra. By 
equation (G) tins denotes theoretically that the moments of inertia 
of the molecules do not markedly differ from one another in the 
two states. 

Bjerrum's original interpretation of the infra-red bands, which 
preceded Bohr's theory, was of course different. 

Bjerrum quantised not only the moment of momentum but also 

Fie. 137.—Rotation-vibration spectrum of HC1 photographed by lines with 
a reflection grating of high resolving powor. The percentage absorption 
is plotted as ordinate, the angle of dispersion as abscissa. The middle of 
the band (the gap in the row of peaks) corresponds to A0 = 3-46. 

the energy of the rotating molecule ; furthermore, he assumed the? 
absorption frequencies to be equal to the mechanical frequencies ; 
that is, he did not determine them from Bohr’s frequency condition. 
In this way he obtained as the vibration difference of neighbouring 
rotation states 

Av- 
h 

2tr2J’ * 
(?) 

that is, twice our value (6) ; the same difference, involving the factor 
2, is already familiar to us from page 82 where we compared the 

quantising of the rotator with that of the oscillator. 
To pass on to the more detailed questions we consider Fig. 137, 

which is due to Imes (loc. cit.), and the diagram, Fig. 138, which goes 
with it. The gap in the succession of peaks in Fig. 137, the so-called 

♦lines, Astrophys. Journ., 60, 261 (1919). Further measurements with the 
same apparatus made by Colby and Meyer are recorded in Astrophys. Joum., 
53, 300 (1921), and by Colby, Meyer and Bronk, ibid.,, 67, 7 (1923). 
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zero-lino, strikes the eye at onee. Not only is there a peak missing 
here hut the intensity of the continuous background and the size of the 

peaks are dearly grouped around this gap. This is to be understood as 
follows : the frequency of the different rotational states depends, in 
accordance with the Maxwell-Boltzmann distribution law, on the 
quantum number j, and the intensity of the absorption lines is propor¬ 
tional to the frequency of the initial state in question. Equal distances 
in the spectrum to the right and left of the zero line correspond to 
equal * values of j and hence exhibit absorption lines of approximately 
equal intensity. The change of intensity and the dependence of the 

intensity on the temperature (displacement of the two intensity 
maxima outwards being proportional to the square root of the absolute 
temperature, cf. Colby and Meyer, loc. cit.) correspond, apparently, 
perfectly with the Maxwell-BoJtzmann law. 

On account of the presence of the intensity minimum in the centre 
the rotation-vibration spectra were called “ double bands,” before they 
were successfully resolved, to distinguish them from the simple bands 
of rotation spectra, which exhibit no such gap. 

3->2 2->l 1-^0 v0 ()->l 1~>2 2-^3 

Fig. 138.- -Relation of the linos to the transitions j ^ j ± 1 for absorption; 
for emission the transition arrows are to be reversed. The gap at denotes 
that negative values of j are forbidden. 

The explanation of the gap in Fig. 138 is given directly by the 
wave-mechanical expression for the Deslandres term (eqns. (6) and (6a) 
of the preceding section), but give rise to considerable difficulties from 
the point of view of the older quantum theory (eqn. (4) of the preceding 
section with an integral m). In the previous German edition of this 
book equation (4) was used with half-integral values of m, and this 
agrees with the transition to equation (6), as we see from the conclud¬ 
ing remarks of § 1. Here, as everywhere else, the newer quantum 
theory leads without arbitrary assumptions to the hypothesis demanded 

by experimental results. The assumption (6) is confirmed most directly 
by the rotation bands of Czerny (see above), who could successfully 
represent the results of measurement only by a formula of the form 
of equation (4), with integral values for j (half-integral m, as Czerny 

remarks). 
The equidistance between the successive band lines, which is 

* More accurately, irt absorption the nth line of the positive branch denotes 
the transition n — l -> w, the nth line of the negative branch denotes the tran¬ 
sition n > n - 1, cf. Fig. 138 and § 7B, where the above data are expressed more 

precisely. 
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expressed by equation (6), is only imperfect, as we see from Fig. 137 ; 
actually there is a definite change, namely a decrease of the distance 
Av in the direction of short waves. According to Kratzer,* the reason 
is as follows : whereas hitherto we simply superposed rotation and 
oscillation on one another they actually exert a mutual influence on 
one another. In consequence of the oscillation, the moment of inertia 
J of the molecule is no longer constant but variable. Its mean value 
is different from the original J when there is no oscillation. In conse¬ 
quence of the rotation, on the other hand, the position of equilibrium 
of the nuclei, and hence also—in the case of the (inharmonic oscillator— 
the strength of the bond becomes changed. 

Let Wjv denote the energy of the molecule which belongs to the 
rotation quantum j and the oscillation quantum v, and let W0„ corre¬ 
spondingly denote the energy of the rotationless molecule, the oscilla¬ 
tion quantum being v. In the harmonic case we have (p. 80, eqn. 
(136)) 

W0r — • (v + l)hv0. 

In the anharmonie case we have, instead, an expansion of the form 

W0l, **= (v + “ 'r(?; 4 i) + • • • ) • • (8) 

which advances in powers of x(v + |). The small constant x depends 
on the law governing the anharmonie bond. 

On the other hand, the formula for Wjv runs : 

h2 
w* - - och(j + + l) + ^j((j + i)2 +...). (9) 

The last term is the rotational energy, and corresponds to the Deslandres 
term. The dots in the bracket indicate that if we take into account 
centrifugal effects additional terms become added that apparently 
alter the moment of inertia J (cf. § 1, eqn. (2), where the corresponding 
change is indicated by AJW). The term immediately before the last 
expresses the interaction between rotation and oscillation. The co¬ 
efficient a contains the moment of inertia J, and the vibration number 
r0. We must leave the derivation of (9) to Vol. II. In Note 13 we 
give the necessary preliminaries for the proof. 

The explanation of the variation in the distances between the peaks 
of the absorption bands is now easy to give with the help of equation 
(9). We must note that by pp. 559 and 560 the initial value of v must 
be taken equal to zero in the absorption process. Tf we represent the 
same process as before as an emission process, we must set the final 
value of v in it equal to zero and the initial value equal to v. In the 
difference between the initial and the final state we obtain from (9), 

* A. Kratzer, loc. cit.y Zeits. f. Physik (1920). We give Kratzer’s result with 
the changes that result from the application of wave-mechanics. 
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if we write down only the terms that depend on j and use the earlier 
value of B, equation (4), p. 558 : 

»'=][(Wm..-W,l0)= ... -«[(i+g)«»+i+l]+2BL(i+l)+ ■ • •], 

v=X(W’-*-~W'’0)~ • ' • —*r(i— i)2*7—2B[jf .. .] 

Hence we have for the distance between successive peaks : 

Ar =■- 2B[1 + . . . ] — a[2(j +1)?; f 1], positive branch) 

■" Ae — 2B[ l f- • • • ] + oc[2/r — 1], negative branch j a' 

The constant distance | Av | calculated in (6) is thus, on the one hand, 
as indicated by the brackets [1 slightly changed by the 
centrifugal actions of the rotation, and, on the other hand, and princip¬ 
ally, is systematically diminished by the interaction between oscillation 
and rotation in the positive branch as j increases, but increased in the 
negative branch. It is just the latter that is shown in Fig. 137. 

Whereas by equation (3) only changes of the oscillation quantum 
by 1 was possible for the harmonic oscillator, any arbitrary changes 0 
are permissible for the cinharmonic oscillator at present in question, 
corresponding to its overtone vibrations. Hence, it follows that in 
equation (5) the first term on the right-hand side is in general to be 
replaced by 

v0v(\ (*;+ l)x+ . . .), . . . (11) 

that is, for v — 1, 2, 3 . . . by 

v0(l~2*), 2r0(l-3;r), 3v0(l — 4a?) . . . 

We infer this directly from equation (8) by assuming for the final 
state of the emission process (initial state of the absorption process) 
v —- 0 and for the initial state of the same process v = 1, 2, 3, . . . 
From (11) we see two things : 1. Besides the “ ground bands " hitherto 
considered, which also occur in the harmonic oscillator there are 
“ overtone bands ” of approximately twice, three times, . . . the wave- 
number of the centre of the band. 2. These wave-numbers are not 
exactly in the ratio 1:2:3 . . . , but are out of tune according to 
the value of the quantity x. 

Mandersloot (Dissertation, Amsterdam, 1914) appears to have been 
the first to look successfully for such overtone bands (in the case of 
CO). Next Brinsmade and Kemble * must be mentioned, who estab¬ 
lished the presence of an overtone band in measurements made by them 
with HC1. Hettner f has given a comprehensive tabulation of his own 
and other measurements of infra-red bands which have now in part 
been resolved into lines. We supplement them by results given by 
Clemens Schafer and Max Thomas.J The following numbers denote 

* J. B. Brinsmade and E. €. Kemble, Proc. Nat. Ac., 420 (1917). 
t Zeits. f. Physik, 1, 351 (1920). J Ibid., 12, 330 (1923). 
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the observed wave-lengths of the “ centres of the bands ” (that is, 
essentially the zero-lines) expressed in terms of y, : 

Table 62 

cod - 2x) 2*'o(l - ifcr) 3»o(1 ~ 4a-) 

HF . 2*52 1*27 
HC1 . 3*46 1*76 1*19 
HBr .... 3*91 1*98 
CO . 4*67 2*35 1*57 

The band in HOI at A -- 3*40 y which is here quoted, was exhibited 
in Fig. 137. The associated overtone band A - 1*76 y, likewise first 
measured by lines, is here given in a form that depends on the extra¬ 
ordinarily good measurements bv Meyer and Lewin * (Fig. 139). 

550 560 570 

Fig. 139.—Overtone band of HC1 at A0 1*76 shown by the “silhouette- 
representation ” of Moyer and Lewin. The height and breadth of the lines 
depend on quantitative measurements, but the background is levelled. 
The Ar-values on both sides of the gap are just as great as in Fig. 137, but 
the shift of Av is twice as great, both facts in accord with equation (10a) 
where v — 1 corresponds to Fig. J37 and v ~ 2 to Fig. 139. 

Particular interest attaches here to the sharply separated subsidiary 
maxima (only just indicated in the original figure given by Imes). 
According to Loomis f and Kratzcr J they are explained by the 
isotopy of Cl35 and Cl37! For, since the nuclear vibration depends 
on the mutual binding, and the masses of the vibrating nuclei, and 
since the bindings are the same in the case of two isotopes, but the 
masses are different, we have two somewhat different values for v0, and 
hence two rotation-vibration bands that are somewhat displaced rela¬ 
tively to one another. The subsidiary maxima denote the band of 
OI37 and are small compared with the principal maxima of the band 

* Phys. Rev., 34, 44 (1929). Of. alno for the theoretical evaluation W. Colbv* 
ibid., 34, 53 (1929). 

f F. W. Loomis, Astrophys. Journ., 52, 248 (1920). 
i A. Kratzer, Zeits. f. Physik, 3, 460 (1920). 
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Cl36, corresponding to the ratio 1 : 3 in which Ci37 and CI86 occur quanti- 
tatively (cf. p. 141). Meyer and Lewin were also successful in proving 
the isotopic effect unambiguously in the ground-band at A == 3*46 g, 
whereas it is not yet visible in Fig. 137, which was taken with a 
wider slit. 

The difference between the two nuclear vibrations is obtained theo¬ 
retically as follows. The formula for calculating the proper frequencies 
runs : 

=VI 
Here/is the tightness of the binding, which is the same for both types 

of chlorine, and g denotes, as in equation (3) on p. 91, the “re¬ 
sultant ” mass of H and Cl, thus : 

_L = i + i., 1 = 1 -1-1. 
/z36 35 /z37 37 

If we use hvf v to denote the relative difference* between the vibration 
frequencies of HC135 and HC137, and 5A/A to denote correspondingly 
the relative wave-length difference, we obtain 

hv __ 1 / ] 1 \ 1 

v ~ 2\35 37/ ~ 1295* 

Thus 

SA — — — A -= — . 10“4 cm. — — 13-gA. . (12) 
v 1295 

The negative sign denotes that the lines of Cl35 have the shorter wave¬ 
length, that is, that the peaks corresponding to Cl37 are superposed on 
them on the longer wave side ; this agrees with Fig. 139. The value of 
SA in (12) likewise agrees with the results of experiment in order of 
magnitude.* We have already referred on p. 142 to this beautiful 
spectroscopic confirmation of Aston’s observations of isotopes.f 

Whereas we have hitherto considered only v — 0, as the initial state 
in the absorption process, with rising temperature an increasing number 
of molecules will be in the state v =* 1. Accordingly, an absorption 
band can then occur that corresponds to the transition 1 > 2 in the 
oscillation quantum number. One such band has actually been 

* In Phys. Rev., 34, 53 (1929), Colby gives an exact- formula for the measure¬ 
ments of Meyer and Lewin. It is there shown that the isotope effect comes out 
not only in the oscillation term of the bands but also in the rotation term (on 
account of the different- moments of inertia of the isotopes). 

*(■ R. 8. Mulliken [Nature, 113, 423, 489 (1924)1 has described isotope effect 
in BO, SiN and the so-called Cu-bands, and has drawn inferences from them about 
the carriers of these bands. Cf. also the more recent papers by Birge, Mulliken 
and their pupils on isotopy in band spectra, in particular in O, N, C (Phys. Rev., 

1929-31). 
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observed ; * it can be calculated beforehand from the absorption 
bands 0 1 and 0 -> 2 by simple combination. 

Lastly,, we inquire in what other gases besides the halogen acids 
we may expect infra-red absorption bands that may be resolved into 
individual series by the means nowadays at our disposal. By equation 
(6) this is a question of the moment of inertia. Only if J is sufficiently 
small does A v become sufficiently great. In HOI the centre of gravity 
lies very close to the heavy atom 01 ; hence J becomes essentially equal 
to where / denotes the distance between H and 01. Hence we 
see immediately : in order that a sufficiently small J should occur the 
molecule must contain only H-atoms besides the atoms that lie next to 
the axis. This condition is fulfilled, for example, in 0H4 and NH3. 
Actually, resolvable bands have been found in these two molecules 
that show themselves to be particularly simple ; in CH4 they were 
found by Cooley | and in NH3 by 8chierkolk,J and Barker.|| The 
simplicity is no doubt due to the fact that the H-atoms are arranged 
symmetrically about the heavy atom. The next molecule of this 
series, which would be the bridge to HF, is H20. But in H20 the 
infra-red absorption bands are considerably confused. Hence we must 
infer that the two H-atoms do not lie diametrically with respect to the 
0-atom, as is also to be assumed from chemical data, so that we are 
here dealing with a triangular configuration which gives rise to three 

different moments of inertia. 

§ 3. Visible Bands. Significance of the Head of the Band 

To transfer our attention to the visible region we must add to the 
two transitions in the rotation and oscillation an electronic transition 
as a third factor, that is, we must add a change in the structure of the 
atoms or ions that constitute the molecule. The simultaneous occur¬ 
rence of these three partial processes is demanded by the Correspondence 
Principle (cf. Note 7 (g))y at least for a non-polar molecule such as N2. 

Hence, in the initial and in the final state we are now dealing in a 
certain sense with different molecules, which differ by just the required 
change of configuration of their component parts. The result is that all 
constants that depend on the details of the molecular structure, in 
particular the moment of inertia J and fundamental frequency of the 
nuclear vibration v0, become different in the initial and the final state. 
We denote the values (analogously to j', j and v', v on p. 560) by J', J, 
i/0, v0, and so forth. 

We first consider the rotation component, and proceed to obtain 
from it an understanding of the structure of a partial band in the 

* Cf. Colby, Meyer and Bronk, loc. cti., and also Colby, Astrophys. Journ., 
58* 303 (1923), who even at that time concluded that there must be “ half-integral ” 
values of j from the combination-relation. 

t Phys. Rev., 21, 376 (1923). 1 Zeits. f. Physik, 29, 277 (1924), 
|| Phys. Rev., 38, 084 (1929), 
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visible region. Thus we form the difference of the Deslandres term, 
equation (6) in § 1, for the initial state (/, J') and the final state (j, J) : 

Hf + i)2 Hi + l)2 m 
8tt2J' 8tt2J * * * • [l) 

and also add the contributions that result from the oscillation transition 
and the change of configuration in the electronic structure. Let vel be 
the contribution by the electronic transition, vosc the contribution by 
the oscillation transition, which we called (v' — v)v0 under the simpler 
conditions at the beginning of the preceding section. 

We distinguish the three cases (the nomenclature is that of 
Heurlinger) : 

j' ~j + 1 • • • R-branch,! 
j' ~ j — 1 • • • P-branch, J . . (la) 
j' — j ... Q-braneh.J 

In Note 7 (g) we prove that the third case must be added to the two first 
cases alone considered in the preceding section when an electronic 
transition occurs simultaneously. From (1) we obtain 

R ^A + 2B(j+l) + C(j+lF, . . (2) 

P c ~ A — 2Bj + C.(3) 

Q v = A + C; + C?2.(4) 

The constants A, B, C have the following significance : 

A = Vnsc + vrl + JC, 2B -=- g^-2(j, + j). c = 8^2(j7 ~ j)- (5) 

For J' — J (no electronic transition, case of the preceding section), 
0 becomes equal to O, B' = B — h/S7r2J. The equations (2) and (3), 
as should be, then become transformed into the equations (5) of the 
preceding section, whereas equation (4) loses its meaning. 

In Fig. 140 we have drawn the three parabolas (2), (3) (4) ; j is 
plotted on the axis of ordinates, v on the axis of abscissae. This kind 
of graphical representation appears to have been first used by Fortrat.1,t 
The parabolas are drawn continuously as far as the axis of abscissae 
j = 0, and thence onwards partially dotted. The R-branch intersects 
the horizontal j = — 1 at the point v — A ; at the same point of axis 
of abscissae the P-branch and the Q-branch intersect the horizontal 
line j — 0. We project the points of intersection of the parabola of 
the P-branch wdth the horizontals,; = 1,2,. . .on the axis of abscissae. 
In this way we obtain in the low^er strip of the figure the observable 
arrangement of the band lines v of the P-branch. The lines that arise 

* R. Fortrat, Theses (Paris, 1914), p. 109, Cf, also G. Higgs, Proc. Roy. Soc. 
54, 200 (1893). 
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from the Q- and the R-branch and that would interpose themselves 
between the lines of the P-branch have been omitted for the sake of 
clearness. 

In our figure it has been assumed that C > 0, that is, by equation (5) 
that J' < J. Hence in the P-branch a band head appears ; the band 
is “ shaded off towards the red end.” In the converse case 0 < 0, 
J' > J, the band head arises in the R-bands, because in the analytical 
representation of equations (2) to (4) in this case it is the R-band and 

Fig. 140.—The parabolas (2), (3), (4) of the P-, Q- and JR-branches for C > O. 
The points of intersection of the P-branch parabola with the horizontal 
lines j — 1, 2, 3 . . . are projected on the v-axis, and give directly the 
positions of the lines of the band. The lines of the Q- and R-branches 
could be obtained similarly. 

not the P-band that exhibits a varying sign in the terms involving j. 
For small values of j -f 1 the positive linear term first predominates 
and is compensated by the negative quadratic terms only when j f 1 
has rather great values ; the corresponding parabola first runs towards 
greater v’s and later bends round to smaller r’s. In this case the band 
is shaded off “ towards the violet.” * 

* H. Ludloff draws conclusions about the constitution of the associated mole¬ 
cule from this contradictory behaviour. Naturwiss., 14, 981 (1926); 15, 409 
(1927). 
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We calculate the position of the band head by (2) or (4) (j being 
treated temporarily as a continuous variable) from the condition 

1 *1 f “ ? + CJ == 0 • • . C > 0 ] 
2 dj’ \ B + C(j + l)-0 . . . C < Of 

or j + 1 

respectively the nearest integer 

(6) 

(?) 

The band head is not, like the limit of the line-series, a natural point 
of accumulation, but in a certain sense an accidental point. The 
circumstance that the band lines run partly towards the band head and 
partly away from it apparently disturbs the regularity of the sequence 
of the lines. To J. N. Thiele goes the credit of having pointed out the 
view that the band head is an accumulation of lines that is con¬ 
ditioned by the scale of the v's and is rather accidental. 

To be able to draw inferences from the expressions (2) to (4) for the 
band about the properties of the emitting molecule it is essential to 
count the position number j of the band lines correctly. If we were 
to displace the zero-point of the counting we should change the signifi¬ 

cance of the constants A and B in (5). The position number j must 
not be calculated from the band head, as was done by Deslandres ; 
rather, it advances continuously as it approaches the band head and 
also subsequently when it moves away from it, since this corresponds 
to the circumstance that the band head denotes no real singularity of 
the band law. 

To arrive at a natural way of counting j when a partial band is 
empirically given we revert to Fig. 137 of the infra-red bands. In 
this case the striking dip in the course of the intensity found the 
boundary between the positive and the negative branch, the R- and 
the P-branch in our present notation, and served as the starting-point 
for counting. We may show that even in the case of the visible bands 
there is a similar dip in the intensity distribution ; it is likewise de¬ 
cisive for the numbering. The intensity of the line to be expected at 
this point is zero ; on both sides of it the intensity first increases and 
then decreases, likewise agreement with Fig. 137 and the explanation 
there given according to the Maxwell-Boltzmann law. If we number 
the lines from the zero line the intensities of lines bearing the same 
number become equal in the R- and the P-branch. But in the scale 
of the j/s this symmetry becomes more or less unrecognisable. The 
thickness of the lines in the lower row of Fig. 140 indicates the increase 
and decrease of the intensity of the lines. As a result of the circum¬ 
stance that in our diagram as well as in many real cases one of the two 
intensity maxima come to lie near the band head, we find that this 
often appears emphasised in the total spectrum as a strong u fluting ” 
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(Icannelierung). But this circumstance is accidental and, moreover, 
depends on the temperature. 

The qualitative intensity criterion here developed for the numbering 
of the lines, that is, for counting j, is due to Heurlinger, loc. cit. He 
derives another criterion from a discovery of Fortrat (loc. cit.) : in the 
regular progression of band lines disturbances, anomalies of the vibra¬ 
tion number, occur, and, indeed, in pairs. Heurlinger was then able 
to show that in his choice of the current number opposite current 
numbers must be allocated to the disturbed lines. Hence in addition 
to the intensity criterion we also have an equivalent disturbance criterion 
for the choice of the current number.* Moreover, this criterion led 
of necessity to the half-integral numbering (in the older notation 
m = j -+■ £) of the rotation quantum number even before wave 
mechanics. 

The classical example of the theory of bands is given by the so-called 
cyanogen bands. Their lines consist of very close doublets that are 
separated only for the higher values of j. Their centres of gravity 

3884 3872 3862 3855 3850 
Fig. 141.—The cyanogen band A — 3884 of the carbon an?. At the edges the 

lines that are no longer resolved appear as continuous bands. Taken in 
the second order of a large concave grating. 

obey the band laws (2) and (4) particularly well, and a simplifying 

circumstance is that here the Q-branch, eqn. (3), is not present at all. 
Heurlinger has subjected them to a new exact study and, in part, new 
measurement. In several of these bands there are approximately 
one hundred lines ; for example, in one partial band of the group 
A ~ 4216 lines up to j —-4-97 have been measured by Heurlinger ; 
the whole complex of lines is arranged in systematic order. 

Runge and Grotrian f ascribed the cyanogen bands, in spite of their 
names, to the N2-molecule. The majority of the other observers J 
established that the presence of 0-atoms is necessary to produce the 

* In atomic spectra, too, there are similar disturbances at definite points of 
an otherwise regular series, in such a way that the resolutions of the series-terms 
suddenly increase anomalously and afterwards resume normal values again [of. 
pp. 689 et seq. of the 4th German edition of this book, and E. Sohrodinger, Ann. 
d. Physik, 77, 43 (1925)]. The reason in both cases is probably to be found in 
a resonance with other quantum frequencies of the atom or molecule, 

f Phys. Zeits., 15, 545 (1914). 
X Of., for example, G. Holst and E. Osterhius, Proe. Amsterdam Acad., 28, 727 

(1921) ; Mia Toussaint, Zeits. f. Physik, 19, 276 (1923); R. T. Birge, Phvs. Rev., 
$3, 294 (1924). 
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cyanogen hands and that the carrier of the cyanogen bands condenses 
at a far higher temperature than N2. We shall therefore regard the 
molecule ON as the carrier of the cyanogen bands. 

Our Fig. 141 represents the group of five band heads already men¬ 
tioned on p. 556. The one furthest on the long wave side has the 
wave-length A --- 3884. The second head lies at A = 3872, the third 
at A =— 3862, and so forth. The partial band belonging to each head 
resolves itself into a P- and an K-branch. Heurlinger has determined 
the zero-lines belonging to the three band heads mentioned, and has 

calculated the constants B and 0. The result is (if we use the more 
exact numerical values), 

2B 3-843 cm.-', C ^ 6-73.10~2 cm."1. 

Thus 0 is essentially less than B. This is to be expected by equation (5), 
since 

B-J-' + J' 0 
1_ __ 1 
J' J’ 

that is, since C must be small compared with B, as it is the difference 
between two quantities that presumably differ but little from one 
another. 

A further test of the theory is given by the absolute value of B. 
By assuming J and J' as almost equal, we calculate from the given value 

2B - 3-843, and from equation (5) a mean value J (the factor c must be 
included on account of the transition from vibration-numbers per 
second to wave-numbers per second) : 

h 6-55 . 10 27 

8t72cB - 12tt2.3-843.1010 
= 1-44.10 39 gni. cm.2 (8) 

On the other hand, without introducing an appreciable error, we may 
write J — 2.13 . mh . /2, where / denotes half the distance between the 
two atoms V and N and .13mu, the mean of their masses. Hence we 

obtain 

Z2 
1 44 . IO-39 

2.13.1 -65 . 10~24 
= 0-34.10 16, 21 1*16.10~8 cm. 

We thus arrive at the well-known order of magnitude of .molecular 

quantities. The bands * of 8iN, as is to be expected, show a complete 
analogy to the cyanogen bands ON. 

A beautiful confirmation of the band theory was recognised by 

W. Lenz f in photographs of iodine fluorescence taken by R. W. Wood.J 
Wood illuminated iodine vapour at a low pressure by means of the 
Hg-line 5461 (fundamental term of the sharp subordinate series). The 
iodine molecule, by absorbing the energy-quantum hv in question, 

* R. 8. Mullikcn, Nature, 116, 14 (1925). 
f Phys. Zeits., 21, 691 (1920). t I^il. Mag., 35, 236 (1918). 
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becomes transferred to an excited state. This belongs to a quite 
definite value of the rotation quantum j. The iodine molecule re¬ 

cruits the absorbed energy, by passing from the excited state into one 
of less energy. But the selection principle * allows only the transition 
j ->J — 1 and j ~>j ~f 1 (the oscillation quantum and the electron con¬ 
figuration being changed simultaneously). Hence the re-emission takes 
place as a doublet or. in consideration of the fact that in an unharmonic 
oscillator the oscillation quantum is capable of any arbitrary transitions, 
as a system of doublets that are scattered over the spectrum. Wood 
observed about twenty such doublets. As pointed out by Lenz, each 
of them proclaims in a very delightful way the ruling of the selection 
principle for the rotation quantum : each shows us the wav in which 
a partial band originates from two of its members. If, on the other 
hand, we make the iodine molecules collide with each other very 
frequently (at higher pressure) or with other atoms (by using an 
admixture of inert gases) in the interval between absorption and 
re-emission f then other values of the rotation quantum j are also 
produced. Every doublet then couples itself to a more extended 

partial band : in these circumstances, Wood's fluorescence photographs 
approach the ordinary band type. 

§ 4. Law of Band Edges and Band Systems 

Hitherto we have spoken only of the coefficients B and C of the 
band formula, which contain the influence of the rotations. To explain 
still further the general arrangement of the band systems, we must 
deal with the coefficient A, which contains the influence of the oscillation 
and the electronic transitions. 

We are interested first of all with the oscillation contribution v0SG, 

which we must analyse by equation (8) of § 2 ; let the electronic contri¬ 
bution be comprehended again in the symbol vel and remain unanalysed. 
Thus we assume that the oscillation quantum leaps from v' to v. In 
this transition the coefficients v0 and x of equation (8), § 2, change, say, 
from v'0, x' to r0, x. The application of Bohr's frequency condition to 
(8) then gives : 

*w--(^M“£)T • • -)“(*H~!)1) + • • •) 1 /iv 

= (v' — v) v'o+(»+£)( v'0—v0) — {(v' + ^)2v'0x' — (v+l)2v0x} f .../ 

We must insert this value of vosc in the coefficient A, eqn. (5) of the 
preceding section. According to the values of v and vf we thus obtain 
a double manifold of A-values which define the zero lines of a doubly 
infinite system of partial bands, the so-called “ band system.” 

We consider the second row of equation (I) more closely. Its 

* The transition j j, which corresponds to the Q-branch, does not occur 
here either. 

f In adopting this view of the process Lenz sees a possibility of estimating 
the “ time of stay ” (Verweilzeit) of the Ig-inolecule in its excited state. 
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individual terms are arranged in order of magnitude. The first term is 
the principal one. It depends only on the quantum transition v' - v. 
The second term is small compared with the first, since the change 

r'o ~ vo ^ a small quantity and depends on the absolute value of the 
quantum number v. The third term is in general still smaller, since 
the coefficients x and xf are individually small (of. p. 564, and Note 13). 

The principal term has different values for the quantum transition 
0 or the quantum transition 1 (“ fundamental vibration ”) or 2 (“ first- 
harmonic "), and so forth. By keeping the principal term fixed (that 
is, the quantum transition) and varying the value of v, we obtain a 
singly infinite sequence of partial bands, and so forth, or zero lines, 
which belong more closely together among themselves, and are neigh¬ 
bours within the band system ; we call them a band group. The 
separate individuals of the band group are distinguished by the second 
and third terms of equation (1). 

Fig. 142 is concerned with the system of cyanogen bands. It 
shows four groups, which, from left to right, correspond to the 

4600 4400 4200 4000 3B00 3600 

4606 4663 4516 4216 4181 4153 3884 3862 3850 3590 3584 
4678^4632 4197^4168 ^ 3871^ 3855 3686 

Fig. 142—The band groups Av = — 2 to Av = f 1 of the cyanogen bands. 
The lines in the figure are the edges of the partial bands, which together 
constitute the individual band groups in question. 

quantum transitions v' — v — Av ~ — 2, —1,0, +1. The group 
At’ -- 0 at A — 3884 is already known to us from Fig. 141. It embraces 
five band heads, for which, from left to right, v is equal to 0, 1, 2, 3, 4. 
Thus these five band heads belong (on account of Av 0) successively 

to the “ quantum transitions ” 

0->0, 1-*1, 2-* 2, 3-»3, 4 -> 4. 

The zero line v — vn corresponds (cf. Fig. 140) to the value 

Vn — a = V0IIC -f Vel + C/4, 

and hence arises from the first line of (1) if we add on both sides 

•V. + C/4. 

V, - Vel + C/4 + («' + i) /0(1 - x’(v' + !) + .••) 

— (» + £K(1 — x(v + P + . . .) 
In this equation we have already essentially derived Deslandres’ 
“ Law of Band Edges,” which is a quadratic law in v and v'. Con¬ 
cerning its name, we must mention that the law accurately represents 
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not the position of the band edges or of the band heads, but of the 
corresponding zero lines, whose importance in the scheme of bands 
had escaped Des land res’ attention. 

Table 63 * shows how accurately equation (2) represents the position 
of the zero lines in the “ cyanogen bands.” The horizontal rows in it 
denote the same initial quantum v\ the vertical rows the same final 
quantum v. Hence the diagonal row corresponds to the quantum 
transition v' -> v, and represents the group Av = 0 of Fig. 142 ; the 
parallels to the diagonal towards the right upwards correspond to the 

groups Av — — 1, Av = — 2, and towards the left below, to Av = + 1. 
The five available constants of the law (2), namely vel + C/4, v0, v'0, 
x, x. have been chosen in such a way that, in particular in the first 
horizontal row of the table, where the empirical data are most exact, 
the agreement with the measured zero lines is perfect. The deviations 
in the other rows remain very small. 

Table 63 

v « 0 1 2 3 

vf as 0 | 
(3884) (4216) (4606) 

25,797-83 
25,797-83 

23,755-44 
23,755-44 

21.739- 54 
21.739- 55 

— 

■ { 
(3590) 

27.921- 3 
27.921- 38 

(3872) (4197) (4578) 
25,879-0 
25,878-99 

(3586) 

23.863- 0 
23.863- 10 

(3862) 

21.873- 4 
21.873- 71 

(4181) 

5 ! 
27.962- 7 
27.962- 04 

25.945- 5 
25.946- 15 

23.956- 5 
23.956- 76 

1st line : Wave-length of the edge. 
2nd ,, Wave-length of the empirical zero line. 
3rd ,, Wave-length of the calculated zero line. 

The values of vn shown in Table 63 at the same time give the values 

of the coefficient A for the cyanogen band system. In addition, we 

show in Table 64 the values B and C of the same system. The method 
of arrangement is the same as in the preceding table. Thus numbers 
that belong to the same group are in an oblique row sloping towards 

the left or towards the right : corresponding to the group Av = 0 of 
Fig. 142, for example, we have the numbers 

2B == 3*843 ; 3*804 ; 3*764 ; 
1000 - 6*73 ; 6*35 ; 5*99. 

What was said on page 573 about the ratio B : C applies to all 
terms of this and the remaining groups. But still more : the value 

of B is appreciably the same in the whole system, that of C varies 

* A. Kratzer, Ann. d. Phys., 67, 127 (1922). 
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Table 64 

v -= 0 i 
2 

3 

2 k 100 c. 2 B. 100 C. 2 B. ioo e. 2 B. 100 0. 

0 3-843 (>•73 3-825 8-53 3-807 10-33 | 
1 3-822 j 4-55 3*804 6-35 3-786 8-ir> 3-768 9-00 
2 — 

! " 

3-782 4- i 9 3-764 5-90 3-746 7-74 

much more. This, too, may be understood from equation (5) on page 
569. C, being the difference of the reciprocal moments of inertia J' 
and <J with respect to changes of form of the molecule in passing 

from the initial to the final state, is much more susceptible than B. 
We now need only to connect the law (2) for the zero lines with the 

law for the individual partial band (eqns. (2), (3), (4) of the preceding 
section), in order to arrive at the complete law governing the lines of the 
whole band system. In accordance with equation (5) in § 3 we divide 

the value of 2B into the amount of the initial and the final term, 
which we call B' and B ; in B' and B we at the same time take into 
account the interaction between the initial and the final term, which 
is represented by the coefficient a in equation (9) of page 564, so that 
B' and B become dependent on v' and v, so that we find it better 
to write B(v') and B(v) instead of B' and B ; C is now equal to 
B(c') — B(i>). By collecting together the terms in B(v) and B(i?') we 
then get 

R 
P 
Q 

V = A(v, v') — B(v)j(j + 1) + B(v’)(j + 1 )(j -t- 2) + 
v = A(v, v’) — B(v)j(j -1- 1) + B(v’)j(j — 1) + . . . 
v = A(v, v') — B(i>)j(j f 1) + B(v’)j(j -h 1) + . . . 

I 

I 
(3) 

Here 

BM " SHI - «<» + *>■ B<»'> = 53T - *>' + «■ j „ 
A(v, v') - + iC + (v‘ + l)v'0(l - x'(v' + J) + ..01 ' 

- (v + iKU - x(v + \) + • • • ' 

Our law (3) thus contains three quantum numbers j, v, v' and nine 

disposable constants : 

vel> v0’ v 0’ X-> X>» J > a > 

of which the quantity vel may yet be resolved into its term-difference, 
that is, into the amount of the initial and the final state. With the 
help of these formulae and constants we may represent over 1000 
lines in the system of cyanogen bands, for example. In the case of 
greater values of j we must, however, also take into account the higher 
powers of j denoted by . . . in (3) if we wish to achieve numerical 

von. i.—37 
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agreement-; tlio.se powers in the first place take account of the change 
in the moment- of inertia (of. p. 504). 

But we have not yet finished with setting up the law (3) for the 
general system. One and the same molecule may have several band 
systems, since its electronic frequency vel may assume several different 
values ; these band systems may lie in quite separate spectral regions, 
like the violet and the red cyanogen bands. We are led to surmise 
that the different values of vel may arrange themselves similarly to 
the manner in which the different electronic transitions arrange them¬ 
selves in the line series of the atoms, although we are here dealing 
not with atoms but with the more complicated electronic; systems of 
molecules. The band systems that are arranged together into series 
in this way may be called “ system series.” We shall become ac¬ 
quainted with some examples of them in the next section. 

§ 5. Many-Lines Spectra 

We have already mentioned on page 70 the band spectrum of 
hydrogen, the so-ealled many-lines spectrum. It is only the great 
number of these lines and not their arrangement that recalls the band 
character. The band heads are absent altogether. The Fulcher * 
bands have been known longest of all, one in the red and one in the 
green, both having only a few lines ; four bands discovered by Ooze 

have about 12 lines each.f The sequence of lines in the partial 
bands is so widely separated that the lines no longer appear at first 
sight to belong together. Merton J has tested these lines as regards 

their behaviour with varying pressure, temperature, admixture of 
helium and so forth. 

We shall show that this general character follows naturally from the 
small value of the moment of inertia of the hydrogen molecule and fits 

as a limiting ease into the general theory of band spectra. 
in equation (6), § 2, we saw that the distance of neighbouring 

band lines is 

SJ ••••'» 

In the case of the cyanogen bands (cf. Table 04) 2B =- Av = 3*<S cm.-1, 
corresponding to a value AA — 0-0 A. In the ultra-violet absorption 
bands of H2 analysed by Hopfield || the distance between the lines 

* The Fulcher bands have been extended by E. Gehrcke and E. Lau, Berliner 
Sitzungsber, 1922, p. 453, and 1923, p. 242 ; a third band consisting of six members 
was added in the blue region. Concerning the grouping of these bands, cf. 
G. H. Dieke, Amsterd. Akad., 33, 390 (1924). 

f The two Fulcher series have been recognised as associated P- and K- 
branches and have been supplemented by a Q-branch. Proc. of the Physico- 
Mathem. Soc. of Japan, 5, 9 (1922). 

J Proc. Roy. Soc., 1922, p. 388. Cf. also the similarly directed investigation 
by Kimura and Nakamura, Japanese Journ. of Phys., 1, 85 (1922). 

jj G. H. Dieke and J. J. Hopfield, Proc. Nat. Ac. Wash., 30, 400 (1927). 
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corresponds to the value ]00 cm. 1. The distance Av between 
the lines is thus twenty-live times as great here as in the case of cyanogen 

hands. By equation (1) it would follow from this (more exact data are 
given later) that the moment of inertia of hydrogen would he twenty - 
five times as small as in the case of the carrier of the cyanogen hands. 

The value of the moment of inertia of the hydrogen molecule 
obtained in this way need not he the only one. Rather, we must 
picture to ourselves that the H2-molecule is capable of very many 
different states and may thus also have different moments of inertia.* 

The estimate given above corresponds to the ground-state of the 
molecule (absorption hands !). 

The small value of J explains immediately why there are only a 
few lines of observable intensity in each partial band. 

Let us recall the fact, first discovered by Eucken, that at low tem¬ 
peratures (below 200° absolute) the rotation of the Ha-molecule dies 
down more and more and that the hydrogen approaches more and 
more closely to the monatomic gases in its thermal behaviour. The 
reason is, generally speaking, to be found in the Boltzmann factor 
(cf. p. 503). If we insert for the kinetic energy of the rotator its value 

from equation (1) or (On), § 1, we obtain, except for a weight factor, 

__ jr HJ±}) 
e HttH- ' JT ..... (2) 

The product »JT is the decisive factor. The smaller JT, the less the 
probability for a definite rotation-quantum j. At very low temper¬ 
atures all values of j except the smallest, namely j —- 0, become sup¬ 
pressed statistically ; this is what Nernst predicted theoretically 
and what Eucken proved experimentally. But even at moderate 
and higher temperatures the product JT for hydrogen is, on account 
of its small value for J, much smaller than in the case of other gases. 
For this reason in the case of hydrogen greater values of j are statisti¬ 
cally suppressed even at higher temperatures. 

Numerically we find that if J is twenty-five times smaller in H2 
than in CN we must also make j(j -j- 1) twenty-five times smaller, to 
make the weakening due to the Boltzmann factor keep within the 
same limits as in CN. Whereas the cyanogen bands had partial 
bands of about 100 lines the partial bands in the mary-lines spectrum 

of H2 will consist roughly of only 20 lines. 
This explains the general character of hydrogen bands : sequences 

of lines in small numbers with wide distances between the lines, in a 
certain sense, torsos of normally developed bands. In these circum¬ 
stances there can be no question of the grouping together of these lines 
into band heads. If many such short sequences of lines overlap we 

* K. T. Birge [Proc. Nat. Ac. Wash., 14, 12 (1928)], and O. W. Richardson and 
K. Das [Proc. Roy. Soc., A, 122, 688 (1929)] give numerical values for the moments 
of inertia and the other characteristic constants of the H2-molecule in different 
states. 
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obtain the* impression of the many-lines spectrum, a confused mass of 
lines without flu tings and without apparent regularities. 

As regards details the following results have been found. Lyman * 
and Werner f proved the existence of two band systems in the ultra¬ 
violet, having a different initial state but the same final state of the 
electronic configuration. This final state is at the same time the 
normal state of the hydrogen molecule. Until we introduce the sys¬ 
tematic band notation, which must be postponed till § 7, we shall call 
it the 1 hS-state ; this is in harmony with the symbol given to the 
ground-state of He (H2 is, like He, a two-electron system). Precisely 
as in He there are not only singlet hut also triplet terms, the 1 3S- 
term, however, being absent ; this term would not lead to molecule 
formation. The initial state of the Lyman hands belongs to the singlet 
system ; let it he denoted by 2 hS. The initial state of the Werner 
hands is the 2 1P-term in the singlet system. The bands of the 
ordinary many-lines spectrum in the visible arise if we combine the 
more highly excited term steps with the terms 2 *S, 2 lP which are known 
from the ultra-violet bands. In addition there are combinations of 
higher triplet terms 3 3P, 4 3P, 5 3P and so forth with the lowest triplet 

term 2 3S. The electron transitions that then result follow the analogous 
electron transitions of the Balmer lines emitted by the atom and are 
denoted by the same letters oc, j8, y, 8 . . . . Of. the scheme of levels 

in Fig. 143, which has been taken from a paper by Richardson4 
Intensive work by various researchers, Witmer, Dieke and Hopfield 
(in the ultra-violet region), Mecke and Finkelnburg, Richardson and 

many of his pupils, Weizel and Fticlitbauer (in the visible region), 
has made it possible to trace the majority of the strong lines back to 
definite electronic, oscillation and rotation states, and hence to divide 
up the apparently confused mass of lines definitely into short individual 

bands (P-, Q- and R-branches). Consequently we may now also deter¬ 
mine the moment of inertia in the manner mentioned at the beginning 
(the correction term a being taken into account, cf. p. 564) and thence 
also the distance 21 between the nuclei. We obtain for the ground 

state || J = 4-67 . 10 41 gm. cm.2, 21 = 0*75.10"8 cm. ; 

for the excited states we find greater values for J and 21, as is to 
be expected. 

In finding the interpretation of the experiments on electronic 
collisions and in applying it to the H2-molecule a point of view has 
become important which deals with the variable distance 21 between 
the two H-nuclei. The true explanation of the figure used in this 

* Th. Lyman, Astrophys. Journ., 60, 1 (1924). 
f S. Werner, Proc. Roy. Soc., 113, 107 (1926). 
+ Ibid., 136, 487 (1930). 
!l T. Hori, Zeits. f. Physik, 44, 834, 1927 ; cf. also E. C. Kemble and V. 

Guiiiemin, Proc. Nat. Acad., 14, 782 (1928). 
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case cannot be given until we come to wave-mechanics ; it forms the 
essential content of an important paper by Heitler and London * on 
the constitution of the H2-molecule. 

The lowest curve in Fig. 144 represents the energy in the state 
1 ,S for a variable nuclear distance 21. Its lowest value corresponds 
to the stable ground-state with 21 -- 075.10 8 cm. (cf. above). The 
higher curves denote excited states, for example, 2 hS, 2 JP, . . . . 

Werner Lyman 

Fio. 143.—The most important terms of H2 (according to Richardson). The 
letters A, B, a, /?, y refer to the old band notation. Inter-combinations 
between triplets and singlets are not known (cf. § 7, A2J — 0). The ground 
term lies far below the remaining terms, so that its distance from them could 
not be shown to scale. 

The energy curve for the ground-state of the H2-ion is also shown at 
the upper end of the figure. It is to be observed that the lowest 
points of the different energy steps lie at different values of the 
absciss&v. Hence it follows that if we excite the H2-molecule in the 
ground-state, either by electronic collisions or by collisions with photons 

Zeits. f. Physik, 44, 455 (1927) ; cf. also Y. Sugiura, ibid., 45, 484 (1927). 
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(that is, by the absorption of light), we do not arrive at a state of equilib¬ 
rium but at a higher point of the energy curve, from which a vibration 
of the nuclear distance sets in about the lowest point of the energy 
curve in question, that is, about the equilibrium value of 21. We 
thus at the same.time excite a higher electronic state simultaneously 
with an oscillation state. In the figure the quantised oscillation states 
are indicated by horizontal straight lines ; these indicate the region 

Fig. 144.—Potential curves of certain FT2 terras (from Huark and Urey). The 
lowest curve 1 XS corresponds to tho ground terra 1 tf2 ; above the zero- 
level are shown oscillation-levels in the potential trough, just as with tho 
higher stable terms. D — dissociation potential of two unexcited H atoms. 
I 8S likewise belongs to the configuration 1 a2 and provides the repulsion 
between the two H atoms. The curves 2 and 2 1P have the configuration 
1*2p (cf. Fig. 143). At the very top the ground-state of Ha+, 1 2S is shown. 

within which the nuclear distance 21 varies. The fact that the region 
is delimited just by the energy curve is connected with the circumstance 
that each point where the oscillation reverses the potential energy has 
the same value. 

In Fig. 144 we have drawn the excitation arrow in a direction 
exactly vertically upwards. This is based on the assumption that 
the gravitational system of the nuclei has no time in its collision 
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with the light electron or the still lighter photon, to alter its nuclear 
distance or its nuclear velocities. This explanation is due to J. Franck * 
and has been worked out further by E. U. Condon, f 

The same conditions as in excitation also obtain in the case of 
ionisation. Here, too, we obtain, as shown in the figure, not the 
equilibrium state of the H2+-ion but a higher oscillation state. This 
confirms our remark on page 377 that “ the electron collision experiments 
in the case of H2 and of molecules generally give by no means such 
sharp and unambiguous results as in the case of atoms.” The value 
of the ionisation potential, 15*34 volts, given in the same part of the 
text has now also been included in the figure and its precise mean¬ 

ing elucidated. Likewise the meaning of the dissociation-potential, 
D -- 4*34 volts, is clear from the figure. 

We have an instructive intermediate stage between the many- 
lines spectrum of hydrogen and the ordinary band spectra, namely 
the vnany-lines spectrum of helium. It was discovered by Goldstein J 
and W. R. Curtis || and measured for the first time by A. Fowler. 
Several characteristic parts of it have been studied by Curtis,** 
Weizel f f and others. Whereas in the many-lines spectrum of 
hydrogen the band character was found to have disappeared entirely, 
in this helium spectrum it can still be recognised but by no means so 
strikingly as in the case of, say, the cyanogen bands. The sequences 
of lines are partly without a band head and partly with a band head. 
The maximum number of lines is 11, the distance between the lines 
in the neighbourhood of the zero line is of the order of magnitude 
Av — 30. By (l) the moment of inertia that would result would 

then be 

J ** 1 *8 . 1()“40, 

that is, about four times greater than for H2. This number expresses 
the intermediate position of our spectrum with respect to the hydrogen 

many-lines spectrum and the true band spectra. 
What are we to assume the “ moment of inertia ” of helium stands 

for ? It can only refer to the moment of inertia of a transitory “ He- 
molccule.” For a molecule of this kind to arise at least one of the 
atoms must be excited. Wave-mechanical considerations taken in 

conjunction with the discussion of the band spectrum show that one 
of the two He-atoms is in the ground-state and the other in an excited 

state. 
The excitation conditions for H and He are oppositely directed. 

* Cf. Franck and Jordan, Anrogtmg von Quantenspriingen durch Stosse* 
p. 252. Springer, Berlin, 1926. 

f Phys. Rev., 28, 1182 (1926). J Verb. d. I). Phys. Ges., 15, 402 (1913). 
|| Proe. Rov- Son., 89, 146 (1913). 1 Ibid., 91, 208 (1915). 
** Ibid., 388 (1922) ; 103, 315 (1923). 
ft Zeits. f. Physik, 56, 197 and 727 (1929). 
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In H the many-lines spectrum is produced more easily (at lower poten¬ 
tials) than the Balmer spectrum ; in the case of He, however, the many- 
lines spectrum requires higher excitation than the ordinary spectral 
series. This is quite compatible with the above view, according to 
which a preliminary condition for the production of the He2-molecule 
is that one of the He-atoms be considerably “ loosened.” 

Visually the structure of the He many-lines spectrum appears to 
be subdivided into fairly large units, groups and systems. Fowler 
succeeded in isolating within these larger units such series as satisfied 
a quantitative series formula in the manner of Rydberg, a formula in 
which the Rydberg number R occurs directly. This points to the 
“ system series ” of which we spoke at the end of the preceding section. 
We are thus concerned with energy steps of the electronic configuration 
in the He2-molecule ; in our general system formulae (3) and (4) of the 
preceding section they occur in the term vel. 

§ 6. Gyroscopic Motion of Molecules 

The assumption we have hitherto made that the molecule rotates 
about a fixed axis is very special and permissible only if the axis of 
rotation coincides with a principal axis of the mass distribution. The 
general motion of the molecule is not the rotation but the gyroscopic 
(top) motion. It is usual to distinguish the symmetrical and the 
unsymmetrical top, according as the ellipsoid of inertia of the mass 
distribution is an ellipsoid of rotation or a tri-axial ellipsoid. The 
diatomic molecule (H2, HC1 and so forth) represents a symmetrical 
top and one that has a very special mass distribution : the moment 
of inertia K about the line connecting the nuclei (axis of the figure, 
cf. the beginning of § 2) is vanishingly small compared with the moment 
of inertia J about the axes perpendicular to it (“ equatorial axes ”), 
namely, small in the ratio electron mass to nuclear mass. On the other 
hand, the tri- and multi-atomic molecules are as a rule (for example 

in the case of H20) represented schematically by an unsymmetrical 
top (unless, as in the case of C02, the three atoms lie in one straight 
line). Whereas the general motion of the symmetrical tops under 

no forces is a regular precession, the general motion of the unsymmetrical 
top is called a Poinsot motion ; the latter cannot be represented by 
elementary formulae but only by elliptic integrals. In the case of the 
“ spherical top ” * the general motion under no forces merges into 
simple rotation. 

We next consider a symmetrical top in which the moment of inertia 
K about the axis of the figure is not, indeed, vanishingly small but 
nevertheless small compared with the equatorial moment of inertia J. 

* This case is presumably realised in the ease of CH4 in the ground-state 
(tetrahedral structure) ; this would explain the particularly simple infra-red 
spectrum mentioned on p. 603, 



§ 6. Gyroscopic Motion of Molecules 585 

If we denote the momentum about the axis of the figure by N and the 
total moment of momentum by M, the component of the moment of 

momentum that is left for the equatorial plane is V\ M |2 
the associated amounts of kinetic energy are 

N2 m , | M |2 — N2 
2K ' - ^ an<1 ~ZS~ 

Let us make the quantum assumption * 

N = ¥ . . (3) and | M |* j(j + 1)(f 

N2, and 

(2) 

277 277 
(4) 

when1! j0 and j are the corresponding quantum numbers. To excite 
the rotation about the axis of the figure or the equatorial axis, respec¬ 
tively, we therefore require the amounts of energy : 

j.2*2 
8772K 

(5) and (j(j + 1) - jo2)*2 
8t72J 

(6) 

On account of the ratio assumed for K/J the; former amount is very much 
greater than the latter, if y0 and j are of the same order of magnitude. 

Simultaneously with the energy also the angular velocity about the 
axis of the figure becomes very great. It is only when the excitation 
is very high, that is, at very high temperature, that a rotation about 
the axis of the figure should be able to take place, and even then only 
in comparatively small values of jc. At moderate temperatures no 
rotation about the axis of the figure takes place. The molecule does 
not then function as a top hut as a simple rotator about an equatorial 
axis ; there is no doubt that we are allowed to assume the diatomic 
molecules (K 0) as such. 

The method of deduction is precisely the same as in the preceding 
section for the hydrogen molecule. There it was the small value of J 
in the Boltzmann factor which made the rotations of the hydrogen 
molecule die away ; here it is the small value of K which in particular 
suppresses the rotations about the axis of the figure or restricts it to 
small values of jQ. What is essential in both cases is the discrete nature 
of the quantum number and the finite height of the first energy step ; 
if the possible states were continuously distributed, this deduction 

would not hold. 
The total kinetic energy of the molecule of rotational symmetry is, 

by (5) and (6), 

Xj, _ 3(3 + l)ft2 

kin ~ 8tt*J + 87T* VK 
(7) 

For j0 ~ 0 it merges, of course, into the expression for a pure rotation 
(of. eqn. (6a) of § 1). There is an important application of equation (7) 
in the beautiful researches by Victor Henri on the absorption spectrum 

* The different treatment of N and M is justified bv wave-mechanics, cf. 
Ch. VI, p. 333. 
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of formaldehyde,* H . COOH. Henri calls this molecule the Y-molecule, 
attributing to it the structure indicated in Fig. 145 which has been 
deduced from the band spectra. In this form the model is. strictly 
speaking, an “ unsymmetrical top." One of the principal axes passes 

through 00, a second is perpendicular to the 
plane of the diagram, the third lies in the plane 
of the diagram parallel to the line connecting 
the H-atoms. But the mass of the two 
H-atoms is very small compared with the mass 
of the other two atoms. The mass distribution 
is only slightly changed if we allow the two 
H-atoms to rotate about the axis 00 and 
distribute its mass uniformly over the circular 
orbit. In this way we replace Fig. 145 by the 
simplified model of a symmetrical top, and we 

shall use equation (7) in our calculations. Here 
the moment of inertia K about the axis of the 

figure 00, which arises only from the two H-atoms, is small compared 
with the moment of inertia J about the equatorial axes, which is 
essentially determined by the 0- and the 0-atom 

K < J.(8) 

From (7) it follows that if we allow / to change we obtain a band structure 
of ordinary dimensions, of the same order of magnitude as, for example, 
in the ON bands, such that Av becomes inversely proportional to the 
great moment of inertia J. If we allow j0 to change we obtain a much 
wider structure, of the same order of magnitude as in the hydrogen 
many-lines spectrum, such that Av is inversely proportional to the small 
moment of inertia K. We thus expect a system of relatively widely 

separated band lines, corresponding to the quantum number j0 of the 
proper moment of momentum (Eigenimpuls) about the axis of the 
figure, which has superposed on itself a much narrower line system, 
corresponding to the quantum number ;’ of the total moment of momen¬ 
tum. Both sequences of lines consist not only of P- and R-branches 

(jo -> jo ± !> j j ± !)» but also of Q-branches (j0 -> j0, j -> j), and 
the latter indicate, by pp. 568 and 569, and Note 7 (g), that the model is 

non-rigid (excited moments of inertia J', K' instead of the original J, K). 
This whole line-structure now repeats itself more than ten times 

in the region between A — 3500 and A = 2500 A. (corresponding to the 
various oscillation states of the model), every P-, Q- and R-branch 
again being developed as a triplet (P, P', P", and so forth, particularly 
in the more separated sequences of lines ; the narrow ones cannot be 
resolved). Henri particularly emphasises a fundamental change in 

* Comprehensive account is contained in Zeits. f. Physik, 49, 774 (1928), by 
Henri and Svend Aage Schou. 

Fig. 145.—Scheme of 
the “ Y-molecule ” 
H2CO. Dimensions 
in Angstrom units : 
CO = 109, CH = 
1-3, HH - 1*38. 
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the appearance of the bands as the oscillation increases (increasing 
vibration number v) which expresses itself in a blurring of the band 
lines and is interpreted as “ pre-dissociation.” We have not space, 
however, to enter into this question any more than into the, deter¬ 
mination of the works of dissociation from band spectra by the 
method of J. Franck. 

Since after their introduction into the equations (1) to (4) N and j0 
are respectively components of M or j, it follows that 

Jo ^ 3- 
From this we conclude that in the case of a gyroscopic molecule with 
j0 > 0 not only will the zero line be missing in the hand numbered accord¬ 
ing to jy as in our Fig. 140, but that on both sides of the zero line other 
adjacent lines must, also he missing. Lenz * was the first to enunciate 
this conclusion. Heurlinger pointed it out in his dissertation in the 
ease of certain band spectra of rather complicated carriers, and Runge f 
showed that several band lines adjacent to the zero position wore 
missing in certain 02-bands. 

§ 7. Multiplet Structure of Band Spectra 

In the preceding sections of the present chapter we studied the 
influence of the rotation and the oscillation of the nuclei, but did not 
analyse the electron term in detail. It is to be expected that this 
will exhibit a finer subdivision that arises from the composition of the 
orbital and the spin moments of momentum. We shall now investi¬ 
gate this structure and shall restrict our attention to diatomic molecules. 

A. The System of Quantum Numbers and Term Notation 

We may imagine the molecule to be formed by allowing the two 
atomic nuclei to coincide in the first place ; we may then consider the 
field that acts on the radiating electron (Leuchtelektron) to be centrally 
symmetrical for diagrammatic purposes (cf. Cli. VIII, §2). If we 
now allow the nuclei to move apart until they have reached their 
position of equilibrium, the effective field clearly becomes axially 
symmetrical about the line connecting the nuclei. We may imagine 
this resultant field as arising from the original central field (in the case of 
united nuclei), and of a superposed axially symmetrical electrical field. 
The latter must usually be assumed to be very strong if we are to be 

able to represent the true conditions in the molecule.J 
The electric field acts on the orbital motions of the electrons, that 

is, on the moment of momentum l, which we may ascribe to the elec¬ 
trons in the central field (without the superposed axial field). The 

* hi the paper quoted in § 1. 
t Zeeman Jubilee Number, Physioa, 1, 254 (1921). 
J F. Hund has estimated the field at 107 to 108 volts/cm. (Zeits. f. Physik, S0, 

661 (1926)). 
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result is that the resultant L of all the vectors l orientates itself with 
respect to the field ; * the projection of L on the axis of the field, that 
is, on the straight line connecting the nuclei, remains constant as a 
first approximation ; we call it Ml. It has the values Ml = ------ L, 
- (L - I), . . . + L. All this is analogous to the behaviour of the 
atom in the magnetic field. The interaction between L and the total 
spin moment of momentum 8 is small compared with the interaction 
just considered (L, field). For (L, S) gives resolutions of the order of the 
distances between the multiplet lines in the atoms : the (L, field)- 
resolutions are in general much greater. (L, 8) comes into considera¬ 
tion only in the next approximation. Here 8 will orientate itself with 
respect to the magnetic field ; but on account of the very rapid pre¬ 
cession of L about the line connecting the nuclei, we find that for S 
only the component of L parallel to this line becomes appreciable, that 
is, 8 orientates itself with respect to the molecular axis, and in such a 
way that the projection Ms of 8 on this axis assumes the values - - 8, 
— (8 — 1), ... + 8. Let the total projection of L and 8 on the mole¬ 

cular axis be M, where M — Ml + Ms- 
The interaction (L, field) makes a contribution of the form F(Ml) 

to the total energy of the molecule, the interaction (L, 8), as in the 
strong magnetic field (cf. p. 545, eqn. (14)) makes a contribution AMlMs, 
or, in all, 

W = F(Ml) + AMlMs .... (1) 

The function F(Ml) is symmetrical in Ml, so that we have f 

F(Ml) - F(- Ml). 

Hence W remains unchanged if we reverse the signs of both Ml and Ms ; 
at the same time M becomes changed into — M. 

In place of the quantum number Ml, we here introduce the usual 
symbol A, and we are to have A = | Ml |. To a first approximation, 
if A is neglected, W is determined by A alone. The terms with A -- 0 

are called 27-terms, those with A — 1, 2 . . . are correspondingly 
called 77, A, . . . terms. To the next approximation, in which A is 
taken into account, Ms also becomes of importance. We write Mg™ ±27, 
wdiere 27 is to be positive if Ml and Ms have the same sign, otherwise 
negative. 

* Tho electric field is often stronger than the mutual action of the Ts among 
themselves, so that there is no sense in speaking of a resultant L of the Ts. The 
total projection of all the Z’s on the straight line connecting the nuclei, however, 
then always remains constant (— MjJ. 

f Proof : the field is axially symmetrical, so the planes through the axis of 
the field are planes of symmetry of the motion. If we describe a plane through 
the axis of the field and through the rotation vector L, the motion which corre¬ 
sponds to the position of the rotation vector L with the projection - f- MTj, becomes 
transformed when reflected at this plane into the motion which corresponds to 
the position of the rotation vector L with the projection ML. Thus the energy 
is of equal amount in both cases. Hence the term L resolves into only L + 1 
different energy-levels through the action of the field if we disregard the term 
AMlMs in (1). 



§ 7- Multiplet Structure of Band Spectra 589 

If, in particular, A ~~ 0 the interaction (L, 8) vanishes, and S has 
no means of taking up definite positions ; the quantum numbers £ and 
M then lose their meaning. 

As an illustration, we give in Table 65 the quantum numbers for 
the case L —- 1, 8 = |j. In the last column we have the term-symbol, 
with the upper index 28 + 1, which specifies the “ multiplicity,” and 

with the lower index A + £. It is clear that we here need different 
symbols only for terms which are different in energy. In the column 
before the last we have the number Q -- | A + £ |. 

There is an “ Exchange Law ” for molecules precisely as for atoms. 
An even number of electrons (integral 8) gives odd multiplicity ; an odd 
number of electrons (half-integral 8) is the condition for even multi¬ 
plicity. That is whv we have singlet and triplets in H2 but doublets 
in ON. 

M A 

-4- 1 i 
1 

— 1 - - ' - l 
+ 1 1 

, 

1 
- 1 4 - j) 

+ 1 4 4 j 
- 1 + 4 - * 

+ 1 -- 4 l 
- 1 T * 4 

0 0 

Symbol 

4'U 

The resolution of “ multi])let ” terms is obtained from (1) if we keep 
A fixed, and allow £ to vary. First we can put (1) without ambiguity 
of sign into the form 

W - F(A) f AAE .... (la) 

but since £ changes by ± 1 in passing from one level to another (cf. 
also Table 65), we find that in the molecule terms all resolutions between 
successive levels are equal and of the same order of magnitude as the 
atomic resolutions, because A arises in both cases from the magnetic 

interaction (L, S). 
The total energy of the molecule is composed now of the following 

components : * the greatest contribution is made by the energy of the 
electrons in their orbit (n, /). This is followed by the energy of the 
nuclear oscillation and then the fine resolution of the multiplet-terms 
just described. The contribution of the rotation requires closer 

attention. 

* We give only the normal grading of the orders of magnitude ; in many 
molecules the fine resolution is greater than the oscillation resolution. We do 
not enter into such details. 
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The* vector of its moment of momentum which stands perpen¬ 
dicularly on the molecular axis and which we shall now call O will 
supplement, itself by means of the moment of momentum Q about 
the molecular axis to form a resultant of the total moment of momentum 
which we shall suppose to be denoted by its quantum number J. 
J is constant in magnitude and direction and has the values Q ~f 1, 
S2 -f- 2, . . which are integral or half-integral according as S is integral 
or half-integral, that is, according as the number of electrons in the 
molecule is even or odd. From quantum-mechanical considerations 
we have for J : |J |2 — J(J -|- ]) (cf. p. 333). Following Hund * we call 
the case of the coupling of the vectors which has here been described 
and which occurs most commonly, the case a ; Hund was the first to 

Pto. 140.- Multiple! structure in 
band spectra. Combination 
of two 2/7-terms differing 
somewhat in their configura¬ 
tions. Each of the two 
2/7-terms is subdivided into 
oscillation levels (v -- 0, 1. 
2 . . .) and each oscillation 
level is double, corresponding 
to Q — k, \, in which the 
doublet nature of the terms 
manifests itself. In conse¬ 
quence of this, the oscilla¬ 
tion bands (below) are also 
doubled. The relation to the 
transitions drawn above them 
is indicated diagrammatically 
by similar positions in the 
frequency seale. T1 le division 
into rotation levels has boon 
omitted. Each of the levels 
shown should again be split 
up into many discrete levels 

(J S Q). 

investigate the various cases of coupling theoretically. The typical 
appearance of the band in this case is illustrated by the Fig. 146. 
It represents the combination of two 2/7-terms. For each of the two 
there is a series of oscillation levels (quantum number v), each of which 
further exhibits a fine resolution into two levels, corresponding to the 
character f of 2/7. Finally each of these two levels is to be imagined 
as again resolved into close levels that are to be numbered according 
to J.J This last structure has not been given in the Figure. At the 

* F. Hund, Zeits. f. Physik, 36, 657 (1926). 
f By setting up a table similar to Table 65 it is easy to verify that 277-terms 

always consist of the two levels 2J7h, 2TI^, that is, Q ----- jj and jr. 

I The J of the molecules corresponds to the J of the atoms only in so far as 
it represents,the total momentum. For the rest, the J of the atoms is represented 
by the Q of the molecules. 

02 01 00 TO 2 0 
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lower edge we see represented diagramrnatically the line spectrum 
that results from the combination of the two 2/7-terms. Here, too, 
the subdivision arising from J-transitions is not shown in the Figure. 

Jf S - 0 and A ----- 0 (!27-teTms) J reduces to the moment of 
momentum of the nuclear rotation, which we called j earlier (§ 1 and 
the subsequent sections). The total energy then consists only of the 
contribution of the electronic motion (n, l) of the oscillation and of 
the rotation. A multiplet structure does not occur because 1JP-terms 
are simple. This scheme of the molecule would correspond to the 
considerations of the preceding section. The case A -- 0, S > 0 
demands special consideration, which we shall, hoAvever, suppress 
here. 

Lastly, the J-levels may also resolve into two components. In 

equation (1) we showed that the energies -( Ml and — Ml coincide (for 
a lixed E) ; every state with A > 0, v, E, J (ef. Fig. 146) consequently 
has the statistical weight 2. The rotation of the nuclei causes these 
states to be resolved into two levels, which are in general very close 
together. They form a so-called A -doublet. Only the terms A -- 0 
do not resolve, corresponding to the circumstance that here the states 

have only the weight 1 : Ml can only ^ 0. 
Besides the case a other schemes of coupling arc conceivable, 

according to the order of magnitude of the interactions in the 
molecule ; of. the paper by Hund and the specialised literature quoted 
on page 555. 

B. Intensities of Band Lines 

The 'Selection rules for our molecular model may be read off from 
the kinematical character of the vector motions. For Ml, Ms we have, 
as in the ease of a strong magnetic; field, that AMl == 0, T_ 1, AMs -- 0, 
or, written in terms of A and E * : AA — 0, 1, AE — 0. The 
selection rules of the atomic spectra for L and also those for l in the 
case of a very strong intra-molecular field are then no longer valid, 
analogously to the Stark effect for atoms (cf. Oh. VI, § 1, p. 299, and 
Oh. VIT, § 2, p. 968), For the total moment of momentum J we 
have, of course, that AJ ~ 0, -J: 1. The transitions J -> J form, in 
analogy with their earlier behaviour, the Q-braneh, J -> J f~ 1 the 

P-branch, and J -> J — 1 the R-branch. Lastly, in the case of 
molecules there is an exact analogy with Laporte’s rule for atomic 
spectra : the terms may be divided into two classes in such a way 

that only terms of the one class may combine with terms of the 
other class. The A-doublet levels before-mentioned have the property 

* We may easily convince ourselves that these two formulations are equiv¬ 
alent. To make the selection rules more precise we must note that : (1) if 
A ~ 0 for one of the two combining states or for both, then Z loses its meaning ; 
rather we have A A ~ 0, dh 1. (2) AZ>0 occurs (as in atomic spectra AS>0) only 
for great (L, S)-resolutions, that is for heavy atoms in the molecule. 
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that one level always belongs to the one class and the other to the 
other class. Unit is why the combination of two A-doublets, J\ J", 
leads always and only to two band lines. 

As at the end of the preceding section the restriction J Jg: Q (there 
written as j ^ j0) causes the absence of certain band lines around the 
“zero line” (Nullinie). Let us consider, say, the combination, 

1/7 -> 1/7. Here A = 1, £ =? 0, Q — 1 in both terms. Thus in both 
terms J has the possible values 1,2, 3 . . . : J = 0 is missing. Conse¬ 
quently the first lines 0 -> 1 and 1 •-> 0, respectively, are missing in 
the P-branch and the R-branch. In the combination lFI the 
first line would be missing in both the Q- and the R-branch ; in the 
P-brancli the first two lines would be missing. 

For the intensities of the lines similar summation rules * hold 
as for the atoms. The sum of the intensities of all the lines that 
start out from a fixed initial level is proportional to the statistical 
weight of this level ; the same applies mutatis mutandis for a fixed 
final level. The intensities of the individual band lines may be repre¬ 
sented by formulae which were first derived from correspondence 
consideration by Honl and London.f We give them without proof. 

Let O', J' be the quantum numbers of the initial state, O", J" those 
of the final state. In the formula we must always insert the greater 

of the two quantum numbers »J', J" and O', O" for J, O. 

(])«'- o ", J' ~ J" '■ I ~ -^jqr-,7* 

(2) Q'= 0"±1,J' = J": I ~ (2J + U('T~_Q 4J_) 

J' — J" ± 1 : I ■— fJ ° ~ ]), 

J' - J" T 1 : I ~ ° +lj. 

(2) 

The intensity sums in each case show proportionality with 2J + 1, 

if J denotes the quantum number of the fixed level. Actually, the 

statistical weight of each J -level is given by the 2 J + 1 possible positions 
of the total moment of momentum J in the magnetic field, precisely 
as in the case of the atom. J In the notation of page 527 the first row 

* First applied to band spectra by R. H. Fowler, Phil. Mag., 49, 1272 (1925), 
and G. H, Dieke, Zeits. f. Physik, 33, 161 (1925). 

t H. Honl and F. London, Zeits. f. Physik, 33, 803 (1925). 
J Here we must note that in the case A > 0 every J-level (without a field) 

is resolved into two levels (cf. p. 591, /1-doublet), so that the statistical weight 
amounts to 2(2J +1). Every band line then forms a A -doublet of lines which 
are of equal intensity ; the intensity of each individual is to be calculated from 
the above formula*. 
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in (1) and the second row in (2) denote “ parallel transitions," the third 
in (2) “ anti-parallel " transitions, the others “ indifferent " transitions. 
This expresses itself in the magnitude of the intensities in question. 

In the intensity of the band lines an important part is also played 
by the Boltzmann factor (cf. Ch. VIII, § 9, p. 538). Hence we 
must also multiply the values given above by the factor 

to arrive at intensities that are comparable with those obtained by 
experiment. For E we must substitute the energy of the initial state 
in each case, that is, in the case of emission the higher of the two 
combining levels, in the case of absorption the lower. If we consider 
the lines of a rotation band, where we keep the electronic transition 
and the oscillation constant, E is given by the formula (6a) on page 558 : 

E — const. + BJ(J +1) . . (3) 

For example, for *27 127-bands (no moment of momentum about the 
molecular axis, so that we may write Q - 0) we obtain in emission 
from (2) and (3), * 

P-hraneh J - > ,J + 1, I ~ (J + [)e~ W + D/*^ 
R-branch J J - 1, I ~ Je~ mJ + D/tr J • W 

Lines which, if counted from the zero line, have the same number in 
the P-braneh and the R-branch (cf. Fig. 138, p. 563), have a J which 
is greater by unity in the R-branch than in the P-braneh. It then 
follows from (4) that lines that correspond to one another in this way 
have the same intensity in both branches, if the Boltzmann factor 
makes no essential difference. This has already been mentioned on 
page 563. If the Boltzmann factor does exert an appreciable influence 
the lines of the P-branch are stronger in emission than the correspond¬ 
ing lines of the same number in the R-branch. In absorption this 
relationship woidd become inverted. Tiiese assertions are confirmed 
by experiment. 

The question of the distribution of intensity for the transitions 
that arise from oscillation has been discussed by Condon.f 

If the two nuclei of the diatomic molecule are exactly similar and 
if the nuclear spin vanishes, alternate lines drop out in the bands, 
as Heisenberg J has shown from wave-mechanical considerations. 
The absence of these lines has been confirmed experimentally in the 
spectra of He2, (C12)2, (016)2, (S32)2 ; thus the atoms He, C12, 016, S32 
have no spin. If the nuclear spin is not equal to zero the lines exhibit 
a characteristic change of intensity, every alternate line being weaker 
than the normal line ; from the experimental intensity-ratio of 

* The Q-braneh vanishes on account of Q — 0. 
t E. U. Condon, Phys. Rev., 28, 1182 (1926). 
J W. Heisenberg, Zeits. f. Physik, 41, 239 (1927). 
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neighbouring associated lines we may again draw conclusions about 
the magnitude of the nuclear spin. We made a brief allusion to this 
method of determining the nuclear moment of momentum on page 
554. On the other hand, molecules that consist of two isotopes of the 
same element, such as Cl35 0137, or 016 0]8, do not exhibit, either experi¬ 
mentally or theoretically, anomalies in intensity. For further details 
about the spectra of molecules consisting of similar atoms we refer 
to the literature quoted on page 555. 

0. Zeeman Effect of Band Lines 

Zeeman * himself looked unsuccessfully for a magnetic influence 

on band lines ; likewise Becquerel and Deslandres.f It is only fairly 
recently that an effect could be shown to occur in the bands of 02, 
CH and so forth. The resolutions in the neighbourhood of a zero line 
of a band were nearly of the order of magnitude of the normal Zeeman 
resolutions and decreased with increasing distance of the band lines 
from the zero line. Many bands were altogether insensitive to 
magnetic influences, and exhibited a quadratic effect only at greater 
magnetic intensities ; very often only a diffuse widening was observable, 
and so forth. 

For the case of the coupling a the theoretical Zeeman effect may 

easily be given in a manner analogous to that for atoms. J 

D. Electronic Configuration of Molecules 

The problem of the allocation of molecular terms to certain elec¬ 
tronic configurations may be treated similarly to that used for atoms. 
We suppose the interaction between the electrons to be small so that 
the electrons in the atom may be characterised by the quantum numl>ers 
n, l. In the molecule the numbering according to n and A (= absolute 
value of the projection of l on the line connecting the nuclei, -- 0, 1, 
2, . . . /) will have a physical meaning in the case where the nuclei lie 
close together. We distinguish between a-, 7t-, 8- . . . electrons, accord¬ 
ing as A — 0, 1, 2, . . . . By p. 591 every state A ----- 0 has the weight 1 
and hence is not degenerate ; the states A > 0 are, however, singly 
degenerate and have the weight 2. The electron spin doubles each 
of the states for each electron. It follows from Pauli’s Exclusion 
Principle (that each state may only be associated with one electron) 
that for a fixed n, l there are 2 a-electrons, 4 ^-electrons, 4 
8-electrons, and so forth. The arrangement of the electrons is then 

*P. Zeeman, Astrophys. Journ., 5, 332 (1897) ; Phil. Mag., 43, 226 (1897). 
| H. Becquerel and H. Deslandres, Comptes Rendus, 136, 997, and 127, 18 

(1898). 
J According to J. H. van Vleck, Phys. Rev., 28, 980 (1926) ; D. M. Dennison, 

ibid., 28. 318 (1926). Experimentally investigated by E, C. Kemble, R. S. 
Mulliken and F. H. Crawford, ibid,, 30, 438 (1927). 
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characterised, say, by (1.9a2, 2.9a2, 2/xr2, 2/)tt4, 3.9a}. The symbols 

1.9, 2s, . . . refer to the n, /-values of the electrons. Shells with a2,7r4, 

84 and so forth art' complete ; taken alone, they give A - 0 and a vanish¬ 

ing electron spin S. Our arrangement { } belongs to a molecule having 

11 electrons, of which 10 have been domiciled in closed shells. 

In general we obtain the resultant terms most rapidly by adding 

quantum numbers vectorially exactly as in the case of the atom. 

The above example would give a 2J?-term ; the inner shells with 1.9, 

2.9, 2p contribute nothing to A and S ; the 3^-electron gives S = \ 

and X — A — 0. Using a method copied from Bohr’s theory of the 

periodic system of the atoms Hund * made qualitative statements 

about the term-scheme of molecules. 

* Cf. Ergobnisno dor oxakton Naturwiss., 8, *Jt my. Springer, 1929. 



ADDENDUM * 

A BRIEF reference may he made to gome recent advances 
which have been made in the interval between the appearance 
of the last German edition of the present book and the new 

English edition. 
A great deal of effort has been expended in recent years to deter¬ 

mine whether cosmic radiation is wholly undulatory or wholly cor¬ 
puscular in character or whether it is composed of a mixture of both 
types of rays. A historical summary of the earliest work on cosmic 
rays has been given by Wigand f who describes the early balloon flights 
arranged by Gockel, Hess and Kolhorster between December, 1909 
and 1913. It was Hess who first recognised that there was a hard 
type of radiation which was to be distinguished from the y-radiation 
emitted by radioactive material in the earth’s crust. Measurements 
at increasing heights from the ground showed that whereas the y- 
radiation from the earth decreased in intensity during ascent the 
“ cosmic ” radiation increased in intensity. In recent years many 
measurements have been made at great heights in manned balloons 
(Piccard and Kipfer) and unmanned sounding balloons (sent up by 
Regener to a maximum height of 17 miles) to determine whether 
these highly penetrating ultra-y-rays were produced in the strato¬ 
sphere or in outer space. At the present time the evidence seems 
rather in favour of a coshiic origin for these rays. Measurements of 
the decrease of intensity of cosmic rays at various depths in snow-fed 
lakes (Millikan ; also by Regener in Lake Constance) have also been 
carried out in order to isolate the hardest components of the radiation 
and to determine their absorption coefficient (by applying the Klein- 
Nishina formula). The results suggest that a part of cosmic radiation 
is electromagnetic in character.J Regener’s measurements indicate 
that the ionisation curve of cosmic rays approaches a maximum at 
the highest parts of the atmosphere hitherto explored. 

The investigations into the nature of the rays are complicated 
by the secondary and probably also tertiary rays which are produced 
by the passage of the rays through the atmosphere. It seems to be 
definitely established that a considerable portion (perhaps 80 per 
cent.) of the cosmic rays that are detected at the earth’s surface are 
corpuscular in character, although it is too early to state with certainty 
whether they are members of the primary stream of cosmic rays 
coining from outer space or whether they are secondary rays produced 
in the upper or lower air. The intensity of cosmic rays, whether 

* Added by the translator. 
t Phys. Zeits., 25, 445 (1924). See also Hofmann, Phys. Zeits., 38, 633-602 

(1932), which contains 307 references. 
J Regener, Nature, 132, 698 (1933). 
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undulatory or corpuscular, is measured by their ionising power. IJp 
to 1928 an ordinary ionisation chamber had alone been used to 
measure the intensity. A considerable improvement was effected 
when Geiger and Muller * invented their tubular counter for the 
express purpose of recording the arrival of individual corpuscles or 
photons. A third method, introduced by Skobelzyn, involved the 
use of the Wilson cloud chamber, in which the track of ions caused 
by the passage of a cosmic ray corpuscle, or, indirectly, by a cosmic 
ray photon, could be photographed. The appearance of the tracks 
enables conclusions to be drawn about the nature of the ionising 
agent. By applying magnetic fields up to 20,000 gauss to the ionising 
particles it is possible to determine their velocity and charge.f The 
interesting fact emerges from these experiments that some of the tracks 
are found to be due to electrons moving at a speed only a little 
less than that of light (corresponding to a volt-velocity of the order 
of 1010) whereas other tracks that are equally curved in the opposite 
direction to that of the electrons had necessarily to be ascribed to 
particles having a mass of the same order as that of the electron but 
carrying an opposite charge. In other words, the long-sought-after 
positive electron (or positron, as it is now called) first disclosed its 
existence in experiments performed with cosmic rays. It suggested 
itself to various workers $ that positive electrons might also be pro¬ 
duced by the interaction of radiations excited in beryllium (y-rays 
and neutrons, see p. 598) and matter. Observations of the ionising 
power of the resultant radiation in the gas in the expansion chamber 
and loss of energy in an interposed metal plate were found to justify 
the assumption that the mass and magnitude of the charge of the 
positive particle emitted are the same as for the negative electron. 
Later experiments confirmed that y-radiations from a thorium active 
deposit (the strongest component being a ray of hv — 2-62 x 106) 
can also produce positrons when they are made to impinge on a lead 
target. Curie and Joliot have shown that when positive and negative 
electrons are produced by the impact of y-rays from different sources 
on various metals (Al, Gu, Pb, U), the ratio of the yield of positrons 
to that of electrons increases with the energy of the y-quantum and 
with the atomic weight of the substance. In some cases an electron 
originates simultaneously with a positron, a fact which has led to the 
proposal that the two corpuscles were not originally present in the 
target but were created from the incident y-radiation (energy of 
radiation corresponding to £ million electron-volts would be necessary 
to create an electron and the same amount to create a positron). This 
theory, however, has yet to be confirmed).|| 

Further light has been shed on the nature of certain components of 
cosmic rays by the results of investigations into the possible variation 

* Pliys. Zeits., 29, 839 (1928). 
| Anderson, Phys. Rev., 41, 405 (1932); Blackett and Oechialini, Proo. 

Roy. Soc.,139, 099 (1933) ; Kunze, Zeits. f. Physik, 79, 203 (1932). 
I Chadwick, Blackett and Oechialini, Nature, 131, 473 (1933); Meitnor and 

Philip, Naturwiss., 21, 286 and 468 (1933); Curio and Joliot, Compton Rendus, 

196, 1105 (1933). 
Jj For further details see Bothe, Das Neutron und das Positron^ Naturwi,sa, 21, 

825-931 (1933). 
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of the intensity of cosmic rays with latitude.* In one group of 
experiments curves connecting the intensity with latitude at 69 
representative places on the earth’s surface were obtained. These 
not only show a rapid increase of intensity with altitude but also 
greater intensity at each altitude for higher latitudes than for those 
near the equator. The variation observed follows the geomagnetic 
latitude rather more closely than the geographic latitude. The varia¬ 
tion over a range of 40° on either side of the equator amounts to 12 
or 14 per cent, at sea-level. This “ latitude effect ” of cosmic rays 
indicates that a certain fraction of the primary cosmic rays consists 
of corpuscles which are deflected from equatorial regions by the ex¬ 
tensive if weak magnetic field of the earth. This is analogous to the 
deflection of the streams of charged particles from the sun which wen* 
assumed by Birheland in order to account for the occurrence of the 
Northern Lights. The theory of the motion of such streams of charged 
particles in a heterogeneous magnetic field has been worked out by 
Stormer.f 

Summaries of the present position regarding our knowledge of 
cosmic rays have been given by Blackett, Regener and Kolhorster.J 

In the realm of nuclear physics rapid and valuable progress is also 
to be recorded. In 1931 Bothe and Becker observed certain anomalies 
in y-radiation which was emitted by light elements after bombard¬ 
ment bv a-particles (cf. Rutherford’s first disintegration experiment, 
p. 166). These anomalies were confirmed by Curie and Joliot as well 
as by Chadwick. It was Chadwick, however, who first recognised 
that a new type of neutral particle appeared when, say, beryllium was 
bombarded by a-particles thus : ' 

Be49 + He24Cfl12 + V, 

where the upper indices denote approximate atomic weights and the 
lower indices the atomic numbers (or net nuclear charges). This 
new particle called the ‘‘ neutron ” and denoted by n in our nuclear 
equation is regarded by Chadwick as consisting of a proton and electron 
in very close association ; its mass is approximately 1 and its atomic 
number zero. Neutrons are characterised by their great penetrating 
power. Dee has shown that the primary ionisation along the track 
of a neutron is less than 1 pair of ions per 3 metres length of path. 
Massey has calculated that it may be as low as 1 pair of ions per 106 km. 
Whereas the proton dissipates its energy almost entirely in collisions 
with electrons, the neutron loses its kinetic energy in collisions with 
nuclei. The actual yield of neutrons in the case of beryllium is about 
30 neutrons for every million a-particles of polonium which fall on a 
thick layer of beryllium. 

It has been suggested by Curie and Joliot that the proton, hitherto 
considered an elementary particle, is composed of a neutron and a 
positron held in close union. Although this assumption has the 
advantage of explaining difficulties that occur in certain nuclear 

* See report by A. H. Compton, Phys. Rev., 43, .387-403 (1933). 
f Handbuch der Kosmwcher Physik, Vol. 1. 
j Blackett, Journ. Royal Meteorological Soc., July, 1933; Regener, Nature, 

696 (1933); Kolhorster, Phys. Zeits., 34, 809 (1933). 
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reactions the general view is that the neutron is the composite element 
of structure and that the proton is a real unit.* 

Another landmark in nuclear physics was reached in 1932 when 
Cockcroft and Walton f devised an apparatus capable of producing 
protons having energies of 700 kilovolts. With these protons they 
bombarded Li, B and F ; the process was accompanied in each instance 
by the ejection of an a-particle, for example, 

Li*7 + IV -* 2He/. 

The neutrons themselves have been used in their turn to effect 
nuclear changes. Feather { has shown that when nitrogen nuclei 
are bombarded by neutrons a-particles are ejected and nuclei of the 
boron isotope 11 arc formed : 

V + N7“->B6u-bHo#«. 

This transformation is reversible, since it has been found that when 
nuclei of the boron isotope of atomic number 11 are bombarded by 
a-particles neutrons are produced together with nuclei of nitrogen. 
Transformations of this type allow the mass defect of the neutron to 
be calculated ; its value comes out as about 0011, which corresponds 
to an energy of slightly more than a million electron-volts (about 
1-6 . 10 6 erg). This binding energy is consistent with Chadwick’s 
view that the neutron consists of the proton and electron as elementary 
constituents. 

The discovery of the neutron has given rise to new theories concern¬ 
ing the composition of the nucleus. The most fruitful appears to be 
that suggested by Heisenberg,|j according to which the nucleus is 
composed of protons and neutrons but no free electrons ; when two 
neutrons and two protons form a close bond we have the a-particle (some¬ 
times called helion), which is a particularly stable configuration. The 
addition of one or more neutrons to a nucleus gives rise to one or 
more isotopes, certain conditions of stability determining the number 
of possible isotopes in any given case. The mass-defect gives informa¬ 
tion about the degree of stability of the nucleus. In the case of 
a-particles the packing fraction ( — energy equivalent of the mass 
defect) amounts to 28 . 106 electron-volts, which is very considerable 
in comparison with the energy differences that ordinarily occur in 
nuclear processes. This tends to confirm the view that the a-particle 
is itself a sort of intermediate element of structure of nuclei. The 
stability of the a-particle exceeds that of the neutron, as may be seen 
by comparing their mass-defects. For further remarks on these 
questions the reader is referred to Beck (loc. cit.). 

The last important advance to be recorded is the discovery of 
the heavy hydrogen isotope. With oxygen (isotope 16) as the standard 
the atomic weight of hydrogen, as deduced from Aston’s results 

* An admirable account, of the properties of neutrons is given in Chadwick’s 
Bakerian lecture, Proc. Hoy. 8oc., 142, I (11)33). Bothe's account (loc. cit.) is 
slightly more recent. 

f Proc Hoy. Soe., 136, 619 (1932). 
I Jbid., 136, 709 (1932). A list of 22 nuclear reactions, including many due 

to neutron bombardment, is given by Beck in Marx, Uandbuch dcr Hadiologie, 

Vol. VI, Part 1, p. 386. 
|| Zeits. f. Phys., 37, 1 (1932), and 78, 156 (1932). 
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(obtained with a mass spoctrograph) comes out at 1*00778. Chemical 
determinations lead to a slightly higher value. This fact led Birge 
and Menzel to stiggest that the discrepancy was probably due to the 
existence of an isotope of hydrogen of mass 2 and nuclear charge 1. 
This conjecture was confirmed experimentally by Urey, Brickwedde, 
and Murphy.* They distilled six litres of liquid hydrogen in the 
neighbourhood of the triple point under a pressure of a few millimetres 
of mercury and obtained a small fraction (few cubic centimetres) 
which contained the heavy hydrogen isotope in the proportion of 1 : 500. 
The existence of this isotope was also confirmed by these authors 
in the first satellite which accompanied each of the spectral lines 
Ha, HjS, Hy, HS of the mixed hydrogen. These spectral results were 
accurately confirmed by Bleakney f and Bainbridge,^ who used the 
mass spectrograph. Methods of preparing “ heavy ” water, that is, 
water composed of the heavy hydrogen isotope combined with oxygen, 
are briefly described in Nature (Oct., 1933, p. 536), where numerous 
references are given. Since there are two isotopes of hydrogen and 
three isotopes of oxygen there are six possible types of pure water ; 
if we take nuclear spin into account, as expressed in the existence of 
para- and ortho-hydrogen molecules, this number becomes doubled. 
The name (teuton (or deuteron) has been given by some writers to the 
ionised heavy hydrogen isotope, that is, to the nucleus of heavy hydrogen, 
which, according to Heisenberg’s theory, consists of a neutron and a 
proton held in close union. Other terms (used chiefly in American 
publications) are : protiurn gas, namely hydrogen molecules consist¬ 
ing of nuclei composed of two protons ; protiurn-deuterium, gas, namely, 
hydrogen molecules consisting of one proton and one deuton ; and lastly, 
deuterium gas, each molecule of which has a nucleus composed of two 
deutons. Apart from the interest attaching to the general physical 
and chemical properties of the new heavy hydrogen gas and its com¬ 
pounds (for example, heavy water ”), important information about 
nuclei in general may be gained by using the deuton as a new sub¬ 
atomic projectile. Thus Rutherford and Oliphant || have used nuclei 
of the heavy hydrogen isotope to bombard lithium, obtaining a-par- 
ticles and neutrons as follows : 

Li*7 f Hx2 He24 + He24 + n0K 

In addition to investigating the constitution and stability of the 
various atomic nuclei, it is important to ascertain the various stationary 
states (a-ray energy-levels) of each nucleus. A study of the /3-rays 
ejected photo-electrically under the action of primary y-rays appears 
to promise the best results in this field, which is being actively explored 
by Ellis *1} and his collaborators. 

Not the least interesting feature of these fascinating researches 
is the way in which complementary and confirmatory results are ob¬ 
tained in the two extremes, the smallest regions of space (the interior 
of the atom) and the most distant parts of space where we suppose 
cosmic rays to be formed in regions of vast extent. 

* Phys. Rev., 39, 164, and 40, 1 (1932). f Ibid., 41, 32 (1932). 
t Ibid., 40, 130 and 42, 1 (1932). || Proe. Roy. Soc., A, 141, 722 (1933). 
II See, for example, 0, D, Ellis, “ B-rays and y-rays,” Reale Academia Italia, 

x (1932). 
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1. Scattering by Bound Electrons 

IF the electrons of the radiator are not assumed to be free but 
bound to the position of rest x = 0 by a restoring force - fx, we 
obtain instead of equation (5) on p. 30, if we take the .r-axis as 

the direction of motion, 

mx +fx rr, - eEp.(]) 

To integrate we must now resolve E„ and x s])ectrally. Let 

E„ - 

x — 

(continuous spectrum). 

Also, let ------ ca0 be the proper frequency of the elastic connection. 

We assume that it lies, say, in the ultra-violet Schumann region, 
then follows from (1) that 

£K2 - cu*) - - -E, x = - - -5Ee.^dto, 
b v 0 7 rn m) to02 — to1 

v — x — - f --J&eiwl duj 
mJ — co¬ 

lt 

(2) 

as given in equation (5), p. 30. 
To arrive at a scattering formula which is also comparable with 

the results of experiment in the visible region it is best to proceed as 
follows. We restrict ourselves to monochromatic light of frequency 
co — 27rc/A ; the following relation then holds quite independently of 
the value of the frequency : 

v — —- <o2x = — co2£eilot. . . (3) 

Let the incident plane wave of direction OP in Fig. 147 be assumed 
to be unpolarised. We consider a definite direction PQ, starting 
from P, of the scattered radiation (P is the scattering particle, Q 
the point of observation, the length of PQ = r) and divide the incident 
wave into two components PI and P2, the former being perpendicular 
to the plane OPQ, the other in this plane perpendicular to OP. The 
former PI forms the angle 0—7r/2 with r, the other P2 the angle 
0 — 7r/2 + </>, where <j> denotes the angle OPQ between the incident and 
the scattered ray. 
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If we substitute (3) in equation (2) on p. 24 and proceed to take 
the average value over the time, we obtain 

s _ _2!!L sin2 e(c{)2 
b “ 4nc3r2 2 { ‘ 

For the component PI we have 6 ir/2, sin 0 ~ 1 ; for the com¬ 
ponent P2 we have 6 — n/2 + sin 6 -- cos (f>. Hence we obtain as 
the sum for both components 

“ —_ L±i^!i(^)2 . . . (4) 
4t7cV 2 [ [ } S 

which represents the effect of a single scattering particle. 
Under the ordinary conditions of optics the electrons that belong 

to the same4- molecule vibrate coherently ; hence, 
it is not their radiant energy S but their ampli¬ 
tude £ that superposes itself. Hence we have in 
(4) instead of (ef)2 the term (Se£)2, if we pass 
on to the whole molecule and take 8 to stand 

kl for the summation over all electrons of the 
individual molecule. On the other hand, the 
electrons that belong to different molecules 
vibrate non-coherently, so that in summing 
over different molecules we must superpose on 
one another not the amplitudes but the energies. 
In this way we obtain for the radiation scat¬ 
tered by unit volume 

s, 2>f)= . . . (5) 

when we write w --- 2nc/X. 
The symbol 27 denotes the summation over all molecules of the 

unit volume ; 27N<?| is thus the electric; moment per unit volume, and 
by the definition of the index of refraction n in a sufficiently rarefied 
gas which is traversed by a light-wave of electrical amplitude E this 

n2_ 1 . 'Mri2, __ ]\ 
is equal to —--E. (In a dense gas or a liquid of density — - 

From 27Sef =~ ~n occurs in place of n2 — 1.) 
477 

~E it follows that 

Se{ =, iLjA E, AS lei)’ - 

where L denotes Loschmidt’s number for unit volume. 
Hence from (5), 

l)2 5 _ wC + COS2 <f> (n2 
S] - 2 4L 

By equation (2) on p. 24 the time-mean of the incident energy is, 
if we calculate the sum for the two directions of polarisation, 

477 
E2. 
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Hence 
Si __ 7T2 1 + cos2 <f> (n2 — l)2 

S0“AV 2 L * * [) 

Equation (b) is identical with Rayleigh’s formula for the intensity of 
the scattered light from the sky. The factor 1/A4 explains the pre¬ 
dominance of the short waves in the scattered light, that is, the blue 
colour of the sky, and the predominance of long wave-lengths in the 
transmitted light, that is, the red colour of the setting sun. The for¬ 
mula may serve to determine Losehmidt’s number. Observations 
on Peak Teneriff * gave 

L =- 2-89 . !019 

whereas Planck obtains from the theory of radiation 

L ^ 2*7(> . 1019. 

The above discussion, taken from optics, is appropriate for pointing 
out the limits within which the equations (4) to (10) on pp. 30 and 31 
are alone valid. For optical purposes we were able to superpose in 
the ease of the electrons of one molecule not its radiation (intensity) 
but rather its field (amplitude). The interest in the earlier calculation 
in the X-ray region consisted in the fact that it gave us the total number 
Z of the electrons of an atom ; this was possible because in that case 
the intensity of these Z electrons became superposed. In the optical 
case the wave-length is great compared with the inner molecular 
electrons and that is why these electrons vibrate coherently. In the 
X-ray region the wave-lengths must be small if we wish to calculate 
with the complete non-coherence of the waves, that is, with the super¬ 
position of the intensities. Hence our method of calculation applies 
only to sufficiently hard X-rays. 

For softer rays there is a conically limited region in the neighbour¬ 
hood of the primary ray, in which interferences, that is, superposition 
of the amplitudes, occur. Debye has investigated this theoretically 
and experimentally.f 

In contrast with this our calculations of pp. 30 and 31 should 
hold for sufficiently hard rays, particularly those dealing with the mass- 
absorption coefficient s/p, according to which the value 0*2 (eqn. (12) 
on p. 31) should hold for all elements. It is found, however, strangely 
enough that it is just in the case of very short wave-lengths, those of 
y-rays, that deviations from the classical value 0*2 occur. 

For Kohlrausch J found in the case of y-radiation from a Radium 
preparation that the total weakening coefficient (true absorption 
coefficient + scattering coefficient) has a value less than 0*2. But 
according to Richtmyer || there is no sign of a value less than that given 
by classical theory in the case of the hardest X-rays of A about 0*1 A. 
Hence the transition to smaller values occurs only at wave-lengths of 
the order of magnitude of the wave-length A 0*024 A (cf. p, 47) 

* Of. Dember, Ann. d, Phys., 49, 609 (1916). 
t Aim. d. Phys., 43, 49 (1914). 
t K. W. F. Kohlrausch, Wien, Bor., 126, 441, 683, 887 (1917). 
II Phys. Rev., 18, 13 (1921), 
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which is decisive in the Compton effect, and this is a manifestation 
of the double nature of light (light quantum and light wave) which 
expresses itself in the Compton effect. Hence the question may be 
treated quantitatively only by means of the methods of wave-mechanics* 
(with Dirac’s elaboration of it). 

2. Proof of the Invariance of Hamilton’s Equations for Arbitrary 
Transformations of Co-ordinates. Contact Transformations 

From Newton's foundations of mechanics we inferred on pp. 77 and 
78 the validity of Hamilton's equations : 

Mi m 
it " iPk it ■ 7>qk’ Jk ■ iqk ’ • • ' ' 

where wre used rectangular co-ordinates qk a\ ?/, z for an individual 
point-mass and assumed that the potential energy depended only on 
the qk's. But, as already remarked on p. 78, wffiat holds for one 
point-mass also holds for a system of point-masses between which con¬ 
servative forces act. The equations (1) hold for each of them if we 
take qk to stand consecutively for the rectangular co-ordinates of each 
individual point of the system. We now show that the form of the 
equations (1) remain preserved also if we introduce by means of any 
arbitrary “ point-transformation ’' (one that does not, however, con¬ 
tain the time) the new position coordinates 

Qa- ~~ fk (Qv #2 * • *) • • • ft) 

instead of the rectangular co-ordinates. 
To show this we consider the qf s to be calculated from (2) as func¬ 

tions of the Qfc?s. The qfs derived in this way by differentiating with 

respect to t become linear functions of the ($,,/s with coefficients that 
depend on the Qfc's. The kinetic energy expressed in the rectangular 
co-ordinates of velocity qk is a homogeneous quadratic function of 
the qk's. We called it E;.in in (l). If we now insert the values of 
the qk'n expressed in terms of the,QA.'s and Q^'s, we obtain a homogene¬ 
ous quadratic function of the Q^'s with coefficients that depend on 

the Qfc's. We call this Ekin (Qk, Qk) and have by definition 

Efctti (QQk) ~ (4k)‘ • * * ft) 

From the homogeneity of the expressions it follows that 

_ pi 
kin — 2^“^ HU* &kin ~ 

k ^k k k 

Precisely as in the equations (I) pl: was defined by differentiating Ekin, 
so we now define Pfc by the convention (cf. also Chap. II, § 6, p. 99, 
eqn. (9)): 

PA, = .(4) 

aQfr 

* O. Klein and Y. Nishina, Zeits. f, Physik, $2, 853 (1928); Nature, 122, 398 
(1928). 
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Wo then have 

E/,/w - •!>HLVlUla Ekin ~~ alEP/cQ/c • • (^) 
k k 

and conclude from (3) 

^P/cQa %ViAk' .... (0) 

This equation may serve to define the PA's instead of (4). For by 
differentiating (2) with respect to t calculating qk as a linear function 

of the Qfc s, substituting in (6) and comparing the coefficients of 
on both sides we obtain the P*.’s as linear functions of the pk'is 

with coefficients that depend on the Q/f’s. 
If we reverse the last relationships and substitute the expressions 

for the j)k and the values of the qk's obtained from (2) in the Hamil¬ 
tonian function H (p, <y), we obtain the expression for Hamilton’s 

function in the co-ordinates P, Q ; we call it H (P, Q) and have by 
definition 

H(P,. Q*) H (pk, q,,).(7) 

Our assertion now implies that for the quantities P/n Q/? H(P, Q) so 
defined the Hamiltonian equations again hold : 

dQk dH jP k  /ov 

dt av dt ~ ~ OQ/c * * * 1 j 

To make the proof capable of being generalised as far as possible 
we apply the method of the calculus of variations. Although we have 
nothing new to say about this calculus we shall epitomise the essential 
features here for the convenience of the reader. We first imagine the 
differential equations (1) of point mechanics to be compressed into the 
form of d'Alembert's principle : 

IEp*-8?*-I = [ SLdr, . . . . (9) 
jo Jo 

cf. Chap. IT, § G, p. 98, eqn. (4). But, as proved on pp. 98, 99. this 
equation holds for arbitrary co-ordinates and momenta and may there¬ 
fore be written in the form 

yP.SQ, * = (‘sLdr, where L L(Q*, Q,) = L(qk, qk). (10) 
Jo Jo 

As shown in p. 98 we obtain Hamilton’s Principle from this equa¬ 
tion. This principle is commonly used to derive the general Lagrange 

equations, where L is then regarded as a function of the Q’s and Q’s- 
We shall use it here to arrive at the Hamiltonian equations for general 
co-ordinates Qlk and momenta P*. From the definition of L and H 

L ~ * Lpflf, H ™ -f- i^pot 

it follows, in view of (5), that 

E(Qj Q) ~ £PkQk ~~ Q)* . (ll) 
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We may therefore also write Hamilton’s Principle in the form 

sfW.Q. . . (12) 
J 0 

and may further choose the Q/.s, l^/s as those quantities with respect 
to which we perform variation. From (12) we obtain 

M - «*)8''^ + 2l'r|8<i‘fc - ZJW - <>• 
k k k 

If we integrate the last integral by parts, taking into account that 
at the limits we must have SQk 0, we transform the last equation 
into 

- ||3) 
k k 

We must now bear in mind that the SP‘s and the SQ's are not inde¬ 
pendent but art? connected by the equation 

P* = 
^kin „ (13a) 

It is therefore not permissible to set the coefficients of 8P* and 
8Qk in (13) individually equal to zero. But we may show that the 
factor of SP* in (13) vanishes on account of (13a). For if we vary (11) 
with respect to one of the quantities P* while keeping Q;. and the 
remaining I\ fixed, we obtain 

+1* 
d^‘8P 
!>p* 1 

8H 
SP,. (14) 

On account of (13a) the left-hand side cancels out with the middle 
term of the right-hand side. Hence we deduce from (14) 

Q* = 
5H 

8Pt 
(14a) 

If we now return to (13) we obtain, since the SQA.'s are independent 
of each other, 

P, 
dH 

dQ k 

(146) 

The invariance of Hamilton’s equations with respect to arbitrary point 
transformations is thus a direct consequence of their derivation from, the 
(modified) Hamiltonian Principle. 

If we glance back over the above proof we see that we assumed 
far more than was necessary for deriving the desired result, namely, 
equation (8). In (6) and (7) we assumed that 

ZPkQk = EPkqk and H = H. 
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But to he able to write down Hamilton’s Principle in the form (12) 
it is only necessary to postulate instead of this that 

H . . (15) 

Here F denotes an arbitrary function, for example, of the arguments p, 
Q and t; F is its complete differential coefficient with respect to l. 
Actually the additional term that occurs on (12) on account of F drops 
out when we integrate with respect to r since it reduces to the values 
of SF at the limits which for their part vanish, just like hq, SQ, ht. 
In our special point-transformation (2) we clearly had F =- 0. But 
much more general transformations of the following form are compatible 
with the equation (15) : 

Q/: =" fMi, P„ t); JP* = uMi, Pi, t), r = V{qu Q„ t). (16) 

This method of writing F expresses that, as already remarked, we 
may conveniently regard q, Q and t as variables of F (if, instead, we 
had chose q, p, t as our arguments as in the first equation (16), we 
should have been able to calculate p{ from the first equation (16) and 
to substitute it in F). The choice of q, Q, t as independent variables 
makes it easier to specify the conditions which are imposed on the 
transformations (16) through the presence of (15). This choice is, 
however, possible only if there is no analytical relationship between 
the q'n, Q’s and 1 ; it becomes impossible if, as at the beginning of 
this section, equations of the form (2) hold. 

We arrange equation (15) according to the differentials of the in¬ 
dependent variables, call dt the differential of t and indicate by means 
of 8 those differentiations with respect to q and Q in which l is not 
subjected to variation. Accordingly we set 

Vdt == ~dt + SF, 
ct 

and write (15) 

(if - H - ~)dt + IPkSqk - 2 P,SQ„ - SF - 0. . (17) 

To specify our transformation (16) we now demand that this condition 
shall be fulfilled for all virtual changes 8q, 8Q, dt. On account of 
the independence of the variables t, q, Q (17) may be separated into 
two groups of postulates, which the transformations (16) must satisfy : 

H = H + . . . . (17a) 

J.pMn = Zr*8Q* + SF. . . . (176) 

Equation (176) shows directly, if we vary only one of the quantities 
qk.y QA:, that 

(17c) 

hold. In the particular case where the additional function F is chosen 
as independent of t the equation (17a) reduces to the earlier equation 
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(7). Equation (176) is, however, more general also in this ease than 
equation (b) since here the term 8F is also present. 

The equations (lh) evidently do not represent a “ point transforma¬ 
tion,” since as they no longer, like (2), connect the point- and position - 
co-ordinates, q, Q with each other hut with the momentum co-ordinates 
p, P. Since, moreover, in such a general transformation the mechanical 
significance of the momentum co-ordinates becomes blurred it is better 
to call the pairs of variables q, p, on the one hand, and Q, P, on the other, 
canonical variables. P is canonically conjugate to Q, likewise p to q. 
The general transformation of canonical variables, which is thus re¬ 
stricted only by the existence of the condition (17), is called a canonical 
transformation. We shall discuss at the conclusion of this section to 
what extent the term contact transformation may be used synonymously 
with this term. In the most general case, namely when the function 
F depends on /, the canonical transformation connects together not 
only the quantities q, p with Q, P but rather the quantities q, p, H 
with Q, P, H. 

In certain circumstances it is convenient to use as our basis instead 
of q, Q, t the quantities q, P, t as independent variables, for example, 
in the case above excluded, where there is an analytical relationship 
between the gs, Q s and t. It is easy to rewrite equation (15) in such 
a form that it becomes adapted to this point of view. It is only neces¬ 
sary to add on the right-hand side 27QfcPk with a positive and a 
negative sign, and to consider instead of F the “ modified ” function 

F* = F + 27P*Qa.(18) 

Equation (15) then assumes the form 

H - Epkqk — H + 2TQ*P„ - t*. . . (19) 

From it we obtain as analgous expressions to the equations (17a, 6), 
if we now treat t, q and P as independent variables : 

H H|- .... (L9«) 

EPk8qk ( 27Qt8Pt = 8F*. . . . (196) 

From this point of view we obtain the quantities p, Q that are “ can¬ 
onically conjugate ” to the independent variables q, P by means of the 
formulae 

Pk 
'd¥* 

*Qk' 
Q k — 

3F* 

2)P/c 
(19c) 

that are analogous to (17c). 
The expression “ modified function ” F* is intended to serve as 

a reminder of the process that is commonly used in dynamics and ther¬ 
modynamics in changing the independent variable, a process which is 
in its abstract form due to Legendre and is called a Legendre trans¬ 
formation. 

It now only remains to give a reason for the term “ contact trans¬ 
form ation.” 

Let us consider a “ surface ” s = s (qv g2, . . . qf) in (/+!)- 
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dimensional space by interpreting qv . . . qf as rectangular point- 
co-ordinates in a “ plane ” and s perpendicular to it. The quantities 

' 'ds 

p*= 5ft 
then determine the position of the tangential plane at the surface s 
and may therefore be called “ plane-co-ordinates.” The following 
“ condition of unified position ” (Bedinguny der vereinigten Lage) 
holds between the point- and plane-eo-ordinates : 

/ 

d* = ^?pkdqk.(20) 
1 

Let 11s introduce new co-ordinates Q*., P/f by means of the equations 
(10), but to make possible a simple geometrical interpretation let us 
suppose that the functions / and g are independent of t. Expressing 
the qk's in terms of Q7 and Pf by means of equations (16) we form 
s(q) — S(P, Q) and demand that the new configuration 8 should also 
represent a surface, that is, that it should be touched by the planes given 
by P at the points determined by Q. As a consequence of (20) we must 
then have 

dS^ZP^Q*, .... (20 a) 

that is, if p denotes an arbitrary function of the q, p, .<?\s or Q, P, S’s, 

dS 2PkdQk — p(ds — Zpkdqk). . . (21) 

This is the condition which must be fulfilled if we are to be able to call 
our transformation (16) a contact transformation in the geometrical sense. 

Although the condition (21) looks different from (17)—in (17) the 
factor p is absent, and, on the other hand, the term in dt which is 
absent in (21), is present in (17)—both conditions are mathematically 
equivalent. The differences may be eliminated formally. We may 
regard the most general canonical transformation of a problem of 
/ degrees of freedom as a contact transformation in space of / + 1 
dimensions. In the same way we may regard the most general con¬ 
tact transformation in space of / dimensions as a canonical transforma¬ 
tion of a problem of / -f- 1 degrees of freedom. 

3. Concerning the Ratio of the Kinetic to the Potential Energy in the 
Coulomb Field 

At the close of his first paper in Phil. Mag.,* Bohr makes the follow¬ 
ing statement: 

“ In every system of nuclei at rest and electrons that move in circles 
with velocities which are small compared with c the kinetic energy is, 
except in the sign, equal to half the potential energy.” 

We shall show that this theorem applies much more widely : it 
holds not only for circular orbits but also for arbitrary forms of motion, 
in which (for varying kinetic and potential energy) the time-mean values 
of both energies have to take the places of the energy values themselves 

* Vol. 26, p. 24 (1913). 

vol. i.—39 
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in the enunciation of the theorem. It also remains valid except for 
a small change if we allow any arbitrary central force to act in place 
of Coulomb's law of force.* It is not necessary nor even convenient 
in the sequel to assume the nuclei at rest. 

We take as our basis rectilinear co-ordinates x, y, z which we dis¬ 
tinguish by affixing numbers for the electrons and nuclei and denote 
by qr . . . qf. Let p1 . . . pf be the corresponding momenta. Then 
the kinetic energy of our system of nuclei and electrons can, by equation 
(5) of the preceding note, be put into the form 

* 1.(i) 
k 

Let the potential energy be a homogeneous function of degree n -f 1, 
of the co-ordinates qk. This is the case, for example, if central forces 
proportional to rn act between the point-masses of the system, that is, 
between the ith and jth point-mass (no matter whether it be nucleus 
or electron), a force acts in the line connecting both, its amount being 

0^rij (n is the same throughout but 0 may under certain circumstances 
change from point-pair to point-pair). Then we get (ef. eqn. (3) on 
p. 77) 

E» - „ i 
■ (2) 

We next form 

jt'Zprfi. - 'Zviii- -1- YJ>kq*• • • (3) 

and take the mean value in time, which we denote by a horizontal bar. 
If the motion is periodic or at all stable in the sense that the position 
of the point-masses does not systematically deviate from its initial 
configuration to an extent that increases indefinitely with the time, the 
time-mean on the left-hand side of (3) becomes equal to zero. Thus 

'SjpAk = - • • (4) 

must hold. By (1) and (2) this means that 

pT- _» + Ip— 
■**kin 9 ™upot' • (5) 

If we finally set n = — 2 (Coulomb force), then Bohr’s 
valid in its extended form, namely, 

assertion is 

^kin ~ Y^vol' • (6) 

Our theorem does not hold in relativistic mechanics, because here 
equation (1) falls out of action. 

* In what follows we continue from Burgers, Diss. Haarlem, 1918, p. 168, 
whose simple proof we extend to the case in which any central force, not merely 
Coulomb’s, acts. This extension already occurs in Jacobi, Vorlesungen fiber 
Dynamik, p. 22. 
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4. Integration with the Help of Complex Variables 

11 is well known that tin? method of complex variables has the 
advantage of enabling us to evaluate integrals over a closed path of 
integration without the use of special devices. As stated on p. 100 it 
is intimately connected with the problems of the quantum theory. 

(a) The integral 

'« fVA+27 + r> • ’ ■ W 

constitutes tin1 natural basis for the treatment of the radial quantum 
condition (see also pp. 11 I and 250). The constants A, B and C have 
a somewhat different meaning in the relativistic and non-relativistic 
eases. In the diagram of Fig. 148 we take them so that the branch 
points of the integrand- we call rvliv and rma, the perihelion and the 
aphelion distance on p. Ill -have real positive values. The path of 
integration originally ran from rMi„ to r7Uar and back again to rnun, 
of. p. Ill, and, as shown in Fig. 148, it is drawn out into a (dosed curve 
in the complex r-plane. This is possible because there are certainly 
no singularities in the immediate neighbourhood of the initially real 
path of integration. The r-plane is to be imagined slit between rmht 
and rWIIJ. and represents the 
upper sheet of a two-sheeted 
Kiemann surface. On ac¬ 
count of the positive* char¬ 
acter of the phase-integrals 
Ihe sign of the square root is 
to be taken as positive if dr 
is positive (lower edge of the 
slit), and negative, if dr is 
negative (upper edge of the slit). Hence it follows immediately that 
the square root outside the slit on the real axis of the r-plane is 
imaginary, being positive and imaginary for r > rmaj, and negative and 
imaginary for O < r < rmia, as is likewise indicated in the figure. We 
see this if wc start from the positive or negative side of the branching 
slit and make half a revolution around the branch-points r -- rmax or 
r = rmin. 

We continue the process of extending the path of integration and 
contract it around the poles * of the integrand. These are the points 

r = 0 and r — oo. 

At the point r — 0, J behaves like 

V('\dr{1 + er + • • •)• 

The integration is to be taken, as the figure shows, in the clockwise 
direction and the first member of the series therefore gives the value 

* To investigate the behaviour of a function at infinity we must, as we know* 
project the point at infinity into finite regions. This is done by moans of the 
transformation .v — 1/r, in the notation used in the text. 
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- 2ni ; the subsequent terms, however, vanish in the process of in¬ 
tegration. Hence the contribution of the point r ~ 0 is, all in all, 

- 2tTiVC. . . . . (2) 

The point at infinity is indicated in the figure in the finite region. 
We set 

and obtain from (1) 

dr ~~ 
ds 
tS* “ ' 

j VA + 2B.S + 

- - VlJ(l + + • • -)J. 

The residue of this integral for the point s —- 0 is determined solely 
by the term in 1 ; this term has the coefficient 

_B 

VA' 

Hence the contribution of the point at infinity becomes (cf. the 
sense of traverse in the figure) 

+ ‘ • (2a) 

From the sum of (2) and (2a) we obtain as the value of J 

.1 - - a»(ve - -Js). . . . (3) 
We add a supplementary remark about the sign of v C. In (2) VC 
was defined as the residue of the expression 

/ 
A/ a + 2« + (; r r~ 

for r “ 0. This expression is, as has already been indicated in the 
figure, imaginary and negative in the neighbourhood of the zero- 
point when r is real and positive. For this reason VC must also be 
reckoned as imaginary and negative in (3). We infer correspondingly 
that a/A is imaginary but positive. 

(b) We add a correction term Dr under the root sign of the integral 
J. We call the resulting integral 

K = <j>^/.A + ^ ^ + Dr dr. . . . (4) 

The position of the branch-point is not essentially altered by the 
correction term. Hence we may take over Fig. 148 with its deter¬ 
minations of the sign and path of integration. 

To be able to perform the integration we shall expand the root in 
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power series after the correction term. For this purpose it is necessary 
to deform the path of integration in given cases in such a way that 
the expansion is possible along its whole course. If I) is sufficiently 
small this is always possible. Any new branch-points that ma}^ be¬ 
come added owing to the correction term must be circumvented by 
the deformed path of integration. If we now perform the integration 
term by term we may proceed with the path of integration for every 
term as in Fig. 148, since in the individual term only the branch section 
rmin > and the poles r -- 0 and r ----- 00 occur. 

The first term that results is the earlier integral J. We call the 
integral of the second term Kj 

K-J+j^ .... (5) 

by setting 

* 
rdr 

/, T 2B 
VA + T 

r'~dr 

VC + 2 Hr + Ar2 («) 

Here we are concerned only with the point r 00 as now the inte¬ 
grand is regular at the point r 0. We introduce the new variable 
of integration >s - ] >r and have 

By expanding in a power series as far as ,s2 we obtain 

and by contracting the path of integration about s — ()} 

2* 

Va\ 

Accordingly we obtain from (5), in view of (3), 

zm/ 3B2 C\ 
1 "= \/A\2A* 2A )■ 

K 2irtjVO - 
B 

VX 4Ai\ A /• 

(7) 

(») 

We shall apply this in the theory of the Stark effect. 
(c) We shall also require (in the quadratic Stark effect) the second 

term in the expansion of the integral (4) in powers of 1). This second 
term is 

As in (6) the zero-point makes no contribution. Hence we trans¬ 
form to infinity and obtain 

l [dJ( 
AU*4' 

t + V 1 (10) 
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Expanding by means of the multinomial theorem we easily obtain 
as the factor of s3 in the numerator (the second and third power of 
the multinomial expansion also contribute) : 

15 BO 35 B3 5B/ B2\ 

2 A2 “ 2 A3 2 A2V ° ' 7 A ) * 

By forming the residue at the point s - 0 (factor — 2iri) we therefore 
obtain for L 

T - .5 B /' < B-. 
• (II) 

and as the contribution of the term (9), which is quadratic in D, to 
the integral (4), 

.5 BD2/o,< r,B2 
2ttIT7; —3(4 — 7-r- 

10 A- \ A 
. (12) 

The formula (S) when corroded by the amount of this term therefore 
runs : 

K 

unlike that of hydrogen) the integral 

2tt/ fvr 1 

>
 

1) / 3 B2 

4ACV A -«■)- 

5 

](> 

T)2B / 

A^ ' 

„B2 

'A --w) 
/ 
lj. C3) 

We IK'Xt consider (for the* purpose of the tho< >ry of spectra 

(14) 

We again expand according to the correction term, if we retain 
only the first power of 1)JL, the expansion runs : 

/, , 2B , 0 , I)j f~ / 2B , 0 , , 2B . (ly* 1)1 
VA + v + ? + r> VA + T + f* + (A + T rV ■ 2r*‘ 

(] With the integration anticipated in (]4) it gives 

2B . V\~i dr 
^3 ■h --= j + ~n2, .t2 A -j--|—0 

7*“ 
• (15) 

J2 behaves regularly at the point r = oo. For if we set s 1 /r as above, 
we obtain 

f- sds 

Ja ‘ J v’A - j 2Bs +'6s2' 

At the point r — 0 we then have 

J.=J*(C + 2Br + Ar*)-^^5JJ(l 
B 

0 

2ttt 
B 

(Vo* 

(!&») 
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Hence in virtue of (3)"we obtain from (15) 

Ji = 
B BD, \ 

VA 2CVfj/' 

6i5 

(16) 

(p) Tn .1, we add a second correction term having t lie small factor 
D2, which is to be of the same order of magnitude as I)j“, and consider 

■h^§slA + 2f + ^ + . . (17) 

Fig. 148 again applies in respect of path of integration and sign. 
We now expand, cancelling all powers that are higher than 1)1, 

Dj2 and I)2 : 

v A + 2?f<i 
T V1 

+M+S)"@ + 
and obtain 

ja j i- '.;m. 2 
P?,l _ V ! ,1 
•2 01 St ',5’ 

-v+’-vr 

^4 

J6 

IV 
76 ’ 

(18) 

(19) 

(20) 

Jn calculating J4 and *J5 we need again consider only the point r ~ 0 
since the point r — oo again behaves regularly here. Thence we find 

and, further, 

J4 = 
TT'i /A __ B2X 

VCvc' Jcd’ 

377i /A 

5 cVcVc 

With the values of J and J2 from (3) and (15a) this causes (18) to 
become 

j3 - 2m [ * '■ VC 
B 

VA 
1 B/f 3 D2B 15 Dt2B\ 

2 CVCV 1 2 0 + '8 C2 7 

1 A 

^ cVc 
3 Dp 
4 ~C 

(21) 

5. Further Remarks on Hamiltonian Mechanics, Angle Co-ordinates, 
Theory of Perturbations, Forces without a Potential 

(a) Angle Co-ordinates.—To elaborate the conception of degeneracy 
used on p. 115 we shall follow Schwarzschild and introduce the angle 

co-ordinates that are ordinarily used in astronomy. 
To arrive at a general definition of angle co-ordinates we must ask 
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whether it is not possible to describe the motion of a multiple periodic 
system by means of “ cyclic co-ordinates ” alone. A cyclic co-ordinate 
is one which does not occur in the energy-expression and whose corre¬ 
sponding momentum co-ordinate is therefore constant during the motion. 
Hence “ cyclic co-ordinates are also “ force-free co-ordinates ” and 
this is the characteristic which makes them peculiarly appropriate for 
describing the course of the motion. The simplest example of such a 
co-ordinate is given by the angle of rotation (f> about an axis, with 
respect to which the moment of the force is zero. This example gave 
rise to the name “ angle co-ordinate ” although it is not really the 
angle (which increases irregularly with the time) but the surface de¬ 
scribed by the radius vector (which increases regularly in accordance 
with the law of sectorial areas) that plays the part of the angular 
co-ordinates in problems with axial symmetry. Actually, the 
angular co-ordinates are defined analytically by the linear increase in 
time. The constant factor which is disposable in the process is chosen 
in such a way that the angular co-ordinate is dimensionless and becomes 
of the period 1, that is, the position co-ordinates qk are all to return to 
their initial values when the angle co-ordinates are changed by 1 or by 
any whole number. 

We next show that we arrive at the desired angle co-ordinates in 
conformity with this requirement if we introduce our phase-integrals 
J k as momentum co-ordinates * and look for the position co-ordinates that 
are canonically conjugate to them. To prove this we must take as our 
basis the scheme of the canonical transformations. 

In a multiple periodic system the Jfc’s are pure functions of the 
constants <xk and W, cf. p. 106 (they are independent of the other 
constants that enter into the equation of the orbit and that we have 
denoted by fik) ; thus we may express the as in terms of the J’s and 
substitute them in equation (21), p. 102. This equation then runs 

and gives 

S = . . . q„ Jx . . . J,) (1) 

(2) 

If we substitute pk for ~~ by means of equation (18), p. 101, and 

introduce in place of the symbol 
e J k 

wk 
j)S 

(3) 

which we regard for the present merely as an abbreviation, then (2) 
becomes 

SS = £pkSqk + Zwk SJ*. . . . (4) 

* We call the J*’s “action variables” (Sehwarzschild) analogously to the 
“angle variables.” 
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From (4) we see that the criterion of a canonical transformation, 
here in the form (196) of p. 608 for the transition p, q J, w is satisfied 
if we define w by means of (3). The new variables are denoted by 
P, Q in the earlier reference ; one function of action S is there repre¬ 
sented by the function F*, and we deal with the special case where F* 
is independent of t, that is, the equation (19a) on p. 608 assumes the 

form H H. Moreover, our present equation (3) now reveals itself 
as identical with the earlier equation (19c). According to Note 2 
Hamilton's equations hold for the new variables u\ J. Now, Hamilton’s 
function H = W (as also the remaining constants of integration aA) is 
a pure function of the J’s, that is, is independent of the w's and is 
constant during the motion. Hence we have 

dJk _ dH __ dwk 

dt ~ 'bWj. 3 dt 
const. 

eo k (•r>) 

The first equation states nothing new ; it only confirms the constancy 
of the J&’h, which is identical with the fact that they can be calculated 
from the aA.’s. But the second equation states that the wh's do in fact 
increase uniformly with the time, as we demanded in defining the angle 
co-ordinates. If we demote the constant on the right-hand side by 
vki we get 

# . a aw wk ----- v,t ( bk, v,. - - . . . . (b) 
Oil A 

The symbol vk is to indicate that vk plays the part of a constant 
vibration number for the cyclic co-ordinate wk, which corresponds with 
the circumstance that wk was to be dimensionless. 

We now show that every angle co-ordinate wk increases by unity 
every time that the co-ordinate qk moves once to and fro between its libration 
limits (cf. p. 105). 

If we make the co-ordinate qk make a complete revolution within 
its domain of values while the other qfs are kept fixed the action 
function 8 changes by the amount of its periodicity modulus JA. (cf. 
eqn. 22, p. 102). Hence we have that if we denote by 1 and 2 the initial 
and the final point of the closed revolution, that is, two points given by 
equal values for all the q's, 

8. - 8, - J,..(7) 

If, as in equation (1), we imagine 8 to be a function of the q s and 
J’s, we may differentiate (7) partially with respect to J,,, keeping the 
remaining J/s and all q's constant and obtain in consequence (cf. (3)), 

u>k2 — wki - 1. m',2 — M’,1 = 0, i * k. . . (8) 

Hence if the co-ordinate qk returns to its initial value after a complete 
revolution, the values of the other q/s remaining unchanged, the corre¬ 
sponding angle co-ordinate wk increases by 1 while the values of the 
other angle co-ordinates remain preserved. And conversely : if one 
of the angle co-ordinates increases by 1 while all the other angle co¬ 
ordinates remain unchanged the co-ordinates q return to their initial 
values. The qs are periodic functions of the angle co-ordinates of period 
1,08 was demanded above. 
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Besides the q s also the “ modified action function ” 8* lias the 
same property of periodicity ; we define this modified action function 
from the action function 8 as follows : 

8* = 8 — Ewk Jk. . . . (9) 

For if we increase ivk by 1 in the sense of the equations (8) but make 
all the other w{s return to their initial points, then Ewk Jk changes by 
the amount Jk. Thus we see from equation (9) that in this change of 
the w's the simultaneous change of 8* is equal to that of 8 diminished 
by Jk. Since by equation (7) the change of 8 was equal to J*, the 
change of 8* becomes equal to zero. Whereas the action function $, 
being a function of the ids. has the additive periodicity moduli J A. the 
modified action function >V* becomes a purely periodic function of the 
ids of period unity. 

It follows directly from the periodicity of the q's that, as functions 
of the ids, they may be expanded in an /-fold infinite Fourier series 
of the following form : 

q. __ (jryc/ s c2n1'(w* + HW*+ * ■ • + s/li’/\ . . (10) 

The (V\s are constant coefficients, that is, they depend only on 
the integration constants Jk, or, in quantum language, only on the 
integral quantum members nL. The time occurs, namely linearly, 
only in the irk's. The summations extend over the sv s2, . . . sf from 
— oo and | oo. The corresponding expression holds, after what has 
been said, also, of course, for 8*. If we substitute the expression 
(6) for the ids in (10), it follows that 

qt - (zyi>^2...'* + W* - . (11) 

with the following meaning for the coefficients I) : 

j)i ^ (<> + . . • + V/). . (12) 

The dependence of the q \s on the time is, in contradistinction to that 
of the angle co-ordinates, not periodic, but corresponds rather to the 
conditionally periodic character. In general the orbital point never 
returns accurately to its initial point ; nor does the individual co¬ 
ordinate qk in general assume its initial value after equal periods of 
time. The individual factor 

appears to indicate the period rk -- 1 jvk ; but the co-existence of 
/ different factors of this kind and the irrationality of the r,/s on the 
whole prevents any periodicity from coming about. Our example 
of the Lissajou motion, p. 105, was characterised by the circumstance 
that from the point of view of every co-ordinate taken individually 
there was perfect periodicity in time (thanks to the fact that here the 
infinite Fourier series in every co-ordinate reduced to a single term). 
But the character of t he motion is on the whole also completely aperiodic 
in this case, as Fig. 25 shows, unless some of the Lissajou frequencies v 
become equal among themselves or commensurable to one another. 
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We are now in a position to formulate rigorously Schwarzschild’s 
definition of degenerate systems. The general ease of non-degeneracy 
occurs when in the equations of definition (6) of the angle co-ordinates 
all the frequencies vk that occur in it are incommensurable with each 
other. The exceptional ease of degeneracy occurs when one or several 
relationships of the form 

Sjr, h s2v2 0 . . . (13) 

are obeyed for integral values of the coefficients ,s\ The ease where, 
in particular, two of the e\s become equal, is clearly included in equation 
(13). If r such relationships hold then the orbit does not, as in the 
general ease, completely fill an /-fold continuum in the /-dimensional 
space of the qv. . . qf, but only an (/ —- r)-continuurn. In this case 
we may speak of r-fold degeneracy, (-omplete degeneracy occurs in 
the case of a completely periodic orbit; then there must be (/—l) 
relationships of the form (13) or, in particular, when all the r,/s are 
equal (Kepler ellipse without relativity). 

(b) Theory of Perturbations.—Let us consider the fundamental 
astronomical problems of the theory of perturbations : given the 
unperturbed Kepler orbit, such as is described by a planet when under 
the influence of the sun s attraction alone, and let a,., ft (of. Chap. 11, 
§ (i q) be the elements of the orbit ; and suppose the perturbing poten¬ 
tial 0 to be superimposed, which is due, say, to the attraction of Jupiter. 
The method consists in describing the orbit at every moment as a 
Kepler orbit but with variable, orbital elements, as a so-called osculating 
Kepler ellipse that approximates as closely as possible to the actually 
perturbed motion. 

'Fhe following procedure' corresponds generally with this method. 
We calculate the unperturbed motion with the help of the canonical 
elements a*. ft, W and introduce these as variables in the perturbation 
problem. For these and the co-ordinates p, q, by means of wdiich we 
may describe both the perturbed motion and the unperturbed motion 
the equation (37) of p. 107 holds : 

f 

ss =• f £i§W f 2&-8a*-’ • • (14) 

where S signifies the action function of the unperturbed motion. The 
aA.'s, ft/s and W are thus canonical variables not only for the unper¬ 
turbed but also for the perturbed problem and consequently satisfy 
Hamilton's equations. We write the Hamiltonian function of the 
perturbed problem in the form 

H — H0 + 0 — W -f 0. . . . (15) 

H0 is the Hamiltonian function of the unperturbed problem, that is, 
the W of the osculating orbit ; 0 is given as a function * of the phase of 
motion p, q and is transformed by means of the orbital equations 
(43), p. 108, and the momentum equations (18) on p. 101 into a function 
of our co-ordinates ft., a,, and W. 

* In general <P will also depend explicitly on t ; but we may disregard this 

for our present purpose. 



()20 Mathematical Appendix 

If we now form the Hamilton equations according to the model of 
(416) on p. 107 with the expression (15) for H, we have 

*Ho c>H0__ 
¥a, IB* ~ ’ 

and hence 

rfaA _ i>0 rf/J* 
^ i>oq/ 

(16) 

These equations teach us how the orbital elements vary when the per¬ 
turbation function is superimposed. 

On the other hand, we obtain after the model of (41a), p. 107, 

d\V i><P Dft 1 j>0 

dt itfif ~dt 5W‘ (IV) 

The second of those equations shows how the original time-equation 
(42) of p. 108 becomes changed by the perturbation. If 0 does not depend 
explicitly on t, the first equation, taken in conjunction with the other 
equations (16) and (17), contains the obvious assertion : H -- const. 

We shall now endeavour to get an insight into the numerical value 
of H in (15). Since H is constant in time we do not change the numeri¬ 
cal value if we average over the time on the right-hand side. From 0 

we then obtain 0, the time mean of 0, taken over the perturbed orbit or, 
if we assume 0 to be small to the first order of small quantities and 
neglect quantities of the second order, over the unperturbed orbit. 
We are now concerned with the numerical value of H0 =-= W. This 
is likewise variable in time and its change is given by the first equation 
(17). We shall now express H0 as a function of the J,/s and wfs, H0 
becoming independent of the wk's. The J;/s being orbital elements 
of the unperturbed motion are themselves, indeed, variable in time 
in the perturbed motion. Their change is obtained from the first of 
the equations (16) if we replace in it ocA. by JA,, f$k by wk. It is not the 
J;/s of the unperturbed motion that are constant in the perturbed 
motion but rather the phase-integrals—-let us say J V»s—that belong 
to the perturbed motion, and that differ from the J;/s by small periodic 
components.* In forming the time-mean of H0 the latter cancel out, 
since we may expand in a Fourier series and neglect higher terms. 
If we now imagine the perturbation to be adiabatic, that is, to be effected 
by a sufficiently slow superposition of the perturbing field, then the 
numerical values of the JVs will be identical with those of the JA.!s of 
the unperturbed motion, since both are equal to nkh (cf. Note 10 on 
adiabatic invariants). Thus the time-mean of H() is constant during 
the course of the adiabatic transformation and may be set equal to 
the W of the unperturbed motion. Hence our result is finally : the 
numerical value of the Hamiltonian function H, that is, the energy of the 
perturbed motion, is, in the adiabatic transition, equal to the energy W of 
the unperturbed motion, increased by the time-mean of the perturbation 
function 0. 

* Further details are given in Horn and Pauli, Zeits. f. Physik, 10, J37 (1922), 
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(c) Forces without a Potential. It is easy to extend the Hamiltonian 
theory to the ease where the time occurs explicitly, either in the poten¬ 
tial energy (for example, perturlwition of the planetary orbit through 
the motion of J upiter), or, what comes to the same thing, in the equations 
of condition. We have then to take up t among the independent 
variables and to replace W in the Hamilton-Jacobi partial differential 
equation (20), p. 101, by —- dS/df. 

The ease is more difficult when the active force's have no potential. 
There is then no general method of linking the problem up with the 
Hamilton-Jacobi theory. The only general rule that can be given is 
this : bring the equations of motion into the form of a variation prob¬ 
lem ; the integral to he varied, regarded in the sense of p. 100, then 
becomes the function of action 8 and the function under the integral 
sign assumes the part of the Lagrange function L of p. 98. 

This rule actually leads to the desired objective in the ease which 
interests us here, if the effective force is magnetic in origin and hence 
has the form eje (vH). For Schwarzschild * has shown that the motion 
of an electron in any arbitrary electromagnetic field is represented by 
the variation principle 

sj u {TS,,t„ - Evoi + »(vA) j dt 0. . • (18) 

A is the vector potential of the field at any given point occupied 
by the electron and </> is taken up in the potential energy and contri¬ 
butes the amount e<f> to it. In (18) the1 position and velocity is to he 
subjected to variation, and the electromagnetic field is to be regarded 
as given and is not varied. It is to he noted that the combination 
— e<f> -f e/c (vA) that occurs in (18) is a relativistic invariant, namely 
the four-dimensional scalar product of the “ 4-potential ” (A.r, A„, 
Ac, i(j>) of the field and the bt 4-current " e/c (vu., V„, vc, ic) of the electron. 

As agreed above, we denote the quantity under the integral sign 
in (18) by Land transform the integral by means of the energy equation 
(the magnetic field does not enter into the energy balance) : 

J‘l* = S-W*. S = J‘{2E,„„ |JvA)]<ft. . (19) 

If we first retain the definition of pk — we may write in 
place of (19) 

s == + lAi)d(lk- ■ ■ • (20) 

Here Ak is the component of the vector potential that belongs to the 
co-ordinate qk (which is not necessarily rectilinear) ; A,, is defined by 
the identity 

(vA)-ZA kqk.(21) 
The quantum conditions now result as moduli of periodicity of 

8 and are, on account of (20), 

J* = <j> (l»* + lAk)dq, = nkJi, . . (22) 

Gtittingor Naehr., Jalirg. 1903. 
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where the integration in to be taken over one complete libration of the 
co-ordinate qk. This form of the quantum conditions has been dis¬ 
cussed by W. Wilson * and O. W. Richardson.*]* 

But we must emphasise* that the pf, introduced here is not the 
momentum co-ordinate canonically conjugate to q]r We shall dis¬ 
tinguish the latter by calling it • pk ; it is to be defined by the equation 

dL 

As a result of the meaning of L and in view of equation (21) we obtain 

Vh r- P'c + *— (j) pkdqk ----- n,h. . . (23) 

Hence, by using the canonical co-ordinate p the phase-integral retains 
the form familiar to us. Our formulation of the quantum conditions 
on p. 83 holds in this sense also for systems without a force-potential. 
With regard to the choice of co-ordinates we must of course maintain 
the postulate of conditioned periodicity. 

If, in particular, the magnetic field is homogeneous as in the Zeeman 
effect, H H, ™ H, we may write, since H - curl A, 

Ax - - JyH, Ay - irH, A, a* 0. 

If we use polar co-ordinates r, 6, y in the “ rest system " (the notation is 
the same as on p. 327) we have 

(vA) — y (a-2/ - yx) =- jr- sin2 0*. 

From equation (21) it then follows that 

Ar = Ao 0, Ay — ~r2 sin2 0. 

Further, it is clear that 

Px =- Pr'2 sin2 $X- 

Equation (23) then gives, if we consider the negative electron and 
replace e by — e, 

Px = ^ «n2 o(x — • • • (24) 

Here 
e H 

p 2c 0 

is the Larmor precession ; hence the brackets in equation (24) denote 
the angular velocity measured in the rotating system of reference, which 
we called ^ on p. 327. Accordingly our canonical jpx becomes identical 
with the moment of momentum pw in equation (16) on p. 327. The 
geometrical meaning of the canonical px ~ pv is simply that of the 

* Proc. Roy. Soc., 102, 478 (1922). t Phil. Mag., 46, 911 (1923). 
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moment of momentum in the rotating system of reference. When we 
stated earlier that we had to apply the quantum conditions in the 
accompanying rotating system, this denoted directly the introduction 
of the canonical px in the seme of equation (23). Whereas earlier 
we based our procedure on the adiabatic hypothesis we have now linked 
it up directly with the general fundamental law of Hamilton's theory. 
It is evident that our presen* procedure has the advantage over the 
earlier procedure in that it may be applied analytically in general. 

We must mention that the first quantum treatment of the Zeeman 
effect started out from this general analytical scheme, both in the 
paper by Debye, where the partial differential equation for S is set 
up directly and integrated, and in the simultaneous paper by the author * 
where the analytical and geometrical meaning of the canonically con¬ 
jugate momentum is emphasised. We also refer to an exposition by 
Lane, in which the appearance of the vector potential in the equations 
of motion of the electron is discussed in general (also for the relativity 
theory). 

6. Hamilton’s Theory in Relativity Mechanics 

In the theory of relativity the momentum co-ordinates are (cf. 
eqn. (1) on p. 251) : 

Vi -~/3* 

x, my 
Vi - p 

-y, mz 
VI - 

(1) 

Tn ordinary mechanics they are represented as derivatives of the 
kinetic energy with respect to the corresponding velocity components. 
This is not feasible in the relativity theory. But we may confirm im¬ 
mediately that they are derivatives of the following quantity with 
res peed to x, y, z : 

F — *— m0c2Vl — f const., . . (2) 

where it is convenient to choose* the constant as follows : 

const. — m{)c2. .... (2a) 

We may follow Helmholtz and call F the “ kinetic potential.” If 
we number the momentum components by means of pv p2, . . . 
ph.more than one point-mass possibly being present, and if we 
call the corresponding rectangular co-ordinates qv q2, . . . q1c, . . . , 
the corresponding velocity co-ordinates qv q2, . . . qk, . . . the relation¬ 
ship in question between F and the momentum co-ordinates is ex¬ 
pressed as 

8F-ZPk8qk.(3) 

On the other hand, by equation (2) on p. 251 the relativistic ex¬ 
pression for the kinetic energy is, in particular, for a point-mass 

va( 
Vi - j8* 0- 

(4) 

Handb. d. Radiologie, 6* Leipzig, 1924. 
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Since equation (1), when expressed in p’s and q's, runs 

m0 
P ~ VI - P1 

• (4«) 

it follows that 

iVi . 
11 Vi p* 

. (5) 

Hence we may confirm directly from this the relation 

il • (6) 

cf. (2) and (2a). Since in classical mechanics Epq is equal to twice 
EWn (eqn. (5) on p. 005) but not in the mechanics of the relativity 
theory, wre see that in the classical case F becomes identical with E*^, 
but must differ from it in the case of relativity. 

We now run through the developments on pp. 97 e,t seqwhich led 
to Hamilton's theory. D'Alembert’s principle, expressed in the form 
(1) on p. 97, remains valid also for the relativity theory, and likewise 
the connected equation (3) if wre replace EA.,„ in it by F. Consequently 
equation (4) also remains in force except that we must now take the 
“ Lagrange function ’’ as standing for 

and it is expedient to include in Fvot the “ rest 
example, in the Kepler problem, 

« Ze2 , 
Kot = - — + rnnc-. 

’’ energy mgr2 for 

(7 a) 

This is the only change that must be applied to the earlier develop¬ 
ments. From (b) and (7) it now follows that 

1, *s= Zpq — E, . . . (lb) 

where E — denotes the total energy (including the rest 
energy). The action function 8 is defined by this L by means of 
equation (13) on p. 99 : 

E t, (8) 

And now the following relationship holds not only for rectangular 
but also for any arbitrary co-ordinates pkqA.: 

Pk = 
<>S 

(9) 

If we now set the left-hand side of the energy law 

Efcm + Evot — E, . . . (10) 

expressed as a function of the pk's and qk's, equal to H (‘* Hamilton’s 
function ”), the partial differential equation of relativity mechanics 
becomes, in formal agreement with equation (20) on p. 101, 

H /as 
- E. (11) 
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Hence all other conclusions, in particular those concerning the 
separation of variables, hold unchanged also in the relativity case. 

It must be observed that our transposition from classical mechanics 
to relativity mechanics could be effected smoothly only because we 
wrote d'Alembert's principle from the outset in the rational form (1) 
of p. 97, where the changes of momentum pk and not the products 
of the mass and the acceleration mkqk occurred. Written in the latter- 
form the inertial resistances cannot be generalised for relativity pur¬ 
poses. We must further note that in accordance with the meaning of 
H equation (lb) may also he written 

L --- Upq - H.(12) 

This relationship which we have already encountered in classical 
mechanics in equation (11) on p. 605 is not bound by the circumstance 
that H is constant in the motion and is a complete quadratic function 
of the p's. It may serve to define Hamilton's function H and also to 
set up the canonical equations, if the problem is given originally in 
variation form, that is, if L is known initially. Conversely, if the prob¬ 
lem is originally given by means of canonical equations, it may serve 
to calculate L and to transform the problem into the variation form. 

We shall express the energy equation H(p, q) = E in yet another 
form which will he of use in the next volume, which deals w7ith wave- 
mechanics. By (4a) we have 

and hence 

p/ -4 v,r I- Pz1 1 - j8a2^ 

m0zP2c2 
r=r£2’ 

p/_± v* 11 ..1_ 
V »<o2c2 " v'l — 

Hence by (4) and (la) we have for the case of the hydrogen electron : 

V , V m „2 / Vx + Pv2 + Pz* , I _ 
VJkin 1 ^pot m(f y mQ2C2 * * r ' 

This is the total energy expressed as a function of p, q, and hence is 
the Hamiltonian function H (p, q) of the problem. Jt is numerically 
equal to the energy-constant E, that is 

7e2 
c-Vp/ + p/ + pz2 + E + 

We square to remove the root sign and obtain 

Px + P2 + Pz + ®«2«2 
1 

(e + tT- • (13) 

The equation (6) on p. 253 of the text is identical with equation 
(13). If we introduce here the electromagnetic scalar potential <f> 
in place of the special Coulombian potential, equation (13) runs (for 
the positive electron with the charge + e ; for the negative electron f e 
must be replaced by — e) : 

px2 + Pv2 + P*2 + ™oV=-3<e-^)*. • • (13a) 

vol. i.—40 
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Our object is to generalise equation (13a) in such a way that it 
gives us the energy equation for the ease of an arbitrary external 
electromagnetic held with the potential A, </>. We accomplish this 
most simply by means of a Lorentz transformation. For in reference 
to any other arbitrary Lorentz system equation (13a) runs : 

(p-r CK) (A.)+(a -a) ■ 
(E— e<f>)2 m„W. (14) 

Here A, <f> now denote the potentials of the electromagnetic held, 
such as it appears to the observer from the new co-ordinate system, 
which is in motion relatively to the old system. By means of our 
arbitrary choice of the co-ordinate system we may clearly describe 
any arbitrary electromagnetic held with the help of (14) ; thus equation 
(14) is the required energy equation in the arbitrary external held. 

We may here supplement our remarks on the motion of Mercury’s 
perihelion referred to on p. 254. We use the expression (14), p. 254, 
for A</> (<f> now, of course, denotes the azimuth in the orbital plane) 
and take the value of y from (l3a, b) on p. 253 ; to a sufficient degree 
of approximation we have 

1 
1 

ljZPe4 

+ 2 p2c2' 
1 

ttZV 
p2c2 > v - 

n<t>h 

2tt * 

Supposing the Newtonian law to act instead of the Coulombian law 
we replace Ze2 by mM and take m to stand for the mass of the planet 
and M for that of the sun. Further, we express the momentum con¬ 
stant p of the planet by the geometrical surface constant f : 

. J. . TTCtb Trap's/1 — €2 

•p = 2mf> /== — == —-— 

(r is the period of revolution of the planet, rrab the surface described 
in the time r, e the numerical value of the eccentricity). Thus 

A <f> == 
77m2M2 

p2c2 

MV 
47ra4(l — c2)c2 

(15) 

Finally we give an expression of the sun's mass by means of Kepler’s 
third law, equation (18) on p. 113, and obtain 

A , 47r3a2 
A(P “ r2(l _ €2)C2* 

(16) 

If the data for a, r and e in the case of Mercury are substituted in 
(16) we obtain the value A<f> 7" per century mentioned on p. 255. 
The general theory of relativity leads to almost the same formula (16) 
but with the numerical factor 24 in place of 4. According to the latter 
theory then the value A<f> = 43", which is six times as great and which 
agrees perfectly with the value obtained by Newcomb, which was also 
mentioned on p. 254. 

7. Bohr’s Correspondence Principle 

We have already given an account of the origin and significance 
of the Correspondence Principle in Chap. VI, § 1, in dealing with the 
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Balmer series. We proceed to generalise this account for multiple 
periodic systems. 

(a) We consider the orbit of a multiple or conditionally periodic 
system with its / vibration numbers vk (see eqn. (11) on p. 618) or the 
associated periods of vibration rA. =■ 1 jvk. Here rh. denotes the time 
in which the co-ordinate qk moves to and fro between its libration 
limits. According to equation ((>) on p. 617 we have 

vk " (i) 

the energy W of the conditionally periodic system being supposed a 
function of the phase-integrals J L, J2, • • . J/. 

According to the classical view the system built up of moving charges 
emits radiation in the periods of the motion : thus the mechanical 
frequencies vk are at the same time optical frequencies ; in addition to 
the vk'& themselves their multiples (harmonics) and linear combinations 
of the multiples (combination vibrations) also occur as mechanical 
and optical frequencies : 

V — skvk and V 2V*-, • • • (-) 

where .s* denotes integers, “ order nund>ers ” of the vibration process 
in question. On account of (1) we therefore obtain for the overtone 
vibrations and combination vibrations 

and 

DW 
Vri '■ m**' 

(2a) 

_ DW 

l’cl 2 W*®*’ 
(2b) 

where cl indicates kk according to classical theory.” 
The result is different if we adopt the quantum view. Here the 

system does not emit radiation in the stationary orbits ; radiation is 
emitted only in the transition from one orbit to another. If AW is 
the energy difference between the initial orbit and the final orbit, 
Bohr’s assumption holds : 

We shall first assume that in a transition only the one quantum 
number nk changes by Ank. Since nkh, that is, AJ* =■ Ank . h, we 
may write instead of (3) : 

AW 

Vvu ~ AJ^W*.C«) 

where qu means ” according to the quantum theory.” 
When Ank = 1 we have the analogous expression to equation (1), 

when Ank —■ sk the expression analogous to equation (2a). The quan¬ 
tum transition unity is analogous to the fundamental vibration, the higher 
quantum transitions to the overtone vibrations of the classical radiation. 
But there is also an analogy to the combination frequencies {2b) if 
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we take into consideration quantum transitions in which several quan¬ 
tum numbers change simultaneously. We resolve the total change 
of energy AW into steps (cascade-1 ike) of partial changes AW1? AW2, 
. . . AWf that are to correspond to the quantum transitions A/Vj, A 
. . . Anf executed in succession, in the partial change of energy AWX 
all the n2 . . . nf have their initial values and only 7it changes from its 
initial value by the amount Anv In the ease of AW2 n\ has its final 
value and ns, . . . nf their initial values, and n2 changes by An2, and 
so forth. Hence if we write instead of (3) 

AW AW, , AW, , 

” “ A h ' A " ' 

AW{ 

A ’ 

or according to the model of (4rr), 

x-AW. 
(46) 

then the quantities -v y 1 
A J A 

are true “ partial differential quotients/' 

defined individually by the change of the one phase-integral JA. and 
the invariability of the remainder, some of which retain their initial 
value and others their final value. Hence with Ank sk the equation 
(46) is exactly analogous to (26). The general quantum transition 
corresponds to the general combination vibration of classical radiation. 
The characteristic feature' in this analogy is that the greatest of differ¬ 
ences is replaced by the differential coefficient ; this has already 
been emphasised on p. 293. The equations (2a, 6) and (4a, 6) are the 
generalisations of equation (5) and equation (4) on p. 293. 

(6) There are conditions under which the two sets of ideas and for- 
muhe not only correspond but coincide. These conditions are 

< nk.(5) 

that is, the change in each quantum number must be small compared with 
the quantum number itself. We then have asymptotically 

AW_dW 
Ad* MV («) 

that is, the difference between the quotient of the differentials and the 
differential coefficient becomes small compared with the absolute values 
of these quantities, so that the frequency calculated according to the 
quantum theory by equations (4a, 6) merge into those calculated on 
the classical theory by equations (2a, 6). 

To illustrate this we recall the example of the rotator. We here 
have 

W 
1 pf 
2 0 Hir2©' 

where p denotes the moment of momentum, © the moment of inertia 
of the system rotating about a fixed axis. J = 27Tp denotes the phase- 
integral for the rotator and is set equal to mh. Now, in the change 
of m by the amount Am and of J by the amount AJ, 

A(J2) - 2 J A J +- (AJ)2, 
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and so 
AW J / 1 AJ\ J / 1 Am\ 
AJ 4tt2@V + 2 J / ’ " 47t*©V ^ 2 m )' 

But tliis quotient of differences differs by an arbitrarily small amount 
from the differential coefficient, 

JW __ J 
()J 4772@’ 

only if the condition (f>) is fulfilled. 
Another example is given by the Balmer series considered in Chapter 

VI, § 1. We shall show by means of it how it is possible by transposing 
the classical into the quantum spectrum to deduce the intensity and 
the polarisation of the spectra! lines. We must now perform this for 
genera] conditions. 

(c) As a preliminary to this we show how the emission of a single 
partial vibration in an orbital revolution is found accordiTig to the 
classical theory. We must take our start from equation (1) on p. 24, 
in which the product of the1 charge and the acceleration cv of the electron 
there considered occurs. By summing this product over all electrons 
(including the nucleus if it also vibrates) in the case of a composite, 
atom we obtain a vector which is decisive for the emission, 

Q =r £ } *V, 

which we may resolve into its three rectangular components Q,, Q„, 
Q Instead of it we may rather more conveniently consider the vector 
P of the variable electric moment of the atom from which we obtain 
Q by two successive differentiations with respect to t : 

P —~ £ : 1 eT .... (7) 

with its three components : 

P,. —- £ rl- Py/ “ £ :L CJ' P- — 2 4. ez. . (7a) 

We must now resolve the whole complex of vibrations which is contained 
in the atomic orbit and is hence reproduced in P into its individual 
partial vibrations, because according to the Correspondence Principle, 
they have a physical meaning, namely that of the individual spectral 
lines. Hence the spectral resolution of the emitted light demands as 
its analytical counterpart the resolution of P (or Q) into its periodic 
components. But we performed a resolution of this kind on an earlier 
occasion ; it is accomplished by the angle co-ordinates. In equation 
(10) of Note 5 we found for each separation variable qt a Fourier ex¬ 
pansion and from this we may pass on to a corresponding expression 
for every rectangular co-ordinate of the charges that participate in 
the structure of the atom since each such co-ordinate is for its part a 
definite function of the ql9 . . . qf. If we substitute these expressions 
in (7a) we may write generally : 

P, - •- (AyD* t ,ai _ I V7>'. . . (S) 

This is an /-fold summation which extends from — 00 to 4 00. Corre¬ 
sponding to each individual spectral line given by the quantum transition 
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A?iv An2, . . . Anf we have that member of this series for which sk ~ An k\ 
it is the associated coefficient D, which is in general complex (cf. 
eqn. (11) on p. 618) that interests us here. If we pass from the 
vector P by means of two-fold differentiation with respect to t to the 
emission vector Q the coefficient D of our term becomes multiplied by 
the real factor : 

— 4tt2(s1v1 -4- s2v2 -f ... 4- «VV/)2* 

Hence, when multiplied by this factor the complex coefficient 1) 
gives a measure for the classically calculated amplitude and phase 
of our partial vibration and, according to the Correspondence Principle, 
also a measure of the true quantum amplitude and phase in the corre¬ 
sponding spectral line. By determining the amplitude and the phase 
separately for the x-f y- and ^-direction we obtain at the same time 
a measure of the polarisation of the emitted radiation. 

(d) We take as the simplest example the Lissajou vibration figures. 
Thanks to the particular simplicity of the quasi-elastic binding the 
infinite Fourier expansion here reduces (cf. pp. 618 and 102) for every 
component of P to a single frequency : 

Pa. = D1e2’T,,'»£, Pv = D2e."7riv2t, Fz — D3e2iri^\ . . (9) 

where in each case we must suppose the conjugate imaginary term of 
the same frequency to be added. Compared with the general expres¬ 
sion (8), then, of all the values si between - 00 and + 00 only the one 
value | s1 | — I occurs for P*. whereas s2 ~ s3 — 0 ; a similar result 
holds for Py, Yz. Hence we conclude in virtue of the Correspondence 
Principle : none of the three quantum transitions AnAn2, An3 
can combine with the other ; if nx makes a transition, n2 and t?.3 remain 
unchanged, and conversely ; moreover, ny (and likewise nv n3) can 
change only by unity. The light emitted in the transition of nx is 
linearly polarised in the ^-direction. that in the transition of n2 is 
linearly polarised in the //-direction, and so forth (it is assumed tfiat there# 
is no degeneracy, that is vv v2, vs are all supposed different). According 
to this the whole spectrum of the quasi-elastically and an isotropically 
bound oscillator consists of only three separate lines polarised in the 
x-, y- and ^-directions respectively. In this case we also have 
the peculiar feature that the quantum determined vs come out as 
identical with the vv v2, v3 given by classical theory (on account of 
the quantising of the energy of the oscillator W ~ . hvf), that 
is, that the correspondence becomes a coincidence here not only for 
great frequencies but also for small frequencies. Nor is there any 
arbitrariness in the application of the Correspondence Principle (cf. 
p. 296) since we have the same form of expression in all three co-ordinates 
for the initial and the final orbit. 

Under the heading of Lissajou motions we must, of course, include 
Planck's linear harmonic oscillator. If there were a vibrating system 
of this simplicity in nature its spectrum would have to consist of a 
single line of the frequency given by the classical emission theory and 
it would have to In? produced solely by the quantum transition 4 1. 
In the case of a linear anharmonic oscillator (for example, with a supple- 
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raentary quadratic term in the restoring force) the overtone vibrations 
would also occur. The formula then runs 

+ 00 

Px = se2wisv«t.(9 a) 
— 00 

where v0 is the fundamental frequency of the oscillation and the .r-axis 
is the direction of the oscillation. Hence according to the Corre¬ 
spondence Principle we have arbitrary transitions An ~ i s in the 
case of the anharmonic oscillator. We made use of this result in 
Chapter IX, §§ 2 and 4, and in dealing with band spectra. 

(e) We now come to the case where one of the separation variables 
is cyclic. We call this cyclic variable <f> and the others q2, q3) . . . qf. 
From the definition of cyclic variables (energy expression independent 

of <j>, corresponding impulse p ~ 
dS 

?)<f> 
J,jt 
2n 

constant) we obtain as the 

expression for S 

S-= 
277 •••(?/, J), (10) 

where s is now independent of and depends only on q2 . . . qf and 
the phase-integrals J (including, in general, J^). According to the 
definition of the angle co-ordinates in Note 5, equation (3), we obtain 
by differentiating (10) with respect to Jk for k — 2, 3, . . . /, 

2> • • * Vf> J)* 

where we have set fh — and by converse expression, respectively, 
do /• 

<h ^ . . . wf, j). . . . (ii) 

But for k ~ 1 we have by differentiating (10) with respect to 

tV({, ± 
2tt 

+ 0(<7a> • • • <If, J), 

where t/; has been set equal to in view of (11) we may also write 

cj) 277| J). . . (11a) 

The case of a cyclic variable also occurs in the case of a force-free 
atom. Here we shall find it convenient to refer the co-ordinates of its 
point-masses to the invariable plane described through its centre of 
gravity and to denote them by ra, za, <j>a (za = distance of the ath 
point-mass from the invariable plane, <£a = the azimuth in this plane, 
and so forth). Then we may regard one of the <£a’s (for example, 
<j>1 — <f>) as a cyclic co-ordinate and may express the relative azimuths 
<f)a — which are alone of importance for the inner forces, and also 
the ra’s and za’s by the remaining separation variables q. If we con¬ 
sider the combination .ra + iya for each of the point-masses we obtain 

+ «/« = e‘+ . rae*'(*a - « = e^/(g2, . . . qf), 
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and lienee also 

Pa. + iP* -- 2 ± e(xa 4 *//«) ^ ^/j(g2» • * • <?/), 
P« 2/ _ I; • • • (//)• 

If we substitute from (11) and (11a) and set w</> — r/ -f~ 8, w1*. — vkt, j Sk 
and write fl and f2 in Fourier series by means of equation (8), we obtain 

P, + iVy - e^(Ey - rL\,... + • • • + V7>‘, . (12) 

P, {Z)f ~ *EHt... + • • • + V/)*. . . (13) 

Here we- must note particularly that the summation letter (we shall 
call it «s*j) corresponding to the cyclic azimuth occurs in (12) only with 
the value .sq — 1 [and also with sx — — 1, if we form the real part of 
(12) and hence add the conjugate imaginary part], but in (13) only with 
the value sx — 0. By the Correspondence Principle it therefore follows 
that if we denote the quantum number assigned to the cyclic co¬ 
ordinate by j then the quantum transition in j is only able to have the 
values 4 1 or 0. Corresponding to the quantum transition [ 1 we have 
circular polarised vibrations parallel to the invariable plane, whereas for 
the quantum transition 0 there is a linearly polarised vibration perpen¬ 
dicular to the invariable plane. 

We have made no mention of electron spin. If we include it then 
we take J (as in Chap. VIII.) to stand for the quantum number that is 
assigned to the vector sum of the orbital moments of momentum / 
and spin moments of momentum s, that is, to the total moment of 
momentum of the atom. For this J (the so-called inner quantum, num¬ 
ber) the polarisation and selection rules derived just above apply equally 
well because they depend only on the existence of a cyclic angle. From 
the point of view of the vector model we actually have in the case of 
the Russell-Saunders coupling, for example, a uniform precession of 
the total moment of momentum L about the axis of J (cf. Chap. VI, 
§ 5, and Chap. VIII, § 5, at the beginning). We lay down a first co¬ 
ordinate system £, 77, £ in such a way that the 2-axis coincides with L, 
and a second system x, y, 2 so that the 2-axis falls in the J-direction. 
If we disregard the precession for a moment we may make the 77-axis 
coincide with the y-axis. Let the angle between 2 and £ be 6. Then 

x ~ £ cos 6 — £ sin 6, 

V = V> 
2 = £ sin $ + £ cos 6. 

The uniform precession (radian frequency coj) changes these equa¬ 
tions so that in place of x 4 iy we now have (x 4 iy)eib>jl, while 2 

remains unchanged. Thus we see that the frequency wj occurs in 
x 4 iy with the factor 4 1, but not at all in 2, and hence we may con¬ 
clude that AJ = 4 1, 0. 

In a similar way we obtained the selection principle, for l in Chap. 
VI, § 1, p. 299, by fixing our attention not on the whole atom but on 
an outer electron (valency or series electron). On the assumption that 
the action of the atomic core on the series electron may be described 
as a central field the orbit of the electron becomes plane and the azimuth 
of the revolution becomes cyclic. It follows from equation (9) on 
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p. 298, which is analogous to equation (12), that the azimuthal quantum 
number, which is assigned to the moment of momentum of this cyclic 
revolution, obeys the selection rule Al ~~ J- 1 ; A1 --= 0 is to be ex¬ 
cluded in the case of a plane orbit. In the case of a non-planar orbit 
and hence particularly in the field of an external force Al = 0 is per¬ 
mitted.* We do not enter into the question of the basis of Heisenberg’s 
selection rule for double ‘‘transitions ” (p. 444). 

We obtain the selection rule for the L’s and S's as follows : if we 
again assume (approximate) normal couplings then J is produced by 
vectorial addition of L and 8. If the interaction (L, 8) is very small, 
as is the case in the limit where the coupling is purely normal, the spin 
frequencies assigned to 8 will not occur appreciably in the expression 
for the electric moment of the electronic orbits, that is, then A8 = 0 

will hold, hi the pure Russell-Saunders coupling there are no inter- 
combination lines. For the resultant L of all the orbital motions the 
same considerations now apply as in equations (12), (13), because L 
is directly equal to the j that occurs there. We have AL — 0, ± 1 ; 
corresponding to AL ~ () we have linearly polarised vibrations along 
L, and to AL - 4 1 vibrations polarised circularly in the plane per¬ 
pendicular to L. 

To calculate the intensities f of such transitions we write down in 
full the moments of momentum corresponding to the ,r, y, z (normal 
coupling again being assumed) : 

P* I ity — (Pf cos 8 | iP, - P^sin 8)eUojf; ) 

P2 — sin 8 + P^ cos 0. J ‘ 

The moments of momentum P^, P^, P^, may be represented in a 
manner similar to that used in (12), (13) in the form 

P* 4- iFrj - d-L*. (E + iH), ) 
P* - - Z. J 

where E, H, Z are self-explanatory abbreviations. If we substitute 
the values of P^, P^, Ps- to be calculated from (15) in (14) we obtain 

((£ + + 

+ (3 — ^-—e _ '"j/ — Z sin I 

P* = (3 + ♦HJ—e'-L4 + (3- iH)~e-K( + Z cos 8 

■ (16) 

* Here we assign l, as is demanded by the spin model of the electron and by 
wave-mechanics, to the orbital moment of momentum. This l plays exactly the 
part of n<f> in Chap. IT, except that it is J less than n$ fcf. eqn. (21), p. 115]. The 
orbits tiff, — 1 have / — 0 according to this view and have a vanishingly small 
orbital moment of momentum. This leads to inconsistency with the strict orbital 
view, as we showed in Chap. II, and means that we must apply a correction in the 
sense of wave-mechanics and the spin-model, as has been emphasised repeatedly, 

f Cf. A, Sommerfeld and W, Heisenberg, Zeits, f. Phys., 11, 131 (1922). 
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We are interested in transitions in L and J ; the transition in the 
other quantum numbers is fixed once and for all ; it is represented by 
a definite set of numbers sy in the expansion (15). From them is 
composed the corresponding Fourier frequency 2 sHtoH which we shall 
call a> for short. 

We first consider the case AL — 0. We then have to take into 
account only those terms in (16) which do not involve a>L, that is : 

Px + iFy = . . . — Z sin 6 eS', P3 = . . . Z cos 0. . (16a) 

We distinguish between the three subordinate cases : 

(1) AJ = 0, (2) Ad - f 1, (3) AJ = - 1. 

(1) By (16a) the Fourier term Z cos 0 belongs to AJ -- 0, that is, 
by (15), the term b cos 6 (ei{at -f e iu>t) ; actually the frequency 
w -j- 0*o>l + 0-a>j occurs with a positive and a negative sign in P„ 
on account of the second of the equations (15) ; moreover, since Z is 
real in character we also have b = 6*, if the star denotes the conjugate 
complex value. For brevity we write b without an index, and likewise 
a, further below. 

(2) For AJ = (- 1> Pa- + dPy in (16a) gives the Fourier term — Z 
sin 6, namely, by (15), — b sin 0e*<w"(The frequency w 4* o).\ 
occurs only once in Px 4- tPw.) 

(3) For AJ - — 1 we obtain from P<r --- ?P?/ by (16a) and (15) 
— b sin OeJ^ ~ “j)*. 

From the Fourier coefficients we are now to calculate the intensity 
observed in any arbitrary direction. For the purpose we introduce 
a new frame of co-ordinate axes u, v, ir and lay the w-axis, say, in the 
direction of observation. Then only the vibrations in the (u, v) direc¬ 
tion contribute to the observed intensity (cf. Chap. 1, p. 25). We 
resolve the vibrations in the (x, y) direction into their components 
in the (u, v) direction, which we shall call Pxw, Pxt> and Pw„, P„t;. The 
intensity then becomes (P<ru -f P„J1 2 f (Pxr f Fyv)2. This intensity 
must now be averaged over all positions of the frame-work of axes, 
x, y, z with respect to u, v, w. To do this we introduce Euler s angles 
and finally obtain (denoting the mean by a horizontal bar) 

(P«. + P*‘j2~:h (P„+"P^« - i(Pl 4 Pl) -IIP. d: »P, I*. (17o) 

In an analogous manner the z-vibration contributes 

PL+^Pf*-1P;. • • • (176) 

Hence for case (1) we should obtain according to (176) the intensity 
I — |b2 cos2 6.4 cos2 a>t. But it is evident that we have yet to form 
the mean of this expression, so that we obtain finally 

(1) AJ - 0 : I -- f.b2 cos2 6 
and analogous values for the other cases, by (17«): 

(2) AJ = -f-l:I — |£>2 sin2 0, 
AL = 0 (18) 
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These formulae have been applied in Chapter VIII, § 9, p. 530. We 
next consider the cases AL = -f 1 and AL = — 1 : 

AL-= f 1 

sin B, 
(1) AJ—0. Fourier coeff. of Ps: --^(ae4va*e ' 

(2) AJ—-J-l „ „ „ P, + *PV: i 

(3) AJ ™ — 1 
_ COS 0 — 1 .. . v. 

» „ P*- *P„:-^-ac/H 

According to (17a, b) we obtain (it is again necessary to form the 
time-mean in the case of P2) : 

(i) AJ == 0 : T - i«i 
2 sin2 0 

4 ’ 

AL = + 1- (2) AJ - 4- 1 : : 1 -11 
(cos 

a p - 
6 •+ 
4 

-1)2 
5 > . (i») 

(3) AJ = - 1 : : I - si 
I2 (cos 

a |2'- 
ft - 

4 
_i)2 

Analogously for AL — - 1 : 

[c. AJ - 0: 1 .— 1 M 
2 sin2 0 

4~5 

AL = - 1 < (2) AJ = 4- 1 : l , -II 
a|2(cos ft - 

4 
-1)2 

> • • (20) 

(3) AJ ----- - 1 : T , - II 
[ap(COB 0 4 

"4 
jl2 

(/) The selection rule for the magnetic quantum number M (cf. 
p. 299 ; for m we write M in order to keep the notation uniform) 
may also be deduced more rigorously now. Besides the axes x, y, z 
fixed in the atom we also use axes 77', V fixed in space, where £' —= 
the direction of the magnetic lines of force, f', 77' being perpendicular 
to and 0 being the angle between the and the z-axis, that is, 
between the direction of the field and of the normal to the invariable 
plane of the atom, which is at the same time the axis of the moment 
of momentum Jhj2n. 

Without loss of generality we may make the y- and the ^'-axis 
coincide with the common perpendicular (“ line >f nodes ”) to the axes 
£' and z for / = 0. For this moment of time the transformation for¬ 
mulae between f', 77', f' and xyz are : 

$' -- x cos 0 — z sin 0, 77' =■ y, £' x sin 0 + z cos 0. (21) 

The whole atom is now turned out of its position at the time t = 0 
about the direction £' of the lines of force with the uniform precessional 
velocity 0 (for example, with the Larmor precession in the normal 
Zeeman effect). This denotes that £' -f irj' becomes multiplied by 
cf0/, whereas £' is not changed by the precession. Hence for any 
arbitrary t we have in place of (21), 

-f- irj' — eiot (£ cos 0 + iy — z sin ©), £' = x sin 0 + z cos 0. (22) 
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The transformation formula*, for the electric moment in the two co¬ 
ordinate systems are then similar, according to (7 a) : 

Pr + /P„' eio1(Px eos 0 + tP, - P, sin 0),) 
Pr - P^ sin 0 f P, cos 0. J ' ^ > 

The Fourier series P^, P^, P3 may, by (14), clearly be written in 
the form 

P, 1 tPv e’VZ'A^V, Pc - £ Bp e'V, . (24a) 
p p 

or 
P,. i|W S A„ e'V + (•■ f“r 27A*e-'V],\ 

P P I 

)P, — 27A„ e’V - p--'“j,2’A*e-',V], l . (246) 
P P | 

P, - 27BP*'V. 
p ' 

The frequency 0 is to be assigned to the quantum number M. Hence 
equation (23) teaches us that the quantum transition AM is capable of 
having only the values l and 0. Corresponding to the quantum tran¬ 
sition [ l we have circularly polarised vibrations perpendicular to the, 
magnetic lines of force (a-components), and to the quantumi transition 0 
linearly polarised vibrations parallel to the lines of force (n-components). 
This is our selection rule of pp. 299 and 480. 

It is also easily possible to give intensity formulae for the Zeeman 
effect, which correspond with the equations (18), (19) and (20). We 
see immediately that the equations (14) and (23) on the one hand, and 
the equations (15) and (24a) on the other are fully analogous. For 
the sequel it is important that in these equations x and £ and x, 
and so forth, o>j and o (for which we may now also write a;M), wj4 and 
ojjt a and A, b and B, 6 and 0 correspond. In place of w we now7 have 
one with the frequencies ojp, which we shall denote briefly by O. Conse¬ 
quently we may immediately take over the expressions for the Fourier 
coefficients from the above expressions in e), if we make the specified 
substitutions and observe that L, J are replaced by the quantum num¬ 
bers J, M. Let the direction of observation be perpendicular to the 
field ; then our co-ordinate system u, v, w lies so that w is perpendicular 
to i'. The intensities (Pr„ + P,-M)2 + (Pfv T P,'„)2 and P|>„ -f P2-„ 
must again be averaged over all positions of rf, If with respect to 
u, v, w, the ^'-direction ( — direction of the field) now remaining fixed 
in space and always remaining perpendicular to w. We obtain 

+ + - A1 Pr ± I2, 

(p|« + 
For the (observed) intensities we thus obtain 

(1) AM - 0:1 = 2B2 cos2 ®, "I 
(2) AM _ + 1:1 = IB* sin*©, [ 
(3) AM ~ — 1:1 = AB2 ain2 0. J 

AJ — 0 (25) 
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(l) AM _ 0 : 1 - 2|A P**".20, ] 
4 . | 

A.J - -| 1< (2) AM - + 1 : I = J | A21 J.. (20) 

(3) AM — — 1:1 = i | A J)'. 

(1) AM = 0 : I ~ 2 | A |2 — 

(2) AM- 4 1 : I •.ilAp'^^ : ,)2, 

(3) AM -- - 1 : 1 == J | A |2 

The additional exclusion rule on p. 480, namely 0 -> 0 forbidden for 
M if AJ — 0, may easily be deduced from (25). Here I ^ cos2 0 
and cos 0 since M denotes the projection of J on the direction 
of the lines of force and 0 the angle between this direction and the 
J-axis. Thus in our case cos 0 is zero for the initial and the final 
state. By the first equation (25) we deduce from this that I — 0. 
This makes the exclusion rule in question comprehensible from the 
point of view of the Correspondence Principle.* 

It is evident that the selection and polarisation rules for M are in¬ 
dependent of whether wo use a model without spin or one with spin, 
because J executes a precession about the direction of the field in both 
models, and it is this precession which lies at the base of our argument. 
But we must note that the M of the spin model is of course assigned to 
the J of the same model. IT us if the spin of the electrons exactly 
compensates itself (S -- 0, L — J), then M denotes the “ projection ” 
of L on the field-axis and not, say, the projection of n#, as we might 
expect from the idea of orbits. Our treatment of the normal Zeeman 
effect in Chapter VI, § 4, still retains the old view-point of orbits, whereas 
the discussion of the next section on the anomalous Zeeman effect is 
based on the modern point of view. 

The selection and polarisation rules for M become narrowed down 
in the Paschen-Back effect to the form given in the text on p. 494 : 
AMl - ± 1, 0, AMy — 0 ; AML = ± 1 gives circular polarisation 
perpendicular to H, AMj, — 0 gives linear polarisation parallel to H. 
The proof runs exactly as in Chapter V.1, § 5, p. 338 : L and 8 are un¬ 
coupled, so that 8 has no influence on the precessional motion of L 
about H. Hence the Fourier expansion of the orbital motion does not 
contain the frequencies which correspond to the precession of 

8 about H, but only the frequencies o>ml- Consequently we have 

AMs - 0. From the kinematical character of the precession a)Mj., 

which corresponds exactly with the precession 0 — <nM in (22) and 
(23), we may deduce the given rules for Ml in a manner similar to 
that above given for M. 

* Wo may of course also road it out of formulae (11) on p. 5114. There the 
observed intensity is denoted by A instead of by 1 as here. 
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Finally we remark that it is easy to predict from the model when 
the selection rules suffer exceptions. Thus besides AL = 0, 1 
greater transitions will also occur as soon as the (LS)-interaction be¬ 
comes appreciable. For the rule AL — 0, Jt 1 depended on assuming 
a cyclic angle about the L-axis, that is, on a uniform precession about 
L ; cf. the analogous calculations in the case of (12). If the motion 
about L becomes disturbed the precession becomes irregular and higher 
frequencies in w}, occur. In the case of 8, too, we have besides AS 0 
also the transitions AS ~ :J;: 1, which present themselves when the inter¬ 
action (LS) and hence the term resolution increases. 

In spectra there are transitions as far as | AL | — 3 and | AS | ~~ 2, 
but of course in these cases, which occur only when the resolution is 
very great, the allocation of L and 8 values becomes questionable 
from the physical point of view, cf. p. 409. 

For the Vs the most general selection rule would be : 27AZ, -- odd 
i 

number (cf. p. 444). In spectra we find Heisenberg’s rule for “ double 
transitions ” ((5) on p. 444) to be adequate in almost all cases. 

If no field is present there are theoretically and experimentally no 
exceptions to AJ — 0, ± 1. For the angle belonging to wj and counted 
around J is always cyclic, because the law of areas about J always holds 
in the force-free atom. For an analogous reason the selection rule for 
M in the magnetic field may never be transgressed. 

((/) We pass on to band spectra, dealing first with the oscillation 
component. We must not lose sight of the fact that the Correspondence 
Principle is concerned with the emission from electric charges and that 
P in (7) is expressly defined as the moment, variable in time, of such 
charges. In the application to band spectra we thus fix our attention on 
an oscillator with variable electric moment. Corresponding to this we have 
a polar dipole such as Cl" or more complicated configurations such 
as H f H+ 0~ ~ ; in apparent opposition to such dipoles we have non¬ 
polar molecules such as 02, N2, H2, Cl2. The latter have no electric 
moment and no emission according to classical theory when their 
equally charged constituents vibrate with respect to one another ; hence 
also according to quantum theory they should not radiate. But non¬ 
polar molecules that consist of unlike atoms have a variable electric 
moment because then the centre of mass does not in general coincide 
with the electrical centre of gravity. 

Nevertheless a non-polar configuration, such as 02, N2 . . may 
also acquire an electric moment as soon as one of its components is 
electrically excited by disturbing the electron orbits. The oscillations 
(and also the rotations) of the molecule then become effective, but only 
in conjunction with electron transitions, which yield an electric moment. 

We now give a formula which represents the simultaneous action 
of the oscillation and the rotation. Let the axis of the rotation be 
the z-axis, and its angular velocity w ; let the oscillation (which will 
in general be anharmonic) take place in the #y-plane, and let its funda¬ 
mental vibration be denoted by v0 as in equation (9a). By multiplying 
equation (9a) by eiU we obtain 

-f-oo 

P* + *P„ = eiut^p, ; Pz = 0. . (28) 
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If we allocate the quantum numbers v to the oscillations and the quan¬ 
tum numbers j to the rotations, we read off from equation (28) the 
quantum transitions Av - ] s are arbitrary and an' always connected 
with the quantum transitions Aj — -j- 1. This contains the selection 
principle for the rotation and the oscillation quanta of the band spectra. 
Since no term occurs that does not contain the factor eiu, Aj =- 0 is 
forbidden, A zero branch does not occur under the conditions here 
envisaged. These assumptions correspond to infra-red spectra, for 
example, of HOI. 

But we deduce that a zero branch is possible under one of the fol¬ 
lowing conditions 

1. The oscillation does not occur perpendicularly to the axis of 
rotation. We then have, if we again regard the axis of rotation as 
the 2-axis, a component Yz which differs from zero and which indicates 
the possibility of transitions Aj ~ 0. The case occurs in the infra¬ 
red spectra of polyatomic molecules, for example, of (TH4. 

2. The electronic motion becomes added to the oscillation and the 
rotation. This may entail a P, which differs from zero, no matter 
how the axes of oscillation anid rotation are situated with respect to 
one another. This is the general case of bands in the visible spectrum. 
It occurs even in H2 and He2. 

3. The general processional motion of Chapter IX, § fi, takes the place 
of the simple rotation. If we place the 2-axis through the axis of the 
total moment of momentum, the projection of the electric moment P 
on the 2-axis or on the .ry-plane is equal to | P | cos 6 and | P | sin 6 
(6 denotes the angle between the axis of precession and the “ figure 
axis ” of the “top,” which is assumed to he symmetrical or nearly 
symmetrical), and we obtain, if a> now denotes the processional velocity 
of the top, in place of (28), 

Px I- i¥y - e* | P | sin 0, P, - | P | cos 6. . (29) 

The second equation again denotes that the zero branch occurs. We 
have a case of this kind in the bands of formaldehyde (p. 580). 

The above remarks will suffice to show the great fruitfulness of the 
(Correspondence Principle. 

8. Conservation of Moment of Momentum during Emission * 

There are three elementary laws of conservation in mechanics : 
conservation of energy, of momentum (conservation of centre of mass), 
and of moment of momentum (law of areas). We shall apply them to 
the coupled system atom -f ether (that is, surrounding field of radia¬ 
tion). The energy law demands that 

hv - Wx - W2.(1) 

On the left-hand side we have the energy emitted in the field, on the 
right the energy given up by the atom. 

The conservation of momentum is fulfilled automatically if we 

* A. Bubinowiez, Phys. Zeits., 19, 441 and 465 (1918). Bohr also gives in¬ 
dications of this discussion at the end of the first part of his quantum theory of 
line spectra, loc. eit., p. 133, which appeared at the same time. 
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describe the radiation field as a centrally symmetrical spherical wave, 
that is, in the sense of the classical theory. The emission in one direc¬ 
tion is then compensated by that in the opposite direction, and the 
resultant momentum of the radiation is zero. The law of conservation 
of the centre of mass holds for the stationary states of the atom both 
in the final state and in the initial state. Let us recall, for example, the 
hydrogen in the case where we take into account the relative motion of 
the nucleus. In the system of reference the total momentum of the 
atom is zero and no change occurs in it. The conservation of momen¬ 
tum thus leads to the equation 0 — 0. 

The position is different with the moment of momentum. We denote 
this, so far as it is due to the orbital motion of the electrons, by p ; if 
we take into account the relative motion of the nucleus we must take 
p to stand for the total orbital moment of the electrons f the nucleus 
about the centre of gravity. This p is a whole multiple (L) of h^lrr. 
In addition we must take into account the spin of the electrons. The 
total moment of momentum then becomes JA/27T, where J is half¬ 
integral or integral (cf. Chap. VIII, § 2) according as the number of 
electrons is even or odd. 

Thus every change AJ in the quantum number J denotes a change in 
the total moment of momentum of amount 

AJA/2ir.(2) 

This amount of moment of momentum must not get lost but must be trans¬ 
ferred from the atom to the radiation if the atom is coupled during the 
emission process with the, surrounding field. We also remark that AJ 
in (2) denotes the algebraic difference of the quantum numbers J only 
if the moment of momentum before and after the transition has the 
same axis ; otherwise AJ is to be reckoned as a geometrical difference. 

How are we to interpret the moment of momentum of the radiation ? 
We must first define the individual momentum present in every direc¬ 
tion of the rays. Calculated per unit volume this is equal to the energy- 
density of the radiation divided by c, cf. the law of the inertia of energy, 
p. 44. But the energy-density is, if calculated in appropriate (so- 
called rational) units, 

W - + £H2. 

In the field of radiation E = H in magnitude, and in direction E J_ H 
and both are perpendicular to the direction of the ray. Instead of 
W we may therefore also write 

W = E2 = H2 = EH 
Let the moment be called G, reckoned per unit volume. Then 

G== W EH 

The direction of the momentum lies in the direction of propagation of 
the energy, that is, in the direction of the ray. We express this by 
writing 

G [EH] S 
c2- 

Hero S = c[EH] is the ray vector. 

c 
• (3) 



8. Conservation of Moment of Momentum 641 

The moment of momentum per unit volume of radiation is calculated 
as the vector product of the momentum G and its perpendicular 
distance*, from the centre of the spherical wave 

M ~ |rG].(4) 
where r denotes the radius vector from the centre to the unit volume 
in question. From the moment of momentum per unit volume we 
pass on to the moment of momentum emitted in the spherical wave in 
all directions, hy forming 

N - fdtfda M.(fi) 
the first integral being taken over the whole duration of the emission, 
the second over the whole spherical surface of radius r. 

It appears at first sight as if the momentum M should vanish for 
every individual direction, and hence also the total momentum N. 
For if, as we said, G is in the direction of the ray and if this is in the 
radial direction, the perpendicular from the centre of the sphere to 
G would be equal to zero and hence M would vanish. But it must 
be observed that this determination of the direction of ray and momen¬ 
tum is only asymptotic and does not hold exactly for finite values of 
r. Hence in the integral (5) M is different from zero for finite values 
of r ; for an r that increases indefinitely M does, indeed, decrease to 
zero, but at the same time the region of integration increase quadratically 
with an increasing spherical radius. This enables us to understand 
bow both influences may compensate one another and that in the limit 
for infinitely increasing distances, as well as for finite distances, a finite 
amount may result for N. The moment of momentum, of the spherical 
irnve is able to take up and keep the amount of moment of momentum given 
up by the atom. 

This brief discussion shows that the calculation of the moment of 
momentum of the radiation requires a more detailed method of pro¬ 
ceeding to the limit. We shall furnish this at the end of the present 
note. Here we shall assume the result. WTe calculate the emitted 
moment of momentum N from the emitted energy WT and the frequency 
v by means of the formulae 

W 2be sin (y — /3) _ W 2ca sin (a — y) 

Nr ~~ 2ttv a2 + 62 +"c*“’ "" 2w 9 
y • (f>) 

„ W 2ab sin (ft — a) 
5 ' 2ttv a2 + b2 -f c2 

Here xyz are three mutually perpendicular axes which we shall fo^ 
the present fix arbitrarily through the point at which the emitting atom 
is situated, and we shall resolve the moment of momentum N into 
components along these axes. We obtain the most general solution 
of Maxwell’s equations corresponding to a spherical wave if we make 
three electrons vibrate along these three axes with the same frequency 
v but with arbitrary amplitudes and phases, namely 

aeia, beceTX . . . (7) 

According to the views of the classical electron theory these electrons 
would then give rise to a spherical field of radiation of the same 
frequency. 

vol. 1.—41 
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If the process of omission occurs in an external field of force (as in 
the Stark effect) the axes of the field are orientated according to the 
field. But if we are dealing with the emission from a force-free atom 
we may place the axes in such a way that one, say the third, of these 
vibration amplitudes (7) vanishes. The other two then define, in 
classical language, a “ vibration ellipse ” with a and b as principal 
axes and phase difference /? — a, which we shall call y in future. On 
account of s - 0 the equations ((>) reduce to 

N-N, 
W 
9. 

2ah sin 

ttv a2 + b2 
N, - N„ (8) 

The moment of momentum and with it the spherical wave in this 
way acquire a favoured axis and also a favoured plane, the plane of the 
vibration ellipse. Does this not contradict the concept of the spherical 
wave A spherical wave is usually taken to stand for an event which 
propagates itself symmetrically in all directions from the source of 
light. This concept corresponds with rough optical experience. 
According to Maxwell’s equations (as well as the older ideas of an 
elastic medium) a spherical wave always has a favoured axis both for 
the distribution of intensity as well as for polarisation. Only the phase 
of the light is distributed with spherical symmetry and only the wave 
surfaces, that is, the surfaces of equal phase form a system of concentric 
spherical surfaces in the case of a spherical wave. On the other hand, 
the surfaces of equal intensity are by no means spherical surfaces. 
Consider, for example, the simplest case in which according to the mode 
of expression of the classical wave-theory an electron which vibrates 
linearly emits a spherical wave. On account of the general character 
of transversality of light vibrations no intensity is emitted in the direc¬ 
tion of vibration. The intensity is a maximum perpendicular to this 
direction (cf. the innermost curve in Fig. 11, p. 32, which represents 
this case of emission). Hence the surfaces of equal intensity by no 
means have a spherical shape, rather the direction of vibration of the 
electron is at the same time a favoured axis of the intensity distribution. 
In a similar way in the case of our vibration ellipse with principal axes 
u, b the normal is a favoured axis for the intensity and polarisation. 

From our present point of view we distinguish between the various 
cases of polarisation in the following way : 

We have linearly polarised light when the moment of momentum 
N vanishes. According to (8) this occurs when either a or b or sin y 

vanishes. The vibration ellipse then degenerates into a straight line 
which lies either in the direction of b (if a — 0) or of a (if b ™ 0), or 
in that of the one or other diagonal of the rectangle ab (when sin y = 0). 

This straight line is the axis of symmetry of the spherical wave. From 
its position we may determine, by means of the rules of the wave-theory, 
for every radius of the spherical wave the direction of the electric force 
and the observable plane of polarisation. 

We have circularly polarised light when the moment of momentum 
N attains the maximum value of which it is capable for a given fixed 
intensity of the light (fixed given value of a2 + 62). This maximum 
occurs when a = b and sin y = ±1 (j)hase-angle y ~~ i n/2) ; the 
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factor in (8) that depend** on a, 6, y becomes equal to ± 1 in this ease. 
The vibration ellipse changes into a vibration circle. In the direction 
of the axis of the moment# of momentum we have circularly polarised 
light, and it is loft or right circularly polarised light according as 
y - + 7t/2 or - tt/2. Jn all other directions the light is elliptically 
or in particular linearly polarised ; in the latter case, perpendicularly 
to the axis of the moment of momentum. 

In the general case when N neither vanishes nor attains a maximum 
we have elliptically polarised light, which degenerates into linearly 
polarised light only for special directions. 

We now set the moment of momentum (8) of the radiation equal 
to the change (2) which the moment of momentum of the atom experi¬ 
ences in the transition in question. Jn this way we obtain, if we simul¬ 
taneously replace W by hv in (8) and cancel hj2ir on both sides. 

AJ 
2ah sin y 

a2 + 62 ‘ (#) 

This equation holds both for magnitude and direction. If AJ is to be 
calculated as the algebraic difference between the initial and the final 
state (cf. the remark made with reference to equation (2)), which we 
shall assume for the present, then AJ is certainly integral. 

But the right-hand side of equation (9) is. taken absolutely, less than or 
at most equal to 1. Actually we have, on account of (a — 6)2 > 0, 

a2 f b2 > 2ab . . . . (10) 

and still more is 
a2 -j b2 > 2a6sin y. (10a) 

In place of this inequality wo have the equation 

a2 4 b2 t 2ab sin y, (106) 

only in the case where a b and sin y — -J~ 1, y =~- 4 77/2. In this 
particular case the right-hand, side of (9) becomes equal to 4 1. Hence the 
left-hand side of (9) is, taken absolutely, also not greater than 1. 

There are, however, only three integers whose absolute values are 
not greater than 1, namely, 

AJ-4 1, AJ - 0, AJ - — 1. 
In the case AJ -- 4~ 1 equation (106) holds. The corresponding values 
of a, 6 and y are completely determined and hav'> already been given 
in equation (106). In the case AJ = 0 the numerator on the right- 
hand side must, according to equation (9), vanish. Hence it follows 
for a, 6 and y that we must have either a = 0 or 6 ™ 0 or sin y = 0 
(y “ 0 or 77). 

Hence we have the following three possibilities : 

(4- 1 a ~ 6 and y ~ -f 77/2, ^ 

AJ = 0 a - 0 or 6 -= 0 or y ~ 0 or 77, l . (11) 

[—1 a =- 6 and y ~ — 7r/2. J 

In the first and third cases the emitted light is left or right circularly 
polarised light, in the second case it is linearly polarised. 
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In this way, by moans of a remarkably rigorous line of reasoning, 
that recalls the methods of the theory of numbers, we have arrived from 
the conservation of moment of momentum at a selection principle and 
a polarisation rule. 

The selection rule states : the quantum number of the moment of 
momentum can change by at most unity in changes of configuration of the 
atom. The polarisation rule demands that : if the quantum number 
changes by [ 1 the light is circularly polarised, but if it does not change 
it is linearly polarised. The general case of elliptic polarisation is sup¬ 
pressed by the laws of conservation. 

In the above we have assumed that the moment of momentum of 
the atom retains its axis in changes of configuration, that is, that AJ 
is to be calculated algebraically from »JA and J2. We shall now show 
that our conclusions are correct also in the contrary case. 

Let 0 be the angle between the axes of the two moments of momen¬ 
tum before and after the transition ; let the corresponding quantum 
numbers be JT and J2. Then we have for the geometrical difference 
of Jx and J2 

A.J = V-iT+Jj8 - 2JrJ2 cos <9 . . (12) 

and by a theorem of elementary geometry 

AJ1SIJ,—J2| .... (13) 

The equality sign here holds only if the triangle degenerates into a 
double straight line, so that 0 — 0 ; which is the case already con¬ 
sidered of similarly directed momentum axes. 

According to equations (9) and (10) we now also have 

AJ g 1.(14) 

and, in addition from (13) 

.(15) 

But Jx — J2 is a whole number ; by (15) the whole number is again 
capable of only the three values : 

= f 1, 
Hence our selection principle also applies without change under the 
present more general assumption : the quantum number of the moment 
of momentum can change by at most unity in changes of configuration of 
the atom. 

In the first and the third cases we also have AJ = 1 on account of 
the double equation which follows from (13) and (14) : 

I Jx - J2 | £ AJ £ 1, 

hence in these cases, as remarked in connection with (13), 0 ~ 0. We 
then again have the conditions considered earlier and our polarisation 
rule also applies unchanged. The light is circularly polarised ; the axis 
of the moment of momentum necessarily has the same direction before and 
after the transition. 

On the other hand, the second case Jj — J2 — 0 may be reduced 
to the earlier case AJ = 0 only with special assumptions ; we shall 
pass it by here. 
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We have now to add some remarks about the emission in a field 
of force. 

We take the field of force to be electrical. On account of the order 
of magnitude of atomic dimensions it may certainly be treated as 
homogeneous. The moment of the force about the direction of the 
force obviously vanishes. According to mechanics the moment of the 
force determines the change in the moment of momentum, the latter 
being calculated as the geometric sum of the moments of momentum 
of all the mass parts of the atom. Its components in the direction of 
the force thus remains constant whereas the component in the plane 
perpendicular to it is permanently changed. Hence the law of areas 
holds in its special form, as the theorem of the conservation of areal 
velocity, only for the direction of the force itself. It is only for this 
direction that we may demand the conservation of the moment of 
momentum when the atom is coupled with the radiation. 

This component of the moment of momentum, and not the whole 
moment of momentum, now becomes a multiple of hj2rr. We call 
this multiple the equatorial quantum number of the moment, of momentum, 
and in contrast with the earlier J we denote it by M. We take the 
direction of the lines of force as the 2-axis and call the perpendicular xy- 
plane the equatorial plane. Let N. be the component of the moment 
of momentum of the emitted spherical wave for the direction of the 
force. Its expression in terms of the amplitudes and phase-constants 
of the spherical wave has been given in equation ((>). If we here sub¬ 
stitute W -- hv, it follows that 

h 2ab sin (/? ---- a) 

s ^ 2u a2 \- lfi + cF' 

It must be equal to the change in the corresponding component of 
moment of momentum of the atom, that is, equal to AM^/27t. So 

we obtain 

AM - 
2ah sin (ft — a) 

a2 + b2 + c2 
(17) 

We may therefore conclude precisely as before. 
The absolute value of the right-hand side of (17) is necessarily fg 1 ; 

namely, as in equation (10), 

a2 -f- b2 > 2ab, 
and hence still more, 

a2 -f b2 c2 > 2ab sin (ft — a). 

The right-hand side of (17) can accordingly become equal to j: I only 
if we have simultaneously 

a = b, c — 0, sin (/? — a) — -Jz 1. 

Accordingly the left-hand side of (17) must necessarily lie between the 
limits h 1. Since it is integral, being the difference between two 
integers, it may assume only one of the three values : 

AM 1 1, 0. - l. 

For AM = :b 1 vve have 

~ b, <■ — 0, sin (ft - a) - f 1. a 
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We have a (left or right) circularly polarised spherical wave. Its 
plane of vibration is the equatorial plane (perpendicular to the direction 
of the force) ; its favoured axis coincides with the direction of the force. 
The vibration component in the direction of the force, as measured by the 
amplitude c, vanishes. The vibration ellipse changes into a vibration 
circle lying perpendicularly to the direction of the force. 

For AM — 0 we have, according to (17), either a — 0 or b — 0 or 
sin (/? — a) —- 0. But since all axes are of equal value in the direction 
perpendicular to the lines of force we cannot have a ~ 0 and b # 0 
as otherwise the y-axis would be favoured as compared with the a-axis. 
If, on the other hand, we had sin (ft — a) -- 0, we should have a rec¬ 
tilinear vibration in the direction of the resultant of the two ampli¬ 
tude vectors a and b and then this direction would be favoured as 
compared with the other directions of the equatorial plane. The 
required equality of the equatorial directions is assured, however, if 
we assume a ----- b -- 0. We are thus left with only the vibration ampli¬ 
tude c, which is favoured by being in the direction of the lines of force. 
The resultant spherical wave is then linearly polarised and has its lines 
of force in the direction of the axis of symmetry of the linear polarisation. 

All in all, then, we may also confirm the polarisation rule and the 
selection rule when an external field is present, making only those 
changes which are due to the existence of a favoured field of force. 
The selection principle now refers only to the equatorial quantum 
number M of the moment of momentum, which is allocated to the 
component of the moment of momentum in the direction of the lines 
of force, just as the earlier quantum number J of the moment of momen¬ 
tum was assigned to the whole moment of momentum. 

As already remarked on p. 300 the line of reasoning here followed, 
which we owe to Rubinowicz, has lately excited renewed interest owing 
to its relationship to the much-disputed problem of the electrodynamics 
of quanta. The question involved is : how is quantum mechanics 
(wave-mechanics) to he connected organically with the, possibly, 
modified electrodynamics ? In the above discussion we used electro¬ 
dynamics in Maxwell’s form and the quantum theory in its form 
before the advent of wave-mechanics. The laws of conservation fur¬ 
nished the connection between the two. It is evident that these laws 
will also be essentially contained in quantum electrodynamics. They 
furnish necessary, even if not sufficient, conditions for the more intimate 
connection between the atom and the electromagnetic field which is 
required but is as yet unknown. 

We conclude by adding the promised derivation of equation (fi). 
Extending Hertz’s assumption we write the solution of Maxwell's 

equations which correspond to a spherical wave which starts out 
from r = 0 (a simple dipole) in the form 

E = curl curl 77 -= grad div 77 - ATT, H = * curl 77 

ikr |P,- - 
77 — , P = pc -iMt, p - * p?/ = bet# 

ip2 ~ cel* 
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Here k - ~ ^ is the wave-number for 2tt units of length, = — 
C A T 

is the frequency for 2tt units of time. The solution has six integration 
constants a, cl, b, c, y, which, together with the time of vibration 
r — 27r/oi, just suffice to represent the most general process of mono¬ 
chromatic emission of the spherical type. 11 satisfies the wave-equation 

In = A/7.(1!)) 

In the following calculation of the field we must make frequent 
use of well-known formula* of vector analysis, which we give without 
explaining them in detail. The calculation of the moment of momentum 
is due to Abraham,* but our quantum view demands an expression 
that differs from his. 

From equation (18) it follows that 

1 \ /pikr\ 

div // — (Pr) - --- ( -— ), curl 77 - 
v r dr\ r ) 

grad div 77 r ? 
r dr\ 

1 d 
r dr 

The equations (18) then give, if we take (19) into account, 

E - pf tc1 
1 3 \eikr , ,r i 1 5 c,kr 

_j— (Jrr) ” ” ■■. > 
r v r dr r dr r 

(rE) ■= (rP)(*» 4- 

■7rP 

11 I r^ 
r ir r 5r r 7>rJ r ’ 

3 1 ~d\en'r 

1 d p^kr 

H = ik[Prp ‘ —, (rH) = 0. 
r 7)r r 

(20) 

Performing the differentiations and neglecting the higher powers 

of i we obtain 
r 

E A'-jp J(Pr)j-r, r2, j 

(rE) = - 2i£(rP) 

(21) 

J 

The moment of momentum per unit volume at a distance r from the 
centre is, by equations (3) and (4) (concerning the factor 477 in the 
denominator cf. what was said about equation (2)), 

M 
STcW™!! 47TC 

(E(rH) - H(rE)), 

or, in view of (rH) = 0, equation (20), 

1 
M 

4-77C 
H(rE). (22) 

“The Moment of Momentum of Light,” Phys. Zeits., 15, 9J4 (1914). 
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Let us multiply M by the element of volume in polar co-ordinates, 

r2 dr dQ, 

where di2 denotes the conical aperture (solid angle) seen from the 
centre, and let us set dr ~~ cdt and integrate over all the dkl’s ; we then 
obtain the moment of momentum contained in the spherical shell of 
radius r and of thickness dr or, otherwise expressed, the moment of 
momentum transported in the time dt — drjc through the sphere of 
radius r; we shall call this integrated moment of momentum r/N : 

dN - - J^b*H(rE)*. . . . (23) 

The moment of momentum transported through this sphere during 
the whole duration of emission T was called N on p. 641 : 

N = CdS.(24) 
J o 

Before performing the integration in (23) we must pass from our 
complex representation to its real part. We write, say, 

Q - Re{Pe*Ar}, Q = Re{ - tPfi'fcr} . . (25) 

Qr a cos (kr — cot -f a), Qa/ -- a sin (hr cot j a),l 

Q„ h cos (kr - cot | /?), Q/ -- h sin (kr — cot f /3), J (25u) 

Q, = c cos (£r — col + /)> Q2' r niii (A?r — cot | y).l 

By (23) and (21) we have 

dN 

Now, 

Q 1 
r_ 

dt, 

-Q* r : + 

fdfi a;2 'dO .V2 ^ frfn z2 

J in 7- 477 T2 J 4w 7*2 
Cd 12 xy rdo y* J*ci O za; 

J 4 n r2 1 477 r2 J 477 r2 

Consequently we obtain 

dNx = maw 
By equations (25a), however, 

IQQ'L = be sin (y 
[QQ']V = ca sin (a 

[QQ'j, = ab sin (p 

r r / 
1 

3’ 

0. 

QA«’)dt - PS[QQ'J* dt. 

■P),\ 

3: 

(26) 

(27) 

(28) 

Hence the moment of momentum emitted through the spherical surface 
r during the whole duration of emission has, by (24), (27) and (28), the 
components 

N* - IWTbc sin (y - p),\ 

Nv |k*Tca sin (a — y), . , . (20) 

N* = §k2Tab sin (ft — a) J 
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For comparison we also calculate the total energy emitted. In the 
time dt the following amount of energy is emitted through the angular 
element dQ : 

dW r= sydsidt =- ^EEL\rrHQ,dt. . . (30) 

From this we obtain, on account of equations (21) and (25a), for 
the emission taken over all directions during the time dt, 

„!<(£{( 

On account of (20) this is 

rfw -- lfcW •- IkMQti + Q; + Qf). • • (»i) 
We have now still to perform the integration with respect to t ; on 
account of (25a) this gives, when T >> r, 

T t t 

Joxdt-^a2, jQji T 
:dt = ^e*. (32) 

Hence by (31) and (32) the total energy emitted is 

W \k*a> T(a2 | b2 -| c2). . . . (33) 

By eliminating T we obtain from (29) and (33) the equation (ft), that 
we set out to prove, if we replace a> by 27tv : 

W 2bc sin (y — /?) 
Nx 

N„ 

N, 

27tv a2 + b2 + c2 

W 2ca sin (on — y) 

27tv a2 -f- 6 2 + c2 

__ W_ 2ab sin (g ~a) 

27tv a2 b2 -p c2 

(34) 

9. Stark Effect of the Second Order 

To calculate the stark effect of the second order we must carry the 
development of the quantum condition (24), on p. 308, a step further, 
that is, we must also consider terms in D2. 

By using equation (14) of Note 4 (under c) we obtain 

— 2772*! VC — 
JB __ D / B2 

Va 4An a 
1 
16 A5 

or, in terms of B, 

2 nh, 

B 
nhi 

- 
7T ) 4AV A 

5 D-B/„B 

1(> A3 
7-a--3C). (1) 

The meaning of A, B, 0, D is the same as in (24«, b) on p. 308. 
X) is thus proportional to F ; hence we may substitute in the latter term, 
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which is quadratic in F, the approximation of the first order, given 
in equation (26a) on p. 309. In this way we obtain 

A 
V'A 

3C) = (VC - ^)(4C - UV(0 - 7^). (2) 

The term before the last in (1) is of the first order in F. Hence we must 
here use the second approximation, which follows from equation (27) 
on p. 309 for B2/A. Neglecting D2, we easily calculate 

3B2 

A 

3 D 

'2 AS 

0 -- 2C 
ftnhi /yz 3n2h2 
-VC-o~- 

VC 
nhi\ /3ri%2 , (mhi /— i 
— —4- + —Vc - 20 

77 / \ 77* 77 

(3) 

We insert the values (2) and (3) in (1) and collect in powers of D : 

B 
nhi\ D 

2C 
tinhi 

VC 
3 riW 

3 D2 

8 A* 

5 A2 

v v .> — 
77 ) 4A\ 

— - v v 
77 

CO - -*> 
/3n2h2 

\ 772 

, /?1 
-f — vC — 

77 
20) 

(ve nhi\ 

77 y 
)(4C- _ ]M-Vc - 

77 

ln2h2 

772 

in which the last two terms may be collected together as follows : 

D2/ /nlii\ /17 n2h2 . 17 nhi /— 0\ 17 nhi /— 
«— Vc 
o 77 

)2/ /fz nhi\ /17 n2h2 

=, cVc + 2l"nhi 
2A* V 

c~" + ~VS^’ 
4 77 O 77“ 

17 n3hH\ 

8~ /* 

Let 11s imagine this equation written down twice as on p. 309, once for 
n -- n$, B — Bj 1) ~~ D1} and again for n — B — B2, D — T)2 
(the A and C have the same values both times) and form half their 
sum. The separation parameter on the left-hand side becomes 
eliminated in the process and we obtain 

= Va( Vc - f :_^Vc + 

. (fieF)‘*/ zi/17 , ,ni , 01 /ri, 2 . 2, a* 
+ "ATT \ ~ C V 0 + 4( + '^2^ + 

2l,i, hi 51 /7< / h2 

17/3 , S\h^i \ 

We here set (cf. p. 309) 

Vc - - n + nv + 
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and write, taking VA over to the left-hand side 

fie2Z nhi 3 fieF, . / h \2 

+ (W\nl + lnl(n( + + Jnv(r>‘i+n~) + -in'l l- n*\ > (^)8. j 

The expression under the curly brackets may be divided by 

n -• «.£ + n, 4 : 

{ j = -f »,) + j(n~ 4 w; - 7ifm,)). 

7lJhi> 
Hence we may take out the factor — on the right-hand side (4) : 

¥(w’4 *?}(£)’■ 

VA 2ir 

w/w 3 jiieF / 
- or 1 + 9 -ttK - nth 

</«-F)*/ - , 17 
- wr'v-1 44 w’) + +w; - *«“»)) Ur) J- ] 

Finally we must substitute tlie value of the first approximation, 
equation (29), p. 309, for A in the last term on the right-hand side, and 
in the term before the last we must insert the value of the second approxi¬ 
mation, equation (29a), p. 309. We write the result thus : 

jxjf/t nhi j, 3 h*F „ , . / h*F \* „„i ... 
1 ' nd VA~ 2rr l 32wV*e*Z* 1 ” 

where we have used the abbreviation 

327ryV'Z» Wp) »*N), (6) 

N -= 27(«, — »t)2 — 2n~ — - 4 w,) - 17(n2 4 — »{«,). (7) 

From (6) we obtain by squaring 

. 4ttV«4Z V, , 3 3/ A 
A ~ w%2 t1 + 16 ^V*e6Z3” ^W” 

. (8) 

+(.®Wz>)V,"2N t-27**' -«>«}■. 

If, as in (30) on p. 310, we divide by — 2fih and arrive at the term 
— Wfh, we find that the first two terms on the right-hand side are the 
same as on p. 310 ; the third term, which gives the quadratic Stark 
effect, becomes 

W fvq 

8(2tre)V3Z4.1 j 

The factor Q here introduced is 

Q - 27 (nr, - - 2N 1 

= - 27(7i, - nt)3 4 4w.2 •)- 17n*(n( 4 «-,) 4 34(n2 4 nt-n^) l 

— 1(17»2 — 3(w, — w£)2 — 9w2}. J 

(10) 
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As remarked on p. 320 the wave-mechanical calculation differs from 
this. Instead of (10) it gives 

Q = ~ 3(ra, - nf)* - 9m2 + 19}. . . (11) 

For the connection between m and ny, sec p. 310. 

10. The Adiabatic Invariance of Phase-Integrals * 

In the adiabatic changes of state we consider a parameter a, which 
enters somehow into the equations of motion of the system (as the length 
of a pendulum, charge of a point-mass, external field of force, and so 
forth). This parameter becomes changed in time, but by condition 
(1) on p. 342, it must be changed infinitely slowly (reversibly). For 
every value of a the equations of motion must remain valid in the form 

dpk t)H dq* ^ 

dt   lqk' dt ' 

where H is the same function of p. q and a as when a is kept fixed. 
We mean this when, in the conditions (2) on p. 342, we demand that 
the adiabatic action is not to attack the co-ordinates of the system 
directly. We shall revert to the condition (3) on p. 342 (unsystematic 
change of a) below. 

Integrating the equations (1) by using a function of action S, 
keeping a constant, S becomes a function of a, and thus if we insert 
the time variation of a, it also becomes a function of t. From S we 
derive the phase-integrals J and the angle variables w as for a fixed a : 

■h - fpjg* - "V • • (2) 

The question is whether by using a intermediately, J also becomes a 
function of t. If the assertion of its adiabatic Hypothesis, that the 
quantum conditions Jk ™ nkh should remain adiabatically invariant, 
then J must be independent of t. 

We answer this question by deriving the canonical equations for 
J and w as on p. 617. We are no longer dealing with the special case 
that F* = S is independent of t (cf. p. 617). Hence 

H — H 

no longer holds for the transformed Hamiltonian function H, but 
rather, by equation (17a) on p. 607, 

— 7>F 

H.» < l.<3> 

By equation (18) on p. 608 the relationship between F and F* is, 
with P,c = J/r, Q;. — wk, 

F -- F* ~ Edk'wk. 

* The first proof was given by J. M. Burgers, cf. Ann. d. Physik, 52,195(1917), 
or Amst. Akad., 1917, p. 1055. We hero follow a simple method also due to Burgers, 
cf. his Leyden dissertation, 1919, p. 242. 
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that is, on account of F* — N, 

F -- S — 2JJk wK — K* . . . (4) 

(cf. equation (9) on p. 018). 
Instead of equation (5), p. 917, we therefore have on account of (II) 

and (4) : 

dJk __ m dR a 

dl dwk dwk dwk M 

Here the terra dH/dn’k vanishes, because H, regarded as a function 
of the variables . . . JA, . . . wk, is independent of the w's. 
If we take into account further that S* — like S depends on t only 
intermediately through a, we may write 

as* 

dt 

ctS* . . . 
■ - a — Pa, 

da • («) 

with the abbreviation 

0 
in • (?) 

From (5) and (0) it follows that 

djk 

in 

. yp 
— a-—, 

5 MV 

T J 

4H • ^ 7, a— dt. . 
dwk • («) 

0 0 

We now also take into account that a by our condition (3) on p. 342 
is to be changed uttsystematically*, that is, not in phase with the course 
of motion of the system. It is in accord with this if, for example, 
we keep d constant and write instead of (8), 

T 

0 

T 

0 

. (9) 

Like N* (cf. p. 018) 0 is a periodic function of the w's, and may 
therefore be represented as a Fourier series in the ?e’s. Hence d&/dw 
is a Fourier series without a constant terra. Since the wk ~ vkt f hk 

(Eqn. (0) on p. 017) are linear functions of t, the integration with 
respect to t on the right-hand side of (9) may be performed in the Fourier 
terms and it leads to a value which remains below a finite value even 
when T increases indefinitely. 

The circumstance that the frequencies vk themselves still depend 
on a, that is, also on t, makes no essential difference to these conclusions, 
but only has the effect of changing the value of the integral by terms 
of the order dT. But dT denotes the total change in the parameter 
a in the interval of time T and as such is finite. Hence, on the right- 
hand side of (9) we have d multiplied by a quantity which is finite 
even for T ^00. In the limit a 0 and T 00 the right-hand side of 
(9) becomes equal to zero, that is, J is constant. 

* Cf. H. Knoser, Math. Ann., 91, 156 (1924), where the condition is expressed 
as generally uh possiblo. 



654 Mathematical Appendix 

On the other hand, this conclusion does not hold if the system passes 
through a degenerate state in the course of the adiabatic change. 
Then, on account of the relationship Bskvk 0 (eqn. (13) on p. 619) 
constant terms will occur in the Fourier series and these will give quan¬ 
tities of the order of T when we integrate with respect to t. The adiabatic 
invariance for all quantities «J therefore applies only to general systems and 
not to degenerate systems. 

11. The Spectra of Atoms Unlike Hydrogen. Effect of the Supple¬ 
mentary Atomic Field in the case of Non-penetrating Orbits 

In Chapter VII, §§ 2 and 4, we took as our scheme for the supple¬ 
mentary field of the electronic configuration that belongs to the atomic 
complex a pure central field, independent of time. Let its potential 
energy for the outer ‘k radiating electron ” (Aufelektron) in a non- 
penetrating orbit be 

The sign of V is in conformity with the remarks on p. 388, according 
to which V < 0. The constants of the atomic field 0,, C2 . . . are 
written here as pure numbers and are related to the constants c2 . . . 
on p. 362 in the following manner : 

Cj - Cxa. c2 — C2a2, c3 ~ 03a3, . . . 

where a denotes a comparison length which we find it convenient to 
choose as the radius of the first Bohr circle of hydrogen : 

h2 * 

^4®.(2) 

Equation (1) denotes the special case of spherical symmetry of the 
general expansion of the potential in Bessel functions for the exterior 
of the attracting masses. 

If we substitute the value (1) of V and the value p — n<f>~ in the 
Ztt 

radial quantum condition (2) of p. 387, we obtain 

,Jr - <j)^A -f 2 r + -4 + -jh + -£ -\ . . . dr ----- n,h, . (3) 

with the abbreviations : 
2 t 2 -v 

A = 2mW, B = mZe\ 0 = + 2w(\e2a, | (4) 

I), = 2m(\eV, D2 = 2mC3e2«s, • • • J 

The integration is to be taken along the complex route in the r-plane 
around the real branch points rmin and rmax of the integrand. 

From (3) we determine the “ quantum defect ” A by means of equa¬ 
tion (5) on p. 388. 

To a first approximation (C1 = C2 = . . . = 0) we have A = 0. 
The term then has Balmers formi. 
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To a second approximation 

((-1 + 0, C. - c8 - ... - 0, I)A - 1)2 - . . . - 0), 

(3) retains the same form as in the iirst approximation but with a 
new meaning for 0. For, by (4), we have 

Vg 
-4V1 

tnK>Z Z7T 

87Thne'K\a 

1 c,* 1 c,3 (5) 

In the last transformation a is expressed by means of (2). In this 
approximation we shall retain only the first term with Oj, in the next 
approximation we shall retain only those in Cx and 0X2, and so forth, 
by supposing that C,2, Opt . . . are of the same order of magnitude as 
the coefficients C2, C3 . . . in (1). 

The evaluation of (If) in our second approximation is effected accord¬ 
ing to Note 4, equation (If) : 

. 

Let us pass on to the quantum defect A in equation (5) on p. 388 ; 
that is, we form the difference of two integrals of the above form J,,, 
one of the two integrals being hydrogen-like (all constants Cf. I), = 0) 

and B and V A having the same values, only vC being different. It 
then follows on account of (5) that 

A -- 
C 

-, that is, independent of nr. 
ntl> r r («) 

The corresponding term has Rydberg's form. 
We arrive at the same form for the term if we retain besides Cx also 

02, that is, if we set Dx 4- 0, 1)2 — 1)3 ... — 0. The integral (3) 
that is to be evaluated in this case is then, by Note 4, equation (16) : 

27T?-^1 /() 
B 

Va 
1 B D, \ 

2 C vC/ (V 

In the quantum defect A we again cancel out B/VA and obtain on 
account of (5), (4) and (2), 

A - 
n n 2 
-ii ±^4. (2t7)4BD! 

and, in view of the meaning of Dj, 

A = 
C, 
n,t, 

, c>’ j- r‘y 
+ H + nf 

(8) 

Since this quantity is also independent of nr the term assumes, as 
was asserted, Rydberg’s form. 
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For the third approximation we retain Or C2 and 03, ho that now 
l)r 4= 0 and D2 4 0. By Note 4, equation (21), the integration givers 

B 

Va 2 cVc^ 
J , ~ — 27T/ IVC 1 JB_/d 3 B 15 ,B 

2 CVC\ 1 2l\', + 8 J 1 02 

1 

C2 

1>. 3 W\\ 
4 c Jr 4 (VO' 

For A we ol>tain, hv forming the difference indicated in equation 
(5), p. 388, 

2mA 3 D12^ 
+ .2zi^(a 

4(VCA\ ' 4 C 

The terms denoted by . . . depend only on n,f> ; we shall write 
the symbol — q for them. We transform the last term by making 
substitutions from (4), (5) and (2). We get 

X W 
A 1 + ~mri*h f 's F 

3 C*2 
(») 

Here the last term dej>ends on but also on ><T. since — W/h denotes 
the magnitude of the term. The factor with which Wjh is multiplied 
is independent of n, ; we shall call it 

1 , 3 (I,2. 

•2Rr>l 
C, + s4). 2 ni J 

(10) 

I11 this approximation we arrive precisely at Ritzs form of tlie term 
as i‘X])ressed in equation (4c) on p. ,‘163. 

12. Resolutions of the Multiplet Terms 

(1) Equation (3) on p. 540 may be derived as follows : 
Among the interactions of the Zs and s's we have those between 

the //s and ,s*/s of the same electron and those between the //s and sks 
of different electrons (i, k — index of the electrons). We first treat 
the interaction (li7 s{). 

We may regard field H produced by the revolution of the electron 
(cf. p. 331) as produced in such a way that the electron is at rest while 
the nucleus moves round it. The motion of the nucleus then acts like 

a current J of strength Z^ev, where is the nuclear charge that 
acts on the electron and v is the orbital velocity of the nucleus. Accord¬ 
ing to Biot and Savart's law this current produces at the point where 
the electron is situated a magnetic field (measured in the electrical 
system of units) : 

h = i[Jfl = - |5W . . . (i) 

Here r is the radius vector drawn from the nucleus to the electron. 
On the other hand, the azimuthal quantum condition and the law of 
areas give 

- m0(rv) = l ^, (2) 
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where m0 rest mass of the electron. The minus sign on the left- 
hand side of (2) is necessary because our V refers to the moving nucleus, 
whereas equation (2) applies to the moving electron, whose velocity 

— 

must therefore be set equal to — V. Writing I on the right-hand side 
of (J) in place of corresponds with the ideas of the vector model. 
It follows from (1) and (2) that 

tt _ Zgjyft h 
m0cr3 27r 

/. (3) 

In this field the electron takes its position with its own moment of 
-► h 

momentum .<* . . Its magnetic moment has the value of a Bohr 
Zrr 

magneton, a —; 7—-— = —- . ~ (since s -- l). The first factor 
r 47rm0c mQc 2n v 

e/m0c corresponds to the tk magnetic anomaly " of the spin (cf. also 
eqn. (2), p. 332). The direction of /x is opposite directly to that of 
the moment of momentum, because /x arises from the rotation of the 
'negative charge of the electron. Consequently we obtain for the total 
energy of interaction l, s of an individual electron 

w(l, s) - (H/x) 
Z,h* 

m^r-' 4n* 
1C M cos (/, - «), (4) 

where the horizontal bar denotes the mean-time value. We take over 
the mean-time value of 1/r3 from wave-mechanics.* For a hydrogen¬ 
like kk orbit " of nuclear charge /(.ff we obtain 

J~ _ titL _ (r\\ 
r3 a0*nH(l + i)(/ + 1) ’ ’ 

* The calculation according to the older theory given in tin's volume would 
be as follows. The energy (4) represents only a small part of the total energy 
of the electron in its orbit. Hence we may regard the interaction (/, «s*) as a slight 
perturbation and may use the result of Note 5, p. G20, for calculating it ; according 
to this result the energy perturbation for the first approximation is equal to the 
mean-time value of the perturbation function averaged over the unperturbed 

orbit. Thus our 1/r3 denotes averaging over the unperturbed electron orbit, 
which we assume to be hydrogen-like (r time of revolution of the electron in 

the unperturbed orbit) : 

A - 1 f I 
r3 rjra 

(It, (a) 

Here we may express dt by means of d<f) by using the law of areas mor2-^ ~ ^ 

(for tho present we calculate hero according to the older theory ; hence 

We obtain 
_ 2tr 

I - I [Hh if. 
r3 t J r hn<j, 

0 
(6) 

With the help of the orbital equation, cf. (12), p. 253, we may write 1 jr in the form : 
1/r — C 4- A cos (f> (y is here equal to 1 ; it is sufficient to calculate without taking 

[Continuation of note on next page. 

vol. I.—42 
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From (4) it then follows that 

(«) 

where fji —- Rydberg's number — —, a — fine-structure constant 

2 7re2 

he 

ch3 

But, as was first pointed out by Thomas,* an important cor¬ 

rection must be applied here. The rigorous relativity treatment of the 
problem leads to an additional term for the interaction energy, which 
is half as great as (6) and has the reverse sign. We give a simplified 
derivation of this correction under (7) in the present Note. Taking 
this into consideration we finally obtain 

W(/.„ I.) 
RoPhcZjff't 

D(M-I) 

where we have used the abbreviation f 

IM Kl I'OH (/,, */) = «, |/,| Kl COS (/,, *,) (7) 

Whc . Z tff, i 

‘ ’ i- j)(/,. + T) 
(8) 

and where the indices / have been added to indicate that the quantities 
in question refer to the Ith electron. 

The second of the above-mentioned interactions, namely (l{, sk), 
may now be easily estimated. We have now to calculate the magnetic 
lield that is produced by the motion of the kth electron in place of the 
ith electron. In (1) we then have simply e instead of Zin 
other respects (1) remains unchanged at anyrate in order of magnitude. 
The same holds for the subsequent equations as far as (8). We also 
obtain an energy expression (due to the interaction xk)), which 

contains Zinstead of Zt/f as a factor but which is otherwise of the 
same order of magnitude as the expression (7). For sufficiently great 
values of Z we shall therefore have to cancel the terms (lh sk) for a 
first approximation. 

relativity into account). Tho integral (6) then gives directly 

_1 —_ mo ^t7T if7rC 
r3 r hntft 

(o) 

If we substitute the values of 0 and r from (106), p. 2a3, (w’ith c co) and (17), 
h2 

p. J13, (a0 -- _-- - radius of the first hydrogen orbit), this gives 
47T2m0e2 

1 ueff 
a08»3m| 

£ 
6s 

(d) 

[b — semi-minor axis of the ellipse, cf. (16c) on p. 113]. We see that the expres¬ 
sion differs in a characteristic manner from the wave-mechanical value given in 
the text. 

* L. H. Thomas, Nature, 107, 514 (1926). 
f According to Land6, Zeits. f, Physik, 25, 46 (1924), we may, in the case of 

penetrating orbits, use Zj?Z^ instead of Z^. in (8), where Z,, Z0, denote the 

mean nuclear charge on the inner and outer loop of the orbit. 
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Hence we retain only terms of the form (7) and obtain for the total 
energy arising from the interaction (/, «v) precisely the formula (4) 
on p. 540 of the text, a, having the meaning of (3) on p. 540. 

(2) In the case of the pure Russell-Saunders coupling equation 
(14) on p. 545 gives that amount of energy in the Paschen-Back effect 
which is due to the (/, s)-interaction. By the discussion of § 7, Chap. 
VIII (ef. (5), j). 494), we must add to this the amount 

(2M* -b Ml)Avnnrm.hc- 

of the interaction between S or L, respectively, and the field H. All 
together then we have the amount 

(2MS -I- M^)hcAvnono f M,JV1SA. . . . (9) 

The first part easily predominates over the second, by the definition 
of the3? strong field. By p. 494 the first gives the normal Lorentz triplet ; 
hence the second represents the fine-resolution of the energy level in 
the Paschen-Back effect produced by the interaction (l, s). For the 
case of the doublet (S — i) we easily obtain from (9) the results of 
]). 495, which were there deduced from Voigt's theory. Tn doing 
this * we must make use of the selection rules on p. 494 and take 
into account that the term -resolution (9) is calculated from the centre 
of gravity of the term (L, S) (ef. p. 542) and not from its centre, as in 
the case of Voigt's formula. 

Equation (9) clearly enables us to deal with any arbitrary combina¬ 
tions for the ease of strong fields. The fine-resolution is in each in¬ 
stance of the order of magnitude of the field-free term resolution 
(on account of the factor A in the second term). This places the 
qualitative reflections of p. 49b on a quantitative basis. 

In addition to (9) we write down for the sake of completeness 
the corresponding formula for a weak field (by cqn. (7) on p. 541 
and § b. Chap. VIII) : 

J(J + 1) L(L + 
2 

1)-S(S + 1) 
A Mg . hr Av„ (10) 

the sequence of the expression again being that of their order of magni¬ 
tude. 

(3) Law of Permanence for Arbitrary Fields.—Let the magnetic 
field be so strong that all couplings between the 1/s and .s*/s are released. 
It then follows from the spherical triangle which the vectors /,, H 
cut out of the unit sphere (cf. pp. 540, 541 and 545) that 

COS (/,;, «,.) 
"hi 

ITT * ITT 
01) 

In this way we obtain from equation (4) on p. 540 

^'very stronu j “Yi aflfli^ms. . . . (12) 

i 

* For A^0» the total resolution (in cm.4), we obtain for 2P from equation (7), 
p. 541 : hcAv0 ~ . A. 
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To obtain “ permanent " sums we must clearly sum over the quantum 
numbers, which lose their meaning, namely L and S ; M retains its 
meaning and is delined by 

M — + m^) (sum over all electrons of the configuration). (13) 
t 

The Law of Permanence * states : for a given electron configuration 
the sum over all the r-values that belong to a fixed M is independent of 
the field-strength. By our assumption this T'-sum has the same value 
for all couplings. 

(4) The last remark leads directly to the P-Slim rule, in a weak 
field there is a series of J-values for a given configuration, and these 
J-values will in general occur several times. Let dmax — Jt be present 
i’i times, and let J/r — Jmnx —- k + 1 be present vk times. Thus all 
J-values together are represented by J5,1* . . . J^,)n 
. . . . Now let us imagine the rv.eak s that belong to the individual 
J's be written down, say, as in the following table, arranged in order 
of M | (let M/ be the greatest of all the M-values that occur) : 

Tahjli: 66 

M' M'- 1 M' — 2 ... — (M' - 2) (-M'-1) -M' 

nv HD 
■’ 1 rSV • • • n? HD 

•' 1 

OT *1? • ■ ■ 
rf) 

h iJ1 ‘ * 
r,n) rjr,l) rf'5 

•'l 

•T.)1' 
J 

rSV • • • rlV it 

] o?1 pM 
e,” • • • 

p(b 1 h 

zr ^2 c3 ... Co °l 

The JT-sums taken over each vertical column are denoted by 
ck. They may be calculated from (12) by means of the Law of 
Permanence and are independent of the coupling. The equations 
that follow from the Table are 

> ZOf+Zn.-,; Irt?+l/t’+£rt'W,;... oo 
P ~ 1 p — 1 p — 1 p — 1 p — 1 

* S. Goudsmit, Phys. Rev., 31, 946 (1928). An analogous law holds for the 
^-values, W. Pauli, Zeits. f. ^hys., 31, 765 (1925). 

t In a weak field the P’s are equal for any coupling for all M-values (by p. 545). 
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or 

ini « cj 
P -1 

and in general 

i/t = = cj„ £/t> - 
p = i p - i 

"a- 

p - l 

c2 - fj„ 

(15) 

The f.j^s are, of course, like the cA.’s independent of the coupling. 
Hence the F-sum rule of p. 546 follows from (15) : in a weak field 
(hence also for a field zero) the sum over all Fs that belong for a given 
configuration to the same J is independent of the coupling. A F whose 
J appears only once is thus calculable even if alone, independently of 
the coupling. 

(5) For the case of one electron we obtain from the equations (4), 
(3), (7) and (8) of pp. 540 and 541, 

r - 
Ra2 . hc7Jff j(j + 1) —1(1 I 1)- s(s A 1) 

nH(l + .V)(/ j- 1) (16) 

since clearly l( - l is identical with L, and 
Jv 2 / 

with S. Moreover, 
We obtain for the resolution of the term, since 

the numerator of the second factor of (10) assumes the value / for 
j l f J and the value - / — L for j --- l — h, 

Ac 
hr 

Ka2Z* _tff 
nH(l f 1 )’ 

(17) 

that is, the formula for the regular resolution of doublet terms (of. 
(0), p. 418). This is the reason why we wore able to apply these for¬ 
mulae to optical spectra there. 

In Chapter V we derived the fine-structure of the hydrogen terms 
from relativity considerations and by using the “ old ” quantum 
number nif>. But here we adopt a totally different standpoint. If 
we wished to write down the energy of the H-atom here, it would look 
as follows. First we should have the energy of the central motion 
without spin and without relativity ; this gives the Baimer formula. 
Secondly, we should have the relativity correction for a model with 
the wave-mechanical quantum-number l ; it makes an addition to 
the energy which depends on l and not on j. Hence this correction 
is the same for two /-levels having the same terms l. As a third con¬ 
tribution we have the energy that arises from the interaction (/, s), 
that is, which is produced by the spin. This furnishes the additional 
energy (16) and hence is, by (17), also responsible for the occurrence 
of regular doublets. We may easily show wave-mechanically that the 
last two amounts of energy contract together in such a way that the 
correct hydrogen fine-structure results. In Vol. II we shall explain 
this in detail analytically and graphically. According to the view just 
outlined the regular doublets should be called spin doublets,” but 
the further development of wave-mechanics yi Dirac’s theory has shown 
that ultimately the electron spin owes its own origin to relativity. 
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This causes the fine-structure formula of the old theory to remain 
fully preserved ; only the view of the quantum numbers is modified 
and approaches the idea of spin. These remarks will suffice to establish 
the connexion with the earlier considerations. 

From Table 60 on p. 547 we may now draw the important conclusion 
that the resolutions of the terms that arise from equivalent electrons 
are governed by the formula (17) of the regular doublets. Actually, 
we may use Table 60 to express the total resolution by means of the 
factor a of the electron, that is, also by means of the doublet formula 
(17), on account of 

he 
Ra2Z; Wff 

n?I{l + 1 ] 
= (i + {)« (18) 

(cf. (8)). 
The doublet formula may also be used for two non-equivalent 

electrons, namely always when one is an #-electron. We easily find 
from equation (12), p. 544, and (7), p. 541, as well as from the preceding 
equations (18) and (17), that the total resolution of the triplet terms 
that may result from this configuration, is simply equal to the resolution 
(17) of the doublet terms, which is produced by the second electron 
(not an ^-electron). If the quantum numbers of the latter are n, l 
and if Zeff is the nuclear charge of its orbit, then we have * 

TV 2r/^ 
Total resolution of the triplet term — 

1 nH(l + 1) 

This is the theoretical basis for the experimental observation mentioned 
on p. 418 that the doublet formula often holds also for triplets, if we 
inquire into the total resolution. 

(6) The Gap Law for L-values, which was deduced from Table 60 
for normal coupling, runs generally (we shall not give the proof) : in 
a weak field and within one ami the same configura tion the sum of all F’s 
that belong to the same J is, if there are z electrons present in an (n, l)- 
shell, equal and opposite to the F-sum for the case where there are z 
electrons missing in the same shell : th is holds for any coupling whatsoever. 

Special case : z ~ 1. Then there are only two J-values, J ----- / | 
for n, l and each occurs only once. Hence /j for an electron that is 
present is equal to — Fj for an electron that is missing, independently 
of the coupling. The latter case is realised in X-ray terms. For an 
electron that is present we obtain regular terms (cf. p. 541, a > 0), 
hence all X-ray terms are inverted. We also see that for X-ray terms 
the same doublet formula (17) must hold as for the one-electron problem. 
The doublet formula in Chapter V has been applied in precisely this 
sense. 

(7) To derive the Thomas factor we note first that the electric 
force that acts from the nucleus on the electron is equal in magnitude, 
direction and sense to 

j 
- 7*'ff ■ • - = wflV. 

r3 

* Since the first electron has l 0, the L of the triplet terms is, of course, 
equal to the l of the second electron. 
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On the right-hand side v denotes the acceleration of the electron in its 
motion around the nucleus. Instead of (1) we may therefore write, 
if we now take v to denote the velocity of the electron and not, as 
earlier, that of the nucleus, 

H-Jlvv].(19) 

This magnetic field acts on the magnetic moment /x of the electron 
and produces a precession of angular velocity : 

2^ —H.(20) 
mnc 

As a proof of this wo recall the analogous discussion in the case of the 
Barnett effect, p. 519. H and to are “equivalent." The factor s 
given in equation (14) in p. 519 differs from our factor in (20) only 
in that we now suppose e is measured in electrostatic units and that 
we have taken into account the magnetic anomaly of the electron 
(cf., for example, equation (15) on p. 520), that is, we have used the 
true value of p, given under (1). 

By combining (19) and (20) we have 

" -= r\[v Vj. • . . . (2J) 

We must now specify more closely the system of reference in which 
this to is measured. It is clear that to refers to an “ allowed " system 
that is attached to the electron, that is, that participates in its momen¬ 
tary velocity. “ Allowed " here means “ allowed in the sense of 
relativistic mechanics," since the value of to (cf. the denominator c2 
in (21)) goes beyond the order of accuracy of classical mechanics. 

Now, at the time t the electron has the velocity v relative to the 
nucleus, and at the time i + clt the velocity V ~f vdt. The systems of 
reference in question differ from one another and differ from the “ rest " 
system of reference which is attached to the nucleus. Thus we dis¬ 
tinguish between the systems 

e15 e2, k, 

which have the relative velocities 

Ej with respect to K ----- v 
E2 ,, E1 - vdt. 

We call the ordinary Lorentz transformation (parallel displace¬ 
ment) a “ rotation less ” transition. We suppose the transitions 
K Et and Et E2 to be performed without rotation and we assert 
then that the transition K - > E2 is not rotationless. The proof may 
be performed analytically by compounding Lorentz transformations.* 
We prefer, however, to give a shorter geometrical proof. 

As a preliminary we recall Einstein's addition theorem of two velo¬ 
cities vx and v2 which are in the same direction. As we know, it assumes 

♦This was done in an unpublished lecture by I\ Langevin in Zurich, 1926. 
J am indebted to W. Pauli for a reconstructed report of this lecture. 
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its simplest form if we introduce two imaginary angles (f>1 and </>2 : 

tan <f>x = i^1, tan </>2 = . . . (22) 

and if we define the resulting velocity by 

tan <^3 — i-~f 03 —: <^x -f~ ^2* • • • (2d) 

Thus Einstein's addition theorm is shown to be identical with the 
addition theorem of tangent functions in elementary plane trigonometry, 
but applied to imaginary angles. 

We shall next consider the composition of two velocities vx and v2 
that are perpendicular to one another. We have then to use the for¬ 

mulae of spherical trigonometry,* like¬ 
wise applied to imaginary angles. We¬ 
ill ustrate this in Fig. 149, when (j>x and 
cj>2 are defined as in (22), and we mark 
off (f>x on a great circle (for example, 
the equator of the unit sphere) from 
the point X. <f>2 is then the end-point 
Ex of in the perpendicular great 
circle (meridian of longitude). The re¬ 
sulting spherical triangle KEXE2 has 
the side as its hypotenuse. This 
side defined the resultant velocity 
for us, namely by means of the first 

Fig. 149. of the equations (28). Instead of the 
second equation (23), however, the 

cosine law of spherical trigonometry now holds : 

cos </>3 -- cos <f>x . cos <f>2. . . . (24) 

We shall also need the sine law for the angles ocj, a2 of our right-angled 
triangle : 

sin ax 
sin (f)X 

sin 
sin a2 — 

sin (f)2 

sin <j>.A 

These sines (being quotients of two purely imaginary numbers) are 
real and < 1 ; thus the angles ax and a2 also become real. Since <f>s 

represents the resultant velocity v3 (in magnitude and direction), and 
likewise <f>v <f>2, the component velocities vv v2, we see that ax gives the 
angle between v3 and v2 in E2 and a2 that between and in K. 

We now follow out the rotationless transitions K -> Ex and Ex E2. 
For this purpose we draw two mutually perpendicular axes of the 
systems of reference in question. We call then xy for K, xly1 for Ex 
and x$2 for E2, and we shall draw x in the direction of vx and hence 
yx in the direction of v2. In the rotationless transition K -> Ex x 

* Cf. A. Sommorfeld, Phys. Zeits., 10, 826 (1909). Spherical trigonometry 
with imaginary ares means geometry on a sphere of radius i or, what amounts 
to the same thing, plane Lobatscheffsky trigonometry (negative eurvative). 
We must picture the tangential plane of the sphere (or the Lobatscheffsky plane) 
to be perpendicular to both the 3-axis and the imaginary time-axis 'let. 
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points in the direction of the Equator, in the transition Ej > e* y 
points in the direction of the longitude. But if we wish to carry out 
the rotationless transition K -> E2 we must pass along the great circle 
KE2 in the direction of the resultant t?3, preserving the angle a2. We 
then arrive in E2 with a position of the system of reference that differs 
from x2y2 ; we shall call this new position x%y3. 

We call the angle between x2 and :r3 6. As Fig. 150 shows, we have 

6 ----- 7r/2 — 0Ly — a2, 
sin 0 - cos (aj 4 a2). 

In view of (25) we obtain 

sin 0 V'sin2 — sin2 </>1 Vsin2 </>3 — sin2 02 — sin sin </>2 , 
sin2 • v ; 

But according to (24) we have 

V7sin2 </»a — sin2 <fl - V 1 — cos2 ^ cos2 02 — sin2 

— v'eos2 (f)] (1 — cos2 <j>2) — cos (j>l sin </>2. 
Likewise 

V sin2 03 — sin2 tf>2 cos (f>2 sin 

Hence by (20) 
. sin <f>1 sm 09 (cos <^j cos 0O — 1) 

sin u m- -...—^—7—-“-. 
sin2 cf>.} 

If we transform the denominator by means of (24) we may write 

sin 6 - 
sin <j>x sin rf>2 

1 + cos cos 02* 

On account of (22) this becomes 

sin 6 (27) 

To be consistent we restrict ourselves to quadratic terms in c 
(equation (21) was also only of this order of accuracy) and obtain instead 
of (27), 

sin d = 1 viv-i 

2 c2 1 
(28) 
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Before we apply this to our electron problem we must mention a 
deduction which has been particularly emphasised (loc. cit.). In 
the theory of relativity the succession of velocities in different directions 
does not allow of commutation ; the result of compounding vx and v2 
is different from that of compounding v2 and vx (cf. Fig. 151). By 
first drawing <f>x and then tj>2 we obtain as before the point E2, but if 
we first draw <f>2 and then <f>x we obtain the arcs of circles KE/ in the 
direction of the meridian of longitude through K and E/E/ in the 
direction of the great circle which runs perpendicularly to the meridian 
of longitude KE/ in E/. The points E/ and E2 are different points, 
that is, the velocities tq and v2 may not be commutated. And, indeed, 
the direction of the resultant velocity v3 is different in both cases ; 
the magnitude is the same since in both cases v3 is given by the formula 
(24) which is symmetrical in <f>v <f>2. We also see this from the fact 
that the two triangles KEJE2 and KE/E2' are congruent. At the 
same time we see that the angle between the two results is, except for 
the sign, exactly equal to our angle 0 (cf. Fig. 151), namely, equal to 
ai + ol2 —- 7r/2, where ql1 and a2 have the same meaning as before. 

This angle is nothing else than the spherical excess of the triangle 
KEjE2 (or KE/E2'), and this emphasises its importance in the theory 
of surfaces. Actually the spherical excess of our right-angled triangle 
is defined by 

*1 + 0C2 + 77/2 — tt == — 0. 

In our case (Lobatscheffsky's geometry) it is negative. 
Reverting to our electron problem we first remark that the com¬ 

position of two velocities in the same direction may not only be commu¬ 
tated but is also rotationless. Hence we need not trouble about the 
component of the additional velocity \dt which is in the same direction 
as v. Hence in our equation (28) we set v2 equal to the component of 
v dt which is perpendicular to v ; let vx be equal to v. But this means 
that 

vxv2 = | [v v] | dt.(29) 

Since 0 becomes infinitesimal simultaneously with v2 ™ vdt, wre 
write d8 in place of sin 6 in (28) and obtain, in view of (29), 

d6 l|[vv]| 
dt ~ 2 c2 

1 

2 
\co \ . m 

Here to has the same meaning as in (21). If in Fig. 150 we now' imagine 
the electron to be rotating or processing about the 2-axis (direction of 
the magnetic field H, normal to the plane of the figure in three-dimen¬ 
sional space) with the angular velocity to in the system of reference 
x$2, then it rotates or processes in the system of reference that is, 
regarded from the nucleus, only with the angular velocity co/2, because 
this system accompanies the former in its rotation with the angular 
velocity dOjdt --- .Vto. In this way we have derived the Thomas factor in 
the simplest way. As our method of derivation shows the first half of 
equation (30) has nothing to do with electron spin but is a direct conse¬ 
quence of the kinematics of relativity. It is only the relationship with 
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the electron precession w in the second half of equation (30) that is 
connected with the spin anomaly of the electron. 

The equivalence of to and H (see above) causes the same factor i 
to occur in the interaction energy W (cf. eqn. (4)). Hence the factor 
2 in (6) is to be cancelled and (6) must be replaced by (7). This justifies 
the calculations of this Note. 

13. Quantising of the Rotating Anharmonic Oscillator * 

Let us fix our attention on HC1, say, and let the two ions have the 
charges \ e, —e and the masses mv ra2. Their centre of gravity 
remains at rest and may serve as the origin of a polar co-ordinate 
system, r1, <f>1 and r2, <f>2 being the co-ordinates of mx and m2. According 
to the theorem of the persistence of the centre of gravity we may intro¬ 
duce in their place the two new co-ordinates r, <j) of the pair of masses 
by means of the equations 

m1r1 = m2r2 = /zr, 

<h “ $2 4 17 ~ (t)‘ 

As in p. 5(i7 /z denotes the “ reduced mass ” of the two ions and r 
the distance between them : 

J 1 

mx 
r - rx + r2. 

The kinet ic energy is easily expressed in the co-ordinates r, </> : 

E, (*,* 1 V <k*) + (*,* + V = £(r* + rty). (1) 

The potential energy i.s expressed electrostatically and depends only 
on r ----- r1 -f r2 : 

V-poi. --- ~ -(l + • • (2) 

The coefficients c£ take into account the action of the electron systems 
that surround the ions and are to be regarded as arbitrary quantities 
between which the following condition of equilibrium holds : 

^Evot = 0 for r - rn. . . . (3) 

Here r0 denotes the normal distance between the two ions when the 
molecule, in which the electrostatic attractions and repulsions between 
nuclei and electrons are in equilibrium, is at rest in space. We set 

P = € = P-l.(4) 
r0 

Instead of (2) we write 

Ew, •=-«(*+?- 4- b? + cf* + . . .). . (5) 

According to A. Kratsjer, 3eii$. f. Physik, 289 (1920). 
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This assumption already satisfies the condition (3) and is just as 
general as (2) ; it has the advantage over (2) that the “ correction 
terms " having the coefficients b, e, . . . are small in the neighbourhood 
of the position of equilibrium and that the “ principal terms ” which 
precede them may be taken into exact account when the quantising 
is effected later. We see that the expansion in £ in equation (5) had 
to begin with the term £3 and not with £2 or £ if we consider the mutual 
force that acts between the ions. This force is 

—P' 
dr 

i d 

70 Vv< 

or, on account of (4), 

K - 

~(\ -4.- Mf- -4<f< + . . 
»oV P' 

. - m2 - 4ce 4 ... 

ro'P 
■ («) 

where we may set p3 ~~ (1 -|- f)3 in the denominator. Since all the 
powers of £ are represented here and are provided with arbitrary co¬ 
efficients we have by adopting our assumption actually found the 
law of force of the most general anharmonic oscillator. 

From the first term of the series (6) we may obtain the frequency 
c0 for an infinitesimal amplitude : 

-m'o * (V 

If we take as our definition of the moment of inertia of the molecule 
in the equilibrium state 

J ^ (m^,2 }■ m2r./)0 = Pru2, . . . (8) 

we may also write (7) in the form 

2t7k0 - Y j, a=^4n\2J. . . . (9) 

On account of (4) and (8) (1) becomes 

E,i(1 1 ■ ■ • (1()) 
Hence it follows that 

i)EA./w T . T 9 / 

^Jp’ n=p -•= = ^ 
Here p is constant and is equal to mhj2v in consequence of the azimuthal 
quantum condition (in the other form, cf. p. 557). The energy equation 
runs 

kW + p) + E»°t ■= w 

Hence it follows that 

• (11) 
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and we have as the radial quantum condition (again in the older form, 
where n takes the place of v, of. ]>. 500), 

§P,dp - (jj^/2J(W '4- «*) 4 y - p(aJ + Pl) + ■ ■ ■ dP ^ nh- (l2) 

The terms of this equation so far as we have written them down have 
the form 

which is familiar to us from Note 4a, equations (1) and (3). And if 
we divide (12) by \a*j the A, B, (C have the meaning 

2 a 
W 

, B « ], C 
p2 \ / m2h2 \ 
aj) m 

(Consequently (12) becomes 

nh 

V a\ 

m2h2 
4 772aJ 

(14) 

Here Z (contains the terms indicated in (12) by dots ; they arise from 
the expressions with 6, r . . . in the expression assumed for the poten¬ 

tial in (5). For the term ijVA which, by (13), contains the energy 
W and hence is the unknown that interests us, we write y. 

We obtain the successive approximations yv y2 . . . for y : 

ih ~ , 

y2 1 

2/3 1 

Ml, 

, , o |W2 o /15. 3 15#0\ \ 
\ >111 + U- [ 2 - V- ^ -b -| 2r + jb-) 

?/i — 1 + nu + M-j ~ - «2(‘}7> 1 "c 1- ':7>2 
IS, 3 ]5. 

3 u2nm2h. 

Here u stands for the expression —which we may also write in 

the form —, where v0 is explained by (9) and Av — jAg denotes the 

distance between neighbouring band lines (cf. (6), p. 561). Hence 
u = Av/v0 is at anyrate a small quantity with respect to which we 
may expand. This has already been done in the preceding formulae. 

The last approximation y4 appears to be inconsistent inasmuch as 
here a term in u3 has been taken into account whereas in the other 
approximations we went no further than the term in u2. The reason 
is this : although u is a small quantity m may in given eases assume 
great values in fully developed bands, so that uHm2 may not be neglected. 
It is easy to show that even if we take into account higher powers the 
term written down is the only one in u3 with the factor nm2. 



6yo Mathematical Appendix 

To arrive at the energy expression W we now form 

1 * 1A . W 
2^4 1 2A a a 

1 , 

2 + nU 

+«-| y - + |c + | - |ws»»»s (1+26) + . 

By (9) we have 

au = ~ w = A A*' 
ft2 

47T2J 

Hence we obtain from (15), except for a constant quantity, that is, on 
that is independent of n and m, 

W = nhvn 
h2 

87r2.r 

3 

i-m2 — hv()un2 ^ 

0 Av0 v2nm2( 1 + 25) + . . . 

3 , 15. , 3 . 15 

2+T6+2C+ 4 6 
(16, 

If we set m 0 we obtain the pure oscillation energy, which was called 
W0w in equation (8), p. 564, namely. 

Wo, — nhv0( 1 — xn + . . .). . . (17) 

For the abbreviation x that we introduced earlier we now obtain from 
(16) the following meaning : 

x — (18) 

The pure rotational energy is represented by the second term in tin 
right-hand side of (16). It has the form of the Des land res terms. 
Finally, the last term in (16) represents the interaction term between 
the rotation and the oscillation. If we write — mhiaji for it a has the 
significance 

a = 'l^u1 (1 + 26 + . . .). . . . (1. 

The wave-mechanical formula for the total energy given on p. 56* 
of the text (in eqn. 9) differs from (16) in having v +, S in place o. 
n and j + l in place of m ; v and j are the true (wave-mechanical) 
quantum numbers, whose range of values includes all positive integers 
0, 1, 2. . . . The wave-mechanical meaning of a and x is the same as 
in the preceding equations (18) and (19). We shall prove this in 
the volume on Wave Mechanics. 
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Decay curve of uranium, 54. 
Dempster, isotopes, 142. 
Deslandres, band spectra, 555. 
— law of band edges, 575. 
Denton, 000. 
Diffraction, X-rays, 183, 180. 
Diffuse subordinate series, 352. 
Dimorphism of terms, 405. 
Doppler effect, 44. 
Double transitions, 445. 
Doubly-degenerate system, 310. 
.ionised lithium spectrum, 90. 
Dynamids, 13. 
— number per atom, 13. 

E 

Effective principal quantum number, 
388. 

■ radial quantum number, 388. 
Ehrenfest, adiabatic hypothesis, 341. 
Einstein, theory of photoelectric effect, 

37 et aeq. 
Electric centre of gravity, 347. 
Electromagnetic rays, 23. 
— —. transversal character of the field, 

25. 
Electron configuration of molecules, 

594-595. 
— configurations, the iron groups, 454. 
— — rare earth group, 455 et »aq. 
—- definition of, 5. 

specific charge, 0. 
—• spin, 120, 270. 
Elliptic orbits, hydrogen, 109. 
— — Kepler’s laws. 80. 
Energy of elliptic orbits, 112. 
— law, 252. 

steps, 204. 
Enhanced lines, 434. 
Equatorial quantum number, 121, 308, 

327. 
Equivalent electrons, 440. 
Even term, scheme system, 430. 
Excitation of K-radiation, 202. 

- L-radiation, 202. 
— limit of K-lines, 226. 
— -L-lines, 228. 
— potentials, 377. 
External precession, 332. 
- proportion of the atom, 140. 

F 

Fajun’s laws of radioactive displace¬ 
ment, 137. 

Faraday’s law of electrolysis, 3. 
Fine-structure, 258. 
-constant, 256, 286. 
— — of spectral lines, 114. 
First subordinate series, 352. 

Fluorescence rays, 200. 
Fluorescent radiation, 227. 
Forbidden transitions, 423. 
Forces without a potential, 621. 
Fowler series, 266. 
Franck and Hertz, 371 et aeq. 

- excitation of serios, 372. 
Frequency of occurrence of the elements, 

174. ' 
Fricke, K-limit of sulphur, 234. 
Friedrich and Knipping, diffraction of 

X-rays, 183. 
Fuehtbauer, optical excitation of Hg- 

vapour, 385. 

G 

y-rays, 22. 
r*sum rule, 660. 
(lap law for L values, 662. 
(4eiger-Nut-tall rule, 59. 
General relativity correction, 259. 
Gerlach -Stern experiment, 124. 
Giauque and Johnston, oxygen isotope, 

142. 
Goldstein and Curtis, many-lines spec¬ 

trum of helium, 583. 
Goudsmit and Uhlenbeek, 120. 
Grotrian series limit. 404. 
Ground-state, 360. 
Gyromagnetic experiments, 519 at aeq. 
Gyroscopic motion of molecules, 584 

et aeq. 

H 

Half-integral values of J, 123. 
Half-value time, 52. 
Hamilton-Jacobi equation, 255. 
Hamilton theory in relativity mechanics, 

023. 
Hamiltonian function H, 77, 306. 

mechanics, 96, 98, 108. 
Hamilton’s equations, invariance of, 

604 et aeq. 
— partial differential equation, 101. 
Harmonic oscillator, 79, 559. 
Hoa-vy hydrogen isotope, 599. 
Heisenberg, composition of nucleus, 599. 
Helium, ionised atom, 66. 
— orthohelium, 357. 
— parahelium, 357. 
— resonance line, 359. 
— - spectrum, 583. 
Hertz electric waves, 1-2. 
— law of irregular doublets, 283. 
Hess, cosmic radiation, 596. 
Hund, rule of term positions, 449. 
Hydrogen, atom, 65. 
— ion or proton, 65. 
— valency of, 130. 
Hyperfine structure. 
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I 

Impulse, hardness, 29. 
— momentum, 79-77. 
— radiation, 27, 29, 179. 
Inert gases, 435. 
Inertia of energy, 251. 
Infra-red absorption bands, 559 et seq. 
Inner atomic field, 114. 
— electronic orbits, 395. 
— procession of l and s, 331. 
— quantum number, 244, 423 et seq. 
Intensities of band lines, 591 et seq. 
Intensity of spectral lines, 522 et seq. 
----- rules, 245. 
— — for He1 and H, 273. 
Invarianco, adiabatic, 342. 
Inverted doublets, 453. 
Ionisation by cosmic rays, 597. 
— potential, 371, 376. 
ionised helium atom, 66. 
-series, 74, 94, 95, 96. 
Irregular doublets, 244, 281. 
Isotopes, 139 

heavy hydrogen, 599. 
— of oxygen, 142. 

J 

Jacobi, extension of Hamilton's theory 
of wave-mechanics, 109. 

j-j coupling, 469. 

K 

Knufmann, dependence of mass of 
/2-partiele on velocity, 20, 21. 

Kepler orbit, 254. 
Kepler’s laws for elliptic orbits, 86. 
Kossel, 149, 233 et seq. 
K-radiation, 200. 
K-series, 206. 
— and the periodic system, 206. 
K-shell, 157. 
Kulenkampff, 33. 

L 

L-doublets, 215, 222, 274. 
L-radiation, 200. 
L-series, 214. 
L-shell, 157. 
Lagrange function L, 98. 
Land&’s interval rule, 542. 
— splitting factor, 333, 476. 
Larmor, processional velocity, 324. 
— theorem of, 325. 
Lattice grating, 179. 
— points, 180. 
Laue, diffraction of X-rays, 183. 
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Law of areas, 252. 
-band edges, 574-575. 
-inertia of energy, 44-45. 
— — permanence for arbitrary fields, 

659. 
Laws of radioactive displacement, 136. 
Legendre transformation, 608. 
Lenard, photoelectric cathode rays, 35. 
Line spectra, 68. 
Linear oscillator, 79. 
Lithium, doubly ionised, (57. 
— trebly ionised, 67. 
Lorentz triplot, 323. 
— vibration difference, 323. 
Loschmidt’s number L, 4. 
—- — per mol, 4. 
Lyman series, 74. 

M 

M-doublets, 215, 222, 278. 
M-radiation, 200. 
M -shell, 158. 
Magnetic quantum number, 121, 151, 

327. 
— — — multiplicity of the sub-groups, 

152. 
— — — selection and polarisation 

rules, 335. 
Magnetisation by rotation, 519. 
Magneto-chemical measurements, 507. 
—- -mechanical experiments, 519 et seq. 
Magneton, 127. 
— Bohr, 128. 
— theory of, 505 et seq. 

Weiss, 128. 
Many-liries spectra, 578 et seq. 
Mass absorption coefficient s/p, 31. 
— defect, 168. 
Maxwell, electromagnetio theory, 1. 
Meitner, 175. 
Metastable state, 380. 
Method of electronic impact, 371. 
Michelson, interferometer method for 

separation of terms, 263. 
Millikan, cosmic radiation, 596. 
— determination of e, 15. 
— determination of h, 40-41. 
— photoelectric effect, 39. 
Momont of momentum, 81-82. 
Moseley, atomic number rule, 213. 
— frequency law, 413. 

N 

N-doublets, 216, 222, 280. 
N-shell, 161. 
Neutron, 598-599. 
Non-penetrating orbits, 389. 
Normal coupling, 468. 
— state of revolving electron. 88, 
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Normal Zeeman effect, 321. 
Nuclear arrangement of electrons, 147. 
Number of electrons in the atom, 63. 

0 

O-shell, 162. 
Order numbers, 181. 
Orthoholium, 357. 
Oscillator, auharmonic, 564. 
— harmonics 79, 559. 
— linear, 79. 
—- Planck’s, 76. 
— stationary state of, 80. 
Oxygen valency, 130. 

P 

P-shell, 163. 
Packing effect, 170. 
— — per prot on, 170. 
Parabolic quantum numbers, 308. 
Parhelium, 357. 
Partially ponetrating orbits, 393. 
“ Partial ” Pasehen-Back effect, 489. 
Partial series, 354. 
Paschon-Back effect, 339, 489 et saq. 
. — partial, 489. 
.- selection and polarisation rules, 

494. 
— — total, 489. 
Paschail series, 73. 

- separation of neon lines into series, 
404. 

-— the terms, 263. 
Paths of a-rays, 18. 
-jS-rays, 18-19. 
Pauli, (lap law, 450. 
— permanence law of g-sums, 499. 
Pauli’s Principle, 154, 446. 
Penetrating orbits, 391, 399. 
Periodic structure of the elements, 155. 
— system, 155. 
Permanence law, 545. 
-of 0-sums, 499. 
Pfund series, 73. 
Phase-area, 78. 
— -integral, 81. 

of a system, 78. 
— -space, 78. 
Photo-electric effect, 35. 
-Einstein theory, 37. 
— — Millikan, 39. 
Photosphere, 486. 
Pickering series, 269. 
Planck, black body radiation, 36. 
Planck’s quantum of action h, 36, 76. 
— oscillator, 76. 
Polarisation, 23. 
— of Rontgen rays, 23-26. 
— rule, 312 et aeq. 

Polarisation, rules for strong magnetic 
fields, 338. 

Positive rays, 13. 
Positron, 597. 
Preston’s rule, 474. 
Principal quantum number, 150, 244. 
— - — — and shell structure, 151. 
— series, 352. 
Proton definition, 5, 65. 
Prout’s hypothesis, 143. 

Q 

Quadruple radiations, 368. 
Quantising of the rotating auharmonic 

oscillator, 667. 
Quantum numbers, azimuthal, 121, 150, 

244, 299, 364. 
-equatorial, 121, 308, 327. 
— — inner, 244, 423 et aeq. 
— — magnetic, 121, 151, 327. 

• — parabolic, 308. 
-principal, 150, 244, 388. 
-radial, 388. 
—- — spin, 153, 330, 428. 
— transitions, 299. 
Quintet scheme, 429. 

R 

Radial quantum, condition. 111. 
-number, 256, 363. 
Radioactive, constant, 55. 
— families, 51, 53. 
Ratio of kinetic to potential energy in 

Coulomb’s field, 609. 
Regoner, cosmic radiation, 596. 
Regular doublet, 242. 
Relative motion of the nucleus, 90. 
Relativistic, correction, 259. 
— doublets, 273. 

L-doublet, 404. 
— formula for hydrogen-like series, 256. 
Resolution of the Balmer line's, 312. 
-multiple! terms, 539 et aeq. 
Resolving power of a grating, 178. 
Resonance lino, 376. 
— - of helium, 359. 
— potential, 376. 
Richtmyer, theory of short - wave 

satellites, 247. 
Ritz, principle of combination, 72. 
— series term, 363. 
Rontgen rays and y-rays, 22 et aeq. 
Rotation by magnetism, 520. 
— spectra, 560 et aeq. 
— vibration spectra, 560 et aeq. 
Rotator, 81. 
Runge denominator, 474. 
Runge’s rule, 474. 
Russell-Saunders coupling, 441. 
Rutherford, artificial disintegration, 166. 
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Rutherford, charge and atomic number, 
62. 

— scattering of a-rays, 61. 
Rydberg, constant, 70. 
— law of alternation, 431. 
— series term, 363. 
Rydberg-Schuster rule, 354. 

S 

Saha, astrophysics, 436. 
Scattered secondary radiation of X-rays, 

29-31. 
Scattering by bound elect rons, 601 et se.q. 
Scheme of levels, 358. 
Screening, constant, 213. 
— doublets, 281. 
— number, 275. 
Second subordinate series, 352. 
Selection principle, 297, 312. 
— — for Zeeman effect, 329. 

— - rules for H and He*, 270. 
— — magnetic quantum number, 

635. 
— — - strong magnetic field, 338. 
Semi-major axis of ellipse, 112. 
— -minor axis of ellipse, 112-113. 
Separation of the term, 259-260. 
Series limit, 227. 
— term, simple, 261. 
— • — double, 261. 
— — threefold, 261. 
-fourfold, 261. 
Sharp subordinate series, 352. 
Single transitions, 445. 
Singlet lines, 323. 
Size of the nucleus, 63. 
Soddy, laws of radioactive displacement, 

137. 
Space-lattice, 180. 
Space quantising, 119. 
Spacing, determination of, 196. 
Spark spec tra, 407. 
Specific flux of energy radiation S, 24, 30, 

32. 
Spectra atoms unlike hydrogen, 654. 
Spectroscopic units, 287. 
Spin quantum number, 153, 330, 428. 
Stark effect, 114, 300. 

— of the second order, 649. 
Stationary states of the oscillator, 80. 
Storn-Gerlach experiment, 124, 505-507. 
Stripped atoms, 412. 
Summation rule, 546. 
Sun-spots, 436. 

T 

Theory of the magneton, 505 et seq. 
— — multiplets, 419 et xeq. 

- — perturbations, 619. 
Tolrnan, R. C., 21. 
Total magnetic moment of the atom, 332. 
- Paschen-Back effect, 489. 

Transformation, potential, 379. 
Triplet schemes, 426 el seq. 
True absorption coefficient, 233. 
— . . — per atom, 233. 

U 

Uhlenbeck and (loudsmit, 126. 

V 

Van deal Brook, atomic number, 04. 
Variat ion of mass with velocity, 251. 
Visible' bands, 508 et seq. 

W 

Walton and Cockcroft, bombardment, by 
protons, 599. 

Wave-number, 70. 
-surface, 108. 

Weiss magneton, 128. 
Wentzel, theory of short-wave satellites, 

247. 

X 

X-ray ionisation method, 193. 
— method of crystal powders, 193. 

spectroscopy, 193. 
X-rays, diffraction, 183-186. 

hardness, 176. 
— relativistic doublets, 273. 

- softness, 176. 
— spectra, 176. 

z 
Zeeman doublet, longitudinal effect, 321. 
— effect, 114. 
— — Lorentz theory, 322. 
--- — normal, 321. 
-of band lines, 594. 
-selection principle, 329. 
— triplet, transverse effect, 321. 
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